1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides Sema routines for C++ exception specification testing. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Sema/SemaInternal.h" 14 #include "clang/AST/ASTMutationListener.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/StmtObjC.h" 19 #include "clang/AST/TypeLoc.h" 20 #include "clang/Basic/Diagnostic.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 25 namespace clang { 26 27 static const FunctionProtoType *GetUnderlyingFunction(QualType T) 28 { 29 if (const PointerType *PtrTy = T->getAs<PointerType>()) 30 T = PtrTy->getPointeeType(); 31 else if (const ReferenceType *RefTy = T->getAs<ReferenceType>()) 32 T = RefTy->getPointeeType(); 33 else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) 34 T = MPTy->getPointeeType(); 35 return T->getAs<FunctionProtoType>(); 36 } 37 38 /// HACK: 2014-11-14 libstdc++ had a bug where it shadows std::swap with a 39 /// member swap function then tries to call std::swap unqualified from the 40 /// exception specification of that function. This function detects whether 41 /// we're in such a case and turns off delay-parsing of exception 42 /// specifications. Libstdc++ 6.1 (released 2016-04-27) appears to have 43 /// resolved it as side-effect of commit ddb63209a8d (2015-06-05). 44 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) { 45 auto *RD = dyn_cast<CXXRecordDecl>(CurContext); 46 47 // All the problem cases are member functions named "swap" within class 48 // templates declared directly within namespace std or std::__debug or 49 // std::__profile. 50 if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() || 51 !D.getIdentifier() || !D.getIdentifier()->isStr("swap")) 52 return false; 53 54 auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext()); 55 if (!ND) 56 return false; 57 58 bool IsInStd = ND->isStdNamespace(); 59 if (!IsInStd) { 60 // This isn't a direct member of namespace std, but it might still be 61 // libstdc++'s std::__debug::array or std::__profile::array. 62 IdentifierInfo *II = ND->getIdentifier(); 63 if (!II || !(II->isStr("__debug") || II->isStr("__profile")) || 64 !ND->isInStdNamespace()) 65 return false; 66 } 67 68 // Only apply this hack within a system header. 69 if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc())) 70 return false; 71 72 return llvm::StringSwitch<bool>(RD->getIdentifier()->getName()) 73 .Case("array", true) 74 .Case("pair", IsInStd) 75 .Case("priority_queue", IsInStd) 76 .Case("stack", IsInStd) 77 .Case("queue", IsInStd) 78 .Default(false); 79 } 80 81 ExprResult Sema::ActOnNoexceptSpec(Expr *NoexceptExpr, 82 ExceptionSpecificationType &EST) { 83 84 if (NoexceptExpr->isTypeDependent() || 85 NoexceptExpr->containsUnexpandedParameterPack()) { 86 EST = EST_DependentNoexcept; 87 return NoexceptExpr; 88 } 89 90 llvm::APSInt Result; 91 ExprResult Converted = CheckConvertedConstantExpression( 92 NoexceptExpr, Context.BoolTy, Result, CCEK_Noexcept); 93 94 if (Converted.isInvalid()) { 95 EST = EST_NoexceptFalse; 96 // Fill in an expression of 'false' as a fixup. 97 auto *BoolExpr = new (Context) 98 CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc()); 99 llvm::APSInt Value{1}; 100 Value = 0; 101 return ConstantExpr::Create(Context, BoolExpr, APValue{Value}); 102 } 103 104 if (Converted.get()->isValueDependent()) { 105 EST = EST_DependentNoexcept; 106 return Converted; 107 } 108 109 if (!Converted.isInvalid()) 110 EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue; 111 return Converted; 112 } 113 114 /// CheckSpecifiedExceptionType - Check if the given type is valid in an 115 /// exception specification. Incomplete types, or pointers to incomplete types 116 /// other than void are not allowed. 117 /// 118 /// \param[in,out] T The exception type. This will be decayed to a pointer type 119 /// when the input is an array or a function type. 120 bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) { 121 // C++11 [except.spec]p2: 122 // A type cv T, "array of T", or "function returning T" denoted 123 // in an exception-specification is adjusted to type T, "pointer to T", or 124 // "pointer to function returning T", respectively. 125 // 126 // We also apply this rule in C++98. 127 if (T->isArrayType()) 128 T = Context.getArrayDecayedType(T); 129 else if (T->isFunctionType()) 130 T = Context.getPointerType(T); 131 132 int Kind = 0; 133 QualType PointeeT = T; 134 if (const PointerType *PT = T->getAs<PointerType>()) { 135 PointeeT = PT->getPointeeType(); 136 Kind = 1; 137 138 // cv void* is explicitly permitted, despite being a pointer to an 139 // incomplete type. 140 if (PointeeT->isVoidType()) 141 return false; 142 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 143 PointeeT = RT->getPointeeType(); 144 Kind = 2; 145 146 if (RT->isRValueReferenceType()) { 147 // C++11 [except.spec]p2: 148 // A type denoted in an exception-specification shall not denote [...] 149 // an rvalue reference type. 150 Diag(Range.getBegin(), diag::err_rref_in_exception_spec) 151 << T << Range; 152 return true; 153 } 154 } 155 156 // C++11 [except.spec]p2: 157 // A type denoted in an exception-specification shall not denote an 158 // incomplete type other than a class currently being defined [...]. 159 // A type denoted in an exception-specification shall not denote a 160 // pointer or reference to an incomplete type, other than (cv) void* or a 161 // pointer or reference to a class currently being defined. 162 // In Microsoft mode, downgrade this to a warning. 163 unsigned DiagID = diag::err_incomplete_in_exception_spec; 164 bool ReturnValueOnError = true; 165 if (getLangOpts().MSVCCompat) { 166 DiagID = diag::ext_incomplete_in_exception_spec; 167 ReturnValueOnError = false; 168 } 169 if (!(PointeeT->isRecordType() && 170 PointeeT->castAs<RecordType>()->isBeingDefined()) && 171 RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range)) 172 return ReturnValueOnError; 173 174 // The MSVC compatibility mode doesn't extend to sizeless types, 175 // so diagnose them separately. 176 if (PointeeT->isSizelessType() && Kind != 1) { 177 Diag(Range.getBegin(), diag::err_sizeless_in_exception_spec) 178 << (Kind == 2 ? 1 : 0) << PointeeT << Range; 179 return true; 180 } 181 182 return false; 183 } 184 185 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer 186 /// to member to a function with an exception specification. This means that 187 /// it is invalid to add another level of indirection. 188 bool Sema::CheckDistantExceptionSpec(QualType T) { 189 // C++17 removes this rule in favor of putting exception specifications into 190 // the type system. 191 if (getLangOpts().CPlusPlus17) 192 return false; 193 194 if (const PointerType *PT = T->getAs<PointerType>()) 195 T = PT->getPointeeType(); 196 else if (const MemberPointerType *PT = T->getAs<MemberPointerType>()) 197 T = PT->getPointeeType(); 198 else 199 return false; 200 201 const FunctionProtoType *FnT = T->getAs<FunctionProtoType>(); 202 if (!FnT) 203 return false; 204 205 return FnT->hasExceptionSpec(); 206 } 207 208 const FunctionProtoType * 209 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) { 210 if (FPT->getExceptionSpecType() == EST_Unparsed) { 211 Diag(Loc, diag::err_exception_spec_not_parsed); 212 return nullptr; 213 } 214 215 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) 216 return FPT; 217 218 FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl(); 219 const FunctionProtoType *SourceFPT = 220 SourceDecl->getType()->castAs<FunctionProtoType>(); 221 222 // If the exception specification has already been resolved, just return it. 223 if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType())) 224 return SourceFPT; 225 226 // Compute or instantiate the exception specification now. 227 if (SourceFPT->getExceptionSpecType() == EST_Unevaluated) 228 EvaluateImplicitExceptionSpec(Loc, SourceDecl); 229 else 230 InstantiateExceptionSpec(Loc, SourceDecl); 231 232 const FunctionProtoType *Proto = 233 SourceDecl->getType()->castAs<FunctionProtoType>(); 234 if (Proto->getExceptionSpecType() == clang::EST_Unparsed) { 235 Diag(Loc, diag::err_exception_spec_not_parsed); 236 Proto = nullptr; 237 } 238 return Proto; 239 } 240 241 void 242 Sema::UpdateExceptionSpec(FunctionDecl *FD, 243 const FunctionProtoType::ExceptionSpecInfo &ESI) { 244 // If we've fully resolved the exception specification, notify listeners. 245 if (!isUnresolvedExceptionSpec(ESI.Type)) 246 if (auto *Listener = getASTMutationListener()) 247 Listener->ResolvedExceptionSpec(FD); 248 249 for (FunctionDecl *Redecl : FD->redecls()) 250 Context.adjustExceptionSpec(Redecl, ESI); 251 } 252 253 static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) { 254 auto *MD = dyn_cast<CXXMethodDecl>(FD); 255 if (!MD) 256 return false; 257 258 auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType(); 259 return EST == EST_Unparsed || 260 (EST == EST_Unevaluated && MD->getParent()->isBeingDefined()); 261 } 262 263 static bool CheckEquivalentExceptionSpecImpl( 264 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, 265 const FunctionProtoType *Old, SourceLocation OldLoc, 266 const FunctionProtoType *New, SourceLocation NewLoc, 267 bool *MissingExceptionSpecification = nullptr, 268 bool *MissingEmptyExceptionSpecification = nullptr, 269 bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false); 270 271 /// Determine whether a function has an implicitly-generated exception 272 /// specification. 273 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) { 274 if (!isa<CXXDestructorDecl>(Decl) && 275 Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete && 276 Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 277 return false; 278 279 // For a function that the user didn't declare: 280 // - if this is a destructor, its exception specification is implicit. 281 // - if this is 'operator delete' or 'operator delete[]', the exception 282 // specification is as-if an explicit exception specification was given 283 // (per [basic.stc.dynamic]p2). 284 if (!Decl->getTypeSourceInfo()) 285 return isa<CXXDestructorDecl>(Decl); 286 287 auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); 288 return !Ty->hasExceptionSpec(); 289 } 290 291 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) { 292 // Just completely ignore this under -fno-exceptions prior to C++17. 293 // In C++17 onwards, the exception specification is part of the type and 294 // we will diagnose mismatches anyway, so it's better to check for them here. 295 if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17) 296 return false; 297 298 OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator(); 299 bool IsOperatorNew = OO == OO_New || OO == OO_Array_New; 300 bool MissingExceptionSpecification = false; 301 bool MissingEmptyExceptionSpecification = false; 302 303 unsigned DiagID = diag::err_mismatched_exception_spec; 304 bool ReturnValueOnError = true; 305 if (getLangOpts().MSVCCompat) { 306 DiagID = diag::ext_mismatched_exception_spec; 307 ReturnValueOnError = false; 308 } 309 310 // If we're befriending a member function of a class that's currently being 311 // defined, we might not be able to work out its exception specification yet. 312 // If not, defer the check until later. 313 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) { 314 DelayedEquivalentExceptionSpecChecks.push_back({New, Old}); 315 return false; 316 } 317 318 // Check the types as written: they must match before any exception 319 // specification adjustment is applied. 320 if (!CheckEquivalentExceptionSpecImpl( 321 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), 322 Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(), 323 New->getType()->getAs<FunctionProtoType>(), New->getLocation(), 324 &MissingExceptionSpecification, &MissingEmptyExceptionSpecification, 325 /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) { 326 // C++11 [except.spec]p4 [DR1492]: 327 // If a declaration of a function has an implicit 328 // exception-specification, other declarations of the function shall 329 // not specify an exception-specification. 330 if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions && 331 hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) { 332 Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch) 333 << hasImplicitExceptionSpec(Old); 334 if (Old->getLocation().isValid()) 335 Diag(Old->getLocation(), diag::note_previous_declaration); 336 } 337 return false; 338 } 339 340 // The failure was something other than an missing exception 341 // specification; return an error, except in MS mode where this is a warning. 342 if (!MissingExceptionSpecification) 343 return ReturnValueOnError; 344 345 const FunctionProtoType *NewProto = 346 New->getType()->castAs<FunctionProtoType>(); 347 348 // The new function declaration is only missing an empty exception 349 // specification "throw()". If the throw() specification came from a 350 // function in a system header that has C linkage, just add an empty 351 // exception specification to the "new" declaration. Note that C library 352 // implementations are permitted to add these nothrow exception 353 // specifications. 354 // 355 // Likewise if the old function is a builtin. 356 if (MissingEmptyExceptionSpecification && NewProto && 357 (Old->getLocation().isInvalid() || 358 Context.getSourceManager().isInSystemHeader(Old->getLocation()) || 359 Old->getBuiltinID()) && 360 Old->isExternC()) { 361 New->setType(Context.getFunctionType( 362 NewProto->getReturnType(), NewProto->getParamTypes(), 363 NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone))); 364 return false; 365 } 366 367 const FunctionProtoType *OldProto = 368 Old->getType()->castAs<FunctionProtoType>(); 369 370 FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType(); 371 if (ESI.Type == EST_Dynamic) { 372 // FIXME: What if the exceptions are described in terms of the old 373 // prototype's parameters? 374 ESI.Exceptions = OldProto->exceptions(); 375 } 376 377 if (ESI.Type == EST_NoexceptFalse) 378 ESI.Type = EST_None; 379 if (ESI.Type == EST_NoexceptTrue) 380 ESI.Type = EST_BasicNoexcept; 381 382 // For dependent noexcept, we can't just take the expression from the old 383 // prototype. It likely contains references to the old prototype's parameters. 384 if (ESI.Type == EST_DependentNoexcept) { 385 New->setInvalidDecl(); 386 } else { 387 // Update the type of the function with the appropriate exception 388 // specification. 389 New->setType(Context.getFunctionType( 390 NewProto->getReturnType(), NewProto->getParamTypes(), 391 NewProto->getExtProtoInfo().withExceptionSpec(ESI))); 392 } 393 394 if (getLangOpts().MSVCCompat && ESI.Type != EST_DependentNoexcept) { 395 // Allow missing exception specifications in redeclarations as an extension. 396 DiagID = diag::ext_ms_missing_exception_specification; 397 ReturnValueOnError = false; 398 } else if (New->isReplaceableGlobalAllocationFunction() && 399 ESI.Type != EST_DependentNoexcept) { 400 // Allow missing exception specifications in redeclarations as an extension, 401 // when declaring a replaceable global allocation function. 402 DiagID = diag::ext_missing_exception_specification; 403 ReturnValueOnError = false; 404 } else if (ESI.Type == EST_NoThrow) { 405 // Allow missing attribute 'nothrow' in redeclarations, since this is a very 406 // common omission. 407 DiagID = diag::ext_missing_exception_specification; 408 ReturnValueOnError = false; 409 } else { 410 DiagID = diag::err_missing_exception_specification; 411 ReturnValueOnError = true; 412 } 413 414 // Warn about the lack of exception specification. 415 SmallString<128> ExceptionSpecString; 416 llvm::raw_svector_ostream OS(ExceptionSpecString); 417 switch (OldProto->getExceptionSpecType()) { 418 case EST_DynamicNone: 419 OS << "throw()"; 420 break; 421 422 case EST_Dynamic: { 423 OS << "throw("; 424 bool OnFirstException = true; 425 for (const auto &E : OldProto->exceptions()) { 426 if (OnFirstException) 427 OnFirstException = false; 428 else 429 OS << ", "; 430 431 OS << E.getAsString(getPrintingPolicy()); 432 } 433 OS << ")"; 434 break; 435 } 436 437 case EST_BasicNoexcept: 438 OS << "noexcept"; 439 break; 440 441 case EST_DependentNoexcept: 442 case EST_NoexceptFalse: 443 case EST_NoexceptTrue: 444 OS << "noexcept("; 445 assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr"); 446 OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy()); 447 OS << ")"; 448 break; 449 case EST_NoThrow: 450 OS <<"__attribute__((nothrow))"; 451 break; 452 case EST_None: 453 case EST_MSAny: 454 case EST_Unevaluated: 455 case EST_Uninstantiated: 456 case EST_Unparsed: 457 llvm_unreachable("This spec type is compatible with none."); 458 } 459 460 SourceLocation FixItLoc; 461 if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) { 462 TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens(); 463 // FIXME: Preserve enough information so that we can produce a correct fixit 464 // location when there is a trailing return type. 465 if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>()) 466 if (!FTLoc.getTypePtr()->hasTrailingReturn()) 467 FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd()); 468 } 469 470 if (FixItLoc.isInvalid()) 471 Diag(New->getLocation(), DiagID) 472 << New << OS.str(); 473 else { 474 Diag(New->getLocation(), DiagID) 475 << New << OS.str() 476 << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str()); 477 } 478 479 if (Old->getLocation().isValid()) 480 Diag(Old->getLocation(), diag::note_previous_declaration); 481 482 return ReturnValueOnError; 483 } 484 485 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent 486 /// exception specifications. Exception specifications are equivalent if 487 /// they allow exactly the same set of exception types. It does not matter how 488 /// that is achieved. See C++ [except.spec]p2. 489 bool Sema::CheckEquivalentExceptionSpec( 490 const FunctionProtoType *Old, SourceLocation OldLoc, 491 const FunctionProtoType *New, SourceLocation NewLoc) { 492 if (!getLangOpts().CXXExceptions) 493 return false; 494 495 unsigned DiagID = diag::err_mismatched_exception_spec; 496 if (getLangOpts().MSVCCompat) 497 DiagID = diag::ext_mismatched_exception_spec; 498 bool Result = CheckEquivalentExceptionSpecImpl( 499 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), 500 Old, OldLoc, New, NewLoc); 501 502 // In Microsoft mode, mismatching exception specifications just cause a warning. 503 if (getLangOpts().MSVCCompat) 504 return false; 505 return Result; 506 } 507 508 /// CheckEquivalentExceptionSpec - Check if the two types have compatible 509 /// exception specifications. See C++ [except.spec]p3. 510 /// 511 /// \return \c false if the exception specifications match, \c true if there is 512 /// a problem. If \c true is returned, either a diagnostic has already been 513 /// produced or \c *MissingExceptionSpecification is set to \c true. 514 static bool CheckEquivalentExceptionSpecImpl( 515 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, 516 const FunctionProtoType *Old, SourceLocation OldLoc, 517 const FunctionProtoType *New, SourceLocation NewLoc, 518 bool *MissingExceptionSpecification, 519 bool *MissingEmptyExceptionSpecification, 520 bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) { 521 if (MissingExceptionSpecification) 522 *MissingExceptionSpecification = false; 523 524 if (MissingEmptyExceptionSpecification) 525 *MissingEmptyExceptionSpecification = false; 526 527 Old = S.ResolveExceptionSpec(NewLoc, Old); 528 if (!Old) 529 return false; 530 New = S.ResolveExceptionSpec(NewLoc, New); 531 if (!New) 532 return false; 533 534 // C++0x [except.spec]p3: Two exception-specifications are compatible if: 535 // - both are non-throwing, regardless of their form, 536 // - both have the form noexcept(constant-expression) and the constant- 537 // expressions are equivalent, 538 // - both are dynamic-exception-specifications that have the same set of 539 // adjusted types. 540 // 541 // C++0x [except.spec]p12: An exception-specification is non-throwing if it is 542 // of the form throw(), noexcept, or noexcept(constant-expression) where the 543 // constant-expression yields true. 544 // 545 // C++0x [except.spec]p4: If any declaration of a function has an exception- 546 // specifier that is not a noexcept-specification allowing all exceptions, 547 // all declarations [...] of that function shall have a compatible 548 // exception-specification. 549 // 550 // That last point basically means that noexcept(false) matches no spec. 551 // It's considered when AllowNoexceptAllMatchWithNoSpec is true. 552 553 ExceptionSpecificationType OldEST = Old->getExceptionSpecType(); 554 ExceptionSpecificationType NewEST = New->getExceptionSpecType(); 555 556 assert(!isUnresolvedExceptionSpec(OldEST) && 557 !isUnresolvedExceptionSpec(NewEST) && 558 "Shouldn't see unknown exception specifications here"); 559 560 CanThrowResult OldCanThrow = Old->canThrow(); 561 CanThrowResult NewCanThrow = New->canThrow(); 562 563 // Any non-throwing specifications are compatible. 564 if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot) 565 return false; 566 567 // Any throws-anything specifications are usually compatible. 568 if (OldCanThrow == CT_Can && OldEST != EST_Dynamic && 569 NewCanThrow == CT_Can && NewEST != EST_Dynamic) { 570 // The exception is that the absence of an exception specification only 571 // matches noexcept(false) for functions, as described above. 572 if (!AllowNoexceptAllMatchWithNoSpec && 573 ((OldEST == EST_None && NewEST == EST_NoexceptFalse) || 574 (OldEST == EST_NoexceptFalse && NewEST == EST_None))) { 575 // This is the disallowed case. 576 } else { 577 return false; 578 } 579 } 580 581 // C++14 [except.spec]p3: 582 // Two exception-specifications are compatible if [...] both have the form 583 // noexcept(constant-expression) and the constant-expressions are equivalent 584 if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) { 585 llvm::FoldingSetNodeID OldFSN, NewFSN; 586 Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true); 587 New->getNoexceptExpr()->Profile(NewFSN, S.Context, true); 588 if (OldFSN == NewFSN) 589 return false; 590 } 591 592 // Dynamic exception specifications with the same set of adjusted types 593 // are compatible. 594 if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) { 595 bool Success = true; 596 // Both have a dynamic exception spec. Collect the first set, then compare 597 // to the second. 598 llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes; 599 for (const auto &I : Old->exceptions()) 600 OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType()); 601 602 for (const auto &I : New->exceptions()) { 603 CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType(); 604 if (OldTypes.count(TypePtr)) 605 NewTypes.insert(TypePtr); 606 else { 607 Success = false; 608 break; 609 } 610 } 611 612 if (Success && OldTypes.size() == NewTypes.size()) 613 return false; 614 } 615 616 // As a special compatibility feature, under C++0x we accept no spec and 617 // throw(std::bad_alloc) as equivalent for operator new and operator new[]. 618 // This is because the implicit declaration changed, but old code would break. 619 if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) { 620 const FunctionProtoType *WithExceptions = nullptr; 621 if (OldEST == EST_None && NewEST == EST_Dynamic) 622 WithExceptions = New; 623 else if (OldEST == EST_Dynamic && NewEST == EST_None) 624 WithExceptions = Old; 625 if (WithExceptions && WithExceptions->getNumExceptions() == 1) { 626 // One has no spec, the other throw(something). If that something is 627 // std::bad_alloc, all conditions are met. 628 QualType Exception = *WithExceptions->exception_begin(); 629 if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) { 630 IdentifierInfo* Name = ExRecord->getIdentifier(); 631 if (Name && Name->getName() == "bad_alloc") { 632 // It's called bad_alloc, but is it in std? 633 if (ExRecord->isInStdNamespace()) { 634 return false; 635 } 636 } 637 } 638 } 639 } 640 641 // If the caller wants to handle the case that the new function is 642 // incompatible due to a missing exception specification, let it. 643 if (MissingExceptionSpecification && OldEST != EST_None && 644 NewEST == EST_None) { 645 // The old type has an exception specification of some sort, but 646 // the new type does not. 647 *MissingExceptionSpecification = true; 648 649 if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) { 650 // The old type has a throw() or noexcept(true) exception specification 651 // and the new type has no exception specification, and the caller asked 652 // to handle this itself. 653 *MissingEmptyExceptionSpecification = true; 654 } 655 656 return true; 657 } 658 659 S.Diag(NewLoc, DiagID); 660 if (NoteID.getDiagID() != 0 && OldLoc.isValid()) 661 S.Diag(OldLoc, NoteID); 662 return true; 663 } 664 665 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID, 666 const PartialDiagnostic &NoteID, 667 const FunctionProtoType *Old, 668 SourceLocation OldLoc, 669 const FunctionProtoType *New, 670 SourceLocation NewLoc) { 671 if (!getLangOpts().CXXExceptions) 672 return false; 673 return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc, 674 New, NewLoc); 675 } 676 677 bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) { 678 // [except.handle]p3: 679 // A handler is a match for an exception object of type E if: 680 681 // HandlerType must be ExceptionType or derived from it, or pointer or 682 // reference to such types. 683 const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>(); 684 if (RefTy) 685 HandlerType = RefTy->getPointeeType(); 686 687 // -- the handler is of type cv T or cv T& and E and T are the same type 688 if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType)) 689 return true; 690 691 // FIXME: ObjC pointer types? 692 if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) { 693 if (RefTy && (!HandlerType.isConstQualified() || 694 HandlerType.isVolatileQualified())) 695 return false; 696 697 // -- the handler is of type cv T or const T& where T is a pointer or 698 // pointer to member type and E is std::nullptr_t 699 if (ExceptionType->isNullPtrType()) 700 return true; 701 702 // -- the handler is of type cv T or const T& where T is a pointer or 703 // pointer to member type and E is a pointer or pointer to member type 704 // that can be converted to T by one or more of 705 // -- a qualification conversion 706 // -- a function pointer conversion 707 bool LifetimeConv; 708 QualType Result; 709 // FIXME: Should we treat the exception as catchable if a lifetime 710 // conversion is required? 711 if (IsQualificationConversion(ExceptionType, HandlerType, false, 712 LifetimeConv) || 713 IsFunctionConversion(ExceptionType, HandlerType, Result)) 714 return true; 715 716 // -- a standard pointer conversion [...] 717 if (!ExceptionType->isPointerType() || !HandlerType->isPointerType()) 718 return false; 719 720 // Handle the "qualification conversion" portion. 721 Qualifiers EQuals, HQuals; 722 ExceptionType = Context.getUnqualifiedArrayType( 723 ExceptionType->getPointeeType(), EQuals); 724 HandlerType = Context.getUnqualifiedArrayType( 725 HandlerType->getPointeeType(), HQuals); 726 if (!HQuals.compatiblyIncludes(EQuals)) 727 return false; 728 729 if (HandlerType->isVoidType() && ExceptionType->isObjectType()) 730 return true; 731 732 // The only remaining case is a derived-to-base conversion. 733 } 734 735 // -- the handler is of type cg T or cv T& and T is an unambiguous public 736 // base class of E 737 if (!ExceptionType->isRecordType() || !HandlerType->isRecordType()) 738 return false; 739 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 740 /*DetectVirtual=*/false); 741 if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) || 742 Paths.isAmbiguous(Context.getCanonicalType(HandlerType))) 743 return false; 744 745 // Do this check from a context without privileges. 746 switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType, 747 Paths.front(), 748 /*Diagnostic*/ 0, 749 /*ForceCheck*/ true, 750 /*ForceUnprivileged*/ true)) { 751 case AR_accessible: return true; 752 case AR_inaccessible: return false; 753 case AR_dependent: 754 llvm_unreachable("access check dependent for unprivileged context"); 755 case AR_delayed: 756 llvm_unreachable("access check delayed in non-declaration"); 757 } 758 llvm_unreachable("unexpected access check result"); 759 } 760 761 /// CheckExceptionSpecSubset - Check whether the second function type's 762 /// exception specification is a subset (or equivalent) of the first function 763 /// type. This is used by override and pointer assignment checks. 764 bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID, 765 const PartialDiagnostic &NestedDiagID, 766 const PartialDiagnostic &NoteID, 767 const PartialDiagnostic &NoThrowDiagID, 768 const FunctionProtoType *Superset, 769 SourceLocation SuperLoc, 770 const FunctionProtoType *Subset, 771 SourceLocation SubLoc) { 772 773 // Just auto-succeed under -fno-exceptions. 774 if (!getLangOpts().CXXExceptions) 775 return false; 776 777 // FIXME: As usual, we could be more specific in our error messages, but 778 // that better waits until we've got types with source locations. 779 780 if (!SubLoc.isValid()) 781 SubLoc = SuperLoc; 782 783 // Resolve the exception specifications, if needed. 784 Superset = ResolveExceptionSpec(SuperLoc, Superset); 785 if (!Superset) 786 return false; 787 Subset = ResolveExceptionSpec(SubLoc, Subset); 788 if (!Subset) 789 return false; 790 791 ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType(); 792 ExceptionSpecificationType SubEST = Subset->getExceptionSpecType(); 793 assert(!isUnresolvedExceptionSpec(SuperEST) && 794 !isUnresolvedExceptionSpec(SubEST) && 795 "Shouldn't see unknown exception specifications here"); 796 797 // If there are dependent noexcept specs, assume everything is fine. Unlike 798 // with the equivalency check, this is safe in this case, because we don't 799 // want to merge declarations. Checks after instantiation will catch any 800 // omissions we make here. 801 if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept) 802 return false; 803 804 CanThrowResult SuperCanThrow = Superset->canThrow(); 805 CanThrowResult SubCanThrow = Subset->canThrow(); 806 807 // If the superset contains everything or the subset contains nothing, we're 808 // done. 809 if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) || 810 SubCanThrow == CT_Cannot) 811 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 812 Subset, SubLoc); 813 814 // Allow __declspec(nothrow) to be missing on redeclaration as an extension in 815 // some cases. 816 if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can && 817 SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) { 818 Diag(SubLoc, NoThrowDiagID); 819 if (NoteID.getDiagID() != 0) 820 Diag(SuperLoc, NoteID); 821 return true; 822 } 823 824 // If the subset contains everything or the superset contains nothing, we've 825 // failed. 826 if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) || 827 SuperCanThrow == CT_Cannot) { 828 Diag(SubLoc, DiagID); 829 if (NoteID.getDiagID() != 0) 830 Diag(SuperLoc, NoteID); 831 return true; 832 } 833 834 assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic && 835 "Exception spec subset: non-dynamic case slipped through."); 836 837 // Neither contains everything or nothing. Do a proper comparison. 838 for (QualType SubI : Subset->exceptions()) { 839 if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>()) 840 SubI = RefTy->getPointeeType(); 841 842 // Make sure it's in the superset. 843 bool Contained = false; 844 for (QualType SuperI : Superset->exceptions()) { 845 // [except.spec]p5: 846 // the target entity shall allow at least the exceptions allowed by the 847 // source 848 // 849 // We interpret this as meaning that a handler for some target type would 850 // catch an exception of each source type. 851 if (handlerCanCatch(SuperI, SubI)) { 852 Contained = true; 853 break; 854 } 855 } 856 if (!Contained) { 857 Diag(SubLoc, DiagID); 858 if (NoteID.getDiagID() != 0) 859 Diag(SuperLoc, NoteID); 860 return true; 861 } 862 } 863 // We've run half the gauntlet. 864 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 865 Subset, SubLoc); 866 } 867 868 static bool 869 CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID, 870 const PartialDiagnostic &NoteID, QualType Target, 871 SourceLocation TargetLoc, QualType Source, 872 SourceLocation SourceLoc) { 873 const FunctionProtoType *TFunc = GetUnderlyingFunction(Target); 874 if (!TFunc) 875 return false; 876 const FunctionProtoType *SFunc = GetUnderlyingFunction(Source); 877 if (!SFunc) 878 return false; 879 880 return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc, 881 SFunc, SourceLoc); 882 } 883 884 /// CheckParamExceptionSpec - Check if the parameter and return types of the 885 /// two functions have equivalent exception specs. This is part of the 886 /// assignment and override compatibility check. We do not check the parameters 887 /// of parameter function pointers recursively, as no sane programmer would 888 /// even be able to write such a function type. 889 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID, 890 const PartialDiagnostic &NoteID, 891 const FunctionProtoType *Target, 892 SourceLocation TargetLoc, 893 const FunctionProtoType *Source, 894 SourceLocation SourceLoc) { 895 auto RetDiag = DiagID; 896 RetDiag << 0; 897 if (CheckSpecForTypesEquivalent( 898 *this, RetDiag, PDiag(), 899 Target->getReturnType(), TargetLoc, Source->getReturnType(), 900 SourceLoc)) 901 return true; 902 903 // We shouldn't even be testing this unless the arguments are otherwise 904 // compatible. 905 assert(Target->getNumParams() == Source->getNumParams() && 906 "Functions have different argument counts."); 907 for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) { 908 auto ParamDiag = DiagID; 909 ParamDiag << 1; 910 if (CheckSpecForTypesEquivalent( 911 *this, ParamDiag, PDiag(), 912 Target->getParamType(i), TargetLoc, Source->getParamType(i), 913 SourceLoc)) 914 return true; 915 } 916 return false; 917 } 918 919 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) { 920 // First we check for applicability. 921 // Target type must be a function, function pointer or function reference. 922 const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType); 923 if (!ToFunc || ToFunc->hasDependentExceptionSpec()) 924 return false; 925 926 // SourceType must be a function or function pointer. 927 const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType()); 928 if (!FromFunc || FromFunc->hasDependentExceptionSpec()) 929 return false; 930 931 unsigned DiagID = diag::err_incompatible_exception_specs; 932 unsigned NestedDiagID = diag::err_deep_exception_specs_differ; 933 // This is not an error in C++17 onwards, unless the noexceptness doesn't 934 // match, but in that case we have a full-on type mismatch, not just a 935 // type sugar mismatch. 936 if (getLangOpts().CPlusPlus17) { 937 DiagID = diag::warn_incompatible_exception_specs; 938 NestedDiagID = diag::warn_deep_exception_specs_differ; 939 } 940 941 // Now we've got the correct types on both sides, check their compatibility. 942 // This means that the source of the conversion can only throw a subset of 943 // the exceptions of the target, and any exception specs on arguments or 944 // return types must be equivalent. 945 // 946 // FIXME: If there is a nested dependent exception specification, we should 947 // not be checking it here. This is fine: 948 // template<typename T> void f() { 949 // void (*p)(void (*) throw(T)); 950 // void (*q)(void (*) throw(int)) = p; 951 // } 952 // ... because it might be instantiated with T=int. 953 return CheckExceptionSpecSubset( 954 PDiag(DiagID), PDiag(NestedDiagID), PDiag(), PDiag(), ToFunc, 955 From->getSourceRange().getBegin(), FromFunc, SourceLocation()) && 956 !getLangOpts().CPlusPlus17; 957 } 958 959 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, 960 const CXXMethodDecl *Old) { 961 // If the new exception specification hasn't been parsed yet, skip the check. 962 // We'll get called again once it's been parsed. 963 if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() == 964 EST_Unparsed) 965 return false; 966 967 // Don't check uninstantiated template destructors at all. We can only 968 // synthesize correct specs after the template is instantiated. 969 if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType()) 970 return false; 971 972 // If the old exception specification hasn't been parsed yet, or the new 973 // exception specification can't be computed yet, remember that we need to 974 // perform this check when we get to the end of the outermost 975 // lexically-surrounding class. 976 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) { 977 DelayedOverridingExceptionSpecChecks.push_back({New, Old}); 978 return false; 979 } 980 981 unsigned DiagID = diag::err_override_exception_spec; 982 if (getLangOpts().MSVCCompat) 983 DiagID = diag::ext_override_exception_spec; 984 return CheckExceptionSpecSubset(PDiag(DiagID), 985 PDiag(diag::err_deep_exception_specs_differ), 986 PDiag(diag::note_overridden_virtual_function), 987 PDiag(diag::ext_override_exception_spec), 988 Old->getType()->castAs<FunctionProtoType>(), 989 Old->getLocation(), 990 New->getType()->castAs<FunctionProtoType>(), 991 New->getLocation()); 992 } 993 994 static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) { 995 CanThrowResult R = CT_Cannot; 996 for (const Stmt *SubStmt : S->children()) { 997 if (!SubStmt) 998 continue; 999 R = mergeCanThrow(R, Self.canThrow(SubStmt)); 1000 if (R == CT_Can) 1001 break; 1002 } 1003 return R; 1004 } 1005 1006 CanThrowResult Sema::canCalleeThrow(Sema &S, const Expr *E, const Decl *D, 1007 SourceLocation Loc) { 1008 // As an extension, we assume that __attribute__((nothrow)) functions don't 1009 // throw. 1010 if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>()) 1011 return CT_Cannot; 1012 1013 QualType T; 1014 1015 // In C++1z, just look at the function type of the callee. 1016 if (S.getLangOpts().CPlusPlus17 && E && isa<CallExpr>(E)) { 1017 E = cast<CallExpr>(E)->getCallee(); 1018 T = E->getType(); 1019 if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1020 // Sadly we don't preserve the actual type as part of the "bound member" 1021 // placeholder, so we need to reconstruct it. 1022 E = E->IgnoreParenImpCasts(); 1023 1024 // Could be a call to a pointer-to-member or a plain member access. 1025 if (auto *Op = dyn_cast<BinaryOperator>(E)) { 1026 assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI); 1027 T = Op->getRHS()->getType() 1028 ->castAs<MemberPointerType>()->getPointeeType(); 1029 } else { 1030 T = cast<MemberExpr>(E)->getMemberDecl()->getType(); 1031 } 1032 } 1033 } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D)) 1034 T = VD->getType(); 1035 else 1036 // If we have no clue what we're calling, assume the worst. 1037 return CT_Can; 1038 1039 const FunctionProtoType *FT; 1040 if ((FT = T->getAs<FunctionProtoType>())) { 1041 } else if (const PointerType *PT = T->getAs<PointerType>()) 1042 FT = PT->getPointeeType()->getAs<FunctionProtoType>(); 1043 else if (const ReferenceType *RT = T->getAs<ReferenceType>()) 1044 FT = RT->getPointeeType()->getAs<FunctionProtoType>(); 1045 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>()) 1046 FT = MT->getPointeeType()->getAs<FunctionProtoType>(); 1047 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) 1048 FT = BT->getPointeeType()->getAs<FunctionProtoType>(); 1049 1050 if (!FT) 1051 return CT_Can; 1052 1053 if (Loc.isValid() || (Loc.isInvalid() && E)) 1054 FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT); 1055 if (!FT) 1056 return CT_Can; 1057 1058 return FT->canThrow(); 1059 } 1060 1061 static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) { 1062 CanThrowResult CT = CT_Cannot; 1063 1064 // Initialization might throw. 1065 if (!VD->isUsableInConstantExpressions(Self.Context)) 1066 if (const Expr *Init = VD->getInit()) 1067 CT = mergeCanThrow(CT, Self.canThrow(Init)); 1068 1069 // Destructor might throw. 1070 if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) { 1071 if (auto *RD = 1072 VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) { 1073 if (auto *Dtor = RD->getDestructor()) { 1074 CT = mergeCanThrow( 1075 CT, Sema::canCalleeThrow(Self, nullptr, Dtor, VD->getLocation())); 1076 } 1077 } 1078 } 1079 1080 // If this is a decomposition declaration, bindings might throw. 1081 if (auto *DD = dyn_cast<DecompositionDecl>(VD)) 1082 for (auto *B : DD->bindings()) 1083 if (auto *HD = B->getHoldingVar()) 1084 CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD)); 1085 1086 return CT; 1087 } 1088 1089 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) { 1090 if (DC->isTypeDependent()) 1091 return CT_Dependent; 1092 1093 if (!DC->getTypeAsWritten()->isReferenceType()) 1094 return CT_Cannot; 1095 1096 if (DC->getSubExpr()->isTypeDependent()) 1097 return CT_Dependent; 1098 1099 return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot; 1100 } 1101 1102 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) { 1103 if (DC->isTypeOperand()) 1104 return CT_Cannot; 1105 1106 Expr *Op = DC->getExprOperand(); 1107 if (Op->isTypeDependent()) 1108 return CT_Dependent; 1109 1110 const RecordType *RT = Op->getType()->getAs<RecordType>(); 1111 if (!RT) 1112 return CT_Cannot; 1113 1114 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic()) 1115 return CT_Cannot; 1116 1117 if (Op->Classify(S.Context).isPRValue()) 1118 return CT_Cannot; 1119 1120 return CT_Can; 1121 } 1122 1123 CanThrowResult Sema::canThrow(const Stmt *S) { 1124 // C++ [expr.unary.noexcept]p3: 1125 // [Can throw] if in a potentially-evaluated context the expression would 1126 // contain: 1127 switch (S->getStmtClass()) { 1128 case Expr::ConstantExprClass: 1129 return canThrow(cast<ConstantExpr>(S)->getSubExpr()); 1130 1131 case Expr::CXXThrowExprClass: 1132 // - a potentially evaluated throw-expression 1133 return CT_Can; 1134 1135 case Expr::CXXDynamicCastExprClass: { 1136 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), 1137 // where T is a reference type, that requires a run-time check 1138 auto *CE = cast<CXXDynamicCastExpr>(S); 1139 // FIXME: Properly determine whether a variably-modified type can throw. 1140 if (CE->getType()->isVariablyModifiedType()) 1141 return CT_Can; 1142 CanThrowResult CT = canDynamicCastThrow(CE); 1143 if (CT == CT_Can) 1144 return CT; 1145 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1146 } 1147 1148 case Expr::CXXTypeidExprClass: 1149 // - a potentially evaluated typeid expression applied to a glvalue 1150 // expression whose type is a polymorphic class type 1151 return canTypeidThrow(*this, cast<CXXTypeidExpr>(S)); 1152 1153 // - a potentially evaluated call to a function, member function, function 1154 // pointer, or member function pointer that does not have a non-throwing 1155 // exception-specification 1156 case Expr::CallExprClass: 1157 case Expr::CXXMemberCallExprClass: 1158 case Expr::CXXOperatorCallExprClass: 1159 case Expr::UserDefinedLiteralClass: { 1160 const CallExpr *CE = cast<CallExpr>(S); 1161 CanThrowResult CT; 1162 if (CE->isTypeDependent()) 1163 CT = CT_Dependent; 1164 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) 1165 CT = CT_Cannot; 1166 else 1167 CT = canCalleeThrow(*this, CE, CE->getCalleeDecl()); 1168 if (CT == CT_Can) 1169 return CT; 1170 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1171 } 1172 1173 case Expr::CXXConstructExprClass: 1174 case Expr::CXXTemporaryObjectExprClass: { 1175 auto *CE = cast<CXXConstructExpr>(S); 1176 // FIXME: Properly determine whether a variably-modified type can throw. 1177 if (CE->getType()->isVariablyModifiedType()) 1178 return CT_Can; 1179 CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor()); 1180 if (CT == CT_Can) 1181 return CT; 1182 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1183 } 1184 1185 case Expr::CXXInheritedCtorInitExprClass: { 1186 auto *ICIE = cast<CXXInheritedCtorInitExpr>(S); 1187 return canCalleeThrow(*this, ICIE, ICIE->getConstructor()); 1188 } 1189 1190 case Expr::LambdaExprClass: { 1191 const LambdaExpr *Lambda = cast<LambdaExpr>(S); 1192 CanThrowResult CT = CT_Cannot; 1193 for (LambdaExpr::const_capture_init_iterator 1194 Cap = Lambda->capture_init_begin(), 1195 CapEnd = Lambda->capture_init_end(); 1196 Cap != CapEnd; ++Cap) 1197 CT = mergeCanThrow(CT, canThrow(*Cap)); 1198 return CT; 1199 } 1200 1201 case Expr::CXXNewExprClass: { 1202 auto *NE = cast<CXXNewExpr>(S); 1203 CanThrowResult CT; 1204 if (NE->isTypeDependent()) 1205 CT = CT_Dependent; 1206 else 1207 CT = canCalleeThrow(*this, NE, NE->getOperatorNew()); 1208 if (CT == CT_Can) 1209 return CT; 1210 return mergeCanThrow(CT, canSubStmtsThrow(*this, NE)); 1211 } 1212 1213 case Expr::CXXDeleteExprClass: { 1214 auto *DE = cast<CXXDeleteExpr>(S); 1215 CanThrowResult CT; 1216 QualType DTy = DE->getDestroyedType(); 1217 if (DTy.isNull() || DTy->isDependentType()) { 1218 CT = CT_Dependent; 1219 } else { 1220 CT = canCalleeThrow(*this, DE, DE->getOperatorDelete()); 1221 if (const RecordType *RT = DTy->getAs<RecordType>()) { 1222 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1223 const CXXDestructorDecl *DD = RD->getDestructor(); 1224 if (DD) 1225 CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD)); 1226 } 1227 if (CT == CT_Can) 1228 return CT; 1229 } 1230 return mergeCanThrow(CT, canSubStmtsThrow(*this, DE)); 1231 } 1232 1233 case Expr::CXXBindTemporaryExprClass: { 1234 auto *BTE = cast<CXXBindTemporaryExpr>(S); 1235 // The bound temporary has to be destroyed again, which might throw. 1236 CanThrowResult CT = 1237 canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor()); 1238 if (CT == CT_Can) 1239 return CT; 1240 return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE)); 1241 } 1242 1243 case Expr::PseudoObjectExprClass: { 1244 auto *POE = cast<PseudoObjectExpr>(S); 1245 CanThrowResult CT = CT_Cannot; 1246 for (const Expr *E : POE->semantics()) { 1247 CT = mergeCanThrow(CT, canThrow(E)); 1248 if (CT == CT_Can) 1249 break; 1250 } 1251 return CT; 1252 } 1253 1254 // ObjC message sends are like function calls, but never have exception 1255 // specs. 1256 case Expr::ObjCMessageExprClass: 1257 case Expr::ObjCPropertyRefExprClass: 1258 case Expr::ObjCSubscriptRefExprClass: 1259 return CT_Can; 1260 1261 // All the ObjC literals that are implemented as calls are 1262 // potentially throwing unless we decide to close off that 1263 // possibility. 1264 case Expr::ObjCArrayLiteralClass: 1265 case Expr::ObjCDictionaryLiteralClass: 1266 case Expr::ObjCBoxedExprClass: 1267 return CT_Can; 1268 1269 // Many other things have subexpressions, so we have to test those. 1270 // Some are simple: 1271 case Expr::CoawaitExprClass: 1272 case Expr::ConditionalOperatorClass: 1273 case Expr::CoyieldExprClass: 1274 case Expr::CXXRewrittenBinaryOperatorClass: 1275 case Expr::CXXStdInitializerListExprClass: 1276 case Expr::DesignatedInitExprClass: 1277 case Expr::DesignatedInitUpdateExprClass: 1278 case Expr::ExprWithCleanupsClass: 1279 case Expr::ExtVectorElementExprClass: 1280 case Expr::InitListExprClass: 1281 case Expr::ArrayInitLoopExprClass: 1282 case Expr::MemberExprClass: 1283 case Expr::ObjCIsaExprClass: 1284 case Expr::ObjCIvarRefExprClass: 1285 case Expr::ParenExprClass: 1286 case Expr::ParenListExprClass: 1287 case Expr::ShuffleVectorExprClass: 1288 case Expr::StmtExprClass: 1289 case Expr::ConvertVectorExprClass: 1290 case Expr::VAArgExprClass: 1291 return canSubStmtsThrow(*this, S); 1292 1293 case Expr::CompoundLiteralExprClass: 1294 case Expr::CXXConstCastExprClass: 1295 case Expr::CXXAddrspaceCastExprClass: 1296 case Expr::CXXReinterpretCastExprClass: 1297 case Expr::BuiltinBitCastExprClass: 1298 // FIXME: Properly determine whether a variably-modified type can throw. 1299 if (cast<Expr>(S)->getType()->isVariablyModifiedType()) 1300 return CT_Can; 1301 return canSubStmtsThrow(*this, S); 1302 1303 // Some might be dependent for other reasons. 1304 case Expr::ArraySubscriptExprClass: 1305 case Expr::MatrixSubscriptExprClass: 1306 case Expr::OMPArraySectionExprClass: 1307 case Expr::OMPArrayShapingExprClass: 1308 case Expr::OMPIteratorExprClass: 1309 case Expr::BinaryOperatorClass: 1310 case Expr::DependentCoawaitExprClass: 1311 case Expr::CompoundAssignOperatorClass: 1312 case Expr::CStyleCastExprClass: 1313 case Expr::CXXStaticCastExprClass: 1314 case Expr::CXXFunctionalCastExprClass: 1315 case Expr::ImplicitCastExprClass: 1316 case Expr::MaterializeTemporaryExprClass: 1317 case Expr::UnaryOperatorClass: { 1318 // FIXME: Properly determine whether a variably-modified type can throw. 1319 if (auto *CE = dyn_cast<CastExpr>(S)) 1320 if (CE->getType()->isVariablyModifiedType()) 1321 return CT_Can; 1322 CanThrowResult CT = 1323 cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot; 1324 return mergeCanThrow(CT, canSubStmtsThrow(*this, S)); 1325 } 1326 1327 case Expr::CXXDefaultArgExprClass: 1328 return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr()); 1329 1330 case Expr::CXXDefaultInitExprClass: 1331 return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr()); 1332 1333 case Expr::ChooseExprClass: { 1334 auto *CE = cast<ChooseExpr>(S); 1335 if (CE->isTypeDependent() || CE->isValueDependent()) 1336 return CT_Dependent; 1337 return canThrow(CE->getChosenSubExpr()); 1338 } 1339 1340 case Expr::GenericSelectionExprClass: 1341 if (cast<GenericSelectionExpr>(S)->isResultDependent()) 1342 return CT_Dependent; 1343 return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr()); 1344 1345 // Some expressions are always dependent. 1346 case Expr::CXXDependentScopeMemberExprClass: 1347 case Expr::CXXUnresolvedConstructExprClass: 1348 case Expr::DependentScopeDeclRefExprClass: 1349 case Expr::CXXFoldExprClass: 1350 case Expr::RecoveryExprClass: 1351 return CT_Dependent; 1352 1353 case Expr::AsTypeExprClass: 1354 case Expr::BinaryConditionalOperatorClass: 1355 case Expr::BlockExprClass: 1356 case Expr::CUDAKernelCallExprClass: 1357 case Expr::DeclRefExprClass: 1358 case Expr::ObjCBridgedCastExprClass: 1359 case Expr::ObjCIndirectCopyRestoreExprClass: 1360 case Expr::ObjCProtocolExprClass: 1361 case Expr::ObjCSelectorExprClass: 1362 case Expr::ObjCAvailabilityCheckExprClass: 1363 case Expr::OffsetOfExprClass: 1364 case Expr::PackExpansionExprClass: 1365 case Expr::SubstNonTypeTemplateParmExprClass: 1366 case Expr::SubstNonTypeTemplateParmPackExprClass: 1367 case Expr::FunctionParmPackExprClass: 1368 case Expr::UnaryExprOrTypeTraitExprClass: 1369 case Expr::UnresolvedLookupExprClass: 1370 case Expr::UnresolvedMemberExprClass: 1371 case Expr::TypoExprClass: 1372 // FIXME: Many of the above can throw. 1373 return CT_Cannot; 1374 1375 case Expr::AddrLabelExprClass: 1376 case Expr::ArrayTypeTraitExprClass: 1377 case Expr::AtomicExprClass: 1378 case Expr::TypeTraitExprClass: 1379 case Expr::CXXBoolLiteralExprClass: 1380 case Expr::CXXNoexceptExprClass: 1381 case Expr::CXXNullPtrLiteralExprClass: 1382 case Expr::CXXPseudoDestructorExprClass: 1383 case Expr::CXXScalarValueInitExprClass: 1384 case Expr::CXXThisExprClass: 1385 case Expr::CXXUuidofExprClass: 1386 case Expr::CharacterLiteralClass: 1387 case Expr::ExpressionTraitExprClass: 1388 case Expr::FloatingLiteralClass: 1389 case Expr::GNUNullExprClass: 1390 case Expr::ImaginaryLiteralClass: 1391 case Expr::ImplicitValueInitExprClass: 1392 case Expr::IntegerLiteralClass: 1393 case Expr::FixedPointLiteralClass: 1394 case Expr::ArrayInitIndexExprClass: 1395 case Expr::NoInitExprClass: 1396 case Expr::ObjCEncodeExprClass: 1397 case Expr::ObjCStringLiteralClass: 1398 case Expr::ObjCBoolLiteralExprClass: 1399 case Expr::OpaqueValueExprClass: 1400 case Expr::PredefinedExprClass: 1401 case Expr::SizeOfPackExprClass: 1402 case Expr::StringLiteralClass: 1403 case Expr::SourceLocExprClass: 1404 case Expr::ConceptSpecializationExprClass: 1405 case Expr::RequiresExprClass: 1406 // These expressions can never throw. 1407 return CT_Cannot; 1408 1409 case Expr::MSPropertyRefExprClass: 1410 case Expr::MSPropertySubscriptExprClass: 1411 llvm_unreachable("Invalid class for expression"); 1412 1413 // Most statements can throw if any substatement can throw. 1414 case Stmt::AttributedStmtClass: 1415 case Stmt::BreakStmtClass: 1416 case Stmt::CapturedStmtClass: 1417 case Stmt::CaseStmtClass: 1418 case Stmt::CompoundStmtClass: 1419 case Stmt::ContinueStmtClass: 1420 case Stmt::CoreturnStmtClass: 1421 case Stmt::CoroutineBodyStmtClass: 1422 case Stmt::CXXCatchStmtClass: 1423 case Stmt::CXXForRangeStmtClass: 1424 case Stmt::DefaultStmtClass: 1425 case Stmt::DoStmtClass: 1426 case Stmt::ForStmtClass: 1427 case Stmt::GCCAsmStmtClass: 1428 case Stmt::GotoStmtClass: 1429 case Stmt::IndirectGotoStmtClass: 1430 case Stmt::LabelStmtClass: 1431 case Stmt::MSAsmStmtClass: 1432 case Stmt::MSDependentExistsStmtClass: 1433 case Stmt::NullStmtClass: 1434 case Stmt::ObjCAtCatchStmtClass: 1435 case Stmt::ObjCAtFinallyStmtClass: 1436 case Stmt::ObjCAtSynchronizedStmtClass: 1437 case Stmt::ObjCAutoreleasePoolStmtClass: 1438 case Stmt::ObjCForCollectionStmtClass: 1439 case Stmt::OMPAtomicDirectiveClass: 1440 case Stmt::OMPBarrierDirectiveClass: 1441 case Stmt::OMPCancelDirectiveClass: 1442 case Stmt::OMPCancellationPointDirectiveClass: 1443 case Stmt::OMPCriticalDirectiveClass: 1444 case Stmt::OMPDistributeDirectiveClass: 1445 case Stmt::OMPDistributeParallelForDirectiveClass: 1446 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 1447 case Stmt::OMPDistributeSimdDirectiveClass: 1448 case Stmt::OMPFlushDirectiveClass: 1449 case Stmt::OMPDepobjDirectiveClass: 1450 case Stmt::OMPScanDirectiveClass: 1451 case Stmt::OMPForDirectiveClass: 1452 case Stmt::OMPForSimdDirectiveClass: 1453 case Stmt::OMPMasterDirectiveClass: 1454 case Stmt::OMPMasterTaskLoopDirectiveClass: 1455 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 1456 case Stmt::OMPOrderedDirectiveClass: 1457 case Stmt::OMPCanonicalLoopClass: 1458 case Stmt::OMPParallelDirectiveClass: 1459 case Stmt::OMPParallelForDirectiveClass: 1460 case Stmt::OMPParallelForSimdDirectiveClass: 1461 case Stmt::OMPParallelMasterDirectiveClass: 1462 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 1463 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 1464 case Stmt::OMPParallelSectionsDirectiveClass: 1465 case Stmt::OMPSectionDirectiveClass: 1466 case Stmt::OMPSectionsDirectiveClass: 1467 case Stmt::OMPSimdDirectiveClass: 1468 case Stmt::OMPTileDirectiveClass: 1469 case Stmt::OMPUnrollDirectiveClass: 1470 case Stmt::OMPSingleDirectiveClass: 1471 case Stmt::OMPTargetDataDirectiveClass: 1472 case Stmt::OMPTargetDirectiveClass: 1473 case Stmt::OMPTargetEnterDataDirectiveClass: 1474 case Stmt::OMPTargetExitDataDirectiveClass: 1475 case Stmt::OMPTargetParallelDirectiveClass: 1476 case Stmt::OMPTargetParallelForDirectiveClass: 1477 case Stmt::OMPTargetParallelForSimdDirectiveClass: 1478 case Stmt::OMPTargetSimdDirectiveClass: 1479 case Stmt::OMPTargetTeamsDirectiveClass: 1480 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 1481 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 1482 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 1483 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 1484 case Stmt::OMPTargetUpdateDirectiveClass: 1485 case Stmt::OMPTaskDirectiveClass: 1486 case Stmt::OMPTaskgroupDirectiveClass: 1487 case Stmt::OMPTaskLoopDirectiveClass: 1488 case Stmt::OMPTaskLoopSimdDirectiveClass: 1489 case Stmt::OMPTaskwaitDirectiveClass: 1490 case Stmt::OMPTaskyieldDirectiveClass: 1491 case Stmt::OMPTeamsDirectiveClass: 1492 case Stmt::OMPTeamsDistributeDirectiveClass: 1493 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 1494 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 1495 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 1496 case Stmt::OMPInteropDirectiveClass: 1497 case Stmt::OMPDispatchDirectiveClass: 1498 case Stmt::OMPMaskedDirectiveClass: 1499 case Stmt::OMPMetaDirectiveClass: 1500 case Stmt::OMPGenericLoopDirectiveClass: 1501 case Stmt::ReturnStmtClass: 1502 case Stmt::SEHExceptStmtClass: 1503 case Stmt::SEHFinallyStmtClass: 1504 case Stmt::SEHLeaveStmtClass: 1505 case Stmt::SEHTryStmtClass: 1506 case Stmt::SwitchStmtClass: 1507 case Stmt::WhileStmtClass: 1508 return canSubStmtsThrow(*this, S); 1509 1510 case Stmt::DeclStmtClass: { 1511 CanThrowResult CT = CT_Cannot; 1512 for (const Decl *D : cast<DeclStmt>(S)->decls()) { 1513 if (auto *VD = dyn_cast<VarDecl>(D)) 1514 CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD)); 1515 1516 // FIXME: Properly determine whether a variably-modified type can throw. 1517 if (auto *TND = dyn_cast<TypedefNameDecl>(D)) 1518 if (TND->getUnderlyingType()->isVariablyModifiedType()) 1519 return CT_Can; 1520 if (auto *VD = dyn_cast<ValueDecl>(D)) 1521 if (VD->getType()->isVariablyModifiedType()) 1522 return CT_Can; 1523 } 1524 return CT; 1525 } 1526 1527 case Stmt::IfStmtClass: { 1528 auto *IS = cast<IfStmt>(S); 1529 CanThrowResult CT = CT_Cannot; 1530 if (const Stmt *Init = IS->getInit()) 1531 CT = mergeCanThrow(CT, canThrow(Init)); 1532 if (const Stmt *CondDS = IS->getConditionVariableDeclStmt()) 1533 CT = mergeCanThrow(CT, canThrow(CondDS)); 1534 CT = mergeCanThrow(CT, canThrow(IS->getCond())); 1535 1536 // For 'if constexpr', consider only the non-discarded case. 1537 // FIXME: We should add a DiscardedStmt marker to the AST. 1538 if (Optional<const Stmt *> Case = IS->getNondiscardedCase(Context)) 1539 return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT; 1540 1541 CanThrowResult Then = canThrow(IS->getThen()); 1542 CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot; 1543 if (Then == Else) 1544 return mergeCanThrow(CT, Then); 1545 1546 // For a dependent 'if constexpr', the result is dependent if it depends on 1547 // the value of the condition. 1548 return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent 1549 : mergeCanThrow(Then, Else)); 1550 } 1551 1552 case Stmt::CXXTryStmtClass: { 1553 auto *TS = cast<CXXTryStmt>(S); 1554 // try /*...*/ catch (...) { H } can throw only if H can throw. 1555 // Any other try-catch can throw if any substatement can throw. 1556 const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1); 1557 if (!FinalHandler->getExceptionDecl()) 1558 return canThrow(FinalHandler->getHandlerBlock()); 1559 return canSubStmtsThrow(*this, S); 1560 } 1561 1562 case Stmt::ObjCAtThrowStmtClass: 1563 return CT_Can; 1564 1565 case Stmt::ObjCAtTryStmtClass: { 1566 auto *TS = cast<ObjCAtTryStmt>(S); 1567 1568 // @catch(...) need not be last in Objective-C. Walk backwards until we 1569 // see one or hit the @try. 1570 CanThrowResult CT = CT_Cannot; 1571 if (const Stmt *Finally = TS->getFinallyStmt()) 1572 CT = mergeCanThrow(CT, canThrow(Finally)); 1573 for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) { 1574 const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1); 1575 CT = mergeCanThrow(CT, canThrow(Catch)); 1576 // If we reach a @catch(...), no earlier exceptions can escape. 1577 if (Catch->hasEllipsis()) 1578 return CT; 1579 } 1580 1581 // Didn't find an @catch(...). Exceptions from the @try body can escape. 1582 return mergeCanThrow(CT, canThrow(TS->getTryBody())); 1583 } 1584 1585 case Stmt::SYCLUniqueStableNameExprClass: 1586 return CT_Cannot; 1587 case Stmt::NoStmtClass: 1588 llvm_unreachable("Invalid class for statement"); 1589 } 1590 llvm_unreachable("Bogus StmtClass"); 1591 } 1592 1593 } // end namespace clang 1594