1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides Sema routines for C++ exception specification testing. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Sema/SemaInternal.h" 14 #include "clang/AST/ASTMutationListener.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/StmtObjC.h" 19 #include "clang/AST/TypeLoc.h" 20 #include "clang/Basic/Diagnostic.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 25 namespace clang { 26 27 static const FunctionProtoType *GetUnderlyingFunction(QualType T) 28 { 29 if (const PointerType *PtrTy = T->getAs<PointerType>()) 30 T = PtrTy->getPointeeType(); 31 else if (const ReferenceType *RefTy = T->getAs<ReferenceType>()) 32 T = RefTy->getPointeeType(); 33 else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) 34 T = MPTy->getPointeeType(); 35 return T->getAs<FunctionProtoType>(); 36 } 37 38 /// HACK: libstdc++ has a bug where it shadows std::swap with a member 39 /// swap function then tries to call std::swap unqualified from the exception 40 /// specification of that function. This function detects whether we're in 41 /// such a case and turns off delay-parsing of exception specifications. 42 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) { 43 auto *RD = dyn_cast<CXXRecordDecl>(CurContext); 44 45 // All the problem cases are member functions named "swap" within class 46 // templates declared directly within namespace std or std::__debug or 47 // std::__profile. 48 if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() || 49 !D.getIdentifier() || !D.getIdentifier()->isStr("swap")) 50 return false; 51 52 auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext()); 53 if (!ND) 54 return false; 55 56 bool IsInStd = ND->isStdNamespace(); 57 if (!IsInStd) { 58 // This isn't a direct member of namespace std, but it might still be 59 // libstdc++'s std::__debug::array or std::__profile::array. 60 IdentifierInfo *II = ND->getIdentifier(); 61 if (!II || !(II->isStr("__debug") || II->isStr("__profile")) || 62 !ND->isInStdNamespace()) 63 return false; 64 } 65 66 // Only apply this hack within a system header. 67 if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc())) 68 return false; 69 70 return llvm::StringSwitch<bool>(RD->getIdentifier()->getName()) 71 .Case("array", true) 72 .Case("pair", IsInStd) 73 .Case("priority_queue", IsInStd) 74 .Case("stack", IsInStd) 75 .Case("queue", IsInStd) 76 .Default(false); 77 } 78 79 ExprResult Sema::ActOnNoexceptSpec(SourceLocation NoexceptLoc, 80 Expr *NoexceptExpr, 81 ExceptionSpecificationType &EST) { 82 // FIXME: This is bogus, a noexcept expression is not a condition. 83 ExprResult Converted = CheckBooleanCondition(NoexceptLoc, NoexceptExpr); 84 if (Converted.isInvalid()) { 85 EST = EST_NoexceptFalse; 86 87 // Fill in an expression of 'false' as a fixup. 88 auto *BoolExpr = new (Context) 89 CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc()); 90 llvm::APSInt Value{1}; 91 Value = 0; 92 return ConstantExpr::Create(Context, BoolExpr, APValue{Value}); 93 } 94 95 if (Converted.get()->isValueDependent()) { 96 EST = EST_DependentNoexcept; 97 return Converted; 98 } 99 100 llvm::APSInt Result; 101 Converted = VerifyIntegerConstantExpression( 102 Converted.get(), &Result, diag::err_noexcept_needs_constant_expression); 103 if (!Converted.isInvalid()) 104 EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue; 105 return Converted; 106 } 107 108 /// CheckSpecifiedExceptionType - Check if the given type is valid in an 109 /// exception specification. Incomplete types, or pointers to incomplete types 110 /// other than void are not allowed. 111 /// 112 /// \param[in,out] T The exception type. This will be decayed to a pointer type 113 /// when the input is an array or a function type. 114 bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) { 115 // C++11 [except.spec]p2: 116 // A type cv T, "array of T", or "function returning T" denoted 117 // in an exception-specification is adjusted to type T, "pointer to T", or 118 // "pointer to function returning T", respectively. 119 // 120 // We also apply this rule in C++98. 121 if (T->isArrayType()) 122 T = Context.getArrayDecayedType(T); 123 else if (T->isFunctionType()) 124 T = Context.getPointerType(T); 125 126 int Kind = 0; 127 QualType PointeeT = T; 128 if (const PointerType *PT = T->getAs<PointerType>()) { 129 PointeeT = PT->getPointeeType(); 130 Kind = 1; 131 132 // cv void* is explicitly permitted, despite being a pointer to an 133 // incomplete type. 134 if (PointeeT->isVoidType()) 135 return false; 136 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 137 PointeeT = RT->getPointeeType(); 138 Kind = 2; 139 140 if (RT->isRValueReferenceType()) { 141 // C++11 [except.spec]p2: 142 // A type denoted in an exception-specification shall not denote [...] 143 // an rvalue reference type. 144 Diag(Range.getBegin(), diag::err_rref_in_exception_spec) 145 << T << Range; 146 return true; 147 } 148 } 149 150 // C++11 [except.spec]p2: 151 // A type denoted in an exception-specification shall not denote an 152 // incomplete type other than a class currently being defined [...]. 153 // A type denoted in an exception-specification shall not denote a 154 // pointer or reference to an incomplete type, other than (cv) void* or a 155 // pointer or reference to a class currently being defined. 156 // In Microsoft mode, downgrade this to a warning. 157 unsigned DiagID = diag::err_incomplete_in_exception_spec; 158 bool ReturnValueOnError = true; 159 if (getLangOpts().MSVCCompat) { 160 DiagID = diag::ext_incomplete_in_exception_spec; 161 ReturnValueOnError = false; 162 } 163 if (!(PointeeT->isRecordType() && 164 PointeeT->castAs<RecordType>()->isBeingDefined()) && 165 RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range)) 166 return ReturnValueOnError; 167 168 // The MSVC compatibility mode doesn't extend to sizeless types, 169 // so diagnose them separately. 170 if (PointeeT->isSizelessType() && Kind != 1) { 171 Diag(Range.getBegin(), diag::err_sizeless_in_exception_spec) 172 << (Kind == 2 ? 1 : 0) << PointeeT << Range; 173 return true; 174 } 175 176 return false; 177 } 178 179 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer 180 /// to member to a function with an exception specification. This means that 181 /// it is invalid to add another level of indirection. 182 bool Sema::CheckDistantExceptionSpec(QualType T) { 183 // C++17 removes this rule in favor of putting exception specifications into 184 // the type system. 185 if (getLangOpts().CPlusPlus17) 186 return false; 187 188 if (const PointerType *PT = T->getAs<PointerType>()) 189 T = PT->getPointeeType(); 190 else if (const MemberPointerType *PT = T->getAs<MemberPointerType>()) 191 T = PT->getPointeeType(); 192 else 193 return false; 194 195 const FunctionProtoType *FnT = T->getAs<FunctionProtoType>(); 196 if (!FnT) 197 return false; 198 199 return FnT->hasExceptionSpec(); 200 } 201 202 const FunctionProtoType * 203 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) { 204 if (FPT->getExceptionSpecType() == EST_Unparsed) { 205 Diag(Loc, diag::err_exception_spec_not_parsed); 206 return nullptr; 207 } 208 209 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) 210 return FPT; 211 212 FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl(); 213 const FunctionProtoType *SourceFPT = 214 SourceDecl->getType()->castAs<FunctionProtoType>(); 215 216 // If the exception specification has already been resolved, just return it. 217 if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType())) 218 return SourceFPT; 219 220 // Compute or instantiate the exception specification now. 221 if (SourceFPT->getExceptionSpecType() == EST_Unevaluated) 222 EvaluateImplicitExceptionSpec(Loc, SourceDecl); 223 else 224 InstantiateExceptionSpec(Loc, SourceDecl); 225 226 const FunctionProtoType *Proto = 227 SourceDecl->getType()->castAs<FunctionProtoType>(); 228 if (Proto->getExceptionSpecType() == clang::EST_Unparsed) { 229 Diag(Loc, diag::err_exception_spec_not_parsed); 230 Proto = nullptr; 231 } 232 return Proto; 233 } 234 235 void 236 Sema::UpdateExceptionSpec(FunctionDecl *FD, 237 const FunctionProtoType::ExceptionSpecInfo &ESI) { 238 // If we've fully resolved the exception specification, notify listeners. 239 if (!isUnresolvedExceptionSpec(ESI.Type)) 240 if (auto *Listener = getASTMutationListener()) 241 Listener->ResolvedExceptionSpec(FD); 242 243 for (FunctionDecl *Redecl : FD->redecls()) 244 Context.adjustExceptionSpec(Redecl, ESI); 245 } 246 247 static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) { 248 auto *MD = dyn_cast<CXXMethodDecl>(FD); 249 if (!MD) 250 return false; 251 252 auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType(); 253 return EST == EST_Unparsed || 254 (EST == EST_Unevaluated && MD->getParent()->isBeingDefined()); 255 } 256 257 static bool CheckEquivalentExceptionSpecImpl( 258 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, 259 const FunctionProtoType *Old, SourceLocation OldLoc, 260 const FunctionProtoType *New, SourceLocation NewLoc, 261 bool *MissingExceptionSpecification = nullptr, 262 bool *MissingEmptyExceptionSpecification = nullptr, 263 bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false); 264 265 /// Determine whether a function has an implicitly-generated exception 266 /// specification. 267 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) { 268 if (!isa<CXXDestructorDecl>(Decl) && 269 Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete && 270 Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 271 return false; 272 273 // For a function that the user didn't declare: 274 // - if this is a destructor, its exception specification is implicit. 275 // - if this is 'operator delete' or 'operator delete[]', the exception 276 // specification is as-if an explicit exception specification was given 277 // (per [basic.stc.dynamic]p2). 278 if (!Decl->getTypeSourceInfo()) 279 return isa<CXXDestructorDecl>(Decl); 280 281 auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); 282 return !Ty->hasExceptionSpec(); 283 } 284 285 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) { 286 // Just completely ignore this under -fno-exceptions prior to C++17. 287 // In C++17 onwards, the exception specification is part of the type and 288 // we will diagnose mismatches anyway, so it's better to check for them here. 289 if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17) 290 return false; 291 292 OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator(); 293 bool IsOperatorNew = OO == OO_New || OO == OO_Array_New; 294 bool MissingExceptionSpecification = false; 295 bool MissingEmptyExceptionSpecification = false; 296 297 unsigned DiagID = diag::err_mismatched_exception_spec; 298 bool ReturnValueOnError = true; 299 if (getLangOpts().MSVCCompat) { 300 DiagID = diag::ext_mismatched_exception_spec; 301 ReturnValueOnError = false; 302 } 303 304 // If we're befriending a member function of a class that's currently being 305 // defined, we might not be able to work out its exception specification yet. 306 // If not, defer the check until later. 307 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) { 308 DelayedEquivalentExceptionSpecChecks.push_back({New, Old}); 309 return false; 310 } 311 312 // Check the types as written: they must match before any exception 313 // specification adjustment is applied. 314 if (!CheckEquivalentExceptionSpecImpl( 315 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), 316 Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(), 317 New->getType()->getAs<FunctionProtoType>(), New->getLocation(), 318 &MissingExceptionSpecification, &MissingEmptyExceptionSpecification, 319 /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) { 320 // C++11 [except.spec]p4 [DR1492]: 321 // If a declaration of a function has an implicit 322 // exception-specification, other declarations of the function shall 323 // not specify an exception-specification. 324 if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions && 325 hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) { 326 Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch) 327 << hasImplicitExceptionSpec(Old); 328 if (Old->getLocation().isValid()) 329 Diag(Old->getLocation(), diag::note_previous_declaration); 330 } 331 return false; 332 } 333 334 // The failure was something other than an missing exception 335 // specification; return an error, except in MS mode where this is a warning. 336 if (!MissingExceptionSpecification) 337 return ReturnValueOnError; 338 339 const FunctionProtoType *NewProto = 340 New->getType()->castAs<FunctionProtoType>(); 341 342 // The new function declaration is only missing an empty exception 343 // specification "throw()". If the throw() specification came from a 344 // function in a system header that has C linkage, just add an empty 345 // exception specification to the "new" declaration. Note that C library 346 // implementations are permitted to add these nothrow exception 347 // specifications. 348 // 349 // Likewise if the old function is a builtin. 350 if (MissingEmptyExceptionSpecification && NewProto && 351 (Old->getLocation().isInvalid() || 352 Context.getSourceManager().isInSystemHeader(Old->getLocation()) || 353 Old->getBuiltinID()) && 354 Old->isExternC()) { 355 New->setType(Context.getFunctionType( 356 NewProto->getReturnType(), NewProto->getParamTypes(), 357 NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone))); 358 return false; 359 } 360 361 const FunctionProtoType *OldProto = 362 Old->getType()->castAs<FunctionProtoType>(); 363 364 FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType(); 365 if (ESI.Type == EST_Dynamic) { 366 // FIXME: What if the exceptions are described in terms of the old 367 // prototype's parameters? 368 ESI.Exceptions = OldProto->exceptions(); 369 } 370 371 if (ESI.Type == EST_NoexceptFalse) 372 ESI.Type = EST_None; 373 if (ESI.Type == EST_NoexceptTrue) 374 ESI.Type = EST_BasicNoexcept; 375 376 // For dependent noexcept, we can't just take the expression from the old 377 // prototype. It likely contains references to the old prototype's parameters. 378 if (ESI.Type == EST_DependentNoexcept) { 379 New->setInvalidDecl(); 380 } else { 381 // Update the type of the function with the appropriate exception 382 // specification. 383 New->setType(Context.getFunctionType( 384 NewProto->getReturnType(), NewProto->getParamTypes(), 385 NewProto->getExtProtoInfo().withExceptionSpec(ESI))); 386 } 387 388 if (getLangOpts().MSVCCompat && ESI.Type != EST_DependentNoexcept) { 389 // Allow missing exception specifications in redeclarations as an extension. 390 DiagID = diag::ext_ms_missing_exception_specification; 391 ReturnValueOnError = false; 392 } else if (New->isReplaceableGlobalAllocationFunction() && 393 ESI.Type != EST_DependentNoexcept) { 394 // Allow missing exception specifications in redeclarations as an extension, 395 // when declaring a replaceable global allocation function. 396 DiagID = diag::ext_missing_exception_specification; 397 ReturnValueOnError = false; 398 } else if (ESI.Type == EST_NoThrow) { 399 // Allow missing attribute 'nothrow' in redeclarations, since this is a very 400 // common omission. 401 DiagID = diag::ext_missing_exception_specification; 402 ReturnValueOnError = false; 403 } else { 404 DiagID = diag::err_missing_exception_specification; 405 ReturnValueOnError = true; 406 } 407 408 // Warn about the lack of exception specification. 409 SmallString<128> ExceptionSpecString; 410 llvm::raw_svector_ostream OS(ExceptionSpecString); 411 switch (OldProto->getExceptionSpecType()) { 412 case EST_DynamicNone: 413 OS << "throw()"; 414 break; 415 416 case EST_Dynamic: { 417 OS << "throw("; 418 bool OnFirstException = true; 419 for (const auto &E : OldProto->exceptions()) { 420 if (OnFirstException) 421 OnFirstException = false; 422 else 423 OS << ", "; 424 425 OS << E.getAsString(getPrintingPolicy()); 426 } 427 OS << ")"; 428 break; 429 } 430 431 case EST_BasicNoexcept: 432 OS << "noexcept"; 433 break; 434 435 case EST_DependentNoexcept: 436 case EST_NoexceptFalse: 437 case EST_NoexceptTrue: 438 OS << "noexcept("; 439 assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr"); 440 OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy()); 441 OS << ")"; 442 break; 443 case EST_NoThrow: 444 OS <<"__attribute__((nothrow))"; 445 break; 446 case EST_None: 447 case EST_MSAny: 448 case EST_Unevaluated: 449 case EST_Uninstantiated: 450 case EST_Unparsed: 451 llvm_unreachable("This spec type is compatible with none."); 452 } 453 454 SourceLocation FixItLoc; 455 if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) { 456 TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens(); 457 // FIXME: Preserve enough information so that we can produce a correct fixit 458 // location when there is a trailing return type. 459 if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>()) 460 if (!FTLoc.getTypePtr()->hasTrailingReturn()) 461 FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd()); 462 } 463 464 if (FixItLoc.isInvalid()) 465 Diag(New->getLocation(), DiagID) 466 << New << OS.str(); 467 else { 468 Diag(New->getLocation(), DiagID) 469 << New << OS.str() 470 << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str()); 471 } 472 473 if (Old->getLocation().isValid()) 474 Diag(Old->getLocation(), diag::note_previous_declaration); 475 476 return ReturnValueOnError; 477 } 478 479 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent 480 /// exception specifications. Exception specifications are equivalent if 481 /// they allow exactly the same set of exception types. It does not matter how 482 /// that is achieved. See C++ [except.spec]p2. 483 bool Sema::CheckEquivalentExceptionSpec( 484 const FunctionProtoType *Old, SourceLocation OldLoc, 485 const FunctionProtoType *New, SourceLocation NewLoc) { 486 if (!getLangOpts().CXXExceptions) 487 return false; 488 489 unsigned DiagID = diag::err_mismatched_exception_spec; 490 if (getLangOpts().MSVCCompat) 491 DiagID = diag::ext_mismatched_exception_spec; 492 bool Result = CheckEquivalentExceptionSpecImpl( 493 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), 494 Old, OldLoc, New, NewLoc); 495 496 // In Microsoft mode, mismatching exception specifications just cause a warning. 497 if (getLangOpts().MSVCCompat) 498 return false; 499 return Result; 500 } 501 502 /// CheckEquivalentExceptionSpec - Check if the two types have compatible 503 /// exception specifications. See C++ [except.spec]p3. 504 /// 505 /// \return \c false if the exception specifications match, \c true if there is 506 /// a problem. If \c true is returned, either a diagnostic has already been 507 /// produced or \c *MissingExceptionSpecification is set to \c true. 508 static bool CheckEquivalentExceptionSpecImpl( 509 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, 510 const FunctionProtoType *Old, SourceLocation OldLoc, 511 const FunctionProtoType *New, SourceLocation NewLoc, 512 bool *MissingExceptionSpecification, 513 bool *MissingEmptyExceptionSpecification, 514 bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) { 515 if (MissingExceptionSpecification) 516 *MissingExceptionSpecification = false; 517 518 if (MissingEmptyExceptionSpecification) 519 *MissingEmptyExceptionSpecification = false; 520 521 Old = S.ResolveExceptionSpec(NewLoc, Old); 522 if (!Old) 523 return false; 524 New = S.ResolveExceptionSpec(NewLoc, New); 525 if (!New) 526 return false; 527 528 // C++0x [except.spec]p3: Two exception-specifications are compatible if: 529 // - both are non-throwing, regardless of their form, 530 // - both have the form noexcept(constant-expression) and the constant- 531 // expressions are equivalent, 532 // - both are dynamic-exception-specifications that have the same set of 533 // adjusted types. 534 // 535 // C++0x [except.spec]p12: An exception-specification is non-throwing if it is 536 // of the form throw(), noexcept, or noexcept(constant-expression) where the 537 // constant-expression yields true. 538 // 539 // C++0x [except.spec]p4: If any declaration of a function has an exception- 540 // specifier that is not a noexcept-specification allowing all exceptions, 541 // all declarations [...] of that function shall have a compatible 542 // exception-specification. 543 // 544 // That last point basically means that noexcept(false) matches no spec. 545 // It's considered when AllowNoexceptAllMatchWithNoSpec is true. 546 547 ExceptionSpecificationType OldEST = Old->getExceptionSpecType(); 548 ExceptionSpecificationType NewEST = New->getExceptionSpecType(); 549 550 assert(!isUnresolvedExceptionSpec(OldEST) && 551 !isUnresolvedExceptionSpec(NewEST) && 552 "Shouldn't see unknown exception specifications here"); 553 554 CanThrowResult OldCanThrow = Old->canThrow(); 555 CanThrowResult NewCanThrow = New->canThrow(); 556 557 // Any non-throwing specifications are compatible. 558 if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot) 559 return false; 560 561 // Any throws-anything specifications are usually compatible. 562 if (OldCanThrow == CT_Can && OldEST != EST_Dynamic && 563 NewCanThrow == CT_Can && NewEST != EST_Dynamic) { 564 // The exception is that the absence of an exception specification only 565 // matches noexcept(false) for functions, as described above. 566 if (!AllowNoexceptAllMatchWithNoSpec && 567 ((OldEST == EST_None && NewEST == EST_NoexceptFalse) || 568 (OldEST == EST_NoexceptFalse && NewEST == EST_None))) { 569 // This is the disallowed case. 570 } else { 571 return false; 572 } 573 } 574 575 // C++14 [except.spec]p3: 576 // Two exception-specifications are compatible if [...] both have the form 577 // noexcept(constant-expression) and the constant-expressions are equivalent 578 if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) { 579 llvm::FoldingSetNodeID OldFSN, NewFSN; 580 Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true); 581 New->getNoexceptExpr()->Profile(NewFSN, S.Context, true); 582 if (OldFSN == NewFSN) 583 return false; 584 } 585 586 // Dynamic exception specifications with the same set of adjusted types 587 // are compatible. 588 if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) { 589 bool Success = true; 590 // Both have a dynamic exception spec. Collect the first set, then compare 591 // to the second. 592 llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes; 593 for (const auto &I : Old->exceptions()) 594 OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType()); 595 596 for (const auto &I : New->exceptions()) { 597 CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType(); 598 if (OldTypes.count(TypePtr)) 599 NewTypes.insert(TypePtr); 600 else { 601 Success = false; 602 break; 603 } 604 } 605 606 if (Success && OldTypes.size() == NewTypes.size()) 607 return false; 608 } 609 610 // As a special compatibility feature, under C++0x we accept no spec and 611 // throw(std::bad_alloc) as equivalent for operator new and operator new[]. 612 // This is because the implicit declaration changed, but old code would break. 613 if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) { 614 const FunctionProtoType *WithExceptions = nullptr; 615 if (OldEST == EST_None && NewEST == EST_Dynamic) 616 WithExceptions = New; 617 else if (OldEST == EST_Dynamic && NewEST == EST_None) 618 WithExceptions = Old; 619 if (WithExceptions && WithExceptions->getNumExceptions() == 1) { 620 // One has no spec, the other throw(something). If that something is 621 // std::bad_alloc, all conditions are met. 622 QualType Exception = *WithExceptions->exception_begin(); 623 if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) { 624 IdentifierInfo* Name = ExRecord->getIdentifier(); 625 if (Name && Name->getName() == "bad_alloc") { 626 // It's called bad_alloc, but is it in std? 627 if (ExRecord->isInStdNamespace()) { 628 return false; 629 } 630 } 631 } 632 } 633 } 634 635 // If the caller wants to handle the case that the new function is 636 // incompatible due to a missing exception specification, let it. 637 if (MissingExceptionSpecification && OldEST != EST_None && 638 NewEST == EST_None) { 639 // The old type has an exception specification of some sort, but 640 // the new type does not. 641 *MissingExceptionSpecification = true; 642 643 if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) { 644 // The old type has a throw() or noexcept(true) exception specification 645 // and the new type has no exception specification, and the caller asked 646 // to handle this itself. 647 *MissingEmptyExceptionSpecification = true; 648 } 649 650 return true; 651 } 652 653 S.Diag(NewLoc, DiagID); 654 if (NoteID.getDiagID() != 0 && OldLoc.isValid()) 655 S.Diag(OldLoc, NoteID); 656 return true; 657 } 658 659 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID, 660 const PartialDiagnostic &NoteID, 661 const FunctionProtoType *Old, 662 SourceLocation OldLoc, 663 const FunctionProtoType *New, 664 SourceLocation NewLoc) { 665 if (!getLangOpts().CXXExceptions) 666 return false; 667 return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc, 668 New, NewLoc); 669 } 670 671 bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) { 672 // [except.handle]p3: 673 // A handler is a match for an exception object of type E if: 674 675 // HandlerType must be ExceptionType or derived from it, or pointer or 676 // reference to such types. 677 const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>(); 678 if (RefTy) 679 HandlerType = RefTy->getPointeeType(); 680 681 // -- the handler is of type cv T or cv T& and E and T are the same type 682 if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType)) 683 return true; 684 685 // FIXME: ObjC pointer types? 686 if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) { 687 if (RefTy && (!HandlerType.isConstQualified() || 688 HandlerType.isVolatileQualified())) 689 return false; 690 691 // -- the handler is of type cv T or const T& where T is a pointer or 692 // pointer to member type and E is std::nullptr_t 693 if (ExceptionType->isNullPtrType()) 694 return true; 695 696 // -- the handler is of type cv T or const T& where T is a pointer or 697 // pointer to member type and E is a pointer or pointer to member type 698 // that can be converted to T by one or more of 699 // -- a qualification conversion 700 // -- a function pointer conversion 701 bool LifetimeConv; 702 QualType Result; 703 // FIXME: Should we treat the exception as catchable if a lifetime 704 // conversion is required? 705 if (IsQualificationConversion(ExceptionType, HandlerType, false, 706 LifetimeConv) || 707 IsFunctionConversion(ExceptionType, HandlerType, Result)) 708 return true; 709 710 // -- a standard pointer conversion [...] 711 if (!ExceptionType->isPointerType() || !HandlerType->isPointerType()) 712 return false; 713 714 // Handle the "qualification conversion" portion. 715 Qualifiers EQuals, HQuals; 716 ExceptionType = Context.getUnqualifiedArrayType( 717 ExceptionType->getPointeeType(), EQuals); 718 HandlerType = Context.getUnqualifiedArrayType( 719 HandlerType->getPointeeType(), HQuals); 720 if (!HQuals.compatiblyIncludes(EQuals)) 721 return false; 722 723 if (HandlerType->isVoidType() && ExceptionType->isObjectType()) 724 return true; 725 726 // The only remaining case is a derived-to-base conversion. 727 } 728 729 // -- the handler is of type cg T or cv T& and T is an unambiguous public 730 // base class of E 731 if (!ExceptionType->isRecordType() || !HandlerType->isRecordType()) 732 return false; 733 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 734 /*DetectVirtual=*/false); 735 if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) || 736 Paths.isAmbiguous(Context.getCanonicalType(HandlerType))) 737 return false; 738 739 // Do this check from a context without privileges. 740 switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType, 741 Paths.front(), 742 /*Diagnostic*/ 0, 743 /*ForceCheck*/ true, 744 /*ForceUnprivileged*/ true)) { 745 case AR_accessible: return true; 746 case AR_inaccessible: return false; 747 case AR_dependent: 748 llvm_unreachable("access check dependent for unprivileged context"); 749 case AR_delayed: 750 llvm_unreachable("access check delayed in non-declaration"); 751 } 752 llvm_unreachable("unexpected access check result"); 753 } 754 755 /// CheckExceptionSpecSubset - Check whether the second function type's 756 /// exception specification is a subset (or equivalent) of the first function 757 /// type. This is used by override and pointer assignment checks. 758 bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID, 759 const PartialDiagnostic &NestedDiagID, 760 const PartialDiagnostic &NoteID, 761 const PartialDiagnostic &NoThrowDiagID, 762 const FunctionProtoType *Superset, 763 SourceLocation SuperLoc, 764 const FunctionProtoType *Subset, 765 SourceLocation SubLoc) { 766 767 // Just auto-succeed under -fno-exceptions. 768 if (!getLangOpts().CXXExceptions) 769 return false; 770 771 // FIXME: As usual, we could be more specific in our error messages, but 772 // that better waits until we've got types with source locations. 773 774 if (!SubLoc.isValid()) 775 SubLoc = SuperLoc; 776 777 // Resolve the exception specifications, if needed. 778 Superset = ResolveExceptionSpec(SuperLoc, Superset); 779 if (!Superset) 780 return false; 781 Subset = ResolveExceptionSpec(SubLoc, Subset); 782 if (!Subset) 783 return false; 784 785 ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType(); 786 ExceptionSpecificationType SubEST = Subset->getExceptionSpecType(); 787 assert(!isUnresolvedExceptionSpec(SuperEST) && 788 !isUnresolvedExceptionSpec(SubEST) && 789 "Shouldn't see unknown exception specifications here"); 790 791 // If there are dependent noexcept specs, assume everything is fine. Unlike 792 // with the equivalency check, this is safe in this case, because we don't 793 // want to merge declarations. Checks after instantiation will catch any 794 // omissions we make here. 795 if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept) 796 return false; 797 798 CanThrowResult SuperCanThrow = Superset->canThrow(); 799 CanThrowResult SubCanThrow = Subset->canThrow(); 800 801 // If the superset contains everything or the subset contains nothing, we're 802 // done. 803 if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) || 804 SubCanThrow == CT_Cannot) 805 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 806 Subset, SubLoc); 807 808 // Allow __declspec(nothrow) to be missing on redeclaration as an extension in 809 // some cases. 810 if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can && 811 SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) { 812 Diag(SubLoc, NoThrowDiagID); 813 if (NoteID.getDiagID() != 0) 814 Diag(SuperLoc, NoteID); 815 return true; 816 } 817 818 // If the subset contains everything or the superset contains nothing, we've 819 // failed. 820 if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) || 821 SuperCanThrow == CT_Cannot) { 822 Diag(SubLoc, DiagID); 823 if (NoteID.getDiagID() != 0) 824 Diag(SuperLoc, NoteID); 825 return true; 826 } 827 828 assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic && 829 "Exception spec subset: non-dynamic case slipped through."); 830 831 // Neither contains everything or nothing. Do a proper comparison. 832 for (QualType SubI : Subset->exceptions()) { 833 if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>()) 834 SubI = RefTy->getPointeeType(); 835 836 // Make sure it's in the superset. 837 bool Contained = false; 838 for (QualType SuperI : Superset->exceptions()) { 839 // [except.spec]p5: 840 // the target entity shall allow at least the exceptions allowed by the 841 // source 842 // 843 // We interpret this as meaning that a handler for some target type would 844 // catch an exception of each source type. 845 if (handlerCanCatch(SuperI, SubI)) { 846 Contained = true; 847 break; 848 } 849 } 850 if (!Contained) { 851 Diag(SubLoc, DiagID); 852 if (NoteID.getDiagID() != 0) 853 Diag(SuperLoc, NoteID); 854 return true; 855 } 856 } 857 // We've run half the gauntlet. 858 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 859 Subset, SubLoc); 860 } 861 862 static bool 863 CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID, 864 const PartialDiagnostic &NoteID, QualType Target, 865 SourceLocation TargetLoc, QualType Source, 866 SourceLocation SourceLoc) { 867 const FunctionProtoType *TFunc = GetUnderlyingFunction(Target); 868 if (!TFunc) 869 return false; 870 const FunctionProtoType *SFunc = GetUnderlyingFunction(Source); 871 if (!SFunc) 872 return false; 873 874 return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc, 875 SFunc, SourceLoc); 876 } 877 878 /// CheckParamExceptionSpec - Check if the parameter and return types of the 879 /// two functions have equivalent exception specs. This is part of the 880 /// assignment and override compatibility check. We do not check the parameters 881 /// of parameter function pointers recursively, as no sane programmer would 882 /// even be able to write such a function type. 883 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID, 884 const PartialDiagnostic &NoteID, 885 const FunctionProtoType *Target, 886 SourceLocation TargetLoc, 887 const FunctionProtoType *Source, 888 SourceLocation SourceLoc) { 889 auto RetDiag = DiagID; 890 RetDiag << 0; 891 if (CheckSpecForTypesEquivalent( 892 *this, RetDiag, PDiag(), 893 Target->getReturnType(), TargetLoc, Source->getReturnType(), 894 SourceLoc)) 895 return true; 896 897 // We shouldn't even be testing this unless the arguments are otherwise 898 // compatible. 899 assert(Target->getNumParams() == Source->getNumParams() && 900 "Functions have different argument counts."); 901 for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) { 902 auto ParamDiag = DiagID; 903 ParamDiag << 1; 904 if (CheckSpecForTypesEquivalent( 905 *this, ParamDiag, PDiag(), 906 Target->getParamType(i), TargetLoc, Source->getParamType(i), 907 SourceLoc)) 908 return true; 909 } 910 return false; 911 } 912 913 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) { 914 // First we check for applicability. 915 // Target type must be a function, function pointer or function reference. 916 const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType); 917 if (!ToFunc || ToFunc->hasDependentExceptionSpec()) 918 return false; 919 920 // SourceType must be a function or function pointer. 921 const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType()); 922 if (!FromFunc || FromFunc->hasDependentExceptionSpec()) 923 return false; 924 925 unsigned DiagID = diag::err_incompatible_exception_specs; 926 unsigned NestedDiagID = diag::err_deep_exception_specs_differ; 927 // This is not an error in C++17 onwards, unless the noexceptness doesn't 928 // match, but in that case we have a full-on type mismatch, not just a 929 // type sugar mismatch. 930 if (getLangOpts().CPlusPlus17) { 931 DiagID = diag::warn_incompatible_exception_specs; 932 NestedDiagID = diag::warn_deep_exception_specs_differ; 933 } 934 935 // Now we've got the correct types on both sides, check their compatibility. 936 // This means that the source of the conversion can only throw a subset of 937 // the exceptions of the target, and any exception specs on arguments or 938 // return types must be equivalent. 939 // 940 // FIXME: If there is a nested dependent exception specification, we should 941 // not be checking it here. This is fine: 942 // template<typename T> void f() { 943 // void (*p)(void (*) throw(T)); 944 // void (*q)(void (*) throw(int)) = p; 945 // } 946 // ... because it might be instantiated with T=int. 947 return CheckExceptionSpecSubset( 948 PDiag(DiagID), PDiag(NestedDiagID), PDiag(), PDiag(), ToFunc, 949 From->getSourceRange().getBegin(), FromFunc, SourceLocation()) && 950 !getLangOpts().CPlusPlus17; 951 } 952 953 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, 954 const CXXMethodDecl *Old) { 955 // If the new exception specification hasn't been parsed yet, skip the check. 956 // We'll get called again once it's been parsed. 957 if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() == 958 EST_Unparsed) 959 return false; 960 961 // Don't check uninstantiated template destructors at all. We can only 962 // synthesize correct specs after the template is instantiated. 963 if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType()) 964 return false; 965 966 // If the old exception specification hasn't been parsed yet, or the new 967 // exception specification can't be computed yet, remember that we need to 968 // perform this check when we get to the end of the outermost 969 // lexically-surrounding class. 970 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) { 971 DelayedOverridingExceptionSpecChecks.push_back({New, Old}); 972 return false; 973 } 974 975 unsigned DiagID = diag::err_override_exception_spec; 976 if (getLangOpts().MSVCCompat) 977 DiagID = diag::ext_override_exception_spec; 978 return CheckExceptionSpecSubset(PDiag(DiagID), 979 PDiag(diag::err_deep_exception_specs_differ), 980 PDiag(diag::note_overridden_virtual_function), 981 PDiag(diag::ext_override_exception_spec), 982 Old->getType()->castAs<FunctionProtoType>(), 983 Old->getLocation(), 984 New->getType()->castAs<FunctionProtoType>(), 985 New->getLocation()); 986 } 987 988 static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) { 989 CanThrowResult R = CT_Cannot; 990 for (const Stmt *SubStmt : S->children()) { 991 if (!SubStmt) 992 continue; 993 R = mergeCanThrow(R, Self.canThrow(SubStmt)); 994 if (R == CT_Can) 995 break; 996 } 997 return R; 998 } 999 1000 CanThrowResult Sema::canCalleeThrow(Sema &S, const Expr *E, const Decl *D, 1001 SourceLocation Loc) { 1002 // As an extension, we assume that __attribute__((nothrow)) functions don't 1003 // throw. 1004 if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>()) 1005 return CT_Cannot; 1006 1007 QualType T; 1008 1009 // In C++1z, just look at the function type of the callee. 1010 if (S.getLangOpts().CPlusPlus17 && E && isa<CallExpr>(E)) { 1011 E = cast<CallExpr>(E)->getCallee(); 1012 T = E->getType(); 1013 if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1014 // Sadly we don't preserve the actual type as part of the "bound member" 1015 // placeholder, so we need to reconstruct it. 1016 E = E->IgnoreParenImpCasts(); 1017 1018 // Could be a call to a pointer-to-member or a plain member access. 1019 if (auto *Op = dyn_cast<BinaryOperator>(E)) { 1020 assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI); 1021 T = Op->getRHS()->getType() 1022 ->castAs<MemberPointerType>()->getPointeeType(); 1023 } else { 1024 T = cast<MemberExpr>(E)->getMemberDecl()->getType(); 1025 } 1026 } 1027 } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D)) 1028 T = VD->getType(); 1029 else 1030 // If we have no clue what we're calling, assume the worst. 1031 return CT_Can; 1032 1033 const FunctionProtoType *FT; 1034 if ((FT = T->getAs<FunctionProtoType>())) { 1035 } else if (const PointerType *PT = T->getAs<PointerType>()) 1036 FT = PT->getPointeeType()->getAs<FunctionProtoType>(); 1037 else if (const ReferenceType *RT = T->getAs<ReferenceType>()) 1038 FT = RT->getPointeeType()->getAs<FunctionProtoType>(); 1039 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>()) 1040 FT = MT->getPointeeType()->getAs<FunctionProtoType>(); 1041 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) 1042 FT = BT->getPointeeType()->getAs<FunctionProtoType>(); 1043 1044 if (!FT) 1045 return CT_Can; 1046 1047 if (Loc.isValid() || (Loc.isInvalid() && E)) 1048 FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT); 1049 if (!FT) 1050 return CT_Can; 1051 1052 return FT->canThrow(); 1053 } 1054 1055 static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) { 1056 CanThrowResult CT = CT_Cannot; 1057 1058 // Initialization might throw. 1059 if (!VD->isUsableInConstantExpressions(Self.Context)) 1060 if (const Expr *Init = VD->getInit()) 1061 CT = mergeCanThrow(CT, Self.canThrow(Init)); 1062 1063 // Destructor might throw. 1064 if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) { 1065 if (auto *RD = 1066 VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) { 1067 if (auto *Dtor = RD->getDestructor()) { 1068 CT = mergeCanThrow( 1069 CT, Sema::canCalleeThrow(Self, nullptr, Dtor, VD->getLocation())); 1070 } 1071 } 1072 } 1073 1074 // If this is a decomposition declaration, bindings might throw. 1075 if (auto *DD = dyn_cast<DecompositionDecl>(VD)) 1076 for (auto *B : DD->bindings()) 1077 if (auto *HD = B->getHoldingVar()) 1078 CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD)); 1079 1080 return CT; 1081 } 1082 1083 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) { 1084 if (DC->isTypeDependent()) 1085 return CT_Dependent; 1086 1087 if (!DC->getTypeAsWritten()->isReferenceType()) 1088 return CT_Cannot; 1089 1090 if (DC->getSubExpr()->isTypeDependent()) 1091 return CT_Dependent; 1092 1093 return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot; 1094 } 1095 1096 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) { 1097 if (DC->isTypeOperand()) 1098 return CT_Cannot; 1099 1100 Expr *Op = DC->getExprOperand(); 1101 if (Op->isTypeDependent()) 1102 return CT_Dependent; 1103 1104 const RecordType *RT = Op->getType()->getAs<RecordType>(); 1105 if (!RT) 1106 return CT_Cannot; 1107 1108 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic()) 1109 return CT_Cannot; 1110 1111 if (Op->Classify(S.Context).isPRValue()) 1112 return CT_Cannot; 1113 1114 return CT_Can; 1115 } 1116 1117 CanThrowResult Sema::canThrow(const Stmt *S) { 1118 // C++ [expr.unary.noexcept]p3: 1119 // [Can throw] if in a potentially-evaluated context the expression would 1120 // contain: 1121 switch (S->getStmtClass()) { 1122 case Expr::ConstantExprClass: 1123 return canThrow(cast<ConstantExpr>(S)->getSubExpr()); 1124 1125 case Expr::CXXThrowExprClass: 1126 // - a potentially evaluated throw-expression 1127 return CT_Can; 1128 1129 case Expr::CXXDynamicCastExprClass: { 1130 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), 1131 // where T is a reference type, that requires a run-time check 1132 auto *CE = cast<CXXDynamicCastExpr>(S); 1133 // FIXME: Properly determine whether a variably-modified type can throw. 1134 if (CE->getType()->isVariablyModifiedType()) 1135 return CT_Can; 1136 CanThrowResult CT = canDynamicCastThrow(CE); 1137 if (CT == CT_Can) 1138 return CT; 1139 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1140 } 1141 1142 case Expr::CXXTypeidExprClass: 1143 // - a potentially evaluated typeid expression applied to a glvalue 1144 // expression whose type is a polymorphic class type 1145 return canTypeidThrow(*this, cast<CXXTypeidExpr>(S)); 1146 1147 // - a potentially evaluated call to a function, member function, function 1148 // pointer, or member function pointer that does not have a non-throwing 1149 // exception-specification 1150 case Expr::CallExprClass: 1151 case Expr::CXXMemberCallExprClass: 1152 case Expr::CXXOperatorCallExprClass: 1153 case Expr::UserDefinedLiteralClass: { 1154 const CallExpr *CE = cast<CallExpr>(S); 1155 CanThrowResult CT; 1156 if (CE->isTypeDependent()) 1157 CT = CT_Dependent; 1158 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) 1159 CT = CT_Cannot; 1160 else 1161 CT = canCalleeThrow(*this, CE, CE->getCalleeDecl()); 1162 if (CT == CT_Can) 1163 return CT; 1164 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1165 } 1166 1167 case Expr::CXXConstructExprClass: 1168 case Expr::CXXTemporaryObjectExprClass: { 1169 auto *CE = cast<CXXConstructExpr>(S); 1170 // FIXME: Properly determine whether a variably-modified type can throw. 1171 if (CE->getType()->isVariablyModifiedType()) 1172 return CT_Can; 1173 CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor()); 1174 if (CT == CT_Can) 1175 return CT; 1176 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1177 } 1178 1179 case Expr::CXXInheritedCtorInitExprClass: { 1180 auto *ICIE = cast<CXXInheritedCtorInitExpr>(S); 1181 return canCalleeThrow(*this, ICIE, ICIE->getConstructor()); 1182 } 1183 1184 case Expr::LambdaExprClass: { 1185 const LambdaExpr *Lambda = cast<LambdaExpr>(S); 1186 CanThrowResult CT = CT_Cannot; 1187 for (LambdaExpr::const_capture_init_iterator 1188 Cap = Lambda->capture_init_begin(), 1189 CapEnd = Lambda->capture_init_end(); 1190 Cap != CapEnd; ++Cap) 1191 CT = mergeCanThrow(CT, canThrow(*Cap)); 1192 return CT; 1193 } 1194 1195 case Expr::CXXNewExprClass: { 1196 auto *NE = cast<CXXNewExpr>(S); 1197 CanThrowResult CT; 1198 if (NE->isTypeDependent()) 1199 CT = CT_Dependent; 1200 else 1201 CT = canCalleeThrow(*this, NE, NE->getOperatorNew()); 1202 if (CT == CT_Can) 1203 return CT; 1204 return mergeCanThrow(CT, canSubStmtsThrow(*this, NE)); 1205 } 1206 1207 case Expr::CXXDeleteExprClass: { 1208 auto *DE = cast<CXXDeleteExpr>(S); 1209 CanThrowResult CT; 1210 QualType DTy = DE->getDestroyedType(); 1211 if (DTy.isNull() || DTy->isDependentType()) { 1212 CT = CT_Dependent; 1213 } else { 1214 CT = canCalleeThrow(*this, DE, DE->getOperatorDelete()); 1215 if (const RecordType *RT = DTy->getAs<RecordType>()) { 1216 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1217 const CXXDestructorDecl *DD = RD->getDestructor(); 1218 if (DD) 1219 CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD)); 1220 } 1221 if (CT == CT_Can) 1222 return CT; 1223 } 1224 return mergeCanThrow(CT, canSubStmtsThrow(*this, DE)); 1225 } 1226 1227 case Expr::CXXBindTemporaryExprClass: { 1228 auto *BTE = cast<CXXBindTemporaryExpr>(S); 1229 // The bound temporary has to be destroyed again, which might throw. 1230 CanThrowResult CT = 1231 canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor()); 1232 if (CT == CT_Can) 1233 return CT; 1234 return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE)); 1235 } 1236 1237 case Expr::PseudoObjectExprClass: { 1238 auto *POE = cast<PseudoObjectExpr>(S); 1239 CanThrowResult CT = CT_Cannot; 1240 for (const Expr *E : POE->semantics()) { 1241 CT = mergeCanThrow(CT, canThrow(E)); 1242 if (CT == CT_Can) 1243 break; 1244 } 1245 return CT; 1246 } 1247 1248 // ObjC message sends are like function calls, but never have exception 1249 // specs. 1250 case Expr::ObjCMessageExprClass: 1251 case Expr::ObjCPropertyRefExprClass: 1252 case Expr::ObjCSubscriptRefExprClass: 1253 return CT_Can; 1254 1255 // All the ObjC literals that are implemented as calls are 1256 // potentially throwing unless we decide to close off that 1257 // possibility. 1258 case Expr::ObjCArrayLiteralClass: 1259 case Expr::ObjCDictionaryLiteralClass: 1260 case Expr::ObjCBoxedExprClass: 1261 return CT_Can; 1262 1263 // Many other things have subexpressions, so we have to test those. 1264 // Some are simple: 1265 case Expr::CoawaitExprClass: 1266 case Expr::ConditionalOperatorClass: 1267 case Expr::CoyieldExprClass: 1268 case Expr::CXXRewrittenBinaryOperatorClass: 1269 case Expr::CXXStdInitializerListExprClass: 1270 case Expr::DesignatedInitExprClass: 1271 case Expr::DesignatedInitUpdateExprClass: 1272 case Expr::ExprWithCleanupsClass: 1273 case Expr::ExtVectorElementExprClass: 1274 case Expr::InitListExprClass: 1275 case Expr::ArrayInitLoopExprClass: 1276 case Expr::MemberExprClass: 1277 case Expr::ObjCIsaExprClass: 1278 case Expr::ObjCIvarRefExprClass: 1279 case Expr::ParenExprClass: 1280 case Expr::ParenListExprClass: 1281 case Expr::ShuffleVectorExprClass: 1282 case Expr::StmtExprClass: 1283 case Expr::ConvertVectorExprClass: 1284 case Expr::VAArgExprClass: 1285 return canSubStmtsThrow(*this, S); 1286 1287 case Expr::CompoundLiteralExprClass: 1288 case Expr::CXXConstCastExprClass: 1289 case Expr::CXXAddrspaceCastExprClass: 1290 case Expr::CXXReinterpretCastExprClass: 1291 case Expr::BuiltinBitCastExprClass: 1292 // FIXME: Properly determine whether a variably-modified type can throw. 1293 if (cast<Expr>(S)->getType()->isVariablyModifiedType()) 1294 return CT_Can; 1295 return canSubStmtsThrow(*this, S); 1296 1297 // Some might be dependent for other reasons. 1298 case Expr::ArraySubscriptExprClass: 1299 case Expr::MatrixSubscriptExprClass: 1300 case Expr::OMPArraySectionExprClass: 1301 case Expr::OMPArrayShapingExprClass: 1302 case Expr::OMPIteratorExprClass: 1303 case Expr::BinaryOperatorClass: 1304 case Expr::DependentCoawaitExprClass: 1305 case Expr::CompoundAssignOperatorClass: 1306 case Expr::CStyleCastExprClass: 1307 case Expr::CXXStaticCastExprClass: 1308 case Expr::CXXFunctionalCastExprClass: 1309 case Expr::ImplicitCastExprClass: 1310 case Expr::MaterializeTemporaryExprClass: 1311 case Expr::UnaryOperatorClass: { 1312 // FIXME: Properly determine whether a variably-modified type can throw. 1313 if (auto *CE = dyn_cast<CastExpr>(S)) 1314 if (CE->getType()->isVariablyModifiedType()) 1315 return CT_Can; 1316 CanThrowResult CT = 1317 cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot; 1318 return mergeCanThrow(CT, canSubStmtsThrow(*this, S)); 1319 } 1320 1321 case Expr::CXXDefaultArgExprClass: 1322 return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr()); 1323 1324 case Expr::CXXDefaultInitExprClass: 1325 return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr()); 1326 1327 case Expr::ChooseExprClass: { 1328 auto *CE = cast<ChooseExpr>(S); 1329 if (CE->isTypeDependent() || CE->isValueDependent()) 1330 return CT_Dependent; 1331 return canThrow(CE->getChosenSubExpr()); 1332 } 1333 1334 case Expr::GenericSelectionExprClass: 1335 if (cast<GenericSelectionExpr>(S)->isResultDependent()) 1336 return CT_Dependent; 1337 return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr()); 1338 1339 // Some expressions are always dependent. 1340 case Expr::CXXDependentScopeMemberExprClass: 1341 case Expr::CXXUnresolvedConstructExprClass: 1342 case Expr::DependentScopeDeclRefExprClass: 1343 case Expr::CXXFoldExprClass: 1344 case Expr::RecoveryExprClass: 1345 return CT_Dependent; 1346 1347 case Expr::AsTypeExprClass: 1348 case Expr::BinaryConditionalOperatorClass: 1349 case Expr::BlockExprClass: 1350 case Expr::CUDAKernelCallExprClass: 1351 case Expr::DeclRefExprClass: 1352 case Expr::ObjCBridgedCastExprClass: 1353 case Expr::ObjCIndirectCopyRestoreExprClass: 1354 case Expr::ObjCProtocolExprClass: 1355 case Expr::ObjCSelectorExprClass: 1356 case Expr::ObjCAvailabilityCheckExprClass: 1357 case Expr::OffsetOfExprClass: 1358 case Expr::PackExpansionExprClass: 1359 case Expr::SubstNonTypeTemplateParmExprClass: 1360 case Expr::SubstNonTypeTemplateParmPackExprClass: 1361 case Expr::FunctionParmPackExprClass: 1362 case Expr::UnaryExprOrTypeTraitExprClass: 1363 case Expr::UnresolvedLookupExprClass: 1364 case Expr::UnresolvedMemberExprClass: 1365 case Expr::TypoExprClass: 1366 // FIXME: Many of the above can throw. 1367 return CT_Cannot; 1368 1369 case Expr::AddrLabelExprClass: 1370 case Expr::ArrayTypeTraitExprClass: 1371 case Expr::AtomicExprClass: 1372 case Expr::TypeTraitExprClass: 1373 case Expr::CXXBoolLiteralExprClass: 1374 case Expr::CXXNoexceptExprClass: 1375 case Expr::CXXNullPtrLiteralExprClass: 1376 case Expr::CXXPseudoDestructorExprClass: 1377 case Expr::CXXScalarValueInitExprClass: 1378 case Expr::CXXThisExprClass: 1379 case Expr::CXXUuidofExprClass: 1380 case Expr::CharacterLiteralClass: 1381 case Expr::ExpressionTraitExprClass: 1382 case Expr::FloatingLiteralClass: 1383 case Expr::GNUNullExprClass: 1384 case Expr::ImaginaryLiteralClass: 1385 case Expr::ImplicitValueInitExprClass: 1386 case Expr::IntegerLiteralClass: 1387 case Expr::FixedPointLiteralClass: 1388 case Expr::ArrayInitIndexExprClass: 1389 case Expr::NoInitExprClass: 1390 case Expr::ObjCEncodeExprClass: 1391 case Expr::ObjCStringLiteralClass: 1392 case Expr::ObjCBoolLiteralExprClass: 1393 case Expr::OpaqueValueExprClass: 1394 case Expr::PredefinedExprClass: 1395 case Expr::SizeOfPackExprClass: 1396 case Expr::StringLiteralClass: 1397 case Expr::SourceLocExprClass: 1398 case Expr::ConceptSpecializationExprClass: 1399 case Expr::RequiresExprClass: 1400 // These expressions can never throw. 1401 return CT_Cannot; 1402 1403 case Expr::MSPropertyRefExprClass: 1404 case Expr::MSPropertySubscriptExprClass: 1405 llvm_unreachable("Invalid class for expression"); 1406 1407 // Most statements can throw if any substatement can throw. 1408 case Stmt::AttributedStmtClass: 1409 case Stmt::BreakStmtClass: 1410 case Stmt::CapturedStmtClass: 1411 case Stmt::CaseStmtClass: 1412 case Stmt::CompoundStmtClass: 1413 case Stmt::ContinueStmtClass: 1414 case Stmt::CoreturnStmtClass: 1415 case Stmt::CoroutineBodyStmtClass: 1416 case Stmt::CXXCatchStmtClass: 1417 case Stmt::CXXForRangeStmtClass: 1418 case Stmt::DefaultStmtClass: 1419 case Stmt::DoStmtClass: 1420 case Stmt::ForStmtClass: 1421 case Stmt::GCCAsmStmtClass: 1422 case Stmt::GotoStmtClass: 1423 case Stmt::IndirectGotoStmtClass: 1424 case Stmt::LabelStmtClass: 1425 case Stmt::MSAsmStmtClass: 1426 case Stmt::MSDependentExistsStmtClass: 1427 case Stmt::NullStmtClass: 1428 case Stmt::ObjCAtCatchStmtClass: 1429 case Stmt::ObjCAtFinallyStmtClass: 1430 case Stmt::ObjCAtSynchronizedStmtClass: 1431 case Stmt::ObjCAutoreleasePoolStmtClass: 1432 case Stmt::ObjCForCollectionStmtClass: 1433 case Stmt::OMPAtomicDirectiveClass: 1434 case Stmt::OMPBarrierDirectiveClass: 1435 case Stmt::OMPCancelDirectiveClass: 1436 case Stmt::OMPCancellationPointDirectiveClass: 1437 case Stmt::OMPCriticalDirectiveClass: 1438 case Stmt::OMPDistributeDirectiveClass: 1439 case Stmt::OMPDistributeParallelForDirectiveClass: 1440 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 1441 case Stmt::OMPDistributeSimdDirectiveClass: 1442 case Stmt::OMPFlushDirectiveClass: 1443 case Stmt::OMPDepobjDirectiveClass: 1444 case Stmt::OMPScanDirectiveClass: 1445 case Stmt::OMPForDirectiveClass: 1446 case Stmt::OMPForSimdDirectiveClass: 1447 case Stmt::OMPMasterDirectiveClass: 1448 case Stmt::OMPMasterTaskLoopDirectiveClass: 1449 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 1450 case Stmt::OMPOrderedDirectiveClass: 1451 case Stmt::OMPParallelDirectiveClass: 1452 case Stmt::OMPParallelForDirectiveClass: 1453 case Stmt::OMPParallelForSimdDirectiveClass: 1454 case Stmt::OMPParallelMasterDirectiveClass: 1455 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 1456 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 1457 case Stmt::OMPParallelSectionsDirectiveClass: 1458 case Stmt::OMPSectionDirectiveClass: 1459 case Stmt::OMPSectionsDirectiveClass: 1460 case Stmt::OMPSimdDirectiveClass: 1461 case Stmt::OMPSingleDirectiveClass: 1462 case Stmt::OMPTargetDataDirectiveClass: 1463 case Stmt::OMPTargetDirectiveClass: 1464 case Stmt::OMPTargetEnterDataDirectiveClass: 1465 case Stmt::OMPTargetExitDataDirectiveClass: 1466 case Stmt::OMPTargetParallelDirectiveClass: 1467 case Stmt::OMPTargetParallelForDirectiveClass: 1468 case Stmt::OMPTargetParallelForSimdDirectiveClass: 1469 case Stmt::OMPTargetSimdDirectiveClass: 1470 case Stmt::OMPTargetTeamsDirectiveClass: 1471 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 1472 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 1473 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 1474 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 1475 case Stmt::OMPTargetUpdateDirectiveClass: 1476 case Stmt::OMPTaskDirectiveClass: 1477 case Stmt::OMPTaskgroupDirectiveClass: 1478 case Stmt::OMPTaskLoopDirectiveClass: 1479 case Stmt::OMPTaskLoopSimdDirectiveClass: 1480 case Stmt::OMPTaskwaitDirectiveClass: 1481 case Stmt::OMPTaskyieldDirectiveClass: 1482 case Stmt::OMPTeamsDirectiveClass: 1483 case Stmt::OMPTeamsDistributeDirectiveClass: 1484 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 1485 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 1486 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 1487 case Stmt::ReturnStmtClass: 1488 case Stmt::SEHExceptStmtClass: 1489 case Stmt::SEHFinallyStmtClass: 1490 case Stmt::SEHLeaveStmtClass: 1491 case Stmt::SEHTryStmtClass: 1492 case Stmt::SwitchStmtClass: 1493 case Stmt::WhileStmtClass: 1494 return canSubStmtsThrow(*this, S); 1495 1496 case Stmt::DeclStmtClass: { 1497 CanThrowResult CT = CT_Cannot; 1498 for (const Decl *D : cast<DeclStmt>(S)->decls()) { 1499 if (auto *VD = dyn_cast<VarDecl>(D)) 1500 CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD)); 1501 1502 // FIXME: Properly determine whether a variably-modified type can throw. 1503 if (auto *TND = dyn_cast<TypedefNameDecl>(D)) 1504 if (TND->getUnderlyingType()->isVariablyModifiedType()) 1505 return CT_Can; 1506 if (auto *VD = dyn_cast<ValueDecl>(D)) 1507 if (VD->getType()->isVariablyModifiedType()) 1508 return CT_Can; 1509 } 1510 return CT; 1511 } 1512 1513 case Stmt::IfStmtClass: { 1514 auto *IS = cast<IfStmt>(S); 1515 CanThrowResult CT = CT_Cannot; 1516 if (const Stmt *Init = IS->getInit()) 1517 CT = mergeCanThrow(CT, canThrow(Init)); 1518 if (const Stmt *CondDS = IS->getConditionVariableDeclStmt()) 1519 CT = mergeCanThrow(CT, canThrow(CondDS)); 1520 CT = mergeCanThrow(CT, canThrow(IS->getCond())); 1521 1522 // For 'if constexpr', consider only the non-discarded case. 1523 // FIXME: We should add a DiscardedStmt marker to the AST. 1524 if (Optional<const Stmt *> Case = IS->getNondiscardedCase(Context)) 1525 return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT; 1526 1527 CanThrowResult Then = canThrow(IS->getThen()); 1528 CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot; 1529 if (Then == Else) 1530 return mergeCanThrow(CT, Then); 1531 1532 // For a dependent 'if constexpr', the result is dependent if it depends on 1533 // the value of the condition. 1534 return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent 1535 : mergeCanThrow(Then, Else)); 1536 } 1537 1538 case Stmt::CXXTryStmtClass: { 1539 auto *TS = cast<CXXTryStmt>(S); 1540 // try /*...*/ catch (...) { H } can throw only if H can throw. 1541 // Any other try-catch can throw if any substatement can throw. 1542 const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1); 1543 if (!FinalHandler->getExceptionDecl()) 1544 return canThrow(FinalHandler->getHandlerBlock()); 1545 return canSubStmtsThrow(*this, S); 1546 } 1547 1548 case Stmt::ObjCAtThrowStmtClass: 1549 return CT_Can; 1550 1551 case Stmt::ObjCAtTryStmtClass: { 1552 auto *TS = cast<ObjCAtTryStmt>(S); 1553 1554 // @catch(...) need not be last in Objective-C. Walk backwards until we 1555 // see one or hit the @try. 1556 CanThrowResult CT = CT_Cannot; 1557 if (const Stmt *Finally = TS->getFinallyStmt()) 1558 CT = mergeCanThrow(CT, canThrow(Finally)); 1559 for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) { 1560 const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1); 1561 CT = mergeCanThrow(CT, canThrow(Catch)); 1562 // If we reach a @catch(...), no earlier exceptions can escape. 1563 if (Catch->hasEllipsis()) 1564 return CT; 1565 } 1566 1567 // Didn't find an @catch(...). Exceptions from the @try body can escape. 1568 return mergeCanThrow(CT, canThrow(TS->getTryBody())); 1569 } 1570 1571 case Stmt::NoStmtClass: 1572 llvm_unreachable("Invalid class for statement"); 1573 } 1574 llvm_unreachable("Bogus StmtClass"); 1575 } 1576 1577 } // end namespace clang 1578