xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaDeclObjC.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for Objective C declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/RecursiveASTVisitor.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/DelayedDiagnostic.h"
25 #include "clang/Sema/Initialization.h"
26 #include "clang/Sema/Lookup.h"
27 #include "clang/Sema/Scope.h"
28 #include "clang/Sema/ScopeInfo.h"
29 #include "clang/Sema/SemaInternal.h"
30 #include "clang/Sema/SemaObjC.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/DenseSet.h"
33 
34 using namespace clang;
35 
36 /// Check whether the given method, which must be in the 'init'
37 /// family, is a valid member of that family.
38 ///
39 /// \param receiverTypeIfCall - if null, check this as if declaring it;
40 ///   if non-null, check this as if making a call to it with the given
41 ///   receiver type
42 ///
43 /// \return true to indicate that there was an error and appropriate
44 ///   actions were taken
45 bool SemaObjC::checkInitMethod(ObjCMethodDecl *method,
46                                QualType receiverTypeIfCall) {
47   ASTContext &Context = getASTContext();
48   if (method->isInvalidDecl()) return true;
49 
50   // This castAs is safe: methods that don't return an object
51   // pointer won't be inferred as inits and will reject an explicit
52   // objc_method_family(init).
53 
54   // We ignore protocols here.  Should we?  What about Class?
55 
56   const ObjCObjectType *result =
57       method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
58 
59   if (result->isObjCId()) {
60     return false;
61   } else if (result->isObjCClass()) {
62     // fall through: always an error
63   } else {
64     ObjCInterfaceDecl *resultClass = result->getInterface();
65     assert(resultClass && "unexpected object type!");
66 
67     // It's okay for the result type to still be a forward declaration
68     // if we're checking an interface declaration.
69     if (!resultClass->hasDefinition()) {
70       if (receiverTypeIfCall.isNull() &&
71           !isa<ObjCImplementationDecl>(method->getDeclContext()))
72         return false;
73 
74     // Otherwise, we try to compare class types.
75     } else {
76       // If this method was declared in a protocol, we can't check
77       // anything unless we have a receiver type that's an interface.
78       const ObjCInterfaceDecl *receiverClass = nullptr;
79       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
80         if (receiverTypeIfCall.isNull())
81           return false;
82 
83         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
84           ->getInterfaceDecl();
85 
86         // This can be null for calls to e.g. id<Foo>.
87         if (!receiverClass) return false;
88       } else {
89         receiverClass = method->getClassInterface();
90         assert(receiverClass && "method not associated with a class!");
91       }
92 
93       // If either class is a subclass of the other, it's fine.
94       if (receiverClass->isSuperClassOf(resultClass) ||
95           resultClass->isSuperClassOf(receiverClass))
96         return false;
97     }
98   }
99 
100   SourceLocation loc = method->getLocation();
101 
102   // If we're in a system header, and this is not a call, just make
103   // the method unusable.
104   if (receiverTypeIfCall.isNull() &&
105       SemaRef.getSourceManager().isInSystemHeader(loc)) {
106     method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
107                       UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
108     return true;
109   }
110 
111   // Otherwise, it's an error.
112   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
113   method->setInvalidDecl();
114   return true;
115 }
116 
117 /// Issue a warning if the parameter of the overridden method is non-escaping
118 /// but the parameter of the overriding method is not.
119 static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
120                              Sema &S) {
121   if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
122     S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
123     S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
124     return false;
125   }
126 
127   return true;
128 }
129 
130 /// Produce additional diagnostics if a category conforms to a protocol that
131 /// defines a method taking a non-escaping parameter.
132 static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
133                              const ObjCCategoryDecl *CD,
134                              const ObjCProtocolDecl *PD, Sema &S) {
135   if (!diagnoseNoescape(NewD, OldD, S))
136     S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
137         << CD->IsClassExtension() << PD
138         << cast<ObjCMethodDecl>(NewD->getDeclContext());
139 }
140 
141 void SemaObjC::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
142                                        const ObjCMethodDecl *Overridden) {
143   ASTContext &Context = getASTContext();
144   if (Overridden->hasRelatedResultType() &&
145       !NewMethod->hasRelatedResultType()) {
146     // This can only happen when the method follows a naming convention that
147     // implies a related result type, and the original (overridden) method has
148     // a suitable return type, but the new (overriding) method does not have
149     // a suitable return type.
150     QualType ResultType = NewMethod->getReturnType();
151     SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
152 
153     // Figure out which class this method is part of, if any.
154     ObjCInterfaceDecl *CurrentClass
155       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
156     if (!CurrentClass) {
157       DeclContext *DC = NewMethod->getDeclContext();
158       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
159         CurrentClass = Cat->getClassInterface();
160       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
161         CurrentClass = Impl->getClassInterface();
162       else if (ObjCCategoryImplDecl *CatImpl
163                = dyn_cast<ObjCCategoryImplDecl>(DC))
164         CurrentClass = CatImpl->getClassInterface();
165     }
166 
167     if (CurrentClass) {
168       Diag(NewMethod->getLocation(),
169            diag::warn_related_result_type_compatibility_class)
170         << Context.getObjCInterfaceType(CurrentClass)
171         << ResultType
172         << ResultTypeRange;
173     } else {
174       Diag(NewMethod->getLocation(),
175            diag::warn_related_result_type_compatibility_protocol)
176         << ResultType
177         << ResultTypeRange;
178     }
179 
180     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
181       Diag(Overridden->getLocation(),
182            diag::note_related_result_type_family)
183         << /*overridden method*/ 0
184         << Family;
185     else
186       Diag(Overridden->getLocation(),
187            diag::note_related_result_type_overridden);
188   }
189 
190   if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
191        Overridden->hasAttr<NSReturnsRetainedAttr>())) {
192     Diag(NewMethod->getLocation(),
193          getLangOpts().ObjCAutoRefCount
194              ? diag::err_nsreturns_retained_attribute_mismatch
195              : diag::warn_nsreturns_retained_attribute_mismatch)
196         << 1;
197     Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
198   }
199   if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
200        Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
201     Diag(NewMethod->getLocation(),
202          getLangOpts().ObjCAutoRefCount
203              ? diag::err_nsreturns_retained_attribute_mismatch
204              : diag::warn_nsreturns_retained_attribute_mismatch)
205         << 0;
206     Diag(Overridden->getLocation(), diag::note_previous_decl)  << "method";
207   }
208 
209   ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
210                                        oe = Overridden->param_end();
211   for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
212                                       ne = NewMethod->param_end();
213        ni != ne && oi != oe; ++ni, ++oi) {
214     const ParmVarDecl *oldDecl = (*oi);
215     ParmVarDecl *newDecl = (*ni);
216     if (newDecl->hasAttr<NSConsumedAttr>() !=
217         oldDecl->hasAttr<NSConsumedAttr>()) {
218       Diag(newDecl->getLocation(),
219            getLangOpts().ObjCAutoRefCount
220                ? diag::err_nsconsumed_attribute_mismatch
221                : diag::warn_nsconsumed_attribute_mismatch);
222       Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
223     }
224 
225     diagnoseNoescape(newDecl, oldDecl, SemaRef);
226   }
227 }
228 
229 /// Check a method declaration for compatibility with the Objective-C
230 /// ARC conventions.
231 bool SemaObjC::CheckARCMethodDecl(ObjCMethodDecl *method) {
232   ASTContext &Context = getASTContext();
233   ObjCMethodFamily family = method->getMethodFamily();
234   switch (family) {
235   case OMF_None:
236   case OMF_finalize:
237   case OMF_retain:
238   case OMF_release:
239   case OMF_autorelease:
240   case OMF_retainCount:
241   case OMF_self:
242   case OMF_initialize:
243   case OMF_performSelector:
244     return false;
245 
246   case OMF_dealloc:
247     if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
248       SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
249       if (ResultTypeRange.isInvalid())
250         Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
251             << method->getReturnType()
252             << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
253       else
254         Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
255             << method->getReturnType()
256             << FixItHint::CreateReplacement(ResultTypeRange, "void");
257       return true;
258     }
259     return false;
260 
261   case OMF_init:
262     // If the method doesn't obey the init rules, don't bother annotating it.
263     if (checkInitMethod(method, QualType()))
264       return true;
265 
266     method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
267 
268     // Don't add a second copy of this attribute, but otherwise don't
269     // let it be suppressed.
270     if (method->hasAttr<NSReturnsRetainedAttr>())
271       return false;
272     break;
273 
274   case OMF_alloc:
275   case OMF_copy:
276   case OMF_mutableCopy:
277   case OMF_new:
278     if (method->hasAttr<NSReturnsRetainedAttr>() ||
279         method->hasAttr<NSReturnsNotRetainedAttr>() ||
280         method->hasAttr<NSReturnsAutoreleasedAttr>())
281       return false;
282     break;
283   }
284 
285   method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
286   return false;
287 }
288 
289 static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
290                                                 SourceLocation ImplLoc) {
291   if (!ND)
292     return;
293   bool IsCategory = false;
294   StringRef RealizedPlatform;
295   AvailabilityResult Availability = ND->getAvailability(
296       /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
297       &RealizedPlatform);
298   if (Availability != AR_Deprecated) {
299     if (isa<ObjCMethodDecl>(ND)) {
300       if (Availability != AR_Unavailable)
301         return;
302       if (RealizedPlatform.empty())
303         RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
304       // Warn about implementing unavailable methods, unless the unavailable
305       // is for an app extension.
306       if (RealizedPlatform.ends_with("_app_extension"))
307         return;
308       S.Diag(ImplLoc, diag::warn_unavailable_def);
309       S.Diag(ND->getLocation(), diag::note_method_declared_at)
310           << ND->getDeclName();
311       return;
312     }
313     if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
314       if (!CD->getClassInterface()->isDeprecated())
315         return;
316       ND = CD->getClassInterface();
317       IsCategory = true;
318     } else
319       return;
320   }
321   S.Diag(ImplLoc, diag::warn_deprecated_def)
322       << (isa<ObjCMethodDecl>(ND)
323               ? /*Method*/ 0
324               : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
325                                                         : /*Class*/ 1);
326   if (isa<ObjCMethodDecl>(ND))
327     S.Diag(ND->getLocation(), diag::note_method_declared_at)
328         << ND->getDeclName();
329   else
330     S.Diag(ND->getLocation(), diag::note_previous_decl)
331         << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
332 }
333 
334 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
335 /// pool.
336 void SemaObjC::AddAnyMethodToGlobalPool(Decl *D) {
337   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
338 
339   // If we don't have a valid method decl, simply return.
340   if (!MDecl)
341     return;
342   if (MDecl->isInstanceMethod())
343     AddInstanceMethodToGlobalPool(MDecl, true);
344   else
345     AddFactoryMethodToGlobalPool(MDecl, true);
346 }
347 
348 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
349 /// has explicit ownership attribute; false otherwise.
350 static bool
351 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
352   QualType T = Param->getType();
353 
354   if (const PointerType *PT = T->getAs<PointerType>()) {
355     T = PT->getPointeeType();
356   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
357     T = RT->getPointeeType();
358   } else {
359     return true;
360   }
361 
362   // If we have a lifetime qualifier, but it's local, we must have
363   // inferred it. So, it is implicit.
364   return !T.getLocalQualifiers().hasObjCLifetime();
365 }
366 
367 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
368 /// and user declared, in the method definition's AST.
369 void SemaObjC::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
370   ASTContext &Context = getASTContext();
371   SemaRef.ImplicitlyRetainedSelfLocs.clear();
372   assert((SemaRef.getCurMethodDecl() == nullptr) && "Methodparsing confused");
373   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
374 
375   SemaRef.PushExpressionEvaluationContext(
376       SemaRef.ExprEvalContexts.back().Context);
377 
378   // If we don't have a valid method decl, simply return.
379   if (!MDecl)
380     return;
381 
382   QualType ResultType = MDecl->getReturnType();
383   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
384       !MDecl->isInvalidDecl() &&
385       SemaRef.RequireCompleteType(MDecl->getLocation(), ResultType,
386                                   diag::err_func_def_incomplete_result))
387     MDecl->setInvalidDecl();
388 
389   // Allow all of Sema to see that we are entering a method definition.
390   SemaRef.PushDeclContext(FnBodyScope, MDecl);
391   SemaRef.PushFunctionScope();
392 
393   // Create Decl objects for each parameter, entrring them in the scope for
394   // binding to their use.
395 
396   // Insert the invisible arguments, self and _cmd!
397   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
398 
399   SemaRef.PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
400   SemaRef.PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
401 
402   // The ObjC parser requires parameter names so there's no need to check.
403   SemaRef.CheckParmsForFunctionDef(MDecl->parameters(),
404                                    /*CheckParameterNames=*/false);
405 
406   // Introduce all of the other parameters into this scope.
407   for (auto *Param : MDecl->parameters()) {
408     if (!Param->isInvalidDecl() && getLangOpts().ObjCAutoRefCount &&
409         !HasExplicitOwnershipAttr(SemaRef, Param))
410       Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
411             Param->getType();
412 
413     if (Param->getIdentifier())
414       SemaRef.PushOnScopeChains(Param, FnBodyScope);
415   }
416 
417   // In ARC, disallow definition of retain/release/autorelease/retainCount
418   if (getLangOpts().ObjCAutoRefCount) {
419     switch (MDecl->getMethodFamily()) {
420     case OMF_retain:
421     case OMF_retainCount:
422     case OMF_release:
423     case OMF_autorelease:
424       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
425         << 0 << MDecl->getSelector();
426       break;
427 
428     case OMF_None:
429     case OMF_dealloc:
430     case OMF_finalize:
431     case OMF_alloc:
432     case OMF_init:
433     case OMF_mutableCopy:
434     case OMF_copy:
435     case OMF_new:
436     case OMF_self:
437     case OMF_initialize:
438     case OMF_performSelector:
439       break;
440     }
441   }
442 
443   // Warn on deprecated methods under -Wdeprecated-implementations,
444   // and prepare for warning on missing super calls.
445   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
446     ObjCMethodDecl *IMD =
447       IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
448 
449     if (IMD) {
450       ObjCImplDecl *ImplDeclOfMethodDef =
451         dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
452       ObjCContainerDecl *ContDeclOfMethodDecl =
453         dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
454       ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
455       if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
456         ImplDeclOfMethodDecl = OID->getImplementation();
457       else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
458         if (CD->IsClassExtension()) {
459           if (ObjCInterfaceDecl *OID = CD->getClassInterface())
460             ImplDeclOfMethodDecl = OID->getImplementation();
461         } else
462             ImplDeclOfMethodDecl = CD->getImplementation();
463       }
464       // No need to issue deprecated warning if deprecated mehod in class/category
465       // is being implemented in its own implementation (no overriding is involved).
466       if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
467         DiagnoseObjCImplementedDeprecations(SemaRef, IMD, MDecl->getLocation());
468     }
469 
470     if (MDecl->getMethodFamily() == OMF_init) {
471       if (MDecl->isDesignatedInitializerForTheInterface()) {
472         SemaRef.getCurFunction()->ObjCIsDesignatedInit = true;
473         SemaRef.getCurFunction()->ObjCWarnForNoDesignatedInitChain =
474             IC->getSuperClass() != nullptr;
475       } else if (IC->hasDesignatedInitializers()) {
476         SemaRef.getCurFunction()->ObjCIsSecondaryInit = true;
477         SemaRef.getCurFunction()->ObjCWarnForNoInitDelegation = true;
478       }
479     }
480 
481     // If this is "dealloc" or "finalize", set some bit here.
482     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
483     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
484     // Only do this if the current class actually has a superclass.
485     if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
486       ObjCMethodFamily Family = MDecl->getMethodFamily();
487       if (Family == OMF_dealloc) {
488         if (!(getLangOpts().ObjCAutoRefCount ||
489               getLangOpts().getGC() == LangOptions::GCOnly))
490           SemaRef.getCurFunction()->ObjCShouldCallSuper = true;
491 
492       } else if (Family == OMF_finalize) {
493         if (Context.getLangOpts().getGC() != LangOptions::NonGC)
494           SemaRef.getCurFunction()->ObjCShouldCallSuper = true;
495 
496       } else {
497         const ObjCMethodDecl *SuperMethod =
498           SuperClass->lookupMethod(MDecl->getSelector(),
499                                    MDecl->isInstanceMethod());
500         SemaRef.getCurFunction()->ObjCShouldCallSuper =
501             (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
502       }
503     }
504   }
505 
506   // Some function attributes (like OptimizeNoneAttr) need actions before
507   // parsing body started.
508   SemaRef.applyFunctionAttributesBeforeParsingBody(D);
509 }
510 
511 namespace {
512 
513 // Callback to only accept typo corrections that are Objective-C classes.
514 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
515 // function will reject corrections to that class.
516 class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
517  public:
518   ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
519   explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
520       : CurrentIDecl(IDecl) {}
521 
522   bool ValidateCandidate(const TypoCorrection &candidate) override {
523     ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
524     return ID && !declaresSameEntity(ID, CurrentIDecl);
525   }
526 
527   std::unique_ptr<CorrectionCandidateCallback> clone() override {
528     return std::make_unique<ObjCInterfaceValidatorCCC>(*this);
529   }
530 
531  private:
532   ObjCInterfaceDecl *CurrentIDecl;
533 };
534 
535 } // end anonymous namespace
536 
537 static void diagnoseUseOfProtocols(Sema &TheSema,
538                                    ObjCContainerDecl *CD,
539                                    ObjCProtocolDecl *const *ProtoRefs,
540                                    unsigned NumProtoRefs,
541                                    const SourceLocation *ProtoLocs) {
542   assert(ProtoRefs);
543   // Diagnose availability in the context of the ObjC container.
544   Sema::ContextRAII SavedContext(TheSema, CD);
545   for (unsigned i = 0; i < NumProtoRefs; ++i) {
546     (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
547                                     /*UnknownObjCClass=*/nullptr,
548                                     /*ObjCPropertyAccess=*/false,
549                                     /*AvoidPartialAvailabilityChecks=*/true);
550   }
551 }
552 
553 void SemaObjC::ActOnSuperClassOfClassInterface(
554     Scope *S, SourceLocation AtInterfaceLoc, ObjCInterfaceDecl *IDecl,
555     IdentifierInfo *ClassName, SourceLocation ClassLoc,
556     IdentifierInfo *SuperName, SourceLocation SuperLoc,
557     ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange) {
558   ASTContext &Context = getASTContext();
559   // Check if a different kind of symbol declared in this scope.
560   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
561       SemaRef.TUScope, SuperName, SuperLoc, Sema::LookupOrdinaryName);
562 
563   if (!PrevDecl) {
564     // Try to correct for a typo in the superclass name without correcting
565     // to the class we're defining.
566     ObjCInterfaceValidatorCCC CCC(IDecl);
567     if (TypoCorrection Corrected = SemaRef.CorrectTypo(
568             DeclarationNameInfo(SuperName, SuperLoc), Sema::LookupOrdinaryName,
569             SemaRef.TUScope, nullptr, CCC, Sema::CTK_ErrorRecovery)) {
570       SemaRef.diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
571                                           << SuperName << ClassName);
572       PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
573     }
574   }
575 
576   if (declaresSameEntity(PrevDecl, IDecl)) {
577     Diag(SuperLoc, diag::err_recursive_superclass)
578       << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
579     IDecl->setEndOfDefinitionLoc(ClassLoc);
580   } else {
581     ObjCInterfaceDecl *SuperClassDecl =
582     dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
583     QualType SuperClassType;
584 
585     // Diagnose classes that inherit from deprecated classes.
586     if (SuperClassDecl) {
587       (void)SemaRef.DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
588       SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
589     }
590 
591     if (PrevDecl && !SuperClassDecl) {
592       // The previous declaration was not a class decl. Check if we have a
593       // typedef. If we do, get the underlying class type.
594       if (const TypedefNameDecl *TDecl =
595           dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
596         QualType T = TDecl->getUnderlyingType();
597         if (T->isObjCObjectType()) {
598           if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
599             SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
600             SuperClassType = Context.getTypeDeclType(TDecl);
601 
602             // This handles the following case:
603             // @interface NewI @end
604             // typedef NewI DeprI __attribute__((deprecated("blah")))
605             // @interface SI : DeprI /* warn here */ @end
606             (void)SemaRef.DiagnoseUseOfDecl(
607                 const_cast<TypedefNameDecl *>(TDecl), SuperLoc);
608           }
609         }
610       }
611 
612       // This handles the following case:
613       //
614       // typedef int SuperClass;
615       // @interface MyClass : SuperClass {} @end
616       //
617       if (!SuperClassDecl) {
618         Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
619         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
620       }
621     }
622 
623     if (!isa_and_nonnull<TypedefNameDecl>(PrevDecl)) {
624       if (!SuperClassDecl)
625         Diag(SuperLoc, diag::err_undef_superclass)
626           << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
627       else if (SemaRef.RequireCompleteType(
628                    SuperLoc, SuperClassType, diag::err_forward_superclass,
629                    SuperClassDecl->getDeclName(), ClassName,
630                    SourceRange(AtInterfaceLoc, ClassLoc))) {
631         SuperClassDecl = nullptr;
632         SuperClassType = QualType();
633       }
634     }
635 
636     if (SuperClassType.isNull()) {
637       assert(!SuperClassDecl && "Failed to set SuperClassType?");
638       return;
639     }
640 
641     // Handle type arguments on the superclass.
642     TypeSourceInfo *SuperClassTInfo = nullptr;
643     if (!SuperTypeArgs.empty()) {
644       TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
645           S, SuperLoc, SemaRef.CreateParsedType(SuperClassType, nullptr),
646           SuperTypeArgsRange.getBegin(), SuperTypeArgs,
647           SuperTypeArgsRange.getEnd(), SourceLocation(), {}, {},
648           SourceLocation());
649       if (!fullSuperClassType.isUsable())
650         return;
651 
652       SuperClassType =
653           SemaRef.GetTypeFromParser(fullSuperClassType.get(), &SuperClassTInfo);
654     }
655 
656     if (!SuperClassTInfo) {
657       SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
658                                                          SuperLoc);
659     }
660 
661     IDecl->setSuperClass(SuperClassTInfo);
662     IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
663   }
664 }
665 
666 DeclResult SemaObjC::actOnObjCTypeParam(
667     Scope *S, ObjCTypeParamVariance variance, SourceLocation varianceLoc,
668     unsigned index, IdentifierInfo *paramName, SourceLocation paramLoc,
669     SourceLocation colonLoc, ParsedType parsedTypeBound) {
670   ASTContext &Context = getASTContext();
671   // If there was an explicitly-provided type bound, check it.
672   TypeSourceInfo *typeBoundInfo = nullptr;
673   if (parsedTypeBound) {
674     // The type bound can be any Objective-C pointer type.
675     QualType typeBound =
676         SemaRef.GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
677     if (typeBound->isObjCObjectPointerType()) {
678       // okay
679     } else if (typeBound->isObjCObjectType()) {
680       // The user forgot the * on an Objective-C pointer type, e.g.,
681       // "T : NSView".
682       SourceLocation starLoc =
683           SemaRef.getLocForEndOfToken(typeBoundInfo->getTypeLoc().getEndLoc());
684       Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
685            diag::err_objc_type_param_bound_missing_pointer)
686         << typeBound << paramName
687         << FixItHint::CreateInsertion(starLoc, " *");
688 
689       // Create a new type location builder so we can update the type
690       // location information we have.
691       TypeLocBuilder builder;
692       builder.pushFullCopy(typeBoundInfo->getTypeLoc());
693 
694       // Create the Objective-C pointer type.
695       typeBound = Context.getObjCObjectPointerType(typeBound);
696       ObjCObjectPointerTypeLoc newT
697         = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
698       newT.setStarLoc(starLoc);
699 
700       // Form the new type source information.
701       typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
702     } else {
703       // Not a valid type bound.
704       Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
705            diag::err_objc_type_param_bound_nonobject)
706         << typeBound << paramName;
707 
708       // Forget the bound; we'll default to id later.
709       typeBoundInfo = nullptr;
710     }
711 
712     // Type bounds cannot have qualifiers (even indirectly) or explicit
713     // nullability.
714     if (typeBoundInfo) {
715       QualType typeBound = typeBoundInfo->getType();
716       TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
717       if (qual || typeBound.hasQualifiers()) {
718         bool diagnosed = false;
719         SourceRange rangeToRemove;
720         if (qual) {
721           if (auto attr = qual.getAs<AttributedTypeLoc>()) {
722             rangeToRemove = attr.getLocalSourceRange();
723             if (attr.getTypePtr()->getImmediateNullability()) {
724               Diag(attr.getBeginLoc(),
725                    diag::err_objc_type_param_bound_explicit_nullability)
726                   << paramName << typeBound
727                   << FixItHint::CreateRemoval(rangeToRemove);
728               diagnosed = true;
729             }
730           }
731         }
732 
733         if (!diagnosed) {
734           Diag(qual ? qual.getBeginLoc()
735                     : typeBoundInfo->getTypeLoc().getBeginLoc(),
736                diag::err_objc_type_param_bound_qualified)
737               << paramName << typeBound
738               << typeBound.getQualifiers().getAsString()
739               << FixItHint::CreateRemoval(rangeToRemove);
740         }
741 
742         // If the type bound has qualifiers other than CVR, we need to strip
743         // them or we'll probably assert later when trying to apply new
744         // qualifiers.
745         Qualifiers quals = typeBound.getQualifiers();
746         quals.removeCVRQualifiers();
747         if (!quals.empty()) {
748           typeBoundInfo =
749              Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
750         }
751       }
752     }
753   }
754 
755   // If there was no explicit type bound (or we removed it due to an error),
756   // use 'id' instead.
757   if (!typeBoundInfo) {
758     colonLoc = SourceLocation();
759     typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
760   }
761 
762   // Create the type parameter.
763   return ObjCTypeParamDecl::Create(Context, SemaRef.CurContext, variance,
764                                    varianceLoc, index, paramLoc, paramName,
765                                    colonLoc, typeBoundInfo);
766 }
767 
768 ObjCTypeParamList *
769 SemaObjC::actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc,
770                                  ArrayRef<Decl *> typeParamsIn,
771                                  SourceLocation rAngleLoc) {
772   ASTContext &Context = getASTContext();
773   // We know that the array only contains Objective-C type parameters.
774   ArrayRef<ObjCTypeParamDecl *>
775     typeParams(
776       reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
777       typeParamsIn.size());
778 
779   // Diagnose redeclarations of type parameters.
780   // We do this now because Objective-C type parameters aren't pushed into
781   // scope until later (after the instance variable block), but we want the
782   // diagnostics to occur right after we parse the type parameter list.
783   llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
784   for (auto *typeParam : typeParams) {
785     auto known = knownParams.find(typeParam->getIdentifier());
786     if (known != knownParams.end()) {
787       Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
788         << typeParam->getIdentifier()
789         << SourceRange(known->second->getLocation());
790 
791       typeParam->setInvalidDecl();
792     } else {
793       knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
794 
795       // Push the type parameter into scope.
796       SemaRef.PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
797     }
798   }
799 
800   // Create the parameter list.
801   return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
802 }
803 
804 void SemaObjC::popObjCTypeParamList(Scope *S,
805                                     ObjCTypeParamList *typeParamList) {
806   for (auto *typeParam : *typeParamList) {
807     if (!typeParam->isInvalidDecl()) {
808       S->RemoveDecl(typeParam);
809       SemaRef.IdResolver.RemoveDecl(typeParam);
810     }
811   }
812 }
813 
814 namespace {
815   /// The context in which an Objective-C type parameter list occurs, for use
816   /// in diagnostics.
817   enum class TypeParamListContext {
818     ForwardDeclaration,
819     Definition,
820     Category,
821     Extension
822   };
823 } // end anonymous namespace
824 
825 /// Check consistency between two Objective-C type parameter lists, e.g.,
826 /// between a category/extension and an \@interface or between an \@class and an
827 /// \@interface.
828 static bool checkTypeParamListConsistency(Sema &S,
829                                           ObjCTypeParamList *prevTypeParams,
830                                           ObjCTypeParamList *newTypeParams,
831                                           TypeParamListContext newContext) {
832   // If the sizes don't match, complain about that.
833   if (prevTypeParams->size() != newTypeParams->size()) {
834     SourceLocation diagLoc;
835     if (newTypeParams->size() > prevTypeParams->size()) {
836       diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
837     } else {
838       diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
839     }
840 
841     S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
842       << static_cast<unsigned>(newContext)
843       << (newTypeParams->size() > prevTypeParams->size())
844       << prevTypeParams->size()
845       << newTypeParams->size();
846 
847     return true;
848   }
849 
850   // Match up the type parameters.
851   for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
852     ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
853     ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
854 
855     // Check for consistency of the variance.
856     if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
857       if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
858           newContext != TypeParamListContext::Definition) {
859         // When the new type parameter is invariant and is not part
860         // of the definition, just propagate the variance.
861         newTypeParam->setVariance(prevTypeParam->getVariance());
862       } else if (prevTypeParam->getVariance()
863                    == ObjCTypeParamVariance::Invariant &&
864                  !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
865                    cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
866                      ->getDefinition() == prevTypeParam->getDeclContext())) {
867         // When the old parameter is invariant and was not part of the
868         // definition, just ignore the difference because it doesn't
869         // matter.
870       } else {
871         {
872           // Diagnose the conflict and update the second declaration.
873           SourceLocation diagLoc = newTypeParam->getVarianceLoc();
874           if (diagLoc.isInvalid())
875             diagLoc = newTypeParam->getBeginLoc();
876 
877           auto diag = S.Diag(diagLoc,
878                              diag::err_objc_type_param_variance_conflict)
879                         << static_cast<unsigned>(newTypeParam->getVariance())
880                         << newTypeParam->getDeclName()
881                         << static_cast<unsigned>(prevTypeParam->getVariance())
882                         << prevTypeParam->getDeclName();
883           switch (prevTypeParam->getVariance()) {
884           case ObjCTypeParamVariance::Invariant:
885             diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
886             break;
887 
888           case ObjCTypeParamVariance::Covariant:
889           case ObjCTypeParamVariance::Contravariant: {
890             StringRef newVarianceStr
891                = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
892                    ? "__covariant"
893                    : "__contravariant";
894             if (newTypeParam->getVariance()
895                   == ObjCTypeParamVariance::Invariant) {
896               diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
897                                                  (newVarianceStr + " ").str());
898             } else {
899               diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
900                                                newVarianceStr);
901             }
902           }
903           }
904         }
905 
906         S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
907           << prevTypeParam->getDeclName();
908 
909         // Override the variance.
910         newTypeParam->setVariance(prevTypeParam->getVariance());
911       }
912     }
913 
914     // If the bound types match, there's nothing to do.
915     if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
916                               newTypeParam->getUnderlyingType()))
917       continue;
918 
919     // If the new type parameter's bound was explicit, complain about it being
920     // different from the original.
921     if (newTypeParam->hasExplicitBound()) {
922       SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
923                                     ->getTypeLoc().getSourceRange();
924       S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
925         << newTypeParam->getUnderlyingType()
926         << newTypeParam->getDeclName()
927         << prevTypeParam->hasExplicitBound()
928         << prevTypeParam->getUnderlyingType()
929         << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
930         << prevTypeParam->getDeclName()
931         << FixItHint::CreateReplacement(
932              newBoundRange,
933              prevTypeParam->getUnderlyingType().getAsString(
934                S.Context.getPrintingPolicy()));
935 
936       S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
937         << prevTypeParam->getDeclName();
938 
939       // Override the new type parameter's bound type with the previous type,
940       // so that it's consistent.
941       S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
942       continue;
943     }
944 
945     // The new type parameter got the implicit bound of 'id'. That's okay for
946     // categories and extensions (overwrite it later), but not for forward
947     // declarations and @interfaces, because those must be standalone.
948     if (newContext == TypeParamListContext::ForwardDeclaration ||
949         newContext == TypeParamListContext::Definition) {
950       // Diagnose this problem for forward declarations and definitions.
951       SourceLocation insertionLoc
952         = S.getLocForEndOfToken(newTypeParam->getLocation());
953       std::string newCode
954         = " : " + prevTypeParam->getUnderlyingType().getAsString(
955                     S.Context.getPrintingPolicy());
956       S.Diag(newTypeParam->getLocation(),
957              diag::err_objc_type_param_bound_missing)
958         << prevTypeParam->getUnderlyingType()
959         << newTypeParam->getDeclName()
960         << (newContext == TypeParamListContext::ForwardDeclaration)
961         << FixItHint::CreateInsertion(insertionLoc, newCode);
962 
963       S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
964         << prevTypeParam->getDeclName();
965     }
966 
967     // Update the new type parameter's bound to match the previous one.
968     S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
969   }
970 
971   return false;
972 }
973 
974 ObjCInterfaceDecl *SemaObjC::ActOnStartClassInterface(
975     Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
976     SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
977     IdentifierInfo *SuperName, SourceLocation SuperLoc,
978     ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
979     Decl *const *ProtoRefs, unsigned NumProtoRefs,
980     const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
981     const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
982   assert(ClassName && "Missing class identifier");
983 
984   ASTContext &Context = getASTContext();
985   // Check for another declaration kind with the same name.
986   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
987       SemaRef.TUScope, ClassName, ClassLoc, Sema::LookupOrdinaryName,
988       SemaRef.forRedeclarationInCurContext());
989 
990   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
991     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
992     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
993   }
994 
995   // Create a declaration to describe this @interface.
996   ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
997 
998   if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
999     // A previous decl with a different name is because of
1000     // @compatibility_alias, for example:
1001     // \code
1002     //   @class NewImage;
1003     //   @compatibility_alias OldImage NewImage;
1004     // \endcode
1005     // A lookup for 'OldImage' will return the 'NewImage' decl.
1006     //
1007     // In such a case use the real declaration name, instead of the alias one,
1008     // otherwise we will break IdentifierResolver and redecls-chain invariants.
1009     // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1010     // has been aliased.
1011     ClassName = PrevIDecl->getIdentifier();
1012   }
1013 
1014   // If there was a forward declaration with type parameters, check
1015   // for consistency.
1016   if (PrevIDecl) {
1017     if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1018       if (typeParamList) {
1019         // Both have type parameter lists; check for consistency.
1020         if (checkTypeParamListConsistency(SemaRef, prevTypeParamList,
1021                                           typeParamList,
1022                                           TypeParamListContext::Definition)) {
1023           typeParamList = nullptr;
1024         }
1025       } else {
1026         Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1027           << ClassName;
1028         Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1029           << ClassName;
1030 
1031         // Clone the type parameter list.
1032         SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1033         for (auto *typeParam : *prevTypeParamList) {
1034           clonedTypeParams.push_back(ObjCTypeParamDecl::Create(
1035               Context, SemaRef.CurContext, typeParam->getVariance(),
1036               SourceLocation(), typeParam->getIndex(), SourceLocation(),
1037               typeParam->getIdentifier(), SourceLocation(),
1038               Context.getTrivialTypeSourceInfo(
1039                   typeParam->getUnderlyingType())));
1040         }
1041 
1042         typeParamList = ObjCTypeParamList::create(Context,
1043                                                   SourceLocation(),
1044                                                   clonedTypeParams,
1045                                                   SourceLocation());
1046       }
1047     }
1048   }
1049 
1050   ObjCInterfaceDecl *IDecl =
1051       ObjCInterfaceDecl::Create(Context, SemaRef.CurContext, AtInterfaceLoc,
1052                                 ClassName, typeParamList, PrevIDecl, ClassLoc);
1053   if (PrevIDecl) {
1054     // Class already seen. Was it a definition?
1055     if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1056       if (SkipBody && !SemaRef.hasVisibleDefinition(Def)) {
1057         SkipBody->CheckSameAsPrevious = true;
1058         SkipBody->New = IDecl;
1059         SkipBody->Previous = Def;
1060       } else {
1061         Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1062             << PrevIDecl->getDeclName();
1063         Diag(Def->getLocation(), diag::note_previous_definition);
1064         IDecl->setInvalidDecl();
1065       }
1066     }
1067   }
1068 
1069   SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, IDecl, AttrList);
1070   SemaRef.AddPragmaAttributes(SemaRef.TUScope, IDecl);
1071   SemaRef.ProcessAPINotes(IDecl);
1072 
1073   // Merge attributes from previous declarations.
1074   if (PrevIDecl)
1075     SemaRef.mergeDeclAttributes(IDecl, PrevIDecl);
1076 
1077   SemaRef.PushOnScopeChains(IDecl, SemaRef.TUScope);
1078 
1079   // Start the definition of this class. If we're in a redefinition case, there
1080   // may already be a definition, so we'll end up adding to it.
1081   if (SkipBody && SkipBody->CheckSameAsPrevious)
1082     IDecl->startDuplicateDefinitionForComparison();
1083   else if (!IDecl->hasDefinition())
1084     IDecl->startDefinition();
1085 
1086   if (SuperName) {
1087     // Diagnose availability in the context of the @interface.
1088     Sema::ContextRAII SavedContext(SemaRef, IDecl);
1089 
1090     ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1091                                     ClassName, ClassLoc,
1092                                     SuperName, SuperLoc, SuperTypeArgs,
1093                                     SuperTypeArgsRange);
1094   } else { // we have a root class.
1095     IDecl->setEndOfDefinitionLoc(ClassLoc);
1096   }
1097 
1098   // Check then save referenced protocols.
1099   if (NumProtoRefs) {
1100     diagnoseUseOfProtocols(SemaRef, IDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1101                            NumProtoRefs, ProtoLocs);
1102     IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1103                            ProtoLocs, Context);
1104     IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1105   }
1106 
1107   CheckObjCDeclScope(IDecl);
1108   ActOnObjCContainerStartDefinition(IDecl);
1109   return IDecl;
1110 }
1111 
1112 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
1113 /// typedef'ed use for a qualified super class and adds them to the list
1114 /// of the protocols.
1115 void SemaObjC::ActOnTypedefedProtocols(
1116     SmallVectorImpl<Decl *> &ProtocolRefs,
1117     SmallVectorImpl<SourceLocation> &ProtocolLocs, IdentifierInfo *SuperName,
1118     SourceLocation SuperLoc) {
1119   if (!SuperName)
1120     return;
1121   NamedDecl *IDecl = SemaRef.LookupSingleName(
1122       SemaRef.TUScope, SuperName, SuperLoc, Sema::LookupOrdinaryName);
1123   if (!IDecl)
1124     return;
1125 
1126   if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1127     QualType T = TDecl->getUnderlyingType();
1128     if (T->isObjCObjectType())
1129       if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1130         ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1131         // FIXME: Consider whether this should be an invalid loc since the loc
1132         // is not actually pointing to a protocol name reference but to the
1133         // typedef reference. Note that the base class name loc is also pointing
1134         // at the typedef.
1135         ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1136       }
1137   }
1138 }
1139 
1140 /// ActOnCompatibilityAlias - this action is called after complete parsing of
1141 /// a \@compatibility_alias declaration. It sets up the alias relationships.
1142 Decl *SemaObjC::ActOnCompatibilityAlias(SourceLocation AtLoc,
1143                                         IdentifierInfo *AliasName,
1144                                         SourceLocation AliasLocation,
1145                                         IdentifierInfo *ClassName,
1146                                         SourceLocation ClassLocation) {
1147   ASTContext &Context = getASTContext();
1148   // Look for previous declaration of alias name
1149   NamedDecl *ADecl = SemaRef.LookupSingleName(
1150       SemaRef.TUScope, AliasName, AliasLocation, Sema::LookupOrdinaryName,
1151       SemaRef.forRedeclarationInCurContext());
1152   if (ADecl) {
1153     Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1154     Diag(ADecl->getLocation(), diag::note_previous_declaration);
1155     return nullptr;
1156   }
1157   // Check for class declaration
1158   NamedDecl *CDeclU = SemaRef.LookupSingleName(
1159       SemaRef.TUScope, ClassName, ClassLocation, Sema::LookupOrdinaryName,
1160       SemaRef.forRedeclarationInCurContext());
1161   if (const TypedefNameDecl *TDecl =
1162         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1163     QualType T = TDecl->getUnderlyingType();
1164     if (T->isObjCObjectType()) {
1165       if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
1166         ClassName = IDecl->getIdentifier();
1167         CDeclU = SemaRef.LookupSingleName(
1168             SemaRef.TUScope, ClassName, ClassLocation, Sema::LookupOrdinaryName,
1169             SemaRef.forRedeclarationInCurContext());
1170       }
1171     }
1172   }
1173   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1174   if (!CDecl) {
1175     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1176     if (CDeclU)
1177       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1178     return nullptr;
1179   }
1180 
1181   // Everything checked out, instantiate a new alias declaration AST.
1182   ObjCCompatibleAliasDecl *AliasDecl = ObjCCompatibleAliasDecl::Create(
1183       Context, SemaRef.CurContext, AtLoc, AliasName, CDecl);
1184 
1185   if (!CheckObjCDeclScope(AliasDecl))
1186     SemaRef.PushOnScopeChains(AliasDecl, SemaRef.TUScope);
1187 
1188   return AliasDecl;
1189 }
1190 
1191 bool SemaObjC::CheckForwardProtocolDeclarationForCircularDependency(
1192     IdentifierInfo *PName, SourceLocation &Ploc, SourceLocation PrevLoc,
1193     const ObjCList<ObjCProtocolDecl> &PList) {
1194 
1195   bool res = false;
1196   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1197        E = PList.end(); I != E; ++I) {
1198     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), Ploc)) {
1199       if (PDecl->getIdentifier() == PName) {
1200         Diag(Ploc, diag::err_protocol_has_circular_dependency);
1201         Diag(PrevLoc, diag::note_previous_definition);
1202         res = true;
1203       }
1204 
1205       if (!PDecl->hasDefinition())
1206         continue;
1207 
1208       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1209             PDecl->getLocation(), PDecl->getReferencedProtocols()))
1210         res = true;
1211     }
1212   }
1213   return res;
1214 }
1215 
1216 ObjCProtocolDecl *SemaObjC::ActOnStartProtocolInterface(
1217     SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1218     SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1219     const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1220     const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
1221   ASTContext &Context = getASTContext();
1222   bool err = false;
1223   // FIXME: Deal with AttrList.
1224   assert(ProtocolName && "Missing protocol identifier");
1225   ObjCProtocolDecl *PrevDecl = LookupProtocol(
1226       ProtocolName, ProtocolLoc, SemaRef.forRedeclarationInCurContext());
1227   ObjCProtocolDecl *PDecl = nullptr;
1228   if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1229     // Create a new protocol that is completely distinct from previous
1230     // declarations, and do not make this protocol available for name lookup.
1231     // That way, we'll end up completely ignoring the duplicate.
1232     // FIXME: Can we turn this into an error?
1233     PDecl = ObjCProtocolDecl::Create(Context, SemaRef.CurContext, ProtocolName,
1234                                      ProtocolLoc, AtProtoInterfaceLoc,
1235                                      /*PrevDecl=*/Def);
1236 
1237     if (SkipBody && !SemaRef.hasVisibleDefinition(Def)) {
1238       SkipBody->CheckSameAsPrevious = true;
1239       SkipBody->New = PDecl;
1240       SkipBody->Previous = Def;
1241     } else {
1242       // If we already have a definition, complain.
1243       Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1244       Diag(Def->getLocation(), diag::note_previous_definition);
1245     }
1246 
1247     // If we are using modules, add the decl to the context in order to
1248     // serialize something meaningful.
1249     if (getLangOpts().Modules)
1250       SemaRef.PushOnScopeChains(PDecl, SemaRef.TUScope);
1251     PDecl->startDuplicateDefinitionForComparison();
1252   } else {
1253     if (PrevDecl) {
1254       // Check for circular dependencies among protocol declarations. This can
1255       // only happen if this protocol was forward-declared.
1256       ObjCList<ObjCProtocolDecl> PList;
1257       PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1258       err = CheckForwardProtocolDeclarationForCircularDependency(
1259               ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1260     }
1261 
1262     // Create the new declaration.
1263     PDecl = ObjCProtocolDecl::Create(Context, SemaRef.CurContext, ProtocolName,
1264                                      ProtocolLoc, AtProtoInterfaceLoc,
1265                                      /*PrevDecl=*/PrevDecl);
1266 
1267     SemaRef.PushOnScopeChains(PDecl, SemaRef.TUScope);
1268     PDecl->startDefinition();
1269   }
1270 
1271   SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, PDecl, AttrList);
1272   SemaRef.AddPragmaAttributes(SemaRef.TUScope, PDecl);
1273   SemaRef.ProcessAPINotes(PDecl);
1274 
1275   // Merge attributes from previous declarations.
1276   if (PrevDecl)
1277     SemaRef.mergeDeclAttributes(PDecl, PrevDecl);
1278 
1279   if (!err && NumProtoRefs ) {
1280     /// Check then save referenced protocols.
1281     diagnoseUseOfProtocols(SemaRef, PDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1282                            NumProtoRefs, ProtoLocs);
1283     PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1284                            ProtoLocs, Context);
1285   }
1286 
1287   CheckObjCDeclScope(PDecl);
1288   ActOnObjCContainerStartDefinition(PDecl);
1289   return PDecl;
1290 }
1291 
1292 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1293                                           ObjCProtocolDecl *&UndefinedProtocol) {
1294   if (!PDecl->hasDefinition() ||
1295       !PDecl->getDefinition()->isUnconditionallyVisible()) {
1296     UndefinedProtocol = PDecl;
1297     return true;
1298   }
1299 
1300   for (auto *PI : PDecl->protocols())
1301     if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1302       UndefinedProtocol = PI;
1303       return true;
1304     }
1305   return false;
1306 }
1307 
1308 /// FindProtocolDeclaration - This routine looks up protocols and
1309 /// issues an error if they are not declared. It returns list of
1310 /// protocol declarations in its 'Protocols' argument.
1311 void SemaObjC::FindProtocolDeclaration(bool WarnOnDeclarations,
1312                                        bool ForObjCContainer,
1313                                        ArrayRef<IdentifierLocPair> ProtocolId,
1314                                        SmallVectorImpl<Decl *> &Protocols) {
1315   for (const IdentifierLocPair &Pair : ProtocolId) {
1316     ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1317     if (!PDecl) {
1318       DeclFilterCCC<ObjCProtocolDecl> CCC{};
1319       TypoCorrection Corrected =
1320           SemaRef.CorrectTypo(DeclarationNameInfo(Pair.first, Pair.second),
1321                               Sema::LookupObjCProtocolName, SemaRef.TUScope,
1322                               nullptr, CCC, Sema::CTK_ErrorRecovery);
1323       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1324         SemaRef.diagnoseTypo(Corrected,
1325                              PDiag(diag::err_undeclared_protocol_suggest)
1326                                  << Pair.first);
1327     }
1328 
1329     if (!PDecl) {
1330       Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1331       continue;
1332     }
1333     // If this is a forward protocol declaration, get its definition.
1334     if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1335       PDecl = PDecl->getDefinition();
1336 
1337     // For an objc container, delay protocol reference checking until after we
1338     // can set the objc decl as the availability context, otherwise check now.
1339     if (!ForObjCContainer) {
1340       (void)SemaRef.DiagnoseUseOfDecl(PDecl, Pair.second);
1341     }
1342 
1343     // If this is a forward declaration and we are supposed to warn in this
1344     // case, do it.
1345     // FIXME: Recover nicely in the hidden case.
1346     ObjCProtocolDecl *UndefinedProtocol;
1347 
1348     if (WarnOnDeclarations &&
1349         NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1350       Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1351       Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1352         << UndefinedProtocol;
1353     }
1354     Protocols.push_back(PDecl);
1355   }
1356 }
1357 
1358 namespace {
1359 // Callback to only accept typo corrections that are either
1360 // Objective-C protocols or valid Objective-C type arguments.
1361 class ObjCTypeArgOrProtocolValidatorCCC final
1362     : public CorrectionCandidateCallback {
1363   ASTContext &Context;
1364   Sema::LookupNameKind LookupKind;
1365  public:
1366   ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1367                                     Sema::LookupNameKind lookupKind)
1368     : Context(context), LookupKind(lookupKind) { }
1369 
1370   bool ValidateCandidate(const TypoCorrection &candidate) override {
1371     // If we're allowed to find protocols and we have a protocol, accept it.
1372     if (LookupKind != Sema::LookupOrdinaryName) {
1373       if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1374         return true;
1375     }
1376 
1377     // If we're allowed to find type names and we have one, accept it.
1378     if (LookupKind != Sema::LookupObjCProtocolName) {
1379       // If we have a type declaration, we might accept this result.
1380       if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1381         // If we found a tag declaration outside of C++, skip it. This
1382         // can happy because we look for any name when there is no
1383         // bias to protocol or type names.
1384         if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1385           return false;
1386 
1387         // Make sure the type is something we would accept as a type
1388         // argument.
1389         auto type = Context.getTypeDeclType(typeDecl);
1390         if (type->isObjCObjectPointerType() ||
1391             type->isBlockPointerType() ||
1392             type->isDependentType() ||
1393             type->isObjCObjectType())
1394           return true;
1395 
1396         return false;
1397       }
1398 
1399       // If we have an Objective-C class type, accept it; there will
1400       // be another fix to add the '*'.
1401       if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1402         return true;
1403 
1404       return false;
1405     }
1406 
1407     return false;
1408   }
1409 
1410   std::unique_ptr<CorrectionCandidateCallback> clone() override {
1411     return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
1412   }
1413 };
1414 } // end anonymous namespace
1415 
1416 void SemaObjC::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1417                                             SourceLocation ProtocolLoc,
1418                                             IdentifierInfo *TypeArgId,
1419                                             SourceLocation TypeArgLoc,
1420                                             bool SelectProtocolFirst) {
1421   Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1422       << SelectProtocolFirst << TypeArgId << ProtocolId
1423       << SourceRange(ProtocolLoc);
1424 }
1425 
1426 void SemaObjC::actOnObjCTypeArgsOrProtocolQualifiers(
1427     Scope *S, ParsedType baseType, SourceLocation lAngleLoc,
1428     ArrayRef<IdentifierInfo *> identifiers,
1429     ArrayRef<SourceLocation> identifierLocs, SourceLocation rAngleLoc,
1430     SourceLocation &typeArgsLAngleLoc, SmallVectorImpl<ParsedType> &typeArgs,
1431     SourceLocation &typeArgsRAngleLoc, SourceLocation &protocolLAngleLoc,
1432     SmallVectorImpl<Decl *> &protocols, SourceLocation &protocolRAngleLoc,
1433     bool warnOnIncompleteProtocols) {
1434   ASTContext &Context = getASTContext();
1435   // Local function that updates the declaration specifiers with
1436   // protocol information.
1437   unsigned numProtocolsResolved = 0;
1438   auto resolvedAsProtocols = [&] {
1439     assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1440 
1441     // Determine whether the base type is a parameterized class, in
1442     // which case we want to warn about typos such as
1443     // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1444     ObjCInterfaceDecl *baseClass = nullptr;
1445     QualType base = SemaRef.GetTypeFromParser(baseType, nullptr);
1446     bool allAreTypeNames = false;
1447     SourceLocation firstClassNameLoc;
1448     if (!base.isNull()) {
1449       if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1450         baseClass = objcObjectType->getInterface();
1451         if (baseClass) {
1452           if (auto typeParams = baseClass->getTypeParamList()) {
1453             if (typeParams->size() == numProtocolsResolved) {
1454               // Note that we should be looking for type names, too.
1455               allAreTypeNames = true;
1456             }
1457           }
1458         }
1459       }
1460     }
1461 
1462     for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1463       ObjCProtocolDecl *&proto
1464         = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1465       // For an objc container, delay protocol reference checking until after we
1466       // can set the objc decl as the availability context, otherwise check now.
1467       if (!warnOnIncompleteProtocols) {
1468         (void)SemaRef.DiagnoseUseOfDecl(proto, identifierLocs[i]);
1469       }
1470 
1471       // If this is a forward protocol declaration, get its definition.
1472       if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1473         proto = proto->getDefinition();
1474 
1475       // If this is a forward declaration and we are supposed to warn in this
1476       // case, do it.
1477       // FIXME: Recover nicely in the hidden case.
1478       ObjCProtocolDecl *forwardDecl = nullptr;
1479       if (warnOnIncompleteProtocols &&
1480           NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1481         Diag(identifierLocs[i], diag::warn_undef_protocolref)
1482           << proto->getDeclName();
1483         Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1484           << forwardDecl;
1485       }
1486 
1487       // If everything this far has been a type name (and we care
1488       // about such things), check whether this name refers to a type
1489       // as well.
1490       if (allAreTypeNames) {
1491         if (auto *decl =
1492                 SemaRef.LookupSingleName(S, identifiers[i], identifierLocs[i],
1493                                          Sema::LookupOrdinaryName)) {
1494           if (isa<ObjCInterfaceDecl>(decl)) {
1495             if (firstClassNameLoc.isInvalid())
1496               firstClassNameLoc = identifierLocs[i];
1497           } else if (!isa<TypeDecl>(decl)) {
1498             // Not a type.
1499             allAreTypeNames = false;
1500           }
1501         } else {
1502           allAreTypeNames = false;
1503         }
1504       }
1505     }
1506 
1507     // All of the protocols listed also have type names, and at least
1508     // one is an Objective-C class name. Check whether all of the
1509     // protocol conformances are declared by the base class itself, in
1510     // which case we warn.
1511     if (allAreTypeNames && firstClassNameLoc.isValid()) {
1512       llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1513       Context.CollectInheritedProtocols(baseClass, knownProtocols);
1514       bool allProtocolsDeclared = true;
1515       for (auto *proto : protocols) {
1516         if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1517           allProtocolsDeclared = false;
1518           break;
1519         }
1520       }
1521 
1522       if (allProtocolsDeclared) {
1523         Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1524             << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1525             << FixItHint::CreateInsertion(
1526                    SemaRef.getLocForEndOfToken(firstClassNameLoc), " *");
1527       }
1528     }
1529 
1530     protocolLAngleLoc = lAngleLoc;
1531     protocolRAngleLoc = rAngleLoc;
1532     assert(protocols.size() == identifierLocs.size());
1533   };
1534 
1535   // Attempt to resolve all of the identifiers as protocols.
1536   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1537     ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1538     protocols.push_back(proto);
1539     if (proto)
1540       ++numProtocolsResolved;
1541   }
1542 
1543   // If all of the names were protocols, these were protocol qualifiers.
1544   if (numProtocolsResolved == identifiers.size())
1545     return resolvedAsProtocols();
1546 
1547   // Attempt to resolve all of the identifiers as type names or
1548   // Objective-C class names. The latter is technically ill-formed,
1549   // but is probably something like \c NSArray<NSView *> missing the
1550   // \c*.
1551   typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1552   SmallVector<TypeOrClassDecl, 4> typeDecls;
1553   unsigned numTypeDeclsResolved = 0;
1554   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1555     NamedDecl *decl = SemaRef.LookupSingleName(
1556         S, identifiers[i], identifierLocs[i], Sema::LookupOrdinaryName);
1557     if (!decl) {
1558       typeDecls.push_back(TypeOrClassDecl());
1559       continue;
1560     }
1561 
1562     if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1563       typeDecls.push_back(typeDecl);
1564       ++numTypeDeclsResolved;
1565       continue;
1566     }
1567 
1568     if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1569       typeDecls.push_back(objcClass);
1570       ++numTypeDeclsResolved;
1571       continue;
1572     }
1573 
1574     typeDecls.push_back(TypeOrClassDecl());
1575   }
1576 
1577   AttributeFactory attrFactory;
1578 
1579   // Local function that forms a reference to the given type or
1580   // Objective-C class declaration.
1581   auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1582                                 -> TypeResult {
1583     // Form declaration specifiers. They simply refer to the type.
1584     DeclSpec DS(attrFactory);
1585     const char* prevSpec; // unused
1586     unsigned diagID; // unused
1587     QualType type;
1588     if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1589       type = Context.getTypeDeclType(actualTypeDecl);
1590     else
1591       type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1592     TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1593     ParsedType parsedType = SemaRef.CreateParsedType(type, parsedTSInfo);
1594     DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1595                        parsedType, Context.getPrintingPolicy());
1596     // Use the identifier location for the type source range.
1597     DS.SetRangeStart(loc);
1598     DS.SetRangeEnd(loc);
1599 
1600     // Form the declarator.
1601     Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName);
1602 
1603     // If we have a typedef of an Objective-C class type that is missing a '*',
1604     // add the '*'.
1605     if (type->getAs<ObjCInterfaceType>()) {
1606       SourceLocation starLoc = SemaRef.getLocForEndOfToken(loc);
1607       D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc,
1608                                                 SourceLocation(),
1609                                                 SourceLocation(),
1610                                                 SourceLocation(),
1611                                                 SourceLocation(),
1612                                                 SourceLocation()),
1613                                                 starLoc);
1614 
1615       // Diagnose the missing '*'.
1616       Diag(loc, diag::err_objc_type_arg_missing_star)
1617         << type
1618         << FixItHint::CreateInsertion(starLoc, " *");
1619     }
1620 
1621     // Convert this to a type.
1622     return SemaRef.ActOnTypeName(D);
1623   };
1624 
1625   // Local function that updates the declaration specifiers with
1626   // type argument information.
1627   auto resolvedAsTypeDecls = [&] {
1628     // We did not resolve these as protocols.
1629     protocols.clear();
1630 
1631     assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1632     // Map type declarations to type arguments.
1633     for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1634       // Map type reference to a type.
1635       TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1636       if (!type.isUsable()) {
1637         typeArgs.clear();
1638         return;
1639       }
1640 
1641       typeArgs.push_back(type.get());
1642     }
1643 
1644     typeArgsLAngleLoc = lAngleLoc;
1645     typeArgsRAngleLoc = rAngleLoc;
1646   };
1647 
1648   // If all of the identifiers can be resolved as type names or
1649   // Objective-C class names, we have type arguments.
1650   if (numTypeDeclsResolved == identifiers.size())
1651     return resolvedAsTypeDecls();
1652 
1653   // Error recovery: some names weren't found, or we have a mix of
1654   // type and protocol names. Go resolve all of the unresolved names
1655   // and complain if we can't find a consistent answer.
1656   Sema::LookupNameKind lookupKind = Sema::LookupAnyName;
1657   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1658     // If we already have a protocol or type. Check whether it is the
1659     // right thing.
1660     if (protocols[i] || typeDecls[i]) {
1661       // If we haven't figured out whether we want types or protocols
1662       // yet, try to figure it out from this name.
1663       if (lookupKind == Sema::LookupAnyName) {
1664         // If this name refers to both a protocol and a type (e.g., \c
1665         // NSObject), don't conclude anything yet.
1666         if (protocols[i] && typeDecls[i])
1667           continue;
1668 
1669         // Otherwise, let this name decide whether we'll be correcting
1670         // toward types or protocols.
1671         lookupKind = protocols[i] ? Sema::LookupObjCProtocolName
1672                                   : Sema::LookupOrdinaryName;
1673         continue;
1674       }
1675 
1676       // If we want protocols and we have a protocol, there's nothing
1677       // more to do.
1678       if (lookupKind == Sema::LookupObjCProtocolName && protocols[i])
1679         continue;
1680 
1681       // If we want types and we have a type declaration, there's
1682       // nothing more to do.
1683       if (lookupKind == Sema::LookupOrdinaryName && typeDecls[i])
1684         continue;
1685 
1686       // We have a conflict: some names refer to protocols and others
1687       // refer to types.
1688       DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1689                                    identifiers[i], identifierLocs[i],
1690                                    protocols[i] != nullptr);
1691 
1692       protocols.clear();
1693       typeArgs.clear();
1694       return;
1695     }
1696 
1697     // Perform typo correction on the name.
1698     ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1699     TypoCorrection corrected = SemaRef.CorrectTypo(
1700         DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1701         nullptr, CCC, Sema::CTK_ErrorRecovery);
1702     if (corrected) {
1703       // Did we find a protocol?
1704       if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1705         SemaRef.diagnoseTypo(corrected,
1706                              PDiag(diag::err_undeclared_protocol_suggest)
1707                                  << identifiers[i]);
1708         lookupKind = Sema::LookupObjCProtocolName;
1709         protocols[i] = proto;
1710         ++numProtocolsResolved;
1711         continue;
1712       }
1713 
1714       // Did we find a type?
1715       if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1716         SemaRef.diagnoseTypo(corrected,
1717                              PDiag(diag::err_unknown_typename_suggest)
1718                                  << identifiers[i]);
1719         lookupKind = Sema::LookupOrdinaryName;
1720         typeDecls[i] = typeDecl;
1721         ++numTypeDeclsResolved;
1722         continue;
1723       }
1724 
1725       // Did we find an Objective-C class?
1726       if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1727         SemaRef.diagnoseTypo(corrected,
1728                              PDiag(diag::err_unknown_type_or_class_name_suggest)
1729                                  << identifiers[i] << true);
1730         lookupKind = Sema::LookupOrdinaryName;
1731         typeDecls[i] = objcClass;
1732         ++numTypeDeclsResolved;
1733         continue;
1734       }
1735     }
1736 
1737     // We couldn't find anything.
1738     Diag(identifierLocs[i],
1739          (lookupKind == Sema::LookupAnyName ? diag::err_objc_type_arg_missing
1740           : lookupKind == Sema::LookupObjCProtocolName
1741               ? diag::err_undeclared_protocol
1742               : diag::err_unknown_typename))
1743         << identifiers[i];
1744     protocols.clear();
1745     typeArgs.clear();
1746     return;
1747   }
1748 
1749   // If all of the names were (corrected to) protocols, these were
1750   // protocol qualifiers.
1751   if (numProtocolsResolved == identifiers.size())
1752     return resolvedAsProtocols();
1753 
1754   // Otherwise, all of the names were (corrected to) types.
1755   assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1756   return resolvedAsTypeDecls();
1757 }
1758 
1759 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1760 /// a class method in its extension.
1761 ///
1762 void SemaObjC::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1763                                                 ObjCInterfaceDecl *ID) {
1764   if (!ID)
1765     return;  // Possibly due to previous error
1766 
1767   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1768   for (auto *MD : ID->methods())
1769     MethodMap[MD->getSelector()] = MD;
1770 
1771   if (MethodMap.empty())
1772     return;
1773   for (const auto *Method : CAT->methods()) {
1774     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1775     if (PrevMethod &&
1776         (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1777         !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1778       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1779             << Method->getDeclName();
1780       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1781     }
1782   }
1783 }
1784 
1785 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1786 SemaObjC::DeclGroupPtrTy SemaObjC::ActOnForwardProtocolDeclaration(
1787     SourceLocation AtProtocolLoc, ArrayRef<IdentifierLocPair> IdentList,
1788     const ParsedAttributesView &attrList) {
1789   ASTContext &Context = getASTContext();
1790   SmallVector<Decl *, 8> DeclsInGroup;
1791   for (const IdentifierLocPair &IdentPair : IdentList) {
1792     IdentifierInfo *Ident = IdentPair.first;
1793     ObjCProtocolDecl *PrevDecl = LookupProtocol(
1794         Ident, IdentPair.second, SemaRef.forRedeclarationInCurContext());
1795     ObjCProtocolDecl *PDecl =
1796         ObjCProtocolDecl::Create(Context, SemaRef.CurContext, Ident,
1797                                  IdentPair.second, AtProtocolLoc, PrevDecl);
1798 
1799     SemaRef.PushOnScopeChains(PDecl, SemaRef.TUScope);
1800     CheckObjCDeclScope(PDecl);
1801 
1802     SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, PDecl, attrList);
1803     SemaRef.AddPragmaAttributes(SemaRef.TUScope, PDecl);
1804 
1805     if (PrevDecl)
1806       SemaRef.mergeDeclAttributes(PDecl, PrevDecl);
1807 
1808     DeclsInGroup.push_back(PDecl);
1809   }
1810 
1811   return SemaRef.BuildDeclaratorGroup(DeclsInGroup);
1812 }
1813 
1814 ObjCCategoryDecl *SemaObjC::ActOnStartCategoryInterface(
1815     SourceLocation AtInterfaceLoc, const IdentifierInfo *ClassName,
1816     SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1817     const IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1818     Decl *const *ProtoRefs, unsigned NumProtoRefs,
1819     const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1820     const ParsedAttributesView &AttrList) {
1821   ASTContext &Context = getASTContext();
1822   ObjCCategoryDecl *CDecl;
1823   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1824 
1825   /// Check that class of this category is already completely declared.
1826 
1827   if (!IDecl ||
1828       SemaRef.RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1829                                   diag::err_category_forward_interface,
1830                                   CategoryName == nullptr)) {
1831     // Create an invalid ObjCCategoryDecl to serve as context for
1832     // the enclosing method declarations.  We mark the decl invalid
1833     // to make it clear that this isn't a valid AST.
1834     CDecl = ObjCCategoryDecl::Create(Context, SemaRef.CurContext,
1835                                      AtInterfaceLoc, ClassLoc, CategoryLoc,
1836                                      CategoryName, IDecl, typeParamList);
1837     CDecl->setInvalidDecl();
1838     SemaRef.CurContext->addDecl(CDecl);
1839 
1840     if (!IDecl)
1841       Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1842     ActOnObjCContainerStartDefinition(CDecl);
1843     return CDecl;
1844   }
1845 
1846   if (!CategoryName && IDecl->getImplementation()) {
1847     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1848     Diag(IDecl->getImplementation()->getLocation(),
1849           diag::note_implementation_declared);
1850   }
1851 
1852   if (CategoryName) {
1853     /// Check for duplicate interface declaration for this category
1854     if (ObjCCategoryDecl *Previous
1855           = IDecl->FindCategoryDeclaration(CategoryName)) {
1856       // Class extensions can be declared multiple times, categories cannot.
1857       Diag(CategoryLoc, diag::warn_dup_category_def)
1858         << ClassName << CategoryName;
1859       Diag(Previous->getLocation(), diag::note_previous_definition);
1860     }
1861   }
1862 
1863   // If we have a type parameter list, check it.
1864   if (typeParamList) {
1865     if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1866       if (checkTypeParamListConsistency(
1867               SemaRef, prevTypeParamList, typeParamList,
1868               CategoryName ? TypeParamListContext::Category
1869                            : TypeParamListContext::Extension))
1870         typeParamList = nullptr;
1871     } else {
1872       Diag(typeParamList->getLAngleLoc(),
1873            diag::err_objc_parameterized_category_nonclass)
1874         << (CategoryName != nullptr)
1875         << ClassName
1876         << typeParamList->getSourceRange();
1877 
1878       typeParamList = nullptr;
1879     }
1880   }
1881 
1882   CDecl = ObjCCategoryDecl::Create(Context, SemaRef.CurContext, AtInterfaceLoc,
1883                                    ClassLoc, CategoryLoc, CategoryName, IDecl,
1884                                    typeParamList);
1885   // FIXME: PushOnScopeChains?
1886   SemaRef.CurContext->addDecl(CDecl);
1887 
1888   // Process the attributes before looking at protocols to ensure that the
1889   // availability attribute is attached to the category to provide availability
1890   // checking for protocol uses.
1891   SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, CDecl, AttrList);
1892   SemaRef.AddPragmaAttributes(SemaRef.TUScope, CDecl);
1893 
1894   if (NumProtoRefs) {
1895     diagnoseUseOfProtocols(SemaRef, CDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1896                            NumProtoRefs, ProtoLocs);
1897     CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1898                            ProtoLocs, Context);
1899     // Protocols in the class extension belong to the class.
1900     if (CDecl->IsClassExtension())
1901      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1902                                             NumProtoRefs, Context);
1903   }
1904 
1905   CheckObjCDeclScope(CDecl);
1906   ActOnObjCContainerStartDefinition(CDecl);
1907   return CDecl;
1908 }
1909 
1910 /// ActOnStartCategoryImplementation - Perform semantic checks on the
1911 /// category implementation declaration and build an ObjCCategoryImplDecl
1912 /// object.
1913 ObjCCategoryImplDecl *SemaObjC::ActOnStartCategoryImplementation(
1914     SourceLocation AtCatImplLoc, const IdentifierInfo *ClassName,
1915     SourceLocation ClassLoc, const IdentifierInfo *CatName,
1916     SourceLocation CatLoc, const ParsedAttributesView &Attrs) {
1917   ASTContext &Context = getASTContext();
1918   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1919   ObjCCategoryDecl *CatIDecl = nullptr;
1920   if (IDecl && IDecl->hasDefinition()) {
1921     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1922     if (!CatIDecl) {
1923       // Category @implementation with no corresponding @interface.
1924       // Create and install one.
1925       CatIDecl =
1926           ObjCCategoryDecl::Create(Context, SemaRef.CurContext, AtCatImplLoc,
1927                                    ClassLoc, CatLoc, CatName, IDecl,
1928                                    /*typeParamList=*/nullptr);
1929       CatIDecl->setImplicit();
1930     }
1931   }
1932 
1933   ObjCCategoryImplDecl *CDecl =
1934       ObjCCategoryImplDecl::Create(Context, SemaRef.CurContext, CatName, IDecl,
1935                                    ClassLoc, AtCatImplLoc, CatLoc);
1936   /// Check that class of this category is already completely declared.
1937   if (!IDecl) {
1938     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1939     CDecl->setInvalidDecl();
1940   } else if (SemaRef.RequireCompleteType(ClassLoc,
1941                                          Context.getObjCInterfaceType(IDecl),
1942                                          diag::err_undef_interface)) {
1943     CDecl->setInvalidDecl();
1944   }
1945 
1946   SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, CDecl, Attrs);
1947   SemaRef.AddPragmaAttributes(SemaRef.TUScope, CDecl);
1948 
1949   // FIXME: PushOnScopeChains?
1950   SemaRef.CurContext->addDecl(CDecl);
1951 
1952   // If the interface has the objc_runtime_visible attribute, we
1953   // cannot implement a category for it.
1954   if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1955     Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1956       << IDecl->getDeclName();
1957   }
1958 
1959   /// Check that CatName, category name, is not used in another implementation.
1960   if (CatIDecl) {
1961     if (CatIDecl->getImplementation()) {
1962       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1963         << CatName;
1964       Diag(CatIDecl->getImplementation()->getLocation(),
1965            diag::note_previous_definition);
1966       CDecl->setInvalidDecl();
1967     } else {
1968       CatIDecl->setImplementation(CDecl);
1969       // Warn on implementating category of deprecated class under
1970       // -Wdeprecated-implementations flag.
1971       DiagnoseObjCImplementedDeprecations(SemaRef, CatIDecl,
1972                                           CDecl->getLocation());
1973     }
1974   }
1975 
1976   CheckObjCDeclScope(CDecl);
1977   ActOnObjCContainerStartDefinition(CDecl);
1978   return CDecl;
1979 }
1980 
1981 ObjCImplementationDecl *SemaObjC::ActOnStartClassImplementation(
1982     SourceLocation AtClassImplLoc, const IdentifierInfo *ClassName,
1983     SourceLocation ClassLoc, const IdentifierInfo *SuperClassname,
1984     SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) {
1985   ASTContext &Context = getASTContext();
1986   ObjCInterfaceDecl *IDecl = nullptr;
1987   // Check for another declaration kind with the same name.
1988   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
1989       SemaRef.TUScope, ClassName, ClassLoc, Sema::LookupOrdinaryName,
1990       SemaRef.forRedeclarationInCurContext());
1991   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1992     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1993     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1994   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1995     // FIXME: This will produce an error if the definition of the interface has
1996     // been imported from a module but is not visible.
1997     SemaRef.RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1998                                 diag::warn_undef_interface);
1999   } else {
2000     // We did not find anything with the name ClassName; try to correct for
2001     // typos in the class name.
2002     ObjCInterfaceValidatorCCC CCC{};
2003     TypoCorrection Corrected = SemaRef.CorrectTypo(
2004         DeclarationNameInfo(ClassName, ClassLoc), Sema::LookupOrdinaryName,
2005         SemaRef.TUScope, nullptr, CCC, Sema::CTK_NonError);
2006     if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
2007       // Suggest the (potentially) correct interface name. Don't provide a
2008       // code-modification hint or use the typo name for recovery, because
2009       // this is just a warning. The program may actually be correct.
2010       SemaRef.diagnoseTypo(
2011           Corrected, PDiag(diag::warn_undef_interface_suggest) << ClassName,
2012           /*ErrorRecovery*/ false);
2013     } else {
2014       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
2015     }
2016   }
2017 
2018   // Check that super class name is valid class name
2019   ObjCInterfaceDecl *SDecl = nullptr;
2020   if (SuperClassname) {
2021     // Check if a different kind of symbol declared in this scope.
2022     PrevDecl =
2023         SemaRef.LookupSingleName(SemaRef.TUScope, SuperClassname, SuperClassLoc,
2024                                  Sema::LookupOrdinaryName);
2025     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2026       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2027         << SuperClassname;
2028       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2029     } else {
2030       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2031       if (SDecl && !SDecl->hasDefinition())
2032         SDecl = nullptr;
2033       if (!SDecl)
2034         Diag(SuperClassLoc, diag::err_undef_superclass)
2035           << SuperClassname << ClassName;
2036       else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2037         // This implementation and its interface do not have the same
2038         // super class.
2039         Diag(SuperClassLoc, diag::err_conflicting_super_class)
2040           << SDecl->getDeclName();
2041         Diag(SDecl->getLocation(), diag::note_previous_definition);
2042       }
2043     }
2044   }
2045 
2046   if (!IDecl) {
2047     // Legacy case of @implementation with no corresponding @interface.
2048     // Build, chain & install the interface decl into the identifier.
2049 
2050     // FIXME: Do we support attributes on the @implementation? If so we should
2051     // copy them over.
2052     IDecl =
2053         ObjCInterfaceDecl::Create(Context, SemaRef.CurContext, AtClassImplLoc,
2054                                   ClassName, /*typeParamList=*/nullptr,
2055                                   /*PrevDecl=*/nullptr, ClassLoc, true);
2056     SemaRef.AddPragmaAttributes(SemaRef.TUScope, IDecl);
2057     IDecl->startDefinition();
2058     if (SDecl) {
2059       IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2060                              Context.getObjCInterfaceType(SDecl),
2061                              SuperClassLoc));
2062       IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2063     } else {
2064       IDecl->setEndOfDefinitionLoc(ClassLoc);
2065     }
2066 
2067     SemaRef.PushOnScopeChains(IDecl, SemaRef.TUScope);
2068   } else {
2069     // Mark the interface as being completed, even if it was just as
2070     //   @class ....;
2071     // declaration; the user cannot reopen it.
2072     if (!IDecl->hasDefinition())
2073       IDecl->startDefinition();
2074   }
2075 
2076   ObjCImplementationDecl *IMPDecl =
2077       ObjCImplementationDecl::Create(Context, SemaRef.CurContext, IDecl, SDecl,
2078                                      ClassLoc, AtClassImplLoc, SuperClassLoc);
2079 
2080   SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, IMPDecl, Attrs);
2081   SemaRef.AddPragmaAttributes(SemaRef.TUScope, IMPDecl);
2082 
2083   if (CheckObjCDeclScope(IMPDecl)) {
2084     ActOnObjCContainerStartDefinition(IMPDecl);
2085     return IMPDecl;
2086   }
2087 
2088   // Check that there is no duplicate implementation of this class.
2089   if (IDecl->getImplementation()) {
2090     // FIXME: Don't leak everything!
2091     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2092     Diag(IDecl->getImplementation()->getLocation(),
2093          diag::note_previous_definition);
2094     IMPDecl->setInvalidDecl();
2095   } else { // add it to the list.
2096     IDecl->setImplementation(IMPDecl);
2097     SemaRef.PushOnScopeChains(IMPDecl, SemaRef.TUScope);
2098     // Warn on implementating deprecated class under
2099     // -Wdeprecated-implementations flag.
2100     DiagnoseObjCImplementedDeprecations(SemaRef, IDecl, IMPDecl->getLocation());
2101   }
2102 
2103   // If the superclass has the objc_runtime_visible attribute, we
2104   // cannot implement a subclass of it.
2105   if (IDecl->getSuperClass() &&
2106       IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2107     Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2108       << IDecl->getDeclName()
2109       << IDecl->getSuperClass()->getDeclName();
2110   }
2111 
2112   ActOnObjCContainerStartDefinition(IMPDecl);
2113   return IMPDecl;
2114 }
2115 
2116 SemaObjC::DeclGroupPtrTy
2117 SemaObjC::ActOnFinishObjCImplementation(Decl *ObjCImpDecl,
2118                                         ArrayRef<Decl *> Decls) {
2119   SmallVector<Decl *, 64> DeclsInGroup;
2120   DeclsInGroup.reserve(Decls.size() + 1);
2121 
2122   for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2123     Decl *Dcl = Decls[i];
2124     if (!Dcl)
2125       continue;
2126     if (Dcl->getDeclContext()->isFileContext())
2127       Dcl->setTopLevelDeclInObjCContainer();
2128     DeclsInGroup.push_back(Dcl);
2129   }
2130 
2131   DeclsInGroup.push_back(ObjCImpDecl);
2132 
2133   return SemaRef.BuildDeclaratorGroup(DeclsInGroup);
2134 }
2135 
2136 void SemaObjC::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2137                                         ObjCIvarDecl **ivars, unsigned numIvars,
2138                                         SourceLocation RBrace) {
2139   assert(ImpDecl && "missing implementation decl");
2140   ASTContext &Context = getASTContext();
2141   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2142   if (!IDecl)
2143     return;
2144   /// Check case of non-existing \@interface decl.
2145   /// (legacy objective-c \@implementation decl without an \@interface decl).
2146   /// Add implementations's ivar to the synthesize class's ivar list.
2147   if (IDecl->isImplicitInterfaceDecl()) {
2148     IDecl->setEndOfDefinitionLoc(RBrace);
2149     // Add ivar's to class's DeclContext.
2150     for (unsigned i = 0, e = numIvars; i != e; ++i) {
2151       ivars[i]->setLexicalDeclContext(ImpDecl);
2152       // In a 'fragile' runtime the ivar was added to the implicit
2153       // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is
2154       // only in the ObjCImplementationDecl. In the non-fragile case the ivar
2155       // therefore also needs to be propagated to the ObjCInterfaceDecl.
2156       if (!getLangOpts().ObjCRuntime.isFragile())
2157         IDecl->makeDeclVisibleInContext(ivars[i]);
2158       ImpDecl->addDecl(ivars[i]);
2159     }
2160 
2161     return;
2162   }
2163   // If implementation has empty ivar list, just return.
2164   if (numIvars == 0)
2165     return;
2166 
2167   assert(ivars && "missing @implementation ivars");
2168   if (getLangOpts().ObjCRuntime.isNonFragile()) {
2169     if (ImpDecl->getSuperClass())
2170       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2171     for (unsigned i = 0; i < numIvars; i++) {
2172       ObjCIvarDecl* ImplIvar = ivars[i];
2173       if (const ObjCIvarDecl *ClsIvar =
2174             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2175         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2176         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2177         continue;
2178       }
2179       // Check class extensions (unnamed categories) for duplicate ivars.
2180       for (const auto *CDecl : IDecl->visible_extensions()) {
2181         if (const ObjCIvarDecl *ClsExtIvar =
2182             CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2183           Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2184           Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2185           continue;
2186         }
2187       }
2188       // Instance ivar to Implementation's DeclContext.
2189       ImplIvar->setLexicalDeclContext(ImpDecl);
2190       IDecl->makeDeclVisibleInContext(ImplIvar);
2191       ImpDecl->addDecl(ImplIvar);
2192     }
2193     return;
2194   }
2195   // Check interface's Ivar list against those in the implementation.
2196   // names and types must match.
2197   //
2198   unsigned j = 0;
2199   ObjCInterfaceDecl::ivar_iterator
2200     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2201   for (; numIvars > 0 && IVI != IVE; ++IVI) {
2202     ObjCIvarDecl* ImplIvar = ivars[j++];
2203     ObjCIvarDecl* ClsIvar = *IVI;
2204     assert (ImplIvar && "missing implementation ivar");
2205     assert (ClsIvar && "missing class ivar");
2206 
2207     // First, make sure the types match.
2208     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2209       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2210         << ImplIvar->getIdentifier()
2211         << ImplIvar->getType() << ClsIvar->getType();
2212       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2213     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2214                ImplIvar->getBitWidthValue(Context) !=
2215                ClsIvar->getBitWidthValue(Context)) {
2216       Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2217            diag::err_conflicting_ivar_bitwidth)
2218           << ImplIvar->getIdentifier();
2219       Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2220            diag::note_previous_definition);
2221     }
2222     // Make sure the names are identical.
2223     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2224       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2225         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2226       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2227     }
2228     --numIvars;
2229   }
2230 
2231   if (numIvars > 0)
2232     Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2233   else if (IVI != IVE)
2234     Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2235 }
2236 
2237 static bool shouldWarnUndefinedMethod(const ObjCMethodDecl *M) {
2238   // No point warning no definition of method which is 'unavailable'.
2239   return M->getAvailability() != AR_Unavailable;
2240 }
2241 
2242 static void WarnUndefinedMethod(Sema &S, ObjCImplDecl *Impl,
2243                                 ObjCMethodDecl *method, bool &IncompleteImpl,
2244                                 unsigned DiagID,
2245                                 NamedDecl *NeededFor = nullptr) {
2246   if (!shouldWarnUndefinedMethod(method))
2247     return;
2248 
2249   // FIXME: For now ignore 'IncompleteImpl'.
2250   // Previously we grouped all unimplemented methods under a single
2251   // warning, but some users strongly voiced that they would prefer
2252   // separate warnings.  We will give that approach a try, as that
2253   // matches what we do with protocols.
2254   {
2255     const SemaBase::SemaDiagnosticBuilder &B =
2256         S.Diag(Impl->getLocation(), DiagID);
2257     B << method;
2258     if (NeededFor)
2259       B << NeededFor;
2260 
2261     // Add an empty definition at the end of the @implementation.
2262     std::string FixItStr;
2263     llvm::raw_string_ostream Out(FixItStr);
2264     method->print(Out, Impl->getASTContext().getPrintingPolicy());
2265     Out << " {\n}\n\n";
2266 
2267     SourceLocation Loc = Impl->getAtEndRange().getBegin();
2268     B << FixItHint::CreateInsertion(Loc, FixItStr);
2269   }
2270 
2271   // Issue a note to the original declaration.
2272   SourceLocation MethodLoc = method->getBeginLoc();
2273   if (MethodLoc.isValid())
2274     S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2275 }
2276 
2277 /// Determines if type B can be substituted for type A.  Returns true if we can
2278 /// guarantee that anything that the user will do to an object of type A can
2279 /// also be done to an object of type B.  This is trivially true if the two
2280 /// types are the same, or if B is a subclass of A.  It becomes more complex
2281 /// in cases where protocols are involved.
2282 ///
2283 /// Object types in Objective-C describe the minimum requirements for an
2284 /// object, rather than providing a complete description of a type.  For
2285 /// example, if A is a subclass of B, then B* may refer to an instance of A.
2286 /// The principle of substitutability means that we may use an instance of A
2287 /// anywhere that we may use an instance of B - it will implement all of the
2288 /// ivars of B and all of the methods of B.
2289 ///
2290 /// This substitutability is important when type checking methods, because
2291 /// the implementation may have stricter type definitions than the interface.
2292 /// The interface specifies minimum requirements, but the implementation may
2293 /// have more accurate ones.  For example, a method may privately accept
2294 /// instances of B, but only publish that it accepts instances of A.  Any
2295 /// object passed to it will be type checked against B, and so will implicitly
2296 /// by a valid A*.  Similarly, a method may return a subclass of the class that
2297 /// it is declared as returning.
2298 ///
2299 /// This is most important when considering subclassing.  A method in a
2300 /// subclass must accept any object as an argument that its superclass's
2301 /// implementation accepts.  It may, however, accept a more general type
2302 /// without breaking substitutability (i.e. you can still use the subclass
2303 /// anywhere that you can use the superclass, but not vice versa).  The
2304 /// converse requirement applies to return types: the return type for a
2305 /// subclass method must be a valid object of the kind that the superclass
2306 /// advertises, but it may be specified more accurately.  This avoids the need
2307 /// for explicit down-casting by callers.
2308 ///
2309 /// Note: This is a stricter requirement than for assignment.
2310 static bool isObjCTypeSubstitutable(ASTContext &Context,
2311                                     const ObjCObjectPointerType *A,
2312                                     const ObjCObjectPointerType *B,
2313                                     bool rejectId) {
2314   // Reject a protocol-unqualified id.
2315   if (rejectId && B->isObjCIdType()) return false;
2316 
2317   // If B is a qualified id, then A must also be a qualified id and it must
2318   // implement all of the protocols in B.  It may not be a qualified class.
2319   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2320   // stricter definition so it is not substitutable for id<A>.
2321   if (B->isObjCQualifiedIdType()) {
2322     return A->isObjCQualifiedIdType() &&
2323            Context.ObjCQualifiedIdTypesAreCompatible(A, B, false);
2324   }
2325 
2326   /*
2327   // id is a special type that bypasses type checking completely.  We want a
2328   // warning when it is used in one place but not another.
2329   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2330 
2331 
2332   // If B is a qualified id, then A must also be a qualified id (which it isn't
2333   // if we've got this far)
2334   if (B->isObjCQualifiedIdType()) return false;
2335   */
2336 
2337   // Now we know that A and B are (potentially-qualified) class types.  The
2338   // normal rules for assignment apply.
2339   return Context.canAssignObjCInterfaces(A, B);
2340 }
2341 
2342 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2343   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2344 }
2345 
2346 /// Determine whether two set of Objective-C declaration qualifiers conflict.
2347 static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2348                                   Decl::ObjCDeclQualifier y) {
2349   return (x & ~Decl::OBJC_TQ_CSNullability) !=
2350          (y & ~Decl::OBJC_TQ_CSNullability);
2351 }
2352 
2353 static bool CheckMethodOverrideReturn(Sema &S,
2354                                       ObjCMethodDecl *MethodImpl,
2355                                       ObjCMethodDecl *MethodDecl,
2356                                       bool IsProtocolMethodDecl,
2357                                       bool IsOverridingMode,
2358                                       bool Warn) {
2359   if (IsProtocolMethodDecl &&
2360       objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2361                             MethodImpl->getObjCDeclQualifier())) {
2362     if (Warn) {
2363       S.Diag(MethodImpl->getLocation(),
2364              (IsOverridingMode
2365                   ? diag::warn_conflicting_overriding_ret_type_modifiers
2366                   : diag::warn_conflicting_ret_type_modifiers))
2367           << MethodImpl->getDeclName()
2368           << MethodImpl->getReturnTypeSourceRange();
2369       S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2370           << MethodDecl->getReturnTypeSourceRange();
2371     }
2372     else
2373       return false;
2374   }
2375   if (Warn && IsOverridingMode &&
2376       !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2377       !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2378                                                  MethodDecl->getReturnType(),
2379                                                  false)) {
2380     auto nullabilityMethodImpl = *MethodImpl->getReturnType()->getNullability();
2381     auto nullabilityMethodDecl = *MethodDecl->getReturnType()->getNullability();
2382     S.Diag(MethodImpl->getLocation(),
2383            diag::warn_conflicting_nullability_attr_overriding_ret_types)
2384         << DiagNullabilityKind(nullabilityMethodImpl,
2385                                ((MethodImpl->getObjCDeclQualifier() &
2386                                  Decl::OBJC_TQ_CSNullability) != 0))
2387         << DiagNullabilityKind(nullabilityMethodDecl,
2388                                ((MethodDecl->getObjCDeclQualifier() &
2389                                  Decl::OBJC_TQ_CSNullability) != 0));
2390     S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2391   }
2392 
2393   if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2394                                        MethodDecl->getReturnType()))
2395     return true;
2396   if (!Warn)
2397     return false;
2398 
2399   unsigned DiagID =
2400     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2401                      : diag::warn_conflicting_ret_types;
2402 
2403   // Mismatches between ObjC pointers go into a different warning
2404   // category, and sometimes they're even completely explicitly allowed.
2405   if (const ObjCObjectPointerType *ImplPtrTy =
2406           MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2407     if (const ObjCObjectPointerType *IfacePtrTy =
2408             MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2409       // Allow non-matching return types as long as they don't violate
2410       // the principle of substitutability.  Specifically, we permit
2411       // return types that are subclasses of the declared return type,
2412       // or that are more-qualified versions of the declared type.
2413       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2414         return false;
2415 
2416       DiagID =
2417         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2418                          : diag::warn_non_covariant_ret_types;
2419     }
2420   }
2421 
2422   S.Diag(MethodImpl->getLocation(), DiagID)
2423       << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2424       << MethodImpl->getReturnType()
2425       << MethodImpl->getReturnTypeSourceRange();
2426   S.Diag(MethodDecl->getLocation(), IsOverridingMode
2427                                         ? diag::note_previous_declaration
2428                                         : diag::note_previous_definition)
2429       << MethodDecl->getReturnTypeSourceRange();
2430   return false;
2431 }
2432 
2433 static bool CheckMethodOverrideParam(Sema &S,
2434                                      ObjCMethodDecl *MethodImpl,
2435                                      ObjCMethodDecl *MethodDecl,
2436                                      ParmVarDecl *ImplVar,
2437                                      ParmVarDecl *IfaceVar,
2438                                      bool IsProtocolMethodDecl,
2439                                      bool IsOverridingMode,
2440                                      bool Warn) {
2441   if (IsProtocolMethodDecl &&
2442       objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2443                             IfaceVar->getObjCDeclQualifier())) {
2444     if (Warn) {
2445       if (IsOverridingMode)
2446         S.Diag(ImplVar->getLocation(),
2447                diag::warn_conflicting_overriding_param_modifiers)
2448             << getTypeRange(ImplVar->getTypeSourceInfo())
2449             << MethodImpl->getDeclName();
2450       else S.Diag(ImplVar->getLocation(),
2451              diag::warn_conflicting_param_modifiers)
2452           << getTypeRange(ImplVar->getTypeSourceInfo())
2453           << MethodImpl->getDeclName();
2454       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2455           << getTypeRange(IfaceVar->getTypeSourceInfo());
2456     }
2457     else
2458       return false;
2459   }
2460 
2461   QualType ImplTy = ImplVar->getType();
2462   QualType IfaceTy = IfaceVar->getType();
2463   if (Warn && IsOverridingMode &&
2464       !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2465       !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2466     S.Diag(ImplVar->getLocation(),
2467            diag::warn_conflicting_nullability_attr_overriding_param_types)
2468         << DiagNullabilityKind(*ImplTy->getNullability(),
2469                                ((ImplVar->getObjCDeclQualifier() &
2470                                  Decl::OBJC_TQ_CSNullability) != 0))
2471         << DiagNullabilityKind(*IfaceTy->getNullability(),
2472                                ((IfaceVar->getObjCDeclQualifier() &
2473                                  Decl::OBJC_TQ_CSNullability) != 0));
2474     S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2475   }
2476   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2477     return true;
2478 
2479   if (!Warn)
2480     return false;
2481   unsigned DiagID =
2482     IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2483                      : diag::warn_conflicting_param_types;
2484 
2485   // Mismatches between ObjC pointers go into a different warning
2486   // category, and sometimes they're even completely explicitly allowed..
2487   if (const ObjCObjectPointerType *ImplPtrTy =
2488         ImplTy->getAs<ObjCObjectPointerType>()) {
2489     if (const ObjCObjectPointerType *IfacePtrTy =
2490           IfaceTy->getAs<ObjCObjectPointerType>()) {
2491       // Allow non-matching argument types as long as they don't
2492       // violate the principle of substitutability.  Specifically, the
2493       // implementation must accept any objects that the superclass
2494       // accepts, however it may also accept others.
2495       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2496         return false;
2497 
2498       DiagID =
2499       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2500                        : diag::warn_non_contravariant_param_types;
2501     }
2502   }
2503 
2504   S.Diag(ImplVar->getLocation(), DiagID)
2505     << getTypeRange(ImplVar->getTypeSourceInfo())
2506     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2507   S.Diag(IfaceVar->getLocation(),
2508          (IsOverridingMode ? diag::note_previous_declaration
2509                            : diag::note_previous_definition))
2510     << getTypeRange(IfaceVar->getTypeSourceInfo());
2511   return false;
2512 }
2513 
2514 /// In ARC, check whether the conventional meanings of the two methods
2515 /// match.  If they don't, it's a hard error.
2516 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2517                                       ObjCMethodDecl *decl) {
2518   ObjCMethodFamily implFamily = impl->getMethodFamily();
2519   ObjCMethodFamily declFamily = decl->getMethodFamily();
2520   if (implFamily == declFamily) return false;
2521 
2522   // Since conventions are sorted by selector, the only possibility is
2523   // that the types differ enough to cause one selector or the other
2524   // to fall out of the family.
2525   assert(implFamily == OMF_None || declFamily == OMF_None);
2526 
2527   // No further diagnostics required on invalid declarations.
2528   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2529 
2530   const ObjCMethodDecl *unmatched = impl;
2531   ObjCMethodFamily family = declFamily;
2532   unsigned errorID = diag::err_arc_lost_method_convention;
2533   unsigned noteID = diag::note_arc_lost_method_convention;
2534   if (declFamily == OMF_None) {
2535     unmatched = decl;
2536     family = implFamily;
2537     errorID = diag::err_arc_gained_method_convention;
2538     noteID = diag::note_arc_gained_method_convention;
2539   }
2540 
2541   // Indexes into a %select clause in the diagnostic.
2542   enum FamilySelector {
2543     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2544   };
2545   FamilySelector familySelector = FamilySelector();
2546 
2547   switch (family) {
2548   case OMF_None: llvm_unreachable("logic error, no method convention");
2549   case OMF_retain:
2550   case OMF_release:
2551   case OMF_autorelease:
2552   case OMF_dealloc:
2553   case OMF_finalize:
2554   case OMF_retainCount:
2555   case OMF_self:
2556   case OMF_initialize:
2557   case OMF_performSelector:
2558     // Mismatches for these methods don't change ownership
2559     // conventions, so we don't care.
2560     return false;
2561 
2562   case OMF_init: familySelector = F_init; break;
2563   case OMF_alloc: familySelector = F_alloc; break;
2564   case OMF_copy: familySelector = F_copy; break;
2565   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2566   case OMF_new: familySelector = F_new; break;
2567   }
2568 
2569   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2570   ReasonSelector reasonSelector;
2571 
2572   // The only reason these methods don't fall within their families is
2573   // due to unusual result types.
2574   if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2575     reasonSelector = R_UnrelatedReturn;
2576   } else {
2577     reasonSelector = R_NonObjectReturn;
2578   }
2579 
2580   S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2581   S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2582 
2583   return true;
2584 }
2585 
2586 void SemaObjC::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2587                                            ObjCMethodDecl *MethodDecl,
2588                                            bool IsProtocolMethodDecl) {
2589   if (getLangOpts().ObjCAutoRefCount &&
2590       checkMethodFamilyMismatch(SemaRef, ImpMethodDecl, MethodDecl))
2591     return;
2592 
2593   CheckMethodOverrideReturn(SemaRef, ImpMethodDecl, MethodDecl,
2594                             IsProtocolMethodDecl, false, true);
2595 
2596   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2597        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2598        EF = MethodDecl->param_end();
2599        IM != EM && IF != EF; ++IM, ++IF) {
2600     CheckMethodOverrideParam(SemaRef, ImpMethodDecl, MethodDecl, *IM, *IF,
2601                              IsProtocolMethodDecl, false, true);
2602   }
2603 
2604   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2605     Diag(ImpMethodDecl->getLocation(),
2606          diag::warn_conflicting_variadic);
2607     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2608   }
2609 }
2610 
2611 void SemaObjC::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2612                                                 ObjCMethodDecl *Overridden,
2613                                                 bool IsProtocolMethodDecl) {
2614 
2615   CheckMethodOverrideReturn(SemaRef, Method, Overridden, IsProtocolMethodDecl,
2616                             true, true);
2617 
2618   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2619        IF = Overridden->param_begin(), EM = Method->param_end(),
2620        EF = Overridden->param_end();
2621        IM != EM && IF != EF; ++IM, ++IF) {
2622     CheckMethodOverrideParam(SemaRef, Method, Overridden, *IM, *IF,
2623                              IsProtocolMethodDecl, true, true);
2624   }
2625 
2626   if (Method->isVariadic() != Overridden->isVariadic()) {
2627     Diag(Method->getLocation(),
2628          diag::warn_conflicting_overriding_variadic);
2629     Diag(Overridden->getLocation(), diag::note_previous_declaration);
2630   }
2631 }
2632 
2633 /// WarnExactTypedMethods - This routine issues a warning if method
2634 /// implementation declaration matches exactly that of its declaration.
2635 void SemaObjC::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2636                                      ObjCMethodDecl *MethodDecl,
2637                                      bool IsProtocolMethodDecl) {
2638   ASTContext &Context = getASTContext();
2639   // don't issue warning when protocol method is optional because primary
2640   // class is not required to implement it and it is safe for protocol
2641   // to implement it.
2642   if (MethodDecl->getImplementationControl() ==
2643       ObjCImplementationControl::Optional)
2644     return;
2645   // don't issue warning when primary class's method is
2646   // deprecated/unavailable.
2647   if (MethodDecl->hasAttr<UnavailableAttr>() ||
2648       MethodDecl->hasAttr<DeprecatedAttr>())
2649     return;
2650 
2651   bool match = CheckMethodOverrideReturn(SemaRef, ImpMethodDecl, MethodDecl,
2652                                          IsProtocolMethodDecl, false, false);
2653   if (match)
2654     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2655          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2656          EF = MethodDecl->param_end();
2657          IM != EM && IF != EF; ++IM, ++IF) {
2658       match = CheckMethodOverrideParam(SemaRef, ImpMethodDecl, MethodDecl, *IM,
2659                                        *IF, IsProtocolMethodDecl, false, false);
2660       if (!match)
2661         break;
2662     }
2663   if (match)
2664     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2665   if (match)
2666     match = !(MethodDecl->isClassMethod() &&
2667               MethodDecl->getSelector() == GetNullarySelector("load", Context));
2668 
2669   if (match) {
2670     Diag(ImpMethodDecl->getLocation(),
2671          diag::warn_category_method_impl_match);
2672     Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2673       << MethodDecl->getDeclName();
2674   }
2675 }
2676 
2677 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2678 /// improve the efficiency of selector lookups and type checking by associating
2679 /// with each protocol / interface / category the flattened instance tables. If
2680 /// we used an immutable set to keep the table then it wouldn't add significant
2681 /// memory cost and it would be handy for lookups.
2682 
2683 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2684 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2685 
2686 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2687                                            ProtocolNameSet &PNS) {
2688   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2689     PNS.insert(PDecl->getIdentifier());
2690   for (const auto *PI : PDecl->protocols())
2691     findProtocolsWithExplicitImpls(PI, PNS);
2692 }
2693 
2694 /// Recursively populates a set with all conformed protocols in a class
2695 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2696 /// attribute.
2697 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2698                                            ProtocolNameSet &PNS) {
2699   if (!Super)
2700     return;
2701 
2702   for (const auto *I : Super->all_referenced_protocols())
2703     findProtocolsWithExplicitImpls(I, PNS);
2704 
2705   findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2706 }
2707 
2708 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
2709 /// Declared in protocol, and those referenced by it.
2710 static void CheckProtocolMethodDefs(
2711     Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl,
2712     const SemaObjC::SelectorSet &InsMap, const SemaObjC::SelectorSet &ClsMap,
2713     ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) {
2714   ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2715   ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2716                                : dyn_cast<ObjCInterfaceDecl>(CDecl);
2717   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2718 
2719   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2720   ObjCInterfaceDecl *NSIDecl = nullptr;
2721 
2722   // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2723   // then we should check if any class in the super class hierarchy also
2724   // conforms to this protocol, either directly or via protocol inheritance.
2725   // If so, we can skip checking this protocol completely because we
2726   // know that a parent class already satisfies this protocol.
2727   //
2728   // Note: we could generalize this logic for all protocols, and merely
2729   // add the limit on looking at the super class chain for just
2730   // specially marked protocols.  This may be a good optimization.  This
2731   // change is restricted to 'objc_protocol_requires_explicit_implementation'
2732   // protocols for now for controlled evaluation.
2733   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2734     if (!ProtocolsExplictImpl) {
2735       ProtocolsExplictImpl.reset(new ProtocolNameSet);
2736       findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2737     }
2738     if (ProtocolsExplictImpl->contains(PDecl->getIdentifier()))
2739       return;
2740 
2741     // If no super class conforms to the protocol, we should not search
2742     // for methods in the super class to implicitly satisfy the protocol.
2743     Super = nullptr;
2744   }
2745 
2746   if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2747     // check to see if class implements forwardInvocation method and objects
2748     // of this class are derived from 'NSProxy' so that to forward requests
2749     // from one object to another.
2750     // Under such conditions, which means that every method possible is
2751     // implemented in the class, we should not issue "Method definition not
2752     // found" warnings.
2753     // FIXME: Use a general GetUnarySelector method for this.
2754     const IdentifierInfo *II = &S.Context.Idents.get("forwardInvocation");
2755     Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2756     if (InsMap.count(fISelector))
2757       // Is IDecl derived from 'NSProxy'? If so, no instance methods
2758       // need be implemented in the implementation.
2759       NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2760   }
2761 
2762   // If this is a forward protocol declaration, get its definition.
2763   if (!PDecl->isThisDeclarationADefinition() &&
2764       PDecl->getDefinition())
2765     PDecl = PDecl->getDefinition();
2766 
2767   // If a method lookup fails locally we still need to look and see if
2768   // the method was implemented by a base class or an inherited
2769   // protocol. This lookup is slow, but occurs rarely in correct code
2770   // and otherwise would terminate in a warning.
2771 
2772   // check unimplemented instance methods.
2773   if (!NSIDecl)
2774     for (auto *method : PDecl->instance_methods()) {
2775       if (method->getImplementationControl() !=
2776               ObjCImplementationControl::Optional &&
2777           !method->isPropertyAccessor() &&
2778           !InsMap.count(method->getSelector()) &&
2779           (!Super || !Super->lookupMethod(
2780                          method->getSelector(), true /* instance */,
2781                          false /* shallowCategory */, true /* followsSuper */,
2782                          nullptr /* category */))) {
2783         // If a method is not implemented in the category implementation but
2784         // has been declared in its primary class, superclass,
2785         // or in one of their protocols, no need to issue the warning.
2786         // This is because method will be implemented in the primary class
2787         // or one of its super class implementation.
2788 
2789         // Ugly, but necessary. Method declared in protocol might have
2790         // have been synthesized due to a property declared in the class which
2791         // uses the protocol.
2792         if (ObjCMethodDecl *MethodInClass = IDecl->lookupMethod(
2793                 method->getSelector(), true /* instance */,
2794                 true /* shallowCategoryLookup */, false /* followSuper */))
2795           if (C || MethodInClass->isPropertyAccessor())
2796             continue;
2797         unsigned DIAG = diag::warn_unimplemented_protocol_method;
2798         if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2799           WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2800         }
2801       }
2802     }
2803   // check unimplemented class methods
2804   for (auto *method : PDecl->class_methods()) {
2805     if (method->getImplementationControl() !=
2806             ObjCImplementationControl::Optional &&
2807         !ClsMap.count(method->getSelector()) &&
2808         (!Super || !Super->lookupMethod(
2809                        method->getSelector(), false /* class method */,
2810                        false /* shallowCategoryLookup */,
2811                        true /* followSuper */, nullptr /* category */))) {
2812       // See above comment for instance method lookups.
2813       if (C && IDecl->lookupMethod(method->getSelector(),
2814                                    false /* class */,
2815                                    true /* shallowCategoryLookup */,
2816                                    false /* followSuper */))
2817         continue;
2818 
2819       unsigned DIAG = diag::warn_unimplemented_protocol_method;
2820       if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2821         WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2822       }
2823     }
2824   }
2825   // Check on this protocols's referenced protocols, recursively.
2826   for (auto *PI : PDecl->protocols())
2827     CheckProtocolMethodDefs(S, Impl, PI, IncompleteImpl, InsMap, ClsMap, CDecl,
2828                             ProtocolsExplictImpl);
2829 }
2830 
2831 /// MatchAllMethodDeclarations - Check methods declared in interface
2832 /// or protocol against those declared in their implementations.
2833 ///
2834 void SemaObjC::MatchAllMethodDeclarations(
2835     const SelectorSet &InsMap, const SelectorSet &ClsMap,
2836     SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl *IMPDecl,
2837     ObjCContainerDecl *CDecl, bool &IncompleteImpl, bool ImmediateClass,
2838     bool WarnCategoryMethodImpl) {
2839   // Check and see if instance methods in class interface have been
2840   // implemented in the implementation class. If so, their types match.
2841   for (auto *I : CDecl->instance_methods()) {
2842     if (!InsMapSeen.insert(I->getSelector()).second)
2843       continue;
2844     if (!I->isPropertyAccessor() &&
2845         !InsMap.count(I->getSelector())) {
2846       if (ImmediateClass)
2847         WarnUndefinedMethod(SemaRef, IMPDecl, I, IncompleteImpl,
2848                             diag::warn_undef_method_impl);
2849       continue;
2850     } else {
2851       ObjCMethodDecl *ImpMethodDecl =
2852         IMPDecl->getInstanceMethod(I->getSelector());
2853       assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2854              "Expected to find the method through lookup as well");
2855       // ImpMethodDecl may be null as in a @dynamic property.
2856       if (ImpMethodDecl) {
2857         // Skip property accessor function stubs.
2858         if (ImpMethodDecl->isSynthesizedAccessorStub())
2859           continue;
2860         if (!WarnCategoryMethodImpl)
2861           WarnConflictingTypedMethods(ImpMethodDecl, I,
2862                                       isa<ObjCProtocolDecl>(CDecl));
2863         else if (!I->isPropertyAccessor())
2864           WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2865       }
2866     }
2867   }
2868 
2869   // Check and see if class methods in class interface have been
2870   // implemented in the implementation class. If so, their types match.
2871   for (auto *I : CDecl->class_methods()) {
2872     if (!ClsMapSeen.insert(I->getSelector()).second)
2873       continue;
2874     if (!I->isPropertyAccessor() &&
2875         !ClsMap.count(I->getSelector())) {
2876       if (ImmediateClass)
2877         WarnUndefinedMethod(SemaRef, IMPDecl, I, IncompleteImpl,
2878                             diag::warn_undef_method_impl);
2879     } else {
2880       ObjCMethodDecl *ImpMethodDecl =
2881         IMPDecl->getClassMethod(I->getSelector());
2882       assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2883              "Expected to find the method through lookup as well");
2884       // ImpMethodDecl may be null as in a @dynamic property.
2885       if (ImpMethodDecl) {
2886         // Skip property accessor function stubs.
2887         if (ImpMethodDecl->isSynthesizedAccessorStub())
2888           continue;
2889         if (!WarnCategoryMethodImpl)
2890           WarnConflictingTypedMethods(ImpMethodDecl, I,
2891                                       isa<ObjCProtocolDecl>(CDecl));
2892         else if (!I->isPropertyAccessor())
2893           WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2894       }
2895     }
2896   }
2897 
2898   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2899     // Also, check for methods declared in protocols inherited by
2900     // this protocol.
2901     for (auto *PI : PD->protocols())
2902       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2903                                  IMPDecl, PI, IncompleteImpl, false,
2904                                  WarnCategoryMethodImpl);
2905   }
2906 
2907   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2908     // when checking that methods in implementation match their declaration,
2909     // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2910     // extension; as well as those in categories.
2911     if (!WarnCategoryMethodImpl) {
2912       for (auto *Cat : I->visible_categories())
2913         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2914                                    IMPDecl, Cat, IncompleteImpl,
2915                                    ImmediateClass && Cat->IsClassExtension(),
2916                                    WarnCategoryMethodImpl);
2917     } else {
2918       // Also methods in class extensions need be looked at next.
2919       for (auto *Ext : I->visible_extensions())
2920         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2921                                    IMPDecl, Ext, IncompleteImpl, false,
2922                                    WarnCategoryMethodImpl);
2923     }
2924 
2925     // Check for any implementation of a methods declared in protocol.
2926     for (auto *PI : I->all_referenced_protocols())
2927       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2928                                  IMPDecl, PI, IncompleteImpl, false,
2929                                  WarnCategoryMethodImpl);
2930 
2931     // FIXME. For now, we are not checking for exact match of methods
2932     // in category implementation and its primary class's super class.
2933     if (!WarnCategoryMethodImpl && I->getSuperClass())
2934       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2935                                  IMPDecl,
2936                                  I->getSuperClass(), IncompleteImpl, false);
2937   }
2938 }
2939 
2940 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2941 /// category matches with those implemented in its primary class and
2942 /// warns each time an exact match is found.
2943 void SemaObjC::CheckCategoryVsClassMethodMatches(
2944     ObjCCategoryImplDecl *CatIMPDecl) {
2945   // Get category's primary class.
2946   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2947   if (!CatDecl)
2948     return;
2949   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2950   if (!IDecl)
2951     return;
2952   ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2953   SelectorSet InsMap, ClsMap;
2954 
2955   for (const auto *I : CatIMPDecl->instance_methods()) {
2956     Selector Sel = I->getSelector();
2957     // When checking for methods implemented in the category, skip over
2958     // those declared in category class's super class. This is because
2959     // the super class must implement the method.
2960     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2961       continue;
2962     InsMap.insert(Sel);
2963   }
2964 
2965   for (const auto *I : CatIMPDecl->class_methods()) {
2966     Selector Sel = I->getSelector();
2967     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2968       continue;
2969     ClsMap.insert(Sel);
2970   }
2971   if (InsMap.empty() && ClsMap.empty())
2972     return;
2973 
2974   SelectorSet InsMapSeen, ClsMapSeen;
2975   bool IncompleteImpl = false;
2976   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2977                              CatIMPDecl, IDecl,
2978                              IncompleteImpl, false,
2979                              true /*WarnCategoryMethodImpl*/);
2980 }
2981 
2982 void SemaObjC::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl *IMPDecl,
2983                                          ObjCContainerDecl *CDecl,
2984                                          bool IncompleteImpl) {
2985   SelectorSet InsMap;
2986   // Check and see if instance methods in class interface have been
2987   // implemented in the implementation class.
2988   for (const auto *I : IMPDecl->instance_methods())
2989     InsMap.insert(I->getSelector());
2990 
2991   // Add the selectors for getters/setters of @dynamic properties.
2992   for (const auto *PImpl : IMPDecl->property_impls()) {
2993     // We only care about @dynamic implementations.
2994     if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2995       continue;
2996 
2997     const auto *P = PImpl->getPropertyDecl();
2998     if (!P) continue;
2999 
3000     InsMap.insert(P->getGetterName());
3001     if (!P->getSetterName().isNull())
3002       InsMap.insert(P->getSetterName());
3003   }
3004 
3005   // Check and see if properties declared in the interface have either 1)
3006   // an implementation or 2) there is a @synthesize/@dynamic implementation
3007   // of the property in the @implementation.
3008   if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
3009     bool SynthesizeProperties = getLangOpts().ObjCDefaultSynthProperties &&
3010                                 getLangOpts().ObjCRuntime.isNonFragile() &&
3011                                 !IDecl->isObjCRequiresPropertyDefs();
3012     DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
3013   }
3014 
3015   // Diagnose null-resettable synthesized setters.
3016   diagnoseNullResettableSynthesizedSetters(IMPDecl);
3017 
3018   SelectorSet ClsMap;
3019   for (const auto *I : IMPDecl->class_methods())
3020     ClsMap.insert(I->getSelector());
3021 
3022   // Check for type conflict of methods declared in a class/protocol and
3023   // its implementation; if any.
3024   SelectorSet InsMapSeen, ClsMapSeen;
3025   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
3026                              IMPDecl, CDecl,
3027                              IncompleteImpl, true);
3028 
3029   // check all methods implemented in category against those declared
3030   // in its primary class.
3031   if (ObjCCategoryImplDecl *CatDecl =
3032         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
3033     CheckCategoryVsClassMethodMatches(CatDecl);
3034 
3035   // Check the protocol list for unimplemented methods in the @implementation
3036   // class.
3037   // Check and see if class methods in class interface have been
3038   // implemented in the implementation class.
3039 
3040   LazyProtocolNameSet ExplicitImplProtocols;
3041 
3042   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
3043     for (auto *PI : I->all_referenced_protocols())
3044       CheckProtocolMethodDefs(SemaRef, IMPDecl, PI, IncompleteImpl, InsMap,
3045                               ClsMap, I, ExplicitImplProtocols);
3046   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3047     // For extended class, unimplemented methods in its protocols will
3048     // be reported in the primary class.
3049     if (!C->IsClassExtension()) {
3050       for (auto *P : C->protocols())
3051         CheckProtocolMethodDefs(SemaRef, IMPDecl, P, IncompleteImpl, InsMap,
3052                                 ClsMap, CDecl, ExplicitImplProtocols);
3053       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3054                                       /*SynthesizeProperties=*/false);
3055     }
3056   } else
3057     llvm_unreachable("invalid ObjCContainerDecl type.");
3058 }
3059 
3060 SemaObjC::DeclGroupPtrTy SemaObjC::ActOnForwardClassDeclaration(
3061     SourceLocation AtClassLoc, IdentifierInfo **IdentList,
3062     SourceLocation *IdentLocs, ArrayRef<ObjCTypeParamList *> TypeParamLists,
3063     unsigned NumElts) {
3064   ASTContext &Context = getASTContext();
3065   SmallVector<Decl *, 8> DeclsInGroup;
3066   for (unsigned i = 0; i != NumElts; ++i) {
3067     // Check for another declaration kind with the same name.
3068     NamedDecl *PrevDecl = SemaRef.LookupSingleName(
3069         SemaRef.TUScope, IdentList[i], IdentLocs[i], Sema::LookupOrdinaryName,
3070         SemaRef.forRedeclarationInCurContext());
3071     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3072       // GCC apparently allows the following idiom:
3073       //
3074       // typedef NSObject < XCElementTogglerP > XCElementToggler;
3075       // @class XCElementToggler;
3076       //
3077       // Here we have chosen to ignore the forward class declaration
3078       // with a warning. Since this is the implied behavior.
3079       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3080       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3081         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3082         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3083       } else {
3084         // a forward class declaration matching a typedef name of a class refers
3085         // to the underlying class. Just ignore the forward class with a warning
3086         // as this will force the intended behavior which is to lookup the
3087         // typedef name.
3088         if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3089           Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3090               << IdentList[i];
3091           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3092           continue;
3093         }
3094       }
3095     }
3096 
3097     // Create a declaration to describe this forward declaration.
3098     ObjCInterfaceDecl *PrevIDecl
3099       = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3100 
3101     IdentifierInfo *ClassName = IdentList[i];
3102     if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3103       // A previous decl with a different name is because of
3104       // @compatibility_alias, for example:
3105       // \code
3106       //   @class NewImage;
3107       //   @compatibility_alias OldImage NewImage;
3108       // \endcode
3109       // A lookup for 'OldImage' will return the 'NewImage' decl.
3110       //
3111       // In such a case use the real declaration name, instead of the alias one,
3112       // otherwise we will break IdentifierResolver and redecls-chain invariants.
3113       // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3114       // has been aliased.
3115       ClassName = PrevIDecl->getIdentifier();
3116     }
3117 
3118     // If this forward declaration has type parameters, compare them with the
3119     // type parameters of the previous declaration.
3120     ObjCTypeParamList *TypeParams = TypeParamLists[i];
3121     if (PrevIDecl && TypeParams) {
3122       if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3123         // Check for consistency with the previous declaration.
3124         if (checkTypeParamListConsistency(
3125                 SemaRef, PrevTypeParams, TypeParams,
3126                 TypeParamListContext::ForwardDeclaration)) {
3127           TypeParams = nullptr;
3128         }
3129       } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3130         // The @interface does not have type parameters. Complain.
3131         Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3132           << ClassName
3133           << TypeParams->getSourceRange();
3134         Diag(Def->getLocation(), diag::note_defined_here)
3135           << ClassName;
3136 
3137         TypeParams = nullptr;
3138       }
3139     }
3140 
3141     ObjCInterfaceDecl *IDecl = ObjCInterfaceDecl::Create(
3142         Context, SemaRef.CurContext, AtClassLoc, ClassName, TypeParams,
3143         PrevIDecl, IdentLocs[i]);
3144     IDecl->setAtEndRange(IdentLocs[i]);
3145 
3146     if (PrevIDecl)
3147       SemaRef.mergeDeclAttributes(IDecl, PrevIDecl);
3148 
3149     SemaRef.PushOnScopeChains(IDecl, SemaRef.TUScope);
3150     CheckObjCDeclScope(IDecl);
3151     DeclsInGroup.push_back(IDecl);
3152   }
3153 
3154   return SemaRef.BuildDeclaratorGroup(DeclsInGroup);
3155 }
3156 
3157 static bool tryMatchRecordTypes(ASTContext &Context,
3158                                 SemaObjC::MethodMatchStrategy strategy,
3159                                 const Type *left, const Type *right);
3160 
3161 static bool matchTypes(ASTContext &Context,
3162                        SemaObjC::MethodMatchStrategy strategy, QualType leftQT,
3163                        QualType rightQT) {
3164   const Type *left =
3165     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3166   const Type *right =
3167     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3168 
3169   if (left == right) return true;
3170 
3171   // If we're doing a strict match, the types have to match exactly.
3172   if (strategy == SemaObjC::MMS_strict)
3173     return false;
3174 
3175   if (left->isIncompleteType() || right->isIncompleteType()) return false;
3176 
3177   // Otherwise, use this absurdly complicated algorithm to try to
3178   // validate the basic, low-level compatibility of the two types.
3179 
3180   // As a minimum, require the sizes and alignments to match.
3181   TypeInfo LeftTI = Context.getTypeInfo(left);
3182   TypeInfo RightTI = Context.getTypeInfo(right);
3183   if (LeftTI.Width != RightTI.Width)
3184     return false;
3185 
3186   if (LeftTI.Align != RightTI.Align)
3187     return false;
3188 
3189   // Consider all the kinds of non-dependent canonical types:
3190   // - functions and arrays aren't possible as return and parameter types
3191 
3192   // - vector types of equal size can be arbitrarily mixed
3193   if (isa<VectorType>(left)) return isa<VectorType>(right);
3194   if (isa<VectorType>(right)) return false;
3195 
3196   // - references should only match references of identical type
3197   // - structs, unions, and Objective-C objects must match more-or-less
3198   //   exactly
3199   // - everything else should be a scalar
3200   if (!left->isScalarType() || !right->isScalarType())
3201     return tryMatchRecordTypes(Context, strategy, left, right);
3202 
3203   // Make scalars agree in kind, except count bools as chars, and group
3204   // all non-member pointers together.
3205   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3206   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3207   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3208   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3209   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3210     leftSK = Type::STK_ObjCObjectPointer;
3211   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3212     rightSK = Type::STK_ObjCObjectPointer;
3213 
3214   // Note that data member pointers and function member pointers don't
3215   // intermix because of the size differences.
3216 
3217   return (leftSK == rightSK);
3218 }
3219 
3220 static bool tryMatchRecordTypes(ASTContext &Context,
3221                                 SemaObjC::MethodMatchStrategy strategy,
3222                                 const Type *lt, const Type *rt) {
3223   assert(lt && rt && lt != rt);
3224 
3225   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3226   RecordDecl *left = cast<RecordType>(lt)->getDecl();
3227   RecordDecl *right = cast<RecordType>(rt)->getDecl();
3228 
3229   // Require union-hood to match.
3230   if (left->isUnion() != right->isUnion()) return false;
3231 
3232   // Require an exact match if either is non-POD.
3233   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3234       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3235     return false;
3236 
3237   // Require size and alignment to match.
3238   TypeInfo LeftTI = Context.getTypeInfo(lt);
3239   TypeInfo RightTI = Context.getTypeInfo(rt);
3240   if (LeftTI.Width != RightTI.Width)
3241     return false;
3242 
3243   if (LeftTI.Align != RightTI.Align)
3244     return false;
3245 
3246   // Require fields to match.
3247   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3248   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3249   for (; li != le && ri != re; ++li, ++ri) {
3250     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3251       return false;
3252   }
3253   return (li == le && ri == re);
3254 }
3255 
3256 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3257 /// returns true, or false, accordingly.
3258 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3259 bool SemaObjC::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3260                                           const ObjCMethodDecl *right,
3261                                           MethodMatchStrategy strategy) {
3262   ASTContext &Context = getASTContext();
3263   if (!matchTypes(Context, strategy, left->getReturnType(),
3264                   right->getReturnType()))
3265     return false;
3266 
3267   // If either is hidden, it is not considered to match.
3268   if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible())
3269     return false;
3270 
3271   if (left->isDirectMethod() != right->isDirectMethod())
3272     return false;
3273 
3274   if (getLangOpts().ObjCAutoRefCount &&
3275       (left->hasAttr<NSReturnsRetainedAttr>()
3276          != right->hasAttr<NSReturnsRetainedAttr>() ||
3277        left->hasAttr<NSConsumesSelfAttr>()
3278          != right->hasAttr<NSConsumesSelfAttr>()))
3279     return false;
3280 
3281   ObjCMethodDecl::param_const_iterator
3282     li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3283     re = right->param_end();
3284 
3285   for (; li != le && ri != re; ++li, ++ri) {
3286     assert(ri != right->param_end() && "Param mismatch");
3287     const ParmVarDecl *lparm = *li, *rparm = *ri;
3288 
3289     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3290       return false;
3291 
3292     if (getLangOpts().ObjCAutoRefCount &&
3293         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3294       return false;
3295   }
3296   return true;
3297 }
3298 
3299 static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3300                                                ObjCMethodDecl *MethodInList) {
3301   auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3302   auto *MethodInListProtocol =
3303       dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3304   // If this method belongs to a protocol but the method in list does not, or
3305   // vice versa, we say the context is not the same.
3306   if ((MethodProtocol && !MethodInListProtocol) ||
3307       (!MethodProtocol && MethodInListProtocol))
3308     return false;
3309 
3310   if (MethodProtocol && MethodInListProtocol)
3311     return true;
3312 
3313   ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3314   ObjCInterfaceDecl *MethodInListInterface =
3315       MethodInList->getClassInterface();
3316   return MethodInterface == MethodInListInterface;
3317 }
3318 
3319 void SemaObjC::addMethodToGlobalList(ObjCMethodList *List,
3320                                      ObjCMethodDecl *Method) {
3321   // Record at the head of the list whether there were 0, 1, or >= 2 methods
3322   // inside categories.
3323   if (ObjCCategoryDecl *CD =
3324           dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3325     if (!CD->IsClassExtension() && List->getBits() < 2)
3326       List->setBits(List->getBits() + 1);
3327 
3328   // If the list is empty, make it a singleton list.
3329   if (List->getMethod() == nullptr) {
3330     List->setMethod(Method);
3331     List->setNext(nullptr);
3332     return;
3333   }
3334 
3335   // We've seen a method with this name, see if we have already seen this type
3336   // signature.
3337   ObjCMethodList *Previous = List;
3338   ObjCMethodList *ListWithSameDeclaration = nullptr;
3339   for (; List; Previous = List, List = List->getNext()) {
3340     // If we are building a module, keep all of the methods.
3341     if (getLangOpts().isCompilingModule())
3342       continue;
3343 
3344     bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3345                                                       List->getMethod());
3346     // Looking for method with a type bound requires the correct context exists.
3347     // We need to insert a method into the list if the context is different.
3348     // If the method's declaration matches the list
3349     // a> the method belongs to a different context: we need to insert it, in
3350     //    order to emit the availability message, we need to prioritize over
3351     //    availability among the methods with the same declaration.
3352     // b> the method belongs to the same context: there is no need to insert a
3353     //    new entry.
3354     // If the method's declaration does not match the list, we insert it to the
3355     // end.
3356     if (!SameDeclaration ||
3357         !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3358       // Even if two method types do not match, we would like to say
3359       // there is more than one declaration so unavailability/deprecated
3360       // warning is not too noisy.
3361       if (!Method->isDefined())
3362         List->setHasMoreThanOneDecl(true);
3363 
3364       // For methods with the same declaration, the one that is deprecated
3365       // should be put in the front for better diagnostics.
3366       if (Method->isDeprecated() && SameDeclaration &&
3367           !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3368         ListWithSameDeclaration = List;
3369 
3370       if (Method->isUnavailable() && SameDeclaration &&
3371           !ListWithSameDeclaration &&
3372           List->getMethod()->getAvailability() < AR_Deprecated)
3373         ListWithSameDeclaration = List;
3374       continue;
3375     }
3376 
3377     ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3378 
3379     // Propagate the 'defined' bit.
3380     if (Method->isDefined())
3381       PrevObjCMethod->setDefined(true);
3382     else {
3383       // Objective-C doesn't allow an @interface for a class after its
3384       // @implementation. So if Method is not defined and there already is
3385       // an entry for this type signature, Method has to be for a different
3386       // class than PrevObjCMethod.
3387       List->setHasMoreThanOneDecl(true);
3388     }
3389 
3390     // If a method is deprecated, push it in the global pool.
3391     // This is used for better diagnostics.
3392     if (Method->isDeprecated()) {
3393       if (!PrevObjCMethod->isDeprecated())
3394         List->setMethod(Method);
3395     }
3396     // If the new method is unavailable, push it into global pool
3397     // unless previous one is deprecated.
3398     if (Method->isUnavailable()) {
3399       if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3400         List->setMethod(Method);
3401     }
3402 
3403     return;
3404   }
3405 
3406   // We have a new signature for an existing method - add it.
3407   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3408   ObjCMethodList *Mem = SemaRef.BumpAlloc.Allocate<ObjCMethodList>();
3409 
3410   // We insert it right before ListWithSameDeclaration.
3411   if (ListWithSameDeclaration) {
3412     auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3413     // FIXME: should we clear the other bits in ListWithSameDeclaration?
3414     ListWithSameDeclaration->setMethod(Method);
3415     ListWithSameDeclaration->setNext(List);
3416     return;
3417   }
3418 
3419   Previous->setNext(new (Mem) ObjCMethodList(Method));
3420 }
3421 
3422 /// Read the contents of the method pool for a given selector from
3423 /// external storage.
3424 void SemaObjC::ReadMethodPool(Selector Sel) {
3425   assert(SemaRef.ExternalSource && "We need an external AST source");
3426   SemaRef.ExternalSource->ReadMethodPool(Sel);
3427 }
3428 
3429 void SemaObjC::updateOutOfDateSelector(Selector Sel) {
3430   if (!SemaRef.ExternalSource)
3431     return;
3432   SemaRef.ExternalSource->updateOutOfDateSelector(Sel);
3433 }
3434 
3435 void SemaObjC::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3436                                      bool instance) {
3437   // Ignore methods of invalid containers.
3438   if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3439     return;
3440 
3441   if (SemaRef.ExternalSource)
3442     ReadMethodPool(Method->getSelector());
3443 
3444   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3445   if (Pos == MethodPool.end())
3446     Pos = MethodPool
3447               .insert(std::make_pair(Method->getSelector(),
3448                                      GlobalMethodPool::Lists()))
3449               .first;
3450 
3451   Method->setDefined(impl);
3452 
3453   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3454   addMethodToGlobalList(&Entry, Method);
3455 }
3456 
3457 /// Determines if this is an "acceptable" loose mismatch in the global
3458 /// method pool.  This exists mostly as a hack to get around certain
3459 /// global mismatches which we can't afford to make warnings / errors.
3460 /// Really, what we want is a way to take a method out of the global
3461 /// method pool.
3462 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3463                                        ObjCMethodDecl *other) {
3464   if (!chosen->isInstanceMethod())
3465     return false;
3466 
3467   if (chosen->isDirectMethod() != other->isDirectMethod())
3468     return false;
3469 
3470   Selector sel = chosen->getSelector();
3471   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3472     return false;
3473 
3474   // Don't complain about mismatches for -length if the method we
3475   // chose has an integral result type.
3476   return (chosen->getReturnType()->isIntegerType());
3477 }
3478 
3479 /// Return true if the given method is wthin the type bound.
3480 static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3481                                      const ObjCObjectType *TypeBound) {
3482   if (!TypeBound)
3483     return true;
3484 
3485   if (TypeBound->isObjCId())
3486     // FIXME: should we handle the case of bounding to id<A, B> differently?
3487     return true;
3488 
3489   auto *BoundInterface = TypeBound->getInterface();
3490   assert(BoundInterface && "unexpected object type!");
3491 
3492   // Check if the Method belongs to a protocol. We should allow any method
3493   // defined in any protocol, because any subclass could adopt the protocol.
3494   auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3495   if (MethodProtocol) {
3496     return true;
3497   }
3498 
3499   // If the Method belongs to a class, check if it belongs to the class
3500   // hierarchy of the class bound.
3501   if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3502     // We allow methods declared within classes that are part of the hierarchy
3503     // of the class bound (superclass of, subclass of, or the same as the class
3504     // bound).
3505     return MethodInterface == BoundInterface ||
3506            MethodInterface->isSuperClassOf(BoundInterface) ||
3507            BoundInterface->isSuperClassOf(MethodInterface);
3508   }
3509   llvm_unreachable("unknown method context");
3510 }
3511 
3512 /// We first select the type of the method: Instance or Factory, then collect
3513 /// all methods with that type.
3514 bool SemaObjC::CollectMultipleMethodsInGlobalPool(
3515     Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3516     bool InstanceFirst, bool CheckTheOther, const ObjCObjectType *TypeBound) {
3517   if (SemaRef.ExternalSource)
3518     ReadMethodPool(Sel);
3519 
3520   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3521   if (Pos == MethodPool.end())
3522     return false;
3523 
3524   // Gather the non-hidden methods.
3525   ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3526                              Pos->second.second;
3527   for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3528     if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3529       if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3530         Methods.push_back(M->getMethod());
3531     }
3532 
3533   // Return if we find any method with the desired kind.
3534   if (!Methods.empty())
3535     return Methods.size() > 1;
3536 
3537   if (!CheckTheOther)
3538     return false;
3539 
3540   // Gather the other kind.
3541   ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3542                               Pos->second.first;
3543   for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3544     if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3545       if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3546         Methods.push_back(M->getMethod());
3547     }
3548 
3549   return Methods.size() > 1;
3550 }
3551 
3552 bool SemaObjC::AreMultipleMethodsInGlobalPool(
3553     Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3554     bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3555   // Diagnose finding more than one method in global pool.
3556   SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3557   FilteredMethods.push_back(BestMethod);
3558 
3559   for (auto *M : Methods)
3560     if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3561       FilteredMethods.push_back(M);
3562 
3563   if (FilteredMethods.size() > 1)
3564     DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3565                                        receiverIdOrClass);
3566 
3567   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3568   // Test for no method in the pool which should not trigger any warning by
3569   // caller.
3570   if (Pos == MethodPool.end())
3571     return true;
3572   ObjCMethodList &MethList =
3573     BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3574   return MethList.hasMoreThanOneDecl();
3575 }
3576 
3577 ObjCMethodDecl *SemaObjC::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3578                                                    bool receiverIdOrClass,
3579                                                    bool instance) {
3580   if (SemaRef.ExternalSource)
3581     ReadMethodPool(Sel);
3582 
3583   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3584   if (Pos == MethodPool.end())
3585     return nullptr;
3586 
3587   // Gather the non-hidden methods.
3588   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3589   SmallVector<ObjCMethodDecl *, 4> Methods;
3590   for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3591     if (M->getMethod() && M->getMethod()->isUnconditionallyVisible())
3592       return M->getMethod();
3593   }
3594   return nullptr;
3595 }
3596 
3597 void SemaObjC::DiagnoseMultipleMethodInGlobalPool(
3598     SmallVectorImpl<ObjCMethodDecl *> &Methods, Selector Sel, SourceRange R,
3599     bool receiverIdOrClass) {
3600   // We found multiple methods, so we may have to complain.
3601   bool issueDiagnostic = false, issueError = false;
3602 
3603   // We support a warning which complains about *any* difference in
3604   // method signature.
3605   bool strictSelectorMatch =
3606       receiverIdOrClass &&
3607       !getDiagnostics().isIgnored(diag::warn_strict_multiple_method_decl,
3608                                   R.getBegin());
3609   if (strictSelectorMatch) {
3610     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3611       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3612         issueDiagnostic = true;
3613         break;
3614       }
3615     }
3616   }
3617 
3618   // If we didn't see any strict differences, we won't see any loose
3619   // differences.  In ARC, however, we also need to check for loose
3620   // mismatches, because most of them are errors.
3621   if (!strictSelectorMatch ||
3622       (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3623     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3624       // This checks if the methods differ in type mismatch.
3625       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3626           !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3627         issueDiagnostic = true;
3628         if (getLangOpts().ObjCAutoRefCount)
3629           issueError = true;
3630         break;
3631       }
3632     }
3633 
3634   if (issueDiagnostic) {
3635     if (issueError)
3636       Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3637     else if (strictSelectorMatch)
3638       Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3639     else
3640       Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3641 
3642     Diag(Methods[0]->getBeginLoc(),
3643          issueError ? diag::note_possibility : diag::note_using)
3644         << Methods[0]->getSourceRange();
3645     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3646       Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3647           << Methods[I]->getSourceRange();
3648     }
3649   }
3650 }
3651 
3652 ObjCMethodDecl *SemaObjC::LookupImplementedMethodInGlobalPool(Selector Sel) {
3653   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3654   if (Pos == MethodPool.end())
3655     return nullptr;
3656 
3657   GlobalMethodPool::Lists &Methods = Pos->second;
3658   for (const ObjCMethodList *Method = &Methods.first; Method;
3659        Method = Method->getNext())
3660     if (Method->getMethod() &&
3661         (Method->getMethod()->isDefined() ||
3662          Method->getMethod()->isPropertyAccessor()))
3663       return Method->getMethod();
3664 
3665   for (const ObjCMethodList *Method = &Methods.second; Method;
3666        Method = Method->getNext())
3667     if (Method->getMethod() &&
3668         (Method->getMethod()->isDefined() ||
3669          Method->getMethod()->isPropertyAccessor()))
3670       return Method->getMethod();
3671   return nullptr;
3672 }
3673 
3674 static void
3675 HelperSelectorsForTypoCorrection(
3676                       SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3677                       StringRef Typo, const ObjCMethodDecl * Method) {
3678   const unsigned MaxEditDistance = 1;
3679   unsigned BestEditDistance = MaxEditDistance + 1;
3680   std::string MethodName = Method->getSelector().getAsString();
3681 
3682   unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3683   if (MinPossibleEditDistance > 0 &&
3684       Typo.size() / MinPossibleEditDistance < 1)
3685     return;
3686   unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3687   if (EditDistance > MaxEditDistance)
3688     return;
3689   if (EditDistance == BestEditDistance)
3690     BestMethod.push_back(Method);
3691   else if (EditDistance < BestEditDistance) {
3692     BestMethod.clear();
3693     BestMethod.push_back(Method);
3694   }
3695 }
3696 
3697 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3698                                      QualType ObjectType) {
3699   if (ObjectType.isNull())
3700     return true;
3701   if (S.ObjC().LookupMethodInObjectType(Sel, ObjectType,
3702                                         true /*Instance method*/))
3703     return true;
3704   return S.ObjC().LookupMethodInObjectType(Sel, ObjectType,
3705                                            false /*Class method*/) != nullptr;
3706 }
3707 
3708 const ObjCMethodDecl *
3709 SemaObjC::SelectorsForTypoCorrection(Selector Sel, QualType ObjectType) {
3710   unsigned NumArgs = Sel.getNumArgs();
3711   SmallVector<const ObjCMethodDecl *, 8> Methods;
3712   bool ObjectIsId = true, ObjectIsClass = true;
3713   if (ObjectType.isNull())
3714     ObjectIsId = ObjectIsClass = false;
3715   else if (!ObjectType->isObjCObjectPointerType())
3716     return nullptr;
3717   else if (const ObjCObjectPointerType *ObjCPtr =
3718            ObjectType->getAsObjCInterfacePointerType()) {
3719     ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3720     ObjectIsId = ObjectIsClass = false;
3721   }
3722   else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3723     ObjectIsClass = false;
3724   else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3725     ObjectIsId = false;
3726   else
3727     return nullptr;
3728 
3729   for (GlobalMethodPool::iterator b = MethodPool.begin(),
3730        e = MethodPool.end(); b != e; b++) {
3731     // instance methods
3732     for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3733       if (M->getMethod() &&
3734           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3735           (M->getMethod()->getSelector() != Sel)) {
3736         if (ObjectIsId)
3737           Methods.push_back(M->getMethod());
3738         else if (!ObjectIsClass &&
3739                  HelperIsMethodInObjCType(
3740                      SemaRef, M->getMethod()->getSelector(), ObjectType))
3741           Methods.push_back(M->getMethod());
3742       }
3743     // class methods
3744     for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3745       if (M->getMethod() &&
3746           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3747           (M->getMethod()->getSelector() != Sel)) {
3748         if (ObjectIsClass)
3749           Methods.push_back(M->getMethod());
3750         else if (!ObjectIsId &&
3751                  HelperIsMethodInObjCType(
3752                      SemaRef, M->getMethod()->getSelector(), ObjectType))
3753           Methods.push_back(M->getMethod());
3754       }
3755   }
3756 
3757   SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3758   for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3759     HelperSelectorsForTypoCorrection(SelectedMethods,
3760                                      Sel.getAsString(), Methods[i]);
3761   }
3762   return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3763 }
3764 
3765 /// DiagnoseDuplicateIvars -
3766 /// Check for duplicate ivars in the entire class at the start of
3767 /// \@implementation. This becomes necessary because class extension can
3768 /// add ivars to a class in random order which will not be known until
3769 /// class's \@implementation is seen.
3770 void SemaObjC::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3771                                       ObjCInterfaceDecl *SID) {
3772   for (auto *Ivar : ID->ivars()) {
3773     if (Ivar->isInvalidDecl())
3774       continue;
3775     if (IdentifierInfo *II = Ivar->getIdentifier()) {
3776       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3777       if (prevIvar) {
3778         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3779         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3780         Ivar->setInvalidDecl();
3781       }
3782     }
3783   }
3784 }
3785 
3786 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3787 static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3788   if (S.getLangOpts().ObjCWeak) return;
3789 
3790   for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3791          ivar; ivar = ivar->getNextIvar()) {
3792     if (ivar->isInvalidDecl()) continue;
3793     if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3794       if (S.getLangOpts().ObjCWeakRuntime) {
3795         S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3796       } else {
3797         S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3798       }
3799     }
3800   }
3801 }
3802 
3803 /// Diagnose attempts to use flexible array member with retainable object type.
3804 static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3805                                                   ObjCInterfaceDecl *ID) {
3806   if (!S.getLangOpts().ObjCAutoRefCount)
3807     return;
3808 
3809   for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3810        ivar = ivar->getNextIvar()) {
3811     if (ivar->isInvalidDecl())
3812       continue;
3813     QualType IvarTy = ivar->getType();
3814     if (IvarTy->isIncompleteArrayType() &&
3815         (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3816         IvarTy->isObjCLifetimeType()) {
3817       S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3818       ivar->setInvalidDecl();
3819     }
3820   }
3821 }
3822 
3823 SemaObjC::ObjCContainerKind SemaObjC::getObjCContainerKind() const {
3824   switch (SemaRef.CurContext->getDeclKind()) {
3825   case Decl::ObjCInterface:
3826     return SemaObjC::OCK_Interface;
3827   case Decl::ObjCProtocol:
3828     return SemaObjC::OCK_Protocol;
3829   case Decl::ObjCCategory:
3830     if (cast<ObjCCategoryDecl>(SemaRef.CurContext)->IsClassExtension())
3831       return SemaObjC::OCK_ClassExtension;
3832     return SemaObjC::OCK_Category;
3833   case Decl::ObjCImplementation:
3834     return SemaObjC::OCK_Implementation;
3835   case Decl::ObjCCategoryImpl:
3836     return SemaObjC::OCK_CategoryImplementation;
3837 
3838   default:
3839     return SemaObjC::OCK_None;
3840   }
3841 }
3842 
3843 static bool IsVariableSizedType(QualType T) {
3844   if (T->isIncompleteArrayType())
3845     return true;
3846   const auto *RecordTy = T->getAs<RecordType>();
3847   return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3848 }
3849 
3850 static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3851   ObjCInterfaceDecl *IntfDecl = nullptr;
3852   ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3853       ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3854   if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3855     Ivars = IntfDecl->ivars();
3856   } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3857     IntfDecl = ImplDecl->getClassInterface();
3858     Ivars = ImplDecl->ivars();
3859   } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3860     if (CategoryDecl->IsClassExtension()) {
3861       IntfDecl = CategoryDecl->getClassInterface();
3862       Ivars = CategoryDecl->ivars();
3863     }
3864   }
3865 
3866   // Check if variable sized ivar is in interface and visible to subclasses.
3867   if (!isa<ObjCInterfaceDecl>(OCD)) {
3868     for (auto *ivar : Ivars) {
3869       if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3870         S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3871             << ivar->getDeclName() << ivar->getType();
3872       }
3873     }
3874   }
3875 
3876   // Subsequent checks require interface decl.
3877   if (!IntfDecl)
3878     return;
3879 
3880   // Check if variable sized ivar is followed by another ivar.
3881   for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3882        ivar = ivar->getNextIvar()) {
3883     if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3884       continue;
3885     QualType IvarTy = ivar->getType();
3886     bool IsInvalidIvar = false;
3887     if (IvarTy->isIncompleteArrayType()) {
3888       S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3889           << ivar->getDeclName() << IvarTy
3890           << llvm::to_underlying(TagTypeKind::Class); // Use "class" for Obj-C.
3891       IsInvalidIvar = true;
3892     } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3893       if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3894         S.Diag(ivar->getLocation(),
3895                diag::err_objc_variable_sized_type_not_at_end)
3896             << ivar->getDeclName() << IvarTy;
3897         IsInvalidIvar = true;
3898       }
3899     }
3900     if (IsInvalidIvar) {
3901       S.Diag(ivar->getNextIvar()->getLocation(),
3902              diag::note_next_ivar_declaration)
3903           << ivar->getNextIvar()->getSynthesize();
3904       ivar->setInvalidDecl();
3905     }
3906   }
3907 
3908   // Check if ObjC container adds ivars after variable sized ivar in superclass.
3909   // Perform the check only if OCD is the first container to declare ivars to
3910   // avoid multiple warnings for the same ivar.
3911   ObjCIvarDecl *FirstIvar =
3912       (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3913   if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3914     const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3915     while (SuperClass && SuperClass->ivar_empty())
3916       SuperClass = SuperClass->getSuperClass();
3917     if (SuperClass) {
3918       auto IvarIter = SuperClass->ivar_begin();
3919       std::advance(IvarIter, SuperClass->ivar_size() - 1);
3920       const ObjCIvarDecl *LastIvar = *IvarIter;
3921       if (IsVariableSizedType(LastIvar->getType())) {
3922         S.Diag(FirstIvar->getLocation(),
3923                diag::warn_superclass_variable_sized_type_not_at_end)
3924             << FirstIvar->getDeclName() << LastIvar->getDeclName()
3925             << LastIvar->getType() << SuperClass->getDeclName();
3926         S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3927             << LastIvar->getDeclName();
3928       }
3929     }
3930   }
3931 }
3932 
3933 static void DiagnoseCategoryDirectMembersProtocolConformance(
3934     Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl);
3935 
3936 static void DiagnoseCategoryDirectMembersProtocolConformance(
3937     Sema &S, ObjCCategoryDecl *CDecl,
3938     const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) {
3939   for (auto *PI : Protocols)
3940     DiagnoseCategoryDirectMembersProtocolConformance(S, PI, CDecl);
3941 }
3942 
3943 static void DiagnoseCategoryDirectMembersProtocolConformance(
3944     Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) {
3945   if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
3946     PDecl = PDecl->getDefinition();
3947 
3948   llvm::SmallVector<const Decl *, 4> DirectMembers;
3949   const auto *IDecl = CDecl->getClassInterface();
3950   for (auto *MD : PDecl->methods()) {
3951     if (!MD->isPropertyAccessor()) {
3952       if (const auto *CMD =
3953               IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) {
3954         if (CMD->isDirectMethod())
3955           DirectMembers.push_back(CMD);
3956       }
3957     }
3958   }
3959   for (auto *PD : PDecl->properties()) {
3960     if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass(
3961             PD->getIdentifier(),
3962             PD->isClassProperty()
3963                 ? ObjCPropertyQueryKind::OBJC_PR_query_class
3964                 : ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
3965       if (CPD->isDirectProperty())
3966         DirectMembers.push_back(CPD);
3967     }
3968   }
3969   if (!DirectMembers.empty()) {
3970     S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance)
3971         << CDecl->IsClassExtension() << CDecl << PDecl << IDecl;
3972     for (const auto *MD : DirectMembers)
3973       S.Diag(MD->getLocation(), diag::note_direct_member_here);
3974     return;
3975   }
3976 
3977   // Check on this protocols's referenced protocols, recursively.
3978   DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl,
3979                                                    PDecl->protocols());
3980 }
3981 
3982 // Note: For class/category implementations, allMethods is always null.
3983 Decl *SemaObjC::ActOnAtEnd(Scope *S, SourceRange AtEnd,
3984                            ArrayRef<Decl *> allMethods,
3985                            ArrayRef<DeclGroupPtrTy> allTUVars) {
3986   ASTContext &Context = getASTContext();
3987   if (getObjCContainerKind() == SemaObjC::OCK_None)
3988     return nullptr;
3989 
3990   assert(AtEnd.isValid() && "Invalid location for '@end'");
3991 
3992   auto *OCD = cast<ObjCContainerDecl>(SemaRef.CurContext);
3993   Decl *ClassDecl = OCD;
3994 
3995   bool isInterfaceDeclKind =
3996         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3997          || isa<ObjCProtocolDecl>(ClassDecl);
3998   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3999 
4000   // Make synthesized accessor stub functions visible.
4001   // ActOnPropertyImplDecl() creates them as not visible in case
4002   // they are overridden by an explicit method that is encountered
4003   // later.
4004   if (auto *OID = dyn_cast<ObjCImplementationDecl>(SemaRef.CurContext)) {
4005     for (auto *PropImpl : OID->property_impls()) {
4006       if (auto *Getter = PropImpl->getGetterMethodDecl())
4007         if (Getter->isSynthesizedAccessorStub())
4008           OID->addDecl(Getter);
4009       if (auto *Setter = PropImpl->getSetterMethodDecl())
4010         if (Setter->isSynthesizedAccessorStub())
4011           OID->addDecl(Setter);
4012     }
4013   }
4014 
4015   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
4016   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
4017   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
4018 
4019   for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
4020     ObjCMethodDecl *Method =
4021       cast_or_null<ObjCMethodDecl>(allMethods[i]);
4022 
4023     if (!Method) continue;  // Already issued a diagnostic.
4024     if (Method->isInstanceMethod()) {
4025       /// Check for instance method of the same name with incompatible types
4026       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
4027       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4028                               : false;
4029       if ((isInterfaceDeclKind && PrevMethod && !match)
4030           || (checkIdenticalMethods && match)) {
4031           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4032             << Method->getDeclName();
4033           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4034         Method->setInvalidDecl();
4035       } else {
4036         if (PrevMethod) {
4037           Method->setAsRedeclaration(PrevMethod);
4038           if (!Context.getSourceManager().isInSystemHeader(
4039                  Method->getLocation()))
4040             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4041               << Method->getDeclName();
4042           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4043         }
4044         InsMap[Method->getSelector()] = Method;
4045         /// The following allows us to typecheck messages to "id".
4046         AddInstanceMethodToGlobalPool(Method);
4047       }
4048     } else {
4049       /// Check for class method of the same name with incompatible types
4050       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
4051       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4052                               : false;
4053       if ((isInterfaceDeclKind && PrevMethod && !match)
4054           || (checkIdenticalMethods && match)) {
4055         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4056           << Method->getDeclName();
4057         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4058         Method->setInvalidDecl();
4059       } else {
4060         if (PrevMethod) {
4061           Method->setAsRedeclaration(PrevMethod);
4062           if (!Context.getSourceManager().isInSystemHeader(
4063                  Method->getLocation()))
4064             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4065               << Method->getDeclName();
4066           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4067         }
4068         ClsMap[Method->getSelector()] = Method;
4069         AddFactoryMethodToGlobalPool(Method);
4070       }
4071     }
4072   }
4073   if (isa<ObjCInterfaceDecl>(ClassDecl)) {
4074     // Nothing to do here.
4075   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
4076     // Categories are used to extend the class by declaring new methods.
4077     // By the same token, they are also used to add new properties. No
4078     // need to compare the added property to those in the class.
4079 
4080     if (C->IsClassExtension()) {
4081       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
4082       DiagnoseClassExtensionDupMethods(C, CCPrimary);
4083     }
4084 
4085     DiagnoseCategoryDirectMembersProtocolConformance(SemaRef, C,
4086                                                      C->protocols());
4087   }
4088   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
4089     if (CDecl->getIdentifier())
4090       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
4091       // user-defined setter/getter. It also synthesizes setter/getter methods
4092       // and adds them to the DeclContext and global method pools.
4093       for (auto *I : CDecl->properties())
4094         ProcessPropertyDecl(I);
4095     CDecl->setAtEndRange(AtEnd);
4096   }
4097   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
4098     IC->setAtEndRange(AtEnd);
4099     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
4100       // Any property declared in a class extension might have user
4101       // declared setter or getter in current class extension or one
4102       // of the other class extensions. Mark them as synthesized as
4103       // property will be synthesized when property with same name is
4104       // seen in the @implementation.
4105       for (const auto *Ext : IDecl->visible_extensions()) {
4106         for (const auto *Property : Ext->instance_properties()) {
4107           // Skip over properties declared @dynamic
4108           if (const ObjCPropertyImplDecl *PIDecl
4109               = IC->FindPropertyImplDecl(Property->getIdentifier(),
4110                                          Property->getQueryKind()))
4111             if (PIDecl->getPropertyImplementation()
4112                   == ObjCPropertyImplDecl::Dynamic)
4113               continue;
4114 
4115           for (const auto *Ext : IDecl->visible_extensions()) {
4116             if (ObjCMethodDecl *GetterMethod =
4117                     Ext->getInstanceMethod(Property->getGetterName()))
4118               GetterMethod->setPropertyAccessor(true);
4119             if (!Property->isReadOnly())
4120               if (ObjCMethodDecl *SetterMethod
4121                     = Ext->getInstanceMethod(Property->getSetterName()))
4122                 SetterMethod->setPropertyAccessor(true);
4123           }
4124         }
4125       }
4126       ImplMethodsVsClassMethods(S, IC, IDecl);
4127       AtomicPropertySetterGetterRules(IC, IDecl);
4128       DiagnoseOwningPropertyGetterSynthesis(IC);
4129       DiagnoseUnusedBackingIvarInAccessor(S, IC);
4130       if (IDecl->hasDesignatedInitializers())
4131         DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
4132       DiagnoseWeakIvars(SemaRef, IC);
4133       DiagnoseRetainableFlexibleArrayMember(SemaRef, IDecl);
4134 
4135       bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4136       if (IDecl->getSuperClass() == nullptr) {
4137         // This class has no superclass, so check that it has been marked with
4138         // __attribute((objc_root_class)).
4139         if (!HasRootClassAttr) {
4140           SourceLocation DeclLoc(IDecl->getLocation());
4141           SourceLocation SuperClassLoc(SemaRef.getLocForEndOfToken(DeclLoc));
4142           Diag(DeclLoc, diag::warn_objc_root_class_missing)
4143             << IDecl->getIdentifier();
4144           // See if NSObject is in the current scope, and if it is, suggest
4145           // adding " : NSObject " to the class declaration.
4146           NamedDecl *IF = SemaRef.LookupSingleName(
4147               SemaRef.TUScope, NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4148               DeclLoc, Sema::LookupOrdinaryName);
4149           ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4150           if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4151             Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4152               << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4153           } else {
4154             Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4155           }
4156         }
4157       } else if (HasRootClassAttr) {
4158         // Complain that only root classes may have this attribute.
4159         Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4160       }
4161 
4162       if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4163         // An interface can subclass another interface with a
4164         // objc_subclassing_restricted attribute when it has that attribute as
4165         // well (because of interfaces imported from Swift). Therefore we have
4166         // to check if we can subclass in the implementation as well.
4167         if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4168             Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4169           Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4170           Diag(Super->getLocation(), diag::note_class_declared);
4171         }
4172       }
4173 
4174       if (IDecl->hasAttr<ObjCClassStubAttr>())
4175         Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4176 
4177       if (getLangOpts().ObjCRuntime.isNonFragile()) {
4178         while (IDecl->getSuperClass()) {
4179           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4180           IDecl = IDecl->getSuperClass();
4181         }
4182       }
4183     }
4184     SetIvarInitializers(IC);
4185   } else if (ObjCCategoryImplDecl* CatImplClass =
4186                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4187     CatImplClass->setAtEndRange(AtEnd);
4188 
4189     // Find category interface decl and then check that all methods declared
4190     // in this interface are implemented in the category @implementation.
4191     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4192       if (ObjCCategoryDecl *Cat
4193             = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4194         ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4195       }
4196     }
4197   } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4198     if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4199       if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4200           Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4201         Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4202         Diag(Super->getLocation(), diag::note_class_declared);
4203       }
4204     }
4205 
4206     if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4207         !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4208       Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4209   }
4210   DiagnoseVariableSizedIvars(SemaRef, OCD);
4211   if (isInterfaceDeclKind) {
4212     // Reject invalid vardecls.
4213     for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4214       DeclGroupRef DG = allTUVars[i].get();
4215       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4216         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4217           if (!VDecl->hasExternalStorage())
4218             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4219         }
4220     }
4221   }
4222   ActOnObjCContainerFinishDefinition();
4223 
4224   for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4225     DeclGroupRef DG = allTUVars[i].get();
4226     for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4227       (*I)->setTopLevelDeclInObjCContainer();
4228     SemaRef.Consumer.HandleTopLevelDeclInObjCContainer(DG);
4229   }
4230 
4231   SemaRef.ActOnDocumentableDecl(ClassDecl);
4232   return ClassDecl;
4233 }
4234 
4235 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4236 /// objective-c's type qualifier from the parser version of the same info.
4237 static Decl::ObjCDeclQualifier
4238 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4239   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4240 }
4241 
4242 /// Check whether the declared result type of the given Objective-C
4243 /// method declaration is compatible with the method's class.
4244 ///
4245 static SemaObjC::ResultTypeCompatibilityKind
4246 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4247                                     ObjCInterfaceDecl *CurrentClass) {
4248   QualType ResultType = Method->getReturnType();
4249 
4250   // If an Objective-C method inherits its related result type, then its
4251   // declared result type must be compatible with its own class type. The
4252   // declared result type is compatible if:
4253   if (const ObjCObjectPointerType *ResultObjectType
4254                                 = ResultType->getAs<ObjCObjectPointerType>()) {
4255     //   - it is id or qualified id, or
4256     if (ResultObjectType->isObjCIdType() ||
4257         ResultObjectType->isObjCQualifiedIdType())
4258       return SemaObjC::RTC_Compatible;
4259 
4260     if (CurrentClass) {
4261       if (ObjCInterfaceDecl *ResultClass
4262                                       = ResultObjectType->getInterfaceDecl()) {
4263         //   - it is the same as the method's class type, or
4264         if (declaresSameEntity(CurrentClass, ResultClass))
4265           return SemaObjC::RTC_Compatible;
4266 
4267         //   - it is a superclass of the method's class type
4268         if (ResultClass->isSuperClassOf(CurrentClass))
4269           return SemaObjC::RTC_Compatible;
4270       }
4271     } else {
4272       // Any Objective-C pointer type might be acceptable for a protocol
4273       // method; we just don't know.
4274       return SemaObjC::RTC_Unknown;
4275     }
4276   }
4277 
4278   return SemaObjC::RTC_Incompatible;
4279 }
4280 
4281 namespace {
4282 /// A helper class for searching for methods which a particular method
4283 /// overrides.
4284 class OverrideSearch {
4285 public:
4286   const ObjCMethodDecl *Method;
4287   llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4288   bool Recursive;
4289 
4290 public:
4291   OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4292     Selector selector = method->getSelector();
4293 
4294     // Bypass this search if we've never seen an instance/class method
4295     // with this selector before.
4296     SemaObjC::GlobalMethodPool::iterator it =
4297         S.ObjC().MethodPool.find(selector);
4298     if (it == S.ObjC().MethodPool.end()) {
4299       if (!S.getExternalSource()) return;
4300       S.ObjC().ReadMethodPool(selector);
4301 
4302       it = S.ObjC().MethodPool.find(selector);
4303       if (it == S.ObjC().MethodPool.end())
4304         return;
4305     }
4306     const ObjCMethodList &list =
4307       method->isInstanceMethod() ? it->second.first : it->second.second;
4308     if (!list.getMethod()) return;
4309 
4310     const ObjCContainerDecl *container
4311       = cast<ObjCContainerDecl>(method->getDeclContext());
4312 
4313     // Prevent the search from reaching this container again.  This is
4314     // important with categories, which override methods from the
4315     // interface and each other.
4316     if (const ObjCCategoryDecl *Category =
4317             dyn_cast<ObjCCategoryDecl>(container)) {
4318       searchFromContainer(container);
4319       if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4320         searchFromContainer(Interface);
4321     } else {
4322       searchFromContainer(container);
4323     }
4324   }
4325 
4326   typedef decltype(Overridden)::iterator iterator;
4327   iterator begin() const { return Overridden.begin(); }
4328   iterator end() const { return Overridden.end(); }
4329 
4330 private:
4331   void searchFromContainer(const ObjCContainerDecl *container) {
4332     if (container->isInvalidDecl()) return;
4333 
4334     switch (container->getDeclKind()) {
4335 #define OBJCCONTAINER(type, base) \
4336     case Decl::type: \
4337       searchFrom(cast<type##Decl>(container)); \
4338       break;
4339 #define ABSTRACT_DECL(expansion)
4340 #define DECL(type, base) \
4341     case Decl::type:
4342 #include "clang/AST/DeclNodes.inc"
4343       llvm_unreachable("not an ObjC container!");
4344     }
4345   }
4346 
4347   void searchFrom(const ObjCProtocolDecl *protocol) {
4348     if (!protocol->hasDefinition())
4349       return;
4350 
4351     // A method in a protocol declaration overrides declarations from
4352     // referenced ("parent") protocols.
4353     search(protocol->getReferencedProtocols());
4354   }
4355 
4356   void searchFrom(const ObjCCategoryDecl *category) {
4357     // A method in a category declaration overrides declarations from
4358     // the main class and from protocols the category references.
4359     // The main class is handled in the constructor.
4360     search(category->getReferencedProtocols());
4361   }
4362 
4363   void searchFrom(const ObjCCategoryImplDecl *impl) {
4364     // A method in a category definition that has a category
4365     // declaration overrides declarations from the category
4366     // declaration.
4367     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4368       search(category);
4369       if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4370         search(Interface);
4371 
4372     // Otherwise it overrides declarations from the class.
4373     } else if (const auto *Interface = impl->getClassInterface()) {
4374       search(Interface);
4375     }
4376   }
4377 
4378   void searchFrom(const ObjCInterfaceDecl *iface) {
4379     // A method in a class declaration overrides declarations from
4380     if (!iface->hasDefinition())
4381       return;
4382 
4383     //   - categories,
4384     for (auto *Cat : iface->known_categories())
4385       search(Cat);
4386 
4387     //   - the super class, and
4388     if (ObjCInterfaceDecl *super = iface->getSuperClass())
4389       search(super);
4390 
4391     //   - any referenced protocols.
4392     search(iface->getReferencedProtocols());
4393   }
4394 
4395   void searchFrom(const ObjCImplementationDecl *impl) {
4396     // A method in a class implementation overrides declarations from
4397     // the class interface.
4398     if (const auto *Interface = impl->getClassInterface())
4399       search(Interface);
4400   }
4401 
4402   void search(const ObjCProtocolList &protocols) {
4403     for (const auto *Proto : protocols)
4404       search(Proto);
4405   }
4406 
4407   void search(const ObjCContainerDecl *container) {
4408     // Check for a method in this container which matches this selector.
4409     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4410                                                 Method->isInstanceMethod(),
4411                                                 /*AllowHidden=*/true);
4412 
4413     // If we find one, record it and bail out.
4414     if (meth) {
4415       Overridden.insert(meth);
4416       return;
4417     }
4418 
4419     // Otherwise, search for methods that a hypothetical method here
4420     // would have overridden.
4421 
4422     // Note that we're now in a recursive case.
4423     Recursive = true;
4424 
4425     searchFromContainer(container);
4426   }
4427 };
4428 } // end anonymous namespace
4429 
4430 void SemaObjC::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
4431                                               ObjCMethodDecl *overridden) {
4432   if (overridden->isDirectMethod()) {
4433     const auto *attr = overridden->getAttr<ObjCDirectAttr>();
4434     Diag(method->getLocation(), diag::err_objc_override_direct_method);
4435     Diag(attr->getLocation(), diag::note_previous_declaration);
4436   } else if (method->isDirectMethod()) {
4437     const auto *attr = method->getAttr<ObjCDirectAttr>();
4438     Diag(attr->getLocation(), diag::err_objc_direct_on_override)
4439         << isa<ObjCProtocolDecl>(overridden->getDeclContext());
4440     Diag(overridden->getLocation(), diag::note_previous_declaration);
4441   }
4442 }
4443 
4444 void SemaObjC::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4445                                         ObjCInterfaceDecl *CurrentClass,
4446                                         ResultTypeCompatibilityKind RTC) {
4447   ASTContext &Context = getASTContext();
4448   if (!ObjCMethod)
4449     return;
4450   auto IsMethodInCurrentClass = [CurrentClass](const ObjCMethodDecl *M) {
4451     // Checking canonical decl works across modules.
4452     return M->getClassInterface()->getCanonicalDecl() ==
4453            CurrentClass->getCanonicalDecl();
4454   };
4455   // Search for overridden methods and merge information down from them.
4456   OverrideSearch overrides(SemaRef, ObjCMethod);
4457   // Keep track if the method overrides any method in the class's base classes,
4458   // its protocols, or its categories' protocols; we will keep that info
4459   // in the ObjCMethodDecl.
4460   // For this info, a method in an implementation is not considered as
4461   // overriding the same method in the interface or its categories.
4462   bool hasOverriddenMethodsInBaseOrProtocol = false;
4463   for (ObjCMethodDecl *overridden : overrides) {
4464     if (!hasOverriddenMethodsInBaseOrProtocol) {
4465       if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4466           !IsMethodInCurrentClass(overridden) || overridden->isOverriding()) {
4467         CheckObjCMethodDirectOverrides(ObjCMethod, overridden);
4468         hasOverriddenMethodsInBaseOrProtocol = true;
4469       } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4470         // OverrideSearch will return as "overridden" the same method in the
4471         // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4472         // check whether a category of a base class introduced a method with the
4473         // same selector, after the interface method declaration.
4474         // To avoid unnecessary lookups in the majority of cases, we use the
4475         // extra info bits in GlobalMethodPool to check whether there were any
4476         // category methods with this selector.
4477         GlobalMethodPool::iterator It =
4478             MethodPool.find(ObjCMethod->getSelector());
4479         if (It != MethodPool.end()) {
4480           ObjCMethodList &List =
4481             ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4482           unsigned CategCount = List.getBits();
4483           if (CategCount > 0) {
4484             // If the method is in a category we'll do lookup if there were at
4485             // least 2 category methods recorded, otherwise only one will do.
4486             if (CategCount > 1 ||
4487                 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4488               OverrideSearch overrides(SemaRef, overridden);
4489               for (ObjCMethodDecl *SuperOverridden : overrides) {
4490                 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4491                     !IsMethodInCurrentClass(SuperOverridden)) {
4492                   CheckObjCMethodDirectOverrides(ObjCMethod, SuperOverridden);
4493                   hasOverriddenMethodsInBaseOrProtocol = true;
4494                   overridden->setOverriding(true);
4495                   break;
4496                 }
4497               }
4498             }
4499           }
4500         }
4501       }
4502     }
4503 
4504     // Propagate down the 'related result type' bit from overridden methods.
4505     if (RTC != SemaObjC::RTC_Incompatible && overridden->hasRelatedResultType())
4506       ObjCMethod->setRelatedResultType();
4507 
4508     // Then merge the declarations.
4509     SemaRef.mergeObjCMethodDecls(ObjCMethod, overridden);
4510 
4511     if (ObjCMethod->isImplicit() && overridden->isImplicit())
4512       continue; // Conflicting properties are detected elsewhere.
4513 
4514     // Check for overriding methods
4515     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4516         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4517       CheckConflictingOverridingMethod(ObjCMethod, overridden,
4518               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4519 
4520     if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4521         isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4522         !overridden->isImplicit() /* not meant for properties */) {
4523       ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4524                                           E = ObjCMethod->param_end();
4525       ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4526                                      PrevE = overridden->param_end();
4527       for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4528         assert(PrevI != overridden->param_end() && "Param mismatch");
4529         QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4530         QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4531         // If type of argument of method in this class does not match its
4532         // respective argument type in the super class method, issue warning;
4533         if (!Context.typesAreCompatible(T1, T2)) {
4534           Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4535             << T1 << T2;
4536           Diag(overridden->getLocation(), diag::note_previous_declaration);
4537           break;
4538         }
4539       }
4540     }
4541   }
4542 
4543   ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4544 }
4545 
4546 /// Merge type nullability from for a redeclaration of the same entity,
4547 /// producing the updated type of the redeclared entity.
4548 static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4549                                               QualType type,
4550                                               bool usesCSKeyword,
4551                                               SourceLocation prevLoc,
4552                                               QualType prevType,
4553                                               bool prevUsesCSKeyword) {
4554   // Determine the nullability of both types.
4555   auto nullability = type->getNullability();
4556   auto prevNullability = prevType->getNullability();
4557 
4558   // Easy case: both have nullability.
4559   if (nullability.has_value() == prevNullability.has_value()) {
4560     // Neither has nullability; continue.
4561     if (!nullability)
4562       return type;
4563 
4564     // The nullabilities are equivalent; do nothing.
4565     if (*nullability == *prevNullability)
4566       return type;
4567 
4568     // Complain about mismatched nullability.
4569     S.Diag(loc, diag::err_nullability_conflicting)
4570       << DiagNullabilityKind(*nullability, usesCSKeyword)
4571       << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4572     return type;
4573   }
4574 
4575   // If it's the redeclaration that has nullability, don't change anything.
4576   if (nullability)
4577     return type;
4578 
4579   // Otherwise, provide the result with the same nullability.
4580   return S.Context.getAttributedType(
4581            AttributedType::getNullabilityAttrKind(*prevNullability),
4582            type, type);
4583 }
4584 
4585 /// Merge information from the declaration of a method in the \@interface
4586 /// (or a category/extension) into the corresponding method in the
4587 /// @implementation (for a class or category).
4588 static void mergeInterfaceMethodToImpl(Sema &S,
4589                                        ObjCMethodDecl *method,
4590                                        ObjCMethodDecl *prevMethod) {
4591   // Merge the objc_requires_super attribute.
4592   if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4593       !method->hasAttr<ObjCRequiresSuperAttr>()) {
4594     // merge the attribute into implementation.
4595     method->addAttr(
4596       ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4597                                             method->getLocation()));
4598   }
4599 
4600   // Merge nullability of the result type.
4601   QualType newReturnType
4602     = mergeTypeNullabilityForRedecl(
4603         S, method->getReturnTypeSourceRange().getBegin(),
4604         method->getReturnType(),
4605         method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4606         prevMethod->getReturnTypeSourceRange().getBegin(),
4607         prevMethod->getReturnType(),
4608         prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4609   method->setReturnType(newReturnType);
4610 
4611   // Handle each of the parameters.
4612   unsigned numParams = method->param_size();
4613   unsigned numPrevParams = prevMethod->param_size();
4614   for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4615     ParmVarDecl *param = method->param_begin()[i];
4616     ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4617 
4618     // Merge nullability.
4619     QualType newParamType
4620       = mergeTypeNullabilityForRedecl(
4621           S, param->getLocation(), param->getType(),
4622           param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4623           prevParam->getLocation(), prevParam->getType(),
4624           prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4625     param->setType(newParamType);
4626   }
4627 }
4628 
4629 /// Verify that the method parameters/return value have types that are supported
4630 /// by the x86 target.
4631 static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4632                                           const ObjCMethodDecl *Method) {
4633   assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4634              llvm::Triple::x86 &&
4635          "x86-specific check invoked for a different target");
4636   SourceLocation Loc;
4637   QualType T;
4638   for (const ParmVarDecl *P : Method->parameters()) {
4639     if (P->getType()->isVectorType()) {
4640       Loc = P->getBeginLoc();
4641       T = P->getType();
4642       break;
4643     }
4644   }
4645   if (Loc.isInvalid()) {
4646     if (Method->getReturnType()->isVectorType()) {
4647       Loc = Method->getReturnTypeSourceRange().getBegin();
4648       T = Method->getReturnType();
4649     } else
4650       return;
4651   }
4652 
4653   // Vector parameters/return values are not supported by objc_msgSend on x86 in
4654   // iOS < 9 and macOS < 10.11.
4655   const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4656   VersionTuple AcceptedInVersion;
4657   if (Triple.getOS() == llvm::Triple::IOS)
4658     AcceptedInVersion = VersionTuple(/*Major=*/9);
4659   else if (Triple.isMacOSX())
4660     AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4661   else
4662     return;
4663   if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4664       AcceptedInVersion)
4665     return;
4666   SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4667       << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4668                                                        : /*parameter*/ 0)
4669       << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4670 }
4671 
4672 static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) {
4673   if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() &&
4674       CD->hasAttr<ObjCDirectMembersAttr>()) {
4675     Method->addAttr(
4676         ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation()));
4677   }
4678 }
4679 
4680 static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl,
4681                                          ObjCMethodDecl *Method,
4682                                          ObjCImplDecl *ImpDecl = nullptr) {
4683   auto Sel = Method->getSelector();
4684   bool isInstance = Method->isInstanceMethod();
4685   bool diagnosed = false;
4686 
4687   auto diagClash = [&](const ObjCMethodDecl *IMD) {
4688     if (diagnosed || IMD->isImplicit())
4689       return;
4690     if (Method->isDirectMethod() || IMD->isDirectMethod()) {
4691       S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl)
4692           << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod()
4693           << Method->getDeclName();
4694       S.Diag(IMD->getLocation(), diag::note_previous_declaration);
4695       diagnosed = true;
4696     }
4697   };
4698 
4699   // Look for any other declaration of this method anywhere we can see in this
4700   // compilation unit.
4701   //
4702   // We do not use IDecl->lookupMethod() because we have specific needs:
4703   //
4704   // - we absolutely do not need to walk protocols, because
4705   //   diag::err_objc_direct_on_protocol has already been emitted
4706   //   during parsing if there's a conflict,
4707   //
4708   // - when we do not find a match in a given @interface container,
4709   //   we need to attempt looking it up in the @implementation block if the
4710   //   translation unit sees it to find more clashes.
4711 
4712   if (auto *IMD = IDecl->getMethod(Sel, isInstance))
4713     diagClash(IMD);
4714   else if (auto *Impl = IDecl->getImplementation())
4715     if (Impl != ImpDecl)
4716       if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance))
4717         diagClash(IMD);
4718 
4719   for (const auto *Cat : IDecl->visible_categories())
4720     if (auto *IMD = Cat->getMethod(Sel, isInstance))
4721       diagClash(IMD);
4722     else if (auto CatImpl = Cat->getImplementation())
4723       if (CatImpl != ImpDecl)
4724         if (auto *IMD = Cat->getMethod(Sel, isInstance))
4725           diagClash(IMD);
4726 }
4727 
4728 Decl *SemaObjC::ActOnMethodDeclaration(
4729     Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4730     tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4731     ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4732     // optional arguments. The number of types/arguments is obtained
4733     // from the Sel.getNumArgs().
4734     ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4735     unsigned CNumArgs, // c-style args
4736     const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4737     bool isVariadic, bool MethodDefinition) {
4738   ASTContext &Context = getASTContext();
4739   // Make sure we can establish a context for the method.
4740   if (!SemaRef.CurContext->isObjCContainer()) {
4741     Diag(MethodLoc, diag::err_missing_method_context);
4742     return nullptr;
4743   }
4744 
4745   Decl *ClassDecl = cast<ObjCContainerDecl>(SemaRef.CurContext);
4746   QualType resultDeclType;
4747 
4748   bool HasRelatedResultType = false;
4749   TypeSourceInfo *ReturnTInfo = nullptr;
4750   if (ReturnType) {
4751     resultDeclType = SemaRef.GetTypeFromParser(ReturnType, &ReturnTInfo);
4752 
4753     if (SemaRef.CheckFunctionReturnType(resultDeclType, MethodLoc))
4754       return nullptr;
4755 
4756     QualType bareResultType = resultDeclType;
4757     (void)AttributedType::stripOuterNullability(bareResultType);
4758     HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4759   } else { // get the type for "id".
4760     resultDeclType = Context.getObjCIdType();
4761     Diag(MethodLoc, diag::warn_missing_method_return_type)
4762       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4763   }
4764 
4765   ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4766       Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo,
4767       SemaRef.CurContext, MethodType == tok::minus, isVariadic,
4768       /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
4769       /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4770       MethodDeclKind == tok::objc_optional
4771           ? ObjCImplementationControl::Optional
4772           : ObjCImplementationControl::Required,
4773       HasRelatedResultType);
4774 
4775   SmallVector<ParmVarDecl*, 16> Params;
4776 
4777   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4778     QualType ArgType;
4779     TypeSourceInfo *DI;
4780 
4781     if (!ArgInfo[i].Type) {
4782       ArgType = Context.getObjCIdType();
4783       DI = nullptr;
4784     } else {
4785       ArgType = SemaRef.GetTypeFromParser(ArgInfo[i].Type, &DI);
4786     }
4787 
4788     LookupResult R(SemaRef, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4789                    Sema::LookupOrdinaryName,
4790                    SemaRef.forRedeclarationInCurContext());
4791     SemaRef.LookupName(R, S);
4792     if (R.isSingleResult()) {
4793       NamedDecl *PrevDecl = R.getFoundDecl();
4794       if (S->isDeclScope(PrevDecl)) {
4795         Diag(ArgInfo[i].NameLoc,
4796              (MethodDefinition ? diag::warn_method_param_redefinition
4797                                : diag::warn_method_param_declaration))
4798           << ArgInfo[i].Name;
4799         Diag(PrevDecl->getLocation(),
4800              diag::note_previous_declaration);
4801       }
4802     }
4803 
4804     SourceLocation StartLoc = DI
4805       ? DI->getTypeLoc().getBeginLoc()
4806       : ArgInfo[i].NameLoc;
4807 
4808     ParmVarDecl *Param =
4809         SemaRef.CheckParameter(ObjCMethod, StartLoc, ArgInfo[i].NameLoc,
4810                                ArgInfo[i].Name, ArgType, DI, SC_None);
4811 
4812     Param->setObjCMethodScopeInfo(i);
4813 
4814     Param->setObjCDeclQualifier(
4815       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4816 
4817     // Apply the attributes to the parameter.
4818     SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, Param,
4819                                      ArgInfo[i].ArgAttrs);
4820     SemaRef.AddPragmaAttributes(SemaRef.TUScope, Param);
4821     SemaRef.ProcessAPINotes(Param);
4822 
4823     if (Param->hasAttr<BlocksAttr>()) {
4824       Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4825       Param->setInvalidDecl();
4826     }
4827     S->AddDecl(Param);
4828     SemaRef.IdResolver.AddDecl(Param);
4829 
4830     Params.push_back(Param);
4831   }
4832 
4833   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4834     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4835     QualType ArgType = Param->getType();
4836     if (ArgType.isNull())
4837       ArgType = Context.getObjCIdType();
4838     else
4839       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4840       ArgType = Context.getAdjustedParameterType(ArgType);
4841 
4842     Param->setDeclContext(ObjCMethod);
4843     Params.push_back(Param);
4844   }
4845 
4846   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4847   ObjCMethod->setObjCDeclQualifier(
4848     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4849 
4850   SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, ObjCMethod, AttrList);
4851   SemaRef.AddPragmaAttributes(SemaRef.TUScope, ObjCMethod);
4852   SemaRef.ProcessAPINotes(ObjCMethod);
4853 
4854   // Add the method now.
4855   const ObjCMethodDecl *PrevMethod = nullptr;
4856   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4857     if (MethodType == tok::minus) {
4858       PrevMethod = ImpDecl->getInstanceMethod(Sel);
4859       ImpDecl->addInstanceMethod(ObjCMethod);
4860     } else {
4861       PrevMethod = ImpDecl->getClassMethod(Sel);
4862       ImpDecl->addClassMethod(ObjCMethod);
4863     }
4864 
4865     // If this method overrides a previous @synthesize declaration,
4866     // register it with the property.  Linear search through all
4867     // properties here, because the autosynthesized stub hasn't been
4868     // made visible yet, so it can be overridden by a later
4869     // user-specified implementation.
4870     for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) {
4871       if (auto *Setter = PropertyImpl->getSetterMethodDecl())
4872         if (Setter->getSelector() == Sel &&
4873             Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4874           assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected");
4875           PropertyImpl->setSetterMethodDecl(ObjCMethod);
4876         }
4877       if (auto *Getter = PropertyImpl->getGetterMethodDecl())
4878         if (Getter->getSelector() == Sel &&
4879             Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4880           assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected");
4881           PropertyImpl->setGetterMethodDecl(ObjCMethod);
4882           break;
4883         }
4884     }
4885 
4886     // A method is either tagged direct explicitly, or inherits it from its
4887     // canonical declaration.
4888     //
4889     // We have to do the merge upfront and not in mergeInterfaceMethodToImpl()
4890     // because IDecl->lookupMethod() returns more possible matches than just
4891     // the canonical declaration.
4892     if (!ObjCMethod->isDirectMethod()) {
4893       const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl();
4894       if (CanonicalMD->isDirectMethod()) {
4895         const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>();
4896         ObjCMethod->addAttr(
4897             ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4898       }
4899     }
4900 
4901     // Merge information from the @interface declaration into the
4902     // @implementation.
4903     if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4904       if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4905                                           ObjCMethod->isInstanceMethod())) {
4906         mergeInterfaceMethodToImpl(SemaRef, ObjCMethod, IMD);
4907 
4908         // The Idecl->lookupMethod() above will find declarations for ObjCMethod
4909         // in one of these places:
4910         //
4911         // (1) the canonical declaration in an @interface container paired
4912         //     with the ImplDecl,
4913         // (2) non canonical declarations in @interface not paired with the
4914         //     ImplDecl for the same Class,
4915         // (3) any superclass container.
4916         //
4917         // Direct methods only allow for canonical declarations in the matching
4918         // container (case 1).
4919         //
4920         // Direct methods overriding a superclass declaration (case 3) is
4921         // handled during overrides checks in CheckObjCMethodOverrides().
4922         //
4923         // We deal with same-class container mismatches (Case 2) here.
4924         if (IDecl == IMD->getClassInterface()) {
4925           auto diagContainerMismatch = [&] {
4926             int decl = 0, impl = 0;
4927 
4928             if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext()))
4929               decl = Cat->IsClassExtension() ? 1 : 2;
4930 
4931             if (isa<ObjCCategoryImplDecl>(ImpDecl))
4932               impl = 1 + (decl != 0);
4933 
4934             Diag(ObjCMethod->getLocation(),
4935                  diag::err_objc_direct_impl_decl_mismatch)
4936                 << decl << impl;
4937             Diag(IMD->getLocation(), diag::note_previous_declaration);
4938           };
4939 
4940           if (ObjCMethod->isDirectMethod()) {
4941             const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>();
4942             if (ObjCMethod->getCanonicalDecl() != IMD) {
4943               diagContainerMismatch();
4944             } else if (!IMD->isDirectMethod()) {
4945               Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl);
4946               Diag(IMD->getLocation(), diag::note_previous_declaration);
4947             }
4948           } else if (IMD->isDirectMethod()) {
4949             const auto *attr = IMD->getAttr<ObjCDirectAttr>();
4950             if (ObjCMethod->getCanonicalDecl() != IMD) {
4951               diagContainerMismatch();
4952             } else {
4953               ObjCMethod->addAttr(
4954                   ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4955             }
4956           }
4957         }
4958 
4959         // Warn about defining -dealloc in a category.
4960         if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4961             ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4962           Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4963             << ObjCMethod->getDeclName();
4964         }
4965       } else {
4966         mergeObjCDirectMembers(SemaRef, ClassDecl, ObjCMethod);
4967         checkObjCDirectMethodClashes(SemaRef, IDecl, ObjCMethod, ImpDecl);
4968       }
4969 
4970       // Warn if a method declared in a protocol to which a category or
4971       // extension conforms is non-escaping and the implementation's method is
4972       // escaping.
4973       for (auto *C : IDecl->visible_categories())
4974         for (auto &P : C->protocols())
4975           if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4976                                           ObjCMethod->isInstanceMethod())) {
4977             assert(ObjCMethod->parameters().size() ==
4978                        IMD->parameters().size() &&
4979                    "Methods have different number of parameters");
4980             auto OI = IMD->param_begin(), OE = IMD->param_end();
4981             auto NI = ObjCMethod->param_begin();
4982             for (; OI != OE; ++OI, ++NI)
4983               diagnoseNoescape(*NI, *OI, C, P, SemaRef);
4984           }
4985     }
4986   } else {
4987     if (!isa<ObjCProtocolDecl>(ClassDecl)) {
4988       mergeObjCDirectMembers(SemaRef, ClassDecl, ObjCMethod);
4989 
4990       ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4991       if (!IDecl)
4992         IDecl = cast<ObjCCategoryDecl>(ClassDecl)->getClassInterface();
4993       // For valid code, we should always know the primary interface
4994       // declaration by now, however for invalid code we'll keep parsing
4995       // but we won't find the primary interface and IDecl will be nil.
4996       if (IDecl)
4997         checkObjCDirectMethodClashes(SemaRef, IDecl, ObjCMethod);
4998     }
4999 
5000     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
5001   }
5002 
5003   if (PrevMethod) {
5004     // You can never have two method definitions with the same name.
5005     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
5006       << ObjCMethod->getDeclName();
5007     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
5008     ObjCMethod->setInvalidDecl();
5009     return ObjCMethod;
5010   }
5011 
5012   // If this Objective-C method does not have a related result type, but we
5013   // are allowed to infer related result types, try to do so based on the
5014   // method family.
5015   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
5016   if (!CurrentClass) {
5017     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
5018       CurrentClass = Cat->getClassInterface();
5019     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
5020       CurrentClass = Impl->getClassInterface();
5021     else if (ObjCCategoryImplDecl *CatImpl
5022                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
5023       CurrentClass = CatImpl->getClassInterface();
5024   }
5025 
5026   ResultTypeCompatibilityKind RTC =
5027       CheckRelatedResultTypeCompatibility(SemaRef, ObjCMethod, CurrentClass);
5028 
5029   CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
5030 
5031   bool ARCError = false;
5032   if (getLangOpts().ObjCAutoRefCount)
5033     ARCError = CheckARCMethodDecl(ObjCMethod);
5034 
5035   // Infer the related result type when possible.
5036   if (!ARCError && RTC == SemaObjC::RTC_Compatible &&
5037       !ObjCMethod->hasRelatedResultType() &&
5038       getLangOpts().ObjCInferRelatedResultType) {
5039     bool InferRelatedResultType = false;
5040     switch (ObjCMethod->getMethodFamily()) {
5041     case OMF_None:
5042     case OMF_copy:
5043     case OMF_dealloc:
5044     case OMF_finalize:
5045     case OMF_mutableCopy:
5046     case OMF_release:
5047     case OMF_retainCount:
5048     case OMF_initialize:
5049     case OMF_performSelector:
5050       break;
5051 
5052     case OMF_alloc:
5053     case OMF_new:
5054         InferRelatedResultType = ObjCMethod->isClassMethod();
5055       break;
5056 
5057     case OMF_init:
5058     case OMF_autorelease:
5059     case OMF_retain:
5060     case OMF_self:
5061       InferRelatedResultType = ObjCMethod->isInstanceMethod();
5062       break;
5063     }
5064 
5065     if (InferRelatedResultType &&
5066         !ObjCMethod->getReturnType()->isObjCIndependentClassType())
5067       ObjCMethod->setRelatedResultType();
5068   }
5069 
5070   if (MethodDefinition &&
5071       Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
5072     checkObjCMethodX86VectorTypes(SemaRef, ObjCMethod);
5073 
5074   // + load method cannot have availability attributes. It get called on
5075   // startup, so it has to have the availability of the deployment target.
5076   if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
5077     if (ObjCMethod->isClassMethod() &&
5078         ObjCMethod->getSelector().getAsString() == "load") {
5079       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
5080           << 0;
5081       ObjCMethod->dropAttr<AvailabilityAttr>();
5082     }
5083   }
5084 
5085   // Insert the invisible arguments, self and _cmd!
5086   ObjCMethod->createImplicitParams(Context, ObjCMethod->getClassInterface());
5087 
5088   SemaRef.ActOnDocumentableDecl(ObjCMethod);
5089 
5090   return ObjCMethod;
5091 }
5092 
5093 bool SemaObjC::CheckObjCDeclScope(Decl *D) {
5094   // Following is also an error. But it is caused by a missing @end
5095   // and diagnostic is issued elsewhere.
5096   if (isa<ObjCContainerDecl>(SemaRef.CurContext->getRedeclContext()))
5097     return false;
5098 
5099   // If we switched context to translation unit while we are still lexically in
5100   // an objc container, it means the parser missed emitting an error.
5101   if (isa<TranslationUnitDecl>(
5102           SemaRef.getCurLexicalContext()->getRedeclContext()))
5103     return false;
5104 
5105   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
5106   D->setInvalidDecl();
5107 
5108   return true;
5109 }
5110 
5111 /// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
5112 /// instance variables of ClassName into Decls.
5113 void SemaObjC::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
5114                          const IdentifierInfo *ClassName,
5115                          SmallVectorImpl<Decl *> &Decls) {
5116   ASTContext &Context = getASTContext();
5117   // Check that ClassName is a valid class
5118   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
5119   if (!Class) {
5120     Diag(DeclStart, diag::err_undef_interface) << ClassName;
5121     return;
5122   }
5123   if (getLangOpts().ObjCRuntime.isNonFragile()) {
5124     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
5125     return;
5126   }
5127 
5128   // Collect the instance variables
5129   SmallVector<const ObjCIvarDecl*, 32> Ivars;
5130   Context.DeepCollectObjCIvars(Class, true, Ivars);
5131   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
5132   for (unsigned i = 0; i < Ivars.size(); i++) {
5133     const FieldDecl* ID = Ivars[i];
5134     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
5135     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
5136                                            /*FIXME: StartL=*/ID->getLocation(),
5137                                            ID->getLocation(),
5138                                            ID->getIdentifier(), ID->getType(),
5139                                            ID->getBitWidth());
5140     Decls.push_back(FD);
5141   }
5142 
5143   // Introduce all of these fields into the appropriate scope.
5144   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
5145        D != Decls.end(); ++D) {
5146     FieldDecl *FD = cast<FieldDecl>(*D);
5147     if (getLangOpts().CPlusPlus)
5148       SemaRef.PushOnScopeChains(FD, S);
5149     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
5150       Record->addDecl(FD);
5151   }
5152 }
5153 
5154 /// Build a type-check a new Objective-C exception variable declaration.
5155 VarDecl *SemaObjC::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
5156                                           SourceLocation StartLoc,
5157                                           SourceLocation IdLoc,
5158                                           const IdentifierInfo *Id,
5159                                           bool Invalid) {
5160   ASTContext &Context = getASTContext();
5161   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5162   // duration shall not be qualified by an address-space qualifier."
5163   // Since all parameters have automatic store duration, they can not have
5164   // an address space.
5165   if (T.getAddressSpace() != LangAS::Default) {
5166     Diag(IdLoc, diag::err_arg_with_address_space);
5167     Invalid = true;
5168   }
5169 
5170   // An @catch parameter must be an unqualified object pointer type;
5171   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
5172   if (Invalid) {
5173     // Don't do any further checking.
5174   } else if (T->isDependentType()) {
5175     // Okay: we don't know what this type will instantiate to.
5176   } else if (T->isObjCQualifiedIdType()) {
5177     Invalid = true;
5178     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
5179   } else if (T->isObjCIdType()) {
5180     // Okay: we don't know what this type will instantiate to.
5181   } else if (!T->isObjCObjectPointerType()) {
5182     Invalid = true;
5183     Diag(IdLoc, diag::err_catch_param_not_objc_type);
5184   } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) {
5185     Invalid = true;
5186     Diag(IdLoc, diag::err_catch_param_not_objc_type);
5187   }
5188 
5189   VarDecl *New = VarDecl::Create(Context, SemaRef.CurContext, StartLoc, IdLoc,
5190                                  Id, T, TInfo, SC_None);
5191   New->setExceptionVariable(true);
5192 
5193   // In ARC, infer 'retaining' for variables of retainable type.
5194   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
5195     Invalid = true;
5196 
5197   if (Invalid)
5198     New->setInvalidDecl();
5199   return New;
5200 }
5201 
5202 Decl *SemaObjC::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
5203   const DeclSpec &DS = D.getDeclSpec();
5204 
5205   // We allow the "register" storage class on exception variables because
5206   // GCC did, but we drop it completely. Any other storage class is an error.
5207   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5208     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
5209       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
5210   } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5211     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
5212       << DeclSpec::getSpecifierName(SCS);
5213   }
5214   if (DS.isInlineSpecified())
5215     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5216         << getLangOpts().CPlusPlus17;
5217   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
5218     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5219          diag::err_invalid_thread)
5220      << DeclSpec::getSpecifierName(TSCS);
5221   D.getMutableDeclSpec().ClearStorageClassSpecs();
5222 
5223   SemaRef.DiagnoseFunctionSpecifiers(D.getDeclSpec());
5224 
5225   // Check that there are no default arguments inside the type of this
5226   // exception object (C++ only).
5227   if (getLangOpts().CPlusPlus)
5228     SemaRef.CheckExtraCXXDefaultArguments(D);
5229 
5230   TypeSourceInfo *TInfo = SemaRef.GetTypeForDeclarator(D);
5231   QualType ExceptionType = TInfo->getType();
5232 
5233   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
5234                                         D.getSourceRange().getBegin(),
5235                                         D.getIdentifierLoc(),
5236                                         D.getIdentifier(),
5237                                         D.isInvalidType());
5238 
5239   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5240   if (D.getCXXScopeSpec().isSet()) {
5241     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
5242       << D.getCXXScopeSpec().getRange();
5243     New->setInvalidDecl();
5244   }
5245 
5246   // Add the parameter declaration into this scope.
5247   S->AddDecl(New);
5248   if (D.getIdentifier())
5249     SemaRef.IdResolver.AddDecl(New);
5250 
5251   SemaRef.ProcessDeclAttributes(S, New, D);
5252 
5253   if (New->hasAttr<BlocksAttr>())
5254     Diag(New->getLocation(), diag::err_block_on_nonlocal);
5255   return New;
5256 }
5257 
5258 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
5259 /// initialization.
5260 void SemaObjC::CollectIvarsToConstructOrDestruct(
5261     ObjCInterfaceDecl *OI, SmallVectorImpl<ObjCIvarDecl *> &Ivars) {
5262   ASTContext &Context = getASTContext();
5263   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
5264        Iv= Iv->getNextIvar()) {
5265     QualType QT = Context.getBaseElementType(Iv->getType());
5266     if (QT->isRecordType())
5267       Ivars.push_back(Iv);
5268   }
5269 }
5270 
5271 void SemaObjC::DiagnoseUseOfUnimplementedSelectors() {
5272   ASTContext &Context = getASTContext();
5273   // Load referenced selectors from the external source.
5274   if (SemaRef.ExternalSource) {
5275     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
5276     SemaRef.ExternalSource->ReadReferencedSelectors(Sels);
5277     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
5278       ReferencedSelectors[Sels[I].first] = Sels[I].second;
5279   }
5280 
5281   // Warning will be issued only when selector table is
5282   // generated (which means there is at lease one implementation
5283   // in the TU). This is to match gcc's behavior.
5284   if (ReferencedSelectors.empty() ||
5285       !Context.AnyObjCImplementation())
5286     return;
5287   for (auto &SelectorAndLocation : ReferencedSelectors) {
5288     Selector Sel = SelectorAndLocation.first;
5289     SourceLocation Loc = SelectorAndLocation.second;
5290     if (!LookupImplementedMethodInGlobalPool(Sel))
5291       Diag(Loc, diag::warn_unimplemented_selector) << Sel;
5292   }
5293 }
5294 
5295 ObjCIvarDecl *
5296 SemaObjC::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
5297                                          const ObjCPropertyDecl *&PDecl) const {
5298   if (Method->isClassMethod())
5299     return nullptr;
5300   const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
5301   if (!IDecl)
5302     return nullptr;
5303   Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
5304                                /*shallowCategoryLookup=*/false,
5305                                /*followSuper=*/false);
5306   if (!Method || !Method->isPropertyAccessor())
5307     return nullptr;
5308   if ((PDecl = Method->findPropertyDecl()))
5309     if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5310       // property backing ivar must belong to property's class
5311       // or be a private ivar in class's implementation.
5312       // FIXME. fix the const-ness issue.
5313       IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5314                                                         IV->getIdentifier());
5315       return IV;
5316     }
5317   return nullptr;
5318 }
5319 
5320 namespace {
5321 /// Used by SemaObjC::DiagnoseUnusedBackingIvarInAccessor to check if a property
5322 /// accessor references the backing ivar.
5323 class UnusedBackingIvarChecker
5324     : public RecursiveASTVisitor<UnusedBackingIvarChecker> {
5325 public:
5326   Sema &S;
5327   const ObjCMethodDecl *Method;
5328   const ObjCIvarDecl *IvarD;
5329   bool AccessedIvar;
5330   bool InvokedSelfMethod;
5331 
5332   UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5333                            const ObjCIvarDecl *IvarD)
5334       : S(S), Method(Method), IvarD(IvarD), AccessedIvar(false),
5335         InvokedSelfMethod(false) {
5336     assert(IvarD);
5337   }
5338 
5339   bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5340     if (E->getDecl() == IvarD) {
5341       AccessedIvar = true;
5342       return false;
5343     }
5344     return true;
5345   }
5346 
5347   bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5348     if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5349         S.ObjC().isSelfExpr(E->getInstanceReceiver(), Method)) {
5350       InvokedSelfMethod = true;
5351     }
5352     return true;
5353   }
5354 };
5355 } // end anonymous namespace
5356 
5357 void SemaObjC::DiagnoseUnusedBackingIvarInAccessor(
5358     Scope *S, const ObjCImplementationDecl *ImplD) {
5359   if (S->hasUnrecoverableErrorOccurred())
5360     return;
5361 
5362   for (const auto *CurMethod : ImplD->instance_methods()) {
5363     unsigned DIAG = diag::warn_unused_property_backing_ivar;
5364     SourceLocation Loc = CurMethod->getLocation();
5365     if (getDiagnostics().isIgnored(DIAG, Loc))
5366       continue;
5367 
5368     const ObjCPropertyDecl *PDecl;
5369     const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5370     if (!IV)
5371       continue;
5372 
5373     if (CurMethod->isSynthesizedAccessorStub())
5374       continue;
5375 
5376     UnusedBackingIvarChecker Checker(SemaRef, CurMethod, IV);
5377     Checker.TraverseStmt(CurMethod->getBody());
5378     if (Checker.AccessedIvar)
5379       continue;
5380 
5381     // Do not issue this warning if backing ivar is used somewhere and accessor
5382     // implementation makes a self call. This is to prevent false positive in
5383     // cases where the ivar is accessed by another method that the accessor
5384     // delegates to.
5385     if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5386       Diag(Loc, DIAG) << IV;
5387       Diag(PDecl->getLocation(), diag::note_property_declare);
5388     }
5389   }
5390 }
5391 
5392 QualType SemaObjC::AdjustParameterTypeForObjCAutoRefCount(
5393     QualType T, SourceLocation NameLoc, TypeSourceInfo *TSInfo) {
5394   ASTContext &Context = getASTContext();
5395   // In ARC, infer a lifetime qualifier for appropriate parameter types.
5396   if (!getLangOpts().ObjCAutoRefCount ||
5397       T.getObjCLifetime() != Qualifiers::OCL_None || !T->isObjCLifetimeType())
5398     return T;
5399 
5400   Qualifiers::ObjCLifetime Lifetime;
5401 
5402   // Special cases for arrays:
5403   //   - if it's const, use __unsafe_unretained
5404   //   - otherwise, it's an error
5405   if (T->isArrayType()) {
5406     if (!T.isConstQualified()) {
5407       if (SemaRef.DelayedDiagnostics.shouldDelayDiagnostics())
5408         SemaRef.DelayedDiagnostics.add(
5409             sema::DelayedDiagnostic::makeForbiddenType(
5410                 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
5411       else
5412         Diag(NameLoc, diag::err_arc_array_param_no_ownership)
5413             << TSInfo->getTypeLoc().getSourceRange();
5414     }
5415     Lifetime = Qualifiers::OCL_ExplicitNone;
5416   } else {
5417     Lifetime = T->getObjCARCImplicitLifetime();
5418   }
5419   T = Context.getLifetimeQualifiedType(T, Lifetime);
5420 
5421   return T;
5422 }
5423 
5424 ObjCInterfaceDecl *SemaObjC::getObjCInterfaceDecl(const IdentifierInfo *&Id,
5425                                                   SourceLocation IdLoc,
5426                                                   bool DoTypoCorrection) {
5427   // The third "scope" argument is 0 since we aren't enabling lazy built-in
5428   // creation from this context.
5429   NamedDecl *IDecl = SemaRef.LookupSingleName(SemaRef.TUScope, Id, IdLoc,
5430                                               Sema::LookupOrdinaryName);
5431 
5432   if (!IDecl && DoTypoCorrection) {
5433     // Perform typo correction at the given location, but only if we
5434     // find an Objective-C class name.
5435     DeclFilterCCC<ObjCInterfaceDecl> CCC{};
5436     if (TypoCorrection C = SemaRef.CorrectTypo(
5437             DeclarationNameInfo(Id, IdLoc), Sema::LookupOrdinaryName,
5438             SemaRef.TUScope, nullptr, CCC, Sema::CTK_ErrorRecovery)) {
5439       SemaRef.diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
5440       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
5441       Id = IDecl->getIdentifier();
5442     }
5443   }
5444   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
5445   // This routine must always return a class definition, if any.
5446   if (Def && Def->getDefinition())
5447     Def = Def->getDefinition();
5448   return Def;
5449 }
5450 
5451 bool SemaObjC::inferObjCARCLifetime(ValueDecl *decl) {
5452   ASTContext &Context = getASTContext();
5453   QualType type = decl->getType();
5454   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5455   if (lifetime == Qualifiers::OCL_Autoreleasing) {
5456     // Various kinds of declaration aren't allowed to be __autoreleasing.
5457     unsigned kind = -1U;
5458     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5459       if (var->hasAttr<BlocksAttr>())
5460         kind = 0; // __block
5461       else if (!var->hasLocalStorage())
5462         kind = 1; // global
5463     } else if (isa<ObjCIvarDecl>(decl)) {
5464       kind = 3; // ivar
5465     } else if (isa<FieldDecl>(decl)) {
5466       kind = 2; // field
5467     }
5468 
5469     if (kind != -1U) {
5470       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) << kind;
5471     }
5472   } else if (lifetime == Qualifiers::OCL_None) {
5473     // Try to infer lifetime.
5474     if (!type->isObjCLifetimeType())
5475       return false;
5476 
5477     lifetime = type->getObjCARCImplicitLifetime();
5478     type = Context.getLifetimeQualifiedType(type, lifetime);
5479     decl->setType(type);
5480   }
5481 
5482   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5483     // Thread-local variables cannot have lifetime.
5484     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5485         var->getTLSKind()) {
5486       Diag(var->getLocation(), diag::err_arc_thread_ownership)
5487           << var->getType();
5488       return true;
5489     }
5490   }
5491 
5492   return false;
5493 }
5494 
5495 ObjCContainerDecl *SemaObjC::getObjCDeclContext() const {
5496   return (dyn_cast_or_null<ObjCContainerDecl>(SemaRef.CurContext));
5497 }
5498 
5499 void SemaObjC::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
5500   if (!getLangOpts().CPlusPlus)
5501     return;
5502   if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
5503     ASTContext &Context = getASTContext();
5504     SmallVector<ObjCIvarDecl *, 8> ivars;
5505     CollectIvarsToConstructOrDestruct(OID, ivars);
5506     if (ivars.empty())
5507       return;
5508     SmallVector<CXXCtorInitializer *, 32> AllToInit;
5509     for (unsigned i = 0; i < ivars.size(); i++) {
5510       FieldDecl *Field = ivars[i];
5511       if (Field->isInvalidDecl())
5512         continue;
5513 
5514       CXXCtorInitializer *Member;
5515       InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
5516       InitializationKind InitKind =
5517           InitializationKind::CreateDefault(ObjCImplementation->getLocation());
5518 
5519       InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
5520                                      std::nullopt);
5521       ExprResult MemberInit =
5522           InitSeq.Perform(SemaRef, InitEntity, InitKind, std::nullopt);
5523       MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
5524       // Note, MemberInit could actually come back empty if no initialization
5525       // is required (e.g., because it would call a trivial default constructor)
5526       if (!MemberInit.get() || MemberInit.isInvalid())
5527         continue;
5528 
5529       Member = new (Context)
5530           CXXCtorInitializer(Context, Field, SourceLocation(), SourceLocation(),
5531                              MemberInit.getAs<Expr>(), SourceLocation());
5532       AllToInit.push_back(Member);
5533 
5534       // Be sure that the destructor is accessible and is marked as referenced.
5535       if (const RecordType *RecordTy =
5536               Context.getBaseElementType(Field->getType())
5537                   ->getAs<RecordType>()) {
5538         CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
5539         if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(RD)) {
5540           SemaRef.MarkFunctionReferenced(Field->getLocation(), Destructor);
5541           SemaRef.CheckDestructorAccess(
5542               Field->getLocation(), Destructor,
5543               PDiag(diag::err_access_dtor_ivar)
5544                   << Context.getBaseElementType(Field->getType()));
5545         }
5546       }
5547     }
5548     ObjCImplementation->setIvarInitializers(Context, AllToInit.data(),
5549                                             AllToInit.size());
5550   }
5551 }
5552 
5553 /// TranslateIvarVisibility - Translate visibility from a token ID to an
5554 ///  AST enum value.
5555 static ObjCIvarDecl::AccessControl
5556 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5557   switch (ivarVisibility) {
5558   default:
5559     llvm_unreachable("Unknown visitibility kind");
5560   case tok::objc_private:
5561     return ObjCIvarDecl::Private;
5562   case tok::objc_public:
5563     return ObjCIvarDecl::Public;
5564   case tok::objc_protected:
5565     return ObjCIvarDecl::Protected;
5566   case tok::objc_package:
5567     return ObjCIvarDecl::Package;
5568   }
5569 }
5570 
5571 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
5572 /// in order to create an IvarDecl object for it.
5573 Decl *SemaObjC::ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D,
5574                           Expr *BitWidth, tok::ObjCKeywordKind Visibility) {
5575 
5576   const IdentifierInfo *II = D.getIdentifier();
5577   SourceLocation Loc = DeclStart;
5578   if (II)
5579     Loc = D.getIdentifierLoc();
5580 
5581   // FIXME: Unnamed fields can be handled in various different ways, for
5582   // example, unnamed unions inject all members into the struct namespace!
5583 
5584   TypeSourceInfo *TInfo = SemaRef.GetTypeForDeclarator(D);
5585   QualType T = TInfo->getType();
5586 
5587   if (BitWidth) {
5588     // 6.7.2.1p3, 6.7.2.1p4
5589     BitWidth =
5590         SemaRef.VerifyBitField(Loc, II, T, /*IsMsStruct*/ false, BitWidth)
5591             .get();
5592     if (!BitWidth)
5593       D.setInvalidType();
5594   } else {
5595     // Not a bitfield.
5596 
5597     // validate II.
5598   }
5599   if (T->isReferenceType()) {
5600     Diag(Loc, diag::err_ivar_reference_type);
5601     D.setInvalidType();
5602   }
5603   // C99 6.7.2.1p8: A member of a structure or union may have any type other
5604   // than a variably modified type.
5605   else if (T->isVariablyModifiedType()) {
5606     if (!SemaRef.tryToFixVariablyModifiedVarType(
5607             TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
5608       D.setInvalidType();
5609   }
5610 
5611   // Get the visibility (access control) for this ivar.
5612   ObjCIvarDecl::AccessControl ac = Visibility != tok::objc_not_keyword
5613                                        ? TranslateIvarVisibility(Visibility)
5614                                        : ObjCIvarDecl::None;
5615   // Must set ivar's DeclContext to its enclosing interface.
5616   ObjCContainerDecl *EnclosingDecl =
5617       cast<ObjCContainerDecl>(SemaRef.CurContext);
5618   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
5619     return nullptr;
5620   ObjCContainerDecl *EnclosingContext;
5621   if (ObjCImplementationDecl *IMPDecl =
5622           dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5623     if (getLangOpts().ObjCRuntime.isFragile()) {
5624       // Case of ivar declared in an implementation. Context is that of its
5625       // class.
5626       EnclosingContext = IMPDecl->getClassInterface();
5627       assert(EnclosingContext && "Implementation has no class interface!");
5628     } else
5629       EnclosingContext = EnclosingDecl;
5630   } else {
5631     if (ObjCCategoryDecl *CDecl = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
5632       if (getLangOpts().ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
5633         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
5634         return nullptr;
5635       }
5636     }
5637     EnclosingContext = EnclosingDecl;
5638   }
5639 
5640   // Construct the decl.
5641   ObjCIvarDecl *NewID =
5642       ObjCIvarDecl::Create(getASTContext(), EnclosingContext, DeclStart, Loc,
5643                            II, T, TInfo, ac, BitWidth);
5644 
5645   if (T->containsErrors())
5646     NewID->setInvalidDecl();
5647 
5648   if (II) {
5649     NamedDecl *PrevDecl =
5650         SemaRef.LookupSingleName(S, II, Loc, Sema::LookupMemberName,
5651                                  RedeclarationKind::ForVisibleRedeclaration);
5652     if (PrevDecl && SemaRef.isDeclInScope(PrevDecl, EnclosingContext, S) &&
5653         !isa<TagDecl>(PrevDecl)) {
5654       Diag(Loc, diag::err_duplicate_member) << II;
5655       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5656       NewID->setInvalidDecl();
5657     }
5658   }
5659 
5660   // Process attributes attached to the ivar.
5661   SemaRef.ProcessDeclAttributes(S, NewID, D);
5662 
5663   if (D.isInvalidType())
5664     NewID->setInvalidDecl();
5665 
5666   // In ARC, infer 'retaining' for ivars of retainable type.
5667   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
5668     NewID->setInvalidDecl();
5669 
5670   if (D.getDeclSpec().isModulePrivateSpecified())
5671     NewID->setModulePrivate();
5672 
5673   if (II) {
5674     // FIXME: When interfaces are DeclContexts, we'll need to add
5675     // these to the interface.
5676     S->AddDecl(NewID);
5677     SemaRef.IdResolver.AddDecl(NewID);
5678   }
5679 
5680   if (getLangOpts().ObjCRuntime.isNonFragile() && !NewID->isInvalidDecl() &&
5681       isa<ObjCInterfaceDecl>(EnclosingDecl))
5682     Diag(Loc, diag::warn_ivars_in_interface);
5683 
5684   return NewID;
5685 }
5686