1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for Objective C declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprObjC.h" 20 #include "clang/AST/RecursiveASTVisitor.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "clang/Basic/TargetInfo.h" 23 #include "clang/Sema/DeclSpec.h" 24 #include "clang/Sema/Lookup.h" 25 #include "clang/Sema/Scope.h" 26 #include "clang/Sema/ScopeInfo.h" 27 #include "clang/Sema/SemaInternal.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/DenseSet.h" 30 31 using namespace clang; 32 33 /// Check whether the given method, which must be in the 'init' 34 /// family, is a valid member of that family. 35 /// 36 /// \param receiverTypeIfCall - if null, check this as if declaring it; 37 /// if non-null, check this as if making a call to it with the given 38 /// receiver type 39 /// 40 /// \return true to indicate that there was an error and appropriate 41 /// actions were taken 42 bool Sema::checkInitMethod(ObjCMethodDecl *method, 43 QualType receiverTypeIfCall) { 44 if (method->isInvalidDecl()) return true; 45 46 // This castAs is safe: methods that don't return an object 47 // pointer won't be inferred as inits and will reject an explicit 48 // objc_method_family(init). 49 50 // We ignore protocols here. Should we? What about Class? 51 52 const ObjCObjectType *result = 53 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType(); 54 55 if (result->isObjCId()) { 56 return false; 57 } else if (result->isObjCClass()) { 58 // fall through: always an error 59 } else { 60 ObjCInterfaceDecl *resultClass = result->getInterface(); 61 assert(resultClass && "unexpected object type!"); 62 63 // It's okay for the result type to still be a forward declaration 64 // if we're checking an interface declaration. 65 if (!resultClass->hasDefinition()) { 66 if (receiverTypeIfCall.isNull() && 67 !isa<ObjCImplementationDecl>(method->getDeclContext())) 68 return false; 69 70 // Otherwise, we try to compare class types. 71 } else { 72 // If this method was declared in a protocol, we can't check 73 // anything unless we have a receiver type that's an interface. 74 const ObjCInterfaceDecl *receiverClass = nullptr; 75 if (isa<ObjCProtocolDecl>(method->getDeclContext())) { 76 if (receiverTypeIfCall.isNull()) 77 return false; 78 79 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() 80 ->getInterfaceDecl(); 81 82 // This can be null for calls to e.g. id<Foo>. 83 if (!receiverClass) return false; 84 } else { 85 receiverClass = method->getClassInterface(); 86 assert(receiverClass && "method not associated with a class!"); 87 } 88 89 // If either class is a subclass of the other, it's fine. 90 if (receiverClass->isSuperClassOf(resultClass) || 91 resultClass->isSuperClassOf(receiverClass)) 92 return false; 93 } 94 } 95 96 SourceLocation loc = method->getLocation(); 97 98 // If we're in a system header, and this is not a call, just make 99 // the method unusable. 100 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { 101 method->addAttr(UnavailableAttr::CreateImplicit(Context, "", 102 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc)); 103 return true; 104 } 105 106 // Otherwise, it's an error. 107 Diag(loc, diag::err_arc_init_method_unrelated_result_type); 108 method->setInvalidDecl(); 109 return true; 110 } 111 112 /// Issue a warning if the parameter of the overridden method is non-escaping 113 /// but the parameter of the overriding method is not. 114 static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, 115 Sema &S) { 116 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) { 117 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape); 118 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape); 119 return false; 120 } 121 122 return true; 123 } 124 125 /// Produce additional diagnostics if a category conforms to a protocol that 126 /// defines a method taking a non-escaping parameter. 127 static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, 128 const ObjCCategoryDecl *CD, 129 const ObjCProtocolDecl *PD, Sema &S) { 130 if (!diagnoseNoescape(NewD, OldD, S)) 131 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot) 132 << CD->IsClassExtension() << PD 133 << cast<ObjCMethodDecl>(NewD->getDeclContext()); 134 } 135 136 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 137 const ObjCMethodDecl *Overridden) { 138 if (Overridden->hasRelatedResultType() && 139 !NewMethod->hasRelatedResultType()) { 140 // This can only happen when the method follows a naming convention that 141 // implies a related result type, and the original (overridden) method has 142 // a suitable return type, but the new (overriding) method does not have 143 // a suitable return type. 144 QualType ResultType = NewMethod->getReturnType(); 145 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange(); 146 147 // Figure out which class this method is part of, if any. 148 ObjCInterfaceDecl *CurrentClass 149 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); 150 if (!CurrentClass) { 151 DeclContext *DC = NewMethod->getDeclContext(); 152 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) 153 CurrentClass = Cat->getClassInterface(); 154 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) 155 CurrentClass = Impl->getClassInterface(); 156 else if (ObjCCategoryImplDecl *CatImpl 157 = dyn_cast<ObjCCategoryImplDecl>(DC)) 158 CurrentClass = CatImpl->getClassInterface(); 159 } 160 161 if (CurrentClass) { 162 Diag(NewMethod->getLocation(), 163 diag::warn_related_result_type_compatibility_class) 164 << Context.getObjCInterfaceType(CurrentClass) 165 << ResultType 166 << ResultTypeRange; 167 } else { 168 Diag(NewMethod->getLocation(), 169 diag::warn_related_result_type_compatibility_protocol) 170 << ResultType 171 << ResultTypeRange; 172 } 173 174 if (ObjCMethodFamily Family = Overridden->getMethodFamily()) 175 Diag(Overridden->getLocation(), 176 diag::note_related_result_type_family) 177 << /*overridden method*/ 0 178 << Family; 179 else 180 Diag(Overridden->getLocation(), 181 diag::note_related_result_type_overridden); 182 } 183 184 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != 185 Overridden->hasAttr<NSReturnsRetainedAttr>())) { 186 Diag(NewMethod->getLocation(), 187 getLangOpts().ObjCAutoRefCount 188 ? diag::err_nsreturns_retained_attribute_mismatch 189 : diag::warn_nsreturns_retained_attribute_mismatch) 190 << 1; 191 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method"; 192 } 193 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != 194 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { 195 Diag(NewMethod->getLocation(), 196 getLangOpts().ObjCAutoRefCount 197 ? diag::err_nsreturns_retained_attribute_mismatch 198 : diag::warn_nsreturns_retained_attribute_mismatch) 199 << 0; 200 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method"; 201 } 202 203 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(), 204 oe = Overridden->param_end(); 205 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(), 206 ne = NewMethod->param_end(); 207 ni != ne && oi != oe; ++ni, ++oi) { 208 const ParmVarDecl *oldDecl = (*oi); 209 ParmVarDecl *newDecl = (*ni); 210 if (newDecl->hasAttr<NSConsumedAttr>() != 211 oldDecl->hasAttr<NSConsumedAttr>()) { 212 Diag(newDecl->getLocation(), 213 getLangOpts().ObjCAutoRefCount 214 ? diag::err_nsconsumed_attribute_mismatch 215 : diag::warn_nsconsumed_attribute_mismatch); 216 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter"; 217 } 218 219 diagnoseNoescape(newDecl, oldDecl, *this); 220 } 221 } 222 223 /// Check a method declaration for compatibility with the Objective-C 224 /// ARC conventions. 225 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) { 226 ObjCMethodFamily family = method->getMethodFamily(); 227 switch (family) { 228 case OMF_None: 229 case OMF_finalize: 230 case OMF_retain: 231 case OMF_release: 232 case OMF_autorelease: 233 case OMF_retainCount: 234 case OMF_self: 235 case OMF_initialize: 236 case OMF_performSelector: 237 return false; 238 239 case OMF_dealloc: 240 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) { 241 SourceRange ResultTypeRange = method->getReturnTypeSourceRange(); 242 if (ResultTypeRange.isInvalid()) 243 Diag(method->getLocation(), diag::err_dealloc_bad_result_type) 244 << method->getReturnType() 245 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)"); 246 else 247 Diag(method->getLocation(), diag::err_dealloc_bad_result_type) 248 << method->getReturnType() 249 << FixItHint::CreateReplacement(ResultTypeRange, "void"); 250 return true; 251 } 252 return false; 253 254 case OMF_init: 255 // If the method doesn't obey the init rules, don't bother annotating it. 256 if (checkInitMethod(method, QualType())) 257 return true; 258 259 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context)); 260 261 // Don't add a second copy of this attribute, but otherwise don't 262 // let it be suppressed. 263 if (method->hasAttr<NSReturnsRetainedAttr>()) 264 return false; 265 break; 266 267 case OMF_alloc: 268 case OMF_copy: 269 case OMF_mutableCopy: 270 case OMF_new: 271 if (method->hasAttr<NSReturnsRetainedAttr>() || 272 method->hasAttr<NSReturnsNotRetainedAttr>() || 273 method->hasAttr<NSReturnsAutoreleasedAttr>()) 274 return false; 275 break; 276 } 277 278 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context)); 279 return false; 280 } 281 282 static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND, 283 SourceLocation ImplLoc) { 284 if (!ND) 285 return; 286 bool IsCategory = false; 287 StringRef RealizedPlatform; 288 AvailabilityResult Availability = ND->getAvailability( 289 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(), 290 &RealizedPlatform); 291 if (Availability != AR_Deprecated) { 292 if (isa<ObjCMethodDecl>(ND)) { 293 if (Availability != AR_Unavailable) 294 return; 295 if (RealizedPlatform.empty()) 296 RealizedPlatform = S.Context.getTargetInfo().getPlatformName(); 297 // Warn about implementing unavailable methods, unless the unavailable 298 // is for an app extension. 299 if (RealizedPlatform.endswith("_app_extension")) 300 return; 301 S.Diag(ImplLoc, diag::warn_unavailable_def); 302 S.Diag(ND->getLocation(), diag::note_method_declared_at) 303 << ND->getDeclName(); 304 return; 305 } 306 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) { 307 if (!CD->getClassInterface()->isDeprecated()) 308 return; 309 ND = CD->getClassInterface(); 310 IsCategory = true; 311 } else 312 return; 313 } 314 S.Diag(ImplLoc, diag::warn_deprecated_def) 315 << (isa<ObjCMethodDecl>(ND) 316 ? /*Method*/ 0 317 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2 318 : /*Class*/ 1); 319 if (isa<ObjCMethodDecl>(ND)) 320 S.Diag(ND->getLocation(), diag::note_method_declared_at) 321 << ND->getDeclName(); 322 else 323 S.Diag(ND->getLocation(), diag::note_previous_decl) 324 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class"); 325 } 326 327 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global 328 /// pool. 329 void Sema::AddAnyMethodToGlobalPool(Decl *D) { 330 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 331 332 // If we don't have a valid method decl, simply return. 333 if (!MDecl) 334 return; 335 if (MDecl->isInstanceMethod()) 336 AddInstanceMethodToGlobalPool(MDecl, true); 337 else 338 AddFactoryMethodToGlobalPool(MDecl, true); 339 } 340 341 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer 342 /// has explicit ownership attribute; false otherwise. 343 static bool 344 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) { 345 QualType T = Param->getType(); 346 347 if (const PointerType *PT = T->getAs<PointerType>()) { 348 T = PT->getPointeeType(); 349 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 350 T = RT->getPointeeType(); 351 } else { 352 return true; 353 } 354 355 // If we have a lifetime qualifier, but it's local, we must have 356 // inferred it. So, it is implicit. 357 return !T.getLocalQualifiers().hasObjCLifetime(); 358 } 359 360 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible 361 /// and user declared, in the method definition's AST. 362 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { 363 ImplicitlyRetainedSelfLocs.clear(); 364 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused"); 365 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 366 367 PushExpressionEvaluationContext(ExprEvalContexts.back().Context); 368 369 // If we don't have a valid method decl, simply return. 370 if (!MDecl) 371 return; 372 373 QualType ResultType = MDecl->getReturnType(); 374 if (!ResultType->isDependentType() && !ResultType->isVoidType() && 375 !MDecl->isInvalidDecl() && 376 RequireCompleteType(MDecl->getLocation(), ResultType, 377 diag::err_func_def_incomplete_result)) 378 MDecl->setInvalidDecl(); 379 380 // Allow all of Sema to see that we are entering a method definition. 381 PushDeclContext(FnBodyScope, MDecl); 382 PushFunctionScope(); 383 384 // Create Decl objects for each parameter, entrring them in the scope for 385 // binding to their use. 386 387 // Insert the invisible arguments, self and _cmd! 388 MDecl->createImplicitParams(Context, MDecl->getClassInterface()); 389 390 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); 391 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); 392 393 // The ObjC parser requires parameter names so there's no need to check. 394 CheckParmsForFunctionDef(MDecl->parameters(), 395 /*CheckParameterNames=*/false); 396 397 // Introduce all of the other parameters into this scope. 398 for (auto *Param : MDecl->parameters()) { 399 if (!Param->isInvalidDecl() && 400 getLangOpts().ObjCAutoRefCount && 401 !HasExplicitOwnershipAttr(*this, Param)) 402 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) << 403 Param->getType(); 404 405 if (Param->getIdentifier()) 406 PushOnScopeChains(Param, FnBodyScope); 407 } 408 409 // In ARC, disallow definition of retain/release/autorelease/retainCount 410 if (getLangOpts().ObjCAutoRefCount) { 411 switch (MDecl->getMethodFamily()) { 412 case OMF_retain: 413 case OMF_retainCount: 414 case OMF_release: 415 case OMF_autorelease: 416 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) 417 << 0 << MDecl->getSelector(); 418 break; 419 420 case OMF_None: 421 case OMF_dealloc: 422 case OMF_finalize: 423 case OMF_alloc: 424 case OMF_init: 425 case OMF_mutableCopy: 426 case OMF_copy: 427 case OMF_new: 428 case OMF_self: 429 case OMF_initialize: 430 case OMF_performSelector: 431 break; 432 } 433 } 434 435 // Warn on deprecated methods under -Wdeprecated-implementations, 436 // and prepare for warning on missing super calls. 437 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { 438 ObjCMethodDecl *IMD = 439 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()); 440 441 if (IMD) { 442 ObjCImplDecl *ImplDeclOfMethodDef = 443 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext()); 444 ObjCContainerDecl *ContDeclOfMethodDecl = 445 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext()); 446 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr; 447 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl)) 448 ImplDeclOfMethodDecl = OID->getImplementation(); 449 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) { 450 if (CD->IsClassExtension()) { 451 if (ObjCInterfaceDecl *OID = CD->getClassInterface()) 452 ImplDeclOfMethodDecl = OID->getImplementation(); 453 } else 454 ImplDeclOfMethodDecl = CD->getImplementation(); 455 } 456 // No need to issue deprecated warning if deprecated mehod in class/category 457 // is being implemented in its own implementation (no overriding is involved). 458 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef) 459 DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation()); 460 } 461 462 if (MDecl->getMethodFamily() == OMF_init) { 463 if (MDecl->isDesignatedInitializerForTheInterface()) { 464 getCurFunction()->ObjCIsDesignatedInit = true; 465 getCurFunction()->ObjCWarnForNoDesignatedInitChain = 466 IC->getSuperClass() != nullptr; 467 } else if (IC->hasDesignatedInitializers()) { 468 getCurFunction()->ObjCIsSecondaryInit = true; 469 getCurFunction()->ObjCWarnForNoInitDelegation = true; 470 } 471 } 472 473 // If this is "dealloc" or "finalize", set some bit here. 474 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. 475 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. 476 // Only do this if the current class actually has a superclass. 477 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) { 478 ObjCMethodFamily Family = MDecl->getMethodFamily(); 479 if (Family == OMF_dealloc) { 480 if (!(getLangOpts().ObjCAutoRefCount || 481 getLangOpts().getGC() == LangOptions::GCOnly)) 482 getCurFunction()->ObjCShouldCallSuper = true; 483 484 } else if (Family == OMF_finalize) { 485 if (Context.getLangOpts().getGC() != LangOptions::NonGC) 486 getCurFunction()->ObjCShouldCallSuper = true; 487 488 } else { 489 const ObjCMethodDecl *SuperMethod = 490 SuperClass->lookupMethod(MDecl->getSelector(), 491 MDecl->isInstanceMethod()); 492 getCurFunction()->ObjCShouldCallSuper = 493 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>()); 494 } 495 } 496 } 497 } 498 499 namespace { 500 501 // Callback to only accept typo corrections that are Objective-C classes. 502 // If an ObjCInterfaceDecl* is given to the constructor, then the validation 503 // function will reject corrections to that class. 504 class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback { 505 public: 506 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {} 507 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) 508 : CurrentIDecl(IDecl) {} 509 510 bool ValidateCandidate(const TypoCorrection &candidate) override { 511 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); 512 return ID && !declaresSameEntity(ID, CurrentIDecl); 513 } 514 515 std::unique_ptr<CorrectionCandidateCallback> clone() override { 516 return std::make_unique<ObjCInterfaceValidatorCCC>(*this); 517 } 518 519 private: 520 ObjCInterfaceDecl *CurrentIDecl; 521 }; 522 523 } // end anonymous namespace 524 525 static void diagnoseUseOfProtocols(Sema &TheSema, 526 ObjCContainerDecl *CD, 527 ObjCProtocolDecl *const *ProtoRefs, 528 unsigned NumProtoRefs, 529 const SourceLocation *ProtoLocs) { 530 assert(ProtoRefs); 531 // Diagnose availability in the context of the ObjC container. 532 Sema::ContextRAII SavedContext(TheSema, CD); 533 for (unsigned i = 0; i < NumProtoRefs; ++i) { 534 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i], 535 /*UnknownObjCClass=*/nullptr, 536 /*ObjCPropertyAccess=*/false, 537 /*AvoidPartialAvailabilityChecks=*/true); 538 } 539 } 540 541 void Sema:: 542 ActOnSuperClassOfClassInterface(Scope *S, 543 SourceLocation AtInterfaceLoc, 544 ObjCInterfaceDecl *IDecl, 545 IdentifierInfo *ClassName, 546 SourceLocation ClassLoc, 547 IdentifierInfo *SuperName, 548 SourceLocation SuperLoc, 549 ArrayRef<ParsedType> SuperTypeArgs, 550 SourceRange SuperTypeArgsRange) { 551 // Check if a different kind of symbol declared in this scope. 552 NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 553 LookupOrdinaryName); 554 555 if (!PrevDecl) { 556 // Try to correct for a typo in the superclass name without correcting 557 // to the class we're defining. 558 ObjCInterfaceValidatorCCC CCC(IDecl); 559 if (TypoCorrection Corrected = CorrectTypo( 560 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, 561 TUScope, nullptr, CCC, CTK_ErrorRecovery)) { 562 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest) 563 << SuperName << ClassName); 564 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); 565 } 566 } 567 568 if (declaresSameEntity(PrevDecl, IDecl)) { 569 Diag(SuperLoc, diag::err_recursive_superclass) 570 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 571 IDecl->setEndOfDefinitionLoc(ClassLoc); 572 } else { 573 ObjCInterfaceDecl *SuperClassDecl = 574 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 575 QualType SuperClassType; 576 577 // Diagnose classes that inherit from deprecated classes. 578 if (SuperClassDecl) { 579 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); 580 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl); 581 } 582 583 if (PrevDecl && !SuperClassDecl) { 584 // The previous declaration was not a class decl. Check if we have a 585 // typedef. If we do, get the underlying class type. 586 if (const TypedefNameDecl *TDecl = 587 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 588 QualType T = TDecl->getUnderlyingType(); 589 if (T->isObjCObjectType()) { 590 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { 591 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); 592 SuperClassType = Context.getTypeDeclType(TDecl); 593 594 // This handles the following case: 595 // @interface NewI @end 596 // typedef NewI DeprI __attribute__((deprecated("blah"))) 597 // @interface SI : DeprI /* warn here */ @end 598 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc); 599 } 600 } 601 } 602 603 // This handles the following case: 604 // 605 // typedef int SuperClass; 606 // @interface MyClass : SuperClass {} @end 607 // 608 if (!SuperClassDecl) { 609 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; 610 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 611 } 612 } 613 614 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 615 if (!SuperClassDecl) 616 Diag(SuperLoc, diag::err_undef_superclass) 617 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 618 else if (RequireCompleteType(SuperLoc, 619 SuperClassType, 620 diag::err_forward_superclass, 621 SuperClassDecl->getDeclName(), 622 ClassName, 623 SourceRange(AtInterfaceLoc, ClassLoc))) { 624 SuperClassDecl = nullptr; 625 SuperClassType = QualType(); 626 } 627 } 628 629 if (SuperClassType.isNull()) { 630 assert(!SuperClassDecl && "Failed to set SuperClassType?"); 631 return; 632 } 633 634 // Handle type arguments on the superclass. 635 TypeSourceInfo *SuperClassTInfo = nullptr; 636 if (!SuperTypeArgs.empty()) { 637 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers( 638 S, 639 SuperLoc, 640 CreateParsedType(SuperClassType, 641 nullptr), 642 SuperTypeArgsRange.getBegin(), 643 SuperTypeArgs, 644 SuperTypeArgsRange.getEnd(), 645 SourceLocation(), 646 { }, 647 { }, 648 SourceLocation()); 649 if (!fullSuperClassType.isUsable()) 650 return; 651 652 SuperClassType = GetTypeFromParser(fullSuperClassType.get(), 653 &SuperClassTInfo); 654 } 655 656 if (!SuperClassTInfo) { 657 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType, 658 SuperLoc); 659 } 660 661 IDecl->setSuperClass(SuperClassTInfo); 662 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc()); 663 } 664 } 665 666 DeclResult Sema::actOnObjCTypeParam(Scope *S, 667 ObjCTypeParamVariance variance, 668 SourceLocation varianceLoc, 669 unsigned index, 670 IdentifierInfo *paramName, 671 SourceLocation paramLoc, 672 SourceLocation colonLoc, 673 ParsedType parsedTypeBound) { 674 // If there was an explicitly-provided type bound, check it. 675 TypeSourceInfo *typeBoundInfo = nullptr; 676 if (parsedTypeBound) { 677 // The type bound can be any Objective-C pointer type. 678 QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo); 679 if (typeBound->isObjCObjectPointerType()) { 680 // okay 681 } else if (typeBound->isObjCObjectType()) { 682 // The user forgot the * on an Objective-C pointer type, e.g., 683 // "T : NSView". 684 SourceLocation starLoc = getLocForEndOfToken( 685 typeBoundInfo->getTypeLoc().getEndLoc()); 686 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(), 687 diag::err_objc_type_param_bound_missing_pointer) 688 << typeBound << paramName 689 << FixItHint::CreateInsertion(starLoc, " *"); 690 691 // Create a new type location builder so we can update the type 692 // location information we have. 693 TypeLocBuilder builder; 694 builder.pushFullCopy(typeBoundInfo->getTypeLoc()); 695 696 // Create the Objective-C pointer type. 697 typeBound = Context.getObjCObjectPointerType(typeBound); 698 ObjCObjectPointerTypeLoc newT 699 = builder.push<ObjCObjectPointerTypeLoc>(typeBound); 700 newT.setStarLoc(starLoc); 701 702 // Form the new type source information. 703 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound); 704 } else { 705 // Not a valid type bound. 706 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(), 707 diag::err_objc_type_param_bound_nonobject) 708 << typeBound << paramName; 709 710 // Forget the bound; we'll default to id later. 711 typeBoundInfo = nullptr; 712 } 713 714 // Type bounds cannot have qualifiers (even indirectly) or explicit 715 // nullability. 716 if (typeBoundInfo) { 717 QualType typeBound = typeBoundInfo->getType(); 718 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc(); 719 if (qual || typeBound.hasQualifiers()) { 720 bool diagnosed = false; 721 SourceRange rangeToRemove; 722 if (qual) { 723 if (auto attr = qual.getAs<AttributedTypeLoc>()) { 724 rangeToRemove = attr.getLocalSourceRange(); 725 if (attr.getTypePtr()->getImmediateNullability()) { 726 Diag(attr.getBeginLoc(), 727 diag::err_objc_type_param_bound_explicit_nullability) 728 << paramName << typeBound 729 << FixItHint::CreateRemoval(rangeToRemove); 730 diagnosed = true; 731 } 732 } 733 } 734 735 if (!diagnosed) { 736 Diag(qual ? qual.getBeginLoc() 737 : typeBoundInfo->getTypeLoc().getBeginLoc(), 738 diag::err_objc_type_param_bound_qualified) 739 << paramName << typeBound 740 << typeBound.getQualifiers().getAsString() 741 << FixItHint::CreateRemoval(rangeToRemove); 742 } 743 744 // If the type bound has qualifiers other than CVR, we need to strip 745 // them or we'll probably assert later when trying to apply new 746 // qualifiers. 747 Qualifiers quals = typeBound.getQualifiers(); 748 quals.removeCVRQualifiers(); 749 if (!quals.empty()) { 750 typeBoundInfo = 751 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType()); 752 } 753 } 754 } 755 } 756 757 // If there was no explicit type bound (or we removed it due to an error), 758 // use 'id' instead. 759 if (!typeBoundInfo) { 760 colonLoc = SourceLocation(); 761 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType()); 762 } 763 764 // Create the type parameter. 765 return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc, 766 index, paramLoc, paramName, colonLoc, 767 typeBoundInfo); 768 } 769 770 ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S, 771 SourceLocation lAngleLoc, 772 ArrayRef<Decl *> typeParamsIn, 773 SourceLocation rAngleLoc) { 774 // We know that the array only contains Objective-C type parameters. 775 ArrayRef<ObjCTypeParamDecl *> 776 typeParams( 777 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()), 778 typeParamsIn.size()); 779 780 // Diagnose redeclarations of type parameters. 781 // We do this now because Objective-C type parameters aren't pushed into 782 // scope until later (after the instance variable block), but we want the 783 // diagnostics to occur right after we parse the type parameter list. 784 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams; 785 for (auto typeParam : typeParams) { 786 auto known = knownParams.find(typeParam->getIdentifier()); 787 if (known != knownParams.end()) { 788 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl) 789 << typeParam->getIdentifier() 790 << SourceRange(known->second->getLocation()); 791 792 typeParam->setInvalidDecl(); 793 } else { 794 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam)); 795 796 // Push the type parameter into scope. 797 PushOnScopeChains(typeParam, S, /*AddToContext=*/false); 798 } 799 } 800 801 // Create the parameter list. 802 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc); 803 } 804 805 void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) { 806 for (auto typeParam : *typeParamList) { 807 if (!typeParam->isInvalidDecl()) { 808 S->RemoveDecl(typeParam); 809 IdResolver.RemoveDecl(typeParam); 810 } 811 } 812 } 813 814 namespace { 815 /// The context in which an Objective-C type parameter list occurs, for use 816 /// in diagnostics. 817 enum class TypeParamListContext { 818 ForwardDeclaration, 819 Definition, 820 Category, 821 Extension 822 }; 823 } // end anonymous namespace 824 825 /// Check consistency between two Objective-C type parameter lists, e.g., 826 /// between a category/extension and an \@interface or between an \@class and an 827 /// \@interface. 828 static bool checkTypeParamListConsistency(Sema &S, 829 ObjCTypeParamList *prevTypeParams, 830 ObjCTypeParamList *newTypeParams, 831 TypeParamListContext newContext) { 832 // If the sizes don't match, complain about that. 833 if (prevTypeParams->size() != newTypeParams->size()) { 834 SourceLocation diagLoc; 835 if (newTypeParams->size() > prevTypeParams->size()) { 836 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation(); 837 } else { 838 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc()); 839 } 840 841 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch) 842 << static_cast<unsigned>(newContext) 843 << (newTypeParams->size() > prevTypeParams->size()) 844 << prevTypeParams->size() 845 << newTypeParams->size(); 846 847 return true; 848 } 849 850 // Match up the type parameters. 851 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) { 852 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i]; 853 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i]; 854 855 // Check for consistency of the variance. 856 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) { 857 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant && 858 newContext != TypeParamListContext::Definition) { 859 // When the new type parameter is invariant and is not part 860 // of the definition, just propagate the variance. 861 newTypeParam->setVariance(prevTypeParam->getVariance()); 862 } else if (prevTypeParam->getVariance() 863 == ObjCTypeParamVariance::Invariant && 864 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) && 865 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) 866 ->getDefinition() == prevTypeParam->getDeclContext())) { 867 // When the old parameter is invariant and was not part of the 868 // definition, just ignore the difference because it doesn't 869 // matter. 870 } else { 871 { 872 // Diagnose the conflict and update the second declaration. 873 SourceLocation diagLoc = newTypeParam->getVarianceLoc(); 874 if (diagLoc.isInvalid()) 875 diagLoc = newTypeParam->getBeginLoc(); 876 877 auto diag = S.Diag(diagLoc, 878 diag::err_objc_type_param_variance_conflict) 879 << static_cast<unsigned>(newTypeParam->getVariance()) 880 << newTypeParam->getDeclName() 881 << static_cast<unsigned>(prevTypeParam->getVariance()) 882 << prevTypeParam->getDeclName(); 883 switch (prevTypeParam->getVariance()) { 884 case ObjCTypeParamVariance::Invariant: 885 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc()); 886 break; 887 888 case ObjCTypeParamVariance::Covariant: 889 case ObjCTypeParamVariance::Contravariant: { 890 StringRef newVarianceStr 891 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant 892 ? "__covariant" 893 : "__contravariant"; 894 if (newTypeParam->getVariance() 895 == ObjCTypeParamVariance::Invariant) { 896 diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(), 897 (newVarianceStr + " ").str()); 898 } else { 899 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(), 900 newVarianceStr); 901 } 902 } 903 } 904 } 905 906 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) 907 << prevTypeParam->getDeclName(); 908 909 // Override the variance. 910 newTypeParam->setVariance(prevTypeParam->getVariance()); 911 } 912 } 913 914 // If the bound types match, there's nothing to do. 915 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(), 916 newTypeParam->getUnderlyingType())) 917 continue; 918 919 // If the new type parameter's bound was explicit, complain about it being 920 // different from the original. 921 if (newTypeParam->hasExplicitBound()) { 922 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo() 923 ->getTypeLoc().getSourceRange(); 924 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict) 925 << newTypeParam->getUnderlyingType() 926 << newTypeParam->getDeclName() 927 << prevTypeParam->hasExplicitBound() 928 << prevTypeParam->getUnderlyingType() 929 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName()) 930 << prevTypeParam->getDeclName() 931 << FixItHint::CreateReplacement( 932 newBoundRange, 933 prevTypeParam->getUnderlyingType().getAsString( 934 S.Context.getPrintingPolicy())); 935 936 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) 937 << prevTypeParam->getDeclName(); 938 939 // Override the new type parameter's bound type with the previous type, 940 // so that it's consistent. 941 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam); 942 continue; 943 } 944 945 // The new type parameter got the implicit bound of 'id'. That's okay for 946 // categories and extensions (overwrite it later), but not for forward 947 // declarations and @interfaces, because those must be standalone. 948 if (newContext == TypeParamListContext::ForwardDeclaration || 949 newContext == TypeParamListContext::Definition) { 950 // Diagnose this problem for forward declarations and definitions. 951 SourceLocation insertionLoc 952 = S.getLocForEndOfToken(newTypeParam->getLocation()); 953 std::string newCode 954 = " : " + prevTypeParam->getUnderlyingType().getAsString( 955 S.Context.getPrintingPolicy()); 956 S.Diag(newTypeParam->getLocation(), 957 diag::err_objc_type_param_bound_missing) 958 << prevTypeParam->getUnderlyingType() 959 << newTypeParam->getDeclName() 960 << (newContext == TypeParamListContext::ForwardDeclaration) 961 << FixItHint::CreateInsertion(insertionLoc, newCode); 962 963 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) 964 << prevTypeParam->getDeclName(); 965 } 966 967 // Update the new type parameter's bound to match the previous one. 968 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam); 969 } 970 971 return false; 972 } 973 974 Decl *Sema::ActOnStartClassInterface( 975 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, 976 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, 977 IdentifierInfo *SuperName, SourceLocation SuperLoc, 978 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange, 979 Decl *const *ProtoRefs, unsigned NumProtoRefs, 980 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, 981 const ParsedAttributesView &AttrList) { 982 assert(ClassName && "Missing class identifier"); 983 984 // Check for another declaration kind with the same name. 985 NamedDecl *PrevDecl = 986 LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 987 forRedeclarationInCurContext()); 988 989 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 990 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 991 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 992 } 993 994 // Create a declaration to describe this @interface. 995 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 996 997 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { 998 // A previous decl with a different name is because of 999 // @compatibility_alias, for example: 1000 // \code 1001 // @class NewImage; 1002 // @compatibility_alias OldImage NewImage; 1003 // \endcode 1004 // A lookup for 'OldImage' will return the 'NewImage' decl. 1005 // 1006 // In such a case use the real declaration name, instead of the alias one, 1007 // otherwise we will break IdentifierResolver and redecls-chain invariants. 1008 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl 1009 // has been aliased. 1010 ClassName = PrevIDecl->getIdentifier(); 1011 } 1012 1013 // If there was a forward declaration with type parameters, check 1014 // for consistency. 1015 if (PrevIDecl) { 1016 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) { 1017 if (typeParamList) { 1018 // Both have type parameter lists; check for consistency. 1019 if (checkTypeParamListConsistency(*this, prevTypeParamList, 1020 typeParamList, 1021 TypeParamListContext::Definition)) { 1022 typeParamList = nullptr; 1023 } 1024 } else { 1025 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first) 1026 << ClassName; 1027 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl) 1028 << ClassName; 1029 1030 // Clone the type parameter list. 1031 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams; 1032 for (auto typeParam : *prevTypeParamList) { 1033 clonedTypeParams.push_back( 1034 ObjCTypeParamDecl::Create( 1035 Context, 1036 CurContext, 1037 typeParam->getVariance(), 1038 SourceLocation(), 1039 typeParam->getIndex(), 1040 SourceLocation(), 1041 typeParam->getIdentifier(), 1042 SourceLocation(), 1043 Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType()))); 1044 } 1045 1046 typeParamList = ObjCTypeParamList::create(Context, 1047 SourceLocation(), 1048 clonedTypeParams, 1049 SourceLocation()); 1050 } 1051 } 1052 } 1053 1054 ObjCInterfaceDecl *IDecl 1055 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName, 1056 typeParamList, PrevIDecl, ClassLoc); 1057 if (PrevIDecl) { 1058 // Class already seen. Was it a definition? 1059 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { 1060 Diag(AtInterfaceLoc, diag::err_duplicate_class_def) 1061 << PrevIDecl->getDeclName(); 1062 Diag(Def->getLocation(), diag::note_previous_definition); 1063 IDecl->setInvalidDecl(); 1064 } 1065 } 1066 1067 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 1068 AddPragmaAttributes(TUScope, IDecl); 1069 PushOnScopeChains(IDecl, TUScope); 1070 1071 // Start the definition of this class. If we're in a redefinition case, there 1072 // may already be a definition, so we'll end up adding to it. 1073 if (!IDecl->hasDefinition()) 1074 IDecl->startDefinition(); 1075 1076 if (SuperName) { 1077 // Diagnose availability in the context of the @interface. 1078 ContextRAII SavedContext(*this, IDecl); 1079 1080 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl, 1081 ClassName, ClassLoc, 1082 SuperName, SuperLoc, SuperTypeArgs, 1083 SuperTypeArgsRange); 1084 } else { // we have a root class. 1085 IDecl->setEndOfDefinitionLoc(ClassLoc); 1086 } 1087 1088 // Check then save referenced protocols. 1089 if (NumProtoRefs) { 1090 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs, 1091 NumProtoRefs, ProtoLocs); 1092 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 1093 ProtoLocs, Context); 1094 IDecl->setEndOfDefinitionLoc(EndProtoLoc); 1095 } 1096 1097 CheckObjCDeclScope(IDecl); 1098 return ActOnObjCContainerStartDefinition(IDecl); 1099 } 1100 1101 /// ActOnTypedefedProtocols - this action finds protocol list as part of the 1102 /// typedef'ed use for a qualified super class and adds them to the list 1103 /// of the protocols. 1104 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs, 1105 SmallVectorImpl<SourceLocation> &ProtocolLocs, 1106 IdentifierInfo *SuperName, 1107 SourceLocation SuperLoc) { 1108 if (!SuperName) 1109 return; 1110 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 1111 LookupOrdinaryName); 1112 if (!IDecl) 1113 return; 1114 1115 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) { 1116 QualType T = TDecl->getUnderlyingType(); 1117 if (T->isObjCObjectType()) 1118 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) { 1119 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end()); 1120 // FIXME: Consider whether this should be an invalid loc since the loc 1121 // is not actually pointing to a protocol name reference but to the 1122 // typedef reference. Note that the base class name loc is also pointing 1123 // at the typedef. 1124 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc); 1125 } 1126 } 1127 } 1128 1129 /// ActOnCompatibilityAlias - this action is called after complete parsing of 1130 /// a \@compatibility_alias declaration. It sets up the alias relationships. 1131 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc, 1132 IdentifierInfo *AliasName, 1133 SourceLocation AliasLocation, 1134 IdentifierInfo *ClassName, 1135 SourceLocation ClassLocation) { 1136 // Look for previous declaration of alias name 1137 NamedDecl *ADecl = 1138 LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName, 1139 forRedeclarationInCurContext()); 1140 if (ADecl) { 1141 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; 1142 Diag(ADecl->getLocation(), diag::note_previous_declaration); 1143 return nullptr; 1144 } 1145 // Check for class declaration 1146 NamedDecl *CDeclU = 1147 LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName, 1148 forRedeclarationInCurContext()); 1149 if (const TypedefNameDecl *TDecl = 1150 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { 1151 QualType T = TDecl->getUnderlyingType(); 1152 if (T->isObjCObjectType()) { 1153 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { 1154 ClassName = IDecl->getIdentifier(); 1155 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 1156 LookupOrdinaryName, 1157 forRedeclarationInCurContext()); 1158 } 1159 } 1160 } 1161 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); 1162 if (!CDecl) { 1163 Diag(ClassLocation, diag::warn_undef_interface) << ClassName; 1164 if (CDeclU) 1165 Diag(CDeclU->getLocation(), diag::note_previous_declaration); 1166 return nullptr; 1167 } 1168 1169 // Everything checked out, instantiate a new alias declaration AST. 1170 ObjCCompatibleAliasDecl *AliasDecl = 1171 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); 1172 1173 if (!CheckObjCDeclScope(AliasDecl)) 1174 PushOnScopeChains(AliasDecl, TUScope); 1175 1176 return AliasDecl; 1177 } 1178 1179 bool Sema::CheckForwardProtocolDeclarationForCircularDependency( 1180 IdentifierInfo *PName, 1181 SourceLocation &Ploc, SourceLocation PrevLoc, 1182 const ObjCList<ObjCProtocolDecl> &PList) { 1183 1184 bool res = false; 1185 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), 1186 E = PList.end(); I != E; ++I) { 1187 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), 1188 Ploc)) { 1189 if (PDecl->getIdentifier() == PName) { 1190 Diag(Ploc, diag::err_protocol_has_circular_dependency); 1191 Diag(PrevLoc, diag::note_previous_definition); 1192 res = true; 1193 } 1194 1195 if (!PDecl->hasDefinition()) 1196 continue; 1197 1198 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, 1199 PDecl->getLocation(), PDecl->getReferencedProtocols())) 1200 res = true; 1201 } 1202 } 1203 return res; 1204 } 1205 1206 Decl *Sema::ActOnStartProtocolInterface( 1207 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, 1208 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs, 1209 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, 1210 const ParsedAttributesView &AttrList) { 1211 bool err = false; 1212 // FIXME: Deal with AttrList. 1213 assert(ProtocolName && "Missing protocol identifier"); 1214 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc, 1215 forRedeclarationInCurContext()); 1216 ObjCProtocolDecl *PDecl = nullptr; 1217 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) { 1218 // If we already have a definition, complain. 1219 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; 1220 Diag(Def->getLocation(), diag::note_previous_definition); 1221 1222 // Create a new protocol that is completely distinct from previous 1223 // declarations, and do not make this protocol available for name lookup. 1224 // That way, we'll end up completely ignoring the duplicate. 1225 // FIXME: Can we turn this into an error? 1226 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 1227 ProtocolLoc, AtProtoInterfaceLoc, 1228 /*PrevDecl=*/nullptr); 1229 1230 // If we are using modules, add the decl to the context in order to 1231 // serialize something meaningful. 1232 if (getLangOpts().Modules) 1233 PushOnScopeChains(PDecl, TUScope); 1234 PDecl->startDefinition(); 1235 } else { 1236 if (PrevDecl) { 1237 // Check for circular dependencies among protocol declarations. This can 1238 // only happen if this protocol was forward-declared. 1239 ObjCList<ObjCProtocolDecl> PList; 1240 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); 1241 err = CheckForwardProtocolDeclarationForCircularDependency( 1242 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList); 1243 } 1244 1245 // Create the new declaration. 1246 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 1247 ProtocolLoc, AtProtoInterfaceLoc, 1248 /*PrevDecl=*/PrevDecl); 1249 1250 PushOnScopeChains(PDecl, TUScope); 1251 PDecl->startDefinition(); 1252 } 1253 1254 ProcessDeclAttributeList(TUScope, PDecl, AttrList); 1255 AddPragmaAttributes(TUScope, PDecl); 1256 1257 // Merge attributes from previous declarations. 1258 if (PrevDecl) 1259 mergeDeclAttributes(PDecl, PrevDecl); 1260 1261 if (!err && NumProtoRefs ) { 1262 /// Check then save referenced protocols. 1263 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs, 1264 NumProtoRefs, ProtoLocs); 1265 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 1266 ProtoLocs, Context); 1267 } 1268 1269 CheckObjCDeclScope(PDecl); 1270 return ActOnObjCContainerStartDefinition(PDecl); 1271 } 1272 1273 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, 1274 ObjCProtocolDecl *&UndefinedProtocol) { 1275 if (!PDecl->hasDefinition() || 1276 !PDecl->getDefinition()->isUnconditionallyVisible()) { 1277 UndefinedProtocol = PDecl; 1278 return true; 1279 } 1280 1281 for (auto *PI : PDecl->protocols()) 1282 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) { 1283 UndefinedProtocol = PI; 1284 return true; 1285 } 1286 return false; 1287 } 1288 1289 /// FindProtocolDeclaration - This routine looks up protocols and 1290 /// issues an error if they are not declared. It returns list of 1291 /// protocol declarations in its 'Protocols' argument. 1292 void 1293 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer, 1294 ArrayRef<IdentifierLocPair> ProtocolId, 1295 SmallVectorImpl<Decl *> &Protocols) { 1296 for (const IdentifierLocPair &Pair : ProtocolId) { 1297 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second); 1298 if (!PDecl) { 1299 DeclFilterCCC<ObjCProtocolDecl> CCC{}; 1300 TypoCorrection Corrected = CorrectTypo( 1301 DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName, 1302 TUScope, nullptr, CCC, CTK_ErrorRecovery); 1303 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) 1304 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest) 1305 << Pair.first); 1306 } 1307 1308 if (!PDecl) { 1309 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first; 1310 continue; 1311 } 1312 // If this is a forward protocol declaration, get its definition. 1313 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) 1314 PDecl = PDecl->getDefinition(); 1315 1316 // For an objc container, delay protocol reference checking until after we 1317 // can set the objc decl as the availability context, otherwise check now. 1318 if (!ForObjCContainer) { 1319 (void)DiagnoseUseOfDecl(PDecl, Pair.second); 1320 } 1321 1322 // If this is a forward declaration and we are supposed to warn in this 1323 // case, do it. 1324 // FIXME: Recover nicely in the hidden case. 1325 ObjCProtocolDecl *UndefinedProtocol; 1326 1327 if (WarnOnDeclarations && 1328 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) { 1329 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first; 1330 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined) 1331 << UndefinedProtocol; 1332 } 1333 Protocols.push_back(PDecl); 1334 } 1335 } 1336 1337 namespace { 1338 // Callback to only accept typo corrections that are either 1339 // Objective-C protocols or valid Objective-C type arguments. 1340 class ObjCTypeArgOrProtocolValidatorCCC final 1341 : public CorrectionCandidateCallback { 1342 ASTContext &Context; 1343 Sema::LookupNameKind LookupKind; 1344 public: 1345 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context, 1346 Sema::LookupNameKind lookupKind) 1347 : Context(context), LookupKind(lookupKind) { } 1348 1349 bool ValidateCandidate(const TypoCorrection &candidate) override { 1350 // If we're allowed to find protocols and we have a protocol, accept it. 1351 if (LookupKind != Sema::LookupOrdinaryName) { 1352 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>()) 1353 return true; 1354 } 1355 1356 // If we're allowed to find type names and we have one, accept it. 1357 if (LookupKind != Sema::LookupObjCProtocolName) { 1358 // If we have a type declaration, we might accept this result. 1359 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) { 1360 // If we found a tag declaration outside of C++, skip it. This 1361 // can happy because we look for any name when there is no 1362 // bias to protocol or type names. 1363 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus) 1364 return false; 1365 1366 // Make sure the type is something we would accept as a type 1367 // argument. 1368 auto type = Context.getTypeDeclType(typeDecl); 1369 if (type->isObjCObjectPointerType() || 1370 type->isBlockPointerType() || 1371 type->isDependentType() || 1372 type->isObjCObjectType()) 1373 return true; 1374 1375 return false; 1376 } 1377 1378 // If we have an Objective-C class type, accept it; there will 1379 // be another fix to add the '*'. 1380 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>()) 1381 return true; 1382 1383 return false; 1384 } 1385 1386 return false; 1387 } 1388 1389 std::unique_ptr<CorrectionCandidateCallback> clone() override { 1390 return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this); 1391 } 1392 }; 1393 } // end anonymous namespace 1394 1395 void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId, 1396 SourceLocation ProtocolLoc, 1397 IdentifierInfo *TypeArgId, 1398 SourceLocation TypeArgLoc, 1399 bool SelectProtocolFirst) { 1400 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols) 1401 << SelectProtocolFirst << TypeArgId << ProtocolId 1402 << SourceRange(ProtocolLoc); 1403 } 1404 1405 void Sema::actOnObjCTypeArgsOrProtocolQualifiers( 1406 Scope *S, 1407 ParsedType baseType, 1408 SourceLocation lAngleLoc, 1409 ArrayRef<IdentifierInfo *> identifiers, 1410 ArrayRef<SourceLocation> identifierLocs, 1411 SourceLocation rAngleLoc, 1412 SourceLocation &typeArgsLAngleLoc, 1413 SmallVectorImpl<ParsedType> &typeArgs, 1414 SourceLocation &typeArgsRAngleLoc, 1415 SourceLocation &protocolLAngleLoc, 1416 SmallVectorImpl<Decl *> &protocols, 1417 SourceLocation &protocolRAngleLoc, 1418 bool warnOnIncompleteProtocols) { 1419 // Local function that updates the declaration specifiers with 1420 // protocol information. 1421 unsigned numProtocolsResolved = 0; 1422 auto resolvedAsProtocols = [&] { 1423 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols"); 1424 1425 // Determine whether the base type is a parameterized class, in 1426 // which case we want to warn about typos such as 1427 // "NSArray<NSObject>" (that should be NSArray<NSObject *>). 1428 ObjCInterfaceDecl *baseClass = nullptr; 1429 QualType base = GetTypeFromParser(baseType, nullptr); 1430 bool allAreTypeNames = false; 1431 SourceLocation firstClassNameLoc; 1432 if (!base.isNull()) { 1433 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) { 1434 baseClass = objcObjectType->getInterface(); 1435 if (baseClass) { 1436 if (auto typeParams = baseClass->getTypeParamList()) { 1437 if (typeParams->size() == numProtocolsResolved) { 1438 // Note that we should be looking for type names, too. 1439 allAreTypeNames = true; 1440 } 1441 } 1442 } 1443 } 1444 } 1445 1446 for (unsigned i = 0, n = protocols.size(); i != n; ++i) { 1447 ObjCProtocolDecl *&proto 1448 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]); 1449 // For an objc container, delay protocol reference checking until after we 1450 // can set the objc decl as the availability context, otherwise check now. 1451 if (!warnOnIncompleteProtocols) { 1452 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]); 1453 } 1454 1455 // If this is a forward protocol declaration, get its definition. 1456 if (!proto->isThisDeclarationADefinition() && proto->getDefinition()) 1457 proto = proto->getDefinition(); 1458 1459 // If this is a forward declaration and we are supposed to warn in this 1460 // case, do it. 1461 // FIXME: Recover nicely in the hidden case. 1462 ObjCProtocolDecl *forwardDecl = nullptr; 1463 if (warnOnIncompleteProtocols && 1464 NestedProtocolHasNoDefinition(proto, forwardDecl)) { 1465 Diag(identifierLocs[i], diag::warn_undef_protocolref) 1466 << proto->getDeclName(); 1467 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined) 1468 << forwardDecl; 1469 } 1470 1471 // If everything this far has been a type name (and we care 1472 // about such things), check whether this name refers to a type 1473 // as well. 1474 if (allAreTypeNames) { 1475 if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i], 1476 LookupOrdinaryName)) { 1477 if (isa<ObjCInterfaceDecl>(decl)) { 1478 if (firstClassNameLoc.isInvalid()) 1479 firstClassNameLoc = identifierLocs[i]; 1480 } else if (!isa<TypeDecl>(decl)) { 1481 // Not a type. 1482 allAreTypeNames = false; 1483 } 1484 } else { 1485 allAreTypeNames = false; 1486 } 1487 } 1488 } 1489 1490 // All of the protocols listed also have type names, and at least 1491 // one is an Objective-C class name. Check whether all of the 1492 // protocol conformances are declared by the base class itself, in 1493 // which case we warn. 1494 if (allAreTypeNames && firstClassNameLoc.isValid()) { 1495 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols; 1496 Context.CollectInheritedProtocols(baseClass, knownProtocols); 1497 bool allProtocolsDeclared = true; 1498 for (auto proto : protocols) { 1499 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) { 1500 allProtocolsDeclared = false; 1501 break; 1502 } 1503 } 1504 1505 if (allProtocolsDeclared) { 1506 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type) 1507 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc) 1508 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc), 1509 " *"); 1510 } 1511 } 1512 1513 protocolLAngleLoc = lAngleLoc; 1514 protocolRAngleLoc = rAngleLoc; 1515 assert(protocols.size() == identifierLocs.size()); 1516 }; 1517 1518 // Attempt to resolve all of the identifiers as protocols. 1519 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { 1520 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]); 1521 protocols.push_back(proto); 1522 if (proto) 1523 ++numProtocolsResolved; 1524 } 1525 1526 // If all of the names were protocols, these were protocol qualifiers. 1527 if (numProtocolsResolved == identifiers.size()) 1528 return resolvedAsProtocols(); 1529 1530 // Attempt to resolve all of the identifiers as type names or 1531 // Objective-C class names. The latter is technically ill-formed, 1532 // but is probably something like \c NSArray<NSView *> missing the 1533 // \c*. 1534 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl; 1535 SmallVector<TypeOrClassDecl, 4> typeDecls; 1536 unsigned numTypeDeclsResolved = 0; 1537 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { 1538 NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i], 1539 LookupOrdinaryName); 1540 if (!decl) { 1541 typeDecls.push_back(TypeOrClassDecl()); 1542 continue; 1543 } 1544 1545 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) { 1546 typeDecls.push_back(typeDecl); 1547 ++numTypeDeclsResolved; 1548 continue; 1549 } 1550 1551 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) { 1552 typeDecls.push_back(objcClass); 1553 ++numTypeDeclsResolved; 1554 continue; 1555 } 1556 1557 typeDecls.push_back(TypeOrClassDecl()); 1558 } 1559 1560 AttributeFactory attrFactory; 1561 1562 // Local function that forms a reference to the given type or 1563 // Objective-C class declaration. 1564 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc) 1565 -> TypeResult { 1566 // Form declaration specifiers. They simply refer to the type. 1567 DeclSpec DS(attrFactory); 1568 const char* prevSpec; // unused 1569 unsigned diagID; // unused 1570 QualType type; 1571 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>()) 1572 type = Context.getTypeDeclType(actualTypeDecl); 1573 else 1574 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>()); 1575 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc); 1576 ParsedType parsedType = CreateParsedType(type, parsedTSInfo); 1577 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID, 1578 parsedType, Context.getPrintingPolicy()); 1579 // Use the identifier location for the type source range. 1580 DS.SetRangeStart(loc); 1581 DS.SetRangeEnd(loc); 1582 1583 // Form the declarator. 1584 Declarator D(DS, DeclaratorContext::TypeNameContext); 1585 1586 // If we have a typedef of an Objective-C class type that is missing a '*', 1587 // add the '*'. 1588 if (type->getAs<ObjCInterfaceType>()) { 1589 SourceLocation starLoc = getLocForEndOfToken(loc); 1590 D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc, 1591 SourceLocation(), 1592 SourceLocation(), 1593 SourceLocation(), 1594 SourceLocation(), 1595 SourceLocation()), 1596 starLoc); 1597 1598 // Diagnose the missing '*'. 1599 Diag(loc, diag::err_objc_type_arg_missing_star) 1600 << type 1601 << FixItHint::CreateInsertion(starLoc, " *"); 1602 } 1603 1604 // Convert this to a type. 1605 return ActOnTypeName(S, D); 1606 }; 1607 1608 // Local function that updates the declaration specifiers with 1609 // type argument information. 1610 auto resolvedAsTypeDecls = [&] { 1611 // We did not resolve these as protocols. 1612 protocols.clear(); 1613 1614 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl"); 1615 // Map type declarations to type arguments. 1616 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { 1617 // Map type reference to a type. 1618 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]); 1619 if (!type.isUsable()) { 1620 typeArgs.clear(); 1621 return; 1622 } 1623 1624 typeArgs.push_back(type.get()); 1625 } 1626 1627 typeArgsLAngleLoc = lAngleLoc; 1628 typeArgsRAngleLoc = rAngleLoc; 1629 }; 1630 1631 // If all of the identifiers can be resolved as type names or 1632 // Objective-C class names, we have type arguments. 1633 if (numTypeDeclsResolved == identifiers.size()) 1634 return resolvedAsTypeDecls(); 1635 1636 // Error recovery: some names weren't found, or we have a mix of 1637 // type and protocol names. Go resolve all of the unresolved names 1638 // and complain if we can't find a consistent answer. 1639 LookupNameKind lookupKind = LookupAnyName; 1640 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { 1641 // If we already have a protocol or type. Check whether it is the 1642 // right thing. 1643 if (protocols[i] || typeDecls[i]) { 1644 // If we haven't figured out whether we want types or protocols 1645 // yet, try to figure it out from this name. 1646 if (lookupKind == LookupAnyName) { 1647 // If this name refers to both a protocol and a type (e.g., \c 1648 // NSObject), don't conclude anything yet. 1649 if (protocols[i] && typeDecls[i]) 1650 continue; 1651 1652 // Otherwise, let this name decide whether we'll be correcting 1653 // toward types or protocols. 1654 lookupKind = protocols[i] ? LookupObjCProtocolName 1655 : LookupOrdinaryName; 1656 continue; 1657 } 1658 1659 // If we want protocols and we have a protocol, there's nothing 1660 // more to do. 1661 if (lookupKind == LookupObjCProtocolName && protocols[i]) 1662 continue; 1663 1664 // If we want types and we have a type declaration, there's 1665 // nothing more to do. 1666 if (lookupKind == LookupOrdinaryName && typeDecls[i]) 1667 continue; 1668 1669 // We have a conflict: some names refer to protocols and others 1670 // refer to types. 1671 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0], 1672 identifiers[i], identifierLocs[i], 1673 protocols[i] != nullptr); 1674 1675 protocols.clear(); 1676 typeArgs.clear(); 1677 return; 1678 } 1679 1680 // Perform typo correction on the name. 1681 ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind); 1682 TypoCorrection corrected = 1683 CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]), 1684 lookupKind, S, nullptr, CCC, CTK_ErrorRecovery); 1685 if (corrected) { 1686 // Did we find a protocol? 1687 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) { 1688 diagnoseTypo(corrected, 1689 PDiag(diag::err_undeclared_protocol_suggest) 1690 << identifiers[i]); 1691 lookupKind = LookupObjCProtocolName; 1692 protocols[i] = proto; 1693 ++numProtocolsResolved; 1694 continue; 1695 } 1696 1697 // Did we find a type? 1698 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) { 1699 diagnoseTypo(corrected, 1700 PDiag(diag::err_unknown_typename_suggest) 1701 << identifiers[i]); 1702 lookupKind = LookupOrdinaryName; 1703 typeDecls[i] = typeDecl; 1704 ++numTypeDeclsResolved; 1705 continue; 1706 } 1707 1708 // Did we find an Objective-C class? 1709 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 1710 diagnoseTypo(corrected, 1711 PDiag(diag::err_unknown_type_or_class_name_suggest) 1712 << identifiers[i] << true); 1713 lookupKind = LookupOrdinaryName; 1714 typeDecls[i] = objcClass; 1715 ++numTypeDeclsResolved; 1716 continue; 1717 } 1718 } 1719 1720 // We couldn't find anything. 1721 Diag(identifierLocs[i], 1722 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing 1723 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol 1724 : diag::err_unknown_typename)) 1725 << identifiers[i]; 1726 protocols.clear(); 1727 typeArgs.clear(); 1728 return; 1729 } 1730 1731 // If all of the names were (corrected to) protocols, these were 1732 // protocol qualifiers. 1733 if (numProtocolsResolved == identifiers.size()) 1734 return resolvedAsProtocols(); 1735 1736 // Otherwise, all of the names were (corrected to) types. 1737 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?"); 1738 return resolvedAsTypeDecls(); 1739 } 1740 1741 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of 1742 /// a class method in its extension. 1743 /// 1744 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, 1745 ObjCInterfaceDecl *ID) { 1746 if (!ID) 1747 return; // Possibly due to previous error 1748 1749 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; 1750 for (auto *MD : ID->methods()) 1751 MethodMap[MD->getSelector()] = MD; 1752 1753 if (MethodMap.empty()) 1754 return; 1755 for (const auto *Method : CAT->methods()) { 1756 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; 1757 if (PrevMethod && 1758 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) && 1759 !MatchTwoMethodDeclarations(Method, PrevMethod)) { 1760 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 1761 << Method->getDeclName(); 1762 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 1763 } 1764 } 1765 } 1766 1767 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo; 1768 Sema::DeclGroupPtrTy 1769 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, 1770 ArrayRef<IdentifierLocPair> IdentList, 1771 const ParsedAttributesView &attrList) { 1772 SmallVector<Decl *, 8> DeclsInGroup; 1773 for (const IdentifierLocPair &IdentPair : IdentList) { 1774 IdentifierInfo *Ident = IdentPair.first; 1775 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second, 1776 forRedeclarationInCurContext()); 1777 ObjCProtocolDecl *PDecl 1778 = ObjCProtocolDecl::Create(Context, CurContext, Ident, 1779 IdentPair.second, AtProtocolLoc, 1780 PrevDecl); 1781 1782 PushOnScopeChains(PDecl, TUScope); 1783 CheckObjCDeclScope(PDecl); 1784 1785 ProcessDeclAttributeList(TUScope, PDecl, attrList); 1786 AddPragmaAttributes(TUScope, PDecl); 1787 1788 if (PrevDecl) 1789 mergeDeclAttributes(PDecl, PrevDecl); 1790 1791 DeclsInGroup.push_back(PDecl); 1792 } 1793 1794 return BuildDeclaratorGroup(DeclsInGroup); 1795 } 1796 1797 Decl *Sema::ActOnStartCategoryInterface( 1798 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, 1799 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, 1800 IdentifierInfo *CategoryName, SourceLocation CategoryLoc, 1801 Decl *const *ProtoRefs, unsigned NumProtoRefs, 1802 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, 1803 const ParsedAttributesView &AttrList) { 1804 ObjCCategoryDecl *CDecl; 1805 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 1806 1807 /// Check that class of this category is already completely declared. 1808 1809 if (!IDecl 1810 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 1811 diag::err_category_forward_interface, 1812 CategoryName == nullptr)) { 1813 // Create an invalid ObjCCategoryDecl to serve as context for 1814 // the enclosing method declarations. We mark the decl invalid 1815 // to make it clear that this isn't a valid AST. 1816 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 1817 ClassLoc, CategoryLoc, CategoryName, 1818 IDecl, typeParamList); 1819 CDecl->setInvalidDecl(); 1820 CurContext->addDecl(CDecl); 1821 1822 if (!IDecl) 1823 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 1824 return ActOnObjCContainerStartDefinition(CDecl); 1825 } 1826 1827 if (!CategoryName && IDecl->getImplementation()) { 1828 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; 1829 Diag(IDecl->getImplementation()->getLocation(), 1830 diag::note_implementation_declared); 1831 } 1832 1833 if (CategoryName) { 1834 /// Check for duplicate interface declaration for this category 1835 if (ObjCCategoryDecl *Previous 1836 = IDecl->FindCategoryDeclaration(CategoryName)) { 1837 // Class extensions can be declared multiple times, categories cannot. 1838 Diag(CategoryLoc, diag::warn_dup_category_def) 1839 << ClassName << CategoryName; 1840 Diag(Previous->getLocation(), diag::note_previous_definition); 1841 } 1842 } 1843 1844 // If we have a type parameter list, check it. 1845 if (typeParamList) { 1846 if (auto prevTypeParamList = IDecl->getTypeParamList()) { 1847 if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList, 1848 CategoryName 1849 ? TypeParamListContext::Category 1850 : TypeParamListContext::Extension)) 1851 typeParamList = nullptr; 1852 } else { 1853 Diag(typeParamList->getLAngleLoc(), 1854 diag::err_objc_parameterized_category_nonclass) 1855 << (CategoryName != nullptr) 1856 << ClassName 1857 << typeParamList->getSourceRange(); 1858 1859 typeParamList = nullptr; 1860 } 1861 } 1862 1863 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 1864 ClassLoc, CategoryLoc, CategoryName, IDecl, 1865 typeParamList); 1866 // FIXME: PushOnScopeChains? 1867 CurContext->addDecl(CDecl); 1868 1869 // Process the attributes before looking at protocols to ensure that the 1870 // availability attribute is attached to the category to provide availability 1871 // checking for protocol uses. 1872 ProcessDeclAttributeList(TUScope, CDecl, AttrList); 1873 AddPragmaAttributes(TUScope, CDecl); 1874 1875 if (NumProtoRefs) { 1876 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs, 1877 NumProtoRefs, ProtoLocs); 1878 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 1879 ProtoLocs, Context); 1880 // Protocols in the class extension belong to the class. 1881 if (CDecl->IsClassExtension()) 1882 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs, 1883 NumProtoRefs, Context); 1884 } 1885 1886 CheckObjCDeclScope(CDecl); 1887 return ActOnObjCContainerStartDefinition(CDecl); 1888 } 1889 1890 /// ActOnStartCategoryImplementation - Perform semantic checks on the 1891 /// category implementation declaration and build an ObjCCategoryImplDecl 1892 /// object. 1893 Decl *Sema::ActOnStartCategoryImplementation( 1894 SourceLocation AtCatImplLoc, 1895 IdentifierInfo *ClassName, SourceLocation ClassLoc, 1896 IdentifierInfo *CatName, SourceLocation CatLoc, 1897 const ParsedAttributesView &Attrs) { 1898 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 1899 ObjCCategoryDecl *CatIDecl = nullptr; 1900 if (IDecl && IDecl->hasDefinition()) { 1901 CatIDecl = IDecl->FindCategoryDeclaration(CatName); 1902 if (!CatIDecl) { 1903 // Category @implementation with no corresponding @interface. 1904 // Create and install one. 1905 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc, 1906 ClassLoc, CatLoc, 1907 CatName, IDecl, 1908 /*typeParamList=*/nullptr); 1909 CatIDecl->setImplicit(); 1910 } 1911 } 1912 1913 ObjCCategoryImplDecl *CDecl = 1914 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl, 1915 ClassLoc, AtCatImplLoc, CatLoc); 1916 /// Check that class of this category is already completely declared. 1917 if (!IDecl) { 1918 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 1919 CDecl->setInvalidDecl(); 1920 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 1921 diag::err_undef_interface)) { 1922 CDecl->setInvalidDecl(); 1923 } 1924 1925 ProcessDeclAttributeList(TUScope, CDecl, Attrs); 1926 AddPragmaAttributes(TUScope, CDecl); 1927 1928 // FIXME: PushOnScopeChains? 1929 CurContext->addDecl(CDecl); 1930 1931 // If the interface has the objc_runtime_visible attribute, we 1932 // cannot implement a category for it. 1933 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) { 1934 Diag(ClassLoc, diag::err_objc_runtime_visible_category) 1935 << IDecl->getDeclName(); 1936 } 1937 1938 /// Check that CatName, category name, is not used in another implementation. 1939 if (CatIDecl) { 1940 if (CatIDecl->getImplementation()) { 1941 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName 1942 << CatName; 1943 Diag(CatIDecl->getImplementation()->getLocation(), 1944 diag::note_previous_definition); 1945 CDecl->setInvalidDecl(); 1946 } else { 1947 CatIDecl->setImplementation(CDecl); 1948 // Warn on implementating category of deprecated class under 1949 // -Wdeprecated-implementations flag. 1950 DiagnoseObjCImplementedDeprecations(*this, CatIDecl, 1951 CDecl->getLocation()); 1952 } 1953 } 1954 1955 CheckObjCDeclScope(CDecl); 1956 return ActOnObjCContainerStartDefinition(CDecl); 1957 } 1958 1959 Decl *Sema::ActOnStartClassImplementation( 1960 SourceLocation AtClassImplLoc, 1961 IdentifierInfo *ClassName, SourceLocation ClassLoc, 1962 IdentifierInfo *SuperClassname, 1963 SourceLocation SuperClassLoc, 1964 const ParsedAttributesView &Attrs) { 1965 ObjCInterfaceDecl *IDecl = nullptr; 1966 // Check for another declaration kind with the same name. 1967 NamedDecl *PrevDecl 1968 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 1969 forRedeclarationInCurContext()); 1970 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1971 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 1972 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1973 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { 1974 // FIXME: This will produce an error if the definition of the interface has 1975 // been imported from a module but is not visible. 1976 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 1977 diag::warn_undef_interface); 1978 } else { 1979 // We did not find anything with the name ClassName; try to correct for 1980 // typos in the class name. 1981 ObjCInterfaceValidatorCCC CCC{}; 1982 TypoCorrection Corrected = 1983 CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc), 1984 LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError); 1985 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 1986 // Suggest the (potentially) correct interface name. Don't provide a 1987 // code-modification hint or use the typo name for recovery, because 1988 // this is just a warning. The program may actually be correct. 1989 diagnoseTypo(Corrected, 1990 PDiag(diag::warn_undef_interface_suggest) << ClassName, 1991 /*ErrorRecovery*/false); 1992 } else { 1993 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 1994 } 1995 } 1996 1997 // Check that super class name is valid class name 1998 ObjCInterfaceDecl *SDecl = nullptr; 1999 if (SuperClassname) { 2000 // Check if a different kind of symbol declared in this scope. 2001 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, 2002 LookupOrdinaryName); 2003 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 2004 Diag(SuperClassLoc, diag::err_redefinition_different_kind) 2005 << SuperClassname; 2006 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 2007 } else { 2008 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 2009 if (SDecl && !SDecl->hasDefinition()) 2010 SDecl = nullptr; 2011 if (!SDecl) 2012 Diag(SuperClassLoc, diag::err_undef_superclass) 2013 << SuperClassname << ClassName; 2014 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) { 2015 // This implementation and its interface do not have the same 2016 // super class. 2017 Diag(SuperClassLoc, diag::err_conflicting_super_class) 2018 << SDecl->getDeclName(); 2019 Diag(SDecl->getLocation(), diag::note_previous_definition); 2020 } 2021 } 2022 } 2023 2024 if (!IDecl) { 2025 // Legacy case of @implementation with no corresponding @interface. 2026 // Build, chain & install the interface decl into the identifier. 2027 2028 // FIXME: Do we support attributes on the @implementation? If so we should 2029 // copy them over. 2030 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, 2031 ClassName, /*typeParamList=*/nullptr, 2032 /*PrevDecl=*/nullptr, ClassLoc, 2033 true); 2034 AddPragmaAttributes(TUScope, IDecl); 2035 IDecl->startDefinition(); 2036 if (SDecl) { 2037 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo( 2038 Context.getObjCInterfaceType(SDecl), 2039 SuperClassLoc)); 2040 IDecl->setEndOfDefinitionLoc(SuperClassLoc); 2041 } else { 2042 IDecl->setEndOfDefinitionLoc(ClassLoc); 2043 } 2044 2045 PushOnScopeChains(IDecl, TUScope); 2046 } else { 2047 // Mark the interface as being completed, even if it was just as 2048 // @class ....; 2049 // declaration; the user cannot reopen it. 2050 if (!IDecl->hasDefinition()) 2051 IDecl->startDefinition(); 2052 } 2053 2054 ObjCImplementationDecl* IMPDecl = 2055 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl, 2056 ClassLoc, AtClassImplLoc, SuperClassLoc); 2057 2058 ProcessDeclAttributeList(TUScope, IMPDecl, Attrs); 2059 AddPragmaAttributes(TUScope, IMPDecl); 2060 2061 if (CheckObjCDeclScope(IMPDecl)) 2062 return ActOnObjCContainerStartDefinition(IMPDecl); 2063 2064 // Check that there is no duplicate implementation of this class. 2065 if (IDecl->getImplementation()) { 2066 // FIXME: Don't leak everything! 2067 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; 2068 Diag(IDecl->getImplementation()->getLocation(), 2069 diag::note_previous_definition); 2070 IMPDecl->setInvalidDecl(); 2071 } else { // add it to the list. 2072 IDecl->setImplementation(IMPDecl); 2073 PushOnScopeChains(IMPDecl, TUScope); 2074 // Warn on implementating deprecated class under 2075 // -Wdeprecated-implementations flag. 2076 DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation()); 2077 } 2078 2079 // If the superclass has the objc_runtime_visible attribute, we 2080 // cannot implement a subclass of it. 2081 if (IDecl->getSuperClass() && 2082 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) { 2083 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass) 2084 << IDecl->getDeclName() 2085 << IDecl->getSuperClass()->getDeclName(); 2086 } 2087 2088 return ActOnObjCContainerStartDefinition(IMPDecl); 2089 } 2090 2091 Sema::DeclGroupPtrTy 2092 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) { 2093 SmallVector<Decl *, 64> DeclsInGroup; 2094 DeclsInGroup.reserve(Decls.size() + 1); 2095 2096 for (unsigned i = 0, e = Decls.size(); i != e; ++i) { 2097 Decl *Dcl = Decls[i]; 2098 if (!Dcl) 2099 continue; 2100 if (Dcl->getDeclContext()->isFileContext()) 2101 Dcl->setTopLevelDeclInObjCContainer(); 2102 DeclsInGroup.push_back(Dcl); 2103 } 2104 2105 DeclsInGroup.push_back(ObjCImpDecl); 2106 2107 return BuildDeclaratorGroup(DeclsInGroup); 2108 } 2109 2110 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, 2111 ObjCIvarDecl **ivars, unsigned numIvars, 2112 SourceLocation RBrace) { 2113 assert(ImpDecl && "missing implementation decl"); 2114 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); 2115 if (!IDecl) 2116 return; 2117 /// Check case of non-existing \@interface decl. 2118 /// (legacy objective-c \@implementation decl without an \@interface decl). 2119 /// Add implementations's ivar to the synthesize class's ivar list. 2120 if (IDecl->isImplicitInterfaceDecl()) { 2121 IDecl->setEndOfDefinitionLoc(RBrace); 2122 // Add ivar's to class's DeclContext. 2123 for (unsigned i = 0, e = numIvars; i != e; ++i) { 2124 ivars[i]->setLexicalDeclContext(ImpDecl); 2125 IDecl->makeDeclVisibleInContext(ivars[i]); 2126 ImpDecl->addDecl(ivars[i]); 2127 } 2128 2129 return; 2130 } 2131 // If implementation has empty ivar list, just return. 2132 if (numIvars == 0) 2133 return; 2134 2135 assert(ivars && "missing @implementation ivars"); 2136 if (LangOpts.ObjCRuntime.isNonFragile()) { 2137 if (ImpDecl->getSuperClass()) 2138 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); 2139 for (unsigned i = 0; i < numIvars; i++) { 2140 ObjCIvarDecl* ImplIvar = ivars[i]; 2141 if (const ObjCIvarDecl *ClsIvar = 2142 IDecl->getIvarDecl(ImplIvar->getIdentifier())) { 2143 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 2144 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 2145 continue; 2146 } 2147 // Check class extensions (unnamed categories) for duplicate ivars. 2148 for (const auto *CDecl : IDecl->visible_extensions()) { 2149 if (const ObjCIvarDecl *ClsExtIvar = 2150 CDecl->getIvarDecl(ImplIvar->getIdentifier())) { 2151 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 2152 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); 2153 continue; 2154 } 2155 } 2156 // Instance ivar to Implementation's DeclContext. 2157 ImplIvar->setLexicalDeclContext(ImpDecl); 2158 IDecl->makeDeclVisibleInContext(ImplIvar); 2159 ImpDecl->addDecl(ImplIvar); 2160 } 2161 return; 2162 } 2163 // Check interface's Ivar list against those in the implementation. 2164 // names and types must match. 2165 // 2166 unsigned j = 0; 2167 ObjCInterfaceDecl::ivar_iterator 2168 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); 2169 for (; numIvars > 0 && IVI != IVE; ++IVI) { 2170 ObjCIvarDecl* ImplIvar = ivars[j++]; 2171 ObjCIvarDecl* ClsIvar = *IVI; 2172 assert (ImplIvar && "missing implementation ivar"); 2173 assert (ClsIvar && "missing class ivar"); 2174 2175 // First, make sure the types match. 2176 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) { 2177 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) 2178 << ImplIvar->getIdentifier() 2179 << ImplIvar->getType() << ClsIvar->getType(); 2180 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 2181 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && 2182 ImplIvar->getBitWidthValue(Context) != 2183 ClsIvar->getBitWidthValue(Context)) { 2184 Diag(ImplIvar->getBitWidth()->getBeginLoc(), 2185 diag::err_conflicting_ivar_bitwidth) 2186 << ImplIvar->getIdentifier(); 2187 Diag(ClsIvar->getBitWidth()->getBeginLoc(), 2188 diag::note_previous_definition); 2189 } 2190 // Make sure the names are identical. 2191 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { 2192 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) 2193 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); 2194 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 2195 } 2196 --numIvars; 2197 } 2198 2199 if (numIvars > 0) 2200 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count); 2201 else if (IVI != IVE) 2202 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count); 2203 } 2204 2205 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc, 2206 ObjCMethodDecl *method, 2207 bool &IncompleteImpl, 2208 unsigned DiagID, 2209 NamedDecl *NeededFor = nullptr) { 2210 // No point warning no definition of method which is 'unavailable'. 2211 if (method->getAvailability() == AR_Unavailable) 2212 return; 2213 2214 // FIXME: For now ignore 'IncompleteImpl'. 2215 // Previously we grouped all unimplemented methods under a single 2216 // warning, but some users strongly voiced that they would prefer 2217 // separate warnings. We will give that approach a try, as that 2218 // matches what we do with protocols. 2219 { 2220 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID); 2221 B << method; 2222 if (NeededFor) 2223 B << NeededFor; 2224 } 2225 2226 // Issue a note to the original declaration. 2227 SourceLocation MethodLoc = method->getBeginLoc(); 2228 if (MethodLoc.isValid()) 2229 S.Diag(MethodLoc, diag::note_method_declared_at) << method; 2230 } 2231 2232 /// Determines if type B can be substituted for type A. Returns true if we can 2233 /// guarantee that anything that the user will do to an object of type A can 2234 /// also be done to an object of type B. This is trivially true if the two 2235 /// types are the same, or if B is a subclass of A. It becomes more complex 2236 /// in cases where protocols are involved. 2237 /// 2238 /// Object types in Objective-C describe the minimum requirements for an 2239 /// object, rather than providing a complete description of a type. For 2240 /// example, if A is a subclass of B, then B* may refer to an instance of A. 2241 /// The principle of substitutability means that we may use an instance of A 2242 /// anywhere that we may use an instance of B - it will implement all of the 2243 /// ivars of B and all of the methods of B. 2244 /// 2245 /// This substitutability is important when type checking methods, because 2246 /// the implementation may have stricter type definitions than the interface. 2247 /// The interface specifies minimum requirements, but the implementation may 2248 /// have more accurate ones. For example, a method may privately accept 2249 /// instances of B, but only publish that it accepts instances of A. Any 2250 /// object passed to it will be type checked against B, and so will implicitly 2251 /// by a valid A*. Similarly, a method may return a subclass of the class that 2252 /// it is declared as returning. 2253 /// 2254 /// This is most important when considering subclassing. A method in a 2255 /// subclass must accept any object as an argument that its superclass's 2256 /// implementation accepts. It may, however, accept a more general type 2257 /// without breaking substitutability (i.e. you can still use the subclass 2258 /// anywhere that you can use the superclass, but not vice versa). The 2259 /// converse requirement applies to return types: the return type for a 2260 /// subclass method must be a valid object of the kind that the superclass 2261 /// advertises, but it may be specified more accurately. This avoids the need 2262 /// for explicit down-casting by callers. 2263 /// 2264 /// Note: This is a stricter requirement than for assignment. 2265 static bool isObjCTypeSubstitutable(ASTContext &Context, 2266 const ObjCObjectPointerType *A, 2267 const ObjCObjectPointerType *B, 2268 bool rejectId) { 2269 // Reject a protocol-unqualified id. 2270 if (rejectId && B->isObjCIdType()) return false; 2271 2272 // If B is a qualified id, then A must also be a qualified id and it must 2273 // implement all of the protocols in B. It may not be a qualified class. 2274 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a 2275 // stricter definition so it is not substitutable for id<A>. 2276 if (B->isObjCQualifiedIdType()) { 2277 return A->isObjCQualifiedIdType() && 2278 Context.ObjCQualifiedIdTypesAreCompatible(A, B, false); 2279 } 2280 2281 /* 2282 // id is a special type that bypasses type checking completely. We want a 2283 // warning when it is used in one place but not another. 2284 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; 2285 2286 2287 // If B is a qualified id, then A must also be a qualified id (which it isn't 2288 // if we've got this far) 2289 if (B->isObjCQualifiedIdType()) return false; 2290 */ 2291 2292 // Now we know that A and B are (potentially-qualified) class types. The 2293 // normal rules for assignment apply. 2294 return Context.canAssignObjCInterfaces(A, B); 2295 } 2296 2297 static SourceRange getTypeRange(TypeSourceInfo *TSI) { 2298 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); 2299 } 2300 2301 /// Determine whether two set of Objective-C declaration qualifiers conflict. 2302 static bool objcModifiersConflict(Decl::ObjCDeclQualifier x, 2303 Decl::ObjCDeclQualifier y) { 2304 return (x & ~Decl::OBJC_TQ_CSNullability) != 2305 (y & ~Decl::OBJC_TQ_CSNullability); 2306 } 2307 2308 static bool CheckMethodOverrideReturn(Sema &S, 2309 ObjCMethodDecl *MethodImpl, 2310 ObjCMethodDecl *MethodDecl, 2311 bool IsProtocolMethodDecl, 2312 bool IsOverridingMode, 2313 bool Warn) { 2314 if (IsProtocolMethodDecl && 2315 objcModifiersConflict(MethodDecl->getObjCDeclQualifier(), 2316 MethodImpl->getObjCDeclQualifier())) { 2317 if (Warn) { 2318 S.Diag(MethodImpl->getLocation(), 2319 (IsOverridingMode 2320 ? diag::warn_conflicting_overriding_ret_type_modifiers 2321 : diag::warn_conflicting_ret_type_modifiers)) 2322 << MethodImpl->getDeclName() 2323 << MethodImpl->getReturnTypeSourceRange(); 2324 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) 2325 << MethodDecl->getReturnTypeSourceRange(); 2326 } 2327 else 2328 return false; 2329 } 2330 if (Warn && IsOverridingMode && 2331 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) && 2332 !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(), 2333 MethodDecl->getReturnType(), 2334 false)) { 2335 auto nullabilityMethodImpl = 2336 *MethodImpl->getReturnType()->getNullability(S.Context); 2337 auto nullabilityMethodDecl = 2338 *MethodDecl->getReturnType()->getNullability(S.Context); 2339 S.Diag(MethodImpl->getLocation(), 2340 diag::warn_conflicting_nullability_attr_overriding_ret_types) 2341 << DiagNullabilityKind( 2342 nullabilityMethodImpl, 2343 ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2344 != 0)) 2345 << DiagNullabilityKind( 2346 nullabilityMethodDecl, 2347 ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2348 != 0)); 2349 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 2350 } 2351 2352 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(), 2353 MethodDecl->getReturnType())) 2354 return true; 2355 if (!Warn) 2356 return false; 2357 2358 unsigned DiagID = 2359 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types 2360 : diag::warn_conflicting_ret_types; 2361 2362 // Mismatches between ObjC pointers go into a different warning 2363 // category, and sometimes they're even completely explicitly allowed. 2364 if (const ObjCObjectPointerType *ImplPtrTy = 2365 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) { 2366 if (const ObjCObjectPointerType *IfacePtrTy = 2367 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) { 2368 // Allow non-matching return types as long as they don't violate 2369 // the principle of substitutability. Specifically, we permit 2370 // return types that are subclasses of the declared return type, 2371 // or that are more-qualified versions of the declared type. 2372 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) 2373 return false; 2374 2375 DiagID = 2376 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types 2377 : diag::warn_non_covariant_ret_types; 2378 } 2379 } 2380 2381 S.Diag(MethodImpl->getLocation(), DiagID) 2382 << MethodImpl->getDeclName() << MethodDecl->getReturnType() 2383 << MethodImpl->getReturnType() 2384 << MethodImpl->getReturnTypeSourceRange(); 2385 S.Diag(MethodDecl->getLocation(), IsOverridingMode 2386 ? diag::note_previous_declaration 2387 : diag::note_previous_definition) 2388 << MethodDecl->getReturnTypeSourceRange(); 2389 return false; 2390 } 2391 2392 static bool CheckMethodOverrideParam(Sema &S, 2393 ObjCMethodDecl *MethodImpl, 2394 ObjCMethodDecl *MethodDecl, 2395 ParmVarDecl *ImplVar, 2396 ParmVarDecl *IfaceVar, 2397 bool IsProtocolMethodDecl, 2398 bool IsOverridingMode, 2399 bool Warn) { 2400 if (IsProtocolMethodDecl && 2401 objcModifiersConflict(ImplVar->getObjCDeclQualifier(), 2402 IfaceVar->getObjCDeclQualifier())) { 2403 if (Warn) { 2404 if (IsOverridingMode) 2405 S.Diag(ImplVar->getLocation(), 2406 diag::warn_conflicting_overriding_param_modifiers) 2407 << getTypeRange(ImplVar->getTypeSourceInfo()) 2408 << MethodImpl->getDeclName(); 2409 else S.Diag(ImplVar->getLocation(), 2410 diag::warn_conflicting_param_modifiers) 2411 << getTypeRange(ImplVar->getTypeSourceInfo()) 2412 << MethodImpl->getDeclName(); 2413 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) 2414 << getTypeRange(IfaceVar->getTypeSourceInfo()); 2415 } 2416 else 2417 return false; 2418 } 2419 2420 QualType ImplTy = ImplVar->getType(); 2421 QualType IfaceTy = IfaceVar->getType(); 2422 if (Warn && IsOverridingMode && 2423 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) && 2424 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) { 2425 S.Diag(ImplVar->getLocation(), 2426 diag::warn_conflicting_nullability_attr_overriding_param_types) 2427 << DiagNullabilityKind( 2428 *ImplTy->getNullability(S.Context), 2429 ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2430 != 0)) 2431 << DiagNullabilityKind( 2432 *IfaceTy->getNullability(S.Context), 2433 ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2434 != 0)); 2435 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration); 2436 } 2437 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) 2438 return true; 2439 2440 if (!Warn) 2441 return false; 2442 unsigned DiagID = 2443 IsOverridingMode ? diag::warn_conflicting_overriding_param_types 2444 : diag::warn_conflicting_param_types; 2445 2446 // Mismatches between ObjC pointers go into a different warning 2447 // category, and sometimes they're even completely explicitly allowed.. 2448 if (const ObjCObjectPointerType *ImplPtrTy = 2449 ImplTy->getAs<ObjCObjectPointerType>()) { 2450 if (const ObjCObjectPointerType *IfacePtrTy = 2451 IfaceTy->getAs<ObjCObjectPointerType>()) { 2452 // Allow non-matching argument types as long as they don't 2453 // violate the principle of substitutability. Specifically, the 2454 // implementation must accept any objects that the superclass 2455 // accepts, however it may also accept others. 2456 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) 2457 return false; 2458 2459 DiagID = 2460 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types 2461 : diag::warn_non_contravariant_param_types; 2462 } 2463 } 2464 2465 S.Diag(ImplVar->getLocation(), DiagID) 2466 << getTypeRange(ImplVar->getTypeSourceInfo()) 2467 << MethodImpl->getDeclName() << IfaceTy << ImplTy; 2468 S.Diag(IfaceVar->getLocation(), 2469 (IsOverridingMode ? diag::note_previous_declaration 2470 : diag::note_previous_definition)) 2471 << getTypeRange(IfaceVar->getTypeSourceInfo()); 2472 return false; 2473 } 2474 2475 /// In ARC, check whether the conventional meanings of the two methods 2476 /// match. If they don't, it's a hard error. 2477 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, 2478 ObjCMethodDecl *decl) { 2479 ObjCMethodFamily implFamily = impl->getMethodFamily(); 2480 ObjCMethodFamily declFamily = decl->getMethodFamily(); 2481 if (implFamily == declFamily) return false; 2482 2483 // Since conventions are sorted by selector, the only possibility is 2484 // that the types differ enough to cause one selector or the other 2485 // to fall out of the family. 2486 assert(implFamily == OMF_None || declFamily == OMF_None); 2487 2488 // No further diagnostics required on invalid declarations. 2489 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; 2490 2491 const ObjCMethodDecl *unmatched = impl; 2492 ObjCMethodFamily family = declFamily; 2493 unsigned errorID = diag::err_arc_lost_method_convention; 2494 unsigned noteID = diag::note_arc_lost_method_convention; 2495 if (declFamily == OMF_None) { 2496 unmatched = decl; 2497 family = implFamily; 2498 errorID = diag::err_arc_gained_method_convention; 2499 noteID = diag::note_arc_gained_method_convention; 2500 } 2501 2502 // Indexes into a %select clause in the diagnostic. 2503 enum FamilySelector { 2504 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new 2505 }; 2506 FamilySelector familySelector = FamilySelector(); 2507 2508 switch (family) { 2509 case OMF_None: llvm_unreachable("logic error, no method convention"); 2510 case OMF_retain: 2511 case OMF_release: 2512 case OMF_autorelease: 2513 case OMF_dealloc: 2514 case OMF_finalize: 2515 case OMF_retainCount: 2516 case OMF_self: 2517 case OMF_initialize: 2518 case OMF_performSelector: 2519 // Mismatches for these methods don't change ownership 2520 // conventions, so we don't care. 2521 return false; 2522 2523 case OMF_init: familySelector = F_init; break; 2524 case OMF_alloc: familySelector = F_alloc; break; 2525 case OMF_copy: familySelector = F_copy; break; 2526 case OMF_mutableCopy: familySelector = F_mutableCopy; break; 2527 case OMF_new: familySelector = F_new; break; 2528 } 2529 2530 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; 2531 ReasonSelector reasonSelector; 2532 2533 // The only reason these methods don't fall within their families is 2534 // due to unusual result types. 2535 if (unmatched->getReturnType()->isObjCObjectPointerType()) { 2536 reasonSelector = R_UnrelatedReturn; 2537 } else { 2538 reasonSelector = R_NonObjectReturn; 2539 } 2540 2541 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector); 2542 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector); 2543 2544 return true; 2545 } 2546 2547 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, 2548 ObjCMethodDecl *MethodDecl, 2549 bool IsProtocolMethodDecl) { 2550 if (getLangOpts().ObjCAutoRefCount && 2551 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) 2552 return; 2553 2554 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 2555 IsProtocolMethodDecl, false, 2556 true); 2557 2558 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 2559 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 2560 EF = MethodDecl->param_end(); 2561 IM != EM && IF != EF; ++IM, ++IF) { 2562 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, 2563 IsProtocolMethodDecl, false, true); 2564 } 2565 2566 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { 2567 Diag(ImpMethodDecl->getLocation(), 2568 diag::warn_conflicting_variadic); 2569 Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 2570 } 2571 } 2572 2573 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, 2574 ObjCMethodDecl *Overridden, 2575 bool IsProtocolMethodDecl) { 2576 2577 CheckMethodOverrideReturn(*this, Method, Overridden, 2578 IsProtocolMethodDecl, true, 2579 true); 2580 2581 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), 2582 IF = Overridden->param_begin(), EM = Method->param_end(), 2583 EF = Overridden->param_end(); 2584 IM != EM && IF != EF; ++IM, ++IF) { 2585 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF, 2586 IsProtocolMethodDecl, true, true); 2587 } 2588 2589 if (Method->isVariadic() != Overridden->isVariadic()) { 2590 Diag(Method->getLocation(), 2591 diag::warn_conflicting_overriding_variadic); 2592 Diag(Overridden->getLocation(), diag::note_previous_declaration); 2593 } 2594 } 2595 2596 /// WarnExactTypedMethods - This routine issues a warning if method 2597 /// implementation declaration matches exactly that of its declaration. 2598 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, 2599 ObjCMethodDecl *MethodDecl, 2600 bool IsProtocolMethodDecl) { 2601 // don't issue warning when protocol method is optional because primary 2602 // class is not required to implement it and it is safe for protocol 2603 // to implement it. 2604 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional) 2605 return; 2606 // don't issue warning when primary class's method is 2607 // depecated/unavailable. 2608 if (MethodDecl->hasAttr<UnavailableAttr>() || 2609 MethodDecl->hasAttr<DeprecatedAttr>()) 2610 return; 2611 2612 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 2613 IsProtocolMethodDecl, false, false); 2614 if (match) 2615 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 2616 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 2617 EF = MethodDecl->param_end(); 2618 IM != EM && IF != EF; ++IM, ++IF) { 2619 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, 2620 *IM, *IF, 2621 IsProtocolMethodDecl, false, false); 2622 if (!match) 2623 break; 2624 } 2625 if (match) 2626 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); 2627 if (match) 2628 match = !(MethodDecl->isClassMethod() && 2629 MethodDecl->getSelector() == GetNullarySelector("load", Context)); 2630 2631 if (match) { 2632 Diag(ImpMethodDecl->getLocation(), 2633 diag::warn_category_method_impl_match); 2634 Diag(MethodDecl->getLocation(), diag::note_method_declared_at) 2635 << MethodDecl->getDeclName(); 2636 } 2637 } 2638 2639 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely 2640 /// improve the efficiency of selector lookups and type checking by associating 2641 /// with each protocol / interface / category the flattened instance tables. If 2642 /// we used an immutable set to keep the table then it wouldn't add significant 2643 /// memory cost and it would be handy for lookups. 2644 2645 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet; 2646 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet; 2647 2648 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl, 2649 ProtocolNameSet &PNS) { 2650 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) 2651 PNS.insert(PDecl->getIdentifier()); 2652 for (const auto *PI : PDecl->protocols()) 2653 findProtocolsWithExplicitImpls(PI, PNS); 2654 } 2655 2656 /// Recursively populates a set with all conformed protocols in a class 2657 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation' 2658 /// attribute. 2659 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super, 2660 ProtocolNameSet &PNS) { 2661 if (!Super) 2662 return; 2663 2664 for (const auto *I : Super->all_referenced_protocols()) 2665 findProtocolsWithExplicitImpls(I, PNS); 2666 2667 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS); 2668 } 2669 2670 /// CheckProtocolMethodDefs - This routine checks unimplemented methods 2671 /// Declared in protocol, and those referenced by it. 2672 static void CheckProtocolMethodDefs(Sema &S, 2673 SourceLocation ImpLoc, 2674 ObjCProtocolDecl *PDecl, 2675 bool& IncompleteImpl, 2676 const Sema::SelectorSet &InsMap, 2677 const Sema::SelectorSet &ClsMap, 2678 ObjCContainerDecl *CDecl, 2679 LazyProtocolNameSet &ProtocolsExplictImpl) { 2680 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl); 2681 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() 2682 : dyn_cast<ObjCInterfaceDecl>(CDecl); 2683 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); 2684 2685 ObjCInterfaceDecl *Super = IDecl->getSuperClass(); 2686 ObjCInterfaceDecl *NSIDecl = nullptr; 2687 2688 // If this protocol is marked 'objc_protocol_requires_explicit_implementation' 2689 // then we should check if any class in the super class hierarchy also 2690 // conforms to this protocol, either directly or via protocol inheritance. 2691 // If so, we can skip checking this protocol completely because we 2692 // know that a parent class already satisfies this protocol. 2693 // 2694 // Note: we could generalize this logic for all protocols, and merely 2695 // add the limit on looking at the super class chain for just 2696 // specially marked protocols. This may be a good optimization. This 2697 // change is restricted to 'objc_protocol_requires_explicit_implementation' 2698 // protocols for now for controlled evaluation. 2699 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) { 2700 if (!ProtocolsExplictImpl) { 2701 ProtocolsExplictImpl.reset(new ProtocolNameSet); 2702 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl); 2703 } 2704 if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) != 2705 ProtocolsExplictImpl->end()) 2706 return; 2707 2708 // If no super class conforms to the protocol, we should not search 2709 // for methods in the super class to implicitly satisfy the protocol. 2710 Super = nullptr; 2711 } 2712 2713 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) { 2714 // check to see if class implements forwardInvocation method and objects 2715 // of this class are derived from 'NSProxy' so that to forward requests 2716 // from one object to another. 2717 // Under such conditions, which means that every method possible is 2718 // implemented in the class, we should not issue "Method definition not 2719 // found" warnings. 2720 // FIXME: Use a general GetUnarySelector method for this. 2721 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation"); 2722 Selector fISelector = S.Context.Selectors.getSelector(1, &II); 2723 if (InsMap.count(fISelector)) 2724 // Is IDecl derived from 'NSProxy'? If so, no instance methods 2725 // need be implemented in the implementation. 2726 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy")); 2727 } 2728 2729 // If this is a forward protocol declaration, get its definition. 2730 if (!PDecl->isThisDeclarationADefinition() && 2731 PDecl->getDefinition()) 2732 PDecl = PDecl->getDefinition(); 2733 2734 // If a method lookup fails locally we still need to look and see if 2735 // the method was implemented by a base class or an inherited 2736 // protocol. This lookup is slow, but occurs rarely in correct code 2737 // and otherwise would terminate in a warning. 2738 2739 // check unimplemented instance methods. 2740 if (!NSIDecl) 2741 for (auto *method : PDecl->instance_methods()) { 2742 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 2743 !method->isPropertyAccessor() && 2744 !InsMap.count(method->getSelector()) && 2745 (!Super || !Super->lookupMethod(method->getSelector(), 2746 true /* instance */, 2747 false /* shallowCategory */, 2748 true /* followsSuper */, 2749 nullptr /* category */))) { 2750 // If a method is not implemented in the category implementation but 2751 // has been declared in its primary class, superclass, 2752 // or in one of their protocols, no need to issue the warning. 2753 // This is because method will be implemented in the primary class 2754 // or one of its super class implementation. 2755 2756 // Ugly, but necessary. Method declared in protocol might have 2757 // have been synthesized due to a property declared in the class which 2758 // uses the protocol. 2759 if (ObjCMethodDecl *MethodInClass = 2760 IDecl->lookupMethod(method->getSelector(), 2761 true /* instance */, 2762 true /* shallowCategoryLookup */, 2763 false /* followSuper */)) 2764 if (C || MethodInClass->isPropertyAccessor()) 2765 continue; 2766 unsigned DIAG = diag::warn_unimplemented_protocol_method; 2767 if (!S.Diags.isIgnored(DIAG, ImpLoc)) { 2768 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, 2769 PDecl); 2770 } 2771 } 2772 } 2773 // check unimplemented class methods 2774 for (auto *method : PDecl->class_methods()) { 2775 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 2776 !ClsMap.count(method->getSelector()) && 2777 (!Super || !Super->lookupMethod(method->getSelector(), 2778 false /* class method */, 2779 false /* shallowCategoryLookup */, 2780 true /* followSuper */, 2781 nullptr /* category */))) { 2782 // See above comment for instance method lookups. 2783 if (C && IDecl->lookupMethod(method->getSelector(), 2784 false /* class */, 2785 true /* shallowCategoryLookup */, 2786 false /* followSuper */)) 2787 continue; 2788 2789 unsigned DIAG = diag::warn_unimplemented_protocol_method; 2790 if (!S.Diags.isIgnored(DIAG, ImpLoc)) { 2791 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl); 2792 } 2793 } 2794 } 2795 // Check on this protocols's referenced protocols, recursively. 2796 for (auto *PI : PDecl->protocols()) 2797 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap, 2798 CDecl, ProtocolsExplictImpl); 2799 } 2800 2801 /// MatchAllMethodDeclarations - Check methods declared in interface 2802 /// or protocol against those declared in their implementations. 2803 /// 2804 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap, 2805 const SelectorSet &ClsMap, 2806 SelectorSet &InsMapSeen, 2807 SelectorSet &ClsMapSeen, 2808 ObjCImplDecl* IMPDecl, 2809 ObjCContainerDecl* CDecl, 2810 bool &IncompleteImpl, 2811 bool ImmediateClass, 2812 bool WarnCategoryMethodImpl) { 2813 // Check and see if instance methods in class interface have been 2814 // implemented in the implementation class. If so, their types match. 2815 for (auto *I : CDecl->instance_methods()) { 2816 if (!InsMapSeen.insert(I->getSelector()).second) 2817 continue; 2818 if (!I->isPropertyAccessor() && 2819 !InsMap.count(I->getSelector())) { 2820 if (ImmediateClass) 2821 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl, 2822 diag::warn_undef_method_impl); 2823 continue; 2824 } else { 2825 ObjCMethodDecl *ImpMethodDecl = 2826 IMPDecl->getInstanceMethod(I->getSelector()); 2827 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) && 2828 "Expected to find the method through lookup as well"); 2829 // ImpMethodDecl may be null as in a @dynamic property. 2830 if (ImpMethodDecl) { 2831 // Skip property accessor function stubs. 2832 if (ImpMethodDecl->isSynthesizedAccessorStub()) 2833 continue; 2834 if (!WarnCategoryMethodImpl) 2835 WarnConflictingTypedMethods(ImpMethodDecl, I, 2836 isa<ObjCProtocolDecl>(CDecl)); 2837 else if (!I->isPropertyAccessor()) 2838 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl)); 2839 } 2840 } 2841 } 2842 2843 // Check and see if class methods in class interface have been 2844 // implemented in the implementation class. If so, their types match. 2845 for (auto *I : CDecl->class_methods()) { 2846 if (!ClsMapSeen.insert(I->getSelector()).second) 2847 continue; 2848 if (!I->isPropertyAccessor() && 2849 !ClsMap.count(I->getSelector())) { 2850 if (ImmediateClass) 2851 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl, 2852 diag::warn_undef_method_impl); 2853 } else { 2854 ObjCMethodDecl *ImpMethodDecl = 2855 IMPDecl->getClassMethod(I->getSelector()); 2856 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) && 2857 "Expected to find the method through lookup as well"); 2858 // ImpMethodDecl may be null as in a @dynamic property. 2859 if (ImpMethodDecl) { 2860 // Skip property accessor function stubs. 2861 if (ImpMethodDecl->isSynthesizedAccessorStub()) 2862 continue; 2863 if (!WarnCategoryMethodImpl) 2864 WarnConflictingTypedMethods(ImpMethodDecl, I, 2865 isa<ObjCProtocolDecl>(CDecl)); 2866 else if (!I->isPropertyAccessor()) 2867 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl)); 2868 } 2869 } 2870 } 2871 2872 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) { 2873 // Also, check for methods declared in protocols inherited by 2874 // this protocol. 2875 for (auto *PI : PD->protocols()) 2876 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2877 IMPDecl, PI, IncompleteImpl, false, 2878 WarnCategoryMethodImpl); 2879 } 2880 2881 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 2882 // when checking that methods in implementation match their declaration, 2883 // i.e. when WarnCategoryMethodImpl is false, check declarations in class 2884 // extension; as well as those in categories. 2885 if (!WarnCategoryMethodImpl) { 2886 for (auto *Cat : I->visible_categories()) 2887 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2888 IMPDecl, Cat, IncompleteImpl, 2889 ImmediateClass && Cat->IsClassExtension(), 2890 WarnCategoryMethodImpl); 2891 } else { 2892 // Also methods in class extensions need be looked at next. 2893 for (auto *Ext : I->visible_extensions()) 2894 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2895 IMPDecl, Ext, IncompleteImpl, false, 2896 WarnCategoryMethodImpl); 2897 } 2898 2899 // Check for any implementation of a methods declared in protocol. 2900 for (auto *PI : I->all_referenced_protocols()) 2901 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2902 IMPDecl, PI, IncompleteImpl, false, 2903 WarnCategoryMethodImpl); 2904 2905 // FIXME. For now, we are not checking for exact match of methods 2906 // in category implementation and its primary class's super class. 2907 if (!WarnCategoryMethodImpl && I->getSuperClass()) 2908 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2909 IMPDecl, 2910 I->getSuperClass(), IncompleteImpl, false); 2911 } 2912 } 2913 2914 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in 2915 /// category matches with those implemented in its primary class and 2916 /// warns each time an exact match is found. 2917 void Sema::CheckCategoryVsClassMethodMatches( 2918 ObjCCategoryImplDecl *CatIMPDecl) { 2919 // Get category's primary class. 2920 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); 2921 if (!CatDecl) 2922 return; 2923 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); 2924 if (!IDecl) 2925 return; 2926 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass(); 2927 SelectorSet InsMap, ClsMap; 2928 2929 for (const auto *I : CatIMPDecl->instance_methods()) { 2930 Selector Sel = I->getSelector(); 2931 // When checking for methods implemented in the category, skip over 2932 // those declared in category class's super class. This is because 2933 // the super class must implement the method. 2934 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true)) 2935 continue; 2936 InsMap.insert(Sel); 2937 } 2938 2939 for (const auto *I : CatIMPDecl->class_methods()) { 2940 Selector Sel = I->getSelector(); 2941 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false)) 2942 continue; 2943 ClsMap.insert(Sel); 2944 } 2945 if (InsMap.empty() && ClsMap.empty()) 2946 return; 2947 2948 SelectorSet InsMapSeen, ClsMapSeen; 2949 bool IncompleteImpl = false; 2950 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2951 CatIMPDecl, IDecl, 2952 IncompleteImpl, false, 2953 true /*WarnCategoryMethodImpl*/); 2954 } 2955 2956 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, 2957 ObjCContainerDecl* CDecl, 2958 bool IncompleteImpl) { 2959 SelectorSet InsMap; 2960 // Check and see if instance methods in class interface have been 2961 // implemented in the implementation class. 2962 for (const auto *I : IMPDecl->instance_methods()) 2963 InsMap.insert(I->getSelector()); 2964 2965 // Add the selectors for getters/setters of @dynamic properties. 2966 for (const auto *PImpl : IMPDecl->property_impls()) { 2967 // We only care about @dynamic implementations. 2968 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic) 2969 continue; 2970 2971 const auto *P = PImpl->getPropertyDecl(); 2972 if (!P) continue; 2973 2974 InsMap.insert(P->getGetterName()); 2975 if (!P->getSetterName().isNull()) 2976 InsMap.insert(P->getSetterName()); 2977 } 2978 2979 // Check and see if properties declared in the interface have either 1) 2980 // an implementation or 2) there is a @synthesize/@dynamic implementation 2981 // of the property in the @implementation. 2982 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) { 2983 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties && 2984 LangOpts.ObjCRuntime.isNonFragile() && 2985 !IDecl->isObjCRequiresPropertyDefs(); 2986 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties); 2987 } 2988 2989 // Diagnose null-resettable synthesized setters. 2990 diagnoseNullResettableSynthesizedSetters(IMPDecl); 2991 2992 SelectorSet ClsMap; 2993 for (const auto *I : IMPDecl->class_methods()) 2994 ClsMap.insert(I->getSelector()); 2995 2996 // Check for type conflict of methods declared in a class/protocol and 2997 // its implementation; if any. 2998 SelectorSet InsMapSeen, ClsMapSeen; 2999 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 3000 IMPDecl, CDecl, 3001 IncompleteImpl, true); 3002 3003 // check all methods implemented in category against those declared 3004 // in its primary class. 3005 if (ObjCCategoryImplDecl *CatDecl = 3006 dyn_cast<ObjCCategoryImplDecl>(IMPDecl)) 3007 CheckCategoryVsClassMethodMatches(CatDecl); 3008 3009 // Check the protocol list for unimplemented methods in the @implementation 3010 // class. 3011 // Check and see if class methods in class interface have been 3012 // implemented in the implementation class. 3013 3014 LazyProtocolNameSet ExplicitImplProtocols; 3015 3016 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 3017 for (auto *PI : I->all_referenced_protocols()) 3018 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl, 3019 InsMap, ClsMap, I, ExplicitImplProtocols); 3020 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { 3021 // For extended class, unimplemented methods in its protocols will 3022 // be reported in the primary class. 3023 if (!C->IsClassExtension()) { 3024 for (auto *P : C->protocols()) 3025 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P, 3026 IncompleteImpl, InsMap, ClsMap, CDecl, 3027 ExplicitImplProtocols); 3028 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, 3029 /*SynthesizeProperties=*/false); 3030 } 3031 } else 3032 llvm_unreachable("invalid ObjCContainerDecl type."); 3033 } 3034 3035 Sema::DeclGroupPtrTy 3036 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, 3037 IdentifierInfo **IdentList, 3038 SourceLocation *IdentLocs, 3039 ArrayRef<ObjCTypeParamList *> TypeParamLists, 3040 unsigned NumElts) { 3041 SmallVector<Decl *, 8> DeclsInGroup; 3042 for (unsigned i = 0; i != NumElts; ++i) { 3043 // Check for another declaration kind with the same name. 3044 NamedDecl *PrevDecl 3045 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 3046 LookupOrdinaryName, forRedeclarationInCurContext()); 3047 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 3048 // GCC apparently allows the following idiom: 3049 // 3050 // typedef NSObject < XCElementTogglerP > XCElementToggler; 3051 // @class XCElementToggler; 3052 // 3053 // Here we have chosen to ignore the forward class declaration 3054 // with a warning. Since this is the implied behavior. 3055 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); 3056 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { 3057 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; 3058 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 3059 } else { 3060 // a forward class declaration matching a typedef name of a class refers 3061 // to the underlying class. Just ignore the forward class with a warning 3062 // as this will force the intended behavior which is to lookup the 3063 // typedef name. 3064 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) { 3065 Diag(AtClassLoc, diag::warn_forward_class_redefinition) 3066 << IdentList[i]; 3067 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 3068 continue; 3069 } 3070 } 3071 } 3072 3073 // Create a declaration to describe this forward declaration. 3074 ObjCInterfaceDecl *PrevIDecl 3075 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 3076 3077 IdentifierInfo *ClassName = IdentList[i]; 3078 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { 3079 // A previous decl with a different name is because of 3080 // @compatibility_alias, for example: 3081 // \code 3082 // @class NewImage; 3083 // @compatibility_alias OldImage NewImage; 3084 // \endcode 3085 // A lookup for 'OldImage' will return the 'NewImage' decl. 3086 // 3087 // In such a case use the real declaration name, instead of the alias one, 3088 // otherwise we will break IdentifierResolver and redecls-chain invariants. 3089 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl 3090 // has been aliased. 3091 ClassName = PrevIDecl->getIdentifier(); 3092 } 3093 3094 // If this forward declaration has type parameters, compare them with the 3095 // type parameters of the previous declaration. 3096 ObjCTypeParamList *TypeParams = TypeParamLists[i]; 3097 if (PrevIDecl && TypeParams) { 3098 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) { 3099 // Check for consistency with the previous declaration. 3100 if (checkTypeParamListConsistency( 3101 *this, PrevTypeParams, TypeParams, 3102 TypeParamListContext::ForwardDeclaration)) { 3103 TypeParams = nullptr; 3104 } 3105 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { 3106 // The @interface does not have type parameters. Complain. 3107 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class) 3108 << ClassName 3109 << TypeParams->getSourceRange(); 3110 Diag(Def->getLocation(), diag::note_defined_here) 3111 << ClassName; 3112 3113 TypeParams = nullptr; 3114 } 3115 } 3116 3117 ObjCInterfaceDecl *IDecl 3118 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, 3119 ClassName, TypeParams, PrevIDecl, 3120 IdentLocs[i]); 3121 IDecl->setAtEndRange(IdentLocs[i]); 3122 3123 PushOnScopeChains(IDecl, TUScope); 3124 CheckObjCDeclScope(IDecl); 3125 DeclsInGroup.push_back(IDecl); 3126 } 3127 3128 return BuildDeclaratorGroup(DeclsInGroup); 3129 } 3130 3131 static bool tryMatchRecordTypes(ASTContext &Context, 3132 Sema::MethodMatchStrategy strategy, 3133 const Type *left, const Type *right); 3134 3135 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, 3136 QualType leftQT, QualType rightQT) { 3137 const Type *left = 3138 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); 3139 const Type *right = 3140 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); 3141 3142 if (left == right) return true; 3143 3144 // If we're doing a strict match, the types have to match exactly. 3145 if (strategy == Sema::MMS_strict) return false; 3146 3147 if (left->isIncompleteType() || right->isIncompleteType()) return false; 3148 3149 // Otherwise, use this absurdly complicated algorithm to try to 3150 // validate the basic, low-level compatibility of the two types. 3151 3152 // As a minimum, require the sizes and alignments to match. 3153 TypeInfo LeftTI = Context.getTypeInfo(left); 3154 TypeInfo RightTI = Context.getTypeInfo(right); 3155 if (LeftTI.Width != RightTI.Width) 3156 return false; 3157 3158 if (LeftTI.Align != RightTI.Align) 3159 return false; 3160 3161 // Consider all the kinds of non-dependent canonical types: 3162 // - functions and arrays aren't possible as return and parameter types 3163 3164 // - vector types of equal size can be arbitrarily mixed 3165 if (isa<VectorType>(left)) return isa<VectorType>(right); 3166 if (isa<VectorType>(right)) return false; 3167 3168 // - references should only match references of identical type 3169 // - structs, unions, and Objective-C objects must match more-or-less 3170 // exactly 3171 // - everything else should be a scalar 3172 if (!left->isScalarType() || !right->isScalarType()) 3173 return tryMatchRecordTypes(Context, strategy, left, right); 3174 3175 // Make scalars agree in kind, except count bools as chars, and group 3176 // all non-member pointers together. 3177 Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); 3178 Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); 3179 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; 3180 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; 3181 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) 3182 leftSK = Type::STK_ObjCObjectPointer; 3183 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) 3184 rightSK = Type::STK_ObjCObjectPointer; 3185 3186 // Note that data member pointers and function member pointers don't 3187 // intermix because of the size differences. 3188 3189 return (leftSK == rightSK); 3190 } 3191 3192 static bool tryMatchRecordTypes(ASTContext &Context, 3193 Sema::MethodMatchStrategy strategy, 3194 const Type *lt, const Type *rt) { 3195 assert(lt && rt && lt != rt); 3196 3197 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; 3198 RecordDecl *left = cast<RecordType>(lt)->getDecl(); 3199 RecordDecl *right = cast<RecordType>(rt)->getDecl(); 3200 3201 // Require union-hood to match. 3202 if (left->isUnion() != right->isUnion()) return false; 3203 3204 // Require an exact match if either is non-POD. 3205 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || 3206 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) 3207 return false; 3208 3209 // Require size and alignment to match. 3210 TypeInfo LeftTI = Context.getTypeInfo(lt); 3211 TypeInfo RightTI = Context.getTypeInfo(rt); 3212 if (LeftTI.Width != RightTI.Width) 3213 return false; 3214 3215 if (LeftTI.Align != RightTI.Align) 3216 return false; 3217 3218 // Require fields to match. 3219 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); 3220 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); 3221 for (; li != le && ri != re; ++li, ++ri) { 3222 if (!matchTypes(Context, strategy, li->getType(), ri->getType())) 3223 return false; 3224 } 3225 return (li == le && ri == re); 3226 } 3227 3228 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and 3229 /// returns true, or false, accordingly. 3230 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons 3231 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, 3232 const ObjCMethodDecl *right, 3233 MethodMatchStrategy strategy) { 3234 if (!matchTypes(Context, strategy, left->getReturnType(), 3235 right->getReturnType())) 3236 return false; 3237 3238 // If either is hidden, it is not considered to match. 3239 if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible()) 3240 return false; 3241 3242 if (left->isDirectMethod() != right->isDirectMethod()) 3243 return false; 3244 3245 if (getLangOpts().ObjCAutoRefCount && 3246 (left->hasAttr<NSReturnsRetainedAttr>() 3247 != right->hasAttr<NSReturnsRetainedAttr>() || 3248 left->hasAttr<NSConsumesSelfAttr>() 3249 != right->hasAttr<NSConsumesSelfAttr>())) 3250 return false; 3251 3252 ObjCMethodDecl::param_const_iterator 3253 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(), 3254 re = right->param_end(); 3255 3256 for (; li != le && ri != re; ++li, ++ri) { 3257 assert(ri != right->param_end() && "Param mismatch"); 3258 const ParmVarDecl *lparm = *li, *rparm = *ri; 3259 3260 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) 3261 return false; 3262 3263 if (getLangOpts().ObjCAutoRefCount && 3264 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) 3265 return false; 3266 } 3267 return true; 3268 } 3269 3270 static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method, 3271 ObjCMethodDecl *MethodInList) { 3272 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext()); 3273 auto *MethodInListProtocol = 3274 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext()); 3275 // If this method belongs to a protocol but the method in list does not, or 3276 // vice versa, we say the context is not the same. 3277 if ((MethodProtocol && !MethodInListProtocol) || 3278 (!MethodProtocol && MethodInListProtocol)) 3279 return false; 3280 3281 if (MethodProtocol && MethodInListProtocol) 3282 return true; 3283 3284 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface(); 3285 ObjCInterfaceDecl *MethodInListInterface = 3286 MethodInList->getClassInterface(); 3287 return MethodInterface == MethodInListInterface; 3288 } 3289 3290 void Sema::addMethodToGlobalList(ObjCMethodList *List, 3291 ObjCMethodDecl *Method) { 3292 // Record at the head of the list whether there were 0, 1, or >= 2 methods 3293 // inside categories. 3294 if (ObjCCategoryDecl *CD = 3295 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext())) 3296 if (!CD->IsClassExtension() && List->getBits() < 2) 3297 List->setBits(List->getBits() + 1); 3298 3299 // If the list is empty, make it a singleton list. 3300 if (List->getMethod() == nullptr) { 3301 List->setMethod(Method); 3302 List->setNext(nullptr); 3303 return; 3304 } 3305 3306 // We've seen a method with this name, see if we have already seen this type 3307 // signature. 3308 ObjCMethodList *Previous = List; 3309 ObjCMethodList *ListWithSameDeclaration = nullptr; 3310 for (; List; Previous = List, List = List->getNext()) { 3311 // If we are building a module, keep all of the methods. 3312 if (getLangOpts().isCompilingModule()) 3313 continue; 3314 3315 bool SameDeclaration = MatchTwoMethodDeclarations(Method, 3316 List->getMethod()); 3317 // Looking for method with a type bound requires the correct context exists. 3318 // We need to insert a method into the list if the context is different. 3319 // If the method's declaration matches the list 3320 // a> the method belongs to a different context: we need to insert it, in 3321 // order to emit the availability message, we need to prioritize over 3322 // availability among the methods with the same declaration. 3323 // b> the method belongs to the same context: there is no need to insert a 3324 // new entry. 3325 // If the method's declaration does not match the list, we insert it to the 3326 // end. 3327 if (!SameDeclaration || 3328 !isMethodContextSameForKindofLookup(Method, List->getMethod())) { 3329 // Even if two method types do not match, we would like to say 3330 // there is more than one declaration so unavailability/deprecated 3331 // warning is not too noisy. 3332 if (!Method->isDefined()) 3333 List->setHasMoreThanOneDecl(true); 3334 3335 // For methods with the same declaration, the one that is deprecated 3336 // should be put in the front for better diagnostics. 3337 if (Method->isDeprecated() && SameDeclaration && 3338 !ListWithSameDeclaration && !List->getMethod()->isDeprecated()) 3339 ListWithSameDeclaration = List; 3340 3341 if (Method->isUnavailable() && SameDeclaration && 3342 !ListWithSameDeclaration && 3343 List->getMethod()->getAvailability() < AR_Deprecated) 3344 ListWithSameDeclaration = List; 3345 continue; 3346 } 3347 3348 ObjCMethodDecl *PrevObjCMethod = List->getMethod(); 3349 3350 // Propagate the 'defined' bit. 3351 if (Method->isDefined()) 3352 PrevObjCMethod->setDefined(true); 3353 else { 3354 // Objective-C doesn't allow an @interface for a class after its 3355 // @implementation. So if Method is not defined and there already is 3356 // an entry for this type signature, Method has to be for a different 3357 // class than PrevObjCMethod. 3358 List->setHasMoreThanOneDecl(true); 3359 } 3360 3361 // If a method is deprecated, push it in the global pool. 3362 // This is used for better diagnostics. 3363 if (Method->isDeprecated()) { 3364 if (!PrevObjCMethod->isDeprecated()) 3365 List->setMethod(Method); 3366 } 3367 // If the new method is unavailable, push it into global pool 3368 // unless previous one is deprecated. 3369 if (Method->isUnavailable()) { 3370 if (PrevObjCMethod->getAvailability() < AR_Deprecated) 3371 List->setMethod(Method); 3372 } 3373 3374 return; 3375 } 3376 3377 // We have a new signature for an existing method - add it. 3378 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 3379 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 3380 3381 // We insert it right before ListWithSameDeclaration. 3382 if (ListWithSameDeclaration) { 3383 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration); 3384 // FIXME: should we clear the other bits in ListWithSameDeclaration? 3385 ListWithSameDeclaration->setMethod(Method); 3386 ListWithSameDeclaration->setNext(List); 3387 return; 3388 } 3389 3390 Previous->setNext(new (Mem) ObjCMethodList(Method)); 3391 } 3392 3393 /// Read the contents of the method pool for a given selector from 3394 /// external storage. 3395 void Sema::ReadMethodPool(Selector Sel) { 3396 assert(ExternalSource && "We need an external AST source"); 3397 ExternalSource->ReadMethodPool(Sel); 3398 } 3399 3400 void Sema::updateOutOfDateSelector(Selector Sel) { 3401 if (!ExternalSource) 3402 return; 3403 ExternalSource->updateOutOfDateSelector(Sel); 3404 } 3405 3406 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, 3407 bool instance) { 3408 // Ignore methods of invalid containers. 3409 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl()) 3410 return; 3411 3412 if (ExternalSource) 3413 ReadMethodPool(Method->getSelector()); 3414 3415 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); 3416 if (Pos == MethodPool.end()) 3417 Pos = MethodPool.insert(std::make_pair(Method->getSelector(), 3418 GlobalMethods())).first; 3419 3420 Method->setDefined(impl); 3421 3422 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; 3423 addMethodToGlobalList(&Entry, Method); 3424 } 3425 3426 /// Determines if this is an "acceptable" loose mismatch in the global 3427 /// method pool. This exists mostly as a hack to get around certain 3428 /// global mismatches which we can't afford to make warnings / errors. 3429 /// Really, what we want is a way to take a method out of the global 3430 /// method pool. 3431 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, 3432 ObjCMethodDecl *other) { 3433 if (!chosen->isInstanceMethod()) 3434 return false; 3435 3436 if (chosen->isDirectMethod() != other->isDirectMethod()) 3437 return false; 3438 3439 Selector sel = chosen->getSelector(); 3440 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") 3441 return false; 3442 3443 // Don't complain about mismatches for -length if the method we 3444 // chose has an integral result type. 3445 return (chosen->getReturnType()->isIntegerType()); 3446 } 3447 3448 /// Return true if the given method is wthin the type bound. 3449 static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method, 3450 const ObjCObjectType *TypeBound) { 3451 if (!TypeBound) 3452 return true; 3453 3454 if (TypeBound->isObjCId()) 3455 // FIXME: should we handle the case of bounding to id<A, B> differently? 3456 return true; 3457 3458 auto *BoundInterface = TypeBound->getInterface(); 3459 assert(BoundInterface && "unexpected object type!"); 3460 3461 // Check if the Method belongs to a protocol. We should allow any method 3462 // defined in any protocol, because any subclass could adopt the protocol. 3463 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext()); 3464 if (MethodProtocol) { 3465 return true; 3466 } 3467 3468 // If the Method belongs to a class, check if it belongs to the class 3469 // hierarchy of the class bound. 3470 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) { 3471 // We allow methods declared within classes that are part of the hierarchy 3472 // of the class bound (superclass of, subclass of, or the same as the class 3473 // bound). 3474 return MethodInterface == BoundInterface || 3475 MethodInterface->isSuperClassOf(BoundInterface) || 3476 BoundInterface->isSuperClassOf(MethodInterface); 3477 } 3478 llvm_unreachable("unknown method context"); 3479 } 3480 3481 /// We first select the type of the method: Instance or Factory, then collect 3482 /// all methods with that type. 3483 bool Sema::CollectMultipleMethodsInGlobalPool( 3484 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, 3485 bool InstanceFirst, bool CheckTheOther, 3486 const ObjCObjectType *TypeBound) { 3487 if (ExternalSource) 3488 ReadMethodPool(Sel); 3489 3490 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 3491 if (Pos == MethodPool.end()) 3492 return false; 3493 3494 // Gather the non-hidden methods. 3495 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first : 3496 Pos->second.second; 3497 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) 3498 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) { 3499 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound)) 3500 Methods.push_back(M->getMethod()); 3501 } 3502 3503 // Return if we find any method with the desired kind. 3504 if (!Methods.empty()) 3505 return Methods.size() > 1; 3506 3507 if (!CheckTheOther) 3508 return false; 3509 3510 // Gather the other kind. 3511 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second : 3512 Pos->second.first; 3513 for (ObjCMethodList *M = &MethList2; M; M = M->getNext()) 3514 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) { 3515 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound)) 3516 Methods.push_back(M->getMethod()); 3517 } 3518 3519 return Methods.size() > 1; 3520 } 3521 3522 bool Sema::AreMultipleMethodsInGlobalPool( 3523 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, 3524 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) { 3525 // Diagnose finding more than one method in global pool. 3526 SmallVector<ObjCMethodDecl *, 4> FilteredMethods; 3527 FilteredMethods.push_back(BestMethod); 3528 3529 for (auto *M : Methods) 3530 if (M != BestMethod && !M->hasAttr<UnavailableAttr>()) 3531 FilteredMethods.push_back(M); 3532 3533 if (FilteredMethods.size() > 1) 3534 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R, 3535 receiverIdOrClass); 3536 3537 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 3538 // Test for no method in the pool which should not trigger any warning by 3539 // caller. 3540 if (Pos == MethodPool.end()) 3541 return true; 3542 ObjCMethodList &MethList = 3543 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second; 3544 return MethList.hasMoreThanOneDecl(); 3545 } 3546 3547 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, 3548 bool receiverIdOrClass, 3549 bool instance) { 3550 if (ExternalSource) 3551 ReadMethodPool(Sel); 3552 3553 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 3554 if (Pos == MethodPool.end()) 3555 return nullptr; 3556 3557 // Gather the non-hidden methods. 3558 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 3559 SmallVector<ObjCMethodDecl *, 4> Methods; 3560 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) { 3561 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) 3562 return M->getMethod(); 3563 } 3564 return nullptr; 3565 } 3566 3567 void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods, 3568 Selector Sel, SourceRange R, 3569 bool receiverIdOrClass) { 3570 // We found multiple methods, so we may have to complain. 3571 bool issueDiagnostic = false, issueError = false; 3572 3573 // We support a warning which complains about *any* difference in 3574 // method signature. 3575 bool strictSelectorMatch = 3576 receiverIdOrClass && 3577 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin()); 3578 if (strictSelectorMatch) { 3579 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 3580 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) { 3581 issueDiagnostic = true; 3582 break; 3583 } 3584 } 3585 } 3586 3587 // If we didn't see any strict differences, we won't see any loose 3588 // differences. In ARC, however, we also need to check for loose 3589 // mismatches, because most of them are errors. 3590 if (!strictSelectorMatch || 3591 (issueDiagnostic && getLangOpts().ObjCAutoRefCount)) 3592 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 3593 // This checks if the methods differ in type mismatch. 3594 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) && 3595 !isAcceptableMethodMismatch(Methods[0], Methods[I])) { 3596 issueDiagnostic = true; 3597 if (getLangOpts().ObjCAutoRefCount) 3598 issueError = true; 3599 break; 3600 } 3601 } 3602 3603 if (issueDiagnostic) { 3604 if (issueError) 3605 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; 3606 else if (strictSelectorMatch) 3607 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; 3608 else 3609 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 3610 3611 Diag(Methods[0]->getBeginLoc(), 3612 issueError ? diag::note_possibility : diag::note_using) 3613 << Methods[0]->getSourceRange(); 3614 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 3615 Diag(Methods[I]->getBeginLoc(), diag::note_also_found) 3616 << Methods[I]->getSourceRange(); 3617 } 3618 } 3619 } 3620 3621 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { 3622 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 3623 if (Pos == MethodPool.end()) 3624 return nullptr; 3625 3626 GlobalMethods &Methods = Pos->second; 3627 for (const ObjCMethodList *Method = &Methods.first; Method; 3628 Method = Method->getNext()) 3629 if (Method->getMethod() && 3630 (Method->getMethod()->isDefined() || 3631 Method->getMethod()->isPropertyAccessor())) 3632 return Method->getMethod(); 3633 3634 for (const ObjCMethodList *Method = &Methods.second; Method; 3635 Method = Method->getNext()) 3636 if (Method->getMethod() && 3637 (Method->getMethod()->isDefined() || 3638 Method->getMethod()->isPropertyAccessor())) 3639 return Method->getMethod(); 3640 return nullptr; 3641 } 3642 3643 static void 3644 HelperSelectorsForTypoCorrection( 3645 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod, 3646 StringRef Typo, const ObjCMethodDecl * Method) { 3647 const unsigned MaxEditDistance = 1; 3648 unsigned BestEditDistance = MaxEditDistance + 1; 3649 std::string MethodName = Method->getSelector().getAsString(); 3650 3651 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size()); 3652 if (MinPossibleEditDistance > 0 && 3653 Typo.size() / MinPossibleEditDistance < 1) 3654 return; 3655 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance); 3656 if (EditDistance > MaxEditDistance) 3657 return; 3658 if (EditDistance == BestEditDistance) 3659 BestMethod.push_back(Method); 3660 else if (EditDistance < BestEditDistance) { 3661 BestMethod.clear(); 3662 BestMethod.push_back(Method); 3663 } 3664 } 3665 3666 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel, 3667 QualType ObjectType) { 3668 if (ObjectType.isNull()) 3669 return true; 3670 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/)) 3671 return true; 3672 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) != 3673 nullptr; 3674 } 3675 3676 const ObjCMethodDecl * 3677 Sema::SelectorsForTypoCorrection(Selector Sel, 3678 QualType ObjectType) { 3679 unsigned NumArgs = Sel.getNumArgs(); 3680 SmallVector<const ObjCMethodDecl *, 8> Methods; 3681 bool ObjectIsId = true, ObjectIsClass = true; 3682 if (ObjectType.isNull()) 3683 ObjectIsId = ObjectIsClass = false; 3684 else if (!ObjectType->isObjCObjectPointerType()) 3685 return nullptr; 3686 else if (const ObjCObjectPointerType *ObjCPtr = 3687 ObjectType->getAsObjCInterfacePointerType()) { 3688 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0); 3689 ObjectIsId = ObjectIsClass = false; 3690 } 3691 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType()) 3692 ObjectIsClass = false; 3693 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType()) 3694 ObjectIsId = false; 3695 else 3696 return nullptr; 3697 3698 for (GlobalMethodPool::iterator b = MethodPool.begin(), 3699 e = MethodPool.end(); b != e; b++) { 3700 // instance methods 3701 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext()) 3702 if (M->getMethod() && 3703 (M->getMethod()->getSelector().getNumArgs() == NumArgs) && 3704 (M->getMethod()->getSelector() != Sel)) { 3705 if (ObjectIsId) 3706 Methods.push_back(M->getMethod()); 3707 else if (!ObjectIsClass && 3708 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(), 3709 ObjectType)) 3710 Methods.push_back(M->getMethod()); 3711 } 3712 // class methods 3713 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext()) 3714 if (M->getMethod() && 3715 (M->getMethod()->getSelector().getNumArgs() == NumArgs) && 3716 (M->getMethod()->getSelector() != Sel)) { 3717 if (ObjectIsClass) 3718 Methods.push_back(M->getMethod()); 3719 else if (!ObjectIsId && 3720 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(), 3721 ObjectType)) 3722 Methods.push_back(M->getMethod()); 3723 } 3724 } 3725 3726 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods; 3727 for (unsigned i = 0, e = Methods.size(); i < e; i++) { 3728 HelperSelectorsForTypoCorrection(SelectedMethods, 3729 Sel.getAsString(), Methods[i]); 3730 } 3731 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr; 3732 } 3733 3734 /// DiagnoseDuplicateIvars - 3735 /// Check for duplicate ivars in the entire class at the start of 3736 /// \@implementation. This becomes necesssary because class extension can 3737 /// add ivars to a class in random order which will not be known until 3738 /// class's \@implementation is seen. 3739 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 3740 ObjCInterfaceDecl *SID) { 3741 for (auto *Ivar : ID->ivars()) { 3742 if (Ivar->isInvalidDecl()) 3743 continue; 3744 if (IdentifierInfo *II = Ivar->getIdentifier()) { 3745 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); 3746 if (prevIvar) { 3747 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; 3748 Diag(prevIvar->getLocation(), diag::note_previous_declaration); 3749 Ivar->setInvalidDecl(); 3750 } 3751 } 3752 } 3753 } 3754 3755 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled. 3756 static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) { 3757 if (S.getLangOpts().ObjCWeak) return; 3758 3759 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin(); 3760 ivar; ivar = ivar->getNextIvar()) { 3761 if (ivar->isInvalidDecl()) continue; 3762 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { 3763 if (S.getLangOpts().ObjCWeakRuntime) { 3764 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled); 3765 } else { 3766 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime); 3767 } 3768 } 3769 } 3770 } 3771 3772 /// Diagnose attempts to use flexible array member with retainable object type. 3773 static void DiagnoseRetainableFlexibleArrayMember(Sema &S, 3774 ObjCInterfaceDecl *ID) { 3775 if (!S.getLangOpts().ObjCAutoRefCount) 3776 return; 3777 3778 for (auto ivar = ID->all_declared_ivar_begin(); ivar; 3779 ivar = ivar->getNextIvar()) { 3780 if (ivar->isInvalidDecl()) 3781 continue; 3782 QualType IvarTy = ivar->getType(); 3783 if (IvarTy->isIncompleteArrayType() && 3784 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) && 3785 IvarTy->isObjCLifetimeType()) { 3786 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable); 3787 ivar->setInvalidDecl(); 3788 } 3789 } 3790 } 3791 3792 Sema::ObjCContainerKind Sema::getObjCContainerKind() const { 3793 switch (CurContext->getDeclKind()) { 3794 case Decl::ObjCInterface: 3795 return Sema::OCK_Interface; 3796 case Decl::ObjCProtocol: 3797 return Sema::OCK_Protocol; 3798 case Decl::ObjCCategory: 3799 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension()) 3800 return Sema::OCK_ClassExtension; 3801 return Sema::OCK_Category; 3802 case Decl::ObjCImplementation: 3803 return Sema::OCK_Implementation; 3804 case Decl::ObjCCategoryImpl: 3805 return Sema::OCK_CategoryImplementation; 3806 3807 default: 3808 return Sema::OCK_None; 3809 } 3810 } 3811 3812 static bool IsVariableSizedType(QualType T) { 3813 if (T->isIncompleteArrayType()) 3814 return true; 3815 const auto *RecordTy = T->getAs<RecordType>(); 3816 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember()); 3817 } 3818 3819 static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) { 3820 ObjCInterfaceDecl *IntfDecl = nullptr; 3821 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range( 3822 ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator()); 3823 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) { 3824 Ivars = IntfDecl->ivars(); 3825 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) { 3826 IntfDecl = ImplDecl->getClassInterface(); 3827 Ivars = ImplDecl->ivars(); 3828 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) { 3829 if (CategoryDecl->IsClassExtension()) { 3830 IntfDecl = CategoryDecl->getClassInterface(); 3831 Ivars = CategoryDecl->ivars(); 3832 } 3833 } 3834 3835 // Check if variable sized ivar is in interface and visible to subclasses. 3836 if (!isa<ObjCInterfaceDecl>(OCD)) { 3837 for (auto ivar : Ivars) { 3838 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) { 3839 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility) 3840 << ivar->getDeclName() << ivar->getType(); 3841 } 3842 } 3843 } 3844 3845 // Subsequent checks require interface decl. 3846 if (!IntfDecl) 3847 return; 3848 3849 // Check if variable sized ivar is followed by another ivar. 3850 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar; 3851 ivar = ivar->getNextIvar()) { 3852 if (ivar->isInvalidDecl() || !ivar->getNextIvar()) 3853 continue; 3854 QualType IvarTy = ivar->getType(); 3855 bool IsInvalidIvar = false; 3856 if (IvarTy->isIncompleteArrayType()) { 3857 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end) 3858 << ivar->getDeclName() << IvarTy 3859 << TTK_Class; // Use "class" for Obj-C. 3860 IsInvalidIvar = true; 3861 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) { 3862 if (RecordTy->getDecl()->hasFlexibleArrayMember()) { 3863 S.Diag(ivar->getLocation(), 3864 diag::err_objc_variable_sized_type_not_at_end) 3865 << ivar->getDeclName() << IvarTy; 3866 IsInvalidIvar = true; 3867 } 3868 } 3869 if (IsInvalidIvar) { 3870 S.Diag(ivar->getNextIvar()->getLocation(), 3871 diag::note_next_ivar_declaration) 3872 << ivar->getNextIvar()->getSynthesize(); 3873 ivar->setInvalidDecl(); 3874 } 3875 } 3876 3877 // Check if ObjC container adds ivars after variable sized ivar in superclass. 3878 // Perform the check only if OCD is the first container to declare ivars to 3879 // avoid multiple warnings for the same ivar. 3880 ObjCIvarDecl *FirstIvar = 3881 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin(); 3882 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) { 3883 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass(); 3884 while (SuperClass && SuperClass->ivar_empty()) 3885 SuperClass = SuperClass->getSuperClass(); 3886 if (SuperClass) { 3887 auto IvarIter = SuperClass->ivar_begin(); 3888 std::advance(IvarIter, SuperClass->ivar_size() - 1); 3889 const ObjCIvarDecl *LastIvar = *IvarIter; 3890 if (IsVariableSizedType(LastIvar->getType())) { 3891 S.Diag(FirstIvar->getLocation(), 3892 diag::warn_superclass_variable_sized_type_not_at_end) 3893 << FirstIvar->getDeclName() << LastIvar->getDeclName() 3894 << LastIvar->getType() << SuperClass->getDeclName(); 3895 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at) 3896 << LastIvar->getDeclName(); 3897 } 3898 } 3899 } 3900 } 3901 3902 // Note: For class/category implementations, allMethods is always null. 3903 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods, 3904 ArrayRef<DeclGroupPtrTy> allTUVars) { 3905 if (getObjCContainerKind() == Sema::OCK_None) 3906 return nullptr; 3907 3908 assert(AtEnd.isValid() && "Invalid location for '@end'"); 3909 3910 auto *OCD = cast<ObjCContainerDecl>(CurContext); 3911 Decl *ClassDecl = OCD; 3912 3913 bool isInterfaceDeclKind = 3914 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) 3915 || isa<ObjCProtocolDecl>(ClassDecl); 3916 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); 3917 3918 // Make synthesized accessor stub functions visible. 3919 // ActOnPropertyImplDecl() creates them as not visible in case 3920 // they are overridden by an explicit method that is encountered 3921 // later. 3922 if (auto *OID = dyn_cast<ObjCImplementationDecl>(CurContext)) { 3923 for (auto PropImpl : OID->property_impls()) { 3924 if (auto *Getter = PropImpl->getGetterMethodDecl()) 3925 if (Getter->isSynthesizedAccessorStub()) { 3926 OID->makeDeclVisibleInContext(Getter); 3927 OID->addDecl(Getter); 3928 } 3929 if (auto *Setter = PropImpl->getSetterMethodDecl()) 3930 if (Setter->isSynthesizedAccessorStub()) { 3931 OID->makeDeclVisibleInContext(Setter); 3932 OID->addDecl(Setter); 3933 } 3934 } 3935 } 3936 3937 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. 3938 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; 3939 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; 3940 3941 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) { 3942 ObjCMethodDecl *Method = 3943 cast_or_null<ObjCMethodDecl>(allMethods[i]); 3944 3945 if (!Method) continue; // Already issued a diagnostic. 3946 if (Method->isInstanceMethod()) { 3947 /// Check for instance method of the same name with incompatible types 3948 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; 3949 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 3950 : false; 3951 if ((isInterfaceDeclKind && PrevMethod && !match) 3952 || (checkIdenticalMethods && match)) { 3953 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 3954 << Method->getDeclName(); 3955 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 3956 Method->setInvalidDecl(); 3957 } else { 3958 if (PrevMethod) { 3959 Method->setAsRedeclaration(PrevMethod); 3960 if (!Context.getSourceManager().isInSystemHeader( 3961 Method->getLocation())) 3962 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 3963 << Method->getDeclName(); 3964 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 3965 } 3966 InsMap[Method->getSelector()] = Method; 3967 /// The following allows us to typecheck messages to "id". 3968 AddInstanceMethodToGlobalPool(Method); 3969 } 3970 } else { 3971 /// Check for class method of the same name with incompatible types 3972 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; 3973 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 3974 : false; 3975 if ((isInterfaceDeclKind && PrevMethod && !match) 3976 || (checkIdenticalMethods && match)) { 3977 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 3978 << Method->getDeclName(); 3979 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 3980 Method->setInvalidDecl(); 3981 } else { 3982 if (PrevMethod) { 3983 Method->setAsRedeclaration(PrevMethod); 3984 if (!Context.getSourceManager().isInSystemHeader( 3985 Method->getLocation())) 3986 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 3987 << Method->getDeclName(); 3988 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 3989 } 3990 ClsMap[Method->getSelector()] = Method; 3991 AddFactoryMethodToGlobalPool(Method); 3992 } 3993 } 3994 } 3995 if (isa<ObjCInterfaceDecl>(ClassDecl)) { 3996 // Nothing to do here. 3997 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { 3998 // Categories are used to extend the class by declaring new methods. 3999 // By the same token, they are also used to add new properties. No 4000 // need to compare the added property to those in the class. 4001 4002 if (C->IsClassExtension()) { 4003 ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); 4004 DiagnoseClassExtensionDupMethods(C, CCPrimary); 4005 } 4006 } 4007 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { 4008 if (CDecl->getIdentifier()) 4009 // ProcessPropertyDecl is responsible for diagnosing conflicts with any 4010 // user-defined setter/getter. It also synthesizes setter/getter methods 4011 // and adds them to the DeclContext and global method pools. 4012 for (auto *I : CDecl->properties()) 4013 ProcessPropertyDecl(I); 4014 CDecl->setAtEndRange(AtEnd); 4015 } 4016 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 4017 IC->setAtEndRange(AtEnd); 4018 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { 4019 // Any property declared in a class extension might have user 4020 // declared setter or getter in current class extension or one 4021 // of the other class extensions. Mark them as synthesized as 4022 // property will be synthesized when property with same name is 4023 // seen in the @implementation. 4024 for (const auto *Ext : IDecl->visible_extensions()) { 4025 for (const auto *Property : Ext->instance_properties()) { 4026 // Skip over properties declared @dynamic 4027 if (const ObjCPropertyImplDecl *PIDecl 4028 = IC->FindPropertyImplDecl(Property->getIdentifier(), 4029 Property->getQueryKind())) 4030 if (PIDecl->getPropertyImplementation() 4031 == ObjCPropertyImplDecl::Dynamic) 4032 continue; 4033 4034 for (const auto *Ext : IDecl->visible_extensions()) { 4035 if (ObjCMethodDecl *GetterMethod = 4036 Ext->getInstanceMethod(Property->getGetterName())) 4037 GetterMethod->setPropertyAccessor(true); 4038 if (!Property->isReadOnly()) 4039 if (ObjCMethodDecl *SetterMethod 4040 = Ext->getInstanceMethod(Property->getSetterName())) 4041 SetterMethod->setPropertyAccessor(true); 4042 } 4043 } 4044 } 4045 ImplMethodsVsClassMethods(S, IC, IDecl); 4046 AtomicPropertySetterGetterRules(IC, IDecl); 4047 DiagnoseOwningPropertyGetterSynthesis(IC); 4048 DiagnoseUnusedBackingIvarInAccessor(S, IC); 4049 if (IDecl->hasDesignatedInitializers()) 4050 DiagnoseMissingDesignatedInitOverrides(IC, IDecl); 4051 DiagnoseWeakIvars(*this, IC); 4052 DiagnoseRetainableFlexibleArrayMember(*this, IDecl); 4053 4054 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>(); 4055 if (IDecl->getSuperClass() == nullptr) { 4056 // This class has no superclass, so check that it has been marked with 4057 // __attribute((objc_root_class)). 4058 if (!HasRootClassAttr) { 4059 SourceLocation DeclLoc(IDecl->getLocation()); 4060 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc)); 4061 Diag(DeclLoc, diag::warn_objc_root_class_missing) 4062 << IDecl->getIdentifier(); 4063 // See if NSObject is in the current scope, and if it is, suggest 4064 // adding " : NSObject " to the class declaration. 4065 NamedDecl *IF = LookupSingleName(TUScope, 4066 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject), 4067 DeclLoc, LookupOrdinaryName); 4068 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 4069 if (NSObjectDecl && NSObjectDecl->getDefinition()) { 4070 Diag(SuperClassLoc, diag::note_objc_needs_superclass) 4071 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject "); 4072 } else { 4073 Diag(SuperClassLoc, diag::note_objc_needs_superclass); 4074 } 4075 } 4076 } else if (HasRootClassAttr) { 4077 // Complain that only root classes may have this attribute. 4078 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass); 4079 } 4080 4081 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) { 4082 // An interface can subclass another interface with a 4083 // objc_subclassing_restricted attribute when it has that attribute as 4084 // well (because of interfaces imported from Swift). Therefore we have 4085 // to check if we can subclass in the implementation as well. 4086 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && 4087 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { 4088 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch); 4089 Diag(Super->getLocation(), diag::note_class_declared); 4090 } 4091 } 4092 4093 if (IDecl->hasAttr<ObjCClassStubAttr>()) 4094 Diag(IC->getLocation(), diag::err_implementation_of_class_stub); 4095 4096 if (LangOpts.ObjCRuntime.isNonFragile()) { 4097 while (IDecl->getSuperClass()) { 4098 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); 4099 IDecl = IDecl->getSuperClass(); 4100 } 4101 } 4102 } 4103 SetIvarInitializers(IC); 4104 } else if (ObjCCategoryImplDecl* CatImplClass = 4105 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 4106 CatImplClass->setAtEndRange(AtEnd); 4107 4108 // Find category interface decl and then check that all methods declared 4109 // in this interface are implemented in the category @implementation. 4110 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { 4111 if (ObjCCategoryDecl *Cat 4112 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) { 4113 ImplMethodsVsClassMethods(S, CatImplClass, Cat); 4114 } 4115 } 4116 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { 4117 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) { 4118 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && 4119 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { 4120 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch); 4121 Diag(Super->getLocation(), diag::note_class_declared); 4122 } 4123 } 4124 4125 if (IntfDecl->hasAttr<ObjCClassStubAttr>() && 4126 !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>()) 4127 Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch); 4128 } 4129 DiagnoseVariableSizedIvars(*this, OCD); 4130 if (isInterfaceDeclKind) { 4131 // Reject invalid vardecls. 4132 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { 4133 DeclGroupRef DG = allTUVars[i].get(); 4134 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 4135 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { 4136 if (!VDecl->hasExternalStorage()) 4137 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); 4138 } 4139 } 4140 } 4141 ActOnObjCContainerFinishDefinition(); 4142 4143 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { 4144 DeclGroupRef DG = allTUVars[i].get(); 4145 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 4146 (*I)->setTopLevelDeclInObjCContainer(); 4147 Consumer.HandleTopLevelDeclInObjCContainer(DG); 4148 } 4149 4150 ActOnDocumentableDecl(ClassDecl); 4151 return ClassDecl; 4152 } 4153 4154 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for 4155 /// objective-c's type qualifier from the parser version of the same info. 4156 static Decl::ObjCDeclQualifier 4157 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { 4158 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; 4159 } 4160 4161 /// Check whether the declared result type of the given Objective-C 4162 /// method declaration is compatible with the method's class. 4163 /// 4164 static Sema::ResultTypeCompatibilityKind 4165 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, 4166 ObjCInterfaceDecl *CurrentClass) { 4167 QualType ResultType = Method->getReturnType(); 4168 4169 // If an Objective-C method inherits its related result type, then its 4170 // declared result type must be compatible with its own class type. The 4171 // declared result type is compatible if: 4172 if (const ObjCObjectPointerType *ResultObjectType 4173 = ResultType->getAs<ObjCObjectPointerType>()) { 4174 // - it is id or qualified id, or 4175 if (ResultObjectType->isObjCIdType() || 4176 ResultObjectType->isObjCQualifiedIdType()) 4177 return Sema::RTC_Compatible; 4178 4179 if (CurrentClass) { 4180 if (ObjCInterfaceDecl *ResultClass 4181 = ResultObjectType->getInterfaceDecl()) { 4182 // - it is the same as the method's class type, or 4183 if (declaresSameEntity(CurrentClass, ResultClass)) 4184 return Sema::RTC_Compatible; 4185 4186 // - it is a superclass of the method's class type 4187 if (ResultClass->isSuperClassOf(CurrentClass)) 4188 return Sema::RTC_Compatible; 4189 } 4190 } else { 4191 // Any Objective-C pointer type might be acceptable for a protocol 4192 // method; we just don't know. 4193 return Sema::RTC_Unknown; 4194 } 4195 } 4196 4197 return Sema::RTC_Incompatible; 4198 } 4199 4200 namespace { 4201 /// A helper class for searching for methods which a particular method 4202 /// overrides. 4203 class OverrideSearch { 4204 public: 4205 const ObjCMethodDecl *Method; 4206 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden; 4207 bool Recursive; 4208 4209 public: 4210 OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) { 4211 Selector selector = method->getSelector(); 4212 4213 // Bypass this search if we've never seen an instance/class method 4214 // with this selector before. 4215 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector); 4216 if (it == S.MethodPool.end()) { 4217 if (!S.getExternalSource()) return; 4218 S.ReadMethodPool(selector); 4219 4220 it = S.MethodPool.find(selector); 4221 if (it == S.MethodPool.end()) 4222 return; 4223 } 4224 const ObjCMethodList &list = 4225 method->isInstanceMethod() ? it->second.first : it->second.second; 4226 if (!list.getMethod()) return; 4227 4228 const ObjCContainerDecl *container 4229 = cast<ObjCContainerDecl>(method->getDeclContext()); 4230 4231 // Prevent the search from reaching this container again. This is 4232 // important with categories, which override methods from the 4233 // interface and each other. 4234 if (const ObjCCategoryDecl *Category = 4235 dyn_cast<ObjCCategoryDecl>(container)) { 4236 searchFromContainer(container); 4237 if (const ObjCInterfaceDecl *Interface = Category->getClassInterface()) 4238 searchFromContainer(Interface); 4239 } else { 4240 searchFromContainer(container); 4241 } 4242 } 4243 4244 typedef decltype(Overridden)::iterator iterator; 4245 iterator begin() const { return Overridden.begin(); } 4246 iterator end() const { return Overridden.end(); } 4247 4248 private: 4249 void searchFromContainer(const ObjCContainerDecl *container) { 4250 if (container->isInvalidDecl()) return; 4251 4252 switch (container->getDeclKind()) { 4253 #define OBJCCONTAINER(type, base) \ 4254 case Decl::type: \ 4255 searchFrom(cast<type##Decl>(container)); \ 4256 break; 4257 #define ABSTRACT_DECL(expansion) 4258 #define DECL(type, base) \ 4259 case Decl::type: 4260 #include "clang/AST/DeclNodes.inc" 4261 llvm_unreachable("not an ObjC container!"); 4262 } 4263 } 4264 4265 void searchFrom(const ObjCProtocolDecl *protocol) { 4266 if (!protocol->hasDefinition()) 4267 return; 4268 4269 // A method in a protocol declaration overrides declarations from 4270 // referenced ("parent") protocols. 4271 search(protocol->getReferencedProtocols()); 4272 } 4273 4274 void searchFrom(const ObjCCategoryDecl *category) { 4275 // A method in a category declaration overrides declarations from 4276 // the main class and from protocols the category references. 4277 // The main class is handled in the constructor. 4278 search(category->getReferencedProtocols()); 4279 } 4280 4281 void searchFrom(const ObjCCategoryImplDecl *impl) { 4282 // A method in a category definition that has a category 4283 // declaration overrides declarations from the category 4284 // declaration. 4285 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { 4286 search(category); 4287 if (ObjCInterfaceDecl *Interface = category->getClassInterface()) 4288 search(Interface); 4289 4290 // Otherwise it overrides declarations from the class. 4291 } else if (const auto *Interface = impl->getClassInterface()) { 4292 search(Interface); 4293 } 4294 } 4295 4296 void searchFrom(const ObjCInterfaceDecl *iface) { 4297 // A method in a class declaration overrides declarations from 4298 if (!iface->hasDefinition()) 4299 return; 4300 4301 // - categories, 4302 for (auto *Cat : iface->known_categories()) 4303 search(Cat); 4304 4305 // - the super class, and 4306 if (ObjCInterfaceDecl *super = iface->getSuperClass()) 4307 search(super); 4308 4309 // - any referenced protocols. 4310 search(iface->getReferencedProtocols()); 4311 } 4312 4313 void searchFrom(const ObjCImplementationDecl *impl) { 4314 // A method in a class implementation overrides declarations from 4315 // the class interface. 4316 if (const auto *Interface = impl->getClassInterface()) 4317 search(Interface); 4318 } 4319 4320 void search(const ObjCProtocolList &protocols) { 4321 for (const auto *Proto : protocols) 4322 search(Proto); 4323 } 4324 4325 void search(const ObjCContainerDecl *container) { 4326 // Check for a method in this container which matches this selector. 4327 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(), 4328 Method->isInstanceMethod(), 4329 /*AllowHidden=*/true); 4330 4331 // If we find one, record it and bail out. 4332 if (meth) { 4333 Overridden.insert(meth); 4334 return; 4335 } 4336 4337 // Otherwise, search for methods that a hypothetical method here 4338 // would have overridden. 4339 4340 // Note that we're now in a recursive case. 4341 Recursive = true; 4342 4343 searchFromContainer(container); 4344 } 4345 }; 4346 } // end anonymous namespace 4347 4348 void Sema::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method, 4349 ObjCMethodDecl *overridden) { 4350 if (const auto *attr = overridden->getAttr<ObjCDirectAttr>()) { 4351 Diag(method->getLocation(), diag::err_objc_override_direct_method); 4352 Diag(attr->getLocation(), diag::note_previous_declaration); 4353 } else if (const auto *attr = method->getAttr<ObjCDirectAttr>()) { 4354 Diag(attr->getLocation(), diag::err_objc_direct_on_override) 4355 << isa<ObjCProtocolDecl>(overridden->getDeclContext()); 4356 Diag(overridden->getLocation(), diag::note_previous_declaration); 4357 } 4358 } 4359 4360 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, 4361 ObjCInterfaceDecl *CurrentClass, 4362 ResultTypeCompatibilityKind RTC) { 4363 if (!ObjCMethod) 4364 return; 4365 // Search for overridden methods and merge information down from them. 4366 OverrideSearch overrides(*this, ObjCMethod); 4367 // Keep track if the method overrides any method in the class's base classes, 4368 // its protocols, or its categories' protocols; we will keep that info 4369 // in the ObjCMethodDecl. 4370 // For this info, a method in an implementation is not considered as 4371 // overriding the same method in the interface or its categories. 4372 bool hasOverriddenMethodsInBaseOrProtocol = false; 4373 for (ObjCMethodDecl *overridden : overrides) { 4374 if (!hasOverriddenMethodsInBaseOrProtocol) { 4375 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) || 4376 CurrentClass != overridden->getClassInterface() || 4377 overridden->isOverriding()) { 4378 CheckObjCMethodDirectOverrides(ObjCMethod, overridden); 4379 hasOverriddenMethodsInBaseOrProtocol = true; 4380 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) { 4381 // OverrideSearch will return as "overridden" the same method in the 4382 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to 4383 // check whether a category of a base class introduced a method with the 4384 // same selector, after the interface method declaration. 4385 // To avoid unnecessary lookups in the majority of cases, we use the 4386 // extra info bits in GlobalMethodPool to check whether there were any 4387 // category methods with this selector. 4388 GlobalMethodPool::iterator It = 4389 MethodPool.find(ObjCMethod->getSelector()); 4390 if (It != MethodPool.end()) { 4391 ObjCMethodList &List = 4392 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second; 4393 unsigned CategCount = List.getBits(); 4394 if (CategCount > 0) { 4395 // If the method is in a category we'll do lookup if there were at 4396 // least 2 category methods recorded, otherwise only one will do. 4397 if (CategCount > 1 || 4398 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) { 4399 OverrideSearch overrides(*this, overridden); 4400 for (ObjCMethodDecl *SuperOverridden : overrides) { 4401 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) || 4402 CurrentClass != SuperOverridden->getClassInterface()) { 4403 CheckObjCMethodDirectOverrides(ObjCMethod, SuperOverridden); 4404 hasOverriddenMethodsInBaseOrProtocol = true; 4405 overridden->setOverriding(true); 4406 break; 4407 } 4408 } 4409 } 4410 } 4411 } 4412 } 4413 } 4414 4415 // Propagate down the 'related result type' bit from overridden methods. 4416 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType()) 4417 ObjCMethod->setRelatedResultType(); 4418 4419 // Then merge the declarations. 4420 mergeObjCMethodDecls(ObjCMethod, overridden); 4421 4422 if (ObjCMethod->isImplicit() && overridden->isImplicit()) 4423 continue; // Conflicting properties are detected elsewhere. 4424 4425 // Check for overriding methods 4426 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || 4427 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) 4428 CheckConflictingOverridingMethod(ObjCMethod, overridden, 4429 isa<ObjCProtocolDecl>(overridden->getDeclContext())); 4430 4431 if (CurrentClass && overridden->getDeclContext() != CurrentClass && 4432 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) && 4433 !overridden->isImplicit() /* not meant for properties */) { 4434 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(), 4435 E = ObjCMethod->param_end(); 4436 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(), 4437 PrevE = overridden->param_end(); 4438 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) { 4439 assert(PrevI != overridden->param_end() && "Param mismatch"); 4440 QualType T1 = Context.getCanonicalType((*ParamI)->getType()); 4441 QualType T2 = Context.getCanonicalType((*PrevI)->getType()); 4442 // If type of argument of method in this class does not match its 4443 // respective argument type in the super class method, issue warning; 4444 if (!Context.typesAreCompatible(T1, T2)) { 4445 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) 4446 << T1 << T2; 4447 Diag(overridden->getLocation(), diag::note_previous_declaration); 4448 break; 4449 } 4450 } 4451 } 4452 } 4453 4454 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol); 4455 } 4456 4457 /// Merge type nullability from for a redeclaration of the same entity, 4458 /// producing the updated type of the redeclared entity. 4459 static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc, 4460 QualType type, 4461 bool usesCSKeyword, 4462 SourceLocation prevLoc, 4463 QualType prevType, 4464 bool prevUsesCSKeyword) { 4465 // Determine the nullability of both types. 4466 auto nullability = type->getNullability(S.Context); 4467 auto prevNullability = prevType->getNullability(S.Context); 4468 4469 // Easy case: both have nullability. 4470 if (nullability.hasValue() == prevNullability.hasValue()) { 4471 // Neither has nullability; continue. 4472 if (!nullability) 4473 return type; 4474 4475 // The nullabilities are equivalent; do nothing. 4476 if (*nullability == *prevNullability) 4477 return type; 4478 4479 // Complain about mismatched nullability. 4480 S.Diag(loc, diag::err_nullability_conflicting) 4481 << DiagNullabilityKind(*nullability, usesCSKeyword) 4482 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword); 4483 return type; 4484 } 4485 4486 // If it's the redeclaration that has nullability, don't change anything. 4487 if (nullability) 4488 return type; 4489 4490 // Otherwise, provide the result with the same nullability. 4491 return S.Context.getAttributedType( 4492 AttributedType::getNullabilityAttrKind(*prevNullability), 4493 type, type); 4494 } 4495 4496 /// Merge information from the declaration of a method in the \@interface 4497 /// (or a category/extension) into the corresponding method in the 4498 /// @implementation (for a class or category). 4499 static void mergeInterfaceMethodToImpl(Sema &S, 4500 ObjCMethodDecl *method, 4501 ObjCMethodDecl *prevMethod) { 4502 // Merge the objc_requires_super attribute. 4503 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() && 4504 !method->hasAttr<ObjCRequiresSuperAttr>()) { 4505 // merge the attribute into implementation. 4506 method->addAttr( 4507 ObjCRequiresSuperAttr::CreateImplicit(S.Context, 4508 method->getLocation())); 4509 } 4510 4511 // Merge nullability of the result type. 4512 QualType newReturnType 4513 = mergeTypeNullabilityForRedecl( 4514 S, method->getReturnTypeSourceRange().getBegin(), 4515 method->getReturnType(), 4516 method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, 4517 prevMethod->getReturnTypeSourceRange().getBegin(), 4518 prevMethod->getReturnType(), 4519 prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); 4520 method->setReturnType(newReturnType); 4521 4522 // Handle each of the parameters. 4523 unsigned numParams = method->param_size(); 4524 unsigned numPrevParams = prevMethod->param_size(); 4525 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) { 4526 ParmVarDecl *param = method->param_begin()[i]; 4527 ParmVarDecl *prevParam = prevMethod->param_begin()[i]; 4528 4529 // Merge nullability. 4530 QualType newParamType 4531 = mergeTypeNullabilityForRedecl( 4532 S, param->getLocation(), param->getType(), 4533 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, 4534 prevParam->getLocation(), prevParam->getType(), 4535 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); 4536 param->setType(newParamType); 4537 } 4538 } 4539 4540 /// Verify that the method parameters/return value have types that are supported 4541 /// by the x86 target. 4542 static void checkObjCMethodX86VectorTypes(Sema &SemaRef, 4543 const ObjCMethodDecl *Method) { 4544 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == 4545 llvm::Triple::x86 && 4546 "x86-specific check invoked for a different target"); 4547 SourceLocation Loc; 4548 QualType T; 4549 for (const ParmVarDecl *P : Method->parameters()) { 4550 if (P->getType()->isVectorType()) { 4551 Loc = P->getBeginLoc(); 4552 T = P->getType(); 4553 break; 4554 } 4555 } 4556 if (Loc.isInvalid()) { 4557 if (Method->getReturnType()->isVectorType()) { 4558 Loc = Method->getReturnTypeSourceRange().getBegin(); 4559 T = Method->getReturnType(); 4560 } else 4561 return; 4562 } 4563 4564 // Vector parameters/return values are not supported by objc_msgSend on x86 in 4565 // iOS < 9 and macOS < 10.11. 4566 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple(); 4567 VersionTuple AcceptedInVersion; 4568 if (Triple.getOS() == llvm::Triple::IOS) 4569 AcceptedInVersion = VersionTuple(/*Major=*/9); 4570 else if (Triple.isMacOSX()) 4571 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11); 4572 else 4573 return; 4574 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >= 4575 AcceptedInVersion) 4576 return; 4577 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type) 4578 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1 4579 : /*parameter*/ 0) 4580 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9"); 4581 } 4582 4583 static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) { 4584 if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() && 4585 CD->hasAttr<ObjCDirectMembersAttr>()) { 4586 Method->addAttr( 4587 ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation())); 4588 } 4589 } 4590 4591 static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl, 4592 ObjCMethodDecl *Method, 4593 ObjCImplDecl *ImpDecl = nullptr) { 4594 auto Sel = Method->getSelector(); 4595 bool isInstance = Method->isInstanceMethod(); 4596 bool diagnosed = false; 4597 4598 auto diagClash = [&](const ObjCMethodDecl *IMD) { 4599 if (diagnosed || IMD->isImplicit()) 4600 return; 4601 if (Method->isDirectMethod() || IMD->isDirectMethod()) { 4602 S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl) 4603 << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod() 4604 << Method->getDeclName(); 4605 S.Diag(IMD->getLocation(), diag::note_previous_declaration); 4606 diagnosed = true; 4607 } 4608 }; 4609 4610 // Look for any other declaration of this method anywhere we can see in this 4611 // compilation unit. 4612 // 4613 // We do not use IDecl->lookupMethod() because we have specific needs: 4614 // 4615 // - we absolutely do not need to walk protocols, because 4616 // diag::err_objc_direct_on_protocol has already been emitted 4617 // during parsing if there's a conflict, 4618 // 4619 // - when we do not find a match in a given @interface container, 4620 // we need to attempt looking it up in the @implementation block if the 4621 // translation unit sees it to find more clashes. 4622 4623 if (auto *IMD = IDecl->getMethod(Sel, isInstance)) 4624 diagClash(IMD); 4625 else if (auto *Impl = IDecl->getImplementation()) 4626 if (Impl != ImpDecl) 4627 if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance)) 4628 diagClash(IMD); 4629 4630 for (const auto *Cat : IDecl->visible_categories()) 4631 if (auto *IMD = Cat->getMethod(Sel, isInstance)) 4632 diagClash(IMD); 4633 else if (auto CatImpl = Cat->getImplementation()) 4634 if (CatImpl != ImpDecl) 4635 if (auto *IMD = Cat->getMethod(Sel, isInstance)) 4636 diagClash(IMD); 4637 } 4638 4639 Decl *Sema::ActOnMethodDeclaration( 4640 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc, 4641 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType, 4642 ArrayRef<SourceLocation> SelectorLocs, Selector Sel, 4643 // optional arguments. The number of types/arguments is obtained 4644 // from the Sel.getNumArgs(). 4645 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo, 4646 unsigned CNumArgs, // c-style args 4647 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind, 4648 bool isVariadic, bool MethodDefinition) { 4649 // Make sure we can establish a context for the method. 4650 if (!CurContext->isObjCContainer()) { 4651 Diag(MethodLoc, diag::err_missing_method_context); 4652 return nullptr; 4653 } 4654 4655 Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext); 4656 QualType resultDeclType; 4657 4658 bool HasRelatedResultType = false; 4659 TypeSourceInfo *ReturnTInfo = nullptr; 4660 if (ReturnType) { 4661 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo); 4662 4663 if (CheckFunctionReturnType(resultDeclType, MethodLoc)) 4664 return nullptr; 4665 4666 QualType bareResultType = resultDeclType; 4667 (void)AttributedType::stripOuterNullability(bareResultType); 4668 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType()); 4669 } else { // get the type for "id". 4670 resultDeclType = Context.getObjCIdType(); 4671 Diag(MethodLoc, diag::warn_missing_method_return_type) 4672 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)"); 4673 } 4674 4675 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create( 4676 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext, 4677 MethodType == tok::minus, isVariadic, 4678 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false, 4679 /*isImplicitlyDeclared=*/false, /*isDefined=*/false, 4680 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional 4681 : ObjCMethodDecl::Required, 4682 HasRelatedResultType); 4683 4684 SmallVector<ParmVarDecl*, 16> Params; 4685 4686 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { 4687 QualType ArgType; 4688 TypeSourceInfo *DI; 4689 4690 if (!ArgInfo[i].Type) { 4691 ArgType = Context.getObjCIdType(); 4692 DI = nullptr; 4693 } else { 4694 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); 4695 } 4696 4697 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 4698 LookupOrdinaryName, forRedeclarationInCurContext()); 4699 LookupName(R, S); 4700 if (R.isSingleResult()) { 4701 NamedDecl *PrevDecl = R.getFoundDecl(); 4702 if (S->isDeclScope(PrevDecl)) { 4703 Diag(ArgInfo[i].NameLoc, 4704 (MethodDefinition ? diag::warn_method_param_redefinition 4705 : diag::warn_method_param_declaration)) 4706 << ArgInfo[i].Name; 4707 Diag(PrevDecl->getLocation(), 4708 diag::note_previous_declaration); 4709 } 4710 } 4711 4712 SourceLocation StartLoc = DI 4713 ? DI->getTypeLoc().getBeginLoc() 4714 : ArgInfo[i].NameLoc; 4715 4716 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, 4717 ArgInfo[i].NameLoc, ArgInfo[i].Name, 4718 ArgType, DI, SC_None); 4719 4720 Param->setObjCMethodScopeInfo(i); 4721 4722 Param->setObjCDeclQualifier( 4723 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); 4724 4725 // Apply the attributes to the parameter. 4726 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); 4727 AddPragmaAttributes(TUScope, Param); 4728 4729 if (Param->hasAttr<BlocksAttr>()) { 4730 Diag(Param->getLocation(), diag::err_block_on_nonlocal); 4731 Param->setInvalidDecl(); 4732 } 4733 S->AddDecl(Param); 4734 IdResolver.AddDecl(Param); 4735 4736 Params.push_back(Param); 4737 } 4738 4739 for (unsigned i = 0, e = CNumArgs; i != e; ++i) { 4740 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); 4741 QualType ArgType = Param->getType(); 4742 if (ArgType.isNull()) 4743 ArgType = Context.getObjCIdType(); 4744 else 4745 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 4746 ArgType = Context.getAdjustedParameterType(ArgType); 4747 4748 Param->setDeclContext(ObjCMethod); 4749 Params.push_back(Param); 4750 } 4751 4752 ObjCMethod->setMethodParams(Context, Params, SelectorLocs); 4753 ObjCMethod->setObjCDeclQualifier( 4754 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); 4755 4756 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); 4757 AddPragmaAttributes(TUScope, ObjCMethod); 4758 4759 // Add the method now. 4760 const ObjCMethodDecl *PrevMethod = nullptr; 4761 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) { 4762 if (MethodType == tok::minus) { 4763 PrevMethod = ImpDecl->getInstanceMethod(Sel); 4764 ImpDecl->addInstanceMethod(ObjCMethod); 4765 } else { 4766 PrevMethod = ImpDecl->getClassMethod(Sel); 4767 ImpDecl->addClassMethod(ObjCMethod); 4768 } 4769 4770 // If this method overrides a previous @synthesize declaration, 4771 // register it with the property. Linear search through all 4772 // properties here, because the autosynthesized stub hasn't been 4773 // made visible yet, so it can be overriden by a later 4774 // user-specified implementation. 4775 for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) { 4776 if (auto *Setter = PropertyImpl->getSetterMethodDecl()) 4777 if (Setter->getSelector() == Sel && 4778 Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) { 4779 assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected"); 4780 PropertyImpl->setSetterMethodDecl(ObjCMethod); 4781 } 4782 if (auto *Getter = PropertyImpl->getGetterMethodDecl()) 4783 if (Getter->getSelector() == Sel && 4784 Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) { 4785 assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected"); 4786 PropertyImpl->setGetterMethodDecl(ObjCMethod); 4787 break; 4788 } 4789 } 4790 4791 // A method is either tagged direct explicitly, or inherits it from its 4792 // canonical declaration. 4793 // 4794 // We have to do the merge upfront and not in mergeInterfaceMethodToImpl() 4795 // because IDecl->lookupMethod() returns more possible matches than just 4796 // the canonical declaration. 4797 if (!ObjCMethod->isDirectMethod()) { 4798 const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl(); 4799 if (const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>()) { 4800 ObjCMethod->addAttr( 4801 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation())); 4802 } 4803 } 4804 4805 // Merge information from the @interface declaration into the 4806 // @implementation. 4807 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) { 4808 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), 4809 ObjCMethod->isInstanceMethod())) { 4810 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD); 4811 4812 // The Idecl->lookupMethod() above will find declarations for ObjCMethod 4813 // in one of these places: 4814 // 4815 // (1) the canonical declaration in an @interface container paired 4816 // with the ImplDecl, 4817 // (2) non canonical declarations in @interface not paired with the 4818 // ImplDecl for the same Class, 4819 // (3) any superclass container. 4820 // 4821 // Direct methods only allow for canonical declarations in the matching 4822 // container (case 1). 4823 // 4824 // Direct methods overriding a superclass declaration (case 3) is 4825 // handled during overrides checks in CheckObjCMethodOverrides(). 4826 // 4827 // We deal with same-class container mismatches (Case 2) here. 4828 if (IDecl == IMD->getClassInterface()) { 4829 auto diagContainerMismatch = [&] { 4830 int decl = 0, impl = 0; 4831 4832 if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext())) 4833 decl = Cat->IsClassExtension() ? 1 : 2; 4834 4835 if (isa<ObjCCategoryImplDecl>(ImpDecl)) 4836 impl = 1 + (decl != 0); 4837 4838 Diag(ObjCMethod->getLocation(), 4839 diag::err_objc_direct_impl_decl_mismatch) 4840 << decl << impl; 4841 Diag(IMD->getLocation(), diag::note_previous_declaration); 4842 }; 4843 4844 if (const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>()) { 4845 if (ObjCMethod->getCanonicalDecl() != IMD) { 4846 diagContainerMismatch(); 4847 } else if (!IMD->isDirectMethod()) { 4848 Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl); 4849 Diag(IMD->getLocation(), diag::note_previous_declaration); 4850 } 4851 } else if (const auto *attr = IMD->getAttr<ObjCDirectAttr>()) { 4852 if (ObjCMethod->getCanonicalDecl() != IMD) { 4853 diagContainerMismatch(); 4854 } else { 4855 ObjCMethod->addAttr( 4856 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation())); 4857 } 4858 } 4859 } 4860 4861 // Warn about defining -dealloc in a category. 4862 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() && 4863 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) { 4864 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category) 4865 << ObjCMethod->getDeclName(); 4866 } 4867 } else { 4868 mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod); 4869 checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod, ImpDecl); 4870 } 4871 4872 // Warn if a method declared in a protocol to which a category or 4873 // extension conforms is non-escaping and the implementation's method is 4874 // escaping. 4875 for (auto *C : IDecl->visible_categories()) 4876 for (auto &P : C->protocols()) 4877 if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(), 4878 ObjCMethod->isInstanceMethod())) { 4879 assert(ObjCMethod->parameters().size() == 4880 IMD->parameters().size() && 4881 "Methods have different number of parameters"); 4882 auto OI = IMD->param_begin(), OE = IMD->param_end(); 4883 auto NI = ObjCMethod->param_begin(); 4884 for (; OI != OE; ++OI, ++NI) 4885 diagnoseNoescape(*NI, *OI, C, P, *this); 4886 } 4887 } 4888 } else { 4889 if (!isa<ObjCProtocolDecl>(ClassDecl)) { 4890 mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod); 4891 4892 ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 4893 if (!IDecl) 4894 IDecl = cast<ObjCCategoryDecl>(ClassDecl)->getClassInterface(); 4895 // For valid code, we should always know the primary interface 4896 // declaration by now, however for invalid code we'll keep parsing 4897 // but we won't find the primary interface and IDecl will be nil. 4898 if (IDecl) 4899 checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod); 4900 } 4901 4902 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); 4903 } 4904 4905 if (PrevMethod) { 4906 // You can never have two method definitions with the same name. 4907 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) 4908 << ObjCMethod->getDeclName(); 4909 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 4910 ObjCMethod->setInvalidDecl(); 4911 return ObjCMethod; 4912 } 4913 4914 // If this Objective-C method does not have a related result type, but we 4915 // are allowed to infer related result types, try to do so based on the 4916 // method family. 4917 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 4918 if (!CurrentClass) { 4919 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) 4920 CurrentClass = Cat->getClassInterface(); 4921 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) 4922 CurrentClass = Impl->getClassInterface(); 4923 else if (ObjCCategoryImplDecl *CatImpl 4924 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) 4925 CurrentClass = CatImpl->getClassInterface(); 4926 } 4927 4928 ResultTypeCompatibilityKind RTC 4929 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass); 4930 4931 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC); 4932 4933 bool ARCError = false; 4934 if (getLangOpts().ObjCAutoRefCount) 4935 ARCError = CheckARCMethodDecl(ObjCMethod); 4936 4937 // Infer the related result type when possible. 4938 if (!ARCError && RTC == Sema::RTC_Compatible && 4939 !ObjCMethod->hasRelatedResultType() && 4940 LangOpts.ObjCInferRelatedResultType) { 4941 bool InferRelatedResultType = false; 4942 switch (ObjCMethod->getMethodFamily()) { 4943 case OMF_None: 4944 case OMF_copy: 4945 case OMF_dealloc: 4946 case OMF_finalize: 4947 case OMF_mutableCopy: 4948 case OMF_release: 4949 case OMF_retainCount: 4950 case OMF_initialize: 4951 case OMF_performSelector: 4952 break; 4953 4954 case OMF_alloc: 4955 case OMF_new: 4956 InferRelatedResultType = ObjCMethod->isClassMethod(); 4957 break; 4958 4959 case OMF_init: 4960 case OMF_autorelease: 4961 case OMF_retain: 4962 case OMF_self: 4963 InferRelatedResultType = ObjCMethod->isInstanceMethod(); 4964 break; 4965 } 4966 4967 if (InferRelatedResultType && 4968 !ObjCMethod->getReturnType()->isObjCIndependentClassType()) 4969 ObjCMethod->setRelatedResultType(); 4970 } 4971 4972 if (MethodDefinition && 4973 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 4974 checkObjCMethodX86VectorTypes(*this, ObjCMethod); 4975 4976 // + load method cannot have availability attributes. It get called on 4977 // startup, so it has to have the availability of the deployment target. 4978 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) { 4979 if (ObjCMethod->isClassMethod() && 4980 ObjCMethod->getSelector().getAsString() == "load") { 4981 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) 4982 << 0; 4983 ObjCMethod->dropAttr<AvailabilityAttr>(); 4984 } 4985 } 4986 4987 // Insert the invisible arguments, self and _cmd! 4988 ObjCMethod->createImplicitParams(Context, ObjCMethod->getClassInterface()); 4989 4990 ActOnDocumentableDecl(ObjCMethod); 4991 4992 return ObjCMethod; 4993 } 4994 4995 bool Sema::CheckObjCDeclScope(Decl *D) { 4996 // Following is also an error. But it is caused by a missing @end 4997 // and diagnostic is issued elsewhere. 4998 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) 4999 return false; 5000 5001 // If we switched context to translation unit while we are still lexically in 5002 // an objc container, it means the parser missed emitting an error. 5003 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext())) 5004 return false; 5005 5006 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); 5007 D->setInvalidDecl(); 5008 5009 return true; 5010 } 5011 5012 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the 5013 /// instance variables of ClassName into Decls. 5014 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, 5015 IdentifierInfo *ClassName, 5016 SmallVectorImpl<Decl*> &Decls) { 5017 // Check that ClassName is a valid class 5018 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); 5019 if (!Class) { 5020 Diag(DeclStart, diag::err_undef_interface) << ClassName; 5021 return; 5022 } 5023 if (LangOpts.ObjCRuntime.isNonFragile()) { 5024 Diag(DeclStart, diag::err_atdef_nonfragile_interface); 5025 return; 5026 } 5027 5028 // Collect the instance variables 5029 SmallVector<const ObjCIvarDecl*, 32> Ivars; 5030 Context.DeepCollectObjCIvars(Class, true, Ivars); 5031 // For each ivar, create a fresh ObjCAtDefsFieldDecl. 5032 for (unsigned i = 0; i < Ivars.size(); i++) { 5033 const FieldDecl* ID = Ivars[i]; 5034 RecordDecl *Record = dyn_cast<RecordDecl>(TagD); 5035 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, 5036 /*FIXME: StartL=*/ID->getLocation(), 5037 ID->getLocation(), 5038 ID->getIdentifier(), ID->getType(), 5039 ID->getBitWidth()); 5040 Decls.push_back(FD); 5041 } 5042 5043 // Introduce all of these fields into the appropriate scope. 5044 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); 5045 D != Decls.end(); ++D) { 5046 FieldDecl *FD = cast<FieldDecl>(*D); 5047 if (getLangOpts().CPlusPlus) 5048 PushOnScopeChains(FD, S); 5049 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) 5050 Record->addDecl(FD); 5051 } 5052 } 5053 5054 /// Build a type-check a new Objective-C exception variable declaration. 5055 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, 5056 SourceLocation StartLoc, 5057 SourceLocation IdLoc, 5058 IdentifierInfo *Id, 5059 bool Invalid) { 5060 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 5061 // duration shall not be qualified by an address-space qualifier." 5062 // Since all parameters have automatic store duration, they can not have 5063 // an address space. 5064 if (T.getAddressSpace() != LangAS::Default) { 5065 Diag(IdLoc, diag::err_arg_with_address_space); 5066 Invalid = true; 5067 } 5068 5069 // An @catch parameter must be an unqualified object pointer type; 5070 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? 5071 if (Invalid) { 5072 // Don't do any further checking. 5073 } else if (T->isDependentType()) { 5074 // Okay: we don't know what this type will instantiate to. 5075 } else if (T->isObjCQualifiedIdType()) { 5076 Invalid = true; 5077 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); 5078 } else if (T->isObjCIdType()) { 5079 // Okay: we don't know what this type will instantiate to. 5080 } else if (!T->isObjCObjectPointerType()) { 5081 Invalid = true; 5082 Diag(IdLoc, diag::err_catch_param_not_objc_type); 5083 } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) { 5084 Invalid = true; 5085 Diag(IdLoc, diag::err_catch_param_not_objc_type); 5086 } 5087 5088 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, 5089 T, TInfo, SC_None); 5090 New->setExceptionVariable(true); 5091 5092 // In ARC, infer 'retaining' for variables of retainable type. 5093 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New)) 5094 Invalid = true; 5095 5096 if (Invalid) 5097 New->setInvalidDecl(); 5098 return New; 5099 } 5100 5101 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { 5102 const DeclSpec &DS = D.getDeclSpec(); 5103 5104 // We allow the "register" storage class on exception variables because 5105 // GCC did, but we drop it completely. Any other storage class is an error. 5106 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 5107 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) 5108 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); 5109 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { 5110 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) 5111 << DeclSpec::getSpecifierName(SCS); 5112 } 5113 if (DS.isInlineSpecified()) 5114 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) 5115 << getLangOpts().CPlusPlus17; 5116 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 5117 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 5118 diag::err_invalid_thread) 5119 << DeclSpec::getSpecifierName(TSCS); 5120 D.getMutableDeclSpec().ClearStorageClassSpecs(); 5121 5122 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 5123 5124 // Check that there are no default arguments inside the type of this 5125 // exception object (C++ only). 5126 if (getLangOpts().CPlusPlus) 5127 CheckExtraCXXDefaultArguments(D); 5128 5129 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 5130 QualType ExceptionType = TInfo->getType(); 5131 5132 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, 5133 D.getSourceRange().getBegin(), 5134 D.getIdentifierLoc(), 5135 D.getIdentifier(), 5136 D.isInvalidType()); 5137 5138 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 5139 if (D.getCXXScopeSpec().isSet()) { 5140 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) 5141 << D.getCXXScopeSpec().getRange(); 5142 New->setInvalidDecl(); 5143 } 5144 5145 // Add the parameter declaration into this scope. 5146 S->AddDecl(New); 5147 if (D.getIdentifier()) 5148 IdResolver.AddDecl(New); 5149 5150 ProcessDeclAttributes(S, New, D); 5151 5152 if (New->hasAttr<BlocksAttr>()) 5153 Diag(New->getLocation(), diag::err_block_on_nonlocal); 5154 return New; 5155 } 5156 5157 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require 5158 /// initialization. 5159 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, 5160 SmallVectorImpl<ObjCIvarDecl*> &Ivars) { 5161 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 5162 Iv= Iv->getNextIvar()) { 5163 QualType QT = Context.getBaseElementType(Iv->getType()); 5164 if (QT->isRecordType()) 5165 Ivars.push_back(Iv); 5166 } 5167 } 5168 5169 void Sema::DiagnoseUseOfUnimplementedSelectors() { 5170 // Load referenced selectors from the external source. 5171 if (ExternalSource) { 5172 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; 5173 ExternalSource->ReadReferencedSelectors(Sels); 5174 for (unsigned I = 0, N = Sels.size(); I != N; ++I) 5175 ReferencedSelectors[Sels[I].first] = Sels[I].second; 5176 } 5177 5178 // Warning will be issued only when selector table is 5179 // generated (which means there is at lease one implementation 5180 // in the TU). This is to match gcc's behavior. 5181 if (ReferencedSelectors.empty() || 5182 !Context.AnyObjCImplementation()) 5183 return; 5184 for (auto &SelectorAndLocation : ReferencedSelectors) { 5185 Selector Sel = SelectorAndLocation.first; 5186 SourceLocation Loc = SelectorAndLocation.second; 5187 if (!LookupImplementedMethodInGlobalPool(Sel)) 5188 Diag(Loc, diag::warn_unimplemented_selector) << Sel; 5189 } 5190 } 5191 5192 ObjCIvarDecl * 5193 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, 5194 const ObjCPropertyDecl *&PDecl) const { 5195 if (Method->isClassMethod()) 5196 return nullptr; 5197 const ObjCInterfaceDecl *IDecl = Method->getClassInterface(); 5198 if (!IDecl) 5199 return nullptr; 5200 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true, 5201 /*shallowCategoryLookup=*/false, 5202 /*followSuper=*/false); 5203 if (!Method || !Method->isPropertyAccessor()) 5204 return nullptr; 5205 if ((PDecl = Method->findPropertyDecl())) 5206 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) { 5207 // property backing ivar must belong to property's class 5208 // or be a private ivar in class's implementation. 5209 // FIXME. fix the const-ness issue. 5210 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable( 5211 IV->getIdentifier()); 5212 return IV; 5213 } 5214 return nullptr; 5215 } 5216 5217 namespace { 5218 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property 5219 /// accessor references the backing ivar. 5220 class UnusedBackingIvarChecker : 5221 public RecursiveASTVisitor<UnusedBackingIvarChecker> { 5222 public: 5223 Sema &S; 5224 const ObjCMethodDecl *Method; 5225 const ObjCIvarDecl *IvarD; 5226 bool AccessedIvar; 5227 bool InvokedSelfMethod; 5228 5229 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method, 5230 const ObjCIvarDecl *IvarD) 5231 : S(S), Method(Method), IvarD(IvarD), 5232 AccessedIvar(false), InvokedSelfMethod(false) { 5233 assert(IvarD); 5234 } 5235 5236 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 5237 if (E->getDecl() == IvarD) { 5238 AccessedIvar = true; 5239 return false; 5240 } 5241 return true; 5242 } 5243 5244 bool VisitObjCMessageExpr(ObjCMessageExpr *E) { 5245 if (E->getReceiverKind() == ObjCMessageExpr::Instance && 5246 S.isSelfExpr(E->getInstanceReceiver(), Method)) { 5247 InvokedSelfMethod = true; 5248 } 5249 return true; 5250 } 5251 }; 5252 } // end anonymous namespace 5253 5254 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S, 5255 const ObjCImplementationDecl *ImplD) { 5256 if (S->hasUnrecoverableErrorOccurred()) 5257 return; 5258 5259 for (const auto *CurMethod : ImplD->instance_methods()) { 5260 unsigned DIAG = diag::warn_unused_property_backing_ivar; 5261 SourceLocation Loc = CurMethod->getLocation(); 5262 if (Diags.isIgnored(DIAG, Loc)) 5263 continue; 5264 5265 const ObjCPropertyDecl *PDecl; 5266 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl); 5267 if (!IV) 5268 continue; 5269 5270 if (CurMethod->isSynthesizedAccessorStub()) 5271 continue; 5272 5273 UnusedBackingIvarChecker Checker(*this, CurMethod, IV); 5274 Checker.TraverseStmt(CurMethod->getBody()); 5275 if (Checker.AccessedIvar) 5276 continue; 5277 5278 // Do not issue this warning if backing ivar is used somewhere and accessor 5279 // implementation makes a self call. This is to prevent false positive in 5280 // cases where the ivar is accessed by another method that the accessor 5281 // delegates to. 5282 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) { 5283 Diag(Loc, DIAG) << IV; 5284 Diag(PDecl->getLocation(), diag::note_property_declare); 5285 } 5286 } 5287 } 5288