xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaDeclObjC.cpp (revision b3512b30dbec579da28028e29d8b33ec7242af68)
1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for Objective C declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/RecursiveASTVisitor.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/Scope.h"
26 #include "clang/Sema/ScopeInfo.h"
27 #include "clang/Sema/SemaInternal.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/DenseSet.h"
30 
31 using namespace clang;
32 
33 /// Check whether the given method, which must be in the 'init'
34 /// family, is a valid member of that family.
35 ///
36 /// \param receiverTypeIfCall - if null, check this as if declaring it;
37 ///   if non-null, check this as if making a call to it with the given
38 ///   receiver type
39 ///
40 /// \return true to indicate that there was an error and appropriate
41 ///   actions were taken
42 bool Sema::checkInitMethod(ObjCMethodDecl *method,
43                            QualType receiverTypeIfCall) {
44   if (method->isInvalidDecl()) return true;
45 
46   // This castAs is safe: methods that don't return an object
47   // pointer won't be inferred as inits and will reject an explicit
48   // objc_method_family(init).
49 
50   // We ignore protocols here.  Should we?  What about Class?
51 
52   const ObjCObjectType *result =
53       method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
54 
55   if (result->isObjCId()) {
56     return false;
57   } else if (result->isObjCClass()) {
58     // fall through: always an error
59   } else {
60     ObjCInterfaceDecl *resultClass = result->getInterface();
61     assert(resultClass && "unexpected object type!");
62 
63     // It's okay for the result type to still be a forward declaration
64     // if we're checking an interface declaration.
65     if (!resultClass->hasDefinition()) {
66       if (receiverTypeIfCall.isNull() &&
67           !isa<ObjCImplementationDecl>(method->getDeclContext()))
68         return false;
69 
70     // Otherwise, we try to compare class types.
71     } else {
72       // If this method was declared in a protocol, we can't check
73       // anything unless we have a receiver type that's an interface.
74       const ObjCInterfaceDecl *receiverClass = nullptr;
75       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76         if (receiverTypeIfCall.isNull())
77           return false;
78 
79         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80           ->getInterfaceDecl();
81 
82         // This can be null for calls to e.g. id<Foo>.
83         if (!receiverClass) return false;
84       } else {
85         receiverClass = method->getClassInterface();
86         assert(receiverClass && "method not associated with a class!");
87       }
88 
89       // If either class is a subclass of the other, it's fine.
90       if (receiverClass->isSuperClassOf(resultClass) ||
91           resultClass->isSuperClassOf(receiverClass))
92         return false;
93     }
94   }
95 
96   SourceLocation loc = method->getLocation();
97 
98   // If we're in a system header, and this is not a call, just make
99   // the method unusable.
100   if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
101     method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102                       UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103     return true;
104   }
105 
106   // Otherwise, it's an error.
107   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108   method->setInvalidDecl();
109   return true;
110 }
111 
112 /// Issue a warning if the parameter of the overridden method is non-escaping
113 /// but the parameter of the overriding method is not.
114 static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
115                              Sema &S) {
116   if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
117     S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
118     S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
119     return false;
120   }
121 
122   return true;
123 }
124 
125 /// Produce additional diagnostics if a category conforms to a protocol that
126 /// defines a method taking a non-escaping parameter.
127 static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
128                              const ObjCCategoryDecl *CD,
129                              const ObjCProtocolDecl *PD, Sema &S) {
130   if (!diagnoseNoescape(NewD, OldD, S))
131     S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
132         << CD->IsClassExtension() << PD
133         << cast<ObjCMethodDecl>(NewD->getDeclContext());
134 }
135 
136 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
137                                    const ObjCMethodDecl *Overridden) {
138   if (Overridden->hasRelatedResultType() &&
139       !NewMethod->hasRelatedResultType()) {
140     // This can only happen when the method follows a naming convention that
141     // implies a related result type, and the original (overridden) method has
142     // a suitable return type, but the new (overriding) method does not have
143     // a suitable return type.
144     QualType ResultType = NewMethod->getReturnType();
145     SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
146 
147     // Figure out which class this method is part of, if any.
148     ObjCInterfaceDecl *CurrentClass
149       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
150     if (!CurrentClass) {
151       DeclContext *DC = NewMethod->getDeclContext();
152       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
153         CurrentClass = Cat->getClassInterface();
154       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
155         CurrentClass = Impl->getClassInterface();
156       else if (ObjCCategoryImplDecl *CatImpl
157                = dyn_cast<ObjCCategoryImplDecl>(DC))
158         CurrentClass = CatImpl->getClassInterface();
159     }
160 
161     if (CurrentClass) {
162       Diag(NewMethod->getLocation(),
163            diag::warn_related_result_type_compatibility_class)
164         << Context.getObjCInterfaceType(CurrentClass)
165         << ResultType
166         << ResultTypeRange;
167     } else {
168       Diag(NewMethod->getLocation(),
169            diag::warn_related_result_type_compatibility_protocol)
170         << ResultType
171         << ResultTypeRange;
172     }
173 
174     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
175       Diag(Overridden->getLocation(),
176            diag::note_related_result_type_family)
177         << /*overridden method*/ 0
178         << Family;
179     else
180       Diag(Overridden->getLocation(),
181            diag::note_related_result_type_overridden);
182   }
183 
184   if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
185        Overridden->hasAttr<NSReturnsRetainedAttr>())) {
186     Diag(NewMethod->getLocation(),
187          getLangOpts().ObjCAutoRefCount
188              ? diag::err_nsreturns_retained_attribute_mismatch
189              : diag::warn_nsreturns_retained_attribute_mismatch)
190         << 1;
191     Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
192   }
193   if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
194        Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
195     Diag(NewMethod->getLocation(),
196          getLangOpts().ObjCAutoRefCount
197              ? diag::err_nsreturns_retained_attribute_mismatch
198              : diag::warn_nsreturns_retained_attribute_mismatch)
199         << 0;
200     Diag(Overridden->getLocation(), diag::note_previous_decl)  << "method";
201   }
202 
203   ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
204                                        oe = Overridden->param_end();
205   for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
206                                       ne = NewMethod->param_end();
207        ni != ne && oi != oe; ++ni, ++oi) {
208     const ParmVarDecl *oldDecl = (*oi);
209     ParmVarDecl *newDecl = (*ni);
210     if (newDecl->hasAttr<NSConsumedAttr>() !=
211         oldDecl->hasAttr<NSConsumedAttr>()) {
212       Diag(newDecl->getLocation(),
213            getLangOpts().ObjCAutoRefCount
214                ? diag::err_nsconsumed_attribute_mismatch
215                : diag::warn_nsconsumed_attribute_mismatch);
216       Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
217     }
218 
219     diagnoseNoescape(newDecl, oldDecl, *this);
220   }
221 }
222 
223 /// Check a method declaration for compatibility with the Objective-C
224 /// ARC conventions.
225 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
226   ObjCMethodFamily family = method->getMethodFamily();
227   switch (family) {
228   case OMF_None:
229   case OMF_finalize:
230   case OMF_retain:
231   case OMF_release:
232   case OMF_autorelease:
233   case OMF_retainCount:
234   case OMF_self:
235   case OMF_initialize:
236   case OMF_performSelector:
237     return false;
238 
239   case OMF_dealloc:
240     if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
241       SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
242       if (ResultTypeRange.isInvalid())
243         Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
244             << method->getReturnType()
245             << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
246       else
247         Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
248             << method->getReturnType()
249             << FixItHint::CreateReplacement(ResultTypeRange, "void");
250       return true;
251     }
252     return false;
253 
254   case OMF_init:
255     // If the method doesn't obey the init rules, don't bother annotating it.
256     if (checkInitMethod(method, QualType()))
257       return true;
258 
259     method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
260 
261     // Don't add a second copy of this attribute, but otherwise don't
262     // let it be suppressed.
263     if (method->hasAttr<NSReturnsRetainedAttr>())
264       return false;
265     break;
266 
267   case OMF_alloc:
268   case OMF_copy:
269   case OMF_mutableCopy:
270   case OMF_new:
271     if (method->hasAttr<NSReturnsRetainedAttr>() ||
272         method->hasAttr<NSReturnsNotRetainedAttr>() ||
273         method->hasAttr<NSReturnsAutoreleasedAttr>())
274       return false;
275     break;
276   }
277 
278   method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
279   return false;
280 }
281 
282 static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
283                                                 SourceLocation ImplLoc) {
284   if (!ND)
285     return;
286   bool IsCategory = false;
287   StringRef RealizedPlatform;
288   AvailabilityResult Availability = ND->getAvailability(
289       /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
290       &RealizedPlatform);
291   if (Availability != AR_Deprecated) {
292     if (isa<ObjCMethodDecl>(ND)) {
293       if (Availability != AR_Unavailable)
294         return;
295       if (RealizedPlatform.empty())
296         RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
297       // Warn about implementing unavailable methods, unless the unavailable
298       // is for an app extension.
299       if (RealizedPlatform.endswith("_app_extension"))
300         return;
301       S.Diag(ImplLoc, diag::warn_unavailable_def);
302       S.Diag(ND->getLocation(), diag::note_method_declared_at)
303           << ND->getDeclName();
304       return;
305     }
306     if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
307       if (!CD->getClassInterface()->isDeprecated())
308         return;
309       ND = CD->getClassInterface();
310       IsCategory = true;
311     } else
312       return;
313   }
314   S.Diag(ImplLoc, diag::warn_deprecated_def)
315       << (isa<ObjCMethodDecl>(ND)
316               ? /*Method*/ 0
317               : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
318                                                         : /*Class*/ 1);
319   if (isa<ObjCMethodDecl>(ND))
320     S.Diag(ND->getLocation(), diag::note_method_declared_at)
321         << ND->getDeclName();
322   else
323     S.Diag(ND->getLocation(), diag::note_previous_decl)
324         << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
325 }
326 
327 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
328 /// pool.
329 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
330   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
331 
332   // If we don't have a valid method decl, simply return.
333   if (!MDecl)
334     return;
335   if (MDecl->isInstanceMethod())
336     AddInstanceMethodToGlobalPool(MDecl, true);
337   else
338     AddFactoryMethodToGlobalPool(MDecl, true);
339 }
340 
341 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
342 /// has explicit ownership attribute; false otherwise.
343 static bool
344 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
345   QualType T = Param->getType();
346 
347   if (const PointerType *PT = T->getAs<PointerType>()) {
348     T = PT->getPointeeType();
349   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
350     T = RT->getPointeeType();
351   } else {
352     return true;
353   }
354 
355   // If we have a lifetime qualifier, but it's local, we must have
356   // inferred it. So, it is implicit.
357   return !T.getLocalQualifiers().hasObjCLifetime();
358 }
359 
360 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
361 /// and user declared, in the method definition's AST.
362 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
363   ImplicitlyRetainedSelfLocs.clear();
364   assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
365   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
366 
367   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
368 
369   // If we don't have a valid method decl, simply return.
370   if (!MDecl)
371     return;
372 
373   QualType ResultType = MDecl->getReturnType();
374   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
375       !MDecl->isInvalidDecl() &&
376       RequireCompleteType(MDecl->getLocation(), ResultType,
377                           diag::err_func_def_incomplete_result))
378     MDecl->setInvalidDecl();
379 
380   // Allow all of Sema to see that we are entering a method definition.
381   PushDeclContext(FnBodyScope, MDecl);
382   PushFunctionScope();
383 
384   // Create Decl objects for each parameter, entrring them in the scope for
385   // binding to their use.
386 
387   // Insert the invisible arguments, self and _cmd!
388   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
389 
390   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
391   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
392 
393   // The ObjC parser requires parameter names so there's no need to check.
394   CheckParmsForFunctionDef(MDecl->parameters(),
395                            /*CheckParameterNames=*/false);
396 
397   // Introduce all of the other parameters into this scope.
398   for (auto *Param : MDecl->parameters()) {
399     if (!Param->isInvalidDecl() &&
400         getLangOpts().ObjCAutoRefCount &&
401         !HasExplicitOwnershipAttr(*this, Param))
402       Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
403             Param->getType();
404 
405     if (Param->getIdentifier())
406       PushOnScopeChains(Param, FnBodyScope);
407   }
408 
409   // In ARC, disallow definition of retain/release/autorelease/retainCount
410   if (getLangOpts().ObjCAutoRefCount) {
411     switch (MDecl->getMethodFamily()) {
412     case OMF_retain:
413     case OMF_retainCount:
414     case OMF_release:
415     case OMF_autorelease:
416       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
417         << 0 << MDecl->getSelector();
418       break;
419 
420     case OMF_None:
421     case OMF_dealloc:
422     case OMF_finalize:
423     case OMF_alloc:
424     case OMF_init:
425     case OMF_mutableCopy:
426     case OMF_copy:
427     case OMF_new:
428     case OMF_self:
429     case OMF_initialize:
430     case OMF_performSelector:
431       break;
432     }
433   }
434 
435   // Warn on deprecated methods under -Wdeprecated-implementations,
436   // and prepare for warning on missing super calls.
437   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
438     ObjCMethodDecl *IMD =
439       IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
440 
441     if (IMD) {
442       ObjCImplDecl *ImplDeclOfMethodDef =
443         dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
444       ObjCContainerDecl *ContDeclOfMethodDecl =
445         dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
446       ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
447       if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
448         ImplDeclOfMethodDecl = OID->getImplementation();
449       else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
450         if (CD->IsClassExtension()) {
451           if (ObjCInterfaceDecl *OID = CD->getClassInterface())
452             ImplDeclOfMethodDecl = OID->getImplementation();
453         } else
454             ImplDeclOfMethodDecl = CD->getImplementation();
455       }
456       // No need to issue deprecated warning if deprecated mehod in class/category
457       // is being implemented in its own implementation (no overriding is involved).
458       if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
459         DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
460     }
461 
462     if (MDecl->getMethodFamily() == OMF_init) {
463       if (MDecl->isDesignatedInitializerForTheInterface()) {
464         getCurFunction()->ObjCIsDesignatedInit = true;
465         getCurFunction()->ObjCWarnForNoDesignatedInitChain =
466             IC->getSuperClass() != nullptr;
467       } else if (IC->hasDesignatedInitializers()) {
468         getCurFunction()->ObjCIsSecondaryInit = true;
469         getCurFunction()->ObjCWarnForNoInitDelegation = true;
470       }
471     }
472 
473     // If this is "dealloc" or "finalize", set some bit here.
474     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
475     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
476     // Only do this if the current class actually has a superclass.
477     if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
478       ObjCMethodFamily Family = MDecl->getMethodFamily();
479       if (Family == OMF_dealloc) {
480         if (!(getLangOpts().ObjCAutoRefCount ||
481               getLangOpts().getGC() == LangOptions::GCOnly))
482           getCurFunction()->ObjCShouldCallSuper = true;
483 
484       } else if (Family == OMF_finalize) {
485         if (Context.getLangOpts().getGC() != LangOptions::NonGC)
486           getCurFunction()->ObjCShouldCallSuper = true;
487 
488       } else {
489         const ObjCMethodDecl *SuperMethod =
490           SuperClass->lookupMethod(MDecl->getSelector(),
491                                    MDecl->isInstanceMethod());
492         getCurFunction()->ObjCShouldCallSuper =
493           (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
494       }
495     }
496   }
497 }
498 
499 namespace {
500 
501 // Callback to only accept typo corrections that are Objective-C classes.
502 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
503 // function will reject corrections to that class.
504 class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
505  public:
506   ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
507   explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
508       : CurrentIDecl(IDecl) {}
509 
510   bool ValidateCandidate(const TypoCorrection &candidate) override {
511     ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
512     return ID && !declaresSameEntity(ID, CurrentIDecl);
513   }
514 
515   std::unique_ptr<CorrectionCandidateCallback> clone() override {
516     return std::make_unique<ObjCInterfaceValidatorCCC>(*this);
517   }
518 
519  private:
520   ObjCInterfaceDecl *CurrentIDecl;
521 };
522 
523 } // end anonymous namespace
524 
525 static void diagnoseUseOfProtocols(Sema &TheSema,
526                                    ObjCContainerDecl *CD,
527                                    ObjCProtocolDecl *const *ProtoRefs,
528                                    unsigned NumProtoRefs,
529                                    const SourceLocation *ProtoLocs) {
530   assert(ProtoRefs);
531   // Diagnose availability in the context of the ObjC container.
532   Sema::ContextRAII SavedContext(TheSema, CD);
533   for (unsigned i = 0; i < NumProtoRefs; ++i) {
534     (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
535                                     /*UnknownObjCClass=*/nullptr,
536                                     /*ObjCPropertyAccess=*/false,
537                                     /*AvoidPartialAvailabilityChecks=*/true);
538   }
539 }
540 
541 void Sema::
542 ActOnSuperClassOfClassInterface(Scope *S,
543                                 SourceLocation AtInterfaceLoc,
544                                 ObjCInterfaceDecl *IDecl,
545                                 IdentifierInfo *ClassName,
546                                 SourceLocation ClassLoc,
547                                 IdentifierInfo *SuperName,
548                                 SourceLocation SuperLoc,
549                                 ArrayRef<ParsedType> SuperTypeArgs,
550                                 SourceRange SuperTypeArgsRange) {
551   // Check if a different kind of symbol declared in this scope.
552   NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
553                                          LookupOrdinaryName);
554 
555   if (!PrevDecl) {
556     // Try to correct for a typo in the superclass name without correcting
557     // to the class we're defining.
558     ObjCInterfaceValidatorCCC CCC(IDecl);
559     if (TypoCorrection Corrected = CorrectTypo(
560             DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName,
561             TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
562       diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
563                    << SuperName << ClassName);
564       PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
565     }
566   }
567 
568   if (declaresSameEntity(PrevDecl, IDecl)) {
569     Diag(SuperLoc, diag::err_recursive_superclass)
570       << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
571     IDecl->setEndOfDefinitionLoc(ClassLoc);
572   } else {
573     ObjCInterfaceDecl *SuperClassDecl =
574     dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
575     QualType SuperClassType;
576 
577     // Diagnose classes that inherit from deprecated classes.
578     if (SuperClassDecl) {
579       (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
580       SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
581     }
582 
583     if (PrevDecl && !SuperClassDecl) {
584       // The previous declaration was not a class decl. Check if we have a
585       // typedef. If we do, get the underlying class type.
586       if (const TypedefNameDecl *TDecl =
587           dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
588         QualType T = TDecl->getUnderlyingType();
589         if (T->isObjCObjectType()) {
590           if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
591             SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
592             SuperClassType = Context.getTypeDeclType(TDecl);
593 
594             // This handles the following case:
595             // @interface NewI @end
596             // typedef NewI DeprI __attribute__((deprecated("blah")))
597             // @interface SI : DeprI /* warn here */ @end
598             (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
599           }
600         }
601       }
602 
603       // This handles the following case:
604       //
605       // typedef int SuperClass;
606       // @interface MyClass : SuperClass {} @end
607       //
608       if (!SuperClassDecl) {
609         Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
610         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
611       }
612     }
613 
614     if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
615       if (!SuperClassDecl)
616         Diag(SuperLoc, diag::err_undef_superclass)
617           << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
618       else if (RequireCompleteType(SuperLoc,
619                                    SuperClassType,
620                                    diag::err_forward_superclass,
621                                    SuperClassDecl->getDeclName(),
622                                    ClassName,
623                                    SourceRange(AtInterfaceLoc, ClassLoc))) {
624         SuperClassDecl = nullptr;
625         SuperClassType = QualType();
626       }
627     }
628 
629     if (SuperClassType.isNull()) {
630       assert(!SuperClassDecl && "Failed to set SuperClassType?");
631       return;
632     }
633 
634     // Handle type arguments on the superclass.
635     TypeSourceInfo *SuperClassTInfo = nullptr;
636     if (!SuperTypeArgs.empty()) {
637       TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
638                                         S,
639                                         SuperLoc,
640                                         CreateParsedType(SuperClassType,
641                                                          nullptr),
642                                         SuperTypeArgsRange.getBegin(),
643                                         SuperTypeArgs,
644                                         SuperTypeArgsRange.getEnd(),
645                                         SourceLocation(),
646                                         { },
647                                         { },
648                                         SourceLocation());
649       if (!fullSuperClassType.isUsable())
650         return;
651 
652       SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
653                                          &SuperClassTInfo);
654     }
655 
656     if (!SuperClassTInfo) {
657       SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
658                                                          SuperLoc);
659     }
660 
661     IDecl->setSuperClass(SuperClassTInfo);
662     IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
663   }
664 }
665 
666 DeclResult Sema::actOnObjCTypeParam(Scope *S,
667                                     ObjCTypeParamVariance variance,
668                                     SourceLocation varianceLoc,
669                                     unsigned index,
670                                     IdentifierInfo *paramName,
671                                     SourceLocation paramLoc,
672                                     SourceLocation colonLoc,
673                                     ParsedType parsedTypeBound) {
674   // If there was an explicitly-provided type bound, check it.
675   TypeSourceInfo *typeBoundInfo = nullptr;
676   if (parsedTypeBound) {
677     // The type bound can be any Objective-C pointer type.
678     QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
679     if (typeBound->isObjCObjectPointerType()) {
680       // okay
681     } else if (typeBound->isObjCObjectType()) {
682       // The user forgot the * on an Objective-C pointer type, e.g.,
683       // "T : NSView".
684       SourceLocation starLoc = getLocForEndOfToken(
685                                  typeBoundInfo->getTypeLoc().getEndLoc());
686       Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
687            diag::err_objc_type_param_bound_missing_pointer)
688         << typeBound << paramName
689         << FixItHint::CreateInsertion(starLoc, " *");
690 
691       // Create a new type location builder so we can update the type
692       // location information we have.
693       TypeLocBuilder builder;
694       builder.pushFullCopy(typeBoundInfo->getTypeLoc());
695 
696       // Create the Objective-C pointer type.
697       typeBound = Context.getObjCObjectPointerType(typeBound);
698       ObjCObjectPointerTypeLoc newT
699         = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
700       newT.setStarLoc(starLoc);
701 
702       // Form the new type source information.
703       typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
704     } else {
705       // Not a valid type bound.
706       Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
707            diag::err_objc_type_param_bound_nonobject)
708         << typeBound << paramName;
709 
710       // Forget the bound; we'll default to id later.
711       typeBoundInfo = nullptr;
712     }
713 
714     // Type bounds cannot have qualifiers (even indirectly) or explicit
715     // nullability.
716     if (typeBoundInfo) {
717       QualType typeBound = typeBoundInfo->getType();
718       TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
719       if (qual || typeBound.hasQualifiers()) {
720         bool diagnosed = false;
721         SourceRange rangeToRemove;
722         if (qual) {
723           if (auto attr = qual.getAs<AttributedTypeLoc>()) {
724             rangeToRemove = attr.getLocalSourceRange();
725             if (attr.getTypePtr()->getImmediateNullability()) {
726               Diag(attr.getBeginLoc(),
727                    diag::err_objc_type_param_bound_explicit_nullability)
728                   << paramName << typeBound
729                   << FixItHint::CreateRemoval(rangeToRemove);
730               diagnosed = true;
731             }
732           }
733         }
734 
735         if (!diagnosed) {
736           Diag(qual ? qual.getBeginLoc()
737                     : typeBoundInfo->getTypeLoc().getBeginLoc(),
738                diag::err_objc_type_param_bound_qualified)
739               << paramName << typeBound
740               << typeBound.getQualifiers().getAsString()
741               << FixItHint::CreateRemoval(rangeToRemove);
742         }
743 
744         // If the type bound has qualifiers other than CVR, we need to strip
745         // them or we'll probably assert later when trying to apply new
746         // qualifiers.
747         Qualifiers quals = typeBound.getQualifiers();
748         quals.removeCVRQualifiers();
749         if (!quals.empty()) {
750           typeBoundInfo =
751              Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
752         }
753       }
754     }
755   }
756 
757   // If there was no explicit type bound (or we removed it due to an error),
758   // use 'id' instead.
759   if (!typeBoundInfo) {
760     colonLoc = SourceLocation();
761     typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
762   }
763 
764   // Create the type parameter.
765   return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
766                                    index, paramLoc, paramName, colonLoc,
767                                    typeBoundInfo);
768 }
769 
770 ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
771                                                 SourceLocation lAngleLoc,
772                                                 ArrayRef<Decl *> typeParamsIn,
773                                                 SourceLocation rAngleLoc) {
774   // We know that the array only contains Objective-C type parameters.
775   ArrayRef<ObjCTypeParamDecl *>
776     typeParams(
777       reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
778       typeParamsIn.size());
779 
780   // Diagnose redeclarations of type parameters.
781   // We do this now because Objective-C type parameters aren't pushed into
782   // scope until later (after the instance variable block), but we want the
783   // diagnostics to occur right after we parse the type parameter list.
784   llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
785   for (auto typeParam : typeParams) {
786     auto known = knownParams.find(typeParam->getIdentifier());
787     if (known != knownParams.end()) {
788       Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
789         << typeParam->getIdentifier()
790         << SourceRange(known->second->getLocation());
791 
792       typeParam->setInvalidDecl();
793     } else {
794       knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
795 
796       // Push the type parameter into scope.
797       PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
798     }
799   }
800 
801   // Create the parameter list.
802   return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
803 }
804 
805 void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
806   for (auto typeParam : *typeParamList) {
807     if (!typeParam->isInvalidDecl()) {
808       S->RemoveDecl(typeParam);
809       IdResolver.RemoveDecl(typeParam);
810     }
811   }
812 }
813 
814 namespace {
815   /// The context in which an Objective-C type parameter list occurs, for use
816   /// in diagnostics.
817   enum class TypeParamListContext {
818     ForwardDeclaration,
819     Definition,
820     Category,
821     Extension
822   };
823 } // end anonymous namespace
824 
825 /// Check consistency between two Objective-C type parameter lists, e.g.,
826 /// between a category/extension and an \@interface or between an \@class and an
827 /// \@interface.
828 static bool checkTypeParamListConsistency(Sema &S,
829                                           ObjCTypeParamList *prevTypeParams,
830                                           ObjCTypeParamList *newTypeParams,
831                                           TypeParamListContext newContext) {
832   // If the sizes don't match, complain about that.
833   if (prevTypeParams->size() != newTypeParams->size()) {
834     SourceLocation diagLoc;
835     if (newTypeParams->size() > prevTypeParams->size()) {
836       diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
837     } else {
838       diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
839     }
840 
841     S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
842       << static_cast<unsigned>(newContext)
843       << (newTypeParams->size() > prevTypeParams->size())
844       << prevTypeParams->size()
845       << newTypeParams->size();
846 
847     return true;
848   }
849 
850   // Match up the type parameters.
851   for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
852     ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
853     ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
854 
855     // Check for consistency of the variance.
856     if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
857       if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
858           newContext != TypeParamListContext::Definition) {
859         // When the new type parameter is invariant and is not part
860         // of the definition, just propagate the variance.
861         newTypeParam->setVariance(prevTypeParam->getVariance());
862       } else if (prevTypeParam->getVariance()
863                    == ObjCTypeParamVariance::Invariant &&
864                  !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
865                    cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
866                      ->getDefinition() == prevTypeParam->getDeclContext())) {
867         // When the old parameter is invariant and was not part of the
868         // definition, just ignore the difference because it doesn't
869         // matter.
870       } else {
871         {
872           // Diagnose the conflict and update the second declaration.
873           SourceLocation diagLoc = newTypeParam->getVarianceLoc();
874           if (diagLoc.isInvalid())
875             diagLoc = newTypeParam->getBeginLoc();
876 
877           auto diag = S.Diag(diagLoc,
878                              diag::err_objc_type_param_variance_conflict)
879                         << static_cast<unsigned>(newTypeParam->getVariance())
880                         << newTypeParam->getDeclName()
881                         << static_cast<unsigned>(prevTypeParam->getVariance())
882                         << prevTypeParam->getDeclName();
883           switch (prevTypeParam->getVariance()) {
884           case ObjCTypeParamVariance::Invariant:
885             diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
886             break;
887 
888           case ObjCTypeParamVariance::Covariant:
889           case ObjCTypeParamVariance::Contravariant: {
890             StringRef newVarianceStr
891                = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
892                    ? "__covariant"
893                    : "__contravariant";
894             if (newTypeParam->getVariance()
895                   == ObjCTypeParamVariance::Invariant) {
896               diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
897                                                  (newVarianceStr + " ").str());
898             } else {
899               diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
900                                                newVarianceStr);
901             }
902           }
903           }
904         }
905 
906         S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
907           << prevTypeParam->getDeclName();
908 
909         // Override the variance.
910         newTypeParam->setVariance(prevTypeParam->getVariance());
911       }
912     }
913 
914     // If the bound types match, there's nothing to do.
915     if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
916                               newTypeParam->getUnderlyingType()))
917       continue;
918 
919     // If the new type parameter's bound was explicit, complain about it being
920     // different from the original.
921     if (newTypeParam->hasExplicitBound()) {
922       SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
923                                     ->getTypeLoc().getSourceRange();
924       S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
925         << newTypeParam->getUnderlyingType()
926         << newTypeParam->getDeclName()
927         << prevTypeParam->hasExplicitBound()
928         << prevTypeParam->getUnderlyingType()
929         << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
930         << prevTypeParam->getDeclName()
931         << FixItHint::CreateReplacement(
932              newBoundRange,
933              prevTypeParam->getUnderlyingType().getAsString(
934                S.Context.getPrintingPolicy()));
935 
936       S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
937         << prevTypeParam->getDeclName();
938 
939       // Override the new type parameter's bound type with the previous type,
940       // so that it's consistent.
941       S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
942       continue;
943     }
944 
945     // The new type parameter got the implicit bound of 'id'. That's okay for
946     // categories and extensions (overwrite it later), but not for forward
947     // declarations and @interfaces, because those must be standalone.
948     if (newContext == TypeParamListContext::ForwardDeclaration ||
949         newContext == TypeParamListContext::Definition) {
950       // Diagnose this problem for forward declarations and definitions.
951       SourceLocation insertionLoc
952         = S.getLocForEndOfToken(newTypeParam->getLocation());
953       std::string newCode
954         = " : " + prevTypeParam->getUnderlyingType().getAsString(
955                     S.Context.getPrintingPolicy());
956       S.Diag(newTypeParam->getLocation(),
957              diag::err_objc_type_param_bound_missing)
958         << prevTypeParam->getUnderlyingType()
959         << newTypeParam->getDeclName()
960         << (newContext == TypeParamListContext::ForwardDeclaration)
961         << FixItHint::CreateInsertion(insertionLoc, newCode);
962 
963       S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
964         << prevTypeParam->getDeclName();
965     }
966 
967     // Update the new type parameter's bound to match the previous one.
968     S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
969   }
970 
971   return false;
972 }
973 
974 Decl *Sema::ActOnStartClassInterface(
975     Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
976     SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
977     IdentifierInfo *SuperName, SourceLocation SuperLoc,
978     ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
979     Decl *const *ProtoRefs, unsigned NumProtoRefs,
980     const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
981     const ParsedAttributesView &AttrList) {
982   assert(ClassName && "Missing class identifier");
983 
984   // Check for another declaration kind with the same name.
985   NamedDecl *PrevDecl =
986       LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
987                        forRedeclarationInCurContext());
988 
989   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
990     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
991     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
992   }
993 
994   // Create a declaration to describe this @interface.
995   ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
996 
997   if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
998     // A previous decl with a different name is because of
999     // @compatibility_alias, for example:
1000     // \code
1001     //   @class NewImage;
1002     //   @compatibility_alias OldImage NewImage;
1003     // \endcode
1004     // A lookup for 'OldImage' will return the 'NewImage' decl.
1005     //
1006     // In such a case use the real declaration name, instead of the alias one,
1007     // otherwise we will break IdentifierResolver and redecls-chain invariants.
1008     // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1009     // has been aliased.
1010     ClassName = PrevIDecl->getIdentifier();
1011   }
1012 
1013   // If there was a forward declaration with type parameters, check
1014   // for consistency.
1015   if (PrevIDecl) {
1016     if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1017       if (typeParamList) {
1018         // Both have type parameter lists; check for consistency.
1019         if (checkTypeParamListConsistency(*this, prevTypeParamList,
1020                                           typeParamList,
1021                                           TypeParamListContext::Definition)) {
1022           typeParamList = nullptr;
1023         }
1024       } else {
1025         Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1026           << ClassName;
1027         Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1028           << ClassName;
1029 
1030         // Clone the type parameter list.
1031         SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1032         for (auto typeParam : *prevTypeParamList) {
1033           clonedTypeParams.push_back(
1034             ObjCTypeParamDecl::Create(
1035               Context,
1036               CurContext,
1037               typeParam->getVariance(),
1038               SourceLocation(),
1039               typeParam->getIndex(),
1040               SourceLocation(),
1041               typeParam->getIdentifier(),
1042               SourceLocation(),
1043               Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1044         }
1045 
1046         typeParamList = ObjCTypeParamList::create(Context,
1047                                                   SourceLocation(),
1048                                                   clonedTypeParams,
1049                                                   SourceLocation());
1050       }
1051     }
1052   }
1053 
1054   ObjCInterfaceDecl *IDecl
1055     = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1056                                 typeParamList, PrevIDecl, ClassLoc);
1057   if (PrevIDecl) {
1058     // Class already seen. Was it a definition?
1059     if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1060       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1061         << PrevIDecl->getDeclName();
1062       Diag(Def->getLocation(), diag::note_previous_definition);
1063       IDecl->setInvalidDecl();
1064     }
1065   }
1066 
1067   ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1068   AddPragmaAttributes(TUScope, IDecl);
1069   PushOnScopeChains(IDecl, TUScope);
1070 
1071   // Start the definition of this class. If we're in a redefinition case, there
1072   // may already be a definition, so we'll end up adding to it.
1073   if (!IDecl->hasDefinition())
1074     IDecl->startDefinition();
1075 
1076   if (SuperName) {
1077     // Diagnose availability in the context of the @interface.
1078     ContextRAII SavedContext(*this, IDecl);
1079 
1080     ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1081                                     ClassName, ClassLoc,
1082                                     SuperName, SuperLoc, SuperTypeArgs,
1083                                     SuperTypeArgsRange);
1084   } else { // we have a root class.
1085     IDecl->setEndOfDefinitionLoc(ClassLoc);
1086   }
1087 
1088   // Check then save referenced protocols.
1089   if (NumProtoRefs) {
1090     diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1091                            NumProtoRefs, ProtoLocs);
1092     IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1093                            ProtoLocs, Context);
1094     IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1095   }
1096 
1097   CheckObjCDeclScope(IDecl);
1098   return ActOnObjCContainerStartDefinition(IDecl);
1099 }
1100 
1101 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
1102 /// typedef'ed use for a qualified super class and adds them to the list
1103 /// of the protocols.
1104 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1105                                   SmallVectorImpl<SourceLocation> &ProtocolLocs,
1106                                    IdentifierInfo *SuperName,
1107                                    SourceLocation SuperLoc) {
1108   if (!SuperName)
1109     return;
1110   NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1111                                       LookupOrdinaryName);
1112   if (!IDecl)
1113     return;
1114 
1115   if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1116     QualType T = TDecl->getUnderlyingType();
1117     if (T->isObjCObjectType())
1118       if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1119         ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1120         // FIXME: Consider whether this should be an invalid loc since the loc
1121         // is not actually pointing to a protocol name reference but to the
1122         // typedef reference. Note that the base class name loc is also pointing
1123         // at the typedef.
1124         ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1125       }
1126   }
1127 }
1128 
1129 /// ActOnCompatibilityAlias - this action is called after complete parsing of
1130 /// a \@compatibility_alias declaration. It sets up the alias relationships.
1131 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1132                                     IdentifierInfo *AliasName,
1133                                     SourceLocation AliasLocation,
1134                                     IdentifierInfo *ClassName,
1135                                     SourceLocation ClassLocation) {
1136   // Look for previous declaration of alias name
1137   NamedDecl *ADecl =
1138       LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1139                        forRedeclarationInCurContext());
1140   if (ADecl) {
1141     Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1142     Diag(ADecl->getLocation(), diag::note_previous_declaration);
1143     return nullptr;
1144   }
1145   // Check for class declaration
1146   NamedDecl *CDeclU =
1147       LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1148                        forRedeclarationInCurContext());
1149   if (const TypedefNameDecl *TDecl =
1150         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1151     QualType T = TDecl->getUnderlyingType();
1152     if (T->isObjCObjectType()) {
1153       if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
1154         ClassName = IDecl->getIdentifier();
1155         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1156                                   LookupOrdinaryName,
1157                                   forRedeclarationInCurContext());
1158       }
1159     }
1160   }
1161   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1162   if (!CDecl) {
1163     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1164     if (CDeclU)
1165       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1166     return nullptr;
1167   }
1168 
1169   // Everything checked out, instantiate a new alias declaration AST.
1170   ObjCCompatibleAliasDecl *AliasDecl =
1171     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1172 
1173   if (!CheckObjCDeclScope(AliasDecl))
1174     PushOnScopeChains(AliasDecl, TUScope);
1175 
1176   return AliasDecl;
1177 }
1178 
1179 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1180   IdentifierInfo *PName,
1181   SourceLocation &Ploc, SourceLocation PrevLoc,
1182   const ObjCList<ObjCProtocolDecl> &PList) {
1183 
1184   bool res = false;
1185   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1186        E = PList.end(); I != E; ++I) {
1187     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1188                                                  Ploc)) {
1189       if (PDecl->getIdentifier() == PName) {
1190         Diag(Ploc, diag::err_protocol_has_circular_dependency);
1191         Diag(PrevLoc, diag::note_previous_definition);
1192         res = true;
1193       }
1194 
1195       if (!PDecl->hasDefinition())
1196         continue;
1197 
1198       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1199             PDecl->getLocation(), PDecl->getReferencedProtocols()))
1200         res = true;
1201     }
1202   }
1203   return res;
1204 }
1205 
1206 Decl *Sema::ActOnStartProtocolInterface(
1207     SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1208     SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1209     const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1210     const ParsedAttributesView &AttrList) {
1211   bool err = false;
1212   // FIXME: Deal with AttrList.
1213   assert(ProtocolName && "Missing protocol identifier");
1214   ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1215                                               forRedeclarationInCurContext());
1216   ObjCProtocolDecl *PDecl = nullptr;
1217   if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1218     // If we already have a definition, complain.
1219     Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1220     Diag(Def->getLocation(), diag::note_previous_definition);
1221 
1222     // Create a new protocol that is completely distinct from previous
1223     // declarations, and do not make this protocol available for name lookup.
1224     // That way, we'll end up completely ignoring the duplicate.
1225     // FIXME: Can we turn this into an error?
1226     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1227                                      ProtocolLoc, AtProtoInterfaceLoc,
1228                                      /*PrevDecl=*/nullptr);
1229 
1230     // If we are using modules, add the decl to the context in order to
1231     // serialize something meaningful.
1232     if (getLangOpts().Modules)
1233       PushOnScopeChains(PDecl, TUScope);
1234     PDecl->startDefinition();
1235   } else {
1236     if (PrevDecl) {
1237       // Check for circular dependencies among protocol declarations. This can
1238       // only happen if this protocol was forward-declared.
1239       ObjCList<ObjCProtocolDecl> PList;
1240       PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1241       err = CheckForwardProtocolDeclarationForCircularDependency(
1242               ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1243     }
1244 
1245     // Create the new declaration.
1246     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1247                                      ProtocolLoc, AtProtoInterfaceLoc,
1248                                      /*PrevDecl=*/PrevDecl);
1249 
1250     PushOnScopeChains(PDecl, TUScope);
1251     PDecl->startDefinition();
1252   }
1253 
1254   ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1255   AddPragmaAttributes(TUScope, PDecl);
1256 
1257   // Merge attributes from previous declarations.
1258   if (PrevDecl)
1259     mergeDeclAttributes(PDecl, PrevDecl);
1260 
1261   if (!err && NumProtoRefs ) {
1262     /// Check then save referenced protocols.
1263     diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1264                            NumProtoRefs, ProtoLocs);
1265     PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1266                            ProtoLocs, Context);
1267   }
1268 
1269   CheckObjCDeclScope(PDecl);
1270   return ActOnObjCContainerStartDefinition(PDecl);
1271 }
1272 
1273 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1274                                           ObjCProtocolDecl *&UndefinedProtocol) {
1275   if (!PDecl->hasDefinition() ||
1276       !PDecl->getDefinition()->isUnconditionallyVisible()) {
1277     UndefinedProtocol = PDecl;
1278     return true;
1279   }
1280 
1281   for (auto *PI : PDecl->protocols())
1282     if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1283       UndefinedProtocol = PI;
1284       return true;
1285     }
1286   return false;
1287 }
1288 
1289 /// FindProtocolDeclaration - This routine looks up protocols and
1290 /// issues an error if they are not declared. It returns list of
1291 /// protocol declarations in its 'Protocols' argument.
1292 void
1293 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1294                               ArrayRef<IdentifierLocPair> ProtocolId,
1295                               SmallVectorImpl<Decl *> &Protocols) {
1296   for (const IdentifierLocPair &Pair : ProtocolId) {
1297     ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1298     if (!PDecl) {
1299       DeclFilterCCC<ObjCProtocolDecl> CCC{};
1300       TypoCorrection Corrected = CorrectTypo(
1301           DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName,
1302           TUScope, nullptr, CCC, CTK_ErrorRecovery);
1303       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1304         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1305                                     << Pair.first);
1306     }
1307 
1308     if (!PDecl) {
1309       Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1310       continue;
1311     }
1312     // If this is a forward protocol declaration, get its definition.
1313     if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1314       PDecl = PDecl->getDefinition();
1315 
1316     // For an objc container, delay protocol reference checking until after we
1317     // can set the objc decl as the availability context, otherwise check now.
1318     if (!ForObjCContainer) {
1319       (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1320     }
1321 
1322     // If this is a forward declaration and we are supposed to warn in this
1323     // case, do it.
1324     // FIXME: Recover nicely in the hidden case.
1325     ObjCProtocolDecl *UndefinedProtocol;
1326 
1327     if (WarnOnDeclarations &&
1328         NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1329       Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1330       Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1331         << UndefinedProtocol;
1332     }
1333     Protocols.push_back(PDecl);
1334   }
1335 }
1336 
1337 namespace {
1338 // Callback to only accept typo corrections that are either
1339 // Objective-C protocols or valid Objective-C type arguments.
1340 class ObjCTypeArgOrProtocolValidatorCCC final
1341     : public CorrectionCandidateCallback {
1342   ASTContext &Context;
1343   Sema::LookupNameKind LookupKind;
1344  public:
1345   ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1346                                     Sema::LookupNameKind lookupKind)
1347     : Context(context), LookupKind(lookupKind) { }
1348 
1349   bool ValidateCandidate(const TypoCorrection &candidate) override {
1350     // If we're allowed to find protocols and we have a protocol, accept it.
1351     if (LookupKind != Sema::LookupOrdinaryName) {
1352       if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1353         return true;
1354     }
1355 
1356     // If we're allowed to find type names and we have one, accept it.
1357     if (LookupKind != Sema::LookupObjCProtocolName) {
1358       // If we have a type declaration, we might accept this result.
1359       if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1360         // If we found a tag declaration outside of C++, skip it. This
1361         // can happy because we look for any name when there is no
1362         // bias to protocol or type names.
1363         if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1364           return false;
1365 
1366         // Make sure the type is something we would accept as a type
1367         // argument.
1368         auto type = Context.getTypeDeclType(typeDecl);
1369         if (type->isObjCObjectPointerType() ||
1370             type->isBlockPointerType() ||
1371             type->isDependentType() ||
1372             type->isObjCObjectType())
1373           return true;
1374 
1375         return false;
1376       }
1377 
1378       // If we have an Objective-C class type, accept it; there will
1379       // be another fix to add the '*'.
1380       if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1381         return true;
1382 
1383       return false;
1384     }
1385 
1386     return false;
1387   }
1388 
1389   std::unique_ptr<CorrectionCandidateCallback> clone() override {
1390     return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
1391   }
1392 };
1393 } // end anonymous namespace
1394 
1395 void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1396                                         SourceLocation ProtocolLoc,
1397                                         IdentifierInfo *TypeArgId,
1398                                         SourceLocation TypeArgLoc,
1399                                         bool SelectProtocolFirst) {
1400   Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1401       << SelectProtocolFirst << TypeArgId << ProtocolId
1402       << SourceRange(ProtocolLoc);
1403 }
1404 
1405 void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1406        Scope *S,
1407        ParsedType baseType,
1408        SourceLocation lAngleLoc,
1409        ArrayRef<IdentifierInfo *> identifiers,
1410        ArrayRef<SourceLocation> identifierLocs,
1411        SourceLocation rAngleLoc,
1412        SourceLocation &typeArgsLAngleLoc,
1413        SmallVectorImpl<ParsedType> &typeArgs,
1414        SourceLocation &typeArgsRAngleLoc,
1415        SourceLocation &protocolLAngleLoc,
1416        SmallVectorImpl<Decl *> &protocols,
1417        SourceLocation &protocolRAngleLoc,
1418        bool warnOnIncompleteProtocols) {
1419   // Local function that updates the declaration specifiers with
1420   // protocol information.
1421   unsigned numProtocolsResolved = 0;
1422   auto resolvedAsProtocols = [&] {
1423     assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1424 
1425     // Determine whether the base type is a parameterized class, in
1426     // which case we want to warn about typos such as
1427     // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1428     ObjCInterfaceDecl *baseClass = nullptr;
1429     QualType base = GetTypeFromParser(baseType, nullptr);
1430     bool allAreTypeNames = false;
1431     SourceLocation firstClassNameLoc;
1432     if (!base.isNull()) {
1433       if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1434         baseClass = objcObjectType->getInterface();
1435         if (baseClass) {
1436           if (auto typeParams = baseClass->getTypeParamList()) {
1437             if (typeParams->size() == numProtocolsResolved) {
1438               // Note that we should be looking for type names, too.
1439               allAreTypeNames = true;
1440             }
1441           }
1442         }
1443       }
1444     }
1445 
1446     for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1447       ObjCProtocolDecl *&proto
1448         = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1449       // For an objc container, delay protocol reference checking until after we
1450       // can set the objc decl as the availability context, otherwise check now.
1451       if (!warnOnIncompleteProtocols) {
1452         (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1453       }
1454 
1455       // If this is a forward protocol declaration, get its definition.
1456       if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1457         proto = proto->getDefinition();
1458 
1459       // If this is a forward declaration and we are supposed to warn in this
1460       // case, do it.
1461       // FIXME: Recover nicely in the hidden case.
1462       ObjCProtocolDecl *forwardDecl = nullptr;
1463       if (warnOnIncompleteProtocols &&
1464           NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1465         Diag(identifierLocs[i], diag::warn_undef_protocolref)
1466           << proto->getDeclName();
1467         Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1468           << forwardDecl;
1469       }
1470 
1471       // If everything this far has been a type name (and we care
1472       // about such things), check whether this name refers to a type
1473       // as well.
1474       if (allAreTypeNames) {
1475         if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1476                                           LookupOrdinaryName)) {
1477           if (isa<ObjCInterfaceDecl>(decl)) {
1478             if (firstClassNameLoc.isInvalid())
1479               firstClassNameLoc = identifierLocs[i];
1480           } else if (!isa<TypeDecl>(decl)) {
1481             // Not a type.
1482             allAreTypeNames = false;
1483           }
1484         } else {
1485           allAreTypeNames = false;
1486         }
1487       }
1488     }
1489 
1490     // All of the protocols listed also have type names, and at least
1491     // one is an Objective-C class name. Check whether all of the
1492     // protocol conformances are declared by the base class itself, in
1493     // which case we warn.
1494     if (allAreTypeNames && firstClassNameLoc.isValid()) {
1495       llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1496       Context.CollectInheritedProtocols(baseClass, knownProtocols);
1497       bool allProtocolsDeclared = true;
1498       for (auto proto : protocols) {
1499         if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1500           allProtocolsDeclared = false;
1501           break;
1502         }
1503       }
1504 
1505       if (allProtocolsDeclared) {
1506         Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1507           << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1508           << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1509                                         " *");
1510       }
1511     }
1512 
1513     protocolLAngleLoc = lAngleLoc;
1514     protocolRAngleLoc = rAngleLoc;
1515     assert(protocols.size() == identifierLocs.size());
1516   };
1517 
1518   // Attempt to resolve all of the identifiers as protocols.
1519   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1520     ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1521     protocols.push_back(proto);
1522     if (proto)
1523       ++numProtocolsResolved;
1524   }
1525 
1526   // If all of the names were protocols, these were protocol qualifiers.
1527   if (numProtocolsResolved == identifiers.size())
1528     return resolvedAsProtocols();
1529 
1530   // Attempt to resolve all of the identifiers as type names or
1531   // Objective-C class names. The latter is technically ill-formed,
1532   // but is probably something like \c NSArray<NSView *> missing the
1533   // \c*.
1534   typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1535   SmallVector<TypeOrClassDecl, 4> typeDecls;
1536   unsigned numTypeDeclsResolved = 0;
1537   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1538     NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1539                                        LookupOrdinaryName);
1540     if (!decl) {
1541       typeDecls.push_back(TypeOrClassDecl());
1542       continue;
1543     }
1544 
1545     if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1546       typeDecls.push_back(typeDecl);
1547       ++numTypeDeclsResolved;
1548       continue;
1549     }
1550 
1551     if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1552       typeDecls.push_back(objcClass);
1553       ++numTypeDeclsResolved;
1554       continue;
1555     }
1556 
1557     typeDecls.push_back(TypeOrClassDecl());
1558   }
1559 
1560   AttributeFactory attrFactory;
1561 
1562   // Local function that forms a reference to the given type or
1563   // Objective-C class declaration.
1564   auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1565                                 -> TypeResult {
1566     // Form declaration specifiers. They simply refer to the type.
1567     DeclSpec DS(attrFactory);
1568     const char* prevSpec; // unused
1569     unsigned diagID; // unused
1570     QualType type;
1571     if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1572       type = Context.getTypeDeclType(actualTypeDecl);
1573     else
1574       type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1575     TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1576     ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1577     DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1578                        parsedType, Context.getPrintingPolicy());
1579     // Use the identifier location for the type source range.
1580     DS.SetRangeStart(loc);
1581     DS.SetRangeEnd(loc);
1582 
1583     // Form the declarator.
1584     Declarator D(DS, DeclaratorContext::TypeNameContext);
1585 
1586     // If we have a typedef of an Objective-C class type that is missing a '*',
1587     // add the '*'.
1588     if (type->getAs<ObjCInterfaceType>()) {
1589       SourceLocation starLoc = getLocForEndOfToken(loc);
1590       D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc,
1591                                                 SourceLocation(),
1592                                                 SourceLocation(),
1593                                                 SourceLocation(),
1594                                                 SourceLocation(),
1595                                                 SourceLocation()),
1596                                                 starLoc);
1597 
1598       // Diagnose the missing '*'.
1599       Diag(loc, diag::err_objc_type_arg_missing_star)
1600         << type
1601         << FixItHint::CreateInsertion(starLoc, " *");
1602     }
1603 
1604     // Convert this to a type.
1605     return ActOnTypeName(S, D);
1606   };
1607 
1608   // Local function that updates the declaration specifiers with
1609   // type argument information.
1610   auto resolvedAsTypeDecls = [&] {
1611     // We did not resolve these as protocols.
1612     protocols.clear();
1613 
1614     assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1615     // Map type declarations to type arguments.
1616     for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1617       // Map type reference to a type.
1618       TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1619       if (!type.isUsable()) {
1620         typeArgs.clear();
1621         return;
1622       }
1623 
1624       typeArgs.push_back(type.get());
1625     }
1626 
1627     typeArgsLAngleLoc = lAngleLoc;
1628     typeArgsRAngleLoc = rAngleLoc;
1629   };
1630 
1631   // If all of the identifiers can be resolved as type names or
1632   // Objective-C class names, we have type arguments.
1633   if (numTypeDeclsResolved == identifiers.size())
1634     return resolvedAsTypeDecls();
1635 
1636   // Error recovery: some names weren't found, or we have a mix of
1637   // type and protocol names. Go resolve all of the unresolved names
1638   // and complain if we can't find a consistent answer.
1639   LookupNameKind lookupKind = LookupAnyName;
1640   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1641     // If we already have a protocol or type. Check whether it is the
1642     // right thing.
1643     if (protocols[i] || typeDecls[i]) {
1644       // If we haven't figured out whether we want types or protocols
1645       // yet, try to figure it out from this name.
1646       if (lookupKind == LookupAnyName) {
1647         // If this name refers to both a protocol and a type (e.g., \c
1648         // NSObject), don't conclude anything yet.
1649         if (protocols[i] && typeDecls[i])
1650           continue;
1651 
1652         // Otherwise, let this name decide whether we'll be correcting
1653         // toward types or protocols.
1654         lookupKind = protocols[i] ? LookupObjCProtocolName
1655                                   : LookupOrdinaryName;
1656         continue;
1657       }
1658 
1659       // If we want protocols and we have a protocol, there's nothing
1660       // more to do.
1661       if (lookupKind == LookupObjCProtocolName && protocols[i])
1662         continue;
1663 
1664       // If we want types and we have a type declaration, there's
1665       // nothing more to do.
1666       if (lookupKind == LookupOrdinaryName && typeDecls[i])
1667         continue;
1668 
1669       // We have a conflict: some names refer to protocols and others
1670       // refer to types.
1671       DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1672                                    identifiers[i], identifierLocs[i],
1673                                    protocols[i] != nullptr);
1674 
1675       protocols.clear();
1676       typeArgs.clear();
1677       return;
1678     }
1679 
1680     // Perform typo correction on the name.
1681     ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1682     TypoCorrection corrected =
1683         CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]),
1684                     lookupKind, S, nullptr, CCC, CTK_ErrorRecovery);
1685     if (corrected) {
1686       // Did we find a protocol?
1687       if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1688         diagnoseTypo(corrected,
1689                      PDiag(diag::err_undeclared_protocol_suggest)
1690                        << identifiers[i]);
1691         lookupKind = LookupObjCProtocolName;
1692         protocols[i] = proto;
1693         ++numProtocolsResolved;
1694         continue;
1695       }
1696 
1697       // Did we find a type?
1698       if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1699         diagnoseTypo(corrected,
1700                      PDiag(diag::err_unknown_typename_suggest)
1701                        << identifiers[i]);
1702         lookupKind = LookupOrdinaryName;
1703         typeDecls[i] = typeDecl;
1704         ++numTypeDeclsResolved;
1705         continue;
1706       }
1707 
1708       // Did we find an Objective-C class?
1709       if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1710         diagnoseTypo(corrected,
1711                      PDiag(diag::err_unknown_type_or_class_name_suggest)
1712                        << identifiers[i] << true);
1713         lookupKind = LookupOrdinaryName;
1714         typeDecls[i] = objcClass;
1715         ++numTypeDeclsResolved;
1716         continue;
1717       }
1718     }
1719 
1720     // We couldn't find anything.
1721     Diag(identifierLocs[i],
1722          (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1723           : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1724           : diag::err_unknown_typename))
1725       << identifiers[i];
1726     protocols.clear();
1727     typeArgs.clear();
1728     return;
1729   }
1730 
1731   // If all of the names were (corrected to) protocols, these were
1732   // protocol qualifiers.
1733   if (numProtocolsResolved == identifiers.size())
1734     return resolvedAsProtocols();
1735 
1736   // Otherwise, all of the names were (corrected to) types.
1737   assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1738   return resolvedAsTypeDecls();
1739 }
1740 
1741 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1742 /// a class method in its extension.
1743 ///
1744 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1745                                             ObjCInterfaceDecl *ID) {
1746   if (!ID)
1747     return;  // Possibly due to previous error
1748 
1749   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1750   for (auto *MD : ID->methods())
1751     MethodMap[MD->getSelector()] = MD;
1752 
1753   if (MethodMap.empty())
1754     return;
1755   for (const auto *Method : CAT->methods()) {
1756     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1757     if (PrevMethod &&
1758         (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1759         !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1760       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1761             << Method->getDeclName();
1762       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1763     }
1764   }
1765 }
1766 
1767 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1768 Sema::DeclGroupPtrTy
1769 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1770                                       ArrayRef<IdentifierLocPair> IdentList,
1771                                       const ParsedAttributesView &attrList) {
1772   SmallVector<Decl *, 8> DeclsInGroup;
1773   for (const IdentifierLocPair &IdentPair : IdentList) {
1774     IdentifierInfo *Ident = IdentPair.first;
1775     ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1776                                                 forRedeclarationInCurContext());
1777     ObjCProtocolDecl *PDecl
1778       = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1779                                  IdentPair.second, AtProtocolLoc,
1780                                  PrevDecl);
1781 
1782     PushOnScopeChains(PDecl, TUScope);
1783     CheckObjCDeclScope(PDecl);
1784 
1785     ProcessDeclAttributeList(TUScope, PDecl, attrList);
1786     AddPragmaAttributes(TUScope, PDecl);
1787 
1788     if (PrevDecl)
1789       mergeDeclAttributes(PDecl, PrevDecl);
1790 
1791     DeclsInGroup.push_back(PDecl);
1792   }
1793 
1794   return BuildDeclaratorGroup(DeclsInGroup);
1795 }
1796 
1797 Decl *Sema::ActOnStartCategoryInterface(
1798     SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1799     SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1800     IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1801     Decl *const *ProtoRefs, unsigned NumProtoRefs,
1802     const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1803     const ParsedAttributesView &AttrList) {
1804   ObjCCategoryDecl *CDecl;
1805   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1806 
1807   /// Check that class of this category is already completely declared.
1808 
1809   if (!IDecl
1810       || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1811                              diag::err_category_forward_interface,
1812                              CategoryName == nullptr)) {
1813     // Create an invalid ObjCCategoryDecl to serve as context for
1814     // the enclosing method declarations.  We mark the decl invalid
1815     // to make it clear that this isn't a valid AST.
1816     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1817                                      ClassLoc, CategoryLoc, CategoryName,
1818                                      IDecl, typeParamList);
1819     CDecl->setInvalidDecl();
1820     CurContext->addDecl(CDecl);
1821 
1822     if (!IDecl)
1823       Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1824     return ActOnObjCContainerStartDefinition(CDecl);
1825   }
1826 
1827   if (!CategoryName && IDecl->getImplementation()) {
1828     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1829     Diag(IDecl->getImplementation()->getLocation(),
1830           diag::note_implementation_declared);
1831   }
1832 
1833   if (CategoryName) {
1834     /// Check for duplicate interface declaration for this category
1835     if (ObjCCategoryDecl *Previous
1836           = IDecl->FindCategoryDeclaration(CategoryName)) {
1837       // Class extensions can be declared multiple times, categories cannot.
1838       Diag(CategoryLoc, diag::warn_dup_category_def)
1839         << ClassName << CategoryName;
1840       Diag(Previous->getLocation(), diag::note_previous_definition);
1841     }
1842   }
1843 
1844   // If we have a type parameter list, check it.
1845   if (typeParamList) {
1846     if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1847       if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1848                                         CategoryName
1849                                           ? TypeParamListContext::Category
1850                                           : TypeParamListContext::Extension))
1851         typeParamList = nullptr;
1852     } else {
1853       Diag(typeParamList->getLAngleLoc(),
1854            diag::err_objc_parameterized_category_nonclass)
1855         << (CategoryName != nullptr)
1856         << ClassName
1857         << typeParamList->getSourceRange();
1858 
1859       typeParamList = nullptr;
1860     }
1861   }
1862 
1863   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1864                                    ClassLoc, CategoryLoc, CategoryName, IDecl,
1865                                    typeParamList);
1866   // FIXME: PushOnScopeChains?
1867   CurContext->addDecl(CDecl);
1868 
1869   // Process the attributes before looking at protocols to ensure that the
1870   // availability attribute is attached to the category to provide availability
1871   // checking for protocol uses.
1872   ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1873   AddPragmaAttributes(TUScope, CDecl);
1874 
1875   if (NumProtoRefs) {
1876     diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1877                            NumProtoRefs, ProtoLocs);
1878     CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1879                            ProtoLocs, Context);
1880     // Protocols in the class extension belong to the class.
1881     if (CDecl->IsClassExtension())
1882      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1883                                             NumProtoRefs, Context);
1884   }
1885 
1886   CheckObjCDeclScope(CDecl);
1887   return ActOnObjCContainerStartDefinition(CDecl);
1888 }
1889 
1890 /// ActOnStartCategoryImplementation - Perform semantic checks on the
1891 /// category implementation declaration and build an ObjCCategoryImplDecl
1892 /// object.
1893 Decl *Sema::ActOnStartCategoryImplementation(
1894                       SourceLocation AtCatImplLoc,
1895                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
1896                       IdentifierInfo *CatName, SourceLocation CatLoc,
1897                       const ParsedAttributesView &Attrs) {
1898   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1899   ObjCCategoryDecl *CatIDecl = nullptr;
1900   if (IDecl && IDecl->hasDefinition()) {
1901     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1902     if (!CatIDecl) {
1903       // Category @implementation with no corresponding @interface.
1904       // Create and install one.
1905       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1906                                           ClassLoc, CatLoc,
1907                                           CatName, IDecl,
1908                                           /*typeParamList=*/nullptr);
1909       CatIDecl->setImplicit();
1910     }
1911   }
1912 
1913   ObjCCategoryImplDecl *CDecl =
1914     ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1915                                  ClassLoc, AtCatImplLoc, CatLoc);
1916   /// Check that class of this category is already completely declared.
1917   if (!IDecl) {
1918     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1919     CDecl->setInvalidDecl();
1920   } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1921                                  diag::err_undef_interface)) {
1922     CDecl->setInvalidDecl();
1923   }
1924 
1925   ProcessDeclAttributeList(TUScope, CDecl, Attrs);
1926   AddPragmaAttributes(TUScope, CDecl);
1927 
1928   // FIXME: PushOnScopeChains?
1929   CurContext->addDecl(CDecl);
1930 
1931   // If the interface has the objc_runtime_visible attribute, we
1932   // cannot implement a category for it.
1933   if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1934     Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1935       << IDecl->getDeclName();
1936   }
1937 
1938   /// Check that CatName, category name, is not used in another implementation.
1939   if (CatIDecl) {
1940     if (CatIDecl->getImplementation()) {
1941       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1942         << CatName;
1943       Diag(CatIDecl->getImplementation()->getLocation(),
1944            diag::note_previous_definition);
1945       CDecl->setInvalidDecl();
1946     } else {
1947       CatIDecl->setImplementation(CDecl);
1948       // Warn on implementating category of deprecated class under
1949       // -Wdeprecated-implementations flag.
1950       DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1951                                           CDecl->getLocation());
1952     }
1953   }
1954 
1955   CheckObjCDeclScope(CDecl);
1956   return ActOnObjCContainerStartDefinition(CDecl);
1957 }
1958 
1959 Decl *Sema::ActOnStartClassImplementation(
1960                       SourceLocation AtClassImplLoc,
1961                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
1962                       IdentifierInfo *SuperClassname,
1963                       SourceLocation SuperClassLoc,
1964                       const ParsedAttributesView &Attrs) {
1965   ObjCInterfaceDecl *IDecl = nullptr;
1966   // Check for another declaration kind with the same name.
1967   NamedDecl *PrevDecl
1968     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1969                        forRedeclarationInCurContext());
1970   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1971     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1972     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1973   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1974     // FIXME: This will produce an error if the definition of the interface has
1975     // been imported from a module but is not visible.
1976     RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1977                         diag::warn_undef_interface);
1978   } else {
1979     // We did not find anything with the name ClassName; try to correct for
1980     // typos in the class name.
1981     ObjCInterfaceValidatorCCC CCC{};
1982     TypoCorrection Corrected =
1983         CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc),
1984                     LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError);
1985     if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1986       // Suggest the (potentially) correct interface name. Don't provide a
1987       // code-modification hint or use the typo name for recovery, because
1988       // this is just a warning. The program may actually be correct.
1989       diagnoseTypo(Corrected,
1990                    PDiag(diag::warn_undef_interface_suggest) << ClassName,
1991                    /*ErrorRecovery*/false);
1992     } else {
1993       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1994     }
1995   }
1996 
1997   // Check that super class name is valid class name
1998   ObjCInterfaceDecl *SDecl = nullptr;
1999   if (SuperClassname) {
2000     // Check if a different kind of symbol declared in this scope.
2001     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
2002                                 LookupOrdinaryName);
2003     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2004       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2005         << SuperClassname;
2006       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2007     } else {
2008       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2009       if (SDecl && !SDecl->hasDefinition())
2010         SDecl = nullptr;
2011       if (!SDecl)
2012         Diag(SuperClassLoc, diag::err_undef_superclass)
2013           << SuperClassname << ClassName;
2014       else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2015         // This implementation and its interface do not have the same
2016         // super class.
2017         Diag(SuperClassLoc, diag::err_conflicting_super_class)
2018           << SDecl->getDeclName();
2019         Diag(SDecl->getLocation(), diag::note_previous_definition);
2020       }
2021     }
2022   }
2023 
2024   if (!IDecl) {
2025     // Legacy case of @implementation with no corresponding @interface.
2026     // Build, chain & install the interface decl into the identifier.
2027 
2028     // FIXME: Do we support attributes on the @implementation? If so we should
2029     // copy them over.
2030     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
2031                                       ClassName, /*typeParamList=*/nullptr,
2032                                       /*PrevDecl=*/nullptr, ClassLoc,
2033                                       true);
2034     AddPragmaAttributes(TUScope, IDecl);
2035     IDecl->startDefinition();
2036     if (SDecl) {
2037       IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2038                              Context.getObjCInterfaceType(SDecl),
2039                              SuperClassLoc));
2040       IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2041     } else {
2042       IDecl->setEndOfDefinitionLoc(ClassLoc);
2043     }
2044 
2045     PushOnScopeChains(IDecl, TUScope);
2046   } else {
2047     // Mark the interface as being completed, even if it was just as
2048     //   @class ....;
2049     // declaration; the user cannot reopen it.
2050     if (!IDecl->hasDefinition())
2051       IDecl->startDefinition();
2052   }
2053 
2054   ObjCImplementationDecl* IMPDecl =
2055     ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
2056                                    ClassLoc, AtClassImplLoc, SuperClassLoc);
2057 
2058   ProcessDeclAttributeList(TUScope, IMPDecl, Attrs);
2059   AddPragmaAttributes(TUScope, IMPDecl);
2060 
2061   if (CheckObjCDeclScope(IMPDecl))
2062     return ActOnObjCContainerStartDefinition(IMPDecl);
2063 
2064   // Check that there is no duplicate implementation of this class.
2065   if (IDecl->getImplementation()) {
2066     // FIXME: Don't leak everything!
2067     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2068     Diag(IDecl->getImplementation()->getLocation(),
2069          diag::note_previous_definition);
2070     IMPDecl->setInvalidDecl();
2071   } else { // add it to the list.
2072     IDecl->setImplementation(IMPDecl);
2073     PushOnScopeChains(IMPDecl, TUScope);
2074     // Warn on implementating deprecated class under
2075     // -Wdeprecated-implementations flag.
2076     DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2077   }
2078 
2079   // If the superclass has the objc_runtime_visible attribute, we
2080   // cannot implement a subclass of it.
2081   if (IDecl->getSuperClass() &&
2082       IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2083     Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2084       << IDecl->getDeclName()
2085       << IDecl->getSuperClass()->getDeclName();
2086   }
2087 
2088   return ActOnObjCContainerStartDefinition(IMPDecl);
2089 }
2090 
2091 Sema::DeclGroupPtrTy
2092 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2093   SmallVector<Decl *, 64> DeclsInGroup;
2094   DeclsInGroup.reserve(Decls.size() + 1);
2095 
2096   for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2097     Decl *Dcl = Decls[i];
2098     if (!Dcl)
2099       continue;
2100     if (Dcl->getDeclContext()->isFileContext())
2101       Dcl->setTopLevelDeclInObjCContainer();
2102     DeclsInGroup.push_back(Dcl);
2103   }
2104 
2105   DeclsInGroup.push_back(ObjCImpDecl);
2106 
2107   return BuildDeclaratorGroup(DeclsInGroup);
2108 }
2109 
2110 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2111                                     ObjCIvarDecl **ivars, unsigned numIvars,
2112                                     SourceLocation RBrace) {
2113   assert(ImpDecl && "missing implementation decl");
2114   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2115   if (!IDecl)
2116     return;
2117   /// Check case of non-existing \@interface decl.
2118   /// (legacy objective-c \@implementation decl without an \@interface decl).
2119   /// Add implementations's ivar to the synthesize class's ivar list.
2120   if (IDecl->isImplicitInterfaceDecl()) {
2121     IDecl->setEndOfDefinitionLoc(RBrace);
2122     // Add ivar's to class's DeclContext.
2123     for (unsigned i = 0, e = numIvars; i != e; ++i) {
2124       ivars[i]->setLexicalDeclContext(ImpDecl);
2125       IDecl->makeDeclVisibleInContext(ivars[i]);
2126       ImpDecl->addDecl(ivars[i]);
2127     }
2128 
2129     return;
2130   }
2131   // If implementation has empty ivar list, just return.
2132   if (numIvars == 0)
2133     return;
2134 
2135   assert(ivars && "missing @implementation ivars");
2136   if (LangOpts.ObjCRuntime.isNonFragile()) {
2137     if (ImpDecl->getSuperClass())
2138       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2139     for (unsigned i = 0; i < numIvars; i++) {
2140       ObjCIvarDecl* ImplIvar = ivars[i];
2141       if (const ObjCIvarDecl *ClsIvar =
2142             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2143         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2144         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2145         continue;
2146       }
2147       // Check class extensions (unnamed categories) for duplicate ivars.
2148       for (const auto *CDecl : IDecl->visible_extensions()) {
2149         if (const ObjCIvarDecl *ClsExtIvar =
2150             CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2151           Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2152           Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2153           continue;
2154         }
2155       }
2156       // Instance ivar to Implementation's DeclContext.
2157       ImplIvar->setLexicalDeclContext(ImpDecl);
2158       IDecl->makeDeclVisibleInContext(ImplIvar);
2159       ImpDecl->addDecl(ImplIvar);
2160     }
2161     return;
2162   }
2163   // Check interface's Ivar list against those in the implementation.
2164   // names and types must match.
2165   //
2166   unsigned j = 0;
2167   ObjCInterfaceDecl::ivar_iterator
2168     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2169   for (; numIvars > 0 && IVI != IVE; ++IVI) {
2170     ObjCIvarDecl* ImplIvar = ivars[j++];
2171     ObjCIvarDecl* ClsIvar = *IVI;
2172     assert (ImplIvar && "missing implementation ivar");
2173     assert (ClsIvar && "missing class ivar");
2174 
2175     // First, make sure the types match.
2176     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2177       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2178         << ImplIvar->getIdentifier()
2179         << ImplIvar->getType() << ClsIvar->getType();
2180       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2181     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2182                ImplIvar->getBitWidthValue(Context) !=
2183                ClsIvar->getBitWidthValue(Context)) {
2184       Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2185            diag::err_conflicting_ivar_bitwidth)
2186           << ImplIvar->getIdentifier();
2187       Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2188            diag::note_previous_definition);
2189     }
2190     // Make sure the names are identical.
2191     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2192       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2193         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2194       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2195     }
2196     --numIvars;
2197   }
2198 
2199   if (numIvars > 0)
2200     Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2201   else if (IVI != IVE)
2202     Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2203 }
2204 
2205 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2206                                 ObjCMethodDecl *method,
2207                                 bool &IncompleteImpl,
2208                                 unsigned DiagID,
2209                                 NamedDecl *NeededFor = nullptr) {
2210   // No point warning no definition of method which is 'unavailable'.
2211   if (method->getAvailability() == AR_Unavailable)
2212     return;
2213 
2214   // FIXME: For now ignore 'IncompleteImpl'.
2215   // Previously we grouped all unimplemented methods under a single
2216   // warning, but some users strongly voiced that they would prefer
2217   // separate warnings.  We will give that approach a try, as that
2218   // matches what we do with protocols.
2219   {
2220     const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2221     B << method;
2222     if (NeededFor)
2223       B << NeededFor;
2224   }
2225 
2226   // Issue a note to the original declaration.
2227   SourceLocation MethodLoc = method->getBeginLoc();
2228   if (MethodLoc.isValid())
2229     S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2230 }
2231 
2232 /// Determines if type B can be substituted for type A.  Returns true if we can
2233 /// guarantee that anything that the user will do to an object of type A can
2234 /// also be done to an object of type B.  This is trivially true if the two
2235 /// types are the same, or if B is a subclass of A.  It becomes more complex
2236 /// in cases where protocols are involved.
2237 ///
2238 /// Object types in Objective-C describe the minimum requirements for an
2239 /// object, rather than providing a complete description of a type.  For
2240 /// example, if A is a subclass of B, then B* may refer to an instance of A.
2241 /// The principle of substitutability means that we may use an instance of A
2242 /// anywhere that we may use an instance of B - it will implement all of the
2243 /// ivars of B and all of the methods of B.
2244 ///
2245 /// This substitutability is important when type checking methods, because
2246 /// the implementation may have stricter type definitions than the interface.
2247 /// The interface specifies minimum requirements, but the implementation may
2248 /// have more accurate ones.  For example, a method may privately accept
2249 /// instances of B, but only publish that it accepts instances of A.  Any
2250 /// object passed to it will be type checked against B, and so will implicitly
2251 /// by a valid A*.  Similarly, a method may return a subclass of the class that
2252 /// it is declared as returning.
2253 ///
2254 /// This is most important when considering subclassing.  A method in a
2255 /// subclass must accept any object as an argument that its superclass's
2256 /// implementation accepts.  It may, however, accept a more general type
2257 /// without breaking substitutability (i.e. you can still use the subclass
2258 /// anywhere that you can use the superclass, but not vice versa).  The
2259 /// converse requirement applies to return types: the return type for a
2260 /// subclass method must be a valid object of the kind that the superclass
2261 /// advertises, but it may be specified more accurately.  This avoids the need
2262 /// for explicit down-casting by callers.
2263 ///
2264 /// Note: This is a stricter requirement than for assignment.
2265 static bool isObjCTypeSubstitutable(ASTContext &Context,
2266                                     const ObjCObjectPointerType *A,
2267                                     const ObjCObjectPointerType *B,
2268                                     bool rejectId) {
2269   // Reject a protocol-unqualified id.
2270   if (rejectId && B->isObjCIdType()) return false;
2271 
2272   // If B is a qualified id, then A must also be a qualified id and it must
2273   // implement all of the protocols in B.  It may not be a qualified class.
2274   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2275   // stricter definition so it is not substitutable for id<A>.
2276   if (B->isObjCQualifiedIdType()) {
2277     return A->isObjCQualifiedIdType() &&
2278            Context.ObjCQualifiedIdTypesAreCompatible(A, B, false);
2279   }
2280 
2281   /*
2282   // id is a special type that bypasses type checking completely.  We want a
2283   // warning when it is used in one place but not another.
2284   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2285 
2286 
2287   // If B is a qualified id, then A must also be a qualified id (which it isn't
2288   // if we've got this far)
2289   if (B->isObjCQualifiedIdType()) return false;
2290   */
2291 
2292   // Now we know that A and B are (potentially-qualified) class types.  The
2293   // normal rules for assignment apply.
2294   return Context.canAssignObjCInterfaces(A, B);
2295 }
2296 
2297 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2298   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2299 }
2300 
2301 /// Determine whether two set of Objective-C declaration qualifiers conflict.
2302 static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2303                                   Decl::ObjCDeclQualifier y) {
2304   return (x & ~Decl::OBJC_TQ_CSNullability) !=
2305          (y & ~Decl::OBJC_TQ_CSNullability);
2306 }
2307 
2308 static bool CheckMethodOverrideReturn(Sema &S,
2309                                       ObjCMethodDecl *MethodImpl,
2310                                       ObjCMethodDecl *MethodDecl,
2311                                       bool IsProtocolMethodDecl,
2312                                       bool IsOverridingMode,
2313                                       bool Warn) {
2314   if (IsProtocolMethodDecl &&
2315       objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2316                             MethodImpl->getObjCDeclQualifier())) {
2317     if (Warn) {
2318       S.Diag(MethodImpl->getLocation(),
2319              (IsOverridingMode
2320                   ? diag::warn_conflicting_overriding_ret_type_modifiers
2321                   : diag::warn_conflicting_ret_type_modifiers))
2322           << MethodImpl->getDeclName()
2323           << MethodImpl->getReturnTypeSourceRange();
2324       S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2325           << MethodDecl->getReturnTypeSourceRange();
2326     }
2327     else
2328       return false;
2329   }
2330   if (Warn && IsOverridingMode &&
2331       !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2332       !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2333                                                  MethodDecl->getReturnType(),
2334                                                  false)) {
2335     auto nullabilityMethodImpl =
2336       *MethodImpl->getReturnType()->getNullability(S.Context);
2337     auto nullabilityMethodDecl =
2338       *MethodDecl->getReturnType()->getNullability(S.Context);
2339       S.Diag(MethodImpl->getLocation(),
2340              diag::warn_conflicting_nullability_attr_overriding_ret_types)
2341         << DiagNullabilityKind(
2342              nullabilityMethodImpl,
2343              ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2344               != 0))
2345         << DiagNullabilityKind(
2346              nullabilityMethodDecl,
2347              ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2348                 != 0));
2349       S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2350   }
2351 
2352   if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2353                                        MethodDecl->getReturnType()))
2354     return true;
2355   if (!Warn)
2356     return false;
2357 
2358   unsigned DiagID =
2359     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2360                      : diag::warn_conflicting_ret_types;
2361 
2362   // Mismatches between ObjC pointers go into a different warning
2363   // category, and sometimes they're even completely explicitly allowed.
2364   if (const ObjCObjectPointerType *ImplPtrTy =
2365           MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2366     if (const ObjCObjectPointerType *IfacePtrTy =
2367             MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2368       // Allow non-matching return types as long as they don't violate
2369       // the principle of substitutability.  Specifically, we permit
2370       // return types that are subclasses of the declared return type,
2371       // or that are more-qualified versions of the declared type.
2372       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2373         return false;
2374 
2375       DiagID =
2376         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2377                          : diag::warn_non_covariant_ret_types;
2378     }
2379   }
2380 
2381   S.Diag(MethodImpl->getLocation(), DiagID)
2382       << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2383       << MethodImpl->getReturnType()
2384       << MethodImpl->getReturnTypeSourceRange();
2385   S.Diag(MethodDecl->getLocation(), IsOverridingMode
2386                                         ? diag::note_previous_declaration
2387                                         : diag::note_previous_definition)
2388       << MethodDecl->getReturnTypeSourceRange();
2389   return false;
2390 }
2391 
2392 static bool CheckMethodOverrideParam(Sema &S,
2393                                      ObjCMethodDecl *MethodImpl,
2394                                      ObjCMethodDecl *MethodDecl,
2395                                      ParmVarDecl *ImplVar,
2396                                      ParmVarDecl *IfaceVar,
2397                                      bool IsProtocolMethodDecl,
2398                                      bool IsOverridingMode,
2399                                      bool Warn) {
2400   if (IsProtocolMethodDecl &&
2401       objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2402                             IfaceVar->getObjCDeclQualifier())) {
2403     if (Warn) {
2404       if (IsOverridingMode)
2405         S.Diag(ImplVar->getLocation(),
2406                diag::warn_conflicting_overriding_param_modifiers)
2407             << getTypeRange(ImplVar->getTypeSourceInfo())
2408             << MethodImpl->getDeclName();
2409       else S.Diag(ImplVar->getLocation(),
2410              diag::warn_conflicting_param_modifiers)
2411           << getTypeRange(ImplVar->getTypeSourceInfo())
2412           << MethodImpl->getDeclName();
2413       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2414           << getTypeRange(IfaceVar->getTypeSourceInfo());
2415     }
2416     else
2417       return false;
2418   }
2419 
2420   QualType ImplTy = ImplVar->getType();
2421   QualType IfaceTy = IfaceVar->getType();
2422   if (Warn && IsOverridingMode &&
2423       !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2424       !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2425     S.Diag(ImplVar->getLocation(),
2426            diag::warn_conflicting_nullability_attr_overriding_param_types)
2427       << DiagNullabilityKind(
2428            *ImplTy->getNullability(S.Context),
2429            ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2430             != 0))
2431       << DiagNullabilityKind(
2432            *IfaceTy->getNullability(S.Context),
2433            ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2434             != 0));
2435     S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2436   }
2437   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2438     return true;
2439 
2440   if (!Warn)
2441     return false;
2442   unsigned DiagID =
2443     IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2444                      : diag::warn_conflicting_param_types;
2445 
2446   // Mismatches between ObjC pointers go into a different warning
2447   // category, and sometimes they're even completely explicitly allowed..
2448   if (const ObjCObjectPointerType *ImplPtrTy =
2449         ImplTy->getAs<ObjCObjectPointerType>()) {
2450     if (const ObjCObjectPointerType *IfacePtrTy =
2451           IfaceTy->getAs<ObjCObjectPointerType>()) {
2452       // Allow non-matching argument types as long as they don't
2453       // violate the principle of substitutability.  Specifically, the
2454       // implementation must accept any objects that the superclass
2455       // accepts, however it may also accept others.
2456       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2457         return false;
2458 
2459       DiagID =
2460       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2461                        : diag::warn_non_contravariant_param_types;
2462     }
2463   }
2464 
2465   S.Diag(ImplVar->getLocation(), DiagID)
2466     << getTypeRange(ImplVar->getTypeSourceInfo())
2467     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2468   S.Diag(IfaceVar->getLocation(),
2469          (IsOverridingMode ? diag::note_previous_declaration
2470                            : diag::note_previous_definition))
2471     << getTypeRange(IfaceVar->getTypeSourceInfo());
2472   return false;
2473 }
2474 
2475 /// In ARC, check whether the conventional meanings of the two methods
2476 /// match.  If they don't, it's a hard error.
2477 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2478                                       ObjCMethodDecl *decl) {
2479   ObjCMethodFamily implFamily = impl->getMethodFamily();
2480   ObjCMethodFamily declFamily = decl->getMethodFamily();
2481   if (implFamily == declFamily) return false;
2482 
2483   // Since conventions are sorted by selector, the only possibility is
2484   // that the types differ enough to cause one selector or the other
2485   // to fall out of the family.
2486   assert(implFamily == OMF_None || declFamily == OMF_None);
2487 
2488   // No further diagnostics required on invalid declarations.
2489   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2490 
2491   const ObjCMethodDecl *unmatched = impl;
2492   ObjCMethodFamily family = declFamily;
2493   unsigned errorID = diag::err_arc_lost_method_convention;
2494   unsigned noteID = diag::note_arc_lost_method_convention;
2495   if (declFamily == OMF_None) {
2496     unmatched = decl;
2497     family = implFamily;
2498     errorID = diag::err_arc_gained_method_convention;
2499     noteID = diag::note_arc_gained_method_convention;
2500   }
2501 
2502   // Indexes into a %select clause in the diagnostic.
2503   enum FamilySelector {
2504     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2505   };
2506   FamilySelector familySelector = FamilySelector();
2507 
2508   switch (family) {
2509   case OMF_None: llvm_unreachable("logic error, no method convention");
2510   case OMF_retain:
2511   case OMF_release:
2512   case OMF_autorelease:
2513   case OMF_dealloc:
2514   case OMF_finalize:
2515   case OMF_retainCount:
2516   case OMF_self:
2517   case OMF_initialize:
2518   case OMF_performSelector:
2519     // Mismatches for these methods don't change ownership
2520     // conventions, so we don't care.
2521     return false;
2522 
2523   case OMF_init: familySelector = F_init; break;
2524   case OMF_alloc: familySelector = F_alloc; break;
2525   case OMF_copy: familySelector = F_copy; break;
2526   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2527   case OMF_new: familySelector = F_new; break;
2528   }
2529 
2530   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2531   ReasonSelector reasonSelector;
2532 
2533   // The only reason these methods don't fall within their families is
2534   // due to unusual result types.
2535   if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2536     reasonSelector = R_UnrelatedReturn;
2537   } else {
2538     reasonSelector = R_NonObjectReturn;
2539   }
2540 
2541   S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2542   S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2543 
2544   return true;
2545 }
2546 
2547 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2548                                        ObjCMethodDecl *MethodDecl,
2549                                        bool IsProtocolMethodDecl) {
2550   if (getLangOpts().ObjCAutoRefCount &&
2551       checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2552     return;
2553 
2554   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2555                             IsProtocolMethodDecl, false,
2556                             true);
2557 
2558   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2559        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2560        EF = MethodDecl->param_end();
2561        IM != EM && IF != EF; ++IM, ++IF) {
2562     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2563                              IsProtocolMethodDecl, false, true);
2564   }
2565 
2566   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2567     Diag(ImpMethodDecl->getLocation(),
2568          diag::warn_conflicting_variadic);
2569     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2570   }
2571 }
2572 
2573 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2574                                        ObjCMethodDecl *Overridden,
2575                                        bool IsProtocolMethodDecl) {
2576 
2577   CheckMethodOverrideReturn(*this, Method, Overridden,
2578                             IsProtocolMethodDecl, true,
2579                             true);
2580 
2581   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2582        IF = Overridden->param_begin(), EM = Method->param_end(),
2583        EF = Overridden->param_end();
2584        IM != EM && IF != EF; ++IM, ++IF) {
2585     CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2586                              IsProtocolMethodDecl, true, true);
2587   }
2588 
2589   if (Method->isVariadic() != Overridden->isVariadic()) {
2590     Diag(Method->getLocation(),
2591          diag::warn_conflicting_overriding_variadic);
2592     Diag(Overridden->getLocation(), diag::note_previous_declaration);
2593   }
2594 }
2595 
2596 /// WarnExactTypedMethods - This routine issues a warning if method
2597 /// implementation declaration matches exactly that of its declaration.
2598 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2599                                  ObjCMethodDecl *MethodDecl,
2600                                  bool IsProtocolMethodDecl) {
2601   // don't issue warning when protocol method is optional because primary
2602   // class is not required to implement it and it is safe for protocol
2603   // to implement it.
2604   if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2605     return;
2606   // don't issue warning when primary class's method is
2607   // depecated/unavailable.
2608   if (MethodDecl->hasAttr<UnavailableAttr>() ||
2609       MethodDecl->hasAttr<DeprecatedAttr>())
2610     return;
2611 
2612   bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2613                                       IsProtocolMethodDecl, false, false);
2614   if (match)
2615     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2616          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2617          EF = MethodDecl->param_end();
2618          IM != EM && IF != EF; ++IM, ++IF) {
2619       match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2620                                        *IM, *IF,
2621                                        IsProtocolMethodDecl, false, false);
2622       if (!match)
2623         break;
2624     }
2625   if (match)
2626     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2627   if (match)
2628     match = !(MethodDecl->isClassMethod() &&
2629               MethodDecl->getSelector() == GetNullarySelector("load", Context));
2630 
2631   if (match) {
2632     Diag(ImpMethodDecl->getLocation(),
2633          diag::warn_category_method_impl_match);
2634     Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2635       << MethodDecl->getDeclName();
2636   }
2637 }
2638 
2639 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2640 /// improve the efficiency of selector lookups and type checking by associating
2641 /// with each protocol / interface / category the flattened instance tables. If
2642 /// we used an immutable set to keep the table then it wouldn't add significant
2643 /// memory cost and it would be handy for lookups.
2644 
2645 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2646 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2647 
2648 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2649                                            ProtocolNameSet &PNS) {
2650   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2651     PNS.insert(PDecl->getIdentifier());
2652   for (const auto *PI : PDecl->protocols())
2653     findProtocolsWithExplicitImpls(PI, PNS);
2654 }
2655 
2656 /// Recursively populates a set with all conformed protocols in a class
2657 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2658 /// attribute.
2659 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2660                                            ProtocolNameSet &PNS) {
2661   if (!Super)
2662     return;
2663 
2664   for (const auto *I : Super->all_referenced_protocols())
2665     findProtocolsWithExplicitImpls(I, PNS);
2666 
2667   findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2668 }
2669 
2670 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
2671 /// Declared in protocol, and those referenced by it.
2672 static void CheckProtocolMethodDefs(Sema &S,
2673                                     SourceLocation ImpLoc,
2674                                     ObjCProtocolDecl *PDecl,
2675                                     bool& IncompleteImpl,
2676                                     const Sema::SelectorSet &InsMap,
2677                                     const Sema::SelectorSet &ClsMap,
2678                                     ObjCContainerDecl *CDecl,
2679                                     LazyProtocolNameSet &ProtocolsExplictImpl) {
2680   ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2681   ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2682                                : dyn_cast<ObjCInterfaceDecl>(CDecl);
2683   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2684 
2685   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2686   ObjCInterfaceDecl *NSIDecl = nullptr;
2687 
2688   // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2689   // then we should check if any class in the super class hierarchy also
2690   // conforms to this protocol, either directly or via protocol inheritance.
2691   // If so, we can skip checking this protocol completely because we
2692   // know that a parent class already satisfies this protocol.
2693   //
2694   // Note: we could generalize this logic for all protocols, and merely
2695   // add the limit on looking at the super class chain for just
2696   // specially marked protocols.  This may be a good optimization.  This
2697   // change is restricted to 'objc_protocol_requires_explicit_implementation'
2698   // protocols for now for controlled evaluation.
2699   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2700     if (!ProtocolsExplictImpl) {
2701       ProtocolsExplictImpl.reset(new ProtocolNameSet);
2702       findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2703     }
2704     if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2705         ProtocolsExplictImpl->end())
2706       return;
2707 
2708     // If no super class conforms to the protocol, we should not search
2709     // for methods in the super class to implicitly satisfy the protocol.
2710     Super = nullptr;
2711   }
2712 
2713   if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2714     // check to see if class implements forwardInvocation method and objects
2715     // of this class are derived from 'NSProxy' so that to forward requests
2716     // from one object to another.
2717     // Under such conditions, which means that every method possible is
2718     // implemented in the class, we should not issue "Method definition not
2719     // found" warnings.
2720     // FIXME: Use a general GetUnarySelector method for this.
2721     IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2722     Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2723     if (InsMap.count(fISelector))
2724       // Is IDecl derived from 'NSProxy'? If so, no instance methods
2725       // need be implemented in the implementation.
2726       NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2727   }
2728 
2729   // If this is a forward protocol declaration, get its definition.
2730   if (!PDecl->isThisDeclarationADefinition() &&
2731       PDecl->getDefinition())
2732     PDecl = PDecl->getDefinition();
2733 
2734   // If a method lookup fails locally we still need to look and see if
2735   // the method was implemented by a base class or an inherited
2736   // protocol. This lookup is slow, but occurs rarely in correct code
2737   // and otherwise would terminate in a warning.
2738 
2739   // check unimplemented instance methods.
2740   if (!NSIDecl)
2741     for (auto *method : PDecl->instance_methods()) {
2742       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2743           !method->isPropertyAccessor() &&
2744           !InsMap.count(method->getSelector()) &&
2745           (!Super || !Super->lookupMethod(method->getSelector(),
2746                                           true /* instance */,
2747                                           false /* shallowCategory */,
2748                                           true /* followsSuper */,
2749                                           nullptr /* category */))) {
2750             // If a method is not implemented in the category implementation but
2751             // has been declared in its primary class, superclass,
2752             // or in one of their protocols, no need to issue the warning.
2753             // This is because method will be implemented in the primary class
2754             // or one of its super class implementation.
2755 
2756             // Ugly, but necessary. Method declared in protocol might have
2757             // have been synthesized due to a property declared in the class which
2758             // uses the protocol.
2759             if (ObjCMethodDecl *MethodInClass =
2760                   IDecl->lookupMethod(method->getSelector(),
2761                                       true /* instance */,
2762                                       true /* shallowCategoryLookup */,
2763                                       false /* followSuper */))
2764               if (C || MethodInClass->isPropertyAccessor())
2765                 continue;
2766             unsigned DIAG = diag::warn_unimplemented_protocol_method;
2767             if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2768               WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2769                                   PDecl);
2770             }
2771           }
2772     }
2773   // check unimplemented class methods
2774   for (auto *method : PDecl->class_methods()) {
2775     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2776         !ClsMap.count(method->getSelector()) &&
2777         (!Super || !Super->lookupMethod(method->getSelector(),
2778                                         false /* class method */,
2779                                         false /* shallowCategoryLookup */,
2780                                         true  /* followSuper */,
2781                                         nullptr /* category */))) {
2782       // See above comment for instance method lookups.
2783       if (C && IDecl->lookupMethod(method->getSelector(),
2784                                    false /* class */,
2785                                    true /* shallowCategoryLookup */,
2786                                    false /* followSuper */))
2787         continue;
2788 
2789       unsigned DIAG = diag::warn_unimplemented_protocol_method;
2790       if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2791         WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2792       }
2793     }
2794   }
2795   // Check on this protocols's referenced protocols, recursively.
2796   for (auto *PI : PDecl->protocols())
2797     CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2798                             CDecl, ProtocolsExplictImpl);
2799 }
2800 
2801 /// MatchAllMethodDeclarations - Check methods declared in interface
2802 /// or protocol against those declared in their implementations.
2803 ///
2804 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2805                                       const SelectorSet &ClsMap,
2806                                       SelectorSet &InsMapSeen,
2807                                       SelectorSet &ClsMapSeen,
2808                                       ObjCImplDecl* IMPDecl,
2809                                       ObjCContainerDecl* CDecl,
2810                                       bool &IncompleteImpl,
2811                                       bool ImmediateClass,
2812                                       bool WarnCategoryMethodImpl) {
2813   // Check and see if instance methods in class interface have been
2814   // implemented in the implementation class. If so, their types match.
2815   for (auto *I : CDecl->instance_methods()) {
2816     if (!InsMapSeen.insert(I->getSelector()).second)
2817       continue;
2818     if (!I->isPropertyAccessor() &&
2819         !InsMap.count(I->getSelector())) {
2820       if (ImmediateClass)
2821         WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2822                             diag::warn_undef_method_impl);
2823       continue;
2824     } else {
2825       ObjCMethodDecl *ImpMethodDecl =
2826         IMPDecl->getInstanceMethod(I->getSelector());
2827       assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2828              "Expected to find the method through lookup as well");
2829       // ImpMethodDecl may be null as in a @dynamic property.
2830       if (ImpMethodDecl) {
2831         // Skip property accessor function stubs.
2832         if (ImpMethodDecl->isSynthesizedAccessorStub())
2833           continue;
2834         if (!WarnCategoryMethodImpl)
2835           WarnConflictingTypedMethods(ImpMethodDecl, I,
2836                                       isa<ObjCProtocolDecl>(CDecl));
2837         else if (!I->isPropertyAccessor())
2838           WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2839       }
2840     }
2841   }
2842 
2843   // Check and see if class methods in class interface have been
2844   // implemented in the implementation class. If so, their types match.
2845   for (auto *I : CDecl->class_methods()) {
2846     if (!ClsMapSeen.insert(I->getSelector()).second)
2847       continue;
2848     if (!I->isPropertyAccessor() &&
2849         !ClsMap.count(I->getSelector())) {
2850       if (ImmediateClass)
2851         WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2852                             diag::warn_undef_method_impl);
2853     } else {
2854       ObjCMethodDecl *ImpMethodDecl =
2855         IMPDecl->getClassMethod(I->getSelector());
2856       assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2857              "Expected to find the method through lookup as well");
2858       // ImpMethodDecl may be null as in a @dynamic property.
2859       if (ImpMethodDecl) {
2860         // Skip property accessor function stubs.
2861         if (ImpMethodDecl->isSynthesizedAccessorStub())
2862           continue;
2863         if (!WarnCategoryMethodImpl)
2864           WarnConflictingTypedMethods(ImpMethodDecl, I,
2865                                       isa<ObjCProtocolDecl>(CDecl));
2866         else if (!I->isPropertyAccessor())
2867           WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2868       }
2869     }
2870   }
2871 
2872   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2873     // Also, check for methods declared in protocols inherited by
2874     // this protocol.
2875     for (auto *PI : PD->protocols())
2876       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2877                                  IMPDecl, PI, IncompleteImpl, false,
2878                                  WarnCategoryMethodImpl);
2879   }
2880 
2881   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2882     // when checking that methods in implementation match their declaration,
2883     // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2884     // extension; as well as those in categories.
2885     if (!WarnCategoryMethodImpl) {
2886       for (auto *Cat : I->visible_categories())
2887         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2888                                    IMPDecl, Cat, IncompleteImpl,
2889                                    ImmediateClass && Cat->IsClassExtension(),
2890                                    WarnCategoryMethodImpl);
2891     } else {
2892       // Also methods in class extensions need be looked at next.
2893       for (auto *Ext : I->visible_extensions())
2894         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2895                                    IMPDecl, Ext, IncompleteImpl, false,
2896                                    WarnCategoryMethodImpl);
2897     }
2898 
2899     // Check for any implementation of a methods declared in protocol.
2900     for (auto *PI : I->all_referenced_protocols())
2901       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2902                                  IMPDecl, PI, IncompleteImpl, false,
2903                                  WarnCategoryMethodImpl);
2904 
2905     // FIXME. For now, we are not checking for exact match of methods
2906     // in category implementation and its primary class's super class.
2907     if (!WarnCategoryMethodImpl && I->getSuperClass())
2908       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2909                                  IMPDecl,
2910                                  I->getSuperClass(), IncompleteImpl, false);
2911   }
2912 }
2913 
2914 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2915 /// category matches with those implemented in its primary class and
2916 /// warns each time an exact match is found.
2917 void Sema::CheckCategoryVsClassMethodMatches(
2918                                   ObjCCategoryImplDecl *CatIMPDecl) {
2919   // Get category's primary class.
2920   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2921   if (!CatDecl)
2922     return;
2923   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2924   if (!IDecl)
2925     return;
2926   ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2927   SelectorSet InsMap, ClsMap;
2928 
2929   for (const auto *I : CatIMPDecl->instance_methods()) {
2930     Selector Sel = I->getSelector();
2931     // When checking for methods implemented in the category, skip over
2932     // those declared in category class's super class. This is because
2933     // the super class must implement the method.
2934     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2935       continue;
2936     InsMap.insert(Sel);
2937   }
2938 
2939   for (const auto *I : CatIMPDecl->class_methods()) {
2940     Selector Sel = I->getSelector();
2941     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2942       continue;
2943     ClsMap.insert(Sel);
2944   }
2945   if (InsMap.empty() && ClsMap.empty())
2946     return;
2947 
2948   SelectorSet InsMapSeen, ClsMapSeen;
2949   bool IncompleteImpl = false;
2950   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2951                              CatIMPDecl, IDecl,
2952                              IncompleteImpl, false,
2953                              true /*WarnCategoryMethodImpl*/);
2954 }
2955 
2956 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2957                                      ObjCContainerDecl* CDecl,
2958                                      bool IncompleteImpl) {
2959   SelectorSet InsMap;
2960   // Check and see if instance methods in class interface have been
2961   // implemented in the implementation class.
2962   for (const auto *I : IMPDecl->instance_methods())
2963     InsMap.insert(I->getSelector());
2964 
2965   // Add the selectors for getters/setters of @dynamic properties.
2966   for (const auto *PImpl : IMPDecl->property_impls()) {
2967     // We only care about @dynamic implementations.
2968     if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2969       continue;
2970 
2971     const auto *P = PImpl->getPropertyDecl();
2972     if (!P) continue;
2973 
2974     InsMap.insert(P->getGetterName());
2975     if (!P->getSetterName().isNull())
2976       InsMap.insert(P->getSetterName());
2977   }
2978 
2979   // Check and see if properties declared in the interface have either 1)
2980   // an implementation or 2) there is a @synthesize/@dynamic implementation
2981   // of the property in the @implementation.
2982   if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2983     bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2984                                 LangOpts.ObjCRuntime.isNonFragile() &&
2985                                 !IDecl->isObjCRequiresPropertyDefs();
2986     DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2987   }
2988 
2989   // Diagnose null-resettable synthesized setters.
2990   diagnoseNullResettableSynthesizedSetters(IMPDecl);
2991 
2992   SelectorSet ClsMap;
2993   for (const auto *I : IMPDecl->class_methods())
2994     ClsMap.insert(I->getSelector());
2995 
2996   // Check for type conflict of methods declared in a class/protocol and
2997   // its implementation; if any.
2998   SelectorSet InsMapSeen, ClsMapSeen;
2999   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
3000                              IMPDecl, CDecl,
3001                              IncompleteImpl, true);
3002 
3003   // check all methods implemented in category against those declared
3004   // in its primary class.
3005   if (ObjCCategoryImplDecl *CatDecl =
3006         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
3007     CheckCategoryVsClassMethodMatches(CatDecl);
3008 
3009   // Check the protocol list for unimplemented methods in the @implementation
3010   // class.
3011   // Check and see if class methods in class interface have been
3012   // implemented in the implementation class.
3013 
3014   LazyProtocolNameSet ExplicitImplProtocols;
3015 
3016   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
3017     for (auto *PI : I->all_referenced_protocols())
3018       CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
3019                               InsMap, ClsMap, I, ExplicitImplProtocols);
3020   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3021     // For extended class, unimplemented methods in its protocols will
3022     // be reported in the primary class.
3023     if (!C->IsClassExtension()) {
3024       for (auto *P : C->protocols())
3025         CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
3026                                 IncompleteImpl, InsMap, ClsMap, CDecl,
3027                                 ExplicitImplProtocols);
3028       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3029                                       /*SynthesizeProperties=*/false);
3030     }
3031   } else
3032     llvm_unreachable("invalid ObjCContainerDecl type.");
3033 }
3034 
3035 Sema::DeclGroupPtrTy
3036 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
3037                                    IdentifierInfo **IdentList,
3038                                    SourceLocation *IdentLocs,
3039                                    ArrayRef<ObjCTypeParamList *> TypeParamLists,
3040                                    unsigned NumElts) {
3041   SmallVector<Decl *, 8> DeclsInGroup;
3042   for (unsigned i = 0; i != NumElts; ++i) {
3043     // Check for another declaration kind with the same name.
3044     NamedDecl *PrevDecl
3045       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3046                          LookupOrdinaryName, forRedeclarationInCurContext());
3047     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3048       // GCC apparently allows the following idiom:
3049       //
3050       // typedef NSObject < XCElementTogglerP > XCElementToggler;
3051       // @class XCElementToggler;
3052       //
3053       // Here we have chosen to ignore the forward class declaration
3054       // with a warning. Since this is the implied behavior.
3055       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3056       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3057         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3058         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3059       } else {
3060         // a forward class declaration matching a typedef name of a class refers
3061         // to the underlying class. Just ignore the forward class with a warning
3062         // as this will force the intended behavior which is to lookup the
3063         // typedef name.
3064         if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3065           Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3066               << IdentList[i];
3067           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3068           continue;
3069         }
3070       }
3071     }
3072 
3073     // Create a declaration to describe this forward declaration.
3074     ObjCInterfaceDecl *PrevIDecl
3075       = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3076 
3077     IdentifierInfo *ClassName = IdentList[i];
3078     if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3079       // A previous decl with a different name is because of
3080       // @compatibility_alias, for example:
3081       // \code
3082       //   @class NewImage;
3083       //   @compatibility_alias OldImage NewImage;
3084       // \endcode
3085       // A lookup for 'OldImage' will return the 'NewImage' decl.
3086       //
3087       // In such a case use the real declaration name, instead of the alias one,
3088       // otherwise we will break IdentifierResolver and redecls-chain invariants.
3089       // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3090       // has been aliased.
3091       ClassName = PrevIDecl->getIdentifier();
3092     }
3093 
3094     // If this forward declaration has type parameters, compare them with the
3095     // type parameters of the previous declaration.
3096     ObjCTypeParamList *TypeParams = TypeParamLists[i];
3097     if (PrevIDecl && TypeParams) {
3098       if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3099         // Check for consistency with the previous declaration.
3100         if (checkTypeParamListConsistency(
3101               *this, PrevTypeParams, TypeParams,
3102               TypeParamListContext::ForwardDeclaration)) {
3103           TypeParams = nullptr;
3104         }
3105       } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3106         // The @interface does not have type parameters. Complain.
3107         Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3108           << ClassName
3109           << TypeParams->getSourceRange();
3110         Diag(Def->getLocation(), diag::note_defined_here)
3111           << ClassName;
3112 
3113         TypeParams = nullptr;
3114       }
3115     }
3116 
3117     ObjCInterfaceDecl *IDecl
3118       = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3119                                   ClassName, TypeParams, PrevIDecl,
3120                                   IdentLocs[i]);
3121     IDecl->setAtEndRange(IdentLocs[i]);
3122 
3123     PushOnScopeChains(IDecl, TUScope);
3124     CheckObjCDeclScope(IDecl);
3125     DeclsInGroup.push_back(IDecl);
3126   }
3127 
3128   return BuildDeclaratorGroup(DeclsInGroup);
3129 }
3130 
3131 static bool tryMatchRecordTypes(ASTContext &Context,
3132                                 Sema::MethodMatchStrategy strategy,
3133                                 const Type *left, const Type *right);
3134 
3135 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3136                        QualType leftQT, QualType rightQT) {
3137   const Type *left =
3138     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3139   const Type *right =
3140     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3141 
3142   if (left == right) return true;
3143 
3144   // If we're doing a strict match, the types have to match exactly.
3145   if (strategy == Sema::MMS_strict) return false;
3146 
3147   if (left->isIncompleteType() || right->isIncompleteType()) return false;
3148 
3149   // Otherwise, use this absurdly complicated algorithm to try to
3150   // validate the basic, low-level compatibility of the two types.
3151 
3152   // As a minimum, require the sizes and alignments to match.
3153   TypeInfo LeftTI = Context.getTypeInfo(left);
3154   TypeInfo RightTI = Context.getTypeInfo(right);
3155   if (LeftTI.Width != RightTI.Width)
3156     return false;
3157 
3158   if (LeftTI.Align != RightTI.Align)
3159     return false;
3160 
3161   // Consider all the kinds of non-dependent canonical types:
3162   // - functions and arrays aren't possible as return and parameter types
3163 
3164   // - vector types of equal size can be arbitrarily mixed
3165   if (isa<VectorType>(left)) return isa<VectorType>(right);
3166   if (isa<VectorType>(right)) return false;
3167 
3168   // - references should only match references of identical type
3169   // - structs, unions, and Objective-C objects must match more-or-less
3170   //   exactly
3171   // - everything else should be a scalar
3172   if (!left->isScalarType() || !right->isScalarType())
3173     return tryMatchRecordTypes(Context, strategy, left, right);
3174 
3175   // Make scalars agree in kind, except count bools as chars, and group
3176   // all non-member pointers together.
3177   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3178   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3179   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3180   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3181   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3182     leftSK = Type::STK_ObjCObjectPointer;
3183   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3184     rightSK = Type::STK_ObjCObjectPointer;
3185 
3186   // Note that data member pointers and function member pointers don't
3187   // intermix because of the size differences.
3188 
3189   return (leftSK == rightSK);
3190 }
3191 
3192 static bool tryMatchRecordTypes(ASTContext &Context,
3193                                 Sema::MethodMatchStrategy strategy,
3194                                 const Type *lt, const Type *rt) {
3195   assert(lt && rt && lt != rt);
3196 
3197   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3198   RecordDecl *left = cast<RecordType>(lt)->getDecl();
3199   RecordDecl *right = cast<RecordType>(rt)->getDecl();
3200 
3201   // Require union-hood to match.
3202   if (left->isUnion() != right->isUnion()) return false;
3203 
3204   // Require an exact match if either is non-POD.
3205   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3206       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3207     return false;
3208 
3209   // Require size and alignment to match.
3210   TypeInfo LeftTI = Context.getTypeInfo(lt);
3211   TypeInfo RightTI = Context.getTypeInfo(rt);
3212   if (LeftTI.Width != RightTI.Width)
3213     return false;
3214 
3215   if (LeftTI.Align != RightTI.Align)
3216     return false;
3217 
3218   // Require fields to match.
3219   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3220   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3221   for (; li != le && ri != re; ++li, ++ri) {
3222     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3223       return false;
3224   }
3225   return (li == le && ri == re);
3226 }
3227 
3228 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3229 /// returns true, or false, accordingly.
3230 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3231 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3232                                       const ObjCMethodDecl *right,
3233                                       MethodMatchStrategy strategy) {
3234   if (!matchTypes(Context, strategy, left->getReturnType(),
3235                   right->getReturnType()))
3236     return false;
3237 
3238   // If either is hidden, it is not considered to match.
3239   if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible())
3240     return false;
3241 
3242   if (left->isDirectMethod() != right->isDirectMethod())
3243     return false;
3244 
3245   if (getLangOpts().ObjCAutoRefCount &&
3246       (left->hasAttr<NSReturnsRetainedAttr>()
3247          != right->hasAttr<NSReturnsRetainedAttr>() ||
3248        left->hasAttr<NSConsumesSelfAttr>()
3249          != right->hasAttr<NSConsumesSelfAttr>()))
3250     return false;
3251 
3252   ObjCMethodDecl::param_const_iterator
3253     li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3254     re = right->param_end();
3255 
3256   for (; li != le && ri != re; ++li, ++ri) {
3257     assert(ri != right->param_end() && "Param mismatch");
3258     const ParmVarDecl *lparm = *li, *rparm = *ri;
3259 
3260     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3261       return false;
3262 
3263     if (getLangOpts().ObjCAutoRefCount &&
3264         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3265       return false;
3266   }
3267   return true;
3268 }
3269 
3270 static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3271                                                ObjCMethodDecl *MethodInList) {
3272   auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3273   auto *MethodInListProtocol =
3274       dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3275   // If this method belongs to a protocol but the method in list does not, or
3276   // vice versa, we say the context is not the same.
3277   if ((MethodProtocol && !MethodInListProtocol) ||
3278       (!MethodProtocol && MethodInListProtocol))
3279     return false;
3280 
3281   if (MethodProtocol && MethodInListProtocol)
3282     return true;
3283 
3284   ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3285   ObjCInterfaceDecl *MethodInListInterface =
3286       MethodInList->getClassInterface();
3287   return MethodInterface == MethodInListInterface;
3288 }
3289 
3290 void Sema::addMethodToGlobalList(ObjCMethodList *List,
3291                                  ObjCMethodDecl *Method) {
3292   // Record at the head of the list whether there were 0, 1, or >= 2 methods
3293   // inside categories.
3294   if (ObjCCategoryDecl *CD =
3295           dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3296     if (!CD->IsClassExtension() && List->getBits() < 2)
3297       List->setBits(List->getBits() + 1);
3298 
3299   // If the list is empty, make it a singleton list.
3300   if (List->getMethod() == nullptr) {
3301     List->setMethod(Method);
3302     List->setNext(nullptr);
3303     return;
3304   }
3305 
3306   // We've seen a method with this name, see if we have already seen this type
3307   // signature.
3308   ObjCMethodList *Previous = List;
3309   ObjCMethodList *ListWithSameDeclaration = nullptr;
3310   for (; List; Previous = List, List = List->getNext()) {
3311     // If we are building a module, keep all of the methods.
3312     if (getLangOpts().isCompilingModule())
3313       continue;
3314 
3315     bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3316                                                       List->getMethod());
3317     // Looking for method with a type bound requires the correct context exists.
3318     // We need to insert a method into the list if the context is different.
3319     // If the method's declaration matches the list
3320     // a> the method belongs to a different context: we need to insert it, in
3321     //    order to emit the availability message, we need to prioritize over
3322     //    availability among the methods with the same declaration.
3323     // b> the method belongs to the same context: there is no need to insert a
3324     //    new entry.
3325     // If the method's declaration does not match the list, we insert it to the
3326     // end.
3327     if (!SameDeclaration ||
3328         !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3329       // Even if two method types do not match, we would like to say
3330       // there is more than one declaration so unavailability/deprecated
3331       // warning is not too noisy.
3332       if (!Method->isDefined())
3333         List->setHasMoreThanOneDecl(true);
3334 
3335       // For methods with the same declaration, the one that is deprecated
3336       // should be put in the front for better diagnostics.
3337       if (Method->isDeprecated() && SameDeclaration &&
3338           !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3339         ListWithSameDeclaration = List;
3340 
3341       if (Method->isUnavailable() && SameDeclaration &&
3342           !ListWithSameDeclaration &&
3343           List->getMethod()->getAvailability() < AR_Deprecated)
3344         ListWithSameDeclaration = List;
3345       continue;
3346     }
3347 
3348     ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3349 
3350     // Propagate the 'defined' bit.
3351     if (Method->isDefined())
3352       PrevObjCMethod->setDefined(true);
3353     else {
3354       // Objective-C doesn't allow an @interface for a class after its
3355       // @implementation. So if Method is not defined and there already is
3356       // an entry for this type signature, Method has to be for a different
3357       // class than PrevObjCMethod.
3358       List->setHasMoreThanOneDecl(true);
3359     }
3360 
3361     // If a method is deprecated, push it in the global pool.
3362     // This is used for better diagnostics.
3363     if (Method->isDeprecated()) {
3364       if (!PrevObjCMethod->isDeprecated())
3365         List->setMethod(Method);
3366     }
3367     // If the new method is unavailable, push it into global pool
3368     // unless previous one is deprecated.
3369     if (Method->isUnavailable()) {
3370       if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3371         List->setMethod(Method);
3372     }
3373 
3374     return;
3375   }
3376 
3377   // We have a new signature for an existing method - add it.
3378   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3379   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3380 
3381   // We insert it right before ListWithSameDeclaration.
3382   if (ListWithSameDeclaration) {
3383     auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3384     // FIXME: should we clear the other bits in ListWithSameDeclaration?
3385     ListWithSameDeclaration->setMethod(Method);
3386     ListWithSameDeclaration->setNext(List);
3387     return;
3388   }
3389 
3390   Previous->setNext(new (Mem) ObjCMethodList(Method));
3391 }
3392 
3393 /// Read the contents of the method pool for a given selector from
3394 /// external storage.
3395 void Sema::ReadMethodPool(Selector Sel) {
3396   assert(ExternalSource && "We need an external AST source");
3397   ExternalSource->ReadMethodPool(Sel);
3398 }
3399 
3400 void Sema::updateOutOfDateSelector(Selector Sel) {
3401   if (!ExternalSource)
3402     return;
3403   ExternalSource->updateOutOfDateSelector(Sel);
3404 }
3405 
3406 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3407                                  bool instance) {
3408   // Ignore methods of invalid containers.
3409   if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3410     return;
3411 
3412   if (ExternalSource)
3413     ReadMethodPool(Method->getSelector());
3414 
3415   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3416   if (Pos == MethodPool.end())
3417     Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3418                                            GlobalMethods())).first;
3419 
3420   Method->setDefined(impl);
3421 
3422   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3423   addMethodToGlobalList(&Entry, Method);
3424 }
3425 
3426 /// Determines if this is an "acceptable" loose mismatch in the global
3427 /// method pool.  This exists mostly as a hack to get around certain
3428 /// global mismatches which we can't afford to make warnings / errors.
3429 /// Really, what we want is a way to take a method out of the global
3430 /// method pool.
3431 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3432                                        ObjCMethodDecl *other) {
3433   if (!chosen->isInstanceMethod())
3434     return false;
3435 
3436   if (chosen->isDirectMethod() != other->isDirectMethod())
3437     return false;
3438 
3439   Selector sel = chosen->getSelector();
3440   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3441     return false;
3442 
3443   // Don't complain about mismatches for -length if the method we
3444   // chose has an integral result type.
3445   return (chosen->getReturnType()->isIntegerType());
3446 }
3447 
3448 /// Return true if the given method is wthin the type bound.
3449 static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3450                                      const ObjCObjectType *TypeBound) {
3451   if (!TypeBound)
3452     return true;
3453 
3454   if (TypeBound->isObjCId())
3455     // FIXME: should we handle the case of bounding to id<A, B> differently?
3456     return true;
3457 
3458   auto *BoundInterface = TypeBound->getInterface();
3459   assert(BoundInterface && "unexpected object type!");
3460 
3461   // Check if the Method belongs to a protocol. We should allow any method
3462   // defined in any protocol, because any subclass could adopt the protocol.
3463   auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3464   if (MethodProtocol) {
3465     return true;
3466   }
3467 
3468   // If the Method belongs to a class, check if it belongs to the class
3469   // hierarchy of the class bound.
3470   if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3471     // We allow methods declared within classes that are part of the hierarchy
3472     // of the class bound (superclass of, subclass of, or the same as the class
3473     // bound).
3474     return MethodInterface == BoundInterface ||
3475            MethodInterface->isSuperClassOf(BoundInterface) ||
3476            BoundInterface->isSuperClassOf(MethodInterface);
3477   }
3478   llvm_unreachable("unknown method context");
3479 }
3480 
3481 /// We first select the type of the method: Instance or Factory, then collect
3482 /// all methods with that type.
3483 bool Sema::CollectMultipleMethodsInGlobalPool(
3484     Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3485     bool InstanceFirst, bool CheckTheOther,
3486     const ObjCObjectType *TypeBound) {
3487   if (ExternalSource)
3488     ReadMethodPool(Sel);
3489 
3490   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3491   if (Pos == MethodPool.end())
3492     return false;
3493 
3494   // Gather the non-hidden methods.
3495   ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3496                              Pos->second.second;
3497   for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3498     if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3499       if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3500         Methods.push_back(M->getMethod());
3501     }
3502 
3503   // Return if we find any method with the desired kind.
3504   if (!Methods.empty())
3505     return Methods.size() > 1;
3506 
3507   if (!CheckTheOther)
3508     return false;
3509 
3510   // Gather the other kind.
3511   ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3512                               Pos->second.first;
3513   for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3514     if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3515       if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3516         Methods.push_back(M->getMethod());
3517     }
3518 
3519   return Methods.size() > 1;
3520 }
3521 
3522 bool Sema::AreMultipleMethodsInGlobalPool(
3523     Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3524     bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3525   // Diagnose finding more than one method in global pool.
3526   SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3527   FilteredMethods.push_back(BestMethod);
3528 
3529   for (auto *M : Methods)
3530     if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3531       FilteredMethods.push_back(M);
3532 
3533   if (FilteredMethods.size() > 1)
3534     DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3535                                        receiverIdOrClass);
3536 
3537   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3538   // Test for no method in the pool which should not trigger any warning by
3539   // caller.
3540   if (Pos == MethodPool.end())
3541     return true;
3542   ObjCMethodList &MethList =
3543     BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3544   return MethList.hasMoreThanOneDecl();
3545 }
3546 
3547 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3548                                                bool receiverIdOrClass,
3549                                                bool instance) {
3550   if (ExternalSource)
3551     ReadMethodPool(Sel);
3552 
3553   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3554   if (Pos == MethodPool.end())
3555     return nullptr;
3556 
3557   // Gather the non-hidden methods.
3558   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3559   SmallVector<ObjCMethodDecl *, 4> Methods;
3560   for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3561     if (M->getMethod() && M->getMethod()->isUnconditionallyVisible())
3562       return M->getMethod();
3563   }
3564   return nullptr;
3565 }
3566 
3567 void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3568                                               Selector Sel, SourceRange R,
3569                                               bool receiverIdOrClass) {
3570   // We found multiple methods, so we may have to complain.
3571   bool issueDiagnostic = false, issueError = false;
3572 
3573   // We support a warning which complains about *any* difference in
3574   // method signature.
3575   bool strictSelectorMatch =
3576   receiverIdOrClass &&
3577   !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3578   if (strictSelectorMatch) {
3579     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3580       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3581         issueDiagnostic = true;
3582         break;
3583       }
3584     }
3585   }
3586 
3587   // If we didn't see any strict differences, we won't see any loose
3588   // differences.  In ARC, however, we also need to check for loose
3589   // mismatches, because most of them are errors.
3590   if (!strictSelectorMatch ||
3591       (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3592     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3593       // This checks if the methods differ in type mismatch.
3594       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3595           !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3596         issueDiagnostic = true;
3597         if (getLangOpts().ObjCAutoRefCount)
3598           issueError = true;
3599         break;
3600       }
3601     }
3602 
3603   if (issueDiagnostic) {
3604     if (issueError)
3605       Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3606     else if (strictSelectorMatch)
3607       Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3608     else
3609       Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3610 
3611     Diag(Methods[0]->getBeginLoc(),
3612          issueError ? diag::note_possibility : diag::note_using)
3613         << Methods[0]->getSourceRange();
3614     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3615       Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3616           << Methods[I]->getSourceRange();
3617     }
3618   }
3619 }
3620 
3621 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3622   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3623   if (Pos == MethodPool.end())
3624     return nullptr;
3625 
3626   GlobalMethods &Methods = Pos->second;
3627   for (const ObjCMethodList *Method = &Methods.first; Method;
3628        Method = Method->getNext())
3629     if (Method->getMethod() &&
3630         (Method->getMethod()->isDefined() ||
3631          Method->getMethod()->isPropertyAccessor()))
3632       return Method->getMethod();
3633 
3634   for (const ObjCMethodList *Method = &Methods.second; Method;
3635        Method = Method->getNext())
3636     if (Method->getMethod() &&
3637         (Method->getMethod()->isDefined() ||
3638          Method->getMethod()->isPropertyAccessor()))
3639       return Method->getMethod();
3640   return nullptr;
3641 }
3642 
3643 static void
3644 HelperSelectorsForTypoCorrection(
3645                       SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3646                       StringRef Typo, const ObjCMethodDecl * Method) {
3647   const unsigned MaxEditDistance = 1;
3648   unsigned BestEditDistance = MaxEditDistance + 1;
3649   std::string MethodName = Method->getSelector().getAsString();
3650 
3651   unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3652   if (MinPossibleEditDistance > 0 &&
3653       Typo.size() / MinPossibleEditDistance < 1)
3654     return;
3655   unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3656   if (EditDistance > MaxEditDistance)
3657     return;
3658   if (EditDistance == BestEditDistance)
3659     BestMethod.push_back(Method);
3660   else if (EditDistance < BestEditDistance) {
3661     BestMethod.clear();
3662     BestMethod.push_back(Method);
3663   }
3664 }
3665 
3666 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3667                                      QualType ObjectType) {
3668   if (ObjectType.isNull())
3669     return true;
3670   if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3671     return true;
3672   return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3673          nullptr;
3674 }
3675 
3676 const ObjCMethodDecl *
3677 Sema::SelectorsForTypoCorrection(Selector Sel,
3678                                  QualType ObjectType) {
3679   unsigned NumArgs = Sel.getNumArgs();
3680   SmallVector<const ObjCMethodDecl *, 8> Methods;
3681   bool ObjectIsId = true, ObjectIsClass = true;
3682   if (ObjectType.isNull())
3683     ObjectIsId = ObjectIsClass = false;
3684   else if (!ObjectType->isObjCObjectPointerType())
3685     return nullptr;
3686   else if (const ObjCObjectPointerType *ObjCPtr =
3687            ObjectType->getAsObjCInterfacePointerType()) {
3688     ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3689     ObjectIsId = ObjectIsClass = false;
3690   }
3691   else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3692     ObjectIsClass = false;
3693   else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3694     ObjectIsId = false;
3695   else
3696     return nullptr;
3697 
3698   for (GlobalMethodPool::iterator b = MethodPool.begin(),
3699        e = MethodPool.end(); b != e; b++) {
3700     // instance methods
3701     for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3702       if (M->getMethod() &&
3703           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3704           (M->getMethod()->getSelector() != Sel)) {
3705         if (ObjectIsId)
3706           Methods.push_back(M->getMethod());
3707         else if (!ObjectIsClass &&
3708                  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3709                                           ObjectType))
3710           Methods.push_back(M->getMethod());
3711       }
3712     // class methods
3713     for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3714       if (M->getMethod() &&
3715           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3716           (M->getMethod()->getSelector() != Sel)) {
3717         if (ObjectIsClass)
3718           Methods.push_back(M->getMethod());
3719         else if (!ObjectIsId &&
3720                  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3721                                           ObjectType))
3722           Methods.push_back(M->getMethod());
3723       }
3724   }
3725 
3726   SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3727   for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3728     HelperSelectorsForTypoCorrection(SelectedMethods,
3729                                      Sel.getAsString(), Methods[i]);
3730   }
3731   return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3732 }
3733 
3734 /// DiagnoseDuplicateIvars -
3735 /// Check for duplicate ivars in the entire class at the start of
3736 /// \@implementation. This becomes necesssary because class extension can
3737 /// add ivars to a class in random order which will not be known until
3738 /// class's \@implementation is seen.
3739 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3740                                   ObjCInterfaceDecl *SID) {
3741   for (auto *Ivar : ID->ivars()) {
3742     if (Ivar->isInvalidDecl())
3743       continue;
3744     if (IdentifierInfo *II = Ivar->getIdentifier()) {
3745       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3746       if (prevIvar) {
3747         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3748         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3749         Ivar->setInvalidDecl();
3750       }
3751     }
3752   }
3753 }
3754 
3755 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3756 static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3757   if (S.getLangOpts().ObjCWeak) return;
3758 
3759   for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3760          ivar; ivar = ivar->getNextIvar()) {
3761     if (ivar->isInvalidDecl()) continue;
3762     if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3763       if (S.getLangOpts().ObjCWeakRuntime) {
3764         S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3765       } else {
3766         S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3767       }
3768     }
3769   }
3770 }
3771 
3772 /// Diagnose attempts to use flexible array member with retainable object type.
3773 static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3774                                                   ObjCInterfaceDecl *ID) {
3775   if (!S.getLangOpts().ObjCAutoRefCount)
3776     return;
3777 
3778   for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3779        ivar = ivar->getNextIvar()) {
3780     if (ivar->isInvalidDecl())
3781       continue;
3782     QualType IvarTy = ivar->getType();
3783     if (IvarTy->isIncompleteArrayType() &&
3784         (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3785         IvarTy->isObjCLifetimeType()) {
3786       S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3787       ivar->setInvalidDecl();
3788     }
3789   }
3790 }
3791 
3792 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3793   switch (CurContext->getDeclKind()) {
3794     case Decl::ObjCInterface:
3795       return Sema::OCK_Interface;
3796     case Decl::ObjCProtocol:
3797       return Sema::OCK_Protocol;
3798     case Decl::ObjCCategory:
3799       if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3800         return Sema::OCK_ClassExtension;
3801       return Sema::OCK_Category;
3802     case Decl::ObjCImplementation:
3803       return Sema::OCK_Implementation;
3804     case Decl::ObjCCategoryImpl:
3805       return Sema::OCK_CategoryImplementation;
3806 
3807     default:
3808       return Sema::OCK_None;
3809   }
3810 }
3811 
3812 static bool IsVariableSizedType(QualType T) {
3813   if (T->isIncompleteArrayType())
3814     return true;
3815   const auto *RecordTy = T->getAs<RecordType>();
3816   return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3817 }
3818 
3819 static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3820   ObjCInterfaceDecl *IntfDecl = nullptr;
3821   ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3822       ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3823   if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3824     Ivars = IntfDecl->ivars();
3825   } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3826     IntfDecl = ImplDecl->getClassInterface();
3827     Ivars = ImplDecl->ivars();
3828   } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3829     if (CategoryDecl->IsClassExtension()) {
3830       IntfDecl = CategoryDecl->getClassInterface();
3831       Ivars = CategoryDecl->ivars();
3832     }
3833   }
3834 
3835   // Check if variable sized ivar is in interface and visible to subclasses.
3836   if (!isa<ObjCInterfaceDecl>(OCD)) {
3837     for (auto ivar : Ivars) {
3838       if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3839         S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3840             << ivar->getDeclName() << ivar->getType();
3841       }
3842     }
3843   }
3844 
3845   // Subsequent checks require interface decl.
3846   if (!IntfDecl)
3847     return;
3848 
3849   // Check if variable sized ivar is followed by another ivar.
3850   for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3851        ivar = ivar->getNextIvar()) {
3852     if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3853       continue;
3854     QualType IvarTy = ivar->getType();
3855     bool IsInvalidIvar = false;
3856     if (IvarTy->isIncompleteArrayType()) {
3857       S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3858           << ivar->getDeclName() << IvarTy
3859           << TTK_Class; // Use "class" for Obj-C.
3860       IsInvalidIvar = true;
3861     } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3862       if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3863         S.Diag(ivar->getLocation(),
3864                diag::err_objc_variable_sized_type_not_at_end)
3865             << ivar->getDeclName() << IvarTy;
3866         IsInvalidIvar = true;
3867       }
3868     }
3869     if (IsInvalidIvar) {
3870       S.Diag(ivar->getNextIvar()->getLocation(),
3871              diag::note_next_ivar_declaration)
3872           << ivar->getNextIvar()->getSynthesize();
3873       ivar->setInvalidDecl();
3874     }
3875   }
3876 
3877   // Check if ObjC container adds ivars after variable sized ivar in superclass.
3878   // Perform the check only if OCD is the first container to declare ivars to
3879   // avoid multiple warnings for the same ivar.
3880   ObjCIvarDecl *FirstIvar =
3881       (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3882   if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3883     const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3884     while (SuperClass && SuperClass->ivar_empty())
3885       SuperClass = SuperClass->getSuperClass();
3886     if (SuperClass) {
3887       auto IvarIter = SuperClass->ivar_begin();
3888       std::advance(IvarIter, SuperClass->ivar_size() - 1);
3889       const ObjCIvarDecl *LastIvar = *IvarIter;
3890       if (IsVariableSizedType(LastIvar->getType())) {
3891         S.Diag(FirstIvar->getLocation(),
3892                diag::warn_superclass_variable_sized_type_not_at_end)
3893             << FirstIvar->getDeclName() << LastIvar->getDeclName()
3894             << LastIvar->getType() << SuperClass->getDeclName();
3895         S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3896             << LastIvar->getDeclName();
3897       }
3898     }
3899   }
3900 }
3901 
3902 // Note: For class/category implementations, allMethods is always null.
3903 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3904                        ArrayRef<DeclGroupPtrTy> allTUVars) {
3905   if (getObjCContainerKind() == Sema::OCK_None)
3906     return nullptr;
3907 
3908   assert(AtEnd.isValid() && "Invalid location for '@end'");
3909 
3910   auto *OCD = cast<ObjCContainerDecl>(CurContext);
3911   Decl *ClassDecl = OCD;
3912 
3913   bool isInterfaceDeclKind =
3914         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3915          || isa<ObjCProtocolDecl>(ClassDecl);
3916   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3917 
3918   // Make synthesized accessor stub functions visible.
3919   // ActOnPropertyImplDecl() creates them as not visible in case
3920   // they are overridden by an explicit method that is encountered
3921   // later.
3922   if (auto *OID = dyn_cast<ObjCImplementationDecl>(CurContext)) {
3923     for (auto PropImpl : OID->property_impls()) {
3924       if (auto *Getter = PropImpl->getGetterMethodDecl())
3925         if (Getter->isSynthesizedAccessorStub()) {
3926           OID->makeDeclVisibleInContext(Getter);
3927           OID->addDecl(Getter);
3928         }
3929       if (auto *Setter = PropImpl->getSetterMethodDecl())
3930         if (Setter->isSynthesizedAccessorStub()) {
3931           OID->makeDeclVisibleInContext(Setter);
3932           OID->addDecl(Setter);
3933         }
3934     }
3935   }
3936 
3937   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3938   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3939   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3940 
3941   for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3942     ObjCMethodDecl *Method =
3943       cast_or_null<ObjCMethodDecl>(allMethods[i]);
3944 
3945     if (!Method) continue;  // Already issued a diagnostic.
3946     if (Method->isInstanceMethod()) {
3947       /// Check for instance method of the same name with incompatible types
3948       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3949       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3950                               : false;
3951       if ((isInterfaceDeclKind && PrevMethod && !match)
3952           || (checkIdenticalMethods && match)) {
3953           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3954             << Method->getDeclName();
3955           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3956         Method->setInvalidDecl();
3957       } else {
3958         if (PrevMethod) {
3959           Method->setAsRedeclaration(PrevMethod);
3960           if (!Context.getSourceManager().isInSystemHeader(
3961                  Method->getLocation()))
3962             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3963               << Method->getDeclName();
3964           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3965         }
3966         InsMap[Method->getSelector()] = Method;
3967         /// The following allows us to typecheck messages to "id".
3968         AddInstanceMethodToGlobalPool(Method);
3969       }
3970     } else {
3971       /// Check for class method of the same name with incompatible types
3972       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3973       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3974                               : false;
3975       if ((isInterfaceDeclKind && PrevMethod && !match)
3976           || (checkIdenticalMethods && match)) {
3977         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3978           << Method->getDeclName();
3979         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3980         Method->setInvalidDecl();
3981       } else {
3982         if (PrevMethod) {
3983           Method->setAsRedeclaration(PrevMethod);
3984           if (!Context.getSourceManager().isInSystemHeader(
3985                  Method->getLocation()))
3986             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3987               << Method->getDeclName();
3988           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3989         }
3990         ClsMap[Method->getSelector()] = Method;
3991         AddFactoryMethodToGlobalPool(Method);
3992       }
3993     }
3994   }
3995   if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3996     // Nothing to do here.
3997   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3998     // Categories are used to extend the class by declaring new methods.
3999     // By the same token, they are also used to add new properties. No
4000     // need to compare the added property to those in the class.
4001 
4002     if (C->IsClassExtension()) {
4003       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
4004       DiagnoseClassExtensionDupMethods(C, CCPrimary);
4005     }
4006   }
4007   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
4008     if (CDecl->getIdentifier())
4009       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
4010       // user-defined setter/getter. It also synthesizes setter/getter methods
4011       // and adds them to the DeclContext and global method pools.
4012       for (auto *I : CDecl->properties())
4013         ProcessPropertyDecl(I);
4014     CDecl->setAtEndRange(AtEnd);
4015   }
4016   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
4017     IC->setAtEndRange(AtEnd);
4018     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
4019       // Any property declared in a class extension might have user
4020       // declared setter or getter in current class extension or one
4021       // of the other class extensions. Mark them as synthesized as
4022       // property will be synthesized when property with same name is
4023       // seen in the @implementation.
4024       for (const auto *Ext : IDecl->visible_extensions()) {
4025         for (const auto *Property : Ext->instance_properties()) {
4026           // Skip over properties declared @dynamic
4027           if (const ObjCPropertyImplDecl *PIDecl
4028               = IC->FindPropertyImplDecl(Property->getIdentifier(),
4029                                          Property->getQueryKind()))
4030             if (PIDecl->getPropertyImplementation()
4031                   == ObjCPropertyImplDecl::Dynamic)
4032               continue;
4033 
4034           for (const auto *Ext : IDecl->visible_extensions()) {
4035             if (ObjCMethodDecl *GetterMethod =
4036                     Ext->getInstanceMethod(Property->getGetterName()))
4037               GetterMethod->setPropertyAccessor(true);
4038             if (!Property->isReadOnly())
4039               if (ObjCMethodDecl *SetterMethod
4040                     = Ext->getInstanceMethod(Property->getSetterName()))
4041                 SetterMethod->setPropertyAccessor(true);
4042           }
4043         }
4044       }
4045       ImplMethodsVsClassMethods(S, IC, IDecl);
4046       AtomicPropertySetterGetterRules(IC, IDecl);
4047       DiagnoseOwningPropertyGetterSynthesis(IC);
4048       DiagnoseUnusedBackingIvarInAccessor(S, IC);
4049       if (IDecl->hasDesignatedInitializers())
4050         DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
4051       DiagnoseWeakIvars(*this, IC);
4052       DiagnoseRetainableFlexibleArrayMember(*this, IDecl);
4053 
4054       bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4055       if (IDecl->getSuperClass() == nullptr) {
4056         // This class has no superclass, so check that it has been marked with
4057         // __attribute((objc_root_class)).
4058         if (!HasRootClassAttr) {
4059           SourceLocation DeclLoc(IDecl->getLocation());
4060           SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
4061           Diag(DeclLoc, diag::warn_objc_root_class_missing)
4062             << IDecl->getIdentifier();
4063           // See if NSObject is in the current scope, and if it is, suggest
4064           // adding " : NSObject " to the class declaration.
4065           NamedDecl *IF = LookupSingleName(TUScope,
4066                                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4067                                            DeclLoc, LookupOrdinaryName);
4068           ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4069           if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4070             Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4071               << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4072           } else {
4073             Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4074           }
4075         }
4076       } else if (HasRootClassAttr) {
4077         // Complain that only root classes may have this attribute.
4078         Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4079       }
4080 
4081       if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4082         // An interface can subclass another interface with a
4083         // objc_subclassing_restricted attribute when it has that attribute as
4084         // well (because of interfaces imported from Swift). Therefore we have
4085         // to check if we can subclass in the implementation as well.
4086         if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4087             Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4088           Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4089           Diag(Super->getLocation(), diag::note_class_declared);
4090         }
4091       }
4092 
4093       if (IDecl->hasAttr<ObjCClassStubAttr>())
4094         Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4095 
4096       if (LangOpts.ObjCRuntime.isNonFragile()) {
4097         while (IDecl->getSuperClass()) {
4098           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4099           IDecl = IDecl->getSuperClass();
4100         }
4101       }
4102     }
4103     SetIvarInitializers(IC);
4104   } else if (ObjCCategoryImplDecl* CatImplClass =
4105                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4106     CatImplClass->setAtEndRange(AtEnd);
4107 
4108     // Find category interface decl and then check that all methods declared
4109     // in this interface are implemented in the category @implementation.
4110     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4111       if (ObjCCategoryDecl *Cat
4112             = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4113         ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4114       }
4115     }
4116   } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4117     if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4118       if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4119           Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4120         Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4121         Diag(Super->getLocation(), diag::note_class_declared);
4122       }
4123     }
4124 
4125     if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4126         !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4127       Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4128   }
4129   DiagnoseVariableSizedIvars(*this, OCD);
4130   if (isInterfaceDeclKind) {
4131     // Reject invalid vardecls.
4132     for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4133       DeclGroupRef DG = allTUVars[i].get();
4134       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4135         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4136           if (!VDecl->hasExternalStorage())
4137             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4138         }
4139     }
4140   }
4141   ActOnObjCContainerFinishDefinition();
4142 
4143   for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4144     DeclGroupRef DG = allTUVars[i].get();
4145     for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4146       (*I)->setTopLevelDeclInObjCContainer();
4147     Consumer.HandleTopLevelDeclInObjCContainer(DG);
4148   }
4149 
4150   ActOnDocumentableDecl(ClassDecl);
4151   return ClassDecl;
4152 }
4153 
4154 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4155 /// objective-c's type qualifier from the parser version of the same info.
4156 static Decl::ObjCDeclQualifier
4157 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4158   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4159 }
4160 
4161 /// Check whether the declared result type of the given Objective-C
4162 /// method declaration is compatible with the method's class.
4163 ///
4164 static Sema::ResultTypeCompatibilityKind
4165 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4166                                     ObjCInterfaceDecl *CurrentClass) {
4167   QualType ResultType = Method->getReturnType();
4168 
4169   // If an Objective-C method inherits its related result type, then its
4170   // declared result type must be compatible with its own class type. The
4171   // declared result type is compatible if:
4172   if (const ObjCObjectPointerType *ResultObjectType
4173                                 = ResultType->getAs<ObjCObjectPointerType>()) {
4174     //   - it is id or qualified id, or
4175     if (ResultObjectType->isObjCIdType() ||
4176         ResultObjectType->isObjCQualifiedIdType())
4177       return Sema::RTC_Compatible;
4178 
4179     if (CurrentClass) {
4180       if (ObjCInterfaceDecl *ResultClass
4181                                       = ResultObjectType->getInterfaceDecl()) {
4182         //   - it is the same as the method's class type, or
4183         if (declaresSameEntity(CurrentClass, ResultClass))
4184           return Sema::RTC_Compatible;
4185 
4186         //   - it is a superclass of the method's class type
4187         if (ResultClass->isSuperClassOf(CurrentClass))
4188           return Sema::RTC_Compatible;
4189       }
4190     } else {
4191       // Any Objective-C pointer type might be acceptable for a protocol
4192       // method; we just don't know.
4193       return Sema::RTC_Unknown;
4194     }
4195   }
4196 
4197   return Sema::RTC_Incompatible;
4198 }
4199 
4200 namespace {
4201 /// A helper class for searching for methods which a particular method
4202 /// overrides.
4203 class OverrideSearch {
4204 public:
4205   const ObjCMethodDecl *Method;
4206   llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4207   bool Recursive;
4208 
4209 public:
4210   OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4211     Selector selector = method->getSelector();
4212 
4213     // Bypass this search if we've never seen an instance/class method
4214     // with this selector before.
4215     Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4216     if (it == S.MethodPool.end()) {
4217       if (!S.getExternalSource()) return;
4218       S.ReadMethodPool(selector);
4219 
4220       it = S.MethodPool.find(selector);
4221       if (it == S.MethodPool.end())
4222         return;
4223     }
4224     const ObjCMethodList &list =
4225       method->isInstanceMethod() ? it->second.first : it->second.second;
4226     if (!list.getMethod()) return;
4227 
4228     const ObjCContainerDecl *container
4229       = cast<ObjCContainerDecl>(method->getDeclContext());
4230 
4231     // Prevent the search from reaching this container again.  This is
4232     // important with categories, which override methods from the
4233     // interface and each other.
4234     if (const ObjCCategoryDecl *Category =
4235             dyn_cast<ObjCCategoryDecl>(container)) {
4236       searchFromContainer(container);
4237       if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4238         searchFromContainer(Interface);
4239     } else {
4240       searchFromContainer(container);
4241     }
4242   }
4243 
4244   typedef decltype(Overridden)::iterator iterator;
4245   iterator begin() const { return Overridden.begin(); }
4246   iterator end() const { return Overridden.end(); }
4247 
4248 private:
4249   void searchFromContainer(const ObjCContainerDecl *container) {
4250     if (container->isInvalidDecl()) return;
4251 
4252     switch (container->getDeclKind()) {
4253 #define OBJCCONTAINER(type, base) \
4254     case Decl::type: \
4255       searchFrom(cast<type##Decl>(container)); \
4256       break;
4257 #define ABSTRACT_DECL(expansion)
4258 #define DECL(type, base) \
4259     case Decl::type:
4260 #include "clang/AST/DeclNodes.inc"
4261       llvm_unreachable("not an ObjC container!");
4262     }
4263   }
4264 
4265   void searchFrom(const ObjCProtocolDecl *protocol) {
4266     if (!protocol->hasDefinition())
4267       return;
4268 
4269     // A method in a protocol declaration overrides declarations from
4270     // referenced ("parent") protocols.
4271     search(protocol->getReferencedProtocols());
4272   }
4273 
4274   void searchFrom(const ObjCCategoryDecl *category) {
4275     // A method in a category declaration overrides declarations from
4276     // the main class and from protocols the category references.
4277     // The main class is handled in the constructor.
4278     search(category->getReferencedProtocols());
4279   }
4280 
4281   void searchFrom(const ObjCCategoryImplDecl *impl) {
4282     // A method in a category definition that has a category
4283     // declaration overrides declarations from the category
4284     // declaration.
4285     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4286       search(category);
4287       if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4288         search(Interface);
4289 
4290     // Otherwise it overrides declarations from the class.
4291     } else if (const auto *Interface = impl->getClassInterface()) {
4292       search(Interface);
4293     }
4294   }
4295 
4296   void searchFrom(const ObjCInterfaceDecl *iface) {
4297     // A method in a class declaration overrides declarations from
4298     if (!iface->hasDefinition())
4299       return;
4300 
4301     //   - categories,
4302     for (auto *Cat : iface->known_categories())
4303       search(Cat);
4304 
4305     //   - the super class, and
4306     if (ObjCInterfaceDecl *super = iface->getSuperClass())
4307       search(super);
4308 
4309     //   - any referenced protocols.
4310     search(iface->getReferencedProtocols());
4311   }
4312 
4313   void searchFrom(const ObjCImplementationDecl *impl) {
4314     // A method in a class implementation overrides declarations from
4315     // the class interface.
4316     if (const auto *Interface = impl->getClassInterface())
4317       search(Interface);
4318   }
4319 
4320   void search(const ObjCProtocolList &protocols) {
4321     for (const auto *Proto : protocols)
4322       search(Proto);
4323   }
4324 
4325   void search(const ObjCContainerDecl *container) {
4326     // Check for a method in this container which matches this selector.
4327     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4328                                                 Method->isInstanceMethod(),
4329                                                 /*AllowHidden=*/true);
4330 
4331     // If we find one, record it and bail out.
4332     if (meth) {
4333       Overridden.insert(meth);
4334       return;
4335     }
4336 
4337     // Otherwise, search for methods that a hypothetical method here
4338     // would have overridden.
4339 
4340     // Note that we're now in a recursive case.
4341     Recursive = true;
4342 
4343     searchFromContainer(container);
4344   }
4345 };
4346 } // end anonymous namespace
4347 
4348 void Sema::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
4349                                           ObjCMethodDecl *overridden) {
4350   if (const auto *attr = overridden->getAttr<ObjCDirectAttr>()) {
4351     Diag(method->getLocation(), diag::err_objc_override_direct_method);
4352     Diag(attr->getLocation(), diag::note_previous_declaration);
4353   } else if (const auto *attr = method->getAttr<ObjCDirectAttr>()) {
4354     Diag(attr->getLocation(), diag::err_objc_direct_on_override)
4355         << isa<ObjCProtocolDecl>(overridden->getDeclContext());
4356     Diag(overridden->getLocation(), diag::note_previous_declaration);
4357   }
4358 }
4359 
4360 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4361                                     ObjCInterfaceDecl *CurrentClass,
4362                                     ResultTypeCompatibilityKind RTC) {
4363   if (!ObjCMethod)
4364     return;
4365   // Search for overridden methods and merge information down from them.
4366   OverrideSearch overrides(*this, ObjCMethod);
4367   // Keep track if the method overrides any method in the class's base classes,
4368   // its protocols, or its categories' protocols; we will keep that info
4369   // in the ObjCMethodDecl.
4370   // For this info, a method in an implementation is not considered as
4371   // overriding the same method in the interface or its categories.
4372   bool hasOverriddenMethodsInBaseOrProtocol = false;
4373   for (ObjCMethodDecl *overridden : overrides) {
4374     if (!hasOverriddenMethodsInBaseOrProtocol) {
4375       if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4376           CurrentClass != overridden->getClassInterface() ||
4377           overridden->isOverriding()) {
4378         CheckObjCMethodDirectOverrides(ObjCMethod, overridden);
4379         hasOverriddenMethodsInBaseOrProtocol = true;
4380       } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4381         // OverrideSearch will return as "overridden" the same method in the
4382         // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4383         // check whether a category of a base class introduced a method with the
4384         // same selector, after the interface method declaration.
4385         // To avoid unnecessary lookups in the majority of cases, we use the
4386         // extra info bits in GlobalMethodPool to check whether there were any
4387         // category methods with this selector.
4388         GlobalMethodPool::iterator It =
4389             MethodPool.find(ObjCMethod->getSelector());
4390         if (It != MethodPool.end()) {
4391           ObjCMethodList &List =
4392             ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4393           unsigned CategCount = List.getBits();
4394           if (CategCount > 0) {
4395             // If the method is in a category we'll do lookup if there were at
4396             // least 2 category methods recorded, otherwise only one will do.
4397             if (CategCount > 1 ||
4398                 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4399               OverrideSearch overrides(*this, overridden);
4400               for (ObjCMethodDecl *SuperOverridden : overrides) {
4401                 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4402                     CurrentClass != SuperOverridden->getClassInterface()) {
4403                   CheckObjCMethodDirectOverrides(ObjCMethod, SuperOverridden);
4404                   hasOverriddenMethodsInBaseOrProtocol = true;
4405                   overridden->setOverriding(true);
4406                   break;
4407                 }
4408               }
4409             }
4410           }
4411         }
4412       }
4413     }
4414 
4415     // Propagate down the 'related result type' bit from overridden methods.
4416     if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4417       ObjCMethod->setRelatedResultType();
4418 
4419     // Then merge the declarations.
4420     mergeObjCMethodDecls(ObjCMethod, overridden);
4421 
4422     if (ObjCMethod->isImplicit() && overridden->isImplicit())
4423       continue; // Conflicting properties are detected elsewhere.
4424 
4425     // Check for overriding methods
4426     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4427         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4428       CheckConflictingOverridingMethod(ObjCMethod, overridden,
4429               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4430 
4431     if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4432         isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4433         !overridden->isImplicit() /* not meant for properties */) {
4434       ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4435                                           E = ObjCMethod->param_end();
4436       ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4437                                      PrevE = overridden->param_end();
4438       for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4439         assert(PrevI != overridden->param_end() && "Param mismatch");
4440         QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4441         QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4442         // If type of argument of method in this class does not match its
4443         // respective argument type in the super class method, issue warning;
4444         if (!Context.typesAreCompatible(T1, T2)) {
4445           Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4446             << T1 << T2;
4447           Diag(overridden->getLocation(), diag::note_previous_declaration);
4448           break;
4449         }
4450       }
4451     }
4452   }
4453 
4454   ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4455 }
4456 
4457 /// Merge type nullability from for a redeclaration of the same entity,
4458 /// producing the updated type of the redeclared entity.
4459 static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4460                                               QualType type,
4461                                               bool usesCSKeyword,
4462                                               SourceLocation prevLoc,
4463                                               QualType prevType,
4464                                               bool prevUsesCSKeyword) {
4465   // Determine the nullability of both types.
4466   auto nullability = type->getNullability(S.Context);
4467   auto prevNullability = prevType->getNullability(S.Context);
4468 
4469   // Easy case: both have nullability.
4470   if (nullability.hasValue() == prevNullability.hasValue()) {
4471     // Neither has nullability; continue.
4472     if (!nullability)
4473       return type;
4474 
4475     // The nullabilities are equivalent; do nothing.
4476     if (*nullability == *prevNullability)
4477       return type;
4478 
4479     // Complain about mismatched nullability.
4480     S.Diag(loc, diag::err_nullability_conflicting)
4481       << DiagNullabilityKind(*nullability, usesCSKeyword)
4482       << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4483     return type;
4484   }
4485 
4486   // If it's the redeclaration that has nullability, don't change anything.
4487   if (nullability)
4488     return type;
4489 
4490   // Otherwise, provide the result with the same nullability.
4491   return S.Context.getAttributedType(
4492            AttributedType::getNullabilityAttrKind(*prevNullability),
4493            type, type);
4494 }
4495 
4496 /// Merge information from the declaration of a method in the \@interface
4497 /// (or a category/extension) into the corresponding method in the
4498 /// @implementation (for a class or category).
4499 static void mergeInterfaceMethodToImpl(Sema &S,
4500                                        ObjCMethodDecl *method,
4501                                        ObjCMethodDecl *prevMethod) {
4502   // Merge the objc_requires_super attribute.
4503   if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4504       !method->hasAttr<ObjCRequiresSuperAttr>()) {
4505     // merge the attribute into implementation.
4506     method->addAttr(
4507       ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4508                                             method->getLocation()));
4509   }
4510 
4511   // Merge nullability of the result type.
4512   QualType newReturnType
4513     = mergeTypeNullabilityForRedecl(
4514         S, method->getReturnTypeSourceRange().getBegin(),
4515         method->getReturnType(),
4516         method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4517         prevMethod->getReturnTypeSourceRange().getBegin(),
4518         prevMethod->getReturnType(),
4519         prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4520   method->setReturnType(newReturnType);
4521 
4522   // Handle each of the parameters.
4523   unsigned numParams = method->param_size();
4524   unsigned numPrevParams = prevMethod->param_size();
4525   for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4526     ParmVarDecl *param = method->param_begin()[i];
4527     ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4528 
4529     // Merge nullability.
4530     QualType newParamType
4531       = mergeTypeNullabilityForRedecl(
4532           S, param->getLocation(), param->getType(),
4533           param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4534           prevParam->getLocation(), prevParam->getType(),
4535           prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4536     param->setType(newParamType);
4537   }
4538 }
4539 
4540 /// Verify that the method parameters/return value have types that are supported
4541 /// by the x86 target.
4542 static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4543                                           const ObjCMethodDecl *Method) {
4544   assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4545              llvm::Triple::x86 &&
4546          "x86-specific check invoked for a different target");
4547   SourceLocation Loc;
4548   QualType T;
4549   for (const ParmVarDecl *P : Method->parameters()) {
4550     if (P->getType()->isVectorType()) {
4551       Loc = P->getBeginLoc();
4552       T = P->getType();
4553       break;
4554     }
4555   }
4556   if (Loc.isInvalid()) {
4557     if (Method->getReturnType()->isVectorType()) {
4558       Loc = Method->getReturnTypeSourceRange().getBegin();
4559       T = Method->getReturnType();
4560     } else
4561       return;
4562   }
4563 
4564   // Vector parameters/return values are not supported by objc_msgSend on x86 in
4565   // iOS < 9 and macOS < 10.11.
4566   const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4567   VersionTuple AcceptedInVersion;
4568   if (Triple.getOS() == llvm::Triple::IOS)
4569     AcceptedInVersion = VersionTuple(/*Major=*/9);
4570   else if (Triple.isMacOSX())
4571     AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4572   else
4573     return;
4574   if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4575       AcceptedInVersion)
4576     return;
4577   SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4578       << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4579                                                        : /*parameter*/ 0)
4580       << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4581 }
4582 
4583 static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) {
4584   if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() &&
4585       CD->hasAttr<ObjCDirectMembersAttr>()) {
4586     Method->addAttr(
4587         ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation()));
4588   }
4589 }
4590 
4591 static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl,
4592                                          ObjCMethodDecl *Method,
4593                                          ObjCImplDecl *ImpDecl = nullptr) {
4594   auto Sel = Method->getSelector();
4595   bool isInstance = Method->isInstanceMethod();
4596   bool diagnosed = false;
4597 
4598   auto diagClash = [&](const ObjCMethodDecl *IMD) {
4599     if (diagnosed || IMD->isImplicit())
4600       return;
4601     if (Method->isDirectMethod() || IMD->isDirectMethod()) {
4602       S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl)
4603           << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod()
4604           << Method->getDeclName();
4605       S.Diag(IMD->getLocation(), diag::note_previous_declaration);
4606       diagnosed = true;
4607     }
4608   };
4609 
4610   // Look for any other declaration of this method anywhere we can see in this
4611   // compilation unit.
4612   //
4613   // We do not use IDecl->lookupMethod() because we have specific needs:
4614   //
4615   // - we absolutely do not need to walk protocols, because
4616   //   diag::err_objc_direct_on_protocol has already been emitted
4617   //   during parsing if there's a conflict,
4618   //
4619   // - when we do not find a match in a given @interface container,
4620   //   we need to attempt looking it up in the @implementation block if the
4621   //   translation unit sees it to find more clashes.
4622 
4623   if (auto *IMD = IDecl->getMethod(Sel, isInstance))
4624     diagClash(IMD);
4625   else if (auto *Impl = IDecl->getImplementation())
4626     if (Impl != ImpDecl)
4627       if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance))
4628         diagClash(IMD);
4629 
4630   for (const auto *Cat : IDecl->visible_categories())
4631     if (auto *IMD = Cat->getMethod(Sel, isInstance))
4632       diagClash(IMD);
4633     else if (auto CatImpl = Cat->getImplementation())
4634       if (CatImpl != ImpDecl)
4635         if (auto *IMD = Cat->getMethod(Sel, isInstance))
4636           diagClash(IMD);
4637 }
4638 
4639 Decl *Sema::ActOnMethodDeclaration(
4640     Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4641     tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4642     ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4643     // optional arguments. The number of types/arguments is obtained
4644     // from the Sel.getNumArgs().
4645     ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4646     unsigned CNumArgs, // c-style args
4647     const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4648     bool isVariadic, bool MethodDefinition) {
4649   // Make sure we can establish a context for the method.
4650   if (!CurContext->isObjCContainer()) {
4651     Diag(MethodLoc, diag::err_missing_method_context);
4652     return nullptr;
4653   }
4654 
4655   Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4656   QualType resultDeclType;
4657 
4658   bool HasRelatedResultType = false;
4659   TypeSourceInfo *ReturnTInfo = nullptr;
4660   if (ReturnType) {
4661     resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4662 
4663     if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4664       return nullptr;
4665 
4666     QualType bareResultType = resultDeclType;
4667     (void)AttributedType::stripOuterNullability(bareResultType);
4668     HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4669   } else { // get the type for "id".
4670     resultDeclType = Context.getObjCIdType();
4671     Diag(MethodLoc, diag::warn_missing_method_return_type)
4672       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4673   }
4674 
4675   ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4676       Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4677       MethodType == tok::minus, isVariadic,
4678       /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
4679       /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4680       MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4681                                            : ObjCMethodDecl::Required,
4682       HasRelatedResultType);
4683 
4684   SmallVector<ParmVarDecl*, 16> Params;
4685 
4686   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4687     QualType ArgType;
4688     TypeSourceInfo *DI;
4689 
4690     if (!ArgInfo[i].Type) {
4691       ArgType = Context.getObjCIdType();
4692       DI = nullptr;
4693     } else {
4694       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4695     }
4696 
4697     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4698                    LookupOrdinaryName, forRedeclarationInCurContext());
4699     LookupName(R, S);
4700     if (R.isSingleResult()) {
4701       NamedDecl *PrevDecl = R.getFoundDecl();
4702       if (S->isDeclScope(PrevDecl)) {
4703         Diag(ArgInfo[i].NameLoc,
4704              (MethodDefinition ? diag::warn_method_param_redefinition
4705                                : diag::warn_method_param_declaration))
4706           << ArgInfo[i].Name;
4707         Diag(PrevDecl->getLocation(),
4708              diag::note_previous_declaration);
4709       }
4710     }
4711 
4712     SourceLocation StartLoc = DI
4713       ? DI->getTypeLoc().getBeginLoc()
4714       : ArgInfo[i].NameLoc;
4715 
4716     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4717                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
4718                                         ArgType, DI, SC_None);
4719 
4720     Param->setObjCMethodScopeInfo(i);
4721 
4722     Param->setObjCDeclQualifier(
4723       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4724 
4725     // Apply the attributes to the parameter.
4726     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4727     AddPragmaAttributes(TUScope, Param);
4728 
4729     if (Param->hasAttr<BlocksAttr>()) {
4730       Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4731       Param->setInvalidDecl();
4732     }
4733     S->AddDecl(Param);
4734     IdResolver.AddDecl(Param);
4735 
4736     Params.push_back(Param);
4737   }
4738 
4739   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4740     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4741     QualType ArgType = Param->getType();
4742     if (ArgType.isNull())
4743       ArgType = Context.getObjCIdType();
4744     else
4745       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4746       ArgType = Context.getAdjustedParameterType(ArgType);
4747 
4748     Param->setDeclContext(ObjCMethod);
4749     Params.push_back(Param);
4750   }
4751 
4752   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4753   ObjCMethod->setObjCDeclQualifier(
4754     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4755 
4756   ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4757   AddPragmaAttributes(TUScope, ObjCMethod);
4758 
4759   // Add the method now.
4760   const ObjCMethodDecl *PrevMethod = nullptr;
4761   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4762     if (MethodType == tok::minus) {
4763       PrevMethod = ImpDecl->getInstanceMethod(Sel);
4764       ImpDecl->addInstanceMethod(ObjCMethod);
4765     } else {
4766       PrevMethod = ImpDecl->getClassMethod(Sel);
4767       ImpDecl->addClassMethod(ObjCMethod);
4768     }
4769 
4770     // If this method overrides a previous @synthesize declaration,
4771     // register it with the property.  Linear search through all
4772     // properties here, because the autosynthesized stub hasn't been
4773     // made visible yet, so it can be overriden by a later
4774     // user-specified implementation.
4775     for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) {
4776       if (auto *Setter = PropertyImpl->getSetterMethodDecl())
4777         if (Setter->getSelector() == Sel &&
4778             Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4779           assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected");
4780           PropertyImpl->setSetterMethodDecl(ObjCMethod);
4781         }
4782       if (auto *Getter = PropertyImpl->getGetterMethodDecl())
4783         if (Getter->getSelector() == Sel &&
4784             Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4785           assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected");
4786           PropertyImpl->setGetterMethodDecl(ObjCMethod);
4787           break;
4788         }
4789     }
4790 
4791     // A method is either tagged direct explicitly, or inherits it from its
4792     // canonical declaration.
4793     //
4794     // We have to do the merge upfront and not in mergeInterfaceMethodToImpl()
4795     // because IDecl->lookupMethod() returns more possible matches than just
4796     // the canonical declaration.
4797     if (!ObjCMethod->isDirectMethod()) {
4798       const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl();
4799       if (const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>()) {
4800         ObjCMethod->addAttr(
4801             ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4802       }
4803     }
4804 
4805     // Merge information from the @interface declaration into the
4806     // @implementation.
4807     if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4808       if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4809                                           ObjCMethod->isInstanceMethod())) {
4810         mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4811 
4812         // The Idecl->lookupMethod() above will find declarations for ObjCMethod
4813         // in one of these places:
4814         //
4815         // (1) the canonical declaration in an @interface container paired
4816         //     with the ImplDecl,
4817         // (2) non canonical declarations in @interface not paired with the
4818         //     ImplDecl for the same Class,
4819         // (3) any superclass container.
4820         //
4821         // Direct methods only allow for canonical declarations in the matching
4822         // container (case 1).
4823         //
4824         // Direct methods overriding a superclass declaration (case 3) is
4825         // handled during overrides checks in CheckObjCMethodOverrides().
4826         //
4827         // We deal with same-class container mismatches (Case 2) here.
4828         if (IDecl == IMD->getClassInterface()) {
4829           auto diagContainerMismatch = [&] {
4830             int decl = 0, impl = 0;
4831 
4832             if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext()))
4833               decl = Cat->IsClassExtension() ? 1 : 2;
4834 
4835             if (isa<ObjCCategoryImplDecl>(ImpDecl))
4836               impl = 1 + (decl != 0);
4837 
4838             Diag(ObjCMethod->getLocation(),
4839                  diag::err_objc_direct_impl_decl_mismatch)
4840                 << decl << impl;
4841             Diag(IMD->getLocation(), diag::note_previous_declaration);
4842           };
4843 
4844           if (const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>()) {
4845             if (ObjCMethod->getCanonicalDecl() != IMD) {
4846               diagContainerMismatch();
4847             } else if (!IMD->isDirectMethod()) {
4848               Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl);
4849               Diag(IMD->getLocation(), diag::note_previous_declaration);
4850             }
4851           } else if (const auto *attr = IMD->getAttr<ObjCDirectAttr>()) {
4852             if (ObjCMethod->getCanonicalDecl() != IMD) {
4853               diagContainerMismatch();
4854             } else {
4855               ObjCMethod->addAttr(
4856                   ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4857             }
4858           }
4859         }
4860 
4861         // Warn about defining -dealloc in a category.
4862         if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4863             ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4864           Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4865             << ObjCMethod->getDeclName();
4866         }
4867       } else {
4868         mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod);
4869         checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod, ImpDecl);
4870       }
4871 
4872       // Warn if a method declared in a protocol to which a category or
4873       // extension conforms is non-escaping and the implementation's method is
4874       // escaping.
4875       for (auto *C : IDecl->visible_categories())
4876         for (auto &P : C->protocols())
4877           if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4878                                           ObjCMethod->isInstanceMethod())) {
4879             assert(ObjCMethod->parameters().size() ==
4880                        IMD->parameters().size() &&
4881                    "Methods have different number of parameters");
4882             auto OI = IMD->param_begin(), OE = IMD->param_end();
4883             auto NI = ObjCMethod->param_begin();
4884             for (; OI != OE; ++OI, ++NI)
4885               diagnoseNoescape(*NI, *OI, C, P, *this);
4886           }
4887     }
4888   } else {
4889     if (!isa<ObjCProtocolDecl>(ClassDecl)) {
4890       mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod);
4891 
4892       ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4893       if (!IDecl)
4894         IDecl = cast<ObjCCategoryDecl>(ClassDecl)->getClassInterface();
4895       // For valid code, we should always know the primary interface
4896       // declaration by now, however for invalid code we'll keep parsing
4897       // but we won't find the primary interface and IDecl will be nil.
4898       if (IDecl)
4899         checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod);
4900     }
4901 
4902     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4903   }
4904 
4905   if (PrevMethod) {
4906     // You can never have two method definitions with the same name.
4907     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4908       << ObjCMethod->getDeclName();
4909     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4910     ObjCMethod->setInvalidDecl();
4911     return ObjCMethod;
4912   }
4913 
4914   // If this Objective-C method does not have a related result type, but we
4915   // are allowed to infer related result types, try to do so based on the
4916   // method family.
4917   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4918   if (!CurrentClass) {
4919     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4920       CurrentClass = Cat->getClassInterface();
4921     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4922       CurrentClass = Impl->getClassInterface();
4923     else if (ObjCCategoryImplDecl *CatImpl
4924                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4925       CurrentClass = CatImpl->getClassInterface();
4926   }
4927 
4928   ResultTypeCompatibilityKind RTC
4929     = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4930 
4931   CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4932 
4933   bool ARCError = false;
4934   if (getLangOpts().ObjCAutoRefCount)
4935     ARCError = CheckARCMethodDecl(ObjCMethod);
4936 
4937   // Infer the related result type when possible.
4938   if (!ARCError && RTC == Sema::RTC_Compatible &&
4939       !ObjCMethod->hasRelatedResultType() &&
4940       LangOpts.ObjCInferRelatedResultType) {
4941     bool InferRelatedResultType = false;
4942     switch (ObjCMethod->getMethodFamily()) {
4943     case OMF_None:
4944     case OMF_copy:
4945     case OMF_dealloc:
4946     case OMF_finalize:
4947     case OMF_mutableCopy:
4948     case OMF_release:
4949     case OMF_retainCount:
4950     case OMF_initialize:
4951     case OMF_performSelector:
4952       break;
4953 
4954     case OMF_alloc:
4955     case OMF_new:
4956         InferRelatedResultType = ObjCMethod->isClassMethod();
4957       break;
4958 
4959     case OMF_init:
4960     case OMF_autorelease:
4961     case OMF_retain:
4962     case OMF_self:
4963       InferRelatedResultType = ObjCMethod->isInstanceMethod();
4964       break;
4965     }
4966 
4967     if (InferRelatedResultType &&
4968         !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4969       ObjCMethod->setRelatedResultType();
4970   }
4971 
4972   if (MethodDefinition &&
4973       Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
4974     checkObjCMethodX86VectorTypes(*this, ObjCMethod);
4975 
4976   // + load method cannot have availability attributes. It get called on
4977   // startup, so it has to have the availability of the deployment target.
4978   if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
4979     if (ObjCMethod->isClassMethod() &&
4980         ObjCMethod->getSelector().getAsString() == "load") {
4981       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
4982           << 0;
4983       ObjCMethod->dropAttr<AvailabilityAttr>();
4984     }
4985   }
4986 
4987   // Insert the invisible arguments, self and _cmd!
4988   ObjCMethod->createImplicitParams(Context, ObjCMethod->getClassInterface());
4989 
4990   ActOnDocumentableDecl(ObjCMethod);
4991 
4992   return ObjCMethod;
4993 }
4994 
4995 bool Sema::CheckObjCDeclScope(Decl *D) {
4996   // Following is also an error. But it is caused by a missing @end
4997   // and diagnostic is issued elsewhere.
4998   if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4999     return false;
5000 
5001   // If we switched context to translation unit while we are still lexically in
5002   // an objc container, it means the parser missed emitting an error.
5003   if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
5004     return false;
5005 
5006   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
5007   D->setInvalidDecl();
5008 
5009   return true;
5010 }
5011 
5012 /// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
5013 /// instance variables of ClassName into Decls.
5014 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
5015                      IdentifierInfo *ClassName,
5016                      SmallVectorImpl<Decl*> &Decls) {
5017   // Check that ClassName is a valid class
5018   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
5019   if (!Class) {
5020     Diag(DeclStart, diag::err_undef_interface) << ClassName;
5021     return;
5022   }
5023   if (LangOpts.ObjCRuntime.isNonFragile()) {
5024     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
5025     return;
5026   }
5027 
5028   // Collect the instance variables
5029   SmallVector<const ObjCIvarDecl*, 32> Ivars;
5030   Context.DeepCollectObjCIvars(Class, true, Ivars);
5031   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
5032   for (unsigned i = 0; i < Ivars.size(); i++) {
5033     const FieldDecl* ID = Ivars[i];
5034     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
5035     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
5036                                            /*FIXME: StartL=*/ID->getLocation(),
5037                                            ID->getLocation(),
5038                                            ID->getIdentifier(), ID->getType(),
5039                                            ID->getBitWidth());
5040     Decls.push_back(FD);
5041   }
5042 
5043   // Introduce all of these fields into the appropriate scope.
5044   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
5045        D != Decls.end(); ++D) {
5046     FieldDecl *FD = cast<FieldDecl>(*D);
5047     if (getLangOpts().CPlusPlus)
5048       PushOnScopeChains(FD, S);
5049     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
5050       Record->addDecl(FD);
5051   }
5052 }
5053 
5054 /// Build a type-check a new Objective-C exception variable declaration.
5055 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
5056                                       SourceLocation StartLoc,
5057                                       SourceLocation IdLoc,
5058                                       IdentifierInfo *Id,
5059                                       bool Invalid) {
5060   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5061   // duration shall not be qualified by an address-space qualifier."
5062   // Since all parameters have automatic store duration, they can not have
5063   // an address space.
5064   if (T.getAddressSpace() != LangAS::Default) {
5065     Diag(IdLoc, diag::err_arg_with_address_space);
5066     Invalid = true;
5067   }
5068 
5069   // An @catch parameter must be an unqualified object pointer type;
5070   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
5071   if (Invalid) {
5072     // Don't do any further checking.
5073   } else if (T->isDependentType()) {
5074     // Okay: we don't know what this type will instantiate to.
5075   } else if (T->isObjCQualifiedIdType()) {
5076     Invalid = true;
5077     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
5078   } else if (T->isObjCIdType()) {
5079     // Okay: we don't know what this type will instantiate to.
5080   } else if (!T->isObjCObjectPointerType()) {
5081     Invalid = true;
5082     Diag(IdLoc, diag::err_catch_param_not_objc_type);
5083   } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) {
5084     Invalid = true;
5085     Diag(IdLoc, diag::err_catch_param_not_objc_type);
5086   }
5087 
5088   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
5089                                  T, TInfo, SC_None);
5090   New->setExceptionVariable(true);
5091 
5092   // In ARC, infer 'retaining' for variables of retainable type.
5093   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
5094     Invalid = true;
5095 
5096   if (Invalid)
5097     New->setInvalidDecl();
5098   return New;
5099 }
5100 
5101 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
5102   const DeclSpec &DS = D.getDeclSpec();
5103 
5104   // We allow the "register" storage class on exception variables because
5105   // GCC did, but we drop it completely. Any other storage class is an error.
5106   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5107     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
5108       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
5109   } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5110     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
5111       << DeclSpec::getSpecifierName(SCS);
5112   }
5113   if (DS.isInlineSpecified())
5114     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5115         << getLangOpts().CPlusPlus17;
5116   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
5117     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5118          diag::err_invalid_thread)
5119      << DeclSpec::getSpecifierName(TSCS);
5120   D.getMutableDeclSpec().ClearStorageClassSpecs();
5121 
5122   DiagnoseFunctionSpecifiers(D.getDeclSpec());
5123 
5124   // Check that there are no default arguments inside the type of this
5125   // exception object (C++ only).
5126   if (getLangOpts().CPlusPlus)
5127     CheckExtraCXXDefaultArguments(D);
5128 
5129   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5130   QualType ExceptionType = TInfo->getType();
5131 
5132   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
5133                                         D.getSourceRange().getBegin(),
5134                                         D.getIdentifierLoc(),
5135                                         D.getIdentifier(),
5136                                         D.isInvalidType());
5137 
5138   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5139   if (D.getCXXScopeSpec().isSet()) {
5140     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
5141       << D.getCXXScopeSpec().getRange();
5142     New->setInvalidDecl();
5143   }
5144 
5145   // Add the parameter declaration into this scope.
5146   S->AddDecl(New);
5147   if (D.getIdentifier())
5148     IdResolver.AddDecl(New);
5149 
5150   ProcessDeclAttributes(S, New, D);
5151 
5152   if (New->hasAttr<BlocksAttr>())
5153     Diag(New->getLocation(), diag::err_block_on_nonlocal);
5154   return New;
5155 }
5156 
5157 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
5158 /// initialization.
5159 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
5160                                 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
5161   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
5162        Iv= Iv->getNextIvar()) {
5163     QualType QT = Context.getBaseElementType(Iv->getType());
5164     if (QT->isRecordType())
5165       Ivars.push_back(Iv);
5166   }
5167 }
5168 
5169 void Sema::DiagnoseUseOfUnimplementedSelectors() {
5170   // Load referenced selectors from the external source.
5171   if (ExternalSource) {
5172     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
5173     ExternalSource->ReadReferencedSelectors(Sels);
5174     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
5175       ReferencedSelectors[Sels[I].first] = Sels[I].second;
5176   }
5177 
5178   // Warning will be issued only when selector table is
5179   // generated (which means there is at lease one implementation
5180   // in the TU). This is to match gcc's behavior.
5181   if (ReferencedSelectors.empty() ||
5182       !Context.AnyObjCImplementation())
5183     return;
5184   for (auto &SelectorAndLocation : ReferencedSelectors) {
5185     Selector Sel = SelectorAndLocation.first;
5186     SourceLocation Loc = SelectorAndLocation.second;
5187     if (!LookupImplementedMethodInGlobalPool(Sel))
5188       Diag(Loc, diag::warn_unimplemented_selector) << Sel;
5189   }
5190 }
5191 
5192 ObjCIvarDecl *
5193 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
5194                                      const ObjCPropertyDecl *&PDecl) const {
5195   if (Method->isClassMethod())
5196     return nullptr;
5197   const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
5198   if (!IDecl)
5199     return nullptr;
5200   Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
5201                                /*shallowCategoryLookup=*/false,
5202                                /*followSuper=*/false);
5203   if (!Method || !Method->isPropertyAccessor())
5204     return nullptr;
5205   if ((PDecl = Method->findPropertyDecl()))
5206     if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5207       // property backing ivar must belong to property's class
5208       // or be a private ivar in class's implementation.
5209       // FIXME. fix the const-ness issue.
5210       IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5211                                                         IV->getIdentifier());
5212       return IV;
5213     }
5214   return nullptr;
5215 }
5216 
5217 namespace {
5218   /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
5219   /// accessor references the backing ivar.
5220   class UnusedBackingIvarChecker :
5221       public RecursiveASTVisitor<UnusedBackingIvarChecker> {
5222   public:
5223     Sema &S;
5224     const ObjCMethodDecl *Method;
5225     const ObjCIvarDecl *IvarD;
5226     bool AccessedIvar;
5227     bool InvokedSelfMethod;
5228 
5229     UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5230                              const ObjCIvarDecl *IvarD)
5231       : S(S), Method(Method), IvarD(IvarD),
5232         AccessedIvar(false), InvokedSelfMethod(false) {
5233       assert(IvarD);
5234     }
5235 
5236     bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5237       if (E->getDecl() == IvarD) {
5238         AccessedIvar = true;
5239         return false;
5240       }
5241       return true;
5242     }
5243 
5244     bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5245       if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5246           S.isSelfExpr(E->getInstanceReceiver(), Method)) {
5247         InvokedSelfMethod = true;
5248       }
5249       return true;
5250     }
5251   };
5252 } // end anonymous namespace
5253 
5254 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
5255                                           const ObjCImplementationDecl *ImplD) {
5256   if (S->hasUnrecoverableErrorOccurred())
5257     return;
5258 
5259   for (const auto *CurMethod : ImplD->instance_methods()) {
5260     unsigned DIAG = diag::warn_unused_property_backing_ivar;
5261     SourceLocation Loc = CurMethod->getLocation();
5262     if (Diags.isIgnored(DIAG, Loc))
5263       continue;
5264 
5265     const ObjCPropertyDecl *PDecl;
5266     const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5267     if (!IV)
5268       continue;
5269 
5270     if (CurMethod->isSynthesizedAccessorStub())
5271       continue;
5272 
5273     UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5274     Checker.TraverseStmt(CurMethod->getBody());
5275     if (Checker.AccessedIvar)
5276       continue;
5277 
5278     // Do not issue this warning if backing ivar is used somewhere and accessor
5279     // implementation makes a self call. This is to prevent false positive in
5280     // cases where the ivar is accessed by another method that the accessor
5281     // delegates to.
5282     if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5283       Diag(Loc, DIAG) << IV;
5284       Diag(PDecl->getLocation(), diag::note_property_declare);
5285     }
5286   }
5287 }
5288