1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for Objective C declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprObjC.h" 20 #include "clang/AST/RecursiveASTVisitor.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "clang/Basic/TargetInfo.h" 23 #include "clang/Sema/DeclSpec.h" 24 #include "clang/Sema/Lookup.h" 25 #include "clang/Sema/Scope.h" 26 #include "clang/Sema/ScopeInfo.h" 27 #include "clang/Sema/SemaInternal.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/DenseSet.h" 30 31 using namespace clang; 32 33 /// Check whether the given method, which must be in the 'init' 34 /// family, is a valid member of that family. 35 /// 36 /// \param receiverTypeIfCall - if null, check this as if declaring it; 37 /// if non-null, check this as if making a call to it with the given 38 /// receiver type 39 /// 40 /// \return true to indicate that there was an error and appropriate 41 /// actions were taken 42 bool Sema::checkInitMethod(ObjCMethodDecl *method, 43 QualType receiverTypeIfCall) { 44 if (method->isInvalidDecl()) return true; 45 46 // This castAs is safe: methods that don't return an object 47 // pointer won't be inferred as inits and will reject an explicit 48 // objc_method_family(init). 49 50 // We ignore protocols here. Should we? What about Class? 51 52 const ObjCObjectType *result = 53 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType(); 54 55 if (result->isObjCId()) { 56 return false; 57 } else if (result->isObjCClass()) { 58 // fall through: always an error 59 } else { 60 ObjCInterfaceDecl *resultClass = result->getInterface(); 61 assert(resultClass && "unexpected object type!"); 62 63 // It's okay for the result type to still be a forward declaration 64 // if we're checking an interface declaration. 65 if (!resultClass->hasDefinition()) { 66 if (receiverTypeIfCall.isNull() && 67 !isa<ObjCImplementationDecl>(method->getDeclContext())) 68 return false; 69 70 // Otherwise, we try to compare class types. 71 } else { 72 // If this method was declared in a protocol, we can't check 73 // anything unless we have a receiver type that's an interface. 74 const ObjCInterfaceDecl *receiverClass = nullptr; 75 if (isa<ObjCProtocolDecl>(method->getDeclContext())) { 76 if (receiverTypeIfCall.isNull()) 77 return false; 78 79 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() 80 ->getInterfaceDecl(); 81 82 // This can be null for calls to e.g. id<Foo>. 83 if (!receiverClass) return false; 84 } else { 85 receiverClass = method->getClassInterface(); 86 assert(receiverClass && "method not associated with a class!"); 87 } 88 89 // If either class is a subclass of the other, it's fine. 90 if (receiverClass->isSuperClassOf(resultClass) || 91 resultClass->isSuperClassOf(receiverClass)) 92 return false; 93 } 94 } 95 96 SourceLocation loc = method->getLocation(); 97 98 // If we're in a system header, and this is not a call, just make 99 // the method unusable. 100 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { 101 method->addAttr(UnavailableAttr::CreateImplicit(Context, "", 102 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc)); 103 return true; 104 } 105 106 // Otherwise, it's an error. 107 Diag(loc, diag::err_arc_init_method_unrelated_result_type); 108 method->setInvalidDecl(); 109 return true; 110 } 111 112 /// Issue a warning if the parameter of the overridden method is non-escaping 113 /// but the parameter of the overriding method is not. 114 static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, 115 Sema &S) { 116 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) { 117 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape); 118 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape); 119 return false; 120 } 121 122 return true; 123 } 124 125 /// Produce additional diagnostics if a category conforms to a protocol that 126 /// defines a method taking a non-escaping parameter. 127 static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, 128 const ObjCCategoryDecl *CD, 129 const ObjCProtocolDecl *PD, Sema &S) { 130 if (!diagnoseNoescape(NewD, OldD, S)) 131 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot) 132 << CD->IsClassExtension() << PD 133 << cast<ObjCMethodDecl>(NewD->getDeclContext()); 134 } 135 136 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 137 const ObjCMethodDecl *Overridden) { 138 if (Overridden->hasRelatedResultType() && 139 !NewMethod->hasRelatedResultType()) { 140 // This can only happen when the method follows a naming convention that 141 // implies a related result type, and the original (overridden) method has 142 // a suitable return type, but the new (overriding) method does not have 143 // a suitable return type. 144 QualType ResultType = NewMethod->getReturnType(); 145 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange(); 146 147 // Figure out which class this method is part of, if any. 148 ObjCInterfaceDecl *CurrentClass 149 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); 150 if (!CurrentClass) { 151 DeclContext *DC = NewMethod->getDeclContext(); 152 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) 153 CurrentClass = Cat->getClassInterface(); 154 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) 155 CurrentClass = Impl->getClassInterface(); 156 else if (ObjCCategoryImplDecl *CatImpl 157 = dyn_cast<ObjCCategoryImplDecl>(DC)) 158 CurrentClass = CatImpl->getClassInterface(); 159 } 160 161 if (CurrentClass) { 162 Diag(NewMethod->getLocation(), 163 diag::warn_related_result_type_compatibility_class) 164 << Context.getObjCInterfaceType(CurrentClass) 165 << ResultType 166 << ResultTypeRange; 167 } else { 168 Diag(NewMethod->getLocation(), 169 diag::warn_related_result_type_compatibility_protocol) 170 << ResultType 171 << ResultTypeRange; 172 } 173 174 if (ObjCMethodFamily Family = Overridden->getMethodFamily()) 175 Diag(Overridden->getLocation(), 176 diag::note_related_result_type_family) 177 << /*overridden method*/ 0 178 << Family; 179 else 180 Diag(Overridden->getLocation(), 181 diag::note_related_result_type_overridden); 182 } 183 184 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != 185 Overridden->hasAttr<NSReturnsRetainedAttr>())) { 186 Diag(NewMethod->getLocation(), 187 getLangOpts().ObjCAutoRefCount 188 ? diag::err_nsreturns_retained_attribute_mismatch 189 : diag::warn_nsreturns_retained_attribute_mismatch) 190 << 1; 191 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method"; 192 } 193 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != 194 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { 195 Diag(NewMethod->getLocation(), 196 getLangOpts().ObjCAutoRefCount 197 ? diag::err_nsreturns_retained_attribute_mismatch 198 : diag::warn_nsreturns_retained_attribute_mismatch) 199 << 0; 200 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method"; 201 } 202 203 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(), 204 oe = Overridden->param_end(); 205 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(), 206 ne = NewMethod->param_end(); 207 ni != ne && oi != oe; ++ni, ++oi) { 208 const ParmVarDecl *oldDecl = (*oi); 209 ParmVarDecl *newDecl = (*ni); 210 if (newDecl->hasAttr<NSConsumedAttr>() != 211 oldDecl->hasAttr<NSConsumedAttr>()) { 212 Diag(newDecl->getLocation(), 213 getLangOpts().ObjCAutoRefCount 214 ? diag::err_nsconsumed_attribute_mismatch 215 : diag::warn_nsconsumed_attribute_mismatch); 216 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter"; 217 } 218 219 diagnoseNoescape(newDecl, oldDecl, *this); 220 } 221 } 222 223 /// Check a method declaration for compatibility with the Objective-C 224 /// ARC conventions. 225 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) { 226 ObjCMethodFamily family = method->getMethodFamily(); 227 switch (family) { 228 case OMF_None: 229 case OMF_finalize: 230 case OMF_retain: 231 case OMF_release: 232 case OMF_autorelease: 233 case OMF_retainCount: 234 case OMF_self: 235 case OMF_initialize: 236 case OMF_performSelector: 237 return false; 238 239 case OMF_dealloc: 240 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) { 241 SourceRange ResultTypeRange = method->getReturnTypeSourceRange(); 242 if (ResultTypeRange.isInvalid()) 243 Diag(method->getLocation(), diag::err_dealloc_bad_result_type) 244 << method->getReturnType() 245 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)"); 246 else 247 Diag(method->getLocation(), diag::err_dealloc_bad_result_type) 248 << method->getReturnType() 249 << FixItHint::CreateReplacement(ResultTypeRange, "void"); 250 return true; 251 } 252 return false; 253 254 case OMF_init: 255 // If the method doesn't obey the init rules, don't bother annotating it. 256 if (checkInitMethod(method, QualType())) 257 return true; 258 259 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context)); 260 261 // Don't add a second copy of this attribute, but otherwise don't 262 // let it be suppressed. 263 if (method->hasAttr<NSReturnsRetainedAttr>()) 264 return false; 265 break; 266 267 case OMF_alloc: 268 case OMF_copy: 269 case OMF_mutableCopy: 270 case OMF_new: 271 if (method->hasAttr<NSReturnsRetainedAttr>() || 272 method->hasAttr<NSReturnsNotRetainedAttr>() || 273 method->hasAttr<NSReturnsAutoreleasedAttr>()) 274 return false; 275 break; 276 } 277 278 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context)); 279 return false; 280 } 281 282 static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND, 283 SourceLocation ImplLoc) { 284 if (!ND) 285 return; 286 bool IsCategory = false; 287 StringRef RealizedPlatform; 288 AvailabilityResult Availability = ND->getAvailability( 289 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(), 290 &RealizedPlatform); 291 if (Availability != AR_Deprecated) { 292 if (isa<ObjCMethodDecl>(ND)) { 293 if (Availability != AR_Unavailable) 294 return; 295 if (RealizedPlatform.empty()) 296 RealizedPlatform = S.Context.getTargetInfo().getPlatformName(); 297 // Warn about implementing unavailable methods, unless the unavailable 298 // is for an app extension. 299 if (RealizedPlatform.endswith("_app_extension")) 300 return; 301 S.Diag(ImplLoc, diag::warn_unavailable_def); 302 S.Diag(ND->getLocation(), diag::note_method_declared_at) 303 << ND->getDeclName(); 304 return; 305 } 306 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) { 307 if (!CD->getClassInterface()->isDeprecated()) 308 return; 309 ND = CD->getClassInterface(); 310 IsCategory = true; 311 } else 312 return; 313 } 314 S.Diag(ImplLoc, diag::warn_deprecated_def) 315 << (isa<ObjCMethodDecl>(ND) 316 ? /*Method*/ 0 317 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2 318 : /*Class*/ 1); 319 if (isa<ObjCMethodDecl>(ND)) 320 S.Diag(ND->getLocation(), diag::note_method_declared_at) 321 << ND->getDeclName(); 322 else 323 S.Diag(ND->getLocation(), diag::note_previous_decl) 324 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class"); 325 } 326 327 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global 328 /// pool. 329 void Sema::AddAnyMethodToGlobalPool(Decl *D) { 330 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 331 332 // If we don't have a valid method decl, simply return. 333 if (!MDecl) 334 return; 335 if (MDecl->isInstanceMethod()) 336 AddInstanceMethodToGlobalPool(MDecl, true); 337 else 338 AddFactoryMethodToGlobalPool(MDecl, true); 339 } 340 341 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer 342 /// has explicit ownership attribute; false otherwise. 343 static bool 344 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) { 345 QualType T = Param->getType(); 346 347 if (const PointerType *PT = T->getAs<PointerType>()) { 348 T = PT->getPointeeType(); 349 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 350 T = RT->getPointeeType(); 351 } else { 352 return true; 353 } 354 355 // If we have a lifetime qualifier, but it's local, we must have 356 // inferred it. So, it is implicit. 357 return !T.getLocalQualifiers().hasObjCLifetime(); 358 } 359 360 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible 361 /// and user declared, in the method definition's AST. 362 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { 363 ImplicitlyRetainedSelfLocs.clear(); 364 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused"); 365 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 366 367 PushExpressionEvaluationContext(ExprEvalContexts.back().Context); 368 369 // If we don't have a valid method decl, simply return. 370 if (!MDecl) 371 return; 372 373 QualType ResultType = MDecl->getReturnType(); 374 if (!ResultType->isDependentType() && !ResultType->isVoidType() && 375 !MDecl->isInvalidDecl() && 376 RequireCompleteType(MDecl->getLocation(), ResultType, 377 diag::err_func_def_incomplete_result)) 378 MDecl->setInvalidDecl(); 379 380 // Allow all of Sema to see that we are entering a method definition. 381 PushDeclContext(FnBodyScope, MDecl); 382 PushFunctionScope(); 383 384 // Create Decl objects for each parameter, entrring them in the scope for 385 // binding to their use. 386 387 // Insert the invisible arguments, self and _cmd! 388 MDecl->createImplicitParams(Context, MDecl->getClassInterface()); 389 390 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); 391 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); 392 393 // The ObjC parser requires parameter names so there's no need to check. 394 CheckParmsForFunctionDef(MDecl->parameters(), 395 /*CheckParameterNames=*/false); 396 397 // Introduce all of the other parameters into this scope. 398 for (auto *Param : MDecl->parameters()) { 399 if (!Param->isInvalidDecl() && 400 getLangOpts().ObjCAutoRefCount && 401 !HasExplicitOwnershipAttr(*this, Param)) 402 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) << 403 Param->getType(); 404 405 if (Param->getIdentifier()) 406 PushOnScopeChains(Param, FnBodyScope); 407 } 408 409 // In ARC, disallow definition of retain/release/autorelease/retainCount 410 if (getLangOpts().ObjCAutoRefCount) { 411 switch (MDecl->getMethodFamily()) { 412 case OMF_retain: 413 case OMF_retainCount: 414 case OMF_release: 415 case OMF_autorelease: 416 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) 417 << 0 << MDecl->getSelector(); 418 break; 419 420 case OMF_None: 421 case OMF_dealloc: 422 case OMF_finalize: 423 case OMF_alloc: 424 case OMF_init: 425 case OMF_mutableCopy: 426 case OMF_copy: 427 case OMF_new: 428 case OMF_self: 429 case OMF_initialize: 430 case OMF_performSelector: 431 break; 432 } 433 } 434 435 // Warn on deprecated methods under -Wdeprecated-implementations, 436 // and prepare for warning on missing super calls. 437 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { 438 ObjCMethodDecl *IMD = 439 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()); 440 441 if (IMD) { 442 ObjCImplDecl *ImplDeclOfMethodDef = 443 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext()); 444 ObjCContainerDecl *ContDeclOfMethodDecl = 445 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext()); 446 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr; 447 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl)) 448 ImplDeclOfMethodDecl = OID->getImplementation(); 449 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) { 450 if (CD->IsClassExtension()) { 451 if (ObjCInterfaceDecl *OID = CD->getClassInterface()) 452 ImplDeclOfMethodDecl = OID->getImplementation(); 453 } else 454 ImplDeclOfMethodDecl = CD->getImplementation(); 455 } 456 // No need to issue deprecated warning if deprecated mehod in class/category 457 // is being implemented in its own implementation (no overriding is involved). 458 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef) 459 DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation()); 460 } 461 462 if (MDecl->getMethodFamily() == OMF_init) { 463 if (MDecl->isDesignatedInitializerForTheInterface()) { 464 getCurFunction()->ObjCIsDesignatedInit = true; 465 getCurFunction()->ObjCWarnForNoDesignatedInitChain = 466 IC->getSuperClass() != nullptr; 467 } else if (IC->hasDesignatedInitializers()) { 468 getCurFunction()->ObjCIsSecondaryInit = true; 469 getCurFunction()->ObjCWarnForNoInitDelegation = true; 470 } 471 } 472 473 // If this is "dealloc" or "finalize", set some bit here. 474 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. 475 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. 476 // Only do this if the current class actually has a superclass. 477 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) { 478 ObjCMethodFamily Family = MDecl->getMethodFamily(); 479 if (Family == OMF_dealloc) { 480 if (!(getLangOpts().ObjCAutoRefCount || 481 getLangOpts().getGC() == LangOptions::GCOnly)) 482 getCurFunction()->ObjCShouldCallSuper = true; 483 484 } else if (Family == OMF_finalize) { 485 if (Context.getLangOpts().getGC() != LangOptions::NonGC) 486 getCurFunction()->ObjCShouldCallSuper = true; 487 488 } else { 489 const ObjCMethodDecl *SuperMethod = 490 SuperClass->lookupMethod(MDecl->getSelector(), 491 MDecl->isInstanceMethod()); 492 getCurFunction()->ObjCShouldCallSuper = 493 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>()); 494 } 495 } 496 } 497 } 498 499 namespace { 500 501 // Callback to only accept typo corrections that are Objective-C classes. 502 // If an ObjCInterfaceDecl* is given to the constructor, then the validation 503 // function will reject corrections to that class. 504 class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback { 505 public: 506 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {} 507 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) 508 : CurrentIDecl(IDecl) {} 509 510 bool ValidateCandidate(const TypoCorrection &candidate) override { 511 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); 512 return ID && !declaresSameEntity(ID, CurrentIDecl); 513 } 514 515 std::unique_ptr<CorrectionCandidateCallback> clone() override { 516 return std::make_unique<ObjCInterfaceValidatorCCC>(*this); 517 } 518 519 private: 520 ObjCInterfaceDecl *CurrentIDecl; 521 }; 522 523 } // end anonymous namespace 524 525 static void diagnoseUseOfProtocols(Sema &TheSema, 526 ObjCContainerDecl *CD, 527 ObjCProtocolDecl *const *ProtoRefs, 528 unsigned NumProtoRefs, 529 const SourceLocation *ProtoLocs) { 530 assert(ProtoRefs); 531 // Diagnose availability in the context of the ObjC container. 532 Sema::ContextRAII SavedContext(TheSema, CD); 533 for (unsigned i = 0; i < NumProtoRefs; ++i) { 534 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i], 535 /*UnknownObjCClass=*/nullptr, 536 /*ObjCPropertyAccess=*/false, 537 /*AvoidPartialAvailabilityChecks=*/true); 538 } 539 } 540 541 void Sema:: 542 ActOnSuperClassOfClassInterface(Scope *S, 543 SourceLocation AtInterfaceLoc, 544 ObjCInterfaceDecl *IDecl, 545 IdentifierInfo *ClassName, 546 SourceLocation ClassLoc, 547 IdentifierInfo *SuperName, 548 SourceLocation SuperLoc, 549 ArrayRef<ParsedType> SuperTypeArgs, 550 SourceRange SuperTypeArgsRange) { 551 // Check if a different kind of symbol declared in this scope. 552 NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 553 LookupOrdinaryName); 554 555 if (!PrevDecl) { 556 // Try to correct for a typo in the superclass name without correcting 557 // to the class we're defining. 558 ObjCInterfaceValidatorCCC CCC(IDecl); 559 if (TypoCorrection Corrected = CorrectTypo( 560 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, 561 TUScope, nullptr, CCC, CTK_ErrorRecovery)) { 562 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest) 563 << SuperName << ClassName); 564 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); 565 } 566 } 567 568 if (declaresSameEntity(PrevDecl, IDecl)) { 569 Diag(SuperLoc, diag::err_recursive_superclass) 570 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 571 IDecl->setEndOfDefinitionLoc(ClassLoc); 572 } else { 573 ObjCInterfaceDecl *SuperClassDecl = 574 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 575 QualType SuperClassType; 576 577 // Diagnose classes that inherit from deprecated classes. 578 if (SuperClassDecl) { 579 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); 580 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl); 581 } 582 583 if (PrevDecl && !SuperClassDecl) { 584 // The previous declaration was not a class decl. Check if we have a 585 // typedef. If we do, get the underlying class type. 586 if (const TypedefNameDecl *TDecl = 587 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 588 QualType T = TDecl->getUnderlyingType(); 589 if (T->isObjCObjectType()) { 590 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { 591 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); 592 SuperClassType = Context.getTypeDeclType(TDecl); 593 594 // This handles the following case: 595 // @interface NewI @end 596 // typedef NewI DeprI __attribute__((deprecated("blah"))) 597 // @interface SI : DeprI /* warn here */ @end 598 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc); 599 } 600 } 601 } 602 603 // This handles the following case: 604 // 605 // typedef int SuperClass; 606 // @interface MyClass : SuperClass {} @end 607 // 608 if (!SuperClassDecl) { 609 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; 610 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 611 } 612 } 613 614 if (!isa_and_nonnull<TypedefNameDecl>(PrevDecl)) { 615 if (!SuperClassDecl) 616 Diag(SuperLoc, diag::err_undef_superclass) 617 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 618 else if (RequireCompleteType(SuperLoc, 619 SuperClassType, 620 diag::err_forward_superclass, 621 SuperClassDecl->getDeclName(), 622 ClassName, 623 SourceRange(AtInterfaceLoc, ClassLoc))) { 624 SuperClassDecl = nullptr; 625 SuperClassType = QualType(); 626 } 627 } 628 629 if (SuperClassType.isNull()) { 630 assert(!SuperClassDecl && "Failed to set SuperClassType?"); 631 return; 632 } 633 634 // Handle type arguments on the superclass. 635 TypeSourceInfo *SuperClassTInfo = nullptr; 636 if (!SuperTypeArgs.empty()) { 637 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers( 638 S, 639 SuperLoc, 640 CreateParsedType(SuperClassType, 641 nullptr), 642 SuperTypeArgsRange.getBegin(), 643 SuperTypeArgs, 644 SuperTypeArgsRange.getEnd(), 645 SourceLocation(), 646 { }, 647 { }, 648 SourceLocation()); 649 if (!fullSuperClassType.isUsable()) 650 return; 651 652 SuperClassType = GetTypeFromParser(fullSuperClassType.get(), 653 &SuperClassTInfo); 654 } 655 656 if (!SuperClassTInfo) { 657 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType, 658 SuperLoc); 659 } 660 661 IDecl->setSuperClass(SuperClassTInfo); 662 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc()); 663 } 664 } 665 666 DeclResult Sema::actOnObjCTypeParam(Scope *S, 667 ObjCTypeParamVariance variance, 668 SourceLocation varianceLoc, 669 unsigned index, 670 IdentifierInfo *paramName, 671 SourceLocation paramLoc, 672 SourceLocation colonLoc, 673 ParsedType parsedTypeBound) { 674 // If there was an explicitly-provided type bound, check it. 675 TypeSourceInfo *typeBoundInfo = nullptr; 676 if (parsedTypeBound) { 677 // The type bound can be any Objective-C pointer type. 678 QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo); 679 if (typeBound->isObjCObjectPointerType()) { 680 // okay 681 } else if (typeBound->isObjCObjectType()) { 682 // The user forgot the * on an Objective-C pointer type, e.g., 683 // "T : NSView". 684 SourceLocation starLoc = getLocForEndOfToken( 685 typeBoundInfo->getTypeLoc().getEndLoc()); 686 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(), 687 diag::err_objc_type_param_bound_missing_pointer) 688 << typeBound << paramName 689 << FixItHint::CreateInsertion(starLoc, " *"); 690 691 // Create a new type location builder so we can update the type 692 // location information we have. 693 TypeLocBuilder builder; 694 builder.pushFullCopy(typeBoundInfo->getTypeLoc()); 695 696 // Create the Objective-C pointer type. 697 typeBound = Context.getObjCObjectPointerType(typeBound); 698 ObjCObjectPointerTypeLoc newT 699 = builder.push<ObjCObjectPointerTypeLoc>(typeBound); 700 newT.setStarLoc(starLoc); 701 702 // Form the new type source information. 703 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound); 704 } else { 705 // Not a valid type bound. 706 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(), 707 diag::err_objc_type_param_bound_nonobject) 708 << typeBound << paramName; 709 710 // Forget the bound; we'll default to id later. 711 typeBoundInfo = nullptr; 712 } 713 714 // Type bounds cannot have qualifiers (even indirectly) or explicit 715 // nullability. 716 if (typeBoundInfo) { 717 QualType typeBound = typeBoundInfo->getType(); 718 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc(); 719 if (qual || typeBound.hasQualifiers()) { 720 bool diagnosed = false; 721 SourceRange rangeToRemove; 722 if (qual) { 723 if (auto attr = qual.getAs<AttributedTypeLoc>()) { 724 rangeToRemove = attr.getLocalSourceRange(); 725 if (attr.getTypePtr()->getImmediateNullability()) { 726 Diag(attr.getBeginLoc(), 727 diag::err_objc_type_param_bound_explicit_nullability) 728 << paramName << typeBound 729 << FixItHint::CreateRemoval(rangeToRemove); 730 diagnosed = true; 731 } 732 } 733 } 734 735 if (!diagnosed) { 736 Diag(qual ? qual.getBeginLoc() 737 : typeBoundInfo->getTypeLoc().getBeginLoc(), 738 diag::err_objc_type_param_bound_qualified) 739 << paramName << typeBound 740 << typeBound.getQualifiers().getAsString() 741 << FixItHint::CreateRemoval(rangeToRemove); 742 } 743 744 // If the type bound has qualifiers other than CVR, we need to strip 745 // them or we'll probably assert later when trying to apply new 746 // qualifiers. 747 Qualifiers quals = typeBound.getQualifiers(); 748 quals.removeCVRQualifiers(); 749 if (!quals.empty()) { 750 typeBoundInfo = 751 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType()); 752 } 753 } 754 } 755 } 756 757 // If there was no explicit type bound (or we removed it due to an error), 758 // use 'id' instead. 759 if (!typeBoundInfo) { 760 colonLoc = SourceLocation(); 761 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType()); 762 } 763 764 // Create the type parameter. 765 return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc, 766 index, paramLoc, paramName, colonLoc, 767 typeBoundInfo); 768 } 769 770 ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S, 771 SourceLocation lAngleLoc, 772 ArrayRef<Decl *> typeParamsIn, 773 SourceLocation rAngleLoc) { 774 // We know that the array only contains Objective-C type parameters. 775 ArrayRef<ObjCTypeParamDecl *> 776 typeParams( 777 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()), 778 typeParamsIn.size()); 779 780 // Diagnose redeclarations of type parameters. 781 // We do this now because Objective-C type parameters aren't pushed into 782 // scope until later (after the instance variable block), but we want the 783 // diagnostics to occur right after we parse the type parameter list. 784 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams; 785 for (auto typeParam : typeParams) { 786 auto known = knownParams.find(typeParam->getIdentifier()); 787 if (known != knownParams.end()) { 788 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl) 789 << typeParam->getIdentifier() 790 << SourceRange(known->second->getLocation()); 791 792 typeParam->setInvalidDecl(); 793 } else { 794 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam)); 795 796 // Push the type parameter into scope. 797 PushOnScopeChains(typeParam, S, /*AddToContext=*/false); 798 } 799 } 800 801 // Create the parameter list. 802 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc); 803 } 804 805 void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) { 806 for (auto typeParam : *typeParamList) { 807 if (!typeParam->isInvalidDecl()) { 808 S->RemoveDecl(typeParam); 809 IdResolver.RemoveDecl(typeParam); 810 } 811 } 812 } 813 814 namespace { 815 /// The context in which an Objective-C type parameter list occurs, for use 816 /// in diagnostics. 817 enum class TypeParamListContext { 818 ForwardDeclaration, 819 Definition, 820 Category, 821 Extension 822 }; 823 } // end anonymous namespace 824 825 /// Check consistency between two Objective-C type parameter lists, e.g., 826 /// between a category/extension and an \@interface or between an \@class and an 827 /// \@interface. 828 static bool checkTypeParamListConsistency(Sema &S, 829 ObjCTypeParamList *prevTypeParams, 830 ObjCTypeParamList *newTypeParams, 831 TypeParamListContext newContext) { 832 // If the sizes don't match, complain about that. 833 if (prevTypeParams->size() != newTypeParams->size()) { 834 SourceLocation diagLoc; 835 if (newTypeParams->size() > prevTypeParams->size()) { 836 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation(); 837 } else { 838 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc()); 839 } 840 841 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch) 842 << static_cast<unsigned>(newContext) 843 << (newTypeParams->size() > prevTypeParams->size()) 844 << prevTypeParams->size() 845 << newTypeParams->size(); 846 847 return true; 848 } 849 850 // Match up the type parameters. 851 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) { 852 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i]; 853 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i]; 854 855 // Check for consistency of the variance. 856 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) { 857 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant && 858 newContext != TypeParamListContext::Definition) { 859 // When the new type parameter is invariant and is not part 860 // of the definition, just propagate the variance. 861 newTypeParam->setVariance(prevTypeParam->getVariance()); 862 } else if (prevTypeParam->getVariance() 863 == ObjCTypeParamVariance::Invariant && 864 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) && 865 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) 866 ->getDefinition() == prevTypeParam->getDeclContext())) { 867 // When the old parameter is invariant and was not part of the 868 // definition, just ignore the difference because it doesn't 869 // matter. 870 } else { 871 { 872 // Diagnose the conflict and update the second declaration. 873 SourceLocation diagLoc = newTypeParam->getVarianceLoc(); 874 if (diagLoc.isInvalid()) 875 diagLoc = newTypeParam->getBeginLoc(); 876 877 auto diag = S.Diag(diagLoc, 878 diag::err_objc_type_param_variance_conflict) 879 << static_cast<unsigned>(newTypeParam->getVariance()) 880 << newTypeParam->getDeclName() 881 << static_cast<unsigned>(prevTypeParam->getVariance()) 882 << prevTypeParam->getDeclName(); 883 switch (prevTypeParam->getVariance()) { 884 case ObjCTypeParamVariance::Invariant: 885 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc()); 886 break; 887 888 case ObjCTypeParamVariance::Covariant: 889 case ObjCTypeParamVariance::Contravariant: { 890 StringRef newVarianceStr 891 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant 892 ? "__covariant" 893 : "__contravariant"; 894 if (newTypeParam->getVariance() 895 == ObjCTypeParamVariance::Invariant) { 896 diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(), 897 (newVarianceStr + " ").str()); 898 } else { 899 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(), 900 newVarianceStr); 901 } 902 } 903 } 904 } 905 906 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) 907 << prevTypeParam->getDeclName(); 908 909 // Override the variance. 910 newTypeParam->setVariance(prevTypeParam->getVariance()); 911 } 912 } 913 914 // If the bound types match, there's nothing to do. 915 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(), 916 newTypeParam->getUnderlyingType())) 917 continue; 918 919 // If the new type parameter's bound was explicit, complain about it being 920 // different from the original. 921 if (newTypeParam->hasExplicitBound()) { 922 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo() 923 ->getTypeLoc().getSourceRange(); 924 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict) 925 << newTypeParam->getUnderlyingType() 926 << newTypeParam->getDeclName() 927 << prevTypeParam->hasExplicitBound() 928 << prevTypeParam->getUnderlyingType() 929 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName()) 930 << prevTypeParam->getDeclName() 931 << FixItHint::CreateReplacement( 932 newBoundRange, 933 prevTypeParam->getUnderlyingType().getAsString( 934 S.Context.getPrintingPolicy())); 935 936 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) 937 << prevTypeParam->getDeclName(); 938 939 // Override the new type parameter's bound type with the previous type, 940 // so that it's consistent. 941 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam); 942 continue; 943 } 944 945 // The new type parameter got the implicit bound of 'id'. That's okay for 946 // categories and extensions (overwrite it later), but not for forward 947 // declarations and @interfaces, because those must be standalone. 948 if (newContext == TypeParamListContext::ForwardDeclaration || 949 newContext == TypeParamListContext::Definition) { 950 // Diagnose this problem for forward declarations and definitions. 951 SourceLocation insertionLoc 952 = S.getLocForEndOfToken(newTypeParam->getLocation()); 953 std::string newCode 954 = " : " + prevTypeParam->getUnderlyingType().getAsString( 955 S.Context.getPrintingPolicy()); 956 S.Diag(newTypeParam->getLocation(), 957 diag::err_objc_type_param_bound_missing) 958 << prevTypeParam->getUnderlyingType() 959 << newTypeParam->getDeclName() 960 << (newContext == TypeParamListContext::ForwardDeclaration) 961 << FixItHint::CreateInsertion(insertionLoc, newCode); 962 963 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) 964 << prevTypeParam->getDeclName(); 965 } 966 967 // Update the new type parameter's bound to match the previous one. 968 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam); 969 } 970 971 return false; 972 } 973 974 ObjCInterfaceDecl *Sema::ActOnStartClassInterface( 975 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, 976 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, 977 IdentifierInfo *SuperName, SourceLocation SuperLoc, 978 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange, 979 Decl *const *ProtoRefs, unsigned NumProtoRefs, 980 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, 981 const ParsedAttributesView &AttrList) { 982 assert(ClassName && "Missing class identifier"); 983 984 // Check for another declaration kind with the same name. 985 NamedDecl *PrevDecl = 986 LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 987 forRedeclarationInCurContext()); 988 989 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 990 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 991 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 992 } 993 994 // Create a declaration to describe this @interface. 995 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 996 997 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { 998 // A previous decl with a different name is because of 999 // @compatibility_alias, for example: 1000 // \code 1001 // @class NewImage; 1002 // @compatibility_alias OldImage NewImage; 1003 // \endcode 1004 // A lookup for 'OldImage' will return the 'NewImage' decl. 1005 // 1006 // In such a case use the real declaration name, instead of the alias one, 1007 // otherwise we will break IdentifierResolver and redecls-chain invariants. 1008 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl 1009 // has been aliased. 1010 ClassName = PrevIDecl->getIdentifier(); 1011 } 1012 1013 // If there was a forward declaration with type parameters, check 1014 // for consistency. 1015 if (PrevIDecl) { 1016 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) { 1017 if (typeParamList) { 1018 // Both have type parameter lists; check for consistency. 1019 if (checkTypeParamListConsistency(*this, prevTypeParamList, 1020 typeParamList, 1021 TypeParamListContext::Definition)) { 1022 typeParamList = nullptr; 1023 } 1024 } else { 1025 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first) 1026 << ClassName; 1027 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl) 1028 << ClassName; 1029 1030 // Clone the type parameter list. 1031 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams; 1032 for (auto typeParam : *prevTypeParamList) { 1033 clonedTypeParams.push_back( 1034 ObjCTypeParamDecl::Create( 1035 Context, 1036 CurContext, 1037 typeParam->getVariance(), 1038 SourceLocation(), 1039 typeParam->getIndex(), 1040 SourceLocation(), 1041 typeParam->getIdentifier(), 1042 SourceLocation(), 1043 Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType()))); 1044 } 1045 1046 typeParamList = ObjCTypeParamList::create(Context, 1047 SourceLocation(), 1048 clonedTypeParams, 1049 SourceLocation()); 1050 } 1051 } 1052 } 1053 1054 ObjCInterfaceDecl *IDecl 1055 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName, 1056 typeParamList, PrevIDecl, ClassLoc); 1057 if (PrevIDecl) { 1058 // Class already seen. Was it a definition? 1059 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { 1060 Diag(AtInterfaceLoc, diag::err_duplicate_class_def) 1061 << PrevIDecl->getDeclName(); 1062 Diag(Def->getLocation(), diag::note_previous_definition); 1063 IDecl->setInvalidDecl(); 1064 } 1065 } 1066 1067 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 1068 AddPragmaAttributes(TUScope, IDecl); 1069 1070 // Merge attributes from previous declarations. 1071 if (PrevIDecl) 1072 mergeDeclAttributes(IDecl, PrevIDecl); 1073 1074 PushOnScopeChains(IDecl, TUScope); 1075 1076 // Start the definition of this class. If we're in a redefinition case, there 1077 // may already be a definition, so we'll end up adding to it. 1078 if (!IDecl->hasDefinition()) 1079 IDecl->startDefinition(); 1080 1081 if (SuperName) { 1082 // Diagnose availability in the context of the @interface. 1083 ContextRAII SavedContext(*this, IDecl); 1084 1085 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl, 1086 ClassName, ClassLoc, 1087 SuperName, SuperLoc, SuperTypeArgs, 1088 SuperTypeArgsRange); 1089 } else { // we have a root class. 1090 IDecl->setEndOfDefinitionLoc(ClassLoc); 1091 } 1092 1093 // Check then save referenced protocols. 1094 if (NumProtoRefs) { 1095 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs, 1096 NumProtoRefs, ProtoLocs); 1097 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 1098 ProtoLocs, Context); 1099 IDecl->setEndOfDefinitionLoc(EndProtoLoc); 1100 } 1101 1102 CheckObjCDeclScope(IDecl); 1103 ActOnObjCContainerStartDefinition(IDecl); 1104 return IDecl; 1105 } 1106 1107 /// ActOnTypedefedProtocols - this action finds protocol list as part of the 1108 /// typedef'ed use for a qualified super class and adds them to the list 1109 /// of the protocols. 1110 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs, 1111 SmallVectorImpl<SourceLocation> &ProtocolLocs, 1112 IdentifierInfo *SuperName, 1113 SourceLocation SuperLoc) { 1114 if (!SuperName) 1115 return; 1116 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 1117 LookupOrdinaryName); 1118 if (!IDecl) 1119 return; 1120 1121 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) { 1122 QualType T = TDecl->getUnderlyingType(); 1123 if (T->isObjCObjectType()) 1124 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) { 1125 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end()); 1126 // FIXME: Consider whether this should be an invalid loc since the loc 1127 // is not actually pointing to a protocol name reference but to the 1128 // typedef reference. Note that the base class name loc is also pointing 1129 // at the typedef. 1130 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc); 1131 } 1132 } 1133 } 1134 1135 /// ActOnCompatibilityAlias - this action is called after complete parsing of 1136 /// a \@compatibility_alias declaration. It sets up the alias relationships. 1137 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc, 1138 IdentifierInfo *AliasName, 1139 SourceLocation AliasLocation, 1140 IdentifierInfo *ClassName, 1141 SourceLocation ClassLocation) { 1142 // Look for previous declaration of alias name 1143 NamedDecl *ADecl = 1144 LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName, 1145 forRedeclarationInCurContext()); 1146 if (ADecl) { 1147 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; 1148 Diag(ADecl->getLocation(), diag::note_previous_declaration); 1149 return nullptr; 1150 } 1151 // Check for class declaration 1152 NamedDecl *CDeclU = 1153 LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName, 1154 forRedeclarationInCurContext()); 1155 if (const TypedefNameDecl *TDecl = 1156 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { 1157 QualType T = TDecl->getUnderlyingType(); 1158 if (T->isObjCObjectType()) { 1159 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { 1160 ClassName = IDecl->getIdentifier(); 1161 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 1162 LookupOrdinaryName, 1163 forRedeclarationInCurContext()); 1164 } 1165 } 1166 } 1167 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); 1168 if (!CDecl) { 1169 Diag(ClassLocation, diag::warn_undef_interface) << ClassName; 1170 if (CDeclU) 1171 Diag(CDeclU->getLocation(), diag::note_previous_declaration); 1172 return nullptr; 1173 } 1174 1175 // Everything checked out, instantiate a new alias declaration AST. 1176 ObjCCompatibleAliasDecl *AliasDecl = 1177 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); 1178 1179 if (!CheckObjCDeclScope(AliasDecl)) 1180 PushOnScopeChains(AliasDecl, TUScope); 1181 1182 return AliasDecl; 1183 } 1184 1185 bool Sema::CheckForwardProtocolDeclarationForCircularDependency( 1186 IdentifierInfo *PName, 1187 SourceLocation &Ploc, SourceLocation PrevLoc, 1188 const ObjCList<ObjCProtocolDecl> &PList) { 1189 1190 bool res = false; 1191 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), 1192 E = PList.end(); I != E; ++I) { 1193 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), 1194 Ploc)) { 1195 if (PDecl->getIdentifier() == PName) { 1196 Diag(Ploc, diag::err_protocol_has_circular_dependency); 1197 Diag(PrevLoc, diag::note_previous_definition); 1198 res = true; 1199 } 1200 1201 if (!PDecl->hasDefinition()) 1202 continue; 1203 1204 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, 1205 PDecl->getLocation(), PDecl->getReferencedProtocols())) 1206 res = true; 1207 } 1208 } 1209 return res; 1210 } 1211 1212 ObjCProtocolDecl *Sema::ActOnStartProtocolInterface( 1213 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, 1214 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs, 1215 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, 1216 const ParsedAttributesView &AttrList) { 1217 bool err = false; 1218 // FIXME: Deal with AttrList. 1219 assert(ProtocolName && "Missing protocol identifier"); 1220 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc, 1221 forRedeclarationInCurContext()); 1222 ObjCProtocolDecl *PDecl = nullptr; 1223 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) { 1224 // If we already have a definition, complain. 1225 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; 1226 Diag(Def->getLocation(), diag::note_previous_definition); 1227 1228 // Create a new protocol that is completely distinct from previous 1229 // declarations, and do not make this protocol available for name lookup. 1230 // That way, we'll end up completely ignoring the duplicate. 1231 // FIXME: Can we turn this into an error? 1232 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 1233 ProtocolLoc, AtProtoInterfaceLoc, 1234 /*PrevDecl=*/nullptr); 1235 1236 // If we are using modules, add the decl to the context in order to 1237 // serialize something meaningful. 1238 if (getLangOpts().Modules) 1239 PushOnScopeChains(PDecl, TUScope); 1240 PDecl->startDefinition(); 1241 } else { 1242 if (PrevDecl) { 1243 // Check for circular dependencies among protocol declarations. This can 1244 // only happen if this protocol was forward-declared. 1245 ObjCList<ObjCProtocolDecl> PList; 1246 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); 1247 err = CheckForwardProtocolDeclarationForCircularDependency( 1248 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList); 1249 } 1250 1251 // Create the new declaration. 1252 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 1253 ProtocolLoc, AtProtoInterfaceLoc, 1254 /*PrevDecl=*/PrevDecl); 1255 1256 PushOnScopeChains(PDecl, TUScope); 1257 PDecl->startDefinition(); 1258 } 1259 1260 ProcessDeclAttributeList(TUScope, PDecl, AttrList); 1261 AddPragmaAttributes(TUScope, PDecl); 1262 1263 // Merge attributes from previous declarations. 1264 if (PrevDecl) 1265 mergeDeclAttributes(PDecl, PrevDecl); 1266 1267 if (!err && NumProtoRefs ) { 1268 /// Check then save referenced protocols. 1269 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs, 1270 NumProtoRefs, ProtoLocs); 1271 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 1272 ProtoLocs, Context); 1273 } 1274 1275 CheckObjCDeclScope(PDecl); 1276 ActOnObjCContainerStartDefinition(PDecl); 1277 return PDecl; 1278 } 1279 1280 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, 1281 ObjCProtocolDecl *&UndefinedProtocol) { 1282 if (!PDecl->hasDefinition() || 1283 !PDecl->getDefinition()->isUnconditionallyVisible()) { 1284 UndefinedProtocol = PDecl; 1285 return true; 1286 } 1287 1288 for (auto *PI : PDecl->protocols()) 1289 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) { 1290 UndefinedProtocol = PI; 1291 return true; 1292 } 1293 return false; 1294 } 1295 1296 /// FindProtocolDeclaration - This routine looks up protocols and 1297 /// issues an error if they are not declared. It returns list of 1298 /// protocol declarations in its 'Protocols' argument. 1299 void 1300 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer, 1301 ArrayRef<IdentifierLocPair> ProtocolId, 1302 SmallVectorImpl<Decl *> &Protocols) { 1303 for (const IdentifierLocPair &Pair : ProtocolId) { 1304 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second); 1305 if (!PDecl) { 1306 DeclFilterCCC<ObjCProtocolDecl> CCC{}; 1307 TypoCorrection Corrected = CorrectTypo( 1308 DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName, 1309 TUScope, nullptr, CCC, CTK_ErrorRecovery); 1310 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) 1311 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest) 1312 << Pair.first); 1313 } 1314 1315 if (!PDecl) { 1316 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first; 1317 continue; 1318 } 1319 // If this is a forward protocol declaration, get its definition. 1320 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) 1321 PDecl = PDecl->getDefinition(); 1322 1323 // For an objc container, delay protocol reference checking until after we 1324 // can set the objc decl as the availability context, otherwise check now. 1325 if (!ForObjCContainer) { 1326 (void)DiagnoseUseOfDecl(PDecl, Pair.second); 1327 } 1328 1329 // If this is a forward declaration and we are supposed to warn in this 1330 // case, do it. 1331 // FIXME: Recover nicely in the hidden case. 1332 ObjCProtocolDecl *UndefinedProtocol; 1333 1334 if (WarnOnDeclarations && 1335 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) { 1336 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first; 1337 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined) 1338 << UndefinedProtocol; 1339 } 1340 Protocols.push_back(PDecl); 1341 } 1342 } 1343 1344 namespace { 1345 // Callback to only accept typo corrections that are either 1346 // Objective-C protocols or valid Objective-C type arguments. 1347 class ObjCTypeArgOrProtocolValidatorCCC final 1348 : public CorrectionCandidateCallback { 1349 ASTContext &Context; 1350 Sema::LookupNameKind LookupKind; 1351 public: 1352 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context, 1353 Sema::LookupNameKind lookupKind) 1354 : Context(context), LookupKind(lookupKind) { } 1355 1356 bool ValidateCandidate(const TypoCorrection &candidate) override { 1357 // If we're allowed to find protocols and we have a protocol, accept it. 1358 if (LookupKind != Sema::LookupOrdinaryName) { 1359 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>()) 1360 return true; 1361 } 1362 1363 // If we're allowed to find type names and we have one, accept it. 1364 if (LookupKind != Sema::LookupObjCProtocolName) { 1365 // If we have a type declaration, we might accept this result. 1366 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) { 1367 // If we found a tag declaration outside of C++, skip it. This 1368 // can happy because we look for any name when there is no 1369 // bias to protocol or type names. 1370 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus) 1371 return false; 1372 1373 // Make sure the type is something we would accept as a type 1374 // argument. 1375 auto type = Context.getTypeDeclType(typeDecl); 1376 if (type->isObjCObjectPointerType() || 1377 type->isBlockPointerType() || 1378 type->isDependentType() || 1379 type->isObjCObjectType()) 1380 return true; 1381 1382 return false; 1383 } 1384 1385 // If we have an Objective-C class type, accept it; there will 1386 // be another fix to add the '*'. 1387 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>()) 1388 return true; 1389 1390 return false; 1391 } 1392 1393 return false; 1394 } 1395 1396 std::unique_ptr<CorrectionCandidateCallback> clone() override { 1397 return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this); 1398 } 1399 }; 1400 } // end anonymous namespace 1401 1402 void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId, 1403 SourceLocation ProtocolLoc, 1404 IdentifierInfo *TypeArgId, 1405 SourceLocation TypeArgLoc, 1406 bool SelectProtocolFirst) { 1407 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols) 1408 << SelectProtocolFirst << TypeArgId << ProtocolId 1409 << SourceRange(ProtocolLoc); 1410 } 1411 1412 void Sema::actOnObjCTypeArgsOrProtocolQualifiers( 1413 Scope *S, 1414 ParsedType baseType, 1415 SourceLocation lAngleLoc, 1416 ArrayRef<IdentifierInfo *> identifiers, 1417 ArrayRef<SourceLocation> identifierLocs, 1418 SourceLocation rAngleLoc, 1419 SourceLocation &typeArgsLAngleLoc, 1420 SmallVectorImpl<ParsedType> &typeArgs, 1421 SourceLocation &typeArgsRAngleLoc, 1422 SourceLocation &protocolLAngleLoc, 1423 SmallVectorImpl<Decl *> &protocols, 1424 SourceLocation &protocolRAngleLoc, 1425 bool warnOnIncompleteProtocols) { 1426 // Local function that updates the declaration specifiers with 1427 // protocol information. 1428 unsigned numProtocolsResolved = 0; 1429 auto resolvedAsProtocols = [&] { 1430 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols"); 1431 1432 // Determine whether the base type is a parameterized class, in 1433 // which case we want to warn about typos such as 1434 // "NSArray<NSObject>" (that should be NSArray<NSObject *>). 1435 ObjCInterfaceDecl *baseClass = nullptr; 1436 QualType base = GetTypeFromParser(baseType, nullptr); 1437 bool allAreTypeNames = false; 1438 SourceLocation firstClassNameLoc; 1439 if (!base.isNull()) { 1440 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) { 1441 baseClass = objcObjectType->getInterface(); 1442 if (baseClass) { 1443 if (auto typeParams = baseClass->getTypeParamList()) { 1444 if (typeParams->size() == numProtocolsResolved) { 1445 // Note that we should be looking for type names, too. 1446 allAreTypeNames = true; 1447 } 1448 } 1449 } 1450 } 1451 } 1452 1453 for (unsigned i = 0, n = protocols.size(); i != n; ++i) { 1454 ObjCProtocolDecl *&proto 1455 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]); 1456 // For an objc container, delay protocol reference checking until after we 1457 // can set the objc decl as the availability context, otherwise check now. 1458 if (!warnOnIncompleteProtocols) { 1459 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]); 1460 } 1461 1462 // If this is a forward protocol declaration, get its definition. 1463 if (!proto->isThisDeclarationADefinition() && proto->getDefinition()) 1464 proto = proto->getDefinition(); 1465 1466 // If this is a forward declaration and we are supposed to warn in this 1467 // case, do it. 1468 // FIXME: Recover nicely in the hidden case. 1469 ObjCProtocolDecl *forwardDecl = nullptr; 1470 if (warnOnIncompleteProtocols && 1471 NestedProtocolHasNoDefinition(proto, forwardDecl)) { 1472 Diag(identifierLocs[i], diag::warn_undef_protocolref) 1473 << proto->getDeclName(); 1474 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined) 1475 << forwardDecl; 1476 } 1477 1478 // If everything this far has been a type name (and we care 1479 // about such things), check whether this name refers to a type 1480 // as well. 1481 if (allAreTypeNames) { 1482 if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i], 1483 LookupOrdinaryName)) { 1484 if (isa<ObjCInterfaceDecl>(decl)) { 1485 if (firstClassNameLoc.isInvalid()) 1486 firstClassNameLoc = identifierLocs[i]; 1487 } else if (!isa<TypeDecl>(decl)) { 1488 // Not a type. 1489 allAreTypeNames = false; 1490 } 1491 } else { 1492 allAreTypeNames = false; 1493 } 1494 } 1495 } 1496 1497 // All of the protocols listed also have type names, and at least 1498 // one is an Objective-C class name. Check whether all of the 1499 // protocol conformances are declared by the base class itself, in 1500 // which case we warn. 1501 if (allAreTypeNames && firstClassNameLoc.isValid()) { 1502 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols; 1503 Context.CollectInheritedProtocols(baseClass, knownProtocols); 1504 bool allProtocolsDeclared = true; 1505 for (auto proto : protocols) { 1506 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) { 1507 allProtocolsDeclared = false; 1508 break; 1509 } 1510 } 1511 1512 if (allProtocolsDeclared) { 1513 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type) 1514 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc) 1515 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc), 1516 " *"); 1517 } 1518 } 1519 1520 protocolLAngleLoc = lAngleLoc; 1521 protocolRAngleLoc = rAngleLoc; 1522 assert(protocols.size() == identifierLocs.size()); 1523 }; 1524 1525 // Attempt to resolve all of the identifiers as protocols. 1526 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { 1527 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]); 1528 protocols.push_back(proto); 1529 if (proto) 1530 ++numProtocolsResolved; 1531 } 1532 1533 // If all of the names were protocols, these were protocol qualifiers. 1534 if (numProtocolsResolved == identifiers.size()) 1535 return resolvedAsProtocols(); 1536 1537 // Attempt to resolve all of the identifiers as type names or 1538 // Objective-C class names. The latter is technically ill-formed, 1539 // but is probably something like \c NSArray<NSView *> missing the 1540 // \c*. 1541 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl; 1542 SmallVector<TypeOrClassDecl, 4> typeDecls; 1543 unsigned numTypeDeclsResolved = 0; 1544 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { 1545 NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i], 1546 LookupOrdinaryName); 1547 if (!decl) { 1548 typeDecls.push_back(TypeOrClassDecl()); 1549 continue; 1550 } 1551 1552 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) { 1553 typeDecls.push_back(typeDecl); 1554 ++numTypeDeclsResolved; 1555 continue; 1556 } 1557 1558 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) { 1559 typeDecls.push_back(objcClass); 1560 ++numTypeDeclsResolved; 1561 continue; 1562 } 1563 1564 typeDecls.push_back(TypeOrClassDecl()); 1565 } 1566 1567 AttributeFactory attrFactory; 1568 1569 // Local function that forms a reference to the given type or 1570 // Objective-C class declaration. 1571 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc) 1572 -> TypeResult { 1573 // Form declaration specifiers. They simply refer to the type. 1574 DeclSpec DS(attrFactory); 1575 const char* prevSpec; // unused 1576 unsigned diagID; // unused 1577 QualType type; 1578 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>()) 1579 type = Context.getTypeDeclType(actualTypeDecl); 1580 else 1581 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>()); 1582 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc); 1583 ParsedType parsedType = CreateParsedType(type, parsedTSInfo); 1584 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID, 1585 parsedType, Context.getPrintingPolicy()); 1586 // Use the identifier location for the type source range. 1587 DS.SetRangeStart(loc); 1588 DS.SetRangeEnd(loc); 1589 1590 // Form the declarator. 1591 Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName); 1592 1593 // If we have a typedef of an Objective-C class type that is missing a '*', 1594 // add the '*'. 1595 if (type->getAs<ObjCInterfaceType>()) { 1596 SourceLocation starLoc = getLocForEndOfToken(loc); 1597 D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc, 1598 SourceLocation(), 1599 SourceLocation(), 1600 SourceLocation(), 1601 SourceLocation(), 1602 SourceLocation()), 1603 starLoc); 1604 1605 // Diagnose the missing '*'. 1606 Diag(loc, diag::err_objc_type_arg_missing_star) 1607 << type 1608 << FixItHint::CreateInsertion(starLoc, " *"); 1609 } 1610 1611 // Convert this to a type. 1612 return ActOnTypeName(S, D); 1613 }; 1614 1615 // Local function that updates the declaration specifiers with 1616 // type argument information. 1617 auto resolvedAsTypeDecls = [&] { 1618 // We did not resolve these as protocols. 1619 protocols.clear(); 1620 1621 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl"); 1622 // Map type declarations to type arguments. 1623 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { 1624 // Map type reference to a type. 1625 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]); 1626 if (!type.isUsable()) { 1627 typeArgs.clear(); 1628 return; 1629 } 1630 1631 typeArgs.push_back(type.get()); 1632 } 1633 1634 typeArgsLAngleLoc = lAngleLoc; 1635 typeArgsRAngleLoc = rAngleLoc; 1636 }; 1637 1638 // If all of the identifiers can be resolved as type names or 1639 // Objective-C class names, we have type arguments. 1640 if (numTypeDeclsResolved == identifiers.size()) 1641 return resolvedAsTypeDecls(); 1642 1643 // Error recovery: some names weren't found, or we have a mix of 1644 // type and protocol names. Go resolve all of the unresolved names 1645 // and complain if we can't find a consistent answer. 1646 LookupNameKind lookupKind = LookupAnyName; 1647 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { 1648 // If we already have a protocol or type. Check whether it is the 1649 // right thing. 1650 if (protocols[i] || typeDecls[i]) { 1651 // If we haven't figured out whether we want types or protocols 1652 // yet, try to figure it out from this name. 1653 if (lookupKind == LookupAnyName) { 1654 // If this name refers to both a protocol and a type (e.g., \c 1655 // NSObject), don't conclude anything yet. 1656 if (protocols[i] && typeDecls[i]) 1657 continue; 1658 1659 // Otherwise, let this name decide whether we'll be correcting 1660 // toward types or protocols. 1661 lookupKind = protocols[i] ? LookupObjCProtocolName 1662 : LookupOrdinaryName; 1663 continue; 1664 } 1665 1666 // If we want protocols and we have a protocol, there's nothing 1667 // more to do. 1668 if (lookupKind == LookupObjCProtocolName && protocols[i]) 1669 continue; 1670 1671 // If we want types and we have a type declaration, there's 1672 // nothing more to do. 1673 if (lookupKind == LookupOrdinaryName && typeDecls[i]) 1674 continue; 1675 1676 // We have a conflict: some names refer to protocols and others 1677 // refer to types. 1678 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0], 1679 identifiers[i], identifierLocs[i], 1680 protocols[i] != nullptr); 1681 1682 protocols.clear(); 1683 typeArgs.clear(); 1684 return; 1685 } 1686 1687 // Perform typo correction on the name. 1688 ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind); 1689 TypoCorrection corrected = 1690 CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]), 1691 lookupKind, S, nullptr, CCC, CTK_ErrorRecovery); 1692 if (corrected) { 1693 // Did we find a protocol? 1694 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) { 1695 diagnoseTypo(corrected, 1696 PDiag(diag::err_undeclared_protocol_suggest) 1697 << identifiers[i]); 1698 lookupKind = LookupObjCProtocolName; 1699 protocols[i] = proto; 1700 ++numProtocolsResolved; 1701 continue; 1702 } 1703 1704 // Did we find a type? 1705 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) { 1706 diagnoseTypo(corrected, 1707 PDiag(diag::err_unknown_typename_suggest) 1708 << identifiers[i]); 1709 lookupKind = LookupOrdinaryName; 1710 typeDecls[i] = typeDecl; 1711 ++numTypeDeclsResolved; 1712 continue; 1713 } 1714 1715 // Did we find an Objective-C class? 1716 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 1717 diagnoseTypo(corrected, 1718 PDiag(diag::err_unknown_type_or_class_name_suggest) 1719 << identifiers[i] << true); 1720 lookupKind = LookupOrdinaryName; 1721 typeDecls[i] = objcClass; 1722 ++numTypeDeclsResolved; 1723 continue; 1724 } 1725 } 1726 1727 // We couldn't find anything. 1728 Diag(identifierLocs[i], 1729 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing 1730 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol 1731 : diag::err_unknown_typename)) 1732 << identifiers[i]; 1733 protocols.clear(); 1734 typeArgs.clear(); 1735 return; 1736 } 1737 1738 // If all of the names were (corrected to) protocols, these were 1739 // protocol qualifiers. 1740 if (numProtocolsResolved == identifiers.size()) 1741 return resolvedAsProtocols(); 1742 1743 // Otherwise, all of the names were (corrected to) types. 1744 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?"); 1745 return resolvedAsTypeDecls(); 1746 } 1747 1748 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of 1749 /// a class method in its extension. 1750 /// 1751 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, 1752 ObjCInterfaceDecl *ID) { 1753 if (!ID) 1754 return; // Possibly due to previous error 1755 1756 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; 1757 for (auto *MD : ID->methods()) 1758 MethodMap[MD->getSelector()] = MD; 1759 1760 if (MethodMap.empty()) 1761 return; 1762 for (const auto *Method : CAT->methods()) { 1763 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; 1764 if (PrevMethod && 1765 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) && 1766 !MatchTwoMethodDeclarations(Method, PrevMethod)) { 1767 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 1768 << Method->getDeclName(); 1769 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 1770 } 1771 } 1772 } 1773 1774 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo; 1775 Sema::DeclGroupPtrTy 1776 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, 1777 ArrayRef<IdentifierLocPair> IdentList, 1778 const ParsedAttributesView &attrList) { 1779 SmallVector<Decl *, 8> DeclsInGroup; 1780 for (const IdentifierLocPair &IdentPair : IdentList) { 1781 IdentifierInfo *Ident = IdentPair.first; 1782 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second, 1783 forRedeclarationInCurContext()); 1784 ObjCProtocolDecl *PDecl 1785 = ObjCProtocolDecl::Create(Context, CurContext, Ident, 1786 IdentPair.second, AtProtocolLoc, 1787 PrevDecl); 1788 1789 PushOnScopeChains(PDecl, TUScope); 1790 CheckObjCDeclScope(PDecl); 1791 1792 ProcessDeclAttributeList(TUScope, PDecl, attrList); 1793 AddPragmaAttributes(TUScope, PDecl); 1794 1795 if (PrevDecl) 1796 mergeDeclAttributes(PDecl, PrevDecl); 1797 1798 DeclsInGroup.push_back(PDecl); 1799 } 1800 1801 return BuildDeclaratorGroup(DeclsInGroup); 1802 } 1803 1804 ObjCCategoryDecl *Sema::ActOnStartCategoryInterface( 1805 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, 1806 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, 1807 IdentifierInfo *CategoryName, SourceLocation CategoryLoc, 1808 Decl *const *ProtoRefs, unsigned NumProtoRefs, 1809 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, 1810 const ParsedAttributesView &AttrList) { 1811 ObjCCategoryDecl *CDecl; 1812 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 1813 1814 /// Check that class of this category is already completely declared. 1815 1816 if (!IDecl 1817 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 1818 diag::err_category_forward_interface, 1819 CategoryName == nullptr)) { 1820 // Create an invalid ObjCCategoryDecl to serve as context for 1821 // the enclosing method declarations. We mark the decl invalid 1822 // to make it clear that this isn't a valid AST. 1823 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 1824 ClassLoc, CategoryLoc, CategoryName, 1825 IDecl, typeParamList); 1826 CDecl->setInvalidDecl(); 1827 CurContext->addDecl(CDecl); 1828 1829 if (!IDecl) 1830 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 1831 ActOnObjCContainerStartDefinition(CDecl); 1832 return CDecl; 1833 } 1834 1835 if (!CategoryName && IDecl->getImplementation()) { 1836 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; 1837 Diag(IDecl->getImplementation()->getLocation(), 1838 diag::note_implementation_declared); 1839 } 1840 1841 if (CategoryName) { 1842 /// Check for duplicate interface declaration for this category 1843 if (ObjCCategoryDecl *Previous 1844 = IDecl->FindCategoryDeclaration(CategoryName)) { 1845 // Class extensions can be declared multiple times, categories cannot. 1846 Diag(CategoryLoc, diag::warn_dup_category_def) 1847 << ClassName << CategoryName; 1848 Diag(Previous->getLocation(), diag::note_previous_definition); 1849 } 1850 } 1851 1852 // If we have a type parameter list, check it. 1853 if (typeParamList) { 1854 if (auto prevTypeParamList = IDecl->getTypeParamList()) { 1855 if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList, 1856 CategoryName 1857 ? TypeParamListContext::Category 1858 : TypeParamListContext::Extension)) 1859 typeParamList = nullptr; 1860 } else { 1861 Diag(typeParamList->getLAngleLoc(), 1862 diag::err_objc_parameterized_category_nonclass) 1863 << (CategoryName != nullptr) 1864 << ClassName 1865 << typeParamList->getSourceRange(); 1866 1867 typeParamList = nullptr; 1868 } 1869 } 1870 1871 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 1872 ClassLoc, CategoryLoc, CategoryName, IDecl, 1873 typeParamList); 1874 // FIXME: PushOnScopeChains? 1875 CurContext->addDecl(CDecl); 1876 1877 // Process the attributes before looking at protocols to ensure that the 1878 // availability attribute is attached to the category to provide availability 1879 // checking for protocol uses. 1880 ProcessDeclAttributeList(TUScope, CDecl, AttrList); 1881 AddPragmaAttributes(TUScope, CDecl); 1882 1883 if (NumProtoRefs) { 1884 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs, 1885 NumProtoRefs, ProtoLocs); 1886 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 1887 ProtoLocs, Context); 1888 // Protocols in the class extension belong to the class. 1889 if (CDecl->IsClassExtension()) 1890 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs, 1891 NumProtoRefs, Context); 1892 } 1893 1894 CheckObjCDeclScope(CDecl); 1895 ActOnObjCContainerStartDefinition(CDecl); 1896 return CDecl; 1897 } 1898 1899 /// ActOnStartCategoryImplementation - Perform semantic checks on the 1900 /// category implementation declaration and build an ObjCCategoryImplDecl 1901 /// object. 1902 ObjCCategoryImplDecl *Sema::ActOnStartCategoryImplementation( 1903 SourceLocation AtCatImplLoc, IdentifierInfo *ClassName, 1904 SourceLocation ClassLoc, IdentifierInfo *CatName, SourceLocation CatLoc, 1905 const ParsedAttributesView &Attrs) { 1906 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 1907 ObjCCategoryDecl *CatIDecl = nullptr; 1908 if (IDecl && IDecl->hasDefinition()) { 1909 CatIDecl = IDecl->FindCategoryDeclaration(CatName); 1910 if (!CatIDecl) { 1911 // Category @implementation with no corresponding @interface. 1912 // Create and install one. 1913 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc, 1914 ClassLoc, CatLoc, 1915 CatName, IDecl, 1916 /*typeParamList=*/nullptr); 1917 CatIDecl->setImplicit(); 1918 } 1919 } 1920 1921 ObjCCategoryImplDecl *CDecl = 1922 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl, 1923 ClassLoc, AtCatImplLoc, CatLoc); 1924 /// Check that class of this category is already completely declared. 1925 if (!IDecl) { 1926 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 1927 CDecl->setInvalidDecl(); 1928 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 1929 diag::err_undef_interface)) { 1930 CDecl->setInvalidDecl(); 1931 } 1932 1933 ProcessDeclAttributeList(TUScope, CDecl, Attrs); 1934 AddPragmaAttributes(TUScope, CDecl); 1935 1936 // FIXME: PushOnScopeChains? 1937 CurContext->addDecl(CDecl); 1938 1939 // If the interface has the objc_runtime_visible attribute, we 1940 // cannot implement a category for it. 1941 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) { 1942 Diag(ClassLoc, diag::err_objc_runtime_visible_category) 1943 << IDecl->getDeclName(); 1944 } 1945 1946 /// Check that CatName, category name, is not used in another implementation. 1947 if (CatIDecl) { 1948 if (CatIDecl->getImplementation()) { 1949 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName 1950 << CatName; 1951 Diag(CatIDecl->getImplementation()->getLocation(), 1952 diag::note_previous_definition); 1953 CDecl->setInvalidDecl(); 1954 } else { 1955 CatIDecl->setImplementation(CDecl); 1956 // Warn on implementating category of deprecated class under 1957 // -Wdeprecated-implementations flag. 1958 DiagnoseObjCImplementedDeprecations(*this, CatIDecl, 1959 CDecl->getLocation()); 1960 } 1961 } 1962 1963 CheckObjCDeclScope(CDecl); 1964 ActOnObjCContainerStartDefinition(CDecl); 1965 return CDecl; 1966 } 1967 1968 ObjCImplementationDecl *Sema::ActOnStartClassImplementation( 1969 SourceLocation AtClassImplLoc, IdentifierInfo *ClassName, 1970 SourceLocation ClassLoc, IdentifierInfo *SuperClassname, 1971 SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) { 1972 ObjCInterfaceDecl *IDecl = nullptr; 1973 // Check for another declaration kind with the same name. 1974 NamedDecl *PrevDecl 1975 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 1976 forRedeclarationInCurContext()); 1977 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1978 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 1979 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1980 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { 1981 // FIXME: This will produce an error if the definition of the interface has 1982 // been imported from a module but is not visible. 1983 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 1984 diag::warn_undef_interface); 1985 } else { 1986 // We did not find anything with the name ClassName; try to correct for 1987 // typos in the class name. 1988 ObjCInterfaceValidatorCCC CCC{}; 1989 TypoCorrection Corrected = 1990 CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc), 1991 LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError); 1992 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 1993 // Suggest the (potentially) correct interface name. Don't provide a 1994 // code-modification hint or use the typo name for recovery, because 1995 // this is just a warning. The program may actually be correct. 1996 diagnoseTypo(Corrected, 1997 PDiag(diag::warn_undef_interface_suggest) << ClassName, 1998 /*ErrorRecovery*/false); 1999 } else { 2000 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 2001 } 2002 } 2003 2004 // Check that super class name is valid class name 2005 ObjCInterfaceDecl *SDecl = nullptr; 2006 if (SuperClassname) { 2007 // Check if a different kind of symbol declared in this scope. 2008 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, 2009 LookupOrdinaryName); 2010 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 2011 Diag(SuperClassLoc, diag::err_redefinition_different_kind) 2012 << SuperClassname; 2013 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 2014 } else { 2015 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 2016 if (SDecl && !SDecl->hasDefinition()) 2017 SDecl = nullptr; 2018 if (!SDecl) 2019 Diag(SuperClassLoc, diag::err_undef_superclass) 2020 << SuperClassname << ClassName; 2021 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) { 2022 // This implementation and its interface do not have the same 2023 // super class. 2024 Diag(SuperClassLoc, diag::err_conflicting_super_class) 2025 << SDecl->getDeclName(); 2026 Diag(SDecl->getLocation(), diag::note_previous_definition); 2027 } 2028 } 2029 } 2030 2031 if (!IDecl) { 2032 // Legacy case of @implementation with no corresponding @interface. 2033 // Build, chain & install the interface decl into the identifier. 2034 2035 // FIXME: Do we support attributes on the @implementation? If so we should 2036 // copy them over. 2037 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, 2038 ClassName, /*typeParamList=*/nullptr, 2039 /*PrevDecl=*/nullptr, ClassLoc, 2040 true); 2041 AddPragmaAttributes(TUScope, IDecl); 2042 IDecl->startDefinition(); 2043 if (SDecl) { 2044 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo( 2045 Context.getObjCInterfaceType(SDecl), 2046 SuperClassLoc)); 2047 IDecl->setEndOfDefinitionLoc(SuperClassLoc); 2048 } else { 2049 IDecl->setEndOfDefinitionLoc(ClassLoc); 2050 } 2051 2052 PushOnScopeChains(IDecl, TUScope); 2053 } else { 2054 // Mark the interface as being completed, even if it was just as 2055 // @class ....; 2056 // declaration; the user cannot reopen it. 2057 if (!IDecl->hasDefinition()) 2058 IDecl->startDefinition(); 2059 } 2060 2061 ObjCImplementationDecl* IMPDecl = 2062 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl, 2063 ClassLoc, AtClassImplLoc, SuperClassLoc); 2064 2065 ProcessDeclAttributeList(TUScope, IMPDecl, Attrs); 2066 AddPragmaAttributes(TUScope, IMPDecl); 2067 2068 if (CheckObjCDeclScope(IMPDecl)) { 2069 ActOnObjCContainerStartDefinition(IMPDecl); 2070 return IMPDecl; 2071 } 2072 2073 // Check that there is no duplicate implementation of this class. 2074 if (IDecl->getImplementation()) { 2075 // FIXME: Don't leak everything! 2076 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; 2077 Diag(IDecl->getImplementation()->getLocation(), 2078 diag::note_previous_definition); 2079 IMPDecl->setInvalidDecl(); 2080 } else { // add it to the list. 2081 IDecl->setImplementation(IMPDecl); 2082 PushOnScopeChains(IMPDecl, TUScope); 2083 // Warn on implementating deprecated class under 2084 // -Wdeprecated-implementations flag. 2085 DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation()); 2086 } 2087 2088 // If the superclass has the objc_runtime_visible attribute, we 2089 // cannot implement a subclass of it. 2090 if (IDecl->getSuperClass() && 2091 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) { 2092 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass) 2093 << IDecl->getDeclName() 2094 << IDecl->getSuperClass()->getDeclName(); 2095 } 2096 2097 ActOnObjCContainerStartDefinition(IMPDecl); 2098 return IMPDecl; 2099 } 2100 2101 Sema::DeclGroupPtrTy 2102 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) { 2103 SmallVector<Decl *, 64> DeclsInGroup; 2104 DeclsInGroup.reserve(Decls.size() + 1); 2105 2106 for (unsigned i = 0, e = Decls.size(); i != e; ++i) { 2107 Decl *Dcl = Decls[i]; 2108 if (!Dcl) 2109 continue; 2110 if (Dcl->getDeclContext()->isFileContext()) 2111 Dcl->setTopLevelDeclInObjCContainer(); 2112 DeclsInGroup.push_back(Dcl); 2113 } 2114 2115 DeclsInGroup.push_back(ObjCImpDecl); 2116 2117 return BuildDeclaratorGroup(DeclsInGroup); 2118 } 2119 2120 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, 2121 ObjCIvarDecl **ivars, unsigned numIvars, 2122 SourceLocation RBrace) { 2123 assert(ImpDecl && "missing implementation decl"); 2124 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); 2125 if (!IDecl) 2126 return; 2127 /// Check case of non-existing \@interface decl. 2128 /// (legacy objective-c \@implementation decl without an \@interface decl). 2129 /// Add implementations's ivar to the synthesize class's ivar list. 2130 if (IDecl->isImplicitInterfaceDecl()) { 2131 IDecl->setEndOfDefinitionLoc(RBrace); 2132 // Add ivar's to class's DeclContext. 2133 for (unsigned i = 0, e = numIvars; i != e; ++i) { 2134 ivars[i]->setLexicalDeclContext(ImpDecl); 2135 // In a 'fragile' runtime the ivar was added to the implicit 2136 // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is 2137 // only in the ObjCImplementationDecl. In the non-fragile case the ivar 2138 // therefore also needs to be propagated to the ObjCInterfaceDecl. 2139 if (!LangOpts.ObjCRuntime.isFragile()) 2140 IDecl->makeDeclVisibleInContext(ivars[i]); 2141 ImpDecl->addDecl(ivars[i]); 2142 } 2143 2144 return; 2145 } 2146 // If implementation has empty ivar list, just return. 2147 if (numIvars == 0) 2148 return; 2149 2150 assert(ivars && "missing @implementation ivars"); 2151 if (LangOpts.ObjCRuntime.isNonFragile()) { 2152 if (ImpDecl->getSuperClass()) 2153 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); 2154 for (unsigned i = 0; i < numIvars; i++) { 2155 ObjCIvarDecl* ImplIvar = ivars[i]; 2156 if (const ObjCIvarDecl *ClsIvar = 2157 IDecl->getIvarDecl(ImplIvar->getIdentifier())) { 2158 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 2159 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 2160 continue; 2161 } 2162 // Check class extensions (unnamed categories) for duplicate ivars. 2163 for (const auto *CDecl : IDecl->visible_extensions()) { 2164 if (const ObjCIvarDecl *ClsExtIvar = 2165 CDecl->getIvarDecl(ImplIvar->getIdentifier())) { 2166 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 2167 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); 2168 continue; 2169 } 2170 } 2171 // Instance ivar to Implementation's DeclContext. 2172 ImplIvar->setLexicalDeclContext(ImpDecl); 2173 IDecl->makeDeclVisibleInContext(ImplIvar); 2174 ImpDecl->addDecl(ImplIvar); 2175 } 2176 return; 2177 } 2178 // Check interface's Ivar list against those in the implementation. 2179 // names and types must match. 2180 // 2181 unsigned j = 0; 2182 ObjCInterfaceDecl::ivar_iterator 2183 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); 2184 for (; numIvars > 0 && IVI != IVE; ++IVI) { 2185 ObjCIvarDecl* ImplIvar = ivars[j++]; 2186 ObjCIvarDecl* ClsIvar = *IVI; 2187 assert (ImplIvar && "missing implementation ivar"); 2188 assert (ClsIvar && "missing class ivar"); 2189 2190 // First, make sure the types match. 2191 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) { 2192 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) 2193 << ImplIvar->getIdentifier() 2194 << ImplIvar->getType() << ClsIvar->getType(); 2195 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 2196 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && 2197 ImplIvar->getBitWidthValue(Context) != 2198 ClsIvar->getBitWidthValue(Context)) { 2199 Diag(ImplIvar->getBitWidth()->getBeginLoc(), 2200 diag::err_conflicting_ivar_bitwidth) 2201 << ImplIvar->getIdentifier(); 2202 Diag(ClsIvar->getBitWidth()->getBeginLoc(), 2203 diag::note_previous_definition); 2204 } 2205 // Make sure the names are identical. 2206 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { 2207 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) 2208 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); 2209 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 2210 } 2211 --numIvars; 2212 } 2213 2214 if (numIvars > 0) 2215 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count); 2216 else if (IVI != IVE) 2217 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count); 2218 } 2219 2220 static void WarnUndefinedMethod(Sema &S, ObjCImplDecl *Impl, 2221 ObjCMethodDecl *method, bool &IncompleteImpl, 2222 unsigned DiagID, 2223 NamedDecl *NeededFor = nullptr) { 2224 // No point warning no definition of method which is 'unavailable'. 2225 if (method->getAvailability() == AR_Unavailable) 2226 return; 2227 2228 // FIXME: For now ignore 'IncompleteImpl'. 2229 // Previously we grouped all unimplemented methods under a single 2230 // warning, but some users strongly voiced that they would prefer 2231 // separate warnings. We will give that approach a try, as that 2232 // matches what we do with protocols. 2233 { 2234 const Sema::SemaDiagnosticBuilder &B = S.Diag(Impl->getLocation(), DiagID); 2235 B << method; 2236 if (NeededFor) 2237 B << NeededFor; 2238 2239 // Add an empty definition at the end of the @implementation. 2240 std::string FixItStr; 2241 llvm::raw_string_ostream Out(FixItStr); 2242 method->print(Out, Impl->getASTContext().getPrintingPolicy()); 2243 Out << " {\n}\n\n"; 2244 2245 SourceLocation Loc = Impl->getAtEndRange().getBegin(); 2246 B << FixItHint::CreateInsertion(Loc, FixItStr); 2247 } 2248 2249 // Issue a note to the original declaration. 2250 SourceLocation MethodLoc = method->getBeginLoc(); 2251 if (MethodLoc.isValid()) 2252 S.Diag(MethodLoc, diag::note_method_declared_at) << method; 2253 } 2254 2255 /// Determines if type B can be substituted for type A. Returns true if we can 2256 /// guarantee that anything that the user will do to an object of type A can 2257 /// also be done to an object of type B. This is trivially true if the two 2258 /// types are the same, or if B is a subclass of A. It becomes more complex 2259 /// in cases where protocols are involved. 2260 /// 2261 /// Object types in Objective-C describe the minimum requirements for an 2262 /// object, rather than providing a complete description of a type. For 2263 /// example, if A is a subclass of B, then B* may refer to an instance of A. 2264 /// The principle of substitutability means that we may use an instance of A 2265 /// anywhere that we may use an instance of B - it will implement all of the 2266 /// ivars of B and all of the methods of B. 2267 /// 2268 /// This substitutability is important when type checking methods, because 2269 /// the implementation may have stricter type definitions than the interface. 2270 /// The interface specifies minimum requirements, but the implementation may 2271 /// have more accurate ones. For example, a method may privately accept 2272 /// instances of B, but only publish that it accepts instances of A. Any 2273 /// object passed to it will be type checked against B, and so will implicitly 2274 /// by a valid A*. Similarly, a method may return a subclass of the class that 2275 /// it is declared as returning. 2276 /// 2277 /// This is most important when considering subclassing. A method in a 2278 /// subclass must accept any object as an argument that its superclass's 2279 /// implementation accepts. It may, however, accept a more general type 2280 /// without breaking substitutability (i.e. you can still use the subclass 2281 /// anywhere that you can use the superclass, but not vice versa). The 2282 /// converse requirement applies to return types: the return type for a 2283 /// subclass method must be a valid object of the kind that the superclass 2284 /// advertises, but it may be specified more accurately. This avoids the need 2285 /// for explicit down-casting by callers. 2286 /// 2287 /// Note: This is a stricter requirement than for assignment. 2288 static bool isObjCTypeSubstitutable(ASTContext &Context, 2289 const ObjCObjectPointerType *A, 2290 const ObjCObjectPointerType *B, 2291 bool rejectId) { 2292 // Reject a protocol-unqualified id. 2293 if (rejectId && B->isObjCIdType()) return false; 2294 2295 // If B is a qualified id, then A must also be a qualified id and it must 2296 // implement all of the protocols in B. It may not be a qualified class. 2297 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a 2298 // stricter definition so it is not substitutable for id<A>. 2299 if (B->isObjCQualifiedIdType()) { 2300 return A->isObjCQualifiedIdType() && 2301 Context.ObjCQualifiedIdTypesAreCompatible(A, B, false); 2302 } 2303 2304 /* 2305 // id is a special type that bypasses type checking completely. We want a 2306 // warning when it is used in one place but not another. 2307 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; 2308 2309 2310 // If B is a qualified id, then A must also be a qualified id (which it isn't 2311 // if we've got this far) 2312 if (B->isObjCQualifiedIdType()) return false; 2313 */ 2314 2315 // Now we know that A and B are (potentially-qualified) class types. The 2316 // normal rules for assignment apply. 2317 return Context.canAssignObjCInterfaces(A, B); 2318 } 2319 2320 static SourceRange getTypeRange(TypeSourceInfo *TSI) { 2321 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); 2322 } 2323 2324 /// Determine whether two set of Objective-C declaration qualifiers conflict. 2325 static bool objcModifiersConflict(Decl::ObjCDeclQualifier x, 2326 Decl::ObjCDeclQualifier y) { 2327 return (x & ~Decl::OBJC_TQ_CSNullability) != 2328 (y & ~Decl::OBJC_TQ_CSNullability); 2329 } 2330 2331 static bool CheckMethodOverrideReturn(Sema &S, 2332 ObjCMethodDecl *MethodImpl, 2333 ObjCMethodDecl *MethodDecl, 2334 bool IsProtocolMethodDecl, 2335 bool IsOverridingMode, 2336 bool Warn) { 2337 if (IsProtocolMethodDecl && 2338 objcModifiersConflict(MethodDecl->getObjCDeclQualifier(), 2339 MethodImpl->getObjCDeclQualifier())) { 2340 if (Warn) { 2341 S.Diag(MethodImpl->getLocation(), 2342 (IsOverridingMode 2343 ? diag::warn_conflicting_overriding_ret_type_modifiers 2344 : diag::warn_conflicting_ret_type_modifiers)) 2345 << MethodImpl->getDeclName() 2346 << MethodImpl->getReturnTypeSourceRange(); 2347 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) 2348 << MethodDecl->getReturnTypeSourceRange(); 2349 } 2350 else 2351 return false; 2352 } 2353 if (Warn && IsOverridingMode && 2354 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) && 2355 !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(), 2356 MethodDecl->getReturnType(), 2357 false)) { 2358 auto nullabilityMethodImpl = 2359 *MethodImpl->getReturnType()->getNullability(S.Context); 2360 auto nullabilityMethodDecl = 2361 *MethodDecl->getReturnType()->getNullability(S.Context); 2362 S.Diag(MethodImpl->getLocation(), 2363 diag::warn_conflicting_nullability_attr_overriding_ret_types) 2364 << DiagNullabilityKind( 2365 nullabilityMethodImpl, 2366 ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2367 != 0)) 2368 << DiagNullabilityKind( 2369 nullabilityMethodDecl, 2370 ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2371 != 0)); 2372 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 2373 } 2374 2375 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(), 2376 MethodDecl->getReturnType())) 2377 return true; 2378 if (!Warn) 2379 return false; 2380 2381 unsigned DiagID = 2382 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types 2383 : diag::warn_conflicting_ret_types; 2384 2385 // Mismatches between ObjC pointers go into a different warning 2386 // category, and sometimes they're even completely explicitly allowed. 2387 if (const ObjCObjectPointerType *ImplPtrTy = 2388 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) { 2389 if (const ObjCObjectPointerType *IfacePtrTy = 2390 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) { 2391 // Allow non-matching return types as long as they don't violate 2392 // the principle of substitutability. Specifically, we permit 2393 // return types that are subclasses of the declared return type, 2394 // or that are more-qualified versions of the declared type. 2395 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) 2396 return false; 2397 2398 DiagID = 2399 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types 2400 : diag::warn_non_covariant_ret_types; 2401 } 2402 } 2403 2404 S.Diag(MethodImpl->getLocation(), DiagID) 2405 << MethodImpl->getDeclName() << MethodDecl->getReturnType() 2406 << MethodImpl->getReturnType() 2407 << MethodImpl->getReturnTypeSourceRange(); 2408 S.Diag(MethodDecl->getLocation(), IsOverridingMode 2409 ? diag::note_previous_declaration 2410 : diag::note_previous_definition) 2411 << MethodDecl->getReturnTypeSourceRange(); 2412 return false; 2413 } 2414 2415 static bool CheckMethodOverrideParam(Sema &S, 2416 ObjCMethodDecl *MethodImpl, 2417 ObjCMethodDecl *MethodDecl, 2418 ParmVarDecl *ImplVar, 2419 ParmVarDecl *IfaceVar, 2420 bool IsProtocolMethodDecl, 2421 bool IsOverridingMode, 2422 bool Warn) { 2423 if (IsProtocolMethodDecl && 2424 objcModifiersConflict(ImplVar->getObjCDeclQualifier(), 2425 IfaceVar->getObjCDeclQualifier())) { 2426 if (Warn) { 2427 if (IsOverridingMode) 2428 S.Diag(ImplVar->getLocation(), 2429 diag::warn_conflicting_overriding_param_modifiers) 2430 << getTypeRange(ImplVar->getTypeSourceInfo()) 2431 << MethodImpl->getDeclName(); 2432 else S.Diag(ImplVar->getLocation(), 2433 diag::warn_conflicting_param_modifiers) 2434 << getTypeRange(ImplVar->getTypeSourceInfo()) 2435 << MethodImpl->getDeclName(); 2436 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) 2437 << getTypeRange(IfaceVar->getTypeSourceInfo()); 2438 } 2439 else 2440 return false; 2441 } 2442 2443 QualType ImplTy = ImplVar->getType(); 2444 QualType IfaceTy = IfaceVar->getType(); 2445 if (Warn && IsOverridingMode && 2446 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) && 2447 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) { 2448 S.Diag(ImplVar->getLocation(), 2449 diag::warn_conflicting_nullability_attr_overriding_param_types) 2450 << DiagNullabilityKind( 2451 *ImplTy->getNullability(S.Context), 2452 ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2453 != 0)) 2454 << DiagNullabilityKind( 2455 *IfaceTy->getNullability(S.Context), 2456 ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2457 != 0)); 2458 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration); 2459 } 2460 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) 2461 return true; 2462 2463 if (!Warn) 2464 return false; 2465 unsigned DiagID = 2466 IsOverridingMode ? diag::warn_conflicting_overriding_param_types 2467 : diag::warn_conflicting_param_types; 2468 2469 // Mismatches between ObjC pointers go into a different warning 2470 // category, and sometimes they're even completely explicitly allowed.. 2471 if (const ObjCObjectPointerType *ImplPtrTy = 2472 ImplTy->getAs<ObjCObjectPointerType>()) { 2473 if (const ObjCObjectPointerType *IfacePtrTy = 2474 IfaceTy->getAs<ObjCObjectPointerType>()) { 2475 // Allow non-matching argument types as long as they don't 2476 // violate the principle of substitutability. Specifically, the 2477 // implementation must accept any objects that the superclass 2478 // accepts, however it may also accept others. 2479 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) 2480 return false; 2481 2482 DiagID = 2483 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types 2484 : diag::warn_non_contravariant_param_types; 2485 } 2486 } 2487 2488 S.Diag(ImplVar->getLocation(), DiagID) 2489 << getTypeRange(ImplVar->getTypeSourceInfo()) 2490 << MethodImpl->getDeclName() << IfaceTy << ImplTy; 2491 S.Diag(IfaceVar->getLocation(), 2492 (IsOverridingMode ? diag::note_previous_declaration 2493 : diag::note_previous_definition)) 2494 << getTypeRange(IfaceVar->getTypeSourceInfo()); 2495 return false; 2496 } 2497 2498 /// In ARC, check whether the conventional meanings of the two methods 2499 /// match. If they don't, it's a hard error. 2500 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, 2501 ObjCMethodDecl *decl) { 2502 ObjCMethodFamily implFamily = impl->getMethodFamily(); 2503 ObjCMethodFamily declFamily = decl->getMethodFamily(); 2504 if (implFamily == declFamily) return false; 2505 2506 // Since conventions are sorted by selector, the only possibility is 2507 // that the types differ enough to cause one selector or the other 2508 // to fall out of the family. 2509 assert(implFamily == OMF_None || declFamily == OMF_None); 2510 2511 // No further diagnostics required on invalid declarations. 2512 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; 2513 2514 const ObjCMethodDecl *unmatched = impl; 2515 ObjCMethodFamily family = declFamily; 2516 unsigned errorID = diag::err_arc_lost_method_convention; 2517 unsigned noteID = diag::note_arc_lost_method_convention; 2518 if (declFamily == OMF_None) { 2519 unmatched = decl; 2520 family = implFamily; 2521 errorID = diag::err_arc_gained_method_convention; 2522 noteID = diag::note_arc_gained_method_convention; 2523 } 2524 2525 // Indexes into a %select clause in the diagnostic. 2526 enum FamilySelector { 2527 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new 2528 }; 2529 FamilySelector familySelector = FamilySelector(); 2530 2531 switch (family) { 2532 case OMF_None: llvm_unreachable("logic error, no method convention"); 2533 case OMF_retain: 2534 case OMF_release: 2535 case OMF_autorelease: 2536 case OMF_dealloc: 2537 case OMF_finalize: 2538 case OMF_retainCount: 2539 case OMF_self: 2540 case OMF_initialize: 2541 case OMF_performSelector: 2542 // Mismatches for these methods don't change ownership 2543 // conventions, so we don't care. 2544 return false; 2545 2546 case OMF_init: familySelector = F_init; break; 2547 case OMF_alloc: familySelector = F_alloc; break; 2548 case OMF_copy: familySelector = F_copy; break; 2549 case OMF_mutableCopy: familySelector = F_mutableCopy; break; 2550 case OMF_new: familySelector = F_new; break; 2551 } 2552 2553 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; 2554 ReasonSelector reasonSelector; 2555 2556 // The only reason these methods don't fall within their families is 2557 // due to unusual result types. 2558 if (unmatched->getReturnType()->isObjCObjectPointerType()) { 2559 reasonSelector = R_UnrelatedReturn; 2560 } else { 2561 reasonSelector = R_NonObjectReturn; 2562 } 2563 2564 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector); 2565 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector); 2566 2567 return true; 2568 } 2569 2570 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, 2571 ObjCMethodDecl *MethodDecl, 2572 bool IsProtocolMethodDecl) { 2573 if (getLangOpts().ObjCAutoRefCount && 2574 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) 2575 return; 2576 2577 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 2578 IsProtocolMethodDecl, false, 2579 true); 2580 2581 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 2582 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 2583 EF = MethodDecl->param_end(); 2584 IM != EM && IF != EF; ++IM, ++IF) { 2585 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, 2586 IsProtocolMethodDecl, false, true); 2587 } 2588 2589 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { 2590 Diag(ImpMethodDecl->getLocation(), 2591 diag::warn_conflicting_variadic); 2592 Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 2593 } 2594 } 2595 2596 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, 2597 ObjCMethodDecl *Overridden, 2598 bool IsProtocolMethodDecl) { 2599 2600 CheckMethodOverrideReturn(*this, Method, Overridden, 2601 IsProtocolMethodDecl, true, 2602 true); 2603 2604 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), 2605 IF = Overridden->param_begin(), EM = Method->param_end(), 2606 EF = Overridden->param_end(); 2607 IM != EM && IF != EF; ++IM, ++IF) { 2608 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF, 2609 IsProtocolMethodDecl, true, true); 2610 } 2611 2612 if (Method->isVariadic() != Overridden->isVariadic()) { 2613 Diag(Method->getLocation(), 2614 diag::warn_conflicting_overriding_variadic); 2615 Diag(Overridden->getLocation(), diag::note_previous_declaration); 2616 } 2617 } 2618 2619 /// WarnExactTypedMethods - This routine issues a warning if method 2620 /// implementation declaration matches exactly that of its declaration. 2621 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, 2622 ObjCMethodDecl *MethodDecl, 2623 bool IsProtocolMethodDecl) { 2624 // don't issue warning when protocol method is optional because primary 2625 // class is not required to implement it and it is safe for protocol 2626 // to implement it. 2627 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional) 2628 return; 2629 // don't issue warning when primary class's method is 2630 // deprecated/unavailable. 2631 if (MethodDecl->hasAttr<UnavailableAttr>() || 2632 MethodDecl->hasAttr<DeprecatedAttr>()) 2633 return; 2634 2635 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 2636 IsProtocolMethodDecl, false, false); 2637 if (match) 2638 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 2639 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 2640 EF = MethodDecl->param_end(); 2641 IM != EM && IF != EF; ++IM, ++IF) { 2642 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, 2643 *IM, *IF, 2644 IsProtocolMethodDecl, false, false); 2645 if (!match) 2646 break; 2647 } 2648 if (match) 2649 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); 2650 if (match) 2651 match = !(MethodDecl->isClassMethod() && 2652 MethodDecl->getSelector() == GetNullarySelector("load", Context)); 2653 2654 if (match) { 2655 Diag(ImpMethodDecl->getLocation(), 2656 diag::warn_category_method_impl_match); 2657 Diag(MethodDecl->getLocation(), diag::note_method_declared_at) 2658 << MethodDecl->getDeclName(); 2659 } 2660 } 2661 2662 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely 2663 /// improve the efficiency of selector lookups and type checking by associating 2664 /// with each protocol / interface / category the flattened instance tables. If 2665 /// we used an immutable set to keep the table then it wouldn't add significant 2666 /// memory cost and it would be handy for lookups. 2667 2668 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet; 2669 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet; 2670 2671 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl, 2672 ProtocolNameSet &PNS) { 2673 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) 2674 PNS.insert(PDecl->getIdentifier()); 2675 for (const auto *PI : PDecl->protocols()) 2676 findProtocolsWithExplicitImpls(PI, PNS); 2677 } 2678 2679 /// Recursively populates a set with all conformed protocols in a class 2680 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation' 2681 /// attribute. 2682 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super, 2683 ProtocolNameSet &PNS) { 2684 if (!Super) 2685 return; 2686 2687 for (const auto *I : Super->all_referenced_protocols()) 2688 findProtocolsWithExplicitImpls(I, PNS); 2689 2690 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS); 2691 } 2692 2693 /// CheckProtocolMethodDefs - This routine checks unimplemented methods 2694 /// Declared in protocol, and those referenced by it. 2695 static void CheckProtocolMethodDefs( 2696 Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl, 2697 const Sema::SelectorSet &InsMap, const Sema::SelectorSet &ClsMap, 2698 ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) { 2699 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl); 2700 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() 2701 : dyn_cast<ObjCInterfaceDecl>(CDecl); 2702 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); 2703 2704 ObjCInterfaceDecl *Super = IDecl->getSuperClass(); 2705 ObjCInterfaceDecl *NSIDecl = nullptr; 2706 2707 // If this protocol is marked 'objc_protocol_requires_explicit_implementation' 2708 // then we should check if any class in the super class hierarchy also 2709 // conforms to this protocol, either directly or via protocol inheritance. 2710 // If so, we can skip checking this protocol completely because we 2711 // know that a parent class already satisfies this protocol. 2712 // 2713 // Note: we could generalize this logic for all protocols, and merely 2714 // add the limit on looking at the super class chain for just 2715 // specially marked protocols. This may be a good optimization. This 2716 // change is restricted to 'objc_protocol_requires_explicit_implementation' 2717 // protocols for now for controlled evaluation. 2718 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) { 2719 if (!ProtocolsExplictImpl) { 2720 ProtocolsExplictImpl.reset(new ProtocolNameSet); 2721 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl); 2722 } 2723 if (ProtocolsExplictImpl->contains(PDecl->getIdentifier())) 2724 return; 2725 2726 // If no super class conforms to the protocol, we should not search 2727 // for methods in the super class to implicitly satisfy the protocol. 2728 Super = nullptr; 2729 } 2730 2731 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) { 2732 // check to see if class implements forwardInvocation method and objects 2733 // of this class are derived from 'NSProxy' so that to forward requests 2734 // from one object to another. 2735 // Under such conditions, which means that every method possible is 2736 // implemented in the class, we should not issue "Method definition not 2737 // found" warnings. 2738 // FIXME: Use a general GetUnarySelector method for this. 2739 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation"); 2740 Selector fISelector = S.Context.Selectors.getSelector(1, &II); 2741 if (InsMap.count(fISelector)) 2742 // Is IDecl derived from 'NSProxy'? If so, no instance methods 2743 // need be implemented in the implementation. 2744 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy")); 2745 } 2746 2747 // If this is a forward protocol declaration, get its definition. 2748 if (!PDecl->isThisDeclarationADefinition() && 2749 PDecl->getDefinition()) 2750 PDecl = PDecl->getDefinition(); 2751 2752 // If a method lookup fails locally we still need to look and see if 2753 // the method was implemented by a base class or an inherited 2754 // protocol. This lookup is slow, but occurs rarely in correct code 2755 // and otherwise would terminate in a warning. 2756 2757 // check unimplemented instance methods. 2758 if (!NSIDecl) 2759 for (auto *method : PDecl->instance_methods()) { 2760 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 2761 !method->isPropertyAccessor() && 2762 !InsMap.count(method->getSelector()) && 2763 (!Super || !Super->lookupMethod(method->getSelector(), 2764 true /* instance */, 2765 false /* shallowCategory */, 2766 true /* followsSuper */, 2767 nullptr /* category */))) { 2768 // If a method is not implemented in the category implementation but 2769 // has been declared in its primary class, superclass, 2770 // or in one of their protocols, no need to issue the warning. 2771 // This is because method will be implemented in the primary class 2772 // or one of its super class implementation. 2773 2774 // Ugly, but necessary. Method declared in protocol might have 2775 // have been synthesized due to a property declared in the class which 2776 // uses the protocol. 2777 if (ObjCMethodDecl *MethodInClass = 2778 IDecl->lookupMethod(method->getSelector(), 2779 true /* instance */, 2780 true /* shallowCategoryLookup */, 2781 false /* followSuper */)) 2782 if (C || MethodInClass->isPropertyAccessor()) 2783 continue; 2784 unsigned DIAG = diag::warn_unimplemented_protocol_method; 2785 if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) { 2786 WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl); 2787 } 2788 } 2789 } 2790 // check unimplemented class methods 2791 for (auto *method : PDecl->class_methods()) { 2792 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 2793 !ClsMap.count(method->getSelector()) && 2794 (!Super || !Super->lookupMethod(method->getSelector(), 2795 false /* class method */, 2796 false /* shallowCategoryLookup */, 2797 true /* followSuper */, 2798 nullptr /* category */))) { 2799 // See above comment for instance method lookups. 2800 if (C && IDecl->lookupMethod(method->getSelector(), 2801 false /* class */, 2802 true /* shallowCategoryLookup */, 2803 false /* followSuper */)) 2804 continue; 2805 2806 unsigned DIAG = diag::warn_unimplemented_protocol_method; 2807 if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) { 2808 WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl); 2809 } 2810 } 2811 } 2812 // Check on this protocols's referenced protocols, recursively. 2813 for (auto *PI : PDecl->protocols()) 2814 CheckProtocolMethodDefs(S, Impl, PI, IncompleteImpl, InsMap, ClsMap, CDecl, 2815 ProtocolsExplictImpl); 2816 } 2817 2818 /// MatchAllMethodDeclarations - Check methods declared in interface 2819 /// or protocol against those declared in their implementations. 2820 /// 2821 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap, 2822 const SelectorSet &ClsMap, 2823 SelectorSet &InsMapSeen, 2824 SelectorSet &ClsMapSeen, 2825 ObjCImplDecl* IMPDecl, 2826 ObjCContainerDecl* CDecl, 2827 bool &IncompleteImpl, 2828 bool ImmediateClass, 2829 bool WarnCategoryMethodImpl) { 2830 // Check and see if instance methods in class interface have been 2831 // implemented in the implementation class. If so, their types match. 2832 for (auto *I : CDecl->instance_methods()) { 2833 if (!InsMapSeen.insert(I->getSelector()).second) 2834 continue; 2835 if (!I->isPropertyAccessor() && 2836 !InsMap.count(I->getSelector())) { 2837 if (ImmediateClass) 2838 WarnUndefinedMethod(*this, IMPDecl, I, IncompleteImpl, 2839 diag::warn_undef_method_impl); 2840 continue; 2841 } else { 2842 ObjCMethodDecl *ImpMethodDecl = 2843 IMPDecl->getInstanceMethod(I->getSelector()); 2844 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) && 2845 "Expected to find the method through lookup as well"); 2846 // ImpMethodDecl may be null as in a @dynamic property. 2847 if (ImpMethodDecl) { 2848 // Skip property accessor function stubs. 2849 if (ImpMethodDecl->isSynthesizedAccessorStub()) 2850 continue; 2851 if (!WarnCategoryMethodImpl) 2852 WarnConflictingTypedMethods(ImpMethodDecl, I, 2853 isa<ObjCProtocolDecl>(CDecl)); 2854 else if (!I->isPropertyAccessor()) 2855 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl)); 2856 } 2857 } 2858 } 2859 2860 // Check and see if class methods in class interface have been 2861 // implemented in the implementation class. If so, their types match. 2862 for (auto *I : CDecl->class_methods()) { 2863 if (!ClsMapSeen.insert(I->getSelector()).second) 2864 continue; 2865 if (!I->isPropertyAccessor() && 2866 !ClsMap.count(I->getSelector())) { 2867 if (ImmediateClass) 2868 WarnUndefinedMethod(*this, IMPDecl, I, IncompleteImpl, 2869 diag::warn_undef_method_impl); 2870 } else { 2871 ObjCMethodDecl *ImpMethodDecl = 2872 IMPDecl->getClassMethod(I->getSelector()); 2873 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) && 2874 "Expected to find the method through lookup as well"); 2875 // ImpMethodDecl may be null as in a @dynamic property. 2876 if (ImpMethodDecl) { 2877 // Skip property accessor function stubs. 2878 if (ImpMethodDecl->isSynthesizedAccessorStub()) 2879 continue; 2880 if (!WarnCategoryMethodImpl) 2881 WarnConflictingTypedMethods(ImpMethodDecl, I, 2882 isa<ObjCProtocolDecl>(CDecl)); 2883 else if (!I->isPropertyAccessor()) 2884 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl)); 2885 } 2886 } 2887 } 2888 2889 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) { 2890 // Also, check for methods declared in protocols inherited by 2891 // this protocol. 2892 for (auto *PI : PD->protocols()) 2893 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2894 IMPDecl, PI, IncompleteImpl, false, 2895 WarnCategoryMethodImpl); 2896 } 2897 2898 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 2899 // when checking that methods in implementation match their declaration, 2900 // i.e. when WarnCategoryMethodImpl is false, check declarations in class 2901 // extension; as well as those in categories. 2902 if (!WarnCategoryMethodImpl) { 2903 for (auto *Cat : I->visible_categories()) 2904 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2905 IMPDecl, Cat, IncompleteImpl, 2906 ImmediateClass && Cat->IsClassExtension(), 2907 WarnCategoryMethodImpl); 2908 } else { 2909 // Also methods in class extensions need be looked at next. 2910 for (auto *Ext : I->visible_extensions()) 2911 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2912 IMPDecl, Ext, IncompleteImpl, false, 2913 WarnCategoryMethodImpl); 2914 } 2915 2916 // Check for any implementation of a methods declared in protocol. 2917 for (auto *PI : I->all_referenced_protocols()) 2918 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2919 IMPDecl, PI, IncompleteImpl, false, 2920 WarnCategoryMethodImpl); 2921 2922 // FIXME. For now, we are not checking for exact match of methods 2923 // in category implementation and its primary class's super class. 2924 if (!WarnCategoryMethodImpl && I->getSuperClass()) 2925 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2926 IMPDecl, 2927 I->getSuperClass(), IncompleteImpl, false); 2928 } 2929 } 2930 2931 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in 2932 /// category matches with those implemented in its primary class and 2933 /// warns each time an exact match is found. 2934 void Sema::CheckCategoryVsClassMethodMatches( 2935 ObjCCategoryImplDecl *CatIMPDecl) { 2936 // Get category's primary class. 2937 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); 2938 if (!CatDecl) 2939 return; 2940 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); 2941 if (!IDecl) 2942 return; 2943 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass(); 2944 SelectorSet InsMap, ClsMap; 2945 2946 for (const auto *I : CatIMPDecl->instance_methods()) { 2947 Selector Sel = I->getSelector(); 2948 // When checking for methods implemented in the category, skip over 2949 // those declared in category class's super class. This is because 2950 // the super class must implement the method. 2951 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true)) 2952 continue; 2953 InsMap.insert(Sel); 2954 } 2955 2956 for (const auto *I : CatIMPDecl->class_methods()) { 2957 Selector Sel = I->getSelector(); 2958 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false)) 2959 continue; 2960 ClsMap.insert(Sel); 2961 } 2962 if (InsMap.empty() && ClsMap.empty()) 2963 return; 2964 2965 SelectorSet InsMapSeen, ClsMapSeen; 2966 bool IncompleteImpl = false; 2967 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 2968 CatIMPDecl, IDecl, 2969 IncompleteImpl, false, 2970 true /*WarnCategoryMethodImpl*/); 2971 } 2972 2973 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, 2974 ObjCContainerDecl* CDecl, 2975 bool IncompleteImpl) { 2976 SelectorSet InsMap; 2977 // Check and see if instance methods in class interface have been 2978 // implemented in the implementation class. 2979 for (const auto *I : IMPDecl->instance_methods()) 2980 InsMap.insert(I->getSelector()); 2981 2982 // Add the selectors for getters/setters of @dynamic properties. 2983 for (const auto *PImpl : IMPDecl->property_impls()) { 2984 // We only care about @dynamic implementations. 2985 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic) 2986 continue; 2987 2988 const auto *P = PImpl->getPropertyDecl(); 2989 if (!P) continue; 2990 2991 InsMap.insert(P->getGetterName()); 2992 if (!P->getSetterName().isNull()) 2993 InsMap.insert(P->getSetterName()); 2994 } 2995 2996 // Check and see if properties declared in the interface have either 1) 2997 // an implementation or 2) there is a @synthesize/@dynamic implementation 2998 // of the property in the @implementation. 2999 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) { 3000 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties && 3001 LangOpts.ObjCRuntime.isNonFragile() && 3002 !IDecl->isObjCRequiresPropertyDefs(); 3003 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties); 3004 } 3005 3006 // Diagnose null-resettable synthesized setters. 3007 diagnoseNullResettableSynthesizedSetters(IMPDecl); 3008 3009 SelectorSet ClsMap; 3010 for (const auto *I : IMPDecl->class_methods()) 3011 ClsMap.insert(I->getSelector()); 3012 3013 // Check for type conflict of methods declared in a class/protocol and 3014 // its implementation; if any. 3015 SelectorSet InsMapSeen, ClsMapSeen; 3016 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 3017 IMPDecl, CDecl, 3018 IncompleteImpl, true); 3019 3020 // check all methods implemented in category against those declared 3021 // in its primary class. 3022 if (ObjCCategoryImplDecl *CatDecl = 3023 dyn_cast<ObjCCategoryImplDecl>(IMPDecl)) 3024 CheckCategoryVsClassMethodMatches(CatDecl); 3025 3026 // Check the protocol list for unimplemented methods in the @implementation 3027 // class. 3028 // Check and see if class methods in class interface have been 3029 // implemented in the implementation class. 3030 3031 LazyProtocolNameSet ExplicitImplProtocols; 3032 3033 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 3034 for (auto *PI : I->all_referenced_protocols()) 3035 CheckProtocolMethodDefs(*this, IMPDecl, PI, IncompleteImpl, InsMap, 3036 ClsMap, I, ExplicitImplProtocols); 3037 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { 3038 // For extended class, unimplemented methods in its protocols will 3039 // be reported in the primary class. 3040 if (!C->IsClassExtension()) { 3041 for (auto *P : C->protocols()) 3042 CheckProtocolMethodDefs(*this, IMPDecl, P, IncompleteImpl, InsMap, 3043 ClsMap, CDecl, ExplicitImplProtocols); 3044 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, 3045 /*SynthesizeProperties=*/false); 3046 } 3047 } else 3048 llvm_unreachable("invalid ObjCContainerDecl type."); 3049 } 3050 3051 Sema::DeclGroupPtrTy 3052 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, 3053 IdentifierInfo **IdentList, 3054 SourceLocation *IdentLocs, 3055 ArrayRef<ObjCTypeParamList *> TypeParamLists, 3056 unsigned NumElts) { 3057 SmallVector<Decl *, 8> DeclsInGroup; 3058 for (unsigned i = 0; i != NumElts; ++i) { 3059 // Check for another declaration kind with the same name. 3060 NamedDecl *PrevDecl 3061 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 3062 LookupOrdinaryName, forRedeclarationInCurContext()); 3063 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 3064 // GCC apparently allows the following idiom: 3065 // 3066 // typedef NSObject < XCElementTogglerP > XCElementToggler; 3067 // @class XCElementToggler; 3068 // 3069 // Here we have chosen to ignore the forward class declaration 3070 // with a warning. Since this is the implied behavior. 3071 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); 3072 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { 3073 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; 3074 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 3075 } else { 3076 // a forward class declaration matching a typedef name of a class refers 3077 // to the underlying class. Just ignore the forward class with a warning 3078 // as this will force the intended behavior which is to lookup the 3079 // typedef name. 3080 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) { 3081 Diag(AtClassLoc, diag::warn_forward_class_redefinition) 3082 << IdentList[i]; 3083 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 3084 continue; 3085 } 3086 } 3087 } 3088 3089 // Create a declaration to describe this forward declaration. 3090 ObjCInterfaceDecl *PrevIDecl 3091 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 3092 3093 IdentifierInfo *ClassName = IdentList[i]; 3094 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { 3095 // A previous decl with a different name is because of 3096 // @compatibility_alias, for example: 3097 // \code 3098 // @class NewImage; 3099 // @compatibility_alias OldImage NewImage; 3100 // \endcode 3101 // A lookup for 'OldImage' will return the 'NewImage' decl. 3102 // 3103 // In such a case use the real declaration name, instead of the alias one, 3104 // otherwise we will break IdentifierResolver and redecls-chain invariants. 3105 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl 3106 // has been aliased. 3107 ClassName = PrevIDecl->getIdentifier(); 3108 } 3109 3110 // If this forward declaration has type parameters, compare them with the 3111 // type parameters of the previous declaration. 3112 ObjCTypeParamList *TypeParams = TypeParamLists[i]; 3113 if (PrevIDecl && TypeParams) { 3114 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) { 3115 // Check for consistency with the previous declaration. 3116 if (checkTypeParamListConsistency( 3117 *this, PrevTypeParams, TypeParams, 3118 TypeParamListContext::ForwardDeclaration)) { 3119 TypeParams = nullptr; 3120 } 3121 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { 3122 // The @interface does not have type parameters. Complain. 3123 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class) 3124 << ClassName 3125 << TypeParams->getSourceRange(); 3126 Diag(Def->getLocation(), diag::note_defined_here) 3127 << ClassName; 3128 3129 TypeParams = nullptr; 3130 } 3131 } 3132 3133 ObjCInterfaceDecl *IDecl 3134 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, 3135 ClassName, TypeParams, PrevIDecl, 3136 IdentLocs[i]); 3137 IDecl->setAtEndRange(IdentLocs[i]); 3138 3139 if (PrevIDecl) 3140 mergeDeclAttributes(IDecl, PrevIDecl); 3141 3142 PushOnScopeChains(IDecl, TUScope); 3143 CheckObjCDeclScope(IDecl); 3144 DeclsInGroup.push_back(IDecl); 3145 } 3146 3147 return BuildDeclaratorGroup(DeclsInGroup); 3148 } 3149 3150 static bool tryMatchRecordTypes(ASTContext &Context, 3151 Sema::MethodMatchStrategy strategy, 3152 const Type *left, const Type *right); 3153 3154 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, 3155 QualType leftQT, QualType rightQT) { 3156 const Type *left = 3157 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); 3158 const Type *right = 3159 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); 3160 3161 if (left == right) return true; 3162 3163 // If we're doing a strict match, the types have to match exactly. 3164 if (strategy == Sema::MMS_strict) return false; 3165 3166 if (left->isIncompleteType() || right->isIncompleteType()) return false; 3167 3168 // Otherwise, use this absurdly complicated algorithm to try to 3169 // validate the basic, low-level compatibility of the two types. 3170 3171 // As a minimum, require the sizes and alignments to match. 3172 TypeInfo LeftTI = Context.getTypeInfo(left); 3173 TypeInfo RightTI = Context.getTypeInfo(right); 3174 if (LeftTI.Width != RightTI.Width) 3175 return false; 3176 3177 if (LeftTI.Align != RightTI.Align) 3178 return false; 3179 3180 // Consider all the kinds of non-dependent canonical types: 3181 // - functions and arrays aren't possible as return and parameter types 3182 3183 // - vector types of equal size can be arbitrarily mixed 3184 if (isa<VectorType>(left)) return isa<VectorType>(right); 3185 if (isa<VectorType>(right)) return false; 3186 3187 // - references should only match references of identical type 3188 // - structs, unions, and Objective-C objects must match more-or-less 3189 // exactly 3190 // - everything else should be a scalar 3191 if (!left->isScalarType() || !right->isScalarType()) 3192 return tryMatchRecordTypes(Context, strategy, left, right); 3193 3194 // Make scalars agree in kind, except count bools as chars, and group 3195 // all non-member pointers together. 3196 Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); 3197 Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); 3198 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; 3199 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; 3200 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) 3201 leftSK = Type::STK_ObjCObjectPointer; 3202 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) 3203 rightSK = Type::STK_ObjCObjectPointer; 3204 3205 // Note that data member pointers and function member pointers don't 3206 // intermix because of the size differences. 3207 3208 return (leftSK == rightSK); 3209 } 3210 3211 static bool tryMatchRecordTypes(ASTContext &Context, 3212 Sema::MethodMatchStrategy strategy, 3213 const Type *lt, const Type *rt) { 3214 assert(lt && rt && lt != rt); 3215 3216 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; 3217 RecordDecl *left = cast<RecordType>(lt)->getDecl(); 3218 RecordDecl *right = cast<RecordType>(rt)->getDecl(); 3219 3220 // Require union-hood to match. 3221 if (left->isUnion() != right->isUnion()) return false; 3222 3223 // Require an exact match if either is non-POD. 3224 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || 3225 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) 3226 return false; 3227 3228 // Require size and alignment to match. 3229 TypeInfo LeftTI = Context.getTypeInfo(lt); 3230 TypeInfo RightTI = Context.getTypeInfo(rt); 3231 if (LeftTI.Width != RightTI.Width) 3232 return false; 3233 3234 if (LeftTI.Align != RightTI.Align) 3235 return false; 3236 3237 // Require fields to match. 3238 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); 3239 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); 3240 for (; li != le && ri != re; ++li, ++ri) { 3241 if (!matchTypes(Context, strategy, li->getType(), ri->getType())) 3242 return false; 3243 } 3244 return (li == le && ri == re); 3245 } 3246 3247 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and 3248 /// returns true, or false, accordingly. 3249 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons 3250 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, 3251 const ObjCMethodDecl *right, 3252 MethodMatchStrategy strategy) { 3253 if (!matchTypes(Context, strategy, left->getReturnType(), 3254 right->getReturnType())) 3255 return false; 3256 3257 // If either is hidden, it is not considered to match. 3258 if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible()) 3259 return false; 3260 3261 if (left->isDirectMethod() != right->isDirectMethod()) 3262 return false; 3263 3264 if (getLangOpts().ObjCAutoRefCount && 3265 (left->hasAttr<NSReturnsRetainedAttr>() 3266 != right->hasAttr<NSReturnsRetainedAttr>() || 3267 left->hasAttr<NSConsumesSelfAttr>() 3268 != right->hasAttr<NSConsumesSelfAttr>())) 3269 return false; 3270 3271 ObjCMethodDecl::param_const_iterator 3272 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(), 3273 re = right->param_end(); 3274 3275 for (; li != le && ri != re; ++li, ++ri) { 3276 assert(ri != right->param_end() && "Param mismatch"); 3277 const ParmVarDecl *lparm = *li, *rparm = *ri; 3278 3279 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) 3280 return false; 3281 3282 if (getLangOpts().ObjCAutoRefCount && 3283 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) 3284 return false; 3285 } 3286 return true; 3287 } 3288 3289 static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method, 3290 ObjCMethodDecl *MethodInList) { 3291 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext()); 3292 auto *MethodInListProtocol = 3293 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext()); 3294 // If this method belongs to a protocol but the method in list does not, or 3295 // vice versa, we say the context is not the same. 3296 if ((MethodProtocol && !MethodInListProtocol) || 3297 (!MethodProtocol && MethodInListProtocol)) 3298 return false; 3299 3300 if (MethodProtocol && MethodInListProtocol) 3301 return true; 3302 3303 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface(); 3304 ObjCInterfaceDecl *MethodInListInterface = 3305 MethodInList->getClassInterface(); 3306 return MethodInterface == MethodInListInterface; 3307 } 3308 3309 void Sema::addMethodToGlobalList(ObjCMethodList *List, 3310 ObjCMethodDecl *Method) { 3311 // Record at the head of the list whether there were 0, 1, or >= 2 methods 3312 // inside categories. 3313 if (ObjCCategoryDecl *CD = 3314 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext())) 3315 if (!CD->IsClassExtension() && List->getBits() < 2) 3316 List->setBits(List->getBits() + 1); 3317 3318 // If the list is empty, make it a singleton list. 3319 if (List->getMethod() == nullptr) { 3320 List->setMethod(Method); 3321 List->setNext(nullptr); 3322 return; 3323 } 3324 3325 // We've seen a method with this name, see if we have already seen this type 3326 // signature. 3327 ObjCMethodList *Previous = List; 3328 ObjCMethodList *ListWithSameDeclaration = nullptr; 3329 for (; List; Previous = List, List = List->getNext()) { 3330 // If we are building a module, keep all of the methods. 3331 if (getLangOpts().isCompilingModule()) 3332 continue; 3333 3334 bool SameDeclaration = MatchTwoMethodDeclarations(Method, 3335 List->getMethod()); 3336 // Looking for method with a type bound requires the correct context exists. 3337 // We need to insert a method into the list if the context is different. 3338 // If the method's declaration matches the list 3339 // a> the method belongs to a different context: we need to insert it, in 3340 // order to emit the availability message, we need to prioritize over 3341 // availability among the methods with the same declaration. 3342 // b> the method belongs to the same context: there is no need to insert a 3343 // new entry. 3344 // If the method's declaration does not match the list, we insert it to the 3345 // end. 3346 if (!SameDeclaration || 3347 !isMethodContextSameForKindofLookup(Method, List->getMethod())) { 3348 // Even if two method types do not match, we would like to say 3349 // there is more than one declaration so unavailability/deprecated 3350 // warning is not too noisy. 3351 if (!Method->isDefined()) 3352 List->setHasMoreThanOneDecl(true); 3353 3354 // For methods with the same declaration, the one that is deprecated 3355 // should be put in the front for better diagnostics. 3356 if (Method->isDeprecated() && SameDeclaration && 3357 !ListWithSameDeclaration && !List->getMethod()->isDeprecated()) 3358 ListWithSameDeclaration = List; 3359 3360 if (Method->isUnavailable() && SameDeclaration && 3361 !ListWithSameDeclaration && 3362 List->getMethod()->getAvailability() < AR_Deprecated) 3363 ListWithSameDeclaration = List; 3364 continue; 3365 } 3366 3367 ObjCMethodDecl *PrevObjCMethod = List->getMethod(); 3368 3369 // Propagate the 'defined' bit. 3370 if (Method->isDefined()) 3371 PrevObjCMethod->setDefined(true); 3372 else { 3373 // Objective-C doesn't allow an @interface for a class after its 3374 // @implementation. So if Method is not defined and there already is 3375 // an entry for this type signature, Method has to be for a different 3376 // class than PrevObjCMethod. 3377 List->setHasMoreThanOneDecl(true); 3378 } 3379 3380 // If a method is deprecated, push it in the global pool. 3381 // This is used for better diagnostics. 3382 if (Method->isDeprecated()) { 3383 if (!PrevObjCMethod->isDeprecated()) 3384 List->setMethod(Method); 3385 } 3386 // If the new method is unavailable, push it into global pool 3387 // unless previous one is deprecated. 3388 if (Method->isUnavailable()) { 3389 if (PrevObjCMethod->getAvailability() < AR_Deprecated) 3390 List->setMethod(Method); 3391 } 3392 3393 return; 3394 } 3395 3396 // We have a new signature for an existing method - add it. 3397 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 3398 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 3399 3400 // We insert it right before ListWithSameDeclaration. 3401 if (ListWithSameDeclaration) { 3402 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration); 3403 // FIXME: should we clear the other bits in ListWithSameDeclaration? 3404 ListWithSameDeclaration->setMethod(Method); 3405 ListWithSameDeclaration->setNext(List); 3406 return; 3407 } 3408 3409 Previous->setNext(new (Mem) ObjCMethodList(Method)); 3410 } 3411 3412 /// Read the contents of the method pool for a given selector from 3413 /// external storage. 3414 void Sema::ReadMethodPool(Selector Sel) { 3415 assert(ExternalSource && "We need an external AST source"); 3416 ExternalSource->ReadMethodPool(Sel); 3417 } 3418 3419 void Sema::updateOutOfDateSelector(Selector Sel) { 3420 if (!ExternalSource) 3421 return; 3422 ExternalSource->updateOutOfDateSelector(Sel); 3423 } 3424 3425 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, 3426 bool instance) { 3427 // Ignore methods of invalid containers. 3428 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl()) 3429 return; 3430 3431 if (ExternalSource) 3432 ReadMethodPool(Method->getSelector()); 3433 3434 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); 3435 if (Pos == MethodPool.end()) 3436 Pos = MethodPool 3437 .insert(std::make_pair(Method->getSelector(), 3438 GlobalMethodPool::Lists())) 3439 .first; 3440 3441 Method->setDefined(impl); 3442 3443 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; 3444 addMethodToGlobalList(&Entry, Method); 3445 } 3446 3447 /// Determines if this is an "acceptable" loose mismatch in the global 3448 /// method pool. This exists mostly as a hack to get around certain 3449 /// global mismatches which we can't afford to make warnings / errors. 3450 /// Really, what we want is a way to take a method out of the global 3451 /// method pool. 3452 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, 3453 ObjCMethodDecl *other) { 3454 if (!chosen->isInstanceMethod()) 3455 return false; 3456 3457 if (chosen->isDirectMethod() != other->isDirectMethod()) 3458 return false; 3459 3460 Selector sel = chosen->getSelector(); 3461 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") 3462 return false; 3463 3464 // Don't complain about mismatches for -length if the method we 3465 // chose has an integral result type. 3466 return (chosen->getReturnType()->isIntegerType()); 3467 } 3468 3469 /// Return true if the given method is wthin the type bound. 3470 static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method, 3471 const ObjCObjectType *TypeBound) { 3472 if (!TypeBound) 3473 return true; 3474 3475 if (TypeBound->isObjCId()) 3476 // FIXME: should we handle the case of bounding to id<A, B> differently? 3477 return true; 3478 3479 auto *BoundInterface = TypeBound->getInterface(); 3480 assert(BoundInterface && "unexpected object type!"); 3481 3482 // Check if the Method belongs to a protocol. We should allow any method 3483 // defined in any protocol, because any subclass could adopt the protocol. 3484 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext()); 3485 if (MethodProtocol) { 3486 return true; 3487 } 3488 3489 // If the Method belongs to a class, check if it belongs to the class 3490 // hierarchy of the class bound. 3491 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) { 3492 // We allow methods declared within classes that are part of the hierarchy 3493 // of the class bound (superclass of, subclass of, or the same as the class 3494 // bound). 3495 return MethodInterface == BoundInterface || 3496 MethodInterface->isSuperClassOf(BoundInterface) || 3497 BoundInterface->isSuperClassOf(MethodInterface); 3498 } 3499 llvm_unreachable("unknown method context"); 3500 } 3501 3502 /// We first select the type of the method: Instance or Factory, then collect 3503 /// all methods with that type. 3504 bool Sema::CollectMultipleMethodsInGlobalPool( 3505 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, 3506 bool InstanceFirst, bool CheckTheOther, 3507 const ObjCObjectType *TypeBound) { 3508 if (ExternalSource) 3509 ReadMethodPool(Sel); 3510 3511 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 3512 if (Pos == MethodPool.end()) 3513 return false; 3514 3515 // Gather the non-hidden methods. 3516 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first : 3517 Pos->second.second; 3518 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) 3519 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) { 3520 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound)) 3521 Methods.push_back(M->getMethod()); 3522 } 3523 3524 // Return if we find any method with the desired kind. 3525 if (!Methods.empty()) 3526 return Methods.size() > 1; 3527 3528 if (!CheckTheOther) 3529 return false; 3530 3531 // Gather the other kind. 3532 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second : 3533 Pos->second.first; 3534 for (ObjCMethodList *M = &MethList2; M; M = M->getNext()) 3535 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) { 3536 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound)) 3537 Methods.push_back(M->getMethod()); 3538 } 3539 3540 return Methods.size() > 1; 3541 } 3542 3543 bool Sema::AreMultipleMethodsInGlobalPool( 3544 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, 3545 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) { 3546 // Diagnose finding more than one method in global pool. 3547 SmallVector<ObjCMethodDecl *, 4> FilteredMethods; 3548 FilteredMethods.push_back(BestMethod); 3549 3550 for (auto *M : Methods) 3551 if (M != BestMethod && !M->hasAttr<UnavailableAttr>()) 3552 FilteredMethods.push_back(M); 3553 3554 if (FilteredMethods.size() > 1) 3555 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R, 3556 receiverIdOrClass); 3557 3558 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 3559 // Test for no method in the pool which should not trigger any warning by 3560 // caller. 3561 if (Pos == MethodPool.end()) 3562 return true; 3563 ObjCMethodList &MethList = 3564 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second; 3565 return MethList.hasMoreThanOneDecl(); 3566 } 3567 3568 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, 3569 bool receiverIdOrClass, 3570 bool instance) { 3571 if (ExternalSource) 3572 ReadMethodPool(Sel); 3573 3574 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 3575 if (Pos == MethodPool.end()) 3576 return nullptr; 3577 3578 // Gather the non-hidden methods. 3579 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 3580 SmallVector<ObjCMethodDecl *, 4> Methods; 3581 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) { 3582 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) 3583 return M->getMethod(); 3584 } 3585 return nullptr; 3586 } 3587 3588 void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods, 3589 Selector Sel, SourceRange R, 3590 bool receiverIdOrClass) { 3591 // We found multiple methods, so we may have to complain. 3592 bool issueDiagnostic = false, issueError = false; 3593 3594 // We support a warning which complains about *any* difference in 3595 // method signature. 3596 bool strictSelectorMatch = 3597 receiverIdOrClass && 3598 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin()); 3599 if (strictSelectorMatch) { 3600 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 3601 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) { 3602 issueDiagnostic = true; 3603 break; 3604 } 3605 } 3606 } 3607 3608 // If we didn't see any strict differences, we won't see any loose 3609 // differences. In ARC, however, we also need to check for loose 3610 // mismatches, because most of them are errors. 3611 if (!strictSelectorMatch || 3612 (issueDiagnostic && getLangOpts().ObjCAutoRefCount)) 3613 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 3614 // This checks if the methods differ in type mismatch. 3615 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) && 3616 !isAcceptableMethodMismatch(Methods[0], Methods[I])) { 3617 issueDiagnostic = true; 3618 if (getLangOpts().ObjCAutoRefCount) 3619 issueError = true; 3620 break; 3621 } 3622 } 3623 3624 if (issueDiagnostic) { 3625 if (issueError) 3626 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; 3627 else if (strictSelectorMatch) 3628 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; 3629 else 3630 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 3631 3632 Diag(Methods[0]->getBeginLoc(), 3633 issueError ? diag::note_possibility : diag::note_using) 3634 << Methods[0]->getSourceRange(); 3635 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 3636 Diag(Methods[I]->getBeginLoc(), diag::note_also_found) 3637 << Methods[I]->getSourceRange(); 3638 } 3639 } 3640 } 3641 3642 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { 3643 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 3644 if (Pos == MethodPool.end()) 3645 return nullptr; 3646 3647 GlobalMethodPool::Lists &Methods = Pos->second; 3648 for (const ObjCMethodList *Method = &Methods.first; Method; 3649 Method = Method->getNext()) 3650 if (Method->getMethod() && 3651 (Method->getMethod()->isDefined() || 3652 Method->getMethod()->isPropertyAccessor())) 3653 return Method->getMethod(); 3654 3655 for (const ObjCMethodList *Method = &Methods.second; Method; 3656 Method = Method->getNext()) 3657 if (Method->getMethod() && 3658 (Method->getMethod()->isDefined() || 3659 Method->getMethod()->isPropertyAccessor())) 3660 return Method->getMethod(); 3661 return nullptr; 3662 } 3663 3664 static void 3665 HelperSelectorsForTypoCorrection( 3666 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod, 3667 StringRef Typo, const ObjCMethodDecl * Method) { 3668 const unsigned MaxEditDistance = 1; 3669 unsigned BestEditDistance = MaxEditDistance + 1; 3670 std::string MethodName = Method->getSelector().getAsString(); 3671 3672 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size()); 3673 if (MinPossibleEditDistance > 0 && 3674 Typo.size() / MinPossibleEditDistance < 1) 3675 return; 3676 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance); 3677 if (EditDistance > MaxEditDistance) 3678 return; 3679 if (EditDistance == BestEditDistance) 3680 BestMethod.push_back(Method); 3681 else if (EditDistance < BestEditDistance) { 3682 BestMethod.clear(); 3683 BestMethod.push_back(Method); 3684 } 3685 } 3686 3687 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel, 3688 QualType ObjectType) { 3689 if (ObjectType.isNull()) 3690 return true; 3691 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/)) 3692 return true; 3693 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) != 3694 nullptr; 3695 } 3696 3697 const ObjCMethodDecl * 3698 Sema::SelectorsForTypoCorrection(Selector Sel, 3699 QualType ObjectType) { 3700 unsigned NumArgs = Sel.getNumArgs(); 3701 SmallVector<const ObjCMethodDecl *, 8> Methods; 3702 bool ObjectIsId = true, ObjectIsClass = true; 3703 if (ObjectType.isNull()) 3704 ObjectIsId = ObjectIsClass = false; 3705 else if (!ObjectType->isObjCObjectPointerType()) 3706 return nullptr; 3707 else if (const ObjCObjectPointerType *ObjCPtr = 3708 ObjectType->getAsObjCInterfacePointerType()) { 3709 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0); 3710 ObjectIsId = ObjectIsClass = false; 3711 } 3712 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType()) 3713 ObjectIsClass = false; 3714 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType()) 3715 ObjectIsId = false; 3716 else 3717 return nullptr; 3718 3719 for (GlobalMethodPool::iterator b = MethodPool.begin(), 3720 e = MethodPool.end(); b != e; b++) { 3721 // instance methods 3722 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext()) 3723 if (M->getMethod() && 3724 (M->getMethod()->getSelector().getNumArgs() == NumArgs) && 3725 (M->getMethod()->getSelector() != Sel)) { 3726 if (ObjectIsId) 3727 Methods.push_back(M->getMethod()); 3728 else if (!ObjectIsClass && 3729 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(), 3730 ObjectType)) 3731 Methods.push_back(M->getMethod()); 3732 } 3733 // class methods 3734 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext()) 3735 if (M->getMethod() && 3736 (M->getMethod()->getSelector().getNumArgs() == NumArgs) && 3737 (M->getMethod()->getSelector() != Sel)) { 3738 if (ObjectIsClass) 3739 Methods.push_back(M->getMethod()); 3740 else if (!ObjectIsId && 3741 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(), 3742 ObjectType)) 3743 Methods.push_back(M->getMethod()); 3744 } 3745 } 3746 3747 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods; 3748 for (unsigned i = 0, e = Methods.size(); i < e; i++) { 3749 HelperSelectorsForTypoCorrection(SelectedMethods, 3750 Sel.getAsString(), Methods[i]); 3751 } 3752 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr; 3753 } 3754 3755 /// DiagnoseDuplicateIvars - 3756 /// Check for duplicate ivars in the entire class at the start of 3757 /// \@implementation. This becomes necesssary because class extension can 3758 /// add ivars to a class in random order which will not be known until 3759 /// class's \@implementation is seen. 3760 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 3761 ObjCInterfaceDecl *SID) { 3762 for (auto *Ivar : ID->ivars()) { 3763 if (Ivar->isInvalidDecl()) 3764 continue; 3765 if (IdentifierInfo *II = Ivar->getIdentifier()) { 3766 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); 3767 if (prevIvar) { 3768 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; 3769 Diag(prevIvar->getLocation(), diag::note_previous_declaration); 3770 Ivar->setInvalidDecl(); 3771 } 3772 } 3773 } 3774 } 3775 3776 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled. 3777 static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) { 3778 if (S.getLangOpts().ObjCWeak) return; 3779 3780 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin(); 3781 ivar; ivar = ivar->getNextIvar()) { 3782 if (ivar->isInvalidDecl()) continue; 3783 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { 3784 if (S.getLangOpts().ObjCWeakRuntime) { 3785 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled); 3786 } else { 3787 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime); 3788 } 3789 } 3790 } 3791 } 3792 3793 /// Diagnose attempts to use flexible array member with retainable object type. 3794 static void DiagnoseRetainableFlexibleArrayMember(Sema &S, 3795 ObjCInterfaceDecl *ID) { 3796 if (!S.getLangOpts().ObjCAutoRefCount) 3797 return; 3798 3799 for (auto ivar = ID->all_declared_ivar_begin(); ivar; 3800 ivar = ivar->getNextIvar()) { 3801 if (ivar->isInvalidDecl()) 3802 continue; 3803 QualType IvarTy = ivar->getType(); 3804 if (IvarTy->isIncompleteArrayType() && 3805 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) && 3806 IvarTy->isObjCLifetimeType()) { 3807 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable); 3808 ivar->setInvalidDecl(); 3809 } 3810 } 3811 } 3812 3813 Sema::ObjCContainerKind Sema::getObjCContainerKind() const { 3814 switch (CurContext->getDeclKind()) { 3815 case Decl::ObjCInterface: 3816 return Sema::OCK_Interface; 3817 case Decl::ObjCProtocol: 3818 return Sema::OCK_Protocol; 3819 case Decl::ObjCCategory: 3820 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension()) 3821 return Sema::OCK_ClassExtension; 3822 return Sema::OCK_Category; 3823 case Decl::ObjCImplementation: 3824 return Sema::OCK_Implementation; 3825 case Decl::ObjCCategoryImpl: 3826 return Sema::OCK_CategoryImplementation; 3827 3828 default: 3829 return Sema::OCK_None; 3830 } 3831 } 3832 3833 static bool IsVariableSizedType(QualType T) { 3834 if (T->isIncompleteArrayType()) 3835 return true; 3836 const auto *RecordTy = T->getAs<RecordType>(); 3837 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember()); 3838 } 3839 3840 static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) { 3841 ObjCInterfaceDecl *IntfDecl = nullptr; 3842 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range( 3843 ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator()); 3844 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) { 3845 Ivars = IntfDecl->ivars(); 3846 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) { 3847 IntfDecl = ImplDecl->getClassInterface(); 3848 Ivars = ImplDecl->ivars(); 3849 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) { 3850 if (CategoryDecl->IsClassExtension()) { 3851 IntfDecl = CategoryDecl->getClassInterface(); 3852 Ivars = CategoryDecl->ivars(); 3853 } 3854 } 3855 3856 // Check if variable sized ivar is in interface and visible to subclasses. 3857 if (!isa<ObjCInterfaceDecl>(OCD)) { 3858 for (auto ivar : Ivars) { 3859 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) { 3860 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility) 3861 << ivar->getDeclName() << ivar->getType(); 3862 } 3863 } 3864 } 3865 3866 // Subsequent checks require interface decl. 3867 if (!IntfDecl) 3868 return; 3869 3870 // Check if variable sized ivar is followed by another ivar. 3871 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar; 3872 ivar = ivar->getNextIvar()) { 3873 if (ivar->isInvalidDecl() || !ivar->getNextIvar()) 3874 continue; 3875 QualType IvarTy = ivar->getType(); 3876 bool IsInvalidIvar = false; 3877 if (IvarTy->isIncompleteArrayType()) { 3878 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end) 3879 << ivar->getDeclName() << IvarTy 3880 << TTK_Class; // Use "class" for Obj-C. 3881 IsInvalidIvar = true; 3882 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) { 3883 if (RecordTy->getDecl()->hasFlexibleArrayMember()) { 3884 S.Diag(ivar->getLocation(), 3885 diag::err_objc_variable_sized_type_not_at_end) 3886 << ivar->getDeclName() << IvarTy; 3887 IsInvalidIvar = true; 3888 } 3889 } 3890 if (IsInvalidIvar) { 3891 S.Diag(ivar->getNextIvar()->getLocation(), 3892 diag::note_next_ivar_declaration) 3893 << ivar->getNextIvar()->getSynthesize(); 3894 ivar->setInvalidDecl(); 3895 } 3896 } 3897 3898 // Check if ObjC container adds ivars after variable sized ivar in superclass. 3899 // Perform the check only if OCD is the first container to declare ivars to 3900 // avoid multiple warnings for the same ivar. 3901 ObjCIvarDecl *FirstIvar = 3902 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin(); 3903 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) { 3904 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass(); 3905 while (SuperClass && SuperClass->ivar_empty()) 3906 SuperClass = SuperClass->getSuperClass(); 3907 if (SuperClass) { 3908 auto IvarIter = SuperClass->ivar_begin(); 3909 std::advance(IvarIter, SuperClass->ivar_size() - 1); 3910 const ObjCIvarDecl *LastIvar = *IvarIter; 3911 if (IsVariableSizedType(LastIvar->getType())) { 3912 S.Diag(FirstIvar->getLocation(), 3913 diag::warn_superclass_variable_sized_type_not_at_end) 3914 << FirstIvar->getDeclName() << LastIvar->getDeclName() 3915 << LastIvar->getType() << SuperClass->getDeclName(); 3916 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at) 3917 << LastIvar->getDeclName(); 3918 } 3919 } 3920 } 3921 } 3922 3923 static void DiagnoseCategoryDirectMembersProtocolConformance( 3924 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl); 3925 3926 static void DiagnoseCategoryDirectMembersProtocolConformance( 3927 Sema &S, ObjCCategoryDecl *CDecl, 3928 const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) { 3929 for (auto *PI : Protocols) 3930 DiagnoseCategoryDirectMembersProtocolConformance(S, PI, CDecl); 3931 } 3932 3933 static void DiagnoseCategoryDirectMembersProtocolConformance( 3934 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) { 3935 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) 3936 PDecl = PDecl->getDefinition(); 3937 3938 llvm::SmallVector<const Decl *, 4> DirectMembers; 3939 const auto *IDecl = CDecl->getClassInterface(); 3940 for (auto *MD : PDecl->methods()) { 3941 if (!MD->isPropertyAccessor()) { 3942 if (const auto *CMD = 3943 IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) { 3944 if (CMD->isDirectMethod()) 3945 DirectMembers.push_back(CMD); 3946 } 3947 } 3948 } 3949 for (auto *PD : PDecl->properties()) { 3950 if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass( 3951 PD->getIdentifier(), 3952 PD->isClassProperty() 3953 ? ObjCPropertyQueryKind::OBJC_PR_query_class 3954 : ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 3955 if (CPD->isDirectProperty()) 3956 DirectMembers.push_back(CPD); 3957 } 3958 } 3959 if (!DirectMembers.empty()) { 3960 S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance) 3961 << CDecl->IsClassExtension() << CDecl << PDecl << IDecl; 3962 for (const auto *MD : DirectMembers) 3963 S.Diag(MD->getLocation(), diag::note_direct_member_here); 3964 return; 3965 } 3966 3967 // Check on this protocols's referenced protocols, recursively. 3968 DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl, 3969 PDecl->protocols()); 3970 } 3971 3972 // Note: For class/category implementations, allMethods is always null. 3973 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods, 3974 ArrayRef<DeclGroupPtrTy> allTUVars) { 3975 if (getObjCContainerKind() == Sema::OCK_None) 3976 return nullptr; 3977 3978 assert(AtEnd.isValid() && "Invalid location for '@end'"); 3979 3980 auto *OCD = cast<ObjCContainerDecl>(CurContext); 3981 Decl *ClassDecl = OCD; 3982 3983 bool isInterfaceDeclKind = 3984 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) 3985 || isa<ObjCProtocolDecl>(ClassDecl); 3986 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); 3987 3988 // Make synthesized accessor stub functions visible. 3989 // ActOnPropertyImplDecl() creates them as not visible in case 3990 // they are overridden by an explicit method that is encountered 3991 // later. 3992 if (auto *OID = dyn_cast<ObjCImplementationDecl>(CurContext)) { 3993 for (auto PropImpl : OID->property_impls()) { 3994 if (auto *Getter = PropImpl->getGetterMethodDecl()) 3995 if (Getter->isSynthesizedAccessorStub()) 3996 OID->addDecl(Getter); 3997 if (auto *Setter = PropImpl->getSetterMethodDecl()) 3998 if (Setter->isSynthesizedAccessorStub()) 3999 OID->addDecl(Setter); 4000 } 4001 } 4002 4003 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. 4004 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; 4005 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; 4006 4007 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) { 4008 ObjCMethodDecl *Method = 4009 cast_or_null<ObjCMethodDecl>(allMethods[i]); 4010 4011 if (!Method) continue; // Already issued a diagnostic. 4012 if (Method->isInstanceMethod()) { 4013 /// Check for instance method of the same name with incompatible types 4014 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; 4015 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 4016 : false; 4017 if ((isInterfaceDeclKind && PrevMethod && !match) 4018 || (checkIdenticalMethods && match)) { 4019 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 4020 << Method->getDeclName(); 4021 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 4022 Method->setInvalidDecl(); 4023 } else { 4024 if (PrevMethod) { 4025 Method->setAsRedeclaration(PrevMethod); 4026 if (!Context.getSourceManager().isInSystemHeader( 4027 Method->getLocation())) 4028 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 4029 << Method->getDeclName(); 4030 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 4031 } 4032 InsMap[Method->getSelector()] = Method; 4033 /// The following allows us to typecheck messages to "id". 4034 AddInstanceMethodToGlobalPool(Method); 4035 } 4036 } else { 4037 /// Check for class method of the same name with incompatible types 4038 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; 4039 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 4040 : false; 4041 if ((isInterfaceDeclKind && PrevMethod && !match) 4042 || (checkIdenticalMethods && match)) { 4043 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 4044 << Method->getDeclName(); 4045 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 4046 Method->setInvalidDecl(); 4047 } else { 4048 if (PrevMethod) { 4049 Method->setAsRedeclaration(PrevMethod); 4050 if (!Context.getSourceManager().isInSystemHeader( 4051 Method->getLocation())) 4052 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 4053 << Method->getDeclName(); 4054 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 4055 } 4056 ClsMap[Method->getSelector()] = Method; 4057 AddFactoryMethodToGlobalPool(Method); 4058 } 4059 } 4060 } 4061 if (isa<ObjCInterfaceDecl>(ClassDecl)) { 4062 // Nothing to do here. 4063 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { 4064 // Categories are used to extend the class by declaring new methods. 4065 // By the same token, they are also used to add new properties. No 4066 // need to compare the added property to those in the class. 4067 4068 if (C->IsClassExtension()) { 4069 ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); 4070 DiagnoseClassExtensionDupMethods(C, CCPrimary); 4071 } 4072 4073 DiagnoseCategoryDirectMembersProtocolConformance(*this, C, C->protocols()); 4074 } 4075 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { 4076 if (CDecl->getIdentifier()) 4077 // ProcessPropertyDecl is responsible for diagnosing conflicts with any 4078 // user-defined setter/getter. It also synthesizes setter/getter methods 4079 // and adds them to the DeclContext and global method pools. 4080 for (auto *I : CDecl->properties()) 4081 ProcessPropertyDecl(I); 4082 CDecl->setAtEndRange(AtEnd); 4083 } 4084 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 4085 IC->setAtEndRange(AtEnd); 4086 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { 4087 // Any property declared in a class extension might have user 4088 // declared setter or getter in current class extension or one 4089 // of the other class extensions. Mark them as synthesized as 4090 // property will be synthesized when property with same name is 4091 // seen in the @implementation. 4092 for (const auto *Ext : IDecl->visible_extensions()) { 4093 for (const auto *Property : Ext->instance_properties()) { 4094 // Skip over properties declared @dynamic 4095 if (const ObjCPropertyImplDecl *PIDecl 4096 = IC->FindPropertyImplDecl(Property->getIdentifier(), 4097 Property->getQueryKind())) 4098 if (PIDecl->getPropertyImplementation() 4099 == ObjCPropertyImplDecl::Dynamic) 4100 continue; 4101 4102 for (const auto *Ext : IDecl->visible_extensions()) { 4103 if (ObjCMethodDecl *GetterMethod = 4104 Ext->getInstanceMethod(Property->getGetterName())) 4105 GetterMethod->setPropertyAccessor(true); 4106 if (!Property->isReadOnly()) 4107 if (ObjCMethodDecl *SetterMethod 4108 = Ext->getInstanceMethod(Property->getSetterName())) 4109 SetterMethod->setPropertyAccessor(true); 4110 } 4111 } 4112 } 4113 ImplMethodsVsClassMethods(S, IC, IDecl); 4114 AtomicPropertySetterGetterRules(IC, IDecl); 4115 DiagnoseOwningPropertyGetterSynthesis(IC); 4116 DiagnoseUnusedBackingIvarInAccessor(S, IC); 4117 if (IDecl->hasDesignatedInitializers()) 4118 DiagnoseMissingDesignatedInitOverrides(IC, IDecl); 4119 DiagnoseWeakIvars(*this, IC); 4120 DiagnoseRetainableFlexibleArrayMember(*this, IDecl); 4121 4122 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>(); 4123 if (IDecl->getSuperClass() == nullptr) { 4124 // This class has no superclass, so check that it has been marked with 4125 // __attribute((objc_root_class)). 4126 if (!HasRootClassAttr) { 4127 SourceLocation DeclLoc(IDecl->getLocation()); 4128 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc)); 4129 Diag(DeclLoc, diag::warn_objc_root_class_missing) 4130 << IDecl->getIdentifier(); 4131 // See if NSObject is in the current scope, and if it is, suggest 4132 // adding " : NSObject " to the class declaration. 4133 NamedDecl *IF = LookupSingleName(TUScope, 4134 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject), 4135 DeclLoc, LookupOrdinaryName); 4136 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 4137 if (NSObjectDecl && NSObjectDecl->getDefinition()) { 4138 Diag(SuperClassLoc, diag::note_objc_needs_superclass) 4139 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject "); 4140 } else { 4141 Diag(SuperClassLoc, diag::note_objc_needs_superclass); 4142 } 4143 } 4144 } else if (HasRootClassAttr) { 4145 // Complain that only root classes may have this attribute. 4146 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass); 4147 } 4148 4149 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) { 4150 // An interface can subclass another interface with a 4151 // objc_subclassing_restricted attribute when it has that attribute as 4152 // well (because of interfaces imported from Swift). Therefore we have 4153 // to check if we can subclass in the implementation as well. 4154 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && 4155 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { 4156 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch); 4157 Diag(Super->getLocation(), diag::note_class_declared); 4158 } 4159 } 4160 4161 if (IDecl->hasAttr<ObjCClassStubAttr>()) 4162 Diag(IC->getLocation(), diag::err_implementation_of_class_stub); 4163 4164 if (LangOpts.ObjCRuntime.isNonFragile()) { 4165 while (IDecl->getSuperClass()) { 4166 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); 4167 IDecl = IDecl->getSuperClass(); 4168 } 4169 } 4170 } 4171 SetIvarInitializers(IC); 4172 } else if (ObjCCategoryImplDecl* CatImplClass = 4173 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 4174 CatImplClass->setAtEndRange(AtEnd); 4175 4176 // Find category interface decl and then check that all methods declared 4177 // in this interface are implemented in the category @implementation. 4178 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { 4179 if (ObjCCategoryDecl *Cat 4180 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) { 4181 ImplMethodsVsClassMethods(S, CatImplClass, Cat); 4182 } 4183 } 4184 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { 4185 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) { 4186 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && 4187 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { 4188 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch); 4189 Diag(Super->getLocation(), diag::note_class_declared); 4190 } 4191 } 4192 4193 if (IntfDecl->hasAttr<ObjCClassStubAttr>() && 4194 !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>()) 4195 Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch); 4196 } 4197 DiagnoseVariableSizedIvars(*this, OCD); 4198 if (isInterfaceDeclKind) { 4199 // Reject invalid vardecls. 4200 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { 4201 DeclGroupRef DG = allTUVars[i].get(); 4202 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 4203 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { 4204 if (!VDecl->hasExternalStorage()) 4205 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); 4206 } 4207 } 4208 } 4209 ActOnObjCContainerFinishDefinition(); 4210 4211 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { 4212 DeclGroupRef DG = allTUVars[i].get(); 4213 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 4214 (*I)->setTopLevelDeclInObjCContainer(); 4215 Consumer.HandleTopLevelDeclInObjCContainer(DG); 4216 } 4217 4218 ActOnDocumentableDecl(ClassDecl); 4219 return ClassDecl; 4220 } 4221 4222 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for 4223 /// objective-c's type qualifier from the parser version of the same info. 4224 static Decl::ObjCDeclQualifier 4225 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { 4226 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; 4227 } 4228 4229 /// Check whether the declared result type of the given Objective-C 4230 /// method declaration is compatible with the method's class. 4231 /// 4232 static Sema::ResultTypeCompatibilityKind 4233 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, 4234 ObjCInterfaceDecl *CurrentClass) { 4235 QualType ResultType = Method->getReturnType(); 4236 4237 // If an Objective-C method inherits its related result type, then its 4238 // declared result type must be compatible with its own class type. The 4239 // declared result type is compatible if: 4240 if (const ObjCObjectPointerType *ResultObjectType 4241 = ResultType->getAs<ObjCObjectPointerType>()) { 4242 // - it is id or qualified id, or 4243 if (ResultObjectType->isObjCIdType() || 4244 ResultObjectType->isObjCQualifiedIdType()) 4245 return Sema::RTC_Compatible; 4246 4247 if (CurrentClass) { 4248 if (ObjCInterfaceDecl *ResultClass 4249 = ResultObjectType->getInterfaceDecl()) { 4250 // - it is the same as the method's class type, or 4251 if (declaresSameEntity(CurrentClass, ResultClass)) 4252 return Sema::RTC_Compatible; 4253 4254 // - it is a superclass of the method's class type 4255 if (ResultClass->isSuperClassOf(CurrentClass)) 4256 return Sema::RTC_Compatible; 4257 } 4258 } else { 4259 // Any Objective-C pointer type might be acceptable for a protocol 4260 // method; we just don't know. 4261 return Sema::RTC_Unknown; 4262 } 4263 } 4264 4265 return Sema::RTC_Incompatible; 4266 } 4267 4268 namespace { 4269 /// A helper class for searching for methods which a particular method 4270 /// overrides. 4271 class OverrideSearch { 4272 public: 4273 const ObjCMethodDecl *Method; 4274 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden; 4275 bool Recursive; 4276 4277 public: 4278 OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) { 4279 Selector selector = method->getSelector(); 4280 4281 // Bypass this search if we've never seen an instance/class method 4282 // with this selector before. 4283 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector); 4284 if (it == S.MethodPool.end()) { 4285 if (!S.getExternalSource()) return; 4286 S.ReadMethodPool(selector); 4287 4288 it = S.MethodPool.find(selector); 4289 if (it == S.MethodPool.end()) 4290 return; 4291 } 4292 const ObjCMethodList &list = 4293 method->isInstanceMethod() ? it->second.first : it->second.second; 4294 if (!list.getMethod()) return; 4295 4296 const ObjCContainerDecl *container 4297 = cast<ObjCContainerDecl>(method->getDeclContext()); 4298 4299 // Prevent the search from reaching this container again. This is 4300 // important with categories, which override methods from the 4301 // interface and each other. 4302 if (const ObjCCategoryDecl *Category = 4303 dyn_cast<ObjCCategoryDecl>(container)) { 4304 searchFromContainer(container); 4305 if (const ObjCInterfaceDecl *Interface = Category->getClassInterface()) 4306 searchFromContainer(Interface); 4307 } else { 4308 searchFromContainer(container); 4309 } 4310 } 4311 4312 typedef decltype(Overridden)::iterator iterator; 4313 iterator begin() const { return Overridden.begin(); } 4314 iterator end() const { return Overridden.end(); } 4315 4316 private: 4317 void searchFromContainer(const ObjCContainerDecl *container) { 4318 if (container->isInvalidDecl()) return; 4319 4320 switch (container->getDeclKind()) { 4321 #define OBJCCONTAINER(type, base) \ 4322 case Decl::type: \ 4323 searchFrom(cast<type##Decl>(container)); \ 4324 break; 4325 #define ABSTRACT_DECL(expansion) 4326 #define DECL(type, base) \ 4327 case Decl::type: 4328 #include "clang/AST/DeclNodes.inc" 4329 llvm_unreachable("not an ObjC container!"); 4330 } 4331 } 4332 4333 void searchFrom(const ObjCProtocolDecl *protocol) { 4334 if (!protocol->hasDefinition()) 4335 return; 4336 4337 // A method in a protocol declaration overrides declarations from 4338 // referenced ("parent") protocols. 4339 search(protocol->getReferencedProtocols()); 4340 } 4341 4342 void searchFrom(const ObjCCategoryDecl *category) { 4343 // A method in a category declaration overrides declarations from 4344 // the main class and from protocols the category references. 4345 // The main class is handled in the constructor. 4346 search(category->getReferencedProtocols()); 4347 } 4348 4349 void searchFrom(const ObjCCategoryImplDecl *impl) { 4350 // A method in a category definition that has a category 4351 // declaration overrides declarations from the category 4352 // declaration. 4353 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { 4354 search(category); 4355 if (ObjCInterfaceDecl *Interface = category->getClassInterface()) 4356 search(Interface); 4357 4358 // Otherwise it overrides declarations from the class. 4359 } else if (const auto *Interface = impl->getClassInterface()) { 4360 search(Interface); 4361 } 4362 } 4363 4364 void searchFrom(const ObjCInterfaceDecl *iface) { 4365 // A method in a class declaration overrides declarations from 4366 if (!iface->hasDefinition()) 4367 return; 4368 4369 // - categories, 4370 for (auto *Cat : iface->known_categories()) 4371 search(Cat); 4372 4373 // - the super class, and 4374 if (ObjCInterfaceDecl *super = iface->getSuperClass()) 4375 search(super); 4376 4377 // - any referenced protocols. 4378 search(iface->getReferencedProtocols()); 4379 } 4380 4381 void searchFrom(const ObjCImplementationDecl *impl) { 4382 // A method in a class implementation overrides declarations from 4383 // the class interface. 4384 if (const auto *Interface = impl->getClassInterface()) 4385 search(Interface); 4386 } 4387 4388 void search(const ObjCProtocolList &protocols) { 4389 for (const auto *Proto : protocols) 4390 search(Proto); 4391 } 4392 4393 void search(const ObjCContainerDecl *container) { 4394 // Check for a method in this container which matches this selector. 4395 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(), 4396 Method->isInstanceMethod(), 4397 /*AllowHidden=*/true); 4398 4399 // If we find one, record it and bail out. 4400 if (meth) { 4401 Overridden.insert(meth); 4402 return; 4403 } 4404 4405 // Otherwise, search for methods that a hypothetical method here 4406 // would have overridden. 4407 4408 // Note that we're now in a recursive case. 4409 Recursive = true; 4410 4411 searchFromContainer(container); 4412 } 4413 }; 4414 } // end anonymous namespace 4415 4416 void Sema::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method, 4417 ObjCMethodDecl *overridden) { 4418 if (overridden->isDirectMethod()) { 4419 const auto *attr = overridden->getAttr<ObjCDirectAttr>(); 4420 Diag(method->getLocation(), diag::err_objc_override_direct_method); 4421 Diag(attr->getLocation(), diag::note_previous_declaration); 4422 } else if (method->isDirectMethod()) { 4423 const auto *attr = method->getAttr<ObjCDirectAttr>(); 4424 Diag(attr->getLocation(), diag::err_objc_direct_on_override) 4425 << isa<ObjCProtocolDecl>(overridden->getDeclContext()); 4426 Diag(overridden->getLocation(), diag::note_previous_declaration); 4427 } 4428 } 4429 4430 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, 4431 ObjCInterfaceDecl *CurrentClass, 4432 ResultTypeCompatibilityKind RTC) { 4433 if (!ObjCMethod) 4434 return; 4435 // Search for overridden methods and merge information down from them. 4436 OverrideSearch overrides(*this, ObjCMethod); 4437 // Keep track if the method overrides any method in the class's base classes, 4438 // its protocols, or its categories' protocols; we will keep that info 4439 // in the ObjCMethodDecl. 4440 // For this info, a method in an implementation is not considered as 4441 // overriding the same method in the interface or its categories. 4442 bool hasOverriddenMethodsInBaseOrProtocol = false; 4443 for (ObjCMethodDecl *overridden : overrides) { 4444 if (!hasOverriddenMethodsInBaseOrProtocol) { 4445 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) || 4446 CurrentClass != overridden->getClassInterface() || 4447 overridden->isOverriding()) { 4448 CheckObjCMethodDirectOverrides(ObjCMethod, overridden); 4449 hasOverriddenMethodsInBaseOrProtocol = true; 4450 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) { 4451 // OverrideSearch will return as "overridden" the same method in the 4452 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to 4453 // check whether a category of a base class introduced a method with the 4454 // same selector, after the interface method declaration. 4455 // To avoid unnecessary lookups in the majority of cases, we use the 4456 // extra info bits in GlobalMethodPool to check whether there were any 4457 // category methods with this selector. 4458 GlobalMethodPool::iterator It = 4459 MethodPool.find(ObjCMethod->getSelector()); 4460 if (It != MethodPool.end()) { 4461 ObjCMethodList &List = 4462 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second; 4463 unsigned CategCount = List.getBits(); 4464 if (CategCount > 0) { 4465 // If the method is in a category we'll do lookup if there were at 4466 // least 2 category methods recorded, otherwise only one will do. 4467 if (CategCount > 1 || 4468 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) { 4469 OverrideSearch overrides(*this, overridden); 4470 for (ObjCMethodDecl *SuperOverridden : overrides) { 4471 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) || 4472 CurrentClass != SuperOverridden->getClassInterface()) { 4473 CheckObjCMethodDirectOverrides(ObjCMethod, SuperOverridden); 4474 hasOverriddenMethodsInBaseOrProtocol = true; 4475 overridden->setOverriding(true); 4476 break; 4477 } 4478 } 4479 } 4480 } 4481 } 4482 } 4483 } 4484 4485 // Propagate down the 'related result type' bit from overridden methods. 4486 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType()) 4487 ObjCMethod->setRelatedResultType(); 4488 4489 // Then merge the declarations. 4490 mergeObjCMethodDecls(ObjCMethod, overridden); 4491 4492 if (ObjCMethod->isImplicit() && overridden->isImplicit()) 4493 continue; // Conflicting properties are detected elsewhere. 4494 4495 // Check for overriding methods 4496 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || 4497 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) 4498 CheckConflictingOverridingMethod(ObjCMethod, overridden, 4499 isa<ObjCProtocolDecl>(overridden->getDeclContext())); 4500 4501 if (CurrentClass && overridden->getDeclContext() != CurrentClass && 4502 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) && 4503 !overridden->isImplicit() /* not meant for properties */) { 4504 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(), 4505 E = ObjCMethod->param_end(); 4506 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(), 4507 PrevE = overridden->param_end(); 4508 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) { 4509 assert(PrevI != overridden->param_end() && "Param mismatch"); 4510 QualType T1 = Context.getCanonicalType((*ParamI)->getType()); 4511 QualType T2 = Context.getCanonicalType((*PrevI)->getType()); 4512 // If type of argument of method in this class does not match its 4513 // respective argument type in the super class method, issue warning; 4514 if (!Context.typesAreCompatible(T1, T2)) { 4515 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) 4516 << T1 << T2; 4517 Diag(overridden->getLocation(), diag::note_previous_declaration); 4518 break; 4519 } 4520 } 4521 } 4522 } 4523 4524 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol); 4525 } 4526 4527 /// Merge type nullability from for a redeclaration of the same entity, 4528 /// producing the updated type of the redeclared entity. 4529 static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc, 4530 QualType type, 4531 bool usesCSKeyword, 4532 SourceLocation prevLoc, 4533 QualType prevType, 4534 bool prevUsesCSKeyword) { 4535 // Determine the nullability of both types. 4536 auto nullability = type->getNullability(S.Context); 4537 auto prevNullability = prevType->getNullability(S.Context); 4538 4539 // Easy case: both have nullability. 4540 if (nullability.has_value() == prevNullability.has_value()) { 4541 // Neither has nullability; continue. 4542 if (!nullability) 4543 return type; 4544 4545 // The nullabilities are equivalent; do nothing. 4546 if (*nullability == *prevNullability) 4547 return type; 4548 4549 // Complain about mismatched nullability. 4550 S.Diag(loc, diag::err_nullability_conflicting) 4551 << DiagNullabilityKind(*nullability, usesCSKeyword) 4552 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword); 4553 return type; 4554 } 4555 4556 // If it's the redeclaration that has nullability, don't change anything. 4557 if (nullability) 4558 return type; 4559 4560 // Otherwise, provide the result with the same nullability. 4561 return S.Context.getAttributedType( 4562 AttributedType::getNullabilityAttrKind(*prevNullability), 4563 type, type); 4564 } 4565 4566 /// Merge information from the declaration of a method in the \@interface 4567 /// (or a category/extension) into the corresponding method in the 4568 /// @implementation (for a class or category). 4569 static void mergeInterfaceMethodToImpl(Sema &S, 4570 ObjCMethodDecl *method, 4571 ObjCMethodDecl *prevMethod) { 4572 // Merge the objc_requires_super attribute. 4573 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() && 4574 !method->hasAttr<ObjCRequiresSuperAttr>()) { 4575 // merge the attribute into implementation. 4576 method->addAttr( 4577 ObjCRequiresSuperAttr::CreateImplicit(S.Context, 4578 method->getLocation())); 4579 } 4580 4581 // Merge nullability of the result type. 4582 QualType newReturnType 4583 = mergeTypeNullabilityForRedecl( 4584 S, method->getReturnTypeSourceRange().getBegin(), 4585 method->getReturnType(), 4586 method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, 4587 prevMethod->getReturnTypeSourceRange().getBegin(), 4588 prevMethod->getReturnType(), 4589 prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); 4590 method->setReturnType(newReturnType); 4591 4592 // Handle each of the parameters. 4593 unsigned numParams = method->param_size(); 4594 unsigned numPrevParams = prevMethod->param_size(); 4595 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) { 4596 ParmVarDecl *param = method->param_begin()[i]; 4597 ParmVarDecl *prevParam = prevMethod->param_begin()[i]; 4598 4599 // Merge nullability. 4600 QualType newParamType 4601 = mergeTypeNullabilityForRedecl( 4602 S, param->getLocation(), param->getType(), 4603 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, 4604 prevParam->getLocation(), prevParam->getType(), 4605 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); 4606 param->setType(newParamType); 4607 } 4608 } 4609 4610 /// Verify that the method parameters/return value have types that are supported 4611 /// by the x86 target. 4612 static void checkObjCMethodX86VectorTypes(Sema &SemaRef, 4613 const ObjCMethodDecl *Method) { 4614 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == 4615 llvm::Triple::x86 && 4616 "x86-specific check invoked for a different target"); 4617 SourceLocation Loc; 4618 QualType T; 4619 for (const ParmVarDecl *P : Method->parameters()) { 4620 if (P->getType()->isVectorType()) { 4621 Loc = P->getBeginLoc(); 4622 T = P->getType(); 4623 break; 4624 } 4625 } 4626 if (Loc.isInvalid()) { 4627 if (Method->getReturnType()->isVectorType()) { 4628 Loc = Method->getReturnTypeSourceRange().getBegin(); 4629 T = Method->getReturnType(); 4630 } else 4631 return; 4632 } 4633 4634 // Vector parameters/return values are not supported by objc_msgSend on x86 in 4635 // iOS < 9 and macOS < 10.11. 4636 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple(); 4637 VersionTuple AcceptedInVersion; 4638 if (Triple.getOS() == llvm::Triple::IOS) 4639 AcceptedInVersion = VersionTuple(/*Major=*/9); 4640 else if (Triple.isMacOSX()) 4641 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11); 4642 else 4643 return; 4644 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >= 4645 AcceptedInVersion) 4646 return; 4647 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type) 4648 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1 4649 : /*parameter*/ 0) 4650 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9"); 4651 } 4652 4653 static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) { 4654 if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() && 4655 CD->hasAttr<ObjCDirectMembersAttr>()) { 4656 Method->addAttr( 4657 ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation())); 4658 } 4659 } 4660 4661 static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl, 4662 ObjCMethodDecl *Method, 4663 ObjCImplDecl *ImpDecl = nullptr) { 4664 auto Sel = Method->getSelector(); 4665 bool isInstance = Method->isInstanceMethod(); 4666 bool diagnosed = false; 4667 4668 auto diagClash = [&](const ObjCMethodDecl *IMD) { 4669 if (diagnosed || IMD->isImplicit()) 4670 return; 4671 if (Method->isDirectMethod() || IMD->isDirectMethod()) { 4672 S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl) 4673 << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod() 4674 << Method->getDeclName(); 4675 S.Diag(IMD->getLocation(), diag::note_previous_declaration); 4676 diagnosed = true; 4677 } 4678 }; 4679 4680 // Look for any other declaration of this method anywhere we can see in this 4681 // compilation unit. 4682 // 4683 // We do not use IDecl->lookupMethod() because we have specific needs: 4684 // 4685 // - we absolutely do not need to walk protocols, because 4686 // diag::err_objc_direct_on_protocol has already been emitted 4687 // during parsing if there's a conflict, 4688 // 4689 // - when we do not find a match in a given @interface container, 4690 // we need to attempt looking it up in the @implementation block if the 4691 // translation unit sees it to find more clashes. 4692 4693 if (auto *IMD = IDecl->getMethod(Sel, isInstance)) 4694 diagClash(IMD); 4695 else if (auto *Impl = IDecl->getImplementation()) 4696 if (Impl != ImpDecl) 4697 if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance)) 4698 diagClash(IMD); 4699 4700 for (const auto *Cat : IDecl->visible_categories()) 4701 if (auto *IMD = Cat->getMethod(Sel, isInstance)) 4702 diagClash(IMD); 4703 else if (auto CatImpl = Cat->getImplementation()) 4704 if (CatImpl != ImpDecl) 4705 if (auto *IMD = Cat->getMethod(Sel, isInstance)) 4706 diagClash(IMD); 4707 } 4708 4709 Decl *Sema::ActOnMethodDeclaration( 4710 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc, 4711 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType, 4712 ArrayRef<SourceLocation> SelectorLocs, Selector Sel, 4713 // optional arguments. The number of types/arguments is obtained 4714 // from the Sel.getNumArgs(). 4715 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo, 4716 unsigned CNumArgs, // c-style args 4717 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind, 4718 bool isVariadic, bool MethodDefinition) { 4719 // Make sure we can establish a context for the method. 4720 if (!CurContext->isObjCContainer()) { 4721 Diag(MethodLoc, diag::err_missing_method_context); 4722 return nullptr; 4723 } 4724 4725 Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext); 4726 QualType resultDeclType; 4727 4728 bool HasRelatedResultType = false; 4729 TypeSourceInfo *ReturnTInfo = nullptr; 4730 if (ReturnType) { 4731 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo); 4732 4733 if (CheckFunctionReturnType(resultDeclType, MethodLoc)) 4734 return nullptr; 4735 4736 QualType bareResultType = resultDeclType; 4737 (void)AttributedType::stripOuterNullability(bareResultType); 4738 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType()); 4739 } else { // get the type for "id". 4740 resultDeclType = Context.getObjCIdType(); 4741 Diag(MethodLoc, diag::warn_missing_method_return_type) 4742 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)"); 4743 } 4744 4745 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create( 4746 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext, 4747 MethodType == tok::minus, isVariadic, 4748 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false, 4749 /*isImplicitlyDeclared=*/false, /*isDefined=*/false, 4750 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional 4751 : ObjCMethodDecl::Required, 4752 HasRelatedResultType); 4753 4754 SmallVector<ParmVarDecl*, 16> Params; 4755 4756 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { 4757 QualType ArgType; 4758 TypeSourceInfo *DI; 4759 4760 if (!ArgInfo[i].Type) { 4761 ArgType = Context.getObjCIdType(); 4762 DI = nullptr; 4763 } else { 4764 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); 4765 } 4766 4767 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 4768 LookupOrdinaryName, forRedeclarationInCurContext()); 4769 LookupName(R, S); 4770 if (R.isSingleResult()) { 4771 NamedDecl *PrevDecl = R.getFoundDecl(); 4772 if (S->isDeclScope(PrevDecl)) { 4773 Diag(ArgInfo[i].NameLoc, 4774 (MethodDefinition ? diag::warn_method_param_redefinition 4775 : diag::warn_method_param_declaration)) 4776 << ArgInfo[i].Name; 4777 Diag(PrevDecl->getLocation(), 4778 diag::note_previous_declaration); 4779 } 4780 } 4781 4782 SourceLocation StartLoc = DI 4783 ? DI->getTypeLoc().getBeginLoc() 4784 : ArgInfo[i].NameLoc; 4785 4786 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, 4787 ArgInfo[i].NameLoc, ArgInfo[i].Name, 4788 ArgType, DI, SC_None); 4789 4790 Param->setObjCMethodScopeInfo(i); 4791 4792 Param->setObjCDeclQualifier( 4793 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); 4794 4795 // Apply the attributes to the parameter. 4796 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); 4797 AddPragmaAttributes(TUScope, Param); 4798 4799 if (Param->hasAttr<BlocksAttr>()) { 4800 Diag(Param->getLocation(), diag::err_block_on_nonlocal); 4801 Param->setInvalidDecl(); 4802 } 4803 S->AddDecl(Param); 4804 IdResolver.AddDecl(Param); 4805 4806 Params.push_back(Param); 4807 } 4808 4809 for (unsigned i = 0, e = CNumArgs; i != e; ++i) { 4810 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); 4811 QualType ArgType = Param->getType(); 4812 if (ArgType.isNull()) 4813 ArgType = Context.getObjCIdType(); 4814 else 4815 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 4816 ArgType = Context.getAdjustedParameterType(ArgType); 4817 4818 Param->setDeclContext(ObjCMethod); 4819 Params.push_back(Param); 4820 } 4821 4822 ObjCMethod->setMethodParams(Context, Params, SelectorLocs); 4823 ObjCMethod->setObjCDeclQualifier( 4824 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); 4825 4826 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); 4827 AddPragmaAttributes(TUScope, ObjCMethod); 4828 4829 // Add the method now. 4830 const ObjCMethodDecl *PrevMethod = nullptr; 4831 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) { 4832 if (MethodType == tok::minus) { 4833 PrevMethod = ImpDecl->getInstanceMethod(Sel); 4834 ImpDecl->addInstanceMethod(ObjCMethod); 4835 } else { 4836 PrevMethod = ImpDecl->getClassMethod(Sel); 4837 ImpDecl->addClassMethod(ObjCMethod); 4838 } 4839 4840 // If this method overrides a previous @synthesize declaration, 4841 // register it with the property. Linear search through all 4842 // properties here, because the autosynthesized stub hasn't been 4843 // made visible yet, so it can be overridden by a later 4844 // user-specified implementation. 4845 for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) { 4846 if (auto *Setter = PropertyImpl->getSetterMethodDecl()) 4847 if (Setter->getSelector() == Sel && 4848 Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) { 4849 assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected"); 4850 PropertyImpl->setSetterMethodDecl(ObjCMethod); 4851 } 4852 if (auto *Getter = PropertyImpl->getGetterMethodDecl()) 4853 if (Getter->getSelector() == Sel && 4854 Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) { 4855 assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected"); 4856 PropertyImpl->setGetterMethodDecl(ObjCMethod); 4857 break; 4858 } 4859 } 4860 4861 // A method is either tagged direct explicitly, or inherits it from its 4862 // canonical declaration. 4863 // 4864 // We have to do the merge upfront and not in mergeInterfaceMethodToImpl() 4865 // because IDecl->lookupMethod() returns more possible matches than just 4866 // the canonical declaration. 4867 if (!ObjCMethod->isDirectMethod()) { 4868 const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl(); 4869 if (CanonicalMD->isDirectMethod()) { 4870 const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>(); 4871 ObjCMethod->addAttr( 4872 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation())); 4873 } 4874 } 4875 4876 // Merge information from the @interface declaration into the 4877 // @implementation. 4878 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) { 4879 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), 4880 ObjCMethod->isInstanceMethod())) { 4881 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD); 4882 4883 // The Idecl->lookupMethod() above will find declarations for ObjCMethod 4884 // in one of these places: 4885 // 4886 // (1) the canonical declaration in an @interface container paired 4887 // with the ImplDecl, 4888 // (2) non canonical declarations in @interface not paired with the 4889 // ImplDecl for the same Class, 4890 // (3) any superclass container. 4891 // 4892 // Direct methods only allow for canonical declarations in the matching 4893 // container (case 1). 4894 // 4895 // Direct methods overriding a superclass declaration (case 3) is 4896 // handled during overrides checks in CheckObjCMethodOverrides(). 4897 // 4898 // We deal with same-class container mismatches (Case 2) here. 4899 if (IDecl == IMD->getClassInterface()) { 4900 auto diagContainerMismatch = [&] { 4901 int decl = 0, impl = 0; 4902 4903 if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext())) 4904 decl = Cat->IsClassExtension() ? 1 : 2; 4905 4906 if (isa<ObjCCategoryImplDecl>(ImpDecl)) 4907 impl = 1 + (decl != 0); 4908 4909 Diag(ObjCMethod->getLocation(), 4910 diag::err_objc_direct_impl_decl_mismatch) 4911 << decl << impl; 4912 Diag(IMD->getLocation(), diag::note_previous_declaration); 4913 }; 4914 4915 if (ObjCMethod->isDirectMethod()) { 4916 const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>(); 4917 if (ObjCMethod->getCanonicalDecl() != IMD) { 4918 diagContainerMismatch(); 4919 } else if (!IMD->isDirectMethod()) { 4920 Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl); 4921 Diag(IMD->getLocation(), diag::note_previous_declaration); 4922 } 4923 } else if (IMD->isDirectMethod()) { 4924 const auto *attr = IMD->getAttr<ObjCDirectAttr>(); 4925 if (ObjCMethod->getCanonicalDecl() != IMD) { 4926 diagContainerMismatch(); 4927 } else { 4928 ObjCMethod->addAttr( 4929 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation())); 4930 } 4931 } 4932 } 4933 4934 // Warn about defining -dealloc in a category. 4935 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() && 4936 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) { 4937 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category) 4938 << ObjCMethod->getDeclName(); 4939 } 4940 } else { 4941 mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod); 4942 checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod, ImpDecl); 4943 } 4944 4945 // Warn if a method declared in a protocol to which a category or 4946 // extension conforms is non-escaping and the implementation's method is 4947 // escaping. 4948 for (auto *C : IDecl->visible_categories()) 4949 for (auto &P : C->protocols()) 4950 if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(), 4951 ObjCMethod->isInstanceMethod())) { 4952 assert(ObjCMethod->parameters().size() == 4953 IMD->parameters().size() && 4954 "Methods have different number of parameters"); 4955 auto OI = IMD->param_begin(), OE = IMD->param_end(); 4956 auto NI = ObjCMethod->param_begin(); 4957 for (; OI != OE; ++OI, ++NI) 4958 diagnoseNoescape(*NI, *OI, C, P, *this); 4959 } 4960 } 4961 } else { 4962 if (!isa<ObjCProtocolDecl>(ClassDecl)) { 4963 mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod); 4964 4965 ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 4966 if (!IDecl) 4967 IDecl = cast<ObjCCategoryDecl>(ClassDecl)->getClassInterface(); 4968 // For valid code, we should always know the primary interface 4969 // declaration by now, however for invalid code we'll keep parsing 4970 // but we won't find the primary interface and IDecl will be nil. 4971 if (IDecl) 4972 checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod); 4973 } 4974 4975 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); 4976 } 4977 4978 if (PrevMethod) { 4979 // You can never have two method definitions with the same name. 4980 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) 4981 << ObjCMethod->getDeclName(); 4982 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 4983 ObjCMethod->setInvalidDecl(); 4984 return ObjCMethod; 4985 } 4986 4987 // If this Objective-C method does not have a related result type, but we 4988 // are allowed to infer related result types, try to do so based on the 4989 // method family. 4990 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 4991 if (!CurrentClass) { 4992 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) 4993 CurrentClass = Cat->getClassInterface(); 4994 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) 4995 CurrentClass = Impl->getClassInterface(); 4996 else if (ObjCCategoryImplDecl *CatImpl 4997 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) 4998 CurrentClass = CatImpl->getClassInterface(); 4999 } 5000 5001 ResultTypeCompatibilityKind RTC 5002 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass); 5003 5004 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC); 5005 5006 bool ARCError = false; 5007 if (getLangOpts().ObjCAutoRefCount) 5008 ARCError = CheckARCMethodDecl(ObjCMethod); 5009 5010 // Infer the related result type when possible. 5011 if (!ARCError && RTC == Sema::RTC_Compatible && 5012 !ObjCMethod->hasRelatedResultType() && 5013 LangOpts.ObjCInferRelatedResultType) { 5014 bool InferRelatedResultType = false; 5015 switch (ObjCMethod->getMethodFamily()) { 5016 case OMF_None: 5017 case OMF_copy: 5018 case OMF_dealloc: 5019 case OMF_finalize: 5020 case OMF_mutableCopy: 5021 case OMF_release: 5022 case OMF_retainCount: 5023 case OMF_initialize: 5024 case OMF_performSelector: 5025 break; 5026 5027 case OMF_alloc: 5028 case OMF_new: 5029 InferRelatedResultType = ObjCMethod->isClassMethod(); 5030 break; 5031 5032 case OMF_init: 5033 case OMF_autorelease: 5034 case OMF_retain: 5035 case OMF_self: 5036 InferRelatedResultType = ObjCMethod->isInstanceMethod(); 5037 break; 5038 } 5039 5040 if (InferRelatedResultType && 5041 !ObjCMethod->getReturnType()->isObjCIndependentClassType()) 5042 ObjCMethod->setRelatedResultType(); 5043 } 5044 5045 if (MethodDefinition && 5046 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 5047 checkObjCMethodX86VectorTypes(*this, ObjCMethod); 5048 5049 // + load method cannot have availability attributes. It get called on 5050 // startup, so it has to have the availability of the deployment target. 5051 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) { 5052 if (ObjCMethod->isClassMethod() && 5053 ObjCMethod->getSelector().getAsString() == "load") { 5054 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) 5055 << 0; 5056 ObjCMethod->dropAttr<AvailabilityAttr>(); 5057 } 5058 } 5059 5060 // Insert the invisible arguments, self and _cmd! 5061 ObjCMethod->createImplicitParams(Context, ObjCMethod->getClassInterface()); 5062 5063 ActOnDocumentableDecl(ObjCMethod); 5064 5065 return ObjCMethod; 5066 } 5067 5068 bool Sema::CheckObjCDeclScope(Decl *D) { 5069 // Following is also an error. But it is caused by a missing @end 5070 // and diagnostic is issued elsewhere. 5071 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) 5072 return false; 5073 5074 // If we switched context to translation unit while we are still lexically in 5075 // an objc container, it means the parser missed emitting an error. 5076 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext())) 5077 return false; 5078 5079 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); 5080 D->setInvalidDecl(); 5081 5082 return true; 5083 } 5084 5085 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the 5086 /// instance variables of ClassName into Decls. 5087 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, 5088 IdentifierInfo *ClassName, 5089 SmallVectorImpl<Decl*> &Decls) { 5090 // Check that ClassName is a valid class 5091 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); 5092 if (!Class) { 5093 Diag(DeclStart, diag::err_undef_interface) << ClassName; 5094 return; 5095 } 5096 if (LangOpts.ObjCRuntime.isNonFragile()) { 5097 Diag(DeclStart, diag::err_atdef_nonfragile_interface); 5098 return; 5099 } 5100 5101 // Collect the instance variables 5102 SmallVector<const ObjCIvarDecl*, 32> Ivars; 5103 Context.DeepCollectObjCIvars(Class, true, Ivars); 5104 // For each ivar, create a fresh ObjCAtDefsFieldDecl. 5105 for (unsigned i = 0; i < Ivars.size(); i++) { 5106 const FieldDecl* ID = Ivars[i]; 5107 RecordDecl *Record = dyn_cast<RecordDecl>(TagD); 5108 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, 5109 /*FIXME: StartL=*/ID->getLocation(), 5110 ID->getLocation(), 5111 ID->getIdentifier(), ID->getType(), 5112 ID->getBitWidth()); 5113 Decls.push_back(FD); 5114 } 5115 5116 // Introduce all of these fields into the appropriate scope. 5117 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); 5118 D != Decls.end(); ++D) { 5119 FieldDecl *FD = cast<FieldDecl>(*D); 5120 if (getLangOpts().CPlusPlus) 5121 PushOnScopeChains(FD, S); 5122 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) 5123 Record->addDecl(FD); 5124 } 5125 } 5126 5127 /// Build a type-check a new Objective-C exception variable declaration. 5128 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, 5129 SourceLocation StartLoc, 5130 SourceLocation IdLoc, 5131 IdentifierInfo *Id, 5132 bool Invalid) { 5133 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 5134 // duration shall not be qualified by an address-space qualifier." 5135 // Since all parameters have automatic store duration, they can not have 5136 // an address space. 5137 if (T.getAddressSpace() != LangAS::Default) { 5138 Diag(IdLoc, diag::err_arg_with_address_space); 5139 Invalid = true; 5140 } 5141 5142 // An @catch parameter must be an unqualified object pointer type; 5143 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? 5144 if (Invalid) { 5145 // Don't do any further checking. 5146 } else if (T->isDependentType()) { 5147 // Okay: we don't know what this type will instantiate to. 5148 } else if (T->isObjCQualifiedIdType()) { 5149 Invalid = true; 5150 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); 5151 } else if (T->isObjCIdType()) { 5152 // Okay: we don't know what this type will instantiate to. 5153 } else if (!T->isObjCObjectPointerType()) { 5154 Invalid = true; 5155 Diag(IdLoc, diag::err_catch_param_not_objc_type); 5156 } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) { 5157 Invalid = true; 5158 Diag(IdLoc, diag::err_catch_param_not_objc_type); 5159 } 5160 5161 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, 5162 T, TInfo, SC_None); 5163 New->setExceptionVariable(true); 5164 5165 // In ARC, infer 'retaining' for variables of retainable type. 5166 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New)) 5167 Invalid = true; 5168 5169 if (Invalid) 5170 New->setInvalidDecl(); 5171 return New; 5172 } 5173 5174 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { 5175 const DeclSpec &DS = D.getDeclSpec(); 5176 5177 // We allow the "register" storage class on exception variables because 5178 // GCC did, but we drop it completely. Any other storage class is an error. 5179 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 5180 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) 5181 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); 5182 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { 5183 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) 5184 << DeclSpec::getSpecifierName(SCS); 5185 } 5186 if (DS.isInlineSpecified()) 5187 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) 5188 << getLangOpts().CPlusPlus17; 5189 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 5190 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 5191 diag::err_invalid_thread) 5192 << DeclSpec::getSpecifierName(TSCS); 5193 D.getMutableDeclSpec().ClearStorageClassSpecs(); 5194 5195 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 5196 5197 // Check that there are no default arguments inside the type of this 5198 // exception object (C++ only). 5199 if (getLangOpts().CPlusPlus) 5200 CheckExtraCXXDefaultArguments(D); 5201 5202 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 5203 QualType ExceptionType = TInfo->getType(); 5204 5205 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, 5206 D.getSourceRange().getBegin(), 5207 D.getIdentifierLoc(), 5208 D.getIdentifier(), 5209 D.isInvalidType()); 5210 5211 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 5212 if (D.getCXXScopeSpec().isSet()) { 5213 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) 5214 << D.getCXXScopeSpec().getRange(); 5215 New->setInvalidDecl(); 5216 } 5217 5218 // Add the parameter declaration into this scope. 5219 S->AddDecl(New); 5220 if (D.getIdentifier()) 5221 IdResolver.AddDecl(New); 5222 5223 ProcessDeclAttributes(S, New, D); 5224 5225 if (New->hasAttr<BlocksAttr>()) 5226 Diag(New->getLocation(), diag::err_block_on_nonlocal); 5227 return New; 5228 } 5229 5230 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require 5231 /// initialization. 5232 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, 5233 SmallVectorImpl<ObjCIvarDecl*> &Ivars) { 5234 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 5235 Iv= Iv->getNextIvar()) { 5236 QualType QT = Context.getBaseElementType(Iv->getType()); 5237 if (QT->isRecordType()) 5238 Ivars.push_back(Iv); 5239 } 5240 } 5241 5242 void Sema::DiagnoseUseOfUnimplementedSelectors() { 5243 // Load referenced selectors from the external source. 5244 if (ExternalSource) { 5245 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; 5246 ExternalSource->ReadReferencedSelectors(Sels); 5247 for (unsigned I = 0, N = Sels.size(); I != N; ++I) 5248 ReferencedSelectors[Sels[I].first] = Sels[I].second; 5249 } 5250 5251 // Warning will be issued only when selector table is 5252 // generated (which means there is at lease one implementation 5253 // in the TU). This is to match gcc's behavior. 5254 if (ReferencedSelectors.empty() || 5255 !Context.AnyObjCImplementation()) 5256 return; 5257 for (auto &SelectorAndLocation : ReferencedSelectors) { 5258 Selector Sel = SelectorAndLocation.first; 5259 SourceLocation Loc = SelectorAndLocation.second; 5260 if (!LookupImplementedMethodInGlobalPool(Sel)) 5261 Diag(Loc, diag::warn_unimplemented_selector) << Sel; 5262 } 5263 } 5264 5265 ObjCIvarDecl * 5266 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, 5267 const ObjCPropertyDecl *&PDecl) const { 5268 if (Method->isClassMethod()) 5269 return nullptr; 5270 const ObjCInterfaceDecl *IDecl = Method->getClassInterface(); 5271 if (!IDecl) 5272 return nullptr; 5273 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true, 5274 /*shallowCategoryLookup=*/false, 5275 /*followSuper=*/false); 5276 if (!Method || !Method->isPropertyAccessor()) 5277 return nullptr; 5278 if ((PDecl = Method->findPropertyDecl())) 5279 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) { 5280 // property backing ivar must belong to property's class 5281 // or be a private ivar in class's implementation. 5282 // FIXME. fix the const-ness issue. 5283 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable( 5284 IV->getIdentifier()); 5285 return IV; 5286 } 5287 return nullptr; 5288 } 5289 5290 namespace { 5291 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property 5292 /// accessor references the backing ivar. 5293 class UnusedBackingIvarChecker : 5294 public RecursiveASTVisitor<UnusedBackingIvarChecker> { 5295 public: 5296 Sema &S; 5297 const ObjCMethodDecl *Method; 5298 const ObjCIvarDecl *IvarD; 5299 bool AccessedIvar; 5300 bool InvokedSelfMethod; 5301 5302 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method, 5303 const ObjCIvarDecl *IvarD) 5304 : S(S), Method(Method), IvarD(IvarD), 5305 AccessedIvar(false), InvokedSelfMethod(false) { 5306 assert(IvarD); 5307 } 5308 5309 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 5310 if (E->getDecl() == IvarD) { 5311 AccessedIvar = true; 5312 return false; 5313 } 5314 return true; 5315 } 5316 5317 bool VisitObjCMessageExpr(ObjCMessageExpr *E) { 5318 if (E->getReceiverKind() == ObjCMessageExpr::Instance && 5319 S.isSelfExpr(E->getInstanceReceiver(), Method)) { 5320 InvokedSelfMethod = true; 5321 } 5322 return true; 5323 } 5324 }; 5325 } // end anonymous namespace 5326 5327 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S, 5328 const ObjCImplementationDecl *ImplD) { 5329 if (S->hasUnrecoverableErrorOccurred()) 5330 return; 5331 5332 for (const auto *CurMethod : ImplD->instance_methods()) { 5333 unsigned DIAG = diag::warn_unused_property_backing_ivar; 5334 SourceLocation Loc = CurMethod->getLocation(); 5335 if (Diags.isIgnored(DIAG, Loc)) 5336 continue; 5337 5338 const ObjCPropertyDecl *PDecl; 5339 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl); 5340 if (!IV) 5341 continue; 5342 5343 if (CurMethod->isSynthesizedAccessorStub()) 5344 continue; 5345 5346 UnusedBackingIvarChecker Checker(*this, CurMethod, IV); 5347 Checker.TraverseStmt(CurMethod->getBody()); 5348 if (Checker.AccessedIvar) 5349 continue; 5350 5351 // Do not issue this warning if backing ivar is used somewhere and accessor 5352 // implementation makes a self call. This is to prevent false positive in 5353 // cases where the ivar is accessed by another method that the accessor 5354 // delegates to. 5355 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) { 5356 Diag(Loc, DIAG) << IV; 5357 Diag(PDecl->getLocation(), diag::note_property_declare); 5358 } 5359 } 5360 } 5361