xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaDeclObjC.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for Objective C declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/RecursiveASTVisitor.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Sema/DeclSpec.h"
23 #include "clang/Sema/Lookup.h"
24 #include "clang/Sema/Scope.h"
25 #include "clang/Sema/ScopeInfo.h"
26 #include "clang/Sema/SemaInternal.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 
30 using namespace clang;
31 
32 /// Check whether the given method, which must be in the 'init'
33 /// family, is a valid member of that family.
34 ///
35 /// \param receiverTypeIfCall - if null, check this as if declaring it;
36 ///   if non-null, check this as if making a call to it with the given
37 ///   receiver type
38 ///
39 /// \return true to indicate that there was an error and appropriate
40 ///   actions were taken
41 bool Sema::checkInitMethod(ObjCMethodDecl *method,
42                            QualType receiverTypeIfCall) {
43   if (method->isInvalidDecl()) return true;
44 
45   // This castAs is safe: methods that don't return an object
46   // pointer won't be inferred as inits and will reject an explicit
47   // objc_method_family(init).
48 
49   // We ignore protocols here.  Should we?  What about Class?
50 
51   const ObjCObjectType *result =
52       method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
53 
54   if (result->isObjCId()) {
55     return false;
56   } else if (result->isObjCClass()) {
57     // fall through: always an error
58   } else {
59     ObjCInterfaceDecl *resultClass = result->getInterface();
60     assert(resultClass && "unexpected object type!");
61 
62     // It's okay for the result type to still be a forward declaration
63     // if we're checking an interface declaration.
64     if (!resultClass->hasDefinition()) {
65       if (receiverTypeIfCall.isNull() &&
66           !isa<ObjCImplementationDecl>(method->getDeclContext()))
67         return false;
68 
69     // Otherwise, we try to compare class types.
70     } else {
71       // If this method was declared in a protocol, we can't check
72       // anything unless we have a receiver type that's an interface.
73       const ObjCInterfaceDecl *receiverClass = nullptr;
74       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75         if (receiverTypeIfCall.isNull())
76           return false;
77 
78         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79           ->getInterfaceDecl();
80 
81         // This can be null for calls to e.g. id<Foo>.
82         if (!receiverClass) return false;
83       } else {
84         receiverClass = method->getClassInterface();
85         assert(receiverClass && "method not associated with a class!");
86       }
87 
88       // If either class is a subclass of the other, it's fine.
89       if (receiverClass->isSuperClassOf(resultClass) ||
90           resultClass->isSuperClassOf(receiverClass))
91         return false;
92     }
93   }
94 
95   SourceLocation loc = method->getLocation();
96 
97   // If we're in a system header, and this is not a call, just make
98   // the method unusable.
99   if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100     method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
101                       UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
102     return true;
103   }
104 
105   // Otherwise, it's an error.
106   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
107   method->setInvalidDecl();
108   return true;
109 }
110 
111 /// Issue a warning if the parameter of the overridden method is non-escaping
112 /// but the parameter of the overriding method is not.
113 static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
114                              Sema &S) {
115   if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
116     S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
117     S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
118     return false;
119   }
120 
121   return true;
122 }
123 
124 /// Produce additional diagnostics if a category conforms to a protocol that
125 /// defines a method taking a non-escaping parameter.
126 static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
127                              const ObjCCategoryDecl *CD,
128                              const ObjCProtocolDecl *PD, Sema &S) {
129   if (!diagnoseNoescape(NewD, OldD, S))
130     S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
131         << CD->IsClassExtension() << PD
132         << cast<ObjCMethodDecl>(NewD->getDeclContext());
133 }
134 
135 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
136                                    const ObjCMethodDecl *Overridden) {
137   if (Overridden->hasRelatedResultType() &&
138       !NewMethod->hasRelatedResultType()) {
139     // This can only happen when the method follows a naming convention that
140     // implies a related result type, and the original (overridden) method has
141     // a suitable return type, but the new (overriding) method does not have
142     // a suitable return type.
143     QualType ResultType = NewMethod->getReturnType();
144     SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
145 
146     // Figure out which class this method is part of, if any.
147     ObjCInterfaceDecl *CurrentClass
148       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
149     if (!CurrentClass) {
150       DeclContext *DC = NewMethod->getDeclContext();
151       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
152         CurrentClass = Cat->getClassInterface();
153       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
154         CurrentClass = Impl->getClassInterface();
155       else if (ObjCCategoryImplDecl *CatImpl
156                = dyn_cast<ObjCCategoryImplDecl>(DC))
157         CurrentClass = CatImpl->getClassInterface();
158     }
159 
160     if (CurrentClass) {
161       Diag(NewMethod->getLocation(),
162            diag::warn_related_result_type_compatibility_class)
163         << Context.getObjCInterfaceType(CurrentClass)
164         << ResultType
165         << ResultTypeRange;
166     } else {
167       Diag(NewMethod->getLocation(),
168            diag::warn_related_result_type_compatibility_protocol)
169         << ResultType
170         << ResultTypeRange;
171     }
172 
173     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
174       Diag(Overridden->getLocation(),
175            diag::note_related_result_type_family)
176         << /*overridden method*/ 0
177         << Family;
178     else
179       Diag(Overridden->getLocation(),
180            diag::note_related_result_type_overridden);
181   }
182 
183   if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
184        Overridden->hasAttr<NSReturnsRetainedAttr>())) {
185     Diag(NewMethod->getLocation(),
186          getLangOpts().ObjCAutoRefCount
187              ? diag::err_nsreturns_retained_attribute_mismatch
188              : diag::warn_nsreturns_retained_attribute_mismatch)
189         << 1;
190     Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
191   }
192   if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
193        Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
194     Diag(NewMethod->getLocation(),
195          getLangOpts().ObjCAutoRefCount
196              ? diag::err_nsreturns_retained_attribute_mismatch
197              : diag::warn_nsreturns_retained_attribute_mismatch)
198         << 0;
199     Diag(Overridden->getLocation(), diag::note_previous_decl)  << "method";
200   }
201 
202   ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
203                                        oe = Overridden->param_end();
204   for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
205                                       ne = NewMethod->param_end();
206        ni != ne && oi != oe; ++ni, ++oi) {
207     const ParmVarDecl *oldDecl = (*oi);
208     ParmVarDecl *newDecl = (*ni);
209     if (newDecl->hasAttr<NSConsumedAttr>() !=
210         oldDecl->hasAttr<NSConsumedAttr>()) {
211       Diag(newDecl->getLocation(),
212            getLangOpts().ObjCAutoRefCount
213                ? diag::err_nsconsumed_attribute_mismatch
214                : diag::warn_nsconsumed_attribute_mismatch);
215       Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
216     }
217 
218     diagnoseNoescape(newDecl, oldDecl, *this);
219   }
220 }
221 
222 /// Check a method declaration for compatibility with the Objective-C
223 /// ARC conventions.
224 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
225   ObjCMethodFamily family = method->getMethodFamily();
226   switch (family) {
227   case OMF_None:
228   case OMF_finalize:
229   case OMF_retain:
230   case OMF_release:
231   case OMF_autorelease:
232   case OMF_retainCount:
233   case OMF_self:
234   case OMF_initialize:
235   case OMF_performSelector:
236     return false;
237 
238   case OMF_dealloc:
239     if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
240       SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
241       if (ResultTypeRange.isInvalid())
242         Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
243             << method->getReturnType()
244             << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
245       else
246         Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
247             << method->getReturnType()
248             << FixItHint::CreateReplacement(ResultTypeRange, "void");
249       return true;
250     }
251     return false;
252 
253   case OMF_init:
254     // If the method doesn't obey the init rules, don't bother annotating it.
255     if (checkInitMethod(method, QualType()))
256       return true;
257 
258     method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
259 
260     // Don't add a second copy of this attribute, but otherwise don't
261     // let it be suppressed.
262     if (method->hasAttr<NSReturnsRetainedAttr>())
263       return false;
264     break;
265 
266   case OMF_alloc:
267   case OMF_copy:
268   case OMF_mutableCopy:
269   case OMF_new:
270     if (method->hasAttr<NSReturnsRetainedAttr>() ||
271         method->hasAttr<NSReturnsNotRetainedAttr>() ||
272         method->hasAttr<NSReturnsAutoreleasedAttr>())
273       return false;
274     break;
275   }
276 
277   method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
278   return false;
279 }
280 
281 static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
282                                                 SourceLocation ImplLoc) {
283   if (!ND)
284     return;
285   bool IsCategory = false;
286   StringRef RealizedPlatform;
287   AvailabilityResult Availability = ND->getAvailability(
288       /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
289       &RealizedPlatform);
290   if (Availability != AR_Deprecated) {
291     if (isa<ObjCMethodDecl>(ND)) {
292       if (Availability != AR_Unavailable)
293         return;
294       if (RealizedPlatform.empty())
295         RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
296       // Warn about implementing unavailable methods, unless the unavailable
297       // is for an app extension.
298       if (RealizedPlatform.endswith("_app_extension"))
299         return;
300       S.Diag(ImplLoc, diag::warn_unavailable_def);
301       S.Diag(ND->getLocation(), diag::note_method_declared_at)
302           << ND->getDeclName();
303       return;
304     }
305     if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
306       if (!CD->getClassInterface()->isDeprecated())
307         return;
308       ND = CD->getClassInterface();
309       IsCategory = true;
310     } else
311       return;
312   }
313   S.Diag(ImplLoc, diag::warn_deprecated_def)
314       << (isa<ObjCMethodDecl>(ND)
315               ? /*Method*/ 0
316               : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
317                                                         : /*Class*/ 1);
318   if (isa<ObjCMethodDecl>(ND))
319     S.Diag(ND->getLocation(), diag::note_method_declared_at)
320         << ND->getDeclName();
321   else
322     S.Diag(ND->getLocation(), diag::note_previous_decl)
323         << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
324 }
325 
326 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
327 /// pool.
328 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
329   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
330 
331   // If we don't have a valid method decl, simply return.
332   if (!MDecl)
333     return;
334   if (MDecl->isInstanceMethod())
335     AddInstanceMethodToGlobalPool(MDecl, true);
336   else
337     AddFactoryMethodToGlobalPool(MDecl, true);
338 }
339 
340 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
341 /// has explicit ownership attribute; false otherwise.
342 static bool
343 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
344   QualType T = Param->getType();
345 
346   if (const PointerType *PT = T->getAs<PointerType>()) {
347     T = PT->getPointeeType();
348   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
349     T = RT->getPointeeType();
350   } else {
351     return true;
352   }
353 
354   // If we have a lifetime qualifier, but it's local, we must have
355   // inferred it. So, it is implicit.
356   return !T.getLocalQualifiers().hasObjCLifetime();
357 }
358 
359 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
360 /// and user declared, in the method definition's AST.
361 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
362   ImplicitlyRetainedSelfLocs.clear();
363   assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
364   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
365 
366   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
367 
368   // If we don't have a valid method decl, simply return.
369   if (!MDecl)
370     return;
371 
372   QualType ResultType = MDecl->getReturnType();
373   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
374       !MDecl->isInvalidDecl() &&
375       RequireCompleteType(MDecl->getLocation(), ResultType,
376                           diag::err_func_def_incomplete_result))
377     MDecl->setInvalidDecl();
378 
379   // Allow all of Sema to see that we are entering a method definition.
380   PushDeclContext(FnBodyScope, MDecl);
381   PushFunctionScope();
382 
383   // Create Decl objects for each parameter, entrring them in the scope for
384   // binding to their use.
385 
386   // Insert the invisible arguments, self and _cmd!
387   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
388 
389   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
390   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
391 
392   // The ObjC parser requires parameter names so there's no need to check.
393   CheckParmsForFunctionDef(MDecl->parameters(),
394                            /*CheckParameterNames=*/false);
395 
396   // Introduce all of the other parameters into this scope.
397   for (auto *Param : MDecl->parameters()) {
398     if (!Param->isInvalidDecl() &&
399         getLangOpts().ObjCAutoRefCount &&
400         !HasExplicitOwnershipAttr(*this, Param))
401       Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
402             Param->getType();
403 
404     if (Param->getIdentifier())
405       PushOnScopeChains(Param, FnBodyScope);
406   }
407 
408   // In ARC, disallow definition of retain/release/autorelease/retainCount
409   if (getLangOpts().ObjCAutoRefCount) {
410     switch (MDecl->getMethodFamily()) {
411     case OMF_retain:
412     case OMF_retainCount:
413     case OMF_release:
414     case OMF_autorelease:
415       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
416         << 0 << MDecl->getSelector();
417       break;
418 
419     case OMF_None:
420     case OMF_dealloc:
421     case OMF_finalize:
422     case OMF_alloc:
423     case OMF_init:
424     case OMF_mutableCopy:
425     case OMF_copy:
426     case OMF_new:
427     case OMF_self:
428     case OMF_initialize:
429     case OMF_performSelector:
430       break;
431     }
432   }
433 
434   // Warn on deprecated methods under -Wdeprecated-implementations,
435   // and prepare for warning on missing super calls.
436   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
437     ObjCMethodDecl *IMD =
438       IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
439 
440     if (IMD) {
441       ObjCImplDecl *ImplDeclOfMethodDef =
442         dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
443       ObjCContainerDecl *ContDeclOfMethodDecl =
444         dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
445       ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
446       if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
447         ImplDeclOfMethodDecl = OID->getImplementation();
448       else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
449         if (CD->IsClassExtension()) {
450           if (ObjCInterfaceDecl *OID = CD->getClassInterface())
451             ImplDeclOfMethodDecl = OID->getImplementation();
452         } else
453             ImplDeclOfMethodDecl = CD->getImplementation();
454       }
455       // No need to issue deprecated warning if deprecated mehod in class/category
456       // is being implemented in its own implementation (no overriding is involved).
457       if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
458         DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
459     }
460 
461     if (MDecl->getMethodFamily() == OMF_init) {
462       if (MDecl->isDesignatedInitializerForTheInterface()) {
463         getCurFunction()->ObjCIsDesignatedInit = true;
464         getCurFunction()->ObjCWarnForNoDesignatedInitChain =
465             IC->getSuperClass() != nullptr;
466       } else if (IC->hasDesignatedInitializers()) {
467         getCurFunction()->ObjCIsSecondaryInit = true;
468         getCurFunction()->ObjCWarnForNoInitDelegation = true;
469       }
470     }
471 
472     // If this is "dealloc" or "finalize", set some bit here.
473     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
474     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
475     // Only do this if the current class actually has a superclass.
476     if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
477       ObjCMethodFamily Family = MDecl->getMethodFamily();
478       if (Family == OMF_dealloc) {
479         if (!(getLangOpts().ObjCAutoRefCount ||
480               getLangOpts().getGC() == LangOptions::GCOnly))
481           getCurFunction()->ObjCShouldCallSuper = true;
482 
483       } else if (Family == OMF_finalize) {
484         if (Context.getLangOpts().getGC() != LangOptions::NonGC)
485           getCurFunction()->ObjCShouldCallSuper = true;
486 
487       } else {
488         const ObjCMethodDecl *SuperMethod =
489           SuperClass->lookupMethod(MDecl->getSelector(),
490                                    MDecl->isInstanceMethod());
491         getCurFunction()->ObjCShouldCallSuper =
492           (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
493       }
494     }
495   }
496 }
497 
498 namespace {
499 
500 // Callback to only accept typo corrections that are Objective-C classes.
501 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
502 // function will reject corrections to that class.
503 class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
504  public:
505   ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
506   explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
507       : CurrentIDecl(IDecl) {}
508 
509   bool ValidateCandidate(const TypoCorrection &candidate) override {
510     ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
511     return ID && !declaresSameEntity(ID, CurrentIDecl);
512   }
513 
514   std::unique_ptr<CorrectionCandidateCallback> clone() override {
515     return std::make_unique<ObjCInterfaceValidatorCCC>(*this);
516   }
517 
518  private:
519   ObjCInterfaceDecl *CurrentIDecl;
520 };
521 
522 } // end anonymous namespace
523 
524 static void diagnoseUseOfProtocols(Sema &TheSema,
525                                    ObjCContainerDecl *CD,
526                                    ObjCProtocolDecl *const *ProtoRefs,
527                                    unsigned NumProtoRefs,
528                                    const SourceLocation *ProtoLocs) {
529   assert(ProtoRefs);
530   // Diagnose availability in the context of the ObjC container.
531   Sema::ContextRAII SavedContext(TheSema, CD);
532   for (unsigned i = 0; i < NumProtoRefs; ++i) {
533     (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
534                                     /*UnknownObjCClass=*/nullptr,
535                                     /*ObjCPropertyAccess=*/false,
536                                     /*AvoidPartialAvailabilityChecks=*/true);
537   }
538 }
539 
540 void Sema::
541 ActOnSuperClassOfClassInterface(Scope *S,
542                                 SourceLocation AtInterfaceLoc,
543                                 ObjCInterfaceDecl *IDecl,
544                                 IdentifierInfo *ClassName,
545                                 SourceLocation ClassLoc,
546                                 IdentifierInfo *SuperName,
547                                 SourceLocation SuperLoc,
548                                 ArrayRef<ParsedType> SuperTypeArgs,
549                                 SourceRange SuperTypeArgsRange) {
550   // Check if a different kind of symbol declared in this scope.
551   NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
552                                          LookupOrdinaryName);
553 
554   if (!PrevDecl) {
555     // Try to correct for a typo in the superclass name without correcting
556     // to the class we're defining.
557     ObjCInterfaceValidatorCCC CCC(IDecl);
558     if (TypoCorrection Corrected = CorrectTypo(
559             DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName,
560             TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
561       diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
562                    << SuperName << ClassName);
563       PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
564     }
565   }
566 
567   if (declaresSameEntity(PrevDecl, IDecl)) {
568     Diag(SuperLoc, diag::err_recursive_superclass)
569       << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
570     IDecl->setEndOfDefinitionLoc(ClassLoc);
571   } else {
572     ObjCInterfaceDecl *SuperClassDecl =
573     dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
574     QualType SuperClassType;
575 
576     // Diagnose classes that inherit from deprecated classes.
577     if (SuperClassDecl) {
578       (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
579       SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
580     }
581 
582     if (PrevDecl && !SuperClassDecl) {
583       // The previous declaration was not a class decl. Check if we have a
584       // typedef. If we do, get the underlying class type.
585       if (const TypedefNameDecl *TDecl =
586           dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
587         QualType T = TDecl->getUnderlyingType();
588         if (T->isObjCObjectType()) {
589           if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
590             SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
591             SuperClassType = Context.getTypeDeclType(TDecl);
592 
593             // This handles the following case:
594             // @interface NewI @end
595             // typedef NewI DeprI __attribute__((deprecated("blah")))
596             // @interface SI : DeprI /* warn here */ @end
597             (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
598           }
599         }
600       }
601 
602       // This handles the following case:
603       //
604       // typedef int SuperClass;
605       // @interface MyClass : SuperClass {} @end
606       //
607       if (!SuperClassDecl) {
608         Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
609         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
610       }
611     }
612 
613     if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
614       if (!SuperClassDecl)
615         Diag(SuperLoc, diag::err_undef_superclass)
616           << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
617       else if (RequireCompleteType(SuperLoc,
618                                    SuperClassType,
619                                    diag::err_forward_superclass,
620                                    SuperClassDecl->getDeclName(),
621                                    ClassName,
622                                    SourceRange(AtInterfaceLoc, ClassLoc))) {
623         SuperClassDecl = nullptr;
624         SuperClassType = QualType();
625       }
626     }
627 
628     if (SuperClassType.isNull()) {
629       assert(!SuperClassDecl && "Failed to set SuperClassType?");
630       return;
631     }
632 
633     // Handle type arguments on the superclass.
634     TypeSourceInfo *SuperClassTInfo = nullptr;
635     if (!SuperTypeArgs.empty()) {
636       TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
637                                         S,
638                                         SuperLoc,
639                                         CreateParsedType(SuperClassType,
640                                                          nullptr),
641                                         SuperTypeArgsRange.getBegin(),
642                                         SuperTypeArgs,
643                                         SuperTypeArgsRange.getEnd(),
644                                         SourceLocation(),
645                                         { },
646                                         { },
647                                         SourceLocation());
648       if (!fullSuperClassType.isUsable())
649         return;
650 
651       SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
652                                          &SuperClassTInfo);
653     }
654 
655     if (!SuperClassTInfo) {
656       SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
657                                                          SuperLoc);
658     }
659 
660     IDecl->setSuperClass(SuperClassTInfo);
661     IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
662   }
663 }
664 
665 DeclResult Sema::actOnObjCTypeParam(Scope *S,
666                                     ObjCTypeParamVariance variance,
667                                     SourceLocation varianceLoc,
668                                     unsigned index,
669                                     IdentifierInfo *paramName,
670                                     SourceLocation paramLoc,
671                                     SourceLocation colonLoc,
672                                     ParsedType parsedTypeBound) {
673   // If there was an explicitly-provided type bound, check it.
674   TypeSourceInfo *typeBoundInfo = nullptr;
675   if (parsedTypeBound) {
676     // The type bound can be any Objective-C pointer type.
677     QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
678     if (typeBound->isObjCObjectPointerType()) {
679       // okay
680     } else if (typeBound->isObjCObjectType()) {
681       // The user forgot the * on an Objective-C pointer type, e.g.,
682       // "T : NSView".
683       SourceLocation starLoc = getLocForEndOfToken(
684                                  typeBoundInfo->getTypeLoc().getEndLoc());
685       Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
686            diag::err_objc_type_param_bound_missing_pointer)
687         << typeBound << paramName
688         << FixItHint::CreateInsertion(starLoc, " *");
689 
690       // Create a new type location builder so we can update the type
691       // location information we have.
692       TypeLocBuilder builder;
693       builder.pushFullCopy(typeBoundInfo->getTypeLoc());
694 
695       // Create the Objective-C pointer type.
696       typeBound = Context.getObjCObjectPointerType(typeBound);
697       ObjCObjectPointerTypeLoc newT
698         = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
699       newT.setStarLoc(starLoc);
700 
701       // Form the new type source information.
702       typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
703     } else {
704       // Not a valid type bound.
705       Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
706            diag::err_objc_type_param_bound_nonobject)
707         << typeBound << paramName;
708 
709       // Forget the bound; we'll default to id later.
710       typeBoundInfo = nullptr;
711     }
712 
713     // Type bounds cannot have qualifiers (even indirectly) or explicit
714     // nullability.
715     if (typeBoundInfo) {
716       QualType typeBound = typeBoundInfo->getType();
717       TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
718       if (qual || typeBound.hasQualifiers()) {
719         bool diagnosed = false;
720         SourceRange rangeToRemove;
721         if (qual) {
722           if (auto attr = qual.getAs<AttributedTypeLoc>()) {
723             rangeToRemove = attr.getLocalSourceRange();
724             if (attr.getTypePtr()->getImmediateNullability()) {
725               Diag(attr.getBeginLoc(),
726                    diag::err_objc_type_param_bound_explicit_nullability)
727                   << paramName << typeBound
728                   << FixItHint::CreateRemoval(rangeToRemove);
729               diagnosed = true;
730             }
731           }
732         }
733 
734         if (!diagnosed) {
735           Diag(qual ? qual.getBeginLoc()
736                     : typeBoundInfo->getTypeLoc().getBeginLoc(),
737                diag::err_objc_type_param_bound_qualified)
738               << paramName << typeBound
739               << typeBound.getQualifiers().getAsString()
740               << FixItHint::CreateRemoval(rangeToRemove);
741         }
742 
743         // If the type bound has qualifiers other than CVR, we need to strip
744         // them or we'll probably assert later when trying to apply new
745         // qualifiers.
746         Qualifiers quals = typeBound.getQualifiers();
747         quals.removeCVRQualifiers();
748         if (!quals.empty()) {
749           typeBoundInfo =
750              Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
751         }
752       }
753     }
754   }
755 
756   // If there was no explicit type bound (or we removed it due to an error),
757   // use 'id' instead.
758   if (!typeBoundInfo) {
759     colonLoc = SourceLocation();
760     typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
761   }
762 
763   // Create the type parameter.
764   return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
765                                    index, paramLoc, paramName, colonLoc,
766                                    typeBoundInfo);
767 }
768 
769 ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
770                                                 SourceLocation lAngleLoc,
771                                                 ArrayRef<Decl *> typeParamsIn,
772                                                 SourceLocation rAngleLoc) {
773   // We know that the array only contains Objective-C type parameters.
774   ArrayRef<ObjCTypeParamDecl *>
775     typeParams(
776       reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
777       typeParamsIn.size());
778 
779   // Diagnose redeclarations of type parameters.
780   // We do this now because Objective-C type parameters aren't pushed into
781   // scope until later (after the instance variable block), but we want the
782   // diagnostics to occur right after we parse the type parameter list.
783   llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
784   for (auto typeParam : typeParams) {
785     auto known = knownParams.find(typeParam->getIdentifier());
786     if (known != knownParams.end()) {
787       Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
788         << typeParam->getIdentifier()
789         << SourceRange(known->second->getLocation());
790 
791       typeParam->setInvalidDecl();
792     } else {
793       knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
794 
795       // Push the type parameter into scope.
796       PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
797     }
798   }
799 
800   // Create the parameter list.
801   return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
802 }
803 
804 void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
805   for (auto typeParam : *typeParamList) {
806     if (!typeParam->isInvalidDecl()) {
807       S->RemoveDecl(typeParam);
808       IdResolver.RemoveDecl(typeParam);
809     }
810   }
811 }
812 
813 namespace {
814   /// The context in which an Objective-C type parameter list occurs, for use
815   /// in diagnostics.
816   enum class TypeParamListContext {
817     ForwardDeclaration,
818     Definition,
819     Category,
820     Extension
821   };
822 } // end anonymous namespace
823 
824 /// Check consistency between two Objective-C type parameter lists, e.g.,
825 /// between a category/extension and an \@interface or between an \@class and an
826 /// \@interface.
827 static bool checkTypeParamListConsistency(Sema &S,
828                                           ObjCTypeParamList *prevTypeParams,
829                                           ObjCTypeParamList *newTypeParams,
830                                           TypeParamListContext newContext) {
831   // If the sizes don't match, complain about that.
832   if (prevTypeParams->size() != newTypeParams->size()) {
833     SourceLocation diagLoc;
834     if (newTypeParams->size() > prevTypeParams->size()) {
835       diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
836     } else {
837       diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
838     }
839 
840     S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
841       << static_cast<unsigned>(newContext)
842       << (newTypeParams->size() > prevTypeParams->size())
843       << prevTypeParams->size()
844       << newTypeParams->size();
845 
846     return true;
847   }
848 
849   // Match up the type parameters.
850   for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
851     ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
852     ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
853 
854     // Check for consistency of the variance.
855     if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
856       if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
857           newContext != TypeParamListContext::Definition) {
858         // When the new type parameter is invariant and is not part
859         // of the definition, just propagate the variance.
860         newTypeParam->setVariance(prevTypeParam->getVariance());
861       } else if (prevTypeParam->getVariance()
862                    == ObjCTypeParamVariance::Invariant &&
863                  !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
864                    cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
865                      ->getDefinition() == prevTypeParam->getDeclContext())) {
866         // When the old parameter is invariant and was not part of the
867         // definition, just ignore the difference because it doesn't
868         // matter.
869       } else {
870         {
871           // Diagnose the conflict and update the second declaration.
872           SourceLocation diagLoc = newTypeParam->getVarianceLoc();
873           if (diagLoc.isInvalid())
874             diagLoc = newTypeParam->getBeginLoc();
875 
876           auto diag = S.Diag(diagLoc,
877                              diag::err_objc_type_param_variance_conflict)
878                         << static_cast<unsigned>(newTypeParam->getVariance())
879                         << newTypeParam->getDeclName()
880                         << static_cast<unsigned>(prevTypeParam->getVariance())
881                         << prevTypeParam->getDeclName();
882           switch (prevTypeParam->getVariance()) {
883           case ObjCTypeParamVariance::Invariant:
884             diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
885             break;
886 
887           case ObjCTypeParamVariance::Covariant:
888           case ObjCTypeParamVariance::Contravariant: {
889             StringRef newVarianceStr
890                = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
891                    ? "__covariant"
892                    : "__contravariant";
893             if (newTypeParam->getVariance()
894                   == ObjCTypeParamVariance::Invariant) {
895               diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
896                                                  (newVarianceStr + " ").str());
897             } else {
898               diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
899                                                newVarianceStr);
900             }
901           }
902           }
903         }
904 
905         S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
906           << prevTypeParam->getDeclName();
907 
908         // Override the variance.
909         newTypeParam->setVariance(prevTypeParam->getVariance());
910       }
911     }
912 
913     // If the bound types match, there's nothing to do.
914     if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
915                               newTypeParam->getUnderlyingType()))
916       continue;
917 
918     // If the new type parameter's bound was explicit, complain about it being
919     // different from the original.
920     if (newTypeParam->hasExplicitBound()) {
921       SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
922                                     ->getTypeLoc().getSourceRange();
923       S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
924         << newTypeParam->getUnderlyingType()
925         << newTypeParam->getDeclName()
926         << prevTypeParam->hasExplicitBound()
927         << prevTypeParam->getUnderlyingType()
928         << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
929         << prevTypeParam->getDeclName()
930         << FixItHint::CreateReplacement(
931              newBoundRange,
932              prevTypeParam->getUnderlyingType().getAsString(
933                S.Context.getPrintingPolicy()));
934 
935       S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
936         << prevTypeParam->getDeclName();
937 
938       // Override the new type parameter's bound type with the previous type,
939       // so that it's consistent.
940       newTypeParam->setTypeSourceInfo(
941         S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
942       continue;
943     }
944 
945     // The new type parameter got the implicit bound of 'id'. That's okay for
946     // categories and extensions (overwrite it later), but not for forward
947     // declarations and @interfaces, because those must be standalone.
948     if (newContext == TypeParamListContext::ForwardDeclaration ||
949         newContext == TypeParamListContext::Definition) {
950       // Diagnose this problem for forward declarations and definitions.
951       SourceLocation insertionLoc
952         = S.getLocForEndOfToken(newTypeParam->getLocation());
953       std::string newCode
954         = " : " + prevTypeParam->getUnderlyingType().getAsString(
955                     S.Context.getPrintingPolicy());
956       S.Diag(newTypeParam->getLocation(),
957              diag::err_objc_type_param_bound_missing)
958         << prevTypeParam->getUnderlyingType()
959         << newTypeParam->getDeclName()
960         << (newContext == TypeParamListContext::ForwardDeclaration)
961         << FixItHint::CreateInsertion(insertionLoc, newCode);
962 
963       S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
964         << prevTypeParam->getDeclName();
965     }
966 
967     // Update the new type parameter's bound to match the previous one.
968     newTypeParam->setTypeSourceInfo(
969       S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
970   }
971 
972   return false;
973 }
974 
975 Decl *Sema::ActOnStartClassInterface(
976     Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
977     SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
978     IdentifierInfo *SuperName, SourceLocation SuperLoc,
979     ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
980     Decl *const *ProtoRefs, unsigned NumProtoRefs,
981     const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
982     const ParsedAttributesView &AttrList) {
983   assert(ClassName && "Missing class identifier");
984 
985   // Check for another declaration kind with the same name.
986   NamedDecl *PrevDecl =
987       LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
988                        forRedeclarationInCurContext());
989 
990   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
991     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
992     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
993   }
994 
995   // Create a declaration to describe this @interface.
996   ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
997 
998   if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
999     // A previous decl with a different name is because of
1000     // @compatibility_alias, for example:
1001     // \code
1002     //   @class NewImage;
1003     //   @compatibility_alias OldImage NewImage;
1004     // \endcode
1005     // A lookup for 'OldImage' will return the 'NewImage' decl.
1006     //
1007     // In such a case use the real declaration name, instead of the alias one,
1008     // otherwise we will break IdentifierResolver and redecls-chain invariants.
1009     // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1010     // has been aliased.
1011     ClassName = PrevIDecl->getIdentifier();
1012   }
1013 
1014   // If there was a forward declaration with type parameters, check
1015   // for consistency.
1016   if (PrevIDecl) {
1017     if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1018       if (typeParamList) {
1019         // Both have type parameter lists; check for consistency.
1020         if (checkTypeParamListConsistency(*this, prevTypeParamList,
1021                                           typeParamList,
1022                                           TypeParamListContext::Definition)) {
1023           typeParamList = nullptr;
1024         }
1025       } else {
1026         Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1027           << ClassName;
1028         Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1029           << ClassName;
1030 
1031         // Clone the type parameter list.
1032         SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1033         for (auto typeParam : *prevTypeParamList) {
1034           clonedTypeParams.push_back(
1035             ObjCTypeParamDecl::Create(
1036               Context,
1037               CurContext,
1038               typeParam->getVariance(),
1039               SourceLocation(),
1040               typeParam->getIndex(),
1041               SourceLocation(),
1042               typeParam->getIdentifier(),
1043               SourceLocation(),
1044               Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1045         }
1046 
1047         typeParamList = ObjCTypeParamList::create(Context,
1048                                                   SourceLocation(),
1049                                                   clonedTypeParams,
1050                                                   SourceLocation());
1051       }
1052     }
1053   }
1054 
1055   ObjCInterfaceDecl *IDecl
1056     = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1057                                 typeParamList, PrevIDecl, ClassLoc);
1058   if (PrevIDecl) {
1059     // Class already seen. Was it a definition?
1060     if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1061       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1062         << PrevIDecl->getDeclName();
1063       Diag(Def->getLocation(), diag::note_previous_definition);
1064       IDecl->setInvalidDecl();
1065     }
1066   }
1067 
1068   ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1069   AddPragmaAttributes(TUScope, IDecl);
1070   PushOnScopeChains(IDecl, TUScope);
1071 
1072   // Start the definition of this class. If we're in a redefinition case, there
1073   // may already be a definition, so we'll end up adding to it.
1074   if (!IDecl->hasDefinition())
1075     IDecl->startDefinition();
1076 
1077   if (SuperName) {
1078     // Diagnose availability in the context of the @interface.
1079     ContextRAII SavedContext(*this, IDecl);
1080 
1081     ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1082                                     ClassName, ClassLoc,
1083                                     SuperName, SuperLoc, SuperTypeArgs,
1084                                     SuperTypeArgsRange);
1085   } else { // we have a root class.
1086     IDecl->setEndOfDefinitionLoc(ClassLoc);
1087   }
1088 
1089   // Check then save referenced protocols.
1090   if (NumProtoRefs) {
1091     diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1092                            NumProtoRefs, ProtoLocs);
1093     IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1094                            ProtoLocs, Context);
1095     IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1096   }
1097 
1098   CheckObjCDeclScope(IDecl);
1099   return ActOnObjCContainerStartDefinition(IDecl);
1100 }
1101 
1102 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
1103 /// typedef'ed use for a qualified super class and adds them to the list
1104 /// of the protocols.
1105 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1106                                   SmallVectorImpl<SourceLocation> &ProtocolLocs,
1107                                    IdentifierInfo *SuperName,
1108                                    SourceLocation SuperLoc) {
1109   if (!SuperName)
1110     return;
1111   NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1112                                       LookupOrdinaryName);
1113   if (!IDecl)
1114     return;
1115 
1116   if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1117     QualType T = TDecl->getUnderlyingType();
1118     if (T->isObjCObjectType())
1119       if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1120         ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1121         // FIXME: Consider whether this should be an invalid loc since the loc
1122         // is not actually pointing to a protocol name reference but to the
1123         // typedef reference. Note that the base class name loc is also pointing
1124         // at the typedef.
1125         ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1126       }
1127   }
1128 }
1129 
1130 /// ActOnCompatibilityAlias - this action is called after complete parsing of
1131 /// a \@compatibility_alias declaration. It sets up the alias relationships.
1132 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1133                                     IdentifierInfo *AliasName,
1134                                     SourceLocation AliasLocation,
1135                                     IdentifierInfo *ClassName,
1136                                     SourceLocation ClassLocation) {
1137   // Look for previous declaration of alias name
1138   NamedDecl *ADecl =
1139       LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1140                        forRedeclarationInCurContext());
1141   if (ADecl) {
1142     Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1143     Diag(ADecl->getLocation(), diag::note_previous_declaration);
1144     return nullptr;
1145   }
1146   // Check for class declaration
1147   NamedDecl *CDeclU =
1148       LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1149                        forRedeclarationInCurContext());
1150   if (const TypedefNameDecl *TDecl =
1151         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1152     QualType T = TDecl->getUnderlyingType();
1153     if (T->isObjCObjectType()) {
1154       if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
1155         ClassName = IDecl->getIdentifier();
1156         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1157                                   LookupOrdinaryName,
1158                                   forRedeclarationInCurContext());
1159       }
1160     }
1161   }
1162   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1163   if (!CDecl) {
1164     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1165     if (CDeclU)
1166       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1167     return nullptr;
1168   }
1169 
1170   // Everything checked out, instantiate a new alias declaration AST.
1171   ObjCCompatibleAliasDecl *AliasDecl =
1172     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1173 
1174   if (!CheckObjCDeclScope(AliasDecl))
1175     PushOnScopeChains(AliasDecl, TUScope);
1176 
1177   return AliasDecl;
1178 }
1179 
1180 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1181   IdentifierInfo *PName,
1182   SourceLocation &Ploc, SourceLocation PrevLoc,
1183   const ObjCList<ObjCProtocolDecl> &PList) {
1184 
1185   bool res = false;
1186   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1187        E = PList.end(); I != E; ++I) {
1188     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1189                                                  Ploc)) {
1190       if (PDecl->getIdentifier() == PName) {
1191         Diag(Ploc, diag::err_protocol_has_circular_dependency);
1192         Diag(PrevLoc, diag::note_previous_definition);
1193         res = true;
1194       }
1195 
1196       if (!PDecl->hasDefinition())
1197         continue;
1198 
1199       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1200             PDecl->getLocation(), PDecl->getReferencedProtocols()))
1201         res = true;
1202     }
1203   }
1204   return res;
1205 }
1206 
1207 Decl *Sema::ActOnStartProtocolInterface(
1208     SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1209     SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1210     const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1211     const ParsedAttributesView &AttrList) {
1212   bool err = false;
1213   // FIXME: Deal with AttrList.
1214   assert(ProtocolName && "Missing protocol identifier");
1215   ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1216                                               forRedeclarationInCurContext());
1217   ObjCProtocolDecl *PDecl = nullptr;
1218   if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1219     // If we already have a definition, complain.
1220     Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1221     Diag(Def->getLocation(), diag::note_previous_definition);
1222 
1223     // Create a new protocol that is completely distinct from previous
1224     // declarations, and do not make this protocol available for name lookup.
1225     // That way, we'll end up completely ignoring the duplicate.
1226     // FIXME: Can we turn this into an error?
1227     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1228                                      ProtocolLoc, AtProtoInterfaceLoc,
1229                                      /*PrevDecl=*/nullptr);
1230 
1231     // If we are using modules, add the decl to the context in order to
1232     // serialize something meaningful.
1233     if (getLangOpts().Modules)
1234       PushOnScopeChains(PDecl, TUScope);
1235     PDecl->startDefinition();
1236   } else {
1237     if (PrevDecl) {
1238       // Check for circular dependencies among protocol declarations. This can
1239       // only happen if this protocol was forward-declared.
1240       ObjCList<ObjCProtocolDecl> PList;
1241       PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1242       err = CheckForwardProtocolDeclarationForCircularDependency(
1243               ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1244     }
1245 
1246     // Create the new declaration.
1247     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1248                                      ProtocolLoc, AtProtoInterfaceLoc,
1249                                      /*PrevDecl=*/PrevDecl);
1250 
1251     PushOnScopeChains(PDecl, TUScope);
1252     PDecl->startDefinition();
1253   }
1254 
1255   ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1256   AddPragmaAttributes(TUScope, PDecl);
1257 
1258   // Merge attributes from previous declarations.
1259   if (PrevDecl)
1260     mergeDeclAttributes(PDecl, PrevDecl);
1261 
1262   if (!err && NumProtoRefs ) {
1263     /// Check then save referenced protocols.
1264     diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1265                            NumProtoRefs, ProtoLocs);
1266     PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1267                            ProtoLocs, Context);
1268   }
1269 
1270   CheckObjCDeclScope(PDecl);
1271   return ActOnObjCContainerStartDefinition(PDecl);
1272 }
1273 
1274 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1275                                           ObjCProtocolDecl *&UndefinedProtocol) {
1276   if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1277     UndefinedProtocol = PDecl;
1278     return true;
1279   }
1280 
1281   for (auto *PI : PDecl->protocols())
1282     if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1283       UndefinedProtocol = PI;
1284       return true;
1285     }
1286   return false;
1287 }
1288 
1289 /// FindProtocolDeclaration - This routine looks up protocols and
1290 /// issues an error if they are not declared. It returns list of
1291 /// protocol declarations in its 'Protocols' argument.
1292 void
1293 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1294                               ArrayRef<IdentifierLocPair> ProtocolId,
1295                               SmallVectorImpl<Decl *> &Protocols) {
1296   for (const IdentifierLocPair &Pair : ProtocolId) {
1297     ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1298     if (!PDecl) {
1299       DeclFilterCCC<ObjCProtocolDecl> CCC{};
1300       TypoCorrection Corrected = CorrectTypo(
1301           DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName,
1302           TUScope, nullptr, CCC, CTK_ErrorRecovery);
1303       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1304         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1305                                     << Pair.first);
1306     }
1307 
1308     if (!PDecl) {
1309       Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1310       continue;
1311     }
1312     // If this is a forward protocol declaration, get its definition.
1313     if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1314       PDecl = PDecl->getDefinition();
1315 
1316     // For an objc container, delay protocol reference checking until after we
1317     // can set the objc decl as the availability context, otherwise check now.
1318     if (!ForObjCContainer) {
1319       (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1320     }
1321 
1322     // If this is a forward declaration and we are supposed to warn in this
1323     // case, do it.
1324     // FIXME: Recover nicely in the hidden case.
1325     ObjCProtocolDecl *UndefinedProtocol;
1326 
1327     if (WarnOnDeclarations &&
1328         NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1329       Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1330       Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1331         << UndefinedProtocol;
1332     }
1333     Protocols.push_back(PDecl);
1334   }
1335 }
1336 
1337 namespace {
1338 // Callback to only accept typo corrections that are either
1339 // Objective-C protocols or valid Objective-C type arguments.
1340 class ObjCTypeArgOrProtocolValidatorCCC final
1341     : public CorrectionCandidateCallback {
1342   ASTContext &Context;
1343   Sema::LookupNameKind LookupKind;
1344  public:
1345   ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1346                                     Sema::LookupNameKind lookupKind)
1347     : Context(context), LookupKind(lookupKind) { }
1348 
1349   bool ValidateCandidate(const TypoCorrection &candidate) override {
1350     // If we're allowed to find protocols and we have a protocol, accept it.
1351     if (LookupKind != Sema::LookupOrdinaryName) {
1352       if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1353         return true;
1354     }
1355 
1356     // If we're allowed to find type names and we have one, accept it.
1357     if (LookupKind != Sema::LookupObjCProtocolName) {
1358       // If we have a type declaration, we might accept this result.
1359       if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1360         // If we found a tag declaration outside of C++, skip it. This
1361         // can happy because we look for any name when there is no
1362         // bias to protocol or type names.
1363         if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1364           return false;
1365 
1366         // Make sure the type is something we would accept as a type
1367         // argument.
1368         auto type = Context.getTypeDeclType(typeDecl);
1369         if (type->isObjCObjectPointerType() ||
1370             type->isBlockPointerType() ||
1371             type->isDependentType() ||
1372             type->isObjCObjectType())
1373           return true;
1374 
1375         return false;
1376       }
1377 
1378       // If we have an Objective-C class type, accept it; there will
1379       // be another fix to add the '*'.
1380       if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1381         return true;
1382 
1383       return false;
1384     }
1385 
1386     return false;
1387   }
1388 
1389   std::unique_ptr<CorrectionCandidateCallback> clone() override {
1390     return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
1391   }
1392 };
1393 } // end anonymous namespace
1394 
1395 void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1396                                         SourceLocation ProtocolLoc,
1397                                         IdentifierInfo *TypeArgId,
1398                                         SourceLocation TypeArgLoc,
1399                                         bool SelectProtocolFirst) {
1400   Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1401       << SelectProtocolFirst << TypeArgId << ProtocolId
1402       << SourceRange(ProtocolLoc);
1403 }
1404 
1405 void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1406        Scope *S,
1407        ParsedType baseType,
1408        SourceLocation lAngleLoc,
1409        ArrayRef<IdentifierInfo *> identifiers,
1410        ArrayRef<SourceLocation> identifierLocs,
1411        SourceLocation rAngleLoc,
1412        SourceLocation &typeArgsLAngleLoc,
1413        SmallVectorImpl<ParsedType> &typeArgs,
1414        SourceLocation &typeArgsRAngleLoc,
1415        SourceLocation &protocolLAngleLoc,
1416        SmallVectorImpl<Decl *> &protocols,
1417        SourceLocation &protocolRAngleLoc,
1418        bool warnOnIncompleteProtocols) {
1419   // Local function that updates the declaration specifiers with
1420   // protocol information.
1421   unsigned numProtocolsResolved = 0;
1422   auto resolvedAsProtocols = [&] {
1423     assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1424 
1425     // Determine whether the base type is a parameterized class, in
1426     // which case we want to warn about typos such as
1427     // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1428     ObjCInterfaceDecl *baseClass = nullptr;
1429     QualType base = GetTypeFromParser(baseType, nullptr);
1430     bool allAreTypeNames = false;
1431     SourceLocation firstClassNameLoc;
1432     if (!base.isNull()) {
1433       if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1434         baseClass = objcObjectType->getInterface();
1435         if (baseClass) {
1436           if (auto typeParams = baseClass->getTypeParamList()) {
1437             if (typeParams->size() == numProtocolsResolved) {
1438               // Note that we should be looking for type names, too.
1439               allAreTypeNames = true;
1440             }
1441           }
1442         }
1443       }
1444     }
1445 
1446     for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1447       ObjCProtocolDecl *&proto
1448         = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1449       // For an objc container, delay protocol reference checking until after we
1450       // can set the objc decl as the availability context, otherwise check now.
1451       if (!warnOnIncompleteProtocols) {
1452         (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1453       }
1454 
1455       // If this is a forward protocol declaration, get its definition.
1456       if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1457         proto = proto->getDefinition();
1458 
1459       // If this is a forward declaration and we are supposed to warn in this
1460       // case, do it.
1461       // FIXME: Recover nicely in the hidden case.
1462       ObjCProtocolDecl *forwardDecl = nullptr;
1463       if (warnOnIncompleteProtocols &&
1464           NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1465         Diag(identifierLocs[i], diag::warn_undef_protocolref)
1466           << proto->getDeclName();
1467         Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1468           << forwardDecl;
1469       }
1470 
1471       // If everything this far has been a type name (and we care
1472       // about such things), check whether this name refers to a type
1473       // as well.
1474       if (allAreTypeNames) {
1475         if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1476                                           LookupOrdinaryName)) {
1477           if (isa<ObjCInterfaceDecl>(decl)) {
1478             if (firstClassNameLoc.isInvalid())
1479               firstClassNameLoc = identifierLocs[i];
1480           } else if (!isa<TypeDecl>(decl)) {
1481             // Not a type.
1482             allAreTypeNames = false;
1483           }
1484         } else {
1485           allAreTypeNames = false;
1486         }
1487       }
1488     }
1489 
1490     // All of the protocols listed also have type names, and at least
1491     // one is an Objective-C class name. Check whether all of the
1492     // protocol conformances are declared by the base class itself, in
1493     // which case we warn.
1494     if (allAreTypeNames && firstClassNameLoc.isValid()) {
1495       llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1496       Context.CollectInheritedProtocols(baseClass, knownProtocols);
1497       bool allProtocolsDeclared = true;
1498       for (auto proto : protocols) {
1499         if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1500           allProtocolsDeclared = false;
1501           break;
1502         }
1503       }
1504 
1505       if (allProtocolsDeclared) {
1506         Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1507           << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1508           << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1509                                         " *");
1510       }
1511     }
1512 
1513     protocolLAngleLoc = lAngleLoc;
1514     protocolRAngleLoc = rAngleLoc;
1515     assert(protocols.size() == identifierLocs.size());
1516   };
1517 
1518   // Attempt to resolve all of the identifiers as protocols.
1519   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1520     ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1521     protocols.push_back(proto);
1522     if (proto)
1523       ++numProtocolsResolved;
1524   }
1525 
1526   // If all of the names were protocols, these were protocol qualifiers.
1527   if (numProtocolsResolved == identifiers.size())
1528     return resolvedAsProtocols();
1529 
1530   // Attempt to resolve all of the identifiers as type names or
1531   // Objective-C class names. The latter is technically ill-formed,
1532   // but is probably something like \c NSArray<NSView *> missing the
1533   // \c*.
1534   typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1535   SmallVector<TypeOrClassDecl, 4> typeDecls;
1536   unsigned numTypeDeclsResolved = 0;
1537   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1538     NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1539                                        LookupOrdinaryName);
1540     if (!decl) {
1541       typeDecls.push_back(TypeOrClassDecl());
1542       continue;
1543     }
1544 
1545     if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1546       typeDecls.push_back(typeDecl);
1547       ++numTypeDeclsResolved;
1548       continue;
1549     }
1550 
1551     if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1552       typeDecls.push_back(objcClass);
1553       ++numTypeDeclsResolved;
1554       continue;
1555     }
1556 
1557     typeDecls.push_back(TypeOrClassDecl());
1558   }
1559 
1560   AttributeFactory attrFactory;
1561 
1562   // Local function that forms a reference to the given type or
1563   // Objective-C class declaration.
1564   auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1565                                 -> TypeResult {
1566     // Form declaration specifiers. They simply refer to the type.
1567     DeclSpec DS(attrFactory);
1568     const char* prevSpec; // unused
1569     unsigned diagID; // unused
1570     QualType type;
1571     if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1572       type = Context.getTypeDeclType(actualTypeDecl);
1573     else
1574       type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1575     TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1576     ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1577     DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1578                        parsedType, Context.getPrintingPolicy());
1579     // Use the identifier location for the type source range.
1580     DS.SetRangeStart(loc);
1581     DS.SetRangeEnd(loc);
1582 
1583     // Form the declarator.
1584     Declarator D(DS, DeclaratorContext::TypeNameContext);
1585 
1586     // If we have a typedef of an Objective-C class type that is missing a '*',
1587     // add the '*'.
1588     if (type->getAs<ObjCInterfaceType>()) {
1589       SourceLocation starLoc = getLocForEndOfToken(loc);
1590       D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc,
1591                                                 SourceLocation(),
1592                                                 SourceLocation(),
1593                                                 SourceLocation(),
1594                                                 SourceLocation(),
1595                                                 SourceLocation()),
1596                                                 starLoc);
1597 
1598       // Diagnose the missing '*'.
1599       Diag(loc, diag::err_objc_type_arg_missing_star)
1600         << type
1601         << FixItHint::CreateInsertion(starLoc, " *");
1602     }
1603 
1604     // Convert this to a type.
1605     return ActOnTypeName(S, D);
1606   };
1607 
1608   // Local function that updates the declaration specifiers with
1609   // type argument information.
1610   auto resolvedAsTypeDecls = [&] {
1611     // We did not resolve these as protocols.
1612     protocols.clear();
1613 
1614     assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1615     // Map type declarations to type arguments.
1616     for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1617       // Map type reference to a type.
1618       TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1619       if (!type.isUsable()) {
1620         typeArgs.clear();
1621         return;
1622       }
1623 
1624       typeArgs.push_back(type.get());
1625     }
1626 
1627     typeArgsLAngleLoc = lAngleLoc;
1628     typeArgsRAngleLoc = rAngleLoc;
1629   };
1630 
1631   // If all of the identifiers can be resolved as type names or
1632   // Objective-C class names, we have type arguments.
1633   if (numTypeDeclsResolved == identifiers.size())
1634     return resolvedAsTypeDecls();
1635 
1636   // Error recovery: some names weren't found, or we have a mix of
1637   // type and protocol names. Go resolve all of the unresolved names
1638   // and complain if we can't find a consistent answer.
1639   LookupNameKind lookupKind = LookupAnyName;
1640   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1641     // If we already have a protocol or type. Check whether it is the
1642     // right thing.
1643     if (protocols[i] || typeDecls[i]) {
1644       // If we haven't figured out whether we want types or protocols
1645       // yet, try to figure it out from this name.
1646       if (lookupKind == LookupAnyName) {
1647         // If this name refers to both a protocol and a type (e.g., \c
1648         // NSObject), don't conclude anything yet.
1649         if (protocols[i] && typeDecls[i])
1650           continue;
1651 
1652         // Otherwise, let this name decide whether we'll be correcting
1653         // toward types or protocols.
1654         lookupKind = protocols[i] ? LookupObjCProtocolName
1655                                   : LookupOrdinaryName;
1656         continue;
1657       }
1658 
1659       // If we want protocols and we have a protocol, there's nothing
1660       // more to do.
1661       if (lookupKind == LookupObjCProtocolName && protocols[i])
1662         continue;
1663 
1664       // If we want types and we have a type declaration, there's
1665       // nothing more to do.
1666       if (lookupKind == LookupOrdinaryName && typeDecls[i])
1667         continue;
1668 
1669       // We have a conflict: some names refer to protocols and others
1670       // refer to types.
1671       DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1672                                    identifiers[i], identifierLocs[i],
1673                                    protocols[i] != nullptr);
1674 
1675       protocols.clear();
1676       typeArgs.clear();
1677       return;
1678     }
1679 
1680     // Perform typo correction on the name.
1681     ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1682     TypoCorrection corrected =
1683         CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]),
1684                     lookupKind, S, nullptr, CCC, CTK_ErrorRecovery);
1685     if (corrected) {
1686       // Did we find a protocol?
1687       if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1688         diagnoseTypo(corrected,
1689                      PDiag(diag::err_undeclared_protocol_suggest)
1690                        << identifiers[i]);
1691         lookupKind = LookupObjCProtocolName;
1692         protocols[i] = proto;
1693         ++numProtocolsResolved;
1694         continue;
1695       }
1696 
1697       // Did we find a type?
1698       if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1699         diagnoseTypo(corrected,
1700                      PDiag(diag::err_unknown_typename_suggest)
1701                        << identifiers[i]);
1702         lookupKind = LookupOrdinaryName;
1703         typeDecls[i] = typeDecl;
1704         ++numTypeDeclsResolved;
1705         continue;
1706       }
1707 
1708       // Did we find an Objective-C class?
1709       if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1710         diagnoseTypo(corrected,
1711                      PDiag(diag::err_unknown_type_or_class_name_suggest)
1712                        << identifiers[i] << true);
1713         lookupKind = LookupOrdinaryName;
1714         typeDecls[i] = objcClass;
1715         ++numTypeDeclsResolved;
1716         continue;
1717       }
1718     }
1719 
1720     // We couldn't find anything.
1721     Diag(identifierLocs[i],
1722          (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1723           : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1724           : diag::err_unknown_typename))
1725       << identifiers[i];
1726     protocols.clear();
1727     typeArgs.clear();
1728     return;
1729   }
1730 
1731   // If all of the names were (corrected to) protocols, these were
1732   // protocol qualifiers.
1733   if (numProtocolsResolved == identifiers.size())
1734     return resolvedAsProtocols();
1735 
1736   // Otherwise, all of the names were (corrected to) types.
1737   assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1738   return resolvedAsTypeDecls();
1739 }
1740 
1741 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1742 /// a class method in its extension.
1743 ///
1744 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1745                                             ObjCInterfaceDecl *ID) {
1746   if (!ID)
1747     return;  // Possibly due to previous error
1748 
1749   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1750   for (auto *MD : ID->methods())
1751     MethodMap[MD->getSelector()] = MD;
1752 
1753   if (MethodMap.empty())
1754     return;
1755   for (const auto *Method : CAT->methods()) {
1756     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1757     if (PrevMethod &&
1758         (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1759         !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1760       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1761             << Method->getDeclName();
1762       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1763     }
1764   }
1765 }
1766 
1767 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1768 Sema::DeclGroupPtrTy
1769 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1770                                       ArrayRef<IdentifierLocPair> IdentList,
1771                                       const ParsedAttributesView &attrList) {
1772   SmallVector<Decl *, 8> DeclsInGroup;
1773   for (const IdentifierLocPair &IdentPair : IdentList) {
1774     IdentifierInfo *Ident = IdentPair.first;
1775     ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1776                                                 forRedeclarationInCurContext());
1777     ObjCProtocolDecl *PDecl
1778       = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1779                                  IdentPair.second, AtProtocolLoc,
1780                                  PrevDecl);
1781 
1782     PushOnScopeChains(PDecl, TUScope);
1783     CheckObjCDeclScope(PDecl);
1784 
1785     ProcessDeclAttributeList(TUScope, PDecl, attrList);
1786     AddPragmaAttributes(TUScope, PDecl);
1787 
1788     if (PrevDecl)
1789       mergeDeclAttributes(PDecl, PrevDecl);
1790 
1791     DeclsInGroup.push_back(PDecl);
1792   }
1793 
1794   return BuildDeclaratorGroup(DeclsInGroup);
1795 }
1796 
1797 Decl *Sema::ActOnStartCategoryInterface(
1798     SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1799     SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1800     IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1801     Decl *const *ProtoRefs, unsigned NumProtoRefs,
1802     const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1803     const ParsedAttributesView &AttrList) {
1804   ObjCCategoryDecl *CDecl;
1805   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1806 
1807   /// Check that class of this category is already completely declared.
1808 
1809   if (!IDecl
1810       || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1811                              diag::err_category_forward_interface,
1812                              CategoryName == nullptr)) {
1813     // Create an invalid ObjCCategoryDecl to serve as context for
1814     // the enclosing method declarations.  We mark the decl invalid
1815     // to make it clear that this isn't a valid AST.
1816     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1817                                      ClassLoc, CategoryLoc, CategoryName,
1818                                      IDecl, typeParamList);
1819     CDecl->setInvalidDecl();
1820     CurContext->addDecl(CDecl);
1821 
1822     if (!IDecl)
1823       Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1824     return ActOnObjCContainerStartDefinition(CDecl);
1825   }
1826 
1827   if (!CategoryName && IDecl->getImplementation()) {
1828     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1829     Diag(IDecl->getImplementation()->getLocation(),
1830           diag::note_implementation_declared);
1831   }
1832 
1833   if (CategoryName) {
1834     /// Check for duplicate interface declaration for this category
1835     if (ObjCCategoryDecl *Previous
1836           = IDecl->FindCategoryDeclaration(CategoryName)) {
1837       // Class extensions can be declared multiple times, categories cannot.
1838       Diag(CategoryLoc, diag::warn_dup_category_def)
1839         << ClassName << CategoryName;
1840       Diag(Previous->getLocation(), diag::note_previous_definition);
1841     }
1842   }
1843 
1844   // If we have a type parameter list, check it.
1845   if (typeParamList) {
1846     if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1847       if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1848                                         CategoryName
1849                                           ? TypeParamListContext::Category
1850                                           : TypeParamListContext::Extension))
1851         typeParamList = nullptr;
1852     } else {
1853       Diag(typeParamList->getLAngleLoc(),
1854            diag::err_objc_parameterized_category_nonclass)
1855         << (CategoryName != nullptr)
1856         << ClassName
1857         << typeParamList->getSourceRange();
1858 
1859       typeParamList = nullptr;
1860     }
1861   }
1862 
1863   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1864                                    ClassLoc, CategoryLoc, CategoryName, IDecl,
1865                                    typeParamList);
1866   // FIXME: PushOnScopeChains?
1867   CurContext->addDecl(CDecl);
1868 
1869   // Process the attributes before looking at protocols to ensure that the
1870   // availability attribute is attached to the category to provide availability
1871   // checking for protocol uses.
1872   ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1873   AddPragmaAttributes(TUScope, CDecl);
1874 
1875   if (NumProtoRefs) {
1876     diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1877                            NumProtoRefs, ProtoLocs);
1878     CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1879                            ProtoLocs, Context);
1880     // Protocols in the class extension belong to the class.
1881     if (CDecl->IsClassExtension())
1882      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1883                                             NumProtoRefs, Context);
1884   }
1885 
1886   CheckObjCDeclScope(CDecl);
1887   return ActOnObjCContainerStartDefinition(CDecl);
1888 }
1889 
1890 /// ActOnStartCategoryImplementation - Perform semantic checks on the
1891 /// category implementation declaration and build an ObjCCategoryImplDecl
1892 /// object.
1893 Decl *Sema::ActOnStartCategoryImplementation(
1894                       SourceLocation AtCatImplLoc,
1895                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
1896                       IdentifierInfo *CatName, SourceLocation CatLoc,
1897                       const ParsedAttributesView &Attrs) {
1898   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1899   ObjCCategoryDecl *CatIDecl = nullptr;
1900   if (IDecl && IDecl->hasDefinition()) {
1901     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1902     if (!CatIDecl) {
1903       // Category @implementation with no corresponding @interface.
1904       // Create and install one.
1905       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1906                                           ClassLoc, CatLoc,
1907                                           CatName, IDecl,
1908                                           /*typeParamList=*/nullptr);
1909       CatIDecl->setImplicit();
1910     }
1911   }
1912 
1913   ObjCCategoryImplDecl *CDecl =
1914     ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1915                                  ClassLoc, AtCatImplLoc, CatLoc);
1916   /// Check that class of this category is already completely declared.
1917   if (!IDecl) {
1918     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1919     CDecl->setInvalidDecl();
1920   } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1921                                  diag::err_undef_interface)) {
1922     CDecl->setInvalidDecl();
1923   }
1924 
1925   ProcessDeclAttributeList(TUScope, CDecl, Attrs);
1926   AddPragmaAttributes(TUScope, CDecl);
1927 
1928   // FIXME: PushOnScopeChains?
1929   CurContext->addDecl(CDecl);
1930 
1931   // If the interface has the objc_runtime_visible attribute, we
1932   // cannot implement a category for it.
1933   if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1934     Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1935       << IDecl->getDeclName();
1936   }
1937 
1938   /// Check that CatName, category name, is not used in another implementation.
1939   if (CatIDecl) {
1940     if (CatIDecl->getImplementation()) {
1941       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1942         << CatName;
1943       Diag(CatIDecl->getImplementation()->getLocation(),
1944            diag::note_previous_definition);
1945       CDecl->setInvalidDecl();
1946     } else {
1947       CatIDecl->setImplementation(CDecl);
1948       // Warn on implementating category of deprecated class under
1949       // -Wdeprecated-implementations flag.
1950       DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1951                                           CDecl->getLocation());
1952     }
1953   }
1954 
1955   CheckObjCDeclScope(CDecl);
1956   return ActOnObjCContainerStartDefinition(CDecl);
1957 }
1958 
1959 Decl *Sema::ActOnStartClassImplementation(
1960                       SourceLocation AtClassImplLoc,
1961                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
1962                       IdentifierInfo *SuperClassname,
1963                       SourceLocation SuperClassLoc,
1964                       const ParsedAttributesView &Attrs) {
1965   ObjCInterfaceDecl *IDecl = nullptr;
1966   // Check for another declaration kind with the same name.
1967   NamedDecl *PrevDecl
1968     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1969                        forRedeclarationInCurContext());
1970   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1971     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1972     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1973   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1974     // FIXME: This will produce an error if the definition of the interface has
1975     // been imported from a module but is not visible.
1976     RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1977                         diag::warn_undef_interface);
1978   } else {
1979     // We did not find anything with the name ClassName; try to correct for
1980     // typos in the class name.
1981     ObjCInterfaceValidatorCCC CCC{};
1982     TypoCorrection Corrected =
1983         CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc),
1984                     LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError);
1985     if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1986       // Suggest the (potentially) correct interface name. Don't provide a
1987       // code-modification hint or use the typo name for recovery, because
1988       // this is just a warning. The program may actually be correct.
1989       diagnoseTypo(Corrected,
1990                    PDiag(diag::warn_undef_interface_suggest) << ClassName,
1991                    /*ErrorRecovery*/false);
1992     } else {
1993       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1994     }
1995   }
1996 
1997   // Check that super class name is valid class name
1998   ObjCInterfaceDecl *SDecl = nullptr;
1999   if (SuperClassname) {
2000     // Check if a different kind of symbol declared in this scope.
2001     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
2002                                 LookupOrdinaryName);
2003     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2004       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2005         << SuperClassname;
2006       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2007     } else {
2008       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2009       if (SDecl && !SDecl->hasDefinition())
2010         SDecl = nullptr;
2011       if (!SDecl)
2012         Diag(SuperClassLoc, diag::err_undef_superclass)
2013           << SuperClassname << ClassName;
2014       else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2015         // This implementation and its interface do not have the same
2016         // super class.
2017         Diag(SuperClassLoc, diag::err_conflicting_super_class)
2018           << SDecl->getDeclName();
2019         Diag(SDecl->getLocation(), diag::note_previous_definition);
2020       }
2021     }
2022   }
2023 
2024   if (!IDecl) {
2025     // Legacy case of @implementation with no corresponding @interface.
2026     // Build, chain & install the interface decl into the identifier.
2027 
2028     // FIXME: Do we support attributes on the @implementation? If so we should
2029     // copy them over.
2030     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
2031                                       ClassName, /*typeParamList=*/nullptr,
2032                                       /*PrevDecl=*/nullptr, ClassLoc,
2033                                       true);
2034     AddPragmaAttributes(TUScope, IDecl);
2035     IDecl->startDefinition();
2036     if (SDecl) {
2037       IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2038                              Context.getObjCInterfaceType(SDecl),
2039                              SuperClassLoc));
2040       IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2041     } else {
2042       IDecl->setEndOfDefinitionLoc(ClassLoc);
2043     }
2044 
2045     PushOnScopeChains(IDecl, TUScope);
2046   } else {
2047     // Mark the interface as being completed, even if it was just as
2048     //   @class ....;
2049     // declaration; the user cannot reopen it.
2050     if (!IDecl->hasDefinition())
2051       IDecl->startDefinition();
2052   }
2053 
2054   ObjCImplementationDecl* IMPDecl =
2055     ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
2056                                    ClassLoc, AtClassImplLoc, SuperClassLoc);
2057 
2058   ProcessDeclAttributeList(TUScope, IMPDecl, Attrs);
2059   AddPragmaAttributes(TUScope, IMPDecl);
2060 
2061   if (CheckObjCDeclScope(IMPDecl))
2062     return ActOnObjCContainerStartDefinition(IMPDecl);
2063 
2064   // Check that there is no duplicate implementation of this class.
2065   if (IDecl->getImplementation()) {
2066     // FIXME: Don't leak everything!
2067     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2068     Diag(IDecl->getImplementation()->getLocation(),
2069          diag::note_previous_definition);
2070     IMPDecl->setInvalidDecl();
2071   } else { // add it to the list.
2072     IDecl->setImplementation(IMPDecl);
2073     PushOnScopeChains(IMPDecl, TUScope);
2074     // Warn on implementating deprecated class under
2075     // -Wdeprecated-implementations flag.
2076     DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2077   }
2078 
2079   // If the superclass has the objc_runtime_visible attribute, we
2080   // cannot implement a subclass of it.
2081   if (IDecl->getSuperClass() &&
2082       IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2083     Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2084       << IDecl->getDeclName()
2085       << IDecl->getSuperClass()->getDeclName();
2086   }
2087 
2088   return ActOnObjCContainerStartDefinition(IMPDecl);
2089 }
2090 
2091 Sema::DeclGroupPtrTy
2092 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2093   SmallVector<Decl *, 64> DeclsInGroup;
2094   DeclsInGroup.reserve(Decls.size() + 1);
2095 
2096   for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2097     Decl *Dcl = Decls[i];
2098     if (!Dcl)
2099       continue;
2100     if (Dcl->getDeclContext()->isFileContext())
2101       Dcl->setTopLevelDeclInObjCContainer();
2102     DeclsInGroup.push_back(Dcl);
2103   }
2104 
2105   DeclsInGroup.push_back(ObjCImpDecl);
2106 
2107   return BuildDeclaratorGroup(DeclsInGroup);
2108 }
2109 
2110 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2111                                     ObjCIvarDecl **ivars, unsigned numIvars,
2112                                     SourceLocation RBrace) {
2113   assert(ImpDecl && "missing implementation decl");
2114   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2115   if (!IDecl)
2116     return;
2117   /// Check case of non-existing \@interface decl.
2118   /// (legacy objective-c \@implementation decl without an \@interface decl).
2119   /// Add implementations's ivar to the synthesize class's ivar list.
2120   if (IDecl->isImplicitInterfaceDecl()) {
2121     IDecl->setEndOfDefinitionLoc(RBrace);
2122     // Add ivar's to class's DeclContext.
2123     for (unsigned i = 0, e = numIvars; i != e; ++i) {
2124       ivars[i]->setLexicalDeclContext(ImpDecl);
2125       IDecl->makeDeclVisibleInContext(ivars[i]);
2126       ImpDecl->addDecl(ivars[i]);
2127     }
2128 
2129     return;
2130   }
2131   // If implementation has empty ivar list, just return.
2132   if (numIvars == 0)
2133     return;
2134 
2135   assert(ivars && "missing @implementation ivars");
2136   if (LangOpts.ObjCRuntime.isNonFragile()) {
2137     if (ImpDecl->getSuperClass())
2138       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2139     for (unsigned i = 0; i < numIvars; i++) {
2140       ObjCIvarDecl* ImplIvar = ivars[i];
2141       if (const ObjCIvarDecl *ClsIvar =
2142             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2143         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2144         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2145         continue;
2146       }
2147       // Check class extensions (unnamed categories) for duplicate ivars.
2148       for (const auto *CDecl : IDecl->visible_extensions()) {
2149         if (const ObjCIvarDecl *ClsExtIvar =
2150             CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2151           Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2152           Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2153           continue;
2154         }
2155       }
2156       // Instance ivar to Implementation's DeclContext.
2157       ImplIvar->setLexicalDeclContext(ImpDecl);
2158       IDecl->makeDeclVisibleInContext(ImplIvar);
2159       ImpDecl->addDecl(ImplIvar);
2160     }
2161     return;
2162   }
2163   // Check interface's Ivar list against those in the implementation.
2164   // names and types must match.
2165   //
2166   unsigned j = 0;
2167   ObjCInterfaceDecl::ivar_iterator
2168     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2169   for (; numIvars > 0 && IVI != IVE; ++IVI) {
2170     ObjCIvarDecl* ImplIvar = ivars[j++];
2171     ObjCIvarDecl* ClsIvar = *IVI;
2172     assert (ImplIvar && "missing implementation ivar");
2173     assert (ClsIvar && "missing class ivar");
2174 
2175     // First, make sure the types match.
2176     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2177       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2178         << ImplIvar->getIdentifier()
2179         << ImplIvar->getType() << ClsIvar->getType();
2180       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2181     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2182                ImplIvar->getBitWidthValue(Context) !=
2183                ClsIvar->getBitWidthValue(Context)) {
2184       Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2185            diag::err_conflicting_ivar_bitwidth)
2186           << ImplIvar->getIdentifier();
2187       Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2188            diag::note_previous_definition);
2189     }
2190     // Make sure the names are identical.
2191     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2192       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2193         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2194       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2195     }
2196     --numIvars;
2197   }
2198 
2199   if (numIvars > 0)
2200     Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2201   else if (IVI != IVE)
2202     Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2203 }
2204 
2205 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2206                                 ObjCMethodDecl *method,
2207                                 bool &IncompleteImpl,
2208                                 unsigned DiagID,
2209                                 NamedDecl *NeededFor = nullptr) {
2210   // No point warning no definition of method which is 'unavailable'.
2211   if (method->getAvailability() == AR_Unavailable)
2212     return;
2213 
2214   // FIXME: For now ignore 'IncompleteImpl'.
2215   // Previously we grouped all unimplemented methods under a single
2216   // warning, but some users strongly voiced that they would prefer
2217   // separate warnings.  We will give that approach a try, as that
2218   // matches what we do with protocols.
2219   {
2220     const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2221     B << method;
2222     if (NeededFor)
2223       B << NeededFor;
2224   }
2225 
2226   // Issue a note to the original declaration.
2227   SourceLocation MethodLoc = method->getBeginLoc();
2228   if (MethodLoc.isValid())
2229     S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2230 }
2231 
2232 /// Determines if type B can be substituted for type A.  Returns true if we can
2233 /// guarantee that anything that the user will do to an object of type A can
2234 /// also be done to an object of type B.  This is trivially true if the two
2235 /// types are the same, or if B is a subclass of A.  It becomes more complex
2236 /// in cases where protocols are involved.
2237 ///
2238 /// Object types in Objective-C describe the minimum requirements for an
2239 /// object, rather than providing a complete description of a type.  For
2240 /// example, if A is a subclass of B, then B* may refer to an instance of A.
2241 /// The principle of substitutability means that we may use an instance of A
2242 /// anywhere that we may use an instance of B - it will implement all of the
2243 /// ivars of B and all of the methods of B.
2244 ///
2245 /// This substitutability is important when type checking methods, because
2246 /// the implementation may have stricter type definitions than the interface.
2247 /// The interface specifies minimum requirements, but the implementation may
2248 /// have more accurate ones.  For example, a method may privately accept
2249 /// instances of B, but only publish that it accepts instances of A.  Any
2250 /// object passed to it will be type checked against B, and so will implicitly
2251 /// by a valid A*.  Similarly, a method may return a subclass of the class that
2252 /// it is declared as returning.
2253 ///
2254 /// This is most important when considering subclassing.  A method in a
2255 /// subclass must accept any object as an argument that its superclass's
2256 /// implementation accepts.  It may, however, accept a more general type
2257 /// without breaking substitutability (i.e. you can still use the subclass
2258 /// anywhere that you can use the superclass, but not vice versa).  The
2259 /// converse requirement applies to return types: the return type for a
2260 /// subclass method must be a valid object of the kind that the superclass
2261 /// advertises, but it may be specified more accurately.  This avoids the need
2262 /// for explicit down-casting by callers.
2263 ///
2264 /// Note: This is a stricter requirement than for assignment.
2265 static bool isObjCTypeSubstitutable(ASTContext &Context,
2266                                     const ObjCObjectPointerType *A,
2267                                     const ObjCObjectPointerType *B,
2268                                     bool rejectId) {
2269   // Reject a protocol-unqualified id.
2270   if (rejectId && B->isObjCIdType()) return false;
2271 
2272   // If B is a qualified id, then A must also be a qualified id and it must
2273   // implement all of the protocols in B.  It may not be a qualified class.
2274   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2275   // stricter definition so it is not substitutable for id<A>.
2276   if (B->isObjCQualifiedIdType()) {
2277     return A->isObjCQualifiedIdType() &&
2278            Context.ObjCQualifiedIdTypesAreCompatible(A, B, false);
2279   }
2280 
2281   /*
2282   // id is a special type that bypasses type checking completely.  We want a
2283   // warning when it is used in one place but not another.
2284   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2285 
2286 
2287   // If B is a qualified id, then A must also be a qualified id (which it isn't
2288   // if we've got this far)
2289   if (B->isObjCQualifiedIdType()) return false;
2290   */
2291 
2292   // Now we know that A and B are (potentially-qualified) class types.  The
2293   // normal rules for assignment apply.
2294   return Context.canAssignObjCInterfaces(A, B);
2295 }
2296 
2297 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2298   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2299 }
2300 
2301 /// Determine whether two set of Objective-C declaration qualifiers conflict.
2302 static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2303                                   Decl::ObjCDeclQualifier y) {
2304   return (x & ~Decl::OBJC_TQ_CSNullability) !=
2305          (y & ~Decl::OBJC_TQ_CSNullability);
2306 }
2307 
2308 static bool CheckMethodOverrideReturn(Sema &S,
2309                                       ObjCMethodDecl *MethodImpl,
2310                                       ObjCMethodDecl *MethodDecl,
2311                                       bool IsProtocolMethodDecl,
2312                                       bool IsOverridingMode,
2313                                       bool Warn) {
2314   if (IsProtocolMethodDecl &&
2315       objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2316                             MethodImpl->getObjCDeclQualifier())) {
2317     if (Warn) {
2318       S.Diag(MethodImpl->getLocation(),
2319              (IsOverridingMode
2320                   ? diag::warn_conflicting_overriding_ret_type_modifiers
2321                   : diag::warn_conflicting_ret_type_modifiers))
2322           << MethodImpl->getDeclName()
2323           << MethodImpl->getReturnTypeSourceRange();
2324       S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2325           << MethodDecl->getReturnTypeSourceRange();
2326     }
2327     else
2328       return false;
2329   }
2330   if (Warn && IsOverridingMode &&
2331       !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2332       !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2333                                                  MethodDecl->getReturnType(),
2334                                                  false)) {
2335     auto nullabilityMethodImpl =
2336       *MethodImpl->getReturnType()->getNullability(S.Context);
2337     auto nullabilityMethodDecl =
2338       *MethodDecl->getReturnType()->getNullability(S.Context);
2339       S.Diag(MethodImpl->getLocation(),
2340              diag::warn_conflicting_nullability_attr_overriding_ret_types)
2341         << DiagNullabilityKind(
2342              nullabilityMethodImpl,
2343              ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2344               != 0))
2345         << DiagNullabilityKind(
2346              nullabilityMethodDecl,
2347              ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2348                 != 0));
2349       S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2350   }
2351 
2352   if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2353                                        MethodDecl->getReturnType()))
2354     return true;
2355   if (!Warn)
2356     return false;
2357 
2358   unsigned DiagID =
2359     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2360                      : diag::warn_conflicting_ret_types;
2361 
2362   // Mismatches between ObjC pointers go into a different warning
2363   // category, and sometimes they're even completely whitelisted.
2364   if (const ObjCObjectPointerType *ImplPtrTy =
2365           MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2366     if (const ObjCObjectPointerType *IfacePtrTy =
2367             MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2368       // Allow non-matching return types as long as they don't violate
2369       // the principle of substitutability.  Specifically, we permit
2370       // return types that are subclasses of the declared return type,
2371       // or that are more-qualified versions of the declared type.
2372       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2373         return false;
2374 
2375       DiagID =
2376         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2377                          : diag::warn_non_covariant_ret_types;
2378     }
2379   }
2380 
2381   S.Diag(MethodImpl->getLocation(), DiagID)
2382       << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2383       << MethodImpl->getReturnType()
2384       << MethodImpl->getReturnTypeSourceRange();
2385   S.Diag(MethodDecl->getLocation(), IsOverridingMode
2386                                         ? diag::note_previous_declaration
2387                                         : diag::note_previous_definition)
2388       << MethodDecl->getReturnTypeSourceRange();
2389   return false;
2390 }
2391 
2392 static bool CheckMethodOverrideParam(Sema &S,
2393                                      ObjCMethodDecl *MethodImpl,
2394                                      ObjCMethodDecl *MethodDecl,
2395                                      ParmVarDecl *ImplVar,
2396                                      ParmVarDecl *IfaceVar,
2397                                      bool IsProtocolMethodDecl,
2398                                      bool IsOverridingMode,
2399                                      bool Warn) {
2400   if (IsProtocolMethodDecl &&
2401       objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2402                             IfaceVar->getObjCDeclQualifier())) {
2403     if (Warn) {
2404       if (IsOverridingMode)
2405         S.Diag(ImplVar->getLocation(),
2406                diag::warn_conflicting_overriding_param_modifiers)
2407             << getTypeRange(ImplVar->getTypeSourceInfo())
2408             << MethodImpl->getDeclName();
2409       else S.Diag(ImplVar->getLocation(),
2410              diag::warn_conflicting_param_modifiers)
2411           << getTypeRange(ImplVar->getTypeSourceInfo())
2412           << MethodImpl->getDeclName();
2413       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2414           << getTypeRange(IfaceVar->getTypeSourceInfo());
2415     }
2416     else
2417       return false;
2418   }
2419 
2420   QualType ImplTy = ImplVar->getType();
2421   QualType IfaceTy = IfaceVar->getType();
2422   if (Warn && IsOverridingMode &&
2423       !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2424       !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2425     S.Diag(ImplVar->getLocation(),
2426            diag::warn_conflicting_nullability_attr_overriding_param_types)
2427       << DiagNullabilityKind(
2428            *ImplTy->getNullability(S.Context),
2429            ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2430             != 0))
2431       << DiagNullabilityKind(
2432            *IfaceTy->getNullability(S.Context),
2433            ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2434             != 0));
2435     S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2436   }
2437   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2438     return true;
2439 
2440   if (!Warn)
2441     return false;
2442   unsigned DiagID =
2443     IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2444                      : diag::warn_conflicting_param_types;
2445 
2446   // Mismatches between ObjC pointers go into a different warning
2447   // category, and sometimes they're even completely whitelisted.
2448   if (const ObjCObjectPointerType *ImplPtrTy =
2449         ImplTy->getAs<ObjCObjectPointerType>()) {
2450     if (const ObjCObjectPointerType *IfacePtrTy =
2451           IfaceTy->getAs<ObjCObjectPointerType>()) {
2452       // Allow non-matching argument types as long as they don't
2453       // violate the principle of substitutability.  Specifically, the
2454       // implementation must accept any objects that the superclass
2455       // accepts, however it may also accept others.
2456       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2457         return false;
2458 
2459       DiagID =
2460       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2461                        : diag::warn_non_contravariant_param_types;
2462     }
2463   }
2464 
2465   S.Diag(ImplVar->getLocation(), DiagID)
2466     << getTypeRange(ImplVar->getTypeSourceInfo())
2467     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2468   S.Diag(IfaceVar->getLocation(),
2469          (IsOverridingMode ? diag::note_previous_declaration
2470                            : diag::note_previous_definition))
2471     << getTypeRange(IfaceVar->getTypeSourceInfo());
2472   return false;
2473 }
2474 
2475 /// In ARC, check whether the conventional meanings of the two methods
2476 /// match.  If they don't, it's a hard error.
2477 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2478                                       ObjCMethodDecl *decl) {
2479   ObjCMethodFamily implFamily = impl->getMethodFamily();
2480   ObjCMethodFamily declFamily = decl->getMethodFamily();
2481   if (implFamily == declFamily) return false;
2482 
2483   // Since conventions are sorted by selector, the only possibility is
2484   // that the types differ enough to cause one selector or the other
2485   // to fall out of the family.
2486   assert(implFamily == OMF_None || declFamily == OMF_None);
2487 
2488   // No further diagnostics required on invalid declarations.
2489   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2490 
2491   const ObjCMethodDecl *unmatched = impl;
2492   ObjCMethodFamily family = declFamily;
2493   unsigned errorID = diag::err_arc_lost_method_convention;
2494   unsigned noteID = diag::note_arc_lost_method_convention;
2495   if (declFamily == OMF_None) {
2496     unmatched = decl;
2497     family = implFamily;
2498     errorID = diag::err_arc_gained_method_convention;
2499     noteID = diag::note_arc_gained_method_convention;
2500   }
2501 
2502   // Indexes into a %select clause in the diagnostic.
2503   enum FamilySelector {
2504     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2505   };
2506   FamilySelector familySelector = FamilySelector();
2507 
2508   switch (family) {
2509   case OMF_None: llvm_unreachable("logic error, no method convention");
2510   case OMF_retain:
2511   case OMF_release:
2512   case OMF_autorelease:
2513   case OMF_dealloc:
2514   case OMF_finalize:
2515   case OMF_retainCount:
2516   case OMF_self:
2517   case OMF_initialize:
2518   case OMF_performSelector:
2519     // Mismatches for these methods don't change ownership
2520     // conventions, so we don't care.
2521     return false;
2522 
2523   case OMF_init: familySelector = F_init; break;
2524   case OMF_alloc: familySelector = F_alloc; break;
2525   case OMF_copy: familySelector = F_copy; break;
2526   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2527   case OMF_new: familySelector = F_new; break;
2528   }
2529 
2530   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2531   ReasonSelector reasonSelector;
2532 
2533   // The only reason these methods don't fall within their families is
2534   // due to unusual result types.
2535   if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2536     reasonSelector = R_UnrelatedReturn;
2537   } else {
2538     reasonSelector = R_NonObjectReturn;
2539   }
2540 
2541   S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2542   S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2543 
2544   return true;
2545 }
2546 
2547 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2548                                        ObjCMethodDecl *MethodDecl,
2549                                        bool IsProtocolMethodDecl) {
2550   if (getLangOpts().ObjCAutoRefCount &&
2551       checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2552     return;
2553 
2554   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2555                             IsProtocolMethodDecl, false,
2556                             true);
2557 
2558   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2559        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2560        EF = MethodDecl->param_end();
2561        IM != EM && IF != EF; ++IM, ++IF) {
2562     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2563                              IsProtocolMethodDecl, false, true);
2564   }
2565 
2566   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2567     Diag(ImpMethodDecl->getLocation(),
2568          diag::warn_conflicting_variadic);
2569     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2570   }
2571 }
2572 
2573 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2574                                        ObjCMethodDecl *Overridden,
2575                                        bool IsProtocolMethodDecl) {
2576 
2577   CheckMethodOverrideReturn(*this, Method, Overridden,
2578                             IsProtocolMethodDecl, true,
2579                             true);
2580 
2581   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2582        IF = Overridden->param_begin(), EM = Method->param_end(),
2583        EF = Overridden->param_end();
2584        IM != EM && IF != EF; ++IM, ++IF) {
2585     CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2586                              IsProtocolMethodDecl, true, true);
2587   }
2588 
2589   if (Method->isVariadic() != Overridden->isVariadic()) {
2590     Diag(Method->getLocation(),
2591          diag::warn_conflicting_overriding_variadic);
2592     Diag(Overridden->getLocation(), diag::note_previous_declaration);
2593   }
2594 }
2595 
2596 /// WarnExactTypedMethods - This routine issues a warning if method
2597 /// implementation declaration matches exactly that of its declaration.
2598 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2599                                  ObjCMethodDecl *MethodDecl,
2600                                  bool IsProtocolMethodDecl) {
2601   // don't issue warning when protocol method is optional because primary
2602   // class is not required to implement it and it is safe for protocol
2603   // to implement it.
2604   if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2605     return;
2606   // don't issue warning when primary class's method is
2607   // depecated/unavailable.
2608   if (MethodDecl->hasAttr<UnavailableAttr>() ||
2609       MethodDecl->hasAttr<DeprecatedAttr>())
2610     return;
2611 
2612   bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2613                                       IsProtocolMethodDecl, false, false);
2614   if (match)
2615     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2616          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2617          EF = MethodDecl->param_end();
2618          IM != EM && IF != EF; ++IM, ++IF) {
2619       match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2620                                        *IM, *IF,
2621                                        IsProtocolMethodDecl, false, false);
2622       if (!match)
2623         break;
2624     }
2625   if (match)
2626     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2627   if (match)
2628     match = !(MethodDecl->isClassMethod() &&
2629               MethodDecl->getSelector() == GetNullarySelector("load", Context));
2630 
2631   if (match) {
2632     Diag(ImpMethodDecl->getLocation(),
2633          diag::warn_category_method_impl_match);
2634     Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2635       << MethodDecl->getDeclName();
2636   }
2637 }
2638 
2639 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2640 /// improve the efficiency of selector lookups and type checking by associating
2641 /// with each protocol / interface / category the flattened instance tables. If
2642 /// we used an immutable set to keep the table then it wouldn't add significant
2643 /// memory cost and it would be handy for lookups.
2644 
2645 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2646 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2647 
2648 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2649                                            ProtocolNameSet &PNS) {
2650   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2651     PNS.insert(PDecl->getIdentifier());
2652   for (const auto *PI : PDecl->protocols())
2653     findProtocolsWithExplicitImpls(PI, PNS);
2654 }
2655 
2656 /// Recursively populates a set with all conformed protocols in a class
2657 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2658 /// attribute.
2659 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2660                                            ProtocolNameSet &PNS) {
2661   if (!Super)
2662     return;
2663 
2664   for (const auto *I : Super->all_referenced_protocols())
2665     findProtocolsWithExplicitImpls(I, PNS);
2666 
2667   findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2668 }
2669 
2670 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
2671 /// Declared in protocol, and those referenced by it.
2672 static void CheckProtocolMethodDefs(Sema &S,
2673                                     SourceLocation ImpLoc,
2674                                     ObjCProtocolDecl *PDecl,
2675                                     bool& IncompleteImpl,
2676                                     const Sema::SelectorSet &InsMap,
2677                                     const Sema::SelectorSet &ClsMap,
2678                                     ObjCContainerDecl *CDecl,
2679                                     LazyProtocolNameSet &ProtocolsExplictImpl) {
2680   ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2681   ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2682                                : dyn_cast<ObjCInterfaceDecl>(CDecl);
2683   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2684 
2685   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2686   ObjCInterfaceDecl *NSIDecl = nullptr;
2687 
2688   // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2689   // then we should check if any class in the super class hierarchy also
2690   // conforms to this protocol, either directly or via protocol inheritance.
2691   // If so, we can skip checking this protocol completely because we
2692   // know that a parent class already satisfies this protocol.
2693   //
2694   // Note: we could generalize this logic for all protocols, and merely
2695   // add the limit on looking at the super class chain for just
2696   // specially marked protocols.  This may be a good optimization.  This
2697   // change is restricted to 'objc_protocol_requires_explicit_implementation'
2698   // protocols for now for controlled evaluation.
2699   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2700     if (!ProtocolsExplictImpl) {
2701       ProtocolsExplictImpl.reset(new ProtocolNameSet);
2702       findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2703     }
2704     if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2705         ProtocolsExplictImpl->end())
2706       return;
2707 
2708     // If no super class conforms to the protocol, we should not search
2709     // for methods in the super class to implicitly satisfy the protocol.
2710     Super = nullptr;
2711   }
2712 
2713   if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2714     // check to see if class implements forwardInvocation method and objects
2715     // of this class are derived from 'NSProxy' so that to forward requests
2716     // from one object to another.
2717     // Under such conditions, which means that every method possible is
2718     // implemented in the class, we should not issue "Method definition not
2719     // found" warnings.
2720     // FIXME: Use a general GetUnarySelector method for this.
2721     IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2722     Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2723     if (InsMap.count(fISelector))
2724       // Is IDecl derived from 'NSProxy'? If so, no instance methods
2725       // need be implemented in the implementation.
2726       NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2727   }
2728 
2729   // If this is a forward protocol declaration, get its definition.
2730   if (!PDecl->isThisDeclarationADefinition() &&
2731       PDecl->getDefinition())
2732     PDecl = PDecl->getDefinition();
2733 
2734   // If a method lookup fails locally we still need to look and see if
2735   // the method was implemented by a base class or an inherited
2736   // protocol. This lookup is slow, but occurs rarely in correct code
2737   // and otherwise would terminate in a warning.
2738 
2739   // check unimplemented instance methods.
2740   if (!NSIDecl)
2741     for (auto *method : PDecl->instance_methods()) {
2742       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2743           !method->isPropertyAccessor() &&
2744           !InsMap.count(method->getSelector()) &&
2745           (!Super || !Super->lookupMethod(method->getSelector(),
2746                                           true /* instance */,
2747                                           false /* shallowCategory */,
2748                                           true /* followsSuper */,
2749                                           nullptr /* category */))) {
2750             // If a method is not implemented in the category implementation but
2751             // has been declared in its primary class, superclass,
2752             // or in one of their protocols, no need to issue the warning.
2753             // This is because method will be implemented in the primary class
2754             // or one of its super class implementation.
2755 
2756             // Ugly, but necessary. Method declared in protocol might have
2757             // have been synthesized due to a property declared in the class which
2758             // uses the protocol.
2759             if (ObjCMethodDecl *MethodInClass =
2760                   IDecl->lookupMethod(method->getSelector(),
2761                                       true /* instance */,
2762                                       true /* shallowCategoryLookup */,
2763                                       false /* followSuper */))
2764               if (C || MethodInClass->isPropertyAccessor())
2765                 continue;
2766             unsigned DIAG = diag::warn_unimplemented_protocol_method;
2767             if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2768               WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2769                                   PDecl);
2770             }
2771           }
2772     }
2773   // check unimplemented class methods
2774   for (auto *method : PDecl->class_methods()) {
2775     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2776         !ClsMap.count(method->getSelector()) &&
2777         (!Super || !Super->lookupMethod(method->getSelector(),
2778                                         false /* class method */,
2779                                         false /* shallowCategoryLookup */,
2780                                         true  /* followSuper */,
2781                                         nullptr /* category */))) {
2782       // See above comment for instance method lookups.
2783       if (C && IDecl->lookupMethod(method->getSelector(),
2784                                    false /* class */,
2785                                    true /* shallowCategoryLookup */,
2786                                    false /* followSuper */))
2787         continue;
2788 
2789       unsigned DIAG = diag::warn_unimplemented_protocol_method;
2790       if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2791         WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2792       }
2793     }
2794   }
2795   // Check on this protocols's referenced protocols, recursively.
2796   for (auto *PI : PDecl->protocols())
2797     CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2798                             CDecl, ProtocolsExplictImpl);
2799 }
2800 
2801 /// MatchAllMethodDeclarations - Check methods declared in interface
2802 /// or protocol against those declared in their implementations.
2803 ///
2804 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2805                                       const SelectorSet &ClsMap,
2806                                       SelectorSet &InsMapSeen,
2807                                       SelectorSet &ClsMapSeen,
2808                                       ObjCImplDecl* IMPDecl,
2809                                       ObjCContainerDecl* CDecl,
2810                                       bool &IncompleteImpl,
2811                                       bool ImmediateClass,
2812                                       bool WarnCategoryMethodImpl) {
2813   // Check and see if instance methods in class interface have been
2814   // implemented in the implementation class. If so, their types match.
2815   for (auto *I : CDecl->instance_methods()) {
2816     if (!InsMapSeen.insert(I->getSelector()).second)
2817       continue;
2818     if (!I->isPropertyAccessor() &&
2819         !InsMap.count(I->getSelector())) {
2820       if (ImmediateClass)
2821         WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2822                             diag::warn_undef_method_impl);
2823       continue;
2824     } else {
2825       ObjCMethodDecl *ImpMethodDecl =
2826         IMPDecl->getInstanceMethod(I->getSelector());
2827       assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2828              "Expected to find the method through lookup as well");
2829       // ImpMethodDecl may be null as in a @dynamic property.
2830       if (ImpMethodDecl) {
2831         if (!WarnCategoryMethodImpl)
2832           WarnConflictingTypedMethods(ImpMethodDecl, I,
2833                                       isa<ObjCProtocolDecl>(CDecl));
2834         else if (!I->isPropertyAccessor())
2835           WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2836       }
2837     }
2838   }
2839 
2840   // Check and see if class methods in class interface have been
2841   // implemented in the implementation class. If so, their types match.
2842   for (auto *I : CDecl->class_methods()) {
2843     if (!ClsMapSeen.insert(I->getSelector()).second)
2844       continue;
2845     if (!I->isPropertyAccessor() &&
2846         !ClsMap.count(I->getSelector())) {
2847       if (ImmediateClass)
2848         WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2849                             diag::warn_undef_method_impl);
2850     } else {
2851       ObjCMethodDecl *ImpMethodDecl =
2852         IMPDecl->getClassMethod(I->getSelector());
2853       assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2854              "Expected to find the method through lookup as well");
2855       // ImpMethodDecl may be null as in a @dynamic property.
2856       if (ImpMethodDecl) {
2857         if (!WarnCategoryMethodImpl)
2858           WarnConflictingTypedMethods(ImpMethodDecl, I,
2859                                       isa<ObjCProtocolDecl>(CDecl));
2860         else if (!I->isPropertyAccessor())
2861           WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2862       }
2863     }
2864   }
2865 
2866   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2867     // Also, check for methods declared in protocols inherited by
2868     // this protocol.
2869     for (auto *PI : PD->protocols())
2870       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2871                                  IMPDecl, PI, IncompleteImpl, false,
2872                                  WarnCategoryMethodImpl);
2873   }
2874 
2875   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2876     // when checking that methods in implementation match their declaration,
2877     // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2878     // extension; as well as those in categories.
2879     if (!WarnCategoryMethodImpl) {
2880       for (auto *Cat : I->visible_categories())
2881         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2882                                    IMPDecl, Cat, IncompleteImpl,
2883                                    ImmediateClass && Cat->IsClassExtension(),
2884                                    WarnCategoryMethodImpl);
2885     } else {
2886       // Also methods in class extensions need be looked at next.
2887       for (auto *Ext : I->visible_extensions())
2888         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2889                                    IMPDecl, Ext, IncompleteImpl, false,
2890                                    WarnCategoryMethodImpl);
2891     }
2892 
2893     // Check for any implementation of a methods declared in protocol.
2894     for (auto *PI : I->all_referenced_protocols())
2895       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2896                                  IMPDecl, PI, IncompleteImpl, false,
2897                                  WarnCategoryMethodImpl);
2898 
2899     // FIXME. For now, we are not checking for exact match of methods
2900     // in category implementation and its primary class's super class.
2901     if (!WarnCategoryMethodImpl && I->getSuperClass())
2902       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2903                                  IMPDecl,
2904                                  I->getSuperClass(), IncompleteImpl, false);
2905   }
2906 }
2907 
2908 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2909 /// category matches with those implemented in its primary class and
2910 /// warns each time an exact match is found.
2911 void Sema::CheckCategoryVsClassMethodMatches(
2912                                   ObjCCategoryImplDecl *CatIMPDecl) {
2913   // Get category's primary class.
2914   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2915   if (!CatDecl)
2916     return;
2917   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2918   if (!IDecl)
2919     return;
2920   ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2921   SelectorSet InsMap, ClsMap;
2922 
2923   for (const auto *I : CatIMPDecl->instance_methods()) {
2924     Selector Sel = I->getSelector();
2925     // When checking for methods implemented in the category, skip over
2926     // those declared in category class's super class. This is because
2927     // the super class must implement the method.
2928     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2929       continue;
2930     InsMap.insert(Sel);
2931   }
2932 
2933   for (const auto *I : CatIMPDecl->class_methods()) {
2934     Selector Sel = I->getSelector();
2935     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2936       continue;
2937     ClsMap.insert(Sel);
2938   }
2939   if (InsMap.empty() && ClsMap.empty())
2940     return;
2941 
2942   SelectorSet InsMapSeen, ClsMapSeen;
2943   bool IncompleteImpl = false;
2944   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2945                              CatIMPDecl, IDecl,
2946                              IncompleteImpl, false,
2947                              true /*WarnCategoryMethodImpl*/);
2948 }
2949 
2950 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2951                                      ObjCContainerDecl* CDecl,
2952                                      bool IncompleteImpl) {
2953   SelectorSet InsMap;
2954   // Check and see if instance methods in class interface have been
2955   // implemented in the implementation class.
2956   for (const auto *I : IMPDecl->instance_methods())
2957     InsMap.insert(I->getSelector());
2958 
2959   // Add the selectors for getters/setters of @dynamic properties.
2960   for (const auto *PImpl : IMPDecl->property_impls()) {
2961     // We only care about @dynamic implementations.
2962     if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2963       continue;
2964 
2965     const auto *P = PImpl->getPropertyDecl();
2966     if (!P) continue;
2967 
2968     InsMap.insert(P->getGetterName());
2969     if (!P->getSetterName().isNull())
2970       InsMap.insert(P->getSetterName());
2971   }
2972 
2973   // Check and see if properties declared in the interface have either 1)
2974   // an implementation or 2) there is a @synthesize/@dynamic implementation
2975   // of the property in the @implementation.
2976   if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2977     bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2978                                 LangOpts.ObjCRuntime.isNonFragile() &&
2979                                 !IDecl->isObjCRequiresPropertyDefs();
2980     DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2981   }
2982 
2983   // Diagnose null-resettable synthesized setters.
2984   diagnoseNullResettableSynthesizedSetters(IMPDecl);
2985 
2986   SelectorSet ClsMap;
2987   for (const auto *I : IMPDecl->class_methods())
2988     ClsMap.insert(I->getSelector());
2989 
2990   // Check for type conflict of methods declared in a class/protocol and
2991   // its implementation; if any.
2992   SelectorSet InsMapSeen, ClsMapSeen;
2993   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2994                              IMPDecl, CDecl,
2995                              IncompleteImpl, true);
2996 
2997   // check all methods implemented in category against those declared
2998   // in its primary class.
2999   if (ObjCCategoryImplDecl *CatDecl =
3000         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
3001     CheckCategoryVsClassMethodMatches(CatDecl);
3002 
3003   // Check the protocol list for unimplemented methods in the @implementation
3004   // class.
3005   // Check and see if class methods in class interface have been
3006   // implemented in the implementation class.
3007 
3008   LazyProtocolNameSet ExplicitImplProtocols;
3009 
3010   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
3011     for (auto *PI : I->all_referenced_protocols())
3012       CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
3013                               InsMap, ClsMap, I, ExplicitImplProtocols);
3014   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3015     // For extended class, unimplemented methods in its protocols will
3016     // be reported in the primary class.
3017     if (!C->IsClassExtension()) {
3018       for (auto *P : C->protocols())
3019         CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
3020                                 IncompleteImpl, InsMap, ClsMap, CDecl,
3021                                 ExplicitImplProtocols);
3022       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3023                                       /*SynthesizeProperties=*/false);
3024     }
3025   } else
3026     llvm_unreachable("invalid ObjCContainerDecl type.");
3027 }
3028 
3029 Sema::DeclGroupPtrTy
3030 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
3031                                    IdentifierInfo **IdentList,
3032                                    SourceLocation *IdentLocs,
3033                                    ArrayRef<ObjCTypeParamList *> TypeParamLists,
3034                                    unsigned NumElts) {
3035   SmallVector<Decl *, 8> DeclsInGroup;
3036   for (unsigned i = 0; i != NumElts; ++i) {
3037     // Check for another declaration kind with the same name.
3038     NamedDecl *PrevDecl
3039       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3040                          LookupOrdinaryName, forRedeclarationInCurContext());
3041     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3042       // GCC apparently allows the following idiom:
3043       //
3044       // typedef NSObject < XCElementTogglerP > XCElementToggler;
3045       // @class XCElementToggler;
3046       //
3047       // Here we have chosen to ignore the forward class declaration
3048       // with a warning. Since this is the implied behavior.
3049       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3050       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3051         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3052         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3053       } else {
3054         // a forward class declaration matching a typedef name of a class refers
3055         // to the underlying class. Just ignore the forward class with a warning
3056         // as this will force the intended behavior which is to lookup the
3057         // typedef name.
3058         if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3059           Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3060               << IdentList[i];
3061           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3062           continue;
3063         }
3064       }
3065     }
3066 
3067     // Create a declaration to describe this forward declaration.
3068     ObjCInterfaceDecl *PrevIDecl
3069       = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3070 
3071     IdentifierInfo *ClassName = IdentList[i];
3072     if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3073       // A previous decl with a different name is because of
3074       // @compatibility_alias, for example:
3075       // \code
3076       //   @class NewImage;
3077       //   @compatibility_alias OldImage NewImage;
3078       // \endcode
3079       // A lookup for 'OldImage' will return the 'NewImage' decl.
3080       //
3081       // In such a case use the real declaration name, instead of the alias one,
3082       // otherwise we will break IdentifierResolver and redecls-chain invariants.
3083       // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3084       // has been aliased.
3085       ClassName = PrevIDecl->getIdentifier();
3086     }
3087 
3088     // If this forward declaration has type parameters, compare them with the
3089     // type parameters of the previous declaration.
3090     ObjCTypeParamList *TypeParams = TypeParamLists[i];
3091     if (PrevIDecl && TypeParams) {
3092       if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3093         // Check for consistency with the previous declaration.
3094         if (checkTypeParamListConsistency(
3095               *this, PrevTypeParams, TypeParams,
3096               TypeParamListContext::ForwardDeclaration)) {
3097           TypeParams = nullptr;
3098         }
3099       } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3100         // The @interface does not have type parameters. Complain.
3101         Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3102           << ClassName
3103           << TypeParams->getSourceRange();
3104         Diag(Def->getLocation(), diag::note_defined_here)
3105           << ClassName;
3106 
3107         TypeParams = nullptr;
3108       }
3109     }
3110 
3111     ObjCInterfaceDecl *IDecl
3112       = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3113                                   ClassName, TypeParams, PrevIDecl,
3114                                   IdentLocs[i]);
3115     IDecl->setAtEndRange(IdentLocs[i]);
3116 
3117     PushOnScopeChains(IDecl, TUScope);
3118     CheckObjCDeclScope(IDecl);
3119     DeclsInGroup.push_back(IDecl);
3120   }
3121 
3122   return BuildDeclaratorGroup(DeclsInGroup);
3123 }
3124 
3125 static bool tryMatchRecordTypes(ASTContext &Context,
3126                                 Sema::MethodMatchStrategy strategy,
3127                                 const Type *left, const Type *right);
3128 
3129 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3130                        QualType leftQT, QualType rightQT) {
3131   const Type *left =
3132     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3133   const Type *right =
3134     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3135 
3136   if (left == right) return true;
3137 
3138   // If we're doing a strict match, the types have to match exactly.
3139   if (strategy == Sema::MMS_strict) return false;
3140 
3141   if (left->isIncompleteType() || right->isIncompleteType()) return false;
3142 
3143   // Otherwise, use this absurdly complicated algorithm to try to
3144   // validate the basic, low-level compatibility of the two types.
3145 
3146   // As a minimum, require the sizes and alignments to match.
3147   TypeInfo LeftTI = Context.getTypeInfo(left);
3148   TypeInfo RightTI = Context.getTypeInfo(right);
3149   if (LeftTI.Width != RightTI.Width)
3150     return false;
3151 
3152   if (LeftTI.Align != RightTI.Align)
3153     return false;
3154 
3155   // Consider all the kinds of non-dependent canonical types:
3156   // - functions and arrays aren't possible as return and parameter types
3157 
3158   // - vector types of equal size can be arbitrarily mixed
3159   if (isa<VectorType>(left)) return isa<VectorType>(right);
3160   if (isa<VectorType>(right)) return false;
3161 
3162   // - references should only match references of identical type
3163   // - structs, unions, and Objective-C objects must match more-or-less
3164   //   exactly
3165   // - everything else should be a scalar
3166   if (!left->isScalarType() || !right->isScalarType())
3167     return tryMatchRecordTypes(Context, strategy, left, right);
3168 
3169   // Make scalars agree in kind, except count bools as chars, and group
3170   // all non-member pointers together.
3171   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3172   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3173   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3174   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3175   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3176     leftSK = Type::STK_ObjCObjectPointer;
3177   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3178     rightSK = Type::STK_ObjCObjectPointer;
3179 
3180   // Note that data member pointers and function member pointers don't
3181   // intermix because of the size differences.
3182 
3183   return (leftSK == rightSK);
3184 }
3185 
3186 static bool tryMatchRecordTypes(ASTContext &Context,
3187                                 Sema::MethodMatchStrategy strategy,
3188                                 const Type *lt, const Type *rt) {
3189   assert(lt && rt && lt != rt);
3190 
3191   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3192   RecordDecl *left = cast<RecordType>(lt)->getDecl();
3193   RecordDecl *right = cast<RecordType>(rt)->getDecl();
3194 
3195   // Require union-hood to match.
3196   if (left->isUnion() != right->isUnion()) return false;
3197 
3198   // Require an exact match if either is non-POD.
3199   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3200       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3201     return false;
3202 
3203   // Require size and alignment to match.
3204   TypeInfo LeftTI = Context.getTypeInfo(lt);
3205   TypeInfo RightTI = Context.getTypeInfo(rt);
3206   if (LeftTI.Width != RightTI.Width)
3207     return false;
3208 
3209   if (LeftTI.Align != RightTI.Align)
3210     return false;
3211 
3212   // Require fields to match.
3213   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3214   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3215   for (; li != le && ri != re; ++li, ++ri) {
3216     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3217       return false;
3218   }
3219   return (li == le && ri == re);
3220 }
3221 
3222 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3223 /// returns true, or false, accordingly.
3224 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3225 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3226                                       const ObjCMethodDecl *right,
3227                                       MethodMatchStrategy strategy) {
3228   if (!matchTypes(Context, strategy, left->getReturnType(),
3229                   right->getReturnType()))
3230     return false;
3231 
3232   // If either is hidden, it is not considered to match.
3233   if (left->isHidden() || right->isHidden())
3234     return false;
3235 
3236   if (getLangOpts().ObjCAutoRefCount &&
3237       (left->hasAttr<NSReturnsRetainedAttr>()
3238          != right->hasAttr<NSReturnsRetainedAttr>() ||
3239        left->hasAttr<NSConsumesSelfAttr>()
3240          != right->hasAttr<NSConsumesSelfAttr>()))
3241     return false;
3242 
3243   ObjCMethodDecl::param_const_iterator
3244     li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3245     re = right->param_end();
3246 
3247   for (; li != le && ri != re; ++li, ++ri) {
3248     assert(ri != right->param_end() && "Param mismatch");
3249     const ParmVarDecl *lparm = *li, *rparm = *ri;
3250 
3251     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3252       return false;
3253 
3254     if (getLangOpts().ObjCAutoRefCount &&
3255         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3256       return false;
3257   }
3258   return true;
3259 }
3260 
3261 static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3262                                                ObjCMethodDecl *MethodInList) {
3263   auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3264   auto *MethodInListProtocol =
3265       dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3266   // If this method belongs to a protocol but the method in list does not, or
3267   // vice versa, we say the context is not the same.
3268   if ((MethodProtocol && !MethodInListProtocol) ||
3269       (!MethodProtocol && MethodInListProtocol))
3270     return false;
3271 
3272   if (MethodProtocol && MethodInListProtocol)
3273     return true;
3274 
3275   ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3276   ObjCInterfaceDecl *MethodInListInterface =
3277       MethodInList->getClassInterface();
3278   return MethodInterface == MethodInListInterface;
3279 }
3280 
3281 void Sema::addMethodToGlobalList(ObjCMethodList *List,
3282                                  ObjCMethodDecl *Method) {
3283   // Record at the head of the list whether there were 0, 1, or >= 2 methods
3284   // inside categories.
3285   if (ObjCCategoryDecl *CD =
3286           dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3287     if (!CD->IsClassExtension() && List->getBits() < 2)
3288       List->setBits(List->getBits() + 1);
3289 
3290   // If the list is empty, make it a singleton list.
3291   if (List->getMethod() == nullptr) {
3292     List->setMethod(Method);
3293     List->setNext(nullptr);
3294     return;
3295   }
3296 
3297   // We've seen a method with this name, see if we have already seen this type
3298   // signature.
3299   ObjCMethodList *Previous = List;
3300   ObjCMethodList *ListWithSameDeclaration = nullptr;
3301   for (; List; Previous = List, List = List->getNext()) {
3302     // If we are building a module, keep all of the methods.
3303     if (getLangOpts().isCompilingModule())
3304       continue;
3305 
3306     bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3307                                                       List->getMethod());
3308     // Looking for method with a type bound requires the correct context exists.
3309     // We need to insert a method into the list if the context is different.
3310     // If the method's declaration matches the list
3311     // a> the method belongs to a different context: we need to insert it, in
3312     //    order to emit the availability message, we need to prioritize over
3313     //    availability among the methods with the same declaration.
3314     // b> the method belongs to the same context: there is no need to insert a
3315     //    new entry.
3316     // If the method's declaration does not match the list, we insert it to the
3317     // end.
3318     if (!SameDeclaration ||
3319         !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3320       // Even if two method types do not match, we would like to say
3321       // there is more than one declaration so unavailability/deprecated
3322       // warning is not too noisy.
3323       if (!Method->isDefined())
3324         List->setHasMoreThanOneDecl(true);
3325 
3326       // For methods with the same declaration, the one that is deprecated
3327       // should be put in the front for better diagnostics.
3328       if (Method->isDeprecated() && SameDeclaration &&
3329           !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3330         ListWithSameDeclaration = List;
3331 
3332       if (Method->isUnavailable() && SameDeclaration &&
3333           !ListWithSameDeclaration &&
3334           List->getMethod()->getAvailability() < AR_Deprecated)
3335         ListWithSameDeclaration = List;
3336       continue;
3337     }
3338 
3339     ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3340 
3341     // Propagate the 'defined' bit.
3342     if (Method->isDefined())
3343       PrevObjCMethod->setDefined(true);
3344     else {
3345       // Objective-C doesn't allow an @interface for a class after its
3346       // @implementation. So if Method is not defined and there already is
3347       // an entry for this type signature, Method has to be for a different
3348       // class than PrevObjCMethod.
3349       List->setHasMoreThanOneDecl(true);
3350     }
3351 
3352     // If a method is deprecated, push it in the global pool.
3353     // This is used for better diagnostics.
3354     if (Method->isDeprecated()) {
3355       if (!PrevObjCMethod->isDeprecated())
3356         List->setMethod(Method);
3357     }
3358     // If the new method is unavailable, push it into global pool
3359     // unless previous one is deprecated.
3360     if (Method->isUnavailable()) {
3361       if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3362         List->setMethod(Method);
3363     }
3364 
3365     return;
3366   }
3367 
3368   // We have a new signature for an existing method - add it.
3369   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3370   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3371 
3372   // We insert it right before ListWithSameDeclaration.
3373   if (ListWithSameDeclaration) {
3374     auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3375     // FIXME: should we clear the other bits in ListWithSameDeclaration?
3376     ListWithSameDeclaration->setMethod(Method);
3377     ListWithSameDeclaration->setNext(List);
3378     return;
3379   }
3380 
3381   Previous->setNext(new (Mem) ObjCMethodList(Method));
3382 }
3383 
3384 /// Read the contents of the method pool for a given selector from
3385 /// external storage.
3386 void Sema::ReadMethodPool(Selector Sel) {
3387   assert(ExternalSource && "We need an external AST source");
3388   ExternalSource->ReadMethodPool(Sel);
3389 }
3390 
3391 void Sema::updateOutOfDateSelector(Selector Sel) {
3392   if (!ExternalSource)
3393     return;
3394   ExternalSource->updateOutOfDateSelector(Sel);
3395 }
3396 
3397 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3398                                  bool instance) {
3399   // Ignore methods of invalid containers.
3400   if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3401     return;
3402 
3403   if (ExternalSource)
3404     ReadMethodPool(Method->getSelector());
3405 
3406   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3407   if (Pos == MethodPool.end())
3408     Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3409                                            GlobalMethods())).first;
3410 
3411   Method->setDefined(impl);
3412 
3413   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3414   addMethodToGlobalList(&Entry, Method);
3415 }
3416 
3417 /// Determines if this is an "acceptable" loose mismatch in the global
3418 /// method pool.  This exists mostly as a hack to get around certain
3419 /// global mismatches which we can't afford to make warnings / errors.
3420 /// Really, what we want is a way to take a method out of the global
3421 /// method pool.
3422 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3423                                        ObjCMethodDecl *other) {
3424   if (!chosen->isInstanceMethod())
3425     return false;
3426 
3427   Selector sel = chosen->getSelector();
3428   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3429     return false;
3430 
3431   // Don't complain about mismatches for -length if the method we
3432   // chose has an integral result type.
3433   return (chosen->getReturnType()->isIntegerType());
3434 }
3435 
3436 /// Return true if the given method is wthin the type bound.
3437 static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3438                                      const ObjCObjectType *TypeBound) {
3439   if (!TypeBound)
3440     return true;
3441 
3442   if (TypeBound->isObjCId())
3443     // FIXME: should we handle the case of bounding to id<A, B> differently?
3444     return true;
3445 
3446   auto *BoundInterface = TypeBound->getInterface();
3447   assert(BoundInterface && "unexpected object type!");
3448 
3449   // Check if the Method belongs to a protocol. We should allow any method
3450   // defined in any protocol, because any subclass could adopt the protocol.
3451   auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3452   if (MethodProtocol) {
3453     return true;
3454   }
3455 
3456   // If the Method belongs to a class, check if it belongs to the class
3457   // hierarchy of the class bound.
3458   if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3459     // We allow methods declared within classes that are part of the hierarchy
3460     // of the class bound (superclass of, subclass of, or the same as the class
3461     // bound).
3462     return MethodInterface == BoundInterface ||
3463            MethodInterface->isSuperClassOf(BoundInterface) ||
3464            BoundInterface->isSuperClassOf(MethodInterface);
3465   }
3466   llvm_unreachable("unknown method context");
3467 }
3468 
3469 /// We first select the type of the method: Instance or Factory, then collect
3470 /// all methods with that type.
3471 bool Sema::CollectMultipleMethodsInGlobalPool(
3472     Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3473     bool InstanceFirst, bool CheckTheOther,
3474     const ObjCObjectType *TypeBound) {
3475   if (ExternalSource)
3476     ReadMethodPool(Sel);
3477 
3478   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3479   if (Pos == MethodPool.end())
3480     return false;
3481 
3482   // Gather the non-hidden methods.
3483   ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3484                              Pos->second.second;
3485   for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3486     if (M->getMethod() && !M->getMethod()->isHidden()) {
3487       if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3488         Methods.push_back(M->getMethod());
3489     }
3490 
3491   // Return if we find any method with the desired kind.
3492   if (!Methods.empty())
3493     return Methods.size() > 1;
3494 
3495   if (!CheckTheOther)
3496     return false;
3497 
3498   // Gather the other kind.
3499   ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3500                               Pos->second.first;
3501   for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3502     if (M->getMethod() && !M->getMethod()->isHidden()) {
3503       if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3504         Methods.push_back(M->getMethod());
3505     }
3506 
3507   return Methods.size() > 1;
3508 }
3509 
3510 bool Sema::AreMultipleMethodsInGlobalPool(
3511     Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3512     bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3513   // Diagnose finding more than one method in global pool.
3514   SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3515   FilteredMethods.push_back(BestMethod);
3516 
3517   for (auto *M : Methods)
3518     if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3519       FilteredMethods.push_back(M);
3520 
3521   if (FilteredMethods.size() > 1)
3522     DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3523                                        receiverIdOrClass);
3524 
3525   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3526   // Test for no method in the pool which should not trigger any warning by
3527   // caller.
3528   if (Pos == MethodPool.end())
3529     return true;
3530   ObjCMethodList &MethList =
3531     BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3532   return MethList.hasMoreThanOneDecl();
3533 }
3534 
3535 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3536                                                bool receiverIdOrClass,
3537                                                bool instance) {
3538   if (ExternalSource)
3539     ReadMethodPool(Sel);
3540 
3541   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3542   if (Pos == MethodPool.end())
3543     return nullptr;
3544 
3545   // Gather the non-hidden methods.
3546   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3547   SmallVector<ObjCMethodDecl *, 4> Methods;
3548   for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3549     if (M->getMethod() && !M->getMethod()->isHidden())
3550       return M->getMethod();
3551   }
3552   return nullptr;
3553 }
3554 
3555 void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3556                                               Selector Sel, SourceRange R,
3557                                               bool receiverIdOrClass) {
3558   // We found multiple methods, so we may have to complain.
3559   bool issueDiagnostic = false, issueError = false;
3560 
3561   // We support a warning which complains about *any* difference in
3562   // method signature.
3563   bool strictSelectorMatch =
3564   receiverIdOrClass &&
3565   !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3566   if (strictSelectorMatch) {
3567     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3568       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3569         issueDiagnostic = true;
3570         break;
3571       }
3572     }
3573   }
3574 
3575   // If we didn't see any strict differences, we won't see any loose
3576   // differences.  In ARC, however, we also need to check for loose
3577   // mismatches, because most of them are errors.
3578   if (!strictSelectorMatch ||
3579       (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3580     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3581       // This checks if the methods differ in type mismatch.
3582       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3583           !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3584         issueDiagnostic = true;
3585         if (getLangOpts().ObjCAutoRefCount)
3586           issueError = true;
3587         break;
3588       }
3589     }
3590 
3591   if (issueDiagnostic) {
3592     if (issueError)
3593       Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3594     else if (strictSelectorMatch)
3595       Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3596     else
3597       Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3598 
3599     Diag(Methods[0]->getBeginLoc(),
3600          issueError ? diag::note_possibility : diag::note_using)
3601         << Methods[0]->getSourceRange();
3602     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3603       Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3604           << Methods[I]->getSourceRange();
3605     }
3606   }
3607 }
3608 
3609 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3610   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3611   if (Pos == MethodPool.end())
3612     return nullptr;
3613 
3614   GlobalMethods &Methods = Pos->second;
3615   for (const ObjCMethodList *Method = &Methods.first; Method;
3616        Method = Method->getNext())
3617     if (Method->getMethod() &&
3618         (Method->getMethod()->isDefined() ||
3619          Method->getMethod()->isPropertyAccessor()))
3620       return Method->getMethod();
3621 
3622   for (const ObjCMethodList *Method = &Methods.second; Method;
3623        Method = Method->getNext())
3624     if (Method->getMethod() &&
3625         (Method->getMethod()->isDefined() ||
3626          Method->getMethod()->isPropertyAccessor()))
3627       return Method->getMethod();
3628   return nullptr;
3629 }
3630 
3631 static void
3632 HelperSelectorsForTypoCorrection(
3633                       SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3634                       StringRef Typo, const ObjCMethodDecl * Method) {
3635   const unsigned MaxEditDistance = 1;
3636   unsigned BestEditDistance = MaxEditDistance + 1;
3637   std::string MethodName = Method->getSelector().getAsString();
3638 
3639   unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3640   if (MinPossibleEditDistance > 0 &&
3641       Typo.size() / MinPossibleEditDistance < 1)
3642     return;
3643   unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3644   if (EditDistance > MaxEditDistance)
3645     return;
3646   if (EditDistance == BestEditDistance)
3647     BestMethod.push_back(Method);
3648   else if (EditDistance < BestEditDistance) {
3649     BestMethod.clear();
3650     BestMethod.push_back(Method);
3651   }
3652 }
3653 
3654 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3655                                      QualType ObjectType) {
3656   if (ObjectType.isNull())
3657     return true;
3658   if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3659     return true;
3660   return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3661          nullptr;
3662 }
3663 
3664 const ObjCMethodDecl *
3665 Sema::SelectorsForTypoCorrection(Selector Sel,
3666                                  QualType ObjectType) {
3667   unsigned NumArgs = Sel.getNumArgs();
3668   SmallVector<const ObjCMethodDecl *, 8> Methods;
3669   bool ObjectIsId = true, ObjectIsClass = true;
3670   if (ObjectType.isNull())
3671     ObjectIsId = ObjectIsClass = false;
3672   else if (!ObjectType->isObjCObjectPointerType())
3673     return nullptr;
3674   else if (const ObjCObjectPointerType *ObjCPtr =
3675            ObjectType->getAsObjCInterfacePointerType()) {
3676     ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3677     ObjectIsId = ObjectIsClass = false;
3678   }
3679   else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3680     ObjectIsClass = false;
3681   else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3682     ObjectIsId = false;
3683   else
3684     return nullptr;
3685 
3686   for (GlobalMethodPool::iterator b = MethodPool.begin(),
3687        e = MethodPool.end(); b != e; b++) {
3688     // instance methods
3689     for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3690       if (M->getMethod() &&
3691           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3692           (M->getMethod()->getSelector() != Sel)) {
3693         if (ObjectIsId)
3694           Methods.push_back(M->getMethod());
3695         else if (!ObjectIsClass &&
3696                  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3697                                           ObjectType))
3698           Methods.push_back(M->getMethod());
3699       }
3700     // class methods
3701     for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3702       if (M->getMethod() &&
3703           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3704           (M->getMethod()->getSelector() != Sel)) {
3705         if (ObjectIsClass)
3706           Methods.push_back(M->getMethod());
3707         else if (!ObjectIsId &&
3708                  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3709                                           ObjectType))
3710           Methods.push_back(M->getMethod());
3711       }
3712   }
3713 
3714   SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3715   for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3716     HelperSelectorsForTypoCorrection(SelectedMethods,
3717                                      Sel.getAsString(), Methods[i]);
3718   }
3719   return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3720 }
3721 
3722 /// DiagnoseDuplicateIvars -
3723 /// Check for duplicate ivars in the entire class at the start of
3724 /// \@implementation. This becomes necesssary because class extension can
3725 /// add ivars to a class in random order which will not be known until
3726 /// class's \@implementation is seen.
3727 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3728                                   ObjCInterfaceDecl *SID) {
3729   for (auto *Ivar : ID->ivars()) {
3730     if (Ivar->isInvalidDecl())
3731       continue;
3732     if (IdentifierInfo *II = Ivar->getIdentifier()) {
3733       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3734       if (prevIvar) {
3735         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3736         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3737         Ivar->setInvalidDecl();
3738       }
3739     }
3740   }
3741 }
3742 
3743 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3744 static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3745   if (S.getLangOpts().ObjCWeak) return;
3746 
3747   for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3748          ivar; ivar = ivar->getNextIvar()) {
3749     if (ivar->isInvalidDecl()) continue;
3750     if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3751       if (S.getLangOpts().ObjCWeakRuntime) {
3752         S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3753       } else {
3754         S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3755       }
3756     }
3757   }
3758 }
3759 
3760 /// Diagnose attempts to use flexible array member with retainable object type.
3761 static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3762                                                   ObjCInterfaceDecl *ID) {
3763   if (!S.getLangOpts().ObjCAutoRefCount)
3764     return;
3765 
3766   for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3767        ivar = ivar->getNextIvar()) {
3768     if (ivar->isInvalidDecl())
3769       continue;
3770     QualType IvarTy = ivar->getType();
3771     if (IvarTy->isIncompleteArrayType() &&
3772         (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3773         IvarTy->isObjCLifetimeType()) {
3774       S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3775       ivar->setInvalidDecl();
3776     }
3777   }
3778 }
3779 
3780 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3781   switch (CurContext->getDeclKind()) {
3782     case Decl::ObjCInterface:
3783       return Sema::OCK_Interface;
3784     case Decl::ObjCProtocol:
3785       return Sema::OCK_Protocol;
3786     case Decl::ObjCCategory:
3787       if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3788         return Sema::OCK_ClassExtension;
3789       return Sema::OCK_Category;
3790     case Decl::ObjCImplementation:
3791       return Sema::OCK_Implementation;
3792     case Decl::ObjCCategoryImpl:
3793       return Sema::OCK_CategoryImplementation;
3794 
3795     default:
3796       return Sema::OCK_None;
3797   }
3798 }
3799 
3800 static bool IsVariableSizedType(QualType T) {
3801   if (T->isIncompleteArrayType())
3802     return true;
3803   const auto *RecordTy = T->getAs<RecordType>();
3804   return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3805 }
3806 
3807 static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3808   ObjCInterfaceDecl *IntfDecl = nullptr;
3809   ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3810       ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3811   if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3812     Ivars = IntfDecl->ivars();
3813   } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3814     IntfDecl = ImplDecl->getClassInterface();
3815     Ivars = ImplDecl->ivars();
3816   } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3817     if (CategoryDecl->IsClassExtension()) {
3818       IntfDecl = CategoryDecl->getClassInterface();
3819       Ivars = CategoryDecl->ivars();
3820     }
3821   }
3822 
3823   // Check if variable sized ivar is in interface and visible to subclasses.
3824   if (!isa<ObjCInterfaceDecl>(OCD)) {
3825     for (auto ivar : Ivars) {
3826       if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3827         S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3828             << ivar->getDeclName() << ivar->getType();
3829       }
3830     }
3831   }
3832 
3833   // Subsequent checks require interface decl.
3834   if (!IntfDecl)
3835     return;
3836 
3837   // Check if variable sized ivar is followed by another ivar.
3838   for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3839        ivar = ivar->getNextIvar()) {
3840     if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3841       continue;
3842     QualType IvarTy = ivar->getType();
3843     bool IsInvalidIvar = false;
3844     if (IvarTy->isIncompleteArrayType()) {
3845       S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3846           << ivar->getDeclName() << IvarTy
3847           << TTK_Class; // Use "class" for Obj-C.
3848       IsInvalidIvar = true;
3849     } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3850       if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3851         S.Diag(ivar->getLocation(),
3852                diag::err_objc_variable_sized_type_not_at_end)
3853             << ivar->getDeclName() << IvarTy;
3854         IsInvalidIvar = true;
3855       }
3856     }
3857     if (IsInvalidIvar) {
3858       S.Diag(ivar->getNextIvar()->getLocation(),
3859              diag::note_next_ivar_declaration)
3860           << ivar->getNextIvar()->getSynthesize();
3861       ivar->setInvalidDecl();
3862     }
3863   }
3864 
3865   // Check if ObjC container adds ivars after variable sized ivar in superclass.
3866   // Perform the check only if OCD is the first container to declare ivars to
3867   // avoid multiple warnings for the same ivar.
3868   ObjCIvarDecl *FirstIvar =
3869       (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3870   if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3871     const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3872     while (SuperClass && SuperClass->ivar_empty())
3873       SuperClass = SuperClass->getSuperClass();
3874     if (SuperClass) {
3875       auto IvarIter = SuperClass->ivar_begin();
3876       std::advance(IvarIter, SuperClass->ivar_size() - 1);
3877       const ObjCIvarDecl *LastIvar = *IvarIter;
3878       if (IsVariableSizedType(LastIvar->getType())) {
3879         S.Diag(FirstIvar->getLocation(),
3880                diag::warn_superclass_variable_sized_type_not_at_end)
3881             << FirstIvar->getDeclName() << LastIvar->getDeclName()
3882             << LastIvar->getType() << SuperClass->getDeclName();
3883         S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3884             << LastIvar->getDeclName();
3885       }
3886     }
3887   }
3888 }
3889 
3890 // Note: For class/category implementations, allMethods is always null.
3891 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3892                        ArrayRef<DeclGroupPtrTy> allTUVars) {
3893   if (getObjCContainerKind() == Sema::OCK_None)
3894     return nullptr;
3895 
3896   assert(AtEnd.isValid() && "Invalid location for '@end'");
3897 
3898   auto *OCD = cast<ObjCContainerDecl>(CurContext);
3899   Decl *ClassDecl = OCD;
3900 
3901   bool isInterfaceDeclKind =
3902         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3903          || isa<ObjCProtocolDecl>(ClassDecl);
3904   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3905 
3906   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3907   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3908   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3909 
3910   for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3911     ObjCMethodDecl *Method =
3912       cast_or_null<ObjCMethodDecl>(allMethods[i]);
3913 
3914     if (!Method) continue;  // Already issued a diagnostic.
3915     if (Method->isInstanceMethod()) {
3916       /// Check for instance method of the same name with incompatible types
3917       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3918       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3919                               : false;
3920       if ((isInterfaceDeclKind && PrevMethod && !match)
3921           || (checkIdenticalMethods && match)) {
3922           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3923             << Method->getDeclName();
3924           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3925         Method->setInvalidDecl();
3926       } else {
3927         if (PrevMethod) {
3928           Method->setAsRedeclaration(PrevMethod);
3929           if (!Context.getSourceManager().isInSystemHeader(
3930                  Method->getLocation()))
3931             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3932               << Method->getDeclName();
3933           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3934         }
3935         InsMap[Method->getSelector()] = Method;
3936         /// The following allows us to typecheck messages to "id".
3937         AddInstanceMethodToGlobalPool(Method);
3938       }
3939     } else {
3940       /// Check for class method of the same name with incompatible types
3941       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3942       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3943                               : false;
3944       if ((isInterfaceDeclKind && PrevMethod && !match)
3945           || (checkIdenticalMethods && match)) {
3946         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3947           << Method->getDeclName();
3948         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3949         Method->setInvalidDecl();
3950       } else {
3951         if (PrevMethod) {
3952           Method->setAsRedeclaration(PrevMethod);
3953           if (!Context.getSourceManager().isInSystemHeader(
3954                  Method->getLocation()))
3955             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3956               << Method->getDeclName();
3957           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3958         }
3959         ClsMap[Method->getSelector()] = Method;
3960         AddFactoryMethodToGlobalPool(Method);
3961       }
3962     }
3963   }
3964   if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3965     // Nothing to do here.
3966   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3967     // Categories are used to extend the class by declaring new methods.
3968     // By the same token, they are also used to add new properties. No
3969     // need to compare the added property to those in the class.
3970 
3971     if (C->IsClassExtension()) {
3972       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3973       DiagnoseClassExtensionDupMethods(C, CCPrimary);
3974     }
3975   }
3976   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3977     if (CDecl->getIdentifier())
3978       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3979       // user-defined setter/getter. It also synthesizes setter/getter methods
3980       // and adds them to the DeclContext and global method pools.
3981       for (auto *I : CDecl->properties())
3982         ProcessPropertyDecl(I);
3983     CDecl->setAtEndRange(AtEnd);
3984   }
3985   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3986     IC->setAtEndRange(AtEnd);
3987     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3988       // Any property declared in a class extension might have user
3989       // declared setter or getter in current class extension or one
3990       // of the other class extensions. Mark them as synthesized as
3991       // property will be synthesized when property with same name is
3992       // seen in the @implementation.
3993       for (const auto *Ext : IDecl->visible_extensions()) {
3994         for (const auto *Property : Ext->instance_properties()) {
3995           // Skip over properties declared @dynamic
3996           if (const ObjCPropertyImplDecl *PIDecl
3997               = IC->FindPropertyImplDecl(Property->getIdentifier(),
3998                                          Property->getQueryKind()))
3999             if (PIDecl->getPropertyImplementation()
4000                   == ObjCPropertyImplDecl::Dynamic)
4001               continue;
4002 
4003           for (const auto *Ext : IDecl->visible_extensions()) {
4004             if (ObjCMethodDecl *GetterMethod
4005                   = Ext->getInstanceMethod(Property->getGetterName()))
4006               GetterMethod->setPropertyAccessor(true);
4007             if (!Property->isReadOnly())
4008               if (ObjCMethodDecl *SetterMethod
4009                     = Ext->getInstanceMethod(Property->getSetterName()))
4010                 SetterMethod->setPropertyAccessor(true);
4011           }
4012         }
4013       }
4014       ImplMethodsVsClassMethods(S, IC, IDecl);
4015       AtomicPropertySetterGetterRules(IC, IDecl);
4016       DiagnoseOwningPropertyGetterSynthesis(IC);
4017       DiagnoseUnusedBackingIvarInAccessor(S, IC);
4018       if (IDecl->hasDesignatedInitializers())
4019         DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
4020       DiagnoseWeakIvars(*this, IC);
4021       DiagnoseRetainableFlexibleArrayMember(*this, IDecl);
4022 
4023       bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4024       if (IDecl->getSuperClass() == nullptr) {
4025         // This class has no superclass, so check that it has been marked with
4026         // __attribute((objc_root_class)).
4027         if (!HasRootClassAttr) {
4028           SourceLocation DeclLoc(IDecl->getLocation());
4029           SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
4030           Diag(DeclLoc, diag::warn_objc_root_class_missing)
4031             << IDecl->getIdentifier();
4032           // See if NSObject is in the current scope, and if it is, suggest
4033           // adding " : NSObject " to the class declaration.
4034           NamedDecl *IF = LookupSingleName(TUScope,
4035                                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4036                                            DeclLoc, LookupOrdinaryName);
4037           ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4038           if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4039             Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4040               << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4041           } else {
4042             Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4043           }
4044         }
4045       } else if (HasRootClassAttr) {
4046         // Complain that only root classes may have this attribute.
4047         Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4048       }
4049 
4050       if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4051         // An interface can subclass another interface with a
4052         // objc_subclassing_restricted attribute when it has that attribute as
4053         // well (because of interfaces imported from Swift). Therefore we have
4054         // to check if we can subclass in the implementation as well.
4055         if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4056             Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4057           Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4058           Diag(Super->getLocation(), diag::note_class_declared);
4059         }
4060       }
4061 
4062       if (IDecl->hasAttr<ObjCClassStubAttr>())
4063         Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4064 
4065       if (LangOpts.ObjCRuntime.isNonFragile()) {
4066         while (IDecl->getSuperClass()) {
4067           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4068           IDecl = IDecl->getSuperClass();
4069         }
4070       }
4071     }
4072     SetIvarInitializers(IC);
4073   } else if (ObjCCategoryImplDecl* CatImplClass =
4074                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4075     CatImplClass->setAtEndRange(AtEnd);
4076 
4077     // Find category interface decl and then check that all methods declared
4078     // in this interface are implemented in the category @implementation.
4079     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4080       if (ObjCCategoryDecl *Cat
4081             = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4082         ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4083       }
4084     }
4085   } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4086     if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4087       if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4088           Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4089         Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4090         Diag(Super->getLocation(), diag::note_class_declared);
4091       }
4092     }
4093 
4094     if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4095         !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4096       Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4097   }
4098   DiagnoseVariableSizedIvars(*this, OCD);
4099   if (isInterfaceDeclKind) {
4100     // Reject invalid vardecls.
4101     for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4102       DeclGroupRef DG = allTUVars[i].get();
4103       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4104         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4105           if (!VDecl->hasExternalStorage())
4106             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4107         }
4108     }
4109   }
4110   ActOnObjCContainerFinishDefinition();
4111 
4112   for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4113     DeclGroupRef DG = allTUVars[i].get();
4114     for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4115       (*I)->setTopLevelDeclInObjCContainer();
4116     Consumer.HandleTopLevelDeclInObjCContainer(DG);
4117   }
4118 
4119   ActOnDocumentableDecl(ClassDecl);
4120   return ClassDecl;
4121 }
4122 
4123 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4124 /// objective-c's type qualifier from the parser version of the same info.
4125 static Decl::ObjCDeclQualifier
4126 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4127   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4128 }
4129 
4130 /// Check whether the declared result type of the given Objective-C
4131 /// method declaration is compatible with the method's class.
4132 ///
4133 static Sema::ResultTypeCompatibilityKind
4134 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4135                                     ObjCInterfaceDecl *CurrentClass) {
4136   QualType ResultType = Method->getReturnType();
4137 
4138   // If an Objective-C method inherits its related result type, then its
4139   // declared result type must be compatible with its own class type. The
4140   // declared result type is compatible if:
4141   if (const ObjCObjectPointerType *ResultObjectType
4142                                 = ResultType->getAs<ObjCObjectPointerType>()) {
4143     //   - it is id or qualified id, or
4144     if (ResultObjectType->isObjCIdType() ||
4145         ResultObjectType->isObjCQualifiedIdType())
4146       return Sema::RTC_Compatible;
4147 
4148     if (CurrentClass) {
4149       if (ObjCInterfaceDecl *ResultClass
4150                                       = ResultObjectType->getInterfaceDecl()) {
4151         //   - it is the same as the method's class type, or
4152         if (declaresSameEntity(CurrentClass, ResultClass))
4153           return Sema::RTC_Compatible;
4154 
4155         //   - it is a superclass of the method's class type
4156         if (ResultClass->isSuperClassOf(CurrentClass))
4157           return Sema::RTC_Compatible;
4158       }
4159     } else {
4160       // Any Objective-C pointer type might be acceptable for a protocol
4161       // method; we just don't know.
4162       return Sema::RTC_Unknown;
4163     }
4164   }
4165 
4166   return Sema::RTC_Incompatible;
4167 }
4168 
4169 namespace {
4170 /// A helper class for searching for methods which a particular method
4171 /// overrides.
4172 class OverrideSearch {
4173 public:
4174   const ObjCMethodDecl *Method;
4175   llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4176   bool Recursive;
4177 
4178 public:
4179   OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4180     Selector selector = method->getSelector();
4181 
4182     // Bypass this search if we've never seen an instance/class method
4183     // with this selector before.
4184     Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4185     if (it == S.MethodPool.end()) {
4186       if (!S.getExternalSource()) return;
4187       S.ReadMethodPool(selector);
4188 
4189       it = S.MethodPool.find(selector);
4190       if (it == S.MethodPool.end())
4191         return;
4192     }
4193     const ObjCMethodList &list =
4194       method->isInstanceMethod() ? it->second.first : it->second.second;
4195     if (!list.getMethod()) return;
4196 
4197     const ObjCContainerDecl *container
4198       = cast<ObjCContainerDecl>(method->getDeclContext());
4199 
4200     // Prevent the search from reaching this container again.  This is
4201     // important with categories, which override methods from the
4202     // interface and each other.
4203     if (const ObjCCategoryDecl *Category =
4204             dyn_cast<ObjCCategoryDecl>(container)) {
4205       searchFromContainer(container);
4206       if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4207         searchFromContainer(Interface);
4208     } else {
4209       searchFromContainer(container);
4210     }
4211   }
4212 
4213   typedef decltype(Overridden)::iterator iterator;
4214   iterator begin() const { return Overridden.begin(); }
4215   iterator end() const { return Overridden.end(); }
4216 
4217 private:
4218   void searchFromContainer(const ObjCContainerDecl *container) {
4219     if (container->isInvalidDecl()) return;
4220 
4221     switch (container->getDeclKind()) {
4222 #define OBJCCONTAINER(type, base) \
4223     case Decl::type: \
4224       searchFrom(cast<type##Decl>(container)); \
4225       break;
4226 #define ABSTRACT_DECL(expansion)
4227 #define DECL(type, base) \
4228     case Decl::type:
4229 #include "clang/AST/DeclNodes.inc"
4230       llvm_unreachable("not an ObjC container!");
4231     }
4232   }
4233 
4234   void searchFrom(const ObjCProtocolDecl *protocol) {
4235     if (!protocol->hasDefinition())
4236       return;
4237 
4238     // A method in a protocol declaration overrides declarations from
4239     // referenced ("parent") protocols.
4240     search(protocol->getReferencedProtocols());
4241   }
4242 
4243   void searchFrom(const ObjCCategoryDecl *category) {
4244     // A method in a category declaration overrides declarations from
4245     // the main class and from protocols the category references.
4246     // The main class is handled in the constructor.
4247     search(category->getReferencedProtocols());
4248   }
4249 
4250   void searchFrom(const ObjCCategoryImplDecl *impl) {
4251     // A method in a category definition that has a category
4252     // declaration overrides declarations from the category
4253     // declaration.
4254     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4255       search(category);
4256       if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4257         search(Interface);
4258 
4259     // Otherwise it overrides declarations from the class.
4260     } else if (const auto *Interface = impl->getClassInterface()) {
4261       search(Interface);
4262     }
4263   }
4264 
4265   void searchFrom(const ObjCInterfaceDecl *iface) {
4266     // A method in a class declaration overrides declarations from
4267     if (!iface->hasDefinition())
4268       return;
4269 
4270     //   - categories,
4271     for (auto *Cat : iface->known_categories())
4272       search(Cat);
4273 
4274     //   - the super class, and
4275     if (ObjCInterfaceDecl *super = iface->getSuperClass())
4276       search(super);
4277 
4278     //   - any referenced protocols.
4279     search(iface->getReferencedProtocols());
4280   }
4281 
4282   void searchFrom(const ObjCImplementationDecl *impl) {
4283     // A method in a class implementation overrides declarations from
4284     // the class interface.
4285     if (const auto *Interface = impl->getClassInterface())
4286       search(Interface);
4287   }
4288 
4289   void search(const ObjCProtocolList &protocols) {
4290     for (const auto *Proto : protocols)
4291       search(Proto);
4292   }
4293 
4294   void search(const ObjCContainerDecl *container) {
4295     // Check for a method in this container which matches this selector.
4296     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4297                                                 Method->isInstanceMethod(),
4298                                                 /*AllowHidden=*/true);
4299 
4300     // If we find one, record it and bail out.
4301     if (meth) {
4302       Overridden.insert(meth);
4303       return;
4304     }
4305 
4306     // Otherwise, search for methods that a hypothetical method here
4307     // would have overridden.
4308 
4309     // Note that we're now in a recursive case.
4310     Recursive = true;
4311 
4312     searchFromContainer(container);
4313   }
4314 };
4315 } // end anonymous namespace
4316 
4317 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4318                                     ObjCInterfaceDecl *CurrentClass,
4319                                     ResultTypeCompatibilityKind RTC) {
4320   if (!ObjCMethod)
4321     return;
4322   // Search for overridden methods and merge information down from them.
4323   OverrideSearch overrides(*this, ObjCMethod);
4324   // Keep track if the method overrides any method in the class's base classes,
4325   // its protocols, or its categories' protocols; we will keep that info
4326   // in the ObjCMethodDecl.
4327   // For this info, a method in an implementation is not considered as
4328   // overriding the same method in the interface or its categories.
4329   bool hasOverriddenMethodsInBaseOrProtocol = false;
4330   for (ObjCMethodDecl *overridden : overrides) {
4331     if (!hasOverriddenMethodsInBaseOrProtocol) {
4332       if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4333           CurrentClass != overridden->getClassInterface() ||
4334           overridden->isOverriding()) {
4335         hasOverriddenMethodsInBaseOrProtocol = true;
4336 
4337       } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4338         // OverrideSearch will return as "overridden" the same method in the
4339         // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4340         // check whether a category of a base class introduced a method with the
4341         // same selector, after the interface method declaration.
4342         // To avoid unnecessary lookups in the majority of cases, we use the
4343         // extra info bits in GlobalMethodPool to check whether there were any
4344         // category methods with this selector.
4345         GlobalMethodPool::iterator It =
4346             MethodPool.find(ObjCMethod->getSelector());
4347         if (It != MethodPool.end()) {
4348           ObjCMethodList &List =
4349             ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4350           unsigned CategCount = List.getBits();
4351           if (CategCount > 0) {
4352             // If the method is in a category we'll do lookup if there were at
4353             // least 2 category methods recorded, otherwise only one will do.
4354             if (CategCount > 1 ||
4355                 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4356               OverrideSearch overrides(*this, overridden);
4357               for (ObjCMethodDecl *SuperOverridden : overrides) {
4358                 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4359                     CurrentClass != SuperOverridden->getClassInterface()) {
4360                   hasOverriddenMethodsInBaseOrProtocol = true;
4361                   overridden->setOverriding(true);
4362                   break;
4363                 }
4364               }
4365             }
4366           }
4367         }
4368       }
4369     }
4370 
4371     // Propagate down the 'related result type' bit from overridden methods.
4372     if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4373       ObjCMethod->setRelatedResultType();
4374 
4375     // Then merge the declarations.
4376     mergeObjCMethodDecls(ObjCMethod, overridden);
4377 
4378     if (ObjCMethod->isImplicit() && overridden->isImplicit())
4379       continue; // Conflicting properties are detected elsewhere.
4380 
4381     // Check for overriding methods
4382     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4383         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4384       CheckConflictingOverridingMethod(ObjCMethod, overridden,
4385               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4386 
4387     if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4388         isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4389         !overridden->isImplicit() /* not meant for properties */) {
4390       ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4391                                           E = ObjCMethod->param_end();
4392       ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4393                                      PrevE = overridden->param_end();
4394       for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4395         assert(PrevI != overridden->param_end() && "Param mismatch");
4396         QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4397         QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4398         // If type of argument of method in this class does not match its
4399         // respective argument type in the super class method, issue warning;
4400         if (!Context.typesAreCompatible(T1, T2)) {
4401           Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4402             << T1 << T2;
4403           Diag(overridden->getLocation(), diag::note_previous_declaration);
4404           break;
4405         }
4406       }
4407     }
4408   }
4409 
4410   ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4411 }
4412 
4413 /// Merge type nullability from for a redeclaration of the same entity,
4414 /// producing the updated type of the redeclared entity.
4415 static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4416                                               QualType type,
4417                                               bool usesCSKeyword,
4418                                               SourceLocation prevLoc,
4419                                               QualType prevType,
4420                                               bool prevUsesCSKeyword) {
4421   // Determine the nullability of both types.
4422   auto nullability = type->getNullability(S.Context);
4423   auto prevNullability = prevType->getNullability(S.Context);
4424 
4425   // Easy case: both have nullability.
4426   if (nullability.hasValue() == prevNullability.hasValue()) {
4427     // Neither has nullability; continue.
4428     if (!nullability)
4429       return type;
4430 
4431     // The nullabilities are equivalent; do nothing.
4432     if (*nullability == *prevNullability)
4433       return type;
4434 
4435     // Complain about mismatched nullability.
4436     S.Diag(loc, diag::err_nullability_conflicting)
4437       << DiagNullabilityKind(*nullability, usesCSKeyword)
4438       << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4439     return type;
4440   }
4441 
4442   // If it's the redeclaration that has nullability, don't change anything.
4443   if (nullability)
4444     return type;
4445 
4446   // Otherwise, provide the result with the same nullability.
4447   return S.Context.getAttributedType(
4448            AttributedType::getNullabilityAttrKind(*prevNullability),
4449            type, type);
4450 }
4451 
4452 /// Merge information from the declaration of a method in the \@interface
4453 /// (or a category/extension) into the corresponding method in the
4454 /// @implementation (for a class or category).
4455 static void mergeInterfaceMethodToImpl(Sema &S,
4456                                        ObjCMethodDecl *method,
4457                                        ObjCMethodDecl *prevMethod) {
4458   // Merge the objc_requires_super attribute.
4459   if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4460       !method->hasAttr<ObjCRequiresSuperAttr>()) {
4461     // merge the attribute into implementation.
4462     method->addAttr(
4463       ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4464                                             method->getLocation()));
4465   }
4466 
4467   // Merge nullability of the result type.
4468   QualType newReturnType
4469     = mergeTypeNullabilityForRedecl(
4470         S, method->getReturnTypeSourceRange().getBegin(),
4471         method->getReturnType(),
4472         method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4473         prevMethod->getReturnTypeSourceRange().getBegin(),
4474         prevMethod->getReturnType(),
4475         prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4476   method->setReturnType(newReturnType);
4477 
4478   // Handle each of the parameters.
4479   unsigned numParams = method->param_size();
4480   unsigned numPrevParams = prevMethod->param_size();
4481   for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4482     ParmVarDecl *param = method->param_begin()[i];
4483     ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4484 
4485     // Merge nullability.
4486     QualType newParamType
4487       = mergeTypeNullabilityForRedecl(
4488           S, param->getLocation(), param->getType(),
4489           param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4490           prevParam->getLocation(), prevParam->getType(),
4491           prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4492     param->setType(newParamType);
4493   }
4494 }
4495 
4496 /// Verify that the method parameters/return value have types that are supported
4497 /// by the x86 target.
4498 static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4499                                           const ObjCMethodDecl *Method) {
4500   assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4501              llvm::Triple::x86 &&
4502          "x86-specific check invoked for a different target");
4503   SourceLocation Loc;
4504   QualType T;
4505   for (const ParmVarDecl *P : Method->parameters()) {
4506     if (P->getType()->isVectorType()) {
4507       Loc = P->getBeginLoc();
4508       T = P->getType();
4509       break;
4510     }
4511   }
4512   if (Loc.isInvalid()) {
4513     if (Method->getReturnType()->isVectorType()) {
4514       Loc = Method->getReturnTypeSourceRange().getBegin();
4515       T = Method->getReturnType();
4516     } else
4517       return;
4518   }
4519 
4520   // Vector parameters/return values are not supported by objc_msgSend on x86 in
4521   // iOS < 9 and macOS < 10.11.
4522   const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4523   VersionTuple AcceptedInVersion;
4524   if (Triple.getOS() == llvm::Triple::IOS)
4525     AcceptedInVersion = VersionTuple(/*Major=*/9);
4526   else if (Triple.isMacOSX())
4527     AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4528   else
4529     return;
4530   if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4531       AcceptedInVersion)
4532     return;
4533   SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4534       << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4535                                                        : /*parameter*/ 0)
4536       << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4537 }
4538 
4539 Decl *Sema::ActOnMethodDeclaration(
4540     Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4541     tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4542     ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4543     // optional arguments. The number of types/arguments is obtained
4544     // from the Sel.getNumArgs().
4545     ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4546     unsigned CNumArgs, // c-style args
4547     const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4548     bool isVariadic, bool MethodDefinition) {
4549   // Make sure we can establish a context for the method.
4550   if (!CurContext->isObjCContainer()) {
4551     Diag(MethodLoc, diag::err_missing_method_context);
4552     return nullptr;
4553   }
4554   Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4555   QualType resultDeclType;
4556 
4557   bool HasRelatedResultType = false;
4558   TypeSourceInfo *ReturnTInfo = nullptr;
4559   if (ReturnType) {
4560     resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4561 
4562     if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4563       return nullptr;
4564 
4565     QualType bareResultType = resultDeclType;
4566     (void)AttributedType::stripOuterNullability(bareResultType);
4567     HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4568   } else { // get the type for "id".
4569     resultDeclType = Context.getObjCIdType();
4570     Diag(MethodLoc, diag::warn_missing_method_return_type)
4571       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4572   }
4573 
4574   ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4575       Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4576       MethodType == tok::minus, isVariadic,
4577       /*isPropertyAccessor=*/false,
4578       /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4579       MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4580                                            : ObjCMethodDecl::Required,
4581       HasRelatedResultType);
4582 
4583   SmallVector<ParmVarDecl*, 16> Params;
4584 
4585   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4586     QualType ArgType;
4587     TypeSourceInfo *DI;
4588 
4589     if (!ArgInfo[i].Type) {
4590       ArgType = Context.getObjCIdType();
4591       DI = nullptr;
4592     } else {
4593       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4594     }
4595 
4596     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4597                    LookupOrdinaryName, forRedeclarationInCurContext());
4598     LookupName(R, S);
4599     if (R.isSingleResult()) {
4600       NamedDecl *PrevDecl = R.getFoundDecl();
4601       if (S->isDeclScope(PrevDecl)) {
4602         Diag(ArgInfo[i].NameLoc,
4603              (MethodDefinition ? diag::warn_method_param_redefinition
4604                                : diag::warn_method_param_declaration))
4605           << ArgInfo[i].Name;
4606         Diag(PrevDecl->getLocation(),
4607              diag::note_previous_declaration);
4608       }
4609     }
4610 
4611     SourceLocation StartLoc = DI
4612       ? DI->getTypeLoc().getBeginLoc()
4613       : ArgInfo[i].NameLoc;
4614 
4615     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4616                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
4617                                         ArgType, DI, SC_None);
4618 
4619     Param->setObjCMethodScopeInfo(i);
4620 
4621     Param->setObjCDeclQualifier(
4622       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4623 
4624     // Apply the attributes to the parameter.
4625     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4626     AddPragmaAttributes(TUScope, Param);
4627 
4628     if (Param->hasAttr<BlocksAttr>()) {
4629       Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4630       Param->setInvalidDecl();
4631     }
4632     S->AddDecl(Param);
4633     IdResolver.AddDecl(Param);
4634 
4635     Params.push_back(Param);
4636   }
4637 
4638   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4639     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4640     QualType ArgType = Param->getType();
4641     if (ArgType.isNull())
4642       ArgType = Context.getObjCIdType();
4643     else
4644       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4645       ArgType = Context.getAdjustedParameterType(ArgType);
4646 
4647     Param->setDeclContext(ObjCMethod);
4648     Params.push_back(Param);
4649   }
4650 
4651   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4652   ObjCMethod->setObjCDeclQualifier(
4653     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4654 
4655   ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4656   AddPragmaAttributes(TUScope, ObjCMethod);
4657 
4658   // Add the method now.
4659   const ObjCMethodDecl *PrevMethod = nullptr;
4660   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4661     if (MethodType == tok::minus) {
4662       PrevMethod = ImpDecl->getInstanceMethod(Sel);
4663       ImpDecl->addInstanceMethod(ObjCMethod);
4664     } else {
4665       PrevMethod = ImpDecl->getClassMethod(Sel);
4666       ImpDecl->addClassMethod(ObjCMethod);
4667     }
4668 
4669     // Merge information from the @interface declaration into the
4670     // @implementation.
4671     if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4672       if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4673                                           ObjCMethod->isInstanceMethod())) {
4674         mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4675 
4676         // Warn about defining -dealloc in a category.
4677         if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4678             ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4679           Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4680             << ObjCMethod->getDeclName();
4681         }
4682       }
4683 
4684       // Warn if a method declared in a protocol to which a category or
4685       // extension conforms is non-escaping and the implementation's method is
4686       // escaping.
4687       for (auto *C : IDecl->visible_categories())
4688         for (auto &P : C->protocols())
4689           if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4690                                           ObjCMethod->isInstanceMethod())) {
4691             assert(ObjCMethod->parameters().size() ==
4692                        IMD->parameters().size() &&
4693                    "Methods have different number of parameters");
4694             auto OI = IMD->param_begin(), OE = IMD->param_end();
4695             auto NI = ObjCMethod->param_begin();
4696             for (; OI != OE; ++OI, ++NI)
4697               diagnoseNoescape(*NI, *OI, C, P, *this);
4698           }
4699     }
4700   } else {
4701     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4702   }
4703 
4704   if (PrevMethod) {
4705     // You can never have two method definitions with the same name.
4706     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4707       << ObjCMethod->getDeclName();
4708     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4709     ObjCMethod->setInvalidDecl();
4710     return ObjCMethod;
4711   }
4712 
4713   // If this Objective-C method does not have a related result type, but we
4714   // are allowed to infer related result types, try to do so based on the
4715   // method family.
4716   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4717   if (!CurrentClass) {
4718     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4719       CurrentClass = Cat->getClassInterface();
4720     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4721       CurrentClass = Impl->getClassInterface();
4722     else if (ObjCCategoryImplDecl *CatImpl
4723                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4724       CurrentClass = CatImpl->getClassInterface();
4725   }
4726 
4727   ResultTypeCompatibilityKind RTC
4728     = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4729 
4730   CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4731 
4732   bool ARCError = false;
4733   if (getLangOpts().ObjCAutoRefCount)
4734     ARCError = CheckARCMethodDecl(ObjCMethod);
4735 
4736   // Infer the related result type when possible.
4737   if (!ARCError && RTC == Sema::RTC_Compatible &&
4738       !ObjCMethod->hasRelatedResultType() &&
4739       LangOpts.ObjCInferRelatedResultType) {
4740     bool InferRelatedResultType = false;
4741     switch (ObjCMethod->getMethodFamily()) {
4742     case OMF_None:
4743     case OMF_copy:
4744     case OMF_dealloc:
4745     case OMF_finalize:
4746     case OMF_mutableCopy:
4747     case OMF_release:
4748     case OMF_retainCount:
4749     case OMF_initialize:
4750     case OMF_performSelector:
4751       break;
4752 
4753     case OMF_alloc:
4754     case OMF_new:
4755         InferRelatedResultType = ObjCMethod->isClassMethod();
4756       break;
4757 
4758     case OMF_init:
4759     case OMF_autorelease:
4760     case OMF_retain:
4761     case OMF_self:
4762       InferRelatedResultType = ObjCMethod->isInstanceMethod();
4763       break;
4764     }
4765 
4766     if (InferRelatedResultType &&
4767         !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4768       ObjCMethod->setRelatedResultType();
4769   }
4770 
4771   if (MethodDefinition &&
4772       Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
4773     checkObjCMethodX86VectorTypes(*this, ObjCMethod);
4774 
4775   // + load method cannot have availability attributes. It get called on
4776   // startup, so it has to have the availability of the deployment target.
4777   if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
4778     if (ObjCMethod->isClassMethod() &&
4779         ObjCMethod->getSelector().getAsString() == "load") {
4780       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
4781           << 0;
4782       ObjCMethod->dropAttr<AvailabilityAttr>();
4783     }
4784   }
4785 
4786   ActOnDocumentableDecl(ObjCMethod);
4787 
4788   return ObjCMethod;
4789 }
4790 
4791 bool Sema::CheckObjCDeclScope(Decl *D) {
4792   // Following is also an error. But it is caused by a missing @end
4793   // and diagnostic is issued elsewhere.
4794   if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4795     return false;
4796 
4797   // If we switched context to translation unit while we are still lexically in
4798   // an objc container, it means the parser missed emitting an error.
4799   if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4800     return false;
4801 
4802   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4803   D->setInvalidDecl();
4804 
4805   return true;
4806 }
4807 
4808 /// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
4809 /// instance variables of ClassName into Decls.
4810 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4811                      IdentifierInfo *ClassName,
4812                      SmallVectorImpl<Decl*> &Decls) {
4813   // Check that ClassName is a valid class
4814   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4815   if (!Class) {
4816     Diag(DeclStart, diag::err_undef_interface) << ClassName;
4817     return;
4818   }
4819   if (LangOpts.ObjCRuntime.isNonFragile()) {
4820     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4821     return;
4822   }
4823 
4824   // Collect the instance variables
4825   SmallVector<const ObjCIvarDecl*, 32> Ivars;
4826   Context.DeepCollectObjCIvars(Class, true, Ivars);
4827   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4828   for (unsigned i = 0; i < Ivars.size(); i++) {
4829     const FieldDecl* ID = Ivars[i];
4830     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4831     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4832                                            /*FIXME: StartL=*/ID->getLocation(),
4833                                            ID->getLocation(),
4834                                            ID->getIdentifier(), ID->getType(),
4835                                            ID->getBitWidth());
4836     Decls.push_back(FD);
4837   }
4838 
4839   // Introduce all of these fields into the appropriate scope.
4840   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4841        D != Decls.end(); ++D) {
4842     FieldDecl *FD = cast<FieldDecl>(*D);
4843     if (getLangOpts().CPlusPlus)
4844       PushOnScopeChains(FD, S);
4845     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4846       Record->addDecl(FD);
4847   }
4848 }
4849 
4850 /// Build a type-check a new Objective-C exception variable declaration.
4851 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
4852                                       SourceLocation StartLoc,
4853                                       SourceLocation IdLoc,
4854                                       IdentifierInfo *Id,
4855                                       bool Invalid) {
4856   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4857   // duration shall not be qualified by an address-space qualifier."
4858   // Since all parameters have automatic store duration, they can not have
4859   // an address space.
4860   if (T.getAddressSpace() != LangAS::Default) {
4861     Diag(IdLoc, diag::err_arg_with_address_space);
4862     Invalid = true;
4863   }
4864 
4865   // An @catch parameter must be an unqualified object pointer type;
4866   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4867   if (Invalid) {
4868     // Don't do any further checking.
4869   } else if (T->isDependentType()) {
4870     // Okay: we don't know what this type will instantiate to.
4871   } else if (T->isObjCQualifiedIdType()) {
4872     Invalid = true;
4873     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4874   } else if (T->isObjCIdType()) {
4875     // Okay: we don't know what this type will instantiate to.
4876   } else if (!T->isObjCObjectPointerType()) {
4877     Invalid = true;
4878     Diag(IdLoc, diag::err_catch_param_not_objc_type);
4879   } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) {
4880     Invalid = true;
4881     Diag(IdLoc, diag::err_catch_param_not_objc_type);
4882   }
4883 
4884   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4885                                  T, TInfo, SC_None);
4886   New->setExceptionVariable(true);
4887 
4888   // In ARC, infer 'retaining' for variables of retainable type.
4889   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4890     Invalid = true;
4891 
4892   if (Invalid)
4893     New->setInvalidDecl();
4894   return New;
4895 }
4896 
4897 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
4898   const DeclSpec &DS = D.getDeclSpec();
4899 
4900   // We allow the "register" storage class on exception variables because
4901   // GCC did, but we drop it completely. Any other storage class is an error.
4902   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4903     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4904       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
4905   } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4906     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4907       << DeclSpec::getSpecifierName(SCS);
4908   }
4909   if (DS.isInlineSpecified())
4910     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4911         << getLangOpts().CPlusPlus17;
4912   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
4913     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4914          diag::err_invalid_thread)
4915      << DeclSpec::getSpecifierName(TSCS);
4916   D.getMutableDeclSpec().ClearStorageClassSpecs();
4917 
4918   DiagnoseFunctionSpecifiers(D.getDeclSpec());
4919 
4920   // Check that there are no default arguments inside the type of this
4921   // exception object (C++ only).
4922   if (getLangOpts().CPlusPlus)
4923     CheckExtraCXXDefaultArguments(D);
4924 
4925   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4926   QualType ExceptionType = TInfo->getType();
4927 
4928   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4929                                         D.getSourceRange().getBegin(),
4930                                         D.getIdentifierLoc(),
4931                                         D.getIdentifier(),
4932                                         D.isInvalidType());
4933 
4934   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4935   if (D.getCXXScopeSpec().isSet()) {
4936     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4937       << D.getCXXScopeSpec().getRange();
4938     New->setInvalidDecl();
4939   }
4940 
4941   // Add the parameter declaration into this scope.
4942   S->AddDecl(New);
4943   if (D.getIdentifier())
4944     IdResolver.AddDecl(New);
4945 
4946   ProcessDeclAttributes(S, New, D);
4947 
4948   if (New->hasAttr<BlocksAttr>())
4949     Diag(New->getLocation(), diag::err_block_on_nonlocal);
4950   return New;
4951 }
4952 
4953 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4954 /// initialization.
4955 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4956                                 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
4957   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4958        Iv= Iv->getNextIvar()) {
4959     QualType QT = Context.getBaseElementType(Iv->getType());
4960     if (QT->isRecordType())
4961       Ivars.push_back(Iv);
4962   }
4963 }
4964 
4965 void Sema::DiagnoseUseOfUnimplementedSelectors() {
4966   // Load referenced selectors from the external source.
4967   if (ExternalSource) {
4968     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
4969     ExternalSource->ReadReferencedSelectors(Sels);
4970     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4971       ReferencedSelectors[Sels[I].first] = Sels[I].second;
4972   }
4973 
4974   // Warning will be issued only when selector table is
4975   // generated (which means there is at lease one implementation
4976   // in the TU). This is to match gcc's behavior.
4977   if (ReferencedSelectors.empty() ||
4978       !Context.AnyObjCImplementation())
4979     return;
4980   for (auto &SelectorAndLocation : ReferencedSelectors) {
4981     Selector Sel = SelectorAndLocation.first;
4982     SourceLocation Loc = SelectorAndLocation.second;
4983     if (!LookupImplementedMethodInGlobalPool(Sel))
4984       Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4985   }
4986 }
4987 
4988 ObjCIvarDecl *
4989 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4990                                      const ObjCPropertyDecl *&PDecl) const {
4991   if (Method->isClassMethod())
4992     return nullptr;
4993   const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4994   if (!IDecl)
4995     return nullptr;
4996   Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4997                                /*shallowCategoryLookup=*/false,
4998                                /*followSuper=*/false);
4999   if (!Method || !Method->isPropertyAccessor())
5000     return nullptr;
5001   if ((PDecl = Method->findPropertyDecl()))
5002     if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5003       // property backing ivar must belong to property's class
5004       // or be a private ivar in class's implementation.
5005       // FIXME. fix the const-ness issue.
5006       IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5007                                                         IV->getIdentifier());
5008       return IV;
5009     }
5010   return nullptr;
5011 }
5012 
5013 namespace {
5014   /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
5015   /// accessor references the backing ivar.
5016   class UnusedBackingIvarChecker :
5017       public RecursiveASTVisitor<UnusedBackingIvarChecker> {
5018   public:
5019     Sema &S;
5020     const ObjCMethodDecl *Method;
5021     const ObjCIvarDecl *IvarD;
5022     bool AccessedIvar;
5023     bool InvokedSelfMethod;
5024 
5025     UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5026                              const ObjCIvarDecl *IvarD)
5027       : S(S), Method(Method), IvarD(IvarD),
5028         AccessedIvar(false), InvokedSelfMethod(false) {
5029       assert(IvarD);
5030     }
5031 
5032     bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5033       if (E->getDecl() == IvarD) {
5034         AccessedIvar = true;
5035         return false;
5036       }
5037       return true;
5038     }
5039 
5040     bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5041       if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5042           S.isSelfExpr(E->getInstanceReceiver(), Method)) {
5043         InvokedSelfMethod = true;
5044       }
5045       return true;
5046     }
5047   };
5048 } // end anonymous namespace
5049 
5050 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
5051                                           const ObjCImplementationDecl *ImplD) {
5052   if (S->hasUnrecoverableErrorOccurred())
5053     return;
5054 
5055   for (const auto *CurMethod : ImplD->instance_methods()) {
5056     unsigned DIAG = diag::warn_unused_property_backing_ivar;
5057     SourceLocation Loc = CurMethod->getLocation();
5058     if (Diags.isIgnored(DIAG, Loc))
5059       continue;
5060 
5061     const ObjCPropertyDecl *PDecl;
5062     const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5063     if (!IV)
5064       continue;
5065 
5066     UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5067     Checker.TraverseStmt(CurMethod->getBody());
5068     if (Checker.AccessedIvar)
5069       continue;
5070 
5071     // Do not issue this warning if backing ivar is used somewhere and accessor
5072     // implementation makes a self call. This is to prevent false positive in
5073     // cases where the ivar is accessed by another method that the accessor
5074     // delegates to.
5075     if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5076       Diag(Loc, DIAG) << IV;
5077       Diag(PDecl->getLocation(), diag::note_property_declare);
5078     }
5079   }
5080 }
5081