1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTConsumer.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/ComparisonCategories.h" 20 #include "clang/AST/EvaluatedExprVisitor.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/AST/TypeLoc.h" 26 #include "clang/AST/TypeOrdering.h" 27 #include "clang/Basic/AttributeCommonInfo.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "clang/Basic/Specifiers.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Lex/LiteralSupport.h" 32 #include "clang/Lex/Preprocessor.h" 33 #include "clang/Sema/CXXFieldCollector.h" 34 #include "clang/Sema/DeclSpec.h" 35 #include "clang/Sema/Initialization.h" 36 #include "clang/Sema/Lookup.h" 37 #include "clang/Sema/ParsedTemplate.h" 38 #include "clang/Sema/Scope.h" 39 #include "clang/Sema/ScopeInfo.h" 40 #include "clang/Sema/SemaInternal.h" 41 #include "clang/Sema/Template.h" 42 #include "llvm/ADT/ScopeExit.h" 43 #include "llvm/ADT/SmallString.h" 44 #include "llvm/ADT/STLExtras.h" 45 #include "llvm/ADT/StringExtras.h" 46 #include <map> 47 #include <set> 48 49 using namespace clang; 50 51 //===----------------------------------------------------------------------===// 52 // CheckDefaultArgumentVisitor 53 //===----------------------------------------------------------------------===// 54 55 namespace { 56 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses 57 /// the default argument of a parameter to determine whether it 58 /// contains any ill-formed subexpressions. For example, this will 59 /// diagnose the use of local variables or parameters within the 60 /// default argument expression. 61 class CheckDefaultArgumentVisitor 62 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> { 63 Sema &S; 64 const Expr *DefaultArg; 65 66 public: 67 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg) 68 : S(S), DefaultArg(DefaultArg) {} 69 70 bool VisitExpr(const Expr *Node); 71 bool VisitDeclRefExpr(const DeclRefExpr *DRE); 72 bool VisitCXXThisExpr(const CXXThisExpr *ThisE); 73 bool VisitLambdaExpr(const LambdaExpr *Lambda); 74 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE); 75 }; 76 77 /// VisitExpr - Visit all of the children of this expression. 78 bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) { 79 bool IsInvalid = false; 80 for (const Stmt *SubStmt : Node->children()) 81 IsInvalid |= Visit(SubStmt); 82 return IsInvalid; 83 } 84 85 /// VisitDeclRefExpr - Visit a reference to a declaration, to 86 /// determine whether this declaration can be used in the default 87 /// argument expression. 88 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) { 89 const NamedDecl *Decl = DRE->getDecl(); 90 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) { 91 // C++ [dcl.fct.default]p9: 92 // [...] parameters of a function shall not be used in default 93 // argument expressions, even if they are not evaluated. [...] 94 // 95 // C++17 [dcl.fct.default]p9 (by CWG 2082): 96 // [...] A parameter shall not appear as a potentially-evaluated 97 // expression in a default argument. [...] 98 // 99 if (DRE->isNonOdrUse() != NOUR_Unevaluated) 100 return S.Diag(DRE->getBeginLoc(), 101 diag::err_param_default_argument_references_param) 102 << Param->getDeclName() << DefaultArg->getSourceRange(); 103 } else if (const auto *VDecl = dyn_cast<VarDecl>(Decl)) { 104 // C++ [dcl.fct.default]p7: 105 // Local variables shall not be used in default argument 106 // expressions. 107 // 108 // C++17 [dcl.fct.default]p7 (by CWG 2082): 109 // A local variable shall not appear as a potentially-evaluated 110 // expression in a default argument. 111 // 112 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346): 113 // Note: A local variable cannot be odr-used (6.3) in a default argument. 114 // 115 if (VDecl->isLocalVarDecl() && !DRE->isNonOdrUse()) 116 return S.Diag(DRE->getBeginLoc(), 117 diag::err_param_default_argument_references_local) 118 << VDecl->getDeclName() << DefaultArg->getSourceRange(); 119 } 120 121 return false; 122 } 123 124 /// VisitCXXThisExpr - Visit a C++ "this" expression. 125 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) { 126 // C++ [dcl.fct.default]p8: 127 // The keyword this shall not be used in a default argument of a 128 // member function. 129 return S.Diag(ThisE->getBeginLoc(), 130 diag::err_param_default_argument_references_this) 131 << ThisE->getSourceRange(); 132 } 133 134 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr( 135 const PseudoObjectExpr *POE) { 136 bool Invalid = false; 137 for (const Expr *E : POE->semantics()) { 138 // Look through bindings. 139 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) { 140 E = OVE->getSourceExpr(); 141 assert(E && "pseudo-object binding without source expression?"); 142 } 143 144 Invalid |= Visit(E); 145 } 146 return Invalid; 147 } 148 149 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) { 150 // C++11 [expr.lambda.prim]p13: 151 // A lambda-expression appearing in a default argument shall not 152 // implicitly or explicitly capture any entity. 153 if (Lambda->capture_begin() == Lambda->capture_end()) 154 return false; 155 156 return S.Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg); 157 } 158 } // namespace 159 160 void 161 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, 162 const CXXMethodDecl *Method) { 163 // If we have an MSAny spec already, don't bother. 164 if (!Method || ComputedEST == EST_MSAny) 165 return; 166 167 const FunctionProtoType *Proto 168 = Method->getType()->getAs<FunctionProtoType>(); 169 Proto = Self->ResolveExceptionSpec(CallLoc, Proto); 170 if (!Proto) 171 return; 172 173 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 174 175 // If we have a throw-all spec at this point, ignore the function. 176 if (ComputedEST == EST_None) 177 return; 178 179 if (EST == EST_None && Method->hasAttr<NoThrowAttr>()) 180 EST = EST_BasicNoexcept; 181 182 switch (EST) { 183 case EST_Unparsed: 184 case EST_Uninstantiated: 185 case EST_Unevaluated: 186 llvm_unreachable("should not see unresolved exception specs here"); 187 188 // If this function can throw any exceptions, make a note of that. 189 case EST_MSAny: 190 case EST_None: 191 // FIXME: Whichever we see last of MSAny and None determines our result. 192 // We should make a consistent, order-independent choice here. 193 ClearExceptions(); 194 ComputedEST = EST; 195 return; 196 case EST_NoexceptFalse: 197 ClearExceptions(); 198 ComputedEST = EST_None; 199 return; 200 // FIXME: If the call to this decl is using any of its default arguments, we 201 // need to search them for potentially-throwing calls. 202 // If this function has a basic noexcept, it doesn't affect the outcome. 203 case EST_BasicNoexcept: 204 case EST_NoexceptTrue: 205 case EST_NoThrow: 206 return; 207 // If we're still at noexcept(true) and there's a throw() callee, 208 // change to that specification. 209 case EST_DynamicNone: 210 if (ComputedEST == EST_BasicNoexcept) 211 ComputedEST = EST_DynamicNone; 212 return; 213 case EST_DependentNoexcept: 214 llvm_unreachable( 215 "should not generate implicit declarations for dependent cases"); 216 case EST_Dynamic: 217 break; 218 } 219 assert(EST == EST_Dynamic && "EST case not considered earlier."); 220 assert(ComputedEST != EST_None && 221 "Shouldn't collect exceptions when throw-all is guaranteed."); 222 ComputedEST = EST_Dynamic; 223 // Record the exceptions in this function's exception specification. 224 for (const auto &E : Proto->exceptions()) 225 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) 226 Exceptions.push_back(E); 227 } 228 229 void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) { 230 if (!S || ComputedEST == EST_MSAny) 231 return; 232 233 // FIXME: 234 // 235 // C++0x [except.spec]p14: 236 // [An] implicit exception-specification specifies the type-id T if and 237 // only if T is allowed by the exception-specification of a function directly 238 // invoked by f's implicit definition; f shall allow all exceptions if any 239 // function it directly invokes allows all exceptions, and f shall allow no 240 // exceptions if every function it directly invokes allows no exceptions. 241 // 242 // Note in particular that if an implicit exception-specification is generated 243 // for a function containing a throw-expression, that specification can still 244 // be noexcept(true). 245 // 246 // Note also that 'directly invoked' is not defined in the standard, and there 247 // is no indication that we should only consider potentially-evaluated calls. 248 // 249 // Ultimately we should implement the intent of the standard: the exception 250 // specification should be the set of exceptions which can be thrown by the 251 // implicit definition. For now, we assume that any non-nothrow expression can 252 // throw any exception. 253 254 if (Self->canThrow(S)) 255 ComputedEST = EST_None; 256 } 257 258 ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 259 SourceLocation EqualLoc) { 260 if (RequireCompleteType(Param->getLocation(), Param->getType(), 261 diag::err_typecheck_decl_incomplete_type)) 262 return true; 263 264 // C++ [dcl.fct.default]p5 265 // A default argument expression is implicitly converted (clause 266 // 4) to the parameter type. The default argument expression has 267 // the same semantic constraints as the initializer expression in 268 // a declaration of a variable of the parameter type, using the 269 // copy-initialization semantics (8.5). 270 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 271 Param); 272 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), 273 EqualLoc); 274 InitializationSequence InitSeq(*this, Entity, Kind, Arg); 275 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg); 276 if (Result.isInvalid()) 277 return true; 278 Arg = Result.getAs<Expr>(); 279 280 CheckCompletedExpr(Arg, EqualLoc); 281 Arg = MaybeCreateExprWithCleanups(Arg); 282 283 return Arg; 284 } 285 286 void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 287 SourceLocation EqualLoc) { 288 // Add the default argument to the parameter 289 Param->setDefaultArg(Arg); 290 291 // We have already instantiated this parameter; provide each of the 292 // instantiations with the uninstantiated default argument. 293 UnparsedDefaultArgInstantiationsMap::iterator InstPos 294 = UnparsedDefaultArgInstantiations.find(Param); 295 if (InstPos != UnparsedDefaultArgInstantiations.end()) { 296 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) 297 InstPos->second[I]->setUninstantiatedDefaultArg(Arg); 298 299 // We're done tracking this parameter's instantiations. 300 UnparsedDefaultArgInstantiations.erase(InstPos); 301 } 302 } 303 304 /// ActOnParamDefaultArgument - Check whether the default argument 305 /// provided for a function parameter is well-formed. If so, attach it 306 /// to the parameter declaration. 307 void 308 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, 309 Expr *DefaultArg) { 310 if (!param || !DefaultArg) 311 return; 312 313 ParmVarDecl *Param = cast<ParmVarDecl>(param); 314 UnparsedDefaultArgLocs.erase(Param); 315 316 auto Fail = [&] { 317 Param->setInvalidDecl(); 318 Param->setDefaultArg(new (Context) OpaqueValueExpr( 319 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue)); 320 }; 321 322 // Default arguments are only permitted in C++ 323 if (!getLangOpts().CPlusPlus) { 324 Diag(EqualLoc, diag::err_param_default_argument) 325 << DefaultArg->getSourceRange(); 326 return Fail(); 327 } 328 329 // Check for unexpanded parameter packs. 330 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) { 331 return Fail(); 332 } 333 334 // C++11 [dcl.fct.default]p3 335 // A default argument expression [...] shall not be specified for a 336 // parameter pack. 337 if (Param->isParameterPack()) { 338 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack) 339 << DefaultArg->getSourceRange(); 340 // Recover by discarding the default argument. 341 Param->setDefaultArg(nullptr); 342 return; 343 } 344 345 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc); 346 if (Result.isInvalid()) 347 return Fail(); 348 349 DefaultArg = Result.getAs<Expr>(); 350 351 // Check that the default argument is well-formed 352 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg); 353 if (DefaultArgChecker.Visit(DefaultArg)) 354 return Fail(); 355 356 SetParamDefaultArgument(Param, DefaultArg, EqualLoc); 357 } 358 359 /// ActOnParamUnparsedDefaultArgument - We've seen a default 360 /// argument for a function parameter, but we can't parse it yet 361 /// because we're inside a class definition. Note that this default 362 /// argument will be parsed later. 363 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, 364 SourceLocation EqualLoc, 365 SourceLocation ArgLoc) { 366 if (!param) 367 return; 368 369 ParmVarDecl *Param = cast<ParmVarDecl>(param); 370 Param->setUnparsedDefaultArg(); 371 UnparsedDefaultArgLocs[Param] = ArgLoc; 372 } 373 374 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of 375 /// the default argument for the parameter param failed. 376 void Sema::ActOnParamDefaultArgumentError(Decl *param, 377 SourceLocation EqualLoc) { 378 if (!param) 379 return; 380 381 ParmVarDecl *Param = cast<ParmVarDecl>(param); 382 Param->setInvalidDecl(); 383 UnparsedDefaultArgLocs.erase(Param); 384 Param->setDefaultArg(new (Context) OpaqueValueExpr( 385 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue)); 386 } 387 388 /// CheckExtraCXXDefaultArguments - Check for any extra default 389 /// arguments in the declarator, which is not a function declaration 390 /// or definition and therefore is not permitted to have default 391 /// arguments. This routine should be invoked for every declarator 392 /// that is not a function declaration or definition. 393 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { 394 // C++ [dcl.fct.default]p3 395 // A default argument expression shall be specified only in the 396 // parameter-declaration-clause of a function declaration or in a 397 // template-parameter (14.1). It shall not be specified for a 398 // parameter pack. If it is specified in a 399 // parameter-declaration-clause, it shall not occur within a 400 // declarator or abstract-declarator of a parameter-declaration. 401 bool MightBeFunction = D.isFunctionDeclarationContext(); 402 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { 403 DeclaratorChunk &chunk = D.getTypeObject(i); 404 if (chunk.Kind == DeclaratorChunk::Function) { 405 if (MightBeFunction) { 406 // This is a function declaration. It can have default arguments, but 407 // keep looking in case its return type is a function type with default 408 // arguments. 409 MightBeFunction = false; 410 continue; 411 } 412 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; 413 ++argIdx) { 414 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param); 415 if (Param->hasUnparsedDefaultArg()) { 416 std::unique_ptr<CachedTokens> Toks = 417 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens); 418 SourceRange SR; 419 if (Toks->size() > 1) 420 SR = SourceRange((*Toks)[1].getLocation(), 421 Toks->back().getLocation()); 422 else 423 SR = UnparsedDefaultArgLocs[Param]; 424 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 425 << SR; 426 } else if (Param->getDefaultArg()) { 427 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 428 << Param->getDefaultArg()->getSourceRange(); 429 Param->setDefaultArg(nullptr); 430 } 431 } 432 } else if (chunk.Kind != DeclaratorChunk::Paren) { 433 MightBeFunction = false; 434 } 435 } 436 } 437 438 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { 439 return llvm::any_of(FD->parameters(), [](ParmVarDecl *P) { 440 return P->hasDefaultArg() && !P->hasInheritedDefaultArg(); 441 }); 442 } 443 444 /// MergeCXXFunctionDecl - Merge two declarations of the same C++ 445 /// function, once we already know that they have the same 446 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an 447 /// error, false otherwise. 448 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, 449 Scope *S) { 450 bool Invalid = false; 451 452 // The declaration context corresponding to the scope is the semantic 453 // parent, unless this is a local function declaration, in which case 454 // it is that surrounding function. 455 DeclContext *ScopeDC = New->isLocalExternDecl() 456 ? New->getLexicalDeclContext() 457 : New->getDeclContext(); 458 459 // Find the previous declaration for the purpose of default arguments. 460 FunctionDecl *PrevForDefaultArgs = Old; 461 for (/**/; PrevForDefaultArgs; 462 // Don't bother looking back past the latest decl if this is a local 463 // extern declaration; nothing else could work. 464 PrevForDefaultArgs = New->isLocalExternDecl() 465 ? nullptr 466 : PrevForDefaultArgs->getPreviousDecl()) { 467 // Ignore hidden declarations. 468 if (!LookupResult::isVisible(*this, PrevForDefaultArgs)) 469 continue; 470 471 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) && 472 !New->isCXXClassMember()) { 473 // Ignore default arguments of old decl if they are not in 474 // the same scope and this is not an out-of-line definition of 475 // a member function. 476 continue; 477 } 478 479 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) { 480 // If only one of these is a local function declaration, then they are 481 // declared in different scopes, even though isDeclInScope may think 482 // they're in the same scope. (If both are local, the scope check is 483 // sufficient, and if neither is local, then they are in the same scope.) 484 continue; 485 } 486 487 // We found the right previous declaration. 488 break; 489 } 490 491 // C++ [dcl.fct.default]p4: 492 // For non-template functions, default arguments can be added in 493 // later declarations of a function in the same 494 // scope. Declarations in different scopes have completely 495 // distinct sets of default arguments. That is, declarations in 496 // inner scopes do not acquire default arguments from 497 // declarations in outer scopes, and vice versa. In a given 498 // function declaration, all parameters subsequent to a 499 // parameter with a default argument shall have default 500 // arguments supplied in this or previous declarations. A 501 // default argument shall not be redefined by a later 502 // declaration (not even to the same value). 503 // 504 // C++ [dcl.fct.default]p6: 505 // Except for member functions of class templates, the default arguments 506 // in a member function definition that appears outside of the class 507 // definition are added to the set of default arguments provided by the 508 // member function declaration in the class definition. 509 for (unsigned p = 0, NumParams = PrevForDefaultArgs 510 ? PrevForDefaultArgs->getNumParams() 511 : 0; 512 p < NumParams; ++p) { 513 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p); 514 ParmVarDecl *NewParam = New->getParamDecl(p); 515 516 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; 517 bool NewParamHasDfl = NewParam->hasDefaultArg(); 518 519 if (OldParamHasDfl && NewParamHasDfl) { 520 unsigned DiagDefaultParamID = 521 diag::err_param_default_argument_redefinition; 522 523 // MSVC accepts that default parameters be redefined for member functions 524 // of template class. The new default parameter's value is ignored. 525 Invalid = true; 526 if (getLangOpts().MicrosoftExt) { 527 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New); 528 if (MD && MD->getParent()->getDescribedClassTemplate()) { 529 // Merge the old default argument into the new parameter. 530 NewParam->setHasInheritedDefaultArg(); 531 if (OldParam->hasUninstantiatedDefaultArg()) 532 NewParam->setUninstantiatedDefaultArg( 533 OldParam->getUninstantiatedDefaultArg()); 534 else 535 NewParam->setDefaultArg(OldParam->getInit()); 536 DiagDefaultParamID = diag::ext_param_default_argument_redefinition; 537 Invalid = false; 538 } 539 } 540 541 // FIXME: If we knew where the '=' was, we could easily provide a fix-it 542 // hint here. Alternatively, we could walk the type-source information 543 // for NewParam to find the last source location in the type... but it 544 // isn't worth the effort right now. This is the kind of test case that 545 // is hard to get right: 546 // int f(int); 547 // void g(int (*fp)(int) = f); 548 // void g(int (*fp)(int) = &f); 549 Diag(NewParam->getLocation(), DiagDefaultParamID) 550 << NewParam->getDefaultArgRange(); 551 552 // Look for the function declaration where the default argument was 553 // actually written, which may be a declaration prior to Old. 554 for (auto Older = PrevForDefaultArgs; 555 OldParam->hasInheritedDefaultArg(); /**/) { 556 Older = Older->getPreviousDecl(); 557 OldParam = Older->getParamDecl(p); 558 } 559 560 Diag(OldParam->getLocation(), diag::note_previous_definition) 561 << OldParam->getDefaultArgRange(); 562 } else if (OldParamHasDfl) { 563 // Merge the old default argument into the new parameter unless the new 564 // function is a friend declaration in a template class. In the latter 565 // case the default arguments will be inherited when the friend 566 // declaration will be instantiated. 567 if (New->getFriendObjectKind() == Decl::FOK_None || 568 !New->getLexicalDeclContext()->isDependentContext()) { 569 // It's important to use getInit() here; getDefaultArg() 570 // strips off any top-level ExprWithCleanups. 571 NewParam->setHasInheritedDefaultArg(); 572 if (OldParam->hasUnparsedDefaultArg()) 573 NewParam->setUnparsedDefaultArg(); 574 else if (OldParam->hasUninstantiatedDefaultArg()) 575 NewParam->setUninstantiatedDefaultArg( 576 OldParam->getUninstantiatedDefaultArg()); 577 else 578 NewParam->setDefaultArg(OldParam->getInit()); 579 } 580 } else if (NewParamHasDfl) { 581 if (New->getDescribedFunctionTemplate()) { 582 // Paragraph 4, quoted above, only applies to non-template functions. 583 Diag(NewParam->getLocation(), 584 diag::err_param_default_argument_template_redecl) 585 << NewParam->getDefaultArgRange(); 586 Diag(PrevForDefaultArgs->getLocation(), 587 diag::note_template_prev_declaration) 588 << false; 589 } else if (New->getTemplateSpecializationKind() 590 != TSK_ImplicitInstantiation && 591 New->getTemplateSpecializationKind() != TSK_Undeclared) { 592 // C++ [temp.expr.spec]p21: 593 // Default function arguments shall not be specified in a declaration 594 // or a definition for one of the following explicit specializations: 595 // - the explicit specialization of a function template; 596 // - the explicit specialization of a member function template; 597 // - the explicit specialization of a member function of a class 598 // template where the class template specialization to which the 599 // member function specialization belongs is implicitly 600 // instantiated. 601 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) 602 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) 603 << New->getDeclName() 604 << NewParam->getDefaultArgRange(); 605 } else if (New->getDeclContext()->isDependentContext()) { 606 // C++ [dcl.fct.default]p6 (DR217): 607 // Default arguments for a member function of a class template shall 608 // be specified on the initial declaration of the member function 609 // within the class template. 610 // 611 // Reading the tea leaves a bit in DR217 and its reference to DR205 612 // leads me to the conclusion that one cannot add default function 613 // arguments for an out-of-line definition of a member function of a 614 // dependent type. 615 int WhichKind = 2; 616 if (CXXRecordDecl *Record 617 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { 618 if (Record->getDescribedClassTemplate()) 619 WhichKind = 0; 620 else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) 621 WhichKind = 1; 622 else 623 WhichKind = 2; 624 } 625 626 Diag(NewParam->getLocation(), 627 diag::err_param_default_argument_member_template_redecl) 628 << WhichKind 629 << NewParam->getDefaultArgRange(); 630 } 631 } 632 } 633 634 // DR1344: If a default argument is added outside a class definition and that 635 // default argument makes the function a special member function, the program 636 // is ill-formed. This can only happen for constructors. 637 if (isa<CXXConstructorDecl>(New) && 638 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { 639 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)), 640 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old)); 641 if (NewSM != OldSM) { 642 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); 643 assert(NewParam->hasDefaultArg()); 644 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) 645 << NewParam->getDefaultArgRange() << NewSM; 646 Diag(Old->getLocation(), diag::note_previous_declaration); 647 } 648 } 649 650 const FunctionDecl *Def; 651 // C++11 [dcl.constexpr]p1: If any declaration of a function or function 652 // template has a constexpr specifier then all its declarations shall 653 // contain the constexpr specifier. 654 if (New->getConstexprKind() != Old->getConstexprKind()) { 655 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) 656 << New << static_cast<int>(New->getConstexprKind()) 657 << static_cast<int>(Old->getConstexprKind()); 658 Diag(Old->getLocation(), diag::note_previous_declaration); 659 Invalid = true; 660 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && 661 Old->isDefined(Def) && 662 // If a friend function is inlined but does not have 'inline' 663 // specifier, it is a definition. Do not report attribute conflict 664 // in this case, redefinition will be diagnosed later. 665 (New->isInlineSpecified() || 666 New->getFriendObjectKind() == Decl::FOK_None)) { 667 // C++11 [dcl.fcn.spec]p4: 668 // If the definition of a function appears in a translation unit before its 669 // first declaration as inline, the program is ill-formed. 670 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 671 Diag(Def->getLocation(), diag::note_previous_definition); 672 Invalid = true; 673 } 674 675 // C++17 [temp.deduct.guide]p3: 676 // Two deduction guide declarations in the same translation unit 677 // for the same class template shall not have equivalent 678 // parameter-declaration-clauses. 679 if (isa<CXXDeductionGuideDecl>(New) && 680 !New->isFunctionTemplateSpecialization() && isVisible(Old)) { 681 Diag(New->getLocation(), diag::err_deduction_guide_redeclared); 682 Diag(Old->getLocation(), diag::note_previous_declaration); 683 } 684 685 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default 686 // argument expression, that declaration shall be a definition and shall be 687 // the only declaration of the function or function template in the 688 // translation unit. 689 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && 690 functionDeclHasDefaultArgument(Old)) { 691 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 692 Diag(Old->getLocation(), diag::note_previous_declaration); 693 Invalid = true; 694 } 695 696 // C++11 [temp.friend]p4 (DR329): 697 // When a function is defined in a friend function declaration in a class 698 // template, the function is instantiated when the function is odr-used. 699 // The same restrictions on multiple declarations and definitions that 700 // apply to non-template function declarations and definitions also apply 701 // to these implicit definitions. 702 const FunctionDecl *OldDefinition = nullptr; 703 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() && 704 Old->isDefined(OldDefinition, true)) 705 CheckForFunctionRedefinition(New, OldDefinition); 706 707 return Invalid; 708 } 709 710 NamedDecl * 711 Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, 712 MultiTemplateParamsArg TemplateParamLists) { 713 assert(D.isDecompositionDeclarator()); 714 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); 715 716 // The syntax only allows a decomposition declarator as a simple-declaration, 717 // a for-range-declaration, or a condition in Clang, but we parse it in more 718 // cases than that. 719 if (!D.mayHaveDecompositionDeclarator()) { 720 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) 721 << Decomp.getSourceRange(); 722 return nullptr; 723 } 724 725 if (!TemplateParamLists.empty()) { 726 // FIXME: There's no rule against this, but there are also no rules that 727 // would actually make it usable, so we reject it for now. 728 Diag(TemplateParamLists.front()->getTemplateLoc(), 729 diag::err_decomp_decl_template); 730 return nullptr; 731 } 732 733 Diag(Decomp.getLSquareLoc(), 734 !getLangOpts().CPlusPlus17 735 ? diag::ext_decomp_decl 736 : D.getContext() == DeclaratorContext::Condition 737 ? diag::ext_decomp_decl_cond 738 : diag::warn_cxx14_compat_decomp_decl) 739 << Decomp.getSourceRange(); 740 741 // The semantic context is always just the current context. 742 DeclContext *const DC = CurContext; 743 744 // C++17 [dcl.dcl]/8: 745 // The decl-specifier-seq shall contain only the type-specifier auto 746 // and cv-qualifiers. 747 // C++2a [dcl.dcl]/8: 748 // If decl-specifier-seq contains any decl-specifier other than static, 749 // thread_local, auto, or cv-qualifiers, the program is ill-formed. 750 auto &DS = D.getDeclSpec(); 751 { 752 SmallVector<StringRef, 8> BadSpecifiers; 753 SmallVector<SourceLocation, 8> BadSpecifierLocs; 754 SmallVector<StringRef, 8> CPlusPlus20Specifiers; 755 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; 756 if (auto SCS = DS.getStorageClassSpec()) { 757 if (SCS == DeclSpec::SCS_static) { 758 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS)); 759 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 760 } else { 761 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS)); 762 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 763 } 764 } 765 if (auto TSCS = DS.getThreadStorageClassSpec()) { 766 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS)); 767 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc()); 768 } 769 if (DS.hasConstexprSpecifier()) { 770 BadSpecifiers.push_back( 771 DeclSpec::getSpecifierName(DS.getConstexprSpecifier())); 772 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc()); 773 } 774 if (DS.isInlineSpecified()) { 775 BadSpecifiers.push_back("inline"); 776 BadSpecifierLocs.push_back(DS.getInlineSpecLoc()); 777 } 778 if (!BadSpecifiers.empty()) { 779 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); 780 Err << (int)BadSpecifiers.size() 781 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " "); 782 // Don't add FixItHints to remove the specifiers; we do still respect 783 // them when building the underlying variable. 784 for (auto Loc : BadSpecifierLocs) 785 Err << SourceRange(Loc, Loc); 786 } else if (!CPlusPlus20Specifiers.empty()) { 787 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(), 788 getLangOpts().CPlusPlus20 789 ? diag::warn_cxx17_compat_decomp_decl_spec 790 : diag::ext_decomp_decl_spec); 791 Warn << (int)CPlusPlus20Specifiers.size() 792 << llvm::join(CPlusPlus20Specifiers.begin(), 793 CPlusPlus20Specifiers.end(), " "); 794 for (auto Loc : CPlusPlus20SpecifierLocs) 795 Warn << SourceRange(Loc, Loc); 796 } 797 // We can't recover from it being declared as a typedef. 798 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 799 return nullptr; 800 } 801 802 // C++2a [dcl.struct.bind]p1: 803 // A cv that includes volatile is deprecated 804 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && 805 getLangOpts().CPlusPlus20) 806 Diag(DS.getVolatileSpecLoc(), 807 diag::warn_deprecated_volatile_structured_binding); 808 809 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 810 QualType R = TInfo->getType(); 811 812 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 813 UPPC_DeclarationType)) 814 D.setInvalidType(); 815 816 // The syntax only allows a single ref-qualifier prior to the decomposition 817 // declarator. No other declarator chunks are permitted. Also check the type 818 // specifier here. 819 if (DS.getTypeSpecType() != DeclSpec::TST_auto || 820 D.hasGroupingParens() || D.getNumTypeObjects() > 1 || 821 (D.getNumTypeObjects() == 1 && 822 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) { 823 Diag(Decomp.getLSquareLoc(), 824 (D.hasGroupingParens() || 825 (D.getNumTypeObjects() && 826 D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) 827 ? diag::err_decomp_decl_parens 828 : diag::err_decomp_decl_type) 829 << R; 830 831 // In most cases, there's no actual problem with an explicitly-specified 832 // type, but a function type won't work here, and ActOnVariableDeclarator 833 // shouldn't be called for such a type. 834 if (R->isFunctionType()) 835 D.setInvalidType(); 836 } 837 838 // Build the BindingDecls. 839 SmallVector<BindingDecl*, 8> Bindings; 840 841 // Build the BindingDecls. 842 for (auto &B : D.getDecompositionDeclarator().bindings()) { 843 // Check for name conflicts. 844 DeclarationNameInfo NameInfo(B.Name, B.NameLoc); 845 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 846 ForVisibleRedeclaration); 847 LookupName(Previous, S, 848 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit()); 849 850 // It's not permitted to shadow a template parameter name. 851 if (Previous.isSingleResult() && 852 Previous.getFoundDecl()->isTemplateParameter()) { 853 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 854 Previous.getFoundDecl()); 855 Previous.clear(); 856 } 857 858 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name); 859 860 // Find the shadowed declaration before filtering for scope. 861 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() 862 ? getShadowedDeclaration(BD, Previous) 863 : nullptr; 864 865 bool ConsiderLinkage = DC->isFunctionOrMethod() && 866 DS.getStorageClassSpec() == DeclSpec::SCS_extern; 867 FilterLookupForScope(Previous, DC, S, ConsiderLinkage, 868 /*AllowInlineNamespace*/false); 869 870 if (!Previous.empty()) { 871 auto *Old = Previous.getRepresentativeDecl(); 872 Diag(B.NameLoc, diag::err_redefinition) << B.Name; 873 Diag(Old->getLocation(), diag::note_previous_definition); 874 } else if (ShadowedDecl && !D.isRedeclaration()) { 875 CheckShadow(BD, ShadowedDecl, Previous); 876 } 877 PushOnScopeChains(BD, S, true); 878 Bindings.push_back(BD); 879 ParsingInitForAutoVars.insert(BD); 880 } 881 882 // There are no prior lookup results for the variable itself, because it 883 // is unnamed. 884 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, 885 Decomp.getLSquareLoc()); 886 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 887 ForVisibleRedeclaration); 888 889 // Build the variable that holds the non-decomposed object. 890 bool AddToScope = true; 891 NamedDecl *New = 892 ActOnVariableDeclarator(S, D, DC, TInfo, Previous, 893 MultiTemplateParamsArg(), AddToScope, Bindings); 894 if (AddToScope) { 895 S->AddDecl(New); 896 CurContext->addHiddenDecl(New); 897 } 898 899 if (isInOpenMPDeclareTargetContext()) 900 checkDeclIsAllowedInOpenMPTarget(nullptr, New); 901 902 return New; 903 } 904 905 static bool checkSimpleDecomposition( 906 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, 907 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType, 908 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { 909 if ((int64_t)Bindings.size() != NumElems) { 910 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 911 << DecompType << (unsigned)Bindings.size() 912 << (unsigned)NumElems.getLimitedValue(UINT_MAX) 913 << toString(NumElems, 10) << (NumElems < Bindings.size()); 914 return true; 915 } 916 917 unsigned I = 0; 918 for (auto *B : Bindings) { 919 SourceLocation Loc = B->getLocation(); 920 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 921 if (E.isInvalid()) 922 return true; 923 E = GetInit(Loc, E.get(), I++); 924 if (E.isInvalid()) 925 return true; 926 B->setBinding(ElemType, E.get()); 927 } 928 929 return false; 930 } 931 932 static bool checkArrayLikeDecomposition(Sema &S, 933 ArrayRef<BindingDecl *> Bindings, 934 ValueDecl *Src, QualType DecompType, 935 const llvm::APSInt &NumElems, 936 QualType ElemType) { 937 return checkSimpleDecomposition( 938 S, Bindings, Src, DecompType, NumElems, ElemType, 939 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 940 ExprResult E = S.ActOnIntegerConstant(Loc, I); 941 if (E.isInvalid()) 942 return ExprError(); 943 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc); 944 }); 945 } 946 947 static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 948 ValueDecl *Src, QualType DecompType, 949 const ConstantArrayType *CAT) { 950 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, 951 llvm::APSInt(CAT->getSize()), 952 CAT->getElementType()); 953 } 954 955 static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 956 ValueDecl *Src, QualType DecompType, 957 const VectorType *VT) { 958 return checkArrayLikeDecomposition( 959 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()), 960 S.Context.getQualifiedType(VT->getElementType(), 961 DecompType.getQualifiers())); 962 } 963 964 static bool checkComplexDecomposition(Sema &S, 965 ArrayRef<BindingDecl *> Bindings, 966 ValueDecl *Src, QualType DecompType, 967 const ComplexType *CT) { 968 return checkSimpleDecomposition( 969 S, Bindings, Src, DecompType, llvm::APSInt::get(2), 970 S.Context.getQualifiedType(CT->getElementType(), 971 DecompType.getQualifiers()), 972 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 973 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base); 974 }); 975 } 976 977 static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, 978 TemplateArgumentListInfo &Args, 979 const TemplateParameterList *Params) { 980 SmallString<128> SS; 981 llvm::raw_svector_ostream OS(SS); 982 bool First = true; 983 unsigned I = 0; 984 for (auto &Arg : Args.arguments()) { 985 if (!First) 986 OS << ", "; 987 Arg.getArgument().print(PrintingPolicy, OS, 988 TemplateParameterList::shouldIncludeTypeForArgument( 989 PrintingPolicy, Params, I)); 990 First = false; 991 I++; 992 } 993 return std::string(OS.str()); 994 } 995 996 static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, 997 SourceLocation Loc, StringRef Trait, 998 TemplateArgumentListInfo &Args, 999 unsigned DiagID) { 1000 auto DiagnoseMissing = [&] { 1001 if (DiagID) 1002 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(), 1003 Args, /*Params*/ nullptr); 1004 return true; 1005 }; 1006 1007 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. 1008 NamespaceDecl *Std = S.getStdNamespace(); 1009 if (!Std) 1010 return DiagnoseMissing(); 1011 1012 // Look up the trait itself, within namespace std. We can diagnose various 1013 // problems with this lookup even if we've been asked to not diagnose a 1014 // missing specialization, because this can only fail if the user has been 1015 // declaring their own names in namespace std or we don't support the 1016 // standard library implementation in use. 1017 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait), 1018 Loc, Sema::LookupOrdinaryName); 1019 if (!S.LookupQualifiedName(Result, Std)) 1020 return DiagnoseMissing(); 1021 if (Result.isAmbiguous()) 1022 return true; 1023 1024 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); 1025 if (!TraitTD) { 1026 Result.suppressDiagnostics(); 1027 NamedDecl *Found = *Result.begin(); 1028 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; 1029 S.Diag(Found->getLocation(), diag::note_declared_at); 1030 return true; 1031 } 1032 1033 // Build the template-id. 1034 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args); 1035 if (TraitTy.isNull()) 1036 return true; 1037 if (!S.isCompleteType(Loc, TraitTy)) { 1038 if (DiagID) 1039 S.RequireCompleteType( 1040 Loc, TraitTy, DiagID, 1041 printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1042 TraitTD->getTemplateParameters())); 1043 return true; 1044 } 1045 1046 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); 1047 assert(RD && "specialization of class template is not a class?"); 1048 1049 // Look up the member of the trait type. 1050 S.LookupQualifiedName(TraitMemberLookup, RD); 1051 return TraitMemberLookup.isAmbiguous(); 1052 } 1053 1054 static TemplateArgumentLoc 1055 getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, 1056 uint64_t I) { 1057 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T); 1058 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc); 1059 } 1060 1061 static TemplateArgumentLoc 1062 getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { 1063 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc); 1064 } 1065 1066 namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } 1067 1068 static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, 1069 llvm::APSInt &Size) { 1070 EnterExpressionEvaluationContext ContextRAII( 1071 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1072 1073 DeclarationName Value = S.PP.getIdentifierInfo("value"); 1074 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); 1075 1076 // Form template argument list for tuple_size<T>. 1077 TemplateArgumentListInfo Args(Loc, Loc); 1078 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1079 1080 // If there's no tuple_size specialization or the lookup of 'value' is empty, 1081 // it's not tuple-like. 1082 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) || 1083 R.empty()) 1084 return IsTupleLike::NotTupleLike; 1085 1086 // If we get this far, we've committed to the tuple interpretation, but 1087 // we can still fail if there actually isn't a usable ::value. 1088 1089 struct ICEDiagnoser : Sema::VerifyICEDiagnoser { 1090 LookupResult &R; 1091 TemplateArgumentListInfo &Args; 1092 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) 1093 : R(R), Args(Args) {} 1094 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, 1095 SourceLocation Loc) override { 1096 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) 1097 << printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1098 /*Params*/ nullptr); 1099 } 1100 } Diagnoser(R, Args); 1101 1102 ExprResult E = 1103 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false); 1104 if (E.isInvalid()) 1105 return IsTupleLike::Error; 1106 1107 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser); 1108 if (E.isInvalid()) 1109 return IsTupleLike::Error; 1110 1111 return IsTupleLike::TupleLike; 1112 } 1113 1114 /// \return std::tuple_element<I, T>::type. 1115 static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, 1116 unsigned I, QualType T) { 1117 // Form template argument list for tuple_element<I, T>. 1118 TemplateArgumentListInfo Args(Loc, Loc); 1119 Args.addArgument( 1120 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1121 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1122 1123 DeclarationName TypeDN = S.PP.getIdentifierInfo("type"); 1124 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); 1125 if (lookupStdTypeTraitMember( 1126 S, R, Loc, "tuple_element", Args, 1127 diag::err_decomp_decl_std_tuple_element_not_specialized)) 1128 return QualType(); 1129 1130 auto *TD = R.getAsSingle<TypeDecl>(); 1131 if (!TD) { 1132 R.suppressDiagnostics(); 1133 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) 1134 << printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1135 /*Params*/ nullptr); 1136 if (!R.empty()) 1137 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); 1138 return QualType(); 1139 } 1140 1141 return S.Context.getTypeDeclType(TD); 1142 } 1143 1144 namespace { 1145 struct InitializingBinding { 1146 Sema &S; 1147 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) { 1148 Sema::CodeSynthesisContext Ctx; 1149 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding; 1150 Ctx.PointOfInstantiation = BD->getLocation(); 1151 Ctx.Entity = BD; 1152 S.pushCodeSynthesisContext(Ctx); 1153 } 1154 ~InitializingBinding() { 1155 S.popCodeSynthesisContext(); 1156 } 1157 }; 1158 } 1159 1160 static bool checkTupleLikeDecomposition(Sema &S, 1161 ArrayRef<BindingDecl *> Bindings, 1162 VarDecl *Src, QualType DecompType, 1163 const llvm::APSInt &TupleSize) { 1164 if ((int64_t)Bindings.size() != TupleSize) { 1165 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1166 << DecompType << (unsigned)Bindings.size() 1167 << (unsigned)TupleSize.getLimitedValue(UINT_MAX) 1168 << toString(TupleSize, 10) << (TupleSize < Bindings.size()); 1169 return true; 1170 } 1171 1172 if (Bindings.empty()) 1173 return false; 1174 1175 DeclarationName GetDN = S.PP.getIdentifierInfo("get"); 1176 1177 // [dcl.decomp]p3: 1178 // The unqualified-id get is looked up in the scope of E by class member 1179 // access lookup ... 1180 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); 1181 bool UseMemberGet = false; 1182 if (S.isCompleteType(Src->getLocation(), DecompType)) { 1183 if (auto *RD = DecompType->getAsCXXRecordDecl()) 1184 S.LookupQualifiedName(MemberGet, RD); 1185 if (MemberGet.isAmbiguous()) 1186 return true; 1187 // ... and if that finds at least one declaration that is a function 1188 // template whose first template parameter is a non-type parameter ... 1189 for (NamedDecl *D : MemberGet) { 1190 if (FunctionTemplateDecl *FTD = 1191 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { 1192 TemplateParameterList *TPL = FTD->getTemplateParameters(); 1193 if (TPL->size() != 0 && 1194 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { 1195 // ... the initializer is e.get<i>(). 1196 UseMemberGet = true; 1197 break; 1198 } 1199 } 1200 } 1201 } 1202 1203 unsigned I = 0; 1204 for (auto *B : Bindings) { 1205 InitializingBinding InitContext(S, B); 1206 SourceLocation Loc = B->getLocation(); 1207 1208 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1209 if (E.isInvalid()) 1210 return true; 1211 1212 // e is an lvalue if the type of the entity is an lvalue reference and 1213 // an xvalue otherwise 1214 if (!Src->getType()->isLValueReferenceType()) 1215 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp, 1216 E.get(), nullptr, VK_XValue, 1217 FPOptionsOverride()); 1218 1219 TemplateArgumentListInfo Args(Loc, Loc); 1220 Args.addArgument( 1221 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1222 1223 if (UseMemberGet) { 1224 // if [lookup of member get] finds at least one declaration, the 1225 // initializer is e.get<i-1>(). 1226 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false, 1227 CXXScopeSpec(), SourceLocation(), nullptr, 1228 MemberGet, &Args, nullptr); 1229 if (E.isInvalid()) 1230 return true; 1231 1232 E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc); 1233 } else { 1234 // Otherwise, the initializer is get<i-1>(e), where get is looked up 1235 // in the associated namespaces. 1236 Expr *Get = UnresolvedLookupExpr::Create( 1237 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(), 1238 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args, 1239 UnresolvedSetIterator(), UnresolvedSetIterator()); 1240 1241 Expr *Arg = E.get(); 1242 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc); 1243 } 1244 if (E.isInvalid()) 1245 return true; 1246 Expr *Init = E.get(); 1247 1248 // Given the type T designated by std::tuple_element<i - 1, E>::type, 1249 QualType T = getTupleLikeElementType(S, Loc, I, DecompType); 1250 if (T.isNull()) 1251 return true; 1252 1253 // each vi is a variable of type "reference to T" initialized with the 1254 // initializer, where the reference is an lvalue reference if the 1255 // initializer is an lvalue and an rvalue reference otherwise 1256 QualType RefType = 1257 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName()); 1258 if (RefType.isNull()) 1259 return true; 1260 auto *RefVD = VarDecl::Create( 1261 S.Context, Src->getDeclContext(), Loc, Loc, 1262 B->getDeclName().getAsIdentifierInfo(), RefType, 1263 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass()); 1264 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); 1265 RefVD->setTSCSpec(Src->getTSCSpec()); 1266 RefVD->setImplicit(); 1267 if (Src->isInlineSpecified()) 1268 RefVD->setInlineSpecified(); 1269 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); 1270 1271 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD); 1272 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc); 1273 InitializationSequence Seq(S, Entity, Kind, Init); 1274 E = Seq.Perform(S, Entity, Kind, Init); 1275 if (E.isInvalid()) 1276 return true; 1277 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false); 1278 if (E.isInvalid()) 1279 return true; 1280 RefVD->setInit(E.get()); 1281 S.CheckCompleteVariableDeclaration(RefVD); 1282 1283 E = S.BuildDeclarationNameExpr(CXXScopeSpec(), 1284 DeclarationNameInfo(B->getDeclName(), Loc), 1285 RefVD); 1286 if (E.isInvalid()) 1287 return true; 1288 1289 B->setBinding(T, E.get()); 1290 I++; 1291 } 1292 1293 return false; 1294 } 1295 1296 /// Find the base class to decompose in a built-in decomposition of a class type. 1297 /// This base class search is, unfortunately, not quite like any other that we 1298 /// perform anywhere else in C++. 1299 static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, 1300 const CXXRecordDecl *RD, 1301 CXXCastPath &BasePath) { 1302 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, 1303 CXXBasePath &Path) { 1304 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); 1305 }; 1306 1307 const CXXRecordDecl *ClassWithFields = nullptr; 1308 AccessSpecifier AS = AS_public; 1309 if (RD->hasDirectFields()) 1310 // [dcl.decomp]p4: 1311 // Otherwise, all of E's non-static data members shall be public direct 1312 // members of E ... 1313 ClassWithFields = RD; 1314 else { 1315 // ... or of ... 1316 CXXBasePaths Paths; 1317 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); 1318 if (!RD->lookupInBases(BaseHasFields, Paths)) { 1319 // If no classes have fields, just decompose RD itself. (This will work 1320 // if and only if zero bindings were provided.) 1321 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); 1322 } 1323 1324 CXXBasePath *BestPath = nullptr; 1325 for (auto &P : Paths) { 1326 if (!BestPath) 1327 BestPath = &P; 1328 else if (!S.Context.hasSameType(P.back().Base->getType(), 1329 BestPath->back().Base->getType())) { 1330 // ... the same ... 1331 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1332 << false << RD << BestPath->back().Base->getType() 1333 << P.back().Base->getType(); 1334 return DeclAccessPair(); 1335 } else if (P.Access < BestPath->Access) { 1336 BestPath = &P; 1337 } 1338 } 1339 1340 // ... unambiguous ... 1341 QualType BaseType = BestPath->back().Base->getType(); 1342 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) { 1343 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) 1344 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); 1345 return DeclAccessPair(); 1346 } 1347 1348 // ... [accessible, implied by other rules] base class of E. 1349 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), 1350 *BestPath, diag::err_decomp_decl_inaccessible_base); 1351 AS = BestPath->Access; 1352 1353 ClassWithFields = BaseType->getAsCXXRecordDecl(); 1354 S.BuildBasePathArray(Paths, BasePath); 1355 } 1356 1357 // The above search did not check whether the selected class itself has base 1358 // classes with fields, so check that now. 1359 CXXBasePaths Paths; 1360 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) { 1361 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1362 << (ClassWithFields == RD) << RD << ClassWithFields 1363 << Paths.front().back().Base->getType(); 1364 return DeclAccessPair(); 1365 } 1366 1367 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); 1368 } 1369 1370 static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 1371 ValueDecl *Src, QualType DecompType, 1372 const CXXRecordDecl *OrigRD) { 1373 if (S.RequireCompleteType(Src->getLocation(), DecompType, 1374 diag::err_incomplete_type)) 1375 return true; 1376 1377 CXXCastPath BasePath; 1378 DeclAccessPair BasePair = 1379 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); 1380 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl()); 1381 if (!RD) 1382 return true; 1383 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD), 1384 DecompType.getQualifiers()); 1385 1386 auto DiagnoseBadNumberOfBindings = [&]() -> bool { 1387 unsigned NumFields = llvm::count_if( 1388 RD->fields(), [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); }); 1389 assert(Bindings.size() != NumFields); 1390 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1391 << DecompType << (unsigned)Bindings.size() << NumFields << NumFields 1392 << (NumFields < Bindings.size()); 1393 return true; 1394 }; 1395 1396 // all of E's non-static data members shall be [...] well-formed 1397 // when named as e.name in the context of the structured binding, 1398 // E shall not have an anonymous union member, ... 1399 unsigned I = 0; 1400 for (auto *FD : RD->fields()) { 1401 if (FD->isUnnamedBitfield()) 1402 continue; 1403 1404 // All the non-static data members are required to be nameable, so they 1405 // must all have names. 1406 if (!FD->getDeclName()) { 1407 if (RD->isLambda()) { 1408 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda); 1409 S.Diag(RD->getLocation(), diag::note_lambda_decl); 1410 return true; 1411 } 1412 1413 if (FD->isAnonymousStructOrUnion()) { 1414 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member) 1415 << DecompType << FD->getType()->isUnionType(); 1416 S.Diag(FD->getLocation(), diag::note_declared_at); 1417 return true; 1418 } 1419 1420 // FIXME: Are there any other ways we could have an anonymous member? 1421 } 1422 1423 // We have a real field to bind. 1424 if (I >= Bindings.size()) 1425 return DiagnoseBadNumberOfBindings(); 1426 auto *B = Bindings[I++]; 1427 SourceLocation Loc = B->getLocation(); 1428 1429 // The field must be accessible in the context of the structured binding. 1430 // We already checked that the base class is accessible. 1431 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the 1432 // const_cast here. 1433 S.CheckStructuredBindingMemberAccess( 1434 Loc, const_cast<CXXRecordDecl *>(OrigRD), 1435 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( 1436 BasePair.getAccess(), FD->getAccess()))); 1437 1438 // Initialize the binding to Src.FD. 1439 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1440 if (E.isInvalid()) 1441 return true; 1442 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, 1443 VK_LValue, &BasePath); 1444 if (E.isInvalid()) 1445 return true; 1446 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, 1447 CXXScopeSpec(), FD, 1448 DeclAccessPair::make(FD, FD->getAccess()), 1449 DeclarationNameInfo(FD->getDeclName(), Loc)); 1450 if (E.isInvalid()) 1451 return true; 1452 1453 // If the type of the member is T, the referenced type is cv T, where cv is 1454 // the cv-qualification of the decomposition expression. 1455 // 1456 // FIXME: We resolve a defect here: if the field is mutable, we do not add 1457 // 'const' to the type of the field. 1458 Qualifiers Q = DecompType.getQualifiers(); 1459 if (FD->isMutable()) 1460 Q.removeConst(); 1461 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); 1462 } 1463 1464 if (I != Bindings.size()) 1465 return DiagnoseBadNumberOfBindings(); 1466 1467 return false; 1468 } 1469 1470 void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { 1471 QualType DecompType = DD->getType(); 1472 1473 // If the type of the decomposition is dependent, then so is the type of 1474 // each binding. 1475 if (DecompType->isDependentType()) { 1476 for (auto *B : DD->bindings()) 1477 B->setType(Context.DependentTy); 1478 return; 1479 } 1480 1481 DecompType = DecompType.getNonReferenceType(); 1482 ArrayRef<BindingDecl*> Bindings = DD->bindings(); 1483 1484 // C++1z [dcl.decomp]/2: 1485 // If E is an array type [...] 1486 // As an extension, we also support decomposition of built-in complex and 1487 // vector types. 1488 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { 1489 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) 1490 DD->setInvalidDecl(); 1491 return; 1492 } 1493 if (auto *VT = DecompType->getAs<VectorType>()) { 1494 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) 1495 DD->setInvalidDecl(); 1496 return; 1497 } 1498 if (auto *CT = DecompType->getAs<ComplexType>()) { 1499 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) 1500 DD->setInvalidDecl(); 1501 return; 1502 } 1503 1504 // C++1z [dcl.decomp]/3: 1505 // if the expression std::tuple_size<E>::value is a well-formed integral 1506 // constant expression, [...] 1507 llvm::APSInt TupleSize(32); 1508 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { 1509 case IsTupleLike::Error: 1510 DD->setInvalidDecl(); 1511 return; 1512 1513 case IsTupleLike::TupleLike: 1514 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) 1515 DD->setInvalidDecl(); 1516 return; 1517 1518 case IsTupleLike::NotTupleLike: 1519 break; 1520 } 1521 1522 // C++1z [dcl.dcl]/8: 1523 // [E shall be of array or non-union class type] 1524 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); 1525 if (!RD || RD->isUnion()) { 1526 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) 1527 << DD << !RD << DecompType; 1528 DD->setInvalidDecl(); 1529 return; 1530 } 1531 1532 // C++1z [dcl.decomp]/4: 1533 // all of E's non-static data members shall be [...] direct members of 1534 // E or of the same unambiguous public base class of E, ... 1535 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) 1536 DD->setInvalidDecl(); 1537 } 1538 1539 /// Merge the exception specifications of two variable declarations. 1540 /// 1541 /// This is called when there's a redeclaration of a VarDecl. The function 1542 /// checks if the redeclaration might have an exception specification and 1543 /// validates compatibility and merges the specs if necessary. 1544 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { 1545 // Shortcut if exceptions are disabled. 1546 if (!getLangOpts().CXXExceptions) 1547 return; 1548 1549 assert(Context.hasSameType(New->getType(), Old->getType()) && 1550 "Should only be called if types are otherwise the same."); 1551 1552 QualType NewType = New->getType(); 1553 QualType OldType = Old->getType(); 1554 1555 // We're only interested in pointers and references to functions, as well 1556 // as pointers to member functions. 1557 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { 1558 NewType = R->getPointeeType(); 1559 OldType = OldType->castAs<ReferenceType>()->getPointeeType(); 1560 } else if (const PointerType *P = NewType->getAs<PointerType>()) { 1561 NewType = P->getPointeeType(); 1562 OldType = OldType->castAs<PointerType>()->getPointeeType(); 1563 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { 1564 NewType = M->getPointeeType(); 1565 OldType = OldType->castAs<MemberPointerType>()->getPointeeType(); 1566 } 1567 1568 if (!NewType->isFunctionProtoType()) 1569 return; 1570 1571 // There's lots of special cases for functions. For function pointers, system 1572 // libraries are hopefully not as broken so that we don't need these 1573 // workarounds. 1574 if (CheckEquivalentExceptionSpec( 1575 OldType->getAs<FunctionProtoType>(), Old->getLocation(), 1576 NewType->getAs<FunctionProtoType>(), New->getLocation())) { 1577 New->setInvalidDecl(); 1578 } 1579 } 1580 1581 /// CheckCXXDefaultArguments - Verify that the default arguments for a 1582 /// function declaration are well-formed according to C++ 1583 /// [dcl.fct.default]. 1584 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { 1585 unsigned NumParams = FD->getNumParams(); 1586 unsigned ParamIdx = 0; 1587 1588 // This checking doesn't make sense for explicit specializations; their 1589 // default arguments are determined by the declaration we're specializing, 1590 // not by FD. 1591 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 1592 return; 1593 if (auto *FTD = FD->getDescribedFunctionTemplate()) 1594 if (FTD->isMemberSpecialization()) 1595 return; 1596 1597 // Find first parameter with a default argument 1598 for (; ParamIdx < NumParams; ++ParamIdx) { 1599 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1600 if (Param->hasDefaultArg()) 1601 break; 1602 } 1603 1604 // C++20 [dcl.fct.default]p4: 1605 // In a given function declaration, each parameter subsequent to a parameter 1606 // with a default argument shall have a default argument supplied in this or 1607 // a previous declaration, unless the parameter was expanded from a 1608 // parameter pack, or shall be a function parameter pack. 1609 for (; ParamIdx < NumParams; ++ParamIdx) { 1610 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1611 if (!Param->hasDefaultArg() && !Param->isParameterPack() && 1612 !(CurrentInstantiationScope && 1613 CurrentInstantiationScope->isLocalPackExpansion(Param))) { 1614 if (Param->isInvalidDecl()) 1615 /* We already complained about this parameter. */; 1616 else if (Param->getIdentifier()) 1617 Diag(Param->getLocation(), 1618 diag::err_param_default_argument_missing_name) 1619 << Param->getIdentifier(); 1620 else 1621 Diag(Param->getLocation(), 1622 diag::err_param_default_argument_missing); 1623 } 1624 } 1625 } 1626 1627 /// Check that the given type is a literal type. Issue a diagnostic if not, 1628 /// if Kind is Diagnose. 1629 /// \return \c true if a problem has been found (and optionally diagnosed). 1630 template <typename... Ts> 1631 static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, 1632 SourceLocation Loc, QualType T, unsigned DiagID, 1633 Ts &&...DiagArgs) { 1634 if (T->isDependentType()) 1635 return false; 1636 1637 switch (Kind) { 1638 case Sema::CheckConstexprKind::Diagnose: 1639 return SemaRef.RequireLiteralType(Loc, T, DiagID, 1640 std::forward<Ts>(DiagArgs)...); 1641 1642 case Sema::CheckConstexprKind::CheckValid: 1643 return !T->isLiteralType(SemaRef.Context); 1644 } 1645 1646 llvm_unreachable("unknown CheckConstexprKind"); 1647 } 1648 1649 /// Determine whether a destructor cannot be constexpr due to 1650 static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, 1651 const CXXDestructorDecl *DD, 1652 Sema::CheckConstexprKind Kind) { 1653 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { 1654 const CXXRecordDecl *RD = 1655 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1656 if (!RD || RD->hasConstexprDestructor()) 1657 return true; 1658 1659 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1660 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) 1661 << static_cast<int>(DD->getConstexprKind()) << !FD 1662 << (FD ? FD->getDeclName() : DeclarationName()) << T; 1663 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) 1664 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; 1665 } 1666 return false; 1667 }; 1668 1669 const CXXRecordDecl *RD = DD->getParent(); 1670 for (const CXXBaseSpecifier &B : RD->bases()) 1671 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) 1672 return false; 1673 for (const FieldDecl *FD : RD->fields()) 1674 if (!Check(FD->getLocation(), FD->getType(), FD)) 1675 return false; 1676 return true; 1677 } 1678 1679 /// Check whether a function's parameter types are all literal types. If so, 1680 /// return true. If not, produce a suitable diagnostic and return false. 1681 static bool CheckConstexprParameterTypes(Sema &SemaRef, 1682 const FunctionDecl *FD, 1683 Sema::CheckConstexprKind Kind) { 1684 unsigned ArgIndex = 0; 1685 const auto *FT = FD->getType()->castAs<FunctionProtoType>(); 1686 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), 1687 e = FT->param_type_end(); 1688 i != e; ++i, ++ArgIndex) { 1689 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); 1690 SourceLocation ParamLoc = PD->getLocation(); 1691 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, 1692 diag::err_constexpr_non_literal_param, ArgIndex + 1, 1693 PD->getSourceRange(), isa<CXXConstructorDecl>(FD), 1694 FD->isConsteval())) 1695 return false; 1696 } 1697 return true; 1698 } 1699 1700 /// Check whether a function's return type is a literal type. If so, return 1701 /// true. If not, produce a suitable diagnostic and return false. 1702 static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD, 1703 Sema::CheckConstexprKind Kind) { 1704 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(), 1705 diag::err_constexpr_non_literal_return, 1706 FD->isConsteval())) 1707 return false; 1708 return true; 1709 } 1710 1711 /// Get diagnostic %select index for tag kind for 1712 /// record diagnostic message. 1713 /// WARNING: Indexes apply to particular diagnostics only! 1714 /// 1715 /// \returns diagnostic %select index. 1716 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { 1717 switch (Tag) { 1718 case TTK_Struct: return 0; 1719 case TTK_Interface: return 1; 1720 case TTK_Class: return 2; 1721 default: llvm_unreachable("Invalid tag kind for record diagnostic!"); 1722 } 1723 } 1724 1725 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 1726 Stmt *Body, 1727 Sema::CheckConstexprKind Kind); 1728 1729 // Check whether a function declaration satisfies the requirements of a 1730 // constexpr function definition or a constexpr constructor definition. If so, 1731 // return true. If not, produce appropriate diagnostics (unless asked not to by 1732 // Kind) and return false. 1733 // 1734 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360. 1735 bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, 1736 CheckConstexprKind Kind) { 1737 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 1738 if (MD && MD->isInstance()) { 1739 // C++11 [dcl.constexpr]p4: 1740 // The definition of a constexpr constructor shall satisfy the following 1741 // constraints: 1742 // - the class shall not have any virtual base classes; 1743 // 1744 // FIXME: This only applies to constructors and destructors, not arbitrary 1745 // member functions. 1746 const CXXRecordDecl *RD = MD->getParent(); 1747 if (RD->getNumVBases()) { 1748 if (Kind == CheckConstexprKind::CheckValid) 1749 return false; 1750 1751 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) 1752 << isa<CXXConstructorDecl>(NewFD) 1753 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); 1754 for (const auto &I : RD->vbases()) 1755 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) 1756 << I.getSourceRange(); 1757 return false; 1758 } 1759 } 1760 1761 if (!isa<CXXConstructorDecl>(NewFD)) { 1762 // C++11 [dcl.constexpr]p3: 1763 // The definition of a constexpr function shall satisfy the following 1764 // constraints: 1765 // - it shall not be virtual; (removed in C++20) 1766 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); 1767 if (Method && Method->isVirtual()) { 1768 if (getLangOpts().CPlusPlus20) { 1769 if (Kind == CheckConstexprKind::Diagnose) 1770 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); 1771 } else { 1772 if (Kind == CheckConstexprKind::CheckValid) 1773 return false; 1774 1775 Method = Method->getCanonicalDecl(); 1776 Diag(Method->getLocation(), diag::err_constexpr_virtual); 1777 1778 // If it's not obvious why this function is virtual, find an overridden 1779 // function which uses the 'virtual' keyword. 1780 const CXXMethodDecl *WrittenVirtual = Method; 1781 while (!WrittenVirtual->isVirtualAsWritten()) 1782 WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); 1783 if (WrittenVirtual != Method) 1784 Diag(WrittenVirtual->getLocation(), 1785 diag::note_overridden_virtual_function); 1786 return false; 1787 } 1788 } 1789 1790 // - its return type shall be a literal type; 1791 if (!CheckConstexprReturnType(*this, NewFD, Kind)) 1792 return false; 1793 } 1794 1795 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) { 1796 // A destructor can be constexpr only if the defaulted destructor could be; 1797 // we don't need to check the members and bases if we already know they all 1798 // have constexpr destructors. 1799 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) { 1800 if (Kind == CheckConstexprKind::CheckValid) 1801 return false; 1802 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind)) 1803 return false; 1804 } 1805 } 1806 1807 // - each of its parameter types shall be a literal type; 1808 if (!CheckConstexprParameterTypes(*this, NewFD, Kind)) 1809 return false; 1810 1811 Stmt *Body = NewFD->getBody(); 1812 assert(Body && 1813 "CheckConstexprFunctionDefinition called on function with no body"); 1814 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind); 1815 } 1816 1817 /// Check the given declaration statement is legal within a constexpr function 1818 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. 1819 /// 1820 /// \return true if the body is OK (maybe only as an extension), false if we 1821 /// have diagnosed a problem. 1822 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, 1823 DeclStmt *DS, SourceLocation &Cxx1yLoc, 1824 Sema::CheckConstexprKind Kind) { 1825 // C++11 [dcl.constexpr]p3 and p4: 1826 // The definition of a constexpr function(p3) or constructor(p4) [...] shall 1827 // contain only 1828 for (const auto *DclIt : DS->decls()) { 1829 switch (DclIt->getKind()) { 1830 case Decl::StaticAssert: 1831 case Decl::Using: 1832 case Decl::UsingShadow: 1833 case Decl::UsingDirective: 1834 case Decl::UnresolvedUsingTypename: 1835 case Decl::UnresolvedUsingValue: 1836 case Decl::UsingEnum: 1837 // - static_assert-declarations 1838 // - using-declarations, 1839 // - using-directives, 1840 // - using-enum-declaration 1841 continue; 1842 1843 case Decl::Typedef: 1844 case Decl::TypeAlias: { 1845 // - typedef declarations and alias-declarations that do not define 1846 // classes or enumerations, 1847 const auto *TN = cast<TypedefNameDecl>(DclIt); 1848 if (TN->getUnderlyingType()->isVariablyModifiedType()) { 1849 // Don't allow variably-modified types in constexpr functions. 1850 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1851 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); 1852 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) 1853 << TL.getSourceRange() << TL.getType() 1854 << isa<CXXConstructorDecl>(Dcl); 1855 } 1856 return false; 1857 } 1858 continue; 1859 } 1860 1861 case Decl::Enum: 1862 case Decl::CXXRecord: 1863 // C++1y allows types to be defined, not just declared. 1864 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) { 1865 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1866 SemaRef.Diag(DS->getBeginLoc(), 1867 SemaRef.getLangOpts().CPlusPlus14 1868 ? diag::warn_cxx11_compat_constexpr_type_definition 1869 : diag::ext_constexpr_type_definition) 1870 << isa<CXXConstructorDecl>(Dcl); 1871 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1872 return false; 1873 } 1874 } 1875 continue; 1876 1877 case Decl::EnumConstant: 1878 case Decl::IndirectField: 1879 case Decl::ParmVar: 1880 // These can only appear with other declarations which are banned in 1881 // C++11 and permitted in C++1y, so ignore them. 1882 continue; 1883 1884 case Decl::Var: 1885 case Decl::Decomposition: { 1886 // C++1y [dcl.constexpr]p3 allows anything except: 1887 // a definition of a variable of non-literal type or of static or 1888 // thread storage duration or [before C++2a] for which no 1889 // initialization is performed. 1890 const auto *VD = cast<VarDecl>(DclIt); 1891 if (VD->isThisDeclarationADefinition()) { 1892 if (VD->isStaticLocal()) { 1893 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1894 SemaRef.Diag(VD->getLocation(), 1895 SemaRef.getLangOpts().CPlusPlus2b 1896 ? diag::warn_cxx20_compat_constexpr_var 1897 : diag::ext_constexpr_static_var) 1898 << isa<CXXConstructorDecl>(Dcl) 1899 << (VD->getTLSKind() == VarDecl::TLS_Dynamic); 1900 } else if (!SemaRef.getLangOpts().CPlusPlus2b) { 1901 return false; 1902 } 1903 } 1904 if (SemaRef.LangOpts.CPlusPlus2b) { 1905 CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), 1906 diag::warn_cxx20_compat_constexpr_var, 1907 isa<CXXConstructorDecl>(Dcl), 1908 /*variable of non-literal type*/ 2); 1909 } else if (CheckLiteralType( 1910 SemaRef, Kind, VD->getLocation(), VD->getType(), 1911 diag::err_constexpr_local_var_non_literal_type, 1912 isa<CXXConstructorDecl>(Dcl))) { 1913 return false; 1914 } 1915 if (!VD->getType()->isDependentType() && 1916 !VD->hasInit() && !VD->isCXXForRangeDecl()) { 1917 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1918 SemaRef.Diag( 1919 VD->getLocation(), 1920 SemaRef.getLangOpts().CPlusPlus20 1921 ? diag::warn_cxx17_compat_constexpr_local_var_no_init 1922 : diag::ext_constexpr_local_var_no_init) 1923 << isa<CXXConstructorDecl>(Dcl); 1924 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 1925 return false; 1926 } 1927 continue; 1928 } 1929 } 1930 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1931 SemaRef.Diag(VD->getLocation(), 1932 SemaRef.getLangOpts().CPlusPlus14 1933 ? diag::warn_cxx11_compat_constexpr_local_var 1934 : diag::ext_constexpr_local_var) 1935 << isa<CXXConstructorDecl>(Dcl); 1936 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1937 return false; 1938 } 1939 continue; 1940 } 1941 1942 case Decl::NamespaceAlias: 1943 case Decl::Function: 1944 // These are disallowed in C++11 and permitted in C++1y. Allow them 1945 // everywhere as an extension. 1946 if (!Cxx1yLoc.isValid()) 1947 Cxx1yLoc = DS->getBeginLoc(); 1948 continue; 1949 1950 default: 1951 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1952 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 1953 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 1954 } 1955 return false; 1956 } 1957 } 1958 1959 return true; 1960 } 1961 1962 /// Check that the given field is initialized within a constexpr constructor. 1963 /// 1964 /// \param Dcl The constexpr constructor being checked. 1965 /// \param Field The field being checked. This may be a member of an anonymous 1966 /// struct or union nested within the class being checked. 1967 /// \param Inits All declarations, including anonymous struct/union members and 1968 /// indirect members, for which any initialization was provided. 1969 /// \param Diagnosed Whether we've emitted the error message yet. Used to attach 1970 /// multiple notes for different members to the same error. 1971 /// \param Kind Whether we're diagnosing a constructor as written or determining 1972 /// whether the formal requirements are satisfied. 1973 /// \return \c false if we're checking for validity and the constructor does 1974 /// not satisfy the requirements on a constexpr constructor. 1975 static bool CheckConstexprCtorInitializer(Sema &SemaRef, 1976 const FunctionDecl *Dcl, 1977 FieldDecl *Field, 1978 llvm::SmallSet<Decl*, 16> &Inits, 1979 bool &Diagnosed, 1980 Sema::CheckConstexprKind Kind) { 1981 // In C++20 onwards, there's nothing to check for validity. 1982 if (Kind == Sema::CheckConstexprKind::CheckValid && 1983 SemaRef.getLangOpts().CPlusPlus20) 1984 return true; 1985 1986 if (Field->isInvalidDecl()) 1987 return true; 1988 1989 if (Field->isUnnamedBitfield()) 1990 return true; 1991 1992 // Anonymous unions with no variant members and empty anonymous structs do not 1993 // need to be explicitly initialized. FIXME: Anonymous structs that contain no 1994 // indirect fields don't need initializing. 1995 if (Field->isAnonymousStructOrUnion() && 1996 (Field->getType()->isUnionType() 1997 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() 1998 : Field->getType()->getAsCXXRecordDecl()->isEmpty())) 1999 return true; 2000 2001 if (!Inits.count(Field)) { 2002 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2003 if (!Diagnosed) { 2004 SemaRef.Diag(Dcl->getLocation(), 2005 SemaRef.getLangOpts().CPlusPlus20 2006 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init 2007 : diag::ext_constexpr_ctor_missing_init); 2008 Diagnosed = true; 2009 } 2010 SemaRef.Diag(Field->getLocation(), 2011 diag::note_constexpr_ctor_missing_init); 2012 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2013 return false; 2014 } 2015 } else if (Field->isAnonymousStructOrUnion()) { 2016 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); 2017 for (auto *I : RD->fields()) 2018 // If an anonymous union contains an anonymous struct of which any member 2019 // is initialized, all members must be initialized. 2020 if (!RD->isUnion() || Inits.count(I)) 2021 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2022 Kind)) 2023 return false; 2024 } 2025 return true; 2026 } 2027 2028 /// Check the provided statement is allowed in a constexpr function 2029 /// definition. 2030 static bool 2031 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, 2032 SmallVectorImpl<SourceLocation> &ReturnStmts, 2033 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, 2034 SourceLocation &Cxx2bLoc, 2035 Sema::CheckConstexprKind Kind) { 2036 // - its function-body shall be [...] a compound-statement that contains only 2037 switch (S->getStmtClass()) { 2038 case Stmt::NullStmtClass: 2039 // - null statements, 2040 return true; 2041 2042 case Stmt::DeclStmtClass: 2043 // - static_assert-declarations 2044 // - using-declarations, 2045 // - using-directives, 2046 // - typedef declarations and alias-declarations that do not define 2047 // classes or enumerations, 2048 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind)) 2049 return false; 2050 return true; 2051 2052 case Stmt::ReturnStmtClass: 2053 // - and exactly one return statement; 2054 if (isa<CXXConstructorDecl>(Dcl)) { 2055 // C++1y allows return statements in constexpr constructors. 2056 if (!Cxx1yLoc.isValid()) 2057 Cxx1yLoc = S->getBeginLoc(); 2058 return true; 2059 } 2060 2061 ReturnStmts.push_back(S->getBeginLoc()); 2062 return true; 2063 2064 case Stmt::AttributedStmtClass: 2065 // Attributes on a statement don't affect its formal kind and hence don't 2066 // affect its validity in a constexpr function. 2067 return CheckConstexprFunctionStmt( 2068 SemaRef, Dcl, cast<AttributedStmt>(S)->getSubStmt(), ReturnStmts, 2069 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind); 2070 2071 case Stmt::CompoundStmtClass: { 2072 // C++1y allows compound-statements. 2073 if (!Cxx1yLoc.isValid()) 2074 Cxx1yLoc = S->getBeginLoc(); 2075 2076 CompoundStmt *CompStmt = cast<CompoundStmt>(S); 2077 for (auto *BodyIt : CompStmt->body()) { 2078 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, 2079 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2080 return false; 2081 } 2082 return true; 2083 } 2084 2085 case Stmt::IfStmtClass: { 2086 // C++1y allows if-statements. 2087 if (!Cxx1yLoc.isValid()) 2088 Cxx1yLoc = S->getBeginLoc(); 2089 2090 IfStmt *If = cast<IfStmt>(S); 2091 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, 2092 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2093 return false; 2094 if (If->getElse() && 2095 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, 2096 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2097 return false; 2098 return true; 2099 } 2100 2101 case Stmt::WhileStmtClass: 2102 case Stmt::DoStmtClass: 2103 case Stmt::ForStmtClass: 2104 case Stmt::CXXForRangeStmtClass: 2105 case Stmt::ContinueStmtClass: 2106 // C++1y allows all of these. We don't allow them as extensions in C++11, 2107 // because they don't make sense without variable mutation. 2108 if (!SemaRef.getLangOpts().CPlusPlus14) 2109 break; 2110 if (!Cxx1yLoc.isValid()) 2111 Cxx1yLoc = S->getBeginLoc(); 2112 for (Stmt *SubStmt : S->children()) { 2113 if (SubStmt && 2114 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2115 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2116 return false; 2117 } 2118 return true; 2119 2120 case Stmt::SwitchStmtClass: 2121 case Stmt::CaseStmtClass: 2122 case Stmt::DefaultStmtClass: 2123 case Stmt::BreakStmtClass: 2124 // C++1y allows switch-statements, and since they don't need variable 2125 // mutation, we can reasonably allow them in C++11 as an extension. 2126 if (!Cxx1yLoc.isValid()) 2127 Cxx1yLoc = S->getBeginLoc(); 2128 for (Stmt *SubStmt : S->children()) { 2129 if (SubStmt && 2130 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2131 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2132 return false; 2133 } 2134 return true; 2135 2136 case Stmt::LabelStmtClass: 2137 case Stmt::GotoStmtClass: 2138 if (Cxx2bLoc.isInvalid()) 2139 Cxx2bLoc = S->getBeginLoc(); 2140 for (Stmt *SubStmt : S->children()) { 2141 if (SubStmt && 2142 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2143 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2144 return false; 2145 } 2146 return true; 2147 2148 case Stmt::GCCAsmStmtClass: 2149 case Stmt::MSAsmStmtClass: 2150 // C++2a allows inline assembly statements. 2151 case Stmt::CXXTryStmtClass: 2152 if (Cxx2aLoc.isInvalid()) 2153 Cxx2aLoc = S->getBeginLoc(); 2154 for (Stmt *SubStmt : S->children()) { 2155 if (SubStmt && 2156 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2157 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2158 return false; 2159 } 2160 return true; 2161 2162 case Stmt::CXXCatchStmtClass: 2163 // Do not bother checking the language mode (already covered by the 2164 // try block check). 2165 if (!CheckConstexprFunctionStmt( 2166 SemaRef, Dcl, cast<CXXCatchStmt>(S)->getHandlerBlock(), ReturnStmts, 2167 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2168 return false; 2169 return true; 2170 2171 default: 2172 if (!isa<Expr>(S)) 2173 break; 2174 2175 // C++1y allows expression-statements. 2176 if (!Cxx1yLoc.isValid()) 2177 Cxx1yLoc = S->getBeginLoc(); 2178 return true; 2179 } 2180 2181 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2182 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 2183 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2184 } 2185 return false; 2186 } 2187 2188 /// Check the body for the given constexpr function declaration only contains 2189 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. 2190 /// 2191 /// \return true if the body is OK, false if we have found or diagnosed a 2192 /// problem. 2193 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 2194 Stmt *Body, 2195 Sema::CheckConstexprKind Kind) { 2196 SmallVector<SourceLocation, 4> ReturnStmts; 2197 2198 if (isa<CXXTryStmt>(Body)) { 2199 // C++11 [dcl.constexpr]p3: 2200 // The definition of a constexpr function shall satisfy the following 2201 // constraints: [...] 2202 // - its function-body shall be = delete, = default, or a 2203 // compound-statement 2204 // 2205 // C++11 [dcl.constexpr]p4: 2206 // In the definition of a constexpr constructor, [...] 2207 // - its function-body shall not be a function-try-block; 2208 // 2209 // This restriction is lifted in C++2a, as long as inner statements also 2210 // apply the general constexpr rules. 2211 switch (Kind) { 2212 case Sema::CheckConstexprKind::CheckValid: 2213 if (!SemaRef.getLangOpts().CPlusPlus20) 2214 return false; 2215 break; 2216 2217 case Sema::CheckConstexprKind::Diagnose: 2218 SemaRef.Diag(Body->getBeginLoc(), 2219 !SemaRef.getLangOpts().CPlusPlus20 2220 ? diag::ext_constexpr_function_try_block_cxx20 2221 : diag::warn_cxx17_compat_constexpr_function_try_block) 2222 << isa<CXXConstructorDecl>(Dcl); 2223 break; 2224 } 2225 } 2226 2227 // - its function-body shall be [...] a compound-statement that contains only 2228 // [... list of cases ...] 2229 // 2230 // Note that walking the children here is enough to properly check for 2231 // CompoundStmt and CXXTryStmt body. 2232 SourceLocation Cxx1yLoc, Cxx2aLoc, Cxx2bLoc; 2233 for (Stmt *SubStmt : Body->children()) { 2234 if (SubStmt && 2235 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2236 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2237 return false; 2238 } 2239 2240 if (Kind == Sema::CheckConstexprKind::CheckValid) { 2241 // If this is only valid as an extension, report that we don't satisfy the 2242 // constraints of the current language. 2243 if ((Cxx2bLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus2b) || 2244 (Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) || 2245 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) 2246 return false; 2247 } else if (Cxx2bLoc.isValid()) { 2248 SemaRef.Diag(Cxx2bLoc, 2249 SemaRef.getLangOpts().CPlusPlus2b 2250 ? diag::warn_cxx20_compat_constexpr_body_invalid_stmt 2251 : diag::ext_constexpr_body_invalid_stmt_cxx2b) 2252 << isa<CXXConstructorDecl>(Dcl); 2253 } else if (Cxx2aLoc.isValid()) { 2254 SemaRef.Diag(Cxx2aLoc, 2255 SemaRef.getLangOpts().CPlusPlus20 2256 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt 2257 : diag::ext_constexpr_body_invalid_stmt_cxx20) 2258 << isa<CXXConstructorDecl>(Dcl); 2259 } else if (Cxx1yLoc.isValid()) { 2260 SemaRef.Diag(Cxx1yLoc, 2261 SemaRef.getLangOpts().CPlusPlus14 2262 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt 2263 : diag::ext_constexpr_body_invalid_stmt) 2264 << isa<CXXConstructorDecl>(Dcl); 2265 } 2266 2267 if (const CXXConstructorDecl *Constructor 2268 = dyn_cast<CXXConstructorDecl>(Dcl)) { 2269 const CXXRecordDecl *RD = Constructor->getParent(); 2270 // DR1359: 2271 // - every non-variant non-static data member and base class sub-object 2272 // shall be initialized; 2273 // DR1460: 2274 // - if the class is a union having variant members, exactly one of them 2275 // shall be initialized; 2276 if (RD->isUnion()) { 2277 if (Constructor->getNumCtorInitializers() == 0 && 2278 RD->hasVariantMembers()) { 2279 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2280 SemaRef.Diag( 2281 Dcl->getLocation(), 2282 SemaRef.getLangOpts().CPlusPlus20 2283 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init 2284 : diag::ext_constexpr_union_ctor_no_init); 2285 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2286 return false; 2287 } 2288 } 2289 } else if (!Constructor->isDependentContext() && 2290 !Constructor->isDelegatingConstructor()) { 2291 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"); 2292 2293 // Skip detailed checking if we have enough initializers, and we would 2294 // allow at most one initializer per member. 2295 bool AnyAnonStructUnionMembers = false; 2296 unsigned Fields = 0; 2297 for (CXXRecordDecl::field_iterator I = RD->field_begin(), 2298 E = RD->field_end(); I != E; ++I, ++Fields) { 2299 if (I->isAnonymousStructOrUnion()) { 2300 AnyAnonStructUnionMembers = true; 2301 break; 2302 } 2303 } 2304 // DR1460: 2305 // - if the class is a union-like class, but is not a union, for each of 2306 // its anonymous union members having variant members, exactly one of 2307 // them shall be initialized; 2308 if (AnyAnonStructUnionMembers || 2309 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { 2310 // Check initialization of non-static data members. Base classes are 2311 // always initialized so do not need to be checked. Dependent bases 2312 // might not have initializers in the member initializer list. 2313 llvm::SmallSet<Decl*, 16> Inits; 2314 for (const auto *I: Constructor->inits()) { 2315 if (FieldDecl *FD = I->getMember()) 2316 Inits.insert(FD); 2317 else if (IndirectFieldDecl *ID = I->getIndirectMember()) 2318 Inits.insert(ID->chain_begin(), ID->chain_end()); 2319 } 2320 2321 bool Diagnosed = false; 2322 for (auto *I : RD->fields()) 2323 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2324 Kind)) 2325 return false; 2326 } 2327 } 2328 } else { 2329 if (ReturnStmts.empty()) { 2330 // C++1y doesn't require constexpr functions to contain a 'return' 2331 // statement. We still do, unless the return type might be void, because 2332 // otherwise if there's no return statement, the function cannot 2333 // be used in a core constant expression. 2334 bool OK = SemaRef.getLangOpts().CPlusPlus14 && 2335 (Dcl->getReturnType()->isVoidType() || 2336 Dcl->getReturnType()->isDependentType()); 2337 switch (Kind) { 2338 case Sema::CheckConstexprKind::Diagnose: 2339 SemaRef.Diag(Dcl->getLocation(), 2340 OK ? diag::warn_cxx11_compat_constexpr_body_no_return 2341 : diag::err_constexpr_body_no_return) 2342 << Dcl->isConsteval(); 2343 if (!OK) 2344 return false; 2345 break; 2346 2347 case Sema::CheckConstexprKind::CheckValid: 2348 // The formal requirements don't include this rule in C++14, even 2349 // though the "must be able to produce a constant expression" rules 2350 // still imply it in some cases. 2351 if (!SemaRef.getLangOpts().CPlusPlus14) 2352 return false; 2353 break; 2354 } 2355 } else if (ReturnStmts.size() > 1) { 2356 switch (Kind) { 2357 case Sema::CheckConstexprKind::Diagnose: 2358 SemaRef.Diag( 2359 ReturnStmts.back(), 2360 SemaRef.getLangOpts().CPlusPlus14 2361 ? diag::warn_cxx11_compat_constexpr_body_multiple_return 2362 : diag::ext_constexpr_body_multiple_return); 2363 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) 2364 SemaRef.Diag(ReturnStmts[I], 2365 diag::note_constexpr_body_previous_return); 2366 break; 2367 2368 case Sema::CheckConstexprKind::CheckValid: 2369 if (!SemaRef.getLangOpts().CPlusPlus14) 2370 return false; 2371 break; 2372 } 2373 } 2374 } 2375 2376 // C++11 [dcl.constexpr]p5: 2377 // if no function argument values exist such that the function invocation 2378 // substitution would produce a constant expression, the program is 2379 // ill-formed; no diagnostic required. 2380 // C++11 [dcl.constexpr]p3: 2381 // - every constructor call and implicit conversion used in initializing the 2382 // return value shall be one of those allowed in a constant expression. 2383 // C++11 [dcl.constexpr]p4: 2384 // - every constructor involved in initializing non-static data members and 2385 // base class sub-objects shall be a constexpr constructor. 2386 // 2387 // Note that this rule is distinct from the "requirements for a constexpr 2388 // function", so is not checked in CheckValid mode. 2389 SmallVector<PartialDiagnosticAt, 8> Diags; 2390 if (Kind == Sema::CheckConstexprKind::Diagnose && 2391 !Expr::isPotentialConstantExpr(Dcl, Diags)) { 2392 SemaRef.Diag(Dcl->getLocation(), 2393 diag::ext_constexpr_function_never_constant_expr) 2394 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2395 for (size_t I = 0, N = Diags.size(); I != N; ++I) 2396 SemaRef.Diag(Diags[I].first, Diags[I].second); 2397 // Don't return false here: we allow this for compatibility in 2398 // system headers. 2399 } 2400 2401 return true; 2402 } 2403 2404 /// Get the class that is directly named by the current context. This is the 2405 /// class for which an unqualified-id in this scope could name a constructor 2406 /// or destructor. 2407 /// 2408 /// If the scope specifier denotes a class, this will be that class. 2409 /// If the scope specifier is empty, this will be the class whose 2410 /// member-specification we are currently within. Otherwise, there 2411 /// is no such class. 2412 CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { 2413 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2414 2415 if (SS && SS->isInvalid()) 2416 return nullptr; 2417 2418 if (SS && SS->isNotEmpty()) { 2419 DeclContext *DC = computeDeclContext(*SS, true); 2420 return dyn_cast_or_null<CXXRecordDecl>(DC); 2421 } 2422 2423 return dyn_cast_or_null<CXXRecordDecl>(CurContext); 2424 } 2425 2426 /// isCurrentClassName - Determine whether the identifier II is the 2427 /// name of the class type currently being defined. In the case of 2428 /// nested classes, this will only return true if II is the name of 2429 /// the innermost class. 2430 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, 2431 const CXXScopeSpec *SS) { 2432 CXXRecordDecl *CurDecl = getCurrentClass(S, SS); 2433 return CurDecl && &II == CurDecl->getIdentifier(); 2434 } 2435 2436 /// Determine whether the identifier II is a typo for the name of 2437 /// the class type currently being defined. If so, update it to the identifier 2438 /// that should have been used. 2439 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { 2440 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2441 2442 if (!getLangOpts().SpellChecking) 2443 return false; 2444 2445 CXXRecordDecl *CurDecl; 2446 if (SS && SS->isSet() && !SS->isInvalid()) { 2447 DeclContext *DC = computeDeclContext(*SS, true); 2448 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); 2449 } else 2450 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); 2451 2452 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && 2453 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) 2454 < II->getLength()) { 2455 II = CurDecl->getIdentifier(); 2456 return true; 2457 } 2458 2459 return false; 2460 } 2461 2462 /// Determine whether the given class is a base class of the given 2463 /// class, including looking at dependent bases. 2464 static bool findCircularInheritance(const CXXRecordDecl *Class, 2465 const CXXRecordDecl *Current) { 2466 SmallVector<const CXXRecordDecl*, 8> Queue; 2467 2468 Class = Class->getCanonicalDecl(); 2469 while (true) { 2470 for (const auto &I : Current->bases()) { 2471 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 2472 if (!Base) 2473 continue; 2474 2475 Base = Base->getDefinition(); 2476 if (!Base) 2477 continue; 2478 2479 if (Base->getCanonicalDecl() == Class) 2480 return true; 2481 2482 Queue.push_back(Base); 2483 } 2484 2485 if (Queue.empty()) 2486 return false; 2487 2488 Current = Queue.pop_back_val(); 2489 } 2490 2491 return false; 2492 } 2493 2494 /// Check the validity of a C++ base class specifier. 2495 /// 2496 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics 2497 /// and returns NULL otherwise. 2498 CXXBaseSpecifier * 2499 Sema::CheckBaseSpecifier(CXXRecordDecl *Class, 2500 SourceRange SpecifierRange, 2501 bool Virtual, AccessSpecifier Access, 2502 TypeSourceInfo *TInfo, 2503 SourceLocation EllipsisLoc) { 2504 // In HLSL, unspecified class access is public rather than private. 2505 if (getLangOpts().HLSL && Class->getTagKind() == TTK_Class && 2506 Access == AS_none) 2507 Access = AS_public; 2508 2509 QualType BaseType = TInfo->getType(); 2510 if (BaseType->containsErrors()) { 2511 // Already emitted a diagnostic when parsing the error type. 2512 return nullptr; 2513 } 2514 // C++ [class.union]p1: 2515 // A union shall not have base classes. 2516 if (Class->isUnion()) { 2517 Diag(Class->getLocation(), diag::err_base_clause_on_union) 2518 << SpecifierRange; 2519 return nullptr; 2520 } 2521 2522 if (EllipsisLoc.isValid() && 2523 !TInfo->getType()->containsUnexpandedParameterPack()) { 2524 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 2525 << TInfo->getTypeLoc().getSourceRange(); 2526 EllipsisLoc = SourceLocation(); 2527 } 2528 2529 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); 2530 2531 if (BaseType->isDependentType()) { 2532 // Make sure that we don't have circular inheritance among our dependent 2533 // bases. For non-dependent bases, the check for completeness below handles 2534 // this. 2535 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) { 2536 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() || 2537 ((BaseDecl = BaseDecl->getDefinition()) && 2538 findCircularInheritance(Class, BaseDecl))) { 2539 Diag(BaseLoc, diag::err_circular_inheritance) 2540 << BaseType << Context.getTypeDeclType(Class); 2541 2542 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl()) 2543 Diag(BaseDecl->getLocation(), diag::note_previous_decl) 2544 << BaseType; 2545 2546 return nullptr; 2547 } 2548 } 2549 2550 // Make sure that we don't make an ill-formed AST where the type of the 2551 // Class is non-dependent and its attached base class specifier is an 2552 // dependent type, which violates invariants in many clang code paths (e.g. 2553 // constexpr evaluator). If this case happens (in errory-recovery mode), we 2554 // explicitly mark the Class decl invalid. The diagnostic was already 2555 // emitted. 2556 if (!Class->getTypeForDecl()->isDependentType()) 2557 Class->setInvalidDecl(); 2558 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2559 Class->getTagKind() == TTK_Class, 2560 Access, TInfo, EllipsisLoc); 2561 } 2562 2563 // Base specifiers must be record types. 2564 if (!BaseType->isRecordType()) { 2565 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; 2566 return nullptr; 2567 } 2568 2569 // C++ [class.union]p1: 2570 // A union shall not be used as a base class. 2571 if (BaseType->isUnionType()) { 2572 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; 2573 return nullptr; 2574 } 2575 2576 // For the MS ABI, propagate DLL attributes to base class templates. 2577 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2578 if (Attr *ClassAttr = getDLLAttr(Class)) { 2579 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 2580 BaseType->getAsCXXRecordDecl())) { 2581 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate, 2582 BaseLoc); 2583 } 2584 } 2585 } 2586 2587 // C++ [class.derived]p2: 2588 // The class-name in a base-specifier shall not be an incompletely 2589 // defined class. 2590 if (RequireCompleteType(BaseLoc, BaseType, 2591 diag::err_incomplete_base_class, SpecifierRange)) { 2592 Class->setInvalidDecl(); 2593 return nullptr; 2594 } 2595 2596 // If the base class is polymorphic or isn't empty, the new one is/isn't, too. 2597 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl(); 2598 assert(BaseDecl && "Record type has no declaration"); 2599 BaseDecl = BaseDecl->getDefinition(); 2600 assert(BaseDecl && "Base type is not incomplete, but has no definition"); 2601 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); 2602 assert(CXXBaseDecl && "Base type is not a C++ type"); 2603 2604 // Microsoft docs say: 2605 // "If a base-class has a code_seg attribute, derived classes must have the 2606 // same attribute." 2607 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>(); 2608 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); 2609 if ((DerivedCSA || BaseCSA) && 2610 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) { 2611 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); 2612 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here) 2613 << CXXBaseDecl; 2614 return nullptr; 2615 } 2616 2617 // A class which contains a flexible array member is not suitable for use as a 2618 // base class: 2619 // - If the layout determines that a base comes before another base, 2620 // the flexible array member would index into the subsequent base. 2621 // - If the layout determines that base comes before the derived class, 2622 // the flexible array member would index into the derived class. 2623 if (CXXBaseDecl->hasFlexibleArrayMember()) { 2624 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) 2625 << CXXBaseDecl->getDeclName(); 2626 return nullptr; 2627 } 2628 2629 // C++ [class]p3: 2630 // If a class is marked final and it appears as a base-type-specifier in 2631 // base-clause, the program is ill-formed. 2632 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) { 2633 Diag(BaseLoc, diag::err_class_marked_final_used_as_base) 2634 << CXXBaseDecl->getDeclName() 2635 << FA->isSpelledAsSealed(); 2636 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at) 2637 << CXXBaseDecl->getDeclName() << FA->getRange(); 2638 return nullptr; 2639 } 2640 2641 if (BaseDecl->isInvalidDecl()) 2642 Class->setInvalidDecl(); 2643 2644 // Create the base specifier. 2645 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2646 Class->getTagKind() == TTK_Class, 2647 Access, TInfo, EllipsisLoc); 2648 } 2649 2650 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is 2651 /// one entry in the base class list of a class specifier, for 2652 /// example: 2653 /// class foo : public bar, virtual private baz { 2654 /// 'public bar' and 'virtual private baz' are each base-specifiers. 2655 BaseResult Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, 2656 const ParsedAttributesView &Attributes, 2657 bool Virtual, AccessSpecifier Access, 2658 ParsedType basetype, SourceLocation BaseLoc, 2659 SourceLocation EllipsisLoc) { 2660 if (!classdecl) 2661 return true; 2662 2663 AdjustDeclIfTemplate(classdecl); 2664 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); 2665 if (!Class) 2666 return true; 2667 2668 // We haven't yet attached the base specifiers. 2669 Class->setIsParsingBaseSpecifiers(); 2670 2671 // We do not support any C++11 attributes on base-specifiers yet. 2672 // Diagnose any attributes we see. 2673 for (const ParsedAttr &AL : Attributes) { 2674 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) 2675 continue; 2676 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute 2677 ? (unsigned)diag::warn_unknown_attribute_ignored 2678 : (unsigned)diag::err_base_specifier_attribute) 2679 << AL << AL.getRange(); 2680 } 2681 2682 TypeSourceInfo *TInfo = nullptr; 2683 GetTypeFromParser(basetype, &TInfo); 2684 2685 if (EllipsisLoc.isInvalid() && 2686 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, 2687 UPPC_BaseType)) 2688 return true; 2689 2690 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, 2691 Virtual, Access, TInfo, 2692 EllipsisLoc)) 2693 return BaseSpec; 2694 else 2695 Class->setInvalidDecl(); 2696 2697 return true; 2698 } 2699 2700 /// Use small set to collect indirect bases. As this is only used 2701 /// locally, there's no need to abstract the small size parameter. 2702 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; 2703 2704 /// Recursively add the bases of Type. Don't add Type itself. 2705 static void 2706 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, 2707 const QualType &Type) 2708 { 2709 // Even though the incoming type is a base, it might not be 2710 // a class -- it could be a template parm, for instance. 2711 if (auto Rec = Type->getAs<RecordType>()) { 2712 auto Decl = Rec->getAsCXXRecordDecl(); 2713 2714 // Iterate over its bases. 2715 for (const auto &BaseSpec : Decl->bases()) { 2716 QualType Base = Context.getCanonicalType(BaseSpec.getType()) 2717 .getUnqualifiedType(); 2718 if (Set.insert(Base).second) 2719 // If we've not already seen it, recurse. 2720 NoteIndirectBases(Context, Set, Base); 2721 } 2722 } 2723 } 2724 2725 /// Performs the actual work of attaching the given base class 2726 /// specifiers to a C++ class. 2727 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, 2728 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2729 if (Bases.empty()) 2730 return false; 2731 2732 // Used to keep track of which base types we have already seen, so 2733 // that we can properly diagnose redundant direct base types. Note 2734 // that the key is always the unqualified canonical type of the base 2735 // class. 2736 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; 2737 2738 // Used to track indirect bases so we can see if a direct base is 2739 // ambiguous. 2740 IndirectBaseSet IndirectBaseTypes; 2741 2742 // Copy non-redundant base specifiers into permanent storage. 2743 unsigned NumGoodBases = 0; 2744 bool Invalid = false; 2745 for (unsigned idx = 0; idx < Bases.size(); ++idx) { 2746 QualType NewBaseType 2747 = Context.getCanonicalType(Bases[idx]->getType()); 2748 NewBaseType = NewBaseType.getLocalUnqualifiedType(); 2749 2750 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; 2751 if (KnownBase) { 2752 // C++ [class.mi]p3: 2753 // A class shall not be specified as a direct base class of a 2754 // derived class more than once. 2755 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) 2756 << KnownBase->getType() << Bases[idx]->getSourceRange(); 2757 2758 // Delete the duplicate base class specifier; we're going to 2759 // overwrite its pointer later. 2760 Context.Deallocate(Bases[idx]); 2761 2762 Invalid = true; 2763 } else { 2764 // Okay, add this new base class. 2765 KnownBase = Bases[idx]; 2766 Bases[NumGoodBases++] = Bases[idx]; 2767 2768 if (NewBaseType->isDependentType()) 2769 continue; 2770 // Note this base's direct & indirect bases, if there could be ambiguity. 2771 if (Bases.size() > 1) 2772 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType); 2773 2774 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { 2775 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); 2776 if (Class->isInterface() && 2777 (!RD->isInterfaceLike() || 2778 KnownBase->getAccessSpecifier() != AS_public)) { 2779 // The Microsoft extension __interface does not permit bases that 2780 // are not themselves public interfaces. 2781 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) 2782 << getRecordDiagFromTagKind(RD->getTagKind()) << RD 2783 << RD->getSourceRange(); 2784 Invalid = true; 2785 } 2786 if (RD->hasAttr<WeakAttr>()) 2787 Class->addAttr(WeakAttr::CreateImplicit(Context)); 2788 } 2789 } 2790 } 2791 2792 // Attach the remaining base class specifiers to the derived class. 2793 Class->setBases(Bases.data(), NumGoodBases); 2794 2795 // Check that the only base classes that are duplicate are virtual. 2796 for (unsigned idx = 0; idx < NumGoodBases; ++idx) { 2797 // Check whether this direct base is inaccessible due to ambiguity. 2798 QualType BaseType = Bases[idx]->getType(); 2799 2800 // Skip all dependent types in templates being used as base specifiers. 2801 // Checks below assume that the base specifier is a CXXRecord. 2802 if (BaseType->isDependentType()) 2803 continue; 2804 2805 CanQualType CanonicalBase = Context.getCanonicalType(BaseType) 2806 .getUnqualifiedType(); 2807 2808 if (IndirectBaseTypes.count(CanonicalBase)) { 2809 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2810 /*DetectVirtual=*/true); 2811 bool found 2812 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); 2813 assert(found); 2814 (void)found; 2815 2816 if (Paths.isAmbiguous(CanonicalBase)) 2817 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) 2818 << BaseType << getAmbiguousPathsDisplayString(Paths) 2819 << Bases[idx]->getSourceRange(); 2820 else 2821 assert(Bases[idx]->isVirtual()); 2822 } 2823 2824 // Delete the base class specifier, since its data has been copied 2825 // into the CXXRecordDecl. 2826 Context.Deallocate(Bases[idx]); 2827 } 2828 2829 return Invalid; 2830 } 2831 2832 /// ActOnBaseSpecifiers - Attach the given base specifiers to the 2833 /// class, after checking whether there are any duplicate base 2834 /// classes. 2835 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, 2836 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2837 if (!ClassDecl || Bases.empty()) 2838 return; 2839 2840 AdjustDeclIfTemplate(ClassDecl); 2841 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases); 2842 } 2843 2844 /// Determine whether the type \p Derived is a C++ class that is 2845 /// derived from the type \p Base. 2846 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { 2847 if (!getLangOpts().CPlusPlus) 2848 return false; 2849 2850 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2851 if (!DerivedRD) 2852 return false; 2853 2854 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2855 if (!BaseRD) 2856 return false; 2857 2858 // If either the base or the derived type is invalid, don't try to 2859 // check whether one is derived from the other. 2860 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) 2861 return false; 2862 2863 // FIXME: In a modules build, do we need the entire path to be visible for us 2864 // to be able to use the inheritance relationship? 2865 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2866 return false; 2867 2868 return DerivedRD->isDerivedFrom(BaseRD); 2869 } 2870 2871 /// Determine whether the type \p Derived is a C++ class that is 2872 /// derived from the type \p Base. 2873 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, 2874 CXXBasePaths &Paths) { 2875 if (!getLangOpts().CPlusPlus) 2876 return false; 2877 2878 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2879 if (!DerivedRD) 2880 return false; 2881 2882 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2883 if (!BaseRD) 2884 return false; 2885 2886 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2887 return false; 2888 2889 return DerivedRD->isDerivedFrom(BaseRD, Paths); 2890 } 2891 2892 static void BuildBasePathArray(const CXXBasePath &Path, 2893 CXXCastPath &BasePathArray) { 2894 // We first go backward and check if we have a virtual base. 2895 // FIXME: It would be better if CXXBasePath had the base specifier for 2896 // the nearest virtual base. 2897 unsigned Start = 0; 2898 for (unsigned I = Path.size(); I != 0; --I) { 2899 if (Path[I - 1].Base->isVirtual()) { 2900 Start = I - 1; 2901 break; 2902 } 2903 } 2904 2905 // Now add all bases. 2906 for (unsigned I = Start, E = Path.size(); I != E; ++I) 2907 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); 2908 } 2909 2910 2911 void Sema::BuildBasePathArray(const CXXBasePaths &Paths, 2912 CXXCastPath &BasePathArray) { 2913 assert(BasePathArray.empty() && "Base path array must be empty!"); 2914 assert(Paths.isRecordingPaths() && "Must record paths!"); 2915 return ::BuildBasePathArray(Paths.front(), BasePathArray); 2916 } 2917 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base 2918 /// conversion (where Derived and Base are class types) is 2919 /// well-formed, meaning that the conversion is unambiguous (and 2920 /// that all of the base classes are accessible). Returns true 2921 /// and emits a diagnostic if the code is ill-formed, returns false 2922 /// otherwise. Loc is the location where this routine should point to 2923 /// if there is an error, and Range is the source range to highlight 2924 /// if there is an error. 2925 /// 2926 /// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the 2927 /// diagnostic for the respective type of error will be suppressed, but the 2928 /// check for ill-formed code will still be performed. 2929 bool 2930 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 2931 unsigned InaccessibleBaseID, 2932 unsigned AmbiguousBaseConvID, 2933 SourceLocation Loc, SourceRange Range, 2934 DeclarationName Name, 2935 CXXCastPath *BasePath, 2936 bool IgnoreAccess) { 2937 // First, determine whether the path from Derived to Base is 2938 // ambiguous. This is slightly more expensive than checking whether 2939 // the Derived to Base conversion exists, because here we need to 2940 // explore multiple paths to determine if there is an ambiguity. 2941 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2942 /*DetectVirtual=*/false); 2943 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 2944 if (!DerivationOkay) 2945 return true; 2946 2947 const CXXBasePath *Path = nullptr; 2948 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) 2949 Path = &Paths.front(); 2950 2951 // For MSVC compatibility, check if Derived directly inherits from Base. Clang 2952 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the 2953 // user to access such bases. 2954 if (!Path && getLangOpts().MSVCCompat) { 2955 for (const CXXBasePath &PossiblePath : Paths) { 2956 if (PossiblePath.size() == 1) { 2957 Path = &PossiblePath; 2958 if (AmbiguousBaseConvID) 2959 Diag(Loc, diag::ext_ms_ambiguous_direct_base) 2960 << Base << Derived << Range; 2961 break; 2962 } 2963 } 2964 } 2965 2966 if (Path) { 2967 if (!IgnoreAccess) { 2968 // Check that the base class can be accessed. 2969 switch ( 2970 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) { 2971 case AR_inaccessible: 2972 return true; 2973 case AR_accessible: 2974 case AR_dependent: 2975 case AR_delayed: 2976 break; 2977 } 2978 } 2979 2980 // Build a base path if necessary. 2981 if (BasePath) 2982 ::BuildBasePathArray(*Path, *BasePath); 2983 return false; 2984 } 2985 2986 if (AmbiguousBaseConvID) { 2987 // We know that the derived-to-base conversion is ambiguous, and 2988 // we're going to produce a diagnostic. Perform the derived-to-base 2989 // search just one more time to compute all of the possible paths so 2990 // that we can print them out. This is more expensive than any of 2991 // the previous derived-to-base checks we've done, but at this point 2992 // performance isn't as much of an issue. 2993 Paths.clear(); 2994 Paths.setRecordingPaths(true); 2995 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 2996 assert(StillOkay && "Can only be used with a derived-to-base conversion"); 2997 (void)StillOkay; 2998 2999 // Build up a textual representation of the ambiguous paths, e.g., 3000 // D -> B -> A, that will be used to illustrate the ambiguous 3001 // conversions in the diagnostic. We only print one of the paths 3002 // to each base class subobject. 3003 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 3004 3005 Diag(Loc, AmbiguousBaseConvID) 3006 << Derived << Base << PathDisplayStr << Range << Name; 3007 } 3008 return true; 3009 } 3010 3011 bool 3012 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 3013 SourceLocation Loc, SourceRange Range, 3014 CXXCastPath *BasePath, 3015 bool IgnoreAccess) { 3016 return CheckDerivedToBaseConversion( 3017 Derived, Base, diag::err_upcast_to_inaccessible_base, 3018 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), 3019 BasePath, IgnoreAccess); 3020 } 3021 3022 3023 /// Builds a string representing ambiguous paths from a 3024 /// specific derived class to different subobjects of the same base 3025 /// class. 3026 /// 3027 /// This function builds a string that can be used in error messages 3028 /// to show the different paths that one can take through the 3029 /// inheritance hierarchy to go from the derived class to different 3030 /// subobjects of a base class. The result looks something like this: 3031 /// @code 3032 /// struct D -> struct B -> struct A 3033 /// struct D -> struct C -> struct A 3034 /// @endcode 3035 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { 3036 std::string PathDisplayStr; 3037 std::set<unsigned> DisplayedPaths; 3038 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 3039 Path != Paths.end(); ++Path) { 3040 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { 3041 // We haven't displayed a path to this particular base 3042 // class subobject yet. 3043 PathDisplayStr += "\n "; 3044 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); 3045 for (CXXBasePath::const_iterator Element = Path->begin(); 3046 Element != Path->end(); ++Element) 3047 PathDisplayStr += " -> " + Element->Base->getType().getAsString(); 3048 } 3049 } 3050 3051 return PathDisplayStr; 3052 } 3053 3054 //===----------------------------------------------------------------------===// 3055 // C++ class member Handling 3056 //===----------------------------------------------------------------------===// 3057 3058 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. 3059 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, 3060 SourceLocation ColonLoc, 3061 const ParsedAttributesView &Attrs) { 3062 assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); 3063 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, 3064 ASLoc, ColonLoc); 3065 CurContext->addHiddenDecl(ASDecl); 3066 return ProcessAccessDeclAttributeList(ASDecl, Attrs); 3067 } 3068 3069 /// CheckOverrideControl - Check C++11 override control semantics. 3070 void Sema::CheckOverrideControl(NamedDecl *D) { 3071 if (D->isInvalidDecl()) 3072 return; 3073 3074 // We only care about "override" and "final" declarations. 3075 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) 3076 return; 3077 3078 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3079 3080 // We can't check dependent instance methods. 3081 if (MD && MD->isInstance() && 3082 (MD->getParent()->hasAnyDependentBases() || 3083 MD->getType()->isDependentType())) 3084 return; 3085 3086 if (MD && !MD->isVirtual()) { 3087 // If we have a non-virtual method, check if if hides a virtual method. 3088 // (In that case, it's most likely the method has the wrong type.) 3089 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 3090 FindHiddenVirtualMethods(MD, OverloadedMethods); 3091 3092 if (!OverloadedMethods.empty()) { 3093 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3094 Diag(OA->getLocation(), 3095 diag::override_keyword_hides_virtual_member_function) 3096 << "override" << (OverloadedMethods.size() > 1); 3097 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3098 Diag(FA->getLocation(), 3099 diag::override_keyword_hides_virtual_member_function) 3100 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3101 << (OverloadedMethods.size() > 1); 3102 } 3103 NoteHiddenVirtualMethods(MD, OverloadedMethods); 3104 MD->setInvalidDecl(); 3105 return; 3106 } 3107 // Fall through into the general case diagnostic. 3108 // FIXME: We might want to attempt typo correction here. 3109 } 3110 3111 if (!MD || !MD->isVirtual()) { 3112 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3113 Diag(OA->getLocation(), 3114 diag::override_keyword_only_allowed_on_virtual_member_functions) 3115 << "override" << FixItHint::CreateRemoval(OA->getLocation()); 3116 D->dropAttr<OverrideAttr>(); 3117 } 3118 if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3119 Diag(FA->getLocation(), 3120 diag::override_keyword_only_allowed_on_virtual_member_functions) 3121 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3122 << FixItHint::CreateRemoval(FA->getLocation()); 3123 D->dropAttr<FinalAttr>(); 3124 } 3125 return; 3126 } 3127 3128 // C++11 [class.virtual]p5: 3129 // If a function is marked with the virt-specifier override and 3130 // does not override a member function of a base class, the program is 3131 // ill-formed. 3132 bool HasOverriddenMethods = MD->size_overridden_methods() != 0; 3133 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) 3134 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) 3135 << MD->getDeclName(); 3136 } 3137 3138 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) { 3139 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) 3140 return; 3141 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3142 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) 3143 return; 3144 3145 SourceLocation Loc = MD->getLocation(); 3146 SourceLocation SpellingLoc = Loc; 3147 if (getSourceManager().isMacroArgExpansion(Loc)) 3148 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); 3149 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); 3150 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) 3151 return; 3152 3153 if (MD->size_overridden_methods() > 0) { 3154 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) { 3155 unsigned DiagID = 3156 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation()) 3157 ? DiagInconsistent 3158 : DiagSuggest; 3159 Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 3160 const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); 3161 Diag(OMD->getLocation(), diag::note_overridden_virtual_function); 3162 }; 3163 if (isa<CXXDestructorDecl>(MD)) 3164 EmitDiag( 3165 diag::warn_inconsistent_destructor_marked_not_override_overriding, 3166 diag::warn_suggest_destructor_marked_not_override_overriding); 3167 else 3168 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding, 3169 diag::warn_suggest_function_marked_not_override_overriding); 3170 } 3171 } 3172 3173 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member 3174 /// function overrides a virtual member function marked 'final', according to 3175 /// C++11 [class.virtual]p4. 3176 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, 3177 const CXXMethodDecl *Old) { 3178 FinalAttr *FA = Old->getAttr<FinalAttr>(); 3179 if (!FA) 3180 return false; 3181 3182 Diag(New->getLocation(), diag::err_final_function_overridden) 3183 << New->getDeclName() 3184 << FA->isSpelledAsSealed(); 3185 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 3186 return true; 3187 } 3188 3189 static bool InitializationHasSideEffects(const FieldDecl &FD) { 3190 const Type *T = FD.getType()->getBaseElementTypeUnsafe(); 3191 // FIXME: Destruction of ObjC lifetime types has side-effects. 3192 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3193 return !RD->isCompleteDefinition() || 3194 !RD->hasTrivialDefaultConstructor() || 3195 !RD->hasTrivialDestructor(); 3196 return false; 3197 } 3198 3199 static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) { 3200 ParsedAttributesView::const_iterator Itr = 3201 llvm::find_if(list, [](const ParsedAttr &AL) { 3202 return AL.isDeclspecPropertyAttribute(); 3203 }); 3204 if (Itr != list.end()) 3205 return &*Itr; 3206 return nullptr; 3207 } 3208 3209 // Check if there is a field shadowing. 3210 void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, 3211 DeclarationName FieldName, 3212 const CXXRecordDecl *RD, 3213 bool DeclIsField) { 3214 if (Diags.isIgnored(diag::warn_shadow_field, Loc)) 3215 return; 3216 3217 // To record a shadowed field in a base 3218 std::map<CXXRecordDecl*, NamedDecl*> Bases; 3219 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, 3220 CXXBasePath &Path) { 3221 const auto Base = Specifier->getType()->getAsCXXRecordDecl(); 3222 // Record an ambiguous path directly 3223 if (Bases.find(Base) != Bases.end()) 3224 return true; 3225 for (const auto Field : Base->lookup(FieldName)) { 3226 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && 3227 Field->getAccess() != AS_private) { 3228 assert(Field->getAccess() != AS_none); 3229 assert(Bases.find(Base) == Bases.end()); 3230 Bases[Base] = Field; 3231 return true; 3232 } 3233 } 3234 return false; 3235 }; 3236 3237 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3238 /*DetectVirtual=*/true); 3239 if (!RD->lookupInBases(FieldShadowed, Paths)) 3240 return; 3241 3242 for (const auto &P : Paths) { 3243 auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); 3244 auto It = Bases.find(Base); 3245 // Skip duplicated bases 3246 if (It == Bases.end()) 3247 continue; 3248 auto BaseField = It->second; 3249 assert(BaseField->getAccess() != AS_private); 3250 if (AS_none != 3251 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) { 3252 Diag(Loc, diag::warn_shadow_field) 3253 << FieldName << RD << Base << DeclIsField; 3254 Diag(BaseField->getLocation(), diag::note_shadow_field); 3255 Bases.erase(It); 3256 } 3257 } 3258 } 3259 3260 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member 3261 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the 3262 /// bitfield width if there is one, 'InitExpr' specifies the initializer if 3263 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is 3264 /// present (but parsing it has been deferred). 3265 NamedDecl * 3266 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, 3267 MultiTemplateParamsArg TemplateParameterLists, 3268 Expr *BW, const VirtSpecifiers &VS, 3269 InClassInitStyle InitStyle) { 3270 const DeclSpec &DS = D.getDeclSpec(); 3271 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 3272 DeclarationName Name = NameInfo.getName(); 3273 SourceLocation Loc = NameInfo.getLoc(); 3274 3275 // For anonymous bitfields, the location should point to the type. 3276 if (Loc.isInvalid()) 3277 Loc = D.getBeginLoc(); 3278 3279 Expr *BitWidth = static_cast<Expr*>(BW); 3280 3281 assert(isa<CXXRecordDecl>(CurContext)); 3282 assert(!DS.isFriendSpecified()); 3283 3284 bool isFunc = D.isDeclarationOfFunction(); 3285 const ParsedAttr *MSPropertyAttr = 3286 getMSPropertyAttr(D.getDeclSpec().getAttributes()); 3287 3288 if (cast<CXXRecordDecl>(CurContext)->isInterface()) { 3289 // The Microsoft extension __interface only permits public member functions 3290 // and prohibits constructors, destructors, operators, non-public member 3291 // functions, static methods and data members. 3292 unsigned InvalidDecl; 3293 bool ShowDeclName = true; 3294 if (!isFunc && 3295 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) 3296 InvalidDecl = 0; 3297 else if (!isFunc) 3298 InvalidDecl = 1; 3299 else if (AS != AS_public) 3300 InvalidDecl = 2; 3301 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) 3302 InvalidDecl = 3; 3303 else switch (Name.getNameKind()) { 3304 case DeclarationName::CXXConstructorName: 3305 InvalidDecl = 4; 3306 ShowDeclName = false; 3307 break; 3308 3309 case DeclarationName::CXXDestructorName: 3310 InvalidDecl = 5; 3311 ShowDeclName = false; 3312 break; 3313 3314 case DeclarationName::CXXOperatorName: 3315 case DeclarationName::CXXConversionFunctionName: 3316 InvalidDecl = 6; 3317 break; 3318 3319 default: 3320 InvalidDecl = 0; 3321 break; 3322 } 3323 3324 if (InvalidDecl) { 3325 if (ShowDeclName) 3326 Diag(Loc, diag::err_invalid_member_in_interface) 3327 << (InvalidDecl-1) << Name; 3328 else 3329 Diag(Loc, diag::err_invalid_member_in_interface) 3330 << (InvalidDecl-1) << ""; 3331 return nullptr; 3332 } 3333 } 3334 3335 // C++ 9.2p6: A member shall not be declared to have automatic storage 3336 // duration (auto, register) or with the extern storage-class-specifier. 3337 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class 3338 // data members and cannot be applied to names declared const or static, 3339 // and cannot be applied to reference members. 3340 switch (DS.getStorageClassSpec()) { 3341 case DeclSpec::SCS_unspecified: 3342 case DeclSpec::SCS_typedef: 3343 case DeclSpec::SCS_static: 3344 break; 3345 case DeclSpec::SCS_mutable: 3346 if (isFunc) { 3347 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); 3348 3349 // FIXME: It would be nicer if the keyword was ignored only for this 3350 // declarator. Otherwise we could get follow-up errors. 3351 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3352 } 3353 break; 3354 default: 3355 Diag(DS.getStorageClassSpecLoc(), 3356 diag::err_storageclass_invalid_for_member); 3357 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3358 break; 3359 } 3360 3361 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || 3362 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && 3363 !isFunc); 3364 3365 if (DS.hasConstexprSpecifier() && isInstField) { 3366 SemaDiagnosticBuilder B = 3367 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); 3368 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); 3369 if (InitStyle == ICIS_NoInit) { 3370 B << 0 << 0; 3371 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) 3372 B << FixItHint::CreateRemoval(ConstexprLoc); 3373 else { 3374 B << FixItHint::CreateReplacement(ConstexprLoc, "const"); 3375 D.getMutableDeclSpec().ClearConstexprSpec(); 3376 const char *PrevSpec; 3377 unsigned DiagID; 3378 bool Failed = D.getMutableDeclSpec().SetTypeQual( 3379 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); 3380 (void)Failed; 3381 assert(!Failed && "Making a constexpr member const shouldn't fail"); 3382 } 3383 } else { 3384 B << 1; 3385 const char *PrevSpec; 3386 unsigned DiagID; 3387 if (D.getMutableDeclSpec().SetStorageClassSpec( 3388 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, 3389 Context.getPrintingPolicy())) { 3390 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable && 3391 "This is the only DeclSpec that should fail to be applied"); 3392 B << 1; 3393 } else { 3394 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); 3395 isInstField = false; 3396 } 3397 } 3398 } 3399 3400 NamedDecl *Member; 3401 if (isInstField) { 3402 CXXScopeSpec &SS = D.getCXXScopeSpec(); 3403 3404 // Data members must have identifiers for names. 3405 if (!Name.isIdentifier()) { 3406 Diag(Loc, diag::err_bad_variable_name) 3407 << Name; 3408 return nullptr; 3409 } 3410 3411 IdentifierInfo *II = Name.getAsIdentifierInfo(); 3412 3413 // Member field could not be with "template" keyword. 3414 // So TemplateParameterLists should be empty in this case. 3415 if (TemplateParameterLists.size()) { 3416 TemplateParameterList* TemplateParams = TemplateParameterLists[0]; 3417 if (TemplateParams->size()) { 3418 // There is no such thing as a member field template. 3419 Diag(D.getIdentifierLoc(), diag::err_template_member) 3420 << II 3421 << SourceRange(TemplateParams->getTemplateLoc(), 3422 TemplateParams->getRAngleLoc()); 3423 } else { 3424 // There is an extraneous 'template<>' for this member. 3425 Diag(TemplateParams->getTemplateLoc(), 3426 diag::err_template_member_noparams) 3427 << II 3428 << SourceRange(TemplateParams->getTemplateLoc(), 3429 TemplateParams->getRAngleLoc()); 3430 } 3431 return nullptr; 3432 } 3433 3434 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 3435 Diag(D.getIdentifierLoc(), diag::err_member_with_template_arguments) 3436 << II 3437 << SourceRange(D.getName().TemplateId->LAngleLoc, 3438 D.getName().TemplateId->RAngleLoc) 3439 << D.getName().TemplateId->LAngleLoc; 3440 D.SetIdentifier(II, Loc); 3441 } 3442 3443 if (SS.isSet() && !SS.isInvalid()) { 3444 // The user provided a superfluous scope specifier inside a class 3445 // definition: 3446 // 3447 // class X { 3448 // int X::member; 3449 // }; 3450 if (DeclContext *DC = computeDeclContext(SS, false)) 3451 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(), 3452 D.getName().getKind() == 3453 UnqualifiedIdKind::IK_TemplateId); 3454 else 3455 Diag(D.getIdentifierLoc(), diag::err_member_qualification) 3456 << Name << SS.getRange(); 3457 3458 SS.clear(); 3459 } 3460 3461 if (MSPropertyAttr) { 3462 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3463 BitWidth, InitStyle, AS, *MSPropertyAttr); 3464 if (!Member) 3465 return nullptr; 3466 isInstField = false; 3467 } else { 3468 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3469 BitWidth, InitStyle, AS); 3470 if (!Member) 3471 return nullptr; 3472 } 3473 3474 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext)); 3475 } else { 3476 Member = HandleDeclarator(S, D, TemplateParameterLists); 3477 if (!Member) 3478 return nullptr; 3479 3480 // Non-instance-fields can't have a bitfield. 3481 if (BitWidth) { 3482 if (Member->isInvalidDecl()) { 3483 // don't emit another diagnostic. 3484 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) { 3485 // C++ 9.6p3: A bit-field shall not be a static member. 3486 // "static member 'A' cannot be a bit-field" 3487 Diag(Loc, diag::err_static_not_bitfield) 3488 << Name << BitWidth->getSourceRange(); 3489 } else if (isa<TypedefDecl>(Member)) { 3490 // "typedef member 'x' cannot be a bit-field" 3491 Diag(Loc, diag::err_typedef_not_bitfield) 3492 << Name << BitWidth->getSourceRange(); 3493 } else { 3494 // A function typedef ("typedef int f(); f a;"). 3495 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 3496 Diag(Loc, diag::err_not_integral_type_bitfield) 3497 << Name << cast<ValueDecl>(Member)->getType() 3498 << BitWidth->getSourceRange(); 3499 } 3500 3501 BitWidth = nullptr; 3502 Member->setInvalidDecl(); 3503 } 3504 3505 NamedDecl *NonTemplateMember = Member; 3506 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) 3507 NonTemplateMember = FunTmpl->getTemplatedDecl(); 3508 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member)) 3509 NonTemplateMember = VarTmpl->getTemplatedDecl(); 3510 3511 Member->setAccess(AS); 3512 3513 // If we have declared a member function template or static data member 3514 // template, set the access of the templated declaration as well. 3515 if (NonTemplateMember != Member) 3516 NonTemplateMember->setAccess(AS); 3517 3518 // C++ [temp.deduct.guide]p3: 3519 // A deduction guide [...] for a member class template [shall be 3520 // declared] with the same access [as the template]. 3521 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) { 3522 auto *TD = DG->getDeducedTemplate(); 3523 // Access specifiers are only meaningful if both the template and the 3524 // deduction guide are from the same scope. 3525 if (AS != TD->getAccess() && 3526 TD->getDeclContext()->getRedeclContext()->Equals( 3527 DG->getDeclContext()->getRedeclContext())) { 3528 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); 3529 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) 3530 << TD->getAccess(); 3531 const AccessSpecDecl *LastAccessSpec = nullptr; 3532 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { 3533 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) 3534 LastAccessSpec = AccessSpec; 3535 } 3536 assert(LastAccessSpec && "differing access with no access specifier"); 3537 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) 3538 << AS; 3539 } 3540 } 3541 } 3542 3543 if (VS.isOverrideSpecified()) 3544 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(), 3545 AttributeCommonInfo::AS_Keyword)); 3546 if (VS.isFinalSpecified()) 3547 Member->addAttr(FinalAttr::Create( 3548 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword, 3549 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed()))); 3550 3551 if (VS.getLastLocation().isValid()) { 3552 // Update the end location of a method that has a virt-specifiers. 3553 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) 3554 MD->setRangeEnd(VS.getLastLocation()); 3555 } 3556 3557 CheckOverrideControl(Member); 3558 3559 assert((Name || isInstField) && "No identifier for non-field ?"); 3560 3561 if (isInstField) { 3562 FieldDecl *FD = cast<FieldDecl>(Member); 3563 FieldCollector->Add(FD); 3564 3565 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) { 3566 // Remember all explicit private FieldDecls that have a name, no side 3567 // effects and are not part of a dependent type declaration. 3568 if (!FD->isImplicit() && FD->getDeclName() && 3569 FD->getAccess() == AS_private && 3570 !FD->hasAttr<UnusedAttr>() && 3571 !FD->getParent()->isDependentContext() && 3572 !InitializationHasSideEffects(*FD)) 3573 UnusedPrivateFields.insert(FD); 3574 } 3575 } 3576 3577 return Member; 3578 } 3579 3580 namespace { 3581 class UninitializedFieldVisitor 3582 : public EvaluatedExprVisitor<UninitializedFieldVisitor> { 3583 Sema &S; 3584 // List of Decls to generate a warning on. Also remove Decls that become 3585 // initialized. 3586 llvm::SmallPtrSetImpl<ValueDecl*> &Decls; 3587 // List of base classes of the record. Classes are removed after their 3588 // initializers. 3589 llvm::SmallPtrSetImpl<QualType> &BaseClasses; 3590 // Vector of decls to be removed from the Decl set prior to visiting the 3591 // nodes. These Decls may have been initialized in the prior initializer. 3592 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; 3593 // If non-null, add a note to the warning pointing back to the constructor. 3594 const CXXConstructorDecl *Constructor; 3595 // Variables to hold state when processing an initializer list. When 3596 // InitList is true, special case initialization of FieldDecls matching 3597 // InitListFieldDecl. 3598 bool InitList; 3599 FieldDecl *InitListFieldDecl; 3600 llvm::SmallVector<unsigned, 4> InitFieldIndex; 3601 3602 public: 3603 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; 3604 UninitializedFieldVisitor(Sema &S, 3605 llvm::SmallPtrSetImpl<ValueDecl*> &Decls, 3606 llvm::SmallPtrSetImpl<QualType> &BaseClasses) 3607 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), 3608 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} 3609 3610 // Returns true if the use of ME is not an uninitialized use. 3611 bool IsInitListMemberExprInitialized(MemberExpr *ME, 3612 bool CheckReferenceOnly) { 3613 llvm::SmallVector<FieldDecl*, 4> Fields; 3614 bool ReferenceField = false; 3615 while (ME) { 3616 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 3617 if (!FD) 3618 return false; 3619 Fields.push_back(FD); 3620 if (FD->getType()->isReferenceType()) 3621 ReferenceField = true; 3622 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts()); 3623 } 3624 3625 // Binding a reference to an uninitialized field is not an 3626 // uninitialized use. 3627 if (CheckReferenceOnly && !ReferenceField) 3628 return true; 3629 3630 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 3631 // Discard the first field since it is the field decl that is being 3632 // initialized. 3633 for (const FieldDecl *FD : llvm::drop_begin(llvm::reverse(Fields))) 3634 UsedFieldIndex.push_back(FD->getFieldIndex()); 3635 3636 for (auto UsedIter = UsedFieldIndex.begin(), 3637 UsedEnd = UsedFieldIndex.end(), 3638 OrigIter = InitFieldIndex.begin(), 3639 OrigEnd = InitFieldIndex.end(); 3640 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 3641 if (*UsedIter < *OrigIter) 3642 return true; 3643 if (*UsedIter > *OrigIter) 3644 break; 3645 } 3646 3647 return false; 3648 } 3649 3650 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, 3651 bool AddressOf) { 3652 if (isa<EnumConstantDecl>(ME->getMemberDecl())) 3653 return; 3654 3655 // FieldME is the inner-most MemberExpr that is not an anonymous struct 3656 // or union. 3657 MemberExpr *FieldME = ME; 3658 3659 bool AllPODFields = FieldME->getType().isPODType(S.Context); 3660 3661 Expr *Base = ME; 3662 while (MemberExpr *SubME = 3663 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) { 3664 3665 if (isa<VarDecl>(SubME->getMemberDecl())) 3666 return; 3667 3668 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl())) 3669 if (!FD->isAnonymousStructOrUnion()) 3670 FieldME = SubME; 3671 3672 if (!FieldME->getType().isPODType(S.Context)) 3673 AllPODFields = false; 3674 3675 Base = SubME->getBase(); 3676 } 3677 3678 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) { 3679 Visit(Base); 3680 return; 3681 } 3682 3683 if (AddressOf && AllPODFields) 3684 return; 3685 3686 ValueDecl* FoundVD = FieldME->getMemberDecl(); 3687 3688 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) { 3689 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { 3690 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); 3691 } 3692 3693 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { 3694 QualType T = BaseCast->getType(); 3695 if (T->isPointerType() && 3696 BaseClasses.count(T->getPointeeType())) { 3697 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) 3698 << T->getPointeeType() << FoundVD; 3699 } 3700 } 3701 } 3702 3703 if (!Decls.count(FoundVD)) 3704 return; 3705 3706 const bool IsReference = FoundVD->getType()->isReferenceType(); 3707 3708 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { 3709 // Special checking for initializer lists. 3710 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { 3711 return; 3712 } 3713 } else { 3714 // Prevent double warnings on use of unbounded references. 3715 if (CheckReferenceOnly && !IsReference) 3716 return; 3717 } 3718 3719 unsigned diag = IsReference 3720 ? diag::warn_reference_field_is_uninit 3721 : diag::warn_field_is_uninit; 3722 S.Diag(FieldME->getExprLoc(), diag) << FoundVD; 3723 if (Constructor) 3724 S.Diag(Constructor->getLocation(), 3725 diag::note_uninit_in_this_constructor) 3726 << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); 3727 3728 } 3729 3730 void HandleValue(Expr *E, bool AddressOf) { 3731 E = E->IgnoreParens(); 3732 3733 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 3734 HandleMemberExpr(ME, false /*CheckReferenceOnly*/, 3735 AddressOf /*AddressOf*/); 3736 return; 3737 } 3738 3739 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 3740 Visit(CO->getCond()); 3741 HandleValue(CO->getTrueExpr(), AddressOf); 3742 HandleValue(CO->getFalseExpr(), AddressOf); 3743 return; 3744 } 3745 3746 if (BinaryConditionalOperator *BCO = 3747 dyn_cast<BinaryConditionalOperator>(E)) { 3748 Visit(BCO->getCond()); 3749 HandleValue(BCO->getFalseExpr(), AddressOf); 3750 return; 3751 } 3752 3753 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 3754 HandleValue(OVE->getSourceExpr(), AddressOf); 3755 return; 3756 } 3757 3758 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3759 switch (BO->getOpcode()) { 3760 default: 3761 break; 3762 case(BO_PtrMemD): 3763 case(BO_PtrMemI): 3764 HandleValue(BO->getLHS(), AddressOf); 3765 Visit(BO->getRHS()); 3766 return; 3767 case(BO_Comma): 3768 Visit(BO->getLHS()); 3769 HandleValue(BO->getRHS(), AddressOf); 3770 return; 3771 } 3772 } 3773 3774 Visit(E); 3775 } 3776 3777 void CheckInitListExpr(InitListExpr *ILE) { 3778 InitFieldIndex.push_back(0); 3779 for (auto Child : ILE->children()) { 3780 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) { 3781 CheckInitListExpr(SubList); 3782 } else { 3783 Visit(Child); 3784 } 3785 ++InitFieldIndex.back(); 3786 } 3787 InitFieldIndex.pop_back(); 3788 } 3789 3790 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, 3791 FieldDecl *Field, const Type *BaseClass) { 3792 // Remove Decls that may have been initialized in the previous 3793 // initializer. 3794 for (ValueDecl* VD : DeclsToRemove) 3795 Decls.erase(VD); 3796 DeclsToRemove.clear(); 3797 3798 Constructor = FieldConstructor; 3799 InitListExpr *ILE = dyn_cast<InitListExpr>(E); 3800 3801 if (ILE && Field) { 3802 InitList = true; 3803 InitListFieldDecl = Field; 3804 InitFieldIndex.clear(); 3805 CheckInitListExpr(ILE); 3806 } else { 3807 InitList = false; 3808 Visit(E); 3809 } 3810 3811 if (Field) 3812 Decls.erase(Field); 3813 if (BaseClass) 3814 BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); 3815 } 3816 3817 void VisitMemberExpr(MemberExpr *ME) { 3818 // All uses of unbounded reference fields will warn. 3819 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); 3820 } 3821 3822 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 3823 if (E->getCastKind() == CK_LValueToRValue) { 3824 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3825 return; 3826 } 3827 3828 Inherited::VisitImplicitCastExpr(E); 3829 } 3830 3831 void VisitCXXConstructExpr(CXXConstructExpr *E) { 3832 if (E->getConstructor()->isCopyConstructor()) { 3833 Expr *ArgExpr = E->getArg(0); 3834 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 3835 if (ILE->getNumInits() == 1) 3836 ArgExpr = ILE->getInit(0); 3837 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 3838 if (ICE->getCastKind() == CK_NoOp) 3839 ArgExpr = ICE->getSubExpr(); 3840 HandleValue(ArgExpr, false /*AddressOf*/); 3841 return; 3842 } 3843 Inherited::VisitCXXConstructExpr(E); 3844 } 3845 3846 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3847 Expr *Callee = E->getCallee(); 3848 if (isa<MemberExpr>(Callee)) { 3849 HandleValue(Callee, false /*AddressOf*/); 3850 for (auto Arg : E->arguments()) 3851 Visit(Arg); 3852 return; 3853 } 3854 3855 Inherited::VisitCXXMemberCallExpr(E); 3856 } 3857 3858 void VisitCallExpr(CallExpr *E) { 3859 // Treat std::move as a use. 3860 if (E->isCallToStdMove()) { 3861 HandleValue(E->getArg(0), /*AddressOf=*/false); 3862 return; 3863 } 3864 3865 Inherited::VisitCallExpr(E); 3866 } 3867 3868 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 3869 Expr *Callee = E->getCallee(); 3870 3871 if (isa<UnresolvedLookupExpr>(Callee)) 3872 return Inherited::VisitCXXOperatorCallExpr(E); 3873 3874 Visit(Callee); 3875 for (auto Arg : E->arguments()) 3876 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); 3877 } 3878 3879 void VisitBinaryOperator(BinaryOperator *E) { 3880 // If a field assignment is detected, remove the field from the 3881 // uninitiailized field set. 3882 if (E->getOpcode() == BO_Assign) 3883 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS())) 3884 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3885 if (!FD->getType()->isReferenceType()) 3886 DeclsToRemove.push_back(FD); 3887 3888 if (E->isCompoundAssignmentOp()) { 3889 HandleValue(E->getLHS(), false /*AddressOf*/); 3890 Visit(E->getRHS()); 3891 return; 3892 } 3893 3894 Inherited::VisitBinaryOperator(E); 3895 } 3896 3897 void VisitUnaryOperator(UnaryOperator *E) { 3898 if (E->isIncrementDecrementOp()) { 3899 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3900 return; 3901 } 3902 if (E->getOpcode() == UO_AddrOf) { 3903 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) { 3904 HandleValue(ME->getBase(), true /*AddressOf*/); 3905 return; 3906 } 3907 } 3908 3909 Inherited::VisitUnaryOperator(E); 3910 } 3911 }; 3912 3913 // Diagnose value-uses of fields to initialize themselves, e.g. 3914 // foo(foo) 3915 // where foo is not also a parameter to the constructor. 3916 // Also diagnose across field uninitialized use such as 3917 // x(y), y(x) 3918 // TODO: implement -Wuninitialized and fold this into that framework. 3919 static void DiagnoseUninitializedFields( 3920 Sema &SemaRef, const CXXConstructorDecl *Constructor) { 3921 3922 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, 3923 Constructor->getLocation())) { 3924 return; 3925 } 3926 3927 if (Constructor->isInvalidDecl()) 3928 return; 3929 3930 const CXXRecordDecl *RD = Constructor->getParent(); 3931 3932 if (RD->isDependentContext()) 3933 return; 3934 3935 // Holds fields that are uninitialized. 3936 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; 3937 3938 // At the beginning, all fields are uninitialized. 3939 for (auto *I : RD->decls()) { 3940 if (auto *FD = dyn_cast<FieldDecl>(I)) { 3941 UninitializedFields.insert(FD); 3942 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { 3943 UninitializedFields.insert(IFD->getAnonField()); 3944 } 3945 } 3946 3947 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; 3948 for (auto I : RD->bases()) 3949 UninitializedBaseClasses.insert(I.getType().getCanonicalType()); 3950 3951 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3952 return; 3953 3954 UninitializedFieldVisitor UninitializedChecker(SemaRef, 3955 UninitializedFields, 3956 UninitializedBaseClasses); 3957 3958 for (const auto *FieldInit : Constructor->inits()) { 3959 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3960 break; 3961 3962 Expr *InitExpr = FieldInit->getInit(); 3963 if (!InitExpr) 3964 continue; 3965 3966 if (CXXDefaultInitExpr *Default = 3967 dyn_cast<CXXDefaultInitExpr>(InitExpr)) { 3968 InitExpr = Default->getExpr(); 3969 if (!InitExpr) 3970 continue; 3971 // In class initializers will point to the constructor. 3972 UninitializedChecker.CheckInitializer(InitExpr, Constructor, 3973 FieldInit->getAnyMember(), 3974 FieldInit->getBaseClass()); 3975 } else { 3976 UninitializedChecker.CheckInitializer(InitExpr, nullptr, 3977 FieldInit->getAnyMember(), 3978 FieldInit->getBaseClass()); 3979 } 3980 } 3981 } 3982 } // namespace 3983 3984 /// Enter a new C++ default initializer scope. After calling this, the 3985 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if 3986 /// parsing or instantiating the initializer failed. 3987 void Sema::ActOnStartCXXInClassMemberInitializer() { 3988 // Create a synthetic function scope to represent the call to the constructor 3989 // that notionally surrounds a use of this initializer. 3990 PushFunctionScope(); 3991 } 3992 3993 void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) { 3994 if (!D.isFunctionDeclarator()) 3995 return; 3996 auto &FTI = D.getFunctionTypeInfo(); 3997 if (!FTI.Params) 3998 return; 3999 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params, 4000 FTI.NumParams)) { 4001 auto *ParamDecl = cast<NamedDecl>(Param.Param); 4002 if (ParamDecl->getDeclName()) 4003 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false); 4004 } 4005 } 4006 4007 ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) { 4008 return ActOnRequiresClause(ConstraintExpr); 4009 } 4010 4011 ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) { 4012 if (ConstraintExpr.isInvalid()) 4013 return ExprError(); 4014 4015 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr); 4016 if (ConstraintExpr.isInvalid()) 4017 return ExprError(); 4018 4019 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(), 4020 UPPC_RequiresClause)) 4021 return ExprError(); 4022 4023 return ConstraintExpr; 4024 } 4025 4026 /// This is invoked after parsing an in-class initializer for a 4027 /// non-static C++ class member, and after instantiating an in-class initializer 4028 /// in a class template. Such actions are deferred until the class is complete. 4029 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, 4030 SourceLocation InitLoc, 4031 Expr *InitExpr) { 4032 // Pop the notional constructor scope we created earlier. 4033 PopFunctionScopeInfo(nullptr, D); 4034 4035 FieldDecl *FD = dyn_cast<FieldDecl>(D); 4036 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && 4037 "must set init style when field is created"); 4038 4039 if (!InitExpr) { 4040 D->setInvalidDecl(); 4041 if (FD) 4042 FD->removeInClassInitializer(); 4043 return; 4044 } 4045 4046 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { 4047 FD->setInvalidDecl(); 4048 FD->removeInClassInitializer(); 4049 return; 4050 } 4051 4052 ExprResult Init = InitExpr; 4053 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) { 4054 InitializedEntity Entity = 4055 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD); 4056 InitializationKind Kind = 4057 FD->getInClassInitStyle() == ICIS_ListInit 4058 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), 4059 InitExpr->getBeginLoc(), 4060 InitExpr->getEndLoc()) 4061 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc); 4062 InitializationSequence Seq(*this, Entity, Kind, InitExpr); 4063 Init = Seq.Perform(*this, Entity, Kind, InitExpr); 4064 if (Init.isInvalid()) { 4065 FD->setInvalidDecl(); 4066 return; 4067 } 4068 } 4069 4070 // C++11 [class.base.init]p7: 4071 // The initialization of each base and member constitutes a 4072 // full-expression. 4073 Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false); 4074 if (Init.isInvalid()) { 4075 FD->setInvalidDecl(); 4076 return; 4077 } 4078 4079 InitExpr = Init.get(); 4080 4081 FD->setInClassInitializer(InitExpr); 4082 } 4083 4084 /// Find the direct and/or virtual base specifiers that 4085 /// correspond to the given base type, for use in base initialization 4086 /// within a constructor. 4087 static bool FindBaseInitializer(Sema &SemaRef, 4088 CXXRecordDecl *ClassDecl, 4089 QualType BaseType, 4090 const CXXBaseSpecifier *&DirectBaseSpec, 4091 const CXXBaseSpecifier *&VirtualBaseSpec) { 4092 // First, check for a direct base class. 4093 DirectBaseSpec = nullptr; 4094 for (const auto &Base : ClassDecl->bases()) { 4095 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { 4096 // We found a direct base of this type. That's what we're 4097 // initializing. 4098 DirectBaseSpec = &Base; 4099 break; 4100 } 4101 } 4102 4103 // Check for a virtual base class. 4104 // FIXME: We might be able to short-circuit this if we know in advance that 4105 // there are no virtual bases. 4106 VirtualBaseSpec = nullptr; 4107 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { 4108 // We haven't found a base yet; search the class hierarchy for a 4109 // virtual base class. 4110 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 4111 /*DetectVirtual=*/false); 4112 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), 4113 SemaRef.Context.getTypeDeclType(ClassDecl), 4114 BaseType, Paths)) { 4115 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 4116 Path != Paths.end(); ++Path) { 4117 if (Path->back().Base->isVirtual()) { 4118 VirtualBaseSpec = Path->back().Base; 4119 break; 4120 } 4121 } 4122 } 4123 } 4124 4125 return DirectBaseSpec || VirtualBaseSpec; 4126 } 4127 4128 /// Handle a C++ member initializer using braced-init-list syntax. 4129 MemInitResult 4130 Sema::ActOnMemInitializer(Decl *ConstructorD, 4131 Scope *S, 4132 CXXScopeSpec &SS, 4133 IdentifierInfo *MemberOrBase, 4134 ParsedType TemplateTypeTy, 4135 const DeclSpec &DS, 4136 SourceLocation IdLoc, 4137 Expr *InitList, 4138 SourceLocation EllipsisLoc) { 4139 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4140 DS, IdLoc, InitList, 4141 EllipsisLoc); 4142 } 4143 4144 /// Handle a C++ member initializer using parentheses syntax. 4145 MemInitResult 4146 Sema::ActOnMemInitializer(Decl *ConstructorD, 4147 Scope *S, 4148 CXXScopeSpec &SS, 4149 IdentifierInfo *MemberOrBase, 4150 ParsedType TemplateTypeTy, 4151 const DeclSpec &DS, 4152 SourceLocation IdLoc, 4153 SourceLocation LParenLoc, 4154 ArrayRef<Expr *> Args, 4155 SourceLocation RParenLoc, 4156 SourceLocation EllipsisLoc) { 4157 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc); 4158 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4159 DS, IdLoc, List, EllipsisLoc); 4160 } 4161 4162 namespace { 4163 4164 // Callback to only accept typo corrections that can be a valid C++ member 4165 // initializer: either a non-static field member or a base class. 4166 class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { 4167 public: 4168 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) 4169 : ClassDecl(ClassDecl) {} 4170 4171 bool ValidateCandidate(const TypoCorrection &candidate) override { 4172 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 4173 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) 4174 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); 4175 return isa<TypeDecl>(ND); 4176 } 4177 return false; 4178 } 4179 4180 std::unique_ptr<CorrectionCandidateCallback> clone() override { 4181 return std::make_unique<MemInitializerValidatorCCC>(*this); 4182 } 4183 4184 private: 4185 CXXRecordDecl *ClassDecl; 4186 }; 4187 4188 } 4189 4190 ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, 4191 CXXScopeSpec &SS, 4192 ParsedType TemplateTypeTy, 4193 IdentifierInfo *MemberOrBase) { 4194 if (SS.getScopeRep() || TemplateTypeTy) 4195 return nullptr; 4196 for (auto *D : ClassDecl->lookup(MemberOrBase)) 4197 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) 4198 return cast<ValueDecl>(D); 4199 return nullptr; 4200 } 4201 4202 /// Handle a C++ member initializer. 4203 MemInitResult 4204 Sema::BuildMemInitializer(Decl *ConstructorD, 4205 Scope *S, 4206 CXXScopeSpec &SS, 4207 IdentifierInfo *MemberOrBase, 4208 ParsedType TemplateTypeTy, 4209 const DeclSpec &DS, 4210 SourceLocation IdLoc, 4211 Expr *Init, 4212 SourceLocation EllipsisLoc) { 4213 ExprResult Res = CorrectDelayedTyposInExpr(Init, /*InitDecl=*/nullptr, 4214 /*RecoverUncorrectedTypos=*/true); 4215 if (!Res.isUsable()) 4216 return true; 4217 Init = Res.get(); 4218 4219 if (!ConstructorD) 4220 return true; 4221 4222 AdjustDeclIfTemplate(ConstructorD); 4223 4224 CXXConstructorDecl *Constructor 4225 = dyn_cast<CXXConstructorDecl>(ConstructorD); 4226 if (!Constructor) { 4227 // The user wrote a constructor initializer on a function that is 4228 // not a C++ constructor. Ignore the error for now, because we may 4229 // have more member initializers coming; we'll diagnose it just 4230 // once in ActOnMemInitializers. 4231 return true; 4232 } 4233 4234 CXXRecordDecl *ClassDecl = Constructor->getParent(); 4235 4236 // C++ [class.base.init]p2: 4237 // Names in a mem-initializer-id are looked up in the scope of the 4238 // constructor's class and, if not found in that scope, are looked 4239 // up in the scope containing the constructor's definition. 4240 // [Note: if the constructor's class contains a member with the 4241 // same name as a direct or virtual base class of the class, a 4242 // mem-initializer-id naming the member or base class and composed 4243 // of a single identifier refers to the class member. A 4244 // mem-initializer-id for the hidden base class may be specified 4245 // using a qualified name. ] 4246 4247 // Look for a member, first. 4248 if (ValueDecl *Member = tryLookupCtorInitMemberDecl( 4249 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { 4250 if (EllipsisLoc.isValid()) 4251 Diag(EllipsisLoc, diag::err_pack_expansion_member_init) 4252 << MemberOrBase 4253 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 4254 4255 return BuildMemberInitializer(Member, Init, IdLoc); 4256 } 4257 // It didn't name a member, so see if it names a class. 4258 QualType BaseType; 4259 TypeSourceInfo *TInfo = nullptr; 4260 4261 if (TemplateTypeTy) { 4262 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); 4263 if (BaseType.isNull()) 4264 return true; 4265 } else if (DS.getTypeSpecType() == TST_decltype) { 4266 BaseType = BuildDecltypeType(DS.getRepAsExpr()); 4267 } else if (DS.getTypeSpecType() == TST_decltype_auto) { 4268 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 4269 return true; 4270 } else { 4271 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); 4272 LookupParsedName(R, S, &SS); 4273 4274 TypeDecl *TyD = R.getAsSingle<TypeDecl>(); 4275 if (!TyD) { 4276 if (R.isAmbiguous()) return true; 4277 4278 // We don't want access-control diagnostics here. 4279 R.suppressDiagnostics(); 4280 4281 if (SS.isSet() && isDependentScopeSpecifier(SS)) { 4282 bool NotUnknownSpecialization = false; 4283 DeclContext *DC = computeDeclContext(SS, false); 4284 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) 4285 NotUnknownSpecialization = !Record->hasAnyDependentBases(); 4286 4287 if (!NotUnknownSpecialization) { 4288 // When the scope specifier can refer to a member of an unknown 4289 // specialization, we take it as a type name. 4290 BaseType = CheckTypenameType(ETK_None, SourceLocation(), 4291 SS.getWithLocInContext(Context), 4292 *MemberOrBase, IdLoc); 4293 if (BaseType.isNull()) 4294 return true; 4295 4296 TInfo = Context.CreateTypeSourceInfo(BaseType); 4297 DependentNameTypeLoc TL = 4298 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); 4299 if (!TL.isNull()) { 4300 TL.setNameLoc(IdLoc); 4301 TL.setElaboratedKeywordLoc(SourceLocation()); 4302 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4303 } 4304 4305 R.clear(); 4306 R.setLookupName(MemberOrBase); 4307 } 4308 } 4309 4310 if (getLangOpts().MSVCCompat && !getLangOpts().CPlusPlus20) { 4311 auto UnqualifiedBase = R.getAsSingle<ClassTemplateDecl>(); 4312 if (UnqualifiedBase) { 4313 Diag(IdLoc, diag::ext_unqualified_base_class) 4314 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 4315 BaseType = UnqualifiedBase->getInjectedClassNameSpecialization(); 4316 } 4317 } 4318 4319 // If no results were found, try to correct typos. 4320 TypoCorrection Corr; 4321 MemInitializerValidatorCCC CCC(ClassDecl); 4322 if (R.empty() && BaseType.isNull() && 4323 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, 4324 CCC, CTK_ErrorRecovery, ClassDecl))) { 4325 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { 4326 // We have found a non-static data member with a similar 4327 // name to what was typed; complain and initialize that 4328 // member. 4329 diagnoseTypo(Corr, 4330 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4331 << MemberOrBase << true); 4332 return BuildMemberInitializer(Member, Init, IdLoc); 4333 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { 4334 const CXXBaseSpecifier *DirectBaseSpec; 4335 const CXXBaseSpecifier *VirtualBaseSpec; 4336 if (FindBaseInitializer(*this, ClassDecl, 4337 Context.getTypeDeclType(Type), 4338 DirectBaseSpec, VirtualBaseSpec)) { 4339 // We have found a direct or virtual base class with a 4340 // similar name to what was typed; complain and initialize 4341 // that base class. 4342 diagnoseTypo(Corr, 4343 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4344 << MemberOrBase << false, 4345 PDiag() /*Suppress note, we provide our own.*/); 4346 4347 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec 4348 : VirtualBaseSpec; 4349 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) 4350 << BaseSpec->getType() << BaseSpec->getSourceRange(); 4351 4352 TyD = Type; 4353 } 4354 } 4355 } 4356 4357 if (!TyD && BaseType.isNull()) { 4358 Diag(IdLoc, diag::err_mem_init_not_member_or_class) 4359 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); 4360 return true; 4361 } 4362 } 4363 4364 if (BaseType.isNull()) { 4365 BaseType = Context.getTypeDeclType(TyD); 4366 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); 4367 if (SS.isSet()) { 4368 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(), 4369 BaseType); 4370 TInfo = Context.CreateTypeSourceInfo(BaseType); 4371 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); 4372 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 4373 TL.setElaboratedKeywordLoc(SourceLocation()); 4374 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4375 } 4376 } 4377 } 4378 4379 if (!TInfo) 4380 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); 4381 4382 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); 4383 } 4384 4385 MemInitResult 4386 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, 4387 SourceLocation IdLoc) { 4388 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); 4389 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); 4390 assert((DirectMember || IndirectMember) && 4391 "Member must be a FieldDecl or IndirectFieldDecl"); 4392 4393 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4394 return true; 4395 4396 if (Member->isInvalidDecl()) 4397 return true; 4398 4399 MultiExprArg Args; 4400 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4401 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4402 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 4403 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 4404 } else { 4405 // Template instantiation doesn't reconstruct ParenListExprs for us. 4406 Args = Init; 4407 } 4408 4409 SourceRange InitRange = Init->getSourceRange(); 4410 4411 if (Member->getType()->isDependentType() || Init->isTypeDependent()) { 4412 // Can't check initialization for a member of dependent type or when 4413 // any of the arguments are type-dependent expressions. 4414 DiscardCleanupsInEvaluationContext(); 4415 } else { 4416 bool InitList = false; 4417 if (isa<InitListExpr>(Init)) { 4418 InitList = true; 4419 Args = Init; 4420 } 4421 4422 // Initialize the member. 4423 InitializedEntity MemberEntity = 4424 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) 4425 : InitializedEntity::InitializeMember(IndirectMember, 4426 nullptr); 4427 InitializationKind Kind = 4428 InitList ? InitializationKind::CreateDirectList( 4429 IdLoc, Init->getBeginLoc(), Init->getEndLoc()) 4430 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), 4431 InitRange.getEnd()); 4432 4433 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); 4434 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 4435 nullptr); 4436 if (!MemberInit.isInvalid()) { 4437 // C++11 [class.base.init]p7: 4438 // The initialization of each base and member constitutes a 4439 // full-expression. 4440 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(), 4441 /*DiscardedValue*/ false); 4442 } 4443 4444 if (MemberInit.isInvalid()) { 4445 // Args were sensible expressions but we couldn't initialize the member 4446 // from them. Preserve them in a RecoveryExpr instead. 4447 Init = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args, 4448 Member->getType()) 4449 .get(); 4450 if (!Init) 4451 return true; 4452 } else { 4453 Init = MemberInit.get(); 4454 } 4455 } 4456 4457 if (DirectMember) { 4458 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, 4459 InitRange.getBegin(), Init, 4460 InitRange.getEnd()); 4461 } else { 4462 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, 4463 InitRange.getBegin(), Init, 4464 InitRange.getEnd()); 4465 } 4466 } 4467 4468 MemInitResult 4469 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, 4470 CXXRecordDecl *ClassDecl) { 4471 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin(); 4472 if (!LangOpts.CPlusPlus11) 4473 return Diag(NameLoc, diag::err_delegating_ctor) 4474 << TInfo->getTypeLoc().getLocalSourceRange(); 4475 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); 4476 4477 bool InitList = true; 4478 MultiExprArg Args = Init; 4479 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4480 InitList = false; 4481 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4482 } 4483 4484 SourceRange InitRange = Init->getSourceRange(); 4485 // Initialize the object. 4486 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( 4487 QualType(ClassDecl->getTypeForDecl(), 0)); 4488 InitializationKind Kind = 4489 InitList ? InitializationKind::CreateDirectList( 4490 NameLoc, Init->getBeginLoc(), Init->getEndLoc()) 4491 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), 4492 InitRange.getEnd()); 4493 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); 4494 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, 4495 Args, nullptr); 4496 if (!DelegationInit.isInvalid()) { 4497 assert((DelegationInit.get()->containsErrors() || 4498 cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && 4499 "Delegating constructor with no target?"); 4500 4501 // C++11 [class.base.init]p7: 4502 // The initialization of each base and member constitutes a 4503 // full-expression. 4504 DelegationInit = ActOnFinishFullExpr( 4505 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); 4506 } 4507 4508 if (DelegationInit.isInvalid()) { 4509 DelegationInit = 4510 CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args, 4511 QualType(ClassDecl->getTypeForDecl(), 0)); 4512 if (DelegationInit.isInvalid()) 4513 return true; 4514 } else { 4515 // If we are in a dependent context, template instantiation will 4516 // perform this type-checking again. Just save the arguments that we 4517 // received in a ParenListExpr. 4518 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4519 // of the information that we have about the base 4520 // initializer. However, deconstructing the ASTs is a dicey process, 4521 // and this approach is far more likely to get the corner cases right. 4522 if (CurContext->isDependentContext()) 4523 DelegationInit = Init; 4524 } 4525 4526 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), 4527 DelegationInit.getAs<Expr>(), 4528 InitRange.getEnd()); 4529 } 4530 4531 MemInitResult 4532 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, 4533 Expr *Init, CXXRecordDecl *ClassDecl, 4534 SourceLocation EllipsisLoc) { 4535 SourceLocation BaseLoc 4536 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); 4537 4538 if (!BaseType->isDependentType() && !BaseType->isRecordType()) 4539 return Diag(BaseLoc, diag::err_base_init_does_not_name_class) 4540 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4541 4542 // C++ [class.base.init]p2: 4543 // [...] Unless the mem-initializer-id names a nonstatic data 4544 // member of the constructor's class or a direct or virtual base 4545 // of that class, the mem-initializer is ill-formed. A 4546 // mem-initializer-list can initialize a base class using any 4547 // name that denotes that base class type. 4548 4549 // We can store the initializers in "as-written" form and delay analysis until 4550 // instantiation if the constructor is dependent. But not for dependent 4551 // (broken) code in a non-template! SetCtorInitializers does not expect this. 4552 bool Dependent = CurContext->isDependentContext() && 4553 (BaseType->isDependentType() || Init->isTypeDependent()); 4554 4555 SourceRange InitRange = Init->getSourceRange(); 4556 if (EllipsisLoc.isValid()) { 4557 // This is a pack expansion. 4558 if (!BaseType->containsUnexpandedParameterPack()) { 4559 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 4560 << SourceRange(BaseLoc, InitRange.getEnd()); 4561 4562 EllipsisLoc = SourceLocation(); 4563 } 4564 } else { 4565 // Check for any unexpanded parameter packs. 4566 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) 4567 return true; 4568 4569 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4570 return true; 4571 } 4572 4573 // Check for direct and virtual base classes. 4574 const CXXBaseSpecifier *DirectBaseSpec = nullptr; 4575 const CXXBaseSpecifier *VirtualBaseSpec = nullptr; 4576 if (!Dependent) { 4577 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), 4578 BaseType)) 4579 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); 4580 4581 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, 4582 VirtualBaseSpec); 4583 4584 // C++ [base.class.init]p2: 4585 // Unless the mem-initializer-id names a nonstatic data member of the 4586 // constructor's class or a direct or virtual base of that class, the 4587 // mem-initializer is ill-formed. 4588 if (!DirectBaseSpec && !VirtualBaseSpec) { 4589 // If the class has any dependent bases, then it's possible that 4590 // one of those types will resolve to the same type as 4591 // BaseType. Therefore, just treat this as a dependent base 4592 // class initialization. FIXME: Should we try to check the 4593 // initialization anyway? It seems odd. 4594 if (ClassDecl->hasAnyDependentBases()) 4595 Dependent = true; 4596 else 4597 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) 4598 << BaseType << Context.getTypeDeclType(ClassDecl) 4599 << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4600 } 4601 } 4602 4603 if (Dependent) { 4604 DiscardCleanupsInEvaluationContext(); 4605 4606 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4607 /*IsVirtual=*/false, 4608 InitRange.getBegin(), Init, 4609 InitRange.getEnd(), EllipsisLoc); 4610 } 4611 4612 // C++ [base.class.init]p2: 4613 // If a mem-initializer-id is ambiguous because it designates both 4614 // a direct non-virtual base class and an inherited virtual base 4615 // class, the mem-initializer is ill-formed. 4616 if (DirectBaseSpec && VirtualBaseSpec) 4617 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) 4618 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4619 4620 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; 4621 if (!BaseSpec) 4622 BaseSpec = VirtualBaseSpec; 4623 4624 // Initialize the base. 4625 bool InitList = true; 4626 MultiExprArg Args = Init; 4627 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4628 InitList = false; 4629 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4630 } 4631 4632 InitializedEntity BaseEntity = 4633 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); 4634 InitializationKind Kind = 4635 InitList ? InitializationKind::CreateDirectList(BaseLoc) 4636 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), 4637 InitRange.getEnd()); 4638 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); 4639 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); 4640 if (!BaseInit.isInvalid()) { 4641 // C++11 [class.base.init]p7: 4642 // The initialization of each base and member constitutes a 4643 // full-expression. 4644 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(), 4645 /*DiscardedValue*/ false); 4646 } 4647 4648 if (BaseInit.isInvalid()) { 4649 BaseInit = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), 4650 Args, BaseType); 4651 if (BaseInit.isInvalid()) 4652 return true; 4653 } else { 4654 // If we are in a dependent context, template instantiation will 4655 // perform this type-checking again. Just save the arguments that we 4656 // received in a ParenListExpr. 4657 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4658 // of the information that we have about the base 4659 // initializer. However, deconstructing the ASTs is a dicey process, 4660 // and this approach is far more likely to get the corner cases right. 4661 if (CurContext->isDependentContext()) 4662 BaseInit = Init; 4663 } 4664 4665 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4666 BaseSpec->isVirtual(), 4667 InitRange.getBegin(), 4668 BaseInit.getAs<Expr>(), 4669 InitRange.getEnd(), EllipsisLoc); 4670 } 4671 4672 // Create a static_cast\<T&&>(expr). 4673 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) { 4674 if (T.isNull()) T = E->getType(); 4675 QualType TargetType = SemaRef.BuildReferenceType( 4676 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName()); 4677 SourceLocation ExprLoc = E->getBeginLoc(); 4678 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( 4679 TargetType, ExprLoc); 4680 4681 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 4682 SourceRange(ExprLoc, ExprLoc), 4683 E->getSourceRange()).get(); 4684 } 4685 4686 /// ImplicitInitializerKind - How an implicit base or member initializer should 4687 /// initialize its base or member. 4688 enum ImplicitInitializerKind { 4689 IIK_Default, 4690 IIK_Copy, 4691 IIK_Move, 4692 IIK_Inherit 4693 }; 4694 4695 static bool 4696 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4697 ImplicitInitializerKind ImplicitInitKind, 4698 CXXBaseSpecifier *BaseSpec, 4699 bool IsInheritedVirtualBase, 4700 CXXCtorInitializer *&CXXBaseInit) { 4701 InitializedEntity InitEntity 4702 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, 4703 IsInheritedVirtualBase); 4704 4705 ExprResult BaseInit; 4706 4707 switch (ImplicitInitKind) { 4708 case IIK_Inherit: 4709 case IIK_Default: { 4710 InitializationKind InitKind 4711 = InitializationKind::CreateDefault(Constructor->getLocation()); 4712 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); 4713 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None); 4714 break; 4715 } 4716 4717 case IIK_Move: 4718 case IIK_Copy: { 4719 bool Moving = ImplicitInitKind == IIK_Move; 4720 ParmVarDecl *Param = Constructor->getParamDecl(0); 4721 QualType ParamType = Param->getType().getNonReferenceType(); 4722 4723 Expr *CopyCtorArg = 4724 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4725 SourceLocation(), Param, false, 4726 Constructor->getLocation(), ParamType, 4727 VK_LValue, nullptr); 4728 4729 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); 4730 4731 // Cast to the base class to avoid ambiguities. 4732 QualType ArgTy = 4733 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), 4734 ParamType.getQualifiers()); 4735 4736 if (Moving) { 4737 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); 4738 } 4739 4740 CXXCastPath BasePath; 4741 BasePath.push_back(BaseSpec); 4742 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, 4743 CK_UncheckedDerivedToBase, 4744 Moving ? VK_XValue : VK_LValue, 4745 &BasePath).get(); 4746 4747 InitializationKind InitKind 4748 = InitializationKind::CreateDirect(Constructor->getLocation(), 4749 SourceLocation(), SourceLocation()); 4750 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); 4751 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); 4752 break; 4753 } 4754 } 4755 4756 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); 4757 if (BaseInit.isInvalid()) 4758 return true; 4759 4760 CXXBaseInit = 4761 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4762 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), 4763 SourceLocation()), 4764 BaseSpec->isVirtual(), 4765 SourceLocation(), 4766 BaseInit.getAs<Expr>(), 4767 SourceLocation(), 4768 SourceLocation()); 4769 4770 return false; 4771 } 4772 4773 static bool RefersToRValueRef(Expr *MemRef) { 4774 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); 4775 return Referenced->getType()->isRValueReferenceType(); 4776 } 4777 4778 static bool 4779 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4780 ImplicitInitializerKind ImplicitInitKind, 4781 FieldDecl *Field, IndirectFieldDecl *Indirect, 4782 CXXCtorInitializer *&CXXMemberInit) { 4783 if (Field->isInvalidDecl()) 4784 return true; 4785 4786 SourceLocation Loc = Constructor->getLocation(); 4787 4788 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { 4789 bool Moving = ImplicitInitKind == IIK_Move; 4790 ParmVarDecl *Param = Constructor->getParamDecl(0); 4791 QualType ParamType = Param->getType().getNonReferenceType(); 4792 4793 // Suppress copying zero-width bitfields. 4794 if (Field->isZeroLengthBitField(SemaRef.Context)) 4795 return false; 4796 4797 Expr *MemberExprBase = 4798 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4799 SourceLocation(), Param, false, 4800 Loc, ParamType, VK_LValue, nullptr); 4801 4802 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); 4803 4804 if (Moving) { 4805 MemberExprBase = CastForMoving(SemaRef, MemberExprBase); 4806 } 4807 4808 // Build a reference to this field within the parameter. 4809 CXXScopeSpec SS; 4810 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, 4811 Sema::LookupMemberName); 4812 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) 4813 : cast<ValueDecl>(Field), AS_public); 4814 MemberLookup.resolveKind(); 4815 ExprResult CtorArg 4816 = SemaRef.BuildMemberReferenceExpr(MemberExprBase, 4817 ParamType, Loc, 4818 /*IsArrow=*/false, 4819 SS, 4820 /*TemplateKWLoc=*/SourceLocation(), 4821 /*FirstQualifierInScope=*/nullptr, 4822 MemberLookup, 4823 /*TemplateArgs=*/nullptr, 4824 /*S*/nullptr); 4825 if (CtorArg.isInvalid()) 4826 return true; 4827 4828 // C++11 [class.copy]p15: 4829 // - if a member m has rvalue reference type T&&, it is direct-initialized 4830 // with static_cast<T&&>(x.m); 4831 if (RefersToRValueRef(CtorArg.get())) { 4832 CtorArg = CastForMoving(SemaRef, CtorArg.get()); 4833 } 4834 4835 InitializedEntity Entity = 4836 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4837 /*Implicit*/ true) 4838 : InitializedEntity::InitializeMember(Field, nullptr, 4839 /*Implicit*/ true); 4840 4841 // Direct-initialize to use the copy constructor. 4842 InitializationKind InitKind = 4843 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); 4844 4845 Expr *CtorArgE = CtorArg.getAs<Expr>(); 4846 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); 4847 ExprResult MemberInit = 4848 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1)); 4849 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4850 if (MemberInit.isInvalid()) 4851 return true; 4852 4853 if (Indirect) 4854 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4855 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4856 else 4857 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4858 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4859 return false; 4860 } 4861 4862 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && 4863 "Unhandled implicit init kind!"); 4864 4865 QualType FieldBaseElementType = 4866 SemaRef.Context.getBaseElementType(Field->getType()); 4867 4868 if (FieldBaseElementType->isRecordType()) { 4869 InitializedEntity InitEntity = 4870 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4871 /*Implicit*/ true) 4872 : InitializedEntity::InitializeMember(Field, nullptr, 4873 /*Implicit*/ true); 4874 InitializationKind InitKind = 4875 InitializationKind::CreateDefault(Loc); 4876 4877 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); 4878 ExprResult MemberInit = 4879 InitSeq.Perform(SemaRef, InitEntity, InitKind, None); 4880 4881 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4882 if (MemberInit.isInvalid()) 4883 return true; 4884 4885 if (Indirect) 4886 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4887 Indirect, Loc, 4888 Loc, 4889 MemberInit.get(), 4890 Loc); 4891 else 4892 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4893 Field, Loc, Loc, 4894 MemberInit.get(), 4895 Loc); 4896 return false; 4897 } 4898 4899 if (!Field->getParent()->isUnion()) { 4900 if (FieldBaseElementType->isReferenceType()) { 4901 SemaRef.Diag(Constructor->getLocation(), 4902 diag::err_uninitialized_member_in_ctor) 4903 << (int)Constructor->isImplicit() 4904 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4905 << 0 << Field->getDeclName(); 4906 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4907 return true; 4908 } 4909 4910 if (FieldBaseElementType.isConstQualified()) { 4911 SemaRef.Diag(Constructor->getLocation(), 4912 diag::err_uninitialized_member_in_ctor) 4913 << (int)Constructor->isImplicit() 4914 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4915 << 1 << Field->getDeclName(); 4916 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4917 return true; 4918 } 4919 } 4920 4921 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { 4922 // ARC and Weak: 4923 // Default-initialize Objective-C pointers to NULL. 4924 CXXMemberInit 4925 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, 4926 Loc, Loc, 4927 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), 4928 Loc); 4929 return false; 4930 } 4931 4932 // Nothing to initialize. 4933 CXXMemberInit = nullptr; 4934 return false; 4935 } 4936 4937 namespace { 4938 struct BaseAndFieldInfo { 4939 Sema &S; 4940 CXXConstructorDecl *Ctor; 4941 bool AnyErrorsInInits; 4942 ImplicitInitializerKind IIK; 4943 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; 4944 SmallVector<CXXCtorInitializer*, 8> AllToInit; 4945 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; 4946 4947 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) 4948 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { 4949 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); 4950 if (Ctor->getInheritedConstructor()) 4951 IIK = IIK_Inherit; 4952 else if (Generated && Ctor->isCopyConstructor()) 4953 IIK = IIK_Copy; 4954 else if (Generated && Ctor->isMoveConstructor()) 4955 IIK = IIK_Move; 4956 else 4957 IIK = IIK_Default; 4958 } 4959 4960 bool isImplicitCopyOrMove() const { 4961 switch (IIK) { 4962 case IIK_Copy: 4963 case IIK_Move: 4964 return true; 4965 4966 case IIK_Default: 4967 case IIK_Inherit: 4968 return false; 4969 } 4970 4971 llvm_unreachable("Invalid ImplicitInitializerKind!"); 4972 } 4973 4974 bool addFieldInitializer(CXXCtorInitializer *Init) { 4975 AllToInit.push_back(Init); 4976 4977 // Check whether this initializer makes the field "used". 4978 if (Init->getInit()->HasSideEffects(S.Context)) 4979 S.UnusedPrivateFields.remove(Init->getAnyMember()); 4980 4981 return false; 4982 } 4983 4984 bool isInactiveUnionMember(FieldDecl *Field) { 4985 RecordDecl *Record = Field->getParent(); 4986 if (!Record->isUnion()) 4987 return false; 4988 4989 if (FieldDecl *Active = 4990 ActiveUnionMember.lookup(Record->getCanonicalDecl())) 4991 return Active != Field->getCanonicalDecl(); 4992 4993 // In an implicit copy or move constructor, ignore any in-class initializer. 4994 if (isImplicitCopyOrMove()) 4995 return true; 4996 4997 // If there's no explicit initialization, the field is active only if it 4998 // has an in-class initializer... 4999 if (Field->hasInClassInitializer()) 5000 return false; 5001 // ... or it's an anonymous struct or union whose class has an in-class 5002 // initializer. 5003 if (!Field->isAnonymousStructOrUnion()) 5004 return true; 5005 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); 5006 return !FieldRD->hasInClassInitializer(); 5007 } 5008 5009 /// Determine whether the given field is, or is within, a union member 5010 /// that is inactive (because there was an initializer given for a different 5011 /// member of the union, or because the union was not initialized at all). 5012 bool isWithinInactiveUnionMember(FieldDecl *Field, 5013 IndirectFieldDecl *Indirect) { 5014 if (!Indirect) 5015 return isInactiveUnionMember(Field); 5016 5017 for (auto *C : Indirect->chain()) { 5018 FieldDecl *Field = dyn_cast<FieldDecl>(C); 5019 if (Field && isInactiveUnionMember(Field)) 5020 return true; 5021 } 5022 return false; 5023 } 5024 }; 5025 } 5026 5027 /// Determine whether the given type is an incomplete or zero-lenfgth 5028 /// array type. 5029 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { 5030 if (T->isIncompleteArrayType()) 5031 return true; 5032 5033 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { 5034 if (!ArrayT->getSize()) 5035 return true; 5036 5037 T = ArrayT->getElementType(); 5038 } 5039 5040 return false; 5041 } 5042 5043 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, 5044 FieldDecl *Field, 5045 IndirectFieldDecl *Indirect = nullptr) { 5046 if (Field->isInvalidDecl()) 5047 return false; 5048 5049 // Overwhelmingly common case: we have a direct initializer for this field. 5050 if (CXXCtorInitializer *Init = 5051 Info.AllBaseFields.lookup(Field->getCanonicalDecl())) 5052 return Info.addFieldInitializer(Init); 5053 5054 // C++11 [class.base.init]p8: 5055 // if the entity is a non-static data member that has a 5056 // brace-or-equal-initializer and either 5057 // -- the constructor's class is a union and no other variant member of that 5058 // union is designated by a mem-initializer-id or 5059 // -- the constructor's class is not a union, and, if the entity is a member 5060 // of an anonymous union, no other member of that union is designated by 5061 // a mem-initializer-id, 5062 // the entity is initialized as specified in [dcl.init]. 5063 // 5064 // We also apply the same rules to handle anonymous structs within anonymous 5065 // unions. 5066 if (Info.isWithinInactiveUnionMember(Field, Indirect)) 5067 return false; 5068 5069 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { 5070 ExprResult DIE = 5071 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); 5072 if (DIE.isInvalid()) 5073 return true; 5074 5075 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true); 5076 SemaRef.checkInitializerLifetime(Entity, DIE.get()); 5077 5078 CXXCtorInitializer *Init; 5079 if (Indirect) 5080 Init = new (SemaRef.Context) 5081 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), 5082 SourceLocation(), DIE.get(), SourceLocation()); 5083 else 5084 Init = new (SemaRef.Context) 5085 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), 5086 SourceLocation(), DIE.get(), SourceLocation()); 5087 return Info.addFieldInitializer(Init); 5088 } 5089 5090 // Don't initialize incomplete or zero-length arrays. 5091 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) 5092 return false; 5093 5094 // Don't try to build an implicit initializer if there were semantic 5095 // errors in any of the initializers (and therefore we might be 5096 // missing some that the user actually wrote). 5097 if (Info.AnyErrorsInInits) 5098 return false; 5099 5100 CXXCtorInitializer *Init = nullptr; 5101 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, 5102 Indirect, Init)) 5103 return true; 5104 5105 if (!Init) 5106 return false; 5107 5108 return Info.addFieldInitializer(Init); 5109 } 5110 5111 bool 5112 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, 5113 CXXCtorInitializer *Initializer) { 5114 assert(Initializer->isDelegatingInitializer()); 5115 Constructor->setNumCtorInitializers(1); 5116 CXXCtorInitializer **initializer = 5117 new (Context) CXXCtorInitializer*[1]; 5118 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); 5119 Constructor->setCtorInitializers(initializer); 5120 5121 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { 5122 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); 5123 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); 5124 } 5125 5126 DelegatingCtorDecls.push_back(Constructor); 5127 5128 DiagnoseUninitializedFields(*this, Constructor); 5129 5130 return false; 5131 } 5132 5133 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, 5134 ArrayRef<CXXCtorInitializer *> Initializers) { 5135 if (Constructor->isDependentContext()) { 5136 // Just store the initializers as written, they will be checked during 5137 // instantiation. 5138 if (!Initializers.empty()) { 5139 Constructor->setNumCtorInitializers(Initializers.size()); 5140 CXXCtorInitializer **baseOrMemberInitializers = 5141 new (Context) CXXCtorInitializer*[Initializers.size()]; 5142 memcpy(baseOrMemberInitializers, Initializers.data(), 5143 Initializers.size() * sizeof(CXXCtorInitializer*)); 5144 Constructor->setCtorInitializers(baseOrMemberInitializers); 5145 } 5146 5147 // Let template instantiation know whether we had errors. 5148 if (AnyErrors) 5149 Constructor->setInvalidDecl(); 5150 5151 return false; 5152 } 5153 5154 BaseAndFieldInfo Info(*this, Constructor, AnyErrors); 5155 5156 // We need to build the initializer AST according to order of construction 5157 // and not what user specified in the Initializers list. 5158 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); 5159 if (!ClassDecl) 5160 return true; 5161 5162 bool HadError = false; 5163 5164 for (unsigned i = 0; i < Initializers.size(); i++) { 5165 CXXCtorInitializer *Member = Initializers[i]; 5166 5167 if (Member->isBaseInitializer()) 5168 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; 5169 else { 5170 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; 5171 5172 if (IndirectFieldDecl *F = Member->getIndirectMember()) { 5173 for (auto *C : F->chain()) { 5174 FieldDecl *FD = dyn_cast<FieldDecl>(C); 5175 if (FD && FD->getParent()->isUnion()) 5176 Info.ActiveUnionMember.insert(std::make_pair( 5177 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5178 } 5179 } else if (FieldDecl *FD = Member->getMember()) { 5180 if (FD->getParent()->isUnion()) 5181 Info.ActiveUnionMember.insert(std::make_pair( 5182 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5183 } 5184 } 5185 } 5186 5187 // Keep track of the direct virtual bases. 5188 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; 5189 for (auto &I : ClassDecl->bases()) { 5190 if (I.isVirtual()) 5191 DirectVBases.insert(&I); 5192 } 5193 5194 // Push virtual bases before others. 5195 for (auto &VBase : ClassDecl->vbases()) { 5196 if (CXXCtorInitializer *Value 5197 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { 5198 // [class.base.init]p7, per DR257: 5199 // A mem-initializer where the mem-initializer-id names a virtual base 5200 // class is ignored during execution of a constructor of any class that 5201 // is not the most derived class. 5202 if (ClassDecl->isAbstract()) { 5203 // FIXME: Provide a fixit to remove the base specifier. This requires 5204 // tracking the location of the associated comma for a base specifier. 5205 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) 5206 << VBase.getType() << ClassDecl; 5207 DiagnoseAbstractType(ClassDecl); 5208 } 5209 5210 Info.AllToInit.push_back(Value); 5211 } else if (!AnyErrors && !ClassDecl->isAbstract()) { 5212 // [class.base.init]p8, per DR257: 5213 // If a given [...] base class is not named by a mem-initializer-id 5214 // [...] and the entity is not a virtual base class of an abstract 5215 // class, then [...] the entity is default-initialized. 5216 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); 5217 CXXCtorInitializer *CXXBaseInit; 5218 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5219 &VBase, IsInheritedVirtualBase, 5220 CXXBaseInit)) { 5221 HadError = true; 5222 continue; 5223 } 5224 5225 Info.AllToInit.push_back(CXXBaseInit); 5226 } 5227 } 5228 5229 // Non-virtual bases. 5230 for (auto &Base : ClassDecl->bases()) { 5231 // Virtuals are in the virtual base list and already constructed. 5232 if (Base.isVirtual()) 5233 continue; 5234 5235 if (CXXCtorInitializer *Value 5236 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { 5237 Info.AllToInit.push_back(Value); 5238 } else if (!AnyErrors) { 5239 CXXCtorInitializer *CXXBaseInit; 5240 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5241 &Base, /*IsInheritedVirtualBase=*/false, 5242 CXXBaseInit)) { 5243 HadError = true; 5244 continue; 5245 } 5246 5247 Info.AllToInit.push_back(CXXBaseInit); 5248 } 5249 } 5250 5251 // Fields. 5252 for (auto *Mem : ClassDecl->decls()) { 5253 if (auto *F = dyn_cast<FieldDecl>(Mem)) { 5254 // C++ [class.bit]p2: 5255 // A declaration for a bit-field that omits the identifier declares an 5256 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 5257 // initialized. 5258 if (F->isUnnamedBitfield()) 5259 continue; 5260 5261 // If we're not generating the implicit copy/move constructor, then we'll 5262 // handle anonymous struct/union fields based on their individual 5263 // indirect fields. 5264 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) 5265 continue; 5266 5267 if (CollectFieldInitializer(*this, Info, F)) 5268 HadError = true; 5269 continue; 5270 } 5271 5272 // Beyond this point, we only consider default initialization. 5273 if (Info.isImplicitCopyOrMove()) 5274 continue; 5275 5276 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { 5277 if (F->getType()->isIncompleteArrayType()) { 5278 assert(ClassDecl->hasFlexibleArrayMember() && 5279 "Incomplete array type is not valid"); 5280 continue; 5281 } 5282 5283 // Initialize each field of an anonymous struct individually. 5284 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) 5285 HadError = true; 5286 5287 continue; 5288 } 5289 } 5290 5291 unsigned NumInitializers = Info.AllToInit.size(); 5292 if (NumInitializers > 0) { 5293 Constructor->setNumCtorInitializers(NumInitializers); 5294 CXXCtorInitializer **baseOrMemberInitializers = 5295 new (Context) CXXCtorInitializer*[NumInitializers]; 5296 memcpy(baseOrMemberInitializers, Info.AllToInit.data(), 5297 NumInitializers * sizeof(CXXCtorInitializer*)); 5298 Constructor->setCtorInitializers(baseOrMemberInitializers); 5299 5300 // Constructors implicitly reference the base and member 5301 // destructors. 5302 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), 5303 Constructor->getParent()); 5304 } 5305 5306 return HadError; 5307 } 5308 5309 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { 5310 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { 5311 const RecordDecl *RD = RT->getDecl(); 5312 if (RD->isAnonymousStructOrUnion()) { 5313 for (auto *Field : RD->fields()) 5314 PopulateKeysForFields(Field, IdealInits); 5315 return; 5316 } 5317 } 5318 IdealInits.push_back(Field->getCanonicalDecl()); 5319 } 5320 5321 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { 5322 return Context.getCanonicalType(BaseType).getTypePtr(); 5323 } 5324 5325 static const void *GetKeyForMember(ASTContext &Context, 5326 CXXCtorInitializer *Member) { 5327 if (!Member->isAnyMemberInitializer()) 5328 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); 5329 5330 return Member->getAnyMember()->getCanonicalDecl(); 5331 } 5332 5333 static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag, 5334 const CXXCtorInitializer *Previous, 5335 const CXXCtorInitializer *Current) { 5336 if (Previous->isAnyMemberInitializer()) 5337 Diag << 0 << Previous->getAnyMember(); 5338 else 5339 Diag << 1 << Previous->getTypeSourceInfo()->getType(); 5340 5341 if (Current->isAnyMemberInitializer()) 5342 Diag << 0 << Current->getAnyMember(); 5343 else 5344 Diag << 1 << Current->getTypeSourceInfo()->getType(); 5345 } 5346 5347 static void DiagnoseBaseOrMemInitializerOrder( 5348 Sema &SemaRef, const CXXConstructorDecl *Constructor, 5349 ArrayRef<CXXCtorInitializer *> Inits) { 5350 if (Constructor->getDeclContext()->isDependentContext()) 5351 return; 5352 5353 // Don't check initializers order unless the warning is enabled at the 5354 // location of at least one initializer. 5355 bool ShouldCheckOrder = false; 5356 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5357 CXXCtorInitializer *Init = Inits[InitIndex]; 5358 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, 5359 Init->getSourceLocation())) { 5360 ShouldCheckOrder = true; 5361 break; 5362 } 5363 } 5364 if (!ShouldCheckOrder) 5365 return; 5366 5367 // Build the list of bases and members in the order that they'll 5368 // actually be initialized. The explicit initializers should be in 5369 // this same order but may be missing things. 5370 SmallVector<const void*, 32> IdealInitKeys; 5371 5372 const CXXRecordDecl *ClassDecl = Constructor->getParent(); 5373 5374 // 1. Virtual bases. 5375 for (const auto &VBase : ClassDecl->vbases()) 5376 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); 5377 5378 // 2. Non-virtual bases. 5379 for (const auto &Base : ClassDecl->bases()) { 5380 if (Base.isVirtual()) 5381 continue; 5382 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); 5383 } 5384 5385 // 3. Direct fields. 5386 for (auto *Field : ClassDecl->fields()) { 5387 if (Field->isUnnamedBitfield()) 5388 continue; 5389 5390 PopulateKeysForFields(Field, IdealInitKeys); 5391 } 5392 5393 unsigned NumIdealInits = IdealInitKeys.size(); 5394 unsigned IdealIndex = 0; 5395 5396 // Track initializers that are in an incorrect order for either a warning or 5397 // note if multiple ones occur. 5398 SmallVector<unsigned> WarnIndexes; 5399 // Correlates the index of an initializer in the init-list to the index of 5400 // the field/base in the class. 5401 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder; 5402 5403 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5404 const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]); 5405 5406 // Scan forward to try to find this initializer in the idealized 5407 // initializers list. 5408 for (; IdealIndex != NumIdealInits; ++IdealIndex) 5409 if (InitKey == IdealInitKeys[IdealIndex]) 5410 break; 5411 5412 // If we didn't find this initializer, it must be because we 5413 // scanned past it on a previous iteration. That can only 5414 // happen if we're out of order; emit a warning. 5415 if (IdealIndex == NumIdealInits && InitIndex) { 5416 WarnIndexes.push_back(InitIndex); 5417 5418 // Move back to the initializer's location in the ideal list. 5419 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) 5420 if (InitKey == IdealInitKeys[IdealIndex]) 5421 break; 5422 5423 assert(IdealIndex < NumIdealInits && 5424 "initializer not found in initializer list"); 5425 } 5426 CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex); 5427 } 5428 5429 if (WarnIndexes.empty()) 5430 return; 5431 5432 // Sort based on the ideal order, first in the pair. 5433 llvm::sort(CorrelatedInitOrder, llvm::less_first()); 5434 5435 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to 5436 // emit the diagnostic before we can try adding notes. 5437 { 5438 Sema::SemaDiagnosticBuilder D = SemaRef.Diag( 5439 Inits[WarnIndexes.front() - 1]->getSourceLocation(), 5440 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order 5441 : diag::warn_some_initializers_out_of_order); 5442 5443 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) { 5444 if (CorrelatedInitOrder[I].second == I) 5445 continue; 5446 // Ideally we would be using InsertFromRange here, but clang doesn't 5447 // appear to handle InsertFromRange correctly when the source range is 5448 // modified by another fix-it. 5449 D << FixItHint::CreateReplacement( 5450 Inits[I]->getSourceRange(), 5451 Lexer::getSourceText( 5452 CharSourceRange::getTokenRange( 5453 Inits[CorrelatedInitOrder[I].second]->getSourceRange()), 5454 SemaRef.getSourceManager(), SemaRef.getLangOpts())); 5455 } 5456 5457 // If there is only 1 item out of order, the warning expects the name and 5458 // type of each being added to it. 5459 if (WarnIndexes.size() == 1) { 5460 AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1], 5461 Inits[WarnIndexes.front()]); 5462 return; 5463 } 5464 } 5465 // More than 1 item to warn, create notes letting the user know which ones 5466 // are bad. 5467 for (unsigned WarnIndex : WarnIndexes) { 5468 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1]; 5469 auto D = SemaRef.Diag(PrevInit->getSourceLocation(), 5470 diag::note_initializer_out_of_order); 5471 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]); 5472 D << PrevInit->getSourceRange(); 5473 } 5474 } 5475 5476 namespace { 5477 bool CheckRedundantInit(Sema &S, 5478 CXXCtorInitializer *Init, 5479 CXXCtorInitializer *&PrevInit) { 5480 if (!PrevInit) { 5481 PrevInit = Init; 5482 return false; 5483 } 5484 5485 if (FieldDecl *Field = Init->getAnyMember()) 5486 S.Diag(Init->getSourceLocation(), 5487 diag::err_multiple_mem_initialization) 5488 << Field->getDeclName() 5489 << Init->getSourceRange(); 5490 else { 5491 const Type *BaseClass = Init->getBaseClass(); 5492 assert(BaseClass && "neither field nor base"); 5493 S.Diag(Init->getSourceLocation(), 5494 diag::err_multiple_base_initialization) 5495 << QualType(BaseClass, 0) 5496 << Init->getSourceRange(); 5497 } 5498 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) 5499 << 0 << PrevInit->getSourceRange(); 5500 5501 return true; 5502 } 5503 5504 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; 5505 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; 5506 5507 bool CheckRedundantUnionInit(Sema &S, 5508 CXXCtorInitializer *Init, 5509 RedundantUnionMap &Unions) { 5510 FieldDecl *Field = Init->getAnyMember(); 5511 RecordDecl *Parent = Field->getParent(); 5512 NamedDecl *Child = Field; 5513 5514 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { 5515 if (Parent->isUnion()) { 5516 UnionEntry &En = Unions[Parent]; 5517 if (En.first && En.first != Child) { 5518 S.Diag(Init->getSourceLocation(), 5519 diag::err_multiple_mem_union_initialization) 5520 << Field->getDeclName() 5521 << Init->getSourceRange(); 5522 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) 5523 << 0 << En.second->getSourceRange(); 5524 return true; 5525 } 5526 if (!En.first) { 5527 En.first = Child; 5528 En.second = Init; 5529 } 5530 if (!Parent->isAnonymousStructOrUnion()) 5531 return false; 5532 } 5533 5534 Child = Parent; 5535 Parent = cast<RecordDecl>(Parent->getDeclContext()); 5536 } 5537 5538 return false; 5539 } 5540 } // namespace 5541 5542 /// ActOnMemInitializers - Handle the member initializers for a constructor. 5543 void Sema::ActOnMemInitializers(Decl *ConstructorDecl, 5544 SourceLocation ColonLoc, 5545 ArrayRef<CXXCtorInitializer*> MemInits, 5546 bool AnyErrors) { 5547 if (!ConstructorDecl) 5548 return; 5549 5550 AdjustDeclIfTemplate(ConstructorDecl); 5551 5552 CXXConstructorDecl *Constructor 5553 = dyn_cast<CXXConstructorDecl>(ConstructorDecl); 5554 5555 if (!Constructor) { 5556 Diag(ColonLoc, diag::err_only_constructors_take_base_inits); 5557 return; 5558 } 5559 5560 // Mapping for the duplicate initializers check. 5561 // For member initializers, this is keyed with a FieldDecl*. 5562 // For base initializers, this is keyed with a Type*. 5563 llvm::DenseMap<const void *, CXXCtorInitializer *> Members; 5564 5565 // Mapping for the inconsistent anonymous-union initializers check. 5566 RedundantUnionMap MemberUnions; 5567 5568 bool HadError = false; 5569 for (unsigned i = 0; i < MemInits.size(); i++) { 5570 CXXCtorInitializer *Init = MemInits[i]; 5571 5572 // Set the source order index. 5573 Init->setSourceOrder(i); 5574 5575 if (Init->isAnyMemberInitializer()) { 5576 const void *Key = GetKeyForMember(Context, Init); 5577 if (CheckRedundantInit(*this, Init, Members[Key]) || 5578 CheckRedundantUnionInit(*this, Init, MemberUnions)) 5579 HadError = true; 5580 } else if (Init->isBaseInitializer()) { 5581 const void *Key = GetKeyForMember(Context, Init); 5582 if (CheckRedundantInit(*this, Init, Members[Key])) 5583 HadError = true; 5584 } else { 5585 assert(Init->isDelegatingInitializer()); 5586 // This must be the only initializer 5587 if (MemInits.size() != 1) { 5588 Diag(Init->getSourceLocation(), 5589 diag::err_delegating_initializer_alone) 5590 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); 5591 // We will treat this as being the only initializer. 5592 } 5593 SetDelegatingInitializer(Constructor, MemInits[i]); 5594 // Return immediately as the initializer is set. 5595 return; 5596 } 5597 } 5598 5599 if (HadError) 5600 return; 5601 5602 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); 5603 5604 SetCtorInitializers(Constructor, AnyErrors, MemInits); 5605 5606 DiagnoseUninitializedFields(*this, Constructor); 5607 } 5608 5609 void 5610 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, 5611 CXXRecordDecl *ClassDecl) { 5612 // Ignore dependent contexts. Also ignore unions, since their members never 5613 // have destructors implicitly called. 5614 if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) 5615 return; 5616 5617 // FIXME: all the access-control diagnostics are positioned on the 5618 // field/base declaration. That's probably good; that said, the 5619 // user might reasonably want to know why the destructor is being 5620 // emitted, and we currently don't say. 5621 5622 // Non-static data members. 5623 for (auto *Field : ClassDecl->fields()) { 5624 if (Field->isInvalidDecl()) 5625 continue; 5626 5627 // Don't destroy incomplete or zero-length arrays. 5628 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) 5629 continue; 5630 5631 QualType FieldType = Context.getBaseElementType(Field->getType()); 5632 5633 const RecordType* RT = FieldType->getAs<RecordType>(); 5634 if (!RT) 5635 continue; 5636 5637 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5638 if (FieldClassDecl->isInvalidDecl()) 5639 continue; 5640 if (FieldClassDecl->hasIrrelevantDestructor()) 5641 continue; 5642 // The destructor for an implicit anonymous union member is never invoked. 5643 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 5644 continue; 5645 5646 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); 5647 assert(Dtor && "No dtor found for FieldClassDecl!"); 5648 CheckDestructorAccess(Field->getLocation(), Dtor, 5649 PDiag(diag::err_access_dtor_field) 5650 << Field->getDeclName() 5651 << FieldType); 5652 5653 MarkFunctionReferenced(Location, Dtor); 5654 DiagnoseUseOfDecl(Dtor, Location); 5655 } 5656 5657 // We only potentially invoke the destructors of potentially constructed 5658 // subobjects. 5659 bool VisitVirtualBases = !ClassDecl->isAbstract(); 5660 5661 // If the destructor exists and has already been marked used in the MS ABI, 5662 // then virtual base destructors have already been checked and marked used. 5663 // Skip checking them again to avoid duplicate diagnostics. 5664 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5665 CXXDestructorDecl *Dtor = ClassDecl->getDestructor(); 5666 if (Dtor && Dtor->isUsed()) 5667 VisitVirtualBases = false; 5668 } 5669 5670 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; 5671 5672 // Bases. 5673 for (const auto &Base : ClassDecl->bases()) { 5674 const RecordType *RT = Base.getType()->getAs<RecordType>(); 5675 if (!RT) 5676 continue; 5677 5678 // Remember direct virtual bases. 5679 if (Base.isVirtual()) { 5680 if (!VisitVirtualBases) 5681 continue; 5682 DirectVirtualBases.insert(RT); 5683 } 5684 5685 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5686 // If our base class is invalid, we probably can't get its dtor anyway. 5687 if (BaseClassDecl->isInvalidDecl()) 5688 continue; 5689 if (BaseClassDecl->hasIrrelevantDestructor()) 5690 continue; 5691 5692 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5693 assert(Dtor && "No dtor found for BaseClassDecl!"); 5694 5695 // FIXME: caret should be on the start of the class name 5696 CheckDestructorAccess(Base.getBeginLoc(), Dtor, 5697 PDiag(diag::err_access_dtor_base) 5698 << Base.getType() << Base.getSourceRange(), 5699 Context.getTypeDeclType(ClassDecl)); 5700 5701 MarkFunctionReferenced(Location, Dtor); 5702 DiagnoseUseOfDecl(Dtor, Location); 5703 } 5704 5705 if (VisitVirtualBases) 5706 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl, 5707 &DirectVirtualBases); 5708 } 5709 5710 void Sema::MarkVirtualBaseDestructorsReferenced( 5711 SourceLocation Location, CXXRecordDecl *ClassDecl, 5712 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) { 5713 // Virtual bases. 5714 for (const auto &VBase : ClassDecl->vbases()) { 5715 // Bases are always records in a well-formed non-dependent class. 5716 const RecordType *RT = VBase.getType()->castAs<RecordType>(); 5717 5718 // Ignore already visited direct virtual bases. 5719 if (DirectVirtualBases && DirectVirtualBases->count(RT)) 5720 continue; 5721 5722 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5723 // If our base class is invalid, we probably can't get its dtor anyway. 5724 if (BaseClassDecl->isInvalidDecl()) 5725 continue; 5726 if (BaseClassDecl->hasIrrelevantDestructor()) 5727 continue; 5728 5729 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5730 assert(Dtor && "No dtor found for BaseClassDecl!"); 5731 if (CheckDestructorAccess( 5732 ClassDecl->getLocation(), Dtor, 5733 PDiag(diag::err_access_dtor_vbase) 5734 << Context.getTypeDeclType(ClassDecl) << VBase.getType(), 5735 Context.getTypeDeclType(ClassDecl)) == 5736 AR_accessible) { 5737 CheckDerivedToBaseConversion( 5738 Context.getTypeDeclType(ClassDecl), VBase.getType(), 5739 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), 5740 SourceRange(), DeclarationName(), nullptr); 5741 } 5742 5743 MarkFunctionReferenced(Location, Dtor); 5744 DiagnoseUseOfDecl(Dtor, Location); 5745 } 5746 } 5747 5748 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { 5749 if (!CDtorDecl) 5750 return; 5751 5752 if (CXXConstructorDecl *Constructor 5753 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) { 5754 SetCtorInitializers(Constructor, /*AnyErrors=*/false); 5755 DiagnoseUninitializedFields(*this, Constructor); 5756 } 5757 } 5758 5759 bool Sema::isAbstractType(SourceLocation Loc, QualType T) { 5760 if (!getLangOpts().CPlusPlus) 5761 return false; 5762 5763 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); 5764 if (!RD) 5765 return false; 5766 5767 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a 5768 // class template specialization here, but doing so breaks a lot of code. 5769 5770 // We can't answer whether something is abstract until it has a 5771 // definition. If it's currently being defined, we'll walk back 5772 // over all the declarations when we have a full definition. 5773 const CXXRecordDecl *Def = RD->getDefinition(); 5774 if (!Def || Def->isBeingDefined()) 5775 return false; 5776 5777 return RD->isAbstract(); 5778 } 5779 5780 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 5781 TypeDiagnoser &Diagnoser) { 5782 if (!isAbstractType(Loc, T)) 5783 return false; 5784 5785 T = Context.getBaseElementType(T); 5786 Diagnoser.diagnose(*this, Loc, T); 5787 DiagnoseAbstractType(T->getAsCXXRecordDecl()); 5788 return true; 5789 } 5790 5791 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { 5792 // Check if we've already emitted the list of pure virtual functions 5793 // for this class. 5794 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) 5795 return; 5796 5797 // If the diagnostic is suppressed, don't emit the notes. We're only 5798 // going to emit them once, so try to attach them to a diagnostic we're 5799 // actually going to show. 5800 if (Diags.isLastDiagnosticIgnored()) 5801 return; 5802 5803 CXXFinalOverriderMap FinalOverriders; 5804 RD->getFinalOverriders(FinalOverriders); 5805 5806 // Keep a set of seen pure methods so we won't diagnose the same method 5807 // more than once. 5808 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; 5809 5810 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 5811 MEnd = FinalOverriders.end(); 5812 M != MEnd; 5813 ++M) { 5814 for (OverridingMethods::iterator SO = M->second.begin(), 5815 SOEnd = M->second.end(); 5816 SO != SOEnd; ++SO) { 5817 // C++ [class.abstract]p4: 5818 // A class is abstract if it contains or inherits at least one 5819 // pure virtual function for which the final overrider is pure 5820 // virtual. 5821 5822 // 5823 if (SO->second.size() != 1) 5824 continue; 5825 5826 if (!SO->second.front().Method->isPure()) 5827 continue; 5828 5829 if (!SeenPureMethods.insert(SO->second.front().Method).second) 5830 continue; 5831 5832 Diag(SO->second.front().Method->getLocation(), 5833 diag::note_pure_virtual_function) 5834 << SO->second.front().Method->getDeclName() << RD->getDeclName(); 5835 } 5836 } 5837 5838 if (!PureVirtualClassDiagSet) 5839 PureVirtualClassDiagSet.reset(new RecordDeclSetTy); 5840 PureVirtualClassDiagSet->insert(RD); 5841 } 5842 5843 namespace { 5844 struct AbstractUsageInfo { 5845 Sema &S; 5846 CXXRecordDecl *Record; 5847 CanQualType AbstractType; 5848 bool Invalid; 5849 5850 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) 5851 : S(S), Record(Record), 5852 AbstractType(S.Context.getCanonicalType( 5853 S.Context.getTypeDeclType(Record))), 5854 Invalid(false) {} 5855 5856 void DiagnoseAbstractType() { 5857 if (Invalid) return; 5858 S.DiagnoseAbstractType(Record); 5859 Invalid = true; 5860 } 5861 5862 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); 5863 }; 5864 5865 struct CheckAbstractUsage { 5866 AbstractUsageInfo &Info; 5867 const NamedDecl *Ctx; 5868 5869 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) 5870 : Info(Info), Ctx(Ctx) {} 5871 5872 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5873 switch (TL.getTypeLocClass()) { 5874 #define ABSTRACT_TYPELOC(CLASS, PARENT) 5875 #define TYPELOC(CLASS, PARENT) \ 5876 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; 5877 #include "clang/AST/TypeLocNodes.def" 5878 } 5879 } 5880 5881 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5882 Visit(TL.getReturnLoc(), Sema::AbstractReturnType); 5883 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { 5884 if (!TL.getParam(I)) 5885 continue; 5886 5887 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); 5888 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); 5889 } 5890 } 5891 5892 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5893 Visit(TL.getElementLoc(), Sema::AbstractArrayType); 5894 } 5895 5896 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5897 // Visit the type parameters from a permissive context. 5898 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { 5899 TemplateArgumentLoc TAL = TL.getArgLoc(I); 5900 if (TAL.getArgument().getKind() == TemplateArgument::Type) 5901 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) 5902 Visit(TSI->getTypeLoc(), Sema::AbstractNone); 5903 // TODO: other template argument types? 5904 } 5905 } 5906 5907 // Visit pointee types from a permissive context. 5908 #define CheckPolymorphic(Type) \ 5909 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ 5910 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ 5911 } 5912 CheckPolymorphic(PointerTypeLoc) 5913 CheckPolymorphic(ReferenceTypeLoc) 5914 CheckPolymorphic(MemberPointerTypeLoc) 5915 CheckPolymorphic(BlockPointerTypeLoc) 5916 CheckPolymorphic(AtomicTypeLoc) 5917 5918 /// Handle all the types we haven't given a more specific 5919 /// implementation for above. 5920 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5921 // Every other kind of type that we haven't called out already 5922 // that has an inner type is either (1) sugar or (2) contains that 5923 // inner type in some way as a subobject. 5924 if (TypeLoc Next = TL.getNextTypeLoc()) 5925 return Visit(Next, Sel); 5926 5927 // If there's no inner type and we're in a permissive context, 5928 // don't diagnose. 5929 if (Sel == Sema::AbstractNone) return; 5930 5931 // Check whether the type matches the abstract type. 5932 QualType T = TL.getType(); 5933 if (T->isArrayType()) { 5934 Sel = Sema::AbstractArrayType; 5935 T = Info.S.Context.getBaseElementType(T); 5936 } 5937 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); 5938 if (CT != Info.AbstractType) return; 5939 5940 // It matched; do some magic. 5941 // FIXME: These should be at most warnings. See P0929R2, CWG1640, CWG1646. 5942 if (Sel == Sema::AbstractArrayType) { 5943 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) 5944 << T << TL.getSourceRange(); 5945 } else { 5946 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) 5947 << Sel << T << TL.getSourceRange(); 5948 } 5949 Info.DiagnoseAbstractType(); 5950 } 5951 }; 5952 5953 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, 5954 Sema::AbstractDiagSelID Sel) { 5955 CheckAbstractUsage(*this, D).Visit(TL, Sel); 5956 } 5957 5958 } 5959 5960 /// Check for invalid uses of an abstract type in a function declaration. 5961 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5962 FunctionDecl *FD) { 5963 // No need to do the check on definitions, which require that 5964 // the return/param types be complete. 5965 if (FD->doesThisDeclarationHaveABody()) 5966 return; 5967 5968 // For safety's sake, just ignore it if we don't have type source 5969 // information. This should never happen for non-implicit methods, 5970 // but... 5971 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 5972 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractNone); 5973 } 5974 5975 /// Check for invalid uses of an abstract type in a variable0 declaration. 5976 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5977 VarDecl *VD) { 5978 // No need to do the check on definitions, which require that 5979 // the type is complete. 5980 if (VD->isThisDeclarationADefinition()) 5981 return; 5982 5983 Info.CheckType(VD, VD->getTypeSourceInfo()->getTypeLoc(), 5984 Sema::AbstractVariableType); 5985 } 5986 5987 /// Check for invalid uses of an abstract type within a class definition. 5988 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5989 CXXRecordDecl *RD) { 5990 for (auto *D : RD->decls()) { 5991 if (D->isImplicit()) continue; 5992 5993 // Step through friends to the befriended declaration. 5994 if (auto *FD = dyn_cast<FriendDecl>(D)) { 5995 D = FD->getFriendDecl(); 5996 if (!D) continue; 5997 } 5998 5999 // Functions and function templates. 6000 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 6001 CheckAbstractClassUsage(Info, FD); 6002 } else if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D)) { 6003 CheckAbstractClassUsage(Info, FTD->getTemplatedDecl()); 6004 6005 // Fields and static variables. 6006 } else if (auto *FD = dyn_cast<FieldDecl>(D)) { 6007 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 6008 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); 6009 } else if (auto *VD = dyn_cast<VarDecl>(D)) { 6010 CheckAbstractClassUsage(Info, VD); 6011 } else if (auto *VTD = dyn_cast<VarTemplateDecl>(D)) { 6012 CheckAbstractClassUsage(Info, VTD->getTemplatedDecl()); 6013 6014 // Nested classes and class templates. 6015 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 6016 CheckAbstractClassUsage(Info, RD); 6017 } else if (auto *CTD = dyn_cast<ClassTemplateDecl>(D)) { 6018 CheckAbstractClassUsage(Info, CTD->getTemplatedDecl()); 6019 } 6020 } 6021 } 6022 6023 static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { 6024 Attr *ClassAttr = getDLLAttr(Class); 6025 if (!ClassAttr) 6026 return; 6027 6028 assert(ClassAttr->getKind() == attr::DLLExport); 6029 6030 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 6031 6032 if (TSK == TSK_ExplicitInstantiationDeclaration) 6033 // Don't go any further if this is just an explicit instantiation 6034 // declaration. 6035 return; 6036 6037 // Add a context note to explain how we got to any diagnostics produced below. 6038 struct MarkingClassDllexported { 6039 Sema &S; 6040 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class, 6041 SourceLocation AttrLoc) 6042 : S(S) { 6043 Sema::CodeSynthesisContext Ctx; 6044 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported; 6045 Ctx.PointOfInstantiation = AttrLoc; 6046 Ctx.Entity = Class; 6047 S.pushCodeSynthesisContext(Ctx); 6048 } 6049 ~MarkingClassDllexported() { 6050 S.popCodeSynthesisContext(); 6051 } 6052 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation()); 6053 6054 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) 6055 S.MarkVTableUsed(Class->getLocation(), Class, true); 6056 6057 for (Decl *Member : Class->decls()) { 6058 // Skip members that were not marked exported. 6059 if (!Member->hasAttr<DLLExportAttr>()) 6060 continue; 6061 6062 // Defined static variables that are members of an exported base 6063 // class must be marked export too. 6064 auto *VD = dyn_cast<VarDecl>(Member); 6065 if (VD && VD->getStorageClass() == SC_Static && 6066 TSK == TSK_ImplicitInstantiation) 6067 S.MarkVariableReferenced(VD->getLocation(), VD); 6068 6069 auto *MD = dyn_cast<CXXMethodDecl>(Member); 6070 if (!MD) 6071 continue; 6072 6073 if (MD->isUserProvided()) { 6074 // Instantiate non-default class member functions ... 6075 6076 // .. except for certain kinds of template specializations. 6077 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) 6078 continue; 6079 6080 // If this is an MS ABI dllexport default constructor, instantiate any 6081 // default arguments. 6082 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 6083 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6084 if (CD && CD->isDefaultConstructor() && TSK == TSK_Undeclared) { 6085 S.InstantiateDefaultCtorDefaultArgs(CD); 6086 } 6087 } 6088 6089 S.MarkFunctionReferenced(Class->getLocation(), MD); 6090 6091 // The function will be passed to the consumer when its definition is 6092 // encountered. 6093 } else if (MD->isExplicitlyDefaulted()) { 6094 // Synthesize and instantiate explicitly defaulted methods. 6095 S.MarkFunctionReferenced(Class->getLocation(), MD); 6096 6097 if (TSK != TSK_ExplicitInstantiationDefinition) { 6098 // Except for explicit instantiation defs, we will not see the 6099 // definition again later, so pass it to the consumer now. 6100 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 6101 } 6102 } else if (!MD->isTrivial() || 6103 MD->isCopyAssignmentOperator() || 6104 MD->isMoveAssignmentOperator()) { 6105 // Synthesize and instantiate non-trivial implicit methods, and the copy 6106 // and move assignment operators. The latter are exported even if they 6107 // are trivial, because the address of an operator can be taken and 6108 // should compare equal across libraries. 6109 S.MarkFunctionReferenced(Class->getLocation(), MD); 6110 6111 // There is no later point when we will see the definition of this 6112 // function, so pass it to the consumer now. 6113 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 6114 } 6115 } 6116 } 6117 6118 static void checkForMultipleExportedDefaultConstructors(Sema &S, 6119 CXXRecordDecl *Class) { 6120 // Only the MS ABI has default constructor closures, so we don't need to do 6121 // this semantic checking anywhere else. 6122 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) 6123 return; 6124 6125 CXXConstructorDecl *LastExportedDefaultCtor = nullptr; 6126 for (Decl *Member : Class->decls()) { 6127 // Look for exported default constructors. 6128 auto *CD = dyn_cast<CXXConstructorDecl>(Member); 6129 if (!CD || !CD->isDefaultConstructor()) 6130 continue; 6131 auto *Attr = CD->getAttr<DLLExportAttr>(); 6132 if (!Attr) 6133 continue; 6134 6135 // If the class is non-dependent, mark the default arguments as ODR-used so 6136 // that we can properly codegen the constructor closure. 6137 if (!Class->isDependentContext()) { 6138 for (ParmVarDecl *PD : CD->parameters()) { 6139 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); 6140 S.DiscardCleanupsInEvaluationContext(); 6141 } 6142 } 6143 6144 if (LastExportedDefaultCtor) { 6145 S.Diag(LastExportedDefaultCtor->getLocation(), 6146 diag::err_attribute_dll_ambiguous_default_ctor) 6147 << Class; 6148 S.Diag(CD->getLocation(), diag::note_entity_declared_at) 6149 << CD->getDeclName(); 6150 return; 6151 } 6152 LastExportedDefaultCtor = CD; 6153 } 6154 } 6155 6156 static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S, 6157 CXXRecordDecl *Class) { 6158 bool ErrorReported = false; 6159 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6160 ClassTemplateDecl *TD) { 6161 if (ErrorReported) 6162 return; 6163 S.Diag(TD->getLocation(), 6164 diag::err_cuda_device_builtin_surftex_cls_template) 6165 << /*surface*/ 0 << TD; 6166 ErrorReported = true; 6167 }; 6168 6169 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6170 if (!TD) { 6171 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6172 if (!SD) { 6173 S.Diag(Class->getLocation(), 6174 diag::err_cuda_device_builtin_surftex_ref_decl) 6175 << /*surface*/ 0 << Class; 6176 S.Diag(Class->getLocation(), 6177 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6178 << Class; 6179 return; 6180 } 6181 TD = SD->getSpecializedTemplate(); 6182 } 6183 6184 TemplateParameterList *Params = TD->getTemplateParameters(); 6185 unsigned N = Params->size(); 6186 6187 if (N != 2) { 6188 reportIllegalClassTemplate(S, TD); 6189 S.Diag(TD->getLocation(), 6190 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6191 << TD << 2; 6192 } 6193 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6194 reportIllegalClassTemplate(S, TD); 6195 S.Diag(TD->getLocation(), 6196 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6197 << TD << /*1st*/ 0 << /*type*/ 0; 6198 } 6199 if (N > 1) { 6200 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6201 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6202 reportIllegalClassTemplate(S, TD); 6203 S.Diag(TD->getLocation(), 6204 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6205 << TD << /*2nd*/ 1 << /*integer*/ 1; 6206 } 6207 } 6208 } 6209 6210 static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S, 6211 CXXRecordDecl *Class) { 6212 bool ErrorReported = false; 6213 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6214 ClassTemplateDecl *TD) { 6215 if (ErrorReported) 6216 return; 6217 S.Diag(TD->getLocation(), 6218 diag::err_cuda_device_builtin_surftex_cls_template) 6219 << /*texture*/ 1 << TD; 6220 ErrorReported = true; 6221 }; 6222 6223 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6224 if (!TD) { 6225 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6226 if (!SD) { 6227 S.Diag(Class->getLocation(), 6228 diag::err_cuda_device_builtin_surftex_ref_decl) 6229 << /*texture*/ 1 << Class; 6230 S.Diag(Class->getLocation(), 6231 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6232 << Class; 6233 return; 6234 } 6235 TD = SD->getSpecializedTemplate(); 6236 } 6237 6238 TemplateParameterList *Params = TD->getTemplateParameters(); 6239 unsigned N = Params->size(); 6240 6241 if (N != 3) { 6242 reportIllegalClassTemplate(S, TD); 6243 S.Diag(TD->getLocation(), 6244 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6245 << TD << 3; 6246 } 6247 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6248 reportIllegalClassTemplate(S, TD); 6249 S.Diag(TD->getLocation(), 6250 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6251 << TD << /*1st*/ 0 << /*type*/ 0; 6252 } 6253 if (N > 1) { 6254 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6255 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6256 reportIllegalClassTemplate(S, TD); 6257 S.Diag(TD->getLocation(), 6258 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6259 << TD << /*2nd*/ 1 << /*integer*/ 1; 6260 } 6261 } 6262 if (N > 2) { 6263 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2)); 6264 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6265 reportIllegalClassTemplate(S, TD); 6266 S.Diag(TD->getLocation(), 6267 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6268 << TD << /*3rd*/ 2 << /*integer*/ 1; 6269 } 6270 } 6271 } 6272 6273 void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { 6274 // Mark any compiler-generated routines with the implicit code_seg attribute. 6275 for (auto *Method : Class->methods()) { 6276 if (Method->isUserProvided()) 6277 continue; 6278 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 6279 Method->addAttr(A); 6280 } 6281 } 6282 6283 /// Check class-level dllimport/dllexport attribute. 6284 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { 6285 Attr *ClassAttr = getDLLAttr(Class); 6286 6287 // MSVC inherits DLL attributes to partial class template specializations. 6288 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) { 6289 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { 6290 if (Attr *TemplateAttr = 6291 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { 6292 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext())); 6293 A->setInherited(true); 6294 ClassAttr = A; 6295 } 6296 } 6297 } 6298 6299 if (!ClassAttr) 6300 return; 6301 6302 if (!Class->isExternallyVisible()) { 6303 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) 6304 << Class << ClassAttr; 6305 return; 6306 } 6307 6308 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6309 !ClassAttr->isInherited()) { 6310 // Diagnose dll attributes on members of class with dll attribute. 6311 for (Decl *Member : Class->decls()) { 6312 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) 6313 continue; 6314 InheritableAttr *MemberAttr = getDLLAttr(Member); 6315 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) 6316 continue; 6317 6318 Diag(MemberAttr->getLocation(), 6319 diag::err_attribute_dll_member_of_dll_class) 6320 << MemberAttr << ClassAttr; 6321 Diag(ClassAttr->getLocation(), diag::note_previous_attribute); 6322 Member->setInvalidDecl(); 6323 } 6324 } 6325 6326 if (Class->getDescribedClassTemplate()) 6327 // Don't inherit dll attribute until the template is instantiated. 6328 return; 6329 6330 // The class is either imported or exported. 6331 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; 6332 6333 // Check if this was a dllimport attribute propagated from a derived class to 6334 // a base class template specialization. We don't apply these attributes to 6335 // static data members. 6336 const bool PropagatedImport = 6337 !ClassExported && 6338 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate(); 6339 6340 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 6341 6342 // Ignore explicit dllexport on explicit class template instantiation 6343 // declarations, except in MinGW mode. 6344 if (ClassExported && !ClassAttr->isInherited() && 6345 TSK == TSK_ExplicitInstantiationDeclaration && 6346 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 6347 Class->dropAttr<DLLExportAttr>(); 6348 return; 6349 } 6350 6351 // Force declaration of implicit members so they can inherit the attribute. 6352 ForceDeclarationOfImplicitMembers(Class); 6353 6354 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't 6355 // seem to be true in practice? 6356 6357 for (Decl *Member : Class->decls()) { 6358 VarDecl *VD = dyn_cast<VarDecl>(Member); 6359 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); 6360 6361 // Only methods and static fields inherit the attributes. 6362 if (!VD && !MD) 6363 continue; 6364 6365 if (MD) { 6366 // Don't process deleted methods. 6367 if (MD->isDeleted()) 6368 continue; 6369 6370 if (MD->isInlined()) { 6371 // MinGW does not import or export inline methods. But do it for 6372 // template instantiations. 6373 if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6374 TSK != TSK_ExplicitInstantiationDeclaration && 6375 TSK != TSK_ExplicitInstantiationDefinition) 6376 continue; 6377 6378 // MSVC versions before 2015 don't export the move assignment operators 6379 // and move constructor, so don't attempt to import/export them if 6380 // we have a definition. 6381 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD); 6382 if ((MD->isMoveAssignmentOperator() || 6383 (Ctor && Ctor->isMoveConstructor())) && 6384 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) 6385 continue; 6386 6387 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign 6388 // operator is exported anyway. 6389 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6390 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial()) 6391 continue; 6392 } 6393 } 6394 6395 // Don't apply dllimport attributes to static data members of class template 6396 // instantiations when the attribute is propagated from a derived class. 6397 if (VD && PropagatedImport) 6398 continue; 6399 6400 if (!cast<NamedDecl>(Member)->isExternallyVisible()) 6401 continue; 6402 6403 if (!getDLLAttr(Member)) { 6404 InheritableAttr *NewAttr = nullptr; 6405 6406 // Do not export/import inline function when -fno-dllexport-inlines is 6407 // passed. But add attribute for later local static var check. 6408 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && 6409 TSK != TSK_ExplicitInstantiationDeclaration && 6410 TSK != TSK_ExplicitInstantiationDefinition) { 6411 if (ClassExported) { 6412 NewAttr = ::new (getASTContext()) 6413 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr); 6414 } else { 6415 NewAttr = ::new (getASTContext()) 6416 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr); 6417 } 6418 } else { 6419 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6420 } 6421 6422 NewAttr->setInherited(true); 6423 Member->addAttr(NewAttr); 6424 6425 if (MD) { 6426 // Propagate DLLAttr to friend re-declarations of MD that have already 6427 // been constructed. 6428 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; 6429 FD = FD->getPreviousDecl()) { 6430 if (FD->getFriendObjectKind() == Decl::FOK_None) 6431 continue; 6432 assert(!getDLLAttr(FD) && 6433 "friend re-decl should not already have a DLLAttr"); 6434 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6435 NewAttr->setInherited(true); 6436 FD->addAttr(NewAttr); 6437 } 6438 } 6439 } 6440 } 6441 6442 if (ClassExported) 6443 DelayedDllExportClasses.push_back(Class); 6444 } 6445 6446 /// Perform propagation of DLL attributes from a derived class to a 6447 /// templated base class for MS compatibility. 6448 void Sema::propagateDLLAttrToBaseClassTemplate( 6449 CXXRecordDecl *Class, Attr *ClassAttr, 6450 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { 6451 if (getDLLAttr( 6452 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { 6453 // If the base class template has a DLL attribute, don't try to change it. 6454 return; 6455 } 6456 6457 auto TSK = BaseTemplateSpec->getSpecializationKind(); 6458 if (!getDLLAttr(BaseTemplateSpec) && 6459 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || 6460 TSK == TSK_ImplicitInstantiation)) { 6461 // The template hasn't been instantiated yet (or it has, but only as an 6462 // explicit instantiation declaration or implicit instantiation, which means 6463 // we haven't codegenned any members yet), so propagate the attribute. 6464 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6465 NewAttr->setInherited(true); 6466 BaseTemplateSpec->addAttr(NewAttr); 6467 6468 // If this was an import, mark that we propagated it from a derived class to 6469 // a base class template specialization. 6470 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr)) 6471 ImportAttr->setPropagatedToBaseTemplate(); 6472 6473 // If the template is already instantiated, checkDLLAttributeRedeclaration() 6474 // needs to be run again to work see the new attribute. Otherwise this will 6475 // get run whenever the template is instantiated. 6476 if (TSK != TSK_Undeclared) 6477 checkClassLevelDLLAttribute(BaseTemplateSpec); 6478 6479 return; 6480 } 6481 6482 if (getDLLAttr(BaseTemplateSpec)) { 6483 // The template has already been specialized or instantiated with an 6484 // attribute, explicitly or through propagation. We should not try to change 6485 // it. 6486 return; 6487 } 6488 6489 // The template was previously instantiated or explicitly specialized without 6490 // a dll attribute, It's too late for us to add an attribute, so warn that 6491 // this is unsupported. 6492 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) 6493 << BaseTemplateSpec->isExplicitSpecialization(); 6494 Diag(ClassAttr->getLocation(), diag::note_attribute); 6495 if (BaseTemplateSpec->isExplicitSpecialization()) { 6496 Diag(BaseTemplateSpec->getLocation(), 6497 diag::note_template_class_explicit_specialization_was_here) 6498 << BaseTemplateSpec; 6499 } else { 6500 Diag(BaseTemplateSpec->getPointOfInstantiation(), 6501 diag::note_template_class_instantiation_was_here) 6502 << BaseTemplateSpec; 6503 } 6504 } 6505 6506 /// Determine the kind of defaulting that would be done for a given function. 6507 /// 6508 /// If the function is both a default constructor and a copy / move constructor 6509 /// (due to having a default argument for the first parameter), this picks 6510 /// CXXDefaultConstructor. 6511 /// 6512 /// FIXME: Check that case is properly handled by all callers. 6513 Sema::DefaultedFunctionKind 6514 Sema::getDefaultedFunctionKind(const FunctionDecl *FD) { 6515 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 6516 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { 6517 if (Ctor->isDefaultConstructor()) 6518 return Sema::CXXDefaultConstructor; 6519 6520 if (Ctor->isCopyConstructor()) 6521 return Sema::CXXCopyConstructor; 6522 6523 if (Ctor->isMoveConstructor()) 6524 return Sema::CXXMoveConstructor; 6525 } 6526 6527 if (MD->isCopyAssignmentOperator()) 6528 return Sema::CXXCopyAssignment; 6529 6530 if (MD->isMoveAssignmentOperator()) 6531 return Sema::CXXMoveAssignment; 6532 6533 if (isa<CXXDestructorDecl>(FD)) 6534 return Sema::CXXDestructor; 6535 } 6536 6537 switch (FD->getDeclName().getCXXOverloadedOperator()) { 6538 case OO_EqualEqual: 6539 return DefaultedComparisonKind::Equal; 6540 6541 case OO_ExclaimEqual: 6542 return DefaultedComparisonKind::NotEqual; 6543 6544 case OO_Spaceship: 6545 // No point allowing this if <=> doesn't exist in the current language mode. 6546 if (!getLangOpts().CPlusPlus20) 6547 break; 6548 return DefaultedComparisonKind::ThreeWay; 6549 6550 case OO_Less: 6551 case OO_LessEqual: 6552 case OO_Greater: 6553 case OO_GreaterEqual: 6554 // No point allowing this if <=> doesn't exist in the current language mode. 6555 if (!getLangOpts().CPlusPlus20) 6556 break; 6557 return DefaultedComparisonKind::Relational; 6558 6559 default: 6560 break; 6561 } 6562 6563 // Not defaultable. 6564 return DefaultedFunctionKind(); 6565 } 6566 6567 static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD, 6568 SourceLocation DefaultLoc) { 6569 Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD); 6570 if (DFK.isComparison()) 6571 return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison()); 6572 6573 switch (DFK.asSpecialMember()) { 6574 case Sema::CXXDefaultConstructor: 6575 S.DefineImplicitDefaultConstructor(DefaultLoc, 6576 cast<CXXConstructorDecl>(FD)); 6577 break; 6578 case Sema::CXXCopyConstructor: 6579 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6580 break; 6581 case Sema::CXXCopyAssignment: 6582 S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6583 break; 6584 case Sema::CXXDestructor: 6585 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD)); 6586 break; 6587 case Sema::CXXMoveConstructor: 6588 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6589 break; 6590 case Sema::CXXMoveAssignment: 6591 S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6592 break; 6593 case Sema::CXXInvalid: 6594 llvm_unreachable("Invalid special member."); 6595 } 6596 } 6597 6598 /// Determine whether a type is permitted to be passed or returned in 6599 /// registers, per C++ [class.temporary]p3. 6600 static bool canPassInRegisters(Sema &S, CXXRecordDecl *D, 6601 TargetInfo::CallingConvKind CCK) { 6602 if (D->isDependentType() || D->isInvalidDecl()) 6603 return false; 6604 6605 // Clang <= 4 used the pre-C++11 rule, which ignores move operations. 6606 // The PS4 platform ABI follows the behavior of Clang 3.2. 6607 if (CCK == TargetInfo::CCK_ClangABI4OrPS4) 6608 return !D->hasNonTrivialDestructorForCall() && 6609 !D->hasNonTrivialCopyConstructorForCall(); 6610 6611 if (CCK == TargetInfo::CCK_MicrosoftWin64) { 6612 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false; 6613 bool DtorIsTrivialForCall = false; 6614 6615 // If a class has at least one non-deleted, trivial copy constructor, it 6616 // is passed according to the C ABI. Otherwise, it is passed indirectly. 6617 // 6618 // Note: This permits classes with non-trivial copy or move ctors to be 6619 // passed in registers, so long as they *also* have a trivial copy ctor, 6620 // which is non-conforming. 6621 if (D->needsImplicitCopyConstructor()) { 6622 if (!D->defaultedCopyConstructorIsDeleted()) { 6623 if (D->hasTrivialCopyConstructor()) 6624 CopyCtorIsTrivial = true; 6625 if (D->hasTrivialCopyConstructorForCall()) 6626 CopyCtorIsTrivialForCall = true; 6627 } 6628 } else { 6629 for (const CXXConstructorDecl *CD : D->ctors()) { 6630 if (CD->isCopyConstructor() && !CD->isDeleted()) { 6631 if (CD->isTrivial()) 6632 CopyCtorIsTrivial = true; 6633 if (CD->isTrivialForCall()) 6634 CopyCtorIsTrivialForCall = true; 6635 } 6636 } 6637 } 6638 6639 if (D->needsImplicitDestructor()) { 6640 if (!D->defaultedDestructorIsDeleted() && 6641 D->hasTrivialDestructorForCall()) 6642 DtorIsTrivialForCall = true; 6643 } else if (const auto *DD = D->getDestructor()) { 6644 if (!DD->isDeleted() && DD->isTrivialForCall()) 6645 DtorIsTrivialForCall = true; 6646 } 6647 6648 // If the copy ctor and dtor are both trivial-for-calls, pass direct. 6649 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall) 6650 return true; 6651 6652 // If a class has a destructor, we'd really like to pass it indirectly 6653 // because it allows us to elide copies. Unfortunately, MSVC makes that 6654 // impossible for small types, which it will pass in a single register or 6655 // stack slot. Most objects with dtors are large-ish, so handle that early. 6656 // We can't call out all large objects as being indirect because there are 6657 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate 6658 // how we pass large POD types. 6659 6660 // Note: This permits small classes with nontrivial destructors to be 6661 // passed in registers, which is non-conforming. 6662 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); 6663 uint64_t TypeSize = isAArch64 ? 128 : 64; 6664 6665 if (CopyCtorIsTrivial && 6666 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize) 6667 return true; 6668 return false; 6669 } 6670 6671 // Per C++ [class.temporary]p3, the relevant condition is: 6672 // each copy constructor, move constructor, and destructor of X is 6673 // either trivial or deleted, and X has at least one non-deleted copy 6674 // or move constructor 6675 bool HasNonDeletedCopyOrMove = false; 6676 6677 if (D->needsImplicitCopyConstructor() && 6678 !D->defaultedCopyConstructorIsDeleted()) { 6679 if (!D->hasTrivialCopyConstructorForCall()) 6680 return false; 6681 HasNonDeletedCopyOrMove = true; 6682 } 6683 6684 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() && 6685 !D->defaultedMoveConstructorIsDeleted()) { 6686 if (!D->hasTrivialMoveConstructorForCall()) 6687 return false; 6688 HasNonDeletedCopyOrMove = true; 6689 } 6690 6691 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() && 6692 !D->hasTrivialDestructorForCall()) 6693 return false; 6694 6695 for (const CXXMethodDecl *MD : D->methods()) { 6696 if (MD->isDeleted() || MD->isIneligibleOrNotSelected()) 6697 continue; 6698 6699 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6700 if (CD && CD->isCopyOrMoveConstructor()) 6701 HasNonDeletedCopyOrMove = true; 6702 else if (!isa<CXXDestructorDecl>(MD)) 6703 continue; 6704 6705 if (!MD->isTrivialForCall()) 6706 return false; 6707 } 6708 6709 return HasNonDeletedCopyOrMove; 6710 } 6711 6712 /// Report an error regarding overriding, along with any relevant 6713 /// overridden methods. 6714 /// 6715 /// \param DiagID the primary error to report. 6716 /// \param MD the overriding method. 6717 static bool 6718 ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD, 6719 llvm::function_ref<bool(const CXXMethodDecl *)> Report) { 6720 bool IssuedDiagnostic = false; 6721 for (const CXXMethodDecl *O : MD->overridden_methods()) { 6722 if (Report(O)) { 6723 if (!IssuedDiagnostic) { 6724 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 6725 IssuedDiagnostic = true; 6726 } 6727 S.Diag(O->getLocation(), diag::note_overridden_virtual_function); 6728 } 6729 } 6730 return IssuedDiagnostic; 6731 } 6732 6733 /// Perform semantic checks on a class definition that has been 6734 /// completing, introducing implicitly-declared members, checking for 6735 /// abstract types, etc. 6736 /// 6737 /// \param S The scope in which the class was parsed. Null if we didn't just 6738 /// parse a class definition. 6739 /// \param Record The completed class. 6740 void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) { 6741 if (!Record) 6742 return; 6743 6744 if (Record->isAbstract() && !Record->isInvalidDecl()) { 6745 AbstractUsageInfo Info(*this, Record); 6746 CheckAbstractClassUsage(Info, Record); 6747 } 6748 6749 // If this is not an aggregate type and has no user-declared constructor, 6750 // complain about any non-static data members of reference or const scalar 6751 // type, since they will never get initializers. 6752 if (!Record->isInvalidDecl() && !Record->isDependentType() && 6753 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && 6754 !Record->isLambda()) { 6755 bool Complained = false; 6756 for (const auto *F : Record->fields()) { 6757 if (F->hasInClassInitializer() || F->isUnnamedBitfield()) 6758 continue; 6759 6760 if (F->getType()->isReferenceType() || 6761 (F->getType().isConstQualified() && F->getType()->isScalarType())) { 6762 if (!Complained) { 6763 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) 6764 << Record->getTagKind() << Record; 6765 Complained = true; 6766 } 6767 6768 Diag(F->getLocation(), diag::note_refconst_member_not_initialized) 6769 << F->getType()->isReferenceType() 6770 << F->getDeclName(); 6771 } 6772 } 6773 } 6774 6775 if (Record->getIdentifier()) { 6776 // C++ [class.mem]p13: 6777 // If T is the name of a class, then each of the following shall have a 6778 // name different from T: 6779 // - every member of every anonymous union that is a member of class T. 6780 // 6781 // C++ [class.mem]p14: 6782 // In addition, if class T has a user-declared constructor (12.1), every 6783 // non-static data member of class T shall have a name different from T. 6784 DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); 6785 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; 6786 ++I) { 6787 NamedDecl *D = (*I)->getUnderlyingDecl(); 6788 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) && 6789 Record->hasUserDeclaredConstructor()) || 6790 isa<IndirectFieldDecl>(D)) { 6791 Diag((*I)->getLocation(), diag::err_member_name_of_class) 6792 << D->getDeclName(); 6793 break; 6794 } 6795 } 6796 } 6797 6798 // Warn if the class has virtual methods but non-virtual public destructor. 6799 if (Record->isPolymorphic() && !Record->isDependentType()) { 6800 CXXDestructorDecl *dtor = Record->getDestructor(); 6801 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && 6802 !Record->hasAttr<FinalAttr>()) 6803 Diag(dtor ? dtor->getLocation() : Record->getLocation(), 6804 diag::warn_non_virtual_dtor) << Context.getRecordType(Record); 6805 } 6806 6807 if (Record->isAbstract()) { 6808 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) { 6809 Diag(Record->getLocation(), diag::warn_abstract_final_class) 6810 << FA->isSpelledAsSealed(); 6811 DiagnoseAbstractType(Record); 6812 } 6813 } 6814 6815 // Warn if the class has a final destructor but is not itself marked final. 6816 if (!Record->hasAttr<FinalAttr>()) { 6817 if (const CXXDestructorDecl *dtor = Record->getDestructor()) { 6818 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) { 6819 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class) 6820 << FA->isSpelledAsSealed() 6821 << FixItHint::CreateInsertion( 6822 getLocForEndOfToken(Record->getLocation()), 6823 (FA->isSpelledAsSealed() ? " sealed" : " final")); 6824 Diag(Record->getLocation(), 6825 diag::note_final_dtor_non_final_class_silence) 6826 << Context.getRecordType(Record) << FA->isSpelledAsSealed(); 6827 } 6828 } 6829 } 6830 6831 // See if trivial_abi has to be dropped. 6832 if (Record->hasAttr<TrivialABIAttr>()) 6833 checkIllFormedTrivialABIStruct(*Record); 6834 6835 // Set HasTrivialSpecialMemberForCall if the record has attribute 6836 // "trivial_abi". 6837 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>(); 6838 6839 if (HasTrivialABI) 6840 Record->setHasTrivialSpecialMemberForCall(); 6841 6842 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=). 6843 // We check these last because they can depend on the properties of the 6844 // primary comparison functions (==, <=>). 6845 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons; 6846 6847 // Perform checks that can't be done until we know all the properties of a 6848 // member function (whether it's defaulted, deleted, virtual, overriding, 6849 // ...). 6850 auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) { 6851 // A static function cannot override anything. 6852 if (MD->getStorageClass() == SC_Static) { 6853 if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD, 6854 [](const CXXMethodDecl *) { return true; })) 6855 return; 6856 } 6857 6858 // A deleted function cannot override a non-deleted function and vice 6859 // versa. 6860 if (ReportOverrides(*this, 6861 MD->isDeleted() ? diag::err_deleted_override 6862 : diag::err_non_deleted_override, 6863 MD, [&](const CXXMethodDecl *V) { 6864 return MD->isDeleted() != V->isDeleted(); 6865 })) { 6866 if (MD->isDefaulted() && MD->isDeleted()) 6867 // Explain why this defaulted function was deleted. 6868 DiagnoseDeletedDefaultedFunction(MD); 6869 return; 6870 } 6871 6872 // A consteval function cannot override a non-consteval function and vice 6873 // versa. 6874 if (ReportOverrides(*this, 6875 MD->isConsteval() ? diag::err_consteval_override 6876 : diag::err_non_consteval_override, 6877 MD, [&](const CXXMethodDecl *V) { 6878 return MD->isConsteval() != V->isConsteval(); 6879 })) { 6880 if (MD->isDefaulted() && MD->isDeleted()) 6881 // Explain why this defaulted function was deleted. 6882 DiagnoseDeletedDefaultedFunction(MD); 6883 return; 6884 } 6885 }; 6886 6887 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool { 6888 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted()) 6889 return false; 6890 6891 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 6892 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual || 6893 DFK.asComparison() == DefaultedComparisonKind::Relational) { 6894 DefaultedSecondaryComparisons.push_back(FD); 6895 return true; 6896 } 6897 6898 CheckExplicitlyDefaultedFunction(S, FD); 6899 return false; 6900 }; 6901 6902 auto CompleteMemberFunction = [&](CXXMethodDecl *M) { 6903 // Check whether the explicitly-defaulted members are valid. 6904 bool Incomplete = CheckForDefaultedFunction(M); 6905 6906 // Skip the rest of the checks for a member of a dependent class. 6907 if (Record->isDependentType()) 6908 return; 6909 6910 // For an explicitly defaulted or deleted special member, we defer 6911 // determining triviality until the class is complete. That time is now! 6912 CXXSpecialMember CSM = getSpecialMember(M); 6913 if (!M->isImplicit() && !M->isUserProvided()) { 6914 if (CSM != CXXInvalid) { 6915 M->setTrivial(SpecialMemberIsTrivial(M, CSM)); 6916 // Inform the class that we've finished declaring this member. 6917 Record->finishedDefaultedOrDeletedMember(M); 6918 M->setTrivialForCall( 6919 HasTrivialABI || 6920 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI)); 6921 Record->setTrivialForCallFlags(M); 6922 } 6923 } 6924 6925 // Set triviality for the purpose of calls if this is a user-provided 6926 // copy/move constructor or destructor. 6927 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor || 6928 CSM == CXXDestructor) && M->isUserProvided()) { 6929 M->setTrivialForCall(HasTrivialABI); 6930 Record->setTrivialForCallFlags(M); 6931 } 6932 6933 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() && 6934 M->hasAttr<DLLExportAttr>()) { 6935 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6936 M->isTrivial() && 6937 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor || 6938 CSM == CXXDestructor)) 6939 M->dropAttr<DLLExportAttr>(); 6940 6941 if (M->hasAttr<DLLExportAttr>()) { 6942 // Define after any fields with in-class initializers have been parsed. 6943 DelayedDllExportMemberFunctions.push_back(M); 6944 } 6945 } 6946 6947 // Define defaulted constexpr virtual functions that override a base class 6948 // function right away. 6949 // FIXME: We can defer doing this until the vtable is marked as used. 6950 if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods()) 6951 DefineDefaultedFunction(*this, M, M->getLocation()); 6952 6953 if (!Incomplete) 6954 CheckCompletedMemberFunction(M); 6955 }; 6956 6957 // Check the destructor before any other member function. We need to 6958 // determine whether it's trivial in order to determine whether the claas 6959 // type is a literal type, which is a prerequisite for determining whether 6960 // other special member functions are valid and whether they're implicitly 6961 // 'constexpr'. 6962 if (CXXDestructorDecl *Dtor = Record->getDestructor()) 6963 CompleteMemberFunction(Dtor); 6964 6965 bool HasMethodWithOverrideControl = false, 6966 HasOverridingMethodWithoutOverrideControl = false; 6967 for (auto *D : Record->decls()) { 6968 if (auto *M = dyn_cast<CXXMethodDecl>(D)) { 6969 // FIXME: We could do this check for dependent types with non-dependent 6970 // bases. 6971 if (!Record->isDependentType()) { 6972 // See if a method overloads virtual methods in a base 6973 // class without overriding any. 6974 if (!M->isStatic()) 6975 DiagnoseHiddenVirtualMethods(M); 6976 if (M->hasAttr<OverrideAttr>()) 6977 HasMethodWithOverrideControl = true; 6978 else if (M->size_overridden_methods() > 0) 6979 HasOverridingMethodWithoutOverrideControl = true; 6980 } 6981 6982 if (!isa<CXXDestructorDecl>(M)) 6983 CompleteMemberFunction(M); 6984 } else if (auto *F = dyn_cast<FriendDecl>(D)) { 6985 CheckForDefaultedFunction( 6986 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl())); 6987 } 6988 } 6989 6990 if (HasOverridingMethodWithoutOverrideControl) { 6991 bool HasInconsistentOverrideControl = HasMethodWithOverrideControl; 6992 for (auto *M : Record->methods()) 6993 DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl); 6994 } 6995 6996 // Check the defaulted secondary comparisons after any other member functions. 6997 for (FunctionDecl *FD : DefaultedSecondaryComparisons) { 6998 CheckExplicitlyDefaultedFunction(S, FD); 6999 7000 // If this is a member function, we deferred checking it until now. 7001 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) 7002 CheckCompletedMemberFunction(MD); 7003 } 7004 7005 // ms_struct is a request to use the same ABI rules as MSVC. Check 7006 // whether this class uses any C++ features that are implemented 7007 // completely differently in MSVC, and if so, emit a diagnostic. 7008 // That diagnostic defaults to an error, but we allow projects to 7009 // map it down to a warning (or ignore it). It's a fairly common 7010 // practice among users of the ms_struct pragma to mass-annotate 7011 // headers, sweeping up a bunch of types that the project doesn't 7012 // really rely on MSVC-compatible layout for. We must therefore 7013 // support "ms_struct except for C++ stuff" as a secondary ABI. 7014 // Don't emit this diagnostic if the feature was enabled as a 7015 // language option (as opposed to via a pragma or attribute), as 7016 // the option -mms-bitfields otherwise essentially makes it impossible 7017 // to build C++ code, unless this diagnostic is turned off. 7018 if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields && 7019 (Record->isPolymorphic() || Record->getNumBases())) { 7020 Diag(Record->getLocation(), diag::warn_cxx_ms_struct); 7021 } 7022 7023 checkClassLevelDLLAttribute(Record); 7024 checkClassLevelCodeSegAttribute(Record); 7025 7026 bool ClangABICompat4 = 7027 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4; 7028 TargetInfo::CallingConvKind CCK = 7029 Context.getTargetInfo().getCallingConvKind(ClangABICompat4); 7030 bool CanPass = canPassInRegisters(*this, Record, CCK); 7031 7032 // Do not change ArgPassingRestrictions if it has already been set to 7033 // APK_CanNeverPassInRegs. 7034 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs) 7035 Record->setArgPassingRestrictions(CanPass 7036 ? RecordDecl::APK_CanPassInRegs 7037 : RecordDecl::APK_CannotPassInRegs); 7038 7039 // If canPassInRegisters returns true despite the record having a non-trivial 7040 // destructor, the record is destructed in the callee. This happens only when 7041 // the record or one of its subobjects has a field annotated with trivial_abi 7042 // or a field qualified with ObjC __strong/__weak. 7043 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee()) 7044 Record->setParamDestroyedInCallee(true); 7045 else if (Record->hasNonTrivialDestructor()) 7046 Record->setParamDestroyedInCallee(CanPass); 7047 7048 if (getLangOpts().ForceEmitVTables) { 7049 // If we want to emit all the vtables, we need to mark it as used. This 7050 // is especially required for cases like vtable assumption loads. 7051 MarkVTableUsed(Record->getInnerLocStart(), Record); 7052 } 7053 7054 if (getLangOpts().CUDA) { 7055 if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) 7056 checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record); 7057 else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>()) 7058 checkCUDADeviceBuiltinTextureClassTemplate(*this, Record); 7059 } 7060 } 7061 7062 /// Look up the special member function that would be called by a special 7063 /// member function for a subobject of class type. 7064 /// 7065 /// \param Class The class type of the subobject. 7066 /// \param CSM The kind of special member function. 7067 /// \param FieldQuals If the subobject is a field, its cv-qualifiers. 7068 /// \param ConstRHS True if this is a copy operation with a const object 7069 /// on its RHS, that is, if the argument to the outer special member 7070 /// function is 'const' and this is not a field marked 'mutable'. 7071 static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember( 7072 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM, 7073 unsigned FieldQuals, bool ConstRHS) { 7074 unsigned LHSQuals = 0; 7075 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment) 7076 LHSQuals = FieldQuals; 7077 7078 unsigned RHSQuals = FieldQuals; 7079 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor) 7080 RHSQuals = 0; 7081 else if (ConstRHS) 7082 RHSQuals |= Qualifiers::Const; 7083 7084 return S.LookupSpecialMember(Class, CSM, 7085 RHSQuals & Qualifiers::Const, 7086 RHSQuals & Qualifiers::Volatile, 7087 false, 7088 LHSQuals & Qualifiers::Const, 7089 LHSQuals & Qualifiers::Volatile); 7090 } 7091 7092 class Sema::InheritedConstructorInfo { 7093 Sema &S; 7094 SourceLocation UseLoc; 7095 7096 /// A mapping from the base classes through which the constructor was 7097 /// inherited to the using shadow declaration in that base class (or a null 7098 /// pointer if the constructor was declared in that base class). 7099 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *> 7100 InheritedFromBases; 7101 7102 public: 7103 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc, 7104 ConstructorUsingShadowDecl *Shadow) 7105 : S(S), UseLoc(UseLoc) { 7106 bool DiagnosedMultipleConstructedBases = false; 7107 CXXRecordDecl *ConstructedBase = nullptr; 7108 BaseUsingDecl *ConstructedBaseIntroducer = nullptr; 7109 7110 // Find the set of such base class subobjects and check that there's a 7111 // unique constructed subobject. 7112 for (auto *D : Shadow->redecls()) { 7113 auto *DShadow = cast<ConstructorUsingShadowDecl>(D); 7114 auto *DNominatedBase = DShadow->getNominatedBaseClass(); 7115 auto *DConstructedBase = DShadow->getConstructedBaseClass(); 7116 7117 InheritedFromBases.insert( 7118 std::make_pair(DNominatedBase->getCanonicalDecl(), 7119 DShadow->getNominatedBaseClassShadowDecl())); 7120 if (DShadow->constructsVirtualBase()) 7121 InheritedFromBases.insert( 7122 std::make_pair(DConstructedBase->getCanonicalDecl(), 7123 DShadow->getConstructedBaseClassShadowDecl())); 7124 else 7125 assert(DNominatedBase == DConstructedBase); 7126 7127 // [class.inhctor.init]p2: 7128 // If the constructor was inherited from multiple base class subobjects 7129 // of type B, the program is ill-formed. 7130 if (!ConstructedBase) { 7131 ConstructedBase = DConstructedBase; 7132 ConstructedBaseIntroducer = D->getIntroducer(); 7133 } else if (ConstructedBase != DConstructedBase && 7134 !Shadow->isInvalidDecl()) { 7135 if (!DiagnosedMultipleConstructedBases) { 7136 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor) 7137 << Shadow->getTargetDecl(); 7138 S.Diag(ConstructedBaseIntroducer->getLocation(), 7139 diag::note_ambiguous_inherited_constructor_using) 7140 << ConstructedBase; 7141 DiagnosedMultipleConstructedBases = true; 7142 } 7143 S.Diag(D->getIntroducer()->getLocation(), 7144 diag::note_ambiguous_inherited_constructor_using) 7145 << DConstructedBase; 7146 } 7147 } 7148 7149 if (DiagnosedMultipleConstructedBases) 7150 Shadow->setInvalidDecl(); 7151 } 7152 7153 /// Find the constructor to use for inherited construction of a base class, 7154 /// and whether that base class constructor inherits the constructor from a 7155 /// virtual base class (in which case it won't actually invoke it). 7156 std::pair<CXXConstructorDecl *, bool> 7157 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const { 7158 auto It = InheritedFromBases.find(Base->getCanonicalDecl()); 7159 if (It == InheritedFromBases.end()) 7160 return std::make_pair(nullptr, false); 7161 7162 // This is an intermediary class. 7163 if (It->second) 7164 return std::make_pair( 7165 S.findInheritingConstructor(UseLoc, Ctor, It->second), 7166 It->second->constructsVirtualBase()); 7167 7168 // This is the base class from which the constructor was inherited. 7169 return std::make_pair(Ctor, false); 7170 } 7171 }; 7172 7173 /// Is the special member function which would be selected to perform the 7174 /// specified operation on the specified class type a constexpr constructor? 7175 static bool 7176 specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl, 7177 Sema::CXXSpecialMember CSM, unsigned Quals, 7178 bool ConstRHS, 7179 CXXConstructorDecl *InheritedCtor = nullptr, 7180 Sema::InheritedConstructorInfo *Inherited = nullptr) { 7181 // If we're inheriting a constructor, see if we need to call it for this base 7182 // class. 7183 if (InheritedCtor) { 7184 assert(CSM == Sema::CXXDefaultConstructor); 7185 auto BaseCtor = 7186 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first; 7187 if (BaseCtor) 7188 return BaseCtor->isConstexpr(); 7189 } 7190 7191 if (CSM == Sema::CXXDefaultConstructor) 7192 return ClassDecl->hasConstexprDefaultConstructor(); 7193 if (CSM == Sema::CXXDestructor) 7194 return ClassDecl->hasConstexprDestructor(); 7195 7196 Sema::SpecialMemberOverloadResult SMOR = 7197 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS); 7198 if (!SMOR.getMethod()) 7199 // A constructor we wouldn't select can't be "involved in initializing" 7200 // anything. 7201 return true; 7202 return SMOR.getMethod()->isConstexpr(); 7203 } 7204 7205 /// Determine whether the specified special member function would be constexpr 7206 /// if it were implicitly defined. 7207 static bool defaultedSpecialMemberIsConstexpr( 7208 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM, 7209 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr, 7210 Sema::InheritedConstructorInfo *Inherited = nullptr) { 7211 if (!S.getLangOpts().CPlusPlus11) 7212 return false; 7213 7214 // C++11 [dcl.constexpr]p4: 7215 // In the definition of a constexpr constructor [...] 7216 bool Ctor = true; 7217 switch (CSM) { 7218 case Sema::CXXDefaultConstructor: 7219 if (Inherited) 7220 break; 7221 // Since default constructor lookup is essentially trivial (and cannot 7222 // involve, for instance, template instantiation), we compute whether a 7223 // defaulted default constructor is constexpr directly within CXXRecordDecl. 7224 // 7225 // This is important for performance; we need to know whether the default 7226 // constructor is constexpr to determine whether the type is a literal type. 7227 return ClassDecl->defaultedDefaultConstructorIsConstexpr(); 7228 7229 case Sema::CXXCopyConstructor: 7230 case Sema::CXXMoveConstructor: 7231 // For copy or move constructors, we need to perform overload resolution. 7232 break; 7233 7234 case Sema::CXXCopyAssignment: 7235 case Sema::CXXMoveAssignment: 7236 if (!S.getLangOpts().CPlusPlus14) 7237 return false; 7238 // In C++1y, we need to perform overload resolution. 7239 Ctor = false; 7240 break; 7241 7242 case Sema::CXXDestructor: 7243 return ClassDecl->defaultedDestructorIsConstexpr(); 7244 7245 case Sema::CXXInvalid: 7246 return false; 7247 } 7248 7249 // -- if the class is a non-empty union, or for each non-empty anonymous 7250 // union member of a non-union class, exactly one non-static data member 7251 // shall be initialized; [DR1359] 7252 // 7253 // If we squint, this is guaranteed, since exactly one non-static data member 7254 // will be initialized (if the constructor isn't deleted), we just don't know 7255 // which one. 7256 if (Ctor && ClassDecl->isUnion()) 7257 return CSM == Sema::CXXDefaultConstructor 7258 ? ClassDecl->hasInClassInitializer() || 7259 !ClassDecl->hasVariantMembers() 7260 : true; 7261 7262 // -- the class shall not have any virtual base classes; 7263 if (Ctor && ClassDecl->getNumVBases()) 7264 return false; 7265 7266 // C++1y [class.copy]p26: 7267 // -- [the class] is a literal type, and 7268 if (!Ctor && !ClassDecl->isLiteral()) 7269 return false; 7270 7271 // -- every constructor involved in initializing [...] base class 7272 // sub-objects shall be a constexpr constructor; 7273 // -- the assignment operator selected to copy/move each direct base 7274 // class is a constexpr function, and 7275 for (const auto &B : ClassDecl->bases()) { 7276 const RecordType *BaseType = B.getType()->getAs<RecordType>(); 7277 if (!BaseType) continue; 7278 7279 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 7280 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg, 7281 InheritedCtor, Inherited)) 7282 return false; 7283 } 7284 7285 // -- every constructor involved in initializing non-static data members 7286 // [...] shall be a constexpr constructor; 7287 // -- every non-static data member and base class sub-object shall be 7288 // initialized 7289 // -- for each non-static data member of X that is of class type (or array 7290 // thereof), the assignment operator selected to copy/move that member is 7291 // a constexpr function 7292 for (const auto *F : ClassDecl->fields()) { 7293 if (F->isInvalidDecl()) 7294 continue; 7295 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer()) 7296 continue; 7297 QualType BaseType = S.Context.getBaseElementType(F->getType()); 7298 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 7299 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 7300 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, 7301 BaseType.getCVRQualifiers(), 7302 ConstArg && !F->isMutable())) 7303 return false; 7304 } else if (CSM == Sema::CXXDefaultConstructor) { 7305 return false; 7306 } 7307 } 7308 7309 // All OK, it's constexpr! 7310 return true; 7311 } 7312 7313 namespace { 7314 /// RAII object to register a defaulted function as having its exception 7315 /// specification computed. 7316 struct ComputingExceptionSpec { 7317 Sema &S; 7318 7319 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc) 7320 : S(S) { 7321 Sema::CodeSynthesisContext Ctx; 7322 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation; 7323 Ctx.PointOfInstantiation = Loc; 7324 Ctx.Entity = FD; 7325 S.pushCodeSynthesisContext(Ctx); 7326 } 7327 ~ComputingExceptionSpec() { 7328 S.popCodeSynthesisContext(); 7329 } 7330 }; 7331 } 7332 7333 static Sema::ImplicitExceptionSpecification 7334 ComputeDefaultedSpecialMemberExceptionSpec( 7335 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 7336 Sema::InheritedConstructorInfo *ICI); 7337 7338 static Sema::ImplicitExceptionSpecification 7339 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 7340 FunctionDecl *FD, 7341 Sema::DefaultedComparisonKind DCK); 7342 7343 static Sema::ImplicitExceptionSpecification 7344 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) { 7345 auto DFK = S.getDefaultedFunctionKind(FD); 7346 if (DFK.isSpecialMember()) 7347 return ComputeDefaultedSpecialMemberExceptionSpec( 7348 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr); 7349 if (DFK.isComparison()) 7350 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD, 7351 DFK.asComparison()); 7352 7353 auto *CD = cast<CXXConstructorDecl>(FD); 7354 assert(CD->getInheritedConstructor() && 7355 "only defaulted functions and inherited constructors have implicit " 7356 "exception specs"); 7357 Sema::InheritedConstructorInfo ICI( 7358 S, Loc, CD->getInheritedConstructor().getShadowDecl()); 7359 return ComputeDefaultedSpecialMemberExceptionSpec( 7360 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI); 7361 } 7362 7363 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, 7364 CXXMethodDecl *MD) { 7365 FunctionProtoType::ExtProtoInfo EPI; 7366 7367 // Build an exception specification pointing back at this member. 7368 EPI.ExceptionSpec.Type = EST_Unevaluated; 7369 EPI.ExceptionSpec.SourceDecl = MD; 7370 7371 // Set the calling convention to the default for C++ instance methods. 7372 EPI.ExtInfo = EPI.ExtInfo.withCallingConv( 7373 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, 7374 /*IsCXXMethod=*/true)); 7375 return EPI; 7376 } 7377 7378 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) { 7379 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 7380 if (FPT->getExceptionSpecType() != EST_Unevaluated) 7381 return; 7382 7383 // Evaluate the exception specification. 7384 auto IES = computeImplicitExceptionSpec(*this, Loc, FD); 7385 auto ESI = IES.getExceptionSpec(); 7386 7387 // Update the type of the special member to use it. 7388 UpdateExceptionSpec(FD, ESI); 7389 } 7390 7391 void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) { 7392 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted"); 7393 7394 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 7395 if (!DefKind) { 7396 assert(FD->getDeclContext()->isDependentContext()); 7397 return; 7398 } 7399 7400 if (DefKind.isComparison()) 7401 UnusedPrivateFields.clear(); 7402 7403 if (DefKind.isSpecialMember() 7404 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD), 7405 DefKind.asSpecialMember()) 7406 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison())) 7407 FD->setInvalidDecl(); 7408 } 7409 7410 bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, 7411 CXXSpecialMember CSM) { 7412 CXXRecordDecl *RD = MD->getParent(); 7413 7414 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid && 7415 "not an explicitly-defaulted special member"); 7416 7417 // Defer all checking for special members of a dependent type. 7418 if (RD->isDependentType()) 7419 return false; 7420 7421 // Whether this was the first-declared instance of the constructor. 7422 // This affects whether we implicitly add an exception spec and constexpr. 7423 bool First = MD == MD->getCanonicalDecl(); 7424 7425 bool HadError = false; 7426 7427 // C++11 [dcl.fct.def.default]p1: 7428 // A function that is explicitly defaulted shall 7429 // -- be a special member function [...] (checked elsewhere), 7430 // -- have the same type (except for ref-qualifiers, and except that a 7431 // copy operation can take a non-const reference) as an implicit 7432 // declaration, and 7433 // -- not have default arguments. 7434 // C++2a changes the second bullet to instead delete the function if it's 7435 // defaulted on its first declaration, unless it's "an assignment operator, 7436 // and its return type differs or its parameter type is not a reference". 7437 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First; 7438 bool ShouldDeleteForTypeMismatch = false; 7439 unsigned ExpectedParams = 1; 7440 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor) 7441 ExpectedParams = 0; 7442 if (MD->getNumParams() != ExpectedParams) { 7443 // This checks for default arguments: a copy or move constructor with a 7444 // default argument is classified as a default constructor, and assignment 7445 // operations and destructors can't have default arguments. 7446 Diag(MD->getLocation(), diag::err_defaulted_special_member_params) 7447 << CSM << MD->getSourceRange(); 7448 HadError = true; 7449 } else if (MD->isVariadic()) { 7450 if (DeleteOnTypeMismatch) 7451 ShouldDeleteForTypeMismatch = true; 7452 else { 7453 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) 7454 << CSM << MD->getSourceRange(); 7455 HadError = true; 7456 } 7457 } 7458 7459 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>(); 7460 7461 bool CanHaveConstParam = false; 7462 if (CSM == CXXCopyConstructor) 7463 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); 7464 else if (CSM == CXXCopyAssignment) 7465 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); 7466 7467 QualType ReturnType = Context.VoidTy; 7468 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) { 7469 // Check for return type matching. 7470 ReturnType = Type->getReturnType(); 7471 7472 QualType DeclType = Context.getTypeDeclType(RD); 7473 DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace()); 7474 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType); 7475 7476 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) { 7477 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) 7478 << (CSM == CXXMoveAssignment) << ExpectedReturnType; 7479 HadError = true; 7480 } 7481 7482 // A defaulted special member cannot have cv-qualifiers. 7483 if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) { 7484 if (DeleteOnTypeMismatch) 7485 ShouldDeleteForTypeMismatch = true; 7486 else { 7487 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) 7488 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14; 7489 HadError = true; 7490 } 7491 } 7492 } 7493 7494 // Check for parameter type matching. 7495 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType(); 7496 bool HasConstParam = false; 7497 if (ExpectedParams && ArgType->isReferenceType()) { 7498 // Argument must be reference to possibly-const T. 7499 QualType ReferentType = ArgType->getPointeeType(); 7500 HasConstParam = ReferentType.isConstQualified(); 7501 7502 if (ReferentType.isVolatileQualified()) { 7503 if (DeleteOnTypeMismatch) 7504 ShouldDeleteForTypeMismatch = true; 7505 else { 7506 Diag(MD->getLocation(), 7507 diag::err_defaulted_special_member_volatile_param) << CSM; 7508 HadError = true; 7509 } 7510 } 7511 7512 if (HasConstParam && !CanHaveConstParam) { 7513 if (DeleteOnTypeMismatch) 7514 ShouldDeleteForTypeMismatch = true; 7515 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) { 7516 Diag(MD->getLocation(), 7517 diag::err_defaulted_special_member_copy_const_param) 7518 << (CSM == CXXCopyAssignment); 7519 // FIXME: Explain why this special member can't be const. 7520 HadError = true; 7521 } else { 7522 Diag(MD->getLocation(), 7523 diag::err_defaulted_special_member_move_const_param) 7524 << (CSM == CXXMoveAssignment); 7525 HadError = true; 7526 } 7527 } 7528 } else if (ExpectedParams) { 7529 // A copy assignment operator can take its argument by value, but a 7530 // defaulted one cannot. 7531 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument"); 7532 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); 7533 HadError = true; 7534 } 7535 7536 // C++11 [dcl.fct.def.default]p2: 7537 // An explicitly-defaulted function may be declared constexpr only if it 7538 // would have been implicitly declared as constexpr, 7539 // Do not apply this rule to members of class templates, since core issue 1358 7540 // makes such functions always instantiate to constexpr functions. For 7541 // functions which cannot be constexpr (for non-constructors in C++11 and for 7542 // destructors in C++14 and C++17), this is checked elsewhere. 7543 // 7544 // FIXME: This should not apply if the member is deleted. 7545 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM, 7546 HasConstParam); 7547 if ((getLangOpts().CPlusPlus20 || 7548 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD) 7549 : isa<CXXConstructorDecl>(MD))) && 7550 MD->isConstexpr() && !Constexpr && 7551 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { 7552 Diag(MD->getBeginLoc(), MD->isConsteval() 7553 ? diag::err_incorrect_defaulted_consteval 7554 : diag::err_incorrect_defaulted_constexpr) 7555 << CSM; 7556 // FIXME: Explain why the special member can't be constexpr. 7557 HadError = true; 7558 } 7559 7560 if (First) { 7561 // C++2a [dcl.fct.def.default]p3: 7562 // If a function is explicitly defaulted on its first declaration, it is 7563 // implicitly considered to be constexpr if the implicit declaration 7564 // would be. 7565 MD->setConstexprKind(Constexpr ? (MD->isConsteval() 7566 ? ConstexprSpecKind::Consteval 7567 : ConstexprSpecKind::Constexpr) 7568 : ConstexprSpecKind::Unspecified); 7569 7570 if (!Type->hasExceptionSpec()) { 7571 // C++2a [except.spec]p3: 7572 // If a declaration of a function does not have a noexcept-specifier 7573 // [and] is defaulted on its first declaration, [...] the exception 7574 // specification is as specified below 7575 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); 7576 EPI.ExceptionSpec.Type = EST_Unevaluated; 7577 EPI.ExceptionSpec.SourceDecl = MD; 7578 MD->setType(Context.getFunctionType(ReturnType, 7579 llvm::makeArrayRef(&ArgType, 7580 ExpectedParams), 7581 EPI)); 7582 } 7583 } 7584 7585 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) { 7586 if (First) { 7587 SetDeclDeleted(MD, MD->getLocation()); 7588 if (!inTemplateInstantiation() && !HadError) { 7589 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM; 7590 if (ShouldDeleteForTypeMismatch) { 7591 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM; 7592 } else { 7593 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 7594 } 7595 } 7596 if (ShouldDeleteForTypeMismatch && !HadError) { 7597 Diag(MD->getLocation(), 7598 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM; 7599 } 7600 } else { 7601 // C++11 [dcl.fct.def.default]p4: 7602 // [For a] user-provided explicitly-defaulted function [...] if such a 7603 // function is implicitly defined as deleted, the program is ill-formed. 7604 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM; 7605 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl"); 7606 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 7607 HadError = true; 7608 } 7609 } 7610 7611 return HadError; 7612 } 7613 7614 namespace { 7615 /// Helper class for building and checking a defaulted comparison. 7616 /// 7617 /// Defaulted functions are built in two phases: 7618 /// 7619 /// * First, the set of operations that the function will perform are 7620 /// identified, and some of them are checked. If any of the checked 7621 /// operations is invalid in certain ways, the comparison function is 7622 /// defined as deleted and no body is built. 7623 /// * Then, if the function is not defined as deleted, the body is built. 7624 /// 7625 /// This is accomplished by performing two visitation steps over the eventual 7626 /// body of the function. 7627 template<typename Derived, typename ResultList, typename Result, 7628 typename Subobject> 7629 class DefaultedComparisonVisitor { 7630 public: 7631 using DefaultedComparisonKind = Sema::DefaultedComparisonKind; 7632 7633 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7634 DefaultedComparisonKind DCK) 7635 : S(S), RD(RD), FD(FD), DCK(DCK) { 7636 if (auto *Info = FD->getDefaultedFunctionInfo()) { 7637 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an 7638 // UnresolvedSet to avoid this copy. 7639 Fns.assign(Info->getUnqualifiedLookups().begin(), 7640 Info->getUnqualifiedLookups().end()); 7641 } 7642 } 7643 7644 ResultList visit() { 7645 // The type of an lvalue naming a parameter of this function. 7646 QualType ParamLvalType = 7647 FD->getParamDecl(0)->getType().getNonReferenceType(); 7648 7649 ResultList Results; 7650 7651 switch (DCK) { 7652 case DefaultedComparisonKind::None: 7653 llvm_unreachable("not a defaulted comparison"); 7654 7655 case DefaultedComparisonKind::Equal: 7656 case DefaultedComparisonKind::ThreeWay: 7657 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers()); 7658 return Results; 7659 7660 case DefaultedComparisonKind::NotEqual: 7661 case DefaultedComparisonKind::Relational: 7662 Results.add(getDerived().visitExpandedSubobject( 7663 ParamLvalType, getDerived().getCompleteObject())); 7664 return Results; 7665 } 7666 llvm_unreachable(""); 7667 } 7668 7669 protected: 7670 Derived &getDerived() { return static_cast<Derived&>(*this); } 7671 7672 /// Visit the expanded list of subobjects of the given type, as specified in 7673 /// C++2a [class.compare.default]. 7674 /// 7675 /// \return \c true if the ResultList object said we're done, \c false if not. 7676 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record, 7677 Qualifiers Quals) { 7678 // C++2a [class.compare.default]p4: 7679 // The direct base class subobjects of C 7680 for (CXXBaseSpecifier &Base : Record->bases()) 7681 if (Results.add(getDerived().visitSubobject( 7682 S.Context.getQualifiedType(Base.getType(), Quals), 7683 getDerived().getBase(&Base)))) 7684 return true; 7685 7686 // followed by the non-static data members of C 7687 for (FieldDecl *Field : Record->fields()) { 7688 // Recursively expand anonymous structs. 7689 if (Field->isAnonymousStructOrUnion()) { 7690 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(), 7691 Quals)) 7692 return true; 7693 continue; 7694 } 7695 7696 // Figure out the type of an lvalue denoting this field. 7697 Qualifiers FieldQuals = Quals; 7698 if (Field->isMutable()) 7699 FieldQuals.removeConst(); 7700 QualType FieldType = 7701 S.Context.getQualifiedType(Field->getType(), FieldQuals); 7702 7703 if (Results.add(getDerived().visitSubobject( 7704 FieldType, getDerived().getField(Field)))) 7705 return true; 7706 } 7707 7708 // form a list of subobjects. 7709 return false; 7710 } 7711 7712 Result visitSubobject(QualType Type, Subobject Subobj) { 7713 // In that list, any subobject of array type is recursively expanded 7714 const ArrayType *AT = S.Context.getAsArrayType(Type); 7715 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT)) 7716 return getDerived().visitSubobjectArray(CAT->getElementType(), 7717 CAT->getSize(), Subobj); 7718 return getDerived().visitExpandedSubobject(Type, Subobj); 7719 } 7720 7721 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size, 7722 Subobject Subobj) { 7723 return getDerived().visitSubobject(Type, Subobj); 7724 } 7725 7726 protected: 7727 Sema &S; 7728 CXXRecordDecl *RD; 7729 FunctionDecl *FD; 7730 DefaultedComparisonKind DCK; 7731 UnresolvedSet<16> Fns; 7732 }; 7733 7734 /// Information about a defaulted comparison, as determined by 7735 /// DefaultedComparisonAnalyzer. 7736 struct DefaultedComparisonInfo { 7737 bool Deleted = false; 7738 bool Constexpr = true; 7739 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering; 7740 7741 static DefaultedComparisonInfo deleted() { 7742 DefaultedComparisonInfo Deleted; 7743 Deleted.Deleted = true; 7744 return Deleted; 7745 } 7746 7747 bool add(const DefaultedComparisonInfo &R) { 7748 Deleted |= R.Deleted; 7749 Constexpr &= R.Constexpr; 7750 Category = commonComparisonType(Category, R.Category); 7751 return Deleted; 7752 } 7753 }; 7754 7755 /// An element in the expanded list of subobjects of a defaulted comparison, as 7756 /// specified in C++2a [class.compare.default]p4. 7757 struct DefaultedComparisonSubobject { 7758 enum { CompleteObject, Member, Base } Kind; 7759 NamedDecl *Decl; 7760 SourceLocation Loc; 7761 }; 7762 7763 /// A visitor over the notional body of a defaulted comparison that determines 7764 /// whether that body would be deleted or constexpr. 7765 class DefaultedComparisonAnalyzer 7766 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer, 7767 DefaultedComparisonInfo, 7768 DefaultedComparisonInfo, 7769 DefaultedComparisonSubobject> { 7770 public: 7771 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr }; 7772 7773 private: 7774 DiagnosticKind Diagnose; 7775 7776 public: 7777 using Base = DefaultedComparisonVisitor; 7778 using Result = DefaultedComparisonInfo; 7779 using Subobject = DefaultedComparisonSubobject; 7780 7781 friend Base; 7782 7783 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7784 DefaultedComparisonKind DCK, 7785 DiagnosticKind Diagnose = NoDiagnostics) 7786 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {} 7787 7788 Result visit() { 7789 if ((DCK == DefaultedComparisonKind::Equal || 7790 DCK == DefaultedComparisonKind::ThreeWay) && 7791 RD->hasVariantMembers()) { 7792 // C++2a [class.compare.default]p2 [P2002R0]: 7793 // A defaulted comparison operator function for class C is defined as 7794 // deleted if [...] C has variant members. 7795 if (Diagnose == ExplainDeleted) { 7796 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union) 7797 << FD << RD->isUnion() << RD; 7798 } 7799 return Result::deleted(); 7800 } 7801 7802 return Base::visit(); 7803 } 7804 7805 private: 7806 Subobject getCompleteObject() { 7807 return Subobject{Subobject::CompleteObject, RD, FD->getLocation()}; 7808 } 7809 7810 Subobject getBase(CXXBaseSpecifier *Base) { 7811 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(), 7812 Base->getBaseTypeLoc()}; 7813 } 7814 7815 Subobject getField(FieldDecl *Field) { 7816 return Subobject{Subobject::Member, Field, Field->getLocation()}; 7817 } 7818 7819 Result visitExpandedSubobject(QualType Type, Subobject Subobj) { 7820 // C++2a [class.compare.default]p2 [P2002R0]: 7821 // A defaulted <=> or == operator function for class C is defined as 7822 // deleted if any non-static data member of C is of reference type 7823 if (Type->isReferenceType()) { 7824 if (Diagnose == ExplainDeleted) { 7825 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member) 7826 << FD << RD; 7827 } 7828 return Result::deleted(); 7829 } 7830 7831 // [...] Let xi be an lvalue denoting the ith element [...] 7832 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue); 7833 Expr *Args[] = {&Xi, &Xi}; 7834 7835 // All operators start by trying to apply that same operator recursively. 7836 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 7837 assert(OO != OO_None && "not an overloaded operator!"); 7838 return visitBinaryOperator(OO, Args, Subobj); 7839 } 7840 7841 Result 7842 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args, 7843 Subobject Subobj, 7844 OverloadCandidateSet *SpaceshipCandidates = nullptr) { 7845 // Note that there is no need to consider rewritten candidates here if 7846 // we've already found there is no viable 'operator<=>' candidate (and are 7847 // considering synthesizing a '<=>' from '==' and '<'). 7848 OverloadCandidateSet CandidateSet( 7849 FD->getLocation(), OverloadCandidateSet::CSK_Operator, 7850 OverloadCandidateSet::OperatorRewriteInfo( 7851 OO, /*AllowRewrittenCandidates=*/!SpaceshipCandidates)); 7852 7853 /// C++2a [class.compare.default]p1 [P2002R0]: 7854 /// [...] the defaulted function itself is never a candidate for overload 7855 /// resolution [...] 7856 CandidateSet.exclude(FD); 7857 7858 if (Args[0]->getType()->isOverloadableType()) 7859 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args); 7860 else 7861 // FIXME: We determine whether this is a valid expression by checking to 7862 // see if there's a viable builtin operator candidate for it. That isn't 7863 // really what the rules ask us to do, but should give the right results. 7864 S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet); 7865 7866 Result R; 7867 7868 OverloadCandidateSet::iterator Best; 7869 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) { 7870 case OR_Success: { 7871 // C++2a [class.compare.secondary]p2 [P2002R0]: 7872 // The operator function [...] is defined as deleted if [...] the 7873 // candidate selected by overload resolution is not a rewritten 7874 // candidate. 7875 if ((DCK == DefaultedComparisonKind::NotEqual || 7876 DCK == DefaultedComparisonKind::Relational) && 7877 !Best->RewriteKind) { 7878 if (Diagnose == ExplainDeleted) { 7879 if (Best->Function) { 7880 S.Diag(Best->Function->getLocation(), 7881 diag::note_defaulted_comparison_not_rewritten_callee) 7882 << FD; 7883 } else { 7884 assert(Best->Conversions.size() == 2 && 7885 Best->Conversions[0].isUserDefined() && 7886 "non-user-defined conversion from class to built-in " 7887 "comparison"); 7888 S.Diag(Best->Conversions[0] 7889 .UserDefined.FoundConversionFunction.getDecl() 7890 ->getLocation(), 7891 diag::note_defaulted_comparison_not_rewritten_conversion) 7892 << FD; 7893 } 7894 } 7895 return Result::deleted(); 7896 } 7897 7898 // Throughout C++2a [class.compare]: if overload resolution does not 7899 // result in a usable function, the candidate function is defined as 7900 // deleted. This requires that we selected an accessible function. 7901 // 7902 // Note that this only considers the access of the function when named 7903 // within the type of the subobject, and not the access path for any 7904 // derived-to-base conversion. 7905 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl(); 7906 if (ArgClass && Best->FoundDecl.getDecl() && 7907 Best->FoundDecl.getDecl()->isCXXClassMember()) { 7908 QualType ObjectType = Subobj.Kind == Subobject::Member 7909 ? Args[0]->getType() 7910 : S.Context.getRecordType(RD); 7911 if (!S.isMemberAccessibleForDeletion( 7912 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc, 7913 Diagnose == ExplainDeleted 7914 ? S.PDiag(diag::note_defaulted_comparison_inaccessible) 7915 << FD << Subobj.Kind << Subobj.Decl 7916 : S.PDiag())) 7917 return Result::deleted(); 7918 } 7919 7920 bool NeedsDeducing = 7921 OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType(); 7922 7923 if (FunctionDecl *BestFD = Best->Function) { 7924 // C++2a [class.compare.default]p3 [P2002R0]: 7925 // A defaulted comparison function is constexpr-compatible if 7926 // [...] no overlod resolution performed [...] results in a 7927 // non-constexpr function. 7928 assert(!BestFD->isDeleted() && "wrong overload resolution result"); 7929 // If it's not constexpr, explain why not. 7930 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) { 7931 if (Subobj.Kind != Subobject::CompleteObject) 7932 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr) 7933 << Subobj.Kind << Subobj.Decl; 7934 S.Diag(BestFD->getLocation(), 7935 diag::note_defaulted_comparison_not_constexpr_here); 7936 // Bail out after explaining; we don't want any more notes. 7937 return Result::deleted(); 7938 } 7939 R.Constexpr &= BestFD->isConstexpr(); 7940 7941 if (NeedsDeducing) { 7942 // If any callee has an undeduced return type, deduce it now. 7943 // FIXME: It's not clear how a failure here should be handled. For 7944 // now, we produce an eager diagnostic, because that is forward 7945 // compatible with most (all?) other reasonable options. 7946 if (BestFD->getReturnType()->isUndeducedType() && 7947 S.DeduceReturnType(BestFD, FD->getLocation(), 7948 /*Diagnose=*/false)) { 7949 // Don't produce a duplicate error when asked to explain why the 7950 // comparison is deleted: we diagnosed that when initially checking 7951 // the defaulted operator. 7952 if (Diagnose == NoDiagnostics) { 7953 S.Diag( 7954 FD->getLocation(), 7955 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto) 7956 << Subobj.Kind << Subobj.Decl; 7957 S.Diag( 7958 Subobj.Loc, 7959 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto) 7960 << Subobj.Kind << Subobj.Decl; 7961 S.Diag(BestFD->getLocation(), 7962 diag::note_defaulted_comparison_cannot_deduce_callee) 7963 << Subobj.Kind << Subobj.Decl; 7964 } 7965 return Result::deleted(); 7966 } 7967 auto *Info = S.Context.CompCategories.lookupInfoForType( 7968 BestFD->getCallResultType()); 7969 if (!Info) { 7970 if (Diagnose == ExplainDeleted) { 7971 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce) 7972 << Subobj.Kind << Subobj.Decl 7973 << BestFD->getCallResultType().withoutLocalFastQualifiers(); 7974 S.Diag(BestFD->getLocation(), 7975 diag::note_defaulted_comparison_cannot_deduce_callee) 7976 << Subobj.Kind << Subobj.Decl; 7977 } 7978 return Result::deleted(); 7979 } 7980 R.Category = Info->Kind; 7981 } 7982 } else { 7983 QualType T = Best->BuiltinParamTypes[0]; 7984 assert(T == Best->BuiltinParamTypes[1] && 7985 "builtin comparison for different types?"); 7986 assert(Best->BuiltinParamTypes[2].isNull() && 7987 "invalid builtin comparison"); 7988 7989 if (NeedsDeducing) { 7990 Optional<ComparisonCategoryType> Cat = 7991 getComparisonCategoryForBuiltinCmp(T); 7992 assert(Cat && "no category for builtin comparison?"); 7993 R.Category = *Cat; 7994 } 7995 } 7996 7997 // Note that we might be rewriting to a different operator. That call is 7998 // not considered until we come to actually build the comparison function. 7999 break; 8000 } 8001 8002 case OR_Ambiguous: 8003 if (Diagnose == ExplainDeleted) { 8004 unsigned Kind = 0; 8005 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship) 8006 Kind = OO == OO_EqualEqual ? 1 : 2; 8007 CandidateSet.NoteCandidates( 8008 PartialDiagnosticAt( 8009 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous) 8010 << FD << Kind << Subobj.Kind << Subobj.Decl), 8011 S, OCD_AmbiguousCandidates, Args); 8012 } 8013 R = Result::deleted(); 8014 break; 8015 8016 case OR_Deleted: 8017 if (Diagnose == ExplainDeleted) { 8018 if ((DCK == DefaultedComparisonKind::NotEqual || 8019 DCK == DefaultedComparisonKind::Relational) && 8020 !Best->RewriteKind) { 8021 S.Diag(Best->Function->getLocation(), 8022 diag::note_defaulted_comparison_not_rewritten_callee) 8023 << FD; 8024 } else { 8025 S.Diag(Subobj.Loc, 8026 diag::note_defaulted_comparison_calls_deleted) 8027 << FD << Subobj.Kind << Subobj.Decl; 8028 S.NoteDeletedFunction(Best->Function); 8029 } 8030 } 8031 R = Result::deleted(); 8032 break; 8033 8034 case OR_No_Viable_Function: 8035 // If there's no usable candidate, we're done unless we can rewrite a 8036 // '<=>' in terms of '==' and '<'. 8037 if (OO == OO_Spaceship && 8038 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) { 8039 // For any kind of comparison category return type, we need a usable 8040 // '==' and a usable '<'. 8041 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj, 8042 &CandidateSet))) 8043 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet)); 8044 break; 8045 } 8046 8047 if (Diagnose == ExplainDeleted) { 8048 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function) 8049 << FD << (OO == OO_ExclaimEqual) << Subobj.Kind << Subobj.Decl; 8050 8051 // For a three-way comparison, list both the candidates for the 8052 // original operator and the candidates for the synthesized operator. 8053 if (SpaceshipCandidates) { 8054 SpaceshipCandidates->NoteCandidates( 8055 S, Args, 8056 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates, 8057 Args, FD->getLocation())); 8058 S.Diag(Subobj.Loc, 8059 diag::note_defaulted_comparison_no_viable_function_synthesized) 8060 << (OO == OO_EqualEqual ? 0 : 1); 8061 } 8062 8063 CandidateSet.NoteCandidates( 8064 S, Args, 8065 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args, 8066 FD->getLocation())); 8067 } 8068 R = Result::deleted(); 8069 break; 8070 } 8071 8072 return R; 8073 } 8074 }; 8075 8076 /// A list of statements. 8077 struct StmtListResult { 8078 bool IsInvalid = false; 8079 llvm::SmallVector<Stmt*, 16> Stmts; 8080 8081 bool add(const StmtResult &S) { 8082 IsInvalid |= S.isInvalid(); 8083 if (IsInvalid) 8084 return true; 8085 Stmts.push_back(S.get()); 8086 return false; 8087 } 8088 }; 8089 8090 /// A visitor over the notional body of a defaulted comparison that synthesizes 8091 /// the actual body. 8092 class DefaultedComparisonSynthesizer 8093 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer, 8094 StmtListResult, StmtResult, 8095 std::pair<ExprResult, ExprResult>> { 8096 SourceLocation Loc; 8097 unsigned ArrayDepth = 0; 8098 8099 public: 8100 using Base = DefaultedComparisonVisitor; 8101 using ExprPair = std::pair<ExprResult, ExprResult>; 8102 8103 friend Base; 8104 8105 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 8106 DefaultedComparisonKind DCK, 8107 SourceLocation BodyLoc) 8108 : Base(S, RD, FD, DCK), Loc(BodyLoc) {} 8109 8110 /// Build a suitable function body for this defaulted comparison operator. 8111 StmtResult build() { 8112 Sema::CompoundScopeRAII CompoundScope(S); 8113 8114 StmtListResult Stmts = visit(); 8115 if (Stmts.IsInvalid) 8116 return StmtError(); 8117 8118 ExprResult RetVal; 8119 switch (DCK) { 8120 case DefaultedComparisonKind::None: 8121 llvm_unreachable("not a defaulted comparison"); 8122 8123 case DefaultedComparisonKind::Equal: { 8124 // C++2a [class.eq]p3: 8125 // [...] compar[e] the corresponding elements [...] until the first 8126 // index i where xi == yi yields [...] false. If no such index exists, 8127 // V is true. Otherwise, V is false. 8128 // 8129 // Join the comparisons with '&&'s and return the result. Use a right 8130 // fold (traversing the conditions right-to-left), because that 8131 // short-circuits more naturally. 8132 auto OldStmts = std::move(Stmts.Stmts); 8133 Stmts.Stmts.clear(); 8134 ExprResult CmpSoFar; 8135 // Finish a particular comparison chain. 8136 auto FinishCmp = [&] { 8137 if (Expr *Prior = CmpSoFar.get()) { 8138 // Convert the last expression to 'return ...;' 8139 if (RetVal.isUnset() && Stmts.Stmts.empty()) 8140 RetVal = CmpSoFar; 8141 // Convert any prior comparison to 'if (!(...)) return false;' 8142 else if (Stmts.add(buildIfNotCondReturnFalse(Prior))) 8143 return true; 8144 CmpSoFar = ExprResult(); 8145 } 8146 return false; 8147 }; 8148 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) { 8149 Expr *E = dyn_cast<Expr>(EAsStmt); 8150 if (!E) { 8151 // Found an array comparison. 8152 if (FinishCmp() || Stmts.add(EAsStmt)) 8153 return StmtError(); 8154 continue; 8155 } 8156 8157 if (CmpSoFar.isUnset()) { 8158 CmpSoFar = E; 8159 continue; 8160 } 8161 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get()); 8162 if (CmpSoFar.isInvalid()) 8163 return StmtError(); 8164 } 8165 if (FinishCmp()) 8166 return StmtError(); 8167 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end()); 8168 // If no such index exists, V is true. 8169 if (RetVal.isUnset()) 8170 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true); 8171 break; 8172 } 8173 8174 case DefaultedComparisonKind::ThreeWay: { 8175 // Per C++2a [class.spaceship]p3, as a fallback add: 8176 // return static_cast<R>(std::strong_ordering::equal); 8177 QualType StrongOrdering = S.CheckComparisonCategoryType( 8178 ComparisonCategoryType::StrongOrdering, Loc, 8179 Sema::ComparisonCategoryUsage::DefaultedOperator); 8180 if (StrongOrdering.isNull()) 8181 return StmtError(); 8182 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering) 8183 .getValueInfo(ComparisonCategoryResult::Equal) 8184 ->VD; 8185 RetVal = getDecl(EqualVD); 8186 if (RetVal.isInvalid()) 8187 return StmtError(); 8188 RetVal = buildStaticCastToR(RetVal.get()); 8189 break; 8190 } 8191 8192 case DefaultedComparisonKind::NotEqual: 8193 case DefaultedComparisonKind::Relational: 8194 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val()); 8195 break; 8196 } 8197 8198 // Build the final return statement. 8199 if (RetVal.isInvalid()) 8200 return StmtError(); 8201 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get()); 8202 if (ReturnStmt.isInvalid()) 8203 return StmtError(); 8204 Stmts.Stmts.push_back(ReturnStmt.get()); 8205 8206 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false); 8207 } 8208 8209 private: 8210 ExprResult getDecl(ValueDecl *VD) { 8211 return S.BuildDeclarationNameExpr( 8212 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD); 8213 } 8214 8215 ExprResult getParam(unsigned I) { 8216 ParmVarDecl *PD = FD->getParamDecl(I); 8217 return getDecl(PD); 8218 } 8219 8220 ExprPair getCompleteObject() { 8221 unsigned Param = 0; 8222 ExprResult LHS; 8223 if (isa<CXXMethodDecl>(FD)) { 8224 // LHS is '*this'. 8225 LHS = S.ActOnCXXThis(Loc); 8226 if (!LHS.isInvalid()) 8227 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get()); 8228 } else { 8229 LHS = getParam(Param++); 8230 } 8231 ExprResult RHS = getParam(Param++); 8232 assert(Param == FD->getNumParams()); 8233 return {LHS, RHS}; 8234 } 8235 8236 ExprPair getBase(CXXBaseSpecifier *Base) { 8237 ExprPair Obj = getCompleteObject(); 8238 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8239 return {ExprError(), ExprError()}; 8240 CXXCastPath Path = {Base}; 8241 return {S.ImpCastExprToType(Obj.first.get(), Base->getType(), 8242 CK_DerivedToBase, VK_LValue, &Path), 8243 S.ImpCastExprToType(Obj.second.get(), Base->getType(), 8244 CK_DerivedToBase, VK_LValue, &Path)}; 8245 } 8246 8247 ExprPair getField(FieldDecl *Field) { 8248 ExprPair Obj = getCompleteObject(); 8249 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8250 return {ExprError(), ExprError()}; 8251 8252 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess()); 8253 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc); 8254 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc, 8255 CXXScopeSpec(), Field, Found, NameInfo), 8256 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc, 8257 CXXScopeSpec(), Field, Found, NameInfo)}; 8258 } 8259 8260 // FIXME: When expanding a subobject, register a note in the code synthesis 8261 // stack to say which subobject we're comparing. 8262 8263 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) { 8264 if (Cond.isInvalid()) 8265 return StmtError(); 8266 8267 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get()); 8268 if (NotCond.isInvalid()) 8269 return StmtError(); 8270 8271 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false); 8272 assert(!False.isInvalid() && "should never fail"); 8273 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get()); 8274 if (ReturnFalse.isInvalid()) 8275 return StmtError(); 8276 8277 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, nullptr, 8278 S.ActOnCondition(nullptr, Loc, NotCond.get(), 8279 Sema::ConditionKind::Boolean), 8280 Loc, ReturnFalse.get(), SourceLocation(), nullptr); 8281 } 8282 8283 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size, 8284 ExprPair Subobj) { 8285 QualType SizeType = S.Context.getSizeType(); 8286 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType)); 8287 8288 // Build 'size_t i$n = 0'. 8289 IdentifierInfo *IterationVarName = nullptr; 8290 { 8291 SmallString<8> Str; 8292 llvm::raw_svector_ostream OS(Str); 8293 OS << "i" << ArrayDepth; 8294 IterationVarName = &S.Context.Idents.get(OS.str()); 8295 } 8296 VarDecl *IterationVar = VarDecl::Create( 8297 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType, 8298 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None); 8299 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 8300 IterationVar->setInit( 8301 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 8302 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc); 8303 8304 auto IterRef = [&] { 8305 ExprResult Ref = S.BuildDeclarationNameExpr( 8306 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc), 8307 IterationVar); 8308 assert(!Ref.isInvalid() && "can't reference our own variable?"); 8309 return Ref.get(); 8310 }; 8311 8312 // Build 'i$n != Size'. 8313 ExprResult Cond = S.CreateBuiltinBinOp( 8314 Loc, BO_NE, IterRef(), 8315 IntegerLiteral::Create(S.Context, Size, SizeType, Loc)); 8316 assert(!Cond.isInvalid() && "should never fail"); 8317 8318 // Build '++i$n'. 8319 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef()); 8320 assert(!Inc.isInvalid() && "should never fail"); 8321 8322 // Build 'a[i$n]' and 'b[i$n]'. 8323 auto Index = [&](ExprResult E) { 8324 if (E.isInvalid()) 8325 return ExprError(); 8326 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc); 8327 }; 8328 Subobj.first = Index(Subobj.first); 8329 Subobj.second = Index(Subobj.second); 8330 8331 // Compare the array elements. 8332 ++ArrayDepth; 8333 StmtResult Substmt = visitSubobject(Type, Subobj); 8334 --ArrayDepth; 8335 8336 if (Substmt.isInvalid()) 8337 return StmtError(); 8338 8339 // For the inner level of an 'operator==', build 'if (!cmp) return false;'. 8340 // For outer levels or for an 'operator<=>' we already have a suitable 8341 // statement that returns as necessary. 8342 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) { 8343 assert(DCK == DefaultedComparisonKind::Equal && 8344 "should have non-expression statement"); 8345 Substmt = buildIfNotCondReturnFalse(ElemCmp); 8346 if (Substmt.isInvalid()) 8347 return StmtError(); 8348 } 8349 8350 // Build 'for (...) ...' 8351 return S.ActOnForStmt(Loc, Loc, Init, 8352 S.ActOnCondition(nullptr, Loc, Cond.get(), 8353 Sema::ConditionKind::Boolean), 8354 S.MakeFullDiscardedValueExpr(Inc.get()), Loc, 8355 Substmt.get()); 8356 } 8357 8358 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) { 8359 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8360 return StmtError(); 8361 8362 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 8363 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO); 8364 ExprResult Op; 8365 if (Type->isOverloadableType()) 8366 Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(), 8367 Obj.second.get(), /*PerformADL=*/true, 8368 /*AllowRewrittenCandidates=*/true, FD); 8369 else 8370 Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get()); 8371 if (Op.isInvalid()) 8372 return StmtError(); 8373 8374 switch (DCK) { 8375 case DefaultedComparisonKind::None: 8376 llvm_unreachable("not a defaulted comparison"); 8377 8378 case DefaultedComparisonKind::Equal: 8379 // Per C++2a [class.eq]p2, each comparison is individually contextually 8380 // converted to bool. 8381 Op = S.PerformContextuallyConvertToBool(Op.get()); 8382 if (Op.isInvalid()) 8383 return StmtError(); 8384 return Op.get(); 8385 8386 case DefaultedComparisonKind::ThreeWay: { 8387 // Per C++2a [class.spaceship]p3, form: 8388 // if (R cmp = static_cast<R>(op); cmp != 0) 8389 // return cmp; 8390 QualType R = FD->getReturnType(); 8391 Op = buildStaticCastToR(Op.get()); 8392 if (Op.isInvalid()) 8393 return StmtError(); 8394 8395 // R cmp = ...; 8396 IdentifierInfo *Name = &S.Context.Idents.get("cmp"); 8397 VarDecl *VD = 8398 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R, 8399 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None); 8400 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false); 8401 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc); 8402 8403 // cmp != 0 8404 ExprResult VDRef = getDecl(VD); 8405 if (VDRef.isInvalid()) 8406 return StmtError(); 8407 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0); 8408 Expr *Zero = 8409 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc); 8410 ExprResult Comp; 8411 if (VDRef.get()->getType()->isOverloadableType()) 8412 Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true, 8413 true, FD); 8414 else 8415 Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero); 8416 if (Comp.isInvalid()) 8417 return StmtError(); 8418 Sema::ConditionResult Cond = S.ActOnCondition( 8419 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean); 8420 if (Cond.isInvalid()) 8421 return StmtError(); 8422 8423 // return cmp; 8424 VDRef = getDecl(VD); 8425 if (VDRef.isInvalid()) 8426 return StmtError(); 8427 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get()); 8428 if (ReturnStmt.isInvalid()) 8429 return StmtError(); 8430 8431 // if (...) 8432 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, InitStmt, Cond, 8433 Loc, ReturnStmt.get(), 8434 /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr); 8435 } 8436 8437 case DefaultedComparisonKind::NotEqual: 8438 case DefaultedComparisonKind::Relational: 8439 // C++2a [class.compare.secondary]p2: 8440 // Otherwise, the operator function yields x @ y. 8441 return Op.get(); 8442 } 8443 llvm_unreachable(""); 8444 } 8445 8446 /// Build "static_cast<R>(E)". 8447 ExprResult buildStaticCastToR(Expr *E) { 8448 QualType R = FD->getReturnType(); 8449 assert(!R->isUndeducedType() && "type should have been deduced already"); 8450 8451 // Don't bother forming a no-op cast in the common case. 8452 if (E->isPRValue() && S.Context.hasSameType(E->getType(), R)) 8453 return E; 8454 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast, 8455 S.Context.getTrivialTypeSourceInfo(R, Loc), E, 8456 SourceRange(Loc, Loc), SourceRange(Loc, Loc)); 8457 } 8458 }; 8459 } 8460 8461 /// Perform the unqualified lookups that might be needed to form a defaulted 8462 /// comparison function for the given operator. 8463 static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S, 8464 UnresolvedSetImpl &Operators, 8465 OverloadedOperatorKind Op) { 8466 auto Lookup = [&](OverloadedOperatorKind OO) { 8467 Self.LookupOverloadedOperatorName(OO, S, Operators); 8468 }; 8469 8470 // Every defaulted operator looks up itself. 8471 Lookup(Op); 8472 // ... and the rewritten form of itself, if any. 8473 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op)) 8474 Lookup(ExtraOp); 8475 8476 // For 'operator<=>', we also form a 'cmp != 0' expression, and might 8477 // synthesize a three-way comparison from '<' and '=='. In a dependent 8478 // context, we also need to look up '==' in case we implicitly declare a 8479 // defaulted 'operator=='. 8480 if (Op == OO_Spaceship) { 8481 Lookup(OO_ExclaimEqual); 8482 Lookup(OO_Less); 8483 Lookup(OO_EqualEqual); 8484 } 8485 } 8486 8487 bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD, 8488 DefaultedComparisonKind DCK) { 8489 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison"); 8490 8491 // Perform any unqualified lookups we're going to need to default this 8492 // function. 8493 if (S) { 8494 UnresolvedSet<32> Operators; 8495 lookupOperatorsForDefaultedComparison(*this, S, Operators, 8496 FD->getOverloadedOperator()); 8497 FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create( 8498 Context, Operators.pairs())); 8499 } 8500 8501 // C++2a [class.compare.default]p1: 8502 // A defaulted comparison operator function for some class C shall be a 8503 // non-template function declared in the member-specification of C that is 8504 // -- a non-static const member of C having one parameter of type 8505 // const C&, or 8506 // -- a friend of C having two parameters of type const C& or two 8507 // parameters of type C. 8508 8509 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()); 8510 bool IsMethod = isa<CXXMethodDecl>(FD); 8511 if (IsMethod) { 8512 auto *MD = cast<CXXMethodDecl>(FD); 8513 assert(!MD->isStatic() && "comparison function cannot be a static member"); 8514 8515 // If we're out-of-class, this is the class we're comparing. 8516 if (!RD) 8517 RD = MD->getParent(); 8518 8519 if (!MD->isConst()) { 8520 SourceLocation InsertLoc; 8521 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc()) 8522 InsertLoc = getLocForEndOfToken(Loc.getRParenLoc()); 8523 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8524 // corresponding defaulted 'operator<=>' already. 8525 if (!MD->isImplicit()) { 8526 Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const) 8527 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const"); 8528 } 8529 8530 // Add the 'const' to the type to recover. 8531 const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); 8532 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8533 EPI.TypeQuals.addConst(); 8534 MD->setType(Context.getFunctionType(FPT->getReturnType(), 8535 FPT->getParamTypes(), EPI)); 8536 } 8537 } 8538 8539 if (FD->getNumParams() != (IsMethod ? 1 : 2)) { 8540 // Let's not worry about using a variadic template pack here -- who would do 8541 // such a thing? 8542 Diag(FD->getLocation(), diag::err_defaulted_comparison_num_args) 8543 << int(IsMethod) << int(DCK); 8544 return true; 8545 } 8546 8547 const ParmVarDecl *KnownParm = nullptr; 8548 for (const ParmVarDecl *Param : FD->parameters()) { 8549 QualType ParmTy = Param->getType(); 8550 if (ParmTy->isDependentType()) 8551 continue; 8552 if (!KnownParm) { 8553 auto CTy = ParmTy; 8554 // Is it `T const &`? 8555 bool Ok = !IsMethod; 8556 QualType ExpectedTy; 8557 if (RD) 8558 ExpectedTy = Context.getRecordType(RD); 8559 if (auto *Ref = CTy->getAs<ReferenceType>()) { 8560 CTy = Ref->getPointeeType(); 8561 if (RD) 8562 ExpectedTy.addConst(); 8563 Ok = true; 8564 } 8565 8566 // Is T a class? 8567 if (!Ok) { 8568 } else if (RD) { 8569 if (!RD->isDependentType() && !Context.hasSameType(CTy, ExpectedTy)) 8570 Ok = false; 8571 } else if (auto *CRD = CTy->getAsRecordDecl()) { 8572 RD = cast<CXXRecordDecl>(CRD); 8573 } else { 8574 Ok = false; 8575 } 8576 8577 if (Ok) { 8578 KnownParm = Param; 8579 } else { 8580 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8581 // corresponding defaulted 'operator<=>' already. 8582 if (!FD->isImplicit()) { 8583 if (RD) { 8584 QualType PlainTy = Context.getRecordType(RD); 8585 QualType RefTy = 8586 Context.getLValueReferenceType(PlainTy.withConst()); 8587 Diag(FD->getLocation(), diag::err_defaulted_comparison_param) 8588 << int(DCK) << ParmTy << RefTy << int(!IsMethod) << PlainTy 8589 << Param->getSourceRange(); 8590 } else { 8591 assert(!IsMethod && "should know expected type for method"); 8592 Diag(FD->getLocation(), 8593 diag::err_defaulted_comparison_param_unknown) 8594 << int(DCK) << ParmTy << Param->getSourceRange(); 8595 } 8596 } 8597 return true; 8598 } 8599 } else if (!Context.hasSameType(KnownParm->getType(), ParmTy)) { 8600 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch) 8601 << int(DCK) << KnownParm->getType() << KnownParm->getSourceRange() 8602 << ParmTy << Param->getSourceRange(); 8603 return true; 8604 } 8605 } 8606 8607 assert(RD && "must have determined class"); 8608 if (IsMethod) { 8609 } else if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 8610 // In-class, must be a friend decl. 8611 assert(FD->getFriendObjectKind() && "expected a friend declaration"); 8612 } else { 8613 // Out of class, require the defaulted comparison to be a friend (of a 8614 // complete type). 8615 if (RequireCompleteType(FD->getLocation(), Context.getRecordType(RD), 8616 diag::err_defaulted_comparison_not_friend, int(DCK), 8617 int(1))) 8618 return true; 8619 8620 if (llvm::none_of(RD->friends(), [&](const FriendDecl *F) { 8621 return FD->getCanonicalDecl() == 8622 F->getFriendDecl()->getCanonicalDecl(); 8623 })) { 8624 Diag(FD->getLocation(), diag::err_defaulted_comparison_not_friend) 8625 << int(DCK) << int(0) << RD; 8626 Diag(RD->getCanonicalDecl()->getLocation(), diag::note_declared_at); 8627 return true; 8628 } 8629 } 8630 8631 // C++2a [class.eq]p1, [class.rel]p1: 8632 // A [defaulted comparison other than <=>] shall have a declared return 8633 // type bool. 8634 if (DCK != DefaultedComparisonKind::ThreeWay && 8635 !FD->getDeclaredReturnType()->isDependentType() && 8636 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) { 8637 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool) 8638 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy 8639 << FD->getReturnTypeSourceRange(); 8640 return true; 8641 } 8642 // C++2a [class.spaceship]p2 [P2002R0]: 8643 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise, 8644 // R shall not contain a placeholder type. 8645 if (DCK == DefaultedComparisonKind::ThreeWay && 8646 FD->getDeclaredReturnType()->getContainedDeducedType() && 8647 !Context.hasSameType(FD->getDeclaredReturnType(), 8648 Context.getAutoDeductType())) { 8649 Diag(FD->getLocation(), 8650 diag::err_defaulted_comparison_deduced_return_type_not_auto) 8651 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy 8652 << FD->getReturnTypeSourceRange(); 8653 return true; 8654 } 8655 8656 // For a defaulted function in a dependent class, defer all remaining checks 8657 // until instantiation. 8658 if (RD->isDependentType()) 8659 return false; 8660 8661 // Determine whether the function should be defined as deleted. 8662 DefaultedComparisonInfo Info = 8663 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit(); 8664 8665 bool First = FD == FD->getCanonicalDecl(); 8666 8667 // If we want to delete the function, then do so; there's nothing else to 8668 // check in that case. 8669 if (Info.Deleted) { 8670 if (!First) { 8671 // C++11 [dcl.fct.def.default]p4: 8672 // [For a] user-provided explicitly-defaulted function [...] if such a 8673 // function is implicitly defined as deleted, the program is ill-formed. 8674 // 8675 // This is really just a consequence of the general rule that you can 8676 // only delete a function on its first declaration. 8677 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes) 8678 << FD->isImplicit() << (int)DCK; 8679 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8680 DefaultedComparisonAnalyzer::ExplainDeleted) 8681 .visit(); 8682 return true; 8683 } 8684 8685 SetDeclDeleted(FD, FD->getLocation()); 8686 if (!inTemplateInstantiation() && !FD->isImplicit()) { 8687 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted) 8688 << (int)DCK; 8689 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8690 DefaultedComparisonAnalyzer::ExplainDeleted) 8691 .visit(); 8692 } 8693 return false; 8694 } 8695 8696 // C++2a [class.spaceship]p2: 8697 // The return type is deduced as the common comparison type of R0, R1, ... 8698 if (DCK == DefaultedComparisonKind::ThreeWay && 8699 FD->getDeclaredReturnType()->isUndeducedAutoType()) { 8700 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin(); 8701 if (RetLoc.isInvalid()) 8702 RetLoc = FD->getBeginLoc(); 8703 // FIXME: Should we really care whether we have the complete type and the 8704 // 'enumerator' constants here? A forward declaration seems sufficient. 8705 QualType Cat = CheckComparisonCategoryType( 8706 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator); 8707 if (Cat.isNull()) 8708 return true; 8709 Context.adjustDeducedFunctionResultType( 8710 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat)); 8711 } 8712 8713 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8714 // An explicitly-defaulted function that is not defined as deleted may be 8715 // declared constexpr or consteval only if it is constexpr-compatible. 8716 // C++2a [class.compare.default]p3 [P2002R0]: 8717 // A defaulted comparison function is constexpr-compatible if it satisfies 8718 // the requirements for a constexpr function [...] 8719 // The only relevant requirements are that the parameter and return types are 8720 // literal types. The remaining conditions are checked by the analyzer. 8721 if (FD->isConstexpr()) { 8722 if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) && 8723 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) && 8724 !Info.Constexpr) { 8725 Diag(FD->getBeginLoc(), 8726 diag::err_incorrect_defaulted_comparison_constexpr) 8727 << FD->isImplicit() << (int)DCK << FD->isConsteval(); 8728 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8729 DefaultedComparisonAnalyzer::ExplainConstexpr) 8730 .visit(); 8731 } 8732 } 8733 8734 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8735 // If a constexpr-compatible function is explicitly defaulted on its first 8736 // declaration, it is implicitly considered to be constexpr. 8737 // FIXME: Only applying this to the first declaration seems problematic, as 8738 // simple reorderings can affect the meaning of the program. 8739 if (First && !FD->isConstexpr() && Info.Constexpr) 8740 FD->setConstexprKind(ConstexprSpecKind::Constexpr); 8741 8742 // C++2a [except.spec]p3: 8743 // If a declaration of a function does not have a noexcept-specifier 8744 // [and] is defaulted on its first declaration, [...] the exception 8745 // specification is as specified below 8746 if (FD->getExceptionSpecType() == EST_None) { 8747 auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 8748 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8749 EPI.ExceptionSpec.Type = EST_Unevaluated; 8750 EPI.ExceptionSpec.SourceDecl = FD; 8751 FD->setType(Context.getFunctionType(FPT->getReturnType(), 8752 FPT->getParamTypes(), EPI)); 8753 } 8754 8755 return false; 8756 } 8757 8758 void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD, 8759 FunctionDecl *Spaceship) { 8760 Sema::CodeSynthesisContext Ctx; 8761 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison; 8762 Ctx.PointOfInstantiation = Spaceship->getEndLoc(); 8763 Ctx.Entity = Spaceship; 8764 pushCodeSynthesisContext(Ctx); 8765 8766 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship)) 8767 EqualEqual->setImplicit(); 8768 8769 popCodeSynthesisContext(); 8770 } 8771 8772 void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD, 8773 DefaultedComparisonKind DCK) { 8774 assert(FD->isDefaulted() && !FD->isDeleted() && 8775 !FD->doesThisDeclarationHaveABody()); 8776 if (FD->willHaveBody() || FD->isInvalidDecl()) 8777 return; 8778 8779 SynthesizedFunctionScope Scope(*this, FD); 8780 8781 // Add a context note for diagnostics produced after this point. 8782 Scope.addContextNote(UseLoc); 8783 8784 { 8785 // Build and set up the function body. 8786 // The first parameter has type maybe-ref-to maybe-const T, use that to get 8787 // the type of the class being compared. 8788 auto PT = FD->getParamDecl(0)->getType(); 8789 CXXRecordDecl *RD = PT.getNonReferenceType()->getAsCXXRecordDecl(); 8790 SourceLocation BodyLoc = 8791 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 8792 StmtResult Body = 8793 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build(); 8794 if (Body.isInvalid()) { 8795 FD->setInvalidDecl(); 8796 return; 8797 } 8798 FD->setBody(Body.get()); 8799 FD->markUsed(Context); 8800 } 8801 8802 // The exception specification is needed because we are defining the 8803 // function. Note that this will reuse the body we just built. 8804 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>()); 8805 8806 if (ASTMutationListener *L = getASTMutationListener()) 8807 L->CompletedImplicitDefinition(FD); 8808 } 8809 8810 static Sema::ImplicitExceptionSpecification 8811 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 8812 FunctionDecl *FD, 8813 Sema::DefaultedComparisonKind DCK) { 8814 ComputingExceptionSpec CES(S, FD, Loc); 8815 Sema::ImplicitExceptionSpecification ExceptSpec(S); 8816 8817 if (FD->isInvalidDecl()) 8818 return ExceptSpec; 8819 8820 // The common case is that we just defined the comparison function. In that 8821 // case, just look at whether the body can throw. 8822 if (FD->hasBody()) { 8823 ExceptSpec.CalledStmt(FD->getBody()); 8824 } else { 8825 // Otherwise, build a body so we can check it. This should ideally only 8826 // happen when we're not actually marking the function referenced. (This is 8827 // only really important for efficiency: we don't want to build and throw 8828 // away bodies for comparison functions more than we strictly need to.) 8829 8830 // Pretend to synthesize the function body in an unevaluated context. 8831 // Note that we can't actually just go ahead and define the function here: 8832 // we are not permitted to mark its callees as referenced. 8833 Sema::SynthesizedFunctionScope Scope(S, FD); 8834 EnterExpressionEvaluationContext Context( 8835 S, Sema::ExpressionEvaluationContext::Unevaluated); 8836 8837 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent()); 8838 SourceLocation BodyLoc = 8839 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 8840 StmtResult Body = 8841 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build(); 8842 if (!Body.isInvalid()) 8843 ExceptSpec.CalledStmt(Body.get()); 8844 8845 // FIXME: Can we hold onto this body and just transform it to potentially 8846 // evaluated when we're asked to define the function rather than rebuilding 8847 // it? Either that, or we should only build the bits of the body that we 8848 // need (the expressions, not the statements). 8849 } 8850 8851 return ExceptSpec; 8852 } 8853 8854 void Sema::CheckDelayedMemberExceptionSpecs() { 8855 decltype(DelayedOverridingExceptionSpecChecks) Overriding; 8856 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent; 8857 8858 std::swap(Overriding, DelayedOverridingExceptionSpecChecks); 8859 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks); 8860 8861 // Perform any deferred checking of exception specifications for virtual 8862 // destructors. 8863 for (auto &Check : Overriding) 8864 CheckOverridingFunctionExceptionSpec(Check.first, Check.second); 8865 8866 // Perform any deferred checking of exception specifications for befriended 8867 // special members. 8868 for (auto &Check : Equivalent) 8869 CheckEquivalentExceptionSpec(Check.second, Check.first); 8870 } 8871 8872 namespace { 8873 /// CRTP base class for visiting operations performed by a special member 8874 /// function (or inherited constructor). 8875 template<typename Derived> 8876 struct SpecialMemberVisitor { 8877 Sema &S; 8878 CXXMethodDecl *MD; 8879 Sema::CXXSpecialMember CSM; 8880 Sema::InheritedConstructorInfo *ICI; 8881 8882 // Properties of the special member, computed for convenience. 8883 bool IsConstructor = false, IsAssignment = false, ConstArg = false; 8884 8885 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 8886 Sema::InheritedConstructorInfo *ICI) 8887 : S(S), MD(MD), CSM(CSM), ICI(ICI) { 8888 switch (CSM) { 8889 case Sema::CXXDefaultConstructor: 8890 case Sema::CXXCopyConstructor: 8891 case Sema::CXXMoveConstructor: 8892 IsConstructor = true; 8893 break; 8894 case Sema::CXXCopyAssignment: 8895 case Sema::CXXMoveAssignment: 8896 IsAssignment = true; 8897 break; 8898 case Sema::CXXDestructor: 8899 break; 8900 case Sema::CXXInvalid: 8901 llvm_unreachable("invalid special member kind"); 8902 } 8903 8904 if (MD->getNumParams()) { 8905 if (const ReferenceType *RT = 8906 MD->getParamDecl(0)->getType()->getAs<ReferenceType>()) 8907 ConstArg = RT->getPointeeType().isConstQualified(); 8908 } 8909 } 8910 8911 Derived &getDerived() { return static_cast<Derived&>(*this); } 8912 8913 /// Is this a "move" special member? 8914 bool isMove() const { 8915 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment; 8916 } 8917 8918 /// Look up the corresponding special member in the given class. 8919 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class, 8920 unsigned Quals, bool IsMutable) { 8921 return lookupCallFromSpecialMember(S, Class, CSM, Quals, 8922 ConstArg && !IsMutable); 8923 } 8924 8925 /// Look up the constructor for the specified base class to see if it's 8926 /// overridden due to this being an inherited constructor. 8927 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) { 8928 if (!ICI) 8929 return {}; 8930 assert(CSM == Sema::CXXDefaultConstructor); 8931 auto *BaseCtor = 8932 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor(); 8933 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first) 8934 return MD; 8935 return {}; 8936 } 8937 8938 /// A base or member subobject. 8939 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject; 8940 8941 /// Get the location to use for a subobject in diagnostics. 8942 static SourceLocation getSubobjectLoc(Subobject Subobj) { 8943 // FIXME: For an indirect virtual base, the direct base leading to 8944 // the indirect virtual base would be a more useful choice. 8945 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>()) 8946 return B->getBaseTypeLoc(); 8947 else 8948 return Subobj.get<FieldDecl*>()->getLocation(); 8949 } 8950 8951 enum BasesToVisit { 8952 /// Visit all non-virtual (direct) bases. 8953 VisitNonVirtualBases, 8954 /// Visit all direct bases, virtual or not. 8955 VisitDirectBases, 8956 /// Visit all non-virtual bases, and all virtual bases if the class 8957 /// is not abstract. 8958 VisitPotentiallyConstructedBases, 8959 /// Visit all direct or virtual bases. 8960 VisitAllBases 8961 }; 8962 8963 // Visit the bases and members of the class. 8964 bool visit(BasesToVisit Bases) { 8965 CXXRecordDecl *RD = MD->getParent(); 8966 8967 if (Bases == VisitPotentiallyConstructedBases) 8968 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases; 8969 8970 for (auto &B : RD->bases()) 8971 if ((Bases == VisitDirectBases || !B.isVirtual()) && 8972 getDerived().visitBase(&B)) 8973 return true; 8974 8975 if (Bases == VisitAllBases) 8976 for (auto &B : RD->vbases()) 8977 if (getDerived().visitBase(&B)) 8978 return true; 8979 8980 for (auto *F : RD->fields()) 8981 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() && 8982 getDerived().visitField(F)) 8983 return true; 8984 8985 return false; 8986 } 8987 }; 8988 } 8989 8990 namespace { 8991 struct SpecialMemberDeletionInfo 8992 : SpecialMemberVisitor<SpecialMemberDeletionInfo> { 8993 bool Diagnose; 8994 8995 SourceLocation Loc; 8996 8997 bool AllFieldsAreConst; 8998 8999 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, 9000 Sema::CXXSpecialMember CSM, 9001 Sema::InheritedConstructorInfo *ICI, bool Diagnose) 9002 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose), 9003 Loc(MD->getLocation()), AllFieldsAreConst(true) {} 9004 9005 bool inUnion() const { return MD->getParent()->isUnion(); } 9006 9007 Sema::CXXSpecialMember getEffectiveCSM() { 9008 return ICI ? Sema::CXXInvalid : CSM; 9009 } 9010 9011 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType); 9012 9013 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); } 9014 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); } 9015 9016 bool shouldDeleteForBase(CXXBaseSpecifier *Base); 9017 bool shouldDeleteForField(FieldDecl *FD); 9018 bool shouldDeleteForAllConstMembers(); 9019 9020 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 9021 unsigned Quals); 9022 bool shouldDeleteForSubobjectCall(Subobject Subobj, 9023 Sema::SpecialMemberOverloadResult SMOR, 9024 bool IsDtorCallInCtor); 9025 9026 bool isAccessible(Subobject Subobj, CXXMethodDecl *D); 9027 }; 9028 } 9029 9030 /// Is the given special member inaccessible when used on the given 9031 /// sub-object. 9032 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, 9033 CXXMethodDecl *target) { 9034 /// If we're operating on a base class, the object type is the 9035 /// type of this special member. 9036 QualType objectTy; 9037 AccessSpecifier access = target->getAccess(); 9038 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) { 9039 objectTy = S.Context.getTypeDeclType(MD->getParent()); 9040 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access); 9041 9042 // If we're operating on a field, the object type is the type of the field. 9043 } else { 9044 objectTy = S.Context.getTypeDeclType(target->getParent()); 9045 } 9046 9047 return S.isMemberAccessibleForDeletion( 9048 target->getParent(), DeclAccessPair::make(target, access), objectTy); 9049 } 9050 9051 /// Check whether we should delete a special member due to the implicit 9052 /// definition containing a call to a special member of a subobject. 9053 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( 9054 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, 9055 bool IsDtorCallInCtor) { 9056 CXXMethodDecl *Decl = SMOR.getMethod(); 9057 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 9058 9059 int DiagKind = -1; 9060 9061 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) 9062 DiagKind = !Decl ? 0 : 1; 9063 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 9064 DiagKind = 2; 9065 else if (!isAccessible(Subobj, Decl)) 9066 DiagKind = 3; 9067 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && 9068 !Decl->isTrivial()) { 9069 // A member of a union must have a trivial corresponding special member. 9070 // As a weird special case, a destructor call from a union's constructor 9071 // must be accessible and non-deleted, but need not be trivial. Such a 9072 // destructor is never actually called, but is semantically checked as 9073 // if it were. 9074 DiagKind = 4; 9075 } 9076 9077 if (DiagKind == -1) 9078 return false; 9079 9080 if (Diagnose) { 9081 if (Field) { 9082 S.Diag(Field->getLocation(), 9083 diag::note_deleted_special_member_class_subobject) 9084 << getEffectiveCSM() << MD->getParent() << /*IsField*/true 9085 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false; 9086 } else { 9087 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>(); 9088 S.Diag(Base->getBeginLoc(), 9089 diag::note_deleted_special_member_class_subobject) 9090 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 9091 << Base->getType() << DiagKind << IsDtorCallInCtor 9092 << /*IsObjCPtr*/false; 9093 } 9094 9095 if (DiagKind == 1) 9096 S.NoteDeletedFunction(Decl); 9097 // FIXME: Explain inaccessibility if DiagKind == 3. 9098 } 9099 9100 return true; 9101 } 9102 9103 /// Check whether we should delete a special member function due to having a 9104 /// direct or virtual base class or non-static data member of class type M. 9105 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( 9106 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { 9107 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 9108 bool IsMutable = Field && Field->isMutable(); 9109 9110 // C++11 [class.ctor]p5: 9111 // -- any direct or virtual base class, or non-static data member with no 9112 // brace-or-equal-initializer, has class type M (or array thereof) and 9113 // either M has no default constructor or overload resolution as applied 9114 // to M's default constructor results in an ambiguity or in a function 9115 // that is deleted or inaccessible 9116 // C++11 [class.copy]p11, C++11 [class.copy]p23: 9117 // -- a direct or virtual base class B that cannot be copied/moved because 9118 // overload resolution, as applied to B's corresponding special member, 9119 // results in an ambiguity or a function that is deleted or inaccessible 9120 // from the defaulted special member 9121 // C++11 [class.dtor]p5: 9122 // -- any direct or virtual base class [...] has a type with a destructor 9123 // that is deleted or inaccessible 9124 if (!(CSM == Sema::CXXDefaultConstructor && 9125 Field && Field->hasInClassInitializer()) && 9126 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable), 9127 false)) 9128 return true; 9129 9130 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 9131 // -- any direct or virtual base class or non-static data member has a 9132 // type with a destructor that is deleted or inaccessible 9133 if (IsConstructor) { 9134 Sema::SpecialMemberOverloadResult SMOR = 9135 S.LookupSpecialMember(Class, Sema::CXXDestructor, 9136 false, false, false, false, false); 9137 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true)) 9138 return true; 9139 } 9140 9141 return false; 9142 } 9143 9144 bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember( 9145 FieldDecl *FD, QualType FieldType) { 9146 // The defaulted special functions are defined as deleted if this is a variant 9147 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak 9148 // type under ARC. 9149 if (!FieldType.hasNonTrivialObjCLifetime()) 9150 return false; 9151 9152 // Don't make the defaulted default constructor defined as deleted if the 9153 // member has an in-class initializer. 9154 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) 9155 return false; 9156 9157 if (Diagnose) { 9158 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent()); 9159 S.Diag(FD->getLocation(), 9160 diag::note_deleted_special_member_class_subobject) 9161 << getEffectiveCSM() << ParentClass << /*IsField*/true 9162 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true; 9163 } 9164 9165 return true; 9166 } 9167 9168 /// Check whether we should delete a special member function due to the class 9169 /// having a particular direct or virtual base class. 9170 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { 9171 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); 9172 // If program is correct, BaseClass cannot be null, but if it is, the error 9173 // must be reported elsewhere. 9174 if (!BaseClass) 9175 return false; 9176 // If we have an inheriting constructor, check whether we're calling an 9177 // inherited constructor instead of a default constructor. 9178 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 9179 if (auto *BaseCtor = SMOR.getMethod()) { 9180 // Note that we do not check access along this path; other than that, 9181 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false); 9182 // FIXME: Check that the base has a usable destructor! Sink this into 9183 // shouldDeleteForClassSubobject. 9184 if (BaseCtor->isDeleted() && Diagnose) { 9185 S.Diag(Base->getBeginLoc(), 9186 diag::note_deleted_special_member_class_subobject) 9187 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 9188 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false 9189 << /*IsObjCPtr*/false; 9190 S.NoteDeletedFunction(BaseCtor); 9191 } 9192 return BaseCtor->isDeleted(); 9193 } 9194 return shouldDeleteForClassSubobject(BaseClass, Base, 0); 9195 } 9196 9197 /// Check whether we should delete a special member function due to the class 9198 /// having a particular non-static data member. 9199 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { 9200 QualType FieldType = S.Context.getBaseElementType(FD->getType()); 9201 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); 9202 9203 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType)) 9204 return true; 9205 9206 if (CSM == Sema::CXXDefaultConstructor) { 9207 // For a default constructor, all references must be initialized in-class 9208 // and, if a union, it must have a non-const member. 9209 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { 9210 if (Diagnose) 9211 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 9212 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0; 9213 return true; 9214 } 9215 // C++11 [class.ctor]p5 (modified by DR2394): any non-variant non-static 9216 // data member of const-qualified type (or array thereof) with no 9217 // brace-or-equal-initializer is not const-default-constructible. 9218 if (!inUnion() && FieldType.isConstQualified() && 9219 !FD->hasInClassInitializer() && 9220 (!FieldRecord || !FieldRecord->allowConstDefaultInit())) { 9221 if (Diagnose) 9222 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 9223 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1; 9224 return true; 9225 } 9226 9227 if (inUnion() && !FieldType.isConstQualified()) 9228 AllFieldsAreConst = false; 9229 } else if (CSM == Sema::CXXCopyConstructor) { 9230 // For a copy constructor, data members must not be of rvalue reference 9231 // type. 9232 if (FieldType->isRValueReferenceType()) { 9233 if (Diagnose) 9234 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) 9235 << MD->getParent() << FD << FieldType; 9236 return true; 9237 } 9238 } else if (IsAssignment) { 9239 // For an assignment operator, data members must not be of reference type. 9240 if (FieldType->isReferenceType()) { 9241 if (Diagnose) 9242 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 9243 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0; 9244 return true; 9245 } 9246 if (!FieldRecord && FieldType.isConstQualified()) { 9247 // C++11 [class.copy]p23: 9248 // -- a non-static data member of const non-class type (or array thereof) 9249 if (Diagnose) 9250 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 9251 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1; 9252 return true; 9253 } 9254 } 9255 9256 if (FieldRecord) { 9257 // Some additional restrictions exist on the variant members. 9258 if (!inUnion() && FieldRecord->isUnion() && 9259 FieldRecord->isAnonymousStructOrUnion()) { 9260 bool AllVariantFieldsAreConst = true; 9261 9262 // FIXME: Handle anonymous unions declared within anonymous unions. 9263 for (auto *UI : FieldRecord->fields()) { 9264 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); 9265 9266 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType)) 9267 return true; 9268 9269 if (!UnionFieldType.isConstQualified()) 9270 AllVariantFieldsAreConst = false; 9271 9272 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); 9273 if (UnionFieldRecord && 9274 shouldDeleteForClassSubobject(UnionFieldRecord, UI, 9275 UnionFieldType.getCVRQualifiers())) 9276 return true; 9277 } 9278 9279 // At least one member in each anonymous union must be non-const 9280 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst && 9281 !FieldRecord->field_empty()) { 9282 if (Diagnose) 9283 S.Diag(FieldRecord->getLocation(), 9284 diag::note_deleted_default_ctor_all_const) 9285 << !!ICI << MD->getParent() << /*anonymous union*/1; 9286 return true; 9287 } 9288 9289 // Don't check the implicit member of the anonymous union type. 9290 // This is technically non-conformant but supported, and we have a 9291 // diagnostic for this elsewhere. 9292 return false; 9293 } 9294 9295 if (shouldDeleteForClassSubobject(FieldRecord, FD, 9296 FieldType.getCVRQualifiers())) 9297 return true; 9298 } 9299 9300 return false; 9301 } 9302 9303 /// C++11 [class.ctor] p5: 9304 /// A defaulted default constructor for a class X is defined as deleted if 9305 /// X is a union and all of its variant members are of const-qualified type. 9306 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { 9307 // This is a silly definition, because it gives an empty union a deleted 9308 // default constructor. Don't do that. 9309 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) { 9310 bool AnyFields = false; 9311 for (auto *F : MD->getParent()->fields()) 9312 if ((AnyFields = !F->isUnnamedBitfield())) 9313 break; 9314 if (!AnyFields) 9315 return false; 9316 if (Diagnose) 9317 S.Diag(MD->getParent()->getLocation(), 9318 diag::note_deleted_default_ctor_all_const) 9319 << !!ICI << MD->getParent() << /*not anonymous union*/0; 9320 return true; 9321 } 9322 return false; 9323 } 9324 9325 /// Determine whether a defaulted special member function should be defined as 9326 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, 9327 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5. 9328 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, 9329 InheritedConstructorInfo *ICI, 9330 bool Diagnose) { 9331 if (MD->isInvalidDecl()) 9332 return false; 9333 CXXRecordDecl *RD = MD->getParent(); 9334 assert(!RD->isDependentType() && "do deletion after instantiation"); 9335 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl()) 9336 return false; 9337 9338 // C++11 [expr.lambda.prim]p19: 9339 // The closure type associated with a lambda-expression has a 9340 // deleted (8.4.3) default constructor and a deleted copy 9341 // assignment operator. 9342 // C++2a adds back these operators if the lambda has no lambda-capture. 9343 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() && 9344 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) { 9345 if (Diagnose) 9346 Diag(RD->getLocation(), diag::note_lambda_decl); 9347 return true; 9348 } 9349 9350 // For an anonymous struct or union, the copy and assignment special members 9351 // will never be used, so skip the check. For an anonymous union declared at 9352 // namespace scope, the constructor and destructor are used. 9353 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor && 9354 RD->isAnonymousStructOrUnion()) 9355 return false; 9356 9357 // C++11 [class.copy]p7, p18: 9358 // If the class definition declares a move constructor or move assignment 9359 // operator, an implicitly declared copy constructor or copy assignment 9360 // operator is defined as deleted. 9361 if (MD->isImplicit() && 9362 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) { 9363 CXXMethodDecl *UserDeclaredMove = nullptr; 9364 9365 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the 9366 // deletion of the corresponding copy operation, not both copy operations. 9367 // MSVC 2015 has adopted the standards conforming behavior. 9368 bool DeletesOnlyMatchingCopy = 9369 getLangOpts().MSVCCompat && 9370 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015); 9371 9372 if (RD->hasUserDeclaredMoveConstructor() && 9373 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) { 9374 if (!Diagnose) return true; 9375 9376 // Find any user-declared move constructor. 9377 for (auto *I : RD->ctors()) { 9378 if (I->isMoveConstructor()) { 9379 UserDeclaredMove = I; 9380 break; 9381 } 9382 } 9383 assert(UserDeclaredMove); 9384 } else if (RD->hasUserDeclaredMoveAssignment() && 9385 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) { 9386 if (!Diagnose) return true; 9387 9388 // Find any user-declared move assignment operator. 9389 for (auto *I : RD->methods()) { 9390 if (I->isMoveAssignmentOperator()) { 9391 UserDeclaredMove = I; 9392 break; 9393 } 9394 } 9395 assert(UserDeclaredMove); 9396 } 9397 9398 if (UserDeclaredMove) { 9399 Diag(UserDeclaredMove->getLocation(), 9400 diag::note_deleted_copy_user_declared_move) 9401 << (CSM == CXXCopyAssignment) << RD 9402 << UserDeclaredMove->isMoveAssignmentOperator(); 9403 return true; 9404 } 9405 } 9406 9407 // Do access control from the special member function 9408 ContextRAII MethodContext(*this, MD); 9409 9410 // C++11 [class.dtor]p5: 9411 // -- for a virtual destructor, lookup of the non-array deallocation function 9412 // results in an ambiguity or in a function that is deleted or inaccessible 9413 if (CSM == CXXDestructor && MD->isVirtual()) { 9414 FunctionDecl *OperatorDelete = nullptr; 9415 DeclarationName Name = 9416 Context.DeclarationNames.getCXXOperatorName(OO_Delete); 9417 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name, 9418 OperatorDelete, /*Diagnose*/false)) { 9419 if (Diagnose) 9420 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); 9421 return true; 9422 } 9423 } 9424 9425 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose); 9426 9427 // Per DR1611, do not consider virtual bases of constructors of abstract 9428 // classes, since we are not going to construct them. 9429 // Per DR1658, do not consider virtual bases of destructors of abstract 9430 // classes either. 9431 // Per DR2180, for assignment operators we only assign (and thus only 9432 // consider) direct bases. 9433 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases 9434 : SMI.VisitPotentiallyConstructedBases)) 9435 return true; 9436 9437 if (SMI.shouldDeleteForAllConstMembers()) 9438 return true; 9439 9440 if (getLangOpts().CUDA) { 9441 // We should delete the special member in CUDA mode if target inference 9442 // failed. 9443 // For inherited constructors (non-null ICI), CSM may be passed so that MD 9444 // is treated as certain special member, which may not reflect what special 9445 // member MD really is. However inferCUDATargetForImplicitSpecialMember 9446 // expects CSM to match MD, therefore recalculate CSM. 9447 assert(ICI || CSM == getSpecialMember(MD)); 9448 auto RealCSM = CSM; 9449 if (ICI) 9450 RealCSM = getSpecialMember(MD); 9451 9452 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD, 9453 SMI.ConstArg, Diagnose); 9454 } 9455 9456 return false; 9457 } 9458 9459 void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) { 9460 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 9461 assert(DFK && "not a defaultable function"); 9462 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted"); 9463 9464 if (DFK.isSpecialMember()) { 9465 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), 9466 nullptr, /*Diagnose=*/true); 9467 } else { 9468 DefaultedComparisonAnalyzer( 9469 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD, 9470 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted) 9471 .visit(); 9472 } 9473 } 9474 9475 /// Perform lookup for a special member of the specified kind, and determine 9476 /// whether it is trivial. If the triviality can be determined without the 9477 /// lookup, skip it. This is intended for use when determining whether a 9478 /// special member of a containing object is trivial, and thus does not ever 9479 /// perform overload resolution for default constructors. 9480 /// 9481 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the 9482 /// member that was most likely to be intended to be trivial, if any. 9483 /// 9484 /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to 9485 /// determine whether the special member is trivial. 9486 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, 9487 Sema::CXXSpecialMember CSM, unsigned Quals, 9488 bool ConstRHS, 9489 Sema::TrivialABIHandling TAH, 9490 CXXMethodDecl **Selected) { 9491 if (Selected) 9492 *Selected = nullptr; 9493 9494 switch (CSM) { 9495 case Sema::CXXInvalid: 9496 llvm_unreachable("not a special member"); 9497 9498 case Sema::CXXDefaultConstructor: 9499 // C++11 [class.ctor]p5: 9500 // A default constructor is trivial if: 9501 // - all the [direct subobjects] have trivial default constructors 9502 // 9503 // Note, no overload resolution is performed in this case. 9504 if (RD->hasTrivialDefaultConstructor()) 9505 return true; 9506 9507 if (Selected) { 9508 // If there's a default constructor which could have been trivial, dig it 9509 // out. Otherwise, if there's any user-provided default constructor, point 9510 // to that as an example of why there's not a trivial one. 9511 CXXConstructorDecl *DefCtor = nullptr; 9512 if (RD->needsImplicitDefaultConstructor()) 9513 S.DeclareImplicitDefaultConstructor(RD); 9514 for (auto *CI : RD->ctors()) { 9515 if (!CI->isDefaultConstructor()) 9516 continue; 9517 DefCtor = CI; 9518 if (!DefCtor->isUserProvided()) 9519 break; 9520 } 9521 9522 *Selected = DefCtor; 9523 } 9524 9525 return false; 9526 9527 case Sema::CXXDestructor: 9528 // C++11 [class.dtor]p5: 9529 // A destructor is trivial if: 9530 // - all the direct [subobjects] have trivial destructors 9531 if (RD->hasTrivialDestructor() || 9532 (TAH == Sema::TAH_ConsiderTrivialABI && 9533 RD->hasTrivialDestructorForCall())) 9534 return true; 9535 9536 if (Selected) { 9537 if (RD->needsImplicitDestructor()) 9538 S.DeclareImplicitDestructor(RD); 9539 *Selected = RD->getDestructor(); 9540 } 9541 9542 return false; 9543 9544 case Sema::CXXCopyConstructor: 9545 // C++11 [class.copy]p12: 9546 // A copy constructor is trivial if: 9547 // - the constructor selected to copy each direct [subobject] is trivial 9548 if (RD->hasTrivialCopyConstructor() || 9549 (TAH == Sema::TAH_ConsiderTrivialABI && 9550 RD->hasTrivialCopyConstructorForCall())) { 9551 if (Quals == Qualifiers::Const) 9552 // We must either select the trivial copy constructor or reach an 9553 // ambiguity; no need to actually perform overload resolution. 9554 return true; 9555 } else if (!Selected) { 9556 return false; 9557 } 9558 // In C++98, we are not supposed to perform overload resolution here, but we 9559 // treat that as a language defect, as suggested on cxx-abi-dev, to treat 9560 // cases like B as having a non-trivial copy constructor: 9561 // struct A { template<typename T> A(T&); }; 9562 // struct B { mutable A a; }; 9563 goto NeedOverloadResolution; 9564 9565 case Sema::CXXCopyAssignment: 9566 // C++11 [class.copy]p25: 9567 // A copy assignment operator is trivial if: 9568 // - the assignment operator selected to copy each direct [subobject] is 9569 // trivial 9570 if (RD->hasTrivialCopyAssignment()) { 9571 if (Quals == Qualifiers::Const) 9572 return true; 9573 } else if (!Selected) { 9574 return false; 9575 } 9576 // In C++98, we are not supposed to perform overload resolution here, but we 9577 // treat that as a language defect. 9578 goto NeedOverloadResolution; 9579 9580 case Sema::CXXMoveConstructor: 9581 case Sema::CXXMoveAssignment: 9582 NeedOverloadResolution: 9583 Sema::SpecialMemberOverloadResult SMOR = 9584 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS); 9585 9586 // The standard doesn't describe how to behave if the lookup is ambiguous. 9587 // We treat it as not making the member non-trivial, just like the standard 9588 // mandates for the default constructor. This should rarely matter, because 9589 // the member will also be deleted. 9590 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 9591 return true; 9592 9593 if (!SMOR.getMethod()) { 9594 assert(SMOR.getKind() == 9595 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted); 9596 return false; 9597 } 9598 9599 // We deliberately don't check if we found a deleted special member. We're 9600 // not supposed to! 9601 if (Selected) 9602 *Selected = SMOR.getMethod(); 9603 9604 if (TAH == Sema::TAH_ConsiderTrivialABI && 9605 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor)) 9606 return SMOR.getMethod()->isTrivialForCall(); 9607 return SMOR.getMethod()->isTrivial(); 9608 } 9609 9610 llvm_unreachable("unknown special method kind"); 9611 } 9612 9613 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { 9614 for (auto *CI : RD->ctors()) 9615 if (!CI->isImplicit()) 9616 return CI; 9617 9618 // Look for constructor templates. 9619 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter; 9620 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { 9621 if (CXXConstructorDecl *CD = 9622 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl())) 9623 return CD; 9624 } 9625 9626 return nullptr; 9627 } 9628 9629 /// The kind of subobject we are checking for triviality. The values of this 9630 /// enumeration are used in diagnostics. 9631 enum TrivialSubobjectKind { 9632 /// The subobject is a base class. 9633 TSK_BaseClass, 9634 /// The subobject is a non-static data member. 9635 TSK_Field, 9636 /// The object is actually the complete object. 9637 TSK_CompleteObject 9638 }; 9639 9640 /// Check whether the special member selected for a given type would be trivial. 9641 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, 9642 QualType SubType, bool ConstRHS, 9643 Sema::CXXSpecialMember CSM, 9644 TrivialSubobjectKind Kind, 9645 Sema::TrivialABIHandling TAH, bool Diagnose) { 9646 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); 9647 if (!SubRD) 9648 return true; 9649 9650 CXXMethodDecl *Selected; 9651 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(), 9652 ConstRHS, TAH, Diagnose ? &Selected : nullptr)) 9653 return true; 9654 9655 if (Diagnose) { 9656 if (ConstRHS) 9657 SubType.addConst(); 9658 9659 if (!Selected && CSM == Sema::CXXDefaultConstructor) { 9660 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) 9661 << Kind << SubType.getUnqualifiedType(); 9662 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) 9663 S.Diag(CD->getLocation(), diag::note_user_declared_ctor); 9664 } else if (!Selected) 9665 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) 9666 << Kind << SubType.getUnqualifiedType() << CSM << SubType; 9667 else if (Selected->isUserProvided()) { 9668 if (Kind == TSK_CompleteObject) 9669 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) 9670 << Kind << SubType.getUnqualifiedType() << CSM; 9671 else { 9672 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) 9673 << Kind << SubType.getUnqualifiedType() << CSM; 9674 S.Diag(Selected->getLocation(), diag::note_declared_at); 9675 } 9676 } else { 9677 if (Kind != TSK_CompleteObject) 9678 S.Diag(SubobjLoc, diag::note_nontrivial_subobject) 9679 << Kind << SubType.getUnqualifiedType() << CSM; 9680 9681 // Explain why the defaulted or deleted special member isn't trivial. 9682 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI, 9683 Diagnose); 9684 } 9685 } 9686 9687 return false; 9688 } 9689 9690 /// Check whether the members of a class type allow a special member to be 9691 /// trivial. 9692 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, 9693 Sema::CXXSpecialMember CSM, 9694 bool ConstArg, 9695 Sema::TrivialABIHandling TAH, 9696 bool Diagnose) { 9697 for (const auto *FI : RD->fields()) { 9698 if (FI->isInvalidDecl() || FI->isUnnamedBitfield()) 9699 continue; 9700 9701 QualType FieldType = S.Context.getBaseElementType(FI->getType()); 9702 9703 // Pretend anonymous struct or union members are members of this class. 9704 if (FI->isAnonymousStructOrUnion()) { 9705 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), 9706 CSM, ConstArg, TAH, Diagnose)) 9707 return false; 9708 continue; 9709 } 9710 9711 // C++11 [class.ctor]p5: 9712 // A default constructor is trivial if [...] 9713 // -- no non-static data member of its class has a 9714 // brace-or-equal-initializer 9715 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) { 9716 if (Diagnose) 9717 S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init) 9718 << FI; 9719 return false; 9720 } 9721 9722 // Objective C ARC 4.3.5: 9723 // [...] nontrivally ownership-qualified types are [...] not trivially 9724 // default constructible, copy constructible, move constructible, copy 9725 // assignable, move assignable, or destructible [...] 9726 if (FieldType.hasNonTrivialObjCLifetime()) { 9727 if (Diagnose) 9728 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) 9729 << RD << FieldType.getObjCLifetime(); 9730 return false; 9731 } 9732 9733 bool ConstRHS = ConstArg && !FI->isMutable(); 9734 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, 9735 CSM, TSK_Field, TAH, Diagnose)) 9736 return false; 9737 } 9738 9739 return true; 9740 } 9741 9742 /// Diagnose why the specified class does not have a trivial special member of 9743 /// the given kind. 9744 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) { 9745 QualType Ty = Context.getRecordType(RD); 9746 9747 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment); 9748 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, 9749 TSK_CompleteObject, TAH_IgnoreTrivialABI, 9750 /*Diagnose*/true); 9751 } 9752 9753 /// Determine whether a defaulted or deleted special member function is trivial, 9754 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12, 9755 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5. 9756 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM, 9757 TrivialABIHandling TAH, bool Diagnose) { 9758 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough"); 9759 9760 CXXRecordDecl *RD = MD->getParent(); 9761 9762 bool ConstArg = false; 9763 9764 // C++11 [class.copy]p12, p25: [DR1593] 9765 // A [special member] is trivial if [...] its parameter-type-list is 9766 // equivalent to the parameter-type-list of an implicit declaration [...] 9767 switch (CSM) { 9768 case CXXDefaultConstructor: 9769 case CXXDestructor: 9770 // Trivial default constructors and destructors cannot have parameters. 9771 break; 9772 9773 case CXXCopyConstructor: 9774 case CXXCopyAssignment: { 9775 const ParmVarDecl *Param0 = MD->getParamDecl(0); 9776 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>(); 9777 9778 // When ClangABICompat14 is true, CXX copy constructors will only be trivial 9779 // if they are not user-provided and their parameter-type-list is equivalent 9780 // to the parameter-type-list of an implicit declaration. This maintains the 9781 // behavior before dr2171 was implemented. 9782 // 9783 // Otherwise, if ClangABICompat14 is false, All copy constructors can be 9784 // trivial, if they are not user-provided, regardless of the qualifiers on 9785 // the reference type. 9786 const bool ClangABICompat14 = Context.getLangOpts().getClangABICompat() <= 9787 LangOptions::ClangABI::Ver14; 9788 if (!RT || 9789 ((RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) && 9790 ClangABICompat14)) { 9791 if (Diagnose) 9792 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 9793 << Param0->getSourceRange() << Param0->getType() 9794 << Context.getLValueReferenceType( 9795 Context.getRecordType(RD).withConst()); 9796 return false; 9797 } 9798 9799 ConstArg = RT->getPointeeType().isConstQualified(); 9800 break; 9801 } 9802 9803 case CXXMoveConstructor: 9804 case CXXMoveAssignment: { 9805 // Trivial move operations always have non-cv-qualified parameters. 9806 const ParmVarDecl *Param0 = MD->getParamDecl(0); 9807 const RValueReferenceType *RT = 9808 Param0->getType()->getAs<RValueReferenceType>(); 9809 if (!RT || RT->getPointeeType().getCVRQualifiers()) { 9810 if (Diagnose) 9811 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 9812 << Param0->getSourceRange() << Param0->getType() 9813 << Context.getRValueReferenceType(Context.getRecordType(RD)); 9814 return false; 9815 } 9816 break; 9817 } 9818 9819 case CXXInvalid: 9820 llvm_unreachable("not a special member"); 9821 } 9822 9823 if (MD->getMinRequiredArguments() < MD->getNumParams()) { 9824 if (Diagnose) 9825 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), 9826 diag::note_nontrivial_default_arg) 9827 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); 9828 return false; 9829 } 9830 if (MD->isVariadic()) { 9831 if (Diagnose) 9832 Diag(MD->getLocation(), diag::note_nontrivial_variadic); 9833 return false; 9834 } 9835 9836 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 9837 // A copy/move [constructor or assignment operator] is trivial if 9838 // -- the [member] selected to copy/move each direct base class subobject 9839 // is trivial 9840 // 9841 // C++11 [class.copy]p12, C++11 [class.copy]p25: 9842 // A [default constructor or destructor] is trivial if 9843 // -- all the direct base classes have trivial [default constructors or 9844 // destructors] 9845 for (const auto &BI : RD->bases()) 9846 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(), 9847 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose)) 9848 return false; 9849 9850 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 9851 // A copy/move [constructor or assignment operator] for a class X is 9852 // trivial if 9853 // -- for each non-static data member of X that is of class type (or array 9854 // thereof), the constructor selected to copy/move that member is 9855 // trivial 9856 // 9857 // C++11 [class.copy]p12, C++11 [class.copy]p25: 9858 // A [default constructor or destructor] is trivial if 9859 // -- for all of the non-static data members of its class that are of class 9860 // type (or array thereof), each such class has a trivial [default 9861 // constructor or destructor] 9862 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose)) 9863 return false; 9864 9865 // C++11 [class.dtor]p5: 9866 // A destructor is trivial if [...] 9867 // -- the destructor is not virtual 9868 if (CSM == CXXDestructor && MD->isVirtual()) { 9869 if (Diagnose) 9870 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; 9871 return false; 9872 } 9873 9874 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 9875 // A [special member] for class X is trivial if [...] 9876 // -- class X has no virtual functions and no virtual base classes 9877 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) { 9878 if (!Diagnose) 9879 return false; 9880 9881 if (RD->getNumVBases()) { 9882 // Check for virtual bases. We already know that the corresponding 9883 // member in all bases is trivial, so vbases must all be direct. 9884 CXXBaseSpecifier &BS = *RD->vbases_begin(); 9885 assert(BS.isVirtual()); 9886 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1; 9887 return false; 9888 } 9889 9890 // Must have a virtual method. 9891 for (const auto *MI : RD->methods()) { 9892 if (MI->isVirtual()) { 9893 SourceLocation MLoc = MI->getBeginLoc(); 9894 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; 9895 return false; 9896 } 9897 } 9898 9899 llvm_unreachable("dynamic class with no vbases and no virtual functions"); 9900 } 9901 9902 // Looks like it's trivial! 9903 return true; 9904 } 9905 9906 namespace { 9907 struct FindHiddenVirtualMethod { 9908 Sema *S; 9909 CXXMethodDecl *Method; 9910 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; 9911 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 9912 9913 private: 9914 /// Check whether any most overridden method from MD in Methods 9915 static bool CheckMostOverridenMethods( 9916 const CXXMethodDecl *MD, 9917 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) { 9918 if (MD->size_overridden_methods() == 0) 9919 return Methods.count(MD->getCanonicalDecl()); 9920 for (const CXXMethodDecl *O : MD->overridden_methods()) 9921 if (CheckMostOverridenMethods(O, Methods)) 9922 return true; 9923 return false; 9924 } 9925 9926 public: 9927 /// Member lookup function that determines whether a given C++ 9928 /// method overloads virtual methods in a base class without overriding any, 9929 /// to be used with CXXRecordDecl::lookupInBases(). 9930 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 9931 RecordDecl *BaseRecord = 9932 Specifier->getType()->castAs<RecordType>()->getDecl(); 9933 9934 DeclarationName Name = Method->getDeclName(); 9935 assert(Name.getNameKind() == DeclarationName::Identifier); 9936 9937 bool foundSameNameMethod = false; 9938 SmallVector<CXXMethodDecl *, 8> overloadedMethods; 9939 for (Path.Decls = BaseRecord->lookup(Name).begin(); 9940 Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) { 9941 NamedDecl *D = *Path.Decls; 9942 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 9943 MD = MD->getCanonicalDecl(); 9944 foundSameNameMethod = true; 9945 // Interested only in hidden virtual methods. 9946 if (!MD->isVirtual()) 9947 continue; 9948 // If the method we are checking overrides a method from its base 9949 // don't warn about the other overloaded methods. Clang deviates from 9950 // GCC by only diagnosing overloads of inherited virtual functions that 9951 // do not override any other virtual functions in the base. GCC's 9952 // -Woverloaded-virtual diagnoses any derived function hiding a virtual 9953 // function from a base class. These cases may be better served by a 9954 // warning (not specific to virtual functions) on call sites when the 9955 // call would select a different function from the base class, were it 9956 // visible. 9957 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. 9958 if (!S->IsOverload(Method, MD, false)) 9959 return true; 9960 // Collect the overload only if its hidden. 9961 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods)) 9962 overloadedMethods.push_back(MD); 9963 } 9964 } 9965 9966 if (foundSameNameMethod) 9967 OverloadedMethods.append(overloadedMethods.begin(), 9968 overloadedMethods.end()); 9969 return foundSameNameMethod; 9970 } 9971 }; 9972 } // end anonymous namespace 9973 9974 /// Add the most overridden methods from MD to Methods 9975 static void AddMostOverridenMethods(const CXXMethodDecl *MD, 9976 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { 9977 if (MD->size_overridden_methods() == 0) 9978 Methods.insert(MD->getCanonicalDecl()); 9979 else 9980 for (const CXXMethodDecl *O : MD->overridden_methods()) 9981 AddMostOverridenMethods(O, Methods); 9982 } 9983 9984 /// Check if a method overloads virtual methods in a base class without 9985 /// overriding any. 9986 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, 9987 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 9988 if (!MD->getDeclName().isIdentifier()) 9989 return; 9990 9991 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. 9992 /*bool RecordPaths=*/false, 9993 /*bool DetectVirtual=*/false); 9994 FindHiddenVirtualMethod FHVM; 9995 FHVM.Method = MD; 9996 FHVM.S = this; 9997 9998 // Keep the base methods that were overridden or introduced in the subclass 9999 // by 'using' in a set. A base method not in this set is hidden. 10000 CXXRecordDecl *DC = MD->getParent(); 10001 DeclContext::lookup_result R = DC->lookup(MD->getDeclName()); 10002 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { 10003 NamedDecl *ND = *I; 10004 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I)) 10005 ND = shad->getTargetDecl(); 10006 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 10007 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods); 10008 } 10009 10010 if (DC->lookupInBases(FHVM, Paths)) 10011 OverloadedMethods = FHVM.OverloadedMethods; 10012 } 10013 10014 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, 10015 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 10016 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { 10017 CXXMethodDecl *overloadedMD = OverloadedMethods[i]; 10018 PartialDiagnostic PD = PDiag( 10019 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; 10020 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType()); 10021 Diag(overloadedMD->getLocation(), PD); 10022 } 10023 } 10024 10025 /// Diagnose methods which overload virtual methods in a base class 10026 /// without overriding any. 10027 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { 10028 if (MD->isInvalidDecl()) 10029 return; 10030 10031 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) 10032 return; 10033 10034 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 10035 FindHiddenVirtualMethods(MD, OverloadedMethods); 10036 if (!OverloadedMethods.empty()) { 10037 Diag(MD->getLocation(), diag::warn_overloaded_virtual) 10038 << MD << (OverloadedMethods.size() > 1); 10039 10040 NoteHiddenVirtualMethods(MD, OverloadedMethods); 10041 } 10042 } 10043 10044 void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) { 10045 auto PrintDiagAndRemoveAttr = [&](unsigned N) { 10046 // No diagnostics if this is a template instantiation. 10047 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) { 10048 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 10049 diag::ext_cannot_use_trivial_abi) << &RD; 10050 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 10051 diag::note_cannot_use_trivial_abi_reason) << &RD << N; 10052 } 10053 RD.dropAttr<TrivialABIAttr>(); 10054 }; 10055 10056 // Ill-formed if the copy and move constructors are deleted. 10057 auto HasNonDeletedCopyOrMoveConstructor = [&]() { 10058 // If the type is dependent, then assume it might have 10059 // implicit copy or move ctor because we won't know yet at this point. 10060 if (RD.isDependentType()) 10061 return true; 10062 if (RD.needsImplicitCopyConstructor() && 10063 !RD.defaultedCopyConstructorIsDeleted()) 10064 return true; 10065 if (RD.needsImplicitMoveConstructor() && 10066 !RD.defaultedMoveConstructorIsDeleted()) 10067 return true; 10068 for (const CXXConstructorDecl *CD : RD.ctors()) 10069 if (CD->isCopyOrMoveConstructor() && !CD->isDeleted()) 10070 return true; 10071 return false; 10072 }; 10073 10074 if (!HasNonDeletedCopyOrMoveConstructor()) { 10075 PrintDiagAndRemoveAttr(0); 10076 return; 10077 } 10078 10079 // Ill-formed if the struct has virtual functions. 10080 if (RD.isPolymorphic()) { 10081 PrintDiagAndRemoveAttr(1); 10082 return; 10083 } 10084 10085 for (const auto &B : RD.bases()) { 10086 // Ill-formed if the base class is non-trivial for the purpose of calls or a 10087 // virtual base. 10088 if (!B.getType()->isDependentType() && 10089 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) { 10090 PrintDiagAndRemoveAttr(2); 10091 return; 10092 } 10093 10094 if (B.isVirtual()) { 10095 PrintDiagAndRemoveAttr(3); 10096 return; 10097 } 10098 } 10099 10100 for (const auto *FD : RD.fields()) { 10101 // Ill-formed if the field is an ObjectiveC pointer or of a type that is 10102 // non-trivial for the purpose of calls. 10103 QualType FT = FD->getType(); 10104 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) { 10105 PrintDiagAndRemoveAttr(4); 10106 return; 10107 } 10108 10109 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>()) 10110 if (!RT->isDependentType() && 10111 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) { 10112 PrintDiagAndRemoveAttr(5); 10113 return; 10114 } 10115 } 10116 } 10117 10118 void Sema::ActOnFinishCXXMemberSpecification( 10119 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, 10120 SourceLocation RBrac, const ParsedAttributesView &AttrList) { 10121 if (!TagDecl) 10122 return; 10123 10124 AdjustDeclIfTemplate(TagDecl); 10125 10126 for (const ParsedAttr &AL : AttrList) { 10127 if (AL.getKind() != ParsedAttr::AT_Visibility) 10128 continue; 10129 AL.setInvalid(); 10130 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL; 10131 } 10132 10133 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef( 10134 // strict aliasing violation! 10135 reinterpret_cast<Decl**>(FieldCollector->getCurFields()), 10136 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList); 10137 10138 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl)); 10139 } 10140 10141 /// Find the equality comparison functions that should be implicitly declared 10142 /// in a given class definition, per C++2a [class.compare.default]p3. 10143 static void findImplicitlyDeclaredEqualityComparisons( 10144 ASTContext &Ctx, CXXRecordDecl *RD, 10145 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) { 10146 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual); 10147 if (!RD->lookup(EqEq).empty()) 10148 // Member operator== explicitly declared: no implicit operator==s. 10149 return; 10150 10151 // Traverse friends looking for an '==' or a '<=>'. 10152 for (FriendDecl *Friend : RD->friends()) { 10153 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl()); 10154 if (!FD) continue; 10155 10156 if (FD->getOverloadedOperator() == OO_EqualEqual) { 10157 // Friend operator== explicitly declared: no implicit operator==s. 10158 Spaceships.clear(); 10159 return; 10160 } 10161 10162 if (FD->getOverloadedOperator() == OO_Spaceship && 10163 FD->isExplicitlyDefaulted()) 10164 Spaceships.push_back(FD); 10165 } 10166 10167 // Look for members named 'operator<=>'. 10168 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship); 10169 for (NamedDecl *ND : RD->lookup(Cmp)) { 10170 // Note that we could find a non-function here (either a function template 10171 // or a using-declaration). Neither case results in an implicit 10172 // 'operator=='. 10173 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 10174 if (FD->isExplicitlyDefaulted()) 10175 Spaceships.push_back(FD); 10176 } 10177 } 10178 10179 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared 10180 /// special functions, such as the default constructor, copy 10181 /// constructor, or destructor, to the given C++ class (C++ 10182 /// [special]p1). This routine can only be executed just before the 10183 /// definition of the class is complete. 10184 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { 10185 // Don't add implicit special members to templated classes. 10186 // FIXME: This means unqualified lookups for 'operator=' within a class 10187 // template don't work properly. 10188 if (!ClassDecl->isDependentType()) { 10189 if (ClassDecl->needsImplicitDefaultConstructor()) { 10190 ++getASTContext().NumImplicitDefaultConstructors; 10191 10192 if (ClassDecl->hasInheritedConstructor()) 10193 DeclareImplicitDefaultConstructor(ClassDecl); 10194 } 10195 10196 if (ClassDecl->needsImplicitCopyConstructor()) { 10197 ++getASTContext().NumImplicitCopyConstructors; 10198 10199 // If the properties or semantics of the copy constructor couldn't be 10200 // determined while the class was being declared, force a declaration 10201 // of it now. 10202 if (ClassDecl->needsOverloadResolutionForCopyConstructor() || 10203 ClassDecl->hasInheritedConstructor()) 10204 DeclareImplicitCopyConstructor(ClassDecl); 10205 // For the MS ABI we need to know whether the copy ctor is deleted. A 10206 // prerequisite for deleting the implicit copy ctor is that the class has 10207 // a move ctor or move assignment that is either user-declared or whose 10208 // semantics are inherited from a subobject. FIXME: We should provide a 10209 // more direct way for CodeGen to ask whether the constructor was deleted. 10210 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 10211 (ClassDecl->hasUserDeclaredMoveConstructor() || 10212 ClassDecl->needsOverloadResolutionForMoveConstructor() || 10213 ClassDecl->hasUserDeclaredMoveAssignment() || 10214 ClassDecl->needsOverloadResolutionForMoveAssignment())) 10215 DeclareImplicitCopyConstructor(ClassDecl); 10216 } 10217 10218 if (getLangOpts().CPlusPlus11 && 10219 ClassDecl->needsImplicitMoveConstructor()) { 10220 ++getASTContext().NumImplicitMoveConstructors; 10221 10222 if (ClassDecl->needsOverloadResolutionForMoveConstructor() || 10223 ClassDecl->hasInheritedConstructor()) 10224 DeclareImplicitMoveConstructor(ClassDecl); 10225 } 10226 10227 if (ClassDecl->needsImplicitCopyAssignment()) { 10228 ++getASTContext().NumImplicitCopyAssignmentOperators; 10229 10230 // If we have a dynamic class, then the copy assignment operator may be 10231 // virtual, so we have to declare it immediately. This ensures that, e.g., 10232 // it shows up in the right place in the vtable and that we diagnose 10233 // problems with the implicit exception specification. 10234 if (ClassDecl->isDynamicClass() || 10235 ClassDecl->needsOverloadResolutionForCopyAssignment() || 10236 ClassDecl->hasInheritedAssignment()) 10237 DeclareImplicitCopyAssignment(ClassDecl); 10238 } 10239 10240 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { 10241 ++getASTContext().NumImplicitMoveAssignmentOperators; 10242 10243 // Likewise for the move assignment operator. 10244 if (ClassDecl->isDynamicClass() || 10245 ClassDecl->needsOverloadResolutionForMoveAssignment() || 10246 ClassDecl->hasInheritedAssignment()) 10247 DeclareImplicitMoveAssignment(ClassDecl); 10248 } 10249 10250 if (ClassDecl->needsImplicitDestructor()) { 10251 ++getASTContext().NumImplicitDestructors; 10252 10253 // If we have a dynamic class, then the destructor may be virtual, so we 10254 // have to declare the destructor immediately. This ensures that, e.g., it 10255 // shows up in the right place in the vtable and that we diagnose problems 10256 // with the implicit exception specification. 10257 if (ClassDecl->isDynamicClass() || 10258 ClassDecl->needsOverloadResolutionForDestructor()) 10259 DeclareImplicitDestructor(ClassDecl); 10260 } 10261 } 10262 10263 // C++2a [class.compare.default]p3: 10264 // If the member-specification does not explicitly declare any member or 10265 // friend named operator==, an == operator function is declared implicitly 10266 // for each defaulted three-way comparison operator function defined in 10267 // the member-specification 10268 // FIXME: Consider doing this lazily. 10269 // We do this during the initial parse for a class template, not during 10270 // instantiation, so that we can handle unqualified lookups for 'operator==' 10271 // when parsing the template. 10272 if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) { 10273 llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships; 10274 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl, 10275 DefaultedSpaceships); 10276 for (auto *FD : DefaultedSpaceships) 10277 DeclareImplicitEqualityComparison(ClassDecl, FD); 10278 } 10279 } 10280 10281 unsigned 10282 Sema::ActOnReenterTemplateScope(Decl *D, 10283 llvm::function_ref<Scope *()> EnterScope) { 10284 if (!D) 10285 return 0; 10286 AdjustDeclIfTemplate(D); 10287 10288 // In order to get name lookup right, reenter template scopes in order from 10289 // outermost to innermost. 10290 SmallVector<TemplateParameterList *, 4> ParameterLists; 10291 DeclContext *LookupDC = dyn_cast<DeclContext>(D); 10292 10293 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) { 10294 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) 10295 ParameterLists.push_back(DD->getTemplateParameterList(i)); 10296 10297 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10298 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 10299 ParameterLists.push_back(FTD->getTemplateParameters()); 10300 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) { 10301 LookupDC = VD->getDeclContext(); 10302 10303 if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate()) 10304 ParameterLists.push_back(VTD->getTemplateParameters()); 10305 else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D)) 10306 ParameterLists.push_back(PSD->getTemplateParameters()); 10307 } 10308 } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 10309 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) 10310 ParameterLists.push_back(TD->getTemplateParameterList(i)); 10311 10312 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) { 10313 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) 10314 ParameterLists.push_back(CTD->getTemplateParameters()); 10315 else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) 10316 ParameterLists.push_back(PSD->getTemplateParameters()); 10317 } 10318 } 10319 // FIXME: Alias declarations and concepts. 10320 10321 unsigned Count = 0; 10322 Scope *InnermostTemplateScope = nullptr; 10323 for (TemplateParameterList *Params : ParameterLists) { 10324 // Ignore explicit specializations; they don't contribute to the template 10325 // depth. 10326 if (Params->size() == 0) 10327 continue; 10328 10329 InnermostTemplateScope = EnterScope(); 10330 for (NamedDecl *Param : *Params) { 10331 if (Param->getDeclName()) { 10332 InnermostTemplateScope->AddDecl(Param); 10333 IdResolver.AddDecl(Param); 10334 } 10335 } 10336 ++Count; 10337 } 10338 10339 // Associate the new template scopes with the corresponding entities. 10340 if (InnermostTemplateScope) { 10341 assert(LookupDC && "no enclosing DeclContext for template lookup"); 10342 EnterTemplatedContext(InnermostTemplateScope, LookupDC); 10343 } 10344 10345 return Count; 10346 } 10347 10348 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10349 if (!RecordD) return; 10350 AdjustDeclIfTemplate(RecordD); 10351 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); 10352 PushDeclContext(S, Record); 10353 } 10354 10355 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10356 if (!RecordD) return; 10357 PopDeclContext(); 10358 } 10359 10360 /// This is used to implement the constant expression evaluation part of the 10361 /// attribute enable_if extension. There is nothing in standard C++ which would 10362 /// require reentering parameters. 10363 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { 10364 if (!Param) 10365 return; 10366 10367 S->AddDecl(Param); 10368 if (Param->getDeclName()) 10369 IdResolver.AddDecl(Param); 10370 } 10371 10372 /// ActOnStartDelayedCXXMethodDeclaration - We have completed 10373 /// parsing a top-level (non-nested) C++ class, and we are now 10374 /// parsing those parts of the given Method declaration that could 10375 /// not be parsed earlier (C++ [class.mem]p2), such as default 10376 /// arguments. This action should enter the scope of the given 10377 /// Method declaration as if we had just parsed the qualified method 10378 /// name. However, it should not bring the parameters into scope; 10379 /// that will be performed by ActOnDelayedCXXMethodParameter. 10380 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10381 } 10382 10383 /// ActOnDelayedCXXMethodParameter - We've already started a delayed 10384 /// C++ method declaration. We're (re-)introducing the given 10385 /// function parameter into scope for use in parsing later parts of 10386 /// the method declaration. For example, we could see an 10387 /// ActOnParamDefaultArgument event for this parameter. 10388 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { 10389 if (!ParamD) 10390 return; 10391 10392 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); 10393 10394 S->AddDecl(Param); 10395 if (Param->getDeclName()) 10396 IdResolver.AddDecl(Param); 10397 } 10398 10399 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished 10400 /// processing the delayed method declaration for Method. The method 10401 /// declaration is now considered finished. There may be a separate 10402 /// ActOnStartOfFunctionDef action later (not necessarily 10403 /// immediately!) for this method, if it was also defined inside the 10404 /// class body. 10405 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10406 if (!MethodD) 10407 return; 10408 10409 AdjustDeclIfTemplate(MethodD); 10410 10411 FunctionDecl *Method = cast<FunctionDecl>(MethodD); 10412 10413 // Now that we have our default arguments, check the constructor 10414 // again. It could produce additional diagnostics or affect whether 10415 // the class has implicitly-declared destructors, among other 10416 // things. 10417 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) 10418 CheckConstructor(Constructor); 10419 10420 // Check the default arguments, which we may have added. 10421 if (!Method->isInvalidDecl()) 10422 CheckCXXDefaultArguments(Method); 10423 } 10424 10425 // Emit the given diagnostic for each non-address-space qualifier. 10426 // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator. 10427 static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) { 10428 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10429 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) { 10430 bool DiagOccured = false; 10431 FTI.MethodQualifiers->forEachQualifier( 10432 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName, 10433 SourceLocation SL) { 10434 // This diagnostic should be emitted on any qualifier except an addr 10435 // space qualifier. However, forEachQualifier currently doesn't visit 10436 // addr space qualifiers, so there's no way to write this condition 10437 // right now; we just diagnose on everything. 10438 S.Diag(SL, DiagID) << QualName << SourceRange(SL); 10439 DiagOccured = true; 10440 }); 10441 if (DiagOccured) 10442 D.setInvalidType(); 10443 } 10444 } 10445 10446 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check 10447 /// the well-formedness of the constructor declarator @p D with type @p 10448 /// R. If there are any errors in the declarator, this routine will 10449 /// emit diagnostics and set the invalid bit to true. In any case, the type 10450 /// will be updated to reflect a well-formed type for the constructor and 10451 /// returned. 10452 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, 10453 StorageClass &SC) { 10454 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 10455 10456 // C++ [class.ctor]p3: 10457 // A constructor shall not be virtual (10.3) or static (9.4). A 10458 // constructor can be invoked for a const, volatile or const 10459 // volatile object. A constructor shall not be declared const, 10460 // volatile, or const volatile (9.3.2). 10461 if (isVirtual) { 10462 if (!D.isInvalidType()) 10463 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10464 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) 10465 << SourceRange(D.getIdentifierLoc()); 10466 D.setInvalidType(); 10467 } 10468 if (SC == SC_Static) { 10469 if (!D.isInvalidType()) 10470 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10471 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10472 << SourceRange(D.getIdentifierLoc()); 10473 D.setInvalidType(); 10474 SC = SC_None; 10475 } 10476 10477 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10478 diagnoseIgnoredQualifiers( 10479 diag::err_constructor_return_type, TypeQuals, SourceLocation(), 10480 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), 10481 D.getDeclSpec().getRestrictSpecLoc(), 10482 D.getDeclSpec().getAtomicSpecLoc()); 10483 D.setInvalidType(); 10484 } 10485 10486 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor); 10487 10488 // C++0x [class.ctor]p4: 10489 // A constructor shall not be declared with a ref-qualifier. 10490 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10491 if (FTI.hasRefQualifier()) { 10492 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) 10493 << FTI.RefQualifierIsLValueRef 10494 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10495 D.setInvalidType(); 10496 } 10497 10498 // Rebuild the function type "R" without any type qualifiers (in 10499 // case any of the errors above fired) and with "void" as the 10500 // return type, since constructors don't have return types. 10501 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10502 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) 10503 return R; 10504 10505 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10506 EPI.TypeQuals = Qualifiers(); 10507 EPI.RefQualifier = RQ_None; 10508 10509 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI); 10510 } 10511 10512 /// CheckConstructor - Checks a fully-formed constructor for 10513 /// well-formedness, issuing any diagnostics required. Returns true if 10514 /// the constructor declarator is invalid. 10515 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { 10516 CXXRecordDecl *ClassDecl 10517 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); 10518 if (!ClassDecl) 10519 return Constructor->setInvalidDecl(); 10520 10521 // C++ [class.copy]p3: 10522 // A declaration of a constructor for a class X is ill-formed if 10523 // its first parameter is of type (optionally cv-qualified) X and 10524 // either there are no other parameters or else all other 10525 // parameters have default arguments. 10526 if (!Constructor->isInvalidDecl() && 10527 Constructor->hasOneParamOrDefaultArgs() && 10528 Constructor->getTemplateSpecializationKind() != 10529 TSK_ImplicitInstantiation) { 10530 QualType ParamType = Constructor->getParamDecl(0)->getType(); 10531 QualType ClassTy = Context.getTagDeclType(ClassDecl); 10532 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { 10533 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); 10534 const char *ConstRef 10535 = Constructor->getParamDecl(0)->getIdentifier() ? "const &" 10536 : " const &"; 10537 Diag(ParamLoc, diag::err_constructor_byvalue_arg) 10538 << FixItHint::CreateInsertion(ParamLoc, ConstRef); 10539 10540 // FIXME: Rather that making the constructor invalid, we should endeavor 10541 // to fix the type. 10542 Constructor->setInvalidDecl(); 10543 } 10544 } 10545 } 10546 10547 /// CheckDestructor - Checks a fully-formed destructor definition for 10548 /// well-formedness, issuing any diagnostics required. Returns true 10549 /// on error. 10550 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { 10551 CXXRecordDecl *RD = Destructor->getParent(); 10552 10553 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { 10554 SourceLocation Loc; 10555 10556 if (!Destructor->isImplicit()) 10557 Loc = Destructor->getLocation(); 10558 else 10559 Loc = RD->getLocation(); 10560 10561 // If we have a virtual destructor, look up the deallocation function 10562 if (FunctionDecl *OperatorDelete = 10563 FindDeallocationFunctionForDestructor(Loc, RD)) { 10564 Expr *ThisArg = nullptr; 10565 10566 // If the notional 'delete this' expression requires a non-trivial 10567 // conversion from 'this' to the type of a destroying operator delete's 10568 // first parameter, perform that conversion now. 10569 if (OperatorDelete->isDestroyingOperatorDelete()) { 10570 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 10571 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) { 10572 // C++ [class.dtor]p13: 10573 // ... as if for the expression 'delete this' appearing in a 10574 // non-virtual destructor of the destructor's class. 10575 ContextRAII SwitchContext(*this, Destructor); 10576 ExprResult This = 10577 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation()); 10578 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?"); 10579 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing); 10580 if (This.isInvalid()) { 10581 // FIXME: Register this as a context note so that it comes out 10582 // in the right order. 10583 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here); 10584 return true; 10585 } 10586 ThisArg = This.get(); 10587 } 10588 } 10589 10590 DiagnoseUseOfDecl(OperatorDelete, Loc); 10591 MarkFunctionReferenced(Loc, OperatorDelete); 10592 Destructor->setOperatorDelete(OperatorDelete, ThisArg); 10593 } 10594 } 10595 10596 return false; 10597 } 10598 10599 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check 10600 /// the well-formednes of the destructor declarator @p D with type @p 10601 /// R. If there are any errors in the declarator, this routine will 10602 /// emit diagnostics and set the declarator to invalid. Even if this happens, 10603 /// will be updated to reflect a well-formed type for the destructor and 10604 /// returned. 10605 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, 10606 StorageClass& SC) { 10607 // C++ [class.dtor]p1: 10608 // [...] A typedef-name that names a class is a class-name 10609 // (7.1.3); however, a typedef-name that names a class shall not 10610 // be used as the identifier in the declarator for a destructor 10611 // declaration. 10612 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); 10613 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) 10614 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10615 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); 10616 else if (const TemplateSpecializationType *TST = 10617 DeclaratorType->getAs<TemplateSpecializationType>()) 10618 if (TST->isTypeAlias()) 10619 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10620 << DeclaratorType << 1; 10621 10622 // C++ [class.dtor]p2: 10623 // A destructor is used to destroy objects of its class type. A 10624 // destructor takes no parameters, and no return type can be 10625 // specified for it (not even void). The address of a destructor 10626 // shall not be taken. A destructor shall not be static. A 10627 // destructor can be invoked for a const, volatile or const 10628 // volatile object. A destructor shall not be declared const, 10629 // volatile or const volatile (9.3.2). 10630 if (SC == SC_Static) { 10631 if (!D.isInvalidType()) 10632 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) 10633 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10634 << SourceRange(D.getIdentifierLoc()) 10635 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 10636 10637 SC = SC_None; 10638 } 10639 if (!D.isInvalidType()) { 10640 // Destructors don't have return types, but the parser will 10641 // happily parse something like: 10642 // 10643 // class X { 10644 // float ~X(); 10645 // }; 10646 // 10647 // The return type will be eliminated later. 10648 if (D.getDeclSpec().hasTypeSpecifier()) 10649 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) 10650 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 10651 << SourceRange(D.getIdentifierLoc()); 10652 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10653 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, 10654 SourceLocation(), 10655 D.getDeclSpec().getConstSpecLoc(), 10656 D.getDeclSpec().getVolatileSpecLoc(), 10657 D.getDeclSpec().getRestrictSpecLoc(), 10658 D.getDeclSpec().getAtomicSpecLoc()); 10659 D.setInvalidType(); 10660 } 10661 } 10662 10663 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor); 10664 10665 // C++0x [class.dtor]p2: 10666 // A destructor shall not be declared with a ref-qualifier. 10667 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10668 if (FTI.hasRefQualifier()) { 10669 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) 10670 << FTI.RefQualifierIsLValueRef 10671 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10672 D.setInvalidType(); 10673 } 10674 10675 // Make sure we don't have any parameters. 10676 if (FTIHasNonVoidParameters(FTI)) { 10677 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); 10678 10679 // Delete the parameters. 10680 FTI.freeParams(); 10681 D.setInvalidType(); 10682 } 10683 10684 // Make sure the destructor isn't variadic. 10685 if (FTI.isVariadic) { 10686 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); 10687 D.setInvalidType(); 10688 } 10689 10690 // Rebuild the function type "R" without any type qualifiers or 10691 // parameters (in case any of the errors above fired) and with 10692 // "void" as the return type, since destructors don't have return 10693 // types. 10694 if (!D.isInvalidType()) 10695 return R; 10696 10697 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10698 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10699 EPI.Variadic = false; 10700 EPI.TypeQuals = Qualifiers(); 10701 EPI.RefQualifier = RQ_None; 10702 return Context.getFunctionType(Context.VoidTy, None, EPI); 10703 } 10704 10705 static void extendLeft(SourceRange &R, SourceRange Before) { 10706 if (Before.isInvalid()) 10707 return; 10708 R.setBegin(Before.getBegin()); 10709 if (R.getEnd().isInvalid()) 10710 R.setEnd(Before.getEnd()); 10711 } 10712 10713 static void extendRight(SourceRange &R, SourceRange After) { 10714 if (After.isInvalid()) 10715 return; 10716 if (R.getBegin().isInvalid()) 10717 R.setBegin(After.getBegin()); 10718 R.setEnd(After.getEnd()); 10719 } 10720 10721 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the 10722 /// well-formednes of the conversion function declarator @p D with 10723 /// type @p R. If there are any errors in the declarator, this routine 10724 /// will emit diagnostics and return true. Otherwise, it will return 10725 /// false. Either way, the type @p R will be updated to reflect a 10726 /// well-formed type for the conversion operator. 10727 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, 10728 StorageClass& SC) { 10729 // C++ [class.conv.fct]p1: 10730 // Neither parameter types nor return type can be specified. The 10731 // type of a conversion function (8.3.5) is "function taking no 10732 // parameter returning conversion-type-id." 10733 if (SC == SC_Static) { 10734 if (!D.isInvalidType()) 10735 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) 10736 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10737 << D.getName().getSourceRange(); 10738 D.setInvalidType(); 10739 SC = SC_None; 10740 } 10741 10742 TypeSourceInfo *ConvTSI = nullptr; 10743 QualType ConvType = 10744 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI); 10745 10746 const DeclSpec &DS = D.getDeclSpec(); 10747 if (DS.hasTypeSpecifier() && !D.isInvalidType()) { 10748 // Conversion functions don't have return types, but the parser will 10749 // happily parse something like: 10750 // 10751 // class X { 10752 // float operator bool(); 10753 // }; 10754 // 10755 // The return type will be changed later anyway. 10756 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) 10757 << SourceRange(DS.getTypeSpecTypeLoc()) 10758 << SourceRange(D.getIdentifierLoc()); 10759 D.setInvalidType(); 10760 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) { 10761 // It's also plausible that the user writes type qualifiers in the wrong 10762 // place, such as: 10763 // struct S { const operator int(); }; 10764 // FIXME: we could provide a fixit to move the qualifiers onto the 10765 // conversion type. 10766 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) 10767 << SourceRange(D.getIdentifierLoc()) << 0; 10768 D.setInvalidType(); 10769 } 10770 10771 const auto *Proto = R->castAs<FunctionProtoType>(); 10772 10773 // Make sure we don't have any parameters. 10774 if (Proto->getNumParams() > 0) { 10775 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); 10776 10777 // Delete the parameters. 10778 D.getFunctionTypeInfo().freeParams(); 10779 D.setInvalidType(); 10780 } else if (Proto->isVariadic()) { 10781 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); 10782 D.setInvalidType(); 10783 } 10784 10785 // Diagnose "&operator bool()" and other such nonsense. This 10786 // is actually a gcc extension which we don't support. 10787 if (Proto->getReturnType() != ConvType) { 10788 bool NeedsTypedef = false; 10789 SourceRange Before, After; 10790 10791 // Walk the chunks and extract information on them for our diagnostic. 10792 bool PastFunctionChunk = false; 10793 for (auto &Chunk : D.type_objects()) { 10794 switch (Chunk.Kind) { 10795 case DeclaratorChunk::Function: 10796 if (!PastFunctionChunk) { 10797 if (Chunk.Fun.HasTrailingReturnType) { 10798 TypeSourceInfo *TRT = nullptr; 10799 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT); 10800 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange()); 10801 } 10802 PastFunctionChunk = true; 10803 break; 10804 } 10805 LLVM_FALLTHROUGH; 10806 case DeclaratorChunk::Array: 10807 NeedsTypedef = true; 10808 extendRight(After, Chunk.getSourceRange()); 10809 break; 10810 10811 case DeclaratorChunk::Pointer: 10812 case DeclaratorChunk::BlockPointer: 10813 case DeclaratorChunk::Reference: 10814 case DeclaratorChunk::MemberPointer: 10815 case DeclaratorChunk::Pipe: 10816 extendLeft(Before, Chunk.getSourceRange()); 10817 break; 10818 10819 case DeclaratorChunk::Paren: 10820 extendLeft(Before, Chunk.Loc); 10821 extendRight(After, Chunk.EndLoc); 10822 break; 10823 } 10824 } 10825 10826 SourceLocation Loc = Before.isValid() ? Before.getBegin() : 10827 After.isValid() ? After.getBegin() : 10828 D.getIdentifierLoc(); 10829 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); 10830 DB << Before << After; 10831 10832 if (!NeedsTypedef) { 10833 DB << /*don't need a typedef*/0; 10834 10835 // If we can provide a correct fix-it hint, do so. 10836 if (After.isInvalid() && ConvTSI) { 10837 SourceLocation InsertLoc = 10838 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc()); 10839 DB << FixItHint::CreateInsertion(InsertLoc, " ") 10840 << FixItHint::CreateInsertionFromRange( 10841 InsertLoc, CharSourceRange::getTokenRange(Before)) 10842 << FixItHint::CreateRemoval(Before); 10843 } 10844 } else if (!Proto->getReturnType()->isDependentType()) { 10845 DB << /*typedef*/1 << Proto->getReturnType(); 10846 } else if (getLangOpts().CPlusPlus11) { 10847 DB << /*alias template*/2 << Proto->getReturnType(); 10848 } else { 10849 DB << /*might not be fixable*/3; 10850 } 10851 10852 // Recover by incorporating the other type chunks into the result type. 10853 // Note, this does *not* change the name of the function. This is compatible 10854 // with the GCC extension: 10855 // struct S { &operator int(); } s; 10856 // int &r = s.operator int(); // ok in GCC 10857 // S::operator int&() {} // error in GCC, function name is 'operator int'. 10858 ConvType = Proto->getReturnType(); 10859 } 10860 10861 // C++ [class.conv.fct]p4: 10862 // The conversion-type-id shall not represent a function type nor 10863 // an array type. 10864 if (ConvType->isArrayType()) { 10865 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); 10866 ConvType = Context.getPointerType(ConvType); 10867 D.setInvalidType(); 10868 } else if (ConvType->isFunctionType()) { 10869 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); 10870 ConvType = Context.getPointerType(ConvType); 10871 D.setInvalidType(); 10872 } 10873 10874 // Rebuild the function type "R" without any parameters (in case any 10875 // of the errors above fired) and with the conversion type as the 10876 // return type. 10877 if (D.isInvalidType()) 10878 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo()); 10879 10880 // C++0x explicit conversion operators. 10881 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20) 10882 Diag(DS.getExplicitSpecLoc(), 10883 getLangOpts().CPlusPlus11 10884 ? diag::warn_cxx98_compat_explicit_conversion_functions 10885 : diag::ext_explicit_conversion_functions) 10886 << SourceRange(DS.getExplicitSpecRange()); 10887 } 10888 10889 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete 10890 /// the declaration of the given C++ conversion function. This routine 10891 /// is responsible for recording the conversion function in the C++ 10892 /// class, if possible. 10893 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { 10894 assert(Conversion && "Expected to receive a conversion function declaration"); 10895 10896 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); 10897 10898 // Make sure we aren't redeclaring the conversion function. 10899 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); 10900 // C++ [class.conv.fct]p1: 10901 // [...] A conversion function is never used to convert a 10902 // (possibly cv-qualified) object to the (possibly cv-qualified) 10903 // same object type (or a reference to it), to a (possibly 10904 // cv-qualified) base class of that type (or a reference to it), 10905 // or to (possibly cv-qualified) void. 10906 QualType ClassType 10907 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 10908 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) 10909 ConvType = ConvTypeRef->getPointeeType(); 10910 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && 10911 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 10912 /* Suppress diagnostics for instantiations. */; 10913 else if (Conversion->size_overridden_methods() != 0) 10914 /* Suppress diagnostics for overriding virtual function in a base class. */; 10915 else if (ConvType->isRecordType()) { 10916 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); 10917 if (ConvType == ClassType) 10918 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) 10919 << ClassType; 10920 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType)) 10921 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) 10922 << ClassType << ConvType; 10923 } else if (ConvType->isVoidType()) { 10924 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) 10925 << ClassType << ConvType; 10926 } 10927 10928 if (FunctionTemplateDecl *ConversionTemplate 10929 = Conversion->getDescribedFunctionTemplate()) 10930 return ConversionTemplate; 10931 10932 return Conversion; 10933 } 10934 10935 namespace { 10936 /// Utility class to accumulate and print a diagnostic listing the invalid 10937 /// specifier(s) on a declaration. 10938 struct BadSpecifierDiagnoser { 10939 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID) 10940 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {} 10941 ~BadSpecifierDiagnoser() { 10942 Diagnostic << Specifiers; 10943 } 10944 10945 template<typename T> void check(SourceLocation SpecLoc, T Spec) { 10946 return check(SpecLoc, DeclSpec::getSpecifierName(Spec)); 10947 } 10948 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) { 10949 return check(SpecLoc, 10950 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy())); 10951 } 10952 void check(SourceLocation SpecLoc, const char *Spec) { 10953 if (SpecLoc.isInvalid()) return; 10954 Diagnostic << SourceRange(SpecLoc, SpecLoc); 10955 if (!Specifiers.empty()) Specifiers += " "; 10956 Specifiers += Spec; 10957 } 10958 10959 Sema &S; 10960 Sema::SemaDiagnosticBuilder Diagnostic; 10961 std::string Specifiers; 10962 }; 10963 } 10964 10965 /// Check the validity of a declarator that we parsed for a deduction-guide. 10966 /// These aren't actually declarators in the grammar, so we need to check that 10967 /// the user didn't specify any pieces that are not part of the deduction-guide 10968 /// grammar. 10969 void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R, 10970 StorageClass &SC) { 10971 TemplateName GuidedTemplate = D.getName().TemplateName.get().get(); 10972 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl(); 10973 assert(GuidedTemplateDecl && "missing template decl for deduction guide"); 10974 10975 // C++ [temp.deduct.guide]p3: 10976 // A deduction-gide shall be declared in the same scope as the 10977 // corresponding class template. 10978 if (!CurContext->getRedeclContext()->Equals( 10979 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) { 10980 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope) 10981 << GuidedTemplateDecl; 10982 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here); 10983 } 10984 10985 auto &DS = D.getMutableDeclSpec(); 10986 // We leave 'friend' and 'virtual' to be rejected in the normal way. 10987 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() || 10988 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() || 10989 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) { 10990 BadSpecifierDiagnoser Diagnoser( 10991 *this, D.getIdentifierLoc(), 10992 diag::err_deduction_guide_invalid_specifier); 10993 10994 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec()); 10995 DS.ClearStorageClassSpecs(); 10996 SC = SC_None; 10997 10998 // 'explicit' is permitted. 10999 Diagnoser.check(DS.getInlineSpecLoc(), "inline"); 11000 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn"); 11001 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr"); 11002 DS.ClearConstexprSpec(); 11003 11004 Diagnoser.check(DS.getConstSpecLoc(), "const"); 11005 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict"); 11006 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile"); 11007 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic"); 11008 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned"); 11009 DS.ClearTypeQualifiers(); 11010 11011 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex()); 11012 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign()); 11013 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth()); 11014 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType()); 11015 DS.ClearTypeSpecType(); 11016 } 11017 11018 if (D.isInvalidType()) 11019 return; 11020 11021 // Check the declarator is simple enough. 11022 bool FoundFunction = false; 11023 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) { 11024 if (Chunk.Kind == DeclaratorChunk::Paren) 11025 continue; 11026 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) { 11027 Diag(D.getDeclSpec().getBeginLoc(), 11028 diag::err_deduction_guide_with_complex_decl) 11029 << D.getSourceRange(); 11030 break; 11031 } 11032 if (!Chunk.Fun.hasTrailingReturnType()) { 11033 Diag(D.getName().getBeginLoc(), 11034 diag::err_deduction_guide_no_trailing_return_type); 11035 break; 11036 } 11037 11038 // Check that the return type is written as a specialization of 11039 // the template specified as the deduction-guide's name. 11040 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType(); 11041 TypeSourceInfo *TSI = nullptr; 11042 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI); 11043 assert(TSI && "deduction guide has valid type but invalid return type?"); 11044 bool AcceptableReturnType = false; 11045 bool MightInstantiateToSpecialization = false; 11046 if (auto RetTST = 11047 TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) { 11048 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName(); 11049 bool TemplateMatches = 11050 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate); 11051 // FIXME: We should consider other template kinds (using, qualified), 11052 // otherwise we will emit bogus diagnostics. 11053 if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches) 11054 AcceptableReturnType = true; 11055 else { 11056 // This could still instantiate to the right type, unless we know it 11057 // names the wrong class template. 11058 auto *TD = SpecifiedName.getAsTemplateDecl(); 11059 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) && 11060 !TemplateMatches); 11061 } 11062 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) { 11063 MightInstantiateToSpecialization = true; 11064 } 11065 11066 if (!AcceptableReturnType) { 11067 Diag(TSI->getTypeLoc().getBeginLoc(), 11068 diag::err_deduction_guide_bad_trailing_return_type) 11069 << GuidedTemplate << TSI->getType() 11070 << MightInstantiateToSpecialization 11071 << TSI->getTypeLoc().getSourceRange(); 11072 } 11073 11074 // Keep going to check that we don't have any inner declarator pieces (we 11075 // could still have a function returning a pointer to a function). 11076 FoundFunction = true; 11077 } 11078 11079 if (D.isFunctionDefinition()) 11080 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function); 11081 } 11082 11083 //===----------------------------------------------------------------------===// 11084 // Namespace Handling 11085 //===----------------------------------------------------------------------===// 11086 11087 /// Diagnose a mismatch in 'inline' qualifiers when a namespace is 11088 /// reopened. 11089 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, 11090 SourceLocation Loc, 11091 IdentifierInfo *II, bool *IsInline, 11092 NamespaceDecl *PrevNS) { 11093 assert(*IsInline != PrevNS->isInline()); 11094 11095 // 'inline' must appear on the original definition, but not necessarily 11096 // on all extension definitions, so the note should point to the first 11097 // definition to avoid confusion. 11098 PrevNS = PrevNS->getFirstDecl(); 11099 11100 if (PrevNS->isInline()) 11101 // The user probably just forgot the 'inline', so suggest that it 11102 // be added back. 11103 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) 11104 << FixItHint::CreateInsertion(KeywordLoc, "inline "); 11105 else 11106 S.Diag(Loc, diag::err_inline_namespace_mismatch); 11107 11108 S.Diag(PrevNS->getLocation(), diag::note_previous_definition); 11109 *IsInline = PrevNS->isInline(); 11110 } 11111 11112 /// ActOnStartNamespaceDef - This is called at the start of a namespace 11113 /// definition. 11114 Decl *Sema::ActOnStartNamespaceDef( 11115 Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc, 11116 SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace, 11117 const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) { 11118 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; 11119 // For anonymous namespace, take the location of the left brace. 11120 SourceLocation Loc = II ? IdentLoc : LBrace; 11121 bool IsInline = InlineLoc.isValid(); 11122 bool IsInvalid = false; 11123 bool IsStd = false; 11124 bool AddToKnown = false; 11125 Scope *DeclRegionScope = NamespcScope->getParent(); 11126 11127 NamespaceDecl *PrevNS = nullptr; 11128 if (II) { 11129 // C++ [namespace.def]p2: 11130 // The identifier in an original-namespace-definition shall not 11131 // have been previously defined in the declarative region in 11132 // which the original-namespace-definition appears. The 11133 // identifier in an original-namespace-definition is the name of 11134 // the namespace. Subsequently in that declarative region, it is 11135 // treated as an original-namespace-name. 11136 // 11137 // Since namespace names are unique in their scope, and we don't 11138 // look through using directives, just look for any ordinary names 11139 // as if by qualified name lookup. 11140 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, 11141 ForExternalRedeclaration); 11142 LookupQualifiedName(R, CurContext->getRedeclContext()); 11143 NamedDecl *PrevDecl = 11144 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr; 11145 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl); 11146 11147 if (PrevNS) { 11148 // This is an extended namespace definition. 11149 if (IsInline != PrevNS->isInline()) 11150 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II, 11151 &IsInline, PrevNS); 11152 } else if (PrevDecl) { 11153 // This is an invalid name redefinition. 11154 Diag(Loc, diag::err_redefinition_different_kind) 11155 << II; 11156 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 11157 IsInvalid = true; 11158 // Continue on to push Namespc as current DeclContext and return it. 11159 } else if (II->isStr("std") && 11160 CurContext->getRedeclContext()->isTranslationUnit()) { 11161 // This is the first "real" definition of the namespace "std", so update 11162 // our cache of the "std" namespace to point at this definition. 11163 PrevNS = getStdNamespace(); 11164 IsStd = true; 11165 AddToKnown = !IsInline; 11166 } else { 11167 // We've seen this namespace for the first time. 11168 AddToKnown = !IsInline; 11169 } 11170 } else { 11171 // Anonymous namespaces. 11172 11173 // Determine whether the parent already has an anonymous namespace. 11174 DeclContext *Parent = CurContext->getRedeclContext(); 11175 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 11176 PrevNS = TU->getAnonymousNamespace(); 11177 } else { 11178 NamespaceDecl *ND = cast<NamespaceDecl>(Parent); 11179 PrevNS = ND->getAnonymousNamespace(); 11180 } 11181 11182 if (PrevNS && IsInline != PrevNS->isInline()) 11183 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II, 11184 &IsInline, PrevNS); 11185 } 11186 11187 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline, 11188 StartLoc, Loc, II, PrevNS); 11189 if (IsInvalid) 11190 Namespc->setInvalidDecl(); 11191 11192 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); 11193 AddPragmaAttributes(DeclRegionScope, Namespc); 11194 11195 // FIXME: Should we be merging attributes? 11196 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) 11197 PushNamespaceVisibilityAttr(Attr, Loc); 11198 11199 if (IsStd) 11200 StdNamespace = Namespc; 11201 if (AddToKnown) 11202 KnownNamespaces[Namespc] = false; 11203 11204 if (II) { 11205 PushOnScopeChains(Namespc, DeclRegionScope); 11206 } else { 11207 // Link the anonymous namespace into its parent. 11208 DeclContext *Parent = CurContext->getRedeclContext(); 11209 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 11210 TU->setAnonymousNamespace(Namespc); 11211 } else { 11212 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc); 11213 } 11214 11215 CurContext->addDecl(Namespc); 11216 11217 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition 11218 // behaves as if it were replaced by 11219 // namespace unique { /* empty body */ } 11220 // using namespace unique; 11221 // namespace unique { namespace-body } 11222 // where all occurrences of 'unique' in a translation unit are 11223 // replaced by the same identifier and this identifier differs 11224 // from all other identifiers in the entire program. 11225 11226 // We just create the namespace with an empty name and then add an 11227 // implicit using declaration, just like the standard suggests. 11228 // 11229 // CodeGen enforces the "universally unique" aspect by giving all 11230 // declarations semantically contained within an anonymous 11231 // namespace internal linkage. 11232 11233 if (!PrevNS) { 11234 UD = UsingDirectiveDecl::Create(Context, Parent, 11235 /* 'using' */ LBrace, 11236 /* 'namespace' */ SourceLocation(), 11237 /* qualifier */ NestedNameSpecifierLoc(), 11238 /* identifier */ SourceLocation(), 11239 Namespc, 11240 /* Ancestor */ Parent); 11241 UD->setImplicit(); 11242 Parent->addDecl(UD); 11243 } 11244 } 11245 11246 ActOnDocumentableDecl(Namespc); 11247 11248 // Although we could have an invalid decl (i.e. the namespace name is a 11249 // redefinition), push it as current DeclContext and try to continue parsing. 11250 // FIXME: We should be able to push Namespc here, so that the each DeclContext 11251 // for the namespace has the declarations that showed up in that particular 11252 // namespace definition. 11253 PushDeclContext(NamespcScope, Namespc); 11254 return Namespc; 11255 } 11256 11257 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl 11258 /// is a namespace alias, returns the namespace it points to. 11259 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { 11260 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) 11261 return AD->getNamespace(); 11262 return dyn_cast_or_null<NamespaceDecl>(D); 11263 } 11264 11265 /// ActOnFinishNamespaceDef - This callback is called after a namespace is 11266 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. 11267 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { 11268 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); 11269 assert(Namespc && "Invalid parameter, expected NamespaceDecl"); 11270 Namespc->setRBraceLoc(RBrace); 11271 PopDeclContext(); 11272 if (Namespc->hasAttr<VisibilityAttr>()) 11273 PopPragmaVisibility(true, RBrace); 11274 // If this namespace contains an export-declaration, export it now. 11275 if (DeferredExportedNamespaces.erase(Namespc)) 11276 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 11277 } 11278 11279 CXXRecordDecl *Sema::getStdBadAlloc() const { 11280 return cast_or_null<CXXRecordDecl>( 11281 StdBadAlloc.get(Context.getExternalSource())); 11282 } 11283 11284 EnumDecl *Sema::getStdAlignValT() const { 11285 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource())); 11286 } 11287 11288 NamespaceDecl *Sema::getStdNamespace() const { 11289 return cast_or_null<NamespaceDecl>( 11290 StdNamespace.get(Context.getExternalSource())); 11291 } 11292 11293 NamespaceDecl *Sema::lookupStdExperimentalNamespace() { 11294 if (!StdExperimentalNamespaceCache) { 11295 if (auto Std = getStdNamespace()) { 11296 LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"), 11297 SourceLocation(), LookupNamespaceName); 11298 if (!LookupQualifiedName(Result, Std) || 11299 !(StdExperimentalNamespaceCache = 11300 Result.getAsSingle<NamespaceDecl>())) 11301 Result.suppressDiagnostics(); 11302 } 11303 } 11304 return StdExperimentalNamespaceCache; 11305 } 11306 11307 namespace { 11308 11309 enum UnsupportedSTLSelect { 11310 USS_InvalidMember, 11311 USS_MissingMember, 11312 USS_NonTrivial, 11313 USS_Other 11314 }; 11315 11316 struct InvalidSTLDiagnoser { 11317 Sema &S; 11318 SourceLocation Loc; 11319 QualType TyForDiags; 11320 11321 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "", 11322 const VarDecl *VD = nullptr) { 11323 { 11324 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported) 11325 << TyForDiags << ((int)Sel); 11326 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) { 11327 assert(!Name.empty()); 11328 D << Name; 11329 } 11330 } 11331 if (Sel == USS_InvalidMember) { 11332 S.Diag(VD->getLocation(), diag::note_var_declared_here) 11333 << VD << VD->getSourceRange(); 11334 } 11335 return QualType(); 11336 } 11337 }; 11338 } // namespace 11339 11340 QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind, 11341 SourceLocation Loc, 11342 ComparisonCategoryUsage Usage) { 11343 assert(getLangOpts().CPlusPlus && 11344 "Looking for comparison category type outside of C++."); 11345 11346 // Use an elaborated type for diagnostics which has a name containing the 11347 // prepended 'std' namespace but not any inline namespace names. 11348 auto TyForDiags = [&](ComparisonCategoryInfo *Info) { 11349 auto *NNS = 11350 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()); 11351 return Context.getElaboratedType(ETK_None, NNS, Info->getType()); 11352 }; 11353 11354 // Check if we've already successfully checked the comparison category type 11355 // before. If so, skip checking it again. 11356 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind); 11357 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) { 11358 // The only thing we need to check is that the type has a reachable 11359 // definition in the current context. 11360 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11361 return QualType(); 11362 11363 return Info->getType(); 11364 } 11365 11366 // If lookup failed 11367 if (!Info) { 11368 std::string NameForDiags = "std::"; 11369 NameForDiags += ComparisonCategories::getCategoryString(Kind); 11370 Diag(Loc, diag::err_implied_comparison_category_type_not_found) 11371 << NameForDiags << (int)Usage; 11372 return QualType(); 11373 } 11374 11375 assert(Info->Kind == Kind); 11376 assert(Info->Record); 11377 11378 // Update the Record decl in case we encountered a forward declaration on our 11379 // first pass. FIXME: This is a bit of a hack. 11380 if (Info->Record->hasDefinition()) 11381 Info->Record = Info->Record->getDefinition(); 11382 11383 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11384 return QualType(); 11385 11386 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)}; 11387 11388 if (!Info->Record->isTriviallyCopyable()) 11389 return UnsupportedSTLError(USS_NonTrivial); 11390 11391 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) { 11392 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl(); 11393 // Tolerate empty base classes. 11394 if (Base->isEmpty()) 11395 continue; 11396 // Reject STL implementations which have at least one non-empty base. 11397 return UnsupportedSTLError(); 11398 } 11399 11400 // Check that the STL has implemented the types using a single integer field. 11401 // This expectation allows better codegen for builtin operators. We require: 11402 // (1) The class has exactly one field. 11403 // (2) The field is an integral or enumeration type. 11404 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end(); 11405 if (std::distance(FIt, FEnd) != 1 || 11406 !FIt->getType()->isIntegralOrEnumerationType()) { 11407 return UnsupportedSTLError(); 11408 } 11409 11410 // Build each of the require values and store them in Info. 11411 for (ComparisonCategoryResult CCR : 11412 ComparisonCategories::getPossibleResultsForType(Kind)) { 11413 StringRef MemName = ComparisonCategories::getResultString(CCR); 11414 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR); 11415 11416 if (!ValInfo) 11417 return UnsupportedSTLError(USS_MissingMember, MemName); 11418 11419 VarDecl *VD = ValInfo->VD; 11420 assert(VD && "should not be null!"); 11421 11422 // Attempt to diagnose reasons why the STL definition of this type 11423 // might be foobar, including it failing to be a constant expression. 11424 // TODO Handle more ways the lookup or result can be invalid. 11425 if (!VD->isStaticDataMember() || 11426 !VD->isUsableInConstantExpressions(Context)) 11427 return UnsupportedSTLError(USS_InvalidMember, MemName, VD); 11428 11429 // Attempt to evaluate the var decl as a constant expression and extract 11430 // the value of its first field as a ICE. If this fails, the STL 11431 // implementation is not supported. 11432 if (!ValInfo->hasValidIntValue()) 11433 return UnsupportedSTLError(); 11434 11435 MarkVariableReferenced(Loc, VD); 11436 } 11437 11438 // We've successfully built the required types and expressions. Update 11439 // the cache and return the newly cached value. 11440 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true; 11441 return Info->getType(); 11442 } 11443 11444 /// Retrieve the special "std" namespace, which may require us to 11445 /// implicitly define the namespace. 11446 NamespaceDecl *Sema::getOrCreateStdNamespace() { 11447 if (!StdNamespace) { 11448 // The "std" namespace has not yet been defined, so build one implicitly. 11449 StdNamespace = NamespaceDecl::Create(Context, 11450 Context.getTranslationUnitDecl(), 11451 /*Inline=*/false, 11452 SourceLocation(), SourceLocation(), 11453 &PP.getIdentifierTable().get("std"), 11454 /*PrevDecl=*/nullptr); 11455 getStdNamespace()->setImplicit(true); 11456 } 11457 11458 return getStdNamespace(); 11459 } 11460 11461 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { 11462 assert(getLangOpts().CPlusPlus && 11463 "Looking for std::initializer_list outside of C++."); 11464 11465 // We're looking for implicit instantiations of 11466 // template <typename E> class std::initializer_list. 11467 11468 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it. 11469 return false; 11470 11471 ClassTemplateDecl *Template = nullptr; 11472 const TemplateArgument *Arguments = nullptr; 11473 11474 if (const RecordType *RT = Ty->getAs<RecordType>()) { 11475 11476 ClassTemplateSpecializationDecl *Specialization = 11477 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 11478 if (!Specialization) 11479 return false; 11480 11481 Template = Specialization->getSpecializedTemplate(); 11482 Arguments = Specialization->getTemplateArgs().data(); 11483 } else if (const TemplateSpecializationType *TST = 11484 Ty->getAs<TemplateSpecializationType>()) { 11485 Template = dyn_cast_or_null<ClassTemplateDecl>( 11486 TST->getTemplateName().getAsTemplateDecl()); 11487 Arguments = TST->getArgs(); 11488 } 11489 if (!Template) 11490 return false; 11491 11492 if (!StdInitializerList) { 11493 // Haven't recognized std::initializer_list yet, maybe this is it. 11494 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); 11495 if (TemplateClass->getIdentifier() != 11496 &PP.getIdentifierTable().get("initializer_list") || 11497 !getStdNamespace()->InEnclosingNamespaceSetOf( 11498 TemplateClass->getDeclContext())) 11499 return false; 11500 // This is a template called std::initializer_list, but is it the right 11501 // template? 11502 TemplateParameterList *Params = Template->getTemplateParameters(); 11503 if (Params->getMinRequiredArguments() != 1) 11504 return false; 11505 if (!isa<TemplateTypeParmDecl>(Params->getParam(0))) 11506 return false; 11507 11508 // It's the right template. 11509 StdInitializerList = Template; 11510 } 11511 11512 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl()) 11513 return false; 11514 11515 // This is an instance of std::initializer_list. Find the argument type. 11516 if (Element) 11517 *Element = Arguments[0].getAsType(); 11518 return true; 11519 } 11520 11521 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){ 11522 NamespaceDecl *Std = S.getStdNamespace(); 11523 if (!Std) { 11524 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 11525 return nullptr; 11526 } 11527 11528 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"), 11529 Loc, Sema::LookupOrdinaryName); 11530 if (!S.LookupQualifiedName(Result, Std)) { 11531 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 11532 return nullptr; 11533 } 11534 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); 11535 if (!Template) { 11536 Result.suppressDiagnostics(); 11537 // We found something weird. Complain about the first thing we found. 11538 NamedDecl *Found = *Result.begin(); 11539 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list); 11540 return nullptr; 11541 } 11542 11543 // We found some template called std::initializer_list. Now verify that it's 11544 // correct. 11545 TemplateParameterList *Params = Template->getTemplateParameters(); 11546 if (Params->getMinRequiredArguments() != 1 || 11547 !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 11548 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list); 11549 return nullptr; 11550 } 11551 11552 return Template; 11553 } 11554 11555 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { 11556 if (!StdInitializerList) { 11557 StdInitializerList = LookupStdInitializerList(*this, Loc); 11558 if (!StdInitializerList) 11559 return QualType(); 11560 } 11561 11562 TemplateArgumentListInfo Args(Loc, Loc); 11563 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element), 11564 Context.getTrivialTypeSourceInfo(Element, 11565 Loc))); 11566 return Context.getCanonicalType( 11567 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args)); 11568 } 11569 11570 bool Sema::isInitListConstructor(const FunctionDecl *Ctor) { 11571 // C++ [dcl.init.list]p2: 11572 // A constructor is an initializer-list constructor if its first parameter 11573 // is of type std::initializer_list<E> or reference to possibly cv-qualified 11574 // std::initializer_list<E> for some type E, and either there are no other 11575 // parameters or else all other parameters have default arguments. 11576 if (!Ctor->hasOneParamOrDefaultArgs()) 11577 return false; 11578 11579 QualType ArgType = Ctor->getParamDecl(0)->getType(); 11580 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) 11581 ArgType = RT->getPointeeType().getUnqualifiedType(); 11582 11583 return isStdInitializerList(ArgType, nullptr); 11584 } 11585 11586 /// Determine whether a using statement is in a context where it will be 11587 /// apply in all contexts. 11588 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { 11589 switch (CurContext->getDeclKind()) { 11590 case Decl::TranslationUnit: 11591 return true; 11592 case Decl::LinkageSpec: 11593 return IsUsingDirectiveInToplevelContext(CurContext->getParent()); 11594 default: 11595 return false; 11596 } 11597 } 11598 11599 namespace { 11600 11601 // Callback to only accept typo corrections that are namespaces. 11602 class NamespaceValidatorCCC final : public CorrectionCandidateCallback { 11603 public: 11604 bool ValidateCandidate(const TypoCorrection &candidate) override { 11605 if (NamedDecl *ND = candidate.getCorrectionDecl()) 11606 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); 11607 return false; 11608 } 11609 11610 std::unique_ptr<CorrectionCandidateCallback> clone() override { 11611 return std::make_unique<NamespaceValidatorCCC>(*this); 11612 } 11613 }; 11614 11615 } 11616 11617 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, 11618 CXXScopeSpec &SS, 11619 SourceLocation IdentLoc, 11620 IdentifierInfo *Ident) { 11621 R.clear(); 11622 NamespaceValidatorCCC CCC{}; 11623 if (TypoCorrection Corrected = 11624 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC, 11625 Sema::CTK_ErrorRecovery)) { 11626 if (DeclContext *DC = S.computeDeclContext(SS, false)) { 11627 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts())); 11628 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 11629 Ident->getName().equals(CorrectedStr); 11630 S.diagnoseTypo(Corrected, 11631 S.PDiag(diag::err_using_directive_member_suggest) 11632 << Ident << DC << DroppedSpecifier << SS.getRange(), 11633 S.PDiag(diag::note_namespace_defined_here)); 11634 } else { 11635 S.diagnoseTypo(Corrected, 11636 S.PDiag(diag::err_using_directive_suggest) << Ident, 11637 S.PDiag(diag::note_namespace_defined_here)); 11638 } 11639 R.addDecl(Corrected.getFoundDecl()); 11640 return true; 11641 } 11642 return false; 11643 } 11644 11645 Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, 11646 SourceLocation NamespcLoc, CXXScopeSpec &SS, 11647 SourceLocation IdentLoc, 11648 IdentifierInfo *NamespcName, 11649 const ParsedAttributesView &AttrList) { 11650 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 11651 assert(NamespcName && "Invalid NamespcName."); 11652 assert(IdentLoc.isValid() && "Invalid NamespceName location."); 11653 11654 // This can only happen along a recovery path. 11655 while (S->isTemplateParamScope()) 11656 S = S->getParent(); 11657 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 11658 11659 UsingDirectiveDecl *UDir = nullptr; 11660 NestedNameSpecifier *Qualifier = nullptr; 11661 if (SS.isSet()) 11662 Qualifier = SS.getScopeRep(); 11663 11664 // Lookup namespace name. 11665 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); 11666 LookupParsedName(R, S, &SS); 11667 if (R.isAmbiguous()) 11668 return nullptr; 11669 11670 if (R.empty()) { 11671 R.clear(); 11672 // Allow "using namespace std;" or "using namespace ::std;" even if 11673 // "std" hasn't been defined yet, for GCC compatibility. 11674 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && 11675 NamespcName->isStr("std")) { 11676 Diag(IdentLoc, diag::ext_using_undefined_std); 11677 R.addDecl(getOrCreateStdNamespace()); 11678 R.resolveKind(); 11679 } 11680 // Otherwise, attempt typo correction. 11681 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); 11682 } 11683 11684 if (!R.empty()) { 11685 NamedDecl *Named = R.getRepresentativeDecl(); 11686 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>(); 11687 assert(NS && "expected namespace decl"); 11688 11689 // The use of a nested name specifier may trigger deprecation warnings. 11690 DiagnoseUseOfDecl(Named, IdentLoc); 11691 11692 // C++ [namespace.udir]p1: 11693 // A using-directive specifies that the names in the nominated 11694 // namespace can be used in the scope in which the 11695 // using-directive appears after the using-directive. During 11696 // unqualified name lookup (3.4.1), the names appear as if they 11697 // were declared in the nearest enclosing namespace which 11698 // contains both the using-directive and the nominated 11699 // namespace. [Note: in this context, "contains" means "contains 11700 // directly or indirectly". ] 11701 11702 // Find enclosing context containing both using-directive and 11703 // nominated namespace. 11704 DeclContext *CommonAncestor = NS; 11705 while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) 11706 CommonAncestor = CommonAncestor->getParent(); 11707 11708 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, 11709 SS.getWithLocInContext(Context), 11710 IdentLoc, Named, CommonAncestor); 11711 11712 if (IsUsingDirectiveInToplevelContext(CurContext) && 11713 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) { 11714 Diag(IdentLoc, diag::warn_using_directive_in_header); 11715 } 11716 11717 PushUsingDirective(S, UDir); 11718 } else { 11719 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 11720 } 11721 11722 if (UDir) 11723 ProcessDeclAttributeList(S, UDir, AttrList); 11724 11725 return UDir; 11726 } 11727 11728 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { 11729 // If the scope has an associated entity and the using directive is at 11730 // namespace or translation unit scope, add the UsingDirectiveDecl into 11731 // its lookup structure so qualified name lookup can find it. 11732 DeclContext *Ctx = S->getEntity(); 11733 if (Ctx && !Ctx->isFunctionOrMethod()) 11734 Ctx->addDecl(UDir); 11735 else 11736 // Otherwise, it is at block scope. The using-directives will affect lookup 11737 // only to the end of the scope. 11738 S->PushUsingDirective(UDir); 11739 } 11740 11741 Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, 11742 SourceLocation UsingLoc, 11743 SourceLocation TypenameLoc, CXXScopeSpec &SS, 11744 UnqualifiedId &Name, 11745 SourceLocation EllipsisLoc, 11746 const ParsedAttributesView &AttrList) { 11747 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 11748 11749 if (SS.isEmpty()) { 11750 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname); 11751 return nullptr; 11752 } 11753 11754 switch (Name.getKind()) { 11755 case UnqualifiedIdKind::IK_ImplicitSelfParam: 11756 case UnqualifiedIdKind::IK_Identifier: 11757 case UnqualifiedIdKind::IK_OperatorFunctionId: 11758 case UnqualifiedIdKind::IK_LiteralOperatorId: 11759 case UnqualifiedIdKind::IK_ConversionFunctionId: 11760 break; 11761 11762 case UnqualifiedIdKind::IK_ConstructorName: 11763 case UnqualifiedIdKind::IK_ConstructorTemplateId: 11764 // C++11 inheriting constructors. 11765 Diag(Name.getBeginLoc(), 11766 getLangOpts().CPlusPlus11 11767 ? diag::warn_cxx98_compat_using_decl_constructor 11768 : diag::err_using_decl_constructor) 11769 << SS.getRange(); 11770 11771 if (getLangOpts().CPlusPlus11) break; 11772 11773 return nullptr; 11774 11775 case UnqualifiedIdKind::IK_DestructorName: 11776 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange(); 11777 return nullptr; 11778 11779 case UnqualifiedIdKind::IK_TemplateId: 11780 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id) 11781 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); 11782 return nullptr; 11783 11784 case UnqualifiedIdKind::IK_DeductionGuideName: 11785 llvm_unreachable("cannot parse qualified deduction guide name"); 11786 } 11787 11788 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 11789 DeclarationName TargetName = TargetNameInfo.getName(); 11790 if (!TargetName) 11791 return nullptr; 11792 11793 // Warn about access declarations. 11794 if (UsingLoc.isInvalid()) { 11795 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 11796 ? diag::err_access_decl 11797 : diag::warn_access_decl_deprecated) 11798 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); 11799 } 11800 11801 if (EllipsisLoc.isInvalid()) { 11802 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || 11803 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) 11804 return nullptr; 11805 } else { 11806 if (!SS.getScopeRep()->containsUnexpandedParameterPack() && 11807 !TargetNameInfo.containsUnexpandedParameterPack()) { 11808 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 11809 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc()); 11810 EllipsisLoc = SourceLocation(); 11811 } 11812 } 11813 11814 NamedDecl *UD = 11815 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc, 11816 SS, TargetNameInfo, EllipsisLoc, AttrList, 11817 /*IsInstantiation*/ false, 11818 AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists)); 11819 if (UD) 11820 PushOnScopeChains(UD, S, /*AddToContext*/ false); 11821 11822 return UD; 11823 } 11824 11825 Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS, 11826 SourceLocation UsingLoc, 11827 SourceLocation EnumLoc, 11828 const DeclSpec &DS) { 11829 switch (DS.getTypeSpecType()) { 11830 case DeclSpec::TST_error: 11831 // This will already have been diagnosed 11832 return nullptr; 11833 11834 case DeclSpec::TST_enum: 11835 break; 11836 11837 case DeclSpec::TST_typename: 11838 Diag(DS.getTypeSpecTypeLoc(), diag::err_using_enum_is_dependent); 11839 return nullptr; 11840 11841 default: 11842 llvm_unreachable("unexpected DeclSpec type"); 11843 } 11844 11845 // As with enum-decls, we ignore attributes for now. 11846 auto *Enum = cast<EnumDecl>(DS.getRepAsDecl()); 11847 if (auto *Def = Enum->getDefinition()) 11848 Enum = Def; 11849 11850 auto *UD = BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc, 11851 DS.getTypeSpecTypeNameLoc(), Enum); 11852 if (UD) 11853 PushOnScopeChains(UD, S, /*AddToContext*/ false); 11854 11855 return UD; 11856 } 11857 11858 /// Determine whether a using declaration considers the given 11859 /// declarations as "equivalent", e.g., if they are redeclarations of 11860 /// the same entity or are both typedefs of the same type. 11861 static bool 11862 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { 11863 if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) 11864 return true; 11865 11866 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1)) 11867 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) 11868 return Context.hasSameType(TD1->getUnderlyingType(), 11869 TD2->getUnderlyingType()); 11870 11871 // Two using_if_exists using-declarations are equivalent if both are 11872 // unresolved. 11873 if (isa<UnresolvedUsingIfExistsDecl>(D1) && 11874 isa<UnresolvedUsingIfExistsDecl>(D2)) 11875 return true; 11876 11877 return false; 11878 } 11879 11880 11881 /// Determines whether to create a using shadow decl for a particular 11882 /// decl, given the set of decls existing prior to this using lookup. 11883 bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig, 11884 const LookupResult &Previous, 11885 UsingShadowDecl *&PrevShadow) { 11886 // Diagnose finding a decl which is not from a base class of the 11887 // current class. We do this now because there are cases where this 11888 // function will silently decide not to build a shadow decl, which 11889 // will pre-empt further diagnostics. 11890 // 11891 // We don't need to do this in C++11 because we do the check once on 11892 // the qualifier. 11893 // 11894 // FIXME: diagnose the following if we care enough: 11895 // struct A { int foo; }; 11896 // struct B : A { using A::foo; }; 11897 // template <class T> struct C : A {}; 11898 // template <class T> struct D : C<T> { using B::foo; } // <--- 11899 // This is invalid (during instantiation) in C++03 because B::foo 11900 // resolves to the using decl in B, which is not a base class of D<T>. 11901 // We can't diagnose it immediately because C<T> is an unknown 11902 // specialization. The UsingShadowDecl in D<T> then points directly 11903 // to A::foo, which will look well-formed when we instantiate. 11904 // The right solution is to not collapse the shadow-decl chain. 11905 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) 11906 if (auto *Using = dyn_cast<UsingDecl>(BUD)) { 11907 DeclContext *OrigDC = Orig->getDeclContext(); 11908 11909 // Handle enums and anonymous structs. 11910 if (isa<EnumDecl>(OrigDC)) 11911 OrigDC = OrigDC->getParent(); 11912 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); 11913 while (OrigRec->isAnonymousStructOrUnion()) 11914 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); 11915 11916 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { 11917 if (OrigDC == CurContext) { 11918 Diag(Using->getLocation(), 11919 diag::err_using_decl_nested_name_specifier_is_current_class) 11920 << Using->getQualifierLoc().getSourceRange(); 11921 Diag(Orig->getLocation(), diag::note_using_decl_target); 11922 Using->setInvalidDecl(); 11923 return true; 11924 } 11925 11926 Diag(Using->getQualifierLoc().getBeginLoc(), 11927 diag::err_using_decl_nested_name_specifier_is_not_base_class) 11928 << Using->getQualifier() << cast<CXXRecordDecl>(CurContext) 11929 << Using->getQualifierLoc().getSourceRange(); 11930 Diag(Orig->getLocation(), diag::note_using_decl_target); 11931 Using->setInvalidDecl(); 11932 return true; 11933 } 11934 } 11935 11936 if (Previous.empty()) return false; 11937 11938 NamedDecl *Target = Orig; 11939 if (isa<UsingShadowDecl>(Target)) 11940 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 11941 11942 // If the target happens to be one of the previous declarations, we 11943 // don't have a conflict. 11944 // 11945 // FIXME: but we might be increasing its access, in which case we 11946 // should redeclare it. 11947 NamedDecl *NonTag = nullptr, *Tag = nullptr; 11948 bool FoundEquivalentDecl = false; 11949 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 11950 I != E; ++I) { 11951 NamedDecl *D = (*I)->getUnderlyingDecl(); 11952 // We can have UsingDecls in our Previous results because we use the same 11953 // LookupResult for checking whether the UsingDecl itself is a valid 11954 // redeclaration. 11955 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D) || isa<UsingEnumDecl>(D)) 11956 continue; 11957 11958 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 11959 // C++ [class.mem]p19: 11960 // If T is the name of a class, then [every named member other than 11961 // a non-static data member] shall have a name different from T 11962 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) && 11963 !isa<IndirectFieldDecl>(Target) && 11964 !isa<UnresolvedUsingValueDecl>(Target) && 11965 DiagnoseClassNameShadow( 11966 CurContext, 11967 DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation()))) 11968 return true; 11969 } 11970 11971 if (IsEquivalentForUsingDecl(Context, D, Target)) { 11972 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I)) 11973 PrevShadow = Shadow; 11974 FoundEquivalentDecl = true; 11975 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) { 11976 // We don't conflict with an existing using shadow decl of an equivalent 11977 // declaration, but we're not a redeclaration of it. 11978 FoundEquivalentDecl = true; 11979 } 11980 11981 if (isVisible(D)) 11982 (isa<TagDecl>(D) ? Tag : NonTag) = D; 11983 } 11984 11985 if (FoundEquivalentDecl) 11986 return false; 11987 11988 // Always emit a diagnostic for a mismatch between an unresolved 11989 // using_if_exists and a resolved using declaration in either direction. 11990 if (isa<UnresolvedUsingIfExistsDecl>(Target) != 11991 (isa_and_nonnull<UnresolvedUsingIfExistsDecl>(NonTag))) { 11992 if (!NonTag && !Tag) 11993 return false; 11994 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 11995 Diag(Target->getLocation(), diag::note_using_decl_target); 11996 Diag((NonTag ? NonTag : Tag)->getLocation(), 11997 diag::note_using_decl_conflict); 11998 BUD->setInvalidDecl(); 11999 return true; 12000 } 12001 12002 if (FunctionDecl *FD = Target->getAsFunction()) { 12003 NamedDecl *OldDecl = nullptr; 12004 switch (CheckOverload(nullptr, FD, Previous, OldDecl, 12005 /*IsForUsingDecl*/ true)) { 12006 case Ovl_Overload: 12007 return false; 12008 12009 case Ovl_NonFunction: 12010 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12011 break; 12012 12013 // We found a decl with the exact signature. 12014 case Ovl_Match: 12015 // If we're in a record, we want to hide the target, so we 12016 // return true (without a diagnostic) to tell the caller not to 12017 // build a shadow decl. 12018 if (CurContext->isRecord()) 12019 return true; 12020 12021 // If we're not in a record, this is an error. 12022 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12023 break; 12024 } 12025 12026 Diag(Target->getLocation(), diag::note_using_decl_target); 12027 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); 12028 BUD->setInvalidDecl(); 12029 return true; 12030 } 12031 12032 // Target is not a function. 12033 12034 if (isa<TagDecl>(Target)) { 12035 // No conflict between a tag and a non-tag. 12036 if (!Tag) return false; 12037 12038 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12039 Diag(Target->getLocation(), diag::note_using_decl_target); 12040 Diag(Tag->getLocation(), diag::note_using_decl_conflict); 12041 BUD->setInvalidDecl(); 12042 return true; 12043 } 12044 12045 // No conflict between a tag and a non-tag. 12046 if (!NonTag) return false; 12047 12048 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12049 Diag(Target->getLocation(), diag::note_using_decl_target); 12050 Diag(NonTag->getLocation(), diag::note_using_decl_conflict); 12051 BUD->setInvalidDecl(); 12052 return true; 12053 } 12054 12055 /// Determine whether a direct base class is a virtual base class. 12056 static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) { 12057 if (!Derived->getNumVBases()) 12058 return false; 12059 for (auto &B : Derived->bases()) 12060 if (B.getType()->getAsCXXRecordDecl() == Base) 12061 return B.isVirtual(); 12062 llvm_unreachable("not a direct base class"); 12063 } 12064 12065 /// Builds a shadow declaration corresponding to a 'using' declaration. 12066 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD, 12067 NamedDecl *Orig, 12068 UsingShadowDecl *PrevDecl) { 12069 // If we resolved to another shadow declaration, just coalesce them. 12070 NamedDecl *Target = Orig; 12071 if (isa<UsingShadowDecl>(Target)) { 12072 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 12073 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); 12074 } 12075 12076 NamedDecl *NonTemplateTarget = Target; 12077 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target)) 12078 NonTemplateTarget = TargetTD->getTemplatedDecl(); 12079 12080 UsingShadowDecl *Shadow; 12081 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) { 12082 UsingDecl *Using = cast<UsingDecl>(BUD); 12083 bool IsVirtualBase = 12084 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext), 12085 Using->getQualifier()->getAsRecordDecl()); 12086 Shadow = ConstructorUsingShadowDecl::Create( 12087 Context, CurContext, Using->getLocation(), Using, Orig, IsVirtualBase); 12088 } else { 12089 Shadow = UsingShadowDecl::Create(Context, CurContext, BUD->getLocation(), 12090 Target->getDeclName(), BUD, Target); 12091 } 12092 BUD->addShadowDecl(Shadow); 12093 12094 Shadow->setAccess(BUD->getAccess()); 12095 if (Orig->isInvalidDecl() || BUD->isInvalidDecl()) 12096 Shadow->setInvalidDecl(); 12097 12098 Shadow->setPreviousDecl(PrevDecl); 12099 12100 if (S) 12101 PushOnScopeChains(Shadow, S); 12102 else 12103 CurContext->addDecl(Shadow); 12104 12105 12106 return Shadow; 12107 } 12108 12109 /// Hides a using shadow declaration. This is required by the current 12110 /// using-decl implementation when a resolvable using declaration in a 12111 /// class is followed by a declaration which would hide or override 12112 /// one or more of the using decl's targets; for example: 12113 /// 12114 /// struct Base { void foo(int); }; 12115 /// struct Derived : Base { 12116 /// using Base::foo; 12117 /// void foo(int); 12118 /// }; 12119 /// 12120 /// The governing language is C++03 [namespace.udecl]p12: 12121 /// 12122 /// When a using-declaration brings names from a base class into a 12123 /// derived class scope, member functions in the derived class 12124 /// override and/or hide member functions with the same name and 12125 /// parameter types in a base class (rather than conflicting). 12126 /// 12127 /// There are two ways to implement this: 12128 /// (1) optimistically create shadow decls when they're not hidden 12129 /// by existing declarations, or 12130 /// (2) don't create any shadow decls (or at least don't make them 12131 /// visible) until we've fully parsed/instantiated the class. 12132 /// The problem with (1) is that we might have to retroactively remove 12133 /// a shadow decl, which requires several O(n) operations because the 12134 /// decl structures are (very reasonably) not designed for removal. 12135 /// (2) avoids this but is very fiddly and phase-dependent. 12136 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { 12137 if (Shadow->getDeclName().getNameKind() == 12138 DeclarationName::CXXConversionFunctionName) 12139 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); 12140 12141 // Remove it from the DeclContext... 12142 Shadow->getDeclContext()->removeDecl(Shadow); 12143 12144 // ...and the scope, if applicable... 12145 if (S) { 12146 S->RemoveDecl(Shadow); 12147 IdResolver.RemoveDecl(Shadow); 12148 } 12149 12150 // ...and the using decl. 12151 Shadow->getIntroducer()->removeShadowDecl(Shadow); 12152 12153 // TODO: complain somehow if Shadow was used. It shouldn't 12154 // be possible for this to happen, because...? 12155 } 12156 12157 /// Find the base specifier for a base class with the given type. 12158 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, 12159 QualType DesiredBase, 12160 bool &AnyDependentBases) { 12161 // Check whether the named type is a direct base class. 12162 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified() 12163 .getUnqualifiedType(); 12164 for (auto &Base : Derived->bases()) { 12165 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); 12166 if (CanonicalDesiredBase == BaseType) 12167 return &Base; 12168 if (BaseType->isDependentType()) 12169 AnyDependentBases = true; 12170 } 12171 return nullptr; 12172 } 12173 12174 namespace { 12175 class UsingValidatorCCC final : public CorrectionCandidateCallback { 12176 public: 12177 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, 12178 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) 12179 : HasTypenameKeyword(HasTypenameKeyword), 12180 IsInstantiation(IsInstantiation), OldNNS(NNS), 12181 RequireMemberOf(RequireMemberOf) {} 12182 12183 bool ValidateCandidate(const TypoCorrection &Candidate) override { 12184 NamedDecl *ND = Candidate.getCorrectionDecl(); 12185 12186 // Keywords are not valid here. 12187 if (!ND || isa<NamespaceDecl>(ND)) 12188 return false; 12189 12190 // Completely unqualified names are invalid for a 'using' declaration. 12191 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) 12192 return false; 12193 12194 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would 12195 // reject. 12196 12197 if (RequireMemberOf) { 12198 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 12199 if (FoundRecord && FoundRecord->isInjectedClassName()) { 12200 // No-one ever wants a using-declaration to name an injected-class-name 12201 // of a base class, unless they're declaring an inheriting constructor. 12202 ASTContext &Ctx = ND->getASTContext(); 12203 if (!Ctx.getLangOpts().CPlusPlus11) 12204 return false; 12205 QualType FoundType = Ctx.getRecordType(FoundRecord); 12206 12207 // Check that the injected-class-name is named as a member of its own 12208 // type; we don't want to suggest 'using Derived::Base;', since that 12209 // means something else. 12210 NestedNameSpecifier *Specifier = 12211 Candidate.WillReplaceSpecifier() 12212 ? Candidate.getCorrectionSpecifier() 12213 : OldNNS; 12214 if (!Specifier->getAsType() || 12215 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType)) 12216 return false; 12217 12218 // Check that this inheriting constructor declaration actually names a 12219 // direct base class of the current class. 12220 bool AnyDependentBases = false; 12221 if (!findDirectBaseWithType(RequireMemberOf, 12222 Ctx.getRecordType(FoundRecord), 12223 AnyDependentBases) && 12224 !AnyDependentBases) 12225 return false; 12226 } else { 12227 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()); 12228 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD)) 12229 return false; 12230 12231 // FIXME: Check that the base class member is accessible? 12232 } 12233 } else { 12234 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 12235 if (FoundRecord && FoundRecord->isInjectedClassName()) 12236 return false; 12237 } 12238 12239 if (isa<TypeDecl>(ND)) 12240 return HasTypenameKeyword || !IsInstantiation; 12241 12242 return !HasTypenameKeyword; 12243 } 12244 12245 std::unique_ptr<CorrectionCandidateCallback> clone() override { 12246 return std::make_unique<UsingValidatorCCC>(*this); 12247 } 12248 12249 private: 12250 bool HasTypenameKeyword; 12251 bool IsInstantiation; 12252 NestedNameSpecifier *OldNNS; 12253 CXXRecordDecl *RequireMemberOf; 12254 }; 12255 } // end anonymous namespace 12256 12257 /// Remove decls we can't actually see from a lookup being used to declare 12258 /// shadow using decls. 12259 /// 12260 /// \param S - The scope of the potential shadow decl 12261 /// \param Previous - The lookup of a potential shadow decl's name. 12262 void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) { 12263 // It is really dumb that we have to do this. 12264 LookupResult::Filter F = Previous.makeFilter(); 12265 while (F.hasNext()) { 12266 NamedDecl *D = F.next(); 12267 if (!isDeclInScope(D, CurContext, S)) 12268 F.erase(); 12269 // If we found a local extern declaration that's not ordinarily visible, 12270 // and this declaration is being added to a non-block scope, ignore it. 12271 // We're only checking for scope conflicts here, not also for violations 12272 // of the linkage rules. 12273 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && 12274 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) 12275 F.erase(); 12276 } 12277 F.done(); 12278 } 12279 12280 /// Builds a using declaration. 12281 /// 12282 /// \param IsInstantiation - Whether this call arises from an 12283 /// instantiation of an unresolved using declaration. We treat 12284 /// the lookup differently for these declarations. 12285 NamedDecl *Sema::BuildUsingDeclaration( 12286 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, 12287 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, 12288 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, 12289 const ParsedAttributesView &AttrList, bool IsInstantiation, 12290 bool IsUsingIfExists) { 12291 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 12292 SourceLocation IdentLoc = NameInfo.getLoc(); 12293 assert(IdentLoc.isValid() && "Invalid TargetName location."); 12294 12295 // FIXME: We ignore attributes for now. 12296 12297 // For an inheriting constructor declaration, the name of the using 12298 // declaration is the name of a constructor in this class, not in the 12299 // base class. 12300 DeclarationNameInfo UsingName = NameInfo; 12301 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) 12302 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext)) 12303 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12304 Context.getCanonicalType(Context.getRecordType(RD)))); 12305 12306 // Do the redeclaration lookup in the current scope. 12307 LookupResult Previous(*this, UsingName, LookupUsingDeclName, 12308 ForVisibleRedeclaration); 12309 Previous.setHideTags(false); 12310 if (S) { 12311 LookupName(Previous, S); 12312 12313 FilterUsingLookup(S, Previous); 12314 } else { 12315 assert(IsInstantiation && "no scope in non-instantiation"); 12316 if (CurContext->isRecord()) 12317 LookupQualifiedName(Previous, CurContext); 12318 else { 12319 // No redeclaration check is needed here; in non-member contexts we 12320 // diagnosed all possible conflicts with other using-declarations when 12321 // building the template: 12322 // 12323 // For a dependent non-type using declaration, the only valid case is 12324 // if we instantiate to a single enumerator. We check for conflicts 12325 // between shadow declarations we introduce, and we check in the template 12326 // definition for conflicts between a non-type using declaration and any 12327 // other declaration, which together covers all cases. 12328 // 12329 // A dependent typename using declaration will never successfully 12330 // instantiate, since it will always name a class member, so we reject 12331 // that in the template definition. 12332 } 12333 } 12334 12335 // Check for invalid redeclarations. 12336 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, 12337 SS, IdentLoc, Previous)) 12338 return nullptr; 12339 12340 // 'using_if_exists' doesn't make sense on an inherited constructor. 12341 if (IsUsingIfExists && UsingName.getName().getNameKind() == 12342 DeclarationName::CXXConstructorName) { 12343 Diag(UsingLoc, diag::err_using_if_exists_on_ctor); 12344 return nullptr; 12345 } 12346 12347 DeclContext *LookupContext = computeDeclContext(SS); 12348 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 12349 if (!LookupContext || EllipsisLoc.isValid()) { 12350 NamedDecl *D; 12351 // Dependent scope, or an unexpanded pack 12352 if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, 12353 SS, NameInfo, IdentLoc)) 12354 return nullptr; 12355 12356 if (HasTypenameKeyword) { 12357 // FIXME: not all declaration name kinds are legal here 12358 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, 12359 UsingLoc, TypenameLoc, 12360 QualifierLoc, 12361 IdentLoc, NameInfo.getName(), 12362 EllipsisLoc); 12363 } else { 12364 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, 12365 QualifierLoc, NameInfo, EllipsisLoc); 12366 } 12367 D->setAccess(AS); 12368 CurContext->addDecl(D); 12369 ProcessDeclAttributeList(S, D, AttrList); 12370 return D; 12371 } 12372 12373 auto Build = [&](bool Invalid) { 12374 UsingDecl *UD = 12375 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, 12376 UsingName, HasTypenameKeyword); 12377 UD->setAccess(AS); 12378 CurContext->addDecl(UD); 12379 ProcessDeclAttributeList(S, UD, AttrList); 12380 UD->setInvalidDecl(Invalid); 12381 return UD; 12382 }; 12383 auto BuildInvalid = [&]{ return Build(true); }; 12384 auto BuildValid = [&]{ return Build(false); }; 12385 12386 if (RequireCompleteDeclContext(SS, LookupContext)) 12387 return BuildInvalid(); 12388 12389 // Look up the target name. 12390 LookupResult R(*this, NameInfo, LookupOrdinaryName); 12391 12392 // Unlike most lookups, we don't always want to hide tag 12393 // declarations: tag names are visible through the using declaration 12394 // even if hidden by ordinary names, *except* in a dependent context 12395 // where they may be used by two-phase lookup. 12396 if (!IsInstantiation) 12397 R.setHideTags(false); 12398 12399 // For the purposes of this lookup, we have a base object type 12400 // equal to that of the current context. 12401 if (CurContext->isRecord()) { 12402 R.setBaseObjectType( 12403 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))); 12404 } 12405 12406 LookupQualifiedName(R, LookupContext); 12407 12408 // Validate the context, now we have a lookup 12409 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo, 12410 IdentLoc, &R)) 12411 return nullptr; 12412 12413 if (R.empty() && IsUsingIfExists) 12414 R.addDecl(UnresolvedUsingIfExistsDecl::Create(Context, CurContext, UsingLoc, 12415 UsingName.getName()), 12416 AS_public); 12417 12418 // Try to correct typos if possible. If constructor name lookup finds no 12419 // results, that means the named class has no explicit constructors, and we 12420 // suppressed declaring implicit ones (probably because it's dependent or 12421 // invalid). 12422 if (R.empty() && 12423 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) { 12424 // HACK 2017-01-08: Work around an issue with libstdc++'s detection of 12425 // ::gets. Sometimes it believes that glibc provides a ::gets in cases where 12426 // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later. 12427 auto *II = NameInfo.getName().getAsIdentifierInfo(); 12428 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") && 12429 CurContext->isStdNamespace() && 12430 isa<TranslationUnitDecl>(LookupContext) && 12431 getSourceManager().isInSystemHeader(UsingLoc)) 12432 return nullptr; 12433 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), 12434 dyn_cast<CXXRecordDecl>(CurContext)); 12435 if (TypoCorrection Corrected = 12436 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, 12437 CTK_ErrorRecovery)) { 12438 // We reject candidates where DroppedSpecifier == true, hence the 12439 // literal '0' below. 12440 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) 12441 << NameInfo.getName() << LookupContext << 0 12442 << SS.getRange()); 12443 12444 // If we picked a correction with no attached Decl we can't do anything 12445 // useful with it, bail out. 12446 NamedDecl *ND = Corrected.getCorrectionDecl(); 12447 if (!ND) 12448 return BuildInvalid(); 12449 12450 // If we corrected to an inheriting constructor, handle it as one. 12451 auto *RD = dyn_cast<CXXRecordDecl>(ND); 12452 if (RD && RD->isInjectedClassName()) { 12453 // The parent of the injected class name is the class itself. 12454 RD = cast<CXXRecordDecl>(RD->getParent()); 12455 12456 // Fix up the information we'll use to build the using declaration. 12457 if (Corrected.WillReplaceSpecifier()) { 12458 NestedNameSpecifierLocBuilder Builder; 12459 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 12460 QualifierLoc.getSourceRange()); 12461 QualifierLoc = Builder.getWithLocInContext(Context); 12462 } 12463 12464 // In this case, the name we introduce is the name of a derived class 12465 // constructor. 12466 auto *CurClass = cast<CXXRecordDecl>(CurContext); 12467 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12468 Context.getCanonicalType(Context.getRecordType(CurClass)))); 12469 UsingName.setNamedTypeInfo(nullptr); 12470 for (auto *Ctor : LookupConstructors(RD)) 12471 R.addDecl(Ctor); 12472 R.resolveKind(); 12473 } else { 12474 // FIXME: Pick up all the declarations if we found an overloaded 12475 // function. 12476 UsingName.setName(ND->getDeclName()); 12477 R.addDecl(ND); 12478 } 12479 } else { 12480 Diag(IdentLoc, diag::err_no_member) 12481 << NameInfo.getName() << LookupContext << SS.getRange(); 12482 return BuildInvalid(); 12483 } 12484 } 12485 12486 if (R.isAmbiguous()) 12487 return BuildInvalid(); 12488 12489 if (HasTypenameKeyword) { 12490 // If we asked for a typename and got a non-type decl, error out. 12491 if (!R.getAsSingle<TypeDecl>() && 12492 !R.getAsSingle<UnresolvedUsingIfExistsDecl>()) { 12493 Diag(IdentLoc, diag::err_using_typename_non_type); 12494 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 12495 Diag((*I)->getUnderlyingDecl()->getLocation(), 12496 diag::note_using_decl_target); 12497 return BuildInvalid(); 12498 } 12499 } else { 12500 // If we asked for a non-typename and we got a type, error out, 12501 // but only if this is an instantiation of an unresolved using 12502 // decl. Otherwise just silently find the type name. 12503 if (IsInstantiation && R.getAsSingle<TypeDecl>()) { 12504 Diag(IdentLoc, diag::err_using_dependent_value_is_type); 12505 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); 12506 return BuildInvalid(); 12507 } 12508 } 12509 12510 // C++14 [namespace.udecl]p6: 12511 // A using-declaration shall not name a namespace. 12512 if (R.getAsSingle<NamespaceDecl>()) { 12513 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) 12514 << SS.getRange(); 12515 return BuildInvalid(); 12516 } 12517 12518 UsingDecl *UD = BuildValid(); 12519 12520 // Some additional rules apply to inheriting constructors. 12521 if (UsingName.getName().getNameKind() == 12522 DeclarationName::CXXConstructorName) { 12523 // Suppress access diagnostics; the access check is instead performed at the 12524 // point of use for an inheriting constructor. 12525 R.suppressDiagnostics(); 12526 if (CheckInheritingConstructorUsingDecl(UD)) 12527 return UD; 12528 } 12529 12530 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 12531 UsingShadowDecl *PrevDecl = nullptr; 12532 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) 12533 BuildUsingShadowDecl(S, UD, *I, PrevDecl); 12534 } 12535 12536 return UD; 12537 } 12538 12539 NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS, 12540 SourceLocation UsingLoc, 12541 SourceLocation EnumLoc, 12542 SourceLocation NameLoc, 12543 EnumDecl *ED) { 12544 bool Invalid = false; 12545 12546 if (CurContext->getRedeclContext()->isRecord()) { 12547 /// In class scope, check if this is a duplicate, for better a diagnostic. 12548 DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc); 12549 LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName, 12550 ForVisibleRedeclaration); 12551 12552 LookupName(Previous, S); 12553 12554 for (NamedDecl *D : Previous) 12555 if (UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) 12556 if (UED->getEnumDecl() == ED) { 12557 Diag(UsingLoc, diag::err_using_enum_decl_redeclaration) 12558 << SourceRange(EnumLoc, NameLoc); 12559 Diag(D->getLocation(), diag::note_using_enum_decl) << 1; 12560 Invalid = true; 12561 break; 12562 } 12563 } 12564 12565 if (RequireCompleteEnumDecl(ED, NameLoc)) 12566 Invalid = true; 12567 12568 UsingEnumDecl *UD = UsingEnumDecl::Create(Context, CurContext, UsingLoc, 12569 EnumLoc, NameLoc, ED); 12570 UD->setAccess(AS); 12571 CurContext->addDecl(UD); 12572 12573 if (Invalid) { 12574 UD->setInvalidDecl(); 12575 return UD; 12576 } 12577 12578 // Create the shadow decls for each enumerator 12579 for (EnumConstantDecl *EC : ED->enumerators()) { 12580 UsingShadowDecl *PrevDecl = nullptr; 12581 DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation()); 12582 LookupResult Previous(*this, DNI, LookupOrdinaryName, 12583 ForVisibleRedeclaration); 12584 LookupName(Previous, S); 12585 FilterUsingLookup(S, Previous); 12586 12587 if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl)) 12588 BuildUsingShadowDecl(S, UD, EC, PrevDecl); 12589 } 12590 12591 return UD; 12592 } 12593 12594 NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom, 12595 ArrayRef<NamedDecl *> Expansions) { 12596 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || 12597 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || 12598 isa<UsingPackDecl>(InstantiatedFrom)); 12599 12600 auto *UPD = 12601 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions); 12602 UPD->setAccess(InstantiatedFrom->getAccess()); 12603 CurContext->addDecl(UPD); 12604 return UPD; 12605 } 12606 12607 /// Additional checks for a using declaration referring to a constructor name. 12608 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { 12609 assert(!UD->hasTypename() && "expecting a constructor name"); 12610 12611 const Type *SourceType = UD->getQualifier()->getAsType(); 12612 assert(SourceType && 12613 "Using decl naming constructor doesn't have type in scope spec."); 12614 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); 12615 12616 // Check whether the named type is a direct base class. 12617 bool AnyDependentBases = false; 12618 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0), 12619 AnyDependentBases); 12620 if (!Base && !AnyDependentBases) { 12621 Diag(UD->getUsingLoc(), 12622 diag::err_using_decl_constructor_not_in_direct_base) 12623 << UD->getNameInfo().getSourceRange() 12624 << QualType(SourceType, 0) << TargetClass; 12625 UD->setInvalidDecl(); 12626 return true; 12627 } 12628 12629 if (Base) 12630 Base->setInheritConstructors(); 12631 12632 return false; 12633 } 12634 12635 /// Checks that the given using declaration is not an invalid 12636 /// redeclaration. Note that this is checking only for the using decl 12637 /// itself, not for any ill-formedness among the UsingShadowDecls. 12638 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, 12639 bool HasTypenameKeyword, 12640 const CXXScopeSpec &SS, 12641 SourceLocation NameLoc, 12642 const LookupResult &Prev) { 12643 NestedNameSpecifier *Qual = SS.getScopeRep(); 12644 12645 // C++03 [namespace.udecl]p8: 12646 // C++0x [namespace.udecl]p10: 12647 // A using-declaration is a declaration and can therefore be used 12648 // repeatedly where (and only where) multiple declarations are 12649 // allowed. 12650 // 12651 // That's in non-member contexts. 12652 if (!CurContext->getRedeclContext()->isRecord()) { 12653 // A dependent qualifier outside a class can only ever resolve to an 12654 // enumeration type. Therefore it conflicts with any other non-type 12655 // declaration in the same scope. 12656 // FIXME: How should we check for dependent type-type conflicts at block 12657 // scope? 12658 if (Qual->isDependent() && !HasTypenameKeyword) { 12659 for (auto *D : Prev) { 12660 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) { 12661 bool OldCouldBeEnumerator = 12662 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D); 12663 Diag(NameLoc, 12664 OldCouldBeEnumerator ? diag::err_redefinition 12665 : diag::err_redefinition_different_kind) 12666 << Prev.getLookupName(); 12667 Diag(D->getLocation(), diag::note_previous_definition); 12668 return true; 12669 } 12670 } 12671 } 12672 return false; 12673 } 12674 12675 const NestedNameSpecifier *CNNS = 12676 Context.getCanonicalNestedNameSpecifier(Qual); 12677 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { 12678 NamedDecl *D = *I; 12679 12680 bool DTypename; 12681 NestedNameSpecifier *DQual; 12682 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { 12683 DTypename = UD->hasTypename(); 12684 DQual = UD->getQualifier(); 12685 } else if (UnresolvedUsingValueDecl *UD 12686 = dyn_cast<UnresolvedUsingValueDecl>(D)) { 12687 DTypename = false; 12688 DQual = UD->getQualifier(); 12689 } else if (UnresolvedUsingTypenameDecl *UD 12690 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { 12691 DTypename = true; 12692 DQual = UD->getQualifier(); 12693 } else continue; 12694 12695 // using decls differ if one says 'typename' and the other doesn't. 12696 // FIXME: non-dependent using decls? 12697 if (HasTypenameKeyword != DTypename) continue; 12698 12699 // using decls differ if they name different scopes (but note that 12700 // template instantiation can cause this check to trigger when it 12701 // didn't before instantiation). 12702 if (CNNS != Context.getCanonicalNestedNameSpecifier(DQual)) 12703 continue; 12704 12705 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); 12706 Diag(D->getLocation(), diag::note_using_decl) << 1; 12707 return true; 12708 } 12709 12710 return false; 12711 } 12712 12713 /// Checks that the given nested-name qualifier used in a using decl 12714 /// in the current context is appropriately related to the current 12715 /// scope. If an error is found, diagnoses it and returns true. 12716 /// R is nullptr, if the caller has not (yet) done a lookup, otherwise it's the 12717 /// result of that lookup. UD is likewise nullptr, except when we have an 12718 /// already-populated UsingDecl whose shadow decls contain the same information 12719 /// (i.e. we're instantiating a UsingDecl with non-dependent scope). 12720 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename, 12721 const CXXScopeSpec &SS, 12722 const DeclarationNameInfo &NameInfo, 12723 SourceLocation NameLoc, 12724 const LookupResult *R, const UsingDecl *UD) { 12725 DeclContext *NamedContext = computeDeclContext(SS); 12726 assert(bool(NamedContext) == (R || UD) && !(R && UD) && 12727 "resolvable context must have exactly one set of decls"); 12728 12729 // C++ 20 permits using an enumerator that does not have a class-hierarchy 12730 // relationship. 12731 bool Cxx20Enumerator = false; 12732 if (NamedContext) { 12733 EnumConstantDecl *EC = nullptr; 12734 if (R) 12735 EC = R->getAsSingle<EnumConstantDecl>(); 12736 else if (UD && UD->shadow_size() == 1) 12737 EC = dyn_cast<EnumConstantDecl>(UD->shadow_begin()->getTargetDecl()); 12738 if (EC) 12739 Cxx20Enumerator = getLangOpts().CPlusPlus20; 12740 12741 if (auto *ED = dyn_cast<EnumDecl>(NamedContext)) { 12742 // C++14 [namespace.udecl]p7: 12743 // A using-declaration shall not name a scoped enumerator. 12744 // C++20 p1099 permits enumerators. 12745 if (EC && R && ED->isScoped()) 12746 Diag(SS.getBeginLoc(), 12747 getLangOpts().CPlusPlus20 12748 ? diag::warn_cxx17_compat_using_decl_scoped_enumerator 12749 : diag::ext_using_decl_scoped_enumerator) 12750 << SS.getRange(); 12751 12752 // We want to consider the scope of the enumerator 12753 NamedContext = ED->getDeclContext(); 12754 } 12755 } 12756 12757 if (!CurContext->isRecord()) { 12758 // C++03 [namespace.udecl]p3: 12759 // C++0x [namespace.udecl]p8: 12760 // A using-declaration for a class member shall be a member-declaration. 12761 // C++20 [namespace.udecl]p7 12762 // ... other than an enumerator ... 12763 12764 // If we weren't able to compute a valid scope, it might validly be a 12765 // dependent class or enumeration scope. If we have a 'typename' keyword, 12766 // the scope must resolve to a class type. 12767 if (NamedContext ? !NamedContext->getRedeclContext()->isRecord() 12768 : !HasTypename) 12769 return false; // OK 12770 12771 Diag(NameLoc, 12772 Cxx20Enumerator 12773 ? diag::warn_cxx17_compat_using_decl_class_member_enumerator 12774 : diag::err_using_decl_can_not_refer_to_class_member) 12775 << SS.getRange(); 12776 12777 if (Cxx20Enumerator) 12778 return false; // OK 12779 12780 auto *RD = NamedContext 12781 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext()) 12782 : nullptr; 12783 if (RD && !RequireCompleteDeclContext(const_cast<CXXScopeSpec &>(SS), RD)) { 12784 // See if there's a helpful fixit 12785 12786 if (!R) { 12787 // We will have already diagnosed the problem on the template 12788 // definition, Maybe we should do so again? 12789 } else if (R->getAsSingle<TypeDecl>()) { 12790 if (getLangOpts().CPlusPlus11) { 12791 // Convert 'using X::Y;' to 'using Y = X::Y;'. 12792 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) 12793 << 0 // alias declaration 12794 << FixItHint::CreateInsertion(SS.getBeginLoc(), 12795 NameInfo.getName().getAsString() + 12796 " = "); 12797 } else { 12798 // Convert 'using X::Y;' to 'typedef X::Y Y;'. 12799 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc()); 12800 Diag(InsertLoc, diag::note_using_decl_class_member_workaround) 12801 << 1 // typedef declaration 12802 << FixItHint::CreateReplacement(UsingLoc, "typedef") 12803 << FixItHint::CreateInsertion( 12804 InsertLoc, " " + NameInfo.getName().getAsString()); 12805 } 12806 } else if (R->getAsSingle<VarDecl>()) { 12807 // Don't provide a fixit outside C++11 mode; we don't want to suggest 12808 // repeating the type of the static data member here. 12809 FixItHint FixIt; 12810 if (getLangOpts().CPlusPlus11) { 12811 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 12812 FixIt = FixItHint::CreateReplacement( 12813 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = "); 12814 } 12815 12816 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 12817 << 2 // reference declaration 12818 << FixIt; 12819 } else if (R->getAsSingle<EnumConstantDecl>()) { 12820 // Don't provide a fixit outside C++11 mode; we don't want to suggest 12821 // repeating the type of the enumeration here, and we can't do so if 12822 // the type is anonymous. 12823 FixItHint FixIt; 12824 if (getLangOpts().CPlusPlus11) { 12825 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 12826 FixIt = FixItHint::CreateReplacement( 12827 UsingLoc, 12828 "constexpr auto " + NameInfo.getName().getAsString() + " = "); 12829 } 12830 12831 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 12832 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable 12833 << FixIt; 12834 } 12835 } 12836 12837 return true; // Fail 12838 } 12839 12840 // If the named context is dependent, we can't decide much. 12841 if (!NamedContext) { 12842 // FIXME: in C++0x, we can diagnose if we can prove that the 12843 // nested-name-specifier does not refer to a base class, which is 12844 // still possible in some cases. 12845 12846 // Otherwise we have to conservatively report that things might be 12847 // okay. 12848 return false; 12849 } 12850 12851 // The current scope is a record. 12852 if (!NamedContext->isRecord()) { 12853 // Ideally this would point at the last name in the specifier, 12854 // but we don't have that level of source info. 12855 Diag(SS.getBeginLoc(), 12856 Cxx20Enumerator 12857 ? diag::warn_cxx17_compat_using_decl_non_member_enumerator 12858 : diag::err_using_decl_nested_name_specifier_is_not_class) 12859 << SS.getScopeRep() << SS.getRange(); 12860 12861 if (Cxx20Enumerator) 12862 return false; // OK 12863 12864 return true; 12865 } 12866 12867 if (!NamedContext->isDependentContext() && 12868 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) 12869 return true; 12870 12871 if (getLangOpts().CPlusPlus11) { 12872 // C++11 [namespace.udecl]p3: 12873 // In a using-declaration used as a member-declaration, the 12874 // nested-name-specifier shall name a base class of the class 12875 // being defined. 12876 12877 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( 12878 cast<CXXRecordDecl>(NamedContext))) { 12879 12880 if (Cxx20Enumerator) { 12881 Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator) 12882 << SS.getRange(); 12883 return false; 12884 } 12885 12886 if (CurContext == NamedContext) { 12887 Diag(SS.getBeginLoc(), 12888 diag::err_using_decl_nested_name_specifier_is_current_class) 12889 << SS.getRange(); 12890 return !getLangOpts().CPlusPlus20; 12891 } 12892 12893 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) { 12894 Diag(SS.getBeginLoc(), 12895 diag::err_using_decl_nested_name_specifier_is_not_base_class) 12896 << SS.getScopeRep() << cast<CXXRecordDecl>(CurContext) 12897 << SS.getRange(); 12898 } 12899 return true; 12900 } 12901 12902 return false; 12903 } 12904 12905 // C++03 [namespace.udecl]p4: 12906 // A using-declaration used as a member-declaration shall refer 12907 // to a member of a base class of the class being defined [etc.]. 12908 12909 // Salient point: SS doesn't have to name a base class as long as 12910 // lookup only finds members from base classes. Therefore we can 12911 // diagnose here only if we can prove that that can't happen, 12912 // i.e. if the class hierarchies provably don't intersect. 12913 12914 // TODO: it would be nice if "definitely valid" results were cached 12915 // in the UsingDecl and UsingShadowDecl so that these checks didn't 12916 // need to be repeated. 12917 12918 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases; 12919 auto Collect = [&Bases](const CXXRecordDecl *Base) { 12920 Bases.insert(Base); 12921 return true; 12922 }; 12923 12924 // Collect all bases. Return false if we find a dependent base. 12925 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect)) 12926 return false; 12927 12928 // Returns true if the base is dependent or is one of the accumulated base 12929 // classes. 12930 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) { 12931 return !Bases.count(Base); 12932 }; 12933 12934 // Return false if the class has a dependent base or if it or one 12935 // of its bases is present in the base set of the current context. 12936 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) || 12937 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase)) 12938 return false; 12939 12940 Diag(SS.getRange().getBegin(), 12941 diag::err_using_decl_nested_name_specifier_is_not_base_class) 12942 << SS.getScopeRep() 12943 << cast<CXXRecordDecl>(CurContext) 12944 << SS.getRange(); 12945 12946 return true; 12947 } 12948 12949 Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS, 12950 MultiTemplateParamsArg TemplateParamLists, 12951 SourceLocation UsingLoc, UnqualifiedId &Name, 12952 const ParsedAttributesView &AttrList, 12953 TypeResult Type, Decl *DeclFromDeclSpec) { 12954 // Skip up to the relevant declaration scope. 12955 while (S->isTemplateParamScope()) 12956 S = S->getParent(); 12957 assert((S->getFlags() & Scope::DeclScope) && 12958 "got alias-declaration outside of declaration scope"); 12959 12960 if (Type.isInvalid()) 12961 return nullptr; 12962 12963 bool Invalid = false; 12964 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); 12965 TypeSourceInfo *TInfo = nullptr; 12966 GetTypeFromParser(Type.get(), &TInfo); 12967 12968 if (DiagnoseClassNameShadow(CurContext, NameInfo)) 12969 return nullptr; 12970 12971 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, 12972 UPPC_DeclarationType)) { 12973 Invalid = true; 12974 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 12975 TInfo->getTypeLoc().getBeginLoc()); 12976 } 12977 12978 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 12979 TemplateParamLists.size() 12980 ? forRedeclarationInCurContext() 12981 : ForVisibleRedeclaration); 12982 LookupName(Previous, S); 12983 12984 // Warn about shadowing the name of a template parameter. 12985 if (Previous.isSingleResult() && 12986 Previous.getFoundDecl()->isTemplateParameter()) { 12987 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); 12988 Previous.clear(); 12989 } 12990 12991 assert(Name.Kind == UnqualifiedIdKind::IK_Identifier && 12992 "name in alias declaration must be an identifier"); 12993 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, 12994 Name.StartLocation, 12995 Name.Identifier, TInfo); 12996 12997 NewTD->setAccess(AS); 12998 12999 if (Invalid) 13000 NewTD->setInvalidDecl(); 13001 13002 ProcessDeclAttributeList(S, NewTD, AttrList); 13003 AddPragmaAttributes(S, NewTD); 13004 13005 CheckTypedefForVariablyModifiedType(S, NewTD); 13006 Invalid |= NewTD->isInvalidDecl(); 13007 13008 bool Redeclaration = false; 13009 13010 NamedDecl *NewND; 13011 if (TemplateParamLists.size()) { 13012 TypeAliasTemplateDecl *OldDecl = nullptr; 13013 TemplateParameterList *OldTemplateParams = nullptr; 13014 13015 if (TemplateParamLists.size() != 1) { 13016 Diag(UsingLoc, diag::err_alias_template_extra_headers) 13017 << SourceRange(TemplateParamLists[1]->getTemplateLoc(), 13018 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); 13019 } 13020 TemplateParameterList *TemplateParams = TemplateParamLists[0]; 13021 13022 // Check that we can declare a template here. 13023 if (CheckTemplateDeclScope(S, TemplateParams)) 13024 return nullptr; 13025 13026 // Only consider previous declarations in the same scope. 13027 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, 13028 /*ExplicitInstantiationOrSpecialization*/false); 13029 if (!Previous.empty()) { 13030 Redeclaration = true; 13031 13032 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); 13033 if (!OldDecl && !Invalid) { 13034 Diag(UsingLoc, diag::err_redefinition_different_kind) 13035 << Name.Identifier; 13036 13037 NamedDecl *OldD = Previous.getRepresentativeDecl(); 13038 if (OldD->getLocation().isValid()) 13039 Diag(OldD->getLocation(), diag::note_previous_definition); 13040 13041 Invalid = true; 13042 } 13043 13044 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { 13045 if (TemplateParameterListsAreEqual(TemplateParams, 13046 OldDecl->getTemplateParameters(), 13047 /*Complain=*/true, 13048 TPL_TemplateMatch)) 13049 OldTemplateParams = 13050 OldDecl->getMostRecentDecl()->getTemplateParameters(); 13051 else 13052 Invalid = true; 13053 13054 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); 13055 if (!Invalid && 13056 !Context.hasSameType(OldTD->getUnderlyingType(), 13057 NewTD->getUnderlyingType())) { 13058 // FIXME: The C++0x standard does not clearly say this is ill-formed, 13059 // but we can't reasonably accept it. 13060 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) 13061 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); 13062 if (OldTD->getLocation().isValid()) 13063 Diag(OldTD->getLocation(), diag::note_previous_definition); 13064 Invalid = true; 13065 } 13066 } 13067 } 13068 13069 // Merge any previous default template arguments into our parameters, 13070 // and check the parameter list. 13071 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, 13072 TPC_TypeAliasTemplate)) 13073 return nullptr; 13074 13075 TypeAliasTemplateDecl *NewDecl = 13076 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, 13077 Name.Identifier, TemplateParams, 13078 NewTD); 13079 NewTD->setDescribedAliasTemplate(NewDecl); 13080 13081 NewDecl->setAccess(AS); 13082 13083 if (Invalid) 13084 NewDecl->setInvalidDecl(); 13085 else if (OldDecl) { 13086 NewDecl->setPreviousDecl(OldDecl); 13087 CheckRedeclarationInModule(NewDecl, OldDecl); 13088 } 13089 13090 NewND = NewDecl; 13091 } else { 13092 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) { 13093 setTagNameForLinkagePurposes(TD, NewTD); 13094 handleTagNumbering(TD, S); 13095 } 13096 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); 13097 NewND = NewTD; 13098 } 13099 13100 PushOnScopeChains(NewND, S); 13101 ActOnDocumentableDecl(NewND); 13102 return NewND; 13103 } 13104 13105 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, 13106 SourceLocation AliasLoc, 13107 IdentifierInfo *Alias, CXXScopeSpec &SS, 13108 SourceLocation IdentLoc, 13109 IdentifierInfo *Ident) { 13110 13111 // Lookup the namespace name. 13112 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); 13113 LookupParsedName(R, S, &SS); 13114 13115 if (R.isAmbiguous()) 13116 return nullptr; 13117 13118 if (R.empty()) { 13119 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { 13120 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 13121 return nullptr; 13122 } 13123 } 13124 assert(!R.isAmbiguous() && !R.empty()); 13125 NamedDecl *ND = R.getRepresentativeDecl(); 13126 13127 // Check if we have a previous declaration with the same name. 13128 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName, 13129 ForVisibleRedeclaration); 13130 LookupName(PrevR, S); 13131 13132 // Check we're not shadowing a template parameter. 13133 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) { 13134 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl()); 13135 PrevR.clear(); 13136 } 13137 13138 // Filter out any other lookup result from an enclosing scope. 13139 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false, 13140 /*AllowInlineNamespace*/false); 13141 13142 // Find the previous declaration and check that we can redeclare it. 13143 NamespaceAliasDecl *Prev = nullptr; 13144 if (PrevR.isSingleResult()) { 13145 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl(); 13146 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { 13147 // We already have an alias with the same name that points to the same 13148 // namespace; check that it matches. 13149 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) { 13150 Prev = AD; 13151 } else if (isVisible(PrevDecl)) { 13152 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) 13153 << Alias; 13154 Diag(AD->getLocation(), diag::note_previous_namespace_alias) 13155 << AD->getNamespace(); 13156 return nullptr; 13157 } 13158 } else if (isVisible(PrevDecl)) { 13159 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl()) 13160 ? diag::err_redefinition 13161 : diag::err_redefinition_different_kind; 13162 Diag(AliasLoc, DiagID) << Alias; 13163 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 13164 return nullptr; 13165 } 13166 } 13167 13168 // The use of a nested name specifier may trigger deprecation warnings. 13169 DiagnoseUseOfDecl(ND, IdentLoc); 13170 13171 NamespaceAliasDecl *AliasDecl = 13172 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, 13173 Alias, SS.getWithLocInContext(Context), 13174 IdentLoc, ND); 13175 if (Prev) 13176 AliasDecl->setPreviousDecl(Prev); 13177 13178 PushOnScopeChains(AliasDecl, S); 13179 return AliasDecl; 13180 } 13181 13182 namespace { 13183 struct SpecialMemberExceptionSpecInfo 13184 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> { 13185 SourceLocation Loc; 13186 Sema::ImplicitExceptionSpecification ExceptSpec; 13187 13188 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD, 13189 Sema::CXXSpecialMember CSM, 13190 Sema::InheritedConstructorInfo *ICI, 13191 SourceLocation Loc) 13192 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {} 13193 13194 bool visitBase(CXXBaseSpecifier *Base); 13195 bool visitField(FieldDecl *FD); 13196 13197 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 13198 unsigned Quals); 13199 13200 void visitSubobjectCall(Subobject Subobj, 13201 Sema::SpecialMemberOverloadResult SMOR); 13202 }; 13203 } 13204 13205 bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) { 13206 auto *RT = Base->getType()->getAs<RecordType>(); 13207 if (!RT) 13208 return false; 13209 13210 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl()); 13211 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 13212 if (auto *BaseCtor = SMOR.getMethod()) { 13213 visitSubobjectCall(Base, BaseCtor); 13214 return false; 13215 } 13216 13217 visitClassSubobject(BaseClass, Base, 0); 13218 return false; 13219 } 13220 13221 bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) { 13222 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) { 13223 Expr *E = FD->getInClassInitializer(); 13224 if (!E) 13225 // FIXME: It's a little wasteful to build and throw away a 13226 // CXXDefaultInitExpr here. 13227 // FIXME: We should have a single context note pointing at Loc, and 13228 // this location should be MD->getLocation() instead, since that's 13229 // the location where we actually use the default init expression. 13230 E = S.BuildCXXDefaultInitExpr(Loc, FD).get(); 13231 if (E) 13232 ExceptSpec.CalledExpr(E); 13233 } else if (auto *RT = S.Context.getBaseElementType(FD->getType()) 13234 ->getAs<RecordType>()) { 13235 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD, 13236 FD->getType().getCVRQualifiers()); 13237 } 13238 return false; 13239 } 13240 13241 void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class, 13242 Subobject Subobj, 13243 unsigned Quals) { 13244 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 13245 bool IsMutable = Field && Field->isMutable(); 13246 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable)); 13247 } 13248 13249 void SpecialMemberExceptionSpecInfo::visitSubobjectCall( 13250 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) { 13251 // Note, if lookup fails, it doesn't matter what exception specification we 13252 // choose because the special member will be deleted. 13253 if (CXXMethodDecl *MD = SMOR.getMethod()) 13254 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD); 13255 } 13256 13257 bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) { 13258 llvm::APSInt Result; 13259 ExprResult Converted = CheckConvertedConstantExpression( 13260 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool); 13261 ExplicitSpec.setExpr(Converted.get()); 13262 if (Converted.isUsable() && !Converted.get()->isValueDependent()) { 13263 ExplicitSpec.setKind(Result.getBoolValue() 13264 ? ExplicitSpecKind::ResolvedTrue 13265 : ExplicitSpecKind::ResolvedFalse); 13266 return true; 13267 } 13268 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved); 13269 return false; 13270 } 13271 13272 ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) { 13273 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved); 13274 if (!ExplicitExpr->isTypeDependent()) 13275 tryResolveExplicitSpecifier(ES); 13276 return ES; 13277 } 13278 13279 static Sema::ImplicitExceptionSpecification 13280 ComputeDefaultedSpecialMemberExceptionSpec( 13281 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 13282 Sema::InheritedConstructorInfo *ICI) { 13283 ComputingExceptionSpec CES(S, MD, Loc); 13284 13285 CXXRecordDecl *ClassDecl = MD->getParent(); 13286 13287 // C++ [except.spec]p14: 13288 // An implicitly declared special member function (Clause 12) shall have an 13289 // exception-specification. [...] 13290 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation()); 13291 if (ClassDecl->isInvalidDecl()) 13292 return Info.ExceptSpec; 13293 13294 // FIXME: If this diagnostic fires, we're probably missing a check for 13295 // attempting to resolve an exception specification before it's known 13296 // at a higher level. 13297 if (S.RequireCompleteType(MD->getLocation(), 13298 S.Context.getRecordType(ClassDecl), 13299 diag::err_exception_spec_incomplete_type)) 13300 return Info.ExceptSpec; 13301 13302 // C++1z [except.spec]p7: 13303 // [Look for exceptions thrown by] a constructor selected [...] to 13304 // initialize a potentially constructed subobject, 13305 // C++1z [except.spec]p8: 13306 // The exception specification for an implicitly-declared destructor, or a 13307 // destructor without a noexcept-specifier, is potentially-throwing if and 13308 // only if any of the destructors for any of its potentially constructed 13309 // subojects is potentially throwing. 13310 // FIXME: We respect the first rule but ignore the "potentially constructed" 13311 // in the second rule to resolve a core issue (no number yet) that would have 13312 // us reject: 13313 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; }; 13314 // struct B : A {}; 13315 // struct C : B { void f(); }; 13316 // ... due to giving B::~B() a non-throwing exception specification. 13317 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases 13318 : Info.VisitAllBases); 13319 13320 return Info.ExceptSpec; 13321 } 13322 13323 namespace { 13324 /// RAII object to register a special member as being currently declared. 13325 struct DeclaringSpecialMember { 13326 Sema &S; 13327 Sema::SpecialMemberDecl D; 13328 Sema::ContextRAII SavedContext; 13329 bool WasAlreadyBeingDeclared; 13330 13331 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM) 13332 : S(S), D(RD, CSM), SavedContext(S, RD) { 13333 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second; 13334 if (WasAlreadyBeingDeclared) 13335 // This almost never happens, but if it does, ensure that our cache 13336 // doesn't contain a stale result. 13337 S.SpecialMemberCache.clear(); 13338 else { 13339 // Register a note to be produced if we encounter an error while 13340 // declaring the special member. 13341 Sema::CodeSynthesisContext Ctx; 13342 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember; 13343 // FIXME: We don't have a location to use here. Using the class's 13344 // location maintains the fiction that we declare all special members 13345 // with the class, but (1) it's not clear that lying about that helps our 13346 // users understand what's going on, and (2) there may be outer contexts 13347 // on the stack (some of which are relevant) and printing them exposes 13348 // our lies. 13349 Ctx.PointOfInstantiation = RD->getLocation(); 13350 Ctx.Entity = RD; 13351 Ctx.SpecialMember = CSM; 13352 S.pushCodeSynthesisContext(Ctx); 13353 } 13354 } 13355 ~DeclaringSpecialMember() { 13356 if (!WasAlreadyBeingDeclared) { 13357 S.SpecialMembersBeingDeclared.erase(D); 13358 S.popCodeSynthesisContext(); 13359 } 13360 } 13361 13362 /// Are we already trying to declare this special member? 13363 bool isAlreadyBeingDeclared() const { 13364 return WasAlreadyBeingDeclared; 13365 } 13366 }; 13367 } 13368 13369 void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) { 13370 // Look up any existing declarations, but don't trigger declaration of all 13371 // implicit special members with this name. 13372 DeclarationName Name = FD->getDeclName(); 13373 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName, 13374 ForExternalRedeclaration); 13375 for (auto *D : FD->getParent()->lookup(Name)) 13376 if (auto *Acceptable = R.getAcceptableDecl(D)) 13377 R.addDecl(Acceptable); 13378 R.resolveKind(); 13379 R.suppressDiagnostics(); 13380 13381 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/ false, 13382 FD->isThisDeclarationADefinition()); 13383 } 13384 13385 void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, 13386 QualType ResultTy, 13387 ArrayRef<QualType> Args) { 13388 // Build an exception specification pointing back at this constructor. 13389 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem); 13390 13391 LangAS AS = getDefaultCXXMethodAddrSpace(); 13392 if (AS != LangAS::Default) { 13393 EPI.TypeQuals.addAddressSpace(AS); 13394 } 13395 13396 auto QT = Context.getFunctionType(ResultTy, Args, EPI); 13397 SpecialMem->setType(QT); 13398 13399 // During template instantiation of implicit special member functions we need 13400 // a reliable TypeSourceInfo for the function prototype in order to allow 13401 // functions to be substituted. 13402 if (inTemplateInstantiation() && 13403 cast<CXXRecordDecl>(SpecialMem->getParent())->isLambda()) { 13404 TypeSourceInfo *TSI = 13405 Context.getTrivialTypeSourceInfo(SpecialMem->getType()); 13406 SpecialMem->setTypeSourceInfo(TSI); 13407 } 13408 } 13409 13410 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( 13411 CXXRecordDecl *ClassDecl) { 13412 // C++ [class.ctor]p5: 13413 // A default constructor for a class X is a constructor of class X 13414 // that can be called without an argument. If there is no 13415 // user-declared constructor for class X, a default constructor is 13416 // implicitly declared. An implicitly-declared default constructor 13417 // is an inline public member of its class. 13418 assert(ClassDecl->needsImplicitDefaultConstructor() && 13419 "Should not build implicit default constructor!"); 13420 13421 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor); 13422 if (DSM.isAlreadyBeingDeclared()) 13423 return nullptr; 13424 13425 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 13426 CXXDefaultConstructor, 13427 false); 13428 13429 // Create the actual constructor declaration. 13430 CanQualType ClassType 13431 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 13432 SourceLocation ClassLoc = ClassDecl->getLocation(); 13433 DeclarationName Name 13434 = Context.DeclarationNames.getCXXConstructorName(ClassType); 13435 DeclarationNameInfo NameInfo(Name, ClassLoc); 13436 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( 13437 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(), 13438 /*TInfo=*/nullptr, ExplicitSpecifier(), 13439 getCurFPFeatures().isFPConstrained(), 13440 /*isInline=*/true, /*isImplicitlyDeclared=*/true, 13441 Constexpr ? ConstexprSpecKind::Constexpr 13442 : ConstexprSpecKind::Unspecified); 13443 DefaultCon->setAccess(AS_public); 13444 DefaultCon->setDefaulted(); 13445 13446 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None); 13447 13448 if (getLangOpts().CUDA) 13449 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor, 13450 DefaultCon, 13451 /* ConstRHS */ false, 13452 /* Diagnose */ false); 13453 13454 // We don't need to use SpecialMemberIsTrivial here; triviality for default 13455 // constructors is easy to compute. 13456 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); 13457 13458 // Note that we have declared this constructor. 13459 ++getASTContext().NumImplicitDefaultConstructorsDeclared; 13460 13461 Scope *S = getScopeForContext(ClassDecl); 13462 CheckImplicitSpecialMemberDeclaration(S, DefaultCon); 13463 13464 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor)) 13465 SetDeclDeleted(DefaultCon, ClassLoc); 13466 13467 if (S) 13468 PushOnScopeChains(DefaultCon, S, false); 13469 ClassDecl->addDecl(DefaultCon); 13470 13471 return DefaultCon; 13472 } 13473 13474 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, 13475 CXXConstructorDecl *Constructor) { 13476 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 13477 !Constructor->doesThisDeclarationHaveABody() && 13478 !Constructor->isDeleted()) && 13479 "DefineImplicitDefaultConstructor - call it for implicit default ctor"); 13480 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 13481 return; 13482 13483 CXXRecordDecl *ClassDecl = Constructor->getParent(); 13484 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); 13485 13486 SynthesizedFunctionScope Scope(*this, Constructor); 13487 13488 // The exception specification is needed because we are defining the 13489 // function. 13490 ResolveExceptionSpec(CurrentLocation, 13491 Constructor->getType()->castAs<FunctionProtoType>()); 13492 MarkVTableUsed(CurrentLocation, ClassDecl); 13493 13494 // Add a context note for diagnostics produced after this point. 13495 Scope.addContextNote(CurrentLocation); 13496 13497 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) { 13498 Constructor->setInvalidDecl(); 13499 return; 13500 } 13501 13502 SourceLocation Loc = Constructor->getEndLoc().isValid() 13503 ? Constructor->getEndLoc() 13504 : Constructor->getLocation(); 13505 Constructor->setBody(new (Context) CompoundStmt(Loc)); 13506 Constructor->markUsed(Context); 13507 13508 if (ASTMutationListener *L = getASTMutationListener()) { 13509 L->CompletedImplicitDefinition(Constructor); 13510 } 13511 13512 DiagnoseUninitializedFields(*this, Constructor); 13513 } 13514 13515 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { 13516 // Perform any delayed checks on exception specifications. 13517 CheckDelayedMemberExceptionSpecs(); 13518 } 13519 13520 /// Find or create the fake constructor we synthesize to model constructing an 13521 /// object of a derived class via a constructor of a base class. 13522 CXXConstructorDecl * 13523 Sema::findInheritingConstructor(SourceLocation Loc, 13524 CXXConstructorDecl *BaseCtor, 13525 ConstructorUsingShadowDecl *Shadow) { 13526 CXXRecordDecl *Derived = Shadow->getParent(); 13527 SourceLocation UsingLoc = Shadow->getLocation(); 13528 13529 // FIXME: Add a new kind of DeclarationName for an inherited constructor. 13530 // For now we use the name of the base class constructor as a member of the 13531 // derived class to indicate a (fake) inherited constructor name. 13532 DeclarationName Name = BaseCtor->getDeclName(); 13533 13534 // Check to see if we already have a fake constructor for this inherited 13535 // constructor call. 13536 for (NamedDecl *Ctor : Derived->lookup(Name)) 13537 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor) 13538 ->getInheritedConstructor() 13539 .getConstructor(), 13540 BaseCtor)) 13541 return cast<CXXConstructorDecl>(Ctor); 13542 13543 DeclarationNameInfo NameInfo(Name, UsingLoc); 13544 TypeSourceInfo *TInfo = 13545 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc); 13546 FunctionProtoTypeLoc ProtoLoc = 13547 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>(); 13548 13549 // Check the inherited constructor is valid and find the list of base classes 13550 // from which it was inherited. 13551 InheritedConstructorInfo ICI(*this, Loc, Shadow); 13552 13553 bool Constexpr = 13554 BaseCtor->isConstexpr() && 13555 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor, 13556 false, BaseCtor, &ICI); 13557 13558 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( 13559 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo, 13560 BaseCtor->getExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 13561 /*isInline=*/true, 13562 /*isImplicitlyDeclared=*/true, 13563 Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified, 13564 InheritedConstructor(Shadow, BaseCtor), 13565 BaseCtor->getTrailingRequiresClause()); 13566 if (Shadow->isInvalidDecl()) 13567 DerivedCtor->setInvalidDecl(); 13568 13569 // Build an unevaluated exception specification for this fake constructor. 13570 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>(); 13571 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 13572 EPI.ExceptionSpec.Type = EST_Unevaluated; 13573 EPI.ExceptionSpec.SourceDecl = DerivedCtor; 13574 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(), 13575 FPT->getParamTypes(), EPI)); 13576 13577 // Build the parameter declarations. 13578 SmallVector<ParmVarDecl *, 16> ParamDecls; 13579 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { 13580 TypeSourceInfo *TInfo = 13581 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc); 13582 ParmVarDecl *PD = ParmVarDecl::Create( 13583 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, 13584 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr); 13585 PD->setScopeInfo(0, I); 13586 PD->setImplicit(); 13587 // Ensure attributes are propagated onto parameters (this matters for 13588 // format, pass_object_size, ...). 13589 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I)); 13590 ParamDecls.push_back(PD); 13591 ProtoLoc.setParam(I, PD); 13592 } 13593 13594 // Set up the new constructor. 13595 assert(!BaseCtor->isDeleted() && "should not use deleted constructor"); 13596 DerivedCtor->setAccess(BaseCtor->getAccess()); 13597 DerivedCtor->setParams(ParamDecls); 13598 Derived->addDecl(DerivedCtor); 13599 13600 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI)) 13601 SetDeclDeleted(DerivedCtor, UsingLoc); 13602 13603 return DerivedCtor; 13604 } 13605 13606 void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) { 13607 InheritedConstructorInfo ICI(*this, Ctor->getLocation(), 13608 Ctor->getInheritedConstructor().getShadowDecl()); 13609 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI, 13610 /*Diagnose*/true); 13611 } 13612 13613 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, 13614 CXXConstructorDecl *Constructor) { 13615 CXXRecordDecl *ClassDecl = Constructor->getParent(); 13616 assert(Constructor->getInheritedConstructor() && 13617 !Constructor->doesThisDeclarationHaveABody() && 13618 !Constructor->isDeleted()); 13619 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 13620 return; 13621 13622 // Initializations are performed "as if by a defaulted default constructor", 13623 // so enter the appropriate scope. 13624 SynthesizedFunctionScope Scope(*this, Constructor); 13625 13626 // The exception specification is needed because we are defining the 13627 // function. 13628 ResolveExceptionSpec(CurrentLocation, 13629 Constructor->getType()->castAs<FunctionProtoType>()); 13630 MarkVTableUsed(CurrentLocation, ClassDecl); 13631 13632 // Add a context note for diagnostics produced after this point. 13633 Scope.addContextNote(CurrentLocation); 13634 13635 ConstructorUsingShadowDecl *Shadow = 13636 Constructor->getInheritedConstructor().getShadowDecl(); 13637 CXXConstructorDecl *InheritedCtor = 13638 Constructor->getInheritedConstructor().getConstructor(); 13639 13640 // [class.inhctor.init]p1: 13641 // initialization proceeds as if a defaulted default constructor is used to 13642 // initialize the D object and each base class subobject from which the 13643 // constructor was inherited 13644 13645 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow); 13646 CXXRecordDecl *RD = Shadow->getParent(); 13647 SourceLocation InitLoc = Shadow->getLocation(); 13648 13649 // Build explicit initializers for all base classes from which the 13650 // constructor was inherited. 13651 SmallVector<CXXCtorInitializer*, 8> Inits; 13652 for (bool VBase : {false, true}) { 13653 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) { 13654 if (B.isVirtual() != VBase) 13655 continue; 13656 13657 auto *BaseRD = B.getType()->getAsCXXRecordDecl(); 13658 if (!BaseRD) 13659 continue; 13660 13661 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor); 13662 if (!BaseCtor.first) 13663 continue; 13664 13665 MarkFunctionReferenced(CurrentLocation, BaseCtor.first); 13666 ExprResult Init = new (Context) CXXInheritedCtorInitExpr( 13667 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second); 13668 13669 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc); 13670 Inits.push_back(new (Context) CXXCtorInitializer( 13671 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc, 13672 SourceLocation())); 13673 } 13674 } 13675 13676 // We now proceed as if for a defaulted default constructor, with the relevant 13677 // initializers replaced. 13678 13679 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) { 13680 Constructor->setInvalidDecl(); 13681 return; 13682 } 13683 13684 Constructor->setBody(new (Context) CompoundStmt(InitLoc)); 13685 Constructor->markUsed(Context); 13686 13687 if (ASTMutationListener *L = getASTMutationListener()) { 13688 L->CompletedImplicitDefinition(Constructor); 13689 } 13690 13691 DiagnoseUninitializedFields(*this, Constructor); 13692 } 13693 13694 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { 13695 // C++ [class.dtor]p2: 13696 // If a class has no user-declared destructor, a destructor is 13697 // declared implicitly. An implicitly-declared destructor is an 13698 // inline public member of its class. 13699 assert(ClassDecl->needsImplicitDestructor()); 13700 13701 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor); 13702 if (DSM.isAlreadyBeingDeclared()) 13703 return nullptr; 13704 13705 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 13706 CXXDestructor, 13707 false); 13708 13709 // Create the actual destructor declaration. 13710 CanQualType ClassType 13711 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 13712 SourceLocation ClassLoc = ClassDecl->getLocation(); 13713 DeclarationName Name 13714 = Context.DeclarationNames.getCXXDestructorName(ClassType); 13715 DeclarationNameInfo NameInfo(Name, ClassLoc); 13716 CXXDestructorDecl *Destructor = CXXDestructorDecl::Create( 13717 Context, ClassDecl, ClassLoc, NameInfo, QualType(), nullptr, 13718 getCurFPFeatures().isFPConstrained(), 13719 /*isInline=*/true, 13720 /*isImplicitlyDeclared=*/true, 13721 Constexpr ? ConstexprSpecKind::Constexpr 13722 : ConstexprSpecKind::Unspecified); 13723 Destructor->setAccess(AS_public); 13724 Destructor->setDefaulted(); 13725 13726 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None); 13727 13728 if (getLangOpts().CUDA) 13729 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor, 13730 Destructor, 13731 /* ConstRHS */ false, 13732 /* Diagnose */ false); 13733 13734 // We don't need to use SpecialMemberIsTrivial here; triviality for 13735 // destructors is easy to compute. 13736 Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); 13737 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() || 13738 ClassDecl->hasTrivialDestructorForCall()); 13739 13740 // Note that we have declared this destructor. 13741 ++getASTContext().NumImplicitDestructorsDeclared; 13742 13743 Scope *S = getScopeForContext(ClassDecl); 13744 CheckImplicitSpecialMemberDeclaration(S, Destructor); 13745 13746 // We can't check whether an implicit destructor is deleted before we complete 13747 // the definition of the class, because its validity depends on the alignment 13748 // of the class. We'll check this from ActOnFields once the class is complete. 13749 if (ClassDecl->isCompleteDefinition() && 13750 ShouldDeleteSpecialMember(Destructor, CXXDestructor)) 13751 SetDeclDeleted(Destructor, ClassLoc); 13752 13753 // Introduce this destructor into its scope. 13754 if (S) 13755 PushOnScopeChains(Destructor, S, false); 13756 ClassDecl->addDecl(Destructor); 13757 13758 return Destructor; 13759 } 13760 13761 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, 13762 CXXDestructorDecl *Destructor) { 13763 assert((Destructor->isDefaulted() && 13764 !Destructor->doesThisDeclarationHaveABody() && 13765 !Destructor->isDeleted()) && 13766 "DefineImplicitDestructor - call it for implicit default dtor"); 13767 if (Destructor->willHaveBody() || Destructor->isInvalidDecl()) 13768 return; 13769 13770 CXXRecordDecl *ClassDecl = Destructor->getParent(); 13771 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); 13772 13773 SynthesizedFunctionScope Scope(*this, Destructor); 13774 13775 // The exception specification is needed because we are defining the 13776 // function. 13777 ResolveExceptionSpec(CurrentLocation, 13778 Destructor->getType()->castAs<FunctionProtoType>()); 13779 MarkVTableUsed(CurrentLocation, ClassDecl); 13780 13781 // Add a context note for diagnostics produced after this point. 13782 Scope.addContextNote(CurrentLocation); 13783 13784 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 13785 Destructor->getParent()); 13786 13787 if (CheckDestructor(Destructor)) { 13788 Destructor->setInvalidDecl(); 13789 return; 13790 } 13791 13792 SourceLocation Loc = Destructor->getEndLoc().isValid() 13793 ? Destructor->getEndLoc() 13794 : Destructor->getLocation(); 13795 Destructor->setBody(new (Context) CompoundStmt(Loc)); 13796 Destructor->markUsed(Context); 13797 13798 if (ASTMutationListener *L = getASTMutationListener()) { 13799 L->CompletedImplicitDefinition(Destructor); 13800 } 13801 } 13802 13803 void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation, 13804 CXXDestructorDecl *Destructor) { 13805 if (Destructor->isInvalidDecl()) 13806 return; 13807 13808 CXXRecordDecl *ClassDecl = Destructor->getParent(); 13809 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() && 13810 "implicit complete dtors unneeded outside MS ABI"); 13811 assert(ClassDecl->getNumVBases() > 0 && 13812 "complete dtor only exists for classes with vbases"); 13813 13814 SynthesizedFunctionScope Scope(*this, Destructor); 13815 13816 // Add a context note for diagnostics produced after this point. 13817 Scope.addContextNote(CurrentLocation); 13818 13819 MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl); 13820 } 13821 13822 /// Perform any semantic analysis which needs to be delayed until all 13823 /// pending class member declarations have been parsed. 13824 void Sema::ActOnFinishCXXMemberDecls() { 13825 // If the context is an invalid C++ class, just suppress these checks. 13826 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) { 13827 if (Record->isInvalidDecl()) { 13828 DelayedOverridingExceptionSpecChecks.clear(); 13829 DelayedEquivalentExceptionSpecChecks.clear(); 13830 return; 13831 } 13832 checkForMultipleExportedDefaultConstructors(*this, Record); 13833 } 13834 } 13835 13836 void Sema::ActOnFinishCXXNonNestedClass() { 13837 referenceDLLExportedClassMethods(); 13838 13839 if (!DelayedDllExportMemberFunctions.empty()) { 13840 SmallVector<CXXMethodDecl*, 4> WorkList; 13841 std::swap(DelayedDllExportMemberFunctions, WorkList); 13842 for (CXXMethodDecl *M : WorkList) { 13843 DefineDefaultedFunction(*this, M, M->getLocation()); 13844 13845 // Pass the method to the consumer to get emitted. This is not necessary 13846 // for explicit instantiation definitions, as they will get emitted 13847 // anyway. 13848 if (M->getParent()->getTemplateSpecializationKind() != 13849 TSK_ExplicitInstantiationDefinition) 13850 ActOnFinishInlineFunctionDef(M); 13851 } 13852 } 13853 } 13854 13855 void Sema::referenceDLLExportedClassMethods() { 13856 if (!DelayedDllExportClasses.empty()) { 13857 // Calling ReferenceDllExportedMembers might cause the current function to 13858 // be called again, so use a local copy of DelayedDllExportClasses. 13859 SmallVector<CXXRecordDecl *, 4> WorkList; 13860 std::swap(DelayedDllExportClasses, WorkList); 13861 for (CXXRecordDecl *Class : WorkList) 13862 ReferenceDllExportedMembers(*this, Class); 13863 } 13864 } 13865 13866 void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) { 13867 assert(getLangOpts().CPlusPlus11 && 13868 "adjusting dtor exception specs was introduced in c++11"); 13869 13870 if (Destructor->isDependentContext()) 13871 return; 13872 13873 // C++11 [class.dtor]p3: 13874 // A declaration of a destructor that does not have an exception- 13875 // specification is implicitly considered to have the same exception- 13876 // specification as an implicit declaration. 13877 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>(); 13878 if (DtorType->hasExceptionSpec()) 13879 return; 13880 13881 // Replace the destructor's type, building off the existing one. Fortunately, 13882 // the only thing of interest in the destructor type is its extended info. 13883 // The return and arguments are fixed. 13884 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); 13885 EPI.ExceptionSpec.Type = EST_Unevaluated; 13886 EPI.ExceptionSpec.SourceDecl = Destructor; 13887 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI)); 13888 13889 // FIXME: If the destructor has a body that could throw, and the newly created 13890 // spec doesn't allow exceptions, we should emit a warning, because this 13891 // change in behavior can break conforming C++03 programs at runtime. 13892 // However, we don't have a body or an exception specification yet, so it 13893 // needs to be done somewhere else. 13894 } 13895 13896 namespace { 13897 /// An abstract base class for all helper classes used in building the 13898 // copy/move operators. These classes serve as factory functions and help us 13899 // avoid using the same Expr* in the AST twice. 13900 class ExprBuilder { 13901 ExprBuilder(const ExprBuilder&) = delete; 13902 ExprBuilder &operator=(const ExprBuilder&) = delete; 13903 13904 protected: 13905 static Expr *assertNotNull(Expr *E) { 13906 assert(E && "Expression construction must not fail."); 13907 return E; 13908 } 13909 13910 public: 13911 ExprBuilder() {} 13912 virtual ~ExprBuilder() {} 13913 13914 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; 13915 }; 13916 13917 class RefBuilder: public ExprBuilder { 13918 VarDecl *Var; 13919 QualType VarType; 13920 13921 public: 13922 Expr *build(Sema &S, SourceLocation Loc) const override { 13923 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc)); 13924 } 13925 13926 RefBuilder(VarDecl *Var, QualType VarType) 13927 : Var(Var), VarType(VarType) {} 13928 }; 13929 13930 class ThisBuilder: public ExprBuilder { 13931 public: 13932 Expr *build(Sema &S, SourceLocation Loc) const override { 13933 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>()); 13934 } 13935 }; 13936 13937 class CastBuilder: public ExprBuilder { 13938 const ExprBuilder &Builder; 13939 QualType Type; 13940 ExprValueKind Kind; 13941 const CXXCastPath &Path; 13942 13943 public: 13944 Expr *build(Sema &S, SourceLocation Loc) const override { 13945 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, 13946 CK_UncheckedDerivedToBase, Kind, 13947 &Path).get()); 13948 } 13949 13950 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, 13951 const CXXCastPath &Path) 13952 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} 13953 }; 13954 13955 class DerefBuilder: public ExprBuilder { 13956 const ExprBuilder &Builder; 13957 13958 public: 13959 Expr *build(Sema &S, SourceLocation Loc) const override { 13960 return assertNotNull( 13961 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get()); 13962 } 13963 13964 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13965 }; 13966 13967 class MemberBuilder: public ExprBuilder { 13968 const ExprBuilder &Builder; 13969 QualType Type; 13970 CXXScopeSpec SS; 13971 bool IsArrow; 13972 LookupResult &MemberLookup; 13973 13974 public: 13975 Expr *build(Sema &S, SourceLocation Loc) const override { 13976 return assertNotNull(S.BuildMemberReferenceExpr( 13977 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), 13978 nullptr, MemberLookup, nullptr, nullptr).get()); 13979 } 13980 13981 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, 13982 LookupResult &MemberLookup) 13983 : Builder(Builder), Type(Type), IsArrow(IsArrow), 13984 MemberLookup(MemberLookup) {} 13985 }; 13986 13987 class MoveCastBuilder: public ExprBuilder { 13988 const ExprBuilder &Builder; 13989 13990 public: 13991 Expr *build(Sema &S, SourceLocation Loc) const override { 13992 return assertNotNull(CastForMoving(S, Builder.build(S, Loc))); 13993 } 13994 13995 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13996 }; 13997 13998 class LvalueConvBuilder: public ExprBuilder { 13999 const ExprBuilder &Builder; 14000 14001 public: 14002 Expr *build(Sema &S, SourceLocation Loc) const override { 14003 return assertNotNull( 14004 S.DefaultLvalueConversion(Builder.build(S, Loc)).get()); 14005 } 14006 14007 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 14008 }; 14009 14010 class SubscriptBuilder: public ExprBuilder { 14011 const ExprBuilder &Base; 14012 const ExprBuilder &Index; 14013 14014 public: 14015 Expr *build(Sema &S, SourceLocation Loc) const override { 14016 return assertNotNull(S.CreateBuiltinArraySubscriptExpr( 14017 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get()); 14018 } 14019 14020 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) 14021 : Base(Base), Index(Index) {} 14022 }; 14023 14024 } // end anonymous namespace 14025 14026 /// When generating a defaulted copy or move assignment operator, if a field 14027 /// should be copied with __builtin_memcpy rather than via explicit assignments, 14028 /// do so. This optimization only applies for arrays of scalars, and for arrays 14029 /// of class type where the selected copy/move-assignment operator is trivial. 14030 static StmtResult 14031 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, 14032 const ExprBuilder &ToB, const ExprBuilder &FromB) { 14033 // Compute the size of the memory buffer to be copied. 14034 QualType SizeType = S.Context.getSizeType(); 14035 llvm::APInt Size(S.Context.getTypeSize(SizeType), 14036 S.Context.getTypeSizeInChars(T).getQuantity()); 14037 14038 // Take the address of the field references for "from" and "to". We 14039 // directly construct UnaryOperators here because semantic analysis 14040 // does not permit us to take the address of an xvalue. 14041 Expr *From = FromB.build(S, Loc); 14042 From = UnaryOperator::Create( 14043 S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()), 14044 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 14045 Expr *To = ToB.build(S, Loc); 14046 To = UnaryOperator::Create( 14047 S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()), 14048 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 14049 14050 const Type *E = T->getBaseElementTypeUnsafe(); 14051 bool NeedsCollectableMemCpy = 14052 E->isRecordType() && 14053 E->castAs<RecordType>()->getDecl()->hasObjectMember(); 14054 14055 // Create a reference to the __builtin_objc_memmove_collectable function 14056 StringRef MemCpyName = NeedsCollectableMemCpy ? 14057 "__builtin_objc_memmove_collectable" : 14058 "__builtin_memcpy"; 14059 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc, 14060 Sema::LookupOrdinaryName); 14061 S.LookupName(R, S.TUScope, true); 14062 14063 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>(); 14064 if (!MemCpy) 14065 // Something went horribly wrong earlier, and we will have complained 14066 // about it. 14067 return StmtError(); 14068 14069 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, 14070 VK_PRValue, Loc, nullptr); 14071 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail"); 14072 14073 Expr *CallArgs[] = { 14074 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc) 14075 }; 14076 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), 14077 Loc, CallArgs, Loc); 14078 14079 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); 14080 return Call.getAs<Stmt>(); 14081 } 14082 14083 /// Builds a statement that copies/moves the given entity from \p From to 14084 /// \c To. 14085 /// 14086 /// This routine is used to copy/move the members of a class with an 14087 /// implicitly-declared copy/move assignment operator. When the entities being 14088 /// copied are arrays, this routine builds for loops to copy them. 14089 /// 14090 /// \param S The Sema object used for type-checking. 14091 /// 14092 /// \param Loc The location where the implicit copy/move is being generated. 14093 /// 14094 /// \param T The type of the expressions being copied/moved. Both expressions 14095 /// must have this type. 14096 /// 14097 /// \param To The expression we are copying/moving to. 14098 /// 14099 /// \param From The expression we are copying/moving from. 14100 /// 14101 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. 14102 /// Otherwise, it's a non-static member subobject. 14103 /// 14104 /// \param Copying Whether we're copying or moving. 14105 /// 14106 /// \param Depth Internal parameter recording the depth of the recursion. 14107 /// 14108 /// \returns A statement or a loop that copies the expressions, or StmtResult(0) 14109 /// if a memcpy should be used instead. 14110 static StmtResult 14111 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, 14112 const ExprBuilder &To, const ExprBuilder &From, 14113 bool CopyingBaseSubobject, bool Copying, 14114 unsigned Depth = 0) { 14115 // C++11 [class.copy]p28: 14116 // Each subobject is assigned in the manner appropriate to its type: 14117 // 14118 // - if the subobject is of class type, as if by a call to operator= with 14119 // the subobject as the object expression and the corresponding 14120 // subobject of x as a single function argument (as if by explicit 14121 // qualification; that is, ignoring any possible virtual overriding 14122 // functions in more derived classes); 14123 // 14124 // C++03 [class.copy]p13: 14125 // - if the subobject is of class type, the copy assignment operator for 14126 // the class is used (as if by explicit qualification; that is, 14127 // ignoring any possible virtual overriding functions in more derived 14128 // classes); 14129 if (const RecordType *RecordTy = T->getAs<RecordType>()) { 14130 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 14131 14132 // Look for operator=. 14133 DeclarationName Name 14134 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14135 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); 14136 S.LookupQualifiedName(OpLookup, ClassDecl, false); 14137 14138 // Prior to C++11, filter out any result that isn't a copy/move-assignment 14139 // operator. 14140 if (!S.getLangOpts().CPlusPlus11) { 14141 LookupResult::Filter F = OpLookup.makeFilter(); 14142 while (F.hasNext()) { 14143 NamedDecl *D = F.next(); 14144 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 14145 if (Method->isCopyAssignmentOperator() || 14146 (!Copying && Method->isMoveAssignmentOperator())) 14147 continue; 14148 14149 F.erase(); 14150 } 14151 F.done(); 14152 } 14153 14154 // Suppress the protected check (C++ [class.protected]) for each of the 14155 // assignment operators we found. This strange dance is required when 14156 // we're assigning via a base classes's copy-assignment operator. To 14157 // ensure that we're getting the right base class subobject (without 14158 // ambiguities), we need to cast "this" to that subobject type; to 14159 // ensure that we don't go through the virtual call mechanism, we need 14160 // to qualify the operator= name with the base class (see below). However, 14161 // this means that if the base class has a protected copy assignment 14162 // operator, the protected member access check will fail. So, we 14163 // rewrite "protected" access to "public" access in this case, since we 14164 // know by construction that we're calling from a derived class. 14165 if (CopyingBaseSubobject) { 14166 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); 14167 L != LEnd; ++L) { 14168 if (L.getAccess() == AS_protected) 14169 L.setAccess(AS_public); 14170 } 14171 } 14172 14173 // Create the nested-name-specifier that will be used to qualify the 14174 // reference to operator=; this is required to suppress the virtual 14175 // call mechanism. 14176 CXXScopeSpec SS; 14177 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr()); 14178 SS.MakeTrivial(S.Context, 14179 NestedNameSpecifier::Create(S.Context, nullptr, false, 14180 CanonicalT), 14181 Loc); 14182 14183 // Create the reference to operator=. 14184 ExprResult OpEqualRef 14185 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false, 14186 SS, /*TemplateKWLoc=*/SourceLocation(), 14187 /*FirstQualifierInScope=*/nullptr, 14188 OpLookup, 14189 /*TemplateArgs=*/nullptr, /*S*/nullptr, 14190 /*SuppressQualifierCheck=*/true); 14191 if (OpEqualRef.isInvalid()) 14192 return StmtError(); 14193 14194 // Build the call to the assignment operator. 14195 14196 Expr *FromInst = From.build(S, Loc); 14197 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr, 14198 OpEqualRef.getAs<Expr>(), 14199 Loc, FromInst, Loc); 14200 if (Call.isInvalid()) 14201 return StmtError(); 14202 14203 // If we built a call to a trivial 'operator=' while copying an array, 14204 // bail out. We'll replace the whole shebang with a memcpy. 14205 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get()); 14206 if (CE && CE->getMethodDecl()->isTrivial() && Depth) 14207 return StmtResult((Stmt*)nullptr); 14208 14209 // Convert to an expression-statement, and clean up any produced 14210 // temporaries. 14211 return S.ActOnExprStmt(Call); 14212 } 14213 14214 // - if the subobject is of scalar type, the built-in assignment 14215 // operator is used. 14216 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); 14217 if (!ArrayTy) { 14218 ExprResult Assignment = S.CreateBuiltinBinOp( 14219 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc)); 14220 if (Assignment.isInvalid()) 14221 return StmtError(); 14222 return S.ActOnExprStmt(Assignment); 14223 } 14224 14225 // - if the subobject is an array, each element is assigned, in the 14226 // manner appropriate to the element type; 14227 14228 // Construct a loop over the array bounds, e.g., 14229 // 14230 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) 14231 // 14232 // that will copy each of the array elements. 14233 QualType SizeType = S.Context.getSizeType(); 14234 14235 // Create the iteration variable. 14236 IdentifierInfo *IterationVarName = nullptr; 14237 { 14238 SmallString<8> Str; 14239 llvm::raw_svector_ostream OS(Str); 14240 OS << "__i" << Depth; 14241 IterationVarName = &S.Context.Idents.get(OS.str()); 14242 } 14243 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, 14244 IterationVarName, SizeType, 14245 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), 14246 SC_None); 14247 14248 // Initialize the iteration variable to zero. 14249 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 14250 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 14251 14252 // Creates a reference to the iteration variable. 14253 RefBuilder IterationVarRef(IterationVar, SizeType); 14254 LvalueConvBuilder IterationVarRefRVal(IterationVarRef); 14255 14256 // Create the DeclStmt that holds the iteration variable. 14257 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); 14258 14259 // Subscript the "from" and "to" expressions with the iteration variable. 14260 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); 14261 MoveCastBuilder FromIndexMove(FromIndexCopy); 14262 const ExprBuilder *FromIndex; 14263 if (Copying) 14264 FromIndex = &FromIndexCopy; 14265 else 14266 FromIndex = &FromIndexMove; 14267 14268 SubscriptBuilder ToIndex(To, IterationVarRefRVal); 14269 14270 // Build the copy/move for an individual element of the array. 14271 StmtResult Copy = 14272 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), 14273 ToIndex, *FromIndex, CopyingBaseSubobject, 14274 Copying, Depth + 1); 14275 // Bail out if copying fails or if we determined that we should use memcpy. 14276 if (Copy.isInvalid() || !Copy.get()) 14277 return Copy; 14278 14279 // Create the comparison against the array bound. 14280 llvm::APInt Upper 14281 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); 14282 Expr *Comparison = BinaryOperator::Create( 14283 S.Context, IterationVarRefRVal.build(S, Loc), 14284 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE, 14285 S.Context.BoolTy, VK_PRValue, OK_Ordinary, Loc, 14286 S.CurFPFeatureOverrides()); 14287 14288 // Create the pre-increment of the iteration variable. We can determine 14289 // whether the increment will overflow based on the value of the array 14290 // bound. 14291 Expr *Increment = UnaryOperator::Create( 14292 S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue, 14293 OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides()); 14294 14295 // Construct the loop that copies all elements of this array. 14296 return S.ActOnForStmt( 14297 Loc, Loc, InitStmt, 14298 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean), 14299 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get()); 14300 } 14301 14302 static StmtResult 14303 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, 14304 const ExprBuilder &To, const ExprBuilder &From, 14305 bool CopyingBaseSubobject, bool Copying) { 14306 // Maybe we should use a memcpy? 14307 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && 14308 T.isTriviallyCopyableType(S.Context)) 14309 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 14310 14311 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, 14312 CopyingBaseSubobject, 14313 Copying, 0)); 14314 14315 // If we ended up picking a trivial assignment operator for an array of a 14316 // non-trivially-copyable class type, just emit a memcpy. 14317 if (!Result.isInvalid() && !Result.get()) 14318 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 14319 14320 return Result; 14321 } 14322 14323 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { 14324 // Note: The following rules are largely analoguous to the copy 14325 // constructor rules. Note that virtual bases are not taken into account 14326 // for determining the argument type of the operator. Note also that 14327 // operators taking an object instead of a reference are allowed. 14328 assert(ClassDecl->needsImplicitCopyAssignment()); 14329 14330 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment); 14331 if (DSM.isAlreadyBeingDeclared()) 14332 return nullptr; 14333 14334 QualType ArgType = Context.getTypeDeclType(ClassDecl); 14335 LangAS AS = getDefaultCXXMethodAddrSpace(); 14336 if (AS != LangAS::Default) 14337 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14338 QualType RetType = Context.getLValueReferenceType(ArgType); 14339 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); 14340 if (Const) 14341 ArgType = ArgType.withConst(); 14342 14343 ArgType = Context.getLValueReferenceType(ArgType); 14344 14345 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14346 CXXCopyAssignment, 14347 Const); 14348 14349 // An implicitly-declared copy assignment operator is an inline public 14350 // member of its class. 14351 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14352 SourceLocation ClassLoc = ClassDecl->getLocation(); 14353 DeclarationNameInfo NameInfo(Name, ClassLoc); 14354 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create( 14355 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 14356 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 14357 getCurFPFeatures().isFPConstrained(), 14358 /*isInline=*/true, 14359 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, 14360 SourceLocation()); 14361 CopyAssignment->setAccess(AS_public); 14362 CopyAssignment->setDefaulted(); 14363 CopyAssignment->setImplicit(); 14364 14365 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType); 14366 14367 if (getLangOpts().CUDA) 14368 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment, 14369 CopyAssignment, 14370 /* ConstRHS */ Const, 14371 /* Diagnose */ false); 14372 14373 // Add the parameter to the operator. 14374 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, 14375 ClassLoc, ClassLoc, 14376 /*Id=*/nullptr, ArgType, 14377 /*TInfo=*/nullptr, SC_None, 14378 nullptr); 14379 CopyAssignment->setParams(FromParam); 14380 14381 CopyAssignment->setTrivial( 14382 ClassDecl->needsOverloadResolutionForCopyAssignment() 14383 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment) 14384 : ClassDecl->hasTrivialCopyAssignment()); 14385 14386 // Note that we have added this copy-assignment operator. 14387 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared; 14388 14389 Scope *S = getScopeForContext(ClassDecl); 14390 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment); 14391 14392 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) { 14393 ClassDecl->setImplicitCopyAssignmentIsDeleted(); 14394 SetDeclDeleted(CopyAssignment, ClassLoc); 14395 } 14396 14397 if (S) 14398 PushOnScopeChains(CopyAssignment, S, false); 14399 ClassDecl->addDecl(CopyAssignment); 14400 14401 return CopyAssignment; 14402 } 14403 14404 /// Diagnose an implicit copy operation for a class which is odr-used, but 14405 /// which is deprecated because the class has a user-declared copy constructor, 14406 /// copy assignment operator, or destructor. 14407 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) { 14408 assert(CopyOp->isImplicit()); 14409 14410 CXXRecordDecl *RD = CopyOp->getParent(); 14411 CXXMethodDecl *UserDeclaredOperation = nullptr; 14412 14413 // In Microsoft mode, assignment operations don't affect constructors and 14414 // vice versa. 14415 if (RD->hasUserDeclaredDestructor()) { 14416 UserDeclaredOperation = RD->getDestructor(); 14417 } else if (!isa<CXXConstructorDecl>(CopyOp) && 14418 RD->hasUserDeclaredCopyConstructor() && 14419 !S.getLangOpts().MSVCCompat) { 14420 // Find any user-declared copy constructor. 14421 for (auto *I : RD->ctors()) { 14422 if (I->isCopyConstructor()) { 14423 UserDeclaredOperation = I; 14424 break; 14425 } 14426 } 14427 assert(UserDeclaredOperation); 14428 } else if (isa<CXXConstructorDecl>(CopyOp) && 14429 RD->hasUserDeclaredCopyAssignment() && 14430 !S.getLangOpts().MSVCCompat) { 14431 // Find any user-declared move assignment operator. 14432 for (auto *I : RD->methods()) { 14433 if (I->isCopyAssignmentOperator()) { 14434 UserDeclaredOperation = I; 14435 break; 14436 } 14437 } 14438 assert(UserDeclaredOperation); 14439 } 14440 14441 if (UserDeclaredOperation) { 14442 bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided(); 14443 bool UDOIsDestructor = isa<CXXDestructorDecl>(UserDeclaredOperation); 14444 bool IsCopyAssignment = !isa<CXXConstructorDecl>(CopyOp); 14445 unsigned DiagID = 14446 (UDOIsUserProvided && UDOIsDestructor) 14447 ? diag::warn_deprecated_copy_with_user_provided_dtor 14448 : (UDOIsUserProvided && !UDOIsDestructor) 14449 ? diag::warn_deprecated_copy_with_user_provided_copy 14450 : (!UDOIsUserProvided && UDOIsDestructor) 14451 ? diag::warn_deprecated_copy_with_dtor 14452 : diag::warn_deprecated_copy; 14453 S.Diag(UserDeclaredOperation->getLocation(), DiagID) 14454 << RD << IsCopyAssignment; 14455 } 14456 } 14457 14458 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, 14459 CXXMethodDecl *CopyAssignOperator) { 14460 assert((CopyAssignOperator->isDefaulted() && 14461 CopyAssignOperator->isOverloadedOperator() && 14462 CopyAssignOperator->getOverloadedOperator() == OO_Equal && 14463 !CopyAssignOperator->doesThisDeclarationHaveABody() && 14464 !CopyAssignOperator->isDeleted()) && 14465 "DefineImplicitCopyAssignment called for wrong function"); 14466 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl()) 14467 return; 14468 14469 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); 14470 if (ClassDecl->isInvalidDecl()) { 14471 CopyAssignOperator->setInvalidDecl(); 14472 return; 14473 } 14474 14475 SynthesizedFunctionScope Scope(*this, CopyAssignOperator); 14476 14477 // The exception specification is needed because we are defining the 14478 // function. 14479 ResolveExceptionSpec(CurrentLocation, 14480 CopyAssignOperator->getType()->castAs<FunctionProtoType>()); 14481 14482 // Add a context note for diagnostics produced after this point. 14483 Scope.addContextNote(CurrentLocation); 14484 14485 // C++11 [class.copy]p18: 14486 // The [definition of an implicitly declared copy assignment operator] is 14487 // deprecated if the class has a user-declared copy constructor or a 14488 // user-declared destructor. 14489 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) 14490 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator); 14491 14492 // C++0x [class.copy]p30: 14493 // The implicitly-defined or explicitly-defaulted copy assignment operator 14494 // for a non-union class X performs memberwise copy assignment of its 14495 // subobjects. The direct base classes of X are assigned first, in the 14496 // order of their declaration in the base-specifier-list, and then the 14497 // immediate non-static data members of X are assigned, in the order in 14498 // which they were declared in the class definition. 14499 14500 // The statements that form the synthesized function body. 14501 SmallVector<Stmt*, 8> Statements; 14502 14503 // The parameter for the "other" object, which we are copying from. 14504 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); 14505 Qualifiers OtherQuals = Other->getType().getQualifiers(); 14506 QualType OtherRefType = Other->getType(); 14507 if (const LValueReferenceType *OtherRef 14508 = OtherRefType->getAs<LValueReferenceType>()) { 14509 OtherRefType = OtherRef->getPointeeType(); 14510 OtherQuals = OtherRefType.getQualifiers(); 14511 } 14512 14513 // Our location for everything implicitly-generated. 14514 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid() 14515 ? CopyAssignOperator->getEndLoc() 14516 : CopyAssignOperator->getLocation(); 14517 14518 // Builds a DeclRefExpr for the "other" object. 14519 RefBuilder OtherRef(Other, OtherRefType); 14520 14521 // Builds the "this" pointer. 14522 ThisBuilder This; 14523 14524 // Assign base classes. 14525 bool Invalid = false; 14526 for (auto &Base : ClassDecl->bases()) { 14527 // Form the assignment: 14528 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); 14529 QualType BaseType = Base.getType().getUnqualifiedType(); 14530 if (!BaseType->isRecordType()) { 14531 Invalid = true; 14532 continue; 14533 } 14534 14535 CXXCastPath BasePath; 14536 BasePath.push_back(&Base); 14537 14538 // Construct the "from" expression, which is an implicit cast to the 14539 // appropriately-qualified base type. 14540 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals), 14541 VK_LValue, BasePath); 14542 14543 // Dereference "this". 14544 DerefBuilder DerefThis(This); 14545 CastBuilder To(DerefThis, 14546 Context.getQualifiedType( 14547 BaseType, CopyAssignOperator->getMethodQualifiers()), 14548 VK_LValue, BasePath); 14549 14550 // Build the copy. 14551 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, 14552 To, From, 14553 /*CopyingBaseSubobject=*/true, 14554 /*Copying=*/true); 14555 if (Copy.isInvalid()) { 14556 CopyAssignOperator->setInvalidDecl(); 14557 return; 14558 } 14559 14560 // Success! Record the copy. 14561 Statements.push_back(Copy.getAs<Expr>()); 14562 } 14563 14564 // Assign non-static members. 14565 for (auto *Field : ClassDecl->fields()) { 14566 // FIXME: We should form some kind of AST representation for the implied 14567 // memcpy in a union copy operation. 14568 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 14569 continue; 14570 14571 if (Field->isInvalidDecl()) { 14572 Invalid = true; 14573 continue; 14574 } 14575 14576 // Check for members of reference type; we can't copy those. 14577 if (Field->getType()->isReferenceType()) { 14578 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14579 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 14580 Diag(Field->getLocation(), diag::note_declared_at); 14581 Invalid = true; 14582 continue; 14583 } 14584 14585 // Check for members of const-qualified, non-class type. 14586 QualType BaseType = Context.getBaseElementType(Field->getType()); 14587 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 14588 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14589 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 14590 Diag(Field->getLocation(), diag::note_declared_at); 14591 Invalid = true; 14592 continue; 14593 } 14594 14595 // Suppress assigning zero-width bitfields. 14596 if (Field->isZeroLengthBitField(Context)) 14597 continue; 14598 14599 QualType FieldType = Field->getType().getNonReferenceType(); 14600 if (FieldType->isIncompleteArrayType()) { 14601 assert(ClassDecl->hasFlexibleArrayMember() && 14602 "Incomplete array type is not valid"); 14603 continue; 14604 } 14605 14606 // Build references to the field in the object we're copying from and to. 14607 CXXScopeSpec SS; // Intentionally empty 14608 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 14609 LookupMemberName); 14610 MemberLookup.addDecl(Field); 14611 MemberLookup.resolveKind(); 14612 14613 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); 14614 14615 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup); 14616 14617 // Build the copy of this field. 14618 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, 14619 To, From, 14620 /*CopyingBaseSubobject=*/false, 14621 /*Copying=*/true); 14622 if (Copy.isInvalid()) { 14623 CopyAssignOperator->setInvalidDecl(); 14624 return; 14625 } 14626 14627 // Success! Record the copy. 14628 Statements.push_back(Copy.getAs<Stmt>()); 14629 } 14630 14631 if (!Invalid) { 14632 // Add a "return *this;" 14633 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 14634 14635 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 14636 if (Return.isInvalid()) 14637 Invalid = true; 14638 else 14639 Statements.push_back(Return.getAs<Stmt>()); 14640 } 14641 14642 if (Invalid) { 14643 CopyAssignOperator->setInvalidDecl(); 14644 return; 14645 } 14646 14647 StmtResult Body; 14648 { 14649 CompoundScopeRAII CompoundScope(*this); 14650 Body = ActOnCompoundStmt(Loc, Loc, Statements, 14651 /*isStmtExpr=*/false); 14652 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 14653 } 14654 CopyAssignOperator->setBody(Body.getAs<Stmt>()); 14655 CopyAssignOperator->markUsed(Context); 14656 14657 if (ASTMutationListener *L = getASTMutationListener()) { 14658 L->CompletedImplicitDefinition(CopyAssignOperator); 14659 } 14660 } 14661 14662 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { 14663 assert(ClassDecl->needsImplicitMoveAssignment()); 14664 14665 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment); 14666 if (DSM.isAlreadyBeingDeclared()) 14667 return nullptr; 14668 14669 // Note: The following rules are largely analoguous to the move 14670 // constructor rules. 14671 14672 QualType ArgType = Context.getTypeDeclType(ClassDecl); 14673 LangAS AS = getDefaultCXXMethodAddrSpace(); 14674 if (AS != LangAS::Default) 14675 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14676 QualType RetType = Context.getLValueReferenceType(ArgType); 14677 ArgType = Context.getRValueReferenceType(ArgType); 14678 14679 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14680 CXXMoveAssignment, 14681 false); 14682 14683 // An implicitly-declared move assignment operator is an inline public 14684 // member of its class. 14685 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14686 SourceLocation ClassLoc = ClassDecl->getLocation(); 14687 DeclarationNameInfo NameInfo(Name, ClassLoc); 14688 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create( 14689 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 14690 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 14691 getCurFPFeatures().isFPConstrained(), 14692 /*isInline=*/true, 14693 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, 14694 SourceLocation()); 14695 MoveAssignment->setAccess(AS_public); 14696 MoveAssignment->setDefaulted(); 14697 MoveAssignment->setImplicit(); 14698 14699 setupImplicitSpecialMemberType(MoveAssignment, RetType, ArgType); 14700 14701 if (getLangOpts().CUDA) 14702 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment, 14703 MoveAssignment, 14704 /* ConstRHS */ false, 14705 /* Diagnose */ false); 14706 14707 // Add the parameter to the operator. 14708 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, 14709 ClassLoc, ClassLoc, 14710 /*Id=*/nullptr, ArgType, 14711 /*TInfo=*/nullptr, SC_None, 14712 nullptr); 14713 MoveAssignment->setParams(FromParam); 14714 14715 MoveAssignment->setTrivial( 14716 ClassDecl->needsOverloadResolutionForMoveAssignment() 14717 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment) 14718 : ClassDecl->hasTrivialMoveAssignment()); 14719 14720 // Note that we have added this copy-assignment operator. 14721 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared; 14722 14723 Scope *S = getScopeForContext(ClassDecl); 14724 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment); 14725 14726 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) { 14727 ClassDecl->setImplicitMoveAssignmentIsDeleted(); 14728 SetDeclDeleted(MoveAssignment, ClassLoc); 14729 } 14730 14731 if (S) 14732 PushOnScopeChains(MoveAssignment, S, false); 14733 ClassDecl->addDecl(MoveAssignment); 14734 14735 return MoveAssignment; 14736 } 14737 14738 /// Check if we're implicitly defining a move assignment operator for a class 14739 /// with virtual bases. Such a move assignment might move-assign the virtual 14740 /// base multiple times. 14741 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, 14742 SourceLocation CurrentLocation) { 14743 assert(!Class->isDependentContext() && "should not define dependent move"); 14744 14745 // Only a virtual base could get implicitly move-assigned multiple times. 14746 // Only a non-trivial move assignment can observe this. We only want to 14747 // diagnose if we implicitly define an assignment operator that assigns 14748 // two base classes, both of which move-assign the same virtual base. 14749 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || 14750 Class->getNumBases() < 2) 14751 return; 14752 14753 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist; 14754 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap; 14755 VBaseMap VBases; 14756 14757 for (auto &BI : Class->bases()) { 14758 Worklist.push_back(&BI); 14759 while (!Worklist.empty()) { 14760 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); 14761 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); 14762 14763 // If the base has no non-trivial move assignment operators, 14764 // we don't care about moves from it. 14765 if (!Base->hasNonTrivialMoveAssignment()) 14766 continue; 14767 14768 // If there's nothing virtual here, skip it. 14769 if (!BaseSpec->isVirtual() && !Base->getNumVBases()) 14770 continue; 14771 14772 // If we're not actually going to call a move assignment for this base, 14773 // or the selected move assignment is trivial, skip it. 14774 Sema::SpecialMemberOverloadResult SMOR = 14775 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment, 14776 /*ConstArg*/false, /*VolatileArg*/false, 14777 /*RValueThis*/true, /*ConstThis*/false, 14778 /*VolatileThis*/false); 14779 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() || 14780 !SMOR.getMethod()->isMoveAssignmentOperator()) 14781 continue; 14782 14783 if (BaseSpec->isVirtual()) { 14784 // We're going to move-assign this virtual base, and its move 14785 // assignment operator is not trivial. If this can happen for 14786 // multiple distinct direct bases of Class, diagnose it. (If it 14787 // only happens in one base, we'll diagnose it when synthesizing 14788 // that base class's move assignment operator.) 14789 CXXBaseSpecifier *&Existing = 14790 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI)) 14791 .first->second; 14792 if (Existing && Existing != &BI) { 14793 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) 14794 << Class << Base; 14795 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here) 14796 << (Base->getCanonicalDecl() == 14797 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 14798 << Base << Existing->getType() << Existing->getSourceRange(); 14799 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here) 14800 << (Base->getCanonicalDecl() == 14801 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 14802 << Base << BI.getType() << BaseSpec->getSourceRange(); 14803 14804 // Only diagnose each vbase once. 14805 Existing = nullptr; 14806 } 14807 } else { 14808 // Only walk over bases that have defaulted move assignment operators. 14809 // We assume that any user-provided move assignment operator handles 14810 // the multiple-moves-of-vbase case itself somehow. 14811 if (!SMOR.getMethod()->isDefaulted()) 14812 continue; 14813 14814 // We're going to move the base classes of Base. Add them to the list. 14815 llvm::append_range(Worklist, llvm::make_pointer_range(Base->bases())); 14816 } 14817 } 14818 } 14819 } 14820 14821 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, 14822 CXXMethodDecl *MoveAssignOperator) { 14823 assert((MoveAssignOperator->isDefaulted() && 14824 MoveAssignOperator->isOverloadedOperator() && 14825 MoveAssignOperator->getOverloadedOperator() == OO_Equal && 14826 !MoveAssignOperator->doesThisDeclarationHaveABody() && 14827 !MoveAssignOperator->isDeleted()) && 14828 "DefineImplicitMoveAssignment called for wrong function"); 14829 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl()) 14830 return; 14831 14832 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); 14833 if (ClassDecl->isInvalidDecl()) { 14834 MoveAssignOperator->setInvalidDecl(); 14835 return; 14836 } 14837 14838 // C++0x [class.copy]p28: 14839 // The implicitly-defined or move assignment operator for a non-union class 14840 // X performs memberwise move assignment of its subobjects. The direct base 14841 // classes of X are assigned first, in the order of their declaration in the 14842 // base-specifier-list, and then the immediate non-static data members of X 14843 // are assigned, in the order in which they were declared in the class 14844 // definition. 14845 14846 // Issue a warning if our implicit move assignment operator will move 14847 // from a virtual base more than once. 14848 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation); 14849 14850 SynthesizedFunctionScope Scope(*this, MoveAssignOperator); 14851 14852 // The exception specification is needed because we are defining the 14853 // function. 14854 ResolveExceptionSpec(CurrentLocation, 14855 MoveAssignOperator->getType()->castAs<FunctionProtoType>()); 14856 14857 // Add a context note for diagnostics produced after this point. 14858 Scope.addContextNote(CurrentLocation); 14859 14860 // The statements that form the synthesized function body. 14861 SmallVector<Stmt*, 8> Statements; 14862 14863 // The parameter for the "other" object, which we are move from. 14864 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0); 14865 QualType OtherRefType = 14866 Other->getType()->castAs<RValueReferenceType>()->getPointeeType(); 14867 14868 // Our location for everything implicitly-generated. 14869 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid() 14870 ? MoveAssignOperator->getEndLoc() 14871 : MoveAssignOperator->getLocation(); 14872 14873 // Builds a reference to the "other" object. 14874 RefBuilder OtherRef(Other, OtherRefType); 14875 // Cast to rvalue. 14876 MoveCastBuilder MoveOther(OtherRef); 14877 14878 // Builds the "this" pointer. 14879 ThisBuilder This; 14880 14881 // Assign base classes. 14882 bool Invalid = false; 14883 for (auto &Base : ClassDecl->bases()) { 14884 // C++11 [class.copy]p28: 14885 // It is unspecified whether subobjects representing virtual base classes 14886 // are assigned more than once by the implicitly-defined copy assignment 14887 // operator. 14888 // FIXME: Do not assign to a vbase that will be assigned by some other base 14889 // class. For a move-assignment, this can result in the vbase being moved 14890 // multiple times. 14891 14892 // Form the assignment: 14893 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); 14894 QualType BaseType = Base.getType().getUnqualifiedType(); 14895 if (!BaseType->isRecordType()) { 14896 Invalid = true; 14897 continue; 14898 } 14899 14900 CXXCastPath BasePath; 14901 BasePath.push_back(&Base); 14902 14903 // Construct the "from" expression, which is an implicit cast to the 14904 // appropriately-qualified base type. 14905 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); 14906 14907 // Dereference "this". 14908 DerefBuilder DerefThis(This); 14909 14910 // Implicitly cast "this" to the appropriately-qualified base type. 14911 CastBuilder To(DerefThis, 14912 Context.getQualifiedType( 14913 BaseType, MoveAssignOperator->getMethodQualifiers()), 14914 VK_LValue, BasePath); 14915 14916 // Build the move. 14917 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, 14918 To, From, 14919 /*CopyingBaseSubobject=*/true, 14920 /*Copying=*/false); 14921 if (Move.isInvalid()) { 14922 MoveAssignOperator->setInvalidDecl(); 14923 return; 14924 } 14925 14926 // Success! Record the move. 14927 Statements.push_back(Move.getAs<Expr>()); 14928 } 14929 14930 // Assign non-static members. 14931 for (auto *Field : ClassDecl->fields()) { 14932 // FIXME: We should form some kind of AST representation for the implied 14933 // memcpy in a union copy operation. 14934 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 14935 continue; 14936 14937 if (Field->isInvalidDecl()) { 14938 Invalid = true; 14939 continue; 14940 } 14941 14942 // Check for members of reference type; we can't move those. 14943 if (Field->getType()->isReferenceType()) { 14944 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14945 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 14946 Diag(Field->getLocation(), diag::note_declared_at); 14947 Invalid = true; 14948 continue; 14949 } 14950 14951 // Check for members of const-qualified, non-class type. 14952 QualType BaseType = Context.getBaseElementType(Field->getType()); 14953 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 14954 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14955 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 14956 Diag(Field->getLocation(), diag::note_declared_at); 14957 Invalid = true; 14958 continue; 14959 } 14960 14961 // Suppress assigning zero-width bitfields. 14962 if (Field->isZeroLengthBitField(Context)) 14963 continue; 14964 14965 QualType FieldType = Field->getType().getNonReferenceType(); 14966 if (FieldType->isIncompleteArrayType()) { 14967 assert(ClassDecl->hasFlexibleArrayMember() && 14968 "Incomplete array type is not valid"); 14969 continue; 14970 } 14971 14972 // Build references to the field in the object we're copying from and to. 14973 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 14974 LookupMemberName); 14975 MemberLookup.addDecl(Field); 14976 MemberLookup.resolveKind(); 14977 MemberBuilder From(MoveOther, OtherRefType, 14978 /*IsArrow=*/false, MemberLookup); 14979 MemberBuilder To(This, getCurrentThisType(), 14980 /*IsArrow=*/true, MemberLookup); 14981 14982 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue 14983 "Member reference with rvalue base must be rvalue except for reference " 14984 "members, which aren't allowed for move assignment."); 14985 14986 // Build the move of this field. 14987 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, 14988 To, From, 14989 /*CopyingBaseSubobject=*/false, 14990 /*Copying=*/false); 14991 if (Move.isInvalid()) { 14992 MoveAssignOperator->setInvalidDecl(); 14993 return; 14994 } 14995 14996 // Success! Record the copy. 14997 Statements.push_back(Move.getAs<Stmt>()); 14998 } 14999 15000 if (!Invalid) { 15001 // Add a "return *this;" 15002 ExprResult ThisObj = 15003 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 15004 15005 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 15006 if (Return.isInvalid()) 15007 Invalid = true; 15008 else 15009 Statements.push_back(Return.getAs<Stmt>()); 15010 } 15011 15012 if (Invalid) { 15013 MoveAssignOperator->setInvalidDecl(); 15014 return; 15015 } 15016 15017 StmtResult Body; 15018 { 15019 CompoundScopeRAII CompoundScope(*this); 15020 Body = ActOnCompoundStmt(Loc, Loc, Statements, 15021 /*isStmtExpr=*/false); 15022 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 15023 } 15024 MoveAssignOperator->setBody(Body.getAs<Stmt>()); 15025 MoveAssignOperator->markUsed(Context); 15026 15027 if (ASTMutationListener *L = getASTMutationListener()) { 15028 L->CompletedImplicitDefinition(MoveAssignOperator); 15029 } 15030 } 15031 15032 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( 15033 CXXRecordDecl *ClassDecl) { 15034 // C++ [class.copy]p4: 15035 // If the class definition does not explicitly declare a copy 15036 // constructor, one is declared implicitly. 15037 assert(ClassDecl->needsImplicitCopyConstructor()); 15038 15039 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor); 15040 if (DSM.isAlreadyBeingDeclared()) 15041 return nullptr; 15042 15043 QualType ClassType = Context.getTypeDeclType(ClassDecl); 15044 QualType ArgType = ClassType; 15045 bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); 15046 if (Const) 15047 ArgType = ArgType.withConst(); 15048 15049 LangAS AS = getDefaultCXXMethodAddrSpace(); 15050 if (AS != LangAS::Default) 15051 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 15052 15053 ArgType = Context.getLValueReferenceType(ArgType); 15054 15055 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 15056 CXXCopyConstructor, 15057 Const); 15058 15059 DeclarationName Name 15060 = Context.DeclarationNames.getCXXConstructorName( 15061 Context.getCanonicalType(ClassType)); 15062 SourceLocation ClassLoc = ClassDecl->getLocation(); 15063 DeclarationNameInfo NameInfo(Name, ClassLoc); 15064 15065 // An implicitly-declared copy constructor is an inline public 15066 // member of its class. 15067 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( 15068 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 15069 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 15070 /*isInline=*/true, 15071 /*isImplicitlyDeclared=*/true, 15072 Constexpr ? ConstexprSpecKind::Constexpr 15073 : ConstexprSpecKind::Unspecified); 15074 CopyConstructor->setAccess(AS_public); 15075 CopyConstructor->setDefaulted(); 15076 15077 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType); 15078 15079 if (getLangOpts().CUDA) 15080 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor, 15081 CopyConstructor, 15082 /* ConstRHS */ Const, 15083 /* Diagnose */ false); 15084 15085 // During template instantiation of special member functions we need a 15086 // reliable TypeSourceInfo for the parameter types in order to allow functions 15087 // to be substituted. 15088 TypeSourceInfo *TSI = nullptr; 15089 if (inTemplateInstantiation() && ClassDecl->isLambda()) 15090 TSI = Context.getTrivialTypeSourceInfo(ArgType); 15091 15092 // Add the parameter to the constructor. 15093 ParmVarDecl *FromParam = 15094 ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc, 15095 /*IdentifierInfo=*/nullptr, ArgType, 15096 /*TInfo=*/TSI, SC_None, nullptr); 15097 CopyConstructor->setParams(FromParam); 15098 15099 CopyConstructor->setTrivial( 15100 ClassDecl->needsOverloadResolutionForCopyConstructor() 15101 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor) 15102 : ClassDecl->hasTrivialCopyConstructor()); 15103 15104 CopyConstructor->setTrivialForCall( 15105 ClassDecl->hasAttr<TrivialABIAttr>() || 15106 (ClassDecl->needsOverloadResolutionForCopyConstructor() 15107 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor, 15108 TAH_ConsiderTrivialABI) 15109 : ClassDecl->hasTrivialCopyConstructorForCall())); 15110 15111 // Note that we have declared this constructor. 15112 ++getASTContext().NumImplicitCopyConstructorsDeclared; 15113 15114 Scope *S = getScopeForContext(ClassDecl); 15115 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor); 15116 15117 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) { 15118 ClassDecl->setImplicitCopyConstructorIsDeleted(); 15119 SetDeclDeleted(CopyConstructor, ClassLoc); 15120 } 15121 15122 if (S) 15123 PushOnScopeChains(CopyConstructor, S, false); 15124 ClassDecl->addDecl(CopyConstructor); 15125 15126 return CopyConstructor; 15127 } 15128 15129 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, 15130 CXXConstructorDecl *CopyConstructor) { 15131 assert((CopyConstructor->isDefaulted() && 15132 CopyConstructor->isCopyConstructor() && 15133 !CopyConstructor->doesThisDeclarationHaveABody() && 15134 !CopyConstructor->isDeleted()) && 15135 "DefineImplicitCopyConstructor - call it for implicit copy ctor"); 15136 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl()) 15137 return; 15138 15139 CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); 15140 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); 15141 15142 SynthesizedFunctionScope Scope(*this, CopyConstructor); 15143 15144 // The exception specification is needed because we are defining the 15145 // function. 15146 ResolveExceptionSpec(CurrentLocation, 15147 CopyConstructor->getType()->castAs<FunctionProtoType>()); 15148 MarkVTableUsed(CurrentLocation, ClassDecl); 15149 15150 // Add a context note for diagnostics produced after this point. 15151 Scope.addContextNote(CurrentLocation); 15152 15153 // C++11 [class.copy]p7: 15154 // The [definition of an implicitly declared copy constructor] is 15155 // deprecated if the class has a user-declared copy assignment operator 15156 // or a user-declared destructor. 15157 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) 15158 diagnoseDeprecatedCopyOperation(*this, CopyConstructor); 15159 15160 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) { 15161 CopyConstructor->setInvalidDecl(); 15162 } else { 15163 SourceLocation Loc = CopyConstructor->getEndLoc().isValid() 15164 ? CopyConstructor->getEndLoc() 15165 : CopyConstructor->getLocation(); 15166 Sema::CompoundScopeRAII CompoundScope(*this); 15167 CopyConstructor->setBody( 15168 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>()); 15169 CopyConstructor->markUsed(Context); 15170 } 15171 15172 if (ASTMutationListener *L = getASTMutationListener()) { 15173 L->CompletedImplicitDefinition(CopyConstructor); 15174 } 15175 } 15176 15177 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( 15178 CXXRecordDecl *ClassDecl) { 15179 assert(ClassDecl->needsImplicitMoveConstructor()); 15180 15181 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor); 15182 if (DSM.isAlreadyBeingDeclared()) 15183 return nullptr; 15184 15185 QualType ClassType = Context.getTypeDeclType(ClassDecl); 15186 15187 QualType ArgType = ClassType; 15188 LangAS AS = getDefaultCXXMethodAddrSpace(); 15189 if (AS != LangAS::Default) 15190 ArgType = Context.getAddrSpaceQualType(ClassType, AS); 15191 ArgType = Context.getRValueReferenceType(ArgType); 15192 15193 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 15194 CXXMoveConstructor, 15195 false); 15196 15197 DeclarationName Name 15198 = Context.DeclarationNames.getCXXConstructorName( 15199 Context.getCanonicalType(ClassType)); 15200 SourceLocation ClassLoc = ClassDecl->getLocation(); 15201 DeclarationNameInfo NameInfo(Name, ClassLoc); 15202 15203 // C++11 [class.copy]p11: 15204 // An implicitly-declared copy/move constructor is an inline public 15205 // member of its class. 15206 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( 15207 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 15208 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 15209 /*isInline=*/true, 15210 /*isImplicitlyDeclared=*/true, 15211 Constexpr ? ConstexprSpecKind::Constexpr 15212 : ConstexprSpecKind::Unspecified); 15213 MoveConstructor->setAccess(AS_public); 15214 MoveConstructor->setDefaulted(); 15215 15216 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType); 15217 15218 if (getLangOpts().CUDA) 15219 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor, 15220 MoveConstructor, 15221 /* ConstRHS */ false, 15222 /* Diagnose */ false); 15223 15224 // Add the parameter to the constructor. 15225 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, 15226 ClassLoc, ClassLoc, 15227 /*IdentifierInfo=*/nullptr, 15228 ArgType, /*TInfo=*/nullptr, 15229 SC_None, nullptr); 15230 MoveConstructor->setParams(FromParam); 15231 15232 MoveConstructor->setTrivial( 15233 ClassDecl->needsOverloadResolutionForMoveConstructor() 15234 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor) 15235 : ClassDecl->hasTrivialMoveConstructor()); 15236 15237 MoveConstructor->setTrivialForCall( 15238 ClassDecl->hasAttr<TrivialABIAttr>() || 15239 (ClassDecl->needsOverloadResolutionForMoveConstructor() 15240 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor, 15241 TAH_ConsiderTrivialABI) 15242 : ClassDecl->hasTrivialMoveConstructorForCall())); 15243 15244 // Note that we have declared this constructor. 15245 ++getASTContext().NumImplicitMoveConstructorsDeclared; 15246 15247 Scope *S = getScopeForContext(ClassDecl); 15248 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor); 15249 15250 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) { 15251 ClassDecl->setImplicitMoveConstructorIsDeleted(); 15252 SetDeclDeleted(MoveConstructor, ClassLoc); 15253 } 15254 15255 if (S) 15256 PushOnScopeChains(MoveConstructor, S, false); 15257 ClassDecl->addDecl(MoveConstructor); 15258 15259 return MoveConstructor; 15260 } 15261 15262 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, 15263 CXXConstructorDecl *MoveConstructor) { 15264 assert((MoveConstructor->isDefaulted() && 15265 MoveConstructor->isMoveConstructor() && 15266 !MoveConstructor->doesThisDeclarationHaveABody() && 15267 !MoveConstructor->isDeleted()) && 15268 "DefineImplicitMoveConstructor - call it for implicit move ctor"); 15269 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl()) 15270 return; 15271 15272 CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); 15273 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"); 15274 15275 SynthesizedFunctionScope Scope(*this, MoveConstructor); 15276 15277 // The exception specification is needed because we are defining the 15278 // function. 15279 ResolveExceptionSpec(CurrentLocation, 15280 MoveConstructor->getType()->castAs<FunctionProtoType>()); 15281 MarkVTableUsed(CurrentLocation, ClassDecl); 15282 15283 // Add a context note for diagnostics produced after this point. 15284 Scope.addContextNote(CurrentLocation); 15285 15286 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) { 15287 MoveConstructor->setInvalidDecl(); 15288 } else { 15289 SourceLocation Loc = MoveConstructor->getEndLoc().isValid() 15290 ? MoveConstructor->getEndLoc() 15291 : MoveConstructor->getLocation(); 15292 Sema::CompoundScopeRAII CompoundScope(*this); 15293 MoveConstructor->setBody(ActOnCompoundStmt( 15294 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>()); 15295 MoveConstructor->markUsed(Context); 15296 } 15297 15298 if (ASTMutationListener *L = getASTMutationListener()) { 15299 L->CompletedImplicitDefinition(MoveConstructor); 15300 } 15301 } 15302 15303 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { 15304 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD); 15305 } 15306 15307 void Sema::DefineImplicitLambdaToFunctionPointerConversion( 15308 SourceLocation CurrentLocation, 15309 CXXConversionDecl *Conv) { 15310 SynthesizedFunctionScope Scope(*this, Conv); 15311 assert(!Conv->getReturnType()->isUndeducedType()); 15312 15313 QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType(); 15314 CallingConv CC = 15315 ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv(); 15316 15317 CXXRecordDecl *Lambda = Conv->getParent(); 15318 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 15319 FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker(CC); 15320 15321 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) { 15322 CallOp = InstantiateFunctionDeclaration( 15323 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 15324 if (!CallOp) 15325 return; 15326 15327 Invoker = InstantiateFunctionDeclaration( 15328 Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 15329 if (!Invoker) 15330 return; 15331 } 15332 15333 if (CallOp->isInvalidDecl()) 15334 return; 15335 15336 // Mark the call operator referenced (and add to pending instantiations 15337 // if necessary). 15338 // For both the conversion and static-invoker template specializations 15339 // we construct their body's in this function, so no need to add them 15340 // to the PendingInstantiations. 15341 MarkFunctionReferenced(CurrentLocation, CallOp); 15342 15343 // Fill in the __invoke function with a dummy implementation. IR generation 15344 // will fill in the actual details. Update its type in case it contained 15345 // an 'auto'. 15346 Invoker->markUsed(Context); 15347 Invoker->setReferenced(); 15348 Invoker->setType(Conv->getReturnType()->getPointeeType()); 15349 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); 15350 15351 // Construct the body of the conversion function { return __invoke; }. 15352 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), 15353 VK_LValue, Conv->getLocation()); 15354 assert(FunctionRef && "Can't refer to __invoke function?"); 15355 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get(); 15356 Conv->setBody(CompoundStmt::Create(Context, Return, FPOptionsOverride(), 15357 Conv->getLocation(), Conv->getLocation())); 15358 Conv->markUsed(Context); 15359 Conv->setReferenced(); 15360 15361 if (ASTMutationListener *L = getASTMutationListener()) { 15362 L->CompletedImplicitDefinition(Conv); 15363 L->CompletedImplicitDefinition(Invoker); 15364 } 15365 } 15366 15367 15368 15369 void Sema::DefineImplicitLambdaToBlockPointerConversion( 15370 SourceLocation CurrentLocation, 15371 CXXConversionDecl *Conv) 15372 { 15373 assert(!Conv->getParent()->isGenericLambda()); 15374 15375 SynthesizedFunctionScope Scope(*this, Conv); 15376 15377 // Copy-initialize the lambda object as needed to capture it. 15378 Expr *This = ActOnCXXThis(CurrentLocation).get(); 15379 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get(); 15380 15381 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, 15382 Conv->getLocation(), 15383 Conv, DerefThis); 15384 15385 // If we're not under ARC, make sure we still get the _Block_copy/autorelease 15386 // behavior. Note that only the general conversion function does this 15387 // (since it's unusable otherwise); in the case where we inline the 15388 // block literal, it has block literal lifetime semantics. 15389 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) 15390 BuildBlock = ImplicitCastExpr::Create( 15391 Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject, 15392 BuildBlock.get(), nullptr, VK_PRValue, FPOptionsOverride()); 15393 15394 if (BuildBlock.isInvalid()) { 15395 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 15396 Conv->setInvalidDecl(); 15397 return; 15398 } 15399 15400 // Create the return statement that returns the block from the conversion 15401 // function. 15402 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get()); 15403 if (Return.isInvalid()) { 15404 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 15405 Conv->setInvalidDecl(); 15406 return; 15407 } 15408 15409 // Set the body of the conversion function. 15410 Stmt *ReturnS = Return.get(); 15411 Conv->setBody(CompoundStmt::Create(Context, ReturnS, FPOptionsOverride(), 15412 Conv->getLocation(), Conv->getLocation())); 15413 Conv->markUsed(Context); 15414 15415 // We're done; notify the mutation listener, if any. 15416 if (ASTMutationListener *L = getASTMutationListener()) { 15417 L->CompletedImplicitDefinition(Conv); 15418 } 15419 } 15420 15421 /// Determine whether the given list arguments contains exactly one 15422 /// "real" (non-default) argument. 15423 static bool hasOneRealArgument(MultiExprArg Args) { 15424 switch (Args.size()) { 15425 case 0: 15426 return false; 15427 15428 default: 15429 if (!Args[1]->isDefaultArgument()) 15430 return false; 15431 15432 LLVM_FALLTHROUGH; 15433 case 1: 15434 return !Args[0]->isDefaultArgument(); 15435 } 15436 15437 return false; 15438 } 15439 15440 ExprResult 15441 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15442 NamedDecl *FoundDecl, 15443 CXXConstructorDecl *Constructor, 15444 MultiExprArg ExprArgs, 15445 bool HadMultipleCandidates, 15446 bool IsListInitialization, 15447 bool IsStdInitListInitialization, 15448 bool RequiresZeroInit, 15449 unsigned ConstructKind, 15450 SourceRange ParenRange) { 15451 bool Elidable = false; 15452 15453 // C++0x [class.copy]p34: 15454 // When certain criteria are met, an implementation is allowed to 15455 // omit the copy/move construction of a class object, even if the 15456 // copy/move constructor and/or destructor for the object have 15457 // side effects. [...] 15458 // - when a temporary class object that has not been bound to a 15459 // reference (12.2) would be copied/moved to a class object 15460 // with the same cv-unqualified type, the copy/move operation 15461 // can be omitted by constructing the temporary object 15462 // directly into the target of the omitted copy/move 15463 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor && 15464 // FIXME: Converting constructors should also be accepted. 15465 // But to fix this, the logic that digs down into a CXXConstructExpr 15466 // to find the source object needs to handle it. 15467 // Right now it assumes the source object is passed directly as the 15468 // first argument. 15469 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) { 15470 Expr *SubExpr = ExprArgs[0]; 15471 // FIXME: Per above, this is also incorrect if we want to accept 15472 // converting constructors, as isTemporaryObject will 15473 // reject temporaries with different type from the 15474 // CXXRecord itself. 15475 Elidable = SubExpr->isTemporaryObject( 15476 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext())); 15477 } 15478 15479 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, 15480 FoundDecl, Constructor, 15481 Elidable, ExprArgs, HadMultipleCandidates, 15482 IsListInitialization, 15483 IsStdInitListInitialization, RequiresZeroInit, 15484 ConstructKind, ParenRange); 15485 } 15486 15487 ExprResult 15488 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15489 NamedDecl *FoundDecl, 15490 CXXConstructorDecl *Constructor, 15491 bool Elidable, 15492 MultiExprArg ExprArgs, 15493 bool HadMultipleCandidates, 15494 bool IsListInitialization, 15495 bool IsStdInitListInitialization, 15496 bool RequiresZeroInit, 15497 unsigned ConstructKind, 15498 SourceRange ParenRange) { 15499 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) { 15500 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow); 15501 if (DiagnoseUseOfDecl(Constructor, ConstructLoc)) 15502 return ExprError(); 15503 } 15504 15505 return BuildCXXConstructExpr( 15506 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs, 15507 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, 15508 RequiresZeroInit, ConstructKind, ParenRange); 15509 } 15510 15511 /// BuildCXXConstructExpr - Creates a complete call to a constructor, 15512 /// including handling of its default argument expressions. 15513 ExprResult 15514 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15515 CXXConstructorDecl *Constructor, 15516 bool Elidable, 15517 MultiExprArg ExprArgs, 15518 bool HadMultipleCandidates, 15519 bool IsListInitialization, 15520 bool IsStdInitListInitialization, 15521 bool RequiresZeroInit, 15522 unsigned ConstructKind, 15523 SourceRange ParenRange) { 15524 assert(declaresSameEntity( 15525 Constructor->getParent(), 15526 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && 15527 "given constructor for wrong type"); 15528 MarkFunctionReferenced(ConstructLoc, Constructor); 15529 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor)) 15530 return ExprError(); 15531 if (getLangOpts().SYCLIsDevice && 15532 !checkSYCLDeviceFunction(ConstructLoc, Constructor)) 15533 return ExprError(); 15534 15535 return CheckForImmediateInvocation( 15536 CXXConstructExpr::Create( 15537 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs, 15538 HadMultipleCandidates, IsListInitialization, 15539 IsStdInitListInitialization, RequiresZeroInit, 15540 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind), 15541 ParenRange), 15542 Constructor); 15543 } 15544 15545 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) { 15546 assert(Field->hasInClassInitializer()); 15547 15548 // If we already have the in-class initializer nothing needs to be done. 15549 if (Field->getInClassInitializer()) 15550 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); 15551 15552 // If we might have already tried and failed to instantiate, don't try again. 15553 if (Field->isInvalidDecl()) 15554 return ExprError(); 15555 15556 // Maybe we haven't instantiated the in-class initializer. Go check the 15557 // pattern FieldDecl to see if it has one. 15558 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent()); 15559 15560 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) { 15561 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern(); 15562 DeclContext::lookup_result Lookup = 15563 ClassPattern->lookup(Field->getDeclName()); 15564 15565 FieldDecl *Pattern = nullptr; 15566 for (auto L : Lookup) { 15567 if (isa<FieldDecl>(L)) { 15568 Pattern = cast<FieldDecl>(L); 15569 break; 15570 } 15571 } 15572 assert(Pattern && "We must have set the Pattern!"); 15573 15574 if (!Pattern->hasInClassInitializer() || 15575 InstantiateInClassInitializer(Loc, Field, Pattern, 15576 getTemplateInstantiationArgs(Field))) { 15577 // Don't diagnose this again. 15578 Field->setInvalidDecl(); 15579 return ExprError(); 15580 } 15581 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); 15582 } 15583 15584 // DR1351: 15585 // If the brace-or-equal-initializer of a non-static data member 15586 // invokes a defaulted default constructor of its class or of an 15587 // enclosing class in a potentially evaluated subexpression, the 15588 // program is ill-formed. 15589 // 15590 // This resolution is unworkable: the exception specification of the 15591 // default constructor can be needed in an unevaluated context, in 15592 // particular, in the operand of a noexcept-expression, and we can be 15593 // unable to compute an exception specification for an enclosed class. 15594 // 15595 // Any attempt to resolve the exception specification of a defaulted default 15596 // constructor before the initializer is lexically complete will ultimately 15597 // come here at which point we can diagnose it. 15598 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext(); 15599 Diag(Loc, diag::err_default_member_initializer_not_yet_parsed) 15600 << OutermostClass << Field; 15601 Diag(Field->getEndLoc(), 15602 diag::note_default_member_initializer_not_yet_parsed); 15603 // Recover by marking the field invalid, unless we're in a SFINAE context. 15604 if (!isSFINAEContext()) 15605 Field->setInvalidDecl(); 15606 return ExprError(); 15607 } 15608 15609 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { 15610 if (VD->isInvalidDecl()) return; 15611 // If initializing the variable failed, don't also diagnose problems with 15612 // the destructor, they're likely related. 15613 if (VD->getInit() && VD->getInit()->containsErrors()) 15614 return; 15615 15616 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); 15617 if (ClassDecl->isInvalidDecl()) return; 15618 if (ClassDecl->hasIrrelevantDestructor()) return; 15619 if (ClassDecl->isDependentContext()) return; 15620 15621 if (VD->isNoDestroy(getASTContext())) 15622 return; 15623 15624 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 15625 15626 // If this is an array, we'll require the destructor during initialization, so 15627 // we can skip over this. We still want to emit exit-time destructor warnings 15628 // though. 15629 if (!VD->getType()->isArrayType()) { 15630 MarkFunctionReferenced(VD->getLocation(), Destructor); 15631 CheckDestructorAccess(VD->getLocation(), Destructor, 15632 PDiag(diag::err_access_dtor_var) 15633 << VD->getDeclName() << VD->getType()); 15634 DiagnoseUseOfDecl(Destructor, VD->getLocation()); 15635 } 15636 15637 if (Destructor->isTrivial()) return; 15638 15639 // If the destructor is constexpr, check whether the variable has constant 15640 // destruction now. 15641 if (Destructor->isConstexpr()) { 15642 bool HasConstantInit = false; 15643 if (VD->getInit() && !VD->getInit()->isValueDependent()) 15644 HasConstantInit = VD->evaluateValue(); 15645 SmallVector<PartialDiagnosticAt, 8> Notes; 15646 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() && 15647 HasConstantInit) { 15648 Diag(VD->getLocation(), 15649 diag::err_constexpr_var_requires_const_destruction) << VD; 15650 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 15651 Diag(Notes[I].first, Notes[I].second); 15652 } 15653 } 15654 15655 if (!VD->hasGlobalStorage()) return; 15656 15657 // Emit warning for non-trivial dtor in global scope (a real global, 15658 // class-static, function-static). 15659 Diag(VD->getLocation(), diag::warn_exit_time_destructor); 15660 15661 // TODO: this should be re-enabled for static locals by !CXAAtExit 15662 if (!VD->isStaticLocal()) 15663 Diag(VD->getLocation(), diag::warn_global_destructor); 15664 } 15665 15666 /// Given a constructor and the set of arguments provided for the 15667 /// constructor, convert the arguments and add any required default arguments 15668 /// to form a proper call to this constructor. 15669 /// 15670 /// \returns true if an error occurred, false otherwise. 15671 bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, 15672 QualType DeclInitType, MultiExprArg ArgsPtr, 15673 SourceLocation Loc, 15674 SmallVectorImpl<Expr *> &ConvertedArgs, 15675 bool AllowExplicit, 15676 bool IsListInitialization) { 15677 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. 15678 unsigned NumArgs = ArgsPtr.size(); 15679 Expr **Args = ArgsPtr.data(); 15680 15681 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>(); 15682 unsigned NumParams = Proto->getNumParams(); 15683 15684 // If too few arguments are available, we'll fill in the rest with defaults. 15685 if (NumArgs < NumParams) 15686 ConvertedArgs.reserve(NumParams); 15687 else 15688 ConvertedArgs.reserve(NumArgs); 15689 15690 VariadicCallType CallType = 15691 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 15692 SmallVector<Expr *, 8> AllArgs; 15693 bool Invalid = GatherArgumentsForCall(Loc, Constructor, 15694 Proto, 0, 15695 llvm::makeArrayRef(Args, NumArgs), 15696 AllArgs, 15697 CallType, AllowExplicit, 15698 IsListInitialization); 15699 ConvertedArgs.append(AllArgs.begin(), AllArgs.end()); 15700 15701 DiagnoseSentinelCalls(Constructor, Loc, AllArgs); 15702 15703 CheckConstructorCall(Constructor, DeclInitType, 15704 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()), 15705 Proto, Loc); 15706 15707 return Invalid; 15708 } 15709 15710 static inline bool 15711 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, 15712 const FunctionDecl *FnDecl) { 15713 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); 15714 if (isa<NamespaceDecl>(DC)) { 15715 return SemaRef.Diag(FnDecl->getLocation(), 15716 diag::err_operator_new_delete_declared_in_namespace) 15717 << FnDecl->getDeclName(); 15718 } 15719 15720 if (isa<TranslationUnitDecl>(DC) && 15721 FnDecl->getStorageClass() == SC_Static) { 15722 return SemaRef.Diag(FnDecl->getLocation(), 15723 diag::err_operator_new_delete_declared_static) 15724 << FnDecl->getDeclName(); 15725 } 15726 15727 return false; 15728 } 15729 15730 static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef, 15731 const PointerType *PtrTy) { 15732 auto &Ctx = SemaRef.Context; 15733 Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers(); 15734 PtrQuals.removeAddressSpace(); 15735 return Ctx.getPointerType(Ctx.getCanonicalType(Ctx.getQualifiedType( 15736 PtrTy->getPointeeType().getUnqualifiedType(), PtrQuals))); 15737 } 15738 15739 static inline bool 15740 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, 15741 CanQualType ExpectedResultType, 15742 CanQualType ExpectedFirstParamType, 15743 unsigned DependentParamTypeDiag, 15744 unsigned InvalidParamTypeDiag) { 15745 QualType ResultType = 15746 FnDecl->getType()->castAs<FunctionType>()->getReturnType(); 15747 15748 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 15749 // The operator is valid on any address space for OpenCL. 15750 // Drop address space from actual and expected result types. 15751 if (const auto *PtrTy = ResultType->getAs<PointerType>()) 15752 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 15753 15754 if (auto ExpectedPtrTy = ExpectedResultType->getAs<PointerType>()) 15755 ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); 15756 } 15757 15758 // Check that the result type is what we expect. 15759 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) { 15760 // Reject even if the type is dependent; an operator delete function is 15761 // required to have a non-dependent result type. 15762 return SemaRef.Diag( 15763 FnDecl->getLocation(), 15764 ResultType->isDependentType() 15765 ? diag::err_operator_new_delete_dependent_result_type 15766 : diag::err_operator_new_delete_invalid_result_type) 15767 << FnDecl->getDeclName() << ExpectedResultType; 15768 } 15769 15770 // A function template must have at least 2 parameters. 15771 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) 15772 return SemaRef.Diag(FnDecl->getLocation(), 15773 diag::err_operator_new_delete_template_too_few_parameters) 15774 << FnDecl->getDeclName(); 15775 15776 // The function decl must have at least 1 parameter. 15777 if (FnDecl->getNumParams() == 0) 15778 return SemaRef.Diag(FnDecl->getLocation(), 15779 diag::err_operator_new_delete_too_few_parameters) 15780 << FnDecl->getDeclName(); 15781 15782 QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); 15783 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 15784 // The operator is valid on any address space for OpenCL. 15785 // Drop address space from actual and expected first parameter types. 15786 if (const auto *PtrTy = 15787 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) 15788 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 15789 15790 if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs<PointerType>()) 15791 ExpectedFirstParamType = 15792 RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); 15793 } 15794 15795 // Check that the first parameter type is what we expect. 15796 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != 15797 ExpectedFirstParamType) { 15798 // The first parameter type is not allowed to be dependent. As a tentative 15799 // DR resolution, we allow a dependent parameter type if it is the right 15800 // type anyway, to allow destroying operator delete in class templates. 15801 return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType() 15802 ? DependentParamTypeDiag 15803 : InvalidParamTypeDiag) 15804 << FnDecl->getDeclName() << ExpectedFirstParamType; 15805 } 15806 15807 return false; 15808 } 15809 15810 static bool 15811 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { 15812 // C++ [basic.stc.dynamic.allocation]p1: 15813 // A program is ill-formed if an allocation function is declared in a 15814 // namespace scope other than global scope or declared static in global 15815 // scope. 15816 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 15817 return true; 15818 15819 CanQualType SizeTy = 15820 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); 15821 15822 // C++ [basic.stc.dynamic.allocation]p1: 15823 // The return type shall be void*. The first parameter shall have type 15824 // std::size_t. 15825 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, 15826 SizeTy, 15827 diag::err_operator_new_dependent_param_type, 15828 diag::err_operator_new_param_type)) 15829 return true; 15830 15831 // C++ [basic.stc.dynamic.allocation]p1: 15832 // The first parameter shall not have an associated default argument. 15833 if (FnDecl->getParamDecl(0)->hasDefaultArg()) 15834 return SemaRef.Diag(FnDecl->getLocation(), 15835 diag::err_operator_new_default_arg) 15836 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); 15837 15838 return false; 15839 } 15840 15841 static bool 15842 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { 15843 // C++ [basic.stc.dynamic.deallocation]p1: 15844 // A program is ill-formed if deallocation functions are declared in a 15845 // namespace scope other than global scope or declared static in global 15846 // scope. 15847 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 15848 return true; 15849 15850 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl); 15851 15852 // C++ P0722: 15853 // Within a class C, the first parameter of a destroying operator delete 15854 // shall be of type C *. The first parameter of any other deallocation 15855 // function shall be of type void *. 15856 CanQualType ExpectedFirstParamType = 15857 MD && MD->isDestroyingOperatorDelete() 15858 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType( 15859 SemaRef.Context.getRecordType(MD->getParent()))) 15860 : SemaRef.Context.VoidPtrTy; 15861 15862 // C++ [basic.stc.dynamic.deallocation]p2: 15863 // Each deallocation function shall return void 15864 if (CheckOperatorNewDeleteTypes( 15865 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType, 15866 diag::err_operator_delete_dependent_param_type, 15867 diag::err_operator_delete_param_type)) 15868 return true; 15869 15870 // C++ P0722: 15871 // A destroying operator delete shall be a usual deallocation function. 15872 if (MD && !MD->getParent()->isDependentContext() && 15873 MD->isDestroyingOperatorDelete() && 15874 !SemaRef.isUsualDeallocationFunction(MD)) { 15875 SemaRef.Diag(MD->getLocation(), 15876 diag::err_destroying_operator_delete_not_usual); 15877 return true; 15878 } 15879 15880 return false; 15881 } 15882 15883 /// CheckOverloadedOperatorDeclaration - Check whether the declaration 15884 /// of this overloaded operator is well-formed. If so, returns false; 15885 /// otherwise, emits appropriate diagnostics and returns true. 15886 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { 15887 assert(FnDecl && FnDecl->isOverloadedOperator() && 15888 "Expected an overloaded operator declaration"); 15889 15890 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); 15891 15892 // C++ [over.oper]p5: 15893 // The allocation and deallocation functions, operator new, 15894 // operator new[], operator delete and operator delete[], are 15895 // described completely in 3.7.3. The attributes and restrictions 15896 // found in the rest of this subclause do not apply to them unless 15897 // explicitly stated in 3.7.3. 15898 if (Op == OO_Delete || Op == OO_Array_Delete) 15899 return CheckOperatorDeleteDeclaration(*this, FnDecl); 15900 15901 if (Op == OO_New || Op == OO_Array_New) 15902 return CheckOperatorNewDeclaration(*this, FnDecl); 15903 15904 // C++ [over.oper]p6: 15905 // An operator function shall either be a non-static member 15906 // function or be a non-member function and have at least one 15907 // parameter whose type is a class, a reference to a class, an 15908 // enumeration, or a reference to an enumeration. 15909 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { 15910 if (MethodDecl->isStatic()) 15911 return Diag(FnDecl->getLocation(), 15912 diag::err_operator_overload_static) << FnDecl->getDeclName(); 15913 } else { 15914 bool ClassOrEnumParam = false; 15915 for (auto Param : FnDecl->parameters()) { 15916 QualType ParamType = Param->getType().getNonReferenceType(); 15917 if (ParamType->isDependentType() || ParamType->isRecordType() || 15918 ParamType->isEnumeralType()) { 15919 ClassOrEnumParam = true; 15920 break; 15921 } 15922 } 15923 15924 if (!ClassOrEnumParam) 15925 return Diag(FnDecl->getLocation(), 15926 diag::err_operator_overload_needs_class_or_enum) 15927 << FnDecl->getDeclName(); 15928 } 15929 15930 // C++ [over.oper]p8: 15931 // An operator function cannot have default arguments (8.3.6), 15932 // except where explicitly stated below. 15933 // 15934 // Only the function-call operator (C++ [over.call]p1) and the subscript 15935 // operator (CWG2507) allow default arguments. 15936 if (Op != OO_Call) { 15937 ParmVarDecl *FirstDefaultedParam = nullptr; 15938 for (auto Param : FnDecl->parameters()) { 15939 if (Param->hasDefaultArg()) { 15940 FirstDefaultedParam = Param; 15941 break; 15942 } 15943 } 15944 if (FirstDefaultedParam) { 15945 if (Op == OO_Subscript) { 15946 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus2b 15947 ? diag::ext_subscript_overload 15948 : diag::error_subscript_overload) 15949 << FnDecl->getDeclName() << 1 15950 << FirstDefaultedParam->getDefaultArgRange(); 15951 } else { 15952 return Diag(FirstDefaultedParam->getLocation(), 15953 diag::err_operator_overload_default_arg) 15954 << FnDecl->getDeclName() 15955 << FirstDefaultedParam->getDefaultArgRange(); 15956 } 15957 } 15958 } 15959 15960 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { 15961 { false, false, false } 15962 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 15963 , { Unary, Binary, MemberOnly } 15964 #include "clang/Basic/OperatorKinds.def" 15965 }; 15966 15967 bool CanBeUnaryOperator = OperatorUses[Op][0]; 15968 bool CanBeBinaryOperator = OperatorUses[Op][1]; 15969 bool MustBeMemberOperator = OperatorUses[Op][2]; 15970 15971 // C++ [over.oper]p8: 15972 // [...] Operator functions cannot have more or fewer parameters 15973 // than the number required for the corresponding operator, as 15974 // described in the rest of this subclause. 15975 unsigned NumParams = FnDecl->getNumParams() 15976 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); 15977 if (Op != OO_Call && Op != OO_Subscript && 15978 ((NumParams == 1 && !CanBeUnaryOperator) || 15979 (NumParams == 2 && !CanBeBinaryOperator) || (NumParams < 1) || 15980 (NumParams > 2))) { 15981 // We have the wrong number of parameters. 15982 unsigned ErrorKind; 15983 if (CanBeUnaryOperator && CanBeBinaryOperator) { 15984 ErrorKind = 2; // 2 -> unary or binary. 15985 } else if (CanBeUnaryOperator) { 15986 ErrorKind = 0; // 0 -> unary 15987 } else { 15988 assert(CanBeBinaryOperator && 15989 "All non-call overloaded operators are unary or binary!"); 15990 ErrorKind = 1; // 1 -> binary 15991 } 15992 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) 15993 << FnDecl->getDeclName() << NumParams << ErrorKind; 15994 } 15995 15996 if (Op == OO_Subscript && NumParams != 2) { 15997 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus2b 15998 ? diag::ext_subscript_overload 15999 : diag::error_subscript_overload) 16000 << FnDecl->getDeclName() << (NumParams == 1 ? 0 : 2); 16001 } 16002 16003 // Overloaded operators other than operator() and operator[] cannot be 16004 // variadic. 16005 if (Op != OO_Call && 16006 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) { 16007 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) 16008 << FnDecl->getDeclName(); 16009 } 16010 16011 // Some operators must be non-static member functions. 16012 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { 16013 return Diag(FnDecl->getLocation(), 16014 diag::err_operator_overload_must_be_member) 16015 << FnDecl->getDeclName(); 16016 } 16017 16018 // C++ [over.inc]p1: 16019 // The user-defined function called operator++ implements the 16020 // prefix and postfix ++ operator. If this function is a member 16021 // function with no parameters, or a non-member function with one 16022 // parameter of class or enumeration type, it defines the prefix 16023 // increment operator ++ for objects of that type. If the function 16024 // is a member function with one parameter (which shall be of type 16025 // int) or a non-member function with two parameters (the second 16026 // of which shall be of type int), it defines the postfix 16027 // increment operator ++ for objects of that type. 16028 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { 16029 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); 16030 QualType ParamType = LastParam->getType(); 16031 16032 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && 16033 !ParamType->isDependentType()) 16034 return Diag(LastParam->getLocation(), 16035 diag::err_operator_overload_post_incdec_must_be_int) 16036 << LastParam->getType() << (Op == OO_MinusMinus); 16037 } 16038 16039 return false; 16040 } 16041 16042 static bool 16043 checkLiteralOperatorTemplateParameterList(Sema &SemaRef, 16044 FunctionTemplateDecl *TpDecl) { 16045 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters(); 16046 16047 // Must have one or two template parameters. 16048 if (TemplateParams->size() == 1) { 16049 NonTypeTemplateParmDecl *PmDecl = 16050 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0)); 16051 16052 // The template parameter must be a char parameter pack. 16053 if (PmDecl && PmDecl->isTemplateParameterPack() && 16054 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy)) 16055 return false; 16056 16057 // C++20 [over.literal]p5: 16058 // A string literal operator template is a literal operator template 16059 // whose template-parameter-list comprises a single non-type 16060 // template-parameter of class type. 16061 // 16062 // As a DR resolution, we also allow placeholders for deduced class 16063 // template specializations. 16064 if (SemaRef.getLangOpts().CPlusPlus20 && PmDecl && 16065 !PmDecl->isTemplateParameterPack() && 16066 (PmDecl->getType()->isRecordType() || 16067 PmDecl->getType()->getAs<DeducedTemplateSpecializationType>())) 16068 return false; 16069 } else if (TemplateParams->size() == 2) { 16070 TemplateTypeParmDecl *PmType = 16071 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0)); 16072 NonTypeTemplateParmDecl *PmArgs = 16073 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1)); 16074 16075 // The second template parameter must be a parameter pack with the 16076 // first template parameter as its type. 16077 if (PmType && PmArgs && !PmType->isTemplateParameterPack() && 16078 PmArgs->isTemplateParameterPack()) { 16079 const TemplateTypeParmType *TArgs = 16080 PmArgs->getType()->getAs<TemplateTypeParmType>(); 16081 if (TArgs && TArgs->getDepth() == PmType->getDepth() && 16082 TArgs->getIndex() == PmType->getIndex()) { 16083 if (!SemaRef.inTemplateInstantiation()) 16084 SemaRef.Diag(TpDecl->getLocation(), 16085 diag::ext_string_literal_operator_template); 16086 return false; 16087 } 16088 } 16089 } 16090 16091 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(), 16092 diag::err_literal_operator_template) 16093 << TpDecl->getTemplateParameters()->getSourceRange(); 16094 return true; 16095 } 16096 16097 /// CheckLiteralOperatorDeclaration - Check whether the declaration 16098 /// of this literal operator function is well-formed. If so, returns 16099 /// false; otherwise, emits appropriate diagnostics and returns true. 16100 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { 16101 if (isa<CXXMethodDecl>(FnDecl)) { 16102 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) 16103 << FnDecl->getDeclName(); 16104 return true; 16105 } 16106 16107 if (FnDecl->isExternC()) { 16108 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); 16109 if (const LinkageSpecDecl *LSD = 16110 FnDecl->getDeclContext()->getExternCContext()) 16111 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 16112 return true; 16113 } 16114 16115 // This might be the definition of a literal operator template. 16116 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); 16117 16118 // This might be a specialization of a literal operator template. 16119 if (!TpDecl) 16120 TpDecl = FnDecl->getPrimaryTemplate(); 16121 16122 // template <char...> type operator "" name() and 16123 // template <class T, T...> type operator "" name() are the only valid 16124 // template signatures, and the only valid signatures with no parameters. 16125 // 16126 // C++20 also allows template <SomeClass T> type operator "" name(). 16127 if (TpDecl) { 16128 if (FnDecl->param_size() != 0) { 16129 Diag(FnDecl->getLocation(), 16130 diag::err_literal_operator_template_with_params); 16131 return true; 16132 } 16133 16134 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl)) 16135 return true; 16136 16137 } else if (FnDecl->param_size() == 1) { 16138 const ParmVarDecl *Param = FnDecl->getParamDecl(0); 16139 16140 QualType ParamType = Param->getType().getUnqualifiedType(); 16141 16142 // Only unsigned long long int, long double, any character type, and const 16143 // char * are allowed as the only parameters. 16144 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) || 16145 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) || 16146 Context.hasSameType(ParamType, Context.CharTy) || 16147 Context.hasSameType(ParamType, Context.WideCharTy) || 16148 Context.hasSameType(ParamType, Context.Char8Ty) || 16149 Context.hasSameType(ParamType, Context.Char16Ty) || 16150 Context.hasSameType(ParamType, Context.Char32Ty)) { 16151 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) { 16152 QualType InnerType = Ptr->getPointeeType(); 16153 16154 // Pointer parameter must be a const char *. 16155 if (!(Context.hasSameType(InnerType.getUnqualifiedType(), 16156 Context.CharTy) && 16157 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) { 16158 Diag(Param->getSourceRange().getBegin(), 16159 diag::err_literal_operator_param) 16160 << ParamType << "'const char *'" << Param->getSourceRange(); 16161 return true; 16162 } 16163 16164 } else if (ParamType->isRealFloatingType()) { 16165 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 16166 << ParamType << Context.LongDoubleTy << Param->getSourceRange(); 16167 return true; 16168 16169 } else if (ParamType->isIntegerType()) { 16170 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 16171 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange(); 16172 return true; 16173 16174 } else { 16175 Diag(Param->getSourceRange().getBegin(), 16176 diag::err_literal_operator_invalid_param) 16177 << ParamType << Param->getSourceRange(); 16178 return true; 16179 } 16180 16181 } else if (FnDecl->param_size() == 2) { 16182 FunctionDecl::param_iterator Param = FnDecl->param_begin(); 16183 16184 // First, verify that the first parameter is correct. 16185 16186 QualType FirstParamType = (*Param)->getType().getUnqualifiedType(); 16187 16188 // Two parameter function must have a pointer to const as a 16189 // first parameter; let's strip those qualifiers. 16190 const PointerType *PT = FirstParamType->getAs<PointerType>(); 16191 16192 if (!PT) { 16193 Diag((*Param)->getSourceRange().getBegin(), 16194 diag::err_literal_operator_param) 16195 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16196 return true; 16197 } 16198 16199 QualType PointeeType = PT->getPointeeType(); 16200 // First parameter must be const 16201 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) { 16202 Diag((*Param)->getSourceRange().getBegin(), 16203 diag::err_literal_operator_param) 16204 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16205 return true; 16206 } 16207 16208 QualType InnerType = PointeeType.getUnqualifiedType(); 16209 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and 16210 // const char32_t* are allowed as the first parameter to a two-parameter 16211 // function 16212 if (!(Context.hasSameType(InnerType, Context.CharTy) || 16213 Context.hasSameType(InnerType, Context.WideCharTy) || 16214 Context.hasSameType(InnerType, Context.Char8Ty) || 16215 Context.hasSameType(InnerType, Context.Char16Ty) || 16216 Context.hasSameType(InnerType, Context.Char32Ty))) { 16217 Diag((*Param)->getSourceRange().getBegin(), 16218 diag::err_literal_operator_param) 16219 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16220 return true; 16221 } 16222 16223 // Move on to the second and final parameter. 16224 ++Param; 16225 16226 // The second parameter must be a std::size_t. 16227 QualType SecondParamType = (*Param)->getType().getUnqualifiedType(); 16228 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) { 16229 Diag((*Param)->getSourceRange().getBegin(), 16230 diag::err_literal_operator_param) 16231 << SecondParamType << Context.getSizeType() 16232 << (*Param)->getSourceRange(); 16233 return true; 16234 } 16235 } else { 16236 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count); 16237 return true; 16238 } 16239 16240 // Parameters are good. 16241 16242 // A parameter-declaration-clause containing a default argument is not 16243 // equivalent to any of the permitted forms. 16244 for (auto Param : FnDecl->parameters()) { 16245 if (Param->hasDefaultArg()) { 16246 Diag(Param->getDefaultArgRange().getBegin(), 16247 diag::err_literal_operator_default_argument) 16248 << Param->getDefaultArgRange(); 16249 break; 16250 } 16251 } 16252 16253 StringRef LiteralName 16254 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName(); 16255 if (LiteralName[0] != '_' && 16256 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) { 16257 // C++11 [usrlit.suffix]p1: 16258 // Literal suffix identifiers that do not start with an underscore 16259 // are reserved for future standardization. 16260 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) 16261 << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName); 16262 } 16263 16264 return false; 16265 } 16266 16267 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ 16268 /// linkage specification, including the language and (if present) 16269 /// the '{'. ExternLoc is the location of the 'extern', Lang is the 16270 /// language string literal. LBraceLoc, if valid, provides the location of 16271 /// the '{' brace. Otherwise, this linkage specification does not 16272 /// have any braces. 16273 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, 16274 Expr *LangStr, 16275 SourceLocation LBraceLoc) { 16276 StringLiteral *Lit = cast<StringLiteral>(LangStr); 16277 if (!Lit->isOrdinary()) { 16278 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii) 16279 << LangStr->getSourceRange(); 16280 return nullptr; 16281 } 16282 16283 StringRef Lang = Lit->getString(); 16284 LinkageSpecDecl::LanguageIDs Language; 16285 if (Lang == "C") 16286 Language = LinkageSpecDecl::lang_c; 16287 else if (Lang == "C++") 16288 Language = LinkageSpecDecl::lang_cxx; 16289 else { 16290 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) 16291 << LangStr->getSourceRange(); 16292 return nullptr; 16293 } 16294 16295 // FIXME: Add all the various semantics of linkage specifications 16296 16297 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc, 16298 LangStr->getExprLoc(), Language, 16299 LBraceLoc.isValid()); 16300 16301 /// C++ [module.unit]p7.2.3 16302 /// - Otherwise, if the declaration 16303 /// - ... 16304 /// - ... 16305 /// - appears within a linkage-specification, 16306 /// it is attached to the global module. 16307 /// 16308 /// If the declaration is already in global module fragment, we don't 16309 /// need to attach it again. 16310 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview()) { 16311 Module *GlobalModule = 16312 PushGlobalModuleFragment(ExternLoc, /*IsImplicit=*/true); 16313 /// According to [module.reach]p3.2, 16314 /// The declaration in global module fragment is reachable if it is not 16315 /// discarded. And the discarded declaration should be deleted. So it 16316 /// doesn't matter mark the declaration in global module fragment as 16317 /// reachable here. 16318 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 16319 D->setLocalOwningModule(GlobalModule); 16320 } 16321 16322 CurContext->addDecl(D); 16323 PushDeclContext(S, D); 16324 return D; 16325 } 16326 16327 /// ActOnFinishLinkageSpecification - Complete the definition of 16328 /// the C++ linkage specification LinkageSpec. If RBraceLoc is 16329 /// valid, it's the position of the closing '}' brace in a linkage 16330 /// specification that uses braces. 16331 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, 16332 Decl *LinkageSpec, 16333 SourceLocation RBraceLoc) { 16334 if (RBraceLoc.isValid()) { 16335 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec); 16336 LSDecl->setRBraceLoc(RBraceLoc); 16337 } 16338 16339 // If the current module doesn't has Parent, it implies that the 16340 // LinkageSpec isn't in the module created by itself. So we don't 16341 // need to pop it. 16342 if (getLangOpts().CPlusPlusModules && getCurrentModule() && 16343 getCurrentModule()->isGlobalModule() && getCurrentModule()->Parent) 16344 PopGlobalModuleFragment(); 16345 16346 PopDeclContext(); 16347 return LinkageSpec; 16348 } 16349 16350 Decl *Sema::ActOnEmptyDeclaration(Scope *S, 16351 const ParsedAttributesView &AttrList, 16352 SourceLocation SemiLoc) { 16353 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc); 16354 // Attribute declarations appertain to empty declaration so we handle 16355 // them here. 16356 ProcessDeclAttributeList(S, ED, AttrList); 16357 16358 CurContext->addDecl(ED); 16359 return ED; 16360 } 16361 16362 /// Perform semantic analysis for the variable declaration that 16363 /// occurs within a C++ catch clause, returning the newly-created 16364 /// variable. 16365 VarDecl *Sema::BuildExceptionDeclaration(Scope *S, 16366 TypeSourceInfo *TInfo, 16367 SourceLocation StartLoc, 16368 SourceLocation Loc, 16369 IdentifierInfo *Name) { 16370 bool Invalid = false; 16371 QualType ExDeclType = TInfo->getType(); 16372 16373 // Arrays and functions decay. 16374 if (ExDeclType->isArrayType()) 16375 ExDeclType = Context.getArrayDecayedType(ExDeclType); 16376 else if (ExDeclType->isFunctionType()) 16377 ExDeclType = Context.getPointerType(ExDeclType); 16378 16379 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. 16380 // The exception-declaration shall not denote a pointer or reference to an 16381 // incomplete type, other than [cv] void*. 16382 // N2844 forbids rvalue references. 16383 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { 16384 Diag(Loc, diag::err_catch_rvalue_ref); 16385 Invalid = true; 16386 } 16387 16388 if (ExDeclType->isVariablyModifiedType()) { 16389 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType; 16390 Invalid = true; 16391 } 16392 16393 QualType BaseType = ExDeclType; 16394 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference 16395 unsigned DK = diag::err_catch_incomplete; 16396 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 16397 BaseType = Ptr->getPointeeType(); 16398 Mode = 1; 16399 DK = diag::err_catch_incomplete_ptr; 16400 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { 16401 // For the purpose of error recovery, we treat rvalue refs like lvalue refs. 16402 BaseType = Ref->getPointeeType(); 16403 Mode = 2; 16404 DK = diag::err_catch_incomplete_ref; 16405 } 16406 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && 16407 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) 16408 Invalid = true; 16409 16410 if (!Invalid && Mode != 1 && BaseType->isSizelessType()) { 16411 Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType; 16412 Invalid = true; 16413 } 16414 16415 if (!Invalid && !ExDeclType->isDependentType() && 16416 RequireNonAbstractType(Loc, ExDeclType, 16417 diag::err_abstract_type_in_decl, 16418 AbstractVariableType)) 16419 Invalid = true; 16420 16421 // Only the non-fragile NeXT runtime currently supports C++ catches 16422 // of ObjC types, and no runtime supports catching ObjC types by value. 16423 if (!Invalid && getLangOpts().ObjC) { 16424 QualType T = ExDeclType; 16425 if (const ReferenceType *RT = T->getAs<ReferenceType>()) 16426 T = RT->getPointeeType(); 16427 16428 if (T->isObjCObjectType()) { 16429 Diag(Loc, diag::err_objc_object_catch); 16430 Invalid = true; 16431 } else if (T->isObjCObjectPointerType()) { 16432 // FIXME: should this be a test for macosx-fragile specifically? 16433 if (getLangOpts().ObjCRuntime.isFragile()) 16434 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); 16435 } 16436 } 16437 16438 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, 16439 ExDeclType, TInfo, SC_None); 16440 ExDecl->setExceptionVariable(true); 16441 16442 // In ARC, infer 'retaining' for variables of retainable type. 16443 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl)) 16444 Invalid = true; 16445 16446 if (!Invalid && !ExDeclType->isDependentType()) { 16447 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { 16448 // Insulate this from anything else we might currently be parsing. 16449 EnterExpressionEvaluationContext scope( 16450 *this, ExpressionEvaluationContext::PotentiallyEvaluated); 16451 16452 // C++ [except.handle]p16: 16453 // The object declared in an exception-declaration or, if the 16454 // exception-declaration does not specify a name, a temporary (12.2) is 16455 // copy-initialized (8.5) from the exception object. [...] 16456 // The object is destroyed when the handler exits, after the destruction 16457 // of any automatic objects initialized within the handler. 16458 // 16459 // We just pretend to initialize the object with itself, then make sure 16460 // it can be destroyed later. 16461 QualType initType = Context.getExceptionObjectType(ExDeclType); 16462 16463 InitializedEntity entity = 16464 InitializedEntity::InitializeVariable(ExDecl); 16465 InitializationKind initKind = 16466 InitializationKind::CreateCopy(Loc, SourceLocation()); 16467 16468 Expr *opaqueValue = 16469 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); 16470 InitializationSequence sequence(*this, entity, initKind, opaqueValue); 16471 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue); 16472 if (result.isInvalid()) 16473 Invalid = true; 16474 else { 16475 // If the constructor used was non-trivial, set this as the 16476 // "initializer". 16477 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>(); 16478 if (!construct->getConstructor()->isTrivial()) { 16479 Expr *init = MaybeCreateExprWithCleanups(construct); 16480 ExDecl->setInit(init); 16481 } 16482 16483 // And make sure it's destructable. 16484 FinalizeVarWithDestructor(ExDecl, recordType); 16485 } 16486 } 16487 } 16488 16489 if (Invalid) 16490 ExDecl->setInvalidDecl(); 16491 16492 return ExDecl; 16493 } 16494 16495 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch 16496 /// handler. 16497 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { 16498 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16499 bool Invalid = D.isInvalidType(); 16500 16501 // Check for unexpanded parameter packs. 16502 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 16503 UPPC_ExceptionType)) { 16504 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 16505 D.getIdentifierLoc()); 16506 Invalid = true; 16507 } 16508 16509 IdentifierInfo *II = D.getIdentifier(); 16510 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), 16511 LookupOrdinaryName, 16512 ForVisibleRedeclaration)) { 16513 // The scope should be freshly made just for us. There is just no way 16514 // it contains any previous declaration, except for function parameters in 16515 // a function-try-block's catch statement. 16516 assert(!S->isDeclScope(PrevDecl)); 16517 if (isDeclInScope(PrevDecl, CurContext, S)) { 16518 Diag(D.getIdentifierLoc(), diag::err_redefinition) 16519 << D.getIdentifier(); 16520 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 16521 Invalid = true; 16522 } else if (PrevDecl->isTemplateParameter()) 16523 // Maybe we will complain about the shadowed template parameter. 16524 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 16525 } 16526 16527 if (D.getCXXScopeSpec().isSet() && !Invalid) { 16528 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) 16529 << D.getCXXScopeSpec().getRange(); 16530 Invalid = true; 16531 } 16532 16533 VarDecl *ExDecl = BuildExceptionDeclaration( 16534 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier()); 16535 if (Invalid) 16536 ExDecl->setInvalidDecl(); 16537 16538 // Add the exception declaration into this scope. 16539 if (II) 16540 PushOnScopeChains(ExDecl, S); 16541 else 16542 CurContext->addDecl(ExDecl); 16543 16544 ProcessDeclAttributes(S, ExDecl, D); 16545 return ExDecl; 16546 } 16547 16548 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, 16549 Expr *AssertExpr, 16550 Expr *AssertMessageExpr, 16551 SourceLocation RParenLoc) { 16552 StringLiteral *AssertMessage = 16553 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr; 16554 16555 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) 16556 return nullptr; 16557 16558 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, 16559 AssertMessage, RParenLoc, false); 16560 } 16561 16562 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, 16563 Expr *AssertExpr, 16564 StringLiteral *AssertMessage, 16565 SourceLocation RParenLoc, 16566 bool Failed) { 16567 assert(AssertExpr != nullptr && "Expected non-null condition"); 16568 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && 16569 !Failed) { 16570 // In a static_assert-declaration, the constant-expression shall be a 16571 // constant expression that can be contextually converted to bool. 16572 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr); 16573 if (Converted.isInvalid()) 16574 Failed = true; 16575 16576 ExprResult FullAssertExpr = 16577 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc, 16578 /*DiscardedValue*/ false, 16579 /*IsConstexpr*/ true); 16580 if (FullAssertExpr.isInvalid()) 16581 Failed = true; 16582 else 16583 AssertExpr = FullAssertExpr.get(); 16584 16585 llvm::APSInt Cond; 16586 if (!Failed && VerifyIntegerConstantExpression( 16587 AssertExpr, &Cond, 16588 diag::err_static_assert_expression_is_not_constant) 16589 .isInvalid()) 16590 Failed = true; 16591 16592 if (!Failed && !Cond) { 16593 SmallString<256> MsgBuffer; 16594 llvm::raw_svector_ostream Msg(MsgBuffer); 16595 if (AssertMessage) { 16596 const auto *MsgStr = cast<StringLiteral>(AssertMessage); 16597 if (MsgStr->isOrdinary()) 16598 Msg << MsgStr->getString(); 16599 else 16600 MsgStr->printPretty(Msg, nullptr, getPrintingPolicy()); 16601 } 16602 16603 Expr *InnerCond = nullptr; 16604 std::string InnerCondDescription; 16605 std::tie(InnerCond, InnerCondDescription) = 16606 findFailedBooleanCondition(Converted.get()); 16607 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) { 16608 // Drill down into concept specialization expressions to see why they 16609 // weren't satisfied. 16610 Diag(StaticAssertLoc, diag::err_static_assert_failed) 16611 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); 16612 ConstraintSatisfaction Satisfaction; 16613 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction)) 16614 DiagnoseUnsatisfiedConstraint(Satisfaction); 16615 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond) 16616 && !isa<IntegerLiteral>(InnerCond)) { 16617 Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed) 16618 << InnerCondDescription << !AssertMessage 16619 << Msg.str() << InnerCond->getSourceRange(); 16620 } else { 16621 Diag(StaticAssertLoc, diag::err_static_assert_failed) 16622 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); 16623 } 16624 Failed = true; 16625 } 16626 } else { 16627 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc, 16628 /*DiscardedValue*/false, 16629 /*IsConstexpr*/true); 16630 if (FullAssertExpr.isInvalid()) 16631 Failed = true; 16632 else 16633 AssertExpr = FullAssertExpr.get(); 16634 } 16635 16636 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, 16637 AssertExpr, AssertMessage, RParenLoc, 16638 Failed); 16639 16640 CurContext->addDecl(Decl); 16641 return Decl; 16642 } 16643 16644 /// Perform semantic analysis of the given friend type declaration. 16645 /// 16646 /// \returns A friend declaration that. 16647 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart, 16648 SourceLocation FriendLoc, 16649 TypeSourceInfo *TSInfo) { 16650 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration"); 16651 16652 QualType T = TSInfo->getType(); 16653 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange(); 16654 16655 // C++03 [class.friend]p2: 16656 // An elaborated-type-specifier shall be used in a friend declaration 16657 // for a class.* 16658 // 16659 // * The class-key of the elaborated-type-specifier is required. 16660 if (!CodeSynthesisContexts.empty()) { 16661 // Do not complain about the form of friend template types during any kind 16662 // of code synthesis. For template instantiation, we will have complained 16663 // when the template was defined. 16664 } else { 16665 if (!T->isElaboratedTypeSpecifier()) { 16666 // If we evaluated the type to a record type, suggest putting 16667 // a tag in front. 16668 if (const RecordType *RT = T->getAs<RecordType>()) { 16669 RecordDecl *RD = RT->getDecl(); 16670 16671 SmallString<16> InsertionText(" "); 16672 InsertionText += RD->getKindName(); 16673 16674 Diag(TypeRange.getBegin(), 16675 getLangOpts().CPlusPlus11 ? 16676 diag::warn_cxx98_compat_unelaborated_friend_type : 16677 diag::ext_unelaborated_friend_type) 16678 << (unsigned) RD->getTagKind() 16679 << T 16680 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc), 16681 InsertionText); 16682 } else { 16683 Diag(FriendLoc, 16684 getLangOpts().CPlusPlus11 ? 16685 diag::warn_cxx98_compat_nonclass_type_friend : 16686 diag::ext_nonclass_type_friend) 16687 << T 16688 << TypeRange; 16689 } 16690 } else if (T->getAs<EnumType>()) { 16691 Diag(FriendLoc, 16692 getLangOpts().CPlusPlus11 ? 16693 diag::warn_cxx98_compat_enum_friend : 16694 diag::ext_enum_friend) 16695 << T 16696 << TypeRange; 16697 } 16698 16699 // C++11 [class.friend]p3: 16700 // A friend declaration that does not declare a function shall have one 16701 // of the following forms: 16702 // friend elaborated-type-specifier ; 16703 // friend simple-type-specifier ; 16704 // friend typename-specifier ; 16705 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc) 16706 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T; 16707 } 16708 16709 // If the type specifier in a friend declaration designates a (possibly 16710 // cv-qualified) class type, that class is declared as a friend; otherwise, 16711 // the friend declaration is ignored. 16712 return FriendDecl::Create(Context, CurContext, 16713 TSInfo->getTypeLoc().getBeginLoc(), TSInfo, 16714 FriendLoc); 16715 } 16716 16717 /// Handle a friend tag declaration where the scope specifier was 16718 /// templated. 16719 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, 16720 unsigned TagSpec, SourceLocation TagLoc, 16721 CXXScopeSpec &SS, IdentifierInfo *Name, 16722 SourceLocation NameLoc, 16723 const ParsedAttributesView &Attr, 16724 MultiTemplateParamsArg TempParamLists) { 16725 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 16726 16727 bool IsMemberSpecialization = false; 16728 bool Invalid = false; 16729 16730 if (TemplateParameterList *TemplateParams = 16731 MatchTemplateParametersToScopeSpecifier( 16732 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true, 16733 IsMemberSpecialization, Invalid)) { 16734 if (TemplateParams->size() > 0) { 16735 // This is a declaration of a class template. 16736 if (Invalid) 16737 return nullptr; 16738 16739 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name, 16740 NameLoc, Attr, TemplateParams, AS_public, 16741 /*ModulePrivateLoc=*/SourceLocation(), 16742 FriendLoc, TempParamLists.size() - 1, 16743 TempParamLists.data()).get(); 16744 } else { 16745 // The "template<>" header is extraneous. 16746 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 16747 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 16748 IsMemberSpecialization = true; 16749 } 16750 } 16751 16752 if (Invalid) return nullptr; 16753 16754 bool isAllExplicitSpecializations = true; 16755 for (unsigned I = TempParamLists.size(); I-- > 0; ) { 16756 if (TempParamLists[I]->size()) { 16757 isAllExplicitSpecializations = false; 16758 break; 16759 } 16760 } 16761 16762 // FIXME: don't ignore attributes. 16763 16764 // If it's explicit specializations all the way down, just forget 16765 // about the template header and build an appropriate non-templated 16766 // friend. TODO: for source fidelity, remember the headers. 16767 if (isAllExplicitSpecializations) { 16768 if (SS.isEmpty()) { 16769 bool Owned = false; 16770 bool IsDependent = false; 16771 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc, 16772 Attr, AS_public, 16773 /*ModulePrivateLoc=*/SourceLocation(), 16774 MultiTemplateParamsArg(), Owned, IsDependent, 16775 /*ScopedEnumKWLoc=*/SourceLocation(), 16776 /*ScopedEnumUsesClassTag=*/false, 16777 /*UnderlyingType=*/TypeResult(), 16778 /*IsTypeSpecifier=*/false, 16779 /*IsTemplateParamOrArg=*/false); 16780 } 16781 16782 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 16783 ElaboratedTypeKeyword Keyword 16784 = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 16785 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, 16786 *Name, NameLoc); 16787 if (T.isNull()) 16788 return nullptr; 16789 16790 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 16791 if (isa<DependentNameType>(T)) { 16792 DependentNameTypeLoc TL = 16793 TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 16794 TL.setElaboratedKeywordLoc(TagLoc); 16795 TL.setQualifierLoc(QualifierLoc); 16796 TL.setNameLoc(NameLoc); 16797 } else { 16798 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 16799 TL.setElaboratedKeywordLoc(TagLoc); 16800 TL.setQualifierLoc(QualifierLoc); 16801 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc); 16802 } 16803 16804 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 16805 TSI, FriendLoc, TempParamLists); 16806 Friend->setAccess(AS_public); 16807 CurContext->addDecl(Friend); 16808 return Friend; 16809 } 16810 16811 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?"); 16812 16813 16814 16815 // Handle the case of a templated-scope friend class. e.g. 16816 // template <class T> class A<T>::B; 16817 // FIXME: we don't support these right now. 16818 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) 16819 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext); 16820 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 16821 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); 16822 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 16823 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 16824 TL.setElaboratedKeywordLoc(TagLoc); 16825 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 16826 TL.setNameLoc(NameLoc); 16827 16828 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 16829 TSI, FriendLoc, TempParamLists); 16830 Friend->setAccess(AS_public); 16831 Friend->setUnsupportedFriend(true); 16832 CurContext->addDecl(Friend); 16833 return Friend; 16834 } 16835 16836 /// Handle a friend type declaration. This works in tandem with 16837 /// ActOnTag. 16838 /// 16839 /// Notes on friend class templates: 16840 /// 16841 /// We generally treat friend class declarations as if they were 16842 /// declaring a class. So, for example, the elaborated type specifier 16843 /// in a friend declaration is required to obey the restrictions of a 16844 /// class-head (i.e. no typedefs in the scope chain), template 16845 /// parameters are required to match up with simple template-ids, &c. 16846 /// However, unlike when declaring a template specialization, it's 16847 /// okay to refer to a template specialization without an empty 16848 /// template parameter declaration, e.g. 16849 /// friend class A<T>::B<unsigned>; 16850 /// We permit this as a special case; if there are any template 16851 /// parameters present at all, require proper matching, i.e. 16852 /// template <> template \<class T> friend class A<int>::B; 16853 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, 16854 MultiTemplateParamsArg TempParams) { 16855 SourceLocation Loc = DS.getBeginLoc(); 16856 16857 assert(DS.isFriendSpecified()); 16858 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 16859 16860 // C++ [class.friend]p3: 16861 // A friend declaration that does not declare a function shall have one of 16862 // the following forms: 16863 // friend elaborated-type-specifier ; 16864 // friend simple-type-specifier ; 16865 // friend typename-specifier ; 16866 // 16867 // Any declaration with a type qualifier does not have that form. (It's 16868 // legal to specify a qualified type as a friend, you just can't write the 16869 // keywords.) 16870 if (DS.getTypeQualifiers()) { 16871 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 16872 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const"; 16873 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 16874 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile"; 16875 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 16876 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict"; 16877 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 16878 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic"; 16879 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 16880 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned"; 16881 } 16882 16883 // Try to convert the decl specifier to a type. This works for 16884 // friend templates because ActOnTag never produces a ClassTemplateDecl 16885 // for a TUK_Friend. 16886 Declarator TheDeclarator(DS, ParsedAttributesView::none(), 16887 DeclaratorContext::Member); 16888 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); 16889 QualType T = TSI->getType(); 16890 if (TheDeclarator.isInvalidType()) 16891 return nullptr; 16892 16893 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) 16894 return nullptr; 16895 16896 // This is definitely an error in C++98. It's probably meant to 16897 // be forbidden in C++0x, too, but the specification is just 16898 // poorly written. 16899 // 16900 // The problem is with declarations like the following: 16901 // template <T> friend A<T>::foo; 16902 // where deciding whether a class C is a friend or not now hinges 16903 // on whether there exists an instantiation of A that causes 16904 // 'foo' to equal C. There are restrictions on class-heads 16905 // (which we declare (by fiat) elaborated friend declarations to 16906 // be) that makes this tractable. 16907 // 16908 // FIXME: handle "template <> friend class A<T>;", which 16909 // is possibly well-formed? Who even knows? 16910 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { 16911 Diag(Loc, diag::err_tagless_friend_type_template) 16912 << DS.getSourceRange(); 16913 return nullptr; 16914 } 16915 16916 // C++98 [class.friend]p1: A friend of a class is a function 16917 // or class that is not a member of the class . . . 16918 // This is fixed in DR77, which just barely didn't make the C++03 16919 // deadline. It's also a very silly restriction that seriously 16920 // affects inner classes and which nobody else seems to implement; 16921 // thus we never diagnose it, not even in -pedantic. 16922 // 16923 // But note that we could warn about it: it's always useless to 16924 // friend one of your own members (it's not, however, worthless to 16925 // friend a member of an arbitrary specialization of your template). 16926 16927 Decl *D; 16928 if (!TempParams.empty()) 16929 D = FriendTemplateDecl::Create(Context, CurContext, Loc, 16930 TempParams, 16931 TSI, 16932 DS.getFriendSpecLoc()); 16933 else 16934 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI); 16935 16936 if (!D) 16937 return nullptr; 16938 16939 D->setAccess(AS_public); 16940 CurContext->addDecl(D); 16941 16942 return D; 16943 } 16944 16945 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, 16946 MultiTemplateParamsArg TemplateParams) { 16947 const DeclSpec &DS = D.getDeclSpec(); 16948 16949 assert(DS.isFriendSpecified()); 16950 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 16951 16952 SourceLocation Loc = D.getIdentifierLoc(); 16953 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16954 16955 // C++ [class.friend]p1 16956 // A friend of a class is a function or class.... 16957 // Note that this sees through typedefs, which is intended. 16958 // It *doesn't* see through dependent types, which is correct 16959 // according to [temp.arg.type]p3: 16960 // If a declaration acquires a function type through a 16961 // type dependent on a template-parameter and this causes 16962 // a declaration that does not use the syntactic form of a 16963 // function declarator to have a function type, the program 16964 // is ill-formed. 16965 if (!TInfo->getType()->isFunctionType()) { 16966 Diag(Loc, diag::err_unexpected_friend); 16967 16968 // It might be worthwhile to try to recover by creating an 16969 // appropriate declaration. 16970 return nullptr; 16971 } 16972 16973 // C++ [namespace.memdef]p3 16974 // - If a friend declaration in a non-local class first declares a 16975 // class or function, the friend class or function is a member 16976 // of the innermost enclosing namespace. 16977 // - The name of the friend is not found by simple name lookup 16978 // until a matching declaration is provided in that namespace 16979 // scope (either before or after the class declaration granting 16980 // friendship). 16981 // - If a friend function is called, its name may be found by the 16982 // name lookup that considers functions from namespaces and 16983 // classes associated with the types of the function arguments. 16984 // - When looking for a prior declaration of a class or a function 16985 // declared as a friend, scopes outside the innermost enclosing 16986 // namespace scope are not considered. 16987 16988 CXXScopeSpec &SS = D.getCXXScopeSpec(); 16989 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 16990 assert(NameInfo.getName()); 16991 16992 // Check for unexpanded parameter packs. 16993 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || 16994 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || 16995 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) 16996 return nullptr; 16997 16998 // The context we found the declaration in, or in which we should 16999 // create the declaration. 17000 DeclContext *DC; 17001 Scope *DCScope = S; 17002 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 17003 ForExternalRedeclaration); 17004 17005 // There are five cases here. 17006 // - There's no scope specifier and we're in a local class. Only look 17007 // for functions declared in the immediately-enclosing block scope. 17008 // We recover from invalid scope qualifiers as if they just weren't there. 17009 FunctionDecl *FunctionContainingLocalClass = nullptr; 17010 if ((SS.isInvalid() || !SS.isSet()) && 17011 (FunctionContainingLocalClass = 17012 cast<CXXRecordDecl>(CurContext)->isLocalClass())) { 17013 // C++11 [class.friend]p11: 17014 // If a friend declaration appears in a local class and the name 17015 // specified is an unqualified name, a prior declaration is 17016 // looked up without considering scopes that are outside the 17017 // innermost enclosing non-class scope. For a friend function 17018 // declaration, if there is no prior declaration, the program is 17019 // ill-formed. 17020 17021 // Find the innermost enclosing non-class scope. This is the block 17022 // scope containing the local class definition (or for a nested class, 17023 // the outer local class). 17024 DCScope = S->getFnParent(); 17025 17026 // Look up the function name in the scope. 17027 Previous.clear(LookupLocalFriendName); 17028 LookupName(Previous, S, /*AllowBuiltinCreation*/false); 17029 17030 if (!Previous.empty()) { 17031 // All possible previous declarations must have the same context: 17032 // either they were declared at block scope or they are members of 17033 // one of the enclosing local classes. 17034 DC = Previous.getRepresentativeDecl()->getDeclContext(); 17035 } else { 17036 // This is ill-formed, but provide the context that we would have 17037 // declared the function in, if we were permitted to, for error recovery. 17038 DC = FunctionContainingLocalClass; 17039 } 17040 adjustContextForLocalExternDecl(DC); 17041 17042 // C++ [class.friend]p6: 17043 // A function can be defined in a friend declaration of a class if and 17044 // only if the class is a non-local class (9.8), the function name is 17045 // unqualified, and the function has namespace scope. 17046 if (D.isFunctionDefinition()) { 17047 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); 17048 } 17049 17050 // - There's no scope specifier, in which case we just go to the 17051 // appropriate scope and look for a function or function template 17052 // there as appropriate. 17053 } else if (SS.isInvalid() || !SS.isSet()) { 17054 // C++11 [namespace.memdef]p3: 17055 // If the name in a friend declaration is neither qualified nor 17056 // a template-id and the declaration is a function or an 17057 // elaborated-type-specifier, the lookup to determine whether 17058 // the entity has been previously declared shall not consider 17059 // any scopes outside the innermost enclosing namespace. 17060 bool isTemplateId = 17061 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId; 17062 17063 // Find the appropriate context according to the above. 17064 DC = CurContext; 17065 17066 // Skip class contexts. If someone can cite chapter and verse 17067 // for this behavior, that would be nice --- it's what GCC and 17068 // EDG do, and it seems like a reasonable intent, but the spec 17069 // really only says that checks for unqualified existing 17070 // declarations should stop at the nearest enclosing namespace, 17071 // not that they should only consider the nearest enclosing 17072 // namespace. 17073 while (DC->isRecord()) 17074 DC = DC->getParent(); 17075 17076 DeclContext *LookupDC = DC->getNonTransparentContext(); 17077 while (true) { 17078 LookupQualifiedName(Previous, LookupDC); 17079 17080 if (!Previous.empty()) { 17081 DC = LookupDC; 17082 break; 17083 } 17084 17085 if (isTemplateId) { 17086 if (isa<TranslationUnitDecl>(LookupDC)) break; 17087 } else { 17088 if (LookupDC->isFileContext()) break; 17089 } 17090 LookupDC = LookupDC->getParent(); 17091 } 17092 17093 DCScope = getScopeForDeclContext(S, DC); 17094 17095 // - There's a non-dependent scope specifier, in which case we 17096 // compute it and do a previous lookup there for a function 17097 // or function template. 17098 } else if (!SS.getScopeRep()->isDependent()) { 17099 DC = computeDeclContext(SS); 17100 if (!DC) return nullptr; 17101 17102 if (RequireCompleteDeclContext(SS, DC)) return nullptr; 17103 17104 LookupQualifiedName(Previous, DC); 17105 17106 // C++ [class.friend]p1: A friend of a class is a function or 17107 // class that is not a member of the class . . . 17108 if (DC->Equals(CurContext)) 17109 Diag(DS.getFriendSpecLoc(), 17110 getLangOpts().CPlusPlus11 ? 17111 diag::warn_cxx98_compat_friend_is_member : 17112 diag::err_friend_is_member); 17113 17114 if (D.isFunctionDefinition()) { 17115 // C++ [class.friend]p6: 17116 // A function can be defined in a friend declaration of a class if and 17117 // only if the class is a non-local class (9.8), the function name is 17118 // unqualified, and the function has namespace scope. 17119 // 17120 // FIXME: We should only do this if the scope specifier names the 17121 // innermost enclosing namespace; otherwise the fixit changes the 17122 // meaning of the code. 17123 SemaDiagnosticBuilder DB 17124 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); 17125 17126 DB << SS.getScopeRep(); 17127 if (DC->isFileContext()) 17128 DB << FixItHint::CreateRemoval(SS.getRange()); 17129 SS.clear(); 17130 } 17131 17132 // - There's a scope specifier that does not match any template 17133 // parameter lists, in which case we use some arbitrary context, 17134 // create a method or method template, and wait for instantiation. 17135 // - There's a scope specifier that does match some template 17136 // parameter lists, which we don't handle right now. 17137 } else { 17138 if (D.isFunctionDefinition()) { 17139 // C++ [class.friend]p6: 17140 // A function can be defined in a friend declaration of a class if and 17141 // only if the class is a non-local class (9.8), the function name is 17142 // unqualified, and the function has namespace scope. 17143 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def) 17144 << SS.getScopeRep(); 17145 } 17146 17147 DC = CurContext; 17148 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?"); 17149 } 17150 17151 if (!DC->isRecord()) { 17152 int DiagArg = -1; 17153 switch (D.getName().getKind()) { 17154 case UnqualifiedIdKind::IK_ConstructorTemplateId: 17155 case UnqualifiedIdKind::IK_ConstructorName: 17156 DiagArg = 0; 17157 break; 17158 case UnqualifiedIdKind::IK_DestructorName: 17159 DiagArg = 1; 17160 break; 17161 case UnqualifiedIdKind::IK_ConversionFunctionId: 17162 DiagArg = 2; 17163 break; 17164 case UnqualifiedIdKind::IK_DeductionGuideName: 17165 DiagArg = 3; 17166 break; 17167 case UnqualifiedIdKind::IK_Identifier: 17168 case UnqualifiedIdKind::IK_ImplicitSelfParam: 17169 case UnqualifiedIdKind::IK_LiteralOperatorId: 17170 case UnqualifiedIdKind::IK_OperatorFunctionId: 17171 case UnqualifiedIdKind::IK_TemplateId: 17172 break; 17173 } 17174 // This implies that it has to be an operator or function. 17175 if (DiagArg >= 0) { 17176 Diag(Loc, diag::err_introducing_special_friend) << DiagArg; 17177 return nullptr; 17178 } 17179 } 17180 17181 // FIXME: This is an egregious hack to cope with cases where the scope stack 17182 // does not contain the declaration context, i.e., in an out-of-line 17183 // definition of a class. 17184 Scope FakeDCScope(S, Scope::DeclScope, Diags); 17185 if (!DCScope) { 17186 FakeDCScope.setEntity(DC); 17187 DCScope = &FakeDCScope; 17188 } 17189 17190 bool AddToScope = true; 17191 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous, 17192 TemplateParams, AddToScope); 17193 if (!ND) return nullptr; 17194 17195 assert(ND->getLexicalDeclContext() == CurContext); 17196 17197 // If we performed typo correction, we might have added a scope specifier 17198 // and changed the decl context. 17199 DC = ND->getDeclContext(); 17200 17201 // Add the function declaration to the appropriate lookup tables, 17202 // adjusting the redeclarations list as necessary. We don't 17203 // want to do this yet if the friending class is dependent. 17204 // 17205 // Also update the scope-based lookup if the target context's 17206 // lookup context is in lexical scope. 17207 if (!CurContext->isDependentContext()) { 17208 DC = DC->getRedeclContext(); 17209 DC->makeDeclVisibleInContext(ND); 17210 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 17211 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); 17212 } 17213 17214 FriendDecl *FrD = FriendDecl::Create(Context, CurContext, 17215 D.getIdentifierLoc(), ND, 17216 DS.getFriendSpecLoc()); 17217 FrD->setAccess(AS_public); 17218 CurContext->addDecl(FrD); 17219 17220 if (ND->isInvalidDecl()) { 17221 FrD->setInvalidDecl(); 17222 } else { 17223 if (DC->isRecord()) CheckFriendAccess(ND); 17224 17225 FunctionDecl *FD; 17226 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 17227 FD = FTD->getTemplatedDecl(); 17228 else 17229 FD = cast<FunctionDecl>(ND); 17230 17231 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a 17232 // default argument expression, that declaration shall be a definition 17233 // and shall be the only declaration of the function or function 17234 // template in the translation unit. 17235 if (functionDeclHasDefaultArgument(FD)) { 17236 // We can't look at FD->getPreviousDecl() because it may not have been set 17237 // if we're in a dependent context. If the function is known to be a 17238 // redeclaration, we will have narrowed Previous down to the right decl. 17239 if (D.isRedeclaration()) { 17240 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 17241 Diag(Previous.getRepresentativeDecl()->getLocation(), 17242 diag::note_previous_declaration); 17243 } else if (!D.isFunctionDefinition()) 17244 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); 17245 } 17246 17247 // Mark templated-scope function declarations as unsupported. 17248 if (FD->getNumTemplateParameterLists() && SS.isValid()) { 17249 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) 17250 << SS.getScopeRep() << SS.getRange() 17251 << cast<CXXRecordDecl>(CurContext); 17252 FrD->setUnsupportedFriend(true); 17253 } 17254 } 17255 17256 warnOnReservedIdentifier(ND); 17257 17258 return ND; 17259 } 17260 17261 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { 17262 AdjustDeclIfTemplate(Dcl); 17263 17264 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl); 17265 if (!Fn) { 17266 Diag(DelLoc, diag::err_deleted_non_function); 17267 return; 17268 } 17269 17270 // Deleted function does not have a body. 17271 Fn->setWillHaveBody(false); 17272 17273 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { 17274 // Don't consider the implicit declaration we generate for explicit 17275 // specializations. FIXME: Do not generate these implicit declarations. 17276 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || 17277 Prev->getPreviousDecl()) && 17278 !Prev->isDefined()) { 17279 Diag(DelLoc, diag::err_deleted_decl_not_first); 17280 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), 17281 Prev->isImplicit() ? diag::note_previous_implicit_declaration 17282 : diag::note_previous_declaration); 17283 // We can't recover from this; the declaration might have already 17284 // been used. 17285 Fn->setInvalidDecl(); 17286 return; 17287 } 17288 17289 // To maintain the invariant that functions are only deleted on their first 17290 // declaration, mark the implicitly-instantiated declaration of the 17291 // explicitly-specialized function as deleted instead of marking the 17292 // instantiated redeclaration. 17293 Fn = Fn->getCanonicalDecl(); 17294 } 17295 17296 // dllimport/dllexport cannot be deleted. 17297 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { 17298 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; 17299 Fn->setInvalidDecl(); 17300 } 17301 17302 // C++11 [basic.start.main]p3: 17303 // A program that defines main as deleted [...] is ill-formed. 17304 if (Fn->isMain()) 17305 Diag(DelLoc, diag::err_deleted_main); 17306 17307 // C++11 [dcl.fct.def.delete]p4: 17308 // A deleted function is implicitly inline. 17309 Fn->setImplicitlyInline(); 17310 Fn->setDeletedAsWritten(); 17311 } 17312 17313 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { 17314 if (!Dcl || Dcl->isInvalidDecl()) 17315 return; 17316 17317 auto *FD = dyn_cast<FunctionDecl>(Dcl); 17318 if (!FD) { 17319 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) { 17320 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) { 17321 Diag(DefaultLoc, diag::err_defaulted_comparison_template); 17322 return; 17323 } 17324 } 17325 17326 Diag(DefaultLoc, diag::err_default_special_members) 17327 << getLangOpts().CPlusPlus20; 17328 return; 17329 } 17330 17331 // Reject if this can't possibly be a defaultable function. 17332 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 17333 if (!DefKind && 17334 // A dependent function that doesn't locally look defaultable can 17335 // still instantiate to a defaultable function if it's a constructor 17336 // or assignment operator. 17337 (!FD->isDependentContext() || 17338 (!isa<CXXConstructorDecl>(FD) && 17339 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) { 17340 Diag(DefaultLoc, diag::err_default_special_members) 17341 << getLangOpts().CPlusPlus20; 17342 return; 17343 } 17344 17345 // Issue compatibility warning. We already warned if the operator is 17346 // 'operator<=>' when parsing the '<=>' token. 17347 if (DefKind.isComparison() && 17348 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) { 17349 Diag(DefaultLoc, getLangOpts().CPlusPlus20 17350 ? diag::warn_cxx17_compat_defaulted_comparison 17351 : diag::ext_defaulted_comparison); 17352 } 17353 17354 FD->setDefaulted(); 17355 FD->setExplicitlyDefaulted(); 17356 17357 // Defer checking functions that are defaulted in a dependent context. 17358 if (FD->isDependentContext()) 17359 return; 17360 17361 // Unset that we will have a body for this function. We might not, 17362 // if it turns out to be trivial, and we don't need this marking now 17363 // that we've marked it as defaulted. 17364 FD->setWillHaveBody(false); 17365 17366 if (DefKind.isComparison()) { 17367 // If this comparison's defaulting occurs within the definition of its 17368 // lexical class context, we have to do the checking when complete. 17369 if (auto const *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext())) 17370 if (!RD->isCompleteDefinition()) 17371 return; 17372 } 17373 17374 // If this member fn was defaulted on its first declaration, we will have 17375 // already performed the checking in CheckCompletedCXXClass. Such a 17376 // declaration doesn't trigger an implicit definition. 17377 if (isa<CXXMethodDecl>(FD)) { 17378 const FunctionDecl *Primary = FD; 17379 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 17380 // Ask the template instantiation pattern that actually had the 17381 // '= default' on it. 17382 Primary = Pattern; 17383 if (Primary->getCanonicalDecl()->isDefaulted()) 17384 return; 17385 } 17386 17387 if (DefKind.isComparison()) { 17388 if (CheckExplicitlyDefaultedComparison(nullptr, FD, DefKind.asComparison())) 17389 FD->setInvalidDecl(); 17390 else 17391 DefineDefaultedComparison(DefaultLoc, FD, DefKind.asComparison()); 17392 } else { 17393 auto *MD = cast<CXXMethodDecl>(FD); 17394 17395 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember())) 17396 MD->setInvalidDecl(); 17397 else 17398 DefineDefaultedFunction(*this, MD, DefaultLoc); 17399 } 17400 } 17401 17402 static void SearchForReturnInStmt(Sema &Self, Stmt *S) { 17403 for (Stmt *SubStmt : S->children()) { 17404 if (!SubStmt) 17405 continue; 17406 if (isa<ReturnStmt>(SubStmt)) 17407 Self.Diag(SubStmt->getBeginLoc(), 17408 diag::err_return_in_constructor_handler); 17409 if (!isa<Expr>(SubStmt)) 17410 SearchForReturnInStmt(Self, SubStmt); 17411 } 17412 } 17413 17414 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { 17415 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { 17416 CXXCatchStmt *Handler = TryBlock->getHandler(I); 17417 SearchForReturnInStmt(*this, Handler); 17418 } 17419 } 17420 17421 void Sema::SetFunctionBodyKind(Decl *D, SourceLocation Loc, 17422 FnBodyKind BodyKind) { 17423 switch (BodyKind) { 17424 case FnBodyKind::Delete: 17425 SetDeclDeleted(D, Loc); 17426 break; 17427 case FnBodyKind::Default: 17428 SetDeclDefaulted(D, Loc); 17429 break; 17430 case FnBodyKind::Other: 17431 llvm_unreachable( 17432 "Parsed function body should be '= delete;' or '= default;'"); 17433 } 17434 } 17435 17436 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, 17437 const CXXMethodDecl *Old) { 17438 const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); 17439 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>(); 17440 17441 if (OldFT->hasExtParameterInfos()) { 17442 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I) 17443 // A parameter of the overriding method should be annotated with noescape 17444 // if the corresponding parameter of the overridden method is annotated. 17445 if (OldFT->getExtParameterInfo(I).isNoEscape() && 17446 !NewFT->getExtParameterInfo(I).isNoEscape()) { 17447 Diag(New->getParamDecl(I)->getLocation(), 17448 diag::warn_overriding_method_missing_noescape); 17449 Diag(Old->getParamDecl(I)->getLocation(), 17450 diag::note_overridden_marked_noescape); 17451 } 17452 } 17453 17454 // Virtual overrides must have the same code_seg. 17455 const auto *OldCSA = Old->getAttr<CodeSegAttr>(); 17456 const auto *NewCSA = New->getAttr<CodeSegAttr>(); 17457 if ((NewCSA || OldCSA) && 17458 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) { 17459 Diag(New->getLocation(), diag::err_mismatched_code_seg_override); 17460 Diag(Old->getLocation(), diag::note_previous_declaration); 17461 return true; 17462 } 17463 17464 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); 17465 17466 // If the calling conventions match, everything is fine 17467 if (NewCC == OldCC) 17468 return false; 17469 17470 // If the calling conventions mismatch because the new function is static, 17471 // suppress the calling convention mismatch error; the error about static 17472 // function override (err_static_overrides_virtual from 17473 // Sema::CheckFunctionDeclaration) is more clear. 17474 if (New->getStorageClass() == SC_Static) 17475 return false; 17476 17477 Diag(New->getLocation(), 17478 diag::err_conflicting_overriding_cc_attributes) 17479 << New->getDeclName() << New->getType() << Old->getType(); 17480 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 17481 return true; 17482 } 17483 17484 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, 17485 const CXXMethodDecl *Old) { 17486 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType(); 17487 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType(); 17488 17489 if (Context.hasSameType(NewTy, OldTy) || 17490 NewTy->isDependentType() || OldTy->isDependentType()) 17491 return false; 17492 17493 // Check if the return types are covariant 17494 QualType NewClassTy, OldClassTy; 17495 17496 /// Both types must be pointers or references to classes. 17497 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { 17498 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { 17499 NewClassTy = NewPT->getPointeeType(); 17500 OldClassTy = OldPT->getPointeeType(); 17501 } 17502 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { 17503 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { 17504 if (NewRT->getTypeClass() == OldRT->getTypeClass()) { 17505 NewClassTy = NewRT->getPointeeType(); 17506 OldClassTy = OldRT->getPointeeType(); 17507 } 17508 } 17509 } 17510 17511 // The return types aren't either both pointers or references to a class type. 17512 if (NewClassTy.isNull()) { 17513 Diag(New->getLocation(), 17514 diag::err_different_return_type_for_overriding_virtual_function) 17515 << New->getDeclName() << NewTy << OldTy 17516 << New->getReturnTypeSourceRange(); 17517 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17518 << Old->getReturnTypeSourceRange(); 17519 17520 return true; 17521 } 17522 17523 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { 17524 // C++14 [class.virtual]p8: 17525 // If the class type in the covariant return type of D::f differs from 17526 // that of B::f, the class type in the return type of D::f shall be 17527 // complete at the point of declaration of D::f or shall be the class 17528 // type D. 17529 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { 17530 if (!RT->isBeingDefined() && 17531 RequireCompleteType(New->getLocation(), NewClassTy, 17532 diag::err_covariant_return_incomplete, 17533 New->getDeclName())) 17534 return true; 17535 } 17536 17537 // Check if the new class derives from the old class. 17538 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) { 17539 Diag(New->getLocation(), diag::err_covariant_return_not_derived) 17540 << New->getDeclName() << NewTy << OldTy 17541 << New->getReturnTypeSourceRange(); 17542 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17543 << Old->getReturnTypeSourceRange(); 17544 return true; 17545 } 17546 17547 // Check if we the conversion from derived to base is valid. 17548 if (CheckDerivedToBaseConversion( 17549 NewClassTy, OldClassTy, 17550 diag::err_covariant_return_inaccessible_base, 17551 diag::err_covariant_return_ambiguous_derived_to_base_conv, 17552 New->getLocation(), New->getReturnTypeSourceRange(), 17553 New->getDeclName(), nullptr)) { 17554 // FIXME: this note won't trigger for delayed access control 17555 // diagnostics, and it's impossible to get an undelayed error 17556 // here from access control during the original parse because 17557 // the ParsingDeclSpec/ParsingDeclarator are still in scope. 17558 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17559 << Old->getReturnTypeSourceRange(); 17560 return true; 17561 } 17562 } 17563 17564 // The qualifiers of the return types must be the same. 17565 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { 17566 Diag(New->getLocation(), 17567 diag::err_covariant_return_type_different_qualifications) 17568 << New->getDeclName() << NewTy << OldTy 17569 << New->getReturnTypeSourceRange(); 17570 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17571 << Old->getReturnTypeSourceRange(); 17572 return true; 17573 } 17574 17575 17576 // The new class type must have the same or less qualifiers as the old type. 17577 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { 17578 Diag(New->getLocation(), 17579 diag::err_covariant_return_type_class_type_more_qualified) 17580 << New->getDeclName() << NewTy << OldTy 17581 << New->getReturnTypeSourceRange(); 17582 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17583 << Old->getReturnTypeSourceRange(); 17584 return true; 17585 } 17586 17587 return false; 17588 } 17589 17590 /// Mark the given method pure. 17591 /// 17592 /// \param Method the method to be marked pure. 17593 /// 17594 /// \param InitRange the source range that covers the "0" initializer. 17595 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { 17596 SourceLocation EndLoc = InitRange.getEnd(); 17597 if (EndLoc.isValid()) 17598 Method->setRangeEnd(EndLoc); 17599 17600 if (Method->isVirtual() || Method->getParent()->isDependentContext()) { 17601 Method->setPure(); 17602 return false; 17603 } 17604 17605 if (!Method->isInvalidDecl()) 17606 Diag(Method->getLocation(), diag::err_non_virtual_pure) 17607 << Method->getDeclName() << InitRange; 17608 return true; 17609 } 17610 17611 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) { 17612 if (D->getFriendObjectKind()) 17613 Diag(D->getLocation(), diag::err_pure_friend); 17614 else if (auto *M = dyn_cast<CXXMethodDecl>(D)) 17615 CheckPureMethod(M, ZeroLoc); 17616 else 17617 Diag(D->getLocation(), diag::err_illegal_initializer); 17618 } 17619 17620 /// Determine whether the given declaration is a global variable or 17621 /// static data member. 17622 static bool isNonlocalVariable(const Decl *D) { 17623 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D)) 17624 return Var->hasGlobalStorage(); 17625 17626 return false; 17627 } 17628 17629 /// Invoked when we are about to parse an initializer for the declaration 17630 /// 'Dcl'. 17631 /// 17632 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a 17633 /// static data member of class X, names should be looked up in the scope of 17634 /// class X. If the declaration had a scope specifier, a scope will have 17635 /// been created and passed in for this purpose. Otherwise, S will be null. 17636 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { 17637 // If there is no declaration, there was an error parsing it. 17638 if (!D || D->isInvalidDecl()) 17639 return; 17640 17641 // We will always have a nested name specifier here, but this declaration 17642 // might not be out of line if the specifier names the current namespace: 17643 // extern int n; 17644 // int ::n = 0; 17645 if (S && D->isOutOfLine()) 17646 EnterDeclaratorContext(S, D->getDeclContext()); 17647 17648 // If we are parsing the initializer for a static data member, push a 17649 // new expression evaluation context that is associated with this static 17650 // data member. 17651 if (isNonlocalVariable(D)) 17652 PushExpressionEvaluationContext( 17653 ExpressionEvaluationContext::PotentiallyEvaluated, D); 17654 } 17655 17656 /// Invoked after we are finished parsing an initializer for the declaration D. 17657 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { 17658 // If there is no declaration, there was an error parsing it. 17659 if (!D || D->isInvalidDecl()) 17660 return; 17661 17662 if (isNonlocalVariable(D)) 17663 PopExpressionEvaluationContext(); 17664 17665 if (S && D->isOutOfLine()) 17666 ExitDeclaratorContext(S); 17667 } 17668 17669 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a 17670 /// C++ if/switch/while/for statement. 17671 /// e.g: "if (int x = f()) {...}" 17672 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { 17673 // C++ 6.4p2: 17674 // The declarator shall not specify a function or an array. 17675 // The type-specifier-seq shall not contain typedef and shall not declare a 17676 // new class or enumeration. 17677 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 17678 "Parser allowed 'typedef' as storage class of condition decl."); 17679 17680 Decl *Dcl = ActOnDeclarator(S, D); 17681 if (!Dcl) 17682 return true; 17683 17684 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function. 17685 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) 17686 << D.getSourceRange(); 17687 return true; 17688 } 17689 17690 return Dcl; 17691 } 17692 17693 void Sema::LoadExternalVTableUses() { 17694 if (!ExternalSource) 17695 return; 17696 17697 SmallVector<ExternalVTableUse, 4> VTables; 17698 ExternalSource->ReadUsedVTables(VTables); 17699 SmallVector<VTableUse, 4> NewUses; 17700 for (unsigned I = 0, N = VTables.size(); I != N; ++I) { 17701 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos 17702 = VTablesUsed.find(VTables[I].Record); 17703 // Even if a definition wasn't required before, it may be required now. 17704 if (Pos != VTablesUsed.end()) { 17705 if (!Pos->second && VTables[I].DefinitionRequired) 17706 Pos->second = true; 17707 continue; 17708 } 17709 17710 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; 17711 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location)); 17712 } 17713 17714 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end()); 17715 } 17716 17717 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, 17718 bool DefinitionRequired) { 17719 // Ignore any vtable uses in unevaluated operands or for classes that do 17720 // not have a vtable. 17721 if (!Class->isDynamicClass() || Class->isDependentContext() || 17722 CurContext->isDependentContext() || isUnevaluatedContext()) 17723 return; 17724 // Do not mark as used if compiling for the device outside of the target 17725 // region. 17726 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsDevice && 17727 !isInOpenMPDeclareTargetContext() && 17728 !isInOpenMPTargetExecutionDirective()) { 17729 if (!DefinitionRequired) 17730 MarkVirtualMembersReferenced(Loc, Class); 17731 return; 17732 } 17733 17734 // Try to insert this class into the map. 17735 LoadExternalVTableUses(); 17736 Class = Class->getCanonicalDecl(); 17737 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> 17738 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); 17739 if (!Pos.second) { 17740 // If we already had an entry, check to see if we are promoting this vtable 17741 // to require a definition. If so, we need to reappend to the VTableUses 17742 // list, since we may have already processed the first entry. 17743 if (DefinitionRequired && !Pos.first->second) { 17744 Pos.first->second = true; 17745 } else { 17746 // Otherwise, we can early exit. 17747 return; 17748 } 17749 } else { 17750 // The Microsoft ABI requires that we perform the destructor body 17751 // checks (i.e. operator delete() lookup) when the vtable is marked used, as 17752 // the deleting destructor is emitted with the vtable, not with the 17753 // destructor definition as in the Itanium ABI. 17754 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 17755 CXXDestructorDecl *DD = Class->getDestructor(); 17756 if (DD && DD->isVirtual() && !DD->isDeleted()) { 17757 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) { 17758 // If this is an out-of-line declaration, marking it referenced will 17759 // not do anything. Manually call CheckDestructor to look up operator 17760 // delete(). 17761 ContextRAII SavedContext(*this, DD); 17762 CheckDestructor(DD); 17763 } else { 17764 MarkFunctionReferenced(Loc, Class->getDestructor()); 17765 } 17766 } 17767 } 17768 } 17769 17770 // Local classes need to have their virtual members marked 17771 // immediately. For all other classes, we mark their virtual members 17772 // at the end of the translation unit. 17773 if (Class->isLocalClass()) 17774 MarkVirtualMembersReferenced(Loc, Class); 17775 else 17776 VTableUses.push_back(std::make_pair(Class, Loc)); 17777 } 17778 17779 bool Sema::DefineUsedVTables() { 17780 LoadExternalVTableUses(); 17781 if (VTableUses.empty()) 17782 return false; 17783 17784 // Note: The VTableUses vector could grow as a result of marking 17785 // the members of a class as "used", so we check the size each 17786 // time through the loop and prefer indices (which are stable) to 17787 // iterators (which are not). 17788 bool DefinedAnything = false; 17789 for (unsigned I = 0; I != VTableUses.size(); ++I) { 17790 CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); 17791 if (!Class) 17792 continue; 17793 TemplateSpecializationKind ClassTSK = 17794 Class->getTemplateSpecializationKind(); 17795 17796 SourceLocation Loc = VTableUses[I].second; 17797 17798 bool DefineVTable = true; 17799 17800 // If this class has a key function, but that key function is 17801 // defined in another translation unit, we don't need to emit the 17802 // vtable even though we're using it. 17803 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class); 17804 if (KeyFunction && !KeyFunction->hasBody()) { 17805 // The key function is in another translation unit. 17806 DefineVTable = false; 17807 TemplateSpecializationKind TSK = 17808 KeyFunction->getTemplateSpecializationKind(); 17809 assert(TSK != TSK_ExplicitInstantiationDefinition && 17810 TSK != TSK_ImplicitInstantiation && 17811 "Instantiations don't have key functions"); 17812 (void)TSK; 17813 } else if (!KeyFunction) { 17814 // If we have a class with no key function that is the subject 17815 // of an explicit instantiation declaration, suppress the 17816 // vtable; it will live with the explicit instantiation 17817 // definition. 17818 bool IsExplicitInstantiationDeclaration = 17819 ClassTSK == TSK_ExplicitInstantiationDeclaration; 17820 for (auto R : Class->redecls()) { 17821 TemplateSpecializationKind TSK 17822 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind(); 17823 if (TSK == TSK_ExplicitInstantiationDeclaration) 17824 IsExplicitInstantiationDeclaration = true; 17825 else if (TSK == TSK_ExplicitInstantiationDefinition) { 17826 IsExplicitInstantiationDeclaration = false; 17827 break; 17828 } 17829 } 17830 17831 if (IsExplicitInstantiationDeclaration) 17832 DefineVTable = false; 17833 } 17834 17835 // The exception specifications for all virtual members may be needed even 17836 // if we are not providing an authoritative form of the vtable in this TU. 17837 // We may choose to emit it available_externally anyway. 17838 if (!DefineVTable) { 17839 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class); 17840 continue; 17841 } 17842 17843 // Mark all of the virtual members of this class as referenced, so 17844 // that we can build a vtable. Then, tell the AST consumer that a 17845 // vtable for this class is required. 17846 DefinedAnything = true; 17847 MarkVirtualMembersReferenced(Loc, Class); 17848 CXXRecordDecl *Canonical = Class->getCanonicalDecl(); 17849 if (VTablesUsed[Canonical]) 17850 Consumer.HandleVTable(Class); 17851 17852 // Warn if we're emitting a weak vtable. The vtable will be weak if there is 17853 // no key function or the key function is inlined. Don't warn in C++ ABIs 17854 // that lack key functions, since the user won't be able to make one. 17855 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() && 17856 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation && 17857 ClassTSK != TSK_ExplicitInstantiationDefinition) { 17858 const FunctionDecl *KeyFunctionDef = nullptr; 17859 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) && 17860 KeyFunctionDef->isInlined())) 17861 Diag(Class->getLocation(), diag::warn_weak_vtable) << Class; 17862 } 17863 } 17864 VTableUses.clear(); 17865 17866 return DefinedAnything; 17867 } 17868 17869 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, 17870 const CXXRecordDecl *RD) { 17871 for (const auto *I : RD->methods()) 17872 if (I->isVirtual() && !I->isPure()) 17873 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>()); 17874 } 17875 17876 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, 17877 const CXXRecordDecl *RD, 17878 bool ConstexprOnly) { 17879 // Mark all functions which will appear in RD's vtable as used. 17880 CXXFinalOverriderMap FinalOverriders; 17881 RD->getFinalOverriders(FinalOverriders); 17882 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), 17883 E = FinalOverriders.end(); 17884 I != E; ++I) { 17885 for (OverridingMethods::const_iterator OI = I->second.begin(), 17886 OE = I->second.end(); 17887 OI != OE; ++OI) { 17888 assert(OI->second.size() > 0 && "no final overrider"); 17889 CXXMethodDecl *Overrider = OI->second.front().Method; 17890 17891 // C++ [basic.def.odr]p2: 17892 // [...] A virtual member function is used if it is not pure. [...] 17893 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr())) 17894 MarkFunctionReferenced(Loc, Overrider); 17895 } 17896 } 17897 17898 // Only classes that have virtual bases need a VTT. 17899 if (RD->getNumVBases() == 0) 17900 return; 17901 17902 for (const auto &I : RD->bases()) { 17903 const auto *Base = 17904 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 17905 if (Base->getNumVBases() == 0) 17906 continue; 17907 MarkVirtualMembersReferenced(Loc, Base); 17908 } 17909 } 17910 17911 /// SetIvarInitializers - This routine builds initialization ASTs for the 17912 /// Objective-C implementation whose ivars need be initialized. 17913 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { 17914 if (!getLangOpts().CPlusPlus) 17915 return; 17916 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { 17917 SmallVector<ObjCIvarDecl*, 8> ivars; 17918 CollectIvarsToConstructOrDestruct(OID, ivars); 17919 if (ivars.empty()) 17920 return; 17921 SmallVector<CXXCtorInitializer*, 32> AllToInit; 17922 for (unsigned i = 0; i < ivars.size(); i++) { 17923 FieldDecl *Field = ivars[i]; 17924 if (Field->isInvalidDecl()) 17925 continue; 17926 17927 CXXCtorInitializer *Member; 17928 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); 17929 InitializationKind InitKind = 17930 InitializationKind::CreateDefault(ObjCImplementation->getLocation()); 17931 17932 InitializationSequence InitSeq(*this, InitEntity, InitKind, None); 17933 ExprResult MemberInit = 17934 InitSeq.Perform(*this, InitEntity, InitKind, None); 17935 MemberInit = MaybeCreateExprWithCleanups(MemberInit); 17936 // Note, MemberInit could actually come back empty if no initialization 17937 // is required (e.g., because it would call a trivial default constructor) 17938 if (!MemberInit.get() || MemberInit.isInvalid()) 17939 continue; 17940 17941 Member = 17942 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(), 17943 SourceLocation(), 17944 MemberInit.getAs<Expr>(), 17945 SourceLocation()); 17946 AllToInit.push_back(Member); 17947 17948 // Be sure that the destructor is accessible and is marked as referenced. 17949 if (const RecordType *RecordTy = 17950 Context.getBaseElementType(Field->getType()) 17951 ->getAs<RecordType>()) { 17952 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); 17953 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 17954 MarkFunctionReferenced(Field->getLocation(), Destructor); 17955 CheckDestructorAccess(Field->getLocation(), Destructor, 17956 PDiag(diag::err_access_dtor_ivar) 17957 << Context.getBaseElementType(Field->getType())); 17958 } 17959 } 17960 } 17961 ObjCImplementation->setIvarInitializers(Context, 17962 AllToInit.data(), AllToInit.size()); 17963 } 17964 } 17965 17966 static 17967 void DelegatingCycleHelper(CXXConstructorDecl* Ctor, 17968 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid, 17969 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid, 17970 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current, 17971 Sema &S) { 17972 if (Ctor->isInvalidDecl()) 17973 return; 17974 17975 CXXConstructorDecl *Target = Ctor->getTargetConstructor(); 17976 17977 // Target may not be determinable yet, for instance if this is a dependent 17978 // call in an uninstantiated template. 17979 if (Target) { 17980 const FunctionDecl *FNTarget = nullptr; 17981 (void)Target->hasBody(FNTarget); 17982 Target = const_cast<CXXConstructorDecl*>( 17983 cast_or_null<CXXConstructorDecl>(FNTarget)); 17984 } 17985 17986 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), 17987 // Avoid dereferencing a null pointer here. 17988 *TCanonical = Target? Target->getCanonicalDecl() : nullptr; 17989 17990 if (!Current.insert(Canonical).second) 17991 return; 17992 17993 // We know that beyond here, we aren't chaining into a cycle. 17994 if (!Target || !Target->isDelegatingConstructor() || 17995 Target->isInvalidDecl() || Valid.count(TCanonical)) { 17996 Valid.insert(Current.begin(), Current.end()); 17997 Current.clear(); 17998 // We've hit a cycle. 17999 } else if (TCanonical == Canonical || Invalid.count(TCanonical) || 18000 Current.count(TCanonical)) { 18001 // If we haven't diagnosed this cycle yet, do so now. 18002 if (!Invalid.count(TCanonical)) { 18003 S.Diag((*Ctor->init_begin())->getSourceLocation(), 18004 diag::warn_delegating_ctor_cycle) 18005 << Ctor; 18006 18007 // Don't add a note for a function delegating directly to itself. 18008 if (TCanonical != Canonical) 18009 S.Diag(Target->getLocation(), diag::note_it_delegates_to); 18010 18011 CXXConstructorDecl *C = Target; 18012 while (C->getCanonicalDecl() != Canonical) { 18013 const FunctionDecl *FNTarget = nullptr; 18014 (void)C->getTargetConstructor()->hasBody(FNTarget); 18015 assert(FNTarget && "Ctor cycle through bodiless function"); 18016 18017 C = const_cast<CXXConstructorDecl*>( 18018 cast<CXXConstructorDecl>(FNTarget)); 18019 S.Diag(C->getLocation(), diag::note_which_delegates_to); 18020 } 18021 } 18022 18023 Invalid.insert(Current.begin(), Current.end()); 18024 Current.clear(); 18025 } else { 18026 DelegatingCycleHelper(Target, Valid, Invalid, Current, S); 18027 } 18028 } 18029 18030 18031 void Sema::CheckDelegatingCtorCycles() { 18032 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; 18033 18034 for (DelegatingCtorDeclsType::iterator 18035 I = DelegatingCtorDecls.begin(ExternalSource), 18036 E = DelegatingCtorDecls.end(); 18037 I != E; ++I) 18038 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); 18039 18040 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) 18041 (*CI)->setInvalidDecl(); 18042 } 18043 18044 namespace { 18045 /// AST visitor that finds references to the 'this' expression. 18046 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> { 18047 Sema &S; 18048 18049 public: 18050 explicit FindCXXThisExpr(Sema &S) : S(S) { } 18051 18052 bool VisitCXXThisExpr(CXXThisExpr *E) { 18053 S.Diag(E->getLocation(), diag::err_this_static_member_func) 18054 << E->isImplicit(); 18055 return false; 18056 } 18057 }; 18058 } 18059 18060 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { 18061 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 18062 if (!TSInfo) 18063 return false; 18064 18065 TypeLoc TL = TSInfo->getTypeLoc(); 18066 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 18067 if (!ProtoTL) 18068 return false; 18069 18070 // C++11 [expr.prim.general]p3: 18071 // [The expression this] shall not appear before the optional 18072 // cv-qualifier-seq and it shall not appear within the declaration of a 18073 // static member function (although its type and value category are defined 18074 // within a static member function as they are within a non-static member 18075 // function). [ Note: this is because declaration matching does not occur 18076 // until the complete declarator is known. - end note ] 18077 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 18078 FindCXXThisExpr Finder(*this); 18079 18080 // If the return type came after the cv-qualifier-seq, check it now. 18081 if (Proto->hasTrailingReturn() && 18082 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) 18083 return true; 18084 18085 // Check the exception specification. 18086 if (checkThisInStaticMemberFunctionExceptionSpec(Method)) 18087 return true; 18088 18089 // Check the trailing requires clause 18090 if (Expr *E = Method->getTrailingRequiresClause()) 18091 if (!Finder.TraverseStmt(E)) 18092 return true; 18093 18094 return checkThisInStaticMemberFunctionAttributes(Method); 18095 } 18096 18097 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { 18098 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 18099 if (!TSInfo) 18100 return false; 18101 18102 TypeLoc TL = TSInfo->getTypeLoc(); 18103 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 18104 if (!ProtoTL) 18105 return false; 18106 18107 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 18108 FindCXXThisExpr Finder(*this); 18109 18110 switch (Proto->getExceptionSpecType()) { 18111 case EST_Unparsed: 18112 case EST_Uninstantiated: 18113 case EST_Unevaluated: 18114 case EST_BasicNoexcept: 18115 case EST_NoThrow: 18116 case EST_DynamicNone: 18117 case EST_MSAny: 18118 case EST_None: 18119 break; 18120 18121 case EST_DependentNoexcept: 18122 case EST_NoexceptFalse: 18123 case EST_NoexceptTrue: 18124 if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) 18125 return true; 18126 LLVM_FALLTHROUGH; 18127 18128 case EST_Dynamic: 18129 for (const auto &E : Proto->exceptions()) { 18130 if (!Finder.TraverseType(E)) 18131 return true; 18132 } 18133 break; 18134 } 18135 18136 return false; 18137 } 18138 18139 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { 18140 FindCXXThisExpr Finder(*this); 18141 18142 // Check attributes. 18143 for (const auto *A : Method->attrs()) { 18144 // FIXME: This should be emitted by tblgen. 18145 Expr *Arg = nullptr; 18146 ArrayRef<Expr *> Args; 18147 if (const auto *G = dyn_cast<GuardedByAttr>(A)) 18148 Arg = G->getArg(); 18149 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A)) 18150 Arg = G->getArg(); 18151 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A)) 18152 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size()); 18153 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A)) 18154 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size()); 18155 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) { 18156 Arg = ETLF->getSuccessValue(); 18157 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size()); 18158 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) { 18159 Arg = STLF->getSuccessValue(); 18160 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size()); 18161 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A)) 18162 Arg = LR->getArg(); 18163 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A)) 18164 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size()); 18165 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A)) 18166 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); 18167 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A)) 18168 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); 18169 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A)) 18170 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); 18171 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A)) 18172 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); 18173 18174 if (Arg && !Finder.TraverseStmt(Arg)) 18175 return true; 18176 18177 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 18178 if (!Finder.TraverseStmt(Args[I])) 18179 return true; 18180 } 18181 } 18182 18183 return false; 18184 } 18185 18186 void Sema::checkExceptionSpecification( 18187 bool IsTopLevel, ExceptionSpecificationType EST, 18188 ArrayRef<ParsedType> DynamicExceptions, 18189 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr, 18190 SmallVectorImpl<QualType> &Exceptions, 18191 FunctionProtoType::ExceptionSpecInfo &ESI) { 18192 Exceptions.clear(); 18193 ESI.Type = EST; 18194 if (EST == EST_Dynamic) { 18195 Exceptions.reserve(DynamicExceptions.size()); 18196 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { 18197 // FIXME: Preserve type source info. 18198 QualType ET = GetTypeFromParser(DynamicExceptions[ei]); 18199 18200 if (IsTopLevel) { 18201 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 18202 collectUnexpandedParameterPacks(ET, Unexpanded); 18203 if (!Unexpanded.empty()) { 18204 DiagnoseUnexpandedParameterPacks( 18205 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType, 18206 Unexpanded); 18207 continue; 18208 } 18209 } 18210 18211 // Check that the type is valid for an exception spec, and 18212 // drop it if not. 18213 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei])) 18214 Exceptions.push_back(ET); 18215 } 18216 ESI.Exceptions = Exceptions; 18217 return; 18218 } 18219 18220 if (isComputedNoexcept(EST)) { 18221 assert((NoexceptExpr->isTypeDependent() || 18222 NoexceptExpr->getType()->getCanonicalTypeUnqualified() == 18223 Context.BoolTy) && 18224 "Parser should have made sure that the expression is boolean"); 18225 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) { 18226 ESI.Type = EST_BasicNoexcept; 18227 return; 18228 } 18229 18230 ESI.NoexceptExpr = NoexceptExpr; 18231 return; 18232 } 18233 } 18234 18235 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD, 18236 ExceptionSpecificationType EST, 18237 SourceRange SpecificationRange, 18238 ArrayRef<ParsedType> DynamicExceptions, 18239 ArrayRef<SourceRange> DynamicExceptionRanges, 18240 Expr *NoexceptExpr) { 18241 if (!MethodD) 18242 return; 18243 18244 // Dig out the method we're referring to. 18245 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD)) 18246 MethodD = FunTmpl->getTemplatedDecl(); 18247 18248 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD); 18249 if (!Method) 18250 return; 18251 18252 // Check the exception specification. 18253 llvm::SmallVector<QualType, 4> Exceptions; 18254 FunctionProtoType::ExceptionSpecInfo ESI; 18255 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions, 18256 DynamicExceptionRanges, NoexceptExpr, Exceptions, 18257 ESI); 18258 18259 // Update the exception specification on the function type. 18260 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true); 18261 18262 if (Method->isStatic()) 18263 checkThisInStaticMemberFunctionExceptionSpec(Method); 18264 18265 if (Method->isVirtual()) { 18266 // Check overrides, which we previously had to delay. 18267 for (const CXXMethodDecl *O : Method->overridden_methods()) 18268 CheckOverridingFunctionExceptionSpec(Method, O); 18269 } 18270 } 18271 18272 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. 18273 /// 18274 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, 18275 SourceLocation DeclStart, Declarator &D, 18276 Expr *BitWidth, 18277 InClassInitStyle InitStyle, 18278 AccessSpecifier AS, 18279 const ParsedAttr &MSPropertyAttr) { 18280 IdentifierInfo *II = D.getIdentifier(); 18281 if (!II) { 18282 Diag(DeclStart, diag::err_anonymous_property); 18283 return nullptr; 18284 } 18285 SourceLocation Loc = D.getIdentifierLoc(); 18286 18287 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 18288 QualType T = TInfo->getType(); 18289 if (getLangOpts().CPlusPlus) { 18290 CheckExtraCXXDefaultArguments(D); 18291 18292 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 18293 UPPC_DataMemberType)) { 18294 D.setInvalidType(); 18295 T = Context.IntTy; 18296 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 18297 } 18298 } 18299 18300 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 18301 18302 if (D.getDeclSpec().isInlineSpecified()) 18303 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 18304 << getLangOpts().CPlusPlus17; 18305 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 18306 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 18307 diag::err_invalid_thread) 18308 << DeclSpec::getSpecifierName(TSCS); 18309 18310 // Check to see if this name was declared as a member previously 18311 NamedDecl *PrevDecl = nullptr; 18312 LookupResult Previous(*this, II, Loc, LookupMemberName, 18313 ForVisibleRedeclaration); 18314 LookupName(Previous, S); 18315 switch (Previous.getResultKind()) { 18316 case LookupResult::Found: 18317 case LookupResult::FoundUnresolvedValue: 18318 PrevDecl = Previous.getAsSingle<NamedDecl>(); 18319 break; 18320 18321 case LookupResult::FoundOverloaded: 18322 PrevDecl = Previous.getRepresentativeDecl(); 18323 break; 18324 18325 case LookupResult::NotFound: 18326 case LookupResult::NotFoundInCurrentInstantiation: 18327 case LookupResult::Ambiguous: 18328 break; 18329 } 18330 18331 if (PrevDecl && PrevDecl->isTemplateParameter()) { 18332 // Maybe we will complain about the shadowed template parameter. 18333 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 18334 // Just pretend that we didn't see the previous declaration. 18335 PrevDecl = nullptr; 18336 } 18337 18338 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 18339 PrevDecl = nullptr; 18340 18341 SourceLocation TSSL = D.getBeginLoc(); 18342 MSPropertyDecl *NewPD = 18343 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL, 18344 MSPropertyAttr.getPropertyDataGetter(), 18345 MSPropertyAttr.getPropertyDataSetter()); 18346 ProcessDeclAttributes(TUScope, NewPD, D); 18347 NewPD->setAccess(AS); 18348 18349 if (NewPD->isInvalidDecl()) 18350 Record->setInvalidDecl(); 18351 18352 if (D.getDeclSpec().isModulePrivateSpecified()) 18353 NewPD->setModulePrivate(); 18354 18355 if (NewPD->isInvalidDecl() && PrevDecl) { 18356 // Don't introduce NewFD into scope; there's already something 18357 // with the same name in the same scope. 18358 } else if (II) { 18359 PushOnScopeChains(NewPD, S); 18360 } else 18361 Record->addDecl(NewPD); 18362 18363 return NewPD; 18364 } 18365 18366 void Sema::ActOnStartFunctionDeclarationDeclarator( 18367 Declarator &Declarator, unsigned TemplateParameterDepth) { 18368 auto &Info = InventedParameterInfos.emplace_back(); 18369 TemplateParameterList *ExplicitParams = nullptr; 18370 ArrayRef<TemplateParameterList *> ExplicitLists = 18371 Declarator.getTemplateParameterLists(); 18372 if (!ExplicitLists.empty()) { 18373 bool IsMemberSpecialization, IsInvalid; 18374 ExplicitParams = MatchTemplateParametersToScopeSpecifier( 18375 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(), 18376 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr, 18377 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid, 18378 /*SuppressDiagnostic=*/true); 18379 } 18380 if (ExplicitParams) { 18381 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth(); 18382 llvm::append_range(Info.TemplateParams, *ExplicitParams); 18383 Info.NumExplicitTemplateParams = ExplicitParams->size(); 18384 } else { 18385 Info.AutoTemplateParameterDepth = TemplateParameterDepth; 18386 Info.NumExplicitTemplateParams = 0; 18387 } 18388 } 18389 18390 void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) { 18391 auto &FSI = InventedParameterInfos.back(); 18392 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) { 18393 if (FSI.NumExplicitTemplateParams != 0) { 18394 TemplateParameterList *ExplicitParams = 18395 Declarator.getTemplateParameterLists().back(); 18396 Declarator.setInventedTemplateParameterList( 18397 TemplateParameterList::Create( 18398 Context, ExplicitParams->getTemplateLoc(), 18399 ExplicitParams->getLAngleLoc(), FSI.TemplateParams, 18400 ExplicitParams->getRAngleLoc(), 18401 ExplicitParams->getRequiresClause())); 18402 } else { 18403 Declarator.setInventedTemplateParameterList( 18404 TemplateParameterList::Create( 18405 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams, 18406 SourceLocation(), /*RequiresClause=*/nullptr)); 18407 } 18408 } 18409 InventedParameterInfos.pop_back(); 18410 } 18411