1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTConsumer.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/ComparisonCategories.h" 20 #include "clang/AST/EvaluatedExprVisitor.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/AST/TypeLoc.h" 26 #include "clang/AST/TypeOrdering.h" 27 #include "clang/Basic/AttributeCommonInfo.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Lex/LiteralSupport.h" 31 #include "clang/Lex/Preprocessor.h" 32 #include "clang/Sema/CXXFieldCollector.h" 33 #include "clang/Sema/DeclSpec.h" 34 #include "clang/Sema/Initialization.h" 35 #include "clang/Sema/Lookup.h" 36 #include "clang/Sema/ParsedTemplate.h" 37 #include "clang/Sema/Scope.h" 38 #include "clang/Sema/ScopeInfo.h" 39 #include "clang/Sema/SemaInternal.h" 40 #include "clang/Sema/Template.h" 41 #include "llvm/ADT/ScopeExit.h" 42 #include "llvm/ADT/SmallString.h" 43 #include "llvm/ADT/STLExtras.h" 44 #include "llvm/ADT/StringExtras.h" 45 #include <map> 46 #include <set> 47 48 using namespace clang; 49 50 //===----------------------------------------------------------------------===// 51 // CheckDefaultArgumentVisitor 52 //===----------------------------------------------------------------------===// 53 54 namespace { 55 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses 56 /// the default argument of a parameter to determine whether it 57 /// contains any ill-formed subexpressions. For example, this will 58 /// diagnose the use of local variables or parameters within the 59 /// default argument expression. 60 class CheckDefaultArgumentVisitor 61 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> { 62 Sema &S; 63 const Expr *DefaultArg; 64 65 public: 66 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg) 67 : S(S), DefaultArg(DefaultArg) {} 68 69 bool VisitExpr(const Expr *Node); 70 bool VisitDeclRefExpr(const DeclRefExpr *DRE); 71 bool VisitCXXThisExpr(const CXXThisExpr *ThisE); 72 bool VisitLambdaExpr(const LambdaExpr *Lambda); 73 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE); 74 }; 75 76 /// VisitExpr - Visit all of the children of this expression. 77 bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) { 78 bool IsInvalid = false; 79 for (const Stmt *SubStmt : Node->children()) 80 IsInvalid |= Visit(SubStmt); 81 return IsInvalid; 82 } 83 84 /// VisitDeclRefExpr - Visit a reference to a declaration, to 85 /// determine whether this declaration can be used in the default 86 /// argument expression. 87 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) { 88 const NamedDecl *Decl = DRE->getDecl(); 89 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) { 90 // C++ [dcl.fct.default]p9: 91 // [...] parameters of a function shall not be used in default 92 // argument expressions, even if they are not evaluated. [...] 93 // 94 // C++17 [dcl.fct.default]p9 (by CWG 2082): 95 // [...] A parameter shall not appear as a potentially-evaluated 96 // expression in a default argument. [...] 97 // 98 if (DRE->isNonOdrUse() != NOUR_Unevaluated) 99 return S.Diag(DRE->getBeginLoc(), 100 diag::err_param_default_argument_references_param) 101 << Param->getDeclName() << DefaultArg->getSourceRange(); 102 } else if (const auto *VDecl = dyn_cast<VarDecl>(Decl)) { 103 // C++ [dcl.fct.default]p7: 104 // Local variables shall not be used in default argument 105 // expressions. 106 // 107 // C++17 [dcl.fct.default]p7 (by CWG 2082): 108 // A local variable shall not appear as a potentially-evaluated 109 // expression in a default argument. 110 // 111 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346): 112 // Note: A local variable cannot be odr-used (6.3) in a default argument. 113 // 114 if (VDecl->isLocalVarDecl() && !DRE->isNonOdrUse()) 115 return S.Diag(DRE->getBeginLoc(), 116 diag::err_param_default_argument_references_local) 117 << VDecl->getDeclName() << DefaultArg->getSourceRange(); 118 } 119 120 return false; 121 } 122 123 /// VisitCXXThisExpr - Visit a C++ "this" expression. 124 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) { 125 // C++ [dcl.fct.default]p8: 126 // The keyword this shall not be used in a default argument of a 127 // member function. 128 return S.Diag(ThisE->getBeginLoc(), 129 diag::err_param_default_argument_references_this) 130 << ThisE->getSourceRange(); 131 } 132 133 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr( 134 const PseudoObjectExpr *POE) { 135 bool Invalid = false; 136 for (const Expr *E : POE->semantics()) { 137 // Look through bindings. 138 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) { 139 E = OVE->getSourceExpr(); 140 assert(E && "pseudo-object binding without source expression?"); 141 } 142 143 Invalid |= Visit(E); 144 } 145 return Invalid; 146 } 147 148 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) { 149 // C++11 [expr.lambda.prim]p13: 150 // A lambda-expression appearing in a default argument shall not 151 // implicitly or explicitly capture any entity. 152 if (Lambda->capture_begin() == Lambda->capture_end()) 153 return false; 154 155 return S.Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg); 156 } 157 } // namespace 158 159 void 160 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, 161 const CXXMethodDecl *Method) { 162 // If we have an MSAny spec already, don't bother. 163 if (!Method || ComputedEST == EST_MSAny) 164 return; 165 166 const FunctionProtoType *Proto 167 = Method->getType()->getAs<FunctionProtoType>(); 168 Proto = Self->ResolveExceptionSpec(CallLoc, Proto); 169 if (!Proto) 170 return; 171 172 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 173 174 // If we have a throw-all spec at this point, ignore the function. 175 if (ComputedEST == EST_None) 176 return; 177 178 if (EST == EST_None && Method->hasAttr<NoThrowAttr>()) 179 EST = EST_BasicNoexcept; 180 181 switch (EST) { 182 case EST_Unparsed: 183 case EST_Uninstantiated: 184 case EST_Unevaluated: 185 llvm_unreachable("should not see unresolved exception specs here"); 186 187 // If this function can throw any exceptions, make a note of that. 188 case EST_MSAny: 189 case EST_None: 190 // FIXME: Whichever we see last of MSAny and None determines our result. 191 // We should make a consistent, order-independent choice here. 192 ClearExceptions(); 193 ComputedEST = EST; 194 return; 195 case EST_NoexceptFalse: 196 ClearExceptions(); 197 ComputedEST = EST_None; 198 return; 199 // FIXME: If the call to this decl is using any of its default arguments, we 200 // need to search them for potentially-throwing calls. 201 // If this function has a basic noexcept, it doesn't affect the outcome. 202 case EST_BasicNoexcept: 203 case EST_NoexceptTrue: 204 case EST_NoThrow: 205 return; 206 // If we're still at noexcept(true) and there's a throw() callee, 207 // change to that specification. 208 case EST_DynamicNone: 209 if (ComputedEST == EST_BasicNoexcept) 210 ComputedEST = EST_DynamicNone; 211 return; 212 case EST_DependentNoexcept: 213 llvm_unreachable( 214 "should not generate implicit declarations for dependent cases"); 215 case EST_Dynamic: 216 break; 217 } 218 assert(EST == EST_Dynamic && "EST case not considered earlier."); 219 assert(ComputedEST != EST_None && 220 "Shouldn't collect exceptions when throw-all is guaranteed."); 221 ComputedEST = EST_Dynamic; 222 // Record the exceptions in this function's exception specification. 223 for (const auto &E : Proto->exceptions()) 224 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) 225 Exceptions.push_back(E); 226 } 227 228 void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) { 229 if (!S || ComputedEST == EST_MSAny) 230 return; 231 232 // FIXME: 233 // 234 // C++0x [except.spec]p14: 235 // [An] implicit exception-specification specifies the type-id T if and 236 // only if T is allowed by the exception-specification of a function directly 237 // invoked by f's implicit definition; f shall allow all exceptions if any 238 // function it directly invokes allows all exceptions, and f shall allow no 239 // exceptions if every function it directly invokes allows no exceptions. 240 // 241 // Note in particular that if an implicit exception-specification is generated 242 // for a function containing a throw-expression, that specification can still 243 // be noexcept(true). 244 // 245 // Note also that 'directly invoked' is not defined in the standard, and there 246 // is no indication that we should only consider potentially-evaluated calls. 247 // 248 // Ultimately we should implement the intent of the standard: the exception 249 // specification should be the set of exceptions which can be thrown by the 250 // implicit definition. For now, we assume that any non-nothrow expression can 251 // throw any exception. 252 253 if (Self->canThrow(S)) 254 ComputedEST = EST_None; 255 } 256 257 ExprResult Sema::ConvertParamDefaultArgument(const ParmVarDecl *Param, 258 Expr *Arg, 259 SourceLocation EqualLoc) { 260 if (RequireCompleteType(Param->getLocation(), Param->getType(), 261 diag::err_typecheck_decl_incomplete_type)) 262 return true; 263 264 // C++ [dcl.fct.default]p5 265 // A default argument expression is implicitly converted (clause 266 // 4) to the parameter type. The default argument expression has 267 // the same semantic constraints as the initializer expression in 268 // a declaration of a variable of the parameter type, using the 269 // copy-initialization semantics (8.5). 270 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 271 Param); 272 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), 273 EqualLoc); 274 InitializationSequence InitSeq(*this, Entity, Kind, Arg); 275 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg); 276 if (Result.isInvalid()) 277 return true; 278 Arg = Result.getAs<Expr>(); 279 280 CheckCompletedExpr(Arg, EqualLoc); 281 Arg = MaybeCreateExprWithCleanups(Arg); 282 283 return Arg; 284 } 285 286 void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 287 SourceLocation EqualLoc) { 288 // Add the default argument to the parameter 289 Param->setDefaultArg(Arg); 290 291 // We have already instantiated this parameter; provide each of the 292 // instantiations with the uninstantiated default argument. 293 UnparsedDefaultArgInstantiationsMap::iterator InstPos 294 = UnparsedDefaultArgInstantiations.find(Param); 295 if (InstPos != UnparsedDefaultArgInstantiations.end()) { 296 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) 297 InstPos->second[I]->setUninstantiatedDefaultArg(Arg); 298 299 // We're done tracking this parameter's instantiations. 300 UnparsedDefaultArgInstantiations.erase(InstPos); 301 } 302 } 303 304 /// ActOnParamDefaultArgument - Check whether the default argument 305 /// provided for a function parameter is well-formed. If so, attach it 306 /// to the parameter declaration. 307 void 308 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, 309 Expr *DefaultArg) { 310 if (!param || !DefaultArg) 311 return; 312 313 ParmVarDecl *Param = cast<ParmVarDecl>(param); 314 UnparsedDefaultArgLocs.erase(Param); 315 316 auto Fail = [&] { 317 Param->setInvalidDecl(); 318 Param->setDefaultArg(new (Context) OpaqueValueExpr( 319 EqualLoc, Param->getType().getNonReferenceType(), VK_RValue)); 320 }; 321 322 // Default arguments are only permitted in C++ 323 if (!getLangOpts().CPlusPlus) { 324 Diag(EqualLoc, diag::err_param_default_argument) 325 << DefaultArg->getSourceRange(); 326 return Fail(); 327 } 328 329 // Check for unexpanded parameter packs. 330 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) { 331 return Fail(); 332 } 333 334 // C++11 [dcl.fct.default]p3 335 // A default argument expression [...] shall not be specified for a 336 // parameter pack. 337 if (Param->isParameterPack()) { 338 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack) 339 << DefaultArg->getSourceRange(); 340 // Recover by discarding the default argument. 341 Param->setDefaultArg(nullptr); 342 return; 343 } 344 345 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc); 346 if (Result.isInvalid()) 347 return Fail(); 348 349 DefaultArg = Result.getAs<Expr>(); 350 351 // Check that the default argument is well-formed 352 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg); 353 if (DefaultArgChecker.Visit(DefaultArg)) 354 return Fail(); 355 356 SetParamDefaultArgument(Param, DefaultArg, EqualLoc); 357 } 358 359 /// ActOnParamUnparsedDefaultArgument - We've seen a default 360 /// argument for a function parameter, but we can't parse it yet 361 /// because we're inside a class definition. Note that this default 362 /// argument will be parsed later. 363 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, 364 SourceLocation EqualLoc, 365 SourceLocation ArgLoc) { 366 if (!param) 367 return; 368 369 ParmVarDecl *Param = cast<ParmVarDecl>(param); 370 Param->setUnparsedDefaultArg(); 371 UnparsedDefaultArgLocs[Param] = ArgLoc; 372 } 373 374 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of 375 /// the default argument for the parameter param failed. 376 void Sema::ActOnParamDefaultArgumentError(Decl *param, 377 SourceLocation EqualLoc) { 378 if (!param) 379 return; 380 381 ParmVarDecl *Param = cast<ParmVarDecl>(param); 382 Param->setInvalidDecl(); 383 UnparsedDefaultArgLocs.erase(Param); 384 Param->setDefaultArg(new(Context) 385 OpaqueValueExpr(EqualLoc, 386 Param->getType().getNonReferenceType(), 387 VK_RValue)); 388 } 389 390 /// CheckExtraCXXDefaultArguments - Check for any extra default 391 /// arguments in the declarator, which is not a function declaration 392 /// or definition and therefore is not permitted to have default 393 /// arguments. This routine should be invoked for every declarator 394 /// that is not a function declaration or definition. 395 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { 396 // C++ [dcl.fct.default]p3 397 // A default argument expression shall be specified only in the 398 // parameter-declaration-clause of a function declaration or in a 399 // template-parameter (14.1). It shall not be specified for a 400 // parameter pack. If it is specified in a 401 // parameter-declaration-clause, it shall not occur within a 402 // declarator or abstract-declarator of a parameter-declaration. 403 bool MightBeFunction = D.isFunctionDeclarationContext(); 404 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { 405 DeclaratorChunk &chunk = D.getTypeObject(i); 406 if (chunk.Kind == DeclaratorChunk::Function) { 407 if (MightBeFunction) { 408 // This is a function declaration. It can have default arguments, but 409 // keep looking in case its return type is a function type with default 410 // arguments. 411 MightBeFunction = false; 412 continue; 413 } 414 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; 415 ++argIdx) { 416 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param); 417 if (Param->hasUnparsedDefaultArg()) { 418 std::unique_ptr<CachedTokens> Toks = 419 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens); 420 SourceRange SR; 421 if (Toks->size() > 1) 422 SR = SourceRange((*Toks)[1].getLocation(), 423 Toks->back().getLocation()); 424 else 425 SR = UnparsedDefaultArgLocs[Param]; 426 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 427 << SR; 428 } else if (Param->getDefaultArg()) { 429 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 430 << Param->getDefaultArg()->getSourceRange(); 431 Param->setDefaultArg(nullptr); 432 } 433 } 434 } else if (chunk.Kind != DeclaratorChunk::Paren) { 435 MightBeFunction = false; 436 } 437 } 438 } 439 440 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { 441 return std::any_of(FD->param_begin(), FD->param_end(), [](ParmVarDecl *P) { 442 return P->hasDefaultArg() && !P->hasInheritedDefaultArg(); 443 }); 444 } 445 446 /// MergeCXXFunctionDecl - Merge two declarations of the same C++ 447 /// function, once we already know that they have the same 448 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an 449 /// error, false otherwise. 450 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, 451 Scope *S) { 452 bool Invalid = false; 453 454 // The declaration context corresponding to the scope is the semantic 455 // parent, unless this is a local function declaration, in which case 456 // it is that surrounding function. 457 DeclContext *ScopeDC = New->isLocalExternDecl() 458 ? New->getLexicalDeclContext() 459 : New->getDeclContext(); 460 461 // Find the previous declaration for the purpose of default arguments. 462 FunctionDecl *PrevForDefaultArgs = Old; 463 for (/**/; PrevForDefaultArgs; 464 // Don't bother looking back past the latest decl if this is a local 465 // extern declaration; nothing else could work. 466 PrevForDefaultArgs = New->isLocalExternDecl() 467 ? nullptr 468 : PrevForDefaultArgs->getPreviousDecl()) { 469 // Ignore hidden declarations. 470 if (!LookupResult::isVisible(*this, PrevForDefaultArgs)) 471 continue; 472 473 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) && 474 !New->isCXXClassMember()) { 475 // Ignore default arguments of old decl if they are not in 476 // the same scope and this is not an out-of-line definition of 477 // a member function. 478 continue; 479 } 480 481 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) { 482 // If only one of these is a local function declaration, then they are 483 // declared in different scopes, even though isDeclInScope may think 484 // they're in the same scope. (If both are local, the scope check is 485 // sufficient, and if neither is local, then they are in the same scope.) 486 continue; 487 } 488 489 // We found the right previous declaration. 490 break; 491 } 492 493 // C++ [dcl.fct.default]p4: 494 // For non-template functions, default arguments can be added in 495 // later declarations of a function in the same 496 // scope. Declarations in different scopes have completely 497 // distinct sets of default arguments. That is, declarations in 498 // inner scopes do not acquire default arguments from 499 // declarations in outer scopes, and vice versa. In a given 500 // function declaration, all parameters subsequent to a 501 // parameter with a default argument shall have default 502 // arguments supplied in this or previous declarations. A 503 // default argument shall not be redefined by a later 504 // declaration (not even to the same value). 505 // 506 // C++ [dcl.fct.default]p6: 507 // Except for member functions of class templates, the default arguments 508 // in a member function definition that appears outside of the class 509 // definition are added to the set of default arguments provided by the 510 // member function declaration in the class definition. 511 for (unsigned p = 0, NumParams = PrevForDefaultArgs 512 ? PrevForDefaultArgs->getNumParams() 513 : 0; 514 p < NumParams; ++p) { 515 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p); 516 ParmVarDecl *NewParam = New->getParamDecl(p); 517 518 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; 519 bool NewParamHasDfl = NewParam->hasDefaultArg(); 520 521 if (OldParamHasDfl && NewParamHasDfl) { 522 unsigned DiagDefaultParamID = 523 diag::err_param_default_argument_redefinition; 524 525 // MSVC accepts that default parameters be redefined for member functions 526 // of template class. The new default parameter's value is ignored. 527 Invalid = true; 528 if (getLangOpts().MicrosoftExt) { 529 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New); 530 if (MD && MD->getParent()->getDescribedClassTemplate()) { 531 // Merge the old default argument into the new parameter. 532 NewParam->setHasInheritedDefaultArg(); 533 if (OldParam->hasUninstantiatedDefaultArg()) 534 NewParam->setUninstantiatedDefaultArg( 535 OldParam->getUninstantiatedDefaultArg()); 536 else 537 NewParam->setDefaultArg(OldParam->getInit()); 538 DiagDefaultParamID = diag::ext_param_default_argument_redefinition; 539 Invalid = false; 540 } 541 } 542 543 // FIXME: If we knew where the '=' was, we could easily provide a fix-it 544 // hint here. Alternatively, we could walk the type-source information 545 // for NewParam to find the last source location in the type... but it 546 // isn't worth the effort right now. This is the kind of test case that 547 // is hard to get right: 548 // int f(int); 549 // void g(int (*fp)(int) = f); 550 // void g(int (*fp)(int) = &f); 551 Diag(NewParam->getLocation(), DiagDefaultParamID) 552 << NewParam->getDefaultArgRange(); 553 554 // Look for the function declaration where the default argument was 555 // actually written, which may be a declaration prior to Old. 556 for (auto Older = PrevForDefaultArgs; 557 OldParam->hasInheritedDefaultArg(); /**/) { 558 Older = Older->getPreviousDecl(); 559 OldParam = Older->getParamDecl(p); 560 } 561 562 Diag(OldParam->getLocation(), diag::note_previous_definition) 563 << OldParam->getDefaultArgRange(); 564 } else if (OldParamHasDfl) { 565 // Merge the old default argument into the new parameter unless the new 566 // function is a friend declaration in a template class. In the latter 567 // case the default arguments will be inherited when the friend 568 // declaration will be instantiated. 569 if (New->getFriendObjectKind() == Decl::FOK_None || 570 !New->getLexicalDeclContext()->isDependentContext()) { 571 // It's important to use getInit() here; getDefaultArg() 572 // strips off any top-level ExprWithCleanups. 573 NewParam->setHasInheritedDefaultArg(); 574 if (OldParam->hasUnparsedDefaultArg()) 575 NewParam->setUnparsedDefaultArg(); 576 else if (OldParam->hasUninstantiatedDefaultArg()) 577 NewParam->setUninstantiatedDefaultArg( 578 OldParam->getUninstantiatedDefaultArg()); 579 else 580 NewParam->setDefaultArg(OldParam->getInit()); 581 } 582 } else if (NewParamHasDfl) { 583 if (New->getDescribedFunctionTemplate()) { 584 // Paragraph 4, quoted above, only applies to non-template functions. 585 Diag(NewParam->getLocation(), 586 diag::err_param_default_argument_template_redecl) 587 << NewParam->getDefaultArgRange(); 588 Diag(PrevForDefaultArgs->getLocation(), 589 diag::note_template_prev_declaration) 590 << false; 591 } else if (New->getTemplateSpecializationKind() 592 != TSK_ImplicitInstantiation && 593 New->getTemplateSpecializationKind() != TSK_Undeclared) { 594 // C++ [temp.expr.spec]p21: 595 // Default function arguments shall not be specified in a declaration 596 // or a definition for one of the following explicit specializations: 597 // - the explicit specialization of a function template; 598 // - the explicit specialization of a member function template; 599 // - the explicit specialization of a member function of a class 600 // template where the class template specialization to which the 601 // member function specialization belongs is implicitly 602 // instantiated. 603 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) 604 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) 605 << New->getDeclName() 606 << NewParam->getDefaultArgRange(); 607 } else if (New->getDeclContext()->isDependentContext()) { 608 // C++ [dcl.fct.default]p6 (DR217): 609 // Default arguments for a member function of a class template shall 610 // be specified on the initial declaration of the member function 611 // within the class template. 612 // 613 // Reading the tea leaves a bit in DR217 and its reference to DR205 614 // leads me to the conclusion that one cannot add default function 615 // arguments for an out-of-line definition of a member function of a 616 // dependent type. 617 int WhichKind = 2; 618 if (CXXRecordDecl *Record 619 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { 620 if (Record->getDescribedClassTemplate()) 621 WhichKind = 0; 622 else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) 623 WhichKind = 1; 624 else 625 WhichKind = 2; 626 } 627 628 Diag(NewParam->getLocation(), 629 diag::err_param_default_argument_member_template_redecl) 630 << WhichKind 631 << NewParam->getDefaultArgRange(); 632 } 633 } 634 } 635 636 // DR1344: If a default argument is added outside a class definition and that 637 // default argument makes the function a special member function, the program 638 // is ill-formed. This can only happen for constructors. 639 if (isa<CXXConstructorDecl>(New) && 640 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { 641 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)), 642 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old)); 643 if (NewSM != OldSM) { 644 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); 645 assert(NewParam->hasDefaultArg()); 646 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) 647 << NewParam->getDefaultArgRange() << NewSM; 648 Diag(Old->getLocation(), diag::note_previous_declaration); 649 } 650 } 651 652 const FunctionDecl *Def; 653 // C++11 [dcl.constexpr]p1: If any declaration of a function or function 654 // template has a constexpr specifier then all its declarations shall 655 // contain the constexpr specifier. 656 if (New->getConstexprKind() != Old->getConstexprKind()) { 657 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) 658 << New << New->getConstexprKind() << Old->getConstexprKind(); 659 Diag(Old->getLocation(), diag::note_previous_declaration); 660 Invalid = true; 661 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && 662 Old->isDefined(Def) && 663 // If a friend function is inlined but does not have 'inline' 664 // specifier, it is a definition. Do not report attribute conflict 665 // in this case, redefinition will be diagnosed later. 666 (New->isInlineSpecified() || 667 New->getFriendObjectKind() == Decl::FOK_None)) { 668 // C++11 [dcl.fcn.spec]p4: 669 // If the definition of a function appears in a translation unit before its 670 // first declaration as inline, the program is ill-formed. 671 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 672 Diag(Def->getLocation(), diag::note_previous_definition); 673 Invalid = true; 674 } 675 676 // C++17 [temp.deduct.guide]p3: 677 // Two deduction guide declarations in the same translation unit 678 // for the same class template shall not have equivalent 679 // parameter-declaration-clauses. 680 if (isa<CXXDeductionGuideDecl>(New) && 681 !New->isFunctionTemplateSpecialization() && isVisible(Old)) { 682 Diag(New->getLocation(), diag::err_deduction_guide_redeclared); 683 Diag(Old->getLocation(), diag::note_previous_declaration); 684 } 685 686 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default 687 // argument expression, that declaration shall be a definition and shall be 688 // the only declaration of the function or function template in the 689 // translation unit. 690 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && 691 functionDeclHasDefaultArgument(Old)) { 692 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 693 Diag(Old->getLocation(), diag::note_previous_declaration); 694 Invalid = true; 695 } 696 697 return Invalid; 698 } 699 700 NamedDecl * 701 Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, 702 MultiTemplateParamsArg TemplateParamLists) { 703 assert(D.isDecompositionDeclarator()); 704 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); 705 706 // The syntax only allows a decomposition declarator as a simple-declaration, 707 // a for-range-declaration, or a condition in Clang, but we parse it in more 708 // cases than that. 709 if (!D.mayHaveDecompositionDeclarator()) { 710 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) 711 << Decomp.getSourceRange(); 712 return nullptr; 713 } 714 715 if (!TemplateParamLists.empty()) { 716 // FIXME: There's no rule against this, but there are also no rules that 717 // would actually make it usable, so we reject it for now. 718 Diag(TemplateParamLists.front()->getTemplateLoc(), 719 diag::err_decomp_decl_template); 720 return nullptr; 721 } 722 723 Diag(Decomp.getLSquareLoc(), 724 !getLangOpts().CPlusPlus17 725 ? diag::ext_decomp_decl 726 : D.getContext() == DeclaratorContext::ConditionContext 727 ? diag::ext_decomp_decl_cond 728 : diag::warn_cxx14_compat_decomp_decl) 729 << Decomp.getSourceRange(); 730 731 // The semantic context is always just the current context. 732 DeclContext *const DC = CurContext; 733 734 // C++17 [dcl.dcl]/8: 735 // The decl-specifier-seq shall contain only the type-specifier auto 736 // and cv-qualifiers. 737 // C++2a [dcl.dcl]/8: 738 // If decl-specifier-seq contains any decl-specifier other than static, 739 // thread_local, auto, or cv-qualifiers, the program is ill-formed. 740 auto &DS = D.getDeclSpec(); 741 { 742 SmallVector<StringRef, 8> BadSpecifiers; 743 SmallVector<SourceLocation, 8> BadSpecifierLocs; 744 SmallVector<StringRef, 8> CPlusPlus20Specifiers; 745 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; 746 if (auto SCS = DS.getStorageClassSpec()) { 747 if (SCS == DeclSpec::SCS_static) { 748 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS)); 749 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 750 } else { 751 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS)); 752 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 753 } 754 } 755 if (auto TSCS = DS.getThreadStorageClassSpec()) { 756 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS)); 757 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc()); 758 } 759 if (DS.hasConstexprSpecifier()) { 760 BadSpecifiers.push_back( 761 DeclSpec::getSpecifierName(DS.getConstexprSpecifier())); 762 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc()); 763 } 764 if (DS.isInlineSpecified()) { 765 BadSpecifiers.push_back("inline"); 766 BadSpecifierLocs.push_back(DS.getInlineSpecLoc()); 767 } 768 if (!BadSpecifiers.empty()) { 769 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); 770 Err << (int)BadSpecifiers.size() 771 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " "); 772 // Don't add FixItHints to remove the specifiers; we do still respect 773 // them when building the underlying variable. 774 for (auto Loc : BadSpecifierLocs) 775 Err << SourceRange(Loc, Loc); 776 } else if (!CPlusPlus20Specifiers.empty()) { 777 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(), 778 getLangOpts().CPlusPlus20 779 ? diag::warn_cxx17_compat_decomp_decl_spec 780 : diag::ext_decomp_decl_spec); 781 Warn << (int)CPlusPlus20Specifiers.size() 782 << llvm::join(CPlusPlus20Specifiers.begin(), 783 CPlusPlus20Specifiers.end(), " "); 784 for (auto Loc : CPlusPlus20SpecifierLocs) 785 Warn << SourceRange(Loc, Loc); 786 } 787 // We can't recover from it being declared as a typedef. 788 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 789 return nullptr; 790 } 791 792 // C++2a [dcl.struct.bind]p1: 793 // A cv that includes volatile is deprecated 794 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && 795 getLangOpts().CPlusPlus20) 796 Diag(DS.getVolatileSpecLoc(), 797 diag::warn_deprecated_volatile_structured_binding); 798 799 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 800 QualType R = TInfo->getType(); 801 802 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 803 UPPC_DeclarationType)) 804 D.setInvalidType(); 805 806 // The syntax only allows a single ref-qualifier prior to the decomposition 807 // declarator. No other declarator chunks are permitted. Also check the type 808 // specifier here. 809 if (DS.getTypeSpecType() != DeclSpec::TST_auto || 810 D.hasGroupingParens() || D.getNumTypeObjects() > 1 || 811 (D.getNumTypeObjects() == 1 && 812 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) { 813 Diag(Decomp.getLSquareLoc(), 814 (D.hasGroupingParens() || 815 (D.getNumTypeObjects() && 816 D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) 817 ? diag::err_decomp_decl_parens 818 : diag::err_decomp_decl_type) 819 << R; 820 821 // In most cases, there's no actual problem with an explicitly-specified 822 // type, but a function type won't work here, and ActOnVariableDeclarator 823 // shouldn't be called for such a type. 824 if (R->isFunctionType()) 825 D.setInvalidType(); 826 } 827 828 // Build the BindingDecls. 829 SmallVector<BindingDecl*, 8> Bindings; 830 831 // Build the BindingDecls. 832 for (auto &B : D.getDecompositionDeclarator().bindings()) { 833 // Check for name conflicts. 834 DeclarationNameInfo NameInfo(B.Name, B.NameLoc); 835 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 836 ForVisibleRedeclaration); 837 LookupName(Previous, S, 838 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit()); 839 840 // It's not permitted to shadow a template parameter name. 841 if (Previous.isSingleResult() && 842 Previous.getFoundDecl()->isTemplateParameter()) { 843 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 844 Previous.getFoundDecl()); 845 Previous.clear(); 846 } 847 848 bool ConsiderLinkage = DC->isFunctionOrMethod() && 849 DS.getStorageClassSpec() == DeclSpec::SCS_extern; 850 FilterLookupForScope(Previous, DC, S, ConsiderLinkage, 851 /*AllowInlineNamespace*/false); 852 if (!Previous.empty()) { 853 auto *Old = Previous.getRepresentativeDecl(); 854 Diag(B.NameLoc, diag::err_redefinition) << B.Name; 855 Diag(Old->getLocation(), diag::note_previous_definition); 856 } 857 858 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name); 859 PushOnScopeChains(BD, S, true); 860 Bindings.push_back(BD); 861 ParsingInitForAutoVars.insert(BD); 862 } 863 864 // There are no prior lookup results for the variable itself, because it 865 // is unnamed. 866 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, 867 Decomp.getLSquareLoc()); 868 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 869 ForVisibleRedeclaration); 870 871 // Build the variable that holds the non-decomposed object. 872 bool AddToScope = true; 873 NamedDecl *New = 874 ActOnVariableDeclarator(S, D, DC, TInfo, Previous, 875 MultiTemplateParamsArg(), AddToScope, Bindings); 876 if (AddToScope) { 877 S->AddDecl(New); 878 CurContext->addHiddenDecl(New); 879 } 880 881 if (isInOpenMPDeclareTargetContext()) 882 checkDeclIsAllowedInOpenMPTarget(nullptr, New); 883 884 return New; 885 } 886 887 static bool checkSimpleDecomposition( 888 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, 889 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType, 890 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { 891 if ((int64_t)Bindings.size() != NumElems) { 892 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 893 << DecompType << (unsigned)Bindings.size() << NumElems.toString(10) 894 << (NumElems < Bindings.size()); 895 return true; 896 } 897 898 unsigned I = 0; 899 for (auto *B : Bindings) { 900 SourceLocation Loc = B->getLocation(); 901 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 902 if (E.isInvalid()) 903 return true; 904 E = GetInit(Loc, E.get(), I++); 905 if (E.isInvalid()) 906 return true; 907 B->setBinding(ElemType, E.get()); 908 } 909 910 return false; 911 } 912 913 static bool checkArrayLikeDecomposition(Sema &S, 914 ArrayRef<BindingDecl *> Bindings, 915 ValueDecl *Src, QualType DecompType, 916 const llvm::APSInt &NumElems, 917 QualType ElemType) { 918 return checkSimpleDecomposition( 919 S, Bindings, Src, DecompType, NumElems, ElemType, 920 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 921 ExprResult E = S.ActOnIntegerConstant(Loc, I); 922 if (E.isInvalid()) 923 return ExprError(); 924 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc); 925 }); 926 } 927 928 static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 929 ValueDecl *Src, QualType DecompType, 930 const ConstantArrayType *CAT) { 931 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, 932 llvm::APSInt(CAT->getSize()), 933 CAT->getElementType()); 934 } 935 936 static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 937 ValueDecl *Src, QualType DecompType, 938 const VectorType *VT) { 939 return checkArrayLikeDecomposition( 940 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()), 941 S.Context.getQualifiedType(VT->getElementType(), 942 DecompType.getQualifiers())); 943 } 944 945 static bool checkComplexDecomposition(Sema &S, 946 ArrayRef<BindingDecl *> Bindings, 947 ValueDecl *Src, QualType DecompType, 948 const ComplexType *CT) { 949 return checkSimpleDecomposition( 950 S, Bindings, Src, DecompType, llvm::APSInt::get(2), 951 S.Context.getQualifiedType(CT->getElementType(), 952 DecompType.getQualifiers()), 953 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 954 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base); 955 }); 956 } 957 958 static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, 959 TemplateArgumentListInfo &Args) { 960 SmallString<128> SS; 961 llvm::raw_svector_ostream OS(SS); 962 bool First = true; 963 for (auto &Arg : Args.arguments()) { 964 if (!First) 965 OS << ", "; 966 Arg.getArgument().print(PrintingPolicy, OS); 967 First = false; 968 } 969 return std::string(OS.str()); 970 } 971 972 static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, 973 SourceLocation Loc, StringRef Trait, 974 TemplateArgumentListInfo &Args, 975 unsigned DiagID) { 976 auto DiagnoseMissing = [&] { 977 if (DiagID) 978 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(), 979 Args); 980 return true; 981 }; 982 983 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. 984 NamespaceDecl *Std = S.getStdNamespace(); 985 if (!Std) 986 return DiagnoseMissing(); 987 988 // Look up the trait itself, within namespace std. We can diagnose various 989 // problems with this lookup even if we've been asked to not diagnose a 990 // missing specialization, because this can only fail if the user has been 991 // declaring their own names in namespace std or we don't support the 992 // standard library implementation in use. 993 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait), 994 Loc, Sema::LookupOrdinaryName); 995 if (!S.LookupQualifiedName(Result, Std)) 996 return DiagnoseMissing(); 997 if (Result.isAmbiguous()) 998 return true; 999 1000 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); 1001 if (!TraitTD) { 1002 Result.suppressDiagnostics(); 1003 NamedDecl *Found = *Result.begin(); 1004 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; 1005 S.Diag(Found->getLocation(), diag::note_declared_at); 1006 return true; 1007 } 1008 1009 // Build the template-id. 1010 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args); 1011 if (TraitTy.isNull()) 1012 return true; 1013 if (!S.isCompleteType(Loc, TraitTy)) { 1014 if (DiagID) 1015 S.RequireCompleteType( 1016 Loc, TraitTy, DiagID, 1017 printTemplateArgs(S.Context.getPrintingPolicy(), Args)); 1018 return true; 1019 } 1020 1021 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); 1022 assert(RD && "specialization of class template is not a class?"); 1023 1024 // Look up the member of the trait type. 1025 S.LookupQualifiedName(TraitMemberLookup, RD); 1026 return TraitMemberLookup.isAmbiguous(); 1027 } 1028 1029 static TemplateArgumentLoc 1030 getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, 1031 uint64_t I) { 1032 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T); 1033 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc); 1034 } 1035 1036 static TemplateArgumentLoc 1037 getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { 1038 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc); 1039 } 1040 1041 namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } 1042 1043 static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, 1044 llvm::APSInt &Size) { 1045 EnterExpressionEvaluationContext ContextRAII( 1046 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1047 1048 DeclarationName Value = S.PP.getIdentifierInfo("value"); 1049 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); 1050 1051 // Form template argument list for tuple_size<T>. 1052 TemplateArgumentListInfo Args(Loc, Loc); 1053 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1054 1055 // If there's no tuple_size specialization or the lookup of 'value' is empty, 1056 // it's not tuple-like. 1057 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) || 1058 R.empty()) 1059 return IsTupleLike::NotTupleLike; 1060 1061 // If we get this far, we've committed to the tuple interpretation, but 1062 // we can still fail if there actually isn't a usable ::value. 1063 1064 struct ICEDiagnoser : Sema::VerifyICEDiagnoser { 1065 LookupResult &R; 1066 TemplateArgumentListInfo &Args; 1067 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) 1068 : R(R), Args(Args) {} 1069 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override { 1070 S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) 1071 << printTemplateArgs(S.Context.getPrintingPolicy(), Args); 1072 } 1073 } Diagnoser(R, Args); 1074 1075 ExprResult E = 1076 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false); 1077 if (E.isInvalid()) 1078 return IsTupleLike::Error; 1079 1080 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false); 1081 if (E.isInvalid()) 1082 return IsTupleLike::Error; 1083 1084 return IsTupleLike::TupleLike; 1085 } 1086 1087 /// \return std::tuple_element<I, T>::type. 1088 static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, 1089 unsigned I, QualType T) { 1090 // Form template argument list for tuple_element<I, T>. 1091 TemplateArgumentListInfo Args(Loc, Loc); 1092 Args.addArgument( 1093 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1094 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1095 1096 DeclarationName TypeDN = S.PP.getIdentifierInfo("type"); 1097 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); 1098 if (lookupStdTypeTraitMember( 1099 S, R, Loc, "tuple_element", Args, 1100 diag::err_decomp_decl_std_tuple_element_not_specialized)) 1101 return QualType(); 1102 1103 auto *TD = R.getAsSingle<TypeDecl>(); 1104 if (!TD) { 1105 R.suppressDiagnostics(); 1106 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) 1107 << printTemplateArgs(S.Context.getPrintingPolicy(), Args); 1108 if (!R.empty()) 1109 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); 1110 return QualType(); 1111 } 1112 1113 return S.Context.getTypeDeclType(TD); 1114 } 1115 1116 namespace { 1117 struct InitializingBinding { 1118 Sema &S; 1119 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) { 1120 Sema::CodeSynthesisContext Ctx; 1121 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding; 1122 Ctx.PointOfInstantiation = BD->getLocation(); 1123 Ctx.Entity = BD; 1124 S.pushCodeSynthesisContext(Ctx); 1125 } 1126 ~InitializingBinding() { 1127 S.popCodeSynthesisContext(); 1128 } 1129 }; 1130 } 1131 1132 static bool checkTupleLikeDecomposition(Sema &S, 1133 ArrayRef<BindingDecl *> Bindings, 1134 VarDecl *Src, QualType DecompType, 1135 const llvm::APSInt &TupleSize) { 1136 if ((int64_t)Bindings.size() != TupleSize) { 1137 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1138 << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10) 1139 << (TupleSize < Bindings.size()); 1140 return true; 1141 } 1142 1143 if (Bindings.empty()) 1144 return false; 1145 1146 DeclarationName GetDN = S.PP.getIdentifierInfo("get"); 1147 1148 // [dcl.decomp]p3: 1149 // The unqualified-id get is looked up in the scope of E by class member 1150 // access lookup ... 1151 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); 1152 bool UseMemberGet = false; 1153 if (S.isCompleteType(Src->getLocation(), DecompType)) { 1154 if (auto *RD = DecompType->getAsCXXRecordDecl()) 1155 S.LookupQualifiedName(MemberGet, RD); 1156 if (MemberGet.isAmbiguous()) 1157 return true; 1158 // ... and if that finds at least one declaration that is a function 1159 // template whose first template parameter is a non-type parameter ... 1160 for (NamedDecl *D : MemberGet) { 1161 if (FunctionTemplateDecl *FTD = 1162 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { 1163 TemplateParameterList *TPL = FTD->getTemplateParameters(); 1164 if (TPL->size() != 0 && 1165 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { 1166 // ... the initializer is e.get<i>(). 1167 UseMemberGet = true; 1168 break; 1169 } 1170 } 1171 } 1172 } 1173 1174 unsigned I = 0; 1175 for (auto *B : Bindings) { 1176 InitializingBinding InitContext(S, B); 1177 SourceLocation Loc = B->getLocation(); 1178 1179 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1180 if (E.isInvalid()) 1181 return true; 1182 1183 // e is an lvalue if the type of the entity is an lvalue reference and 1184 // an xvalue otherwise 1185 if (!Src->getType()->isLValueReferenceType()) 1186 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp, 1187 E.get(), nullptr, VK_XValue); 1188 1189 TemplateArgumentListInfo Args(Loc, Loc); 1190 Args.addArgument( 1191 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1192 1193 if (UseMemberGet) { 1194 // if [lookup of member get] finds at least one declaration, the 1195 // initializer is e.get<i-1>(). 1196 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false, 1197 CXXScopeSpec(), SourceLocation(), nullptr, 1198 MemberGet, &Args, nullptr); 1199 if (E.isInvalid()) 1200 return true; 1201 1202 E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc); 1203 } else { 1204 // Otherwise, the initializer is get<i-1>(e), where get is looked up 1205 // in the associated namespaces. 1206 Expr *Get = UnresolvedLookupExpr::Create( 1207 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(), 1208 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args, 1209 UnresolvedSetIterator(), UnresolvedSetIterator()); 1210 1211 Expr *Arg = E.get(); 1212 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc); 1213 } 1214 if (E.isInvalid()) 1215 return true; 1216 Expr *Init = E.get(); 1217 1218 // Given the type T designated by std::tuple_element<i - 1, E>::type, 1219 QualType T = getTupleLikeElementType(S, Loc, I, DecompType); 1220 if (T.isNull()) 1221 return true; 1222 1223 // each vi is a variable of type "reference to T" initialized with the 1224 // initializer, where the reference is an lvalue reference if the 1225 // initializer is an lvalue and an rvalue reference otherwise 1226 QualType RefType = 1227 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName()); 1228 if (RefType.isNull()) 1229 return true; 1230 auto *RefVD = VarDecl::Create( 1231 S.Context, Src->getDeclContext(), Loc, Loc, 1232 B->getDeclName().getAsIdentifierInfo(), RefType, 1233 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass()); 1234 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); 1235 RefVD->setTSCSpec(Src->getTSCSpec()); 1236 RefVD->setImplicit(); 1237 if (Src->isInlineSpecified()) 1238 RefVD->setInlineSpecified(); 1239 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); 1240 1241 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD); 1242 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc); 1243 InitializationSequence Seq(S, Entity, Kind, Init); 1244 E = Seq.Perform(S, Entity, Kind, Init); 1245 if (E.isInvalid()) 1246 return true; 1247 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false); 1248 if (E.isInvalid()) 1249 return true; 1250 RefVD->setInit(E.get()); 1251 if (!E.get()->isValueDependent()) 1252 RefVD->checkInitIsICE(); 1253 1254 E = S.BuildDeclarationNameExpr(CXXScopeSpec(), 1255 DeclarationNameInfo(B->getDeclName(), Loc), 1256 RefVD); 1257 if (E.isInvalid()) 1258 return true; 1259 1260 B->setBinding(T, E.get()); 1261 I++; 1262 } 1263 1264 return false; 1265 } 1266 1267 /// Find the base class to decompose in a built-in decomposition of a class type. 1268 /// This base class search is, unfortunately, not quite like any other that we 1269 /// perform anywhere else in C++. 1270 static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, 1271 const CXXRecordDecl *RD, 1272 CXXCastPath &BasePath) { 1273 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, 1274 CXXBasePath &Path) { 1275 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); 1276 }; 1277 1278 const CXXRecordDecl *ClassWithFields = nullptr; 1279 AccessSpecifier AS = AS_public; 1280 if (RD->hasDirectFields()) 1281 // [dcl.decomp]p4: 1282 // Otherwise, all of E's non-static data members shall be public direct 1283 // members of E ... 1284 ClassWithFields = RD; 1285 else { 1286 // ... or of ... 1287 CXXBasePaths Paths; 1288 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); 1289 if (!RD->lookupInBases(BaseHasFields, Paths)) { 1290 // If no classes have fields, just decompose RD itself. (This will work 1291 // if and only if zero bindings were provided.) 1292 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); 1293 } 1294 1295 CXXBasePath *BestPath = nullptr; 1296 for (auto &P : Paths) { 1297 if (!BestPath) 1298 BestPath = &P; 1299 else if (!S.Context.hasSameType(P.back().Base->getType(), 1300 BestPath->back().Base->getType())) { 1301 // ... the same ... 1302 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1303 << false << RD << BestPath->back().Base->getType() 1304 << P.back().Base->getType(); 1305 return DeclAccessPair(); 1306 } else if (P.Access < BestPath->Access) { 1307 BestPath = &P; 1308 } 1309 } 1310 1311 // ... unambiguous ... 1312 QualType BaseType = BestPath->back().Base->getType(); 1313 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) { 1314 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) 1315 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); 1316 return DeclAccessPair(); 1317 } 1318 1319 // ... [accessible, implied by other rules] base class of E. 1320 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), 1321 *BestPath, diag::err_decomp_decl_inaccessible_base); 1322 AS = BestPath->Access; 1323 1324 ClassWithFields = BaseType->getAsCXXRecordDecl(); 1325 S.BuildBasePathArray(Paths, BasePath); 1326 } 1327 1328 // The above search did not check whether the selected class itself has base 1329 // classes with fields, so check that now. 1330 CXXBasePaths Paths; 1331 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) { 1332 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1333 << (ClassWithFields == RD) << RD << ClassWithFields 1334 << Paths.front().back().Base->getType(); 1335 return DeclAccessPair(); 1336 } 1337 1338 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); 1339 } 1340 1341 static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 1342 ValueDecl *Src, QualType DecompType, 1343 const CXXRecordDecl *OrigRD) { 1344 if (S.RequireCompleteType(Src->getLocation(), DecompType, 1345 diag::err_incomplete_type)) 1346 return true; 1347 1348 CXXCastPath BasePath; 1349 DeclAccessPair BasePair = 1350 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); 1351 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl()); 1352 if (!RD) 1353 return true; 1354 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD), 1355 DecompType.getQualifiers()); 1356 1357 auto DiagnoseBadNumberOfBindings = [&]() -> bool { 1358 unsigned NumFields = 1359 std::count_if(RD->field_begin(), RD->field_end(), 1360 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); }); 1361 assert(Bindings.size() != NumFields); 1362 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1363 << DecompType << (unsigned)Bindings.size() << NumFields 1364 << (NumFields < Bindings.size()); 1365 return true; 1366 }; 1367 1368 // all of E's non-static data members shall be [...] well-formed 1369 // when named as e.name in the context of the structured binding, 1370 // E shall not have an anonymous union member, ... 1371 unsigned I = 0; 1372 for (auto *FD : RD->fields()) { 1373 if (FD->isUnnamedBitfield()) 1374 continue; 1375 1376 if (FD->isAnonymousStructOrUnion()) { 1377 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member) 1378 << DecompType << FD->getType()->isUnionType(); 1379 S.Diag(FD->getLocation(), diag::note_declared_at); 1380 return true; 1381 } 1382 1383 // We have a real field to bind. 1384 if (I >= Bindings.size()) 1385 return DiagnoseBadNumberOfBindings(); 1386 auto *B = Bindings[I++]; 1387 SourceLocation Loc = B->getLocation(); 1388 1389 // The field must be accessible in the context of the structured binding. 1390 // We already checked that the base class is accessible. 1391 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the 1392 // const_cast here. 1393 S.CheckStructuredBindingMemberAccess( 1394 Loc, const_cast<CXXRecordDecl *>(OrigRD), 1395 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( 1396 BasePair.getAccess(), FD->getAccess()))); 1397 1398 // Initialize the binding to Src.FD. 1399 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1400 if (E.isInvalid()) 1401 return true; 1402 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, 1403 VK_LValue, &BasePath); 1404 if (E.isInvalid()) 1405 return true; 1406 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, 1407 CXXScopeSpec(), FD, 1408 DeclAccessPair::make(FD, FD->getAccess()), 1409 DeclarationNameInfo(FD->getDeclName(), Loc)); 1410 if (E.isInvalid()) 1411 return true; 1412 1413 // If the type of the member is T, the referenced type is cv T, where cv is 1414 // the cv-qualification of the decomposition expression. 1415 // 1416 // FIXME: We resolve a defect here: if the field is mutable, we do not add 1417 // 'const' to the type of the field. 1418 Qualifiers Q = DecompType.getQualifiers(); 1419 if (FD->isMutable()) 1420 Q.removeConst(); 1421 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); 1422 } 1423 1424 if (I != Bindings.size()) 1425 return DiagnoseBadNumberOfBindings(); 1426 1427 return false; 1428 } 1429 1430 void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { 1431 QualType DecompType = DD->getType(); 1432 1433 // If the type of the decomposition is dependent, then so is the type of 1434 // each binding. 1435 if (DecompType->isDependentType()) { 1436 for (auto *B : DD->bindings()) 1437 B->setType(Context.DependentTy); 1438 return; 1439 } 1440 1441 DecompType = DecompType.getNonReferenceType(); 1442 ArrayRef<BindingDecl*> Bindings = DD->bindings(); 1443 1444 // C++1z [dcl.decomp]/2: 1445 // If E is an array type [...] 1446 // As an extension, we also support decomposition of built-in complex and 1447 // vector types. 1448 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { 1449 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) 1450 DD->setInvalidDecl(); 1451 return; 1452 } 1453 if (auto *VT = DecompType->getAs<VectorType>()) { 1454 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) 1455 DD->setInvalidDecl(); 1456 return; 1457 } 1458 if (auto *CT = DecompType->getAs<ComplexType>()) { 1459 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) 1460 DD->setInvalidDecl(); 1461 return; 1462 } 1463 1464 // C++1z [dcl.decomp]/3: 1465 // if the expression std::tuple_size<E>::value is a well-formed integral 1466 // constant expression, [...] 1467 llvm::APSInt TupleSize(32); 1468 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { 1469 case IsTupleLike::Error: 1470 DD->setInvalidDecl(); 1471 return; 1472 1473 case IsTupleLike::TupleLike: 1474 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) 1475 DD->setInvalidDecl(); 1476 return; 1477 1478 case IsTupleLike::NotTupleLike: 1479 break; 1480 } 1481 1482 // C++1z [dcl.dcl]/8: 1483 // [E shall be of array or non-union class type] 1484 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); 1485 if (!RD || RD->isUnion()) { 1486 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) 1487 << DD << !RD << DecompType; 1488 DD->setInvalidDecl(); 1489 return; 1490 } 1491 1492 // C++1z [dcl.decomp]/4: 1493 // all of E's non-static data members shall be [...] direct members of 1494 // E or of the same unambiguous public base class of E, ... 1495 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) 1496 DD->setInvalidDecl(); 1497 } 1498 1499 /// Merge the exception specifications of two variable declarations. 1500 /// 1501 /// This is called when there's a redeclaration of a VarDecl. The function 1502 /// checks if the redeclaration might have an exception specification and 1503 /// validates compatibility and merges the specs if necessary. 1504 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { 1505 // Shortcut if exceptions are disabled. 1506 if (!getLangOpts().CXXExceptions) 1507 return; 1508 1509 assert(Context.hasSameType(New->getType(), Old->getType()) && 1510 "Should only be called if types are otherwise the same."); 1511 1512 QualType NewType = New->getType(); 1513 QualType OldType = Old->getType(); 1514 1515 // We're only interested in pointers and references to functions, as well 1516 // as pointers to member functions. 1517 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { 1518 NewType = R->getPointeeType(); 1519 OldType = OldType->castAs<ReferenceType>()->getPointeeType(); 1520 } else if (const PointerType *P = NewType->getAs<PointerType>()) { 1521 NewType = P->getPointeeType(); 1522 OldType = OldType->castAs<PointerType>()->getPointeeType(); 1523 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { 1524 NewType = M->getPointeeType(); 1525 OldType = OldType->castAs<MemberPointerType>()->getPointeeType(); 1526 } 1527 1528 if (!NewType->isFunctionProtoType()) 1529 return; 1530 1531 // There's lots of special cases for functions. For function pointers, system 1532 // libraries are hopefully not as broken so that we don't need these 1533 // workarounds. 1534 if (CheckEquivalentExceptionSpec( 1535 OldType->getAs<FunctionProtoType>(), Old->getLocation(), 1536 NewType->getAs<FunctionProtoType>(), New->getLocation())) { 1537 New->setInvalidDecl(); 1538 } 1539 } 1540 1541 /// CheckCXXDefaultArguments - Verify that the default arguments for a 1542 /// function declaration are well-formed according to C++ 1543 /// [dcl.fct.default]. 1544 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { 1545 unsigned NumParams = FD->getNumParams(); 1546 unsigned ParamIdx = 0; 1547 1548 // This checking doesn't make sense for explicit specializations; their 1549 // default arguments are determined by the declaration we're specializing, 1550 // not by FD. 1551 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 1552 return; 1553 if (auto *FTD = FD->getDescribedFunctionTemplate()) 1554 if (FTD->isMemberSpecialization()) 1555 return; 1556 1557 // Find first parameter with a default argument 1558 for (; ParamIdx < NumParams; ++ParamIdx) { 1559 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1560 if (Param->hasDefaultArg()) 1561 break; 1562 } 1563 1564 // C++20 [dcl.fct.default]p4: 1565 // In a given function declaration, each parameter subsequent to a parameter 1566 // with a default argument shall have a default argument supplied in this or 1567 // a previous declaration, unless the parameter was expanded from a 1568 // parameter pack, or shall be a function parameter pack. 1569 for (; ParamIdx < NumParams; ++ParamIdx) { 1570 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1571 if (!Param->hasDefaultArg() && !Param->isParameterPack() && 1572 !(CurrentInstantiationScope && 1573 CurrentInstantiationScope->isLocalPackExpansion(Param))) { 1574 if (Param->isInvalidDecl()) 1575 /* We already complained about this parameter. */; 1576 else if (Param->getIdentifier()) 1577 Diag(Param->getLocation(), 1578 diag::err_param_default_argument_missing_name) 1579 << Param->getIdentifier(); 1580 else 1581 Diag(Param->getLocation(), 1582 diag::err_param_default_argument_missing); 1583 } 1584 } 1585 } 1586 1587 /// Check that the given type is a literal type. Issue a diagnostic if not, 1588 /// if Kind is Diagnose. 1589 /// \return \c true if a problem has been found (and optionally diagnosed). 1590 template <typename... Ts> 1591 static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, 1592 SourceLocation Loc, QualType T, unsigned DiagID, 1593 Ts &&...DiagArgs) { 1594 if (T->isDependentType()) 1595 return false; 1596 1597 switch (Kind) { 1598 case Sema::CheckConstexprKind::Diagnose: 1599 return SemaRef.RequireLiteralType(Loc, T, DiagID, 1600 std::forward<Ts>(DiagArgs)...); 1601 1602 case Sema::CheckConstexprKind::CheckValid: 1603 return !T->isLiteralType(SemaRef.Context); 1604 } 1605 1606 llvm_unreachable("unknown CheckConstexprKind"); 1607 } 1608 1609 /// Determine whether a destructor cannot be constexpr due to 1610 static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, 1611 const CXXDestructorDecl *DD, 1612 Sema::CheckConstexprKind Kind) { 1613 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { 1614 const CXXRecordDecl *RD = 1615 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1616 if (!RD || RD->hasConstexprDestructor()) 1617 return true; 1618 1619 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1620 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) 1621 << DD->getConstexprKind() << !FD 1622 << (FD ? FD->getDeclName() : DeclarationName()) << T; 1623 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) 1624 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; 1625 } 1626 return false; 1627 }; 1628 1629 const CXXRecordDecl *RD = DD->getParent(); 1630 for (const CXXBaseSpecifier &B : RD->bases()) 1631 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) 1632 return false; 1633 for (const FieldDecl *FD : RD->fields()) 1634 if (!Check(FD->getLocation(), FD->getType(), FD)) 1635 return false; 1636 return true; 1637 } 1638 1639 /// Check whether a function's parameter types are all literal types. If so, 1640 /// return true. If not, produce a suitable diagnostic and return false. 1641 static bool CheckConstexprParameterTypes(Sema &SemaRef, 1642 const FunctionDecl *FD, 1643 Sema::CheckConstexprKind Kind) { 1644 unsigned ArgIndex = 0; 1645 const auto *FT = FD->getType()->castAs<FunctionProtoType>(); 1646 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), 1647 e = FT->param_type_end(); 1648 i != e; ++i, ++ArgIndex) { 1649 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); 1650 SourceLocation ParamLoc = PD->getLocation(); 1651 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, 1652 diag::err_constexpr_non_literal_param, ArgIndex + 1, 1653 PD->getSourceRange(), isa<CXXConstructorDecl>(FD), 1654 FD->isConsteval())) 1655 return false; 1656 } 1657 return true; 1658 } 1659 1660 /// Check whether a function's return type is a literal type. If so, return 1661 /// true. If not, produce a suitable diagnostic and return false. 1662 static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD, 1663 Sema::CheckConstexprKind Kind) { 1664 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(), 1665 diag::err_constexpr_non_literal_return, 1666 FD->isConsteval())) 1667 return false; 1668 return true; 1669 } 1670 1671 /// Get diagnostic %select index for tag kind for 1672 /// record diagnostic message. 1673 /// WARNING: Indexes apply to particular diagnostics only! 1674 /// 1675 /// \returns diagnostic %select index. 1676 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { 1677 switch (Tag) { 1678 case TTK_Struct: return 0; 1679 case TTK_Interface: return 1; 1680 case TTK_Class: return 2; 1681 default: llvm_unreachable("Invalid tag kind for record diagnostic!"); 1682 } 1683 } 1684 1685 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 1686 Stmt *Body, 1687 Sema::CheckConstexprKind Kind); 1688 1689 // Check whether a function declaration satisfies the requirements of a 1690 // constexpr function definition or a constexpr constructor definition. If so, 1691 // return true. If not, produce appropriate diagnostics (unless asked not to by 1692 // Kind) and return false. 1693 // 1694 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360. 1695 bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, 1696 CheckConstexprKind Kind) { 1697 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 1698 if (MD && MD->isInstance()) { 1699 // C++11 [dcl.constexpr]p4: 1700 // The definition of a constexpr constructor shall satisfy the following 1701 // constraints: 1702 // - the class shall not have any virtual base classes; 1703 // 1704 // FIXME: This only applies to constructors and destructors, not arbitrary 1705 // member functions. 1706 const CXXRecordDecl *RD = MD->getParent(); 1707 if (RD->getNumVBases()) { 1708 if (Kind == CheckConstexprKind::CheckValid) 1709 return false; 1710 1711 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) 1712 << isa<CXXConstructorDecl>(NewFD) 1713 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); 1714 for (const auto &I : RD->vbases()) 1715 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) 1716 << I.getSourceRange(); 1717 return false; 1718 } 1719 } 1720 1721 if (!isa<CXXConstructorDecl>(NewFD)) { 1722 // C++11 [dcl.constexpr]p3: 1723 // The definition of a constexpr function shall satisfy the following 1724 // constraints: 1725 // - it shall not be virtual; (removed in C++20) 1726 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); 1727 if (Method && Method->isVirtual()) { 1728 if (getLangOpts().CPlusPlus20) { 1729 if (Kind == CheckConstexprKind::Diagnose) 1730 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); 1731 } else { 1732 if (Kind == CheckConstexprKind::CheckValid) 1733 return false; 1734 1735 Method = Method->getCanonicalDecl(); 1736 Diag(Method->getLocation(), diag::err_constexpr_virtual); 1737 1738 // If it's not obvious why this function is virtual, find an overridden 1739 // function which uses the 'virtual' keyword. 1740 const CXXMethodDecl *WrittenVirtual = Method; 1741 while (!WrittenVirtual->isVirtualAsWritten()) 1742 WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); 1743 if (WrittenVirtual != Method) 1744 Diag(WrittenVirtual->getLocation(), 1745 diag::note_overridden_virtual_function); 1746 return false; 1747 } 1748 } 1749 1750 // - its return type shall be a literal type; 1751 if (!CheckConstexprReturnType(*this, NewFD, Kind)) 1752 return false; 1753 } 1754 1755 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) { 1756 // A destructor can be constexpr only if the defaulted destructor could be; 1757 // we don't need to check the members and bases if we already know they all 1758 // have constexpr destructors. 1759 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) { 1760 if (Kind == CheckConstexprKind::CheckValid) 1761 return false; 1762 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind)) 1763 return false; 1764 } 1765 } 1766 1767 // - each of its parameter types shall be a literal type; 1768 if (!CheckConstexprParameterTypes(*this, NewFD, Kind)) 1769 return false; 1770 1771 Stmt *Body = NewFD->getBody(); 1772 assert(Body && 1773 "CheckConstexprFunctionDefinition called on function with no body"); 1774 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind); 1775 } 1776 1777 /// Check the given declaration statement is legal within a constexpr function 1778 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. 1779 /// 1780 /// \return true if the body is OK (maybe only as an extension), false if we 1781 /// have diagnosed a problem. 1782 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, 1783 DeclStmt *DS, SourceLocation &Cxx1yLoc, 1784 Sema::CheckConstexprKind Kind) { 1785 // C++11 [dcl.constexpr]p3 and p4: 1786 // The definition of a constexpr function(p3) or constructor(p4) [...] shall 1787 // contain only 1788 for (const auto *DclIt : DS->decls()) { 1789 switch (DclIt->getKind()) { 1790 case Decl::StaticAssert: 1791 case Decl::Using: 1792 case Decl::UsingShadow: 1793 case Decl::UsingDirective: 1794 case Decl::UnresolvedUsingTypename: 1795 case Decl::UnresolvedUsingValue: 1796 // - static_assert-declarations 1797 // - using-declarations, 1798 // - using-directives, 1799 continue; 1800 1801 case Decl::Typedef: 1802 case Decl::TypeAlias: { 1803 // - typedef declarations and alias-declarations that do not define 1804 // classes or enumerations, 1805 const auto *TN = cast<TypedefNameDecl>(DclIt); 1806 if (TN->getUnderlyingType()->isVariablyModifiedType()) { 1807 // Don't allow variably-modified types in constexpr functions. 1808 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1809 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); 1810 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) 1811 << TL.getSourceRange() << TL.getType() 1812 << isa<CXXConstructorDecl>(Dcl); 1813 } 1814 return false; 1815 } 1816 continue; 1817 } 1818 1819 case Decl::Enum: 1820 case Decl::CXXRecord: 1821 // C++1y allows types to be defined, not just declared. 1822 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) { 1823 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1824 SemaRef.Diag(DS->getBeginLoc(), 1825 SemaRef.getLangOpts().CPlusPlus14 1826 ? diag::warn_cxx11_compat_constexpr_type_definition 1827 : diag::ext_constexpr_type_definition) 1828 << isa<CXXConstructorDecl>(Dcl); 1829 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1830 return false; 1831 } 1832 } 1833 continue; 1834 1835 case Decl::EnumConstant: 1836 case Decl::IndirectField: 1837 case Decl::ParmVar: 1838 // These can only appear with other declarations which are banned in 1839 // C++11 and permitted in C++1y, so ignore them. 1840 continue; 1841 1842 case Decl::Var: 1843 case Decl::Decomposition: { 1844 // C++1y [dcl.constexpr]p3 allows anything except: 1845 // a definition of a variable of non-literal type or of static or 1846 // thread storage duration or [before C++2a] for which no 1847 // initialization is performed. 1848 const auto *VD = cast<VarDecl>(DclIt); 1849 if (VD->isThisDeclarationADefinition()) { 1850 if (VD->isStaticLocal()) { 1851 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1852 SemaRef.Diag(VD->getLocation(), 1853 diag::err_constexpr_local_var_static) 1854 << isa<CXXConstructorDecl>(Dcl) 1855 << (VD->getTLSKind() == VarDecl::TLS_Dynamic); 1856 } 1857 return false; 1858 } 1859 if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), 1860 diag::err_constexpr_local_var_non_literal_type, 1861 isa<CXXConstructorDecl>(Dcl))) 1862 return false; 1863 if (!VD->getType()->isDependentType() && 1864 !VD->hasInit() && !VD->isCXXForRangeDecl()) { 1865 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1866 SemaRef.Diag( 1867 VD->getLocation(), 1868 SemaRef.getLangOpts().CPlusPlus20 1869 ? diag::warn_cxx17_compat_constexpr_local_var_no_init 1870 : diag::ext_constexpr_local_var_no_init) 1871 << isa<CXXConstructorDecl>(Dcl); 1872 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 1873 return false; 1874 } 1875 continue; 1876 } 1877 } 1878 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1879 SemaRef.Diag(VD->getLocation(), 1880 SemaRef.getLangOpts().CPlusPlus14 1881 ? diag::warn_cxx11_compat_constexpr_local_var 1882 : diag::ext_constexpr_local_var) 1883 << isa<CXXConstructorDecl>(Dcl); 1884 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1885 return false; 1886 } 1887 continue; 1888 } 1889 1890 case Decl::NamespaceAlias: 1891 case Decl::Function: 1892 // These are disallowed in C++11 and permitted in C++1y. Allow them 1893 // everywhere as an extension. 1894 if (!Cxx1yLoc.isValid()) 1895 Cxx1yLoc = DS->getBeginLoc(); 1896 continue; 1897 1898 default: 1899 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1900 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 1901 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 1902 } 1903 return false; 1904 } 1905 } 1906 1907 return true; 1908 } 1909 1910 /// Check that the given field is initialized within a constexpr constructor. 1911 /// 1912 /// \param Dcl The constexpr constructor being checked. 1913 /// \param Field The field being checked. This may be a member of an anonymous 1914 /// struct or union nested within the class being checked. 1915 /// \param Inits All declarations, including anonymous struct/union members and 1916 /// indirect members, for which any initialization was provided. 1917 /// \param Diagnosed Whether we've emitted the error message yet. Used to attach 1918 /// multiple notes for different members to the same error. 1919 /// \param Kind Whether we're diagnosing a constructor as written or determining 1920 /// whether the formal requirements are satisfied. 1921 /// \return \c false if we're checking for validity and the constructor does 1922 /// not satisfy the requirements on a constexpr constructor. 1923 static bool CheckConstexprCtorInitializer(Sema &SemaRef, 1924 const FunctionDecl *Dcl, 1925 FieldDecl *Field, 1926 llvm::SmallSet<Decl*, 16> &Inits, 1927 bool &Diagnosed, 1928 Sema::CheckConstexprKind Kind) { 1929 // In C++20 onwards, there's nothing to check for validity. 1930 if (Kind == Sema::CheckConstexprKind::CheckValid && 1931 SemaRef.getLangOpts().CPlusPlus20) 1932 return true; 1933 1934 if (Field->isInvalidDecl()) 1935 return true; 1936 1937 if (Field->isUnnamedBitfield()) 1938 return true; 1939 1940 // Anonymous unions with no variant members and empty anonymous structs do not 1941 // need to be explicitly initialized. FIXME: Anonymous structs that contain no 1942 // indirect fields don't need initializing. 1943 if (Field->isAnonymousStructOrUnion() && 1944 (Field->getType()->isUnionType() 1945 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() 1946 : Field->getType()->getAsCXXRecordDecl()->isEmpty())) 1947 return true; 1948 1949 if (!Inits.count(Field)) { 1950 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1951 if (!Diagnosed) { 1952 SemaRef.Diag(Dcl->getLocation(), 1953 SemaRef.getLangOpts().CPlusPlus20 1954 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init 1955 : diag::ext_constexpr_ctor_missing_init); 1956 Diagnosed = true; 1957 } 1958 SemaRef.Diag(Field->getLocation(), 1959 diag::note_constexpr_ctor_missing_init); 1960 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 1961 return false; 1962 } 1963 } else if (Field->isAnonymousStructOrUnion()) { 1964 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); 1965 for (auto *I : RD->fields()) 1966 // If an anonymous union contains an anonymous struct of which any member 1967 // is initialized, all members must be initialized. 1968 if (!RD->isUnion() || Inits.count(I)) 1969 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 1970 Kind)) 1971 return false; 1972 } 1973 return true; 1974 } 1975 1976 /// Check the provided statement is allowed in a constexpr function 1977 /// definition. 1978 static bool 1979 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, 1980 SmallVectorImpl<SourceLocation> &ReturnStmts, 1981 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, 1982 Sema::CheckConstexprKind Kind) { 1983 // - its function-body shall be [...] a compound-statement that contains only 1984 switch (S->getStmtClass()) { 1985 case Stmt::NullStmtClass: 1986 // - null statements, 1987 return true; 1988 1989 case Stmt::DeclStmtClass: 1990 // - static_assert-declarations 1991 // - using-declarations, 1992 // - using-directives, 1993 // - typedef declarations and alias-declarations that do not define 1994 // classes or enumerations, 1995 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind)) 1996 return false; 1997 return true; 1998 1999 case Stmt::ReturnStmtClass: 2000 // - and exactly one return statement; 2001 if (isa<CXXConstructorDecl>(Dcl)) { 2002 // C++1y allows return statements in constexpr constructors. 2003 if (!Cxx1yLoc.isValid()) 2004 Cxx1yLoc = S->getBeginLoc(); 2005 return true; 2006 } 2007 2008 ReturnStmts.push_back(S->getBeginLoc()); 2009 return true; 2010 2011 case Stmt::CompoundStmtClass: { 2012 // C++1y allows compound-statements. 2013 if (!Cxx1yLoc.isValid()) 2014 Cxx1yLoc = S->getBeginLoc(); 2015 2016 CompoundStmt *CompStmt = cast<CompoundStmt>(S); 2017 for (auto *BodyIt : CompStmt->body()) { 2018 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, 2019 Cxx1yLoc, Cxx2aLoc, Kind)) 2020 return false; 2021 } 2022 return true; 2023 } 2024 2025 case Stmt::AttributedStmtClass: 2026 if (!Cxx1yLoc.isValid()) 2027 Cxx1yLoc = S->getBeginLoc(); 2028 return true; 2029 2030 case Stmt::IfStmtClass: { 2031 // C++1y allows if-statements. 2032 if (!Cxx1yLoc.isValid()) 2033 Cxx1yLoc = S->getBeginLoc(); 2034 2035 IfStmt *If = cast<IfStmt>(S); 2036 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, 2037 Cxx1yLoc, Cxx2aLoc, Kind)) 2038 return false; 2039 if (If->getElse() && 2040 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, 2041 Cxx1yLoc, Cxx2aLoc, Kind)) 2042 return false; 2043 return true; 2044 } 2045 2046 case Stmt::WhileStmtClass: 2047 case Stmt::DoStmtClass: 2048 case Stmt::ForStmtClass: 2049 case Stmt::CXXForRangeStmtClass: 2050 case Stmt::ContinueStmtClass: 2051 // C++1y allows all of these. We don't allow them as extensions in C++11, 2052 // because they don't make sense without variable mutation. 2053 if (!SemaRef.getLangOpts().CPlusPlus14) 2054 break; 2055 if (!Cxx1yLoc.isValid()) 2056 Cxx1yLoc = S->getBeginLoc(); 2057 for (Stmt *SubStmt : S->children()) 2058 if (SubStmt && 2059 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2060 Cxx1yLoc, Cxx2aLoc, Kind)) 2061 return false; 2062 return true; 2063 2064 case Stmt::SwitchStmtClass: 2065 case Stmt::CaseStmtClass: 2066 case Stmt::DefaultStmtClass: 2067 case Stmt::BreakStmtClass: 2068 // C++1y allows switch-statements, and since they don't need variable 2069 // mutation, we can reasonably allow them in C++11 as an extension. 2070 if (!Cxx1yLoc.isValid()) 2071 Cxx1yLoc = S->getBeginLoc(); 2072 for (Stmt *SubStmt : S->children()) 2073 if (SubStmt && 2074 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2075 Cxx1yLoc, Cxx2aLoc, Kind)) 2076 return false; 2077 return true; 2078 2079 case Stmt::GCCAsmStmtClass: 2080 case Stmt::MSAsmStmtClass: 2081 // C++2a allows inline assembly statements. 2082 case Stmt::CXXTryStmtClass: 2083 if (Cxx2aLoc.isInvalid()) 2084 Cxx2aLoc = S->getBeginLoc(); 2085 for (Stmt *SubStmt : S->children()) { 2086 if (SubStmt && 2087 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2088 Cxx1yLoc, Cxx2aLoc, Kind)) 2089 return false; 2090 } 2091 return true; 2092 2093 case Stmt::CXXCatchStmtClass: 2094 // Do not bother checking the language mode (already covered by the 2095 // try block check). 2096 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, 2097 cast<CXXCatchStmt>(S)->getHandlerBlock(), 2098 ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind)) 2099 return false; 2100 return true; 2101 2102 default: 2103 if (!isa<Expr>(S)) 2104 break; 2105 2106 // C++1y allows expression-statements. 2107 if (!Cxx1yLoc.isValid()) 2108 Cxx1yLoc = S->getBeginLoc(); 2109 return true; 2110 } 2111 2112 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2113 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 2114 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2115 } 2116 return false; 2117 } 2118 2119 /// Check the body for the given constexpr function declaration only contains 2120 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. 2121 /// 2122 /// \return true if the body is OK, false if we have found or diagnosed a 2123 /// problem. 2124 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 2125 Stmt *Body, 2126 Sema::CheckConstexprKind Kind) { 2127 SmallVector<SourceLocation, 4> ReturnStmts; 2128 2129 if (isa<CXXTryStmt>(Body)) { 2130 // C++11 [dcl.constexpr]p3: 2131 // The definition of a constexpr function shall satisfy the following 2132 // constraints: [...] 2133 // - its function-body shall be = delete, = default, or a 2134 // compound-statement 2135 // 2136 // C++11 [dcl.constexpr]p4: 2137 // In the definition of a constexpr constructor, [...] 2138 // - its function-body shall not be a function-try-block; 2139 // 2140 // This restriction is lifted in C++2a, as long as inner statements also 2141 // apply the general constexpr rules. 2142 switch (Kind) { 2143 case Sema::CheckConstexprKind::CheckValid: 2144 if (!SemaRef.getLangOpts().CPlusPlus20) 2145 return false; 2146 break; 2147 2148 case Sema::CheckConstexprKind::Diagnose: 2149 SemaRef.Diag(Body->getBeginLoc(), 2150 !SemaRef.getLangOpts().CPlusPlus20 2151 ? diag::ext_constexpr_function_try_block_cxx20 2152 : diag::warn_cxx17_compat_constexpr_function_try_block) 2153 << isa<CXXConstructorDecl>(Dcl); 2154 break; 2155 } 2156 } 2157 2158 // - its function-body shall be [...] a compound-statement that contains only 2159 // [... list of cases ...] 2160 // 2161 // Note that walking the children here is enough to properly check for 2162 // CompoundStmt and CXXTryStmt body. 2163 SourceLocation Cxx1yLoc, Cxx2aLoc; 2164 for (Stmt *SubStmt : Body->children()) { 2165 if (SubStmt && 2166 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2167 Cxx1yLoc, Cxx2aLoc, Kind)) 2168 return false; 2169 } 2170 2171 if (Kind == Sema::CheckConstexprKind::CheckValid) { 2172 // If this is only valid as an extension, report that we don't satisfy the 2173 // constraints of the current language. 2174 if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) || 2175 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) 2176 return false; 2177 } else if (Cxx2aLoc.isValid()) { 2178 SemaRef.Diag(Cxx2aLoc, 2179 SemaRef.getLangOpts().CPlusPlus20 2180 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt 2181 : diag::ext_constexpr_body_invalid_stmt_cxx20) 2182 << isa<CXXConstructorDecl>(Dcl); 2183 } else if (Cxx1yLoc.isValid()) { 2184 SemaRef.Diag(Cxx1yLoc, 2185 SemaRef.getLangOpts().CPlusPlus14 2186 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt 2187 : diag::ext_constexpr_body_invalid_stmt) 2188 << isa<CXXConstructorDecl>(Dcl); 2189 } 2190 2191 if (const CXXConstructorDecl *Constructor 2192 = dyn_cast<CXXConstructorDecl>(Dcl)) { 2193 const CXXRecordDecl *RD = Constructor->getParent(); 2194 // DR1359: 2195 // - every non-variant non-static data member and base class sub-object 2196 // shall be initialized; 2197 // DR1460: 2198 // - if the class is a union having variant members, exactly one of them 2199 // shall be initialized; 2200 if (RD->isUnion()) { 2201 if (Constructor->getNumCtorInitializers() == 0 && 2202 RD->hasVariantMembers()) { 2203 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2204 SemaRef.Diag( 2205 Dcl->getLocation(), 2206 SemaRef.getLangOpts().CPlusPlus20 2207 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init 2208 : diag::ext_constexpr_union_ctor_no_init); 2209 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2210 return false; 2211 } 2212 } 2213 } else if (!Constructor->isDependentContext() && 2214 !Constructor->isDelegatingConstructor()) { 2215 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"); 2216 2217 // Skip detailed checking if we have enough initializers, and we would 2218 // allow at most one initializer per member. 2219 bool AnyAnonStructUnionMembers = false; 2220 unsigned Fields = 0; 2221 for (CXXRecordDecl::field_iterator I = RD->field_begin(), 2222 E = RD->field_end(); I != E; ++I, ++Fields) { 2223 if (I->isAnonymousStructOrUnion()) { 2224 AnyAnonStructUnionMembers = true; 2225 break; 2226 } 2227 } 2228 // DR1460: 2229 // - if the class is a union-like class, but is not a union, for each of 2230 // its anonymous union members having variant members, exactly one of 2231 // them shall be initialized; 2232 if (AnyAnonStructUnionMembers || 2233 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { 2234 // Check initialization of non-static data members. Base classes are 2235 // always initialized so do not need to be checked. Dependent bases 2236 // might not have initializers in the member initializer list. 2237 llvm::SmallSet<Decl*, 16> Inits; 2238 for (const auto *I: Constructor->inits()) { 2239 if (FieldDecl *FD = I->getMember()) 2240 Inits.insert(FD); 2241 else if (IndirectFieldDecl *ID = I->getIndirectMember()) 2242 Inits.insert(ID->chain_begin(), ID->chain_end()); 2243 } 2244 2245 bool Diagnosed = false; 2246 for (auto *I : RD->fields()) 2247 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2248 Kind)) 2249 return false; 2250 } 2251 } 2252 } else { 2253 if (ReturnStmts.empty()) { 2254 // C++1y doesn't require constexpr functions to contain a 'return' 2255 // statement. We still do, unless the return type might be void, because 2256 // otherwise if there's no return statement, the function cannot 2257 // be used in a core constant expression. 2258 bool OK = SemaRef.getLangOpts().CPlusPlus14 && 2259 (Dcl->getReturnType()->isVoidType() || 2260 Dcl->getReturnType()->isDependentType()); 2261 switch (Kind) { 2262 case Sema::CheckConstexprKind::Diagnose: 2263 SemaRef.Diag(Dcl->getLocation(), 2264 OK ? diag::warn_cxx11_compat_constexpr_body_no_return 2265 : diag::err_constexpr_body_no_return) 2266 << Dcl->isConsteval(); 2267 if (!OK) 2268 return false; 2269 break; 2270 2271 case Sema::CheckConstexprKind::CheckValid: 2272 // The formal requirements don't include this rule in C++14, even 2273 // though the "must be able to produce a constant expression" rules 2274 // still imply it in some cases. 2275 if (!SemaRef.getLangOpts().CPlusPlus14) 2276 return false; 2277 break; 2278 } 2279 } else if (ReturnStmts.size() > 1) { 2280 switch (Kind) { 2281 case Sema::CheckConstexprKind::Diagnose: 2282 SemaRef.Diag( 2283 ReturnStmts.back(), 2284 SemaRef.getLangOpts().CPlusPlus14 2285 ? diag::warn_cxx11_compat_constexpr_body_multiple_return 2286 : diag::ext_constexpr_body_multiple_return); 2287 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) 2288 SemaRef.Diag(ReturnStmts[I], 2289 diag::note_constexpr_body_previous_return); 2290 break; 2291 2292 case Sema::CheckConstexprKind::CheckValid: 2293 if (!SemaRef.getLangOpts().CPlusPlus14) 2294 return false; 2295 break; 2296 } 2297 } 2298 } 2299 2300 // C++11 [dcl.constexpr]p5: 2301 // if no function argument values exist such that the function invocation 2302 // substitution would produce a constant expression, the program is 2303 // ill-formed; no diagnostic required. 2304 // C++11 [dcl.constexpr]p3: 2305 // - every constructor call and implicit conversion used in initializing the 2306 // return value shall be one of those allowed in a constant expression. 2307 // C++11 [dcl.constexpr]p4: 2308 // - every constructor involved in initializing non-static data members and 2309 // base class sub-objects shall be a constexpr constructor. 2310 // 2311 // Note that this rule is distinct from the "requirements for a constexpr 2312 // function", so is not checked in CheckValid mode. 2313 SmallVector<PartialDiagnosticAt, 8> Diags; 2314 if (Kind == Sema::CheckConstexprKind::Diagnose && 2315 !Expr::isPotentialConstantExpr(Dcl, Diags)) { 2316 SemaRef.Diag(Dcl->getLocation(), 2317 diag::ext_constexpr_function_never_constant_expr) 2318 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2319 for (size_t I = 0, N = Diags.size(); I != N; ++I) 2320 SemaRef.Diag(Diags[I].first, Diags[I].second); 2321 // Don't return false here: we allow this for compatibility in 2322 // system headers. 2323 } 2324 2325 return true; 2326 } 2327 2328 /// Get the class that is directly named by the current context. This is the 2329 /// class for which an unqualified-id in this scope could name a constructor 2330 /// or destructor. 2331 /// 2332 /// If the scope specifier denotes a class, this will be that class. 2333 /// If the scope specifier is empty, this will be the class whose 2334 /// member-specification we are currently within. Otherwise, there 2335 /// is no such class. 2336 CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { 2337 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2338 2339 if (SS && SS->isInvalid()) 2340 return nullptr; 2341 2342 if (SS && SS->isNotEmpty()) { 2343 DeclContext *DC = computeDeclContext(*SS, true); 2344 return dyn_cast_or_null<CXXRecordDecl>(DC); 2345 } 2346 2347 return dyn_cast_or_null<CXXRecordDecl>(CurContext); 2348 } 2349 2350 /// isCurrentClassName - Determine whether the identifier II is the 2351 /// name of the class type currently being defined. In the case of 2352 /// nested classes, this will only return true if II is the name of 2353 /// the innermost class. 2354 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, 2355 const CXXScopeSpec *SS) { 2356 CXXRecordDecl *CurDecl = getCurrentClass(S, SS); 2357 return CurDecl && &II == CurDecl->getIdentifier(); 2358 } 2359 2360 /// Determine whether the identifier II is a typo for the name of 2361 /// the class type currently being defined. If so, update it to the identifier 2362 /// that should have been used. 2363 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { 2364 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2365 2366 if (!getLangOpts().SpellChecking) 2367 return false; 2368 2369 CXXRecordDecl *CurDecl; 2370 if (SS && SS->isSet() && !SS->isInvalid()) { 2371 DeclContext *DC = computeDeclContext(*SS, true); 2372 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); 2373 } else 2374 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); 2375 2376 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && 2377 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) 2378 < II->getLength()) { 2379 II = CurDecl->getIdentifier(); 2380 return true; 2381 } 2382 2383 return false; 2384 } 2385 2386 /// Determine whether the given class is a base class of the given 2387 /// class, including looking at dependent bases. 2388 static bool findCircularInheritance(const CXXRecordDecl *Class, 2389 const CXXRecordDecl *Current) { 2390 SmallVector<const CXXRecordDecl*, 8> Queue; 2391 2392 Class = Class->getCanonicalDecl(); 2393 while (true) { 2394 for (const auto &I : Current->bases()) { 2395 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 2396 if (!Base) 2397 continue; 2398 2399 Base = Base->getDefinition(); 2400 if (!Base) 2401 continue; 2402 2403 if (Base->getCanonicalDecl() == Class) 2404 return true; 2405 2406 Queue.push_back(Base); 2407 } 2408 2409 if (Queue.empty()) 2410 return false; 2411 2412 Current = Queue.pop_back_val(); 2413 } 2414 2415 return false; 2416 } 2417 2418 /// Check the validity of a C++ base class specifier. 2419 /// 2420 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics 2421 /// and returns NULL otherwise. 2422 CXXBaseSpecifier * 2423 Sema::CheckBaseSpecifier(CXXRecordDecl *Class, 2424 SourceRange SpecifierRange, 2425 bool Virtual, AccessSpecifier Access, 2426 TypeSourceInfo *TInfo, 2427 SourceLocation EllipsisLoc) { 2428 QualType BaseType = TInfo->getType(); 2429 if (BaseType->containsErrors()) { 2430 // Already emitted a diagnostic when parsing the error type. 2431 return nullptr; 2432 } 2433 // C++ [class.union]p1: 2434 // A union shall not have base classes. 2435 if (Class->isUnion()) { 2436 Diag(Class->getLocation(), diag::err_base_clause_on_union) 2437 << SpecifierRange; 2438 return nullptr; 2439 } 2440 2441 if (EllipsisLoc.isValid() && 2442 !TInfo->getType()->containsUnexpandedParameterPack()) { 2443 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 2444 << TInfo->getTypeLoc().getSourceRange(); 2445 EllipsisLoc = SourceLocation(); 2446 } 2447 2448 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); 2449 2450 if (BaseType->isDependentType()) { 2451 // Make sure that we don't have circular inheritance among our dependent 2452 // bases. For non-dependent bases, the check for completeness below handles 2453 // this. 2454 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) { 2455 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() || 2456 ((BaseDecl = BaseDecl->getDefinition()) && 2457 findCircularInheritance(Class, BaseDecl))) { 2458 Diag(BaseLoc, diag::err_circular_inheritance) 2459 << BaseType << Context.getTypeDeclType(Class); 2460 2461 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl()) 2462 Diag(BaseDecl->getLocation(), diag::note_previous_decl) 2463 << BaseType; 2464 2465 return nullptr; 2466 } 2467 } 2468 2469 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2470 Class->getTagKind() == TTK_Class, 2471 Access, TInfo, EllipsisLoc); 2472 } 2473 2474 // Base specifiers must be record types. 2475 if (!BaseType->isRecordType()) { 2476 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; 2477 return nullptr; 2478 } 2479 2480 // C++ [class.union]p1: 2481 // A union shall not be used as a base class. 2482 if (BaseType->isUnionType()) { 2483 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; 2484 return nullptr; 2485 } 2486 2487 // For the MS ABI, propagate DLL attributes to base class templates. 2488 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2489 if (Attr *ClassAttr = getDLLAttr(Class)) { 2490 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 2491 BaseType->getAsCXXRecordDecl())) { 2492 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate, 2493 BaseLoc); 2494 } 2495 } 2496 } 2497 2498 // C++ [class.derived]p2: 2499 // The class-name in a base-specifier shall not be an incompletely 2500 // defined class. 2501 if (RequireCompleteType(BaseLoc, BaseType, 2502 diag::err_incomplete_base_class, SpecifierRange)) { 2503 Class->setInvalidDecl(); 2504 return nullptr; 2505 } 2506 2507 // If the base class is polymorphic or isn't empty, the new one is/isn't, too. 2508 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl(); 2509 assert(BaseDecl && "Record type has no declaration"); 2510 BaseDecl = BaseDecl->getDefinition(); 2511 assert(BaseDecl && "Base type is not incomplete, but has no definition"); 2512 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); 2513 assert(CXXBaseDecl && "Base type is not a C++ type"); 2514 2515 // Microsoft docs say: 2516 // "If a base-class has a code_seg attribute, derived classes must have the 2517 // same attribute." 2518 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>(); 2519 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); 2520 if ((DerivedCSA || BaseCSA) && 2521 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) { 2522 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); 2523 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here) 2524 << CXXBaseDecl; 2525 return nullptr; 2526 } 2527 2528 // A class which contains a flexible array member is not suitable for use as a 2529 // base class: 2530 // - If the layout determines that a base comes before another base, 2531 // the flexible array member would index into the subsequent base. 2532 // - If the layout determines that base comes before the derived class, 2533 // the flexible array member would index into the derived class. 2534 if (CXXBaseDecl->hasFlexibleArrayMember()) { 2535 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) 2536 << CXXBaseDecl->getDeclName(); 2537 return nullptr; 2538 } 2539 2540 // C++ [class]p3: 2541 // If a class is marked final and it appears as a base-type-specifier in 2542 // base-clause, the program is ill-formed. 2543 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) { 2544 Diag(BaseLoc, diag::err_class_marked_final_used_as_base) 2545 << CXXBaseDecl->getDeclName() 2546 << FA->isSpelledAsSealed(); 2547 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at) 2548 << CXXBaseDecl->getDeclName() << FA->getRange(); 2549 return nullptr; 2550 } 2551 2552 if (BaseDecl->isInvalidDecl()) 2553 Class->setInvalidDecl(); 2554 2555 // Create the base specifier. 2556 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2557 Class->getTagKind() == TTK_Class, 2558 Access, TInfo, EllipsisLoc); 2559 } 2560 2561 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is 2562 /// one entry in the base class list of a class specifier, for 2563 /// example: 2564 /// class foo : public bar, virtual private baz { 2565 /// 'public bar' and 'virtual private baz' are each base-specifiers. 2566 BaseResult 2567 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, 2568 ParsedAttributes &Attributes, 2569 bool Virtual, AccessSpecifier Access, 2570 ParsedType basetype, SourceLocation BaseLoc, 2571 SourceLocation EllipsisLoc) { 2572 if (!classdecl) 2573 return true; 2574 2575 AdjustDeclIfTemplate(classdecl); 2576 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); 2577 if (!Class) 2578 return true; 2579 2580 // We haven't yet attached the base specifiers. 2581 Class->setIsParsingBaseSpecifiers(); 2582 2583 // We do not support any C++11 attributes on base-specifiers yet. 2584 // Diagnose any attributes we see. 2585 for (const ParsedAttr &AL : Attributes) { 2586 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) 2587 continue; 2588 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute 2589 ? (unsigned)diag::warn_unknown_attribute_ignored 2590 : (unsigned)diag::err_base_specifier_attribute) 2591 << AL; 2592 } 2593 2594 TypeSourceInfo *TInfo = nullptr; 2595 GetTypeFromParser(basetype, &TInfo); 2596 2597 if (EllipsisLoc.isInvalid() && 2598 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, 2599 UPPC_BaseType)) 2600 return true; 2601 2602 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, 2603 Virtual, Access, TInfo, 2604 EllipsisLoc)) 2605 return BaseSpec; 2606 else 2607 Class->setInvalidDecl(); 2608 2609 return true; 2610 } 2611 2612 /// Use small set to collect indirect bases. As this is only used 2613 /// locally, there's no need to abstract the small size parameter. 2614 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; 2615 2616 /// Recursively add the bases of Type. Don't add Type itself. 2617 static void 2618 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, 2619 const QualType &Type) 2620 { 2621 // Even though the incoming type is a base, it might not be 2622 // a class -- it could be a template parm, for instance. 2623 if (auto Rec = Type->getAs<RecordType>()) { 2624 auto Decl = Rec->getAsCXXRecordDecl(); 2625 2626 // Iterate over its bases. 2627 for (const auto &BaseSpec : Decl->bases()) { 2628 QualType Base = Context.getCanonicalType(BaseSpec.getType()) 2629 .getUnqualifiedType(); 2630 if (Set.insert(Base).second) 2631 // If we've not already seen it, recurse. 2632 NoteIndirectBases(Context, Set, Base); 2633 } 2634 } 2635 } 2636 2637 /// Performs the actual work of attaching the given base class 2638 /// specifiers to a C++ class. 2639 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, 2640 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2641 if (Bases.empty()) 2642 return false; 2643 2644 // Used to keep track of which base types we have already seen, so 2645 // that we can properly diagnose redundant direct base types. Note 2646 // that the key is always the unqualified canonical type of the base 2647 // class. 2648 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; 2649 2650 // Used to track indirect bases so we can see if a direct base is 2651 // ambiguous. 2652 IndirectBaseSet IndirectBaseTypes; 2653 2654 // Copy non-redundant base specifiers into permanent storage. 2655 unsigned NumGoodBases = 0; 2656 bool Invalid = false; 2657 for (unsigned idx = 0; idx < Bases.size(); ++idx) { 2658 QualType NewBaseType 2659 = Context.getCanonicalType(Bases[idx]->getType()); 2660 NewBaseType = NewBaseType.getLocalUnqualifiedType(); 2661 2662 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; 2663 if (KnownBase) { 2664 // C++ [class.mi]p3: 2665 // A class shall not be specified as a direct base class of a 2666 // derived class more than once. 2667 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) 2668 << KnownBase->getType() << Bases[idx]->getSourceRange(); 2669 2670 // Delete the duplicate base class specifier; we're going to 2671 // overwrite its pointer later. 2672 Context.Deallocate(Bases[idx]); 2673 2674 Invalid = true; 2675 } else { 2676 // Okay, add this new base class. 2677 KnownBase = Bases[idx]; 2678 Bases[NumGoodBases++] = Bases[idx]; 2679 2680 // Note this base's direct & indirect bases, if there could be ambiguity. 2681 if (Bases.size() > 1) 2682 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType); 2683 2684 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { 2685 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); 2686 if (Class->isInterface() && 2687 (!RD->isInterfaceLike() || 2688 KnownBase->getAccessSpecifier() != AS_public)) { 2689 // The Microsoft extension __interface does not permit bases that 2690 // are not themselves public interfaces. 2691 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) 2692 << getRecordDiagFromTagKind(RD->getTagKind()) << RD 2693 << RD->getSourceRange(); 2694 Invalid = true; 2695 } 2696 if (RD->hasAttr<WeakAttr>()) 2697 Class->addAttr(WeakAttr::CreateImplicit(Context)); 2698 } 2699 } 2700 } 2701 2702 // Attach the remaining base class specifiers to the derived class. 2703 Class->setBases(Bases.data(), NumGoodBases); 2704 2705 // Check that the only base classes that are duplicate are virtual. 2706 for (unsigned idx = 0; idx < NumGoodBases; ++idx) { 2707 // Check whether this direct base is inaccessible due to ambiguity. 2708 QualType BaseType = Bases[idx]->getType(); 2709 2710 // Skip all dependent types in templates being used as base specifiers. 2711 // Checks below assume that the base specifier is a CXXRecord. 2712 if (BaseType->isDependentType()) 2713 continue; 2714 2715 CanQualType CanonicalBase = Context.getCanonicalType(BaseType) 2716 .getUnqualifiedType(); 2717 2718 if (IndirectBaseTypes.count(CanonicalBase)) { 2719 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2720 /*DetectVirtual=*/true); 2721 bool found 2722 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); 2723 assert(found); 2724 (void)found; 2725 2726 if (Paths.isAmbiguous(CanonicalBase)) 2727 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) 2728 << BaseType << getAmbiguousPathsDisplayString(Paths) 2729 << Bases[idx]->getSourceRange(); 2730 else 2731 assert(Bases[idx]->isVirtual()); 2732 } 2733 2734 // Delete the base class specifier, since its data has been copied 2735 // into the CXXRecordDecl. 2736 Context.Deallocate(Bases[idx]); 2737 } 2738 2739 return Invalid; 2740 } 2741 2742 /// ActOnBaseSpecifiers - Attach the given base specifiers to the 2743 /// class, after checking whether there are any duplicate base 2744 /// classes. 2745 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, 2746 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2747 if (!ClassDecl || Bases.empty()) 2748 return; 2749 2750 AdjustDeclIfTemplate(ClassDecl); 2751 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases); 2752 } 2753 2754 /// Determine whether the type \p Derived is a C++ class that is 2755 /// derived from the type \p Base. 2756 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { 2757 if (!getLangOpts().CPlusPlus) 2758 return false; 2759 2760 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2761 if (!DerivedRD) 2762 return false; 2763 2764 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2765 if (!BaseRD) 2766 return false; 2767 2768 // If either the base or the derived type is invalid, don't try to 2769 // check whether one is derived from the other. 2770 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) 2771 return false; 2772 2773 // FIXME: In a modules build, do we need the entire path to be visible for us 2774 // to be able to use the inheritance relationship? 2775 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2776 return false; 2777 2778 return DerivedRD->isDerivedFrom(BaseRD); 2779 } 2780 2781 /// Determine whether the type \p Derived is a C++ class that is 2782 /// derived from the type \p Base. 2783 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, 2784 CXXBasePaths &Paths) { 2785 if (!getLangOpts().CPlusPlus) 2786 return false; 2787 2788 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2789 if (!DerivedRD) 2790 return false; 2791 2792 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2793 if (!BaseRD) 2794 return false; 2795 2796 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2797 return false; 2798 2799 return DerivedRD->isDerivedFrom(BaseRD, Paths); 2800 } 2801 2802 static void BuildBasePathArray(const CXXBasePath &Path, 2803 CXXCastPath &BasePathArray) { 2804 // We first go backward and check if we have a virtual base. 2805 // FIXME: It would be better if CXXBasePath had the base specifier for 2806 // the nearest virtual base. 2807 unsigned Start = 0; 2808 for (unsigned I = Path.size(); I != 0; --I) { 2809 if (Path[I - 1].Base->isVirtual()) { 2810 Start = I - 1; 2811 break; 2812 } 2813 } 2814 2815 // Now add all bases. 2816 for (unsigned I = Start, E = Path.size(); I != E; ++I) 2817 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); 2818 } 2819 2820 2821 void Sema::BuildBasePathArray(const CXXBasePaths &Paths, 2822 CXXCastPath &BasePathArray) { 2823 assert(BasePathArray.empty() && "Base path array must be empty!"); 2824 assert(Paths.isRecordingPaths() && "Must record paths!"); 2825 return ::BuildBasePathArray(Paths.front(), BasePathArray); 2826 } 2827 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base 2828 /// conversion (where Derived and Base are class types) is 2829 /// well-formed, meaning that the conversion is unambiguous (and 2830 /// that all of the base classes are accessible). Returns true 2831 /// and emits a diagnostic if the code is ill-formed, returns false 2832 /// otherwise. Loc is the location where this routine should point to 2833 /// if there is an error, and Range is the source range to highlight 2834 /// if there is an error. 2835 /// 2836 /// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the 2837 /// diagnostic for the respective type of error will be suppressed, but the 2838 /// check for ill-formed code will still be performed. 2839 bool 2840 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 2841 unsigned InaccessibleBaseID, 2842 unsigned AmbiguousBaseConvID, 2843 SourceLocation Loc, SourceRange Range, 2844 DeclarationName Name, 2845 CXXCastPath *BasePath, 2846 bool IgnoreAccess) { 2847 // First, determine whether the path from Derived to Base is 2848 // ambiguous. This is slightly more expensive than checking whether 2849 // the Derived to Base conversion exists, because here we need to 2850 // explore multiple paths to determine if there is an ambiguity. 2851 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2852 /*DetectVirtual=*/false); 2853 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 2854 if (!DerivationOkay) 2855 return true; 2856 2857 const CXXBasePath *Path = nullptr; 2858 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) 2859 Path = &Paths.front(); 2860 2861 // For MSVC compatibility, check if Derived directly inherits from Base. Clang 2862 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the 2863 // user to access such bases. 2864 if (!Path && getLangOpts().MSVCCompat) { 2865 for (const CXXBasePath &PossiblePath : Paths) { 2866 if (PossiblePath.size() == 1) { 2867 Path = &PossiblePath; 2868 if (AmbiguousBaseConvID) 2869 Diag(Loc, diag::ext_ms_ambiguous_direct_base) 2870 << Base << Derived << Range; 2871 break; 2872 } 2873 } 2874 } 2875 2876 if (Path) { 2877 if (!IgnoreAccess) { 2878 // Check that the base class can be accessed. 2879 switch ( 2880 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) { 2881 case AR_inaccessible: 2882 return true; 2883 case AR_accessible: 2884 case AR_dependent: 2885 case AR_delayed: 2886 break; 2887 } 2888 } 2889 2890 // Build a base path if necessary. 2891 if (BasePath) 2892 ::BuildBasePathArray(*Path, *BasePath); 2893 return false; 2894 } 2895 2896 if (AmbiguousBaseConvID) { 2897 // We know that the derived-to-base conversion is ambiguous, and 2898 // we're going to produce a diagnostic. Perform the derived-to-base 2899 // search just one more time to compute all of the possible paths so 2900 // that we can print them out. This is more expensive than any of 2901 // the previous derived-to-base checks we've done, but at this point 2902 // performance isn't as much of an issue. 2903 Paths.clear(); 2904 Paths.setRecordingPaths(true); 2905 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 2906 assert(StillOkay && "Can only be used with a derived-to-base conversion"); 2907 (void)StillOkay; 2908 2909 // Build up a textual representation of the ambiguous paths, e.g., 2910 // D -> B -> A, that will be used to illustrate the ambiguous 2911 // conversions in the diagnostic. We only print one of the paths 2912 // to each base class subobject. 2913 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 2914 2915 Diag(Loc, AmbiguousBaseConvID) 2916 << Derived << Base << PathDisplayStr << Range << Name; 2917 } 2918 return true; 2919 } 2920 2921 bool 2922 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 2923 SourceLocation Loc, SourceRange Range, 2924 CXXCastPath *BasePath, 2925 bool IgnoreAccess) { 2926 return CheckDerivedToBaseConversion( 2927 Derived, Base, diag::err_upcast_to_inaccessible_base, 2928 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), 2929 BasePath, IgnoreAccess); 2930 } 2931 2932 2933 /// Builds a string representing ambiguous paths from a 2934 /// specific derived class to different subobjects of the same base 2935 /// class. 2936 /// 2937 /// This function builds a string that can be used in error messages 2938 /// to show the different paths that one can take through the 2939 /// inheritance hierarchy to go from the derived class to different 2940 /// subobjects of a base class. The result looks something like this: 2941 /// @code 2942 /// struct D -> struct B -> struct A 2943 /// struct D -> struct C -> struct A 2944 /// @endcode 2945 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { 2946 std::string PathDisplayStr; 2947 std::set<unsigned> DisplayedPaths; 2948 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 2949 Path != Paths.end(); ++Path) { 2950 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { 2951 // We haven't displayed a path to this particular base 2952 // class subobject yet. 2953 PathDisplayStr += "\n "; 2954 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); 2955 for (CXXBasePath::const_iterator Element = Path->begin(); 2956 Element != Path->end(); ++Element) 2957 PathDisplayStr += " -> " + Element->Base->getType().getAsString(); 2958 } 2959 } 2960 2961 return PathDisplayStr; 2962 } 2963 2964 //===----------------------------------------------------------------------===// 2965 // C++ class member Handling 2966 //===----------------------------------------------------------------------===// 2967 2968 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. 2969 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, 2970 SourceLocation ColonLoc, 2971 const ParsedAttributesView &Attrs) { 2972 assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); 2973 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, 2974 ASLoc, ColonLoc); 2975 CurContext->addHiddenDecl(ASDecl); 2976 return ProcessAccessDeclAttributeList(ASDecl, Attrs); 2977 } 2978 2979 /// CheckOverrideControl - Check C++11 override control semantics. 2980 void Sema::CheckOverrideControl(NamedDecl *D) { 2981 if (D->isInvalidDecl()) 2982 return; 2983 2984 // We only care about "override" and "final" declarations. 2985 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) 2986 return; 2987 2988 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 2989 2990 // We can't check dependent instance methods. 2991 if (MD && MD->isInstance() && 2992 (MD->getParent()->hasAnyDependentBases() || 2993 MD->getType()->isDependentType())) 2994 return; 2995 2996 if (MD && !MD->isVirtual()) { 2997 // If we have a non-virtual method, check if if hides a virtual method. 2998 // (In that case, it's most likely the method has the wrong type.) 2999 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 3000 FindHiddenVirtualMethods(MD, OverloadedMethods); 3001 3002 if (!OverloadedMethods.empty()) { 3003 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3004 Diag(OA->getLocation(), 3005 diag::override_keyword_hides_virtual_member_function) 3006 << "override" << (OverloadedMethods.size() > 1); 3007 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3008 Diag(FA->getLocation(), 3009 diag::override_keyword_hides_virtual_member_function) 3010 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3011 << (OverloadedMethods.size() > 1); 3012 } 3013 NoteHiddenVirtualMethods(MD, OverloadedMethods); 3014 MD->setInvalidDecl(); 3015 return; 3016 } 3017 // Fall through into the general case diagnostic. 3018 // FIXME: We might want to attempt typo correction here. 3019 } 3020 3021 if (!MD || !MD->isVirtual()) { 3022 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3023 Diag(OA->getLocation(), 3024 diag::override_keyword_only_allowed_on_virtual_member_functions) 3025 << "override" << FixItHint::CreateRemoval(OA->getLocation()); 3026 D->dropAttr<OverrideAttr>(); 3027 } 3028 if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3029 Diag(FA->getLocation(), 3030 diag::override_keyword_only_allowed_on_virtual_member_functions) 3031 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3032 << FixItHint::CreateRemoval(FA->getLocation()); 3033 D->dropAttr<FinalAttr>(); 3034 } 3035 return; 3036 } 3037 3038 // C++11 [class.virtual]p5: 3039 // If a function is marked with the virt-specifier override and 3040 // does not override a member function of a base class, the program is 3041 // ill-formed. 3042 bool HasOverriddenMethods = MD->size_overridden_methods() != 0; 3043 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) 3044 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) 3045 << MD->getDeclName(); 3046 } 3047 3048 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) { 3049 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) 3050 return; 3051 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3052 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) 3053 return; 3054 3055 SourceLocation Loc = MD->getLocation(); 3056 SourceLocation SpellingLoc = Loc; 3057 if (getSourceManager().isMacroArgExpansion(Loc)) 3058 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); 3059 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); 3060 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) 3061 return; 3062 3063 if (MD->size_overridden_methods() > 0) { 3064 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) { 3065 unsigned DiagID = 3066 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation()) 3067 ? DiagInconsistent 3068 : DiagSuggest; 3069 Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 3070 const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); 3071 Diag(OMD->getLocation(), diag::note_overridden_virtual_function); 3072 }; 3073 if (isa<CXXDestructorDecl>(MD)) 3074 EmitDiag( 3075 diag::warn_inconsistent_destructor_marked_not_override_overriding, 3076 diag::warn_suggest_destructor_marked_not_override_overriding); 3077 else 3078 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding, 3079 diag::warn_suggest_function_marked_not_override_overriding); 3080 } 3081 } 3082 3083 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member 3084 /// function overrides a virtual member function marked 'final', according to 3085 /// C++11 [class.virtual]p4. 3086 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, 3087 const CXXMethodDecl *Old) { 3088 FinalAttr *FA = Old->getAttr<FinalAttr>(); 3089 if (!FA) 3090 return false; 3091 3092 Diag(New->getLocation(), diag::err_final_function_overridden) 3093 << New->getDeclName() 3094 << FA->isSpelledAsSealed(); 3095 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 3096 return true; 3097 } 3098 3099 static bool InitializationHasSideEffects(const FieldDecl &FD) { 3100 const Type *T = FD.getType()->getBaseElementTypeUnsafe(); 3101 // FIXME: Destruction of ObjC lifetime types has side-effects. 3102 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3103 return !RD->isCompleteDefinition() || 3104 !RD->hasTrivialDefaultConstructor() || 3105 !RD->hasTrivialDestructor(); 3106 return false; 3107 } 3108 3109 static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) { 3110 ParsedAttributesView::const_iterator Itr = 3111 llvm::find_if(list, [](const ParsedAttr &AL) { 3112 return AL.isDeclspecPropertyAttribute(); 3113 }); 3114 if (Itr != list.end()) 3115 return &*Itr; 3116 return nullptr; 3117 } 3118 3119 // Check if there is a field shadowing. 3120 void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, 3121 DeclarationName FieldName, 3122 const CXXRecordDecl *RD, 3123 bool DeclIsField) { 3124 if (Diags.isIgnored(diag::warn_shadow_field, Loc)) 3125 return; 3126 3127 // To record a shadowed field in a base 3128 std::map<CXXRecordDecl*, NamedDecl*> Bases; 3129 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, 3130 CXXBasePath &Path) { 3131 const auto Base = Specifier->getType()->getAsCXXRecordDecl(); 3132 // Record an ambiguous path directly 3133 if (Bases.find(Base) != Bases.end()) 3134 return true; 3135 for (const auto Field : Base->lookup(FieldName)) { 3136 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && 3137 Field->getAccess() != AS_private) { 3138 assert(Field->getAccess() != AS_none); 3139 assert(Bases.find(Base) == Bases.end()); 3140 Bases[Base] = Field; 3141 return true; 3142 } 3143 } 3144 return false; 3145 }; 3146 3147 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3148 /*DetectVirtual=*/true); 3149 if (!RD->lookupInBases(FieldShadowed, Paths)) 3150 return; 3151 3152 for (const auto &P : Paths) { 3153 auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); 3154 auto It = Bases.find(Base); 3155 // Skip duplicated bases 3156 if (It == Bases.end()) 3157 continue; 3158 auto BaseField = It->second; 3159 assert(BaseField->getAccess() != AS_private); 3160 if (AS_none != 3161 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) { 3162 Diag(Loc, diag::warn_shadow_field) 3163 << FieldName << RD << Base << DeclIsField; 3164 Diag(BaseField->getLocation(), diag::note_shadow_field); 3165 Bases.erase(It); 3166 } 3167 } 3168 } 3169 3170 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member 3171 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the 3172 /// bitfield width if there is one, 'InitExpr' specifies the initializer if 3173 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is 3174 /// present (but parsing it has been deferred). 3175 NamedDecl * 3176 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, 3177 MultiTemplateParamsArg TemplateParameterLists, 3178 Expr *BW, const VirtSpecifiers &VS, 3179 InClassInitStyle InitStyle) { 3180 const DeclSpec &DS = D.getDeclSpec(); 3181 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 3182 DeclarationName Name = NameInfo.getName(); 3183 SourceLocation Loc = NameInfo.getLoc(); 3184 3185 // For anonymous bitfields, the location should point to the type. 3186 if (Loc.isInvalid()) 3187 Loc = D.getBeginLoc(); 3188 3189 Expr *BitWidth = static_cast<Expr*>(BW); 3190 3191 assert(isa<CXXRecordDecl>(CurContext)); 3192 assert(!DS.isFriendSpecified()); 3193 3194 bool isFunc = D.isDeclarationOfFunction(); 3195 const ParsedAttr *MSPropertyAttr = 3196 getMSPropertyAttr(D.getDeclSpec().getAttributes()); 3197 3198 if (cast<CXXRecordDecl>(CurContext)->isInterface()) { 3199 // The Microsoft extension __interface only permits public member functions 3200 // and prohibits constructors, destructors, operators, non-public member 3201 // functions, static methods and data members. 3202 unsigned InvalidDecl; 3203 bool ShowDeclName = true; 3204 if (!isFunc && 3205 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) 3206 InvalidDecl = 0; 3207 else if (!isFunc) 3208 InvalidDecl = 1; 3209 else if (AS != AS_public) 3210 InvalidDecl = 2; 3211 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) 3212 InvalidDecl = 3; 3213 else switch (Name.getNameKind()) { 3214 case DeclarationName::CXXConstructorName: 3215 InvalidDecl = 4; 3216 ShowDeclName = false; 3217 break; 3218 3219 case DeclarationName::CXXDestructorName: 3220 InvalidDecl = 5; 3221 ShowDeclName = false; 3222 break; 3223 3224 case DeclarationName::CXXOperatorName: 3225 case DeclarationName::CXXConversionFunctionName: 3226 InvalidDecl = 6; 3227 break; 3228 3229 default: 3230 InvalidDecl = 0; 3231 break; 3232 } 3233 3234 if (InvalidDecl) { 3235 if (ShowDeclName) 3236 Diag(Loc, diag::err_invalid_member_in_interface) 3237 << (InvalidDecl-1) << Name; 3238 else 3239 Diag(Loc, diag::err_invalid_member_in_interface) 3240 << (InvalidDecl-1) << ""; 3241 return nullptr; 3242 } 3243 } 3244 3245 // C++ 9.2p6: A member shall not be declared to have automatic storage 3246 // duration (auto, register) or with the extern storage-class-specifier. 3247 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class 3248 // data members and cannot be applied to names declared const or static, 3249 // and cannot be applied to reference members. 3250 switch (DS.getStorageClassSpec()) { 3251 case DeclSpec::SCS_unspecified: 3252 case DeclSpec::SCS_typedef: 3253 case DeclSpec::SCS_static: 3254 break; 3255 case DeclSpec::SCS_mutable: 3256 if (isFunc) { 3257 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); 3258 3259 // FIXME: It would be nicer if the keyword was ignored only for this 3260 // declarator. Otherwise we could get follow-up errors. 3261 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3262 } 3263 break; 3264 default: 3265 Diag(DS.getStorageClassSpecLoc(), 3266 diag::err_storageclass_invalid_for_member); 3267 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3268 break; 3269 } 3270 3271 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || 3272 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && 3273 !isFunc); 3274 3275 if (DS.hasConstexprSpecifier() && isInstField) { 3276 SemaDiagnosticBuilder B = 3277 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); 3278 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); 3279 if (InitStyle == ICIS_NoInit) { 3280 B << 0 << 0; 3281 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) 3282 B << FixItHint::CreateRemoval(ConstexprLoc); 3283 else { 3284 B << FixItHint::CreateReplacement(ConstexprLoc, "const"); 3285 D.getMutableDeclSpec().ClearConstexprSpec(); 3286 const char *PrevSpec; 3287 unsigned DiagID; 3288 bool Failed = D.getMutableDeclSpec().SetTypeQual( 3289 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); 3290 (void)Failed; 3291 assert(!Failed && "Making a constexpr member const shouldn't fail"); 3292 } 3293 } else { 3294 B << 1; 3295 const char *PrevSpec; 3296 unsigned DiagID; 3297 if (D.getMutableDeclSpec().SetStorageClassSpec( 3298 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, 3299 Context.getPrintingPolicy())) { 3300 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable && 3301 "This is the only DeclSpec that should fail to be applied"); 3302 B << 1; 3303 } else { 3304 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); 3305 isInstField = false; 3306 } 3307 } 3308 } 3309 3310 NamedDecl *Member; 3311 if (isInstField) { 3312 CXXScopeSpec &SS = D.getCXXScopeSpec(); 3313 3314 // Data members must have identifiers for names. 3315 if (!Name.isIdentifier()) { 3316 Diag(Loc, diag::err_bad_variable_name) 3317 << Name; 3318 return nullptr; 3319 } 3320 3321 IdentifierInfo *II = Name.getAsIdentifierInfo(); 3322 3323 // Member field could not be with "template" keyword. 3324 // So TemplateParameterLists should be empty in this case. 3325 if (TemplateParameterLists.size()) { 3326 TemplateParameterList* TemplateParams = TemplateParameterLists[0]; 3327 if (TemplateParams->size()) { 3328 // There is no such thing as a member field template. 3329 Diag(D.getIdentifierLoc(), diag::err_template_member) 3330 << II 3331 << SourceRange(TemplateParams->getTemplateLoc(), 3332 TemplateParams->getRAngleLoc()); 3333 } else { 3334 // There is an extraneous 'template<>' for this member. 3335 Diag(TemplateParams->getTemplateLoc(), 3336 diag::err_template_member_noparams) 3337 << II 3338 << SourceRange(TemplateParams->getTemplateLoc(), 3339 TemplateParams->getRAngleLoc()); 3340 } 3341 return nullptr; 3342 } 3343 3344 if (SS.isSet() && !SS.isInvalid()) { 3345 // The user provided a superfluous scope specifier inside a class 3346 // definition: 3347 // 3348 // class X { 3349 // int X::member; 3350 // }; 3351 if (DeclContext *DC = computeDeclContext(SS, false)) 3352 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(), 3353 D.getName().getKind() == 3354 UnqualifiedIdKind::IK_TemplateId); 3355 else 3356 Diag(D.getIdentifierLoc(), diag::err_member_qualification) 3357 << Name << SS.getRange(); 3358 3359 SS.clear(); 3360 } 3361 3362 if (MSPropertyAttr) { 3363 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3364 BitWidth, InitStyle, AS, *MSPropertyAttr); 3365 if (!Member) 3366 return nullptr; 3367 isInstField = false; 3368 } else { 3369 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3370 BitWidth, InitStyle, AS); 3371 if (!Member) 3372 return nullptr; 3373 } 3374 3375 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext)); 3376 } else { 3377 Member = HandleDeclarator(S, D, TemplateParameterLists); 3378 if (!Member) 3379 return nullptr; 3380 3381 // Non-instance-fields can't have a bitfield. 3382 if (BitWidth) { 3383 if (Member->isInvalidDecl()) { 3384 // don't emit another diagnostic. 3385 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) { 3386 // C++ 9.6p3: A bit-field shall not be a static member. 3387 // "static member 'A' cannot be a bit-field" 3388 Diag(Loc, diag::err_static_not_bitfield) 3389 << Name << BitWidth->getSourceRange(); 3390 } else if (isa<TypedefDecl>(Member)) { 3391 // "typedef member 'x' cannot be a bit-field" 3392 Diag(Loc, diag::err_typedef_not_bitfield) 3393 << Name << BitWidth->getSourceRange(); 3394 } else { 3395 // A function typedef ("typedef int f(); f a;"). 3396 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 3397 Diag(Loc, diag::err_not_integral_type_bitfield) 3398 << Name << cast<ValueDecl>(Member)->getType() 3399 << BitWidth->getSourceRange(); 3400 } 3401 3402 BitWidth = nullptr; 3403 Member->setInvalidDecl(); 3404 } 3405 3406 NamedDecl *NonTemplateMember = Member; 3407 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) 3408 NonTemplateMember = FunTmpl->getTemplatedDecl(); 3409 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member)) 3410 NonTemplateMember = VarTmpl->getTemplatedDecl(); 3411 3412 Member->setAccess(AS); 3413 3414 // If we have declared a member function template or static data member 3415 // template, set the access of the templated declaration as well. 3416 if (NonTemplateMember != Member) 3417 NonTemplateMember->setAccess(AS); 3418 3419 // C++ [temp.deduct.guide]p3: 3420 // A deduction guide [...] for a member class template [shall be 3421 // declared] with the same access [as the template]. 3422 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) { 3423 auto *TD = DG->getDeducedTemplate(); 3424 // Access specifiers are only meaningful if both the template and the 3425 // deduction guide are from the same scope. 3426 if (AS != TD->getAccess() && 3427 TD->getDeclContext()->getRedeclContext()->Equals( 3428 DG->getDeclContext()->getRedeclContext())) { 3429 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); 3430 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) 3431 << TD->getAccess(); 3432 const AccessSpecDecl *LastAccessSpec = nullptr; 3433 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { 3434 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) 3435 LastAccessSpec = AccessSpec; 3436 } 3437 assert(LastAccessSpec && "differing access with no access specifier"); 3438 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) 3439 << AS; 3440 } 3441 } 3442 } 3443 3444 if (VS.isOverrideSpecified()) 3445 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(), 3446 AttributeCommonInfo::AS_Keyword)); 3447 if (VS.isFinalSpecified()) 3448 Member->addAttr(FinalAttr::Create( 3449 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword, 3450 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed()))); 3451 3452 if (VS.getLastLocation().isValid()) { 3453 // Update the end location of a method that has a virt-specifiers. 3454 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) 3455 MD->setRangeEnd(VS.getLastLocation()); 3456 } 3457 3458 CheckOverrideControl(Member); 3459 3460 assert((Name || isInstField) && "No identifier for non-field ?"); 3461 3462 if (isInstField) { 3463 FieldDecl *FD = cast<FieldDecl>(Member); 3464 FieldCollector->Add(FD); 3465 3466 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) { 3467 // Remember all explicit private FieldDecls that have a name, no side 3468 // effects and are not part of a dependent type declaration. 3469 if (!FD->isImplicit() && FD->getDeclName() && 3470 FD->getAccess() == AS_private && 3471 !FD->hasAttr<UnusedAttr>() && 3472 !FD->getParent()->isDependentContext() && 3473 !InitializationHasSideEffects(*FD)) 3474 UnusedPrivateFields.insert(FD); 3475 } 3476 } 3477 3478 return Member; 3479 } 3480 3481 namespace { 3482 class UninitializedFieldVisitor 3483 : public EvaluatedExprVisitor<UninitializedFieldVisitor> { 3484 Sema &S; 3485 // List of Decls to generate a warning on. Also remove Decls that become 3486 // initialized. 3487 llvm::SmallPtrSetImpl<ValueDecl*> &Decls; 3488 // List of base classes of the record. Classes are removed after their 3489 // initializers. 3490 llvm::SmallPtrSetImpl<QualType> &BaseClasses; 3491 // Vector of decls to be removed from the Decl set prior to visiting the 3492 // nodes. These Decls may have been initialized in the prior initializer. 3493 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; 3494 // If non-null, add a note to the warning pointing back to the constructor. 3495 const CXXConstructorDecl *Constructor; 3496 // Variables to hold state when processing an initializer list. When 3497 // InitList is true, special case initialization of FieldDecls matching 3498 // InitListFieldDecl. 3499 bool InitList; 3500 FieldDecl *InitListFieldDecl; 3501 llvm::SmallVector<unsigned, 4> InitFieldIndex; 3502 3503 public: 3504 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; 3505 UninitializedFieldVisitor(Sema &S, 3506 llvm::SmallPtrSetImpl<ValueDecl*> &Decls, 3507 llvm::SmallPtrSetImpl<QualType> &BaseClasses) 3508 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), 3509 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} 3510 3511 // Returns true if the use of ME is not an uninitialized use. 3512 bool IsInitListMemberExprInitialized(MemberExpr *ME, 3513 bool CheckReferenceOnly) { 3514 llvm::SmallVector<FieldDecl*, 4> Fields; 3515 bool ReferenceField = false; 3516 while (ME) { 3517 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 3518 if (!FD) 3519 return false; 3520 Fields.push_back(FD); 3521 if (FD->getType()->isReferenceType()) 3522 ReferenceField = true; 3523 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts()); 3524 } 3525 3526 // Binding a reference to an uninitialized field is not an 3527 // uninitialized use. 3528 if (CheckReferenceOnly && !ReferenceField) 3529 return true; 3530 3531 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 3532 // Discard the first field since it is the field decl that is being 3533 // initialized. 3534 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) { 3535 UsedFieldIndex.push_back((*I)->getFieldIndex()); 3536 } 3537 3538 for (auto UsedIter = UsedFieldIndex.begin(), 3539 UsedEnd = UsedFieldIndex.end(), 3540 OrigIter = InitFieldIndex.begin(), 3541 OrigEnd = InitFieldIndex.end(); 3542 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 3543 if (*UsedIter < *OrigIter) 3544 return true; 3545 if (*UsedIter > *OrigIter) 3546 break; 3547 } 3548 3549 return false; 3550 } 3551 3552 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, 3553 bool AddressOf) { 3554 if (isa<EnumConstantDecl>(ME->getMemberDecl())) 3555 return; 3556 3557 // FieldME is the inner-most MemberExpr that is not an anonymous struct 3558 // or union. 3559 MemberExpr *FieldME = ME; 3560 3561 bool AllPODFields = FieldME->getType().isPODType(S.Context); 3562 3563 Expr *Base = ME; 3564 while (MemberExpr *SubME = 3565 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) { 3566 3567 if (isa<VarDecl>(SubME->getMemberDecl())) 3568 return; 3569 3570 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl())) 3571 if (!FD->isAnonymousStructOrUnion()) 3572 FieldME = SubME; 3573 3574 if (!FieldME->getType().isPODType(S.Context)) 3575 AllPODFields = false; 3576 3577 Base = SubME->getBase(); 3578 } 3579 3580 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) 3581 return; 3582 3583 if (AddressOf && AllPODFields) 3584 return; 3585 3586 ValueDecl* FoundVD = FieldME->getMemberDecl(); 3587 3588 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) { 3589 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { 3590 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); 3591 } 3592 3593 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { 3594 QualType T = BaseCast->getType(); 3595 if (T->isPointerType() && 3596 BaseClasses.count(T->getPointeeType())) { 3597 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) 3598 << T->getPointeeType() << FoundVD; 3599 } 3600 } 3601 } 3602 3603 if (!Decls.count(FoundVD)) 3604 return; 3605 3606 const bool IsReference = FoundVD->getType()->isReferenceType(); 3607 3608 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { 3609 // Special checking for initializer lists. 3610 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { 3611 return; 3612 } 3613 } else { 3614 // Prevent double warnings on use of unbounded references. 3615 if (CheckReferenceOnly && !IsReference) 3616 return; 3617 } 3618 3619 unsigned diag = IsReference 3620 ? diag::warn_reference_field_is_uninit 3621 : diag::warn_field_is_uninit; 3622 S.Diag(FieldME->getExprLoc(), diag) << FoundVD; 3623 if (Constructor) 3624 S.Diag(Constructor->getLocation(), 3625 diag::note_uninit_in_this_constructor) 3626 << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); 3627 3628 } 3629 3630 void HandleValue(Expr *E, bool AddressOf) { 3631 E = E->IgnoreParens(); 3632 3633 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 3634 HandleMemberExpr(ME, false /*CheckReferenceOnly*/, 3635 AddressOf /*AddressOf*/); 3636 return; 3637 } 3638 3639 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 3640 Visit(CO->getCond()); 3641 HandleValue(CO->getTrueExpr(), AddressOf); 3642 HandleValue(CO->getFalseExpr(), AddressOf); 3643 return; 3644 } 3645 3646 if (BinaryConditionalOperator *BCO = 3647 dyn_cast<BinaryConditionalOperator>(E)) { 3648 Visit(BCO->getCond()); 3649 HandleValue(BCO->getFalseExpr(), AddressOf); 3650 return; 3651 } 3652 3653 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 3654 HandleValue(OVE->getSourceExpr(), AddressOf); 3655 return; 3656 } 3657 3658 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3659 switch (BO->getOpcode()) { 3660 default: 3661 break; 3662 case(BO_PtrMemD): 3663 case(BO_PtrMemI): 3664 HandleValue(BO->getLHS(), AddressOf); 3665 Visit(BO->getRHS()); 3666 return; 3667 case(BO_Comma): 3668 Visit(BO->getLHS()); 3669 HandleValue(BO->getRHS(), AddressOf); 3670 return; 3671 } 3672 } 3673 3674 Visit(E); 3675 } 3676 3677 void CheckInitListExpr(InitListExpr *ILE) { 3678 InitFieldIndex.push_back(0); 3679 for (auto Child : ILE->children()) { 3680 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) { 3681 CheckInitListExpr(SubList); 3682 } else { 3683 Visit(Child); 3684 } 3685 ++InitFieldIndex.back(); 3686 } 3687 InitFieldIndex.pop_back(); 3688 } 3689 3690 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, 3691 FieldDecl *Field, const Type *BaseClass) { 3692 // Remove Decls that may have been initialized in the previous 3693 // initializer. 3694 for (ValueDecl* VD : DeclsToRemove) 3695 Decls.erase(VD); 3696 DeclsToRemove.clear(); 3697 3698 Constructor = FieldConstructor; 3699 InitListExpr *ILE = dyn_cast<InitListExpr>(E); 3700 3701 if (ILE && Field) { 3702 InitList = true; 3703 InitListFieldDecl = Field; 3704 InitFieldIndex.clear(); 3705 CheckInitListExpr(ILE); 3706 } else { 3707 InitList = false; 3708 Visit(E); 3709 } 3710 3711 if (Field) 3712 Decls.erase(Field); 3713 if (BaseClass) 3714 BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); 3715 } 3716 3717 void VisitMemberExpr(MemberExpr *ME) { 3718 // All uses of unbounded reference fields will warn. 3719 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); 3720 } 3721 3722 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 3723 if (E->getCastKind() == CK_LValueToRValue) { 3724 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3725 return; 3726 } 3727 3728 Inherited::VisitImplicitCastExpr(E); 3729 } 3730 3731 void VisitCXXConstructExpr(CXXConstructExpr *E) { 3732 if (E->getConstructor()->isCopyConstructor()) { 3733 Expr *ArgExpr = E->getArg(0); 3734 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 3735 if (ILE->getNumInits() == 1) 3736 ArgExpr = ILE->getInit(0); 3737 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 3738 if (ICE->getCastKind() == CK_NoOp) 3739 ArgExpr = ICE->getSubExpr(); 3740 HandleValue(ArgExpr, false /*AddressOf*/); 3741 return; 3742 } 3743 Inherited::VisitCXXConstructExpr(E); 3744 } 3745 3746 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3747 Expr *Callee = E->getCallee(); 3748 if (isa<MemberExpr>(Callee)) { 3749 HandleValue(Callee, false /*AddressOf*/); 3750 for (auto Arg : E->arguments()) 3751 Visit(Arg); 3752 return; 3753 } 3754 3755 Inherited::VisitCXXMemberCallExpr(E); 3756 } 3757 3758 void VisitCallExpr(CallExpr *E) { 3759 // Treat std::move as a use. 3760 if (E->isCallToStdMove()) { 3761 HandleValue(E->getArg(0), /*AddressOf=*/false); 3762 return; 3763 } 3764 3765 Inherited::VisitCallExpr(E); 3766 } 3767 3768 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 3769 Expr *Callee = E->getCallee(); 3770 3771 if (isa<UnresolvedLookupExpr>(Callee)) 3772 return Inherited::VisitCXXOperatorCallExpr(E); 3773 3774 Visit(Callee); 3775 for (auto Arg : E->arguments()) 3776 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); 3777 } 3778 3779 void VisitBinaryOperator(BinaryOperator *E) { 3780 // If a field assignment is detected, remove the field from the 3781 // uninitiailized field set. 3782 if (E->getOpcode() == BO_Assign) 3783 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS())) 3784 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3785 if (!FD->getType()->isReferenceType()) 3786 DeclsToRemove.push_back(FD); 3787 3788 if (E->isCompoundAssignmentOp()) { 3789 HandleValue(E->getLHS(), false /*AddressOf*/); 3790 Visit(E->getRHS()); 3791 return; 3792 } 3793 3794 Inherited::VisitBinaryOperator(E); 3795 } 3796 3797 void VisitUnaryOperator(UnaryOperator *E) { 3798 if (E->isIncrementDecrementOp()) { 3799 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3800 return; 3801 } 3802 if (E->getOpcode() == UO_AddrOf) { 3803 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) { 3804 HandleValue(ME->getBase(), true /*AddressOf*/); 3805 return; 3806 } 3807 } 3808 3809 Inherited::VisitUnaryOperator(E); 3810 } 3811 }; 3812 3813 // Diagnose value-uses of fields to initialize themselves, e.g. 3814 // foo(foo) 3815 // where foo is not also a parameter to the constructor. 3816 // Also diagnose across field uninitialized use such as 3817 // x(y), y(x) 3818 // TODO: implement -Wuninitialized and fold this into that framework. 3819 static void DiagnoseUninitializedFields( 3820 Sema &SemaRef, const CXXConstructorDecl *Constructor) { 3821 3822 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, 3823 Constructor->getLocation())) { 3824 return; 3825 } 3826 3827 if (Constructor->isInvalidDecl()) 3828 return; 3829 3830 const CXXRecordDecl *RD = Constructor->getParent(); 3831 3832 if (RD->isDependentContext()) 3833 return; 3834 3835 // Holds fields that are uninitialized. 3836 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; 3837 3838 // At the beginning, all fields are uninitialized. 3839 for (auto *I : RD->decls()) { 3840 if (auto *FD = dyn_cast<FieldDecl>(I)) { 3841 UninitializedFields.insert(FD); 3842 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { 3843 UninitializedFields.insert(IFD->getAnonField()); 3844 } 3845 } 3846 3847 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; 3848 for (auto I : RD->bases()) 3849 UninitializedBaseClasses.insert(I.getType().getCanonicalType()); 3850 3851 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3852 return; 3853 3854 UninitializedFieldVisitor UninitializedChecker(SemaRef, 3855 UninitializedFields, 3856 UninitializedBaseClasses); 3857 3858 for (const auto *FieldInit : Constructor->inits()) { 3859 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3860 break; 3861 3862 Expr *InitExpr = FieldInit->getInit(); 3863 if (!InitExpr) 3864 continue; 3865 3866 if (CXXDefaultInitExpr *Default = 3867 dyn_cast<CXXDefaultInitExpr>(InitExpr)) { 3868 InitExpr = Default->getExpr(); 3869 if (!InitExpr) 3870 continue; 3871 // In class initializers will point to the constructor. 3872 UninitializedChecker.CheckInitializer(InitExpr, Constructor, 3873 FieldInit->getAnyMember(), 3874 FieldInit->getBaseClass()); 3875 } else { 3876 UninitializedChecker.CheckInitializer(InitExpr, nullptr, 3877 FieldInit->getAnyMember(), 3878 FieldInit->getBaseClass()); 3879 } 3880 } 3881 } 3882 } // namespace 3883 3884 /// Enter a new C++ default initializer scope. After calling this, the 3885 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if 3886 /// parsing or instantiating the initializer failed. 3887 void Sema::ActOnStartCXXInClassMemberInitializer() { 3888 // Create a synthetic function scope to represent the call to the constructor 3889 // that notionally surrounds a use of this initializer. 3890 PushFunctionScope(); 3891 } 3892 3893 void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) { 3894 if (!D.isFunctionDeclarator()) 3895 return; 3896 auto &FTI = D.getFunctionTypeInfo(); 3897 if (!FTI.Params) 3898 return; 3899 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params, 3900 FTI.NumParams)) { 3901 auto *ParamDecl = cast<NamedDecl>(Param.Param); 3902 if (ParamDecl->getDeclName()) 3903 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false); 3904 } 3905 } 3906 3907 ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) { 3908 if (ConstraintExpr.isInvalid()) 3909 return ExprError(); 3910 return CorrectDelayedTyposInExpr(ConstraintExpr); 3911 } 3912 3913 /// This is invoked after parsing an in-class initializer for a 3914 /// non-static C++ class member, and after instantiating an in-class initializer 3915 /// in a class template. Such actions are deferred until the class is complete. 3916 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, 3917 SourceLocation InitLoc, 3918 Expr *InitExpr) { 3919 // Pop the notional constructor scope we created earlier. 3920 PopFunctionScopeInfo(nullptr, D); 3921 3922 FieldDecl *FD = dyn_cast<FieldDecl>(D); 3923 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && 3924 "must set init style when field is created"); 3925 3926 if (!InitExpr) { 3927 D->setInvalidDecl(); 3928 if (FD) 3929 FD->removeInClassInitializer(); 3930 return; 3931 } 3932 3933 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { 3934 FD->setInvalidDecl(); 3935 FD->removeInClassInitializer(); 3936 return; 3937 } 3938 3939 ExprResult Init = InitExpr; 3940 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) { 3941 InitializedEntity Entity = 3942 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD); 3943 InitializationKind Kind = 3944 FD->getInClassInitStyle() == ICIS_ListInit 3945 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), 3946 InitExpr->getBeginLoc(), 3947 InitExpr->getEndLoc()) 3948 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc); 3949 InitializationSequence Seq(*this, Entity, Kind, InitExpr); 3950 Init = Seq.Perform(*this, Entity, Kind, InitExpr); 3951 if (Init.isInvalid()) { 3952 FD->setInvalidDecl(); 3953 return; 3954 } 3955 } 3956 3957 // C++11 [class.base.init]p7: 3958 // The initialization of each base and member constitutes a 3959 // full-expression. 3960 Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false); 3961 if (Init.isInvalid()) { 3962 FD->setInvalidDecl(); 3963 return; 3964 } 3965 3966 InitExpr = Init.get(); 3967 3968 FD->setInClassInitializer(InitExpr); 3969 } 3970 3971 /// Find the direct and/or virtual base specifiers that 3972 /// correspond to the given base type, for use in base initialization 3973 /// within a constructor. 3974 static bool FindBaseInitializer(Sema &SemaRef, 3975 CXXRecordDecl *ClassDecl, 3976 QualType BaseType, 3977 const CXXBaseSpecifier *&DirectBaseSpec, 3978 const CXXBaseSpecifier *&VirtualBaseSpec) { 3979 // First, check for a direct base class. 3980 DirectBaseSpec = nullptr; 3981 for (const auto &Base : ClassDecl->bases()) { 3982 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { 3983 // We found a direct base of this type. That's what we're 3984 // initializing. 3985 DirectBaseSpec = &Base; 3986 break; 3987 } 3988 } 3989 3990 // Check for a virtual base class. 3991 // FIXME: We might be able to short-circuit this if we know in advance that 3992 // there are no virtual bases. 3993 VirtualBaseSpec = nullptr; 3994 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { 3995 // We haven't found a base yet; search the class hierarchy for a 3996 // virtual base class. 3997 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3998 /*DetectVirtual=*/false); 3999 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), 4000 SemaRef.Context.getTypeDeclType(ClassDecl), 4001 BaseType, Paths)) { 4002 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 4003 Path != Paths.end(); ++Path) { 4004 if (Path->back().Base->isVirtual()) { 4005 VirtualBaseSpec = Path->back().Base; 4006 break; 4007 } 4008 } 4009 } 4010 } 4011 4012 return DirectBaseSpec || VirtualBaseSpec; 4013 } 4014 4015 /// Handle a C++ member initializer using braced-init-list syntax. 4016 MemInitResult 4017 Sema::ActOnMemInitializer(Decl *ConstructorD, 4018 Scope *S, 4019 CXXScopeSpec &SS, 4020 IdentifierInfo *MemberOrBase, 4021 ParsedType TemplateTypeTy, 4022 const DeclSpec &DS, 4023 SourceLocation IdLoc, 4024 Expr *InitList, 4025 SourceLocation EllipsisLoc) { 4026 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4027 DS, IdLoc, InitList, 4028 EllipsisLoc); 4029 } 4030 4031 /// Handle a C++ member initializer using parentheses syntax. 4032 MemInitResult 4033 Sema::ActOnMemInitializer(Decl *ConstructorD, 4034 Scope *S, 4035 CXXScopeSpec &SS, 4036 IdentifierInfo *MemberOrBase, 4037 ParsedType TemplateTypeTy, 4038 const DeclSpec &DS, 4039 SourceLocation IdLoc, 4040 SourceLocation LParenLoc, 4041 ArrayRef<Expr *> Args, 4042 SourceLocation RParenLoc, 4043 SourceLocation EllipsisLoc) { 4044 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc); 4045 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4046 DS, IdLoc, List, EllipsisLoc); 4047 } 4048 4049 namespace { 4050 4051 // Callback to only accept typo corrections that can be a valid C++ member 4052 // intializer: either a non-static field member or a base class. 4053 class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { 4054 public: 4055 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) 4056 : ClassDecl(ClassDecl) {} 4057 4058 bool ValidateCandidate(const TypoCorrection &candidate) override { 4059 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 4060 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) 4061 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); 4062 return isa<TypeDecl>(ND); 4063 } 4064 return false; 4065 } 4066 4067 std::unique_ptr<CorrectionCandidateCallback> clone() override { 4068 return std::make_unique<MemInitializerValidatorCCC>(*this); 4069 } 4070 4071 private: 4072 CXXRecordDecl *ClassDecl; 4073 }; 4074 4075 } 4076 4077 ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, 4078 CXXScopeSpec &SS, 4079 ParsedType TemplateTypeTy, 4080 IdentifierInfo *MemberOrBase) { 4081 if (SS.getScopeRep() || TemplateTypeTy) 4082 return nullptr; 4083 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase); 4084 if (Result.empty()) 4085 return nullptr; 4086 ValueDecl *Member; 4087 if ((Member = dyn_cast<FieldDecl>(Result.front())) || 4088 (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) 4089 return Member; 4090 return nullptr; 4091 } 4092 4093 /// Handle a C++ member initializer. 4094 MemInitResult 4095 Sema::BuildMemInitializer(Decl *ConstructorD, 4096 Scope *S, 4097 CXXScopeSpec &SS, 4098 IdentifierInfo *MemberOrBase, 4099 ParsedType TemplateTypeTy, 4100 const DeclSpec &DS, 4101 SourceLocation IdLoc, 4102 Expr *Init, 4103 SourceLocation EllipsisLoc) { 4104 ExprResult Res = CorrectDelayedTyposInExpr(Init); 4105 if (!Res.isUsable()) 4106 return true; 4107 Init = Res.get(); 4108 4109 if (!ConstructorD) 4110 return true; 4111 4112 AdjustDeclIfTemplate(ConstructorD); 4113 4114 CXXConstructorDecl *Constructor 4115 = dyn_cast<CXXConstructorDecl>(ConstructorD); 4116 if (!Constructor) { 4117 // The user wrote a constructor initializer on a function that is 4118 // not a C++ constructor. Ignore the error for now, because we may 4119 // have more member initializers coming; we'll diagnose it just 4120 // once in ActOnMemInitializers. 4121 return true; 4122 } 4123 4124 CXXRecordDecl *ClassDecl = Constructor->getParent(); 4125 4126 // C++ [class.base.init]p2: 4127 // Names in a mem-initializer-id are looked up in the scope of the 4128 // constructor's class and, if not found in that scope, are looked 4129 // up in the scope containing the constructor's definition. 4130 // [Note: if the constructor's class contains a member with the 4131 // same name as a direct or virtual base class of the class, a 4132 // mem-initializer-id naming the member or base class and composed 4133 // of a single identifier refers to the class member. A 4134 // mem-initializer-id for the hidden base class may be specified 4135 // using a qualified name. ] 4136 4137 // Look for a member, first. 4138 if (ValueDecl *Member = tryLookupCtorInitMemberDecl( 4139 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { 4140 if (EllipsisLoc.isValid()) 4141 Diag(EllipsisLoc, diag::err_pack_expansion_member_init) 4142 << MemberOrBase 4143 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 4144 4145 return BuildMemberInitializer(Member, Init, IdLoc); 4146 } 4147 // It didn't name a member, so see if it names a class. 4148 QualType BaseType; 4149 TypeSourceInfo *TInfo = nullptr; 4150 4151 if (TemplateTypeTy) { 4152 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); 4153 if (BaseType.isNull()) 4154 return true; 4155 } else if (DS.getTypeSpecType() == TST_decltype) { 4156 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 4157 } else if (DS.getTypeSpecType() == TST_decltype_auto) { 4158 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 4159 return true; 4160 } else { 4161 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); 4162 LookupParsedName(R, S, &SS); 4163 4164 TypeDecl *TyD = R.getAsSingle<TypeDecl>(); 4165 if (!TyD) { 4166 if (R.isAmbiguous()) return true; 4167 4168 // We don't want access-control diagnostics here. 4169 R.suppressDiagnostics(); 4170 4171 if (SS.isSet() && isDependentScopeSpecifier(SS)) { 4172 bool NotUnknownSpecialization = false; 4173 DeclContext *DC = computeDeclContext(SS, false); 4174 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) 4175 NotUnknownSpecialization = !Record->hasAnyDependentBases(); 4176 4177 if (!NotUnknownSpecialization) { 4178 // When the scope specifier can refer to a member of an unknown 4179 // specialization, we take it as a type name. 4180 BaseType = CheckTypenameType(ETK_None, SourceLocation(), 4181 SS.getWithLocInContext(Context), 4182 *MemberOrBase, IdLoc); 4183 if (BaseType.isNull()) 4184 return true; 4185 4186 TInfo = Context.CreateTypeSourceInfo(BaseType); 4187 DependentNameTypeLoc TL = 4188 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); 4189 if (!TL.isNull()) { 4190 TL.setNameLoc(IdLoc); 4191 TL.setElaboratedKeywordLoc(SourceLocation()); 4192 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4193 } 4194 4195 R.clear(); 4196 R.setLookupName(MemberOrBase); 4197 } 4198 } 4199 4200 // If no results were found, try to correct typos. 4201 TypoCorrection Corr; 4202 MemInitializerValidatorCCC CCC(ClassDecl); 4203 if (R.empty() && BaseType.isNull() && 4204 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, 4205 CCC, CTK_ErrorRecovery, ClassDecl))) { 4206 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { 4207 // We have found a non-static data member with a similar 4208 // name to what was typed; complain and initialize that 4209 // member. 4210 diagnoseTypo(Corr, 4211 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4212 << MemberOrBase << true); 4213 return BuildMemberInitializer(Member, Init, IdLoc); 4214 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { 4215 const CXXBaseSpecifier *DirectBaseSpec; 4216 const CXXBaseSpecifier *VirtualBaseSpec; 4217 if (FindBaseInitializer(*this, ClassDecl, 4218 Context.getTypeDeclType(Type), 4219 DirectBaseSpec, VirtualBaseSpec)) { 4220 // We have found a direct or virtual base class with a 4221 // similar name to what was typed; complain and initialize 4222 // that base class. 4223 diagnoseTypo(Corr, 4224 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4225 << MemberOrBase << false, 4226 PDiag() /*Suppress note, we provide our own.*/); 4227 4228 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec 4229 : VirtualBaseSpec; 4230 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) 4231 << BaseSpec->getType() << BaseSpec->getSourceRange(); 4232 4233 TyD = Type; 4234 } 4235 } 4236 } 4237 4238 if (!TyD && BaseType.isNull()) { 4239 Diag(IdLoc, diag::err_mem_init_not_member_or_class) 4240 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); 4241 return true; 4242 } 4243 } 4244 4245 if (BaseType.isNull()) { 4246 BaseType = Context.getTypeDeclType(TyD); 4247 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); 4248 if (SS.isSet()) { 4249 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(), 4250 BaseType); 4251 TInfo = Context.CreateTypeSourceInfo(BaseType); 4252 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); 4253 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 4254 TL.setElaboratedKeywordLoc(SourceLocation()); 4255 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4256 } 4257 } 4258 } 4259 4260 if (!TInfo) 4261 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); 4262 4263 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); 4264 } 4265 4266 MemInitResult 4267 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, 4268 SourceLocation IdLoc) { 4269 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); 4270 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); 4271 assert((DirectMember || IndirectMember) && 4272 "Member must be a FieldDecl or IndirectFieldDecl"); 4273 4274 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4275 return true; 4276 4277 if (Member->isInvalidDecl()) 4278 return true; 4279 4280 MultiExprArg Args; 4281 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4282 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4283 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 4284 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 4285 } else { 4286 // Template instantiation doesn't reconstruct ParenListExprs for us. 4287 Args = Init; 4288 } 4289 4290 SourceRange InitRange = Init->getSourceRange(); 4291 4292 if (Member->getType()->isDependentType() || Init->isTypeDependent()) { 4293 // Can't check initialization for a member of dependent type or when 4294 // any of the arguments are type-dependent expressions. 4295 DiscardCleanupsInEvaluationContext(); 4296 } else { 4297 bool InitList = false; 4298 if (isa<InitListExpr>(Init)) { 4299 InitList = true; 4300 Args = Init; 4301 } 4302 4303 // Initialize the member. 4304 InitializedEntity MemberEntity = 4305 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) 4306 : InitializedEntity::InitializeMember(IndirectMember, 4307 nullptr); 4308 InitializationKind Kind = 4309 InitList ? InitializationKind::CreateDirectList( 4310 IdLoc, Init->getBeginLoc(), Init->getEndLoc()) 4311 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), 4312 InitRange.getEnd()); 4313 4314 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); 4315 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 4316 nullptr); 4317 if (MemberInit.isInvalid()) 4318 return true; 4319 4320 // C++11 [class.base.init]p7: 4321 // The initialization of each base and member constitutes a 4322 // full-expression. 4323 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(), 4324 /*DiscardedValue*/ false); 4325 if (MemberInit.isInvalid()) 4326 return true; 4327 4328 Init = MemberInit.get(); 4329 } 4330 4331 if (DirectMember) { 4332 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, 4333 InitRange.getBegin(), Init, 4334 InitRange.getEnd()); 4335 } else { 4336 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, 4337 InitRange.getBegin(), Init, 4338 InitRange.getEnd()); 4339 } 4340 } 4341 4342 MemInitResult 4343 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, 4344 CXXRecordDecl *ClassDecl) { 4345 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin(); 4346 if (!LangOpts.CPlusPlus11) 4347 return Diag(NameLoc, diag::err_delegating_ctor) 4348 << TInfo->getTypeLoc().getLocalSourceRange(); 4349 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); 4350 4351 bool InitList = true; 4352 MultiExprArg Args = Init; 4353 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4354 InitList = false; 4355 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4356 } 4357 4358 SourceRange InitRange = Init->getSourceRange(); 4359 // Initialize the object. 4360 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( 4361 QualType(ClassDecl->getTypeForDecl(), 0)); 4362 InitializationKind Kind = 4363 InitList ? InitializationKind::CreateDirectList( 4364 NameLoc, Init->getBeginLoc(), Init->getEndLoc()) 4365 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), 4366 InitRange.getEnd()); 4367 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); 4368 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, 4369 Args, nullptr); 4370 if (DelegationInit.isInvalid()) 4371 return true; 4372 4373 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && 4374 "Delegating constructor with no target?"); 4375 4376 // C++11 [class.base.init]p7: 4377 // The initialization of each base and member constitutes a 4378 // full-expression. 4379 DelegationInit = ActOnFinishFullExpr( 4380 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); 4381 if (DelegationInit.isInvalid()) 4382 return true; 4383 4384 // If we are in a dependent context, template instantiation will 4385 // perform this type-checking again. Just save the arguments that we 4386 // received in a ParenListExpr. 4387 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4388 // of the information that we have about the base 4389 // initializer. However, deconstructing the ASTs is a dicey process, 4390 // and this approach is far more likely to get the corner cases right. 4391 if (CurContext->isDependentContext()) 4392 DelegationInit = Init; 4393 4394 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), 4395 DelegationInit.getAs<Expr>(), 4396 InitRange.getEnd()); 4397 } 4398 4399 MemInitResult 4400 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, 4401 Expr *Init, CXXRecordDecl *ClassDecl, 4402 SourceLocation EllipsisLoc) { 4403 SourceLocation BaseLoc 4404 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); 4405 4406 if (!BaseType->isDependentType() && !BaseType->isRecordType()) 4407 return Diag(BaseLoc, diag::err_base_init_does_not_name_class) 4408 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4409 4410 // C++ [class.base.init]p2: 4411 // [...] Unless the mem-initializer-id names a nonstatic data 4412 // member of the constructor's class or a direct or virtual base 4413 // of that class, the mem-initializer is ill-formed. A 4414 // mem-initializer-list can initialize a base class using any 4415 // name that denotes that base class type. 4416 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent(); 4417 4418 SourceRange InitRange = Init->getSourceRange(); 4419 if (EllipsisLoc.isValid()) { 4420 // This is a pack expansion. 4421 if (!BaseType->containsUnexpandedParameterPack()) { 4422 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 4423 << SourceRange(BaseLoc, InitRange.getEnd()); 4424 4425 EllipsisLoc = SourceLocation(); 4426 } 4427 } else { 4428 // Check for any unexpanded parameter packs. 4429 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) 4430 return true; 4431 4432 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4433 return true; 4434 } 4435 4436 // Check for direct and virtual base classes. 4437 const CXXBaseSpecifier *DirectBaseSpec = nullptr; 4438 const CXXBaseSpecifier *VirtualBaseSpec = nullptr; 4439 if (!Dependent) { 4440 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), 4441 BaseType)) 4442 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); 4443 4444 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, 4445 VirtualBaseSpec); 4446 4447 // C++ [base.class.init]p2: 4448 // Unless the mem-initializer-id names a nonstatic data member of the 4449 // constructor's class or a direct or virtual base of that class, the 4450 // mem-initializer is ill-formed. 4451 if (!DirectBaseSpec && !VirtualBaseSpec) { 4452 // If the class has any dependent bases, then it's possible that 4453 // one of those types will resolve to the same type as 4454 // BaseType. Therefore, just treat this as a dependent base 4455 // class initialization. FIXME: Should we try to check the 4456 // initialization anyway? It seems odd. 4457 if (ClassDecl->hasAnyDependentBases()) 4458 Dependent = true; 4459 else 4460 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) 4461 << BaseType << Context.getTypeDeclType(ClassDecl) 4462 << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4463 } 4464 } 4465 4466 if (Dependent) { 4467 DiscardCleanupsInEvaluationContext(); 4468 4469 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4470 /*IsVirtual=*/false, 4471 InitRange.getBegin(), Init, 4472 InitRange.getEnd(), EllipsisLoc); 4473 } 4474 4475 // C++ [base.class.init]p2: 4476 // If a mem-initializer-id is ambiguous because it designates both 4477 // a direct non-virtual base class and an inherited virtual base 4478 // class, the mem-initializer is ill-formed. 4479 if (DirectBaseSpec && VirtualBaseSpec) 4480 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) 4481 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4482 4483 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; 4484 if (!BaseSpec) 4485 BaseSpec = VirtualBaseSpec; 4486 4487 // Initialize the base. 4488 bool InitList = true; 4489 MultiExprArg Args = Init; 4490 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4491 InitList = false; 4492 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4493 } 4494 4495 InitializedEntity BaseEntity = 4496 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); 4497 InitializationKind Kind = 4498 InitList ? InitializationKind::CreateDirectList(BaseLoc) 4499 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), 4500 InitRange.getEnd()); 4501 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); 4502 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); 4503 if (BaseInit.isInvalid()) 4504 return true; 4505 4506 // C++11 [class.base.init]p7: 4507 // The initialization of each base and member constitutes a 4508 // full-expression. 4509 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(), 4510 /*DiscardedValue*/ false); 4511 if (BaseInit.isInvalid()) 4512 return true; 4513 4514 // If we are in a dependent context, template instantiation will 4515 // perform this type-checking again. Just save the arguments that we 4516 // received in a ParenListExpr. 4517 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4518 // of the information that we have about the base 4519 // initializer. However, deconstructing the ASTs is a dicey process, 4520 // and this approach is far more likely to get the corner cases right. 4521 if (CurContext->isDependentContext()) 4522 BaseInit = Init; 4523 4524 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4525 BaseSpec->isVirtual(), 4526 InitRange.getBegin(), 4527 BaseInit.getAs<Expr>(), 4528 InitRange.getEnd(), EllipsisLoc); 4529 } 4530 4531 // Create a static_cast\<T&&>(expr). 4532 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) { 4533 if (T.isNull()) T = E->getType(); 4534 QualType TargetType = SemaRef.BuildReferenceType( 4535 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName()); 4536 SourceLocation ExprLoc = E->getBeginLoc(); 4537 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( 4538 TargetType, ExprLoc); 4539 4540 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 4541 SourceRange(ExprLoc, ExprLoc), 4542 E->getSourceRange()).get(); 4543 } 4544 4545 /// ImplicitInitializerKind - How an implicit base or member initializer should 4546 /// initialize its base or member. 4547 enum ImplicitInitializerKind { 4548 IIK_Default, 4549 IIK_Copy, 4550 IIK_Move, 4551 IIK_Inherit 4552 }; 4553 4554 static bool 4555 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4556 ImplicitInitializerKind ImplicitInitKind, 4557 CXXBaseSpecifier *BaseSpec, 4558 bool IsInheritedVirtualBase, 4559 CXXCtorInitializer *&CXXBaseInit) { 4560 InitializedEntity InitEntity 4561 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, 4562 IsInheritedVirtualBase); 4563 4564 ExprResult BaseInit; 4565 4566 switch (ImplicitInitKind) { 4567 case IIK_Inherit: 4568 case IIK_Default: { 4569 InitializationKind InitKind 4570 = InitializationKind::CreateDefault(Constructor->getLocation()); 4571 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); 4572 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None); 4573 break; 4574 } 4575 4576 case IIK_Move: 4577 case IIK_Copy: { 4578 bool Moving = ImplicitInitKind == IIK_Move; 4579 ParmVarDecl *Param = Constructor->getParamDecl(0); 4580 QualType ParamType = Param->getType().getNonReferenceType(); 4581 4582 Expr *CopyCtorArg = 4583 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4584 SourceLocation(), Param, false, 4585 Constructor->getLocation(), ParamType, 4586 VK_LValue, nullptr); 4587 4588 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); 4589 4590 // Cast to the base class to avoid ambiguities. 4591 QualType ArgTy = 4592 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), 4593 ParamType.getQualifiers()); 4594 4595 if (Moving) { 4596 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); 4597 } 4598 4599 CXXCastPath BasePath; 4600 BasePath.push_back(BaseSpec); 4601 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, 4602 CK_UncheckedDerivedToBase, 4603 Moving ? VK_XValue : VK_LValue, 4604 &BasePath).get(); 4605 4606 InitializationKind InitKind 4607 = InitializationKind::CreateDirect(Constructor->getLocation(), 4608 SourceLocation(), SourceLocation()); 4609 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); 4610 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); 4611 break; 4612 } 4613 } 4614 4615 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); 4616 if (BaseInit.isInvalid()) 4617 return true; 4618 4619 CXXBaseInit = 4620 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4621 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), 4622 SourceLocation()), 4623 BaseSpec->isVirtual(), 4624 SourceLocation(), 4625 BaseInit.getAs<Expr>(), 4626 SourceLocation(), 4627 SourceLocation()); 4628 4629 return false; 4630 } 4631 4632 static bool RefersToRValueRef(Expr *MemRef) { 4633 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); 4634 return Referenced->getType()->isRValueReferenceType(); 4635 } 4636 4637 static bool 4638 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4639 ImplicitInitializerKind ImplicitInitKind, 4640 FieldDecl *Field, IndirectFieldDecl *Indirect, 4641 CXXCtorInitializer *&CXXMemberInit) { 4642 if (Field->isInvalidDecl()) 4643 return true; 4644 4645 SourceLocation Loc = Constructor->getLocation(); 4646 4647 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { 4648 bool Moving = ImplicitInitKind == IIK_Move; 4649 ParmVarDecl *Param = Constructor->getParamDecl(0); 4650 QualType ParamType = Param->getType().getNonReferenceType(); 4651 4652 // Suppress copying zero-width bitfields. 4653 if (Field->isZeroLengthBitField(SemaRef.Context)) 4654 return false; 4655 4656 Expr *MemberExprBase = 4657 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4658 SourceLocation(), Param, false, 4659 Loc, ParamType, VK_LValue, nullptr); 4660 4661 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); 4662 4663 if (Moving) { 4664 MemberExprBase = CastForMoving(SemaRef, MemberExprBase); 4665 } 4666 4667 // Build a reference to this field within the parameter. 4668 CXXScopeSpec SS; 4669 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, 4670 Sema::LookupMemberName); 4671 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) 4672 : cast<ValueDecl>(Field), AS_public); 4673 MemberLookup.resolveKind(); 4674 ExprResult CtorArg 4675 = SemaRef.BuildMemberReferenceExpr(MemberExprBase, 4676 ParamType, Loc, 4677 /*IsArrow=*/false, 4678 SS, 4679 /*TemplateKWLoc=*/SourceLocation(), 4680 /*FirstQualifierInScope=*/nullptr, 4681 MemberLookup, 4682 /*TemplateArgs=*/nullptr, 4683 /*S*/nullptr); 4684 if (CtorArg.isInvalid()) 4685 return true; 4686 4687 // C++11 [class.copy]p15: 4688 // - if a member m has rvalue reference type T&&, it is direct-initialized 4689 // with static_cast<T&&>(x.m); 4690 if (RefersToRValueRef(CtorArg.get())) { 4691 CtorArg = CastForMoving(SemaRef, CtorArg.get()); 4692 } 4693 4694 InitializedEntity Entity = 4695 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4696 /*Implicit*/ true) 4697 : InitializedEntity::InitializeMember(Field, nullptr, 4698 /*Implicit*/ true); 4699 4700 // Direct-initialize to use the copy constructor. 4701 InitializationKind InitKind = 4702 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); 4703 4704 Expr *CtorArgE = CtorArg.getAs<Expr>(); 4705 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); 4706 ExprResult MemberInit = 4707 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1)); 4708 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4709 if (MemberInit.isInvalid()) 4710 return true; 4711 4712 if (Indirect) 4713 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4714 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4715 else 4716 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4717 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4718 return false; 4719 } 4720 4721 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && 4722 "Unhandled implicit init kind!"); 4723 4724 QualType FieldBaseElementType = 4725 SemaRef.Context.getBaseElementType(Field->getType()); 4726 4727 if (FieldBaseElementType->isRecordType()) { 4728 InitializedEntity InitEntity = 4729 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4730 /*Implicit*/ true) 4731 : InitializedEntity::InitializeMember(Field, nullptr, 4732 /*Implicit*/ true); 4733 InitializationKind InitKind = 4734 InitializationKind::CreateDefault(Loc); 4735 4736 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); 4737 ExprResult MemberInit = 4738 InitSeq.Perform(SemaRef, InitEntity, InitKind, None); 4739 4740 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4741 if (MemberInit.isInvalid()) 4742 return true; 4743 4744 if (Indirect) 4745 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4746 Indirect, Loc, 4747 Loc, 4748 MemberInit.get(), 4749 Loc); 4750 else 4751 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4752 Field, Loc, Loc, 4753 MemberInit.get(), 4754 Loc); 4755 return false; 4756 } 4757 4758 if (!Field->getParent()->isUnion()) { 4759 if (FieldBaseElementType->isReferenceType()) { 4760 SemaRef.Diag(Constructor->getLocation(), 4761 diag::err_uninitialized_member_in_ctor) 4762 << (int)Constructor->isImplicit() 4763 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4764 << 0 << Field->getDeclName(); 4765 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4766 return true; 4767 } 4768 4769 if (FieldBaseElementType.isConstQualified()) { 4770 SemaRef.Diag(Constructor->getLocation(), 4771 diag::err_uninitialized_member_in_ctor) 4772 << (int)Constructor->isImplicit() 4773 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4774 << 1 << Field->getDeclName(); 4775 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4776 return true; 4777 } 4778 } 4779 4780 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { 4781 // ARC and Weak: 4782 // Default-initialize Objective-C pointers to NULL. 4783 CXXMemberInit 4784 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, 4785 Loc, Loc, 4786 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), 4787 Loc); 4788 return false; 4789 } 4790 4791 // Nothing to initialize. 4792 CXXMemberInit = nullptr; 4793 return false; 4794 } 4795 4796 namespace { 4797 struct BaseAndFieldInfo { 4798 Sema &S; 4799 CXXConstructorDecl *Ctor; 4800 bool AnyErrorsInInits; 4801 ImplicitInitializerKind IIK; 4802 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; 4803 SmallVector<CXXCtorInitializer*, 8> AllToInit; 4804 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; 4805 4806 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) 4807 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { 4808 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); 4809 if (Ctor->getInheritedConstructor()) 4810 IIK = IIK_Inherit; 4811 else if (Generated && Ctor->isCopyConstructor()) 4812 IIK = IIK_Copy; 4813 else if (Generated && Ctor->isMoveConstructor()) 4814 IIK = IIK_Move; 4815 else 4816 IIK = IIK_Default; 4817 } 4818 4819 bool isImplicitCopyOrMove() const { 4820 switch (IIK) { 4821 case IIK_Copy: 4822 case IIK_Move: 4823 return true; 4824 4825 case IIK_Default: 4826 case IIK_Inherit: 4827 return false; 4828 } 4829 4830 llvm_unreachable("Invalid ImplicitInitializerKind!"); 4831 } 4832 4833 bool addFieldInitializer(CXXCtorInitializer *Init) { 4834 AllToInit.push_back(Init); 4835 4836 // Check whether this initializer makes the field "used". 4837 if (Init->getInit()->HasSideEffects(S.Context)) 4838 S.UnusedPrivateFields.remove(Init->getAnyMember()); 4839 4840 return false; 4841 } 4842 4843 bool isInactiveUnionMember(FieldDecl *Field) { 4844 RecordDecl *Record = Field->getParent(); 4845 if (!Record->isUnion()) 4846 return false; 4847 4848 if (FieldDecl *Active = 4849 ActiveUnionMember.lookup(Record->getCanonicalDecl())) 4850 return Active != Field->getCanonicalDecl(); 4851 4852 // In an implicit copy or move constructor, ignore any in-class initializer. 4853 if (isImplicitCopyOrMove()) 4854 return true; 4855 4856 // If there's no explicit initialization, the field is active only if it 4857 // has an in-class initializer... 4858 if (Field->hasInClassInitializer()) 4859 return false; 4860 // ... or it's an anonymous struct or union whose class has an in-class 4861 // initializer. 4862 if (!Field->isAnonymousStructOrUnion()) 4863 return true; 4864 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); 4865 return !FieldRD->hasInClassInitializer(); 4866 } 4867 4868 /// Determine whether the given field is, or is within, a union member 4869 /// that is inactive (because there was an initializer given for a different 4870 /// member of the union, or because the union was not initialized at all). 4871 bool isWithinInactiveUnionMember(FieldDecl *Field, 4872 IndirectFieldDecl *Indirect) { 4873 if (!Indirect) 4874 return isInactiveUnionMember(Field); 4875 4876 for (auto *C : Indirect->chain()) { 4877 FieldDecl *Field = dyn_cast<FieldDecl>(C); 4878 if (Field && isInactiveUnionMember(Field)) 4879 return true; 4880 } 4881 return false; 4882 } 4883 }; 4884 } 4885 4886 /// Determine whether the given type is an incomplete or zero-lenfgth 4887 /// array type. 4888 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { 4889 if (T->isIncompleteArrayType()) 4890 return true; 4891 4892 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { 4893 if (!ArrayT->getSize()) 4894 return true; 4895 4896 T = ArrayT->getElementType(); 4897 } 4898 4899 return false; 4900 } 4901 4902 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, 4903 FieldDecl *Field, 4904 IndirectFieldDecl *Indirect = nullptr) { 4905 if (Field->isInvalidDecl()) 4906 return false; 4907 4908 // Overwhelmingly common case: we have a direct initializer for this field. 4909 if (CXXCtorInitializer *Init = 4910 Info.AllBaseFields.lookup(Field->getCanonicalDecl())) 4911 return Info.addFieldInitializer(Init); 4912 4913 // C++11 [class.base.init]p8: 4914 // if the entity is a non-static data member that has a 4915 // brace-or-equal-initializer and either 4916 // -- the constructor's class is a union and no other variant member of that 4917 // union is designated by a mem-initializer-id or 4918 // -- the constructor's class is not a union, and, if the entity is a member 4919 // of an anonymous union, no other member of that union is designated by 4920 // a mem-initializer-id, 4921 // the entity is initialized as specified in [dcl.init]. 4922 // 4923 // We also apply the same rules to handle anonymous structs within anonymous 4924 // unions. 4925 if (Info.isWithinInactiveUnionMember(Field, Indirect)) 4926 return false; 4927 4928 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { 4929 ExprResult DIE = 4930 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); 4931 if (DIE.isInvalid()) 4932 return true; 4933 4934 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true); 4935 SemaRef.checkInitializerLifetime(Entity, DIE.get()); 4936 4937 CXXCtorInitializer *Init; 4938 if (Indirect) 4939 Init = new (SemaRef.Context) 4940 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), 4941 SourceLocation(), DIE.get(), SourceLocation()); 4942 else 4943 Init = new (SemaRef.Context) 4944 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), 4945 SourceLocation(), DIE.get(), SourceLocation()); 4946 return Info.addFieldInitializer(Init); 4947 } 4948 4949 // Don't initialize incomplete or zero-length arrays. 4950 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) 4951 return false; 4952 4953 // Don't try to build an implicit initializer if there were semantic 4954 // errors in any of the initializers (and therefore we might be 4955 // missing some that the user actually wrote). 4956 if (Info.AnyErrorsInInits) 4957 return false; 4958 4959 CXXCtorInitializer *Init = nullptr; 4960 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, 4961 Indirect, Init)) 4962 return true; 4963 4964 if (!Init) 4965 return false; 4966 4967 return Info.addFieldInitializer(Init); 4968 } 4969 4970 bool 4971 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, 4972 CXXCtorInitializer *Initializer) { 4973 assert(Initializer->isDelegatingInitializer()); 4974 Constructor->setNumCtorInitializers(1); 4975 CXXCtorInitializer **initializer = 4976 new (Context) CXXCtorInitializer*[1]; 4977 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); 4978 Constructor->setCtorInitializers(initializer); 4979 4980 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { 4981 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); 4982 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); 4983 } 4984 4985 DelegatingCtorDecls.push_back(Constructor); 4986 4987 DiagnoseUninitializedFields(*this, Constructor); 4988 4989 return false; 4990 } 4991 4992 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, 4993 ArrayRef<CXXCtorInitializer *> Initializers) { 4994 if (Constructor->isDependentContext()) { 4995 // Just store the initializers as written, they will be checked during 4996 // instantiation. 4997 if (!Initializers.empty()) { 4998 Constructor->setNumCtorInitializers(Initializers.size()); 4999 CXXCtorInitializer **baseOrMemberInitializers = 5000 new (Context) CXXCtorInitializer*[Initializers.size()]; 5001 memcpy(baseOrMemberInitializers, Initializers.data(), 5002 Initializers.size() * sizeof(CXXCtorInitializer*)); 5003 Constructor->setCtorInitializers(baseOrMemberInitializers); 5004 } 5005 5006 // Let template instantiation know whether we had errors. 5007 if (AnyErrors) 5008 Constructor->setInvalidDecl(); 5009 5010 return false; 5011 } 5012 5013 BaseAndFieldInfo Info(*this, Constructor, AnyErrors); 5014 5015 // We need to build the initializer AST according to order of construction 5016 // and not what user specified in the Initializers list. 5017 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); 5018 if (!ClassDecl) 5019 return true; 5020 5021 bool HadError = false; 5022 5023 for (unsigned i = 0; i < Initializers.size(); i++) { 5024 CXXCtorInitializer *Member = Initializers[i]; 5025 5026 if (Member->isBaseInitializer()) 5027 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; 5028 else { 5029 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; 5030 5031 if (IndirectFieldDecl *F = Member->getIndirectMember()) { 5032 for (auto *C : F->chain()) { 5033 FieldDecl *FD = dyn_cast<FieldDecl>(C); 5034 if (FD && FD->getParent()->isUnion()) 5035 Info.ActiveUnionMember.insert(std::make_pair( 5036 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5037 } 5038 } else if (FieldDecl *FD = Member->getMember()) { 5039 if (FD->getParent()->isUnion()) 5040 Info.ActiveUnionMember.insert(std::make_pair( 5041 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5042 } 5043 } 5044 } 5045 5046 // Keep track of the direct virtual bases. 5047 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; 5048 for (auto &I : ClassDecl->bases()) { 5049 if (I.isVirtual()) 5050 DirectVBases.insert(&I); 5051 } 5052 5053 // Push virtual bases before others. 5054 for (auto &VBase : ClassDecl->vbases()) { 5055 if (CXXCtorInitializer *Value 5056 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { 5057 // [class.base.init]p7, per DR257: 5058 // A mem-initializer where the mem-initializer-id names a virtual base 5059 // class is ignored during execution of a constructor of any class that 5060 // is not the most derived class. 5061 if (ClassDecl->isAbstract()) { 5062 // FIXME: Provide a fixit to remove the base specifier. This requires 5063 // tracking the location of the associated comma for a base specifier. 5064 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) 5065 << VBase.getType() << ClassDecl; 5066 DiagnoseAbstractType(ClassDecl); 5067 } 5068 5069 Info.AllToInit.push_back(Value); 5070 } else if (!AnyErrors && !ClassDecl->isAbstract()) { 5071 // [class.base.init]p8, per DR257: 5072 // If a given [...] base class is not named by a mem-initializer-id 5073 // [...] and the entity is not a virtual base class of an abstract 5074 // class, then [...] the entity is default-initialized. 5075 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); 5076 CXXCtorInitializer *CXXBaseInit; 5077 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5078 &VBase, IsInheritedVirtualBase, 5079 CXXBaseInit)) { 5080 HadError = true; 5081 continue; 5082 } 5083 5084 Info.AllToInit.push_back(CXXBaseInit); 5085 } 5086 } 5087 5088 // Non-virtual bases. 5089 for (auto &Base : ClassDecl->bases()) { 5090 // Virtuals are in the virtual base list and already constructed. 5091 if (Base.isVirtual()) 5092 continue; 5093 5094 if (CXXCtorInitializer *Value 5095 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { 5096 Info.AllToInit.push_back(Value); 5097 } else if (!AnyErrors) { 5098 CXXCtorInitializer *CXXBaseInit; 5099 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5100 &Base, /*IsInheritedVirtualBase=*/false, 5101 CXXBaseInit)) { 5102 HadError = true; 5103 continue; 5104 } 5105 5106 Info.AllToInit.push_back(CXXBaseInit); 5107 } 5108 } 5109 5110 // Fields. 5111 for (auto *Mem : ClassDecl->decls()) { 5112 if (auto *F = dyn_cast<FieldDecl>(Mem)) { 5113 // C++ [class.bit]p2: 5114 // A declaration for a bit-field that omits the identifier declares an 5115 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 5116 // initialized. 5117 if (F->isUnnamedBitfield()) 5118 continue; 5119 5120 // If we're not generating the implicit copy/move constructor, then we'll 5121 // handle anonymous struct/union fields based on their individual 5122 // indirect fields. 5123 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) 5124 continue; 5125 5126 if (CollectFieldInitializer(*this, Info, F)) 5127 HadError = true; 5128 continue; 5129 } 5130 5131 // Beyond this point, we only consider default initialization. 5132 if (Info.isImplicitCopyOrMove()) 5133 continue; 5134 5135 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { 5136 if (F->getType()->isIncompleteArrayType()) { 5137 assert(ClassDecl->hasFlexibleArrayMember() && 5138 "Incomplete array type is not valid"); 5139 continue; 5140 } 5141 5142 // Initialize each field of an anonymous struct individually. 5143 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) 5144 HadError = true; 5145 5146 continue; 5147 } 5148 } 5149 5150 unsigned NumInitializers = Info.AllToInit.size(); 5151 if (NumInitializers > 0) { 5152 Constructor->setNumCtorInitializers(NumInitializers); 5153 CXXCtorInitializer **baseOrMemberInitializers = 5154 new (Context) CXXCtorInitializer*[NumInitializers]; 5155 memcpy(baseOrMemberInitializers, Info.AllToInit.data(), 5156 NumInitializers * sizeof(CXXCtorInitializer*)); 5157 Constructor->setCtorInitializers(baseOrMemberInitializers); 5158 5159 // Constructors implicitly reference the base and member 5160 // destructors. 5161 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), 5162 Constructor->getParent()); 5163 } 5164 5165 return HadError; 5166 } 5167 5168 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { 5169 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { 5170 const RecordDecl *RD = RT->getDecl(); 5171 if (RD->isAnonymousStructOrUnion()) { 5172 for (auto *Field : RD->fields()) 5173 PopulateKeysForFields(Field, IdealInits); 5174 return; 5175 } 5176 } 5177 IdealInits.push_back(Field->getCanonicalDecl()); 5178 } 5179 5180 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { 5181 return Context.getCanonicalType(BaseType).getTypePtr(); 5182 } 5183 5184 static const void *GetKeyForMember(ASTContext &Context, 5185 CXXCtorInitializer *Member) { 5186 if (!Member->isAnyMemberInitializer()) 5187 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); 5188 5189 return Member->getAnyMember()->getCanonicalDecl(); 5190 } 5191 5192 static void DiagnoseBaseOrMemInitializerOrder( 5193 Sema &SemaRef, const CXXConstructorDecl *Constructor, 5194 ArrayRef<CXXCtorInitializer *> Inits) { 5195 if (Constructor->getDeclContext()->isDependentContext()) 5196 return; 5197 5198 // Don't check initializers order unless the warning is enabled at the 5199 // location of at least one initializer. 5200 bool ShouldCheckOrder = false; 5201 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5202 CXXCtorInitializer *Init = Inits[InitIndex]; 5203 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, 5204 Init->getSourceLocation())) { 5205 ShouldCheckOrder = true; 5206 break; 5207 } 5208 } 5209 if (!ShouldCheckOrder) 5210 return; 5211 5212 // Build the list of bases and members in the order that they'll 5213 // actually be initialized. The explicit initializers should be in 5214 // this same order but may be missing things. 5215 SmallVector<const void*, 32> IdealInitKeys; 5216 5217 const CXXRecordDecl *ClassDecl = Constructor->getParent(); 5218 5219 // 1. Virtual bases. 5220 for (const auto &VBase : ClassDecl->vbases()) 5221 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); 5222 5223 // 2. Non-virtual bases. 5224 for (const auto &Base : ClassDecl->bases()) { 5225 if (Base.isVirtual()) 5226 continue; 5227 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); 5228 } 5229 5230 // 3. Direct fields. 5231 for (auto *Field : ClassDecl->fields()) { 5232 if (Field->isUnnamedBitfield()) 5233 continue; 5234 5235 PopulateKeysForFields(Field, IdealInitKeys); 5236 } 5237 5238 unsigned NumIdealInits = IdealInitKeys.size(); 5239 unsigned IdealIndex = 0; 5240 5241 CXXCtorInitializer *PrevInit = nullptr; 5242 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5243 CXXCtorInitializer *Init = Inits[InitIndex]; 5244 const void *InitKey = GetKeyForMember(SemaRef.Context, Init); 5245 5246 // Scan forward to try to find this initializer in the idealized 5247 // initializers list. 5248 for (; IdealIndex != NumIdealInits; ++IdealIndex) 5249 if (InitKey == IdealInitKeys[IdealIndex]) 5250 break; 5251 5252 // If we didn't find this initializer, it must be because we 5253 // scanned past it on a previous iteration. That can only 5254 // happen if we're out of order; emit a warning. 5255 if (IdealIndex == NumIdealInits && PrevInit) { 5256 Sema::SemaDiagnosticBuilder D = 5257 SemaRef.Diag(PrevInit->getSourceLocation(), 5258 diag::warn_initializer_out_of_order); 5259 5260 if (PrevInit->isAnyMemberInitializer()) 5261 D << 0 << PrevInit->getAnyMember()->getDeclName(); 5262 else 5263 D << 1 << PrevInit->getTypeSourceInfo()->getType(); 5264 5265 if (Init->isAnyMemberInitializer()) 5266 D << 0 << Init->getAnyMember()->getDeclName(); 5267 else 5268 D << 1 << Init->getTypeSourceInfo()->getType(); 5269 5270 // Move back to the initializer's location in the ideal list. 5271 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) 5272 if (InitKey == IdealInitKeys[IdealIndex]) 5273 break; 5274 5275 assert(IdealIndex < NumIdealInits && 5276 "initializer not found in initializer list"); 5277 } 5278 5279 PrevInit = Init; 5280 } 5281 } 5282 5283 namespace { 5284 bool CheckRedundantInit(Sema &S, 5285 CXXCtorInitializer *Init, 5286 CXXCtorInitializer *&PrevInit) { 5287 if (!PrevInit) { 5288 PrevInit = Init; 5289 return false; 5290 } 5291 5292 if (FieldDecl *Field = Init->getAnyMember()) 5293 S.Diag(Init->getSourceLocation(), 5294 diag::err_multiple_mem_initialization) 5295 << Field->getDeclName() 5296 << Init->getSourceRange(); 5297 else { 5298 const Type *BaseClass = Init->getBaseClass(); 5299 assert(BaseClass && "neither field nor base"); 5300 S.Diag(Init->getSourceLocation(), 5301 diag::err_multiple_base_initialization) 5302 << QualType(BaseClass, 0) 5303 << Init->getSourceRange(); 5304 } 5305 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) 5306 << 0 << PrevInit->getSourceRange(); 5307 5308 return true; 5309 } 5310 5311 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; 5312 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; 5313 5314 bool CheckRedundantUnionInit(Sema &S, 5315 CXXCtorInitializer *Init, 5316 RedundantUnionMap &Unions) { 5317 FieldDecl *Field = Init->getAnyMember(); 5318 RecordDecl *Parent = Field->getParent(); 5319 NamedDecl *Child = Field; 5320 5321 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { 5322 if (Parent->isUnion()) { 5323 UnionEntry &En = Unions[Parent]; 5324 if (En.first && En.first != Child) { 5325 S.Diag(Init->getSourceLocation(), 5326 diag::err_multiple_mem_union_initialization) 5327 << Field->getDeclName() 5328 << Init->getSourceRange(); 5329 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) 5330 << 0 << En.second->getSourceRange(); 5331 return true; 5332 } 5333 if (!En.first) { 5334 En.first = Child; 5335 En.second = Init; 5336 } 5337 if (!Parent->isAnonymousStructOrUnion()) 5338 return false; 5339 } 5340 5341 Child = Parent; 5342 Parent = cast<RecordDecl>(Parent->getDeclContext()); 5343 } 5344 5345 return false; 5346 } 5347 } 5348 5349 /// ActOnMemInitializers - Handle the member initializers for a constructor. 5350 void Sema::ActOnMemInitializers(Decl *ConstructorDecl, 5351 SourceLocation ColonLoc, 5352 ArrayRef<CXXCtorInitializer*> MemInits, 5353 bool AnyErrors) { 5354 if (!ConstructorDecl) 5355 return; 5356 5357 AdjustDeclIfTemplate(ConstructorDecl); 5358 5359 CXXConstructorDecl *Constructor 5360 = dyn_cast<CXXConstructorDecl>(ConstructorDecl); 5361 5362 if (!Constructor) { 5363 Diag(ColonLoc, diag::err_only_constructors_take_base_inits); 5364 return; 5365 } 5366 5367 // Mapping for the duplicate initializers check. 5368 // For member initializers, this is keyed with a FieldDecl*. 5369 // For base initializers, this is keyed with a Type*. 5370 llvm::DenseMap<const void *, CXXCtorInitializer *> Members; 5371 5372 // Mapping for the inconsistent anonymous-union initializers check. 5373 RedundantUnionMap MemberUnions; 5374 5375 bool HadError = false; 5376 for (unsigned i = 0; i < MemInits.size(); i++) { 5377 CXXCtorInitializer *Init = MemInits[i]; 5378 5379 // Set the source order index. 5380 Init->setSourceOrder(i); 5381 5382 if (Init->isAnyMemberInitializer()) { 5383 const void *Key = GetKeyForMember(Context, Init); 5384 if (CheckRedundantInit(*this, Init, Members[Key]) || 5385 CheckRedundantUnionInit(*this, Init, MemberUnions)) 5386 HadError = true; 5387 } else if (Init->isBaseInitializer()) { 5388 const void *Key = GetKeyForMember(Context, Init); 5389 if (CheckRedundantInit(*this, Init, Members[Key])) 5390 HadError = true; 5391 } else { 5392 assert(Init->isDelegatingInitializer()); 5393 // This must be the only initializer 5394 if (MemInits.size() != 1) { 5395 Diag(Init->getSourceLocation(), 5396 diag::err_delegating_initializer_alone) 5397 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); 5398 // We will treat this as being the only initializer. 5399 } 5400 SetDelegatingInitializer(Constructor, MemInits[i]); 5401 // Return immediately as the initializer is set. 5402 return; 5403 } 5404 } 5405 5406 if (HadError) 5407 return; 5408 5409 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); 5410 5411 SetCtorInitializers(Constructor, AnyErrors, MemInits); 5412 5413 DiagnoseUninitializedFields(*this, Constructor); 5414 } 5415 5416 void 5417 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, 5418 CXXRecordDecl *ClassDecl) { 5419 // Ignore dependent contexts. Also ignore unions, since their members never 5420 // have destructors implicitly called. 5421 if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) 5422 return; 5423 5424 // FIXME: all the access-control diagnostics are positioned on the 5425 // field/base declaration. That's probably good; that said, the 5426 // user might reasonably want to know why the destructor is being 5427 // emitted, and we currently don't say. 5428 5429 // Non-static data members. 5430 for (auto *Field : ClassDecl->fields()) { 5431 if (Field->isInvalidDecl()) 5432 continue; 5433 5434 // Don't destroy incomplete or zero-length arrays. 5435 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) 5436 continue; 5437 5438 QualType FieldType = Context.getBaseElementType(Field->getType()); 5439 5440 const RecordType* RT = FieldType->getAs<RecordType>(); 5441 if (!RT) 5442 continue; 5443 5444 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5445 if (FieldClassDecl->isInvalidDecl()) 5446 continue; 5447 if (FieldClassDecl->hasIrrelevantDestructor()) 5448 continue; 5449 // The destructor for an implicit anonymous union member is never invoked. 5450 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 5451 continue; 5452 5453 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); 5454 assert(Dtor && "No dtor found for FieldClassDecl!"); 5455 CheckDestructorAccess(Field->getLocation(), Dtor, 5456 PDiag(diag::err_access_dtor_field) 5457 << Field->getDeclName() 5458 << FieldType); 5459 5460 MarkFunctionReferenced(Location, Dtor); 5461 DiagnoseUseOfDecl(Dtor, Location); 5462 } 5463 5464 // We only potentially invoke the destructors of potentially constructed 5465 // subobjects. 5466 bool VisitVirtualBases = !ClassDecl->isAbstract(); 5467 5468 // If the destructor exists and has already been marked used in the MS ABI, 5469 // then virtual base destructors have already been checked and marked used. 5470 // Skip checking them again to avoid duplicate diagnostics. 5471 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5472 CXXDestructorDecl *Dtor = ClassDecl->getDestructor(); 5473 if (Dtor && Dtor->isUsed()) 5474 VisitVirtualBases = false; 5475 } 5476 5477 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; 5478 5479 // Bases. 5480 for (const auto &Base : ClassDecl->bases()) { 5481 // Bases are always records in a well-formed non-dependent class. 5482 const RecordType *RT = Base.getType()->getAs<RecordType>(); 5483 5484 // Remember direct virtual bases. 5485 if (Base.isVirtual()) { 5486 if (!VisitVirtualBases) 5487 continue; 5488 DirectVirtualBases.insert(RT); 5489 } 5490 5491 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5492 // If our base class is invalid, we probably can't get its dtor anyway. 5493 if (BaseClassDecl->isInvalidDecl()) 5494 continue; 5495 if (BaseClassDecl->hasIrrelevantDestructor()) 5496 continue; 5497 5498 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5499 assert(Dtor && "No dtor found for BaseClassDecl!"); 5500 5501 // FIXME: caret should be on the start of the class name 5502 CheckDestructorAccess(Base.getBeginLoc(), Dtor, 5503 PDiag(diag::err_access_dtor_base) 5504 << Base.getType() << Base.getSourceRange(), 5505 Context.getTypeDeclType(ClassDecl)); 5506 5507 MarkFunctionReferenced(Location, Dtor); 5508 DiagnoseUseOfDecl(Dtor, Location); 5509 } 5510 5511 if (VisitVirtualBases) 5512 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl, 5513 &DirectVirtualBases); 5514 } 5515 5516 void Sema::MarkVirtualBaseDestructorsReferenced( 5517 SourceLocation Location, CXXRecordDecl *ClassDecl, 5518 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) { 5519 // Virtual bases. 5520 for (const auto &VBase : ClassDecl->vbases()) { 5521 // Bases are always records in a well-formed non-dependent class. 5522 const RecordType *RT = VBase.getType()->castAs<RecordType>(); 5523 5524 // Ignore already visited direct virtual bases. 5525 if (DirectVirtualBases && DirectVirtualBases->count(RT)) 5526 continue; 5527 5528 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5529 // If our base class is invalid, we probably can't get its dtor anyway. 5530 if (BaseClassDecl->isInvalidDecl()) 5531 continue; 5532 if (BaseClassDecl->hasIrrelevantDestructor()) 5533 continue; 5534 5535 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5536 assert(Dtor && "No dtor found for BaseClassDecl!"); 5537 if (CheckDestructorAccess( 5538 ClassDecl->getLocation(), Dtor, 5539 PDiag(diag::err_access_dtor_vbase) 5540 << Context.getTypeDeclType(ClassDecl) << VBase.getType(), 5541 Context.getTypeDeclType(ClassDecl)) == 5542 AR_accessible) { 5543 CheckDerivedToBaseConversion( 5544 Context.getTypeDeclType(ClassDecl), VBase.getType(), 5545 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), 5546 SourceRange(), DeclarationName(), nullptr); 5547 } 5548 5549 MarkFunctionReferenced(Location, Dtor); 5550 DiagnoseUseOfDecl(Dtor, Location); 5551 } 5552 } 5553 5554 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { 5555 if (!CDtorDecl) 5556 return; 5557 5558 if (CXXConstructorDecl *Constructor 5559 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) { 5560 SetCtorInitializers(Constructor, /*AnyErrors=*/false); 5561 DiagnoseUninitializedFields(*this, Constructor); 5562 } 5563 } 5564 5565 bool Sema::isAbstractType(SourceLocation Loc, QualType T) { 5566 if (!getLangOpts().CPlusPlus) 5567 return false; 5568 5569 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); 5570 if (!RD) 5571 return false; 5572 5573 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a 5574 // class template specialization here, but doing so breaks a lot of code. 5575 5576 // We can't answer whether something is abstract until it has a 5577 // definition. If it's currently being defined, we'll walk back 5578 // over all the declarations when we have a full definition. 5579 const CXXRecordDecl *Def = RD->getDefinition(); 5580 if (!Def || Def->isBeingDefined()) 5581 return false; 5582 5583 return RD->isAbstract(); 5584 } 5585 5586 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 5587 TypeDiagnoser &Diagnoser) { 5588 if (!isAbstractType(Loc, T)) 5589 return false; 5590 5591 T = Context.getBaseElementType(T); 5592 Diagnoser.diagnose(*this, Loc, T); 5593 DiagnoseAbstractType(T->getAsCXXRecordDecl()); 5594 return true; 5595 } 5596 5597 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { 5598 // Check if we've already emitted the list of pure virtual functions 5599 // for this class. 5600 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) 5601 return; 5602 5603 // If the diagnostic is suppressed, don't emit the notes. We're only 5604 // going to emit them once, so try to attach them to a diagnostic we're 5605 // actually going to show. 5606 if (Diags.isLastDiagnosticIgnored()) 5607 return; 5608 5609 CXXFinalOverriderMap FinalOverriders; 5610 RD->getFinalOverriders(FinalOverriders); 5611 5612 // Keep a set of seen pure methods so we won't diagnose the same method 5613 // more than once. 5614 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; 5615 5616 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 5617 MEnd = FinalOverriders.end(); 5618 M != MEnd; 5619 ++M) { 5620 for (OverridingMethods::iterator SO = M->second.begin(), 5621 SOEnd = M->second.end(); 5622 SO != SOEnd; ++SO) { 5623 // C++ [class.abstract]p4: 5624 // A class is abstract if it contains or inherits at least one 5625 // pure virtual function for which the final overrider is pure 5626 // virtual. 5627 5628 // 5629 if (SO->second.size() != 1) 5630 continue; 5631 5632 if (!SO->second.front().Method->isPure()) 5633 continue; 5634 5635 if (!SeenPureMethods.insert(SO->second.front().Method).second) 5636 continue; 5637 5638 Diag(SO->second.front().Method->getLocation(), 5639 diag::note_pure_virtual_function) 5640 << SO->second.front().Method->getDeclName() << RD->getDeclName(); 5641 } 5642 } 5643 5644 if (!PureVirtualClassDiagSet) 5645 PureVirtualClassDiagSet.reset(new RecordDeclSetTy); 5646 PureVirtualClassDiagSet->insert(RD); 5647 } 5648 5649 namespace { 5650 struct AbstractUsageInfo { 5651 Sema &S; 5652 CXXRecordDecl *Record; 5653 CanQualType AbstractType; 5654 bool Invalid; 5655 5656 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) 5657 : S(S), Record(Record), 5658 AbstractType(S.Context.getCanonicalType( 5659 S.Context.getTypeDeclType(Record))), 5660 Invalid(false) {} 5661 5662 void DiagnoseAbstractType() { 5663 if (Invalid) return; 5664 S.DiagnoseAbstractType(Record); 5665 Invalid = true; 5666 } 5667 5668 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); 5669 }; 5670 5671 struct CheckAbstractUsage { 5672 AbstractUsageInfo &Info; 5673 const NamedDecl *Ctx; 5674 5675 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) 5676 : Info(Info), Ctx(Ctx) {} 5677 5678 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5679 switch (TL.getTypeLocClass()) { 5680 #define ABSTRACT_TYPELOC(CLASS, PARENT) 5681 #define TYPELOC(CLASS, PARENT) \ 5682 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; 5683 #include "clang/AST/TypeLocNodes.def" 5684 } 5685 } 5686 5687 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5688 Visit(TL.getReturnLoc(), Sema::AbstractReturnType); 5689 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { 5690 if (!TL.getParam(I)) 5691 continue; 5692 5693 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); 5694 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); 5695 } 5696 } 5697 5698 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5699 Visit(TL.getElementLoc(), Sema::AbstractArrayType); 5700 } 5701 5702 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5703 // Visit the type parameters from a permissive context. 5704 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { 5705 TemplateArgumentLoc TAL = TL.getArgLoc(I); 5706 if (TAL.getArgument().getKind() == TemplateArgument::Type) 5707 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) 5708 Visit(TSI->getTypeLoc(), Sema::AbstractNone); 5709 // TODO: other template argument types? 5710 } 5711 } 5712 5713 // Visit pointee types from a permissive context. 5714 #define CheckPolymorphic(Type) \ 5715 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ 5716 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ 5717 } 5718 CheckPolymorphic(PointerTypeLoc) 5719 CheckPolymorphic(ReferenceTypeLoc) 5720 CheckPolymorphic(MemberPointerTypeLoc) 5721 CheckPolymorphic(BlockPointerTypeLoc) 5722 CheckPolymorphic(AtomicTypeLoc) 5723 5724 /// Handle all the types we haven't given a more specific 5725 /// implementation for above. 5726 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5727 // Every other kind of type that we haven't called out already 5728 // that has an inner type is either (1) sugar or (2) contains that 5729 // inner type in some way as a subobject. 5730 if (TypeLoc Next = TL.getNextTypeLoc()) 5731 return Visit(Next, Sel); 5732 5733 // If there's no inner type and we're in a permissive context, 5734 // don't diagnose. 5735 if (Sel == Sema::AbstractNone) return; 5736 5737 // Check whether the type matches the abstract type. 5738 QualType T = TL.getType(); 5739 if (T->isArrayType()) { 5740 Sel = Sema::AbstractArrayType; 5741 T = Info.S.Context.getBaseElementType(T); 5742 } 5743 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); 5744 if (CT != Info.AbstractType) return; 5745 5746 // It matched; do some magic. 5747 if (Sel == Sema::AbstractArrayType) { 5748 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) 5749 << T << TL.getSourceRange(); 5750 } else { 5751 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) 5752 << Sel << T << TL.getSourceRange(); 5753 } 5754 Info.DiagnoseAbstractType(); 5755 } 5756 }; 5757 5758 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, 5759 Sema::AbstractDiagSelID Sel) { 5760 CheckAbstractUsage(*this, D).Visit(TL, Sel); 5761 } 5762 5763 } 5764 5765 /// Check for invalid uses of an abstract type in a method declaration. 5766 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5767 CXXMethodDecl *MD) { 5768 // No need to do the check on definitions, which require that 5769 // the return/param types be complete. 5770 if (MD->doesThisDeclarationHaveABody()) 5771 return; 5772 5773 // For safety's sake, just ignore it if we don't have type source 5774 // information. This should never happen for non-implicit methods, 5775 // but... 5776 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 5777 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); 5778 } 5779 5780 /// Check for invalid uses of an abstract type within a class definition. 5781 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5782 CXXRecordDecl *RD) { 5783 for (auto *D : RD->decls()) { 5784 if (D->isImplicit()) continue; 5785 5786 // Methods and method templates. 5787 if (isa<CXXMethodDecl>(D)) { 5788 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D)); 5789 } else if (isa<FunctionTemplateDecl>(D)) { 5790 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); 5791 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD)); 5792 5793 // Fields and static variables. 5794 } else if (isa<FieldDecl>(D)) { 5795 FieldDecl *FD = cast<FieldDecl>(D); 5796 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 5797 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); 5798 } else if (isa<VarDecl>(D)) { 5799 VarDecl *VD = cast<VarDecl>(D); 5800 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) 5801 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); 5802 5803 // Nested classes and class templates. 5804 } else if (isa<CXXRecordDecl>(D)) { 5805 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D)); 5806 } else if (isa<ClassTemplateDecl>(D)) { 5807 CheckAbstractClassUsage(Info, 5808 cast<ClassTemplateDecl>(D)->getTemplatedDecl()); 5809 } 5810 } 5811 } 5812 5813 static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { 5814 Attr *ClassAttr = getDLLAttr(Class); 5815 if (!ClassAttr) 5816 return; 5817 5818 assert(ClassAttr->getKind() == attr::DLLExport); 5819 5820 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 5821 5822 if (TSK == TSK_ExplicitInstantiationDeclaration) 5823 // Don't go any further if this is just an explicit instantiation 5824 // declaration. 5825 return; 5826 5827 // Add a context note to explain how we got to any diagnostics produced below. 5828 struct MarkingClassDllexported { 5829 Sema &S; 5830 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class, 5831 SourceLocation AttrLoc) 5832 : S(S) { 5833 Sema::CodeSynthesisContext Ctx; 5834 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported; 5835 Ctx.PointOfInstantiation = AttrLoc; 5836 Ctx.Entity = Class; 5837 S.pushCodeSynthesisContext(Ctx); 5838 } 5839 ~MarkingClassDllexported() { 5840 S.popCodeSynthesisContext(); 5841 } 5842 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation()); 5843 5844 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) 5845 S.MarkVTableUsed(Class->getLocation(), Class, true); 5846 5847 for (Decl *Member : Class->decls()) { 5848 // Defined static variables that are members of an exported base 5849 // class must be marked export too. 5850 auto *VD = dyn_cast<VarDecl>(Member); 5851 if (VD && Member->getAttr<DLLExportAttr>() && 5852 VD->getStorageClass() == SC_Static && 5853 TSK == TSK_ImplicitInstantiation) 5854 S.MarkVariableReferenced(VD->getLocation(), VD); 5855 5856 auto *MD = dyn_cast<CXXMethodDecl>(Member); 5857 if (!MD) 5858 continue; 5859 5860 if (Member->getAttr<DLLExportAttr>()) { 5861 if (MD->isUserProvided()) { 5862 // Instantiate non-default class member functions ... 5863 5864 // .. except for certain kinds of template specializations. 5865 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) 5866 continue; 5867 5868 S.MarkFunctionReferenced(Class->getLocation(), MD); 5869 5870 // The function will be passed to the consumer when its definition is 5871 // encountered. 5872 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() || 5873 MD->isCopyAssignmentOperator() || 5874 MD->isMoveAssignmentOperator()) { 5875 // Synthesize and instantiate non-trivial implicit methods, explicitly 5876 // defaulted methods, and the copy and move assignment operators. The 5877 // latter are exported even if they are trivial, because the address of 5878 // an operator can be taken and should compare equal across libraries. 5879 S.MarkFunctionReferenced(Class->getLocation(), MD); 5880 5881 // There is no later point when we will see the definition of this 5882 // function, so pass it to the consumer now. 5883 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 5884 } 5885 } 5886 } 5887 } 5888 5889 static void checkForMultipleExportedDefaultConstructors(Sema &S, 5890 CXXRecordDecl *Class) { 5891 // Only the MS ABI has default constructor closures, so we don't need to do 5892 // this semantic checking anywhere else. 5893 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) 5894 return; 5895 5896 CXXConstructorDecl *LastExportedDefaultCtor = nullptr; 5897 for (Decl *Member : Class->decls()) { 5898 // Look for exported default constructors. 5899 auto *CD = dyn_cast<CXXConstructorDecl>(Member); 5900 if (!CD || !CD->isDefaultConstructor()) 5901 continue; 5902 auto *Attr = CD->getAttr<DLLExportAttr>(); 5903 if (!Attr) 5904 continue; 5905 5906 // If the class is non-dependent, mark the default arguments as ODR-used so 5907 // that we can properly codegen the constructor closure. 5908 if (!Class->isDependentContext()) { 5909 for (ParmVarDecl *PD : CD->parameters()) { 5910 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); 5911 S.DiscardCleanupsInEvaluationContext(); 5912 } 5913 } 5914 5915 if (LastExportedDefaultCtor) { 5916 S.Diag(LastExportedDefaultCtor->getLocation(), 5917 diag::err_attribute_dll_ambiguous_default_ctor) 5918 << Class; 5919 S.Diag(CD->getLocation(), diag::note_entity_declared_at) 5920 << CD->getDeclName(); 5921 return; 5922 } 5923 LastExportedDefaultCtor = CD; 5924 } 5925 } 5926 5927 static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S, 5928 CXXRecordDecl *Class) { 5929 bool ErrorReported = false; 5930 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 5931 ClassTemplateDecl *TD) { 5932 if (ErrorReported) 5933 return; 5934 S.Diag(TD->getLocation(), 5935 diag::err_cuda_device_builtin_surftex_cls_template) 5936 << /*surface*/ 0 << TD; 5937 ErrorReported = true; 5938 }; 5939 5940 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 5941 if (!TD) { 5942 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 5943 if (!SD) { 5944 S.Diag(Class->getLocation(), 5945 diag::err_cuda_device_builtin_surftex_ref_decl) 5946 << /*surface*/ 0 << Class; 5947 S.Diag(Class->getLocation(), 5948 diag::note_cuda_device_builtin_surftex_should_be_template_class) 5949 << Class; 5950 return; 5951 } 5952 TD = SD->getSpecializedTemplate(); 5953 } 5954 5955 TemplateParameterList *Params = TD->getTemplateParameters(); 5956 unsigned N = Params->size(); 5957 5958 if (N != 2) { 5959 reportIllegalClassTemplate(S, TD); 5960 S.Diag(TD->getLocation(), 5961 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 5962 << TD << 2; 5963 } 5964 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 5965 reportIllegalClassTemplate(S, TD); 5966 S.Diag(TD->getLocation(), 5967 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 5968 << TD << /*1st*/ 0 << /*type*/ 0; 5969 } 5970 if (N > 1) { 5971 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 5972 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 5973 reportIllegalClassTemplate(S, TD); 5974 S.Diag(TD->getLocation(), 5975 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 5976 << TD << /*2nd*/ 1 << /*integer*/ 1; 5977 } 5978 } 5979 } 5980 5981 static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S, 5982 CXXRecordDecl *Class) { 5983 bool ErrorReported = false; 5984 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 5985 ClassTemplateDecl *TD) { 5986 if (ErrorReported) 5987 return; 5988 S.Diag(TD->getLocation(), 5989 diag::err_cuda_device_builtin_surftex_cls_template) 5990 << /*texture*/ 1 << TD; 5991 ErrorReported = true; 5992 }; 5993 5994 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 5995 if (!TD) { 5996 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 5997 if (!SD) { 5998 S.Diag(Class->getLocation(), 5999 diag::err_cuda_device_builtin_surftex_ref_decl) 6000 << /*texture*/ 1 << Class; 6001 S.Diag(Class->getLocation(), 6002 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6003 << Class; 6004 return; 6005 } 6006 TD = SD->getSpecializedTemplate(); 6007 } 6008 6009 TemplateParameterList *Params = TD->getTemplateParameters(); 6010 unsigned N = Params->size(); 6011 6012 if (N != 3) { 6013 reportIllegalClassTemplate(S, TD); 6014 S.Diag(TD->getLocation(), 6015 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6016 << TD << 3; 6017 } 6018 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6019 reportIllegalClassTemplate(S, TD); 6020 S.Diag(TD->getLocation(), 6021 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6022 << TD << /*1st*/ 0 << /*type*/ 0; 6023 } 6024 if (N > 1) { 6025 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6026 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6027 reportIllegalClassTemplate(S, TD); 6028 S.Diag(TD->getLocation(), 6029 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6030 << TD << /*2nd*/ 1 << /*integer*/ 1; 6031 } 6032 } 6033 if (N > 2) { 6034 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2)); 6035 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6036 reportIllegalClassTemplate(S, TD); 6037 S.Diag(TD->getLocation(), 6038 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6039 << TD << /*3rd*/ 2 << /*integer*/ 1; 6040 } 6041 } 6042 } 6043 6044 void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { 6045 // Mark any compiler-generated routines with the implicit code_seg attribute. 6046 for (auto *Method : Class->methods()) { 6047 if (Method->isUserProvided()) 6048 continue; 6049 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 6050 Method->addAttr(A); 6051 } 6052 } 6053 6054 /// Check class-level dllimport/dllexport attribute. 6055 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { 6056 Attr *ClassAttr = getDLLAttr(Class); 6057 6058 // MSVC inherits DLL attributes to partial class template specializations. 6059 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) { 6060 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { 6061 if (Attr *TemplateAttr = 6062 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { 6063 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext())); 6064 A->setInherited(true); 6065 ClassAttr = A; 6066 } 6067 } 6068 } 6069 6070 if (!ClassAttr) 6071 return; 6072 6073 if (!Class->isExternallyVisible()) { 6074 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) 6075 << Class << ClassAttr; 6076 return; 6077 } 6078 6079 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 6080 !ClassAttr->isInherited()) { 6081 // Diagnose dll attributes on members of class with dll attribute. 6082 for (Decl *Member : Class->decls()) { 6083 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) 6084 continue; 6085 InheritableAttr *MemberAttr = getDLLAttr(Member); 6086 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) 6087 continue; 6088 6089 Diag(MemberAttr->getLocation(), 6090 diag::err_attribute_dll_member_of_dll_class) 6091 << MemberAttr << ClassAttr; 6092 Diag(ClassAttr->getLocation(), diag::note_previous_attribute); 6093 Member->setInvalidDecl(); 6094 } 6095 } 6096 6097 if (Class->getDescribedClassTemplate()) 6098 // Don't inherit dll attribute until the template is instantiated. 6099 return; 6100 6101 // The class is either imported or exported. 6102 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; 6103 6104 // Check if this was a dllimport attribute propagated from a derived class to 6105 // a base class template specialization. We don't apply these attributes to 6106 // static data members. 6107 const bool PropagatedImport = 6108 !ClassExported && 6109 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate(); 6110 6111 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 6112 6113 // Ignore explicit dllexport on explicit class template instantiation 6114 // declarations, except in MinGW mode. 6115 if (ClassExported && !ClassAttr->isInherited() && 6116 TSK == TSK_ExplicitInstantiationDeclaration && 6117 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 6118 Class->dropAttr<DLLExportAttr>(); 6119 return; 6120 } 6121 6122 // Force declaration of implicit members so they can inherit the attribute. 6123 ForceDeclarationOfImplicitMembers(Class); 6124 6125 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't 6126 // seem to be true in practice? 6127 6128 for (Decl *Member : Class->decls()) { 6129 VarDecl *VD = dyn_cast<VarDecl>(Member); 6130 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); 6131 6132 // Only methods and static fields inherit the attributes. 6133 if (!VD && !MD) 6134 continue; 6135 6136 if (MD) { 6137 // Don't process deleted methods. 6138 if (MD->isDeleted()) 6139 continue; 6140 6141 if (MD->isInlined()) { 6142 // MinGW does not import or export inline methods. But do it for 6143 // template instantiations. 6144 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 6145 !Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment() && 6146 TSK != TSK_ExplicitInstantiationDeclaration && 6147 TSK != TSK_ExplicitInstantiationDefinition) 6148 continue; 6149 6150 // MSVC versions before 2015 don't export the move assignment operators 6151 // and move constructor, so don't attempt to import/export them if 6152 // we have a definition. 6153 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD); 6154 if ((MD->isMoveAssignmentOperator() || 6155 (Ctor && Ctor->isMoveConstructor())) && 6156 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) 6157 continue; 6158 6159 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign 6160 // operator is exported anyway. 6161 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6162 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial()) 6163 continue; 6164 } 6165 } 6166 6167 // Don't apply dllimport attributes to static data members of class template 6168 // instantiations when the attribute is propagated from a derived class. 6169 if (VD && PropagatedImport) 6170 continue; 6171 6172 if (!cast<NamedDecl>(Member)->isExternallyVisible()) 6173 continue; 6174 6175 if (!getDLLAttr(Member)) { 6176 InheritableAttr *NewAttr = nullptr; 6177 6178 // Do not export/import inline function when -fno-dllexport-inlines is 6179 // passed. But add attribute for later local static var check. 6180 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && 6181 TSK != TSK_ExplicitInstantiationDeclaration && 6182 TSK != TSK_ExplicitInstantiationDefinition) { 6183 if (ClassExported) { 6184 NewAttr = ::new (getASTContext()) 6185 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr); 6186 } else { 6187 NewAttr = ::new (getASTContext()) 6188 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr); 6189 } 6190 } else { 6191 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6192 } 6193 6194 NewAttr->setInherited(true); 6195 Member->addAttr(NewAttr); 6196 6197 if (MD) { 6198 // Propagate DLLAttr to friend re-declarations of MD that have already 6199 // been constructed. 6200 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; 6201 FD = FD->getPreviousDecl()) { 6202 if (FD->getFriendObjectKind() == Decl::FOK_None) 6203 continue; 6204 assert(!getDLLAttr(FD) && 6205 "friend re-decl should not already have a DLLAttr"); 6206 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6207 NewAttr->setInherited(true); 6208 FD->addAttr(NewAttr); 6209 } 6210 } 6211 } 6212 } 6213 6214 if (ClassExported) 6215 DelayedDllExportClasses.push_back(Class); 6216 } 6217 6218 /// Perform propagation of DLL attributes from a derived class to a 6219 /// templated base class for MS compatibility. 6220 void Sema::propagateDLLAttrToBaseClassTemplate( 6221 CXXRecordDecl *Class, Attr *ClassAttr, 6222 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { 6223 if (getDLLAttr( 6224 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { 6225 // If the base class template has a DLL attribute, don't try to change it. 6226 return; 6227 } 6228 6229 auto TSK = BaseTemplateSpec->getSpecializationKind(); 6230 if (!getDLLAttr(BaseTemplateSpec) && 6231 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || 6232 TSK == TSK_ImplicitInstantiation)) { 6233 // The template hasn't been instantiated yet (or it has, but only as an 6234 // explicit instantiation declaration or implicit instantiation, which means 6235 // we haven't codegenned any members yet), so propagate the attribute. 6236 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6237 NewAttr->setInherited(true); 6238 BaseTemplateSpec->addAttr(NewAttr); 6239 6240 // If this was an import, mark that we propagated it from a derived class to 6241 // a base class template specialization. 6242 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr)) 6243 ImportAttr->setPropagatedToBaseTemplate(); 6244 6245 // If the template is already instantiated, checkDLLAttributeRedeclaration() 6246 // needs to be run again to work see the new attribute. Otherwise this will 6247 // get run whenever the template is instantiated. 6248 if (TSK != TSK_Undeclared) 6249 checkClassLevelDLLAttribute(BaseTemplateSpec); 6250 6251 return; 6252 } 6253 6254 if (getDLLAttr(BaseTemplateSpec)) { 6255 // The template has already been specialized or instantiated with an 6256 // attribute, explicitly or through propagation. We should not try to change 6257 // it. 6258 return; 6259 } 6260 6261 // The template was previously instantiated or explicitly specialized without 6262 // a dll attribute, It's too late for us to add an attribute, so warn that 6263 // this is unsupported. 6264 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) 6265 << BaseTemplateSpec->isExplicitSpecialization(); 6266 Diag(ClassAttr->getLocation(), diag::note_attribute); 6267 if (BaseTemplateSpec->isExplicitSpecialization()) { 6268 Diag(BaseTemplateSpec->getLocation(), 6269 diag::note_template_class_explicit_specialization_was_here) 6270 << BaseTemplateSpec; 6271 } else { 6272 Diag(BaseTemplateSpec->getPointOfInstantiation(), 6273 diag::note_template_class_instantiation_was_here) 6274 << BaseTemplateSpec; 6275 } 6276 } 6277 6278 /// Determine the kind of defaulting that would be done for a given function. 6279 /// 6280 /// If the function is both a default constructor and a copy / move constructor 6281 /// (due to having a default argument for the first parameter), this picks 6282 /// CXXDefaultConstructor. 6283 /// 6284 /// FIXME: Check that case is properly handled by all callers. 6285 Sema::DefaultedFunctionKind 6286 Sema::getDefaultedFunctionKind(const FunctionDecl *FD) { 6287 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 6288 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { 6289 if (Ctor->isDefaultConstructor()) 6290 return Sema::CXXDefaultConstructor; 6291 6292 if (Ctor->isCopyConstructor()) 6293 return Sema::CXXCopyConstructor; 6294 6295 if (Ctor->isMoveConstructor()) 6296 return Sema::CXXMoveConstructor; 6297 } 6298 6299 if (MD->isCopyAssignmentOperator()) 6300 return Sema::CXXCopyAssignment; 6301 6302 if (MD->isMoveAssignmentOperator()) 6303 return Sema::CXXMoveAssignment; 6304 6305 if (isa<CXXDestructorDecl>(FD)) 6306 return Sema::CXXDestructor; 6307 } 6308 6309 switch (FD->getDeclName().getCXXOverloadedOperator()) { 6310 case OO_EqualEqual: 6311 return DefaultedComparisonKind::Equal; 6312 6313 case OO_ExclaimEqual: 6314 return DefaultedComparisonKind::NotEqual; 6315 6316 case OO_Spaceship: 6317 // No point allowing this if <=> doesn't exist in the current language mode. 6318 if (!getLangOpts().CPlusPlus20) 6319 break; 6320 return DefaultedComparisonKind::ThreeWay; 6321 6322 case OO_Less: 6323 case OO_LessEqual: 6324 case OO_Greater: 6325 case OO_GreaterEqual: 6326 // No point allowing this if <=> doesn't exist in the current language mode. 6327 if (!getLangOpts().CPlusPlus20) 6328 break; 6329 return DefaultedComparisonKind::Relational; 6330 6331 default: 6332 break; 6333 } 6334 6335 // Not defaultable. 6336 return DefaultedFunctionKind(); 6337 } 6338 6339 static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD, 6340 SourceLocation DefaultLoc) { 6341 Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD); 6342 if (DFK.isComparison()) 6343 return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison()); 6344 6345 switch (DFK.asSpecialMember()) { 6346 case Sema::CXXDefaultConstructor: 6347 S.DefineImplicitDefaultConstructor(DefaultLoc, 6348 cast<CXXConstructorDecl>(FD)); 6349 break; 6350 case Sema::CXXCopyConstructor: 6351 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6352 break; 6353 case Sema::CXXCopyAssignment: 6354 S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6355 break; 6356 case Sema::CXXDestructor: 6357 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD)); 6358 break; 6359 case Sema::CXXMoveConstructor: 6360 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6361 break; 6362 case Sema::CXXMoveAssignment: 6363 S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6364 break; 6365 case Sema::CXXInvalid: 6366 llvm_unreachable("Invalid special member."); 6367 } 6368 } 6369 6370 /// Determine whether a type is permitted to be passed or returned in 6371 /// registers, per C++ [class.temporary]p3. 6372 static bool canPassInRegisters(Sema &S, CXXRecordDecl *D, 6373 TargetInfo::CallingConvKind CCK) { 6374 if (D->isDependentType() || D->isInvalidDecl()) 6375 return false; 6376 6377 // Clang <= 4 used the pre-C++11 rule, which ignores move operations. 6378 // The PS4 platform ABI follows the behavior of Clang 3.2. 6379 if (CCK == TargetInfo::CCK_ClangABI4OrPS4) 6380 return !D->hasNonTrivialDestructorForCall() && 6381 !D->hasNonTrivialCopyConstructorForCall(); 6382 6383 if (CCK == TargetInfo::CCK_MicrosoftWin64) { 6384 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false; 6385 bool DtorIsTrivialForCall = false; 6386 6387 // If a class has at least one non-deleted, trivial copy constructor, it 6388 // is passed according to the C ABI. Otherwise, it is passed indirectly. 6389 // 6390 // Note: This permits classes with non-trivial copy or move ctors to be 6391 // passed in registers, so long as they *also* have a trivial copy ctor, 6392 // which is non-conforming. 6393 if (D->needsImplicitCopyConstructor()) { 6394 if (!D->defaultedCopyConstructorIsDeleted()) { 6395 if (D->hasTrivialCopyConstructor()) 6396 CopyCtorIsTrivial = true; 6397 if (D->hasTrivialCopyConstructorForCall()) 6398 CopyCtorIsTrivialForCall = true; 6399 } 6400 } else { 6401 for (const CXXConstructorDecl *CD : D->ctors()) { 6402 if (CD->isCopyConstructor() && !CD->isDeleted()) { 6403 if (CD->isTrivial()) 6404 CopyCtorIsTrivial = true; 6405 if (CD->isTrivialForCall()) 6406 CopyCtorIsTrivialForCall = true; 6407 } 6408 } 6409 } 6410 6411 if (D->needsImplicitDestructor()) { 6412 if (!D->defaultedDestructorIsDeleted() && 6413 D->hasTrivialDestructorForCall()) 6414 DtorIsTrivialForCall = true; 6415 } else if (const auto *DD = D->getDestructor()) { 6416 if (!DD->isDeleted() && DD->isTrivialForCall()) 6417 DtorIsTrivialForCall = true; 6418 } 6419 6420 // If the copy ctor and dtor are both trivial-for-calls, pass direct. 6421 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall) 6422 return true; 6423 6424 // If a class has a destructor, we'd really like to pass it indirectly 6425 // because it allows us to elide copies. Unfortunately, MSVC makes that 6426 // impossible for small types, which it will pass in a single register or 6427 // stack slot. Most objects with dtors are large-ish, so handle that early. 6428 // We can't call out all large objects as being indirect because there are 6429 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate 6430 // how we pass large POD types. 6431 6432 // Note: This permits small classes with nontrivial destructors to be 6433 // passed in registers, which is non-conforming. 6434 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); 6435 uint64_t TypeSize = isAArch64 ? 128 : 64; 6436 6437 if (CopyCtorIsTrivial && 6438 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize) 6439 return true; 6440 return false; 6441 } 6442 6443 // Per C++ [class.temporary]p3, the relevant condition is: 6444 // each copy constructor, move constructor, and destructor of X is 6445 // either trivial or deleted, and X has at least one non-deleted copy 6446 // or move constructor 6447 bool HasNonDeletedCopyOrMove = false; 6448 6449 if (D->needsImplicitCopyConstructor() && 6450 !D->defaultedCopyConstructorIsDeleted()) { 6451 if (!D->hasTrivialCopyConstructorForCall()) 6452 return false; 6453 HasNonDeletedCopyOrMove = true; 6454 } 6455 6456 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() && 6457 !D->defaultedMoveConstructorIsDeleted()) { 6458 if (!D->hasTrivialMoveConstructorForCall()) 6459 return false; 6460 HasNonDeletedCopyOrMove = true; 6461 } 6462 6463 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() && 6464 !D->hasTrivialDestructorForCall()) 6465 return false; 6466 6467 for (const CXXMethodDecl *MD : D->methods()) { 6468 if (MD->isDeleted()) 6469 continue; 6470 6471 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6472 if (CD && CD->isCopyOrMoveConstructor()) 6473 HasNonDeletedCopyOrMove = true; 6474 else if (!isa<CXXDestructorDecl>(MD)) 6475 continue; 6476 6477 if (!MD->isTrivialForCall()) 6478 return false; 6479 } 6480 6481 return HasNonDeletedCopyOrMove; 6482 } 6483 6484 /// Report an error regarding overriding, along with any relevant 6485 /// overridden methods. 6486 /// 6487 /// \param DiagID the primary error to report. 6488 /// \param MD the overriding method. 6489 static bool 6490 ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD, 6491 llvm::function_ref<bool(const CXXMethodDecl *)> Report) { 6492 bool IssuedDiagnostic = false; 6493 for (const CXXMethodDecl *O : MD->overridden_methods()) { 6494 if (Report(O)) { 6495 if (!IssuedDiagnostic) { 6496 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 6497 IssuedDiagnostic = true; 6498 } 6499 S.Diag(O->getLocation(), diag::note_overridden_virtual_function); 6500 } 6501 } 6502 return IssuedDiagnostic; 6503 } 6504 6505 /// Perform semantic checks on a class definition that has been 6506 /// completing, introducing implicitly-declared members, checking for 6507 /// abstract types, etc. 6508 /// 6509 /// \param S The scope in which the class was parsed. Null if we didn't just 6510 /// parse a class definition. 6511 /// \param Record The completed class. 6512 void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) { 6513 if (!Record) 6514 return; 6515 6516 if (Record->isAbstract() && !Record->isInvalidDecl()) { 6517 AbstractUsageInfo Info(*this, Record); 6518 CheckAbstractClassUsage(Info, Record); 6519 } 6520 6521 // If this is not an aggregate type and has no user-declared constructor, 6522 // complain about any non-static data members of reference or const scalar 6523 // type, since they will never get initializers. 6524 if (!Record->isInvalidDecl() && !Record->isDependentType() && 6525 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && 6526 !Record->isLambda()) { 6527 bool Complained = false; 6528 for (const auto *F : Record->fields()) { 6529 if (F->hasInClassInitializer() || F->isUnnamedBitfield()) 6530 continue; 6531 6532 if (F->getType()->isReferenceType() || 6533 (F->getType().isConstQualified() && F->getType()->isScalarType())) { 6534 if (!Complained) { 6535 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) 6536 << Record->getTagKind() << Record; 6537 Complained = true; 6538 } 6539 6540 Diag(F->getLocation(), diag::note_refconst_member_not_initialized) 6541 << F->getType()->isReferenceType() 6542 << F->getDeclName(); 6543 } 6544 } 6545 } 6546 6547 if (Record->getIdentifier()) { 6548 // C++ [class.mem]p13: 6549 // If T is the name of a class, then each of the following shall have a 6550 // name different from T: 6551 // - every member of every anonymous union that is a member of class T. 6552 // 6553 // C++ [class.mem]p14: 6554 // In addition, if class T has a user-declared constructor (12.1), every 6555 // non-static data member of class T shall have a name different from T. 6556 DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); 6557 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; 6558 ++I) { 6559 NamedDecl *D = (*I)->getUnderlyingDecl(); 6560 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) && 6561 Record->hasUserDeclaredConstructor()) || 6562 isa<IndirectFieldDecl>(D)) { 6563 Diag((*I)->getLocation(), diag::err_member_name_of_class) 6564 << D->getDeclName(); 6565 break; 6566 } 6567 } 6568 } 6569 6570 // Warn if the class has virtual methods but non-virtual public destructor. 6571 if (Record->isPolymorphic() && !Record->isDependentType()) { 6572 CXXDestructorDecl *dtor = Record->getDestructor(); 6573 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && 6574 !Record->hasAttr<FinalAttr>()) 6575 Diag(dtor ? dtor->getLocation() : Record->getLocation(), 6576 diag::warn_non_virtual_dtor) << Context.getRecordType(Record); 6577 } 6578 6579 if (Record->isAbstract()) { 6580 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) { 6581 Diag(Record->getLocation(), diag::warn_abstract_final_class) 6582 << FA->isSpelledAsSealed(); 6583 DiagnoseAbstractType(Record); 6584 } 6585 } 6586 6587 // Warn if the class has a final destructor but is not itself marked final. 6588 if (!Record->hasAttr<FinalAttr>()) { 6589 if (const CXXDestructorDecl *dtor = Record->getDestructor()) { 6590 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) { 6591 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class) 6592 << FA->isSpelledAsSealed() 6593 << FixItHint::CreateInsertion( 6594 getLocForEndOfToken(Record->getLocation()), 6595 (FA->isSpelledAsSealed() ? " sealed" : " final")); 6596 Diag(Record->getLocation(), 6597 diag::note_final_dtor_non_final_class_silence) 6598 << Context.getRecordType(Record) << FA->isSpelledAsSealed(); 6599 } 6600 } 6601 } 6602 6603 // See if trivial_abi has to be dropped. 6604 if (Record->hasAttr<TrivialABIAttr>()) 6605 checkIllFormedTrivialABIStruct(*Record); 6606 6607 // Set HasTrivialSpecialMemberForCall if the record has attribute 6608 // "trivial_abi". 6609 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>(); 6610 6611 if (HasTrivialABI) 6612 Record->setHasTrivialSpecialMemberForCall(); 6613 6614 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=). 6615 // We check these last because they can depend on the properties of the 6616 // primary comparison functions (==, <=>). 6617 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons; 6618 6619 // Perform checks that can't be done until we know all the properties of a 6620 // member function (whether it's defaulted, deleted, virtual, overriding, 6621 // ...). 6622 auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) { 6623 // A static function cannot override anything. 6624 if (MD->getStorageClass() == SC_Static) { 6625 if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD, 6626 [](const CXXMethodDecl *) { return true; })) 6627 return; 6628 } 6629 6630 // A deleted function cannot override a non-deleted function and vice 6631 // versa. 6632 if (ReportOverrides(*this, 6633 MD->isDeleted() ? diag::err_deleted_override 6634 : diag::err_non_deleted_override, 6635 MD, [&](const CXXMethodDecl *V) { 6636 return MD->isDeleted() != V->isDeleted(); 6637 })) { 6638 if (MD->isDefaulted() && MD->isDeleted()) 6639 // Explain why this defaulted function was deleted. 6640 DiagnoseDeletedDefaultedFunction(MD); 6641 return; 6642 } 6643 6644 // A consteval function cannot override a non-consteval function and vice 6645 // versa. 6646 if (ReportOverrides(*this, 6647 MD->isConsteval() ? diag::err_consteval_override 6648 : diag::err_non_consteval_override, 6649 MD, [&](const CXXMethodDecl *V) { 6650 return MD->isConsteval() != V->isConsteval(); 6651 })) { 6652 if (MD->isDefaulted() && MD->isDeleted()) 6653 // Explain why this defaulted function was deleted. 6654 DiagnoseDeletedDefaultedFunction(MD); 6655 return; 6656 } 6657 }; 6658 6659 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool { 6660 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted()) 6661 return false; 6662 6663 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 6664 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual || 6665 DFK.asComparison() == DefaultedComparisonKind::Relational) { 6666 DefaultedSecondaryComparisons.push_back(FD); 6667 return true; 6668 } 6669 6670 CheckExplicitlyDefaultedFunction(S, FD); 6671 return false; 6672 }; 6673 6674 auto CompleteMemberFunction = [&](CXXMethodDecl *M) { 6675 // Check whether the explicitly-defaulted members are valid. 6676 bool Incomplete = CheckForDefaultedFunction(M); 6677 6678 // Skip the rest of the checks for a member of a dependent class. 6679 if (Record->isDependentType()) 6680 return; 6681 6682 // For an explicitly defaulted or deleted special member, we defer 6683 // determining triviality until the class is complete. That time is now! 6684 CXXSpecialMember CSM = getSpecialMember(M); 6685 if (!M->isImplicit() && !M->isUserProvided()) { 6686 if (CSM != CXXInvalid) { 6687 M->setTrivial(SpecialMemberIsTrivial(M, CSM)); 6688 // Inform the class that we've finished declaring this member. 6689 Record->finishedDefaultedOrDeletedMember(M); 6690 M->setTrivialForCall( 6691 HasTrivialABI || 6692 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI)); 6693 Record->setTrivialForCallFlags(M); 6694 } 6695 } 6696 6697 // Set triviality for the purpose of calls if this is a user-provided 6698 // copy/move constructor or destructor. 6699 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor || 6700 CSM == CXXDestructor) && M->isUserProvided()) { 6701 M->setTrivialForCall(HasTrivialABI); 6702 Record->setTrivialForCallFlags(M); 6703 } 6704 6705 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() && 6706 M->hasAttr<DLLExportAttr>()) { 6707 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6708 M->isTrivial() && 6709 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor || 6710 CSM == CXXDestructor)) 6711 M->dropAttr<DLLExportAttr>(); 6712 6713 if (M->hasAttr<DLLExportAttr>()) { 6714 // Define after any fields with in-class initializers have been parsed. 6715 DelayedDllExportMemberFunctions.push_back(M); 6716 } 6717 } 6718 6719 // Define defaulted constexpr virtual functions that override a base class 6720 // function right away. 6721 // FIXME: We can defer doing this until the vtable is marked as used. 6722 if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods()) 6723 DefineDefaultedFunction(*this, M, M->getLocation()); 6724 6725 if (!Incomplete) 6726 CheckCompletedMemberFunction(M); 6727 }; 6728 6729 // Check the destructor before any other member function. We need to 6730 // determine whether it's trivial in order to determine whether the claas 6731 // type is a literal type, which is a prerequisite for determining whether 6732 // other special member functions are valid and whether they're implicitly 6733 // 'constexpr'. 6734 if (CXXDestructorDecl *Dtor = Record->getDestructor()) 6735 CompleteMemberFunction(Dtor); 6736 6737 bool HasMethodWithOverrideControl = false, 6738 HasOverridingMethodWithoutOverrideControl = false; 6739 for (auto *D : Record->decls()) { 6740 if (auto *M = dyn_cast<CXXMethodDecl>(D)) { 6741 // FIXME: We could do this check for dependent types with non-dependent 6742 // bases. 6743 if (!Record->isDependentType()) { 6744 // See if a method overloads virtual methods in a base 6745 // class without overriding any. 6746 if (!M->isStatic()) 6747 DiagnoseHiddenVirtualMethods(M); 6748 if (M->hasAttr<OverrideAttr>()) 6749 HasMethodWithOverrideControl = true; 6750 else if (M->size_overridden_methods() > 0) 6751 HasOverridingMethodWithoutOverrideControl = true; 6752 } 6753 6754 if (!isa<CXXDestructorDecl>(M)) 6755 CompleteMemberFunction(M); 6756 } else if (auto *F = dyn_cast<FriendDecl>(D)) { 6757 CheckForDefaultedFunction( 6758 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl())); 6759 } 6760 } 6761 6762 if (HasOverridingMethodWithoutOverrideControl) { 6763 bool HasInconsistentOverrideControl = HasMethodWithOverrideControl; 6764 for (auto *M : Record->methods()) 6765 DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl); 6766 } 6767 6768 // Check the defaulted secondary comparisons after any other member functions. 6769 for (FunctionDecl *FD : DefaultedSecondaryComparisons) { 6770 CheckExplicitlyDefaultedFunction(S, FD); 6771 6772 // If this is a member function, we deferred checking it until now. 6773 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) 6774 CheckCompletedMemberFunction(MD); 6775 } 6776 6777 // ms_struct is a request to use the same ABI rules as MSVC. Check 6778 // whether this class uses any C++ features that are implemented 6779 // completely differently in MSVC, and if so, emit a diagnostic. 6780 // That diagnostic defaults to an error, but we allow projects to 6781 // map it down to a warning (or ignore it). It's a fairly common 6782 // practice among users of the ms_struct pragma to mass-annotate 6783 // headers, sweeping up a bunch of types that the project doesn't 6784 // really rely on MSVC-compatible layout for. We must therefore 6785 // support "ms_struct except for C++ stuff" as a secondary ABI. 6786 // Don't emit this diagnostic if the feature was enabled as a 6787 // language option (as opposed to via a pragma or attribute), as 6788 // the option -mms-bitfields otherwise essentially makes it impossible 6789 // to build C++ code, unless this diagnostic is turned off. 6790 if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields && 6791 (Record->isPolymorphic() || Record->getNumBases())) { 6792 Diag(Record->getLocation(), diag::warn_cxx_ms_struct); 6793 } 6794 6795 checkClassLevelDLLAttribute(Record); 6796 checkClassLevelCodeSegAttribute(Record); 6797 6798 bool ClangABICompat4 = 6799 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4; 6800 TargetInfo::CallingConvKind CCK = 6801 Context.getTargetInfo().getCallingConvKind(ClangABICompat4); 6802 bool CanPass = canPassInRegisters(*this, Record, CCK); 6803 6804 // Do not change ArgPassingRestrictions if it has already been set to 6805 // APK_CanNeverPassInRegs. 6806 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs) 6807 Record->setArgPassingRestrictions(CanPass 6808 ? RecordDecl::APK_CanPassInRegs 6809 : RecordDecl::APK_CannotPassInRegs); 6810 6811 // If canPassInRegisters returns true despite the record having a non-trivial 6812 // destructor, the record is destructed in the callee. This happens only when 6813 // the record or one of its subobjects has a field annotated with trivial_abi 6814 // or a field qualified with ObjC __strong/__weak. 6815 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee()) 6816 Record->setParamDestroyedInCallee(true); 6817 else if (Record->hasNonTrivialDestructor()) 6818 Record->setParamDestroyedInCallee(CanPass); 6819 6820 if (getLangOpts().ForceEmitVTables) { 6821 // If we want to emit all the vtables, we need to mark it as used. This 6822 // is especially required for cases like vtable assumption loads. 6823 MarkVTableUsed(Record->getInnerLocStart(), Record); 6824 } 6825 6826 if (getLangOpts().CUDA) { 6827 if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) 6828 checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record); 6829 else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>()) 6830 checkCUDADeviceBuiltinTextureClassTemplate(*this, Record); 6831 } 6832 } 6833 6834 /// Look up the special member function that would be called by a special 6835 /// member function for a subobject of class type. 6836 /// 6837 /// \param Class The class type of the subobject. 6838 /// \param CSM The kind of special member function. 6839 /// \param FieldQuals If the subobject is a field, its cv-qualifiers. 6840 /// \param ConstRHS True if this is a copy operation with a const object 6841 /// on its RHS, that is, if the argument to the outer special member 6842 /// function is 'const' and this is not a field marked 'mutable'. 6843 static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember( 6844 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM, 6845 unsigned FieldQuals, bool ConstRHS) { 6846 unsigned LHSQuals = 0; 6847 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment) 6848 LHSQuals = FieldQuals; 6849 6850 unsigned RHSQuals = FieldQuals; 6851 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor) 6852 RHSQuals = 0; 6853 else if (ConstRHS) 6854 RHSQuals |= Qualifiers::Const; 6855 6856 return S.LookupSpecialMember(Class, CSM, 6857 RHSQuals & Qualifiers::Const, 6858 RHSQuals & Qualifiers::Volatile, 6859 false, 6860 LHSQuals & Qualifiers::Const, 6861 LHSQuals & Qualifiers::Volatile); 6862 } 6863 6864 class Sema::InheritedConstructorInfo { 6865 Sema &S; 6866 SourceLocation UseLoc; 6867 6868 /// A mapping from the base classes through which the constructor was 6869 /// inherited to the using shadow declaration in that base class (or a null 6870 /// pointer if the constructor was declared in that base class). 6871 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *> 6872 InheritedFromBases; 6873 6874 public: 6875 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc, 6876 ConstructorUsingShadowDecl *Shadow) 6877 : S(S), UseLoc(UseLoc) { 6878 bool DiagnosedMultipleConstructedBases = false; 6879 CXXRecordDecl *ConstructedBase = nullptr; 6880 UsingDecl *ConstructedBaseUsing = nullptr; 6881 6882 // Find the set of such base class subobjects and check that there's a 6883 // unique constructed subobject. 6884 for (auto *D : Shadow->redecls()) { 6885 auto *DShadow = cast<ConstructorUsingShadowDecl>(D); 6886 auto *DNominatedBase = DShadow->getNominatedBaseClass(); 6887 auto *DConstructedBase = DShadow->getConstructedBaseClass(); 6888 6889 InheritedFromBases.insert( 6890 std::make_pair(DNominatedBase->getCanonicalDecl(), 6891 DShadow->getNominatedBaseClassShadowDecl())); 6892 if (DShadow->constructsVirtualBase()) 6893 InheritedFromBases.insert( 6894 std::make_pair(DConstructedBase->getCanonicalDecl(), 6895 DShadow->getConstructedBaseClassShadowDecl())); 6896 else 6897 assert(DNominatedBase == DConstructedBase); 6898 6899 // [class.inhctor.init]p2: 6900 // If the constructor was inherited from multiple base class subobjects 6901 // of type B, the program is ill-formed. 6902 if (!ConstructedBase) { 6903 ConstructedBase = DConstructedBase; 6904 ConstructedBaseUsing = D->getUsingDecl(); 6905 } else if (ConstructedBase != DConstructedBase && 6906 !Shadow->isInvalidDecl()) { 6907 if (!DiagnosedMultipleConstructedBases) { 6908 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor) 6909 << Shadow->getTargetDecl(); 6910 S.Diag(ConstructedBaseUsing->getLocation(), 6911 diag::note_ambiguous_inherited_constructor_using) 6912 << ConstructedBase; 6913 DiagnosedMultipleConstructedBases = true; 6914 } 6915 S.Diag(D->getUsingDecl()->getLocation(), 6916 diag::note_ambiguous_inherited_constructor_using) 6917 << DConstructedBase; 6918 } 6919 } 6920 6921 if (DiagnosedMultipleConstructedBases) 6922 Shadow->setInvalidDecl(); 6923 } 6924 6925 /// Find the constructor to use for inherited construction of a base class, 6926 /// and whether that base class constructor inherits the constructor from a 6927 /// virtual base class (in which case it won't actually invoke it). 6928 std::pair<CXXConstructorDecl *, bool> 6929 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const { 6930 auto It = InheritedFromBases.find(Base->getCanonicalDecl()); 6931 if (It == InheritedFromBases.end()) 6932 return std::make_pair(nullptr, false); 6933 6934 // This is an intermediary class. 6935 if (It->second) 6936 return std::make_pair( 6937 S.findInheritingConstructor(UseLoc, Ctor, It->second), 6938 It->second->constructsVirtualBase()); 6939 6940 // This is the base class from which the constructor was inherited. 6941 return std::make_pair(Ctor, false); 6942 } 6943 }; 6944 6945 /// Is the special member function which would be selected to perform the 6946 /// specified operation on the specified class type a constexpr constructor? 6947 static bool 6948 specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl, 6949 Sema::CXXSpecialMember CSM, unsigned Quals, 6950 bool ConstRHS, 6951 CXXConstructorDecl *InheritedCtor = nullptr, 6952 Sema::InheritedConstructorInfo *Inherited = nullptr) { 6953 // If we're inheriting a constructor, see if we need to call it for this base 6954 // class. 6955 if (InheritedCtor) { 6956 assert(CSM == Sema::CXXDefaultConstructor); 6957 auto BaseCtor = 6958 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first; 6959 if (BaseCtor) 6960 return BaseCtor->isConstexpr(); 6961 } 6962 6963 if (CSM == Sema::CXXDefaultConstructor) 6964 return ClassDecl->hasConstexprDefaultConstructor(); 6965 if (CSM == Sema::CXXDestructor) 6966 return ClassDecl->hasConstexprDestructor(); 6967 6968 Sema::SpecialMemberOverloadResult SMOR = 6969 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS); 6970 if (!SMOR.getMethod()) 6971 // A constructor we wouldn't select can't be "involved in initializing" 6972 // anything. 6973 return true; 6974 return SMOR.getMethod()->isConstexpr(); 6975 } 6976 6977 /// Determine whether the specified special member function would be constexpr 6978 /// if it were implicitly defined. 6979 static bool defaultedSpecialMemberIsConstexpr( 6980 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM, 6981 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr, 6982 Sema::InheritedConstructorInfo *Inherited = nullptr) { 6983 if (!S.getLangOpts().CPlusPlus11) 6984 return false; 6985 6986 // C++11 [dcl.constexpr]p4: 6987 // In the definition of a constexpr constructor [...] 6988 bool Ctor = true; 6989 switch (CSM) { 6990 case Sema::CXXDefaultConstructor: 6991 if (Inherited) 6992 break; 6993 // Since default constructor lookup is essentially trivial (and cannot 6994 // involve, for instance, template instantiation), we compute whether a 6995 // defaulted default constructor is constexpr directly within CXXRecordDecl. 6996 // 6997 // This is important for performance; we need to know whether the default 6998 // constructor is constexpr to determine whether the type is a literal type. 6999 return ClassDecl->defaultedDefaultConstructorIsConstexpr(); 7000 7001 case Sema::CXXCopyConstructor: 7002 case Sema::CXXMoveConstructor: 7003 // For copy or move constructors, we need to perform overload resolution. 7004 break; 7005 7006 case Sema::CXXCopyAssignment: 7007 case Sema::CXXMoveAssignment: 7008 if (!S.getLangOpts().CPlusPlus14) 7009 return false; 7010 // In C++1y, we need to perform overload resolution. 7011 Ctor = false; 7012 break; 7013 7014 case Sema::CXXDestructor: 7015 return ClassDecl->defaultedDestructorIsConstexpr(); 7016 7017 case Sema::CXXInvalid: 7018 return false; 7019 } 7020 7021 // -- if the class is a non-empty union, or for each non-empty anonymous 7022 // union member of a non-union class, exactly one non-static data member 7023 // shall be initialized; [DR1359] 7024 // 7025 // If we squint, this is guaranteed, since exactly one non-static data member 7026 // will be initialized (if the constructor isn't deleted), we just don't know 7027 // which one. 7028 if (Ctor && ClassDecl->isUnion()) 7029 return CSM == Sema::CXXDefaultConstructor 7030 ? ClassDecl->hasInClassInitializer() || 7031 !ClassDecl->hasVariantMembers() 7032 : true; 7033 7034 // -- the class shall not have any virtual base classes; 7035 if (Ctor && ClassDecl->getNumVBases()) 7036 return false; 7037 7038 // C++1y [class.copy]p26: 7039 // -- [the class] is a literal type, and 7040 if (!Ctor && !ClassDecl->isLiteral()) 7041 return false; 7042 7043 // -- every constructor involved in initializing [...] base class 7044 // sub-objects shall be a constexpr constructor; 7045 // -- the assignment operator selected to copy/move each direct base 7046 // class is a constexpr function, and 7047 for (const auto &B : ClassDecl->bases()) { 7048 const RecordType *BaseType = B.getType()->getAs<RecordType>(); 7049 if (!BaseType) continue; 7050 7051 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 7052 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg, 7053 InheritedCtor, Inherited)) 7054 return false; 7055 } 7056 7057 // -- every constructor involved in initializing non-static data members 7058 // [...] shall be a constexpr constructor; 7059 // -- every non-static data member and base class sub-object shall be 7060 // initialized 7061 // -- for each non-static data member of X that is of class type (or array 7062 // thereof), the assignment operator selected to copy/move that member is 7063 // a constexpr function 7064 for (const auto *F : ClassDecl->fields()) { 7065 if (F->isInvalidDecl()) 7066 continue; 7067 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer()) 7068 continue; 7069 QualType BaseType = S.Context.getBaseElementType(F->getType()); 7070 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 7071 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 7072 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, 7073 BaseType.getCVRQualifiers(), 7074 ConstArg && !F->isMutable())) 7075 return false; 7076 } else if (CSM == Sema::CXXDefaultConstructor) { 7077 return false; 7078 } 7079 } 7080 7081 // All OK, it's constexpr! 7082 return true; 7083 } 7084 7085 namespace { 7086 /// RAII object to register a defaulted function as having its exception 7087 /// specification computed. 7088 struct ComputingExceptionSpec { 7089 Sema &S; 7090 7091 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc) 7092 : S(S) { 7093 Sema::CodeSynthesisContext Ctx; 7094 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation; 7095 Ctx.PointOfInstantiation = Loc; 7096 Ctx.Entity = FD; 7097 S.pushCodeSynthesisContext(Ctx); 7098 } 7099 ~ComputingExceptionSpec() { 7100 S.popCodeSynthesisContext(); 7101 } 7102 }; 7103 } 7104 7105 static Sema::ImplicitExceptionSpecification 7106 ComputeDefaultedSpecialMemberExceptionSpec( 7107 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 7108 Sema::InheritedConstructorInfo *ICI); 7109 7110 static Sema::ImplicitExceptionSpecification 7111 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 7112 FunctionDecl *FD, 7113 Sema::DefaultedComparisonKind DCK); 7114 7115 static Sema::ImplicitExceptionSpecification 7116 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) { 7117 auto DFK = S.getDefaultedFunctionKind(FD); 7118 if (DFK.isSpecialMember()) 7119 return ComputeDefaultedSpecialMemberExceptionSpec( 7120 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr); 7121 if (DFK.isComparison()) 7122 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD, 7123 DFK.asComparison()); 7124 7125 auto *CD = cast<CXXConstructorDecl>(FD); 7126 assert(CD->getInheritedConstructor() && 7127 "only defaulted functions and inherited constructors have implicit " 7128 "exception specs"); 7129 Sema::InheritedConstructorInfo ICI( 7130 S, Loc, CD->getInheritedConstructor().getShadowDecl()); 7131 return ComputeDefaultedSpecialMemberExceptionSpec( 7132 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI); 7133 } 7134 7135 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, 7136 CXXMethodDecl *MD) { 7137 FunctionProtoType::ExtProtoInfo EPI; 7138 7139 // Build an exception specification pointing back at this member. 7140 EPI.ExceptionSpec.Type = EST_Unevaluated; 7141 EPI.ExceptionSpec.SourceDecl = MD; 7142 7143 // Set the calling convention to the default for C++ instance methods. 7144 EPI.ExtInfo = EPI.ExtInfo.withCallingConv( 7145 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, 7146 /*IsCXXMethod=*/true)); 7147 return EPI; 7148 } 7149 7150 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) { 7151 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 7152 if (FPT->getExceptionSpecType() != EST_Unevaluated) 7153 return; 7154 7155 // Evaluate the exception specification. 7156 auto IES = computeImplicitExceptionSpec(*this, Loc, FD); 7157 auto ESI = IES.getExceptionSpec(); 7158 7159 // Update the type of the special member to use it. 7160 UpdateExceptionSpec(FD, ESI); 7161 } 7162 7163 void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) { 7164 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted"); 7165 7166 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 7167 if (!DefKind) { 7168 assert(FD->getDeclContext()->isDependentContext()); 7169 return; 7170 } 7171 7172 if (DefKind.isSpecialMember() 7173 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD), 7174 DefKind.asSpecialMember()) 7175 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison())) 7176 FD->setInvalidDecl(); 7177 } 7178 7179 bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, 7180 CXXSpecialMember CSM) { 7181 CXXRecordDecl *RD = MD->getParent(); 7182 7183 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid && 7184 "not an explicitly-defaulted special member"); 7185 7186 // Defer all checking for special members of a dependent type. 7187 if (RD->isDependentType()) 7188 return false; 7189 7190 // Whether this was the first-declared instance of the constructor. 7191 // This affects whether we implicitly add an exception spec and constexpr. 7192 bool First = MD == MD->getCanonicalDecl(); 7193 7194 bool HadError = false; 7195 7196 // C++11 [dcl.fct.def.default]p1: 7197 // A function that is explicitly defaulted shall 7198 // -- be a special member function [...] (checked elsewhere), 7199 // -- have the same type (except for ref-qualifiers, and except that a 7200 // copy operation can take a non-const reference) as an implicit 7201 // declaration, and 7202 // -- not have default arguments. 7203 // C++2a changes the second bullet to instead delete the function if it's 7204 // defaulted on its first declaration, unless it's "an assignment operator, 7205 // and its return type differs or its parameter type is not a reference". 7206 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First; 7207 bool ShouldDeleteForTypeMismatch = false; 7208 unsigned ExpectedParams = 1; 7209 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor) 7210 ExpectedParams = 0; 7211 if (MD->getNumParams() != ExpectedParams) { 7212 // This checks for default arguments: a copy or move constructor with a 7213 // default argument is classified as a default constructor, and assignment 7214 // operations and destructors can't have default arguments. 7215 Diag(MD->getLocation(), diag::err_defaulted_special_member_params) 7216 << CSM << MD->getSourceRange(); 7217 HadError = true; 7218 } else if (MD->isVariadic()) { 7219 if (DeleteOnTypeMismatch) 7220 ShouldDeleteForTypeMismatch = true; 7221 else { 7222 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) 7223 << CSM << MD->getSourceRange(); 7224 HadError = true; 7225 } 7226 } 7227 7228 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>(); 7229 7230 bool CanHaveConstParam = false; 7231 if (CSM == CXXCopyConstructor) 7232 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); 7233 else if (CSM == CXXCopyAssignment) 7234 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); 7235 7236 QualType ReturnType = Context.VoidTy; 7237 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) { 7238 // Check for return type matching. 7239 ReturnType = Type->getReturnType(); 7240 7241 QualType DeclType = Context.getTypeDeclType(RD); 7242 DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace()); 7243 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType); 7244 7245 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) { 7246 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) 7247 << (CSM == CXXMoveAssignment) << ExpectedReturnType; 7248 HadError = true; 7249 } 7250 7251 // A defaulted special member cannot have cv-qualifiers. 7252 if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) { 7253 if (DeleteOnTypeMismatch) 7254 ShouldDeleteForTypeMismatch = true; 7255 else { 7256 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) 7257 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14; 7258 HadError = true; 7259 } 7260 } 7261 } 7262 7263 // Check for parameter type matching. 7264 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType(); 7265 bool HasConstParam = false; 7266 if (ExpectedParams && ArgType->isReferenceType()) { 7267 // Argument must be reference to possibly-const T. 7268 QualType ReferentType = ArgType->getPointeeType(); 7269 HasConstParam = ReferentType.isConstQualified(); 7270 7271 if (ReferentType.isVolatileQualified()) { 7272 if (DeleteOnTypeMismatch) 7273 ShouldDeleteForTypeMismatch = true; 7274 else { 7275 Diag(MD->getLocation(), 7276 diag::err_defaulted_special_member_volatile_param) << CSM; 7277 HadError = true; 7278 } 7279 } 7280 7281 if (HasConstParam && !CanHaveConstParam) { 7282 if (DeleteOnTypeMismatch) 7283 ShouldDeleteForTypeMismatch = true; 7284 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) { 7285 Diag(MD->getLocation(), 7286 diag::err_defaulted_special_member_copy_const_param) 7287 << (CSM == CXXCopyAssignment); 7288 // FIXME: Explain why this special member can't be const. 7289 HadError = true; 7290 } else { 7291 Diag(MD->getLocation(), 7292 diag::err_defaulted_special_member_move_const_param) 7293 << (CSM == CXXMoveAssignment); 7294 HadError = true; 7295 } 7296 } 7297 } else if (ExpectedParams) { 7298 // A copy assignment operator can take its argument by value, but a 7299 // defaulted one cannot. 7300 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument"); 7301 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); 7302 HadError = true; 7303 } 7304 7305 // C++11 [dcl.fct.def.default]p2: 7306 // An explicitly-defaulted function may be declared constexpr only if it 7307 // would have been implicitly declared as constexpr, 7308 // Do not apply this rule to members of class templates, since core issue 1358 7309 // makes such functions always instantiate to constexpr functions. For 7310 // functions which cannot be constexpr (for non-constructors in C++11 and for 7311 // destructors in C++14 and C++17), this is checked elsewhere. 7312 // 7313 // FIXME: This should not apply if the member is deleted. 7314 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM, 7315 HasConstParam); 7316 if ((getLangOpts().CPlusPlus20 || 7317 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD) 7318 : isa<CXXConstructorDecl>(MD))) && 7319 MD->isConstexpr() && !Constexpr && 7320 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { 7321 Diag(MD->getBeginLoc(), MD->isConsteval() 7322 ? diag::err_incorrect_defaulted_consteval 7323 : diag::err_incorrect_defaulted_constexpr) 7324 << CSM; 7325 // FIXME: Explain why the special member can't be constexpr. 7326 HadError = true; 7327 } 7328 7329 if (First) { 7330 // C++2a [dcl.fct.def.default]p3: 7331 // If a function is explicitly defaulted on its first declaration, it is 7332 // implicitly considered to be constexpr if the implicit declaration 7333 // would be. 7334 MD->setConstexprKind( 7335 Constexpr ? (MD->isConsteval() ? CSK_consteval : CSK_constexpr) 7336 : CSK_unspecified); 7337 7338 if (!Type->hasExceptionSpec()) { 7339 // C++2a [except.spec]p3: 7340 // If a declaration of a function does not have a noexcept-specifier 7341 // [and] is defaulted on its first declaration, [...] the exception 7342 // specification is as specified below 7343 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); 7344 EPI.ExceptionSpec.Type = EST_Unevaluated; 7345 EPI.ExceptionSpec.SourceDecl = MD; 7346 MD->setType(Context.getFunctionType(ReturnType, 7347 llvm::makeArrayRef(&ArgType, 7348 ExpectedParams), 7349 EPI)); 7350 } 7351 } 7352 7353 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) { 7354 if (First) { 7355 SetDeclDeleted(MD, MD->getLocation()); 7356 if (!inTemplateInstantiation() && !HadError) { 7357 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM; 7358 if (ShouldDeleteForTypeMismatch) { 7359 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM; 7360 } else { 7361 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 7362 } 7363 } 7364 if (ShouldDeleteForTypeMismatch && !HadError) { 7365 Diag(MD->getLocation(), 7366 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM; 7367 } 7368 } else { 7369 // C++11 [dcl.fct.def.default]p4: 7370 // [For a] user-provided explicitly-defaulted function [...] if such a 7371 // function is implicitly defined as deleted, the program is ill-formed. 7372 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM; 7373 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl"); 7374 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 7375 HadError = true; 7376 } 7377 } 7378 7379 return HadError; 7380 } 7381 7382 namespace { 7383 /// Helper class for building and checking a defaulted comparison. 7384 /// 7385 /// Defaulted functions are built in two phases: 7386 /// 7387 /// * First, the set of operations that the function will perform are 7388 /// identified, and some of them are checked. If any of the checked 7389 /// operations is invalid in certain ways, the comparison function is 7390 /// defined as deleted and no body is built. 7391 /// * Then, if the function is not defined as deleted, the body is built. 7392 /// 7393 /// This is accomplished by performing two visitation steps over the eventual 7394 /// body of the function. 7395 template<typename Derived, typename ResultList, typename Result, 7396 typename Subobject> 7397 class DefaultedComparisonVisitor { 7398 public: 7399 using DefaultedComparisonKind = Sema::DefaultedComparisonKind; 7400 7401 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7402 DefaultedComparisonKind DCK) 7403 : S(S), RD(RD), FD(FD), DCK(DCK) { 7404 if (auto *Info = FD->getDefaultedFunctionInfo()) { 7405 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an 7406 // UnresolvedSet to avoid this copy. 7407 Fns.assign(Info->getUnqualifiedLookups().begin(), 7408 Info->getUnqualifiedLookups().end()); 7409 } 7410 } 7411 7412 ResultList visit() { 7413 // The type of an lvalue naming a parameter of this function. 7414 QualType ParamLvalType = 7415 FD->getParamDecl(0)->getType().getNonReferenceType(); 7416 7417 ResultList Results; 7418 7419 switch (DCK) { 7420 case DefaultedComparisonKind::None: 7421 llvm_unreachable("not a defaulted comparison"); 7422 7423 case DefaultedComparisonKind::Equal: 7424 case DefaultedComparisonKind::ThreeWay: 7425 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers()); 7426 return Results; 7427 7428 case DefaultedComparisonKind::NotEqual: 7429 case DefaultedComparisonKind::Relational: 7430 Results.add(getDerived().visitExpandedSubobject( 7431 ParamLvalType, getDerived().getCompleteObject())); 7432 return Results; 7433 } 7434 llvm_unreachable(""); 7435 } 7436 7437 protected: 7438 Derived &getDerived() { return static_cast<Derived&>(*this); } 7439 7440 /// Visit the expanded list of subobjects of the given type, as specified in 7441 /// C++2a [class.compare.default]. 7442 /// 7443 /// \return \c true if the ResultList object said we're done, \c false if not. 7444 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record, 7445 Qualifiers Quals) { 7446 // C++2a [class.compare.default]p4: 7447 // The direct base class subobjects of C 7448 for (CXXBaseSpecifier &Base : Record->bases()) 7449 if (Results.add(getDerived().visitSubobject( 7450 S.Context.getQualifiedType(Base.getType(), Quals), 7451 getDerived().getBase(&Base)))) 7452 return true; 7453 7454 // followed by the non-static data members of C 7455 for (FieldDecl *Field : Record->fields()) { 7456 // Recursively expand anonymous structs. 7457 if (Field->isAnonymousStructOrUnion()) { 7458 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(), 7459 Quals)) 7460 return true; 7461 continue; 7462 } 7463 7464 // Figure out the type of an lvalue denoting this field. 7465 Qualifiers FieldQuals = Quals; 7466 if (Field->isMutable()) 7467 FieldQuals.removeConst(); 7468 QualType FieldType = 7469 S.Context.getQualifiedType(Field->getType(), FieldQuals); 7470 7471 if (Results.add(getDerived().visitSubobject( 7472 FieldType, getDerived().getField(Field)))) 7473 return true; 7474 } 7475 7476 // form a list of subobjects. 7477 return false; 7478 } 7479 7480 Result visitSubobject(QualType Type, Subobject Subobj) { 7481 // In that list, any subobject of array type is recursively expanded 7482 const ArrayType *AT = S.Context.getAsArrayType(Type); 7483 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT)) 7484 return getDerived().visitSubobjectArray(CAT->getElementType(), 7485 CAT->getSize(), Subobj); 7486 return getDerived().visitExpandedSubobject(Type, Subobj); 7487 } 7488 7489 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size, 7490 Subobject Subobj) { 7491 return getDerived().visitSubobject(Type, Subobj); 7492 } 7493 7494 protected: 7495 Sema &S; 7496 CXXRecordDecl *RD; 7497 FunctionDecl *FD; 7498 DefaultedComparisonKind DCK; 7499 UnresolvedSet<16> Fns; 7500 }; 7501 7502 /// Information about a defaulted comparison, as determined by 7503 /// DefaultedComparisonAnalyzer. 7504 struct DefaultedComparisonInfo { 7505 bool Deleted = false; 7506 bool Constexpr = true; 7507 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering; 7508 7509 static DefaultedComparisonInfo deleted() { 7510 DefaultedComparisonInfo Deleted; 7511 Deleted.Deleted = true; 7512 return Deleted; 7513 } 7514 7515 bool add(const DefaultedComparisonInfo &R) { 7516 Deleted |= R.Deleted; 7517 Constexpr &= R.Constexpr; 7518 Category = commonComparisonType(Category, R.Category); 7519 return Deleted; 7520 } 7521 }; 7522 7523 /// An element in the expanded list of subobjects of a defaulted comparison, as 7524 /// specified in C++2a [class.compare.default]p4. 7525 struct DefaultedComparisonSubobject { 7526 enum { CompleteObject, Member, Base } Kind; 7527 NamedDecl *Decl; 7528 SourceLocation Loc; 7529 }; 7530 7531 /// A visitor over the notional body of a defaulted comparison that determines 7532 /// whether that body would be deleted or constexpr. 7533 class DefaultedComparisonAnalyzer 7534 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer, 7535 DefaultedComparisonInfo, 7536 DefaultedComparisonInfo, 7537 DefaultedComparisonSubobject> { 7538 public: 7539 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr }; 7540 7541 private: 7542 DiagnosticKind Diagnose; 7543 7544 public: 7545 using Base = DefaultedComparisonVisitor; 7546 using Result = DefaultedComparisonInfo; 7547 using Subobject = DefaultedComparisonSubobject; 7548 7549 friend Base; 7550 7551 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7552 DefaultedComparisonKind DCK, 7553 DiagnosticKind Diagnose = NoDiagnostics) 7554 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {} 7555 7556 Result visit() { 7557 if ((DCK == DefaultedComparisonKind::Equal || 7558 DCK == DefaultedComparisonKind::ThreeWay) && 7559 RD->hasVariantMembers()) { 7560 // C++2a [class.compare.default]p2 [P2002R0]: 7561 // A defaulted comparison operator function for class C is defined as 7562 // deleted if [...] C has variant members. 7563 if (Diagnose == ExplainDeleted) { 7564 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union) 7565 << FD << RD->isUnion() << RD; 7566 } 7567 return Result::deleted(); 7568 } 7569 7570 return Base::visit(); 7571 } 7572 7573 private: 7574 Subobject getCompleteObject() { 7575 return Subobject{Subobject::CompleteObject, nullptr, FD->getLocation()}; 7576 } 7577 7578 Subobject getBase(CXXBaseSpecifier *Base) { 7579 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(), 7580 Base->getBaseTypeLoc()}; 7581 } 7582 7583 Subobject getField(FieldDecl *Field) { 7584 return Subobject{Subobject::Member, Field, Field->getLocation()}; 7585 } 7586 7587 Result visitExpandedSubobject(QualType Type, Subobject Subobj) { 7588 // C++2a [class.compare.default]p2 [P2002R0]: 7589 // A defaulted <=> or == operator function for class C is defined as 7590 // deleted if any non-static data member of C is of reference type 7591 if (Type->isReferenceType()) { 7592 if (Diagnose == ExplainDeleted) { 7593 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member) 7594 << FD << RD; 7595 } 7596 return Result::deleted(); 7597 } 7598 7599 // [...] Let xi be an lvalue denoting the ith element [...] 7600 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue); 7601 Expr *Args[] = {&Xi, &Xi}; 7602 7603 // All operators start by trying to apply that same operator recursively. 7604 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 7605 assert(OO != OO_None && "not an overloaded operator!"); 7606 return visitBinaryOperator(OO, Args, Subobj); 7607 } 7608 7609 Result 7610 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args, 7611 Subobject Subobj, 7612 OverloadCandidateSet *SpaceshipCandidates = nullptr) { 7613 // Note that there is no need to consider rewritten candidates here if 7614 // we've already found there is no viable 'operator<=>' candidate (and are 7615 // considering synthesizing a '<=>' from '==' and '<'). 7616 OverloadCandidateSet CandidateSet( 7617 FD->getLocation(), OverloadCandidateSet::CSK_Operator, 7618 OverloadCandidateSet::OperatorRewriteInfo( 7619 OO, /*AllowRewrittenCandidates=*/!SpaceshipCandidates)); 7620 7621 /// C++2a [class.compare.default]p1 [P2002R0]: 7622 /// [...] the defaulted function itself is never a candidate for overload 7623 /// resolution [...] 7624 CandidateSet.exclude(FD); 7625 7626 if (Args[0]->getType()->isOverloadableType()) 7627 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args); 7628 else { 7629 // FIXME: We determine whether this is a valid expression by checking to 7630 // see if there's a viable builtin operator candidate for it. That isn't 7631 // really what the rules ask us to do, but should give the right results. 7632 S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet); 7633 } 7634 7635 Result R; 7636 7637 OverloadCandidateSet::iterator Best; 7638 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) { 7639 case OR_Success: { 7640 // C++2a [class.compare.secondary]p2 [P2002R0]: 7641 // The operator function [...] is defined as deleted if [...] the 7642 // candidate selected by overload resolution is not a rewritten 7643 // candidate. 7644 if ((DCK == DefaultedComparisonKind::NotEqual || 7645 DCK == DefaultedComparisonKind::Relational) && 7646 !Best->RewriteKind) { 7647 if (Diagnose == ExplainDeleted) { 7648 S.Diag(Best->Function->getLocation(), 7649 diag::note_defaulted_comparison_not_rewritten_callee) 7650 << FD; 7651 } 7652 return Result::deleted(); 7653 } 7654 7655 // Throughout C++2a [class.compare]: if overload resolution does not 7656 // result in a usable function, the candidate function is defined as 7657 // deleted. This requires that we selected an accessible function. 7658 // 7659 // Note that this only considers the access of the function when named 7660 // within the type of the subobject, and not the access path for any 7661 // derived-to-base conversion. 7662 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl(); 7663 if (ArgClass && Best->FoundDecl.getDecl() && 7664 Best->FoundDecl.getDecl()->isCXXClassMember()) { 7665 QualType ObjectType = Subobj.Kind == Subobject::Member 7666 ? Args[0]->getType() 7667 : S.Context.getRecordType(RD); 7668 if (!S.isMemberAccessibleForDeletion( 7669 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc, 7670 Diagnose == ExplainDeleted 7671 ? S.PDiag(diag::note_defaulted_comparison_inaccessible) 7672 << FD << Subobj.Kind << Subobj.Decl 7673 : S.PDiag())) 7674 return Result::deleted(); 7675 } 7676 7677 // C++2a [class.compare.default]p3 [P2002R0]: 7678 // A defaulted comparison function is constexpr-compatible if [...] 7679 // no overlod resolution performed [...] results in a non-constexpr 7680 // function. 7681 if (FunctionDecl *BestFD = Best->Function) { 7682 assert(!BestFD->isDeleted() && "wrong overload resolution result"); 7683 // If it's not constexpr, explain why not. 7684 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) { 7685 if (Subobj.Kind != Subobject::CompleteObject) 7686 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr) 7687 << Subobj.Kind << Subobj.Decl; 7688 S.Diag(BestFD->getLocation(), 7689 diag::note_defaulted_comparison_not_constexpr_here); 7690 // Bail out after explaining; we don't want any more notes. 7691 return Result::deleted(); 7692 } 7693 R.Constexpr &= BestFD->isConstexpr(); 7694 } 7695 7696 if (OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType()) { 7697 if (auto *BestFD = Best->Function) { 7698 // If any callee has an undeduced return type, deduce it now. 7699 // FIXME: It's not clear how a failure here should be handled. For 7700 // now, we produce an eager diagnostic, because that is forward 7701 // compatible with most (all?) other reasonable options. 7702 if (BestFD->getReturnType()->isUndeducedType() && 7703 S.DeduceReturnType(BestFD, FD->getLocation(), 7704 /*Diagnose=*/false)) { 7705 // Don't produce a duplicate error when asked to explain why the 7706 // comparison is deleted: we diagnosed that when initially checking 7707 // the defaulted operator. 7708 if (Diagnose == NoDiagnostics) { 7709 S.Diag( 7710 FD->getLocation(), 7711 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto) 7712 << Subobj.Kind << Subobj.Decl; 7713 S.Diag( 7714 Subobj.Loc, 7715 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto) 7716 << Subobj.Kind << Subobj.Decl; 7717 S.Diag(BestFD->getLocation(), 7718 diag::note_defaulted_comparison_cannot_deduce_callee) 7719 << Subobj.Kind << Subobj.Decl; 7720 } 7721 return Result::deleted(); 7722 } 7723 if (auto *Info = S.Context.CompCategories.lookupInfoForType( 7724 BestFD->getCallResultType())) { 7725 R.Category = Info->Kind; 7726 } else { 7727 if (Diagnose == ExplainDeleted) { 7728 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce) 7729 << Subobj.Kind << Subobj.Decl 7730 << BestFD->getCallResultType().withoutLocalFastQualifiers(); 7731 S.Diag(BestFD->getLocation(), 7732 diag::note_defaulted_comparison_cannot_deduce_callee) 7733 << Subobj.Kind << Subobj.Decl; 7734 } 7735 return Result::deleted(); 7736 } 7737 } else { 7738 Optional<ComparisonCategoryType> Cat = 7739 getComparisonCategoryForBuiltinCmp(Args[0]->getType()); 7740 assert(Cat && "no category for builtin comparison?"); 7741 R.Category = *Cat; 7742 } 7743 } 7744 7745 // Note that we might be rewriting to a different operator. That call is 7746 // not considered until we come to actually build the comparison function. 7747 break; 7748 } 7749 7750 case OR_Ambiguous: 7751 if (Diagnose == ExplainDeleted) { 7752 unsigned Kind = 0; 7753 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship) 7754 Kind = OO == OO_EqualEqual ? 1 : 2; 7755 CandidateSet.NoteCandidates( 7756 PartialDiagnosticAt( 7757 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous) 7758 << FD << Kind << Subobj.Kind << Subobj.Decl), 7759 S, OCD_AmbiguousCandidates, Args); 7760 } 7761 R = Result::deleted(); 7762 break; 7763 7764 case OR_Deleted: 7765 if (Diagnose == ExplainDeleted) { 7766 if ((DCK == DefaultedComparisonKind::NotEqual || 7767 DCK == DefaultedComparisonKind::Relational) && 7768 !Best->RewriteKind) { 7769 S.Diag(Best->Function->getLocation(), 7770 diag::note_defaulted_comparison_not_rewritten_callee) 7771 << FD; 7772 } else { 7773 S.Diag(Subobj.Loc, 7774 diag::note_defaulted_comparison_calls_deleted) 7775 << FD << Subobj.Kind << Subobj.Decl; 7776 S.NoteDeletedFunction(Best->Function); 7777 } 7778 } 7779 R = Result::deleted(); 7780 break; 7781 7782 case OR_No_Viable_Function: 7783 // If there's no usable candidate, we're done unless we can rewrite a 7784 // '<=>' in terms of '==' and '<'. 7785 if (OO == OO_Spaceship && 7786 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) { 7787 // For any kind of comparison category return type, we need a usable 7788 // '==' and a usable '<'. 7789 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj, 7790 &CandidateSet))) 7791 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet)); 7792 break; 7793 } 7794 7795 if (Diagnose == ExplainDeleted) { 7796 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function) 7797 << FD << Subobj.Kind << Subobj.Decl; 7798 7799 // For a three-way comparison, list both the candidates for the 7800 // original operator and the candidates for the synthesized operator. 7801 if (SpaceshipCandidates) { 7802 SpaceshipCandidates->NoteCandidates( 7803 S, Args, 7804 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates, 7805 Args, FD->getLocation())); 7806 S.Diag(Subobj.Loc, 7807 diag::note_defaulted_comparison_no_viable_function_synthesized) 7808 << (OO == OO_EqualEqual ? 0 : 1); 7809 } 7810 7811 CandidateSet.NoteCandidates( 7812 S, Args, 7813 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args, 7814 FD->getLocation())); 7815 } 7816 R = Result::deleted(); 7817 break; 7818 } 7819 7820 return R; 7821 } 7822 }; 7823 7824 /// A list of statements. 7825 struct StmtListResult { 7826 bool IsInvalid = false; 7827 llvm::SmallVector<Stmt*, 16> Stmts; 7828 7829 bool add(const StmtResult &S) { 7830 IsInvalid |= S.isInvalid(); 7831 if (IsInvalid) 7832 return true; 7833 Stmts.push_back(S.get()); 7834 return false; 7835 } 7836 }; 7837 7838 /// A visitor over the notional body of a defaulted comparison that synthesizes 7839 /// the actual body. 7840 class DefaultedComparisonSynthesizer 7841 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer, 7842 StmtListResult, StmtResult, 7843 std::pair<ExprResult, ExprResult>> { 7844 SourceLocation Loc; 7845 unsigned ArrayDepth = 0; 7846 7847 public: 7848 using Base = DefaultedComparisonVisitor; 7849 using ExprPair = std::pair<ExprResult, ExprResult>; 7850 7851 friend Base; 7852 7853 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7854 DefaultedComparisonKind DCK, 7855 SourceLocation BodyLoc) 7856 : Base(S, RD, FD, DCK), Loc(BodyLoc) {} 7857 7858 /// Build a suitable function body for this defaulted comparison operator. 7859 StmtResult build() { 7860 Sema::CompoundScopeRAII CompoundScope(S); 7861 7862 StmtListResult Stmts = visit(); 7863 if (Stmts.IsInvalid) 7864 return StmtError(); 7865 7866 ExprResult RetVal; 7867 switch (DCK) { 7868 case DefaultedComparisonKind::None: 7869 llvm_unreachable("not a defaulted comparison"); 7870 7871 case DefaultedComparisonKind::Equal: { 7872 // C++2a [class.eq]p3: 7873 // [...] compar[e] the corresponding elements [...] until the first 7874 // index i where xi == yi yields [...] false. If no such index exists, 7875 // V is true. Otherwise, V is false. 7876 // 7877 // Join the comparisons with '&&'s and return the result. Use a right 7878 // fold (traversing the conditions right-to-left), because that 7879 // short-circuits more naturally. 7880 auto OldStmts = std::move(Stmts.Stmts); 7881 Stmts.Stmts.clear(); 7882 ExprResult CmpSoFar; 7883 // Finish a particular comparison chain. 7884 auto FinishCmp = [&] { 7885 if (Expr *Prior = CmpSoFar.get()) { 7886 // Convert the last expression to 'return ...;' 7887 if (RetVal.isUnset() && Stmts.Stmts.empty()) 7888 RetVal = CmpSoFar; 7889 // Convert any prior comparison to 'if (!(...)) return false;' 7890 else if (Stmts.add(buildIfNotCondReturnFalse(Prior))) 7891 return true; 7892 CmpSoFar = ExprResult(); 7893 } 7894 return false; 7895 }; 7896 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) { 7897 Expr *E = dyn_cast<Expr>(EAsStmt); 7898 if (!E) { 7899 // Found an array comparison. 7900 if (FinishCmp() || Stmts.add(EAsStmt)) 7901 return StmtError(); 7902 continue; 7903 } 7904 7905 if (CmpSoFar.isUnset()) { 7906 CmpSoFar = E; 7907 continue; 7908 } 7909 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get()); 7910 if (CmpSoFar.isInvalid()) 7911 return StmtError(); 7912 } 7913 if (FinishCmp()) 7914 return StmtError(); 7915 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end()); 7916 // If no such index exists, V is true. 7917 if (RetVal.isUnset()) 7918 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true); 7919 break; 7920 } 7921 7922 case DefaultedComparisonKind::ThreeWay: { 7923 // Per C++2a [class.spaceship]p3, as a fallback add: 7924 // return static_cast<R>(std::strong_ordering::equal); 7925 QualType StrongOrdering = S.CheckComparisonCategoryType( 7926 ComparisonCategoryType::StrongOrdering, Loc, 7927 Sema::ComparisonCategoryUsage::DefaultedOperator); 7928 if (StrongOrdering.isNull()) 7929 return StmtError(); 7930 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering) 7931 .getValueInfo(ComparisonCategoryResult::Equal) 7932 ->VD; 7933 RetVal = getDecl(EqualVD); 7934 if (RetVal.isInvalid()) 7935 return StmtError(); 7936 RetVal = buildStaticCastToR(RetVal.get()); 7937 break; 7938 } 7939 7940 case DefaultedComparisonKind::NotEqual: 7941 case DefaultedComparisonKind::Relational: 7942 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val()); 7943 break; 7944 } 7945 7946 // Build the final return statement. 7947 if (RetVal.isInvalid()) 7948 return StmtError(); 7949 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get()); 7950 if (ReturnStmt.isInvalid()) 7951 return StmtError(); 7952 Stmts.Stmts.push_back(ReturnStmt.get()); 7953 7954 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false); 7955 } 7956 7957 private: 7958 ExprResult getDecl(ValueDecl *VD) { 7959 return S.BuildDeclarationNameExpr( 7960 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD); 7961 } 7962 7963 ExprResult getParam(unsigned I) { 7964 ParmVarDecl *PD = FD->getParamDecl(I); 7965 return getDecl(PD); 7966 } 7967 7968 ExprPair getCompleteObject() { 7969 unsigned Param = 0; 7970 ExprResult LHS; 7971 if (isa<CXXMethodDecl>(FD)) { 7972 // LHS is '*this'. 7973 LHS = S.ActOnCXXThis(Loc); 7974 if (!LHS.isInvalid()) 7975 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get()); 7976 } else { 7977 LHS = getParam(Param++); 7978 } 7979 ExprResult RHS = getParam(Param++); 7980 assert(Param == FD->getNumParams()); 7981 return {LHS, RHS}; 7982 } 7983 7984 ExprPair getBase(CXXBaseSpecifier *Base) { 7985 ExprPair Obj = getCompleteObject(); 7986 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 7987 return {ExprError(), ExprError()}; 7988 CXXCastPath Path = {Base}; 7989 return {S.ImpCastExprToType(Obj.first.get(), Base->getType(), 7990 CK_DerivedToBase, VK_LValue, &Path), 7991 S.ImpCastExprToType(Obj.second.get(), Base->getType(), 7992 CK_DerivedToBase, VK_LValue, &Path)}; 7993 } 7994 7995 ExprPair getField(FieldDecl *Field) { 7996 ExprPair Obj = getCompleteObject(); 7997 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 7998 return {ExprError(), ExprError()}; 7999 8000 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess()); 8001 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc); 8002 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc, 8003 CXXScopeSpec(), Field, Found, NameInfo), 8004 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc, 8005 CXXScopeSpec(), Field, Found, NameInfo)}; 8006 } 8007 8008 // FIXME: When expanding a subobject, register a note in the code synthesis 8009 // stack to say which subobject we're comparing. 8010 8011 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) { 8012 if (Cond.isInvalid()) 8013 return StmtError(); 8014 8015 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get()); 8016 if (NotCond.isInvalid()) 8017 return StmtError(); 8018 8019 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false); 8020 assert(!False.isInvalid() && "should never fail"); 8021 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get()); 8022 if (ReturnFalse.isInvalid()) 8023 return StmtError(); 8024 8025 return S.ActOnIfStmt(Loc, false, nullptr, 8026 S.ActOnCondition(nullptr, Loc, NotCond.get(), 8027 Sema::ConditionKind::Boolean), 8028 ReturnFalse.get(), SourceLocation(), nullptr); 8029 } 8030 8031 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size, 8032 ExprPair Subobj) { 8033 QualType SizeType = S.Context.getSizeType(); 8034 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType)); 8035 8036 // Build 'size_t i$n = 0'. 8037 IdentifierInfo *IterationVarName = nullptr; 8038 { 8039 SmallString<8> Str; 8040 llvm::raw_svector_ostream OS(Str); 8041 OS << "i" << ArrayDepth; 8042 IterationVarName = &S.Context.Idents.get(OS.str()); 8043 } 8044 VarDecl *IterationVar = VarDecl::Create( 8045 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType, 8046 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None); 8047 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 8048 IterationVar->setInit( 8049 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 8050 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc); 8051 8052 auto IterRef = [&] { 8053 ExprResult Ref = S.BuildDeclarationNameExpr( 8054 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc), 8055 IterationVar); 8056 assert(!Ref.isInvalid() && "can't reference our own variable?"); 8057 return Ref.get(); 8058 }; 8059 8060 // Build 'i$n != Size'. 8061 ExprResult Cond = S.CreateBuiltinBinOp( 8062 Loc, BO_NE, IterRef(), 8063 IntegerLiteral::Create(S.Context, Size, SizeType, Loc)); 8064 assert(!Cond.isInvalid() && "should never fail"); 8065 8066 // Build '++i$n'. 8067 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef()); 8068 assert(!Inc.isInvalid() && "should never fail"); 8069 8070 // Build 'a[i$n]' and 'b[i$n]'. 8071 auto Index = [&](ExprResult E) { 8072 if (E.isInvalid()) 8073 return ExprError(); 8074 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc); 8075 }; 8076 Subobj.first = Index(Subobj.first); 8077 Subobj.second = Index(Subobj.second); 8078 8079 // Compare the array elements. 8080 ++ArrayDepth; 8081 StmtResult Substmt = visitSubobject(Type, Subobj); 8082 --ArrayDepth; 8083 8084 if (Substmt.isInvalid()) 8085 return StmtError(); 8086 8087 // For the inner level of an 'operator==', build 'if (!cmp) return false;'. 8088 // For outer levels or for an 'operator<=>' we already have a suitable 8089 // statement that returns as necessary. 8090 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) { 8091 assert(DCK == DefaultedComparisonKind::Equal && 8092 "should have non-expression statement"); 8093 Substmt = buildIfNotCondReturnFalse(ElemCmp); 8094 if (Substmt.isInvalid()) 8095 return StmtError(); 8096 } 8097 8098 // Build 'for (...) ...' 8099 return S.ActOnForStmt(Loc, Loc, Init, 8100 S.ActOnCondition(nullptr, Loc, Cond.get(), 8101 Sema::ConditionKind::Boolean), 8102 S.MakeFullDiscardedValueExpr(Inc.get()), Loc, 8103 Substmt.get()); 8104 } 8105 8106 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) { 8107 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8108 return StmtError(); 8109 8110 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 8111 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO); 8112 ExprResult Op; 8113 if (Type->isOverloadableType()) 8114 Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(), 8115 Obj.second.get(), /*PerformADL=*/true, 8116 /*AllowRewrittenCandidates=*/true, FD); 8117 else 8118 Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get()); 8119 if (Op.isInvalid()) 8120 return StmtError(); 8121 8122 switch (DCK) { 8123 case DefaultedComparisonKind::None: 8124 llvm_unreachable("not a defaulted comparison"); 8125 8126 case DefaultedComparisonKind::Equal: 8127 // Per C++2a [class.eq]p2, each comparison is individually contextually 8128 // converted to bool. 8129 Op = S.PerformContextuallyConvertToBool(Op.get()); 8130 if (Op.isInvalid()) 8131 return StmtError(); 8132 return Op.get(); 8133 8134 case DefaultedComparisonKind::ThreeWay: { 8135 // Per C++2a [class.spaceship]p3, form: 8136 // if (R cmp = static_cast<R>(op); cmp != 0) 8137 // return cmp; 8138 QualType R = FD->getReturnType(); 8139 Op = buildStaticCastToR(Op.get()); 8140 if (Op.isInvalid()) 8141 return StmtError(); 8142 8143 // R cmp = ...; 8144 IdentifierInfo *Name = &S.Context.Idents.get("cmp"); 8145 VarDecl *VD = 8146 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R, 8147 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None); 8148 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false); 8149 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc); 8150 8151 // cmp != 0 8152 ExprResult VDRef = getDecl(VD); 8153 if (VDRef.isInvalid()) 8154 return StmtError(); 8155 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0); 8156 Expr *Zero = 8157 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc); 8158 ExprResult Comp; 8159 if (VDRef.get()->getType()->isOverloadableType()) 8160 Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true, 8161 true, FD); 8162 else 8163 Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero); 8164 if (Comp.isInvalid()) 8165 return StmtError(); 8166 Sema::ConditionResult Cond = S.ActOnCondition( 8167 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean); 8168 if (Cond.isInvalid()) 8169 return StmtError(); 8170 8171 // return cmp; 8172 VDRef = getDecl(VD); 8173 if (VDRef.isInvalid()) 8174 return StmtError(); 8175 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get()); 8176 if (ReturnStmt.isInvalid()) 8177 return StmtError(); 8178 8179 // if (...) 8180 return S.ActOnIfStmt(Loc, /*IsConstexpr=*/false, InitStmt, Cond, 8181 ReturnStmt.get(), /*ElseLoc=*/SourceLocation(), 8182 /*Else=*/nullptr); 8183 } 8184 8185 case DefaultedComparisonKind::NotEqual: 8186 case DefaultedComparisonKind::Relational: 8187 // C++2a [class.compare.secondary]p2: 8188 // Otherwise, the operator function yields x @ y. 8189 return Op.get(); 8190 } 8191 llvm_unreachable(""); 8192 } 8193 8194 /// Build "static_cast<R>(E)". 8195 ExprResult buildStaticCastToR(Expr *E) { 8196 QualType R = FD->getReturnType(); 8197 assert(!R->isUndeducedType() && "type should have been deduced already"); 8198 8199 // Don't bother forming a no-op cast in the common case. 8200 if (E->isRValue() && S.Context.hasSameType(E->getType(), R)) 8201 return E; 8202 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast, 8203 S.Context.getTrivialTypeSourceInfo(R, Loc), E, 8204 SourceRange(Loc, Loc), SourceRange(Loc, Loc)); 8205 } 8206 }; 8207 } 8208 8209 /// Perform the unqualified lookups that might be needed to form a defaulted 8210 /// comparison function for the given operator. 8211 static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S, 8212 UnresolvedSetImpl &Operators, 8213 OverloadedOperatorKind Op) { 8214 auto Lookup = [&](OverloadedOperatorKind OO) { 8215 Self.LookupOverloadedOperatorName(OO, S, QualType(), QualType(), Operators); 8216 }; 8217 8218 // Every defaulted operator looks up itself. 8219 Lookup(Op); 8220 // ... and the rewritten form of itself, if any. 8221 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op)) 8222 Lookup(ExtraOp); 8223 8224 // For 'operator<=>', we also form a 'cmp != 0' expression, and might 8225 // synthesize a three-way comparison from '<' and '=='. In a dependent 8226 // context, we also need to look up '==' in case we implicitly declare a 8227 // defaulted 'operator=='. 8228 if (Op == OO_Spaceship) { 8229 Lookup(OO_ExclaimEqual); 8230 Lookup(OO_Less); 8231 Lookup(OO_EqualEqual); 8232 } 8233 } 8234 8235 bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD, 8236 DefaultedComparisonKind DCK) { 8237 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison"); 8238 8239 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()); 8240 assert(RD && "defaulted comparison is not defaulted in a class"); 8241 8242 // Perform any unqualified lookups we're going to need to default this 8243 // function. 8244 if (S) { 8245 UnresolvedSet<32> Operators; 8246 lookupOperatorsForDefaultedComparison(*this, S, Operators, 8247 FD->getOverloadedOperator()); 8248 FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create( 8249 Context, Operators.pairs())); 8250 } 8251 8252 // C++2a [class.compare.default]p1: 8253 // A defaulted comparison operator function for some class C shall be a 8254 // non-template function declared in the member-specification of C that is 8255 // -- a non-static const member of C having one parameter of type 8256 // const C&, or 8257 // -- a friend of C having two parameters of type const C& or two 8258 // parameters of type C. 8259 QualType ExpectedParmType1 = Context.getRecordType(RD); 8260 QualType ExpectedParmType2 = 8261 Context.getLValueReferenceType(ExpectedParmType1.withConst()); 8262 if (isa<CXXMethodDecl>(FD)) 8263 ExpectedParmType1 = ExpectedParmType2; 8264 for (const ParmVarDecl *Param : FD->parameters()) { 8265 if (!Param->getType()->isDependentType() && 8266 !Context.hasSameType(Param->getType(), ExpectedParmType1) && 8267 !Context.hasSameType(Param->getType(), ExpectedParmType2)) { 8268 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8269 // corresponding defaulted 'operator<=>' already. 8270 if (!FD->isImplicit()) { 8271 Diag(FD->getLocation(), diag::err_defaulted_comparison_param) 8272 << (int)DCK << Param->getType() << ExpectedParmType1 8273 << !isa<CXXMethodDecl>(FD) 8274 << ExpectedParmType2 << Param->getSourceRange(); 8275 } 8276 return true; 8277 } 8278 } 8279 if (FD->getNumParams() == 2 && 8280 !Context.hasSameType(FD->getParamDecl(0)->getType(), 8281 FD->getParamDecl(1)->getType())) { 8282 if (!FD->isImplicit()) { 8283 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch) 8284 << (int)DCK 8285 << FD->getParamDecl(0)->getType() 8286 << FD->getParamDecl(0)->getSourceRange() 8287 << FD->getParamDecl(1)->getType() 8288 << FD->getParamDecl(1)->getSourceRange(); 8289 } 8290 return true; 8291 } 8292 8293 // ... non-static const member ... 8294 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 8295 assert(!MD->isStatic() && "comparison function cannot be a static member"); 8296 if (!MD->isConst()) { 8297 SourceLocation InsertLoc; 8298 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc()) 8299 InsertLoc = getLocForEndOfToken(Loc.getRParenLoc()); 8300 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8301 // corresponding defaulted 'operator<=>' already. 8302 if (!MD->isImplicit()) { 8303 Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const) 8304 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const"); 8305 } 8306 8307 // Add the 'const' to the type to recover. 8308 const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); 8309 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8310 EPI.TypeQuals.addConst(); 8311 MD->setType(Context.getFunctionType(FPT->getReturnType(), 8312 FPT->getParamTypes(), EPI)); 8313 } 8314 } else { 8315 // A non-member function declared in a class must be a friend. 8316 assert(FD->getFriendObjectKind() && "expected a friend declaration"); 8317 } 8318 8319 // C++2a [class.eq]p1, [class.rel]p1: 8320 // A [defaulted comparison other than <=>] shall have a declared return 8321 // type bool. 8322 if (DCK != DefaultedComparisonKind::ThreeWay && 8323 !FD->getDeclaredReturnType()->isDependentType() && 8324 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) { 8325 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool) 8326 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy 8327 << FD->getReturnTypeSourceRange(); 8328 return true; 8329 } 8330 // C++2a [class.spaceship]p2 [P2002R0]: 8331 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise, 8332 // R shall not contain a placeholder type. 8333 if (DCK == DefaultedComparisonKind::ThreeWay && 8334 FD->getDeclaredReturnType()->getContainedDeducedType() && 8335 !Context.hasSameType(FD->getDeclaredReturnType(), 8336 Context.getAutoDeductType())) { 8337 Diag(FD->getLocation(), 8338 diag::err_defaulted_comparison_deduced_return_type_not_auto) 8339 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy 8340 << FD->getReturnTypeSourceRange(); 8341 return true; 8342 } 8343 8344 // For a defaulted function in a dependent class, defer all remaining checks 8345 // until instantiation. 8346 if (RD->isDependentType()) 8347 return false; 8348 8349 // Determine whether the function should be defined as deleted. 8350 DefaultedComparisonInfo Info = 8351 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit(); 8352 8353 bool First = FD == FD->getCanonicalDecl(); 8354 8355 // If we want to delete the function, then do so; there's nothing else to 8356 // check in that case. 8357 if (Info.Deleted) { 8358 if (!First) { 8359 // C++11 [dcl.fct.def.default]p4: 8360 // [For a] user-provided explicitly-defaulted function [...] if such a 8361 // function is implicitly defined as deleted, the program is ill-formed. 8362 // 8363 // This is really just a consequence of the general rule that you can 8364 // only delete a function on its first declaration. 8365 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes) 8366 << FD->isImplicit() << (int)DCK; 8367 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8368 DefaultedComparisonAnalyzer::ExplainDeleted) 8369 .visit(); 8370 return true; 8371 } 8372 8373 SetDeclDeleted(FD, FD->getLocation()); 8374 if (!inTemplateInstantiation() && !FD->isImplicit()) { 8375 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted) 8376 << (int)DCK; 8377 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8378 DefaultedComparisonAnalyzer::ExplainDeleted) 8379 .visit(); 8380 } 8381 return false; 8382 } 8383 8384 // C++2a [class.spaceship]p2: 8385 // The return type is deduced as the common comparison type of R0, R1, ... 8386 if (DCK == DefaultedComparisonKind::ThreeWay && 8387 FD->getDeclaredReturnType()->isUndeducedAutoType()) { 8388 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin(); 8389 if (RetLoc.isInvalid()) 8390 RetLoc = FD->getBeginLoc(); 8391 // FIXME: Should we really care whether we have the complete type and the 8392 // 'enumerator' constants here? A forward declaration seems sufficient. 8393 QualType Cat = CheckComparisonCategoryType( 8394 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator); 8395 if (Cat.isNull()) 8396 return true; 8397 Context.adjustDeducedFunctionResultType( 8398 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat)); 8399 } 8400 8401 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8402 // An explicitly-defaulted function that is not defined as deleted may be 8403 // declared constexpr or consteval only if it is constexpr-compatible. 8404 // C++2a [class.compare.default]p3 [P2002R0]: 8405 // A defaulted comparison function is constexpr-compatible if it satisfies 8406 // the requirements for a constexpr function [...] 8407 // The only relevant requirements are that the parameter and return types are 8408 // literal types. The remaining conditions are checked by the analyzer. 8409 if (FD->isConstexpr()) { 8410 if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) && 8411 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) && 8412 !Info.Constexpr) { 8413 Diag(FD->getBeginLoc(), 8414 diag::err_incorrect_defaulted_comparison_constexpr) 8415 << FD->isImplicit() << (int)DCK << FD->isConsteval(); 8416 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8417 DefaultedComparisonAnalyzer::ExplainConstexpr) 8418 .visit(); 8419 } 8420 } 8421 8422 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8423 // If a constexpr-compatible function is explicitly defaulted on its first 8424 // declaration, it is implicitly considered to be constexpr. 8425 // FIXME: Only applying this to the first declaration seems problematic, as 8426 // simple reorderings can affect the meaning of the program. 8427 if (First && !FD->isConstexpr() && Info.Constexpr) 8428 FD->setConstexprKind(CSK_constexpr); 8429 8430 // C++2a [except.spec]p3: 8431 // If a declaration of a function does not have a noexcept-specifier 8432 // [and] is defaulted on its first declaration, [...] the exception 8433 // specification is as specified below 8434 if (FD->getExceptionSpecType() == EST_None) { 8435 auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 8436 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8437 EPI.ExceptionSpec.Type = EST_Unevaluated; 8438 EPI.ExceptionSpec.SourceDecl = FD; 8439 FD->setType(Context.getFunctionType(FPT->getReturnType(), 8440 FPT->getParamTypes(), EPI)); 8441 } 8442 8443 return false; 8444 } 8445 8446 void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD, 8447 FunctionDecl *Spaceship) { 8448 Sema::CodeSynthesisContext Ctx; 8449 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison; 8450 Ctx.PointOfInstantiation = Spaceship->getEndLoc(); 8451 Ctx.Entity = Spaceship; 8452 pushCodeSynthesisContext(Ctx); 8453 8454 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship)) 8455 EqualEqual->setImplicit(); 8456 8457 popCodeSynthesisContext(); 8458 } 8459 8460 void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD, 8461 DefaultedComparisonKind DCK) { 8462 assert(FD->isDefaulted() && !FD->isDeleted() && 8463 !FD->doesThisDeclarationHaveABody()); 8464 if (FD->willHaveBody() || FD->isInvalidDecl()) 8465 return; 8466 8467 SynthesizedFunctionScope Scope(*this, FD); 8468 8469 // Add a context note for diagnostics produced after this point. 8470 Scope.addContextNote(UseLoc); 8471 8472 { 8473 // Build and set up the function body. 8474 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent()); 8475 SourceLocation BodyLoc = 8476 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 8477 StmtResult Body = 8478 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build(); 8479 if (Body.isInvalid()) { 8480 FD->setInvalidDecl(); 8481 return; 8482 } 8483 FD->setBody(Body.get()); 8484 FD->markUsed(Context); 8485 } 8486 8487 // The exception specification is needed because we are defining the 8488 // function. Note that this will reuse the body we just built. 8489 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>()); 8490 8491 if (ASTMutationListener *L = getASTMutationListener()) 8492 L->CompletedImplicitDefinition(FD); 8493 } 8494 8495 static Sema::ImplicitExceptionSpecification 8496 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 8497 FunctionDecl *FD, 8498 Sema::DefaultedComparisonKind DCK) { 8499 ComputingExceptionSpec CES(S, FD, Loc); 8500 Sema::ImplicitExceptionSpecification ExceptSpec(S); 8501 8502 if (FD->isInvalidDecl()) 8503 return ExceptSpec; 8504 8505 // The common case is that we just defined the comparison function. In that 8506 // case, just look at whether the body can throw. 8507 if (FD->hasBody()) { 8508 ExceptSpec.CalledStmt(FD->getBody()); 8509 } else { 8510 // Otherwise, build a body so we can check it. This should ideally only 8511 // happen when we're not actually marking the function referenced. (This is 8512 // only really important for efficiency: we don't want to build and throw 8513 // away bodies for comparison functions more than we strictly need to.) 8514 8515 // Pretend to synthesize the function body in an unevaluated context. 8516 // Note that we can't actually just go ahead and define the function here: 8517 // we are not permitted to mark its callees as referenced. 8518 Sema::SynthesizedFunctionScope Scope(S, FD); 8519 EnterExpressionEvaluationContext Context( 8520 S, Sema::ExpressionEvaluationContext::Unevaluated); 8521 8522 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent()); 8523 SourceLocation BodyLoc = 8524 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 8525 StmtResult Body = 8526 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build(); 8527 if (!Body.isInvalid()) 8528 ExceptSpec.CalledStmt(Body.get()); 8529 8530 // FIXME: Can we hold onto this body and just transform it to potentially 8531 // evaluated when we're asked to define the function rather than rebuilding 8532 // it? Either that, or we should only build the bits of the body that we 8533 // need (the expressions, not the statements). 8534 } 8535 8536 return ExceptSpec; 8537 } 8538 8539 void Sema::CheckDelayedMemberExceptionSpecs() { 8540 decltype(DelayedOverridingExceptionSpecChecks) Overriding; 8541 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent; 8542 8543 std::swap(Overriding, DelayedOverridingExceptionSpecChecks); 8544 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks); 8545 8546 // Perform any deferred checking of exception specifications for virtual 8547 // destructors. 8548 for (auto &Check : Overriding) 8549 CheckOverridingFunctionExceptionSpec(Check.first, Check.second); 8550 8551 // Perform any deferred checking of exception specifications for befriended 8552 // special members. 8553 for (auto &Check : Equivalent) 8554 CheckEquivalentExceptionSpec(Check.second, Check.first); 8555 } 8556 8557 namespace { 8558 /// CRTP base class for visiting operations performed by a special member 8559 /// function (or inherited constructor). 8560 template<typename Derived> 8561 struct SpecialMemberVisitor { 8562 Sema &S; 8563 CXXMethodDecl *MD; 8564 Sema::CXXSpecialMember CSM; 8565 Sema::InheritedConstructorInfo *ICI; 8566 8567 // Properties of the special member, computed for convenience. 8568 bool IsConstructor = false, IsAssignment = false, ConstArg = false; 8569 8570 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 8571 Sema::InheritedConstructorInfo *ICI) 8572 : S(S), MD(MD), CSM(CSM), ICI(ICI) { 8573 switch (CSM) { 8574 case Sema::CXXDefaultConstructor: 8575 case Sema::CXXCopyConstructor: 8576 case Sema::CXXMoveConstructor: 8577 IsConstructor = true; 8578 break; 8579 case Sema::CXXCopyAssignment: 8580 case Sema::CXXMoveAssignment: 8581 IsAssignment = true; 8582 break; 8583 case Sema::CXXDestructor: 8584 break; 8585 case Sema::CXXInvalid: 8586 llvm_unreachable("invalid special member kind"); 8587 } 8588 8589 if (MD->getNumParams()) { 8590 if (const ReferenceType *RT = 8591 MD->getParamDecl(0)->getType()->getAs<ReferenceType>()) 8592 ConstArg = RT->getPointeeType().isConstQualified(); 8593 } 8594 } 8595 8596 Derived &getDerived() { return static_cast<Derived&>(*this); } 8597 8598 /// Is this a "move" special member? 8599 bool isMove() const { 8600 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment; 8601 } 8602 8603 /// Look up the corresponding special member in the given class. 8604 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class, 8605 unsigned Quals, bool IsMutable) { 8606 return lookupCallFromSpecialMember(S, Class, CSM, Quals, 8607 ConstArg && !IsMutable); 8608 } 8609 8610 /// Look up the constructor for the specified base class to see if it's 8611 /// overridden due to this being an inherited constructor. 8612 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) { 8613 if (!ICI) 8614 return {}; 8615 assert(CSM == Sema::CXXDefaultConstructor); 8616 auto *BaseCtor = 8617 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor(); 8618 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first) 8619 return MD; 8620 return {}; 8621 } 8622 8623 /// A base or member subobject. 8624 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject; 8625 8626 /// Get the location to use for a subobject in diagnostics. 8627 static SourceLocation getSubobjectLoc(Subobject Subobj) { 8628 // FIXME: For an indirect virtual base, the direct base leading to 8629 // the indirect virtual base would be a more useful choice. 8630 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>()) 8631 return B->getBaseTypeLoc(); 8632 else 8633 return Subobj.get<FieldDecl*>()->getLocation(); 8634 } 8635 8636 enum BasesToVisit { 8637 /// Visit all non-virtual (direct) bases. 8638 VisitNonVirtualBases, 8639 /// Visit all direct bases, virtual or not. 8640 VisitDirectBases, 8641 /// Visit all non-virtual bases, and all virtual bases if the class 8642 /// is not abstract. 8643 VisitPotentiallyConstructedBases, 8644 /// Visit all direct or virtual bases. 8645 VisitAllBases 8646 }; 8647 8648 // Visit the bases and members of the class. 8649 bool visit(BasesToVisit Bases) { 8650 CXXRecordDecl *RD = MD->getParent(); 8651 8652 if (Bases == VisitPotentiallyConstructedBases) 8653 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases; 8654 8655 for (auto &B : RD->bases()) 8656 if ((Bases == VisitDirectBases || !B.isVirtual()) && 8657 getDerived().visitBase(&B)) 8658 return true; 8659 8660 if (Bases == VisitAllBases) 8661 for (auto &B : RD->vbases()) 8662 if (getDerived().visitBase(&B)) 8663 return true; 8664 8665 for (auto *F : RD->fields()) 8666 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() && 8667 getDerived().visitField(F)) 8668 return true; 8669 8670 return false; 8671 } 8672 }; 8673 } 8674 8675 namespace { 8676 struct SpecialMemberDeletionInfo 8677 : SpecialMemberVisitor<SpecialMemberDeletionInfo> { 8678 bool Diagnose; 8679 8680 SourceLocation Loc; 8681 8682 bool AllFieldsAreConst; 8683 8684 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, 8685 Sema::CXXSpecialMember CSM, 8686 Sema::InheritedConstructorInfo *ICI, bool Diagnose) 8687 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose), 8688 Loc(MD->getLocation()), AllFieldsAreConst(true) {} 8689 8690 bool inUnion() const { return MD->getParent()->isUnion(); } 8691 8692 Sema::CXXSpecialMember getEffectiveCSM() { 8693 return ICI ? Sema::CXXInvalid : CSM; 8694 } 8695 8696 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType); 8697 8698 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); } 8699 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); } 8700 8701 bool shouldDeleteForBase(CXXBaseSpecifier *Base); 8702 bool shouldDeleteForField(FieldDecl *FD); 8703 bool shouldDeleteForAllConstMembers(); 8704 8705 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 8706 unsigned Quals); 8707 bool shouldDeleteForSubobjectCall(Subobject Subobj, 8708 Sema::SpecialMemberOverloadResult SMOR, 8709 bool IsDtorCallInCtor); 8710 8711 bool isAccessible(Subobject Subobj, CXXMethodDecl *D); 8712 }; 8713 } 8714 8715 /// Is the given special member inaccessible when used on the given 8716 /// sub-object. 8717 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, 8718 CXXMethodDecl *target) { 8719 /// If we're operating on a base class, the object type is the 8720 /// type of this special member. 8721 QualType objectTy; 8722 AccessSpecifier access = target->getAccess(); 8723 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) { 8724 objectTy = S.Context.getTypeDeclType(MD->getParent()); 8725 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access); 8726 8727 // If we're operating on a field, the object type is the type of the field. 8728 } else { 8729 objectTy = S.Context.getTypeDeclType(target->getParent()); 8730 } 8731 8732 return S.isMemberAccessibleForDeletion( 8733 target->getParent(), DeclAccessPair::make(target, access), objectTy); 8734 } 8735 8736 /// Check whether we should delete a special member due to the implicit 8737 /// definition containing a call to a special member of a subobject. 8738 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( 8739 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, 8740 bool IsDtorCallInCtor) { 8741 CXXMethodDecl *Decl = SMOR.getMethod(); 8742 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 8743 8744 int DiagKind = -1; 8745 8746 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) 8747 DiagKind = !Decl ? 0 : 1; 8748 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 8749 DiagKind = 2; 8750 else if (!isAccessible(Subobj, Decl)) 8751 DiagKind = 3; 8752 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && 8753 !Decl->isTrivial()) { 8754 // A member of a union must have a trivial corresponding special member. 8755 // As a weird special case, a destructor call from a union's constructor 8756 // must be accessible and non-deleted, but need not be trivial. Such a 8757 // destructor is never actually called, but is semantically checked as 8758 // if it were. 8759 DiagKind = 4; 8760 } 8761 8762 if (DiagKind == -1) 8763 return false; 8764 8765 if (Diagnose) { 8766 if (Field) { 8767 S.Diag(Field->getLocation(), 8768 diag::note_deleted_special_member_class_subobject) 8769 << getEffectiveCSM() << MD->getParent() << /*IsField*/true 8770 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false; 8771 } else { 8772 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>(); 8773 S.Diag(Base->getBeginLoc(), 8774 diag::note_deleted_special_member_class_subobject) 8775 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 8776 << Base->getType() << DiagKind << IsDtorCallInCtor 8777 << /*IsObjCPtr*/false; 8778 } 8779 8780 if (DiagKind == 1) 8781 S.NoteDeletedFunction(Decl); 8782 // FIXME: Explain inaccessibility if DiagKind == 3. 8783 } 8784 8785 return true; 8786 } 8787 8788 /// Check whether we should delete a special member function due to having a 8789 /// direct or virtual base class or non-static data member of class type M. 8790 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( 8791 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { 8792 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 8793 bool IsMutable = Field && Field->isMutable(); 8794 8795 // C++11 [class.ctor]p5: 8796 // -- any direct or virtual base class, or non-static data member with no 8797 // brace-or-equal-initializer, has class type M (or array thereof) and 8798 // either M has no default constructor or overload resolution as applied 8799 // to M's default constructor results in an ambiguity or in a function 8800 // that is deleted or inaccessible 8801 // C++11 [class.copy]p11, C++11 [class.copy]p23: 8802 // -- a direct or virtual base class B that cannot be copied/moved because 8803 // overload resolution, as applied to B's corresponding special member, 8804 // results in an ambiguity or a function that is deleted or inaccessible 8805 // from the defaulted special member 8806 // C++11 [class.dtor]p5: 8807 // -- any direct or virtual base class [...] has a type with a destructor 8808 // that is deleted or inaccessible 8809 if (!(CSM == Sema::CXXDefaultConstructor && 8810 Field && Field->hasInClassInitializer()) && 8811 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable), 8812 false)) 8813 return true; 8814 8815 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 8816 // -- any direct or virtual base class or non-static data member has a 8817 // type with a destructor that is deleted or inaccessible 8818 if (IsConstructor) { 8819 Sema::SpecialMemberOverloadResult SMOR = 8820 S.LookupSpecialMember(Class, Sema::CXXDestructor, 8821 false, false, false, false, false); 8822 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true)) 8823 return true; 8824 } 8825 8826 return false; 8827 } 8828 8829 bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember( 8830 FieldDecl *FD, QualType FieldType) { 8831 // The defaulted special functions are defined as deleted if this is a variant 8832 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak 8833 // type under ARC. 8834 if (!FieldType.hasNonTrivialObjCLifetime()) 8835 return false; 8836 8837 // Don't make the defaulted default constructor defined as deleted if the 8838 // member has an in-class initializer. 8839 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) 8840 return false; 8841 8842 if (Diagnose) { 8843 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent()); 8844 S.Diag(FD->getLocation(), 8845 diag::note_deleted_special_member_class_subobject) 8846 << getEffectiveCSM() << ParentClass << /*IsField*/true 8847 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true; 8848 } 8849 8850 return true; 8851 } 8852 8853 /// Check whether we should delete a special member function due to the class 8854 /// having a particular direct or virtual base class. 8855 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { 8856 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); 8857 // If program is correct, BaseClass cannot be null, but if it is, the error 8858 // must be reported elsewhere. 8859 if (!BaseClass) 8860 return false; 8861 // If we have an inheriting constructor, check whether we're calling an 8862 // inherited constructor instead of a default constructor. 8863 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 8864 if (auto *BaseCtor = SMOR.getMethod()) { 8865 // Note that we do not check access along this path; other than that, 8866 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false); 8867 // FIXME: Check that the base has a usable destructor! Sink this into 8868 // shouldDeleteForClassSubobject. 8869 if (BaseCtor->isDeleted() && Diagnose) { 8870 S.Diag(Base->getBeginLoc(), 8871 diag::note_deleted_special_member_class_subobject) 8872 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 8873 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false 8874 << /*IsObjCPtr*/false; 8875 S.NoteDeletedFunction(BaseCtor); 8876 } 8877 return BaseCtor->isDeleted(); 8878 } 8879 return shouldDeleteForClassSubobject(BaseClass, Base, 0); 8880 } 8881 8882 /// Check whether we should delete a special member function due to the class 8883 /// having a particular non-static data member. 8884 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { 8885 QualType FieldType = S.Context.getBaseElementType(FD->getType()); 8886 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); 8887 8888 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType)) 8889 return true; 8890 8891 if (CSM == Sema::CXXDefaultConstructor) { 8892 // For a default constructor, all references must be initialized in-class 8893 // and, if a union, it must have a non-const member. 8894 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { 8895 if (Diagnose) 8896 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 8897 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0; 8898 return true; 8899 } 8900 // C++11 [class.ctor]p5: any non-variant non-static data member of 8901 // const-qualified type (or array thereof) with no 8902 // brace-or-equal-initializer does not have a user-provided default 8903 // constructor. 8904 if (!inUnion() && FieldType.isConstQualified() && 8905 !FD->hasInClassInitializer() && 8906 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) { 8907 if (Diagnose) 8908 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 8909 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1; 8910 return true; 8911 } 8912 8913 if (inUnion() && !FieldType.isConstQualified()) 8914 AllFieldsAreConst = false; 8915 } else if (CSM == Sema::CXXCopyConstructor) { 8916 // For a copy constructor, data members must not be of rvalue reference 8917 // type. 8918 if (FieldType->isRValueReferenceType()) { 8919 if (Diagnose) 8920 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) 8921 << MD->getParent() << FD << FieldType; 8922 return true; 8923 } 8924 } else if (IsAssignment) { 8925 // For an assignment operator, data members must not be of reference type. 8926 if (FieldType->isReferenceType()) { 8927 if (Diagnose) 8928 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 8929 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0; 8930 return true; 8931 } 8932 if (!FieldRecord && FieldType.isConstQualified()) { 8933 // C++11 [class.copy]p23: 8934 // -- a non-static data member of const non-class type (or array thereof) 8935 if (Diagnose) 8936 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 8937 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1; 8938 return true; 8939 } 8940 } 8941 8942 if (FieldRecord) { 8943 // Some additional restrictions exist on the variant members. 8944 if (!inUnion() && FieldRecord->isUnion() && 8945 FieldRecord->isAnonymousStructOrUnion()) { 8946 bool AllVariantFieldsAreConst = true; 8947 8948 // FIXME: Handle anonymous unions declared within anonymous unions. 8949 for (auto *UI : FieldRecord->fields()) { 8950 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); 8951 8952 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType)) 8953 return true; 8954 8955 if (!UnionFieldType.isConstQualified()) 8956 AllVariantFieldsAreConst = false; 8957 8958 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); 8959 if (UnionFieldRecord && 8960 shouldDeleteForClassSubobject(UnionFieldRecord, UI, 8961 UnionFieldType.getCVRQualifiers())) 8962 return true; 8963 } 8964 8965 // At least one member in each anonymous union must be non-const 8966 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst && 8967 !FieldRecord->field_empty()) { 8968 if (Diagnose) 8969 S.Diag(FieldRecord->getLocation(), 8970 diag::note_deleted_default_ctor_all_const) 8971 << !!ICI << MD->getParent() << /*anonymous union*/1; 8972 return true; 8973 } 8974 8975 // Don't check the implicit member of the anonymous union type. 8976 // This is technically non-conformant, but sanity demands it. 8977 return false; 8978 } 8979 8980 if (shouldDeleteForClassSubobject(FieldRecord, FD, 8981 FieldType.getCVRQualifiers())) 8982 return true; 8983 } 8984 8985 return false; 8986 } 8987 8988 /// C++11 [class.ctor] p5: 8989 /// A defaulted default constructor for a class X is defined as deleted if 8990 /// X is a union and all of its variant members are of const-qualified type. 8991 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { 8992 // This is a silly definition, because it gives an empty union a deleted 8993 // default constructor. Don't do that. 8994 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) { 8995 bool AnyFields = false; 8996 for (auto *F : MD->getParent()->fields()) 8997 if ((AnyFields = !F->isUnnamedBitfield())) 8998 break; 8999 if (!AnyFields) 9000 return false; 9001 if (Diagnose) 9002 S.Diag(MD->getParent()->getLocation(), 9003 diag::note_deleted_default_ctor_all_const) 9004 << !!ICI << MD->getParent() << /*not anonymous union*/0; 9005 return true; 9006 } 9007 return false; 9008 } 9009 9010 /// Determine whether a defaulted special member function should be defined as 9011 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, 9012 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5. 9013 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, 9014 InheritedConstructorInfo *ICI, 9015 bool Diagnose) { 9016 if (MD->isInvalidDecl()) 9017 return false; 9018 CXXRecordDecl *RD = MD->getParent(); 9019 assert(!RD->isDependentType() && "do deletion after instantiation"); 9020 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl()) 9021 return false; 9022 9023 // C++11 [expr.lambda.prim]p19: 9024 // The closure type associated with a lambda-expression has a 9025 // deleted (8.4.3) default constructor and a deleted copy 9026 // assignment operator. 9027 // C++2a adds back these operators if the lambda has no lambda-capture. 9028 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() && 9029 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) { 9030 if (Diagnose) 9031 Diag(RD->getLocation(), diag::note_lambda_decl); 9032 return true; 9033 } 9034 9035 // For an anonymous struct or union, the copy and assignment special members 9036 // will never be used, so skip the check. For an anonymous union declared at 9037 // namespace scope, the constructor and destructor are used. 9038 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor && 9039 RD->isAnonymousStructOrUnion()) 9040 return false; 9041 9042 // C++11 [class.copy]p7, p18: 9043 // If the class definition declares a move constructor or move assignment 9044 // operator, an implicitly declared copy constructor or copy assignment 9045 // operator is defined as deleted. 9046 if (MD->isImplicit() && 9047 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) { 9048 CXXMethodDecl *UserDeclaredMove = nullptr; 9049 9050 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the 9051 // deletion of the corresponding copy operation, not both copy operations. 9052 // MSVC 2015 has adopted the standards conforming behavior. 9053 bool DeletesOnlyMatchingCopy = 9054 getLangOpts().MSVCCompat && 9055 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015); 9056 9057 if (RD->hasUserDeclaredMoveConstructor() && 9058 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) { 9059 if (!Diagnose) return true; 9060 9061 // Find any user-declared move constructor. 9062 for (auto *I : RD->ctors()) { 9063 if (I->isMoveConstructor()) { 9064 UserDeclaredMove = I; 9065 break; 9066 } 9067 } 9068 assert(UserDeclaredMove); 9069 } else if (RD->hasUserDeclaredMoveAssignment() && 9070 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) { 9071 if (!Diagnose) return true; 9072 9073 // Find any user-declared move assignment operator. 9074 for (auto *I : RD->methods()) { 9075 if (I->isMoveAssignmentOperator()) { 9076 UserDeclaredMove = I; 9077 break; 9078 } 9079 } 9080 assert(UserDeclaredMove); 9081 } 9082 9083 if (UserDeclaredMove) { 9084 Diag(UserDeclaredMove->getLocation(), 9085 diag::note_deleted_copy_user_declared_move) 9086 << (CSM == CXXCopyAssignment) << RD 9087 << UserDeclaredMove->isMoveAssignmentOperator(); 9088 return true; 9089 } 9090 } 9091 9092 // Do access control from the special member function 9093 ContextRAII MethodContext(*this, MD); 9094 9095 // C++11 [class.dtor]p5: 9096 // -- for a virtual destructor, lookup of the non-array deallocation function 9097 // results in an ambiguity or in a function that is deleted or inaccessible 9098 if (CSM == CXXDestructor && MD->isVirtual()) { 9099 FunctionDecl *OperatorDelete = nullptr; 9100 DeclarationName Name = 9101 Context.DeclarationNames.getCXXOperatorName(OO_Delete); 9102 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name, 9103 OperatorDelete, /*Diagnose*/false)) { 9104 if (Diagnose) 9105 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); 9106 return true; 9107 } 9108 } 9109 9110 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose); 9111 9112 // Per DR1611, do not consider virtual bases of constructors of abstract 9113 // classes, since we are not going to construct them. 9114 // Per DR1658, do not consider virtual bases of destructors of abstract 9115 // classes either. 9116 // Per DR2180, for assignment operators we only assign (and thus only 9117 // consider) direct bases. 9118 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases 9119 : SMI.VisitPotentiallyConstructedBases)) 9120 return true; 9121 9122 if (SMI.shouldDeleteForAllConstMembers()) 9123 return true; 9124 9125 if (getLangOpts().CUDA) { 9126 // We should delete the special member in CUDA mode if target inference 9127 // failed. 9128 // For inherited constructors (non-null ICI), CSM may be passed so that MD 9129 // is treated as certain special member, which may not reflect what special 9130 // member MD really is. However inferCUDATargetForImplicitSpecialMember 9131 // expects CSM to match MD, therefore recalculate CSM. 9132 assert(ICI || CSM == getSpecialMember(MD)); 9133 auto RealCSM = CSM; 9134 if (ICI) 9135 RealCSM = getSpecialMember(MD); 9136 9137 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD, 9138 SMI.ConstArg, Diagnose); 9139 } 9140 9141 return false; 9142 } 9143 9144 void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) { 9145 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 9146 assert(DFK && "not a defaultable function"); 9147 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted"); 9148 9149 if (DFK.isSpecialMember()) { 9150 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), 9151 nullptr, /*Diagnose=*/true); 9152 } else { 9153 DefaultedComparisonAnalyzer( 9154 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD, 9155 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted) 9156 .visit(); 9157 } 9158 } 9159 9160 /// Perform lookup for a special member of the specified kind, and determine 9161 /// whether it is trivial. If the triviality can be determined without the 9162 /// lookup, skip it. This is intended for use when determining whether a 9163 /// special member of a containing object is trivial, and thus does not ever 9164 /// perform overload resolution for default constructors. 9165 /// 9166 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the 9167 /// member that was most likely to be intended to be trivial, if any. 9168 /// 9169 /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to 9170 /// determine whether the special member is trivial. 9171 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, 9172 Sema::CXXSpecialMember CSM, unsigned Quals, 9173 bool ConstRHS, 9174 Sema::TrivialABIHandling TAH, 9175 CXXMethodDecl **Selected) { 9176 if (Selected) 9177 *Selected = nullptr; 9178 9179 switch (CSM) { 9180 case Sema::CXXInvalid: 9181 llvm_unreachable("not a special member"); 9182 9183 case Sema::CXXDefaultConstructor: 9184 // C++11 [class.ctor]p5: 9185 // A default constructor is trivial if: 9186 // - all the [direct subobjects] have trivial default constructors 9187 // 9188 // Note, no overload resolution is performed in this case. 9189 if (RD->hasTrivialDefaultConstructor()) 9190 return true; 9191 9192 if (Selected) { 9193 // If there's a default constructor which could have been trivial, dig it 9194 // out. Otherwise, if there's any user-provided default constructor, point 9195 // to that as an example of why there's not a trivial one. 9196 CXXConstructorDecl *DefCtor = nullptr; 9197 if (RD->needsImplicitDefaultConstructor()) 9198 S.DeclareImplicitDefaultConstructor(RD); 9199 for (auto *CI : RD->ctors()) { 9200 if (!CI->isDefaultConstructor()) 9201 continue; 9202 DefCtor = CI; 9203 if (!DefCtor->isUserProvided()) 9204 break; 9205 } 9206 9207 *Selected = DefCtor; 9208 } 9209 9210 return false; 9211 9212 case Sema::CXXDestructor: 9213 // C++11 [class.dtor]p5: 9214 // A destructor is trivial if: 9215 // - all the direct [subobjects] have trivial destructors 9216 if (RD->hasTrivialDestructor() || 9217 (TAH == Sema::TAH_ConsiderTrivialABI && 9218 RD->hasTrivialDestructorForCall())) 9219 return true; 9220 9221 if (Selected) { 9222 if (RD->needsImplicitDestructor()) 9223 S.DeclareImplicitDestructor(RD); 9224 *Selected = RD->getDestructor(); 9225 } 9226 9227 return false; 9228 9229 case Sema::CXXCopyConstructor: 9230 // C++11 [class.copy]p12: 9231 // A copy constructor is trivial if: 9232 // - the constructor selected to copy each direct [subobject] is trivial 9233 if (RD->hasTrivialCopyConstructor() || 9234 (TAH == Sema::TAH_ConsiderTrivialABI && 9235 RD->hasTrivialCopyConstructorForCall())) { 9236 if (Quals == Qualifiers::Const) 9237 // We must either select the trivial copy constructor or reach an 9238 // ambiguity; no need to actually perform overload resolution. 9239 return true; 9240 } else if (!Selected) { 9241 return false; 9242 } 9243 // In C++98, we are not supposed to perform overload resolution here, but we 9244 // treat that as a language defect, as suggested on cxx-abi-dev, to treat 9245 // cases like B as having a non-trivial copy constructor: 9246 // struct A { template<typename T> A(T&); }; 9247 // struct B { mutable A a; }; 9248 goto NeedOverloadResolution; 9249 9250 case Sema::CXXCopyAssignment: 9251 // C++11 [class.copy]p25: 9252 // A copy assignment operator is trivial if: 9253 // - the assignment operator selected to copy each direct [subobject] is 9254 // trivial 9255 if (RD->hasTrivialCopyAssignment()) { 9256 if (Quals == Qualifiers::Const) 9257 return true; 9258 } else if (!Selected) { 9259 return false; 9260 } 9261 // In C++98, we are not supposed to perform overload resolution here, but we 9262 // treat that as a language defect. 9263 goto NeedOverloadResolution; 9264 9265 case Sema::CXXMoveConstructor: 9266 case Sema::CXXMoveAssignment: 9267 NeedOverloadResolution: 9268 Sema::SpecialMemberOverloadResult SMOR = 9269 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS); 9270 9271 // The standard doesn't describe how to behave if the lookup is ambiguous. 9272 // We treat it as not making the member non-trivial, just like the standard 9273 // mandates for the default constructor. This should rarely matter, because 9274 // the member will also be deleted. 9275 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 9276 return true; 9277 9278 if (!SMOR.getMethod()) { 9279 assert(SMOR.getKind() == 9280 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted); 9281 return false; 9282 } 9283 9284 // We deliberately don't check if we found a deleted special member. We're 9285 // not supposed to! 9286 if (Selected) 9287 *Selected = SMOR.getMethod(); 9288 9289 if (TAH == Sema::TAH_ConsiderTrivialABI && 9290 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor)) 9291 return SMOR.getMethod()->isTrivialForCall(); 9292 return SMOR.getMethod()->isTrivial(); 9293 } 9294 9295 llvm_unreachable("unknown special method kind"); 9296 } 9297 9298 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { 9299 for (auto *CI : RD->ctors()) 9300 if (!CI->isImplicit()) 9301 return CI; 9302 9303 // Look for constructor templates. 9304 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter; 9305 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { 9306 if (CXXConstructorDecl *CD = 9307 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl())) 9308 return CD; 9309 } 9310 9311 return nullptr; 9312 } 9313 9314 /// The kind of subobject we are checking for triviality. The values of this 9315 /// enumeration are used in diagnostics. 9316 enum TrivialSubobjectKind { 9317 /// The subobject is a base class. 9318 TSK_BaseClass, 9319 /// The subobject is a non-static data member. 9320 TSK_Field, 9321 /// The object is actually the complete object. 9322 TSK_CompleteObject 9323 }; 9324 9325 /// Check whether the special member selected for a given type would be trivial. 9326 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, 9327 QualType SubType, bool ConstRHS, 9328 Sema::CXXSpecialMember CSM, 9329 TrivialSubobjectKind Kind, 9330 Sema::TrivialABIHandling TAH, bool Diagnose) { 9331 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); 9332 if (!SubRD) 9333 return true; 9334 9335 CXXMethodDecl *Selected; 9336 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(), 9337 ConstRHS, TAH, Diagnose ? &Selected : nullptr)) 9338 return true; 9339 9340 if (Diagnose) { 9341 if (ConstRHS) 9342 SubType.addConst(); 9343 9344 if (!Selected && CSM == Sema::CXXDefaultConstructor) { 9345 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) 9346 << Kind << SubType.getUnqualifiedType(); 9347 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) 9348 S.Diag(CD->getLocation(), diag::note_user_declared_ctor); 9349 } else if (!Selected) 9350 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) 9351 << Kind << SubType.getUnqualifiedType() << CSM << SubType; 9352 else if (Selected->isUserProvided()) { 9353 if (Kind == TSK_CompleteObject) 9354 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) 9355 << Kind << SubType.getUnqualifiedType() << CSM; 9356 else { 9357 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) 9358 << Kind << SubType.getUnqualifiedType() << CSM; 9359 S.Diag(Selected->getLocation(), diag::note_declared_at); 9360 } 9361 } else { 9362 if (Kind != TSK_CompleteObject) 9363 S.Diag(SubobjLoc, diag::note_nontrivial_subobject) 9364 << Kind << SubType.getUnqualifiedType() << CSM; 9365 9366 // Explain why the defaulted or deleted special member isn't trivial. 9367 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI, 9368 Diagnose); 9369 } 9370 } 9371 9372 return false; 9373 } 9374 9375 /// Check whether the members of a class type allow a special member to be 9376 /// trivial. 9377 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, 9378 Sema::CXXSpecialMember CSM, 9379 bool ConstArg, 9380 Sema::TrivialABIHandling TAH, 9381 bool Diagnose) { 9382 for (const auto *FI : RD->fields()) { 9383 if (FI->isInvalidDecl() || FI->isUnnamedBitfield()) 9384 continue; 9385 9386 QualType FieldType = S.Context.getBaseElementType(FI->getType()); 9387 9388 // Pretend anonymous struct or union members are members of this class. 9389 if (FI->isAnonymousStructOrUnion()) { 9390 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), 9391 CSM, ConstArg, TAH, Diagnose)) 9392 return false; 9393 continue; 9394 } 9395 9396 // C++11 [class.ctor]p5: 9397 // A default constructor is trivial if [...] 9398 // -- no non-static data member of its class has a 9399 // brace-or-equal-initializer 9400 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) { 9401 if (Diagnose) 9402 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI; 9403 return false; 9404 } 9405 9406 // Objective C ARC 4.3.5: 9407 // [...] nontrivally ownership-qualified types are [...] not trivially 9408 // default constructible, copy constructible, move constructible, copy 9409 // assignable, move assignable, or destructible [...] 9410 if (FieldType.hasNonTrivialObjCLifetime()) { 9411 if (Diagnose) 9412 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) 9413 << RD << FieldType.getObjCLifetime(); 9414 return false; 9415 } 9416 9417 bool ConstRHS = ConstArg && !FI->isMutable(); 9418 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, 9419 CSM, TSK_Field, TAH, Diagnose)) 9420 return false; 9421 } 9422 9423 return true; 9424 } 9425 9426 /// Diagnose why the specified class does not have a trivial special member of 9427 /// the given kind. 9428 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) { 9429 QualType Ty = Context.getRecordType(RD); 9430 9431 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment); 9432 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, 9433 TSK_CompleteObject, TAH_IgnoreTrivialABI, 9434 /*Diagnose*/true); 9435 } 9436 9437 /// Determine whether a defaulted or deleted special member function is trivial, 9438 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12, 9439 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5. 9440 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM, 9441 TrivialABIHandling TAH, bool Diagnose) { 9442 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough"); 9443 9444 CXXRecordDecl *RD = MD->getParent(); 9445 9446 bool ConstArg = false; 9447 9448 // C++11 [class.copy]p12, p25: [DR1593] 9449 // A [special member] is trivial if [...] its parameter-type-list is 9450 // equivalent to the parameter-type-list of an implicit declaration [...] 9451 switch (CSM) { 9452 case CXXDefaultConstructor: 9453 case CXXDestructor: 9454 // Trivial default constructors and destructors cannot have parameters. 9455 break; 9456 9457 case CXXCopyConstructor: 9458 case CXXCopyAssignment: { 9459 // Trivial copy operations always have const, non-volatile parameter types. 9460 ConstArg = true; 9461 const ParmVarDecl *Param0 = MD->getParamDecl(0); 9462 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>(); 9463 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) { 9464 if (Diagnose) 9465 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 9466 << Param0->getSourceRange() << Param0->getType() 9467 << Context.getLValueReferenceType( 9468 Context.getRecordType(RD).withConst()); 9469 return false; 9470 } 9471 break; 9472 } 9473 9474 case CXXMoveConstructor: 9475 case CXXMoveAssignment: { 9476 // Trivial move operations always have non-cv-qualified parameters. 9477 const ParmVarDecl *Param0 = MD->getParamDecl(0); 9478 const RValueReferenceType *RT = 9479 Param0->getType()->getAs<RValueReferenceType>(); 9480 if (!RT || RT->getPointeeType().getCVRQualifiers()) { 9481 if (Diagnose) 9482 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 9483 << Param0->getSourceRange() << Param0->getType() 9484 << Context.getRValueReferenceType(Context.getRecordType(RD)); 9485 return false; 9486 } 9487 break; 9488 } 9489 9490 case CXXInvalid: 9491 llvm_unreachable("not a special member"); 9492 } 9493 9494 if (MD->getMinRequiredArguments() < MD->getNumParams()) { 9495 if (Diagnose) 9496 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), 9497 diag::note_nontrivial_default_arg) 9498 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); 9499 return false; 9500 } 9501 if (MD->isVariadic()) { 9502 if (Diagnose) 9503 Diag(MD->getLocation(), diag::note_nontrivial_variadic); 9504 return false; 9505 } 9506 9507 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 9508 // A copy/move [constructor or assignment operator] is trivial if 9509 // -- the [member] selected to copy/move each direct base class subobject 9510 // is trivial 9511 // 9512 // C++11 [class.copy]p12, C++11 [class.copy]p25: 9513 // A [default constructor or destructor] is trivial if 9514 // -- all the direct base classes have trivial [default constructors or 9515 // destructors] 9516 for (const auto &BI : RD->bases()) 9517 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(), 9518 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose)) 9519 return false; 9520 9521 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 9522 // A copy/move [constructor or assignment operator] for a class X is 9523 // trivial if 9524 // -- for each non-static data member of X that is of class type (or array 9525 // thereof), the constructor selected to copy/move that member is 9526 // trivial 9527 // 9528 // C++11 [class.copy]p12, C++11 [class.copy]p25: 9529 // A [default constructor or destructor] is trivial if 9530 // -- for all of the non-static data members of its class that are of class 9531 // type (or array thereof), each such class has a trivial [default 9532 // constructor or destructor] 9533 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose)) 9534 return false; 9535 9536 // C++11 [class.dtor]p5: 9537 // A destructor is trivial if [...] 9538 // -- the destructor is not virtual 9539 if (CSM == CXXDestructor && MD->isVirtual()) { 9540 if (Diagnose) 9541 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; 9542 return false; 9543 } 9544 9545 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 9546 // A [special member] for class X is trivial if [...] 9547 // -- class X has no virtual functions and no virtual base classes 9548 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) { 9549 if (!Diagnose) 9550 return false; 9551 9552 if (RD->getNumVBases()) { 9553 // Check for virtual bases. We already know that the corresponding 9554 // member in all bases is trivial, so vbases must all be direct. 9555 CXXBaseSpecifier &BS = *RD->vbases_begin(); 9556 assert(BS.isVirtual()); 9557 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1; 9558 return false; 9559 } 9560 9561 // Must have a virtual method. 9562 for (const auto *MI : RD->methods()) { 9563 if (MI->isVirtual()) { 9564 SourceLocation MLoc = MI->getBeginLoc(); 9565 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; 9566 return false; 9567 } 9568 } 9569 9570 llvm_unreachable("dynamic class with no vbases and no virtual functions"); 9571 } 9572 9573 // Looks like it's trivial! 9574 return true; 9575 } 9576 9577 namespace { 9578 struct FindHiddenVirtualMethod { 9579 Sema *S; 9580 CXXMethodDecl *Method; 9581 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; 9582 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 9583 9584 private: 9585 /// Check whether any most overridden method from MD in Methods 9586 static bool CheckMostOverridenMethods( 9587 const CXXMethodDecl *MD, 9588 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) { 9589 if (MD->size_overridden_methods() == 0) 9590 return Methods.count(MD->getCanonicalDecl()); 9591 for (const CXXMethodDecl *O : MD->overridden_methods()) 9592 if (CheckMostOverridenMethods(O, Methods)) 9593 return true; 9594 return false; 9595 } 9596 9597 public: 9598 /// Member lookup function that determines whether a given C++ 9599 /// method overloads virtual methods in a base class without overriding any, 9600 /// to be used with CXXRecordDecl::lookupInBases(). 9601 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 9602 RecordDecl *BaseRecord = 9603 Specifier->getType()->castAs<RecordType>()->getDecl(); 9604 9605 DeclarationName Name = Method->getDeclName(); 9606 assert(Name.getNameKind() == DeclarationName::Identifier); 9607 9608 bool foundSameNameMethod = false; 9609 SmallVector<CXXMethodDecl *, 8> overloadedMethods; 9610 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty(); 9611 Path.Decls = Path.Decls.slice(1)) { 9612 NamedDecl *D = Path.Decls.front(); 9613 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 9614 MD = MD->getCanonicalDecl(); 9615 foundSameNameMethod = true; 9616 // Interested only in hidden virtual methods. 9617 if (!MD->isVirtual()) 9618 continue; 9619 // If the method we are checking overrides a method from its base 9620 // don't warn about the other overloaded methods. Clang deviates from 9621 // GCC by only diagnosing overloads of inherited virtual functions that 9622 // do not override any other virtual functions in the base. GCC's 9623 // -Woverloaded-virtual diagnoses any derived function hiding a virtual 9624 // function from a base class. These cases may be better served by a 9625 // warning (not specific to virtual functions) on call sites when the 9626 // call would select a different function from the base class, were it 9627 // visible. 9628 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. 9629 if (!S->IsOverload(Method, MD, false)) 9630 return true; 9631 // Collect the overload only if its hidden. 9632 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods)) 9633 overloadedMethods.push_back(MD); 9634 } 9635 } 9636 9637 if (foundSameNameMethod) 9638 OverloadedMethods.append(overloadedMethods.begin(), 9639 overloadedMethods.end()); 9640 return foundSameNameMethod; 9641 } 9642 }; 9643 } // end anonymous namespace 9644 9645 /// Add the most overriden methods from MD to Methods 9646 static void AddMostOverridenMethods(const CXXMethodDecl *MD, 9647 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { 9648 if (MD->size_overridden_methods() == 0) 9649 Methods.insert(MD->getCanonicalDecl()); 9650 else 9651 for (const CXXMethodDecl *O : MD->overridden_methods()) 9652 AddMostOverridenMethods(O, Methods); 9653 } 9654 9655 /// Check if a method overloads virtual methods in a base class without 9656 /// overriding any. 9657 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, 9658 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 9659 if (!MD->getDeclName().isIdentifier()) 9660 return; 9661 9662 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. 9663 /*bool RecordPaths=*/false, 9664 /*bool DetectVirtual=*/false); 9665 FindHiddenVirtualMethod FHVM; 9666 FHVM.Method = MD; 9667 FHVM.S = this; 9668 9669 // Keep the base methods that were overridden or introduced in the subclass 9670 // by 'using' in a set. A base method not in this set is hidden. 9671 CXXRecordDecl *DC = MD->getParent(); 9672 DeclContext::lookup_result R = DC->lookup(MD->getDeclName()); 9673 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { 9674 NamedDecl *ND = *I; 9675 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I)) 9676 ND = shad->getTargetDecl(); 9677 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 9678 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods); 9679 } 9680 9681 if (DC->lookupInBases(FHVM, Paths)) 9682 OverloadedMethods = FHVM.OverloadedMethods; 9683 } 9684 9685 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, 9686 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 9687 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { 9688 CXXMethodDecl *overloadedMD = OverloadedMethods[i]; 9689 PartialDiagnostic PD = PDiag( 9690 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; 9691 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType()); 9692 Diag(overloadedMD->getLocation(), PD); 9693 } 9694 } 9695 9696 /// Diagnose methods which overload virtual methods in a base class 9697 /// without overriding any. 9698 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { 9699 if (MD->isInvalidDecl()) 9700 return; 9701 9702 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) 9703 return; 9704 9705 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 9706 FindHiddenVirtualMethods(MD, OverloadedMethods); 9707 if (!OverloadedMethods.empty()) { 9708 Diag(MD->getLocation(), diag::warn_overloaded_virtual) 9709 << MD << (OverloadedMethods.size() > 1); 9710 9711 NoteHiddenVirtualMethods(MD, OverloadedMethods); 9712 } 9713 } 9714 9715 void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) { 9716 auto PrintDiagAndRemoveAttr = [&](unsigned N) { 9717 // No diagnostics if this is a template instantiation. 9718 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) { 9719 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 9720 diag::ext_cannot_use_trivial_abi) << &RD; 9721 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 9722 diag::note_cannot_use_trivial_abi_reason) << &RD << N; 9723 } 9724 RD.dropAttr<TrivialABIAttr>(); 9725 }; 9726 9727 // Ill-formed if the copy and move constructors are deleted. 9728 auto HasNonDeletedCopyOrMoveConstructor = [&]() { 9729 // If the type is dependent, then assume it might have 9730 // implicit copy or move ctor because we won't know yet at this point. 9731 if (RD.isDependentType()) 9732 return true; 9733 if (RD.needsImplicitCopyConstructor() && 9734 !RD.defaultedCopyConstructorIsDeleted()) 9735 return true; 9736 if (RD.needsImplicitMoveConstructor() && 9737 !RD.defaultedMoveConstructorIsDeleted()) 9738 return true; 9739 for (const CXXConstructorDecl *CD : RD.ctors()) 9740 if (CD->isCopyOrMoveConstructor() && !CD->isDeleted()) 9741 return true; 9742 return false; 9743 }; 9744 9745 if (!HasNonDeletedCopyOrMoveConstructor()) { 9746 PrintDiagAndRemoveAttr(0); 9747 return; 9748 } 9749 9750 // Ill-formed if the struct has virtual functions. 9751 if (RD.isPolymorphic()) { 9752 PrintDiagAndRemoveAttr(1); 9753 return; 9754 } 9755 9756 for (const auto &B : RD.bases()) { 9757 // Ill-formed if the base class is non-trivial for the purpose of calls or a 9758 // virtual base. 9759 if (!B.getType()->isDependentType() && 9760 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) { 9761 PrintDiagAndRemoveAttr(2); 9762 return; 9763 } 9764 9765 if (B.isVirtual()) { 9766 PrintDiagAndRemoveAttr(3); 9767 return; 9768 } 9769 } 9770 9771 for (const auto *FD : RD.fields()) { 9772 // Ill-formed if the field is an ObjectiveC pointer or of a type that is 9773 // non-trivial for the purpose of calls. 9774 QualType FT = FD->getType(); 9775 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) { 9776 PrintDiagAndRemoveAttr(4); 9777 return; 9778 } 9779 9780 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>()) 9781 if (!RT->isDependentType() && 9782 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) { 9783 PrintDiagAndRemoveAttr(5); 9784 return; 9785 } 9786 } 9787 } 9788 9789 void Sema::ActOnFinishCXXMemberSpecification( 9790 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, 9791 SourceLocation RBrac, const ParsedAttributesView &AttrList) { 9792 if (!TagDecl) 9793 return; 9794 9795 AdjustDeclIfTemplate(TagDecl); 9796 9797 for (const ParsedAttr &AL : AttrList) { 9798 if (AL.getKind() != ParsedAttr::AT_Visibility) 9799 continue; 9800 AL.setInvalid(); 9801 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL; 9802 } 9803 9804 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef( 9805 // strict aliasing violation! 9806 reinterpret_cast<Decl**>(FieldCollector->getCurFields()), 9807 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList); 9808 9809 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl)); 9810 } 9811 9812 /// Find the equality comparison functions that should be implicitly declared 9813 /// in a given class definition, per C++2a [class.compare.default]p3. 9814 static void findImplicitlyDeclaredEqualityComparisons( 9815 ASTContext &Ctx, CXXRecordDecl *RD, 9816 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) { 9817 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual); 9818 if (!RD->lookup(EqEq).empty()) 9819 // Member operator== explicitly declared: no implicit operator==s. 9820 return; 9821 9822 // Traverse friends looking for an '==' or a '<=>'. 9823 for (FriendDecl *Friend : RD->friends()) { 9824 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl()); 9825 if (!FD) continue; 9826 9827 if (FD->getOverloadedOperator() == OO_EqualEqual) { 9828 // Friend operator== explicitly declared: no implicit operator==s. 9829 Spaceships.clear(); 9830 return; 9831 } 9832 9833 if (FD->getOverloadedOperator() == OO_Spaceship && 9834 FD->isExplicitlyDefaulted()) 9835 Spaceships.push_back(FD); 9836 } 9837 9838 // Look for members named 'operator<=>'. 9839 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship); 9840 for (NamedDecl *ND : RD->lookup(Cmp)) { 9841 // Note that we could find a non-function here (either a function template 9842 // or a using-declaration). Neither case results in an implicit 9843 // 'operator=='. 9844 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 9845 if (FD->isExplicitlyDefaulted()) 9846 Spaceships.push_back(FD); 9847 } 9848 } 9849 9850 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared 9851 /// special functions, such as the default constructor, copy 9852 /// constructor, or destructor, to the given C++ class (C++ 9853 /// [special]p1). This routine can only be executed just before the 9854 /// definition of the class is complete. 9855 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { 9856 // Don't add implicit special members to templated classes. 9857 // FIXME: This means unqualified lookups for 'operator=' within a class 9858 // template don't work properly. 9859 if (!ClassDecl->isDependentType()) { 9860 if (ClassDecl->needsImplicitDefaultConstructor()) { 9861 ++getASTContext().NumImplicitDefaultConstructors; 9862 9863 if (ClassDecl->hasInheritedConstructor()) 9864 DeclareImplicitDefaultConstructor(ClassDecl); 9865 } 9866 9867 if (ClassDecl->needsImplicitCopyConstructor()) { 9868 ++getASTContext().NumImplicitCopyConstructors; 9869 9870 // If the properties or semantics of the copy constructor couldn't be 9871 // determined while the class was being declared, force a declaration 9872 // of it now. 9873 if (ClassDecl->needsOverloadResolutionForCopyConstructor() || 9874 ClassDecl->hasInheritedConstructor()) 9875 DeclareImplicitCopyConstructor(ClassDecl); 9876 // For the MS ABI we need to know whether the copy ctor is deleted. A 9877 // prerequisite for deleting the implicit copy ctor is that the class has 9878 // a move ctor or move assignment that is either user-declared or whose 9879 // semantics are inherited from a subobject. FIXME: We should provide a 9880 // more direct way for CodeGen to ask whether the constructor was deleted. 9881 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 9882 (ClassDecl->hasUserDeclaredMoveConstructor() || 9883 ClassDecl->needsOverloadResolutionForMoveConstructor() || 9884 ClassDecl->hasUserDeclaredMoveAssignment() || 9885 ClassDecl->needsOverloadResolutionForMoveAssignment())) 9886 DeclareImplicitCopyConstructor(ClassDecl); 9887 } 9888 9889 if (getLangOpts().CPlusPlus11 && 9890 ClassDecl->needsImplicitMoveConstructor()) { 9891 ++getASTContext().NumImplicitMoveConstructors; 9892 9893 if (ClassDecl->needsOverloadResolutionForMoveConstructor() || 9894 ClassDecl->hasInheritedConstructor()) 9895 DeclareImplicitMoveConstructor(ClassDecl); 9896 } 9897 9898 if (ClassDecl->needsImplicitCopyAssignment()) { 9899 ++getASTContext().NumImplicitCopyAssignmentOperators; 9900 9901 // If we have a dynamic class, then the copy assignment operator may be 9902 // virtual, so we have to declare it immediately. This ensures that, e.g., 9903 // it shows up in the right place in the vtable and that we diagnose 9904 // problems with the implicit exception specification. 9905 if (ClassDecl->isDynamicClass() || 9906 ClassDecl->needsOverloadResolutionForCopyAssignment() || 9907 ClassDecl->hasInheritedAssignment()) 9908 DeclareImplicitCopyAssignment(ClassDecl); 9909 } 9910 9911 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { 9912 ++getASTContext().NumImplicitMoveAssignmentOperators; 9913 9914 // Likewise for the move assignment operator. 9915 if (ClassDecl->isDynamicClass() || 9916 ClassDecl->needsOverloadResolutionForMoveAssignment() || 9917 ClassDecl->hasInheritedAssignment()) 9918 DeclareImplicitMoveAssignment(ClassDecl); 9919 } 9920 9921 if (ClassDecl->needsImplicitDestructor()) { 9922 ++getASTContext().NumImplicitDestructors; 9923 9924 // If we have a dynamic class, then the destructor may be virtual, so we 9925 // have to declare the destructor immediately. This ensures that, e.g., it 9926 // shows up in the right place in the vtable and that we diagnose problems 9927 // with the implicit exception specification. 9928 if (ClassDecl->isDynamicClass() || 9929 ClassDecl->needsOverloadResolutionForDestructor()) 9930 DeclareImplicitDestructor(ClassDecl); 9931 } 9932 } 9933 9934 // C++2a [class.compare.default]p3: 9935 // If the member-specification does not explicitly declare any member or 9936 // friend named operator==, an == operator function is declared implicitly 9937 // for each defaulted three-way comparison operator function defined in 9938 // the member-specification 9939 // FIXME: Consider doing this lazily. 9940 // We do this during the initial parse for a class template, not during 9941 // instantiation, so that we can handle unqualified lookups for 'operator==' 9942 // when parsing the template. 9943 if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) { 9944 llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships; 9945 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl, 9946 DefaultedSpaceships); 9947 for (auto *FD : DefaultedSpaceships) 9948 DeclareImplicitEqualityComparison(ClassDecl, FD); 9949 } 9950 } 9951 9952 unsigned 9953 Sema::ActOnReenterTemplateScope(Decl *D, 9954 llvm::function_ref<Scope *()> EnterScope) { 9955 if (!D) 9956 return 0; 9957 AdjustDeclIfTemplate(D); 9958 9959 // In order to get name lookup right, reenter template scopes in order from 9960 // outermost to innermost. 9961 SmallVector<TemplateParameterList *, 4> ParameterLists; 9962 DeclContext *LookupDC = dyn_cast<DeclContext>(D); 9963 9964 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) { 9965 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) 9966 ParameterLists.push_back(DD->getTemplateParameterList(i)); 9967 9968 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9969 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 9970 ParameterLists.push_back(FTD->getTemplateParameters()); 9971 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) { 9972 LookupDC = VD->getDeclContext(); 9973 9974 if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate()) 9975 ParameterLists.push_back(VTD->getTemplateParameters()); 9976 else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D)) 9977 ParameterLists.push_back(PSD->getTemplateParameters()); 9978 } 9979 } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 9980 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) 9981 ParameterLists.push_back(TD->getTemplateParameterList(i)); 9982 9983 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) { 9984 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) 9985 ParameterLists.push_back(CTD->getTemplateParameters()); 9986 else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) 9987 ParameterLists.push_back(PSD->getTemplateParameters()); 9988 } 9989 } 9990 // FIXME: Alias declarations and concepts. 9991 9992 unsigned Count = 0; 9993 Scope *InnermostTemplateScope = nullptr; 9994 for (TemplateParameterList *Params : ParameterLists) { 9995 // Ignore explicit specializations; they don't contribute to the template 9996 // depth. 9997 if (Params->size() == 0) 9998 continue; 9999 10000 InnermostTemplateScope = EnterScope(); 10001 for (NamedDecl *Param : *Params) { 10002 if (Param->getDeclName()) { 10003 InnermostTemplateScope->AddDecl(Param); 10004 IdResolver.AddDecl(Param); 10005 } 10006 } 10007 ++Count; 10008 } 10009 10010 // Associate the new template scopes with the corresponding entities. 10011 if (InnermostTemplateScope) { 10012 assert(LookupDC && "no enclosing DeclContext for template lookup"); 10013 EnterTemplatedContext(InnermostTemplateScope, LookupDC); 10014 } 10015 10016 return Count; 10017 } 10018 10019 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10020 if (!RecordD) return; 10021 AdjustDeclIfTemplate(RecordD); 10022 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); 10023 PushDeclContext(S, Record); 10024 } 10025 10026 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10027 if (!RecordD) return; 10028 PopDeclContext(); 10029 } 10030 10031 /// This is used to implement the constant expression evaluation part of the 10032 /// attribute enable_if extension. There is nothing in standard C++ which would 10033 /// require reentering parameters. 10034 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { 10035 if (!Param) 10036 return; 10037 10038 S->AddDecl(Param); 10039 if (Param->getDeclName()) 10040 IdResolver.AddDecl(Param); 10041 } 10042 10043 /// ActOnStartDelayedCXXMethodDeclaration - We have completed 10044 /// parsing a top-level (non-nested) C++ class, and we are now 10045 /// parsing those parts of the given Method declaration that could 10046 /// not be parsed earlier (C++ [class.mem]p2), such as default 10047 /// arguments. This action should enter the scope of the given 10048 /// Method declaration as if we had just parsed the qualified method 10049 /// name. However, it should not bring the parameters into scope; 10050 /// that will be performed by ActOnDelayedCXXMethodParameter. 10051 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10052 } 10053 10054 /// ActOnDelayedCXXMethodParameter - We've already started a delayed 10055 /// C++ method declaration. We're (re-)introducing the given 10056 /// function parameter into scope for use in parsing later parts of 10057 /// the method declaration. For example, we could see an 10058 /// ActOnParamDefaultArgument event for this parameter. 10059 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { 10060 if (!ParamD) 10061 return; 10062 10063 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); 10064 10065 S->AddDecl(Param); 10066 if (Param->getDeclName()) 10067 IdResolver.AddDecl(Param); 10068 } 10069 10070 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished 10071 /// processing the delayed method declaration for Method. The method 10072 /// declaration is now considered finished. There may be a separate 10073 /// ActOnStartOfFunctionDef action later (not necessarily 10074 /// immediately!) for this method, if it was also defined inside the 10075 /// class body. 10076 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10077 if (!MethodD) 10078 return; 10079 10080 AdjustDeclIfTemplate(MethodD); 10081 10082 FunctionDecl *Method = cast<FunctionDecl>(MethodD); 10083 10084 // Now that we have our default arguments, check the constructor 10085 // again. It could produce additional diagnostics or affect whether 10086 // the class has implicitly-declared destructors, among other 10087 // things. 10088 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) 10089 CheckConstructor(Constructor); 10090 10091 // Check the default arguments, which we may have added. 10092 if (!Method->isInvalidDecl()) 10093 CheckCXXDefaultArguments(Method); 10094 } 10095 10096 // Emit the given diagnostic for each non-address-space qualifier. 10097 // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator. 10098 static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) { 10099 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10100 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) { 10101 bool DiagOccured = false; 10102 FTI.MethodQualifiers->forEachQualifier( 10103 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName, 10104 SourceLocation SL) { 10105 // This diagnostic should be emitted on any qualifier except an addr 10106 // space qualifier. However, forEachQualifier currently doesn't visit 10107 // addr space qualifiers, so there's no way to write this condition 10108 // right now; we just diagnose on everything. 10109 S.Diag(SL, DiagID) << QualName << SourceRange(SL); 10110 DiagOccured = true; 10111 }); 10112 if (DiagOccured) 10113 D.setInvalidType(); 10114 } 10115 } 10116 10117 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check 10118 /// the well-formedness of the constructor declarator @p D with type @p 10119 /// R. If there are any errors in the declarator, this routine will 10120 /// emit diagnostics and set the invalid bit to true. In any case, the type 10121 /// will be updated to reflect a well-formed type for the constructor and 10122 /// returned. 10123 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, 10124 StorageClass &SC) { 10125 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 10126 10127 // C++ [class.ctor]p3: 10128 // A constructor shall not be virtual (10.3) or static (9.4). A 10129 // constructor can be invoked for a const, volatile or const 10130 // volatile object. A constructor shall not be declared const, 10131 // volatile, or const volatile (9.3.2). 10132 if (isVirtual) { 10133 if (!D.isInvalidType()) 10134 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10135 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) 10136 << SourceRange(D.getIdentifierLoc()); 10137 D.setInvalidType(); 10138 } 10139 if (SC == SC_Static) { 10140 if (!D.isInvalidType()) 10141 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10142 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10143 << SourceRange(D.getIdentifierLoc()); 10144 D.setInvalidType(); 10145 SC = SC_None; 10146 } 10147 10148 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10149 diagnoseIgnoredQualifiers( 10150 diag::err_constructor_return_type, TypeQuals, SourceLocation(), 10151 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), 10152 D.getDeclSpec().getRestrictSpecLoc(), 10153 D.getDeclSpec().getAtomicSpecLoc()); 10154 D.setInvalidType(); 10155 } 10156 10157 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor); 10158 10159 // C++0x [class.ctor]p4: 10160 // A constructor shall not be declared with a ref-qualifier. 10161 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10162 if (FTI.hasRefQualifier()) { 10163 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) 10164 << FTI.RefQualifierIsLValueRef 10165 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10166 D.setInvalidType(); 10167 } 10168 10169 // Rebuild the function type "R" without any type qualifiers (in 10170 // case any of the errors above fired) and with "void" as the 10171 // return type, since constructors don't have return types. 10172 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10173 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) 10174 return R; 10175 10176 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10177 EPI.TypeQuals = Qualifiers(); 10178 EPI.RefQualifier = RQ_None; 10179 10180 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI); 10181 } 10182 10183 /// CheckConstructor - Checks a fully-formed constructor for 10184 /// well-formedness, issuing any diagnostics required. Returns true if 10185 /// the constructor declarator is invalid. 10186 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { 10187 CXXRecordDecl *ClassDecl 10188 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); 10189 if (!ClassDecl) 10190 return Constructor->setInvalidDecl(); 10191 10192 // C++ [class.copy]p3: 10193 // A declaration of a constructor for a class X is ill-formed if 10194 // its first parameter is of type (optionally cv-qualified) X and 10195 // either there are no other parameters or else all other 10196 // parameters have default arguments. 10197 if (!Constructor->isInvalidDecl() && 10198 Constructor->hasOneParamOrDefaultArgs() && 10199 Constructor->getTemplateSpecializationKind() != 10200 TSK_ImplicitInstantiation) { 10201 QualType ParamType = Constructor->getParamDecl(0)->getType(); 10202 QualType ClassTy = Context.getTagDeclType(ClassDecl); 10203 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { 10204 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); 10205 const char *ConstRef 10206 = Constructor->getParamDecl(0)->getIdentifier() ? "const &" 10207 : " const &"; 10208 Diag(ParamLoc, diag::err_constructor_byvalue_arg) 10209 << FixItHint::CreateInsertion(ParamLoc, ConstRef); 10210 10211 // FIXME: Rather that making the constructor invalid, we should endeavor 10212 // to fix the type. 10213 Constructor->setInvalidDecl(); 10214 } 10215 } 10216 } 10217 10218 /// CheckDestructor - Checks a fully-formed destructor definition for 10219 /// well-formedness, issuing any diagnostics required. Returns true 10220 /// on error. 10221 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { 10222 CXXRecordDecl *RD = Destructor->getParent(); 10223 10224 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { 10225 SourceLocation Loc; 10226 10227 if (!Destructor->isImplicit()) 10228 Loc = Destructor->getLocation(); 10229 else 10230 Loc = RD->getLocation(); 10231 10232 // If we have a virtual destructor, look up the deallocation function 10233 if (FunctionDecl *OperatorDelete = 10234 FindDeallocationFunctionForDestructor(Loc, RD)) { 10235 Expr *ThisArg = nullptr; 10236 10237 // If the notional 'delete this' expression requires a non-trivial 10238 // conversion from 'this' to the type of a destroying operator delete's 10239 // first parameter, perform that conversion now. 10240 if (OperatorDelete->isDestroyingOperatorDelete()) { 10241 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 10242 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) { 10243 // C++ [class.dtor]p13: 10244 // ... as if for the expression 'delete this' appearing in a 10245 // non-virtual destructor of the destructor's class. 10246 ContextRAII SwitchContext(*this, Destructor); 10247 ExprResult This = 10248 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation()); 10249 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?"); 10250 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing); 10251 if (This.isInvalid()) { 10252 // FIXME: Register this as a context note so that it comes out 10253 // in the right order. 10254 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here); 10255 return true; 10256 } 10257 ThisArg = This.get(); 10258 } 10259 } 10260 10261 DiagnoseUseOfDecl(OperatorDelete, Loc); 10262 MarkFunctionReferenced(Loc, OperatorDelete); 10263 Destructor->setOperatorDelete(OperatorDelete, ThisArg); 10264 } 10265 } 10266 10267 return false; 10268 } 10269 10270 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check 10271 /// the well-formednes of the destructor declarator @p D with type @p 10272 /// R. If there are any errors in the declarator, this routine will 10273 /// emit diagnostics and set the declarator to invalid. Even if this happens, 10274 /// will be updated to reflect a well-formed type for the destructor and 10275 /// returned. 10276 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, 10277 StorageClass& SC) { 10278 // C++ [class.dtor]p1: 10279 // [...] A typedef-name that names a class is a class-name 10280 // (7.1.3); however, a typedef-name that names a class shall not 10281 // be used as the identifier in the declarator for a destructor 10282 // declaration. 10283 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); 10284 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) 10285 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10286 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); 10287 else if (const TemplateSpecializationType *TST = 10288 DeclaratorType->getAs<TemplateSpecializationType>()) 10289 if (TST->isTypeAlias()) 10290 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10291 << DeclaratorType << 1; 10292 10293 // C++ [class.dtor]p2: 10294 // A destructor is used to destroy objects of its class type. A 10295 // destructor takes no parameters, and no return type can be 10296 // specified for it (not even void). The address of a destructor 10297 // shall not be taken. A destructor shall not be static. A 10298 // destructor can be invoked for a const, volatile or const 10299 // volatile object. A destructor shall not be declared const, 10300 // volatile or const volatile (9.3.2). 10301 if (SC == SC_Static) { 10302 if (!D.isInvalidType()) 10303 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) 10304 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10305 << SourceRange(D.getIdentifierLoc()) 10306 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 10307 10308 SC = SC_None; 10309 } 10310 if (!D.isInvalidType()) { 10311 // Destructors don't have return types, but the parser will 10312 // happily parse something like: 10313 // 10314 // class X { 10315 // float ~X(); 10316 // }; 10317 // 10318 // The return type will be eliminated later. 10319 if (D.getDeclSpec().hasTypeSpecifier()) 10320 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) 10321 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 10322 << SourceRange(D.getIdentifierLoc()); 10323 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10324 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, 10325 SourceLocation(), 10326 D.getDeclSpec().getConstSpecLoc(), 10327 D.getDeclSpec().getVolatileSpecLoc(), 10328 D.getDeclSpec().getRestrictSpecLoc(), 10329 D.getDeclSpec().getAtomicSpecLoc()); 10330 D.setInvalidType(); 10331 } 10332 } 10333 10334 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor); 10335 10336 // C++0x [class.dtor]p2: 10337 // A destructor shall not be declared with a ref-qualifier. 10338 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10339 if (FTI.hasRefQualifier()) { 10340 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) 10341 << FTI.RefQualifierIsLValueRef 10342 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10343 D.setInvalidType(); 10344 } 10345 10346 // Make sure we don't have any parameters. 10347 if (FTIHasNonVoidParameters(FTI)) { 10348 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); 10349 10350 // Delete the parameters. 10351 FTI.freeParams(); 10352 D.setInvalidType(); 10353 } 10354 10355 // Make sure the destructor isn't variadic. 10356 if (FTI.isVariadic) { 10357 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); 10358 D.setInvalidType(); 10359 } 10360 10361 // Rebuild the function type "R" without any type qualifiers or 10362 // parameters (in case any of the errors above fired) and with 10363 // "void" as the return type, since destructors don't have return 10364 // types. 10365 if (!D.isInvalidType()) 10366 return R; 10367 10368 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10369 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10370 EPI.Variadic = false; 10371 EPI.TypeQuals = Qualifiers(); 10372 EPI.RefQualifier = RQ_None; 10373 return Context.getFunctionType(Context.VoidTy, None, EPI); 10374 } 10375 10376 static void extendLeft(SourceRange &R, SourceRange Before) { 10377 if (Before.isInvalid()) 10378 return; 10379 R.setBegin(Before.getBegin()); 10380 if (R.getEnd().isInvalid()) 10381 R.setEnd(Before.getEnd()); 10382 } 10383 10384 static void extendRight(SourceRange &R, SourceRange After) { 10385 if (After.isInvalid()) 10386 return; 10387 if (R.getBegin().isInvalid()) 10388 R.setBegin(After.getBegin()); 10389 R.setEnd(After.getEnd()); 10390 } 10391 10392 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the 10393 /// well-formednes of the conversion function declarator @p D with 10394 /// type @p R. If there are any errors in the declarator, this routine 10395 /// will emit diagnostics and return true. Otherwise, it will return 10396 /// false. Either way, the type @p R will be updated to reflect a 10397 /// well-formed type for the conversion operator. 10398 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, 10399 StorageClass& SC) { 10400 // C++ [class.conv.fct]p1: 10401 // Neither parameter types nor return type can be specified. The 10402 // type of a conversion function (8.3.5) is "function taking no 10403 // parameter returning conversion-type-id." 10404 if (SC == SC_Static) { 10405 if (!D.isInvalidType()) 10406 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) 10407 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10408 << D.getName().getSourceRange(); 10409 D.setInvalidType(); 10410 SC = SC_None; 10411 } 10412 10413 TypeSourceInfo *ConvTSI = nullptr; 10414 QualType ConvType = 10415 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI); 10416 10417 const DeclSpec &DS = D.getDeclSpec(); 10418 if (DS.hasTypeSpecifier() && !D.isInvalidType()) { 10419 // Conversion functions don't have return types, but the parser will 10420 // happily parse something like: 10421 // 10422 // class X { 10423 // float operator bool(); 10424 // }; 10425 // 10426 // The return type will be changed later anyway. 10427 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) 10428 << SourceRange(DS.getTypeSpecTypeLoc()) 10429 << SourceRange(D.getIdentifierLoc()); 10430 D.setInvalidType(); 10431 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) { 10432 // It's also plausible that the user writes type qualifiers in the wrong 10433 // place, such as: 10434 // struct S { const operator int(); }; 10435 // FIXME: we could provide a fixit to move the qualifiers onto the 10436 // conversion type. 10437 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) 10438 << SourceRange(D.getIdentifierLoc()) << 0; 10439 D.setInvalidType(); 10440 } 10441 10442 const auto *Proto = R->castAs<FunctionProtoType>(); 10443 10444 // Make sure we don't have any parameters. 10445 if (Proto->getNumParams() > 0) { 10446 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); 10447 10448 // Delete the parameters. 10449 D.getFunctionTypeInfo().freeParams(); 10450 D.setInvalidType(); 10451 } else if (Proto->isVariadic()) { 10452 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); 10453 D.setInvalidType(); 10454 } 10455 10456 // Diagnose "&operator bool()" and other such nonsense. This 10457 // is actually a gcc extension which we don't support. 10458 if (Proto->getReturnType() != ConvType) { 10459 bool NeedsTypedef = false; 10460 SourceRange Before, After; 10461 10462 // Walk the chunks and extract information on them for our diagnostic. 10463 bool PastFunctionChunk = false; 10464 for (auto &Chunk : D.type_objects()) { 10465 switch (Chunk.Kind) { 10466 case DeclaratorChunk::Function: 10467 if (!PastFunctionChunk) { 10468 if (Chunk.Fun.HasTrailingReturnType) { 10469 TypeSourceInfo *TRT = nullptr; 10470 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT); 10471 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange()); 10472 } 10473 PastFunctionChunk = true; 10474 break; 10475 } 10476 LLVM_FALLTHROUGH; 10477 case DeclaratorChunk::Array: 10478 NeedsTypedef = true; 10479 extendRight(After, Chunk.getSourceRange()); 10480 break; 10481 10482 case DeclaratorChunk::Pointer: 10483 case DeclaratorChunk::BlockPointer: 10484 case DeclaratorChunk::Reference: 10485 case DeclaratorChunk::MemberPointer: 10486 case DeclaratorChunk::Pipe: 10487 extendLeft(Before, Chunk.getSourceRange()); 10488 break; 10489 10490 case DeclaratorChunk::Paren: 10491 extendLeft(Before, Chunk.Loc); 10492 extendRight(After, Chunk.EndLoc); 10493 break; 10494 } 10495 } 10496 10497 SourceLocation Loc = Before.isValid() ? Before.getBegin() : 10498 After.isValid() ? After.getBegin() : 10499 D.getIdentifierLoc(); 10500 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); 10501 DB << Before << After; 10502 10503 if (!NeedsTypedef) { 10504 DB << /*don't need a typedef*/0; 10505 10506 // If we can provide a correct fix-it hint, do so. 10507 if (After.isInvalid() && ConvTSI) { 10508 SourceLocation InsertLoc = 10509 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc()); 10510 DB << FixItHint::CreateInsertion(InsertLoc, " ") 10511 << FixItHint::CreateInsertionFromRange( 10512 InsertLoc, CharSourceRange::getTokenRange(Before)) 10513 << FixItHint::CreateRemoval(Before); 10514 } 10515 } else if (!Proto->getReturnType()->isDependentType()) { 10516 DB << /*typedef*/1 << Proto->getReturnType(); 10517 } else if (getLangOpts().CPlusPlus11) { 10518 DB << /*alias template*/2 << Proto->getReturnType(); 10519 } else { 10520 DB << /*might not be fixable*/3; 10521 } 10522 10523 // Recover by incorporating the other type chunks into the result type. 10524 // Note, this does *not* change the name of the function. This is compatible 10525 // with the GCC extension: 10526 // struct S { &operator int(); } s; 10527 // int &r = s.operator int(); // ok in GCC 10528 // S::operator int&() {} // error in GCC, function name is 'operator int'. 10529 ConvType = Proto->getReturnType(); 10530 } 10531 10532 // C++ [class.conv.fct]p4: 10533 // The conversion-type-id shall not represent a function type nor 10534 // an array type. 10535 if (ConvType->isArrayType()) { 10536 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); 10537 ConvType = Context.getPointerType(ConvType); 10538 D.setInvalidType(); 10539 } else if (ConvType->isFunctionType()) { 10540 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); 10541 ConvType = Context.getPointerType(ConvType); 10542 D.setInvalidType(); 10543 } 10544 10545 // Rebuild the function type "R" without any parameters (in case any 10546 // of the errors above fired) and with the conversion type as the 10547 // return type. 10548 if (D.isInvalidType()) 10549 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo()); 10550 10551 // C++0x explicit conversion operators. 10552 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20) 10553 Diag(DS.getExplicitSpecLoc(), 10554 getLangOpts().CPlusPlus11 10555 ? diag::warn_cxx98_compat_explicit_conversion_functions 10556 : diag::ext_explicit_conversion_functions) 10557 << SourceRange(DS.getExplicitSpecRange()); 10558 } 10559 10560 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete 10561 /// the declaration of the given C++ conversion function. This routine 10562 /// is responsible for recording the conversion function in the C++ 10563 /// class, if possible. 10564 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { 10565 assert(Conversion && "Expected to receive a conversion function declaration"); 10566 10567 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); 10568 10569 // Make sure we aren't redeclaring the conversion function. 10570 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); 10571 // C++ [class.conv.fct]p1: 10572 // [...] A conversion function is never used to convert a 10573 // (possibly cv-qualified) object to the (possibly cv-qualified) 10574 // same object type (or a reference to it), to a (possibly 10575 // cv-qualified) base class of that type (or a reference to it), 10576 // or to (possibly cv-qualified) void. 10577 QualType ClassType 10578 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 10579 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) 10580 ConvType = ConvTypeRef->getPointeeType(); 10581 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && 10582 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 10583 /* Suppress diagnostics for instantiations. */; 10584 else if (Conversion->size_overridden_methods() != 0) 10585 /* Suppress diagnostics for overriding virtual function in a base class. */; 10586 else if (ConvType->isRecordType()) { 10587 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); 10588 if (ConvType == ClassType) 10589 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) 10590 << ClassType; 10591 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType)) 10592 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) 10593 << ClassType << ConvType; 10594 } else if (ConvType->isVoidType()) { 10595 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) 10596 << ClassType << ConvType; 10597 } 10598 10599 if (FunctionTemplateDecl *ConversionTemplate 10600 = Conversion->getDescribedFunctionTemplate()) 10601 return ConversionTemplate; 10602 10603 return Conversion; 10604 } 10605 10606 namespace { 10607 /// Utility class to accumulate and print a diagnostic listing the invalid 10608 /// specifier(s) on a declaration. 10609 struct BadSpecifierDiagnoser { 10610 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID) 10611 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {} 10612 ~BadSpecifierDiagnoser() { 10613 Diagnostic << Specifiers; 10614 } 10615 10616 template<typename T> void check(SourceLocation SpecLoc, T Spec) { 10617 return check(SpecLoc, DeclSpec::getSpecifierName(Spec)); 10618 } 10619 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) { 10620 return check(SpecLoc, 10621 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy())); 10622 } 10623 void check(SourceLocation SpecLoc, const char *Spec) { 10624 if (SpecLoc.isInvalid()) return; 10625 Diagnostic << SourceRange(SpecLoc, SpecLoc); 10626 if (!Specifiers.empty()) Specifiers += " "; 10627 Specifiers += Spec; 10628 } 10629 10630 Sema &S; 10631 Sema::SemaDiagnosticBuilder Diagnostic; 10632 std::string Specifiers; 10633 }; 10634 } 10635 10636 /// Check the validity of a declarator that we parsed for a deduction-guide. 10637 /// These aren't actually declarators in the grammar, so we need to check that 10638 /// the user didn't specify any pieces that are not part of the deduction-guide 10639 /// grammar. 10640 void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R, 10641 StorageClass &SC) { 10642 TemplateName GuidedTemplate = D.getName().TemplateName.get().get(); 10643 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl(); 10644 assert(GuidedTemplateDecl && "missing template decl for deduction guide"); 10645 10646 // C++ [temp.deduct.guide]p3: 10647 // A deduction-gide shall be declared in the same scope as the 10648 // corresponding class template. 10649 if (!CurContext->getRedeclContext()->Equals( 10650 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) { 10651 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope) 10652 << GuidedTemplateDecl; 10653 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here); 10654 } 10655 10656 auto &DS = D.getMutableDeclSpec(); 10657 // We leave 'friend' and 'virtual' to be rejected in the normal way. 10658 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() || 10659 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() || 10660 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) { 10661 BadSpecifierDiagnoser Diagnoser( 10662 *this, D.getIdentifierLoc(), 10663 diag::err_deduction_guide_invalid_specifier); 10664 10665 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec()); 10666 DS.ClearStorageClassSpecs(); 10667 SC = SC_None; 10668 10669 // 'explicit' is permitted. 10670 Diagnoser.check(DS.getInlineSpecLoc(), "inline"); 10671 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn"); 10672 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr"); 10673 DS.ClearConstexprSpec(); 10674 10675 Diagnoser.check(DS.getConstSpecLoc(), "const"); 10676 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict"); 10677 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile"); 10678 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic"); 10679 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned"); 10680 DS.ClearTypeQualifiers(); 10681 10682 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex()); 10683 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign()); 10684 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth()); 10685 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType()); 10686 DS.ClearTypeSpecType(); 10687 } 10688 10689 if (D.isInvalidType()) 10690 return; 10691 10692 // Check the declarator is simple enough. 10693 bool FoundFunction = false; 10694 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) { 10695 if (Chunk.Kind == DeclaratorChunk::Paren) 10696 continue; 10697 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) { 10698 Diag(D.getDeclSpec().getBeginLoc(), 10699 diag::err_deduction_guide_with_complex_decl) 10700 << D.getSourceRange(); 10701 break; 10702 } 10703 if (!Chunk.Fun.hasTrailingReturnType()) { 10704 Diag(D.getName().getBeginLoc(), 10705 diag::err_deduction_guide_no_trailing_return_type); 10706 break; 10707 } 10708 10709 // Check that the return type is written as a specialization of 10710 // the template specified as the deduction-guide's name. 10711 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType(); 10712 TypeSourceInfo *TSI = nullptr; 10713 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI); 10714 assert(TSI && "deduction guide has valid type but invalid return type?"); 10715 bool AcceptableReturnType = false; 10716 bool MightInstantiateToSpecialization = false; 10717 if (auto RetTST = 10718 TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) { 10719 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName(); 10720 bool TemplateMatches = 10721 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate); 10722 if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches) 10723 AcceptableReturnType = true; 10724 else { 10725 // This could still instantiate to the right type, unless we know it 10726 // names the wrong class template. 10727 auto *TD = SpecifiedName.getAsTemplateDecl(); 10728 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) && 10729 !TemplateMatches); 10730 } 10731 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) { 10732 MightInstantiateToSpecialization = true; 10733 } 10734 10735 if (!AcceptableReturnType) { 10736 Diag(TSI->getTypeLoc().getBeginLoc(), 10737 diag::err_deduction_guide_bad_trailing_return_type) 10738 << GuidedTemplate << TSI->getType() 10739 << MightInstantiateToSpecialization 10740 << TSI->getTypeLoc().getSourceRange(); 10741 } 10742 10743 // Keep going to check that we don't have any inner declarator pieces (we 10744 // could still have a function returning a pointer to a function). 10745 FoundFunction = true; 10746 } 10747 10748 if (D.isFunctionDefinition()) 10749 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function); 10750 } 10751 10752 //===----------------------------------------------------------------------===// 10753 // Namespace Handling 10754 //===----------------------------------------------------------------------===// 10755 10756 /// Diagnose a mismatch in 'inline' qualifiers when a namespace is 10757 /// reopened. 10758 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, 10759 SourceLocation Loc, 10760 IdentifierInfo *II, bool *IsInline, 10761 NamespaceDecl *PrevNS) { 10762 assert(*IsInline != PrevNS->isInline()); 10763 10764 // HACK: Work around a bug in libstdc++4.6's <atomic>, where 10765 // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as 10766 // inline namespaces, with the intention of bringing names into namespace std. 10767 // 10768 // We support this just well enough to get that case working; this is not 10769 // sufficient to support reopening namespaces as inline in general. 10770 if (*IsInline && II && II->getName().startswith("__atomic") && 10771 S.getSourceManager().isInSystemHeader(Loc)) { 10772 // Mark all prior declarations of the namespace as inline. 10773 for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS; 10774 NS = NS->getPreviousDecl()) 10775 NS->setInline(*IsInline); 10776 // Patch up the lookup table for the containing namespace. This isn't really 10777 // correct, but it's good enough for this particular case. 10778 for (auto *I : PrevNS->decls()) 10779 if (auto *ND = dyn_cast<NamedDecl>(I)) 10780 PrevNS->getParent()->makeDeclVisibleInContext(ND); 10781 return; 10782 } 10783 10784 if (PrevNS->isInline()) 10785 // The user probably just forgot the 'inline', so suggest that it 10786 // be added back. 10787 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) 10788 << FixItHint::CreateInsertion(KeywordLoc, "inline "); 10789 else 10790 S.Diag(Loc, diag::err_inline_namespace_mismatch); 10791 10792 S.Diag(PrevNS->getLocation(), diag::note_previous_definition); 10793 *IsInline = PrevNS->isInline(); 10794 } 10795 10796 /// ActOnStartNamespaceDef - This is called at the start of a namespace 10797 /// definition. 10798 Decl *Sema::ActOnStartNamespaceDef( 10799 Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc, 10800 SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace, 10801 const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) { 10802 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; 10803 // For anonymous namespace, take the location of the left brace. 10804 SourceLocation Loc = II ? IdentLoc : LBrace; 10805 bool IsInline = InlineLoc.isValid(); 10806 bool IsInvalid = false; 10807 bool IsStd = false; 10808 bool AddToKnown = false; 10809 Scope *DeclRegionScope = NamespcScope->getParent(); 10810 10811 NamespaceDecl *PrevNS = nullptr; 10812 if (II) { 10813 // C++ [namespace.def]p2: 10814 // The identifier in an original-namespace-definition shall not 10815 // have been previously defined in the declarative region in 10816 // which the original-namespace-definition appears. The 10817 // identifier in an original-namespace-definition is the name of 10818 // the namespace. Subsequently in that declarative region, it is 10819 // treated as an original-namespace-name. 10820 // 10821 // Since namespace names are unique in their scope, and we don't 10822 // look through using directives, just look for any ordinary names 10823 // as if by qualified name lookup. 10824 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, 10825 ForExternalRedeclaration); 10826 LookupQualifiedName(R, CurContext->getRedeclContext()); 10827 NamedDecl *PrevDecl = 10828 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr; 10829 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl); 10830 10831 if (PrevNS) { 10832 // This is an extended namespace definition. 10833 if (IsInline != PrevNS->isInline()) 10834 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II, 10835 &IsInline, PrevNS); 10836 } else if (PrevDecl) { 10837 // This is an invalid name redefinition. 10838 Diag(Loc, diag::err_redefinition_different_kind) 10839 << II; 10840 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 10841 IsInvalid = true; 10842 // Continue on to push Namespc as current DeclContext and return it. 10843 } else if (II->isStr("std") && 10844 CurContext->getRedeclContext()->isTranslationUnit()) { 10845 // This is the first "real" definition of the namespace "std", so update 10846 // our cache of the "std" namespace to point at this definition. 10847 PrevNS = getStdNamespace(); 10848 IsStd = true; 10849 AddToKnown = !IsInline; 10850 } else { 10851 // We've seen this namespace for the first time. 10852 AddToKnown = !IsInline; 10853 } 10854 } else { 10855 // Anonymous namespaces. 10856 10857 // Determine whether the parent already has an anonymous namespace. 10858 DeclContext *Parent = CurContext->getRedeclContext(); 10859 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 10860 PrevNS = TU->getAnonymousNamespace(); 10861 } else { 10862 NamespaceDecl *ND = cast<NamespaceDecl>(Parent); 10863 PrevNS = ND->getAnonymousNamespace(); 10864 } 10865 10866 if (PrevNS && IsInline != PrevNS->isInline()) 10867 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II, 10868 &IsInline, PrevNS); 10869 } 10870 10871 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline, 10872 StartLoc, Loc, II, PrevNS); 10873 if (IsInvalid) 10874 Namespc->setInvalidDecl(); 10875 10876 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); 10877 AddPragmaAttributes(DeclRegionScope, Namespc); 10878 10879 // FIXME: Should we be merging attributes? 10880 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) 10881 PushNamespaceVisibilityAttr(Attr, Loc); 10882 10883 if (IsStd) 10884 StdNamespace = Namespc; 10885 if (AddToKnown) 10886 KnownNamespaces[Namespc] = false; 10887 10888 if (II) { 10889 PushOnScopeChains(Namespc, DeclRegionScope); 10890 } else { 10891 // Link the anonymous namespace into its parent. 10892 DeclContext *Parent = CurContext->getRedeclContext(); 10893 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 10894 TU->setAnonymousNamespace(Namespc); 10895 } else { 10896 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc); 10897 } 10898 10899 CurContext->addDecl(Namespc); 10900 10901 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition 10902 // behaves as if it were replaced by 10903 // namespace unique { /* empty body */ } 10904 // using namespace unique; 10905 // namespace unique { namespace-body } 10906 // where all occurrences of 'unique' in a translation unit are 10907 // replaced by the same identifier and this identifier differs 10908 // from all other identifiers in the entire program. 10909 10910 // We just create the namespace with an empty name and then add an 10911 // implicit using declaration, just like the standard suggests. 10912 // 10913 // CodeGen enforces the "universally unique" aspect by giving all 10914 // declarations semantically contained within an anonymous 10915 // namespace internal linkage. 10916 10917 if (!PrevNS) { 10918 UD = UsingDirectiveDecl::Create(Context, Parent, 10919 /* 'using' */ LBrace, 10920 /* 'namespace' */ SourceLocation(), 10921 /* qualifier */ NestedNameSpecifierLoc(), 10922 /* identifier */ SourceLocation(), 10923 Namespc, 10924 /* Ancestor */ Parent); 10925 UD->setImplicit(); 10926 Parent->addDecl(UD); 10927 } 10928 } 10929 10930 ActOnDocumentableDecl(Namespc); 10931 10932 // Although we could have an invalid decl (i.e. the namespace name is a 10933 // redefinition), push it as current DeclContext and try to continue parsing. 10934 // FIXME: We should be able to push Namespc here, so that the each DeclContext 10935 // for the namespace has the declarations that showed up in that particular 10936 // namespace definition. 10937 PushDeclContext(NamespcScope, Namespc); 10938 return Namespc; 10939 } 10940 10941 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl 10942 /// is a namespace alias, returns the namespace it points to. 10943 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { 10944 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) 10945 return AD->getNamespace(); 10946 return dyn_cast_or_null<NamespaceDecl>(D); 10947 } 10948 10949 /// ActOnFinishNamespaceDef - This callback is called after a namespace is 10950 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. 10951 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { 10952 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); 10953 assert(Namespc && "Invalid parameter, expected NamespaceDecl"); 10954 Namespc->setRBraceLoc(RBrace); 10955 PopDeclContext(); 10956 if (Namespc->hasAttr<VisibilityAttr>()) 10957 PopPragmaVisibility(true, RBrace); 10958 // If this namespace contains an export-declaration, export it now. 10959 if (DeferredExportedNamespaces.erase(Namespc)) 10960 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 10961 } 10962 10963 CXXRecordDecl *Sema::getStdBadAlloc() const { 10964 return cast_or_null<CXXRecordDecl>( 10965 StdBadAlloc.get(Context.getExternalSource())); 10966 } 10967 10968 EnumDecl *Sema::getStdAlignValT() const { 10969 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource())); 10970 } 10971 10972 NamespaceDecl *Sema::getStdNamespace() const { 10973 return cast_or_null<NamespaceDecl>( 10974 StdNamespace.get(Context.getExternalSource())); 10975 } 10976 10977 NamespaceDecl *Sema::lookupStdExperimentalNamespace() { 10978 if (!StdExperimentalNamespaceCache) { 10979 if (auto Std = getStdNamespace()) { 10980 LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"), 10981 SourceLocation(), LookupNamespaceName); 10982 if (!LookupQualifiedName(Result, Std) || 10983 !(StdExperimentalNamespaceCache = 10984 Result.getAsSingle<NamespaceDecl>())) 10985 Result.suppressDiagnostics(); 10986 } 10987 } 10988 return StdExperimentalNamespaceCache; 10989 } 10990 10991 namespace { 10992 10993 enum UnsupportedSTLSelect { 10994 USS_InvalidMember, 10995 USS_MissingMember, 10996 USS_NonTrivial, 10997 USS_Other 10998 }; 10999 11000 struct InvalidSTLDiagnoser { 11001 Sema &S; 11002 SourceLocation Loc; 11003 QualType TyForDiags; 11004 11005 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "", 11006 const VarDecl *VD = nullptr) { 11007 { 11008 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported) 11009 << TyForDiags << ((int)Sel); 11010 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) { 11011 assert(!Name.empty()); 11012 D << Name; 11013 } 11014 } 11015 if (Sel == USS_InvalidMember) { 11016 S.Diag(VD->getLocation(), diag::note_var_declared_here) 11017 << VD << VD->getSourceRange(); 11018 } 11019 return QualType(); 11020 } 11021 }; 11022 } // namespace 11023 11024 QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind, 11025 SourceLocation Loc, 11026 ComparisonCategoryUsage Usage) { 11027 assert(getLangOpts().CPlusPlus && 11028 "Looking for comparison category type outside of C++."); 11029 11030 // Use an elaborated type for diagnostics which has a name containing the 11031 // prepended 'std' namespace but not any inline namespace names. 11032 auto TyForDiags = [&](ComparisonCategoryInfo *Info) { 11033 auto *NNS = 11034 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()); 11035 return Context.getElaboratedType(ETK_None, NNS, Info->getType()); 11036 }; 11037 11038 // Check if we've already successfully checked the comparison category type 11039 // before. If so, skip checking it again. 11040 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind); 11041 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) { 11042 // The only thing we need to check is that the type has a reachable 11043 // definition in the current context. 11044 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11045 return QualType(); 11046 11047 return Info->getType(); 11048 } 11049 11050 // If lookup failed 11051 if (!Info) { 11052 std::string NameForDiags = "std::"; 11053 NameForDiags += ComparisonCategories::getCategoryString(Kind); 11054 Diag(Loc, diag::err_implied_comparison_category_type_not_found) 11055 << NameForDiags << (int)Usage; 11056 return QualType(); 11057 } 11058 11059 assert(Info->Kind == Kind); 11060 assert(Info->Record); 11061 11062 // Update the Record decl in case we encountered a forward declaration on our 11063 // first pass. FIXME: This is a bit of a hack. 11064 if (Info->Record->hasDefinition()) 11065 Info->Record = Info->Record->getDefinition(); 11066 11067 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11068 return QualType(); 11069 11070 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)}; 11071 11072 if (!Info->Record->isTriviallyCopyable()) 11073 return UnsupportedSTLError(USS_NonTrivial); 11074 11075 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) { 11076 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl(); 11077 // Tolerate empty base classes. 11078 if (Base->isEmpty()) 11079 continue; 11080 // Reject STL implementations which have at least one non-empty base. 11081 return UnsupportedSTLError(); 11082 } 11083 11084 // Check that the STL has implemented the types using a single integer field. 11085 // This expectation allows better codegen for builtin operators. We require: 11086 // (1) The class has exactly one field. 11087 // (2) The field is an integral or enumeration type. 11088 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end(); 11089 if (std::distance(FIt, FEnd) != 1 || 11090 !FIt->getType()->isIntegralOrEnumerationType()) { 11091 return UnsupportedSTLError(); 11092 } 11093 11094 // Build each of the require values and store them in Info. 11095 for (ComparisonCategoryResult CCR : 11096 ComparisonCategories::getPossibleResultsForType(Kind)) { 11097 StringRef MemName = ComparisonCategories::getResultString(CCR); 11098 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR); 11099 11100 if (!ValInfo) 11101 return UnsupportedSTLError(USS_MissingMember, MemName); 11102 11103 VarDecl *VD = ValInfo->VD; 11104 assert(VD && "should not be null!"); 11105 11106 // Attempt to diagnose reasons why the STL definition of this type 11107 // might be foobar, including it failing to be a constant expression. 11108 // TODO Handle more ways the lookup or result can be invalid. 11109 if (!VD->isStaticDataMember() || !VD->isConstexpr() || !VD->hasInit() || 11110 !VD->checkInitIsICE()) 11111 return UnsupportedSTLError(USS_InvalidMember, MemName, VD); 11112 11113 // Attempt to evaluate the var decl as a constant expression and extract 11114 // the value of its first field as a ICE. If this fails, the STL 11115 // implementation is not supported. 11116 if (!ValInfo->hasValidIntValue()) 11117 return UnsupportedSTLError(); 11118 11119 MarkVariableReferenced(Loc, VD); 11120 } 11121 11122 // We've successfully built the required types and expressions. Update 11123 // the cache and return the newly cached value. 11124 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true; 11125 return Info->getType(); 11126 } 11127 11128 /// Retrieve the special "std" namespace, which may require us to 11129 /// implicitly define the namespace. 11130 NamespaceDecl *Sema::getOrCreateStdNamespace() { 11131 if (!StdNamespace) { 11132 // The "std" namespace has not yet been defined, so build one implicitly. 11133 StdNamespace = NamespaceDecl::Create(Context, 11134 Context.getTranslationUnitDecl(), 11135 /*Inline=*/false, 11136 SourceLocation(), SourceLocation(), 11137 &PP.getIdentifierTable().get("std"), 11138 /*PrevDecl=*/nullptr); 11139 getStdNamespace()->setImplicit(true); 11140 } 11141 11142 return getStdNamespace(); 11143 } 11144 11145 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { 11146 assert(getLangOpts().CPlusPlus && 11147 "Looking for std::initializer_list outside of C++."); 11148 11149 // We're looking for implicit instantiations of 11150 // template <typename E> class std::initializer_list. 11151 11152 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it. 11153 return false; 11154 11155 ClassTemplateDecl *Template = nullptr; 11156 const TemplateArgument *Arguments = nullptr; 11157 11158 if (const RecordType *RT = Ty->getAs<RecordType>()) { 11159 11160 ClassTemplateSpecializationDecl *Specialization = 11161 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 11162 if (!Specialization) 11163 return false; 11164 11165 Template = Specialization->getSpecializedTemplate(); 11166 Arguments = Specialization->getTemplateArgs().data(); 11167 } else if (const TemplateSpecializationType *TST = 11168 Ty->getAs<TemplateSpecializationType>()) { 11169 Template = dyn_cast_or_null<ClassTemplateDecl>( 11170 TST->getTemplateName().getAsTemplateDecl()); 11171 Arguments = TST->getArgs(); 11172 } 11173 if (!Template) 11174 return false; 11175 11176 if (!StdInitializerList) { 11177 // Haven't recognized std::initializer_list yet, maybe this is it. 11178 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); 11179 if (TemplateClass->getIdentifier() != 11180 &PP.getIdentifierTable().get("initializer_list") || 11181 !getStdNamespace()->InEnclosingNamespaceSetOf( 11182 TemplateClass->getDeclContext())) 11183 return false; 11184 // This is a template called std::initializer_list, but is it the right 11185 // template? 11186 TemplateParameterList *Params = Template->getTemplateParameters(); 11187 if (Params->getMinRequiredArguments() != 1) 11188 return false; 11189 if (!isa<TemplateTypeParmDecl>(Params->getParam(0))) 11190 return false; 11191 11192 // It's the right template. 11193 StdInitializerList = Template; 11194 } 11195 11196 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl()) 11197 return false; 11198 11199 // This is an instance of std::initializer_list. Find the argument type. 11200 if (Element) 11201 *Element = Arguments[0].getAsType(); 11202 return true; 11203 } 11204 11205 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){ 11206 NamespaceDecl *Std = S.getStdNamespace(); 11207 if (!Std) { 11208 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 11209 return nullptr; 11210 } 11211 11212 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"), 11213 Loc, Sema::LookupOrdinaryName); 11214 if (!S.LookupQualifiedName(Result, Std)) { 11215 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 11216 return nullptr; 11217 } 11218 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); 11219 if (!Template) { 11220 Result.suppressDiagnostics(); 11221 // We found something weird. Complain about the first thing we found. 11222 NamedDecl *Found = *Result.begin(); 11223 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list); 11224 return nullptr; 11225 } 11226 11227 // We found some template called std::initializer_list. Now verify that it's 11228 // correct. 11229 TemplateParameterList *Params = Template->getTemplateParameters(); 11230 if (Params->getMinRequiredArguments() != 1 || 11231 !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 11232 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list); 11233 return nullptr; 11234 } 11235 11236 return Template; 11237 } 11238 11239 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { 11240 if (!StdInitializerList) { 11241 StdInitializerList = LookupStdInitializerList(*this, Loc); 11242 if (!StdInitializerList) 11243 return QualType(); 11244 } 11245 11246 TemplateArgumentListInfo Args(Loc, Loc); 11247 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element), 11248 Context.getTrivialTypeSourceInfo(Element, 11249 Loc))); 11250 return Context.getCanonicalType( 11251 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args)); 11252 } 11253 11254 bool Sema::isInitListConstructor(const FunctionDecl *Ctor) { 11255 // C++ [dcl.init.list]p2: 11256 // A constructor is an initializer-list constructor if its first parameter 11257 // is of type std::initializer_list<E> or reference to possibly cv-qualified 11258 // std::initializer_list<E> for some type E, and either there are no other 11259 // parameters or else all other parameters have default arguments. 11260 if (!Ctor->hasOneParamOrDefaultArgs()) 11261 return false; 11262 11263 QualType ArgType = Ctor->getParamDecl(0)->getType(); 11264 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) 11265 ArgType = RT->getPointeeType().getUnqualifiedType(); 11266 11267 return isStdInitializerList(ArgType, nullptr); 11268 } 11269 11270 /// Determine whether a using statement is in a context where it will be 11271 /// apply in all contexts. 11272 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { 11273 switch (CurContext->getDeclKind()) { 11274 case Decl::TranslationUnit: 11275 return true; 11276 case Decl::LinkageSpec: 11277 return IsUsingDirectiveInToplevelContext(CurContext->getParent()); 11278 default: 11279 return false; 11280 } 11281 } 11282 11283 namespace { 11284 11285 // Callback to only accept typo corrections that are namespaces. 11286 class NamespaceValidatorCCC final : public CorrectionCandidateCallback { 11287 public: 11288 bool ValidateCandidate(const TypoCorrection &candidate) override { 11289 if (NamedDecl *ND = candidate.getCorrectionDecl()) 11290 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); 11291 return false; 11292 } 11293 11294 std::unique_ptr<CorrectionCandidateCallback> clone() override { 11295 return std::make_unique<NamespaceValidatorCCC>(*this); 11296 } 11297 }; 11298 11299 } 11300 11301 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, 11302 CXXScopeSpec &SS, 11303 SourceLocation IdentLoc, 11304 IdentifierInfo *Ident) { 11305 R.clear(); 11306 NamespaceValidatorCCC CCC{}; 11307 if (TypoCorrection Corrected = 11308 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC, 11309 Sema::CTK_ErrorRecovery)) { 11310 if (DeclContext *DC = S.computeDeclContext(SS, false)) { 11311 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts())); 11312 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 11313 Ident->getName().equals(CorrectedStr); 11314 S.diagnoseTypo(Corrected, 11315 S.PDiag(diag::err_using_directive_member_suggest) 11316 << Ident << DC << DroppedSpecifier << SS.getRange(), 11317 S.PDiag(diag::note_namespace_defined_here)); 11318 } else { 11319 S.diagnoseTypo(Corrected, 11320 S.PDiag(diag::err_using_directive_suggest) << Ident, 11321 S.PDiag(diag::note_namespace_defined_here)); 11322 } 11323 R.addDecl(Corrected.getFoundDecl()); 11324 return true; 11325 } 11326 return false; 11327 } 11328 11329 Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, 11330 SourceLocation NamespcLoc, CXXScopeSpec &SS, 11331 SourceLocation IdentLoc, 11332 IdentifierInfo *NamespcName, 11333 const ParsedAttributesView &AttrList) { 11334 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 11335 assert(NamespcName && "Invalid NamespcName."); 11336 assert(IdentLoc.isValid() && "Invalid NamespceName location."); 11337 11338 // This can only happen along a recovery path. 11339 while (S->isTemplateParamScope()) 11340 S = S->getParent(); 11341 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 11342 11343 UsingDirectiveDecl *UDir = nullptr; 11344 NestedNameSpecifier *Qualifier = nullptr; 11345 if (SS.isSet()) 11346 Qualifier = SS.getScopeRep(); 11347 11348 // Lookup namespace name. 11349 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); 11350 LookupParsedName(R, S, &SS); 11351 if (R.isAmbiguous()) 11352 return nullptr; 11353 11354 if (R.empty()) { 11355 R.clear(); 11356 // Allow "using namespace std;" or "using namespace ::std;" even if 11357 // "std" hasn't been defined yet, for GCC compatibility. 11358 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && 11359 NamespcName->isStr("std")) { 11360 Diag(IdentLoc, diag::ext_using_undefined_std); 11361 R.addDecl(getOrCreateStdNamespace()); 11362 R.resolveKind(); 11363 } 11364 // Otherwise, attempt typo correction. 11365 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); 11366 } 11367 11368 if (!R.empty()) { 11369 NamedDecl *Named = R.getRepresentativeDecl(); 11370 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>(); 11371 assert(NS && "expected namespace decl"); 11372 11373 // The use of a nested name specifier may trigger deprecation warnings. 11374 DiagnoseUseOfDecl(Named, IdentLoc); 11375 11376 // C++ [namespace.udir]p1: 11377 // A using-directive specifies that the names in the nominated 11378 // namespace can be used in the scope in which the 11379 // using-directive appears after the using-directive. During 11380 // unqualified name lookup (3.4.1), the names appear as if they 11381 // were declared in the nearest enclosing namespace which 11382 // contains both the using-directive and the nominated 11383 // namespace. [Note: in this context, "contains" means "contains 11384 // directly or indirectly". ] 11385 11386 // Find enclosing context containing both using-directive and 11387 // nominated namespace. 11388 DeclContext *CommonAncestor = NS; 11389 while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) 11390 CommonAncestor = CommonAncestor->getParent(); 11391 11392 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, 11393 SS.getWithLocInContext(Context), 11394 IdentLoc, Named, CommonAncestor); 11395 11396 if (IsUsingDirectiveInToplevelContext(CurContext) && 11397 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) { 11398 Diag(IdentLoc, diag::warn_using_directive_in_header); 11399 } 11400 11401 PushUsingDirective(S, UDir); 11402 } else { 11403 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 11404 } 11405 11406 if (UDir) 11407 ProcessDeclAttributeList(S, UDir, AttrList); 11408 11409 return UDir; 11410 } 11411 11412 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { 11413 // If the scope has an associated entity and the using directive is at 11414 // namespace or translation unit scope, add the UsingDirectiveDecl into 11415 // its lookup structure so qualified name lookup can find it. 11416 DeclContext *Ctx = S->getEntity(); 11417 if (Ctx && !Ctx->isFunctionOrMethod()) 11418 Ctx->addDecl(UDir); 11419 else 11420 // Otherwise, it is at block scope. The using-directives will affect lookup 11421 // only to the end of the scope. 11422 S->PushUsingDirective(UDir); 11423 } 11424 11425 Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, 11426 SourceLocation UsingLoc, 11427 SourceLocation TypenameLoc, CXXScopeSpec &SS, 11428 UnqualifiedId &Name, 11429 SourceLocation EllipsisLoc, 11430 const ParsedAttributesView &AttrList) { 11431 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 11432 11433 if (SS.isEmpty()) { 11434 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname); 11435 return nullptr; 11436 } 11437 11438 switch (Name.getKind()) { 11439 case UnqualifiedIdKind::IK_ImplicitSelfParam: 11440 case UnqualifiedIdKind::IK_Identifier: 11441 case UnqualifiedIdKind::IK_OperatorFunctionId: 11442 case UnqualifiedIdKind::IK_LiteralOperatorId: 11443 case UnqualifiedIdKind::IK_ConversionFunctionId: 11444 break; 11445 11446 case UnqualifiedIdKind::IK_ConstructorName: 11447 case UnqualifiedIdKind::IK_ConstructorTemplateId: 11448 // C++11 inheriting constructors. 11449 Diag(Name.getBeginLoc(), 11450 getLangOpts().CPlusPlus11 11451 ? diag::warn_cxx98_compat_using_decl_constructor 11452 : diag::err_using_decl_constructor) 11453 << SS.getRange(); 11454 11455 if (getLangOpts().CPlusPlus11) break; 11456 11457 return nullptr; 11458 11459 case UnqualifiedIdKind::IK_DestructorName: 11460 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange(); 11461 return nullptr; 11462 11463 case UnqualifiedIdKind::IK_TemplateId: 11464 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id) 11465 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); 11466 return nullptr; 11467 11468 case UnqualifiedIdKind::IK_DeductionGuideName: 11469 llvm_unreachable("cannot parse qualified deduction guide name"); 11470 } 11471 11472 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 11473 DeclarationName TargetName = TargetNameInfo.getName(); 11474 if (!TargetName) 11475 return nullptr; 11476 11477 // Warn about access declarations. 11478 if (UsingLoc.isInvalid()) { 11479 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 11480 ? diag::err_access_decl 11481 : diag::warn_access_decl_deprecated) 11482 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); 11483 } 11484 11485 if (EllipsisLoc.isInvalid()) { 11486 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || 11487 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) 11488 return nullptr; 11489 } else { 11490 if (!SS.getScopeRep()->containsUnexpandedParameterPack() && 11491 !TargetNameInfo.containsUnexpandedParameterPack()) { 11492 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 11493 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc()); 11494 EllipsisLoc = SourceLocation(); 11495 } 11496 } 11497 11498 NamedDecl *UD = 11499 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc, 11500 SS, TargetNameInfo, EllipsisLoc, AttrList, 11501 /*IsInstantiation*/false); 11502 if (UD) 11503 PushOnScopeChains(UD, S, /*AddToContext*/ false); 11504 11505 return UD; 11506 } 11507 11508 /// Determine whether a using declaration considers the given 11509 /// declarations as "equivalent", e.g., if they are redeclarations of 11510 /// the same entity or are both typedefs of the same type. 11511 static bool 11512 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { 11513 if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) 11514 return true; 11515 11516 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1)) 11517 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) 11518 return Context.hasSameType(TD1->getUnderlyingType(), 11519 TD2->getUnderlyingType()); 11520 11521 return false; 11522 } 11523 11524 11525 /// Determines whether to create a using shadow decl for a particular 11526 /// decl, given the set of decls existing prior to this using lookup. 11527 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig, 11528 const LookupResult &Previous, 11529 UsingShadowDecl *&PrevShadow) { 11530 // Diagnose finding a decl which is not from a base class of the 11531 // current class. We do this now because there are cases where this 11532 // function will silently decide not to build a shadow decl, which 11533 // will pre-empt further diagnostics. 11534 // 11535 // We don't need to do this in C++11 because we do the check once on 11536 // the qualifier. 11537 // 11538 // FIXME: diagnose the following if we care enough: 11539 // struct A { int foo; }; 11540 // struct B : A { using A::foo; }; 11541 // template <class T> struct C : A {}; 11542 // template <class T> struct D : C<T> { using B::foo; } // <--- 11543 // This is invalid (during instantiation) in C++03 because B::foo 11544 // resolves to the using decl in B, which is not a base class of D<T>. 11545 // We can't diagnose it immediately because C<T> is an unknown 11546 // specialization. The UsingShadowDecl in D<T> then points directly 11547 // to A::foo, which will look well-formed when we instantiate. 11548 // The right solution is to not collapse the shadow-decl chain. 11549 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) { 11550 DeclContext *OrigDC = Orig->getDeclContext(); 11551 11552 // Handle enums and anonymous structs. 11553 if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent(); 11554 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); 11555 while (OrigRec->isAnonymousStructOrUnion()) 11556 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); 11557 11558 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { 11559 if (OrigDC == CurContext) { 11560 Diag(Using->getLocation(), 11561 diag::err_using_decl_nested_name_specifier_is_current_class) 11562 << Using->getQualifierLoc().getSourceRange(); 11563 Diag(Orig->getLocation(), diag::note_using_decl_target); 11564 Using->setInvalidDecl(); 11565 return true; 11566 } 11567 11568 Diag(Using->getQualifierLoc().getBeginLoc(), 11569 diag::err_using_decl_nested_name_specifier_is_not_base_class) 11570 << Using->getQualifier() 11571 << cast<CXXRecordDecl>(CurContext) 11572 << Using->getQualifierLoc().getSourceRange(); 11573 Diag(Orig->getLocation(), diag::note_using_decl_target); 11574 Using->setInvalidDecl(); 11575 return true; 11576 } 11577 } 11578 11579 if (Previous.empty()) return false; 11580 11581 NamedDecl *Target = Orig; 11582 if (isa<UsingShadowDecl>(Target)) 11583 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 11584 11585 // If the target happens to be one of the previous declarations, we 11586 // don't have a conflict. 11587 // 11588 // FIXME: but we might be increasing its access, in which case we 11589 // should redeclare it. 11590 NamedDecl *NonTag = nullptr, *Tag = nullptr; 11591 bool FoundEquivalentDecl = false; 11592 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 11593 I != E; ++I) { 11594 NamedDecl *D = (*I)->getUnderlyingDecl(); 11595 // We can have UsingDecls in our Previous results because we use the same 11596 // LookupResult for checking whether the UsingDecl itself is a valid 11597 // redeclaration. 11598 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D)) 11599 continue; 11600 11601 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 11602 // C++ [class.mem]p19: 11603 // If T is the name of a class, then [every named member other than 11604 // a non-static data member] shall have a name different from T 11605 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) && 11606 !isa<IndirectFieldDecl>(Target) && 11607 !isa<UnresolvedUsingValueDecl>(Target) && 11608 DiagnoseClassNameShadow( 11609 CurContext, 11610 DeclarationNameInfo(Using->getDeclName(), Using->getLocation()))) 11611 return true; 11612 } 11613 11614 if (IsEquivalentForUsingDecl(Context, D, Target)) { 11615 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I)) 11616 PrevShadow = Shadow; 11617 FoundEquivalentDecl = true; 11618 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) { 11619 // We don't conflict with an existing using shadow decl of an equivalent 11620 // declaration, but we're not a redeclaration of it. 11621 FoundEquivalentDecl = true; 11622 } 11623 11624 if (isVisible(D)) 11625 (isa<TagDecl>(D) ? Tag : NonTag) = D; 11626 } 11627 11628 if (FoundEquivalentDecl) 11629 return false; 11630 11631 if (FunctionDecl *FD = Target->getAsFunction()) { 11632 NamedDecl *OldDecl = nullptr; 11633 switch (CheckOverload(nullptr, FD, Previous, OldDecl, 11634 /*IsForUsingDecl*/ true)) { 11635 case Ovl_Overload: 11636 return false; 11637 11638 case Ovl_NonFunction: 11639 Diag(Using->getLocation(), diag::err_using_decl_conflict); 11640 break; 11641 11642 // We found a decl with the exact signature. 11643 case Ovl_Match: 11644 // If we're in a record, we want to hide the target, so we 11645 // return true (without a diagnostic) to tell the caller not to 11646 // build a shadow decl. 11647 if (CurContext->isRecord()) 11648 return true; 11649 11650 // If we're not in a record, this is an error. 11651 Diag(Using->getLocation(), diag::err_using_decl_conflict); 11652 break; 11653 } 11654 11655 Diag(Target->getLocation(), diag::note_using_decl_target); 11656 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); 11657 Using->setInvalidDecl(); 11658 return true; 11659 } 11660 11661 // Target is not a function. 11662 11663 if (isa<TagDecl>(Target)) { 11664 // No conflict between a tag and a non-tag. 11665 if (!Tag) return false; 11666 11667 Diag(Using->getLocation(), diag::err_using_decl_conflict); 11668 Diag(Target->getLocation(), diag::note_using_decl_target); 11669 Diag(Tag->getLocation(), diag::note_using_decl_conflict); 11670 Using->setInvalidDecl(); 11671 return true; 11672 } 11673 11674 // No conflict between a tag and a non-tag. 11675 if (!NonTag) return false; 11676 11677 Diag(Using->getLocation(), diag::err_using_decl_conflict); 11678 Diag(Target->getLocation(), diag::note_using_decl_target); 11679 Diag(NonTag->getLocation(), diag::note_using_decl_conflict); 11680 Using->setInvalidDecl(); 11681 return true; 11682 } 11683 11684 /// Determine whether a direct base class is a virtual base class. 11685 static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) { 11686 if (!Derived->getNumVBases()) 11687 return false; 11688 for (auto &B : Derived->bases()) 11689 if (B.getType()->getAsCXXRecordDecl() == Base) 11690 return B.isVirtual(); 11691 llvm_unreachable("not a direct base class"); 11692 } 11693 11694 /// Builds a shadow declaration corresponding to a 'using' declaration. 11695 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, 11696 UsingDecl *UD, 11697 NamedDecl *Orig, 11698 UsingShadowDecl *PrevDecl) { 11699 // If we resolved to another shadow declaration, just coalesce them. 11700 NamedDecl *Target = Orig; 11701 if (isa<UsingShadowDecl>(Target)) { 11702 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 11703 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); 11704 } 11705 11706 NamedDecl *NonTemplateTarget = Target; 11707 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target)) 11708 NonTemplateTarget = TargetTD->getTemplatedDecl(); 11709 11710 UsingShadowDecl *Shadow; 11711 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) { 11712 bool IsVirtualBase = 11713 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext), 11714 UD->getQualifier()->getAsRecordDecl()); 11715 Shadow = ConstructorUsingShadowDecl::Create( 11716 Context, CurContext, UD->getLocation(), UD, Orig, IsVirtualBase); 11717 } else { 11718 Shadow = UsingShadowDecl::Create(Context, CurContext, UD->getLocation(), UD, 11719 Target); 11720 } 11721 UD->addShadowDecl(Shadow); 11722 11723 Shadow->setAccess(UD->getAccess()); 11724 if (Orig->isInvalidDecl() || UD->isInvalidDecl()) 11725 Shadow->setInvalidDecl(); 11726 11727 Shadow->setPreviousDecl(PrevDecl); 11728 11729 if (S) 11730 PushOnScopeChains(Shadow, S); 11731 else 11732 CurContext->addDecl(Shadow); 11733 11734 11735 return Shadow; 11736 } 11737 11738 /// Hides a using shadow declaration. This is required by the current 11739 /// using-decl implementation when a resolvable using declaration in a 11740 /// class is followed by a declaration which would hide or override 11741 /// one or more of the using decl's targets; for example: 11742 /// 11743 /// struct Base { void foo(int); }; 11744 /// struct Derived : Base { 11745 /// using Base::foo; 11746 /// void foo(int); 11747 /// }; 11748 /// 11749 /// The governing language is C++03 [namespace.udecl]p12: 11750 /// 11751 /// When a using-declaration brings names from a base class into a 11752 /// derived class scope, member functions in the derived class 11753 /// override and/or hide member functions with the same name and 11754 /// parameter types in a base class (rather than conflicting). 11755 /// 11756 /// There are two ways to implement this: 11757 /// (1) optimistically create shadow decls when they're not hidden 11758 /// by existing declarations, or 11759 /// (2) don't create any shadow decls (or at least don't make them 11760 /// visible) until we've fully parsed/instantiated the class. 11761 /// The problem with (1) is that we might have to retroactively remove 11762 /// a shadow decl, which requires several O(n) operations because the 11763 /// decl structures are (very reasonably) not designed for removal. 11764 /// (2) avoids this but is very fiddly and phase-dependent. 11765 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { 11766 if (Shadow->getDeclName().getNameKind() == 11767 DeclarationName::CXXConversionFunctionName) 11768 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); 11769 11770 // Remove it from the DeclContext... 11771 Shadow->getDeclContext()->removeDecl(Shadow); 11772 11773 // ...and the scope, if applicable... 11774 if (S) { 11775 S->RemoveDecl(Shadow); 11776 IdResolver.RemoveDecl(Shadow); 11777 } 11778 11779 // ...and the using decl. 11780 Shadow->getUsingDecl()->removeShadowDecl(Shadow); 11781 11782 // TODO: complain somehow if Shadow was used. It shouldn't 11783 // be possible for this to happen, because...? 11784 } 11785 11786 /// Find the base specifier for a base class with the given type. 11787 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, 11788 QualType DesiredBase, 11789 bool &AnyDependentBases) { 11790 // Check whether the named type is a direct base class. 11791 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified() 11792 .getUnqualifiedType(); 11793 for (auto &Base : Derived->bases()) { 11794 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); 11795 if (CanonicalDesiredBase == BaseType) 11796 return &Base; 11797 if (BaseType->isDependentType()) 11798 AnyDependentBases = true; 11799 } 11800 return nullptr; 11801 } 11802 11803 namespace { 11804 class UsingValidatorCCC final : public CorrectionCandidateCallback { 11805 public: 11806 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, 11807 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) 11808 : HasTypenameKeyword(HasTypenameKeyword), 11809 IsInstantiation(IsInstantiation), OldNNS(NNS), 11810 RequireMemberOf(RequireMemberOf) {} 11811 11812 bool ValidateCandidate(const TypoCorrection &Candidate) override { 11813 NamedDecl *ND = Candidate.getCorrectionDecl(); 11814 11815 // Keywords are not valid here. 11816 if (!ND || isa<NamespaceDecl>(ND)) 11817 return false; 11818 11819 // Completely unqualified names are invalid for a 'using' declaration. 11820 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) 11821 return false; 11822 11823 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would 11824 // reject. 11825 11826 if (RequireMemberOf) { 11827 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 11828 if (FoundRecord && FoundRecord->isInjectedClassName()) { 11829 // No-one ever wants a using-declaration to name an injected-class-name 11830 // of a base class, unless they're declaring an inheriting constructor. 11831 ASTContext &Ctx = ND->getASTContext(); 11832 if (!Ctx.getLangOpts().CPlusPlus11) 11833 return false; 11834 QualType FoundType = Ctx.getRecordType(FoundRecord); 11835 11836 // Check that the injected-class-name is named as a member of its own 11837 // type; we don't want to suggest 'using Derived::Base;', since that 11838 // means something else. 11839 NestedNameSpecifier *Specifier = 11840 Candidate.WillReplaceSpecifier() 11841 ? Candidate.getCorrectionSpecifier() 11842 : OldNNS; 11843 if (!Specifier->getAsType() || 11844 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType)) 11845 return false; 11846 11847 // Check that this inheriting constructor declaration actually names a 11848 // direct base class of the current class. 11849 bool AnyDependentBases = false; 11850 if (!findDirectBaseWithType(RequireMemberOf, 11851 Ctx.getRecordType(FoundRecord), 11852 AnyDependentBases) && 11853 !AnyDependentBases) 11854 return false; 11855 } else { 11856 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()); 11857 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD)) 11858 return false; 11859 11860 // FIXME: Check that the base class member is accessible? 11861 } 11862 } else { 11863 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 11864 if (FoundRecord && FoundRecord->isInjectedClassName()) 11865 return false; 11866 } 11867 11868 if (isa<TypeDecl>(ND)) 11869 return HasTypenameKeyword || !IsInstantiation; 11870 11871 return !HasTypenameKeyword; 11872 } 11873 11874 std::unique_ptr<CorrectionCandidateCallback> clone() override { 11875 return std::make_unique<UsingValidatorCCC>(*this); 11876 } 11877 11878 private: 11879 bool HasTypenameKeyword; 11880 bool IsInstantiation; 11881 NestedNameSpecifier *OldNNS; 11882 CXXRecordDecl *RequireMemberOf; 11883 }; 11884 } // end anonymous namespace 11885 11886 /// Builds a using declaration. 11887 /// 11888 /// \param IsInstantiation - Whether this call arises from an 11889 /// instantiation of an unresolved using declaration. We treat 11890 /// the lookup differently for these declarations. 11891 NamedDecl *Sema::BuildUsingDeclaration( 11892 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, 11893 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, 11894 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, 11895 const ParsedAttributesView &AttrList, bool IsInstantiation) { 11896 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 11897 SourceLocation IdentLoc = NameInfo.getLoc(); 11898 assert(IdentLoc.isValid() && "Invalid TargetName location."); 11899 11900 // FIXME: We ignore attributes for now. 11901 11902 // For an inheriting constructor declaration, the name of the using 11903 // declaration is the name of a constructor in this class, not in the 11904 // base class. 11905 DeclarationNameInfo UsingName = NameInfo; 11906 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) 11907 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext)) 11908 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 11909 Context.getCanonicalType(Context.getRecordType(RD)))); 11910 11911 // Do the redeclaration lookup in the current scope. 11912 LookupResult Previous(*this, UsingName, LookupUsingDeclName, 11913 ForVisibleRedeclaration); 11914 Previous.setHideTags(false); 11915 if (S) { 11916 LookupName(Previous, S); 11917 11918 // It is really dumb that we have to do this. 11919 LookupResult::Filter F = Previous.makeFilter(); 11920 while (F.hasNext()) { 11921 NamedDecl *D = F.next(); 11922 if (!isDeclInScope(D, CurContext, S)) 11923 F.erase(); 11924 // If we found a local extern declaration that's not ordinarily visible, 11925 // and this declaration is being added to a non-block scope, ignore it. 11926 // We're only checking for scope conflicts here, not also for violations 11927 // of the linkage rules. 11928 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && 11929 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) 11930 F.erase(); 11931 } 11932 F.done(); 11933 } else { 11934 assert(IsInstantiation && "no scope in non-instantiation"); 11935 if (CurContext->isRecord()) 11936 LookupQualifiedName(Previous, CurContext); 11937 else { 11938 // No redeclaration check is needed here; in non-member contexts we 11939 // diagnosed all possible conflicts with other using-declarations when 11940 // building the template: 11941 // 11942 // For a dependent non-type using declaration, the only valid case is 11943 // if we instantiate to a single enumerator. We check for conflicts 11944 // between shadow declarations we introduce, and we check in the template 11945 // definition for conflicts between a non-type using declaration and any 11946 // other declaration, which together covers all cases. 11947 // 11948 // A dependent typename using declaration will never successfully 11949 // instantiate, since it will always name a class member, so we reject 11950 // that in the template definition. 11951 } 11952 } 11953 11954 // Check for invalid redeclarations. 11955 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, 11956 SS, IdentLoc, Previous)) 11957 return nullptr; 11958 11959 // Check for bad qualifiers. 11960 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo, 11961 IdentLoc)) 11962 return nullptr; 11963 11964 DeclContext *LookupContext = computeDeclContext(SS); 11965 NamedDecl *D; 11966 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 11967 if (!LookupContext || EllipsisLoc.isValid()) { 11968 if (HasTypenameKeyword) { 11969 // FIXME: not all declaration name kinds are legal here 11970 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, 11971 UsingLoc, TypenameLoc, 11972 QualifierLoc, 11973 IdentLoc, NameInfo.getName(), 11974 EllipsisLoc); 11975 } else { 11976 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, 11977 QualifierLoc, NameInfo, EllipsisLoc); 11978 } 11979 D->setAccess(AS); 11980 CurContext->addDecl(D); 11981 return D; 11982 } 11983 11984 auto Build = [&](bool Invalid) { 11985 UsingDecl *UD = 11986 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, 11987 UsingName, HasTypenameKeyword); 11988 UD->setAccess(AS); 11989 CurContext->addDecl(UD); 11990 UD->setInvalidDecl(Invalid); 11991 return UD; 11992 }; 11993 auto BuildInvalid = [&]{ return Build(true); }; 11994 auto BuildValid = [&]{ return Build(false); }; 11995 11996 if (RequireCompleteDeclContext(SS, LookupContext)) 11997 return BuildInvalid(); 11998 11999 // Look up the target name. 12000 LookupResult R(*this, NameInfo, LookupOrdinaryName); 12001 12002 // Unlike most lookups, we don't always want to hide tag 12003 // declarations: tag names are visible through the using declaration 12004 // even if hidden by ordinary names, *except* in a dependent context 12005 // where it's important for the sanity of two-phase lookup. 12006 if (!IsInstantiation) 12007 R.setHideTags(false); 12008 12009 // For the purposes of this lookup, we have a base object type 12010 // equal to that of the current context. 12011 if (CurContext->isRecord()) { 12012 R.setBaseObjectType( 12013 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))); 12014 } 12015 12016 LookupQualifiedName(R, LookupContext); 12017 12018 // Try to correct typos if possible. If constructor name lookup finds no 12019 // results, that means the named class has no explicit constructors, and we 12020 // suppressed declaring implicit ones (probably because it's dependent or 12021 // invalid). 12022 if (R.empty() && 12023 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) { 12024 // HACK: Work around a bug in libstdc++'s detection of ::gets. Sometimes 12025 // it will believe that glibc provides a ::gets in cases where it does not, 12026 // and will try to pull it into namespace std with a using-declaration. 12027 // Just ignore the using-declaration in that case. 12028 auto *II = NameInfo.getName().getAsIdentifierInfo(); 12029 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") && 12030 CurContext->isStdNamespace() && 12031 isa<TranslationUnitDecl>(LookupContext) && 12032 getSourceManager().isInSystemHeader(UsingLoc)) 12033 return nullptr; 12034 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), 12035 dyn_cast<CXXRecordDecl>(CurContext)); 12036 if (TypoCorrection Corrected = 12037 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, 12038 CTK_ErrorRecovery)) { 12039 // We reject candidates where DroppedSpecifier == true, hence the 12040 // literal '0' below. 12041 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) 12042 << NameInfo.getName() << LookupContext << 0 12043 << SS.getRange()); 12044 12045 // If we picked a correction with no attached Decl we can't do anything 12046 // useful with it, bail out. 12047 NamedDecl *ND = Corrected.getCorrectionDecl(); 12048 if (!ND) 12049 return BuildInvalid(); 12050 12051 // If we corrected to an inheriting constructor, handle it as one. 12052 auto *RD = dyn_cast<CXXRecordDecl>(ND); 12053 if (RD && RD->isInjectedClassName()) { 12054 // The parent of the injected class name is the class itself. 12055 RD = cast<CXXRecordDecl>(RD->getParent()); 12056 12057 // Fix up the information we'll use to build the using declaration. 12058 if (Corrected.WillReplaceSpecifier()) { 12059 NestedNameSpecifierLocBuilder Builder; 12060 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 12061 QualifierLoc.getSourceRange()); 12062 QualifierLoc = Builder.getWithLocInContext(Context); 12063 } 12064 12065 // In this case, the name we introduce is the name of a derived class 12066 // constructor. 12067 auto *CurClass = cast<CXXRecordDecl>(CurContext); 12068 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12069 Context.getCanonicalType(Context.getRecordType(CurClass)))); 12070 UsingName.setNamedTypeInfo(nullptr); 12071 for (auto *Ctor : LookupConstructors(RD)) 12072 R.addDecl(Ctor); 12073 R.resolveKind(); 12074 } else { 12075 // FIXME: Pick up all the declarations if we found an overloaded 12076 // function. 12077 UsingName.setName(ND->getDeclName()); 12078 R.addDecl(ND); 12079 } 12080 } else { 12081 Diag(IdentLoc, diag::err_no_member) 12082 << NameInfo.getName() << LookupContext << SS.getRange(); 12083 return BuildInvalid(); 12084 } 12085 } 12086 12087 if (R.isAmbiguous()) 12088 return BuildInvalid(); 12089 12090 if (HasTypenameKeyword) { 12091 // If we asked for a typename and got a non-type decl, error out. 12092 if (!R.getAsSingle<TypeDecl>()) { 12093 Diag(IdentLoc, diag::err_using_typename_non_type); 12094 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 12095 Diag((*I)->getUnderlyingDecl()->getLocation(), 12096 diag::note_using_decl_target); 12097 return BuildInvalid(); 12098 } 12099 } else { 12100 // If we asked for a non-typename and we got a type, error out, 12101 // but only if this is an instantiation of an unresolved using 12102 // decl. Otherwise just silently find the type name. 12103 if (IsInstantiation && R.getAsSingle<TypeDecl>()) { 12104 Diag(IdentLoc, diag::err_using_dependent_value_is_type); 12105 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); 12106 return BuildInvalid(); 12107 } 12108 } 12109 12110 // C++14 [namespace.udecl]p6: 12111 // A using-declaration shall not name a namespace. 12112 if (R.getAsSingle<NamespaceDecl>()) { 12113 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) 12114 << SS.getRange(); 12115 return BuildInvalid(); 12116 } 12117 12118 // C++14 [namespace.udecl]p7: 12119 // A using-declaration shall not name a scoped enumerator. 12120 if (auto *ED = R.getAsSingle<EnumConstantDecl>()) { 12121 if (cast<EnumDecl>(ED->getDeclContext())->isScoped()) { 12122 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_scoped_enum) 12123 << SS.getRange(); 12124 return BuildInvalid(); 12125 } 12126 } 12127 12128 UsingDecl *UD = BuildValid(); 12129 12130 // Some additional rules apply to inheriting constructors. 12131 if (UsingName.getName().getNameKind() == 12132 DeclarationName::CXXConstructorName) { 12133 // Suppress access diagnostics; the access check is instead performed at the 12134 // point of use for an inheriting constructor. 12135 R.suppressDiagnostics(); 12136 if (CheckInheritingConstructorUsingDecl(UD)) 12137 return UD; 12138 } 12139 12140 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 12141 UsingShadowDecl *PrevDecl = nullptr; 12142 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) 12143 BuildUsingShadowDecl(S, UD, *I, PrevDecl); 12144 } 12145 12146 return UD; 12147 } 12148 12149 NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom, 12150 ArrayRef<NamedDecl *> Expansions) { 12151 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || 12152 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || 12153 isa<UsingPackDecl>(InstantiatedFrom)); 12154 12155 auto *UPD = 12156 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions); 12157 UPD->setAccess(InstantiatedFrom->getAccess()); 12158 CurContext->addDecl(UPD); 12159 return UPD; 12160 } 12161 12162 /// Additional checks for a using declaration referring to a constructor name. 12163 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { 12164 assert(!UD->hasTypename() && "expecting a constructor name"); 12165 12166 const Type *SourceType = UD->getQualifier()->getAsType(); 12167 assert(SourceType && 12168 "Using decl naming constructor doesn't have type in scope spec."); 12169 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); 12170 12171 // Check whether the named type is a direct base class. 12172 bool AnyDependentBases = false; 12173 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0), 12174 AnyDependentBases); 12175 if (!Base && !AnyDependentBases) { 12176 Diag(UD->getUsingLoc(), 12177 diag::err_using_decl_constructor_not_in_direct_base) 12178 << UD->getNameInfo().getSourceRange() 12179 << QualType(SourceType, 0) << TargetClass; 12180 UD->setInvalidDecl(); 12181 return true; 12182 } 12183 12184 if (Base) 12185 Base->setInheritConstructors(); 12186 12187 return false; 12188 } 12189 12190 /// Checks that the given using declaration is not an invalid 12191 /// redeclaration. Note that this is checking only for the using decl 12192 /// itself, not for any ill-formedness among the UsingShadowDecls. 12193 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, 12194 bool HasTypenameKeyword, 12195 const CXXScopeSpec &SS, 12196 SourceLocation NameLoc, 12197 const LookupResult &Prev) { 12198 NestedNameSpecifier *Qual = SS.getScopeRep(); 12199 12200 // C++03 [namespace.udecl]p8: 12201 // C++0x [namespace.udecl]p10: 12202 // A using-declaration is a declaration and can therefore be used 12203 // repeatedly where (and only where) multiple declarations are 12204 // allowed. 12205 // 12206 // That's in non-member contexts. 12207 if (!CurContext->getRedeclContext()->isRecord()) { 12208 // A dependent qualifier outside a class can only ever resolve to an 12209 // enumeration type. Therefore it conflicts with any other non-type 12210 // declaration in the same scope. 12211 // FIXME: How should we check for dependent type-type conflicts at block 12212 // scope? 12213 if (Qual->isDependent() && !HasTypenameKeyword) { 12214 for (auto *D : Prev) { 12215 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) { 12216 bool OldCouldBeEnumerator = 12217 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D); 12218 Diag(NameLoc, 12219 OldCouldBeEnumerator ? diag::err_redefinition 12220 : diag::err_redefinition_different_kind) 12221 << Prev.getLookupName(); 12222 Diag(D->getLocation(), diag::note_previous_definition); 12223 return true; 12224 } 12225 } 12226 } 12227 return false; 12228 } 12229 12230 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { 12231 NamedDecl *D = *I; 12232 12233 bool DTypename; 12234 NestedNameSpecifier *DQual; 12235 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { 12236 DTypename = UD->hasTypename(); 12237 DQual = UD->getQualifier(); 12238 } else if (UnresolvedUsingValueDecl *UD 12239 = dyn_cast<UnresolvedUsingValueDecl>(D)) { 12240 DTypename = false; 12241 DQual = UD->getQualifier(); 12242 } else if (UnresolvedUsingTypenameDecl *UD 12243 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { 12244 DTypename = true; 12245 DQual = UD->getQualifier(); 12246 } else continue; 12247 12248 // using decls differ if one says 'typename' and the other doesn't. 12249 // FIXME: non-dependent using decls? 12250 if (HasTypenameKeyword != DTypename) continue; 12251 12252 // using decls differ if they name different scopes (but note that 12253 // template instantiation can cause this check to trigger when it 12254 // didn't before instantiation). 12255 if (Context.getCanonicalNestedNameSpecifier(Qual) != 12256 Context.getCanonicalNestedNameSpecifier(DQual)) 12257 continue; 12258 12259 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); 12260 Diag(D->getLocation(), diag::note_using_decl) << 1; 12261 return true; 12262 } 12263 12264 return false; 12265 } 12266 12267 12268 /// Checks that the given nested-name qualifier used in a using decl 12269 /// in the current context is appropriately related to the current 12270 /// scope. If an error is found, diagnoses it and returns true. 12271 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, 12272 bool HasTypename, 12273 const CXXScopeSpec &SS, 12274 const DeclarationNameInfo &NameInfo, 12275 SourceLocation NameLoc) { 12276 DeclContext *NamedContext = computeDeclContext(SS); 12277 12278 if (!CurContext->isRecord()) { 12279 // C++03 [namespace.udecl]p3: 12280 // C++0x [namespace.udecl]p8: 12281 // A using-declaration for a class member shall be a member-declaration. 12282 12283 // If we weren't able to compute a valid scope, it might validly be a 12284 // dependent class scope or a dependent enumeration unscoped scope. If 12285 // we have a 'typename' keyword, the scope must resolve to a class type. 12286 if ((HasTypename && !NamedContext) || 12287 (NamedContext && NamedContext->getRedeclContext()->isRecord())) { 12288 auto *RD = NamedContext 12289 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext()) 12290 : nullptr; 12291 if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD)) 12292 RD = nullptr; 12293 12294 Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member) 12295 << SS.getRange(); 12296 12297 // If we have a complete, non-dependent source type, try to suggest a 12298 // way to get the same effect. 12299 if (!RD) 12300 return true; 12301 12302 // Find what this using-declaration was referring to. 12303 LookupResult R(*this, NameInfo, LookupOrdinaryName); 12304 R.setHideTags(false); 12305 R.suppressDiagnostics(); 12306 LookupQualifiedName(R, RD); 12307 12308 if (R.getAsSingle<TypeDecl>()) { 12309 if (getLangOpts().CPlusPlus11) { 12310 // Convert 'using X::Y;' to 'using Y = X::Y;'. 12311 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) 12312 << 0 // alias declaration 12313 << FixItHint::CreateInsertion(SS.getBeginLoc(), 12314 NameInfo.getName().getAsString() + 12315 " = "); 12316 } else { 12317 // Convert 'using X::Y;' to 'typedef X::Y Y;'. 12318 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc()); 12319 Diag(InsertLoc, diag::note_using_decl_class_member_workaround) 12320 << 1 // typedef declaration 12321 << FixItHint::CreateReplacement(UsingLoc, "typedef") 12322 << FixItHint::CreateInsertion( 12323 InsertLoc, " " + NameInfo.getName().getAsString()); 12324 } 12325 } else if (R.getAsSingle<VarDecl>()) { 12326 // Don't provide a fixit outside C++11 mode; we don't want to suggest 12327 // repeating the type of the static data member here. 12328 FixItHint FixIt; 12329 if (getLangOpts().CPlusPlus11) { 12330 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 12331 FixIt = FixItHint::CreateReplacement( 12332 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = "); 12333 } 12334 12335 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 12336 << 2 // reference declaration 12337 << FixIt; 12338 } else if (R.getAsSingle<EnumConstantDecl>()) { 12339 // Don't provide a fixit outside C++11 mode; we don't want to suggest 12340 // repeating the type of the enumeration here, and we can't do so if 12341 // the type is anonymous. 12342 FixItHint FixIt; 12343 if (getLangOpts().CPlusPlus11) { 12344 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 12345 FixIt = FixItHint::CreateReplacement( 12346 UsingLoc, 12347 "constexpr auto " + NameInfo.getName().getAsString() + " = "); 12348 } 12349 12350 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 12351 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable 12352 << FixIt; 12353 } 12354 return true; 12355 } 12356 12357 // Otherwise, this might be valid. 12358 return false; 12359 } 12360 12361 // The current scope is a record. 12362 12363 // If the named context is dependent, we can't decide much. 12364 if (!NamedContext) { 12365 // FIXME: in C++0x, we can diagnose if we can prove that the 12366 // nested-name-specifier does not refer to a base class, which is 12367 // still possible in some cases. 12368 12369 // Otherwise we have to conservatively report that things might be 12370 // okay. 12371 return false; 12372 } 12373 12374 if (!NamedContext->isRecord()) { 12375 // Ideally this would point at the last name in the specifier, 12376 // but we don't have that level of source info. 12377 Diag(SS.getRange().getBegin(), 12378 diag::err_using_decl_nested_name_specifier_is_not_class) 12379 << SS.getScopeRep() << SS.getRange(); 12380 return true; 12381 } 12382 12383 if (!NamedContext->isDependentContext() && 12384 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) 12385 return true; 12386 12387 if (getLangOpts().CPlusPlus11) { 12388 // C++11 [namespace.udecl]p3: 12389 // In a using-declaration used as a member-declaration, the 12390 // nested-name-specifier shall name a base class of the class 12391 // being defined. 12392 12393 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( 12394 cast<CXXRecordDecl>(NamedContext))) { 12395 if (CurContext == NamedContext) { 12396 Diag(NameLoc, 12397 diag::err_using_decl_nested_name_specifier_is_current_class) 12398 << SS.getRange(); 12399 return true; 12400 } 12401 12402 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) { 12403 Diag(SS.getRange().getBegin(), 12404 diag::err_using_decl_nested_name_specifier_is_not_base_class) 12405 << SS.getScopeRep() 12406 << cast<CXXRecordDecl>(CurContext) 12407 << SS.getRange(); 12408 } 12409 return true; 12410 } 12411 12412 return false; 12413 } 12414 12415 // C++03 [namespace.udecl]p4: 12416 // A using-declaration used as a member-declaration shall refer 12417 // to a member of a base class of the class being defined [etc.]. 12418 12419 // Salient point: SS doesn't have to name a base class as long as 12420 // lookup only finds members from base classes. Therefore we can 12421 // diagnose here only if we can prove that that can't happen, 12422 // i.e. if the class hierarchies provably don't intersect. 12423 12424 // TODO: it would be nice if "definitely valid" results were cached 12425 // in the UsingDecl and UsingShadowDecl so that these checks didn't 12426 // need to be repeated. 12427 12428 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases; 12429 auto Collect = [&Bases](const CXXRecordDecl *Base) { 12430 Bases.insert(Base); 12431 return true; 12432 }; 12433 12434 // Collect all bases. Return false if we find a dependent base. 12435 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect)) 12436 return false; 12437 12438 // Returns true if the base is dependent or is one of the accumulated base 12439 // classes. 12440 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) { 12441 return !Bases.count(Base); 12442 }; 12443 12444 // Return false if the class has a dependent base or if it or one 12445 // of its bases is present in the base set of the current context. 12446 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) || 12447 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase)) 12448 return false; 12449 12450 Diag(SS.getRange().getBegin(), 12451 diag::err_using_decl_nested_name_specifier_is_not_base_class) 12452 << SS.getScopeRep() 12453 << cast<CXXRecordDecl>(CurContext) 12454 << SS.getRange(); 12455 12456 return true; 12457 } 12458 12459 Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS, 12460 MultiTemplateParamsArg TemplateParamLists, 12461 SourceLocation UsingLoc, UnqualifiedId &Name, 12462 const ParsedAttributesView &AttrList, 12463 TypeResult Type, Decl *DeclFromDeclSpec) { 12464 // Skip up to the relevant declaration scope. 12465 while (S->isTemplateParamScope()) 12466 S = S->getParent(); 12467 assert((S->getFlags() & Scope::DeclScope) && 12468 "got alias-declaration outside of declaration scope"); 12469 12470 if (Type.isInvalid()) 12471 return nullptr; 12472 12473 bool Invalid = false; 12474 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); 12475 TypeSourceInfo *TInfo = nullptr; 12476 GetTypeFromParser(Type.get(), &TInfo); 12477 12478 if (DiagnoseClassNameShadow(CurContext, NameInfo)) 12479 return nullptr; 12480 12481 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, 12482 UPPC_DeclarationType)) { 12483 Invalid = true; 12484 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 12485 TInfo->getTypeLoc().getBeginLoc()); 12486 } 12487 12488 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 12489 TemplateParamLists.size() 12490 ? forRedeclarationInCurContext() 12491 : ForVisibleRedeclaration); 12492 LookupName(Previous, S); 12493 12494 // Warn about shadowing the name of a template parameter. 12495 if (Previous.isSingleResult() && 12496 Previous.getFoundDecl()->isTemplateParameter()) { 12497 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); 12498 Previous.clear(); 12499 } 12500 12501 assert(Name.Kind == UnqualifiedIdKind::IK_Identifier && 12502 "name in alias declaration must be an identifier"); 12503 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, 12504 Name.StartLocation, 12505 Name.Identifier, TInfo); 12506 12507 NewTD->setAccess(AS); 12508 12509 if (Invalid) 12510 NewTD->setInvalidDecl(); 12511 12512 ProcessDeclAttributeList(S, NewTD, AttrList); 12513 AddPragmaAttributes(S, NewTD); 12514 12515 CheckTypedefForVariablyModifiedType(S, NewTD); 12516 Invalid |= NewTD->isInvalidDecl(); 12517 12518 bool Redeclaration = false; 12519 12520 NamedDecl *NewND; 12521 if (TemplateParamLists.size()) { 12522 TypeAliasTemplateDecl *OldDecl = nullptr; 12523 TemplateParameterList *OldTemplateParams = nullptr; 12524 12525 if (TemplateParamLists.size() != 1) { 12526 Diag(UsingLoc, diag::err_alias_template_extra_headers) 12527 << SourceRange(TemplateParamLists[1]->getTemplateLoc(), 12528 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); 12529 } 12530 TemplateParameterList *TemplateParams = TemplateParamLists[0]; 12531 12532 // Check that we can declare a template here. 12533 if (CheckTemplateDeclScope(S, TemplateParams)) 12534 return nullptr; 12535 12536 // Only consider previous declarations in the same scope. 12537 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, 12538 /*ExplicitInstantiationOrSpecialization*/false); 12539 if (!Previous.empty()) { 12540 Redeclaration = true; 12541 12542 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); 12543 if (!OldDecl && !Invalid) { 12544 Diag(UsingLoc, diag::err_redefinition_different_kind) 12545 << Name.Identifier; 12546 12547 NamedDecl *OldD = Previous.getRepresentativeDecl(); 12548 if (OldD->getLocation().isValid()) 12549 Diag(OldD->getLocation(), diag::note_previous_definition); 12550 12551 Invalid = true; 12552 } 12553 12554 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { 12555 if (TemplateParameterListsAreEqual(TemplateParams, 12556 OldDecl->getTemplateParameters(), 12557 /*Complain=*/true, 12558 TPL_TemplateMatch)) 12559 OldTemplateParams = 12560 OldDecl->getMostRecentDecl()->getTemplateParameters(); 12561 else 12562 Invalid = true; 12563 12564 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); 12565 if (!Invalid && 12566 !Context.hasSameType(OldTD->getUnderlyingType(), 12567 NewTD->getUnderlyingType())) { 12568 // FIXME: The C++0x standard does not clearly say this is ill-formed, 12569 // but we can't reasonably accept it. 12570 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) 12571 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); 12572 if (OldTD->getLocation().isValid()) 12573 Diag(OldTD->getLocation(), diag::note_previous_definition); 12574 Invalid = true; 12575 } 12576 } 12577 } 12578 12579 // Merge any previous default template arguments into our parameters, 12580 // and check the parameter list. 12581 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, 12582 TPC_TypeAliasTemplate)) 12583 return nullptr; 12584 12585 TypeAliasTemplateDecl *NewDecl = 12586 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, 12587 Name.Identifier, TemplateParams, 12588 NewTD); 12589 NewTD->setDescribedAliasTemplate(NewDecl); 12590 12591 NewDecl->setAccess(AS); 12592 12593 if (Invalid) 12594 NewDecl->setInvalidDecl(); 12595 else if (OldDecl) { 12596 NewDecl->setPreviousDecl(OldDecl); 12597 CheckRedeclarationModuleOwnership(NewDecl, OldDecl); 12598 } 12599 12600 NewND = NewDecl; 12601 } else { 12602 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) { 12603 setTagNameForLinkagePurposes(TD, NewTD); 12604 handleTagNumbering(TD, S); 12605 } 12606 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); 12607 NewND = NewTD; 12608 } 12609 12610 PushOnScopeChains(NewND, S); 12611 ActOnDocumentableDecl(NewND); 12612 return NewND; 12613 } 12614 12615 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, 12616 SourceLocation AliasLoc, 12617 IdentifierInfo *Alias, CXXScopeSpec &SS, 12618 SourceLocation IdentLoc, 12619 IdentifierInfo *Ident) { 12620 12621 // Lookup the namespace name. 12622 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); 12623 LookupParsedName(R, S, &SS); 12624 12625 if (R.isAmbiguous()) 12626 return nullptr; 12627 12628 if (R.empty()) { 12629 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { 12630 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 12631 return nullptr; 12632 } 12633 } 12634 assert(!R.isAmbiguous() && !R.empty()); 12635 NamedDecl *ND = R.getRepresentativeDecl(); 12636 12637 // Check if we have a previous declaration with the same name. 12638 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName, 12639 ForVisibleRedeclaration); 12640 LookupName(PrevR, S); 12641 12642 // Check we're not shadowing a template parameter. 12643 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) { 12644 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl()); 12645 PrevR.clear(); 12646 } 12647 12648 // Filter out any other lookup result from an enclosing scope. 12649 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false, 12650 /*AllowInlineNamespace*/false); 12651 12652 // Find the previous declaration and check that we can redeclare it. 12653 NamespaceAliasDecl *Prev = nullptr; 12654 if (PrevR.isSingleResult()) { 12655 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl(); 12656 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { 12657 // We already have an alias with the same name that points to the same 12658 // namespace; check that it matches. 12659 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) { 12660 Prev = AD; 12661 } else if (isVisible(PrevDecl)) { 12662 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) 12663 << Alias; 12664 Diag(AD->getLocation(), diag::note_previous_namespace_alias) 12665 << AD->getNamespace(); 12666 return nullptr; 12667 } 12668 } else if (isVisible(PrevDecl)) { 12669 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl()) 12670 ? diag::err_redefinition 12671 : diag::err_redefinition_different_kind; 12672 Diag(AliasLoc, DiagID) << Alias; 12673 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 12674 return nullptr; 12675 } 12676 } 12677 12678 // The use of a nested name specifier may trigger deprecation warnings. 12679 DiagnoseUseOfDecl(ND, IdentLoc); 12680 12681 NamespaceAliasDecl *AliasDecl = 12682 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, 12683 Alias, SS.getWithLocInContext(Context), 12684 IdentLoc, ND); 12685 if (Prev) 12686 AliasDecl->setPreviousDecl(Prev); 12687 12688 PushOnScopeChains(AliasDecl, S); 12689 return AliasDecl; 12690 } 12691 12692 namespace { 12693 struct SpecialMemberExceptionSpecInfo 12694 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> { 12695 SourceLocation Loc; 12696 Sema::ImplicitExceptionSpecification ExceptSpec; 12697 12698 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD, 12699 Sema::CXXSpecialMember CSM, 12700 Sema::InheritedConstructorInfo *ICI, 12701 SourceLocation Loc) 12702 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {} 12703 12704 bool visitBase(CXXBaseSpecifier *Base); 12705 bool visitField(FieldDecl *FD); 12706 12707 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 12708 unsigned Quals); 12709 12710 void visitSubobjectCall(Subobject Subobj, 12711 Sema::SpecialMemberOverloadResult SMOR); 12712 }; 12713 } 12714 12715 bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) { 12716 auto *RT = Base->getType()->getAs<RecordType>(); 12717 if (!RT) 12718 return false; 12719 12720 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl()); 12721 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 12722 if (auto *BaseCtor = SMOR.getMethod()) { 12723 visitSubobjectCall(Base, BaseCtor); 12724 return false; 12725 } 12726 12727 visitClassSubobject(BaseClass, Base, 0); 12728 return false; 12729 } 12730 12731 bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) { 12732 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) { 12733 Expr *E = FD->getInClassInitializer(); 12734 if (!E) 12735 // FIXME: It's a little wasteful to build and throw away a 12736 // CXXDefaultInitExpr here. 12737 // FIXME: We should have a single context note pointing at Loc, and 12738 // this location should be MD->getLocation() instead, since that's 12739 // the location where we actually use the default init expression. 12740 E = S.BuildCXXDefaultInitExpr(Loc, FD).get(); 12741 if (E) 12742 ExceptSpec.CalledExpr(E); 12743 } else if (auto *RT = S.Context.getBaseElementType(FD->getType()) 12744 ->getAs<RecordType>()) { 12745 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD, 12746 FD->getType().getCVRQualifiers()); 12747 } 12748 return false; 12749 } 12750 12751 void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class, 12752 Subobject Subobj, 12753 unsigned Quals) { 12754 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 12755 bool IsMutable = Field && Field->isMutable(); 12756 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable)); 12757 } 12758 12759 void SpecialMemberExceptionSpecInfo::visitSubobjectCall( 12760 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) { 12761 // Note, if lookup fails, it doesn't matter what exception specification we 12762 // choose because the special member will be deleted. 12763 if (CXXMethodDecl *MD = SMOR.getMethod()) 12764 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD); 12765 } 12766 12767 bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) { 12768 llvm::APSInt Result; 12769 ExprResult Converted = CheckConvertedConstantExpression( 12770 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool); 12771 ExplicitSpec.setExpr(Converted.get()); 12772 if (Converted.isUsable() && !Converted.get()->isValueDependent()) { 12773 ExplicitSpec.setKind(Result.getBoolValue() 12774 ? ExplicitSpecKind::ResolvedTrue 12775 : ExplicitSpecKind::ResolvedFalse); 12776 return true; 12777 } 12778 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved); 12779 return false; 12780 } 12781 12782 ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) { 12783 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved); 12784 if (!ExplicitExpr->isTypeDependent()) 12785 tryResolveExplicitSpecifier(ES); 12786 return ES; 12787 } 12788 12789 static Sema::ImplicitExceptionSpecification 12790 ComputeDefaultedSpecialMemberExceptionSpec( 12791 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 12792 Sema::InheritedConstructorInfo *ICI) { 12793 ComputingExceptionSpec CES(S, MD, Loc); 12794 12795 CXXRecordDecl *ClassDecl = MD->getParent(); 12796 12797 // C++ [except.spec]p14: 12798 // An implicitly declared special member function (Clause 12) shall have an 12799 // exception-specification. [...] 12800 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation()); 12801 if (ClassDecl->isInvalidDecl()) 12802 return Info.ExceptSpec; 12803 12804 // FIXME: If this diagnostic fires, we're probably missing a check for 12805 // attempting to resolve an exception specification before it's known 12806 // at a higher level. 12807 if (S.RequireCompleteType(MD->getLocation(), 12808 S.Context.getRecordType(ClassDecl), 12809 diag::err_exception_spec_incomplete_type)) 12810 return Info.ExceptSpec; 12811 12812 // C++1z [except.spec]p7: 12813 // [Look for exceptions thrown by] a constructor selected [...] to 12814 // initialize a potentially constructed subobject, 12815 // C++1z [except.spec]p8: 12816 // The exception specification for an implicitly-declared destructor, or a 12817 // destructor without a noexcept-specifier, is potentially-throwing if and 12818 // only if any of the destructors for any of its potentially constructed 12819 // subojects is potentially throwing. 12820 // FIXME: We respect the first rule but ignore the "potentially constructed" 12821 // in the second rule to resolve a core issue (no number yet) that would have 12822 // us reject: 12823 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; }; 12824 // struct B : A {}; 12825 // struct C : B { void f(); }; 12826 // ... due to giving B::~B() a non-throwing exception specification. 12827 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases 12828 : Info.VisitAllBases); 12829 12830 return Info.ExceptSpec; 12831 } 12832 12833 namespace { 12834 /// RAII object to register a special member as being currently declared. 12835 struct DeclaringSpecialMember { 12836 Sema &S; 12837 Sema::SpecialMemberDecl D; 12838 Sema::ContextRAII SavedContext; 12839 bool WasAlreadyBeingDeclared; 12840 12841 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM) 12842 : S(S), D(RD, CSM), SavedContext(S, RD) { 12843 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second; 12844 if (WasAlreadyBeingDeclared) 12845 // This almost never happens, but if it does, ensure that our cache 12846 // doesn't contain a stale result. 12847 S.SpecialMemberCache.clear(); 12848 else { 12849 // Register a note to be produced if we encounter an error while 12850 // declaring the special member. 12851 Sema::CodeSynthesisContext Ctx; 12852 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember; 12853 // FIXME: We don't have a location to use here. Using the class's 12854 // location maintains the fiction that we declare all special members 12855 // with the class, but (1) it's not clear that lying about that helps our 12856 // users understand what's going on, and (2) there may be outer contexts 12857 // on the stack (some of which are relevant) and printing them exposes 12858 // our lies. 12859 Ctx.PointOfInstantiation = RD->getLocation(); 12860 Ctx.Entity = RD; 12861 Ctx.SpecialMember = CSM; 12862 S.pushCodeSynthesisContext(Ctx); 12863 } 12864 } 12865 ~DeclaringSpecialMember() { 12866 if (!WasAlreadyBeingDeclared) { 12867 S.SpecialMembersBeingDeclared.erase(D); 12868 S.popCodeSynthesisContext(); 12869 } 12870 } 12871 12872 /// Are we already trying to declare this special member? 12873 bool isAlreadyBeingDeclared() const { 12874 return WasAlreadyBeingDeclared; 12875 } 12876 }; 12877 } 12878 12879 void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) { 12880 // Look up any existing declarations, but don't trigger declaration of all 12881 // implicit special members with this name. 12882 DeclarationName Name = FD->getDeclName(); 12883 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName, 12884 ForExternalRedeclaration); 12885 for (auto *D : FD->getParent()->lookup(Name)) 12886 if (auto *Acceptable = R.getAcceptableDecl(D)) 12887 R.addDecl(Acceptable); 12888 R.resolveKind(); 12889 R.suppressDiagnostics(); 12890 12891 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false); 12892 } 12893 12894 void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, 12895 QualType ResultTy, 12896 ArrayRef<QualType> Args) { 12897 // Build an exception specification pointing back at this constructor. 12898 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem); 12899 12900 LangAS AS = getDefaultCXXMethodAddrSpace(); 12901 if (AS != LangAS::Default) { 12902 EPI.TypeQuals.addAddressSpace(AS); 12903 } 12904 12905 auto QT = Context.getFunctionType(ResultTy, Args, EPI); 12906 SpecialMem->setType(QT); 12907 } 12908 12909 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( 12910 CXXRecordDecl *ClassDecl) { 12911 // C++ [class.ctor]p5: 12912 // A default constructor for a class X is a constructor of class X 12913 // that can be called without an argument. If there is no 12914 // user-declared constructor for class X, a default constructor is 12915 // implicitly declared. An implicitly-declared default constructor 12916 // is an inline public member of its class. 12917 assert(ClassDecl->needsImplicitDefaultConstructor() && 12918 "Should not build implicit default constructor!"); 12919 12920 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor); 12921 if (DSM.isAlreadyBeingDeclared()) 12922 return nullptr; 12923 12924 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 12925 CXXDefaultConstructor, 12926 false); 12927 12928 // Create the actual constructor declaration. 12929 CanQualType ClassType 12930 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 12931 SourceLocation ClassLoc = ClassDecl->getLocation(); 12932 DeclarationName Name 12933 = Context.DeclarationNames.getCXXConstructorName(ClassType); 12934 DeclarationNameInfo NameInfo(Name, ClassLoc); 12935 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( 12936 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(), 12937 /*TInfo=*/nullptr, ExplicitSpecifier(), 12938 /*isInline=*/true, /*isImplicitlyDeclared=*/true, 12939 Constexpr ? CSK_constexpr : CSK_unspecified); 12940 DefaultCon->setAccess(AS_public); 12941 DefaultCon->setDefaulted(); 12942 12943 if (getLangOpts().CUDA) { 12944 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor, 12945 DefaultCon, 12946 /* ConstRHS */ false, 12947 /* Diagnose */ false); 12948 } 12949 12950 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None); 12951 12952 // We don't need to use SpecialMemberIsTrivial here; triviality for default 12953 // constructors is easy to compute. 12954 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); 12955 12956 // Note that we have declared this constructor. 12957 ++getASTContext().NumImplicitDefaultConstructorsDeclared; 12958 12959 Scope *S = getScopeForContext(ClassDecl); 12960 CheckImplicitSpecialMemberDeclaration(S, DefaultCon); 12961 12962 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor)) 12963 SetDeclDeleted(DefaultCon, ClassLoc); 12964 12965 if (S) 12966 PushOnScopeChains(DefaultCon, S, false); 12967 ClassDecl->addDecl(DefaultCon); 12968 12969 return DefaultCon; 12970 } 12971 12972 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, 12973 CXXConstructorDecl *Constructor) { 12974 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 12975 !Constructor->doesThisDeclarationHaveABody() && 12976 !Constructor->isDeleted()) && 12977 "DefineImplicitDefaultConstructor - call it for implicit default ctor"); 12978 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 12979 return; 12980 12981 CXXRecordDecl *ClassDecl = Constructor->getParent(); 12982 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); 12983 12984 SynthesizedFunctionScope Scope(*this, Constructor); 12985 12986 // The exception specification is needed because we are defining the 12987 // function. 12988 ResolveExceptionSpec(CurrentLocation, 12989 Constructor->getType()->castAs<FunctionProtoType>()); 12990 MarkVTableUsed(CurrentLocation, ClassDecl); 12991 12992 // Add a context note for diagnostics produced after this point. 12993 Scope.addContextNote(CurrentLocation); 12994 12995 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) { 12996 Constructor->setInvalidDecl(); 12997 return; 12998 } 12999 13000 SourceLocation Loc = Constructor->getEndLoc().isValid() 13001 ? Constructor->getEndLoc() 13002 : Constructor->getLocation(); 13003 Constructor->setBody(new (Context) CompoundStmt(Loc)); 13004 Constructor->markUsed(Context); 13005 13006 if (ASTMutationListener *L = getASTMutationListener()) { 13007 L->CompletedImplicitDefinition(Constructor); 13008 } 13009 13010 DiagnoseUninitializedFields(*this, Constructor); 13011 } 13012 13013 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { 13014 // Perform any delayed checks on exception specifications. 13015 CheckDelayedMemberExceptionSpecs(); 13016 } 13017 13018 /// Find or create the fake constructor we synthesize to model constructing an 13019 /// object of a derived class via a constructor of a base class. 13020 CXXConstructorDecl * 13021 Sema::findInheritingConstructor(SourceLocation Loc, 13022 CXXConstructorDecl *BaseCtor, 13023 ConstructorUsingShadowDecl *Shadow) { 13024 CXXRecordDecl *Derived = Shadow->getParent(); 13025 SourceLocation UsingLoc = Shadow->getLocation(); 13026 13027 // FIXME: Add a new kind of DeclarationName for an inherited constructor. 13028 // For now we use the name of the base class constructor as a member of the 13029 // derived class to indicate a (fake) inherited constructor name. 13030 DeclarationName Name = BaseCtor->getDeclName(); 13031 13032 // Check to see if we already have a fake constructor for this inherited 13033 // constructor call. 13034 for (NamedDecl *Ctor : Derived->lookup(Name)) 13035 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor) 13036 ->getInheritedConstructor() 13037 .getConstructor(), 13038 BaseCtor)) 13039 return cast<CXXConstructorDecl>(Ctor); 13040 13041 DeclarationNameInfo NameInfo(Name, UsingLoc); 13042 TypeSourceInfo *TInfo = 13043 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc); 13044 FunctionProtoTypeLoc ProtoLoc = 13045 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>(); 13046 13047 // Check the inherited constructor is valid and find the list of base classes 13048 // from which it was inherited. 13049 InheritedConstructorInfo ICI(*this, Loc, Shadow); 13050 13051 bool Constexpr = 13052 BaseCtor->isConstexpr() && 13053 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor, 13054 false, BaseCtor, &ICI); 13055 13056 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( 13057 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo, 13058 BaseCtor->getExplicitSpecifier(), /*isInline=*/true, 13059 /*isImplicitlyDeclared=*/true, 13060 Constexpr ? BaseCtor->getConstexprKind() : CSK_unspecified, 13061 InheritedConstructor(Shadow, BaseCtor), 13062 BaseCtor->getTrailingRequiresClause()); 13063 if (Shadow->isInvalidDecl()) 13064 DerivedCtor->setInvalidDecl(); 13065 13066 // Build an unevaluated exception specification for this fake constructor. 13067 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>(); 13068 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 13069 EPI.ExceptionSpec.Type = EST_Unevaluated; 13070 EPI.ExceptionSpec.SourceDecl = DerivedCtor; 13071 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(), 13072 FPT->getParamTypes(), EPI)); 13073 13074 // Build the parameter declarations. 13075 SmallVector<ParmVarDecl *, 16> ParamDecls; 13076 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { 13077 TypeSourceInfo *TInfo = 13078 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc); 13079 ParmVarDecl *PD = ParmVarDecl::Create( 13080 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, 13081 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr); 13082 PD->setScopeInfo(0, I); 13083 PD->setImplicit(); 13084 // Ensure attributes are propagated onto parameters (this matters for 13085 // format, pass_object_size, ...). 13086 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I)); 13087 ParamDecls.push_back(PD); 13088 ProtoLoc.setParam(I, PD); 13089 } 13090 13091 // Set up the new constructor. 13092 assert(!BaseCtor->isDeleted() && "should not use deleted constructor"); 13093 DerivedCtor->setAccess(BaseCtor->getAccess()); 13094 DerivedCtor->setParams(ParamDecls); 13095 Derived->addDecl(DerivedCtor); 13096 13097 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI)) 13098 SetDeclDeleted(DerivedCtor, UsingLoc); 13099 13100 return DerivedCtor; 13101 } 13102 13103 void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) { 13104 InheritedConstructorInfo ICI(*this, Ctor->getLocation(), 13105 Ctor->getInheritedConstructor().getShadowDecl()); 13106 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI, 13107 /*Diagnose*/true); 13108 } 13109 13110 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, 13111 CXXConstructorDecl *Constructor) { 13112 CXXRecordDecl *ClassDecl = Constructor->getParent(); 13113 assert(Constructor->getInheritedConstructor() && 13114 !Constructor->doesThisDeclarationHaveABody() && 13115 !Constructor->isDeleted()); 13116 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 13117 return; 13118 13119 // Initializations are performed "as if by a defaulted default constructor", 13120 // so enter the appropriate scope. 13121 SynthesizedFunctionScope Scope(*this, Constructor); 13122 13123 // The exception specification is needed because we are defining the 13124 // function. 13125 ResolveExceptionSpec(CurrentLocation, 13126 Constructor->getType()->castAs<FunctionProtoType>()); 13127 MarkVTableUsed(CurrentLocation, ClassDecl); 13128 13129 // Add a context note for diagnostics produced after this point. 13130 Scope.addContextNote(CurrentLocation); 13131 13132 ConstructorUsingShadowDecl *Shadow = 13133 Constructor->getInheritedConstructor().getShadowDecl(); 13134 CXXConstructorDecl *InheritedCtor = 13135 Constructor->getInheritedConstructor().getConstructor(); 13136 13137 // [class.inhctor.init]p1: 13138 // initialization proceeds as if a defaulted default constructor is used to 13139 // initialize the D object and each base class subobject from which the 13140 // constructor was inherited 13141 13142 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow); 13143 CXXRecordDecl *RD = Shadow->getParent(); 13144 SourceLocation InitLoc = Shadow->getLocation(); 13145 13146 // Build explicit initializers for all base classes from which the 13147 // constructor was inherited. 13148 SmallVector<CXXCtorInitializer*, 8> Inits; 13149 for (bool VBase : {false, true}) { 13150 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) { 13151 if (B.isVirtual() != VBase) 13152 continue; 13153 13154 auto *BaseRD = B.getType()->getAsCXXRecordDecl(); 13155 if (!BaseRD) 13156 continue; 13157 13158 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor); 13159 if (!BaseCtor.first) 13160 continue; 13161 13162 MarkFunctionReferenced(CurrentLocation, BaseCtor.first); 13163 ExprResult Init = new (Context) CXXInheritedCtorInitExpr( 13164 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second); 13165 13166 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc); 13167 Inits.push_back(new (Context) CXXCtorInitializer( 13168 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc, 13169 SourceLocation())); 13170 } 13171 } 13172 13173 // We now proceed as if for a defaulted default constructor, with the relevant 13174 // initializers replaced. 13175 13176 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) { 13177 Constructor->setInvalidDecl(); 13178 return; 13179 } 13180 13181 Constructor->setBody(new (Context) CompoundStmt(InitLoc)); 13182 Constructor->markUsed(Context); 13183 13184 if (ASTMutationListener *L = getASTMutationListener()) { 13185 L->CompletedImplicitDefinition(Constructor); 13186 } 13187 13188 DiagnoseUninitializedFields(*this, Constructor); 13189 } 13190 13191 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { 13192 // C++ [class.dtor]p2: 13193 // If a class has no user-declared destructor, a destructor is 13194 // declared implicitly. An implicitly-declared destructor is an 13195 // inline public member of its class. 13196 assert(ClassDecl->needsImplicitDestructor()); 13197 13198 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor); 13199 if (DSM.isAlreadyBeingDeclared()) 13200 return nullptr; 13201 13202 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 13203 CXXDestructor, 13204 false); 13205 13206 // Create the actual destructor declaration. 13207 CanQualType ClassType 13208 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 13209 SourceLocation ClassLoc = ClassDecl->getLocation(); 13210 DeclarationName Name 13211 = Context.DeclarationNames.getCXXDestructorName(ClassType); 13212 DeclarationNameInfo NameInfo(Name, ClassLoc); 13213 CXXDestructorDecl *Destructor = 13214 CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, 13215 QualType(), nullptr, /*isInline=*/true, 13216 /*isImplicitlyDeclared=*/true, 13217 Constexpr ? CSK_constexpr : CSK_unspecified); 13218 Destructor->setAccess(AS_public); 13219 Destructor->setDefaulted(); 13220 13221 if (getLangOpts().CUDA) { 13222 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor, 13223 Destructor, 13224 /* ConstRHS */ false, 13225 /* Diagnose */ false); 13226 } 13227 13228 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None); 13229 13230 // We don't need to use SpecialMemberIsTrivial here; triviality for 13231 // destructors is easy to compute. 13232 Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); 13233 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() || 13234 ClassDecl->hasTrivialDestructorForCall()); 13235 13236 // Note that we have declared this destructor. 13237 ++getASTContext().NumImplicitDestructorsDeclared; 13238 13239 Scope *S = getScopeForContext(ClassDecl); 13240 CheckImplicitSpecialMemberDeclaration(S, Destructor); 13241 13242 // We can't check whether an implicit destructor is deleted before we complete 13243 // the definition of the class, because its validity depends on the alignment 13244 // of the class. We'll check this from ActOnFields once the class is complete. 13245 if (ClassDecl->isCompleteDefinition() && 13246 ShouldDeleteSpecialMember(Destructor, CXXDestructor)) 13247 SetDeclDeleted(Destructor, ClassLoc); 13248 13249 // Introduce this destructor into its scope. 13250 if (S) 13251 PushOnScopeChains(Destructor, S, false); 13252 ClassDecl->addDecl(Destructor); 13253 13254 return Destructor; 13255 } 13256 13257 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, 13258 CXXDestructorDecl *Destructor) { 13259 assert((Destructor->isDefaulted() && 13260 !Destructor->doesThisDeclarationHaveABody() && 13261 !Destructor->isDeleted()) && 13262 "DefineImplicitDestructor - call it for implicit default dtor"); 13263 if (Destructor->willHaveBody() || Destructor->isInvalidDecl()) 13264 return; 13265 13266 CXXRecordDecl *ClassDecl = Destructor->getParent(); 13267 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); 13268 13269 SynthesizedFunctionScope Scope(*this, Destructor); 13270 13271 // The exception specification is needed because we are defining the 13272 // function. 13273 ResolveExceptionSpec(CurrentLocation, 13274 Destructor->getType()->castAs<FunctionProtoType>()); 13275 MarkVTableUsed(CurrentLocation, ClassDecl); 13276 13277 // Add a context note for diagnostics produced after this point. 13278 Scope.addContextNote(CurrentLocation); 13279 13280 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 13281 Destructor->getParent()); 13282 13283 if (CheckDestructor(Destructor)) { 13284 Destructor->setInvalidDecl(); 13285 return; 13286 } 13287 13288 SourceLocation Loc = Destructor->getEndLoc().isValid() 13289 ? Destructor->getEndLoc() 13290 : Destructor->getLocation(); 13291 Destructor->setBody(new (Context) CompoundStmt(Loc)); 13292 Destructor->markUsed(Context); 13293 13294 if (ASTMutationListener *L = getASTMutationListener()) { 13295 L->CompletedImplicitDefinition(Destructor); 13296 } 13297 } 13298 13299 void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation, 13300 CXXDestructorDecl *Destructor) { 13301 if (Destructor->isInvalidDecl()) 13302 return; 13303 13304 CXXRecordDecl *ClassDecl = Destructor->getParent(); 13305 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() && 13306 "implicit complete dtors unneeded outside MS ABI"); 13307 assert(ClassDecl->getNumVBases() > 0 && 13308 "complete dtor only exists for classes with vbases"); 13309 13310 SynthesizedFunctionScope Scope(*this, Destructor); 13311 13312 // Add a context note for diagnostics produced after this point. 13313 Scope.addContextNote(CurrentLocation); 13314 13315 MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl); 13316 } 13317 13318 /// Perform any semantic analysis which needs to be delayed until all 13319 /// pending class member declarations have been parsed. 13320 void Sema::ActOnFinishCXXMemberDecls() { 13321 // If the context is an invalid C++ class, just suppress these checks. 13322 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) { 13323 if (Record->isInvalidDecl()) { 13324 DelayedOverridingExceptionSpecChecks.clear(); 13325 DelayedEquivalentExceptionSpecChecks.clear(); 13326 return; 13327 } 13328 checkForMultipleExportedDefaultConstructors(*this, Record); 13329 } 13330 } 13331 13332 void Sema::ActOnFinishCXXNonNestedClass() { 13333 referenceDLLExportedClassMethods(); 13334 13335 if (!DelayedDllExportMemberFunctions.empty()) { 13336 SmallVector<CXXMethodDecl*, 4> WorkList; 13337 std::swap(DelayedDllExportMemberFunctions, WorkList); 13338 for (CXXMethodDecl *M : WorkList) { 13339 DefineDefaultedFunction(*this, M, M->getLocation()); 13340 13341 // Pass the method to the consumer to get emitted. This is not necessary 13342 // for explicit instantiation definitions, as they will get emitted 13343 // anyway. 13344 if (M->getParent()->getTemplateSpecializationKind() != 13345 TSK_ExplicitInstantiationDefinition) 13346 ActOnFinishInlineFunctionDef(M); 13347 } 13348 } 13349 } 13350 13351 void Sema::referenceDLLExportedClassMethods() { 13352 if (!DelayedDllExportClasses.empty()) { 13353 // Calling ReferenceDllExportedMembers might cause the current function to 13354 // be called again, so use a local copy of DelayedDllExportClasses. 13355 SmallVector<CXXRecordDecl *, 4> WorkList; 13356 std::swap(DelayedDllExportClasses, WorkList); 13357 for (CXXRecordDecl *Class : WorkList) 13358 ReferenceDllExportedMembers(*this, Class); 13359 } 13360 } 13361 13362 void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) { 13363 assert(getLangOpts().CPlusPlus11 && 13364 "adjusting dtor exception specs was introduced in c++11"); 13365 13366 if (Destructor->isDependentContext()) 13367 return; 13368 13369 // C++11 [class.dtor]p3: 13370 // A declaration of a destructor that does not have an exception- 13371 // specification is implicitly considered to have the same exception- 13372 // specification as an implicit declaration. 13373 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>(); 13374 if (DtorType->hasExceptionSpec()) 13375 return; 13376 13377 // Replace the destructor's type, building off the existing one. Fortunately, 13378 // the only thing of interest in the destructor type is its extended info. 13379 // The return and arguments are fixed. 13380 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); 13381 EPI.ExceptionSpec.Type = EST_Unevaluated; 13382 EPI.ExceptionSpec.SourceDecl = Destructor; 13383 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI)); 13384 13385 // FIXME: If the destructor has a body that could throw, and the newly created 13386 // spec doesn't allow exceptions, we should emit a warning, because this 13387 // change in behavior can break conforming C++03 programs at runtime. 13388 // However, we don't have a body or an exception specification yet, so it 13389 // needs to be done somewhere else. 13390 } 13391 13392 namespace { 13393 /// An abstract base class for all helper classes used in building the 13394 // copy/move operators. These classes serve as factory functions and help us 13395 // avoid using the same Expr* in the AST twice. 13396 class ExprBuilder { 13397 ExprBuilder(const ExprBuilder&) = delete; 13398 ExprBuilder &operator=(const ExprBuilder&) = delete; 13399 13400 protected: 13401 static Expr *assertNotNull(Expr *E) { 13402 assert(E && "Expression construction must not fail."); 13403 return E; 13404 } 13405 13406 public: 13407 ExprBuilder() {} 13408 virtual ~ExprBuilder() {} 13409 13410 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; 13411 }; 13412 13413 class RefBuilder: public ExprBuilder { 13414 VarDecl *Var; 13415 QualType VarType; 13416 13417 public: 13418 Expr *build(Sema &S, SourceLocation Loc) const override { 13419 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc)); 13420 } 13421 13422 RefBuilder(VarDecl *Var, QualType VarType) 13423 : Var(Var), VarType(VarType) {} 13424 }; 13425 13426 class ThisBuilder: public ExprBuilder { 13427 public: 13428 Expr *build(Sema &S, SourceLocation Loc) const override { 13429 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>()); 13430 } 13431 }; 13432 13433 class CastBuilder: public ExprBuilder { 13434 const ExprBuilder &Builder; 13435 QualType Type; 13436 ExprValueKind Kind; 13437 const CXXCastPath &Path; 13438 13439 public: 13440 Expr *build(Sema &S, SourceLocation Loc) const override { 13441 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, 13442 CK_UncheckedDerivedToBase, Kind, 13443 &Path).get()); 13444 } 13445 13446 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, 13447 const CXXCastPath &Path) 13448 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} 13449 }; 13450 13451 class DerefBuilder: public ExprBuilder { 13452 const ExprBuilder &Builder; 13453 13454 public: 13455 Expr *build(Sema &S, SourceLocation Loc) const override { 13456 return assertNotNull( 13457 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get()); 13458 } 13459 13460 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13461 }; 13462 13463 class MemberBuilder: public ExprBuilder { 13464 const ExprBuilder &Builder; 13465 QualType Type; 13466 CXXScopeSpec SS; 13467 bool IsArrow; 13468 LookupResult &MemberLookup; 13469 13470 public: 13471 Expr *build(Sema &S, SourceLocation Loc) const override { 13472 return assertNotNull(S.BuildMemberReferenceExpr( 13473 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), 13474 nullptr, MemberLookup, nullptr, nullptr).get()); 13475 } 13476 13477 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, 13478 LookupResult &MemberLookup) 13479 : Builder(Builder), Type(Type), IsArrow(IsArrow), 13480 MemberLookup(MemberLookup) {} 13481 }; 13482 13483 class MoveCastBuilder: public ExprBuilder { 13484 const ExprBuilder &Builder; 13485 13486 public: 13487 Expr *build(Sema &S, SourceLocation Loc) const override { 13488 return assertNotNull(CastForMoving(S, Builder.build(S, Loc))); 13489 } 13490 13491 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13492 }; 13493 13494 class LvalueConvBuilder: public ExprBuilder { 13495 const ExprBuilder &Builder; 13496 13497 public: 13498 Expr *build(Sema &S, SourceLocation Loc) const override { 13499 return assertNotNull( 13500 S.DefaultLvalueConversion(Builder.build(S, Loc)).get()); 13501 } 13502 13503 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13504 }; 13505 13506 class SubscriptBuilder: public ExprBuilder { 13507 const ExprBuilder &Base; 13508 const ExprBuilder &Index; 13509 13510 public: 13511 Expr *build(Sema &S, SourceLocation Loc) const override { 13512 return assertNotNull(S.CreateBuiltinArraySubscriptExpr( 13513 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get()); 13514 } 13515 13516 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) 13517 : Base(Base), Index(Index) {} 13518 }; 13519 13520 } // end anonymous namespace 13521 13522 /// When generating a defaulted copy or move assignment operator, if a field 13523 /// should be copied with __builtin_memcpy rather than via explicit assignments, 13524 /// do so. This optimization only applies for arrays of scalars, and for arrays 13525 /// of class type where the selected copy/move-assignment operator is trivial. 13526 static StmtResult 13527 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, 13528 const ExprBuilder &ToB, const ExprBuilder &FromB) { 13529 // Compute the size of the memory buffer to be copied. 13530 QualType SizeType = S.Context.getSizeType(); 13531 llvm::APInt Size(S.Context.getTypeSize(SizeType), 13532 S.Context.getTypeSizeInChars(T).getQuantity()); 13533 13534 // Take the address of the field references for "from" and "to". We 13535 // directly construct UnaryOperators here because semantic analysis 13536 // does not permit us to take the address of an xvalue. 13537 Expr *From = FromB.build(S, Loc); 13538 From = UnaryOperator::Create( 13539 S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()), 13540 VK_RValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 13541 Expr *To = ToB.build(S, Loc); 13542 To = UnaryOperator::Create( 13543 S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()), 13544 VK_RValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 13545 13546 const Type *E = T->getBaseElementTypeUnsafe(); 13547 bool NeedsCollectableMemCpy = 13548 E->isRecordType() && 13549 E->castAs<RecordType>()->getDecl()->hasObjectMember(); 13550 13551 // Create a reference to the __builtin_objc_memmove_collectable function 13552 StringRef MemCpyName = NeedsCollectableMemCpy ? 13553 "__builtin_objc_memmove_collectable" : 13554 "__builtin_memcpy"; 13555 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc, 13556 Sema::LookupOrdinaryName); 13557 S.LookupName(R, S.TUScope, true); 13558 13559 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>(); 13560 if (!MemCpy) 13561 // Something went horribly wrong earlier, and we will have complained 13562 // about it. 13563 return StmtError(); 13564 13565 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, 13566 VK_RValue, Loc, nullptr); 13567 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail"); 13568 13569 Expr *CallArgs[] = { 13570 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc) 13571 }; 13572 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), 13573 Loc, CallArgs, Loc); 13574 13575 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); 13576 return Call.getAs<Stmt>(); 13577 } 13578 13579 /// Builds a statement that copies/moves the given entity from \p From to 13580 /// \c To. 13581 /// 13582 /// This routine is used to copy/move the members of a class with an 13583 /// implicitly-declared copy/move assignment operator. When the entities being 13584 /// copied are arrays, this routine builds for loops to copy them. 13585 /// 13586 /// \param S The Sema object used for type-checking. 13587 /// 13588 /// \param Loc The location where the implicit copy/move is being generated. 13589 /// 13590 /// \param T The type of the expressions being copied/moved. Both expressions 13591 /// must have this type. 13592 /// 13593 /// \param To The expression we are copying/moving to. 13594 /// 13595 /// \param From The expression we are copying/moving from. 13596 /// 13597 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. 13598 /// Otherwise, it's a non-static member subobject. 13599 /// 13600 /// \param Copying Whether we're copying or moving. 13601 /// 13602 /// \param Depth Internal parameter recording the depth of the recursion. 13603 /// 13604 /// \returns A statement or a loop that copies the expressions, or StmtResult(0) 13605 /// if a memcpy should be used instead. 13606 static StmtResult 13607 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, 13608 const ExprBuilder &To, const ExprBuilder &From, 13609 bool CopyingBaseSubobject, bool Copying, 13610 unsigned Depth = 0) { 13611 // C++11 [class.copy]p28: 13612 // Each subobject is assigned in the manner appropriate to its type: 13613 // 13614 // - if the subobject is of class type, as if by a call to operator= with 13615 // the subobject as the object expression and the corresponding 13616 // subobject of x as a single function argument (as if by explicit 13617 // qualification; that is, ignoring any possible virtual overriding 13618 // functions in more derived classes); 13619 // 13620 // C++03 [class.copy]p13: 13621 // - if the subobject is of class type, the copy assignment operator for 13622 // the class is used (as if by explicit qualification; that is, 13623 // ignoring any possible virtual overriding functions in more derived 13624 // classes); 13625 if (const RecordType *RecordTy = T->getAs<RecordType>()) { 13626 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 13627 13628 // Look for operator=. 13629 DeclarationName Name 13630 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); 13631 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); 13632 S.LookupQualifiedName(OpLookup, ClassDecl, false); 13633 13634 // Prior to C++11, filter out any result that isn't a copy/move-assignment 13635 // operator. 13636 if (!S.getLangOpts().CPlusPlus11) { 13637 LookupResult::Filter F = OpLookup.makeFilter(); 13638 while (F.hasNext()) { 13639 NamedDecl *D = F.next(); 13640 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 13641 if (Method->isCopyAssignmentOperator() || 13642 (!Copying && Method->isMoveAssignmentOperator())) 13643 continue; 13644 13645 F.erase(); 13646 } 13647 F.done(); 13648 } 13649 13650 // Suppress the protected check (C++ [class.protected]) for each of the 13651 // assignment operators we found. This strange dance is required when 13652 // we're assigning via a base classes's copy-assignment operator. To 13653 // ensure that we're getting the right base class subobject (without 13654 // ambiguities), we need to cast "this" to that subobject type; to 13655 // ensure that we don't go through the virtual call mechanism, we need 13656 // to qualify the operator= name with the base class (see below). However, 13657 // this means that if the base class has a protected copy assignment 13658 // operator, the protected member access check will fail. So, we 13659 // rewrite "protected" access to "public" access in this case, since we 13660 // know by construction that we're calling from a derived class. 13661 if (CopyingBaseSubobject) { 13662 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); 13663 L != LEnd; ++L) { 13664 if (L.getAccess() == AS_protected) 13665 L.setAccess(AS_public); 13666 } 13667 } 13668 13669 // Create the nested-name-specifier that will be used to qualify the 13670 // reference to operator=; this is required to suppress the virtual 13671 // call mechanism. 13672 CXXScopeSpec SS; 13673 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr()); 13674 SS.MakeTrivial(S.Context, 13675 NestedNameSpecifier::Create(S.Context, nullptr, false, 13676 CanonicalT), 13677 Loc); 13678 13679 // Create the reference to operator=. 13680 ExprResult OpEqualRef 13681 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false, 13682 SS, /*TemplateKWLoc=*/SourceLocation(), 13683 /*FirstQualifierInScope=*/nullptr, 13684 OpLookup, 13685 /*TemplateArgs=*/nullptr, /*S*/nullptr, 13686 /*SuppressQualifierCheck=*/true); 13687 if (OpEqualRef.isInvalid()) 13688 return StmtError(); 13689 13690 // Build the call to the assignment operator. 13691 13692 Expr *FromInst = From.build(S, Loc); 13693 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr, 13694 OpEqualRef.getAs<Expr>(), 13695 Loc, FromInst, Loc); 13696 if (Call.isInvalid()) 13697 return StmtError(); 13698 13699 // If we built a call to a trivial 'operator=' while copying an array, 13700 // bail out. We'll replace the whole shebang with a memcpy. 13701 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get()); 13702 if (CE && CE->getMethodDecl()->isTrivial() && Depth) 13703 return StmtResult((Stmt*)nullptr); 13704 13705 // Convert to an expression-statement, and clean up any produced 13706 // temporaries. 13707 return S.ActOnExprStmt(Call); 13708 } 13709 13710 // - if the subobject is of scalar type, the built-in assignment 13711 // operator is used. 13712 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); 13713 if (!ArrayTy) { 13714 ExprResult Assignment = S.CreateBuiltinBinOp( 13715 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc)); 13716 if (Assignment.isInvalid()) 13717 return StmtError(); 13718 return S.ActOnExprStmt(Assignment); 13719 } 13720 13721 // - if the subobject is an array, each element is assigned, in the 13722 // manner appropriate to the element type; 13723 13724 // Construct a loop over the array bounds, e.g., 13725 // 13726 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) 13727 // 13728 // that will copy each of the array elements. 13729 QualType SizeType = S.Context.getSizeType(); 13730 13731 // Create the iteration variable. 13732 IdentifierInfo *IterationVarName = nullptr; 13733 { 13734 SmallString<8> Str; 13735 llvm::raw_svector_ostream OS(Str); 13736 OS << "__i" << Depth; 13737 IterationVarName = &S.Context.Idents.get(OS.str()); 13738 } 13739 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, 13740 IterationVarName, SizeType, 13741 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), 13742 SC_None); 13743 13744 // Initialize the iteration variable to zero. 13745 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 13746 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 13747 13748 // Creates a reference to the iteration variable. 13749 RefBuilder IterationVarRef(IterationVar, SizeType); 13750 LvalueConvBuilder IterationVarRefRVal(IterationVarRef); 13751 13752 // Create the DeclStmt that holds the iteration variable. 13753 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); 13754 13755 // Subscript the "from" and "to" expressions with the iteration variable. 13756 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); 13757 MoveCastBuilder FromIndexMove(FromIndexCopy); 13758 const ExprBuilder *FromIndex; 13759 if (Copying) 13760 FromIndex = &FromIndexCopy; 13761 else 13762 FromIndex = &FromIndexMove; 13763 13764 SubscriptBuilder ToIndex(To, IterationVarRefRVal); 13765 13766 // Build the copy/move for an individual element of the array. 13767 StmtResult Copy = 13768 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), 13769 ToIndex, *FromIndex, CopyingBaseSubobject, 13770 Copying, Depth + 1); 13771 // Bail out if copying fails or if we determined that we should use memcpy. 13772 if (Copy.isInvalid() || !Copy.get()) 13773 return Copy; 13774 13775 // Create the comparison against the array bound. 13776 llvm::APInt Upper 13777 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); 13778 Expr *Comparison = BinaryOperator::Create( 13779 S.Context, IterationVarRefRVal.build(S, Loc), 13780 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE, 13781 S.Context.BoolTy, VK_RValue, OK_Ordinary, Loc, S.CurFPFeatureOverrides()); 13782 13783 // Create the pre-increment of the iteration variable. We can determine 13784 // whether the increment will overflow based on the value of the array 13785 // bound. 13786 Expr *Increment = UnaryOperator::Create( 13787 S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue, 13788 OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides()); 13789 13790 // Construct the loop that copies all elements of this array. 13791 return S.ActOnForStmt( 13792 Loc, Loc, InitStmt, 13793 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean), 13794 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get()); 13795 } 13796 13797 static StmtResult 13798 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, 13799 const ExprBuilder &To, const ExprBuilder &From, 13800 bool CopyingBaseSubobject, bool Copying) { 13801 // Maybe we should use a memcpy? 13802 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && 13803 T.isTriviallyCopyableType(S.Context)) 13804 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 13805 13806 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, 13807 CopyingBaseSubobject, 13808 Copying, 0)); 13809 13810 // If we ended up picking a trivial assignment operator for an array of a 13811 // non-trivially-copyable class type, just emit a memcpy. 13812 if (!Result.isInvalid() && !Result.get()) 13813 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 13814 13815 return Result; 13816 } 13817 13818 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { 13819 // Note: The following rules are largely analoguous to the copy 13820 // constructor rules. Note that virtual bases are not taken into account 13821 // for determining the argument type of the operator. Note also that 13822 // operators taking an object instead of a reference are allowed. 13823 assert(ClassDecl->needsImplicitCopyAssignment()); 13824 13825 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment); 13826 if (DSM.isAlreadyBeingDeclared()) 13827 return nullptr; 13828 13829 QualType ArgType = Context.getTypeDeclType(ClassDecl); 13830 LangAS AS = getDefaultCXXMethodAddrSpace(); 13831 if (AS != LangAS::Default) 13832 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 13833 QualType RetType = Context.getLValueReferenceType(ArgType); 13834 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); 13835 if (Const) 13836 ArgType = ArgType.withConst(); 13837 13838 ArgType = Context.getLValueReferenceType(ArgType); 13839 13840 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 13841 CXXCopyAssignment, 13842 Const); 13843 13844 // An implicitly-declared copy assignment operator is an inline public 13845 // member of its class. 13846 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 13847 SourceLocation ClassLoc = ClassDecl->getLocation(); 13848 DeclarationNameInfo NameInfo(Name, ClassLoc); 13849 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create( 13850 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 13851 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 13852 /*isInline=*/true, Constexpr ? CSK_constexpr : CSK_unspecified, 13853 SourceLocation()); 13854 CopyAssignment->setAccess(AS_public); 13855 CopyAssignment->setDefaulted(); 13856 CopyAssignment->setImplicit(); 13857 13858 if (getLangOpts().CUDA) { 13859 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment, 13860 CopyAssignment, 13861 /* ConstRHS */ Const, 13862 /* Diagnose */ false); 13863 } 13864 13865 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType); 13866 13867 // Add the parameter to the operator. 13868 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, 13869 ClassLoc, ClassLoc, 13870 /*Id=*/nullptr, ArgType, 13871 /*TInfo=*/nullptr, SC_None, 13872 nullptr); 13873 CopyAssignment->setParams(FromParam); 13874 13875 CopyAssignment->setTrivial( 13876 ClassDecl->needsOverloadResolutionForCopyAssignment() 13877 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment) 13878 : ClassDecl->hasTrivialCopyAssignment()); 13879 13880 // Note that we have added this copy-assignment operator. 13881 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared; 13882 13883 Scope *S = getScopeForContext(ClassDecl); 13884 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment); 13885 13886 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) { 13887 ClassDecl->setImplicitCopyAssignmentIsDeleted(); 13888 SetDeclDeleted(CopyAssignment, ClassLoc); 13889 } 13890 13891 if (S) 13892 PushOnScopeChains(CopyAssignment, S, false); 13893 ClassDecl->addDecl(CopyAssignment); 13894 13895 return CopyAssignment; 13896 } 13897 13898 /// Diagnose an implicit copy operation for a class which is odr-used, but 13899 /// which is deprecated because the class has a user-declared copy constructor, 13900 /// copy assignment operator, or destructor. 13901 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) { 13902 assert(CopyOp->isImplicit()); 13903 13904 CXXRecordDecl *RD = CopyOp->getParent(); 13905 CXXMethodDecl *UserDeclaredOperation = nullptr; 13906 13907 // In Microsoft mode, assignment operations don't affect constructors and 13908 // vice versa. 13909 if (RD->hasUserDeclaredDestructor()) { 13910 UserDeclaredOperation = RD->getDestructor(); 13911 } else if (!isa<CXXConstructorDecl>(CopyOp) && 13912 RD->hasUserDeclaredCopyConstructor() && 13913 !S.getLangOpts().MSVCCompat) { 13914 // Find any user-declared copy constructor. 13915 for (auto *I : RD->ctors()) { 13916 if (I->isCopyConstructor()) { 13917 UserDeclaredOperation = I; 13918 break; 13919 } 13920 } 13921 assert(UserDeclaredOperation); 13922 } else if (isa<CXXConstructorDecl>(CopyOp) && 13923 RD->hasUserDeclaredCopyAssignment() && 13924 !S.getLangOpts().MSVCCompat) { 13925 // Find any user-declared move assignment operator. 13926 for (auto *I : RD->methods()) { 13927 if (I->isCopyAssignmentOperator()) { 13928 UserDeclaredOperation = I; 13929 break; 13930 } 13931 } 13932 assert(UserDeclaredOperation); 13933 } 13934 13935 if (UserDeclaredOperation && UserDeclaredOperation->isUserProvided()) { 13936 S.Diag(UserDeclaredOperation->getLocation(), 13937 isa<CXXDestructorDecl>(UserDeclaredOperation) 13938 ? diag::warn_deprecated_copy_dtor_operation 13939 : diag::warn_deprecated_copy_operation) 13940 << RD << /*copy assignment*/ !isa<CXXConstructorDecl>(CopyOp); 13941 } 13942 } 13943 13944 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, 13945 CXXMethodDecl *CopyAssignOperator) { 13946 assert((CopyAssignOperator->isDefaulted() && 13947 CopyAssignOperator->isOverloadedOperator() && 13948 CopyAssignOperator->getOverloadedOperator() == OO_Equal && 13949 !CopyAssignOperator->doesThisDeclarationHaveABody() && 13950 !CopyAssignOperator->isDeleted()) && 13951 "DefineImplicitCopyAssignment called for wrong function"); 13952 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl()) 13953 return; 13954 13955 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); 13956 if (ClassDecl->isInvalidDecl()) { 13957 CopyAssignOperator->setInvalidDecl(); 13958 return; 13959 } 13960 13961 SynthesizedFunctionScope Scope(*this, CopyAssignOperator); 13962 13963 // The exception specification is needed because we are defining the 13964 // function. 13965 ResolveExceptionSpec(CurrentLocation, 13966 CopyAssignOperator->getType()->castAs<FunctionProtoType>()); 13967 13968 // Add a context note for diagnostics produced after this point. 13969 Scope.addContextNote(CurrentLocation); 13970 13971 // C++11 [class.copy]p18: 13972 // The [definition of an implicitly declared copy assignment operator] is 13973 // deprecated if the class has a user-declared copy constructor or a 13974 // user-declared destructor. 13975 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) 13976 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator); 13977 13978 // C++0x [class.copy]p30: 13979 // The implicitly-defined or explicitly-defaulted copy assignment operator 13980 // for a non-union class X performs memberwise copy assignment of its 13981 // subobjects. The direct base classes of X are assigned first, in the 13982 // order of their declaration in the base-specifier-list, and then the 13983 // immediate non-static data members of X are assigned, in the order in 13984 // which they were declared in the class definition. 13985 13986 // The statements that form the synthesized function body. 13987 SmallVector<Stmt*, 8> Statements; 13988 13989 // The parameter for the "other" object, which we are copying from. 13990 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); 13991 Qualifiers OtherQuals = Other->getType().getQualifiers(); 13992 QualType OtherRefType = Other->getType(); 13993 if (const LValueReferenceType *OtherRef 13994 = OtherRefType->getAs<LValueReferenceType>()) { 13995 OtherRefType = OtherRef->getPointeeType(); 13996 OtherQuals = OtherRefType.getQualifiers(); 13997 } 13998 13999 // Our location for everything implicitly-generated. 14000 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid() 14001 ? CopyAssignOperator->getEndLoc() 14002 : CopyAssignOperator->getLocation(); 14003 14004 // Builds a DeclRefExpr for the "other" object. 14005 RefBuilder OtherRef(Other, OtherRefType); 14006 14007 // Builds the "this" pointer. 14008 ThisBuilder This; 14009 14010 // Assign base classes. 14011 bool Invalid = false; 14012 for (auto &Base : ClassDecl->bases()) { 14013 // Form the assignment: 14014 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); 14015 QualType BaseType = Base.getType().getUnqualifiedType(); 14016 if (!BaseType->isRecordType()) { 14017 Invalid = true; 14018 continue; 14019 } 14020 14021 CXXCastPath BasePath; 14022 BasePath.push_back(&Base); 14023 14024 // Construct the "from" expression, which is an implicit cast to the 14025 // appropriately-qualified base type. 14026 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals), 14027 VK_LValue, BasePath); 14028 14029 // Dereference "this". 14030 DerefBuilder DerefThis(This); 14031 CastBuilder To(DerefThis, 14032 Context.getQualifiedType( 14033 BaseType, CopyAssignOperator->getMethodQualifiers()), 14034 VK_LValue, BasePath); 14035 14036 // Build the copy. 14037 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, 14038 To, From, 14039 /*CopyingBaseSubobject=*/true, 14040 /*Copying=*/true); 14041 if (Copy.isInvalid()) { 14042 CopyAssignOperator->setInvalidDecl(); 14043 return; 14044 } 14045 14046 // Success! Record the copy. 14047 Statements.push_back(Copy.getAs<Expr>()); 14048 } 14049 14050 // Assign non-static members. 14051 for (auto *Field : ClassDecl->fields()) { 14052 // FIXME: We should form some kind of AST representation for the implied 14053 // memcpy in a union copy operation. 14054 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 14055 continue; 14056 14057 if (Field->isInvalidDecl()) { 14058 Invalid = true; 14059 continue; 14060 } 14061 14062 // Check for members of reference type; we can't copy those. 14063 if (Field->getType()->isReferenceType()) { 14064 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14065 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 14066 Diag(Field->getLocation(), diag::note_declared_at); 14067 Invalid = true; 14068 continue; 14069 } 14070 14071 // Check for members of const-qualified, non-class type. 14072 QualType BaseType = Context.getBaseElementType(Field->getType()); 14073 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 14074 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14075 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 14076 Diag(Field->getLocation(), diag::note_declared_at); 14077 Invalid = true; 14078 continue; 14079 } 14080 14081 // Suppress assigning zero-width bitfields. 14082 if (Field->isZeroLengthBitField(Context)) 14083 continue; 14084 14085 QualType FieldType = Field->getType().getNonReferenceType(); 14086 if (FieldType->isIncompleteArrayType()) { 14087 assert(ClassDecl->hasFlexibleArrayMember() && 14088 "Incomplete array type is not valid"); 14089 continue; 14090 } 14091 14092 // Build references to the field in the object we're copying from and to. 14093 CXXScopeSpec SS; // Intentionally empty 14094 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 14095 LookupMemberName); 14096 MemberLookup.addDecl(Field); 14097 MemberLookup.resolveKind(); 14098 14099 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); 14100 14101 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup); 14102 14103 // Build the copy of this field. 14104 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, 14105 To, From, 14106 /*CopyingBaseSubobject=*/false, 14107 /*Copying=*/true); 14108 if (Copy.isInvalid()) { 14109 CopyAssignOperator->setInvalidDecl(); 14110 return; 14111 } 14112 14113 // Success! Record the copy. 14114 Statements.push_back(Copy.getAs<Stmt>()); 14115 } 14116 14117 if (!Invalid) { 14118 // Add a "return *this;" 14119 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 14120 14121 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 14122 if (Return.isInvalid()) 14123 Invalid = true; 14124 else 14125 Statements.push_back(Return.getAs<Stmt>()); 14126 } 14127 14128 if (Invalid) { 14129 CopyAssignOperator->setInvalidDecl(); 14130 return; 14131 } 14132 14133 StmtResult Body; 14134 { 14135 CompoundScopeRAII CompoundScope(*this); 14136 Body = ActOnCompoundStmt(Loc, Loc, Statements, 14137 /*isStmtExpr=*/false); 14138 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 14139 } 14140 CopyAssignOperator->setBody(Body.getAs<Stmt>()); 14141 CopyAssignOperator->markUsed(Context); 14142 14143 if (ASTMutationListener *L = getASTMutationListener()) { 14144 L->CompletedImplicitDefinition(CopyAssignOperator); 14145 } 14146 } 14147 14148 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { 14149 assert(ClassDecl->needsImplicitMoveAssignment()); 14150 14151 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment); 14152 if (DSM.isAlreadyBeingDeclared()) 14153 return nullptr; 14154 14155 // Note: The following rules are largely analoguous to the move 14156 // constructor rules. 14157 14158 QualType ArgType = Context.getTypeDeclType(ClassDecl); 14159 LangAS AS = getDefaultCXXMethodAddrSpace(); 14160 if (AS != LangAS::Default) 14161 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14162 QualType RetType = Context.getLValueReferenceType(ArgType); 14163 ArgType = Context.getRValueReferenceType(ArgType); 14164 14165 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14166 CXXMoveAssignment, 14167 false); 14168 14169 // An implicitly-declared move assignment operator is an inline public 14170 // member of its class. 14171 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14172 SourceLocation ClassLoc = ClassDecl->getLocation(); 14173 DeclarationNameInfo NameInfo(Name, ClassLoc); 14174 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create( 14175 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 14176 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 14177 /*isInline=*/true, Constexpr ? CSK_constexpr : CSK_unspecified, 14178 SourceLocation()); 14179 MoveAssignment->setAccess(AS_public); 14180 MoveAssignment->setDefaulted(); 14181 MoveAssignment->setImplicit(); 14182 14183 if (getLangOpts().CUDA) { 14184 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment, 14185 MoveAssignment, 14186 /* ConstRHS */ false, 14187 /* Diagnose */ false); 14188 } 14189 14190 // Build an exception specification pointing back at this member. 14191 FunctionProtoType::ExtProtoInfo EPI = 14192 getImplicitMethodEPI(*this, MoveAssignment); 14193 MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI)); 14194 14195 // Add the parameter to the operator. 14196 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, 14197 ClassLoc, ClassLoc, 14198 /*Id=*/nullptr, ArgType, 14199 /*TInfo=*/nullptr, SC_None, 14200 nullptr); 14201 MoveAssignment->setParams(FromParam); 14202 14203 MoveAssignment->setTrivial( 14204 ClassDecl->needsOverloadResolutionForMoveAssignment() 14205 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment) 14206 : ClassDecl->hasTrivialMoveAssignment()); 14207 14208 // Note that we have added this copy-assignment operator. 14209 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared; 14210 14211 Scope *S = getScopeForContext(ClassDecl); 14212 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment); 14213 14214 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) { 14215 ClassDecl->setImplicitMoveAssignmentIsDeleted(); 14216 SetDeclDeleted(MoveAssignment, ClassLoc); 14217 } 14218 14219 if (S) 14220 PushOnScopeChains(MoveAssignment, S, false); 14221 ClassDecl->addDecl(MoveAssignment); 14222 14223 return MoveAssignment; 14224 } 14225 14226 /// Check if we're implicitly defining a move assignment operator for a class 14227 /// with virtual bases. Such a move assignment might move-assign the virtual 14228 /// base multiple times. 14229 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, 14230 SourceLocation CurrentLocation) { 14231 assert(!Class->isDependentContext() && "should not define dependent move"); 14232 14233 // Only a virtual base could get implicitly move-assigned multiple times. 14234 // Only a non-trivial move assignment can observe this. We only want to 14235 // diagnose if we implicitly define an assignment operator that assigns 14236 // two base classes, both of which move-assign the same virtual base. 14237 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || 14238 Class->getNumBases() < 2) 14239 return; 14240 14241 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist; 14242 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap; 14243 VBaseMap VBases; 14244 14245 for (auto &BI : Class->bases()) { 14246 Worklist.push_back(&BI); 14247 while (!Worklist.empty()) { 14248 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); 14249 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); 14250 14251 // If the base has no non-trivial move assignment operators, 14252 // we don't care about moves from it. 14253 if (!Base->hasNonTrivialMoveAssignment()) 14254 continue; 14255 14256 // If there's nothing virtual here, skip it. 14257 if (!BaseSpec->isVirtual() && !Base->getNumVBases()) 14258 continue; 14259 14260 // If we're not actually going to call a move assignment for this base, 14261 // or the selected move assignment is trivial, skip it. 14262 Sema::SpecialMemberOverloadResult SMOR = 14263 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment, 14264 /*ConstArg*/false, /*VolatileArg*/false, 14265 /*RValueThis*/true, /*ConstThis*/false, 14266 /*VolatileThis*/false); 14267 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() || 14268 !SMOR.getMethod()->isMoveAssignmentOperator()) 14269 continue; 14270 14271 if (BaseSpec->isVirtual()) { 14272 // We're going to move-assign this virtual base, and its move 14273 // assignment operator is not trivial. If this can happen for 14274 // multiple distinct direct bases of Class, diagnose it. (If it 14275 // only happens in one base, we'll diagnose it when synthesizing 14276 // that base class's move assignment operator.) 14277 CXXBaseSpecifier *&Existing = 14278 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI)) 14279 .first->second; 14280 if (Existing && Existing != &BI) { 14281 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) 14282 << Class << Base; 14283 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here) 14284 << (Base->getCanonicalDecl() == 14285 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 14286 << Base << Existing->getType() << Existing->getSourceRange(); 14287 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here) 14288 << (Base->getCanonicalDecl() == 14289 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 14290 << Base << BI.getType() << BaseSpec->getSourceRange(); 14291 14292 // Only diagnose each vbase once. 14293 Existing = nullptr; 14294 } 14295 } else { 14296 // Only walk over bases that have defaulted move assignment operators. 14297 // We assume that any user-provided move assignment operator handles 14298 // the multiple-moves-of-vbase case itself somehow. 14299 if (!SMOR.getMethod()->isDefaulted()) 14300 continue; 14301 14302 // We're going to move the base classes of Base. Add them to the list. 14303 for (auto &BI : Base->bases()) 14304 Worklist.push_back(&BI); 14305 } 14306 } 14307 } 14308 } 14309 14310 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, 14311 CXXMethodDecl *MoveAssignOperator) { 14312 assert((MoveAssignOperator->isDefaulted() && 14313 MoveAssignOperator->isOverloadedOperator() && 14314 MoveAssignOperator->getOverloadedOperator() == OO_Equal && 14315 !MoveAssignOperator->doesThisDeclarationHaveABody() && 14316 !MoveAssignOperator->isDeleted()) && 14317 "DefineImplicitMoveAssignment called for wrong function"); 14318 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl()) 14319 return; 14320 14321 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); 14322 if (ClassDecl->isInvalidDecl()) { 14323 MoveAssignOperator->setInvalidDecl(); 14324 return; 14325 } 14326 14327 // C++0x [class.copy]p28: 14328 // The implicitly-defined or move assignment operator for a non-union class 14329 // X performs memberwise move assignment of its subobjects. The direct base 14330 // classes of X are assigned first, in the order of their declaration in the 14331 // base-specifier-list, and then the immediate non-static data members of X 14332 // are assigned, in the order in which they were declared in the class 14333 // definition. 14334 14335 // Issue a warning if our implicit move assignment operator will move 14336 // from a virtual base more than once. 14337 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation); 14338 14339 SynthesizedFunctionScope Scope(*this, MoveAssignOperator); 14340 14341 // The exception specification is needed because we are defining the 14342 // function. 14343 ResolveExceptionSpec(CurrentLocation, 14344 MoveAssignOperator->getType()->castAs<FunctionProtoType>()); 14345 14346 // Add a context note for diagnostics produced after this point. 14347 Scope.addContextNote(CurrentLocation); 14348 14349 // The statements that form the synthesized function body. 14350 SmallVector<Stmt*, 8> Statements; 14351 14352 // The parameter for the "other" object, which we are move from. 14353 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0); 14354 QualType OtherRefType = 14355 Other->getType()->castAs<RValueReferenceType>()->getPointeeType(); 14356 14357 // Our location for everything implicitly-generated. 14358 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid() 14359 ? MoveAssignOperator->getEndLoc() 14360 : MoveAssignOperator->getLocation(); 14361 14362 // Builds a reference to the "other" object. 14363 RefBuilder OtherRef(Other, OtherRefType); 14364 // Cast to rvalue. 14365 MoveCastBuilder MoveOther(OtherRef); 14366 14367 // Builds the "this" pointer. 14368 ThisBuilder This; 14369 14370 // Assign base classes. 14371 bool Invalid = false; 14372 for (auto &Base : ClassDecl->bases()) { 14373 // C++11 [class.copy]p28: 14374 // It is unspecified whether subobjects representing virtual base classes 14375 // are assigned more than once by the implicitly-defined copy assignment 14376 // operator. 14377 // FIXME: Do not assign to a vbase that will be assigned by some other base 14378 // class. For a move-assignment, this can result in the vbase being moved 14379 // multiple times. 14380 14381 // Form the assignment: 14382 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); 14383 QualType BaseType = Base.getType().getUnqualifiedType(); 14384 if (!BaseType->isRecordType()) { 14385 Invalid = true; 14386 continue; 14387 } 14388 14389 CXXCastPath BasePath; 14390 BasePath.push_back(&Base); 14391 14392 // Construct the "from" expression, which is an implicit cast to the 14393 // appropriately-qualified base type. 14394 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); 14395 14396 // Dereference "this". 14397 DerefBuilder DerefThis(This); 14398 14399 // Implicitly cast "this" to the appropriately-qualified base type. 14400 CastBuilder To(DerefThis, 14401 Context.getQualifiedType( 14402 BaseType, MoveAssignOperator->getMethodQualifiers()), 14403 VK_LValue, BasePath); 14404 14405 // Build the move. 14406 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, 14407 To, From, 14408 /*CopyingBaseSubobject=*/true, 14409 /*Copying=*/false); 14410 if (Move.isInvalid()) { 14411 MoveAssignOperator->setInvalidDecl(); 14412 return; 14413 } 14414 14415 // Success! Record the move. 14416 Statements.push_back(Move.getAs<Expr>()); 14417 } 14418 14419 // Assign non-static members. 14420 for (auto *Field : ClassDecl->fields()) { 14421 // FIXME: We should form some kind of AST representation for the implied 14422 // memcpy in a union copy operation. 14423 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 14424 continue; 14425 14426 if (Field->isInvalidDecl()) { 14427 Invalid = true; 14428 continue; 14429 } 14430 14431 // Check for members of reference type; we can't move those. 14432 if (Field->getType()->isReferenceType()) { 14433 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14434 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 14435 Diag(Field->getLocation(), diag::note_declared_at); 14436 Invalid = true; 14437 continue; 14438 } 14439 14440 // Check for members of const-qualified, non-class type. 14441 QualType BaseType = Context.getBaseElementType(Field->getType()); 14442 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 14443 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14444 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 14445 Diag(Field->getLocation(), diag::note_declared_at); 14446 Invalid = true; 14447 continue; 14448 } 14449 14450 // Suppress assigning zero-width bitfields. 14451 if (Field->isZeroLengthBitField(Context)) 14452 continue; 14453 14454 QualType FieldType = Field->getType().getNonReferenceType(); 14455 if (FieldType->isIncompleteArrayType()) { 14456 assert(ClassDecl->hasFlexibleArrayMember() && 14457 "Incomplete array type is not valid"); 14458 continue; 14459 } 14460 14461 // Build references to the field in the object we're copying from and to. 14462 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 14463 LookupMemberName); 14464 MemberLookup.addDecl(Field); 14465 MemberLookup.resolveKind(); 14466 MemberBuilder From(MoveOther, OtherRefType, 14467 /*IsArrow=*/false, MemberLookup); 14468 MemberBuilder To(This, getCurrentThisType(), 14469 /*IsArrow=*/true, MemberLookup); 14470 14471 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue 14472 "Member reference with rvalue base must be rvalue except for reference " 14473 "members, which aren't allowed for move assignment."); 14474 14475 // Build the move of this field. 14476 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, 14477 To, From, 14478 /*CopyingBaseSubobject=*/false, 14479 /*Copying=*/false); 14480 if (Move.isInvalid()) { 14481 MoveAssignOperator->setInvalidDecl(); 14482 return; 14483 } 14484 14485 // Success! Record the copy. 14486 Statements.push_back(Move.getAs<Stmt>()); 14487 } 14488 14489 if (!Invalid) { 14490 // Add a "return *this;" 14491 ExprResult ThisObj = 14492 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 14493 14494 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 14495 if (Return.isInvalid()) 14496 Invalid = true; 14497 else 14498 Statements.push_back(Return.getAs<Stmt>()); 14499 } 14500 14501 if (Invalid) { 14502 MoveAssignOperator->setInvalidDecl(); 14503 return; 14504 } 14505 14506 StmtResult Body; 14507 { 14508 CompoundScopeRAII CompoundScope(*this); 14509 Body = ActOnCompoundStmt(Loc, Loc, Statements, 14510 /*isStmtExpr=*/false); 14511 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 14512 } 14513 MoveAssignOperator->setBody(Body.getAs<Stmt>()); 14514 MoveAssignOperator->markUsed(Context); 14515 14516 if (ASTMutationListener *L = getASTMutationListener()) { 14517 L->CompletedImplicitDefinition(MoveAssignOperator); 14518 } 14519 } 14520 14521 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( 14522 CXXRecordDecl *ClassDecl) { 14523 // C++ [class.copy]p4: 14524 // If the class definition does not explicitly declare a copy 14525 // constructor, one is declared implicitly. 14526 assert(ClassDecl->needsImplicitCopyConstructor()); 14527 14528 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor); 14529 if (DSM.isAlreadyBeingDeclared()) 14530 return nullptr; 14531 14532 QualType ClassType = Context.getTypeDeclType(ClassDecl); 14533 QualType ArgType = ClassType; 14534 bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); 14535 if (Const) 14536 ArgType = ArgType.withConst(); 14537 14538 LangAS AS = getDefaultCXXMethodAddrSpace(); 14539 if (AS != LangAS::Default) 14540 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14541 14542 ArgType = Context.getLValueReferenceType(ArgType); 14543 14544 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14545 CXXCopyConstructor, 14546 Const); 14547 14548 DeclarationName Name 14549 = Context.DeclarationNames.getCXXConstructorName( 14550 Context.getCanonicalType(ClassType)); 14551 SourceLocation ClassLoc = ClassDecl->getLocation(); 14552 DeclarationNameInfo NameInfo(Name, ClassLoc); 14553 14554 // An implicitly-declared copy constructor is an inline public 14555 // member of its class. 14556 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( 14557 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 14558 ExplicitSpecifier(), 14559 /*isInline=*/true, 14560 /*isImplicitlyDeclared=*/true, 14561 Constexpr ? CSK_constexpr : CSK_unspecified); 14562 CopyConstructor->setAccess(AS_public); 14563 CopyConstructor->setDefaulted(); 14564 14565 if (getLangOpts().CUDA) { 14566 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor, 14567 CopyConstructor, 14568 /* ConstRHS */ Const, 14569 /* Diagnose */ false); 14570 } 14571 14572 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType); 14573 14574 // Add the parameter to the constructor. 14575 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, 14576 ClassLoc, ClassLoc, 14577 /*IdentifierInfo=*/nullptr, 14578 ArgType, /*TInfo=*/nullptr, 14579 SC_None, nullptr); 14580 CopyConstructor->setParams(FromParam); 14581 14582 CopyConstructor->setTrivial( 14583 ClassDecl->needsOverloadResolutionForCopyConstructor() 14584 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor) 14585 : ClassDecl->hasTrivialCopyConstructor()); 14586 14587 CopyConstructor->setTrivialForCall( 14588 ClassDecl->hasAttr<TrivialABIAttr>() || 14589 (ClassDecl->needsOverloadResolutionForCopyConstructor() 14590 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor, 14591 TAH_ConsiderTrivialABI) 14592 : ClassDecl->hasTrivialCopyConstructorForCall())); 14593 14594 // Note that we have declared this constructor. 14595 ++getASTContext().NumImplicitCopyConstructorsDeclared; 14596 14597 Scope *S = getScopeForContext(ClassDecl); 14598 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor); 14599 14600 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) { 14601 ClassDecl->setImplicitCopyConstructorIsDeleted(); 14602 SetDeclDeleted(CopyConstructor, ClassLoc); 14603 } 14604 14605 if (S) 14606 PushOnScopeChains(CopyConstructor, S, false); 14607 ClassDecl->addDecl(CopyConstructor); 14608 14609 return CopyConstructor; 14610 } 14611 14612 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, 14613 CXXConstructorDecl *CopyConstructor) { 14614 assert((CopyConstructor->isDefaulted() && 14615 CopyConstructor->isCopyConstructor() && 14616 !CopyConstructor->doesThisDeclarationHaveABody() && 14617 !CopyConstructor->isDeleted()) && 14618 "DefineImplicitCopyConstructor - call it for implicit copy ctor"); 14619 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl()) 14620 return; 14621 14622 CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); 14623 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); 14624 14625 SynthesizedFunctionScope Scope(*this, CopyConstructor); 14626 14627 // The exception specification is needed because we are defining the 14628 // function. 14629 ResolveExceptionSpec(CurrentLocation, 14630 CopyConstructor->getType()->castAs<FunctionProtoType>()); 14631 MarkVTableUsed(CurrentLocation, ClassDecl); 14632 14633 // Add a context note for diagnostics produced after this point. 14634 Scope.addContextNote(CurrentLocation); 14635 14636 // C++11 [class.copy]p7: 14637 // The [definition of an implicitly declared copy constructor] is 14638 // deprecated if the class has a user-declared copy assignment operator 14639 // or a user-declared destructor. 14640 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) 14641 diagnoseDeprecatedCopyOperation(*this, CopyConstructor); 14642 14643 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) { 14644 CopyConstructor->setInvalidDecl(); 14645 } else { 14646 SourceLocation Loc = CopyConstructor->getEndLoc().isValid() 14647 ? CopyConstructor->getEndLoc() 14648 : CopyConstructor->getLocation(); 14649 Sema::CompoundScopeRAII CompoundScope(*this); 14650 CopyConstructor->setBody( 14651 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>()); 14652 CopyConstructor->markUsed(Context); 14653 } 14654 14655 if (ASTMutationListener *L = getASTMutationListener()) { 14656 L->CompletedImplicitDefinition(CopyConstructor); 14657 } 14658 } 14659 14660 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( 14661 CXXRecordDecl *ClassDecl) { 14662 assert(ClassDecl->needsImplicitMoveConstructor()); 14663 14664 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor); 14665 if (DSM.isAlreadyBeingDeclared()) 14666 return nullptr; 14667 14668 QualType ClassType = Context.getTypeDeclType(ClassDecl); 14669 14670 QualType ArgType = ClassType; 14671 LangAS AS = getDefaultCXXMethodAddrSpace(); 14672 if (AS != LangAS::Default) 14673 ArgType = Context.getAddrSpaceQualType(ClassType, AS); 14674 ArgType = Context.getRValueReferenceType(ArgType); 14675 14676 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14677 CXXMoveConstructor, 14678 false); 14679 14680 DeclarationName Name 14681 = Context.DeclarationNames.getCXXConstructorName( 14682 Context.getCanonicalType(ClassType)); 14683 SourceLocation ClassLoc = ClassDecl->getLocation(); 14684 DeclarationNameInfo NameInfo(Name, ClassLoc); 14685 14686 // C++11 [class.copy]p11: 14687 // An implicitly-declared copy/move constructor is an inline public 14688 // member of its class. 14689 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( 14690 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 14691 ExplicitSpecifier(), 14692 /*isInline=*/true, 14693 /*isImplicitlyDeclared=*/true, 14694 Constexpr ? CSK_constexpr : CSK_unspecified); 14695 MoveConstructor->setAccess(AS_public); 14696 MoveConstructor->setDefaulted(); 14697 14698 if (getLangOpts().CUDA) { 14699 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor, 14700 MoveConstructor, 14701 /* ConstRHS */ false, 14702 /* Diagnose */ false); 14703 } 14704 14705 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType); 14706 14707 // Add the parameter to the constructor. 14708 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, 14709 ClassLoc, ClassLoc, 14710 /*IdentifierInfo=*/nullptr, 14711 ArgType, /*TInfo=*/nullptr, 14712 SC_None, nullptr); 14713 MoveConstructor->setParams(FromParam); 14714 14715 MoveConstructor->setTrivial( 14716 ClassDecl->needsOverloadResolutionForMoveConstructor() 14717 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor) 14718 : ClassDecl->hasTrivialMoveConstructor()); 14719 14720 MoveConstructor->setTrivialForCall( 14721 ClassDecl->hasAttr<TrivialABIAttr>() || 14722 (ClassDecl->needsOverloadResolutionForMoveConstructor() 14723 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor, 14724 TAH_ConsiderTrivialABI) 14725 : ClassDecl->hasTrivialMoveConstructorForCall())); 14726 14727 // Note that we have declared this constructor. 14728 ++getASTContext().NumImplicitMoveConstructorsDeclared; 14729 14730 Scope *S = getScopeForContext(ClassDecl); 14731 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor); 14732 14733 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) { 14734 ClassDecl->setImplicitMoveConstructorIsDeleted(); 14735 SetDeclDeleted(MoveConstructor, ClassLoc); 14736 } 14737 14738 if (S) 14739 PushOnScopeChains(MoveConstructor, S, false); 14740 ClassDecl->addDecl(MoveConstructor); 14741 14742 return MoveConstructor; 14743 } 14744 14745 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, 14746 CXXConstructorDecl *MoveConstructor) { 14747 assert((MoveConstructor->isDefaulted() && 14748 MoveConstructor->isMoveConstructor() && 14749 !MoveConstructor->doesThisDeclarationHaveABody() && 14750 !MoveConstructor->isDeleted()) && 14751 "DefineImplicitMoveConstructor - call it for implicit move ctor"); 14752 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl()) 14753 return; 14754 14755 CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); 14756 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"); 14757 14758 SynthesizedFunctionScope Scope(*this, MoveConstructor); 14759 14760 // The exception specification is needed because we are defining the 14761 // function. 14762 ResolveExceptionSpec(CurrentLocation, 14763 MoveConstructor->getType()->castAs<FunctionProtoType>()); 14764 MarkVTableUsed(CurrentLocation, ClassDecl); 14765 14766 // Add a context note for diagnostics produced after this point. 14767 Scope.addContextNote(CurrentLocation); 14768 14769 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) { 14770 MoveConstructor->setInvalidDecl(); 14771 } else { 14772 SourceLocation Loc = MoveConstructor->getEndLoc().isValid() 14773 ? MoveConstructor->getEndLoc() 14774 : MoveConstructor->getLocation(); 14775 Sema::CompoundScopeRAII CompoundScope(*this); 14776 MoveConstructor->setBody(ActOnCompoundStmt( 14777 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>()); 14778 MoveConstructor->markUsed(Context); 14779 } 14780 14781 if (ASTMutationListener *L = getASTMutationListener()) { 14782 L->CompletedImplicitDefinition(MoveConstructor); 14783 } 14784 } 14785 14786 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { 14787 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD); 14788 } 14789 14790 void Sema::DefineImplicitLambdaToFunctionPointerConversion( 14791 SourceLocation CurrentLocation, 14792 CXXConversionDecl *Conv) { 14793 SynthesizedFunctionScope Scope(*this, Conv); 14794 assert(!Conv->getReturnType()->isUndeducedType()); 14795 14796 CXXRecordDecl *Lambda = Conv->getParent(); 14797 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 14798 FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker(); 14799 14800 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) { 14801 CallOp = InstantiateFunctionDeclaration( 14802 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 14803 if (!CallOp) 14804 return; 14805 14806 Invoker = InstantiateFunctionDeclaration( 14807 Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 14808 if (!Invoker) 14809 return; 14810 } 14811 14812 if (CallOp->isInvalidDecl()) 14813 return; 14814 14815 // Mark the call operator referenced (and add to pending instantiations 14816 // if necessary). 14817 // For both the conversion and static-invoker template specializations 14818 // we construct their body's in this function, so no need to add them 14819 // to the PendingInstantiations. 14820 MarkFunctionReferenced(CurrentLocation, CallOp); 14821 14822 // Fill in the __invoke function with a dummy implementation. IR generation 14823 // will fill in the actual details. Update its type in case it contained 14824 // an 'auto'. 14825 Invoker->markUsed(Context); 14826 Invoker->setReferenced(); 14827 Invoker->setType(Conv->getReturnType()->getPointeeType()); 14828 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); 14829 14830 // Construct the body of the conversion function { return __invoke; }. 14831 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), 14832 VK_LValue, Conv->getLocation()); 14833 assert(FunctionRef && "Can't refer to __invoke function?"); 14834 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get(); 14835 Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(), 14836 Conv->getLocation())); 14837 Conv->markUsed(Context); 14838 Conv->setReferenced(); 14839 14840 if (ASTMutationListener *L = getASTMutationListener()) { 14841 L->CompletedImplicitDefinition(Conv); 14842 L->CompletedImplicitDefinition(Invoker); 14843 } 14844 } 14845 14846 14847 14848 void Sema::DefineImplicitLambdaToBlockPointerConversion( 14849 SourceLocation CurrentLocation, 14850 CXXConversionDecl *Conv) 14851 { 14852 assert(!Conv->getParent()->isGenericLambda()); 14853 14854 SynthesizedFunctionScope Scope(*this, Conv); 14855 14856 // Copy-initialize the lambda object as needed to capture it. 14857 Expr *This = ActOnCXXThis(CurrentLocation).get(); 14858 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get(); 14859 14860 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, 14861 Conv->getLocation(), 14862 Conv, DerefThis); 14863 14864 // If we're not under ARC, make sure we still get the _Block_copy/autorelease 14865 // behavior. Note that only the general conversion function does this 14866 // (since it's unusable otherwise); in the case where we inline the 14867 // block literal, it has block literal lifetime semantics. 14868 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) 14869 BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(), 14870 CK_CopyAndAutoreleaseBlockObject, 14871 BuildBlock.get(), nullptr, VK_RValue); 14872 14873 if (BuildBlock.isInvalid()) { 14874 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 14875 Conv->setInvalidDecl(); 14876 return; 14877 } 14878 14879 // Create the return statement that returns the block from the conversion 14880 // function. 14881 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get()); 14882 if (Return.isInvalid()) { 14883 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 14884 Conv->setInvalidDecl(); 14885 return; 14886 } 14887 14888 // Set the body of the conversion function. 14889 Stmt *ReturnS = Return.get(); 14890 Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(), 14891 Conv->getLocation())); 14892 Conv->markUsed(Context); 14893 14894 // We're done; notify the mutation listener, if any. 14895 if (ASTMutationListener *L = getASTMutationListener()) { 14896 L->CompletedImplicitDefinition(Conv); 14897 } 14898 } 14899 14900 /// Determine whether the given list arguments contains exactly one 14901 /// "real" (non-default) argument. 14902 static bool hasOneRealArgument(MultiExprArg Args) { 14903 switch (Args.size()) { 14904 case 0: 14905 return false; 14906 14907 default: 14908 if (!Args[1]->isDefaultArgument()) 14909 return false; 14910 14911 LLVM_FALLTHROUGH; 14912 case 1: 14913 return !Args[0]->isDefaultArgument(); 14914 } 14915 14916 return false; 14917 } 14918 14919 ExprResult 14920 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 14921 NamedDecl *FoundDecl, 14922 CXXConstructorDecl *Constructor, 14923 MultiExprArg ExprArgs, 14924 bool HadMultipleCandidates, 14925 bool IsListInitialization, 14926 bool IsStdInitListInitialization, 14927 bool RequiresZeroInit, 14928 unsigned ConstructKind, 14929 SourceRange ParenRange) { 14930 bool Elidable = false; 14931 14932 // C++0x [class.copy]p34: 14933 // When certain criteria are met, an implementation is allowed to 14934 // omit the copy/move construction of a class object, even if the 14935 // copy/move constructor and/or destructor for the object have 14936 // side effects. [...] 14937 // - when a temporary class object that has not been bound to a 14938 // reference (12.2) would be copied/moved to a class object 14939 // with the same cv-unqualified type, the copy/move operation 14940 // can be omitted by constructing the temporary object 14941 // directly into the target of the omitted copy/move 14942 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor && 14943 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) { 14944 Expr *SubExpr = ExprArgs[0]; 14945 Elidable = SubExpr->isTemporaryObject( 14946 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext())); 14947 } 14948 14949 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, 14950 FoundDecl, Constructor, 14951 Elidable, ExprArgs, HadMultipleCandidates, 14952 IsListInitialization, 14953 IsStdInitListInitialization, RequiresZeroInit, 14954 ConstructKind, ParenRange); 14955 } 14956 14957 ExprResult 14958 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 14959 NamedDecl *FoundDecl, 14960 CXXConstructorDecl *Constructor, 14961 bool Elidable, 14962 MultiExprArg ExprArgs, 14963 bool HadMultipleCandidates, 14964 bool IsListInitialization, 14965 bool IsStdInitListInitialization, 14966 bool RequiresZeroInit, 14967 unsigned ConstructKind, 14968 SourceRange ParenRange) { 14969 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) { 14970 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow); 14971 if (DiagnoseUseOfDecl(Constructor, ConstructLoc)) 14972 return ExprError(); 14973 } 14974 14975 return BuildCXXConstructExpr( 14976 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs, 14977 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, 14978 RequiresZeroInit, ConstructKind, ParenRange); 14979 } 14980 14981 /// BuildCXXConstructExpr - Creates a complete call to a constructor, 14982 /// including handling of its default argument expressions. 14983 ExprResult 14984 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 14985 CXXConstructorDecl *Constructor, 14986 bool Elidable, 14987 MultiExprArg ExprArgs, 14988 bool HadMultipleCandidates, 14989 bool IsListInitialization, 14990 bool IsStdInitListInitialization, 14991 bool RequiresZeroInit, 14992 unsigned ConstructKind, 14993 SourceRange ParenRange) { 14994 assert(declaresSameEntity( 14995 Constructor->getParent(), 14996 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && 14997 "given constructor for wrong type"); 14998 MarkFunctionReferenced(ConstructLoc, Constructor); 14999 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor)) 15000 return ExprError(); 15001 if (getLangOpts().SYCLIsDevice && 15002 !checkSYCLDeviceFunction(ConstructLoc, Constructor)) 15003 return ExprError(); 15004 15005 return CheckForImmediateInvocation( 15006 CXXConstructExpr::Create( 15007 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs, 15008 HadMultipleCandidates, IsListInitialization, 15009 IsStdInitListInitialization, RequiresZeroInit, 15010 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind), 15011 ParenRange), 15012 Constructor); 15013 } 15014 15015 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) { 15016 assert(Field->hasInClassInitializer()); 15017 15018 // If we already have the in-class initializer nothing needs to be done. 15019 if (Field->getInClassInitializer()) 15020 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); 15021 15022 // If we might have already tried and failed to instantiate, don't try again. 15023 if (Field->isInvalidDecl()) 15024 return ExprError(); 15025 15026 // Maybe we haven't instantiated the in-class initializer. Go check the 15027 // pattern FieldDecl to see if it has one. 15028 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent()); 15029 15030 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) { 15031 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern(); 15032 DeclContext::lookup_result Lookup = 15033 ClassPattern->lookup(Field->getDeclName()); 15034 15035 // Lookup can return at most two results: the pattern for the field, or the 15036 // injected class name of the parent record. No other member can have the 15037 // same name as the field. 15038 // In modules mode, lookup can return multiple results (coming from 15039 // different modules). 15040 assert((getLangOpts().Modules || (!Lookup.empty() && Lookup.size() <= 2)) && 15041 "more than two lookup results for field name"); 15042 FieldDecl *Pattern = dyn_cast<FieldDecl>(Lookup[0]); 15043 if (!Pattern) { 15044 assert(isa<CXXRecordDecl>(Lookup[0]) && 15045 "cannot have other non-field member with same name"); 15046 for (auto L : Lookup) 15047 if (isa<FieldDecl>(L)) { 15048 Pattern = cast<FieldDecl>(L); 15049 break; 15050 } 15051 assert(Pattern && "We must have set the Pattern!"); 15052 } 15053 15054 if (!Pattern->hasInClassInitializer() || 15055 InstantiateInClassInitializer(Loc, Field, Pattern, 15056 getTemplateInstantiationArgs(Field))) { 15057 // Don't diagnose this again. 15058 Field->setInvalidDecl(); 15059 return ExprError(); 15060 } 15061 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); 15062 } 15063 15064 // DR1351: 15065 // If the brace-or-equal-initializer of a non-static data member 15066 // invokes a defaulted default constructor of its class or of an 15067 // enclosing class in a potentially evaluated subexpression, the 15068 // program is ill-formed. 15069 // 15070 // This resolution is unworkable: the exception specification of the 15071 // default constructor can be needed in an unevaluated context, in 15072 // particular, in the operand of a noexcept-expression, and we can be 15073 // unable to compute an exception specification for an enclosed class. 15074 // 15075 // Any attempt to resolve the exception specification of a defaulted default 15076 // constructor before the initializer is lexically complete will ultimately 15077 // come here at which point we can diagnose it. 15078 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext(); 15079 Diag(Loc, diag::err_in_class_initializer_not_yet_parsed) 15080 << OutermostClass << Field; 15081 Diag(Field->getEndLoc(), diag::note_in_class_initializer_not_yet_parsed); 15082 // Recover by marking the field invalid, unless we're in a SFINAE context. 15083 if (!isSFINAEContext()) 15084 Field->setInvalidDecl(); 15085 return ExprError(); 15086 } 15087 15088 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { 15089 if (VD->isInvalidDecl()) return; 15090 // If initializing the variable failed, don't also diagnose problems with 15091 // the desctructor, they're likely related. 15092 if (VD->getInit() && VD->getInit()->containsErrors()) 15093 return; 15094 15095 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); 15096 if (ClassDecl->isInvalidDecl()) return; 15097 if (ClassDecl->hasIrrelevantDestructor()) return; 15098 if (ClassDecl->isDependentContext()) return; 15099 15100 if (VD->isNoDestroy(getASTContext())) 15101 return; 15102 15103 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 15104 15105 // If this is an array, we'll require the destructor during initialization, so 15106 // we can skip over this. We still want to emit exit-time destructor warnings 15107 // though. 15108 if (!VD->getType()->isArrayType()) { 15109 MarkFunctionReferenced(VD->getLocation(), Destructor); 15110 CheckDestructorAccess(VD->getLocation(), Destructor, 15111 PDiag(diag::err_access_dtor_var) 15112 << VD->getDeclName() << VD->getType()); 15113 DiagnoseUseOfDecl(Destructor, VD->getLocation()); 15114 } 15115 15116 if (Destructor->isTrivial()) return; 15117 15118 // If the destructor is constexpr, check whether the variable has constant 15119 // destruction now. 15120 if (Destructor->isConstexpr()) { 15121 bool HasConstantInit = false; 15122 if (VD->getInit() && !VD->getInit()->isValueDependent()) 15123 HasConstantInit = VD->evaluateValue(); 15124 SmallVector<PartialDiagnosticAt, 8> Notes; 15125 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() && 15126 HasConstantInit) { 15127 Diag(VD->getLocation(), 15128 diag::err_constexpr_var_requires_const_destruction) << VD; 15129 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 15130 Diag(Notes[I].first, Notes[I].second); 15131 } 15132 } 15133 15134 if (!VD->hasGlobalStorage()) return; 15135 15136 // Emit warning for non-trivial dtor in global scope (a real global, 15137 // class-static, function-static). 15138 Diag(VD->getLocation(), diag::warn_exit_time_destructor); 15139 15140 // TODO: this should be re-enabled for static locals by !CXAAtExit 15141 if (!VD->isStaticLocal()) 15142 Diag(VD->getLocation(), diag::warn_global_destructor); 15143 } 15144 15145 /// Given a constructor and the set of arguments provided for the 15146 /// constructor, convert the arguments and add any required default arguments 15147 /// to form a proper call to this constructor. 15148 /// 15149 /// \returns true if an error occurred, false otherwise. 15150 bool 15151 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, 15152 MultiExprArg ArgsPtr, 15153 SourceLocation Loc, 15154 SmallVectorImpl<Expr*> &ConvertedArgs, 15155 bool AllowExplicit, 15156 bool IsListInitialization) { 15157 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. 15158 unsigned NumArgs = ArgsPtr.size(); 15159 Expr **Args = ArgsPtr.data(); 15160 15161 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>(); 15162 unsigned NumParams = Proto->getNumParams(); 15163 15164 // If too few arguments are available, we'll fill in the rest with defaults. 15165 if (NumArgs < NumParams) 15166 ConvertedArgs.reserve(NumParams); 15167 else 15168 ConvertedArgs.reserve(NumArgs); 15169 15170 VariadicCallType CallType = 15171 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 15172 SmallVector<Expr *, 8> AllArgs; 15173 bool Invalid = GatherArgumentsForCall(Loc, Constructor, 15174 Proto, 0, 15175 llvm::makeArrayRef(Args, NumArgs), 15176 AllArgs, 15177 CallType, AllowExplicit, 15178 IsListInitialization); 15179 ConvertedArgs.append(AllArgs.begin(), AllArgs.end()); 15180 15181 DiagnoseSentinelCalls(Constructor, Loc, AllArgs); 15182 15183 CheckConstructorCall(Constructor, 15184 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()), 15185 Proto, Loc); 15186 15187 return Invalid; 15188 } 15189 15190 static inline bool 15191 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, 15192 const FunctionDecl *FnDecl) { 15193 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); 15194 if (isa<NamespaceDecl>(DC)) { 15195 return SemaRef.Diag(FnDecl->getLocation(), 15196 diag::err_operator_new_delete_declared_in_namespace) 15197 << FnDecl->getDeclName(); 15198 } 15199 15200 if (isa<TranslationUnitDecl>(DC) && 15201 FnDecl->getStorageClass() == SC_Static) { 15202 return SemaRef.Diag(FnDecl->getLocation(), 15203 diag::err_operator_new_delete_declared_static) 15204 << FnDecl->getDeclName(); 15205 } 15206 15207 return false; 15208 } 15209 15210 static QualType 15211 RemoveAddressSpaceFromPtr(Sema &SemaRef, const PointerType *PtrTy) { 15212 QualType QTy = PtrTy->getPointeeType(); 15213 QTy = SemaRef.Context.removeAddrSpaceQualType(QTy); 15214 return SemaRef.Context.getPointerType(QTy); 15215 } 15216 15217 static inline bool 15218 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, 15219 CanQualType ExpectedResultType, 15220 CanQualType ExpectedFirstParamType, 15221 unsigned DependentParamTypeDiag, 15222 unsigned InvalidParamTypeDiag) { 15223 QualType ResultType = 15224 FnDecl->getType()->castAs<FunctionType>()->getReturnType(); 15225 15226 // The operator is valid on any address space for OpenCL. 15227 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 15228 if (auto *PtrTy = ResultType->getAs<PointerType>()) { 15229 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 15230 } 15231 } 15232 15233 // Check that the result type is what we expect. 15234 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) { 15235 // Reject even if the type is dependent; an operator delete function is 15236 // required to have a non-dependent result type. 15237 return SemaRef.Diag( 15238 FnDecl->getLocation(), 15239 ResultType->isDependentType() 15240 ? diag::err_operator_new_delete_dependent_result_type 15241 : diag::err_operator_new_delete_invalid_result_type) 15242 << FnDecl->getDeclName() << ExpectedResultType; 15243 } 15244 15245 // A function template must have at least 2 parameters. 15246 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) 15247 return SemaRef.Diag(FnDecl->getLocation(), 15248 diag::err_operator_new_delete_template_too_few_parameters) 15249 << FnDecl->getDeclName(); 15250 15251 // The function decl must have at least 1 parameter. 15252 if (FnDecl->getNumParams() == 0) 15253 return SemaRef.Diag(FnDecl->getLocation(), 15254 diag::err_operator_new_delete_too_few_parameters) 15255 << FnDecl->getDeclName(); 15256 15257 QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); 15258 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 15259 // The operator is valid on any address space for OpenCL. 15260 if (auto *PtrTy = 15261 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) { 15262 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 15263 } 15264 } 15265 15266 // Check that the first parameter type is what we expect. 15267 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != 15268 ExpectedFirstParamType) { 15269 // The first parameter type is not allowed to be dependent. As a tentative 15270 // DR resolution, we allow a dependent parameter type if it is the right 15271 // type anyway, to allow destroying operator delete in class templates. 15272 return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType() 15273 ? DependentParamTypeDiag 15274 : InvalidParamTypeDiag) 15275 << FnDecl->getDeclName() << ExpectedFirstParamType; 15276 } 15277 15278 return false; 15279 } 15280 15281 static bool 15282 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { 15283 // C++ [basic.stc.dynamic.allocation]p1: 15284 // A program is ill-formed if an allocation function is declared in a 15285 // namespace scope other than global scope or declared static in global 15286 // scope. 15287 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 15288 return true; 15289 15290 CanQualType SizeTy = 15291 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); 15292 15293 // C++ [basic.stc.dynamic.allocation]p1: 15294 // The return type shall be void*. The first parameter shall have type 15295 // std::size_t. 15296 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, 15297 SizeTy, 15298 diag::err_operator_new_dependent_param_type, 15299 diag::err_operator_new_param_type)) 15300 return true; 15301 15302 // C++ [basic.stc.dynamic.allocation]p1: 15303 // The first parameter shall not have an associated default argument. 15304 if (FnDecl->getParamDecl(0)->hasDefaultArg()) 15305 return SemaRef.Diag(FnDecl->getLocation(), 15306 diag::err_operator_new_default_arg) 15307 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); 15308 15309 return false; 15310 } 15311 15312 static bool 15313 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { 15314 // C++ [basic.stc.dynamic.deallocation]p1: 15315 // A program is ill-formed if deallocation functions are declared in a 15316 // namespace scope other than global scope or declared static in global 15317 // scope. 15318 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 15319 return true; 15320 15321 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl); 15322 15323 // C++ P0722: 15324 // Within a class C, the first parameter of a destroying operator delete 15325 // shall be of type C *. The first parameter of any other deallocation 15326 // function shall be of type void *. 15327 CanQualType ExpectedFirstParamType = 15328 MD && MD->isDestroyingOperatorDelete() 15329 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType( 15330 SemaRef.Context.getRecordType(MD->getParent()))) 15331 : SemaRef.Context.VoidPtrTy; 15332 15333 // C++ [basic.stc.dynamic.deallocation]p2: 15334 // Each deallocation function shall return void 15335 if (CheckOperatorNewDeleteTypes( 15336 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType, 15337 diag::err_operator_delete_dependent_param_type, 15338 diag::err_operator_delete_param_type)) 15339 return true; 15340 15341 // C++ P0722: 15342 // A destroying operator delete shall be a usual deallocation function. 15343 if (MD && !MD->getParent()->isDependentContext() && 15344 MD->isDestroyingOperatorDelete() && 15345 !SemaRef.isUsualDeallocationFunction(MD)) { 15346 SemaRef.Diag(MD->getLocation(), 15347 diag::err_destroying_operator_delete_not_usual); 15348 return true; 15349 } 15350 15351 return false; 15352 } 15353 15354 /// CheckOverloadedOperatorDeclaration - Check whether the declaration 15355 /// of this overloaded operator is well-formed. If so, returns false; 15356 /// otherwise, emits appropriate diagnostics and returns true. 15357 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { 15358 assert(FnDecl && FnDecl->isOverloadedOperator() && 15359 "Expected an overloaded operator declaration"); 15360 15361 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); 15362 15363 // C++ [over.oper]p5: 15364 // The allocation and deallocation functions, operator new, 15365 // operator new[], operator delete and operator delete[], are 15366 // described completely in 3.7.3. The attributes and restrictions 15367 // found in the rest of this subclause do not apply to them unless 15368 // explicitly stated in 3.7.3. 15369 if (Op == OO_Delete || Op == OO_Array_Delete) 15370 return CheckOperatorDeleteDeclaration(*this, FnDecl); 15371 15372 if (Op == OO_New || Op == OO_Array_New) 15373 return CheckOperatorNewDeclaration(*this, FnDecl); 15374 15375 // C++ [over.oper]p6: 15376 // An operator function shall either be a non-static member 15377 // function or be a non-member function and have at least one 15378 // parameter whose type is a class, a reference to a class, an 15379 // enumeration, or a reference to an enumeration. 15380 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { 15381 if (MethodDecl->isStatic()) 15382 return Diag(FnDecl->getLocation(), 15383 diag::err_operator_overload_static) << FnDecl->getDeclName(); 15384 } else { 15385 bool ClassOrEnumParam = false; 15386 for (auto Param : FnDecl->parameters()) { 15387 QualType ParamType = Param->getType().getNonReferenceType(); 15388 if (ParamType->isDependentType() || ParamType->isRecordType() || 15389 ParamType->isEnumeralType()) { 15390 ClassOrEnumParam = true; 15391 break; 15392 } 15393 } 15394 15395 if (!ClassOrEnumParam) 15396 return Diag(FnDecl->getLocation(), 15397 diag::err_operator_overload_needs_class_or_enum) 15398 << FnDecl->getDeclName(); 15399 } 15400 15401 // C++ [over.oper]p8: 15402 // An operator function cannot have default arguments (8.3.6), 15403 // except where explicitly stated below. 15404 // 15405 // Only the function-call operator allows default arguments 15406 // (C++ [over.call]p1). 15407 if (Op != OO_Call) { 15408 for (auto Param : FnDecl->parameters()) { 15409 if (Param->hasDefaultArg()) 15410 return Diag(Param->getLocation(), 15411 diag::err_operator_overload_default_arg) 15412 << FnDecl->getDeclName() << Param->getDefaultArgRange(); 15413 } 15414 } 15415 15416 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { 15417 { false, false, false } 15418 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 15419 , { Unary, Binary, MemberOnly } 15420 #include "clang/Basic/OperatorKinds.def" 15421 }; 15422 15423 bool CanBeUnaryOperator = OperatorUses[Op][0]; 15424 bool CanBeBinaryOperator = OperatorUses[Op][1]; 15425 bool MustBeMemberOperator = OperatorUses[Op][2]; 15426 15427 // C++ [over.oper]p8: 15428 // [...] Operator functions cannot have more or fewer parameters 15429 // than the number required for the corresponding operator, as 15430 // described in the rest of this subclause. 15431 unsigned NumParams = FnDecl->getNumParams() 15432 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); 15433 if (Op != OO_Call && 15434 ((NumParams == 1 && !CanBeUnaryOperator) || 15435 (NumParams == 2 && !CanBeBinaryOperator) || 15436 (NumParams < 1) || (NumParams > 2))) { 15437 // We have the wrong number of parameters. 15438 unsigned ErrorKind; 15439 if (CanBeUnaryOperator && CanBeBinaryOperator) { 15440 ErrorKind = 2; // 2 -> unary or binary. 15441 } else if (CanBeUnaryOperator) { 15442 ErrorKind = 0; // 0 -> unary 15443 } else { 15444 assert(CanBeBinaryOperator && 15445 "All non-call overloaded operators are unary or binary!"); 15446 ErrorKind = 1; // 1 -> binary 15447 } 15448 15449 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) 15450 << FnDecl->getDeclName() << NumParams << ErrorKind; 15451 } 15452 15453 // Overloaded operators other than operator() cannot be variadic. 15454 if (Op != OO_Call && 15455 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) { 15456 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) 15457 << FnDecl->getDeclName(); 15458 } 15459 15460 // Some operators must be non-static member functions. 15461 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { 15462 return Diag(FnDecl->getLocation(), 15463 diag::err_operator_overload_must_be_member) 15464 << FnDecl->getDeclName(); 15465 } 15466 15467 // C++ [over.inc]p1: 15468 // The user-defined function called operator++ implements the 15469 // prefix and postfix ++ operator. If this function is a member 15470 // function with no parameters, or a non-member function with one 15471 // parameter of class or enumeration type, it defines the prefix 15472 // increment operator ++ for objects of that type. If the function 15473 // is a member function with one parameter (which shall be of type 15474 // int) or a non-member function with two parameters (the second 15475 // of which shall be of type int), it defines the postfix 15476 // increment operator ++ for objects of that type. 15477 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { 15478 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); 15479 QualType ParamType = LastParam->getType(); 15480 15481 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && 15482 !ParamType->isDependentType()) 15483 return Diag(LastParam->getLocation(), 15484 diag::err_operator_overload_post_incdec_must_be_int) 15485 << LastParam->getType() << (Op == OO_MinusMinus); 15486 } 15487 15488 return false; 15489 } 15490 15491 static bool 15492 checkLiteralOperatorTemplateParameterList(Sema &SemaRef, 15493 FunctionTemplateDecl *TpDecl) { 15494 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters(); 15495 15496 // Must have one or two template parameters. 15497 if (TemplateParams->size() == 1) { 15498 NonTypeTemplateParmDecl *PmDecl = 15499 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0)); 15500 15501 // The template parameter must be a char parameter pack. 15502 if (PmDecl && PmDecl->isTemplateParameterPack() && 15503 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy)) 15504 return false; 15505 15506 } else if (TemplateParams->size() == 2) { 15507 TemplateTypeParmDecl *PmType = 15508 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0)); 15509 NonTypeTemplateParmDecl *PmArgs = 15510 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1)); 15511 15512 // The second template parameter must be a parameter pack with the 15513 // first template parameter as its type. 15514 if (PmType && PmArgs && !PmType->isTemplateParameterPack() && 15515 PmArgs->isTemplateParameterPack()) { 15516 const TemplateTypeParmType *TArgs = 15517 PmArgs->getType()->getAs<TemplateTypeParmType>(); 15518 if (TArgs && TArgs->getDepth() == PmType->getDepth() && 15519 TArgs->getIndex() == PmType->getIndex()) { 15520 if (!SemaRef.inTemplateInstantiation()) 15521 SemaRef.Diag(TpDecl->getLocation(), 15522 diag::ext_string_literal_operator_template); 15523 return false; 15524 } 15525 } 15526 } 15527 15528 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(), 15529 diag::err_literal_operator_template) 15530 << TpDecl->getTemplateParameters()->getSourceRange(); 15531 return true; 15532 } 15533 15534 /// CheckLiteralOperatorDeclaration - Check whether the declaration 15535 /// of this literal operator function is well-formed. If so, returns 15536 /// false; otherwise, emits appropriate diagnostics and returns true. 15537 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { 15538 if (isa<CXXMethodDecl>(FnDecl)) { 15539 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) 15540 << FnDecl->getDeclName(); 15541 return true; 15542 } 15543 15544 if (FnDecl->isExternC()) { 15545 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); 15546 if (const LinkageSpecDecl *LSD = 15547 FnDecl->getDeclContext()->getExternCContext()) 15548 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 15549 return true; 15550 } 15551 15552 // This might be the definition of a literal operator template. 15553 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); 15554 15555 // This might be a specialization of a literal operator template. 15556 if (!TpDecl) 15557 TpDecl = FnDecl->getPrimaryTemplate(); 15558 15559 // template <char...> type operator "" name() and 15560 // template <class T, T...> type operator "" name() are the only valid 15561 // template signatures, and the only valid signatures with no parameters. 15562 if (TpDecl) { 15563 if (FnDecl->param_size() != 0) { 15564 Diag(FnDecl->getLocation(), 15565 diag::err_literal_operator_template_with_params); 15566 return true; 15567 } 15568 15569 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl)) 15570 return true; 15571 15572 } else if (FnDecl->param_size() == 1) { 15573 const ParmVarDecl *Param = FnDecl->getParamDecl(0); 15574 15575 QualType ParamType = Param->getType().getUnqualifiedType(); 15576 15577 // Only unsigned long long int, long double, any character type, and const 15578 // char * are allowed as the only parameters. 15579 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) || 15580 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) || 15581 Context.hasSameType(ParamType, Context.CharTy) || 15582 Context.hasSameType(ParamType, Context.WideCharTy) || 15583 Context.hasSameType(ParamType, Context.Char8Ty) || 15584 Context.hasSameType(ParamType, Context.Char16Ty) || 15585 Context.hasSameType(ParamType, Context.Char32Ty)) { 15586 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) { 15587 QualType InnerType = Ptr->getPointeeType(); 15588 15589 // Pointer parameter must be a const char *. 15590 if (!(Context.hasSameType(InnerType.getUnqualifiedType(), 15591 Context.CharTy) && 15592 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) { 15593 Diag(Param->getSourceRange().getBegin(), 15594 diag::err_literal_operator_param) 15595 << ParamType << "'const char *'" << Param->getSourceRange(); 15596 return true; 15597 } 15598 15599 } else if (ParamType->isRealFloatingType()) { 15600 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 15601 << ParamType << Context.LongDoubleTy << Param->getSourceRange(); 15602 return true; 15603 15604 } else if (ParamType->isIntegerType()) { 15605 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 15606 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange(); 15607 return true; 15608 15609 } else { 15610 Diag(Param->getSourceRange().getBegin(), 15611 diag::err_literal_operator_invalid_param) 15612 << ParamType << Param->getSourceRange(); 15613 return true; 15614 } 15615 15616 } else if (FnDecl->param_size() == 2) { 15617 FunctionDecl::param_iterator Param = FnDecl->param_begin(); 15618 15619 // First, verify that the first parameter is correct. 15620 15621 QualType FirstParamType = (*Param)->getType().getUnqualifiedType(); 15622 15623 // Two parameter function must have a pointer to const as a 15624 // first parameter; let's strip those qualifiers. 15625 const PointerType *PT = FirstParamType->getAs<PointerType>(); 15626 15627 if (!PT) { 15628 Diag((*Param)->getSourceRange().getBegin(), 15629 diag::err_literal_operator_param) 15630 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 15631 return true; 15632 } 15633 15634 QualType PointeeType = PT->getPointeeType(); 15635 // First parameter must be const 15636 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) { 15637 Diag((*Param)->getSourceRange().getBegin(), 15638 diag::err_literal_operator_param) 15639 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 15640 return true; 15641 } 15642 15643 QualType InnerType = PointeeType.getUnqualifiedType(); 15644 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and 15645 // const char32_t* are allowed as the first parameter to a two-parameter 15646 // function 15647 if (!(Context.hasSameType(InnerType, Context.CharTy) || 15648 Context.hasSameType(InnerType, Context.WideCharTy) || 15649 Context.hasSameType(InnerType, Context.Char8Ty) || 15650 Context.hasSameType(InnerType, Context.Char16Ty) || 15651 Context.hasSameType(InnerType, Context.Char32Ty))) { 15652 Diag((*Param)->getSourceRange().getBegin(), 15653 diag::err_literal_operator_param) 15654 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 15655 return true; 15656 } 15657 15658 // Move on to the second and final parameter. 15659 ++Param; 15660 15661 // The second parameter must be a std::size_t. 15662 QualType SecondParamType = (*Param)->getType().getUnqualifiedType(); 15663 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) { 15664 Diag((*Param)->getSourceRange().getBegin(), 15665 diag::err_literal_operator_param) 15666 << SecondParamType << Context.getSizeType() 15667 << (*Param)->getSourceRange(); 15668 return true; 15669 } 15670 } else { 15671 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count); 15672 return true; 15673 } 15674 15675 // Parameters are good. 15676 15677 // A parameter-declaration-clause containing a default argument is not 15678 // equivalent to any of the permitted forms. 15679 for (auto Param : FnDecl->parameters()) { 15680 if (Param->hasDefaultArg()) { 15681 Diag(Param->getDefaultArgRange().getBegin(), 15682 diag::err_literal_operator_default_argument) 15683 << Param->getDefaultArgRange(); 15684 break; 15685 } 15686 } 15687 15688 StringRef LiteralName 15689 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName(); 15690 if (LiteralName[0] != '_' && 15691 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) { 15692 // C++11 [usrlit.suffix]p1: 15693 // Literal suffix identifiers that do not start with an underscore 15694 // are reserved for future standardization. 15695 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) 15696 << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName); 15697 } 15698 15699 return false; 15700 } 15701 15702 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ 15703 /// linkage specification, including the language and (if present) 15704 /// the '{'. ExternLoc is the location of the 'extern', Lang is the 15705 /// language string literal. LBraceLoc, if valid, provides the location of 15706 /// the '{' brace. Otherwise, this linkage specification does not 15707 /// have any braces. 15708 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, 15709 Expr *LangStr, 15710 SourceLocation LBraceLoc) { 15711 StringLiteral *Lit = cast<StringLiteral>(LangStr); 15712 if (!Lit->isAscii()) { 15713 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii) 15714 << LangStr->getSourceRange(); 15715 return nullptr; 15716 } 15717 15718 StringRef Lang = Lit->getString(); 15719 LinkageSpecDecl::LanguageIDs Language; 15720 if (Lang == "C") 15721 Language = LinkageSpecDecl::lang_c; 15722 else if (Lang == "C++") 15723 Language = LinkageSpecDecl::lang_cxx; 15724 else { 15725 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) 15726 << LangStr->getSourceRange(); 15727 return nullptr; 15728 } 15729 15730 // FIXME: Add all the various semantics of linkage specifications 15731 15732 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc, 15733 LangStr->getExprLoc(), Language, 15734 LBraceLoc.isValid()); 15735 CurContext->addDecl(D); 15736 PushDeclContext(S, D); 15737 return D; 15738 } 15739 15740 /// ActOnFinishLinkageSpecification - Complete the definition of 15741 /// the C++ linkage specification LinkageSpec. If RBraceLoc is 15742 /// valid, it's the position of the closing '}' brace in a linkage 15743 /// specification that uses braces. 15744 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, 15745 Decl *LinkageSpec, 15746 SourceLocation RBraceLoc) { 15747 if (RBraceLoc.isValid()) { 15748 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec); 15749 LSDecl->setRBraceLoc(RBraceLoc); 15750 } 15751 PopDeclContext(); 15752 return LinkageSpec; 15753 } 15754 15755 Decl *Sema::ActOnEmptyDeclaration(Scope *S, 15756 const ParsedAttributesView &AttrList, 15757 SourceLocation SemiLoc) { 15758 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc); 15759 // Attribute declarations appertain to empty declaration so we handle 15760 // them here. 15761 ProcessDeclAttributeList(S, ED, AttrList); 15762 15763 CurContext->addDecl(ED); 15764 return ED; 15765 } 15766 15767 /// Perform semantic analysis for the variable declaration that 15768 /// occurs within a C++ catch clause, returning the newly-created 15769 /// variable. 15770 VarDecl *Sema::BuildExceptionDeclaration(Scope *S, 15771 TypeSourceInfo *TInfo, 15772 SourceLocation StartLoc, 15773 SourceLocation Loc, 15774 IdentifierInfo *Name) { 15775 bool Invalid = false; 15776 QualType ExDeclType = TInfo->getType(); 15777 15778 // Arrays and functions decay. 15779 if (ExDeclType->isArrayType()) 15780 ExDeclType = Context.getArrayDecayedType(ExDeclType); 15781 else if (ExDeclType->isFunctionType()) 15782 ExDeclType = Context.getPointerType(ExDeclType); 15783 15784 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. 15785 // The exception-declaration shall not denote a pointer or reference to an 15786 // incomplete type, other than [cv] void*. 15787 // N2844 forbids rvalue references. 15788 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { 15789 Diag(Loc, diag::err_catch_rvalue_ref); 15790 Invalid = true; 15791 } 15792 15793 if (ExDeclType->isVariablyModifiedType()) { 15794 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType; 15795 Invalid = true; 15796 } 15797 15798 QualType BaseType = ExDeclType; 15799 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference 15800 unsigned DK = diag::err_catch_incomplete; 15801 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 15802 BaseType = Ptr->getPointeeType(); 15803 Mode = 1; 15804 DK = diag::err_catch_incomplete_ptr; 15805 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { 15806 // For the purpose of error recovery, we treat rvalue refs like lvalue refs. 15807 BaseType = Ref->getPointeeType(); 15808 Mode = 2; 15809 DK = diag::err_catch_incomplete_ref; 15810 } 15811 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && 15812 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) 15813 Invalid = true; 15814 15815 if (!Invalid && Mode != 1 && BaseType->isSizelessType()) { 15816 Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType; 15817 Invalid = true; 15818 } 15819 15820 if (!Invalid && !ExDeclType->isDependentType() && 15821 RequireNonAbstractType(Loc, ExDeclType, 15822 diag::err_abstract_type_in_decl, 15823 AbstractVariableType)) 15824 Invalid = true; 15825 15826 // Only the non-fragile NeXT runtime currently supports C++ catches 15827 // of ObjC types, and no runtime supports catching ObjC types by value. 15828 if (!Invalid && getLangOpts().ObjC) { 15829 QualType T = ExDeclType; 15830 if (const ReferenceType *RT = T->getAs<ReferenceType>()) 15831 T = RT->getPointeeType(); 15832 15833 if (T->isObjCObjectType()) { 15834 Diag(Loc, diag::err_objc_object_catch); 15835 Invalid = true; 15836 } else if (T->isObjCObjectPointerType()) { 15837 // FIXME: should this be a test for macosx-fragile specifically? 15838 if (getLangOpts().ObjCRuntime.isFragile()) 15839 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); 15840 } 15841 } 15842 15843 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, 15844 ExDeclType, TInfo, SC_None); 15845 ExDecl->setExceptionVariable(true); 15846 15847 // In ARC, infer 'retaining' for variables of retainable type. 15848 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl)) 15849 Invalid = true; 15850 15851 if (!Invalid && !ExDeclType->isDependentType()) { 15852 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { 15853 // Insulate this from anything else we might currently be parsing. 15854 EnterExpressionEvaluationContext scope( 15855 *this, ExpressionEvaluationContext::PotentiallyEvaluated); 15856 15857 // C++ [except.handle]p16: 15858 // The object declared in an exception-declaration or, if the 15859 // exception-declaration does not specify a name, a temporary (12.2) is 15860 // copy-initialized (8.5) from the exception object. [...] 15861 // The object is destroyed when the handler exits, after the destruction 15862 // of any automatic objects initialized within the handler. 15863 // 15864 // We just pretend to initialize the object with itself, then make sure 15865 // it can be destroyed later. 15866 QualType initType = Context.getExceptionObjectType(ExDeclType); 15867 15868 InitializedEntity entity = 15869 InitializedEntity::InitializeVariable(ExDecl); 15870 InitializationKind initKind = 15871 InitializationKind::CreateCopy(Loc, SourceLocation()); 15872 15873 Expr *opaqueValue = 15874 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); 15875 InitializationSequence sequence(*this, entity, initKind, opaqueValue); 15876 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue); 15877 if (result.isInvalid()) 15878 Invalid = true; 15879 else { 15880 // If the constructor used was non-trivial, set this as the 15881 // "initializer". 15882 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>(); 15883 if (!construct->getConstructor()->isTrivial()) { 15884 Expr *init = MaybeCreateExprWithCleanups(construct); 15885 ExDecl->setInit(init); 15886 } 15887 15888 // And make sure it's destructable. 15889 FinalizeVarWithDestructor(ExDecl, recordType); 15890 } 15891 } 15892 } 15893 15894 if (Invalid) 15895 ExDecl->setInvalidDecl(); 15896 15897 return ExDecl; 15898 } 15899 15900 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch 15901 /// handler. 15902 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { 15903 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 15904 bool Invalid = D.isInvalidType(); 15905 15906 // Check for unexpanded parameter packs. 15907 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 15908 UPPC_ExceptionType)) { 15909 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 15910 D.getIdentifierLoc()); 15911 Invalid = true; 15912 } 15913 15914 IdentifierInfo *II = D.getIdentifier(); 15915 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), 15916 LookupOrdinaryName, 15917 ForVisibleRedeclaration)) { 15918 // The scope should be freshly made just for us. There is just no way 15919 // it contains any previous declaration, except for function parameters in 15920 // a function-try-block's catch statement. 15921 assert(!S->isDeclScope(PrevDecl)); 15922 if (isDeclInScope(PrevDecl, CurContext, S)) { 15923 Diag(D.getIdentifierLoc(), diag::err_redefinition) 15924 << D.getIdentifier(); 15925 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 15926 Invalid = true; 15927 } else if (PrevDecl->isTemplateParameter()) 15928 // Maybe we will complain about the shadowed template parameter. 15929 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 15930 } 15931 15932 if (D.getCXXScopeSpec().isSet() && !Invalid) { 15933 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) 15934 << D.getCXXScopeSpec().getRange(); 15935 Invalid = true; 15936 } 15937 15938 VarDecl *ExDecl = BuildExceptionDeclaration( 15939 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier()); 15940 if (Invalid) 15941 ExDecl->setInvalidDecl(); 15942 15943 // Add the exception declaration into this scope. 15944 if (II) 15945 PushOnScopeChains(ExDecl, S); 15946 else 15947 CurContext->addDecl(ExDecl); 15948 15949 ProcessDeclAttributes(S, ExDecl, D); 15950 return ExDecl; 15951 } 15952 15953 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, 15954 Expr *AssertExpr, 15955 Expr *AssertMessageExpr, 15956 SourceLocation RParenLoc) { 15957 StringLiteral *AssertMessage = 15958 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr; 15959 15960 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) 15961 return nullptr; 15962 15963 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, 15964 AssertMessage, RParenLoc, false); 15965 } 15966 15967 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, 15968 Expr *AssertExpr, 15969 StringLiteral *AssertMessage, 15970 SourceLocation RParenLoc, 15971 bool Failed) { 15972 assert(AssertExpr != nullptr && "Expected non-null condition"); 15973 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && 15974 !Failed) { 15975 // In a static_assert-declaration, the constant-expression shall be a 15976 // constant expression that can be contextually converted to bool. 15977 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr); 15978 if (Converted.isInvalid()) 15979 Failed = true; 15980 15981 ExprResult FullAssertExpr = 15982 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc, 15983 /*DiscardedValue*/ false, 15984 /*IsConstexpr*/ true); 15985 if (FullAssertExpr.isInvalid()) 15986 Failed = true; 15987 else 15988 AssertExpr = FullAssertExpr.get(); 15989 15990 llvm::APSInt Cond; 15991 if (!Failed && VerifyIntegerConstantExpression(AssertExpr, &Cond, 15992 diag::err_static_assert_expression_is_not_constant, 15993 /*AllowFold=*/false).isInvalid()) 15994 Failed = true; 15995 15996 if (!Failed && !Cond) { 15997 SmallString<256> MsgBuffer; 15998 llvm::raw_svector_ostream Msg(MsgBuffer); 15999 if (AssertMessage) 16000 AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy()); 16001 16002 Expr *InnerCond = nullptr; 16003 std::string InnerCondDescription; 16004 std::tie(InnerCond, InnerCondDescription) = 16005 findFailedBooleanCondition(Converted.get()); 16006 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) { 16007 // Drill down into concept specialization expressions to see why they 16008 // weren't satisfied. 16009 Diag(StaticAssertLoc, diag::err_static_assert_failed) 16010 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); 16011 ConstraintSatisfaction Satisfaction; 16012 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction)) 16013 DiagnoseUnsatisfiedConstraint(Satisfaction); 16014 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond) 16015 && !isa<IntegerLiteral>(InnerCond)) { 16016 Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed) 16017 << InnerCondDescription << !AssertMessage 16018 << Msg.str() << InnerCond->getSourceRange(); 16019 } else { 16020 Diag(StaticAssertLoc, diag::err_static_assert_failed) 16021 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); 16022 } 16023 Failed = true; 16024 } 16025 } else { 16026 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc, 16027 /*DiscardedValue*/false, 16028 /*IsConstexpr*/true); 16029 if (FullAssertExpr.isInvalid()) 16030 Failed = true; 16031 else 16032 AssertExpr = FullAssertExpr.get(); 16033 } 16034 16035 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, 16036 AssertExpr, AssertMessage, RParenLoc, 16037 Failed); 16038 16039 CurContext->addDecl(Decl); 16040 return Decl; 16041 } 16042 16043 /// Perform semantic analysis of the given friend type declaration. 16044 /// 16045 /// \returns A friend declaration that. 16046 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart, 16047 SourceLocation FriendLoc, 16048 TypeSourceInfo *TSInfo) { 16049 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration"); 16050 16051 QualType T = TSInfo->getType(); 16052 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange(); 16053 16054 // C++03 [class.friend]p2: 16055 // An elaborated-type-specifier shall be used in a friend declaration 16056 // for a class.* 16057 // 16058 // * The class-key of the elaborated-type-specifier is required. 16059 if (!CodeSynthesisContexts.empty()) { 16060 // Do not complain about the form of friend template types during any kind 16061 // of code synthesis. For template instantiation, we will have complained 16062 // when the template was defined. 16063 } else { 16064 if (!T->isElaboratedTypeSpecifier()) { 16065 // If we evaluated the type to a record type, suggest putting 16066 // a tag in front. 16067 if (const RecordType *RT = T->getAs<RecordType>()) { 16068 RecordDecl *RD = RT->getDecl(); 16069 16070 SmallString<16> InsertionText(" "); 16071 InsertionText += RD->getKindName(); 16072 16073 Diag(TypeRange.getBegin(), 16074 getLangOpts().CPlusPlus11 ? 16075 diag::warn_cxx98_compat_unelaborated_friend_type : 16076 diag::ext_unelaborated_friend_type) 16077 << (unsigned) RD->getTagKind() 16078 << T 16079 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc), 16080 InsertionText); 16081 } else { 16082 Diag(FriendLoc, 16083 getLangOpts().CPlusPlus11 ? 16084 diag::warn_cxx98_compat_nonclass_type_friend : 16085 diag::ext_nonclass_type_friend) 16086 << T 16087 << TypeRange; 16088 } 16089 } else if (T->getAs<EnumType>()) { 16090 Diag(FriendLoc, 16091 getLangOpts().CPlusPlus11 ? 16092 diag::warn_cxx98_compat_enum_friend : 16093 diag::ext_enum_friend) 16094 << T 16095 << TypeRange; 16096 } 16097 16098 // C++11 [class.friend]p3: 16099 // A friend declaration that does not declare a function shall have one 16100 // of the following forms: 16101 // friend elaborated-type-specifier ; 16102 // friend simple-type-specifier ; 16103 // friend typename-specifier ; 16104 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc) 16105 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T; 16106 } 16107 16108 // If the type specifier in a friend declaration designates a (possibly 16109 // cv-qualified) class type, that class is declared as a friend; otherwise, 16110 // the friend declaration is ignored. 16111 return FriendDecl::Create(Context, CurContext, 16112 TSInfo->getTypeLoc().getBeginLoc(), TSInfo, 16113 FriendLoc); 16114 } 16115 16116 /// Handle a friend tag declaration where the scope specifier was 16117 /// templated. 16118 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, 16119 unsigned TagSpec, SourceLocation TagLoc, 16120 CXXScopeSpec &SS, IdentifierInfo *Name, 16121 SourceLocation NameLoc, 16122 const ParsedAttributesView &Attr, 16123 MultiTemplateParamsArg TempParamLists) { 16124 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 16125 16126 bool IsMemberSpecialization = false; 16127 bool Invalid = false; 16128 16129 if (TemplateParameterList *TemplateParams = 16130 MatchTemplateParametersToScopeSpecifier( 16131 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true, 16132 IsMemberSpecialization, Invalid)) { 16133 if (TemplateParams->size() > 0) { 16134 // This is a declaration of a class template. 16135 if (Invalid) 16136 return nullptr; 16137 16138 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name, 16139 NameLoc, Attr, TemplateParams, AS_public, 16140 /*ModulePrivateLoc=*/SourceLocation(), 16141 FriendLoc, TempParamLists.size() - 1, 16142 TempParamLists.data()).get(); 16143 } else { 16144 // The "template<>" header is extraneous. 16145 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 16146 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 16147 IsMemberSpecialization = true; 16148 } 16149 } 16150 16151 if (Invalid) return nullptr; 16152 16153 bool isAllExplicitSpecializations = true; 16154 for (unsigned I = TempParamLists.size(); I-- > 0; ) { 16155 if (TempParamLists[I]->size()) { 16156 isAllExplicitSpecializations = false; 16157 break; 16158 } 16159 } 16160 16161 // FIXME: don't ignore attributes. 16162 16163 // If it's explicit specializations all the way down, just forget 16164 // about the template header and build an appropriate non-templated 16165 // friend. TODO: for source fidelity, remember the headers. 16166 if (isAllExplicitSpecializations) { 16167 if (SS.isEmpty()) { 16168 bool Owned = false; 16169 bool IsDependent = false; 16170 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc, 16171 Attr, AS_public, 16172 /*ModulePrivateLoc=*/SourceLocation(), 16173 MultiTemplateParamsArg(), Owned, IsDependent, 16174 /*ScopedEnumKWLoc=*/SourceLocation(), 16175 /*ScopedEnumUsesClassTag=*/false, 16176 /*UnderlyingType=*/TypeResult(), 16177 /*IsTypeSpecifier=*/false, 16178 /*IsTemplateParamOrArg=*/false); 16179 } 16180 16181 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 16182 ElaboratedTypeKeyword Keyword 16183 = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 16184 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, 16185 *Name, NameLoc); 16186 if (T.isNull()) 16187 return nullptr; 16188 16189 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 16190 if (isa<DependentNameType>(T)) { 16191 DependentNameTypeLoc TL = 16192 TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 16193 TL.setElaboratedKeywordLoc(TagLoc); 16194 TL.setQualifierLoc(QualifierLoc); 16195 TL.setNameLoc(NameLoc); 16196 } else { 16197 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 16198 TL.setElaboratedKeywordLoc(TagLoc); 16199 TL.setQualifierLoc(QualifierLoc); 16200 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc); 16201 } 16202 16203 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 16204 TSI, FriendLoc, TempParamLists); 16205 Friend->setAccess(AS_public); 16206 CurContext->addDecl(Friend); 16207 return Friend; 16208 } 16209 16210 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?"); 16211 16212 16213 16214 // Handle the case of a templated-scope friend class. e.g. 16215 // template <class T> class A<T>::B; 16216 // FIXME: we don't support these right now. 16217 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) 16218 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext); 16219 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 16220 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); 16221 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 16222 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 16223 TL.setElaboratedKeywordLoc(TagLoc); 16224 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 16225 TL.setNameLoc(NameLoc); 16226 16227 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 16228 TSI, FriendLoc, TempParamLists); 16229 Friend->setAccess(AS_public); 16230 Friend->setUnsupportedFriend(true); 16231 CurContext->addDecl(Friend); 16232 return Friend; 16233 } 16234 16235 /// Handle a friend type declaration. This works in tandem with 16236 /// ActOnTag. 16237 /// 16238 /// Notes on friend class templates: 16239 /// 16240 /// We generally treat friend class declarations as if they were 16241 /// declaring a class. So, for example, the elaborated type specifier 16242 /// in a friend declaration is required to obey the restrictions of a 16243 /// class-head (i.e. no typedefs in the scope chain), template 16244 /// parameters are required to match up with simple template-ids, &c. 16245 /// However, unlike when declaring a template specialization, it's 16246 /// okay to refer to a template specialization without an empty 16247 /// template parameter declaration, e.g. 16248 /// friend class A<T>::B<unsigned>; 16249 /// We permit this as a special case; if there are any template 16250 /// parameters present at all, require proper matching, i.e. 16251 /// template <> template \<class T> friend class A<int>::B; 16252 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, 16253 MultiTemplateParamsArg TempParams) { 16254 SourceLocation Loc = DS.getBeginLoc(); 16255 16256 assert(DS.isFriendSpecified()); 16257 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 16258 16259 // C++ [class.friend]p3: 16260 // A friend declaration that does not declare a function shall have one of 16261 // the following forms: 16262 // friend elaborated-type-specifier ; 16263 // friend simple-type-specifier ; 16264 // friend typename-specifier ; 16265 // 16266 // Any declaration with a type qualifier does not have that form. (It's 16267 // legal to specify a qualified type as a friend, you just can't write the 16268 // keywords.) 16269 if (DS.getTypeQualifiers()) { 16270 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 16271 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const"; 16272 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 16273 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile"; 16274 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 16275 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict"; 16276 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 16277 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic"; 16278 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 16279 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned"; 16280 } 16281 16282 // Try to convert the decl specifier to a type. This works for 16283 // friend templates because ActOnTag never produces a ClassTemplateDecl 16284 // for a TUK_Friend. 16285 Declarator TheDeclarator(DS, DeclaratorContext::MemberContext); 16286 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); 16287 QualType T = TSI->getType(); 16288 if (TheDeclarator.isInvalidType()) 16289 return nullptr; 16290 16291 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) 16292 return nullptr; 16293 16294 // This is definitely an error in C++98. It's probably meant to 16295 // be forbidden in C++0x, too, but the specification is just 16296 // poorly written. 16297 // 16298 // The problem is with declarations like the following: 16299 // template <T> friend A<T>::foo; 16300 // where deciding whether a class C is a friend or not now hinges 16301 // on whether there exists an instantiation of A that causes 16302 // 'foo' to equal C. There are restrictions on class-heads 16303 // (which we declare (by fiat) elaborated friend declarations to 16304 // be) that makes this tractable. 16305 // 16306 // FIXME: handle "template <> friend class A<T>;", which 16307 // is possibly well-formed? Who even knows? 16308 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { 16309 Diag(Loc, diag::err_tagless_friend_type_template) 16310 << DS.getSourceRange(); 16311 return nullptr; 16312 } 16313 16314 // C++98 [class.friend]p1: A friend of a class is a function 16315 // or class that is not a member of the class . . . 16316 // This is fixed in DR77, which just barely didn't make the C++03 16317 // deadline. It's also a very silly restriction that seriously 16318 // affects inner classes and which nobody else seems to implement; 16319 // thus we never diagnose it, not even in -pedantic. 16320 // 16321 // But note that we could warn about it: it's always useless to 16322 // friend one of your own members (it's not, however, worthless to 16323 // friend a member of an arbitrary specialization of your template). 16324 16325 Decl *D; 16326 if (!TempParams.empty()) 16327 D = FriendTemplateDecl::Create(Context, CurContext, Loc, 16328 TempParams, 16329 TSI, 16330 DS.getFriendSpecLoc()); 16331 else 16332 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI); 16333 16334 if (!D) 16335 return nullptr; 16336 16337 D->setAccess(AS_public); 16338 CurContext->addDecl(D); 16339 16340 return D; 16341 } 16342 16343 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, 16344 MultiTemplateParamsArg TemplateParams) { 16345 const DeclSpec &DS = D.getDeclSpec(); 16346 16347 assert(DS.isFriendSpecified()); 16348 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 16349 16350 SourceLocation Loc = D.getIdentifierLoc(); 16351 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16352 16353 // C++ [class.friend]p1 16354 // A friend of a class is a function or class.... 16355 // Note that this sees through typedefs, which is intended. 16356 // It *doesn't* see through dependent types, which is correct 16357 // according to [temp.arg.type]p3: 16358 // If a declaration acquires a function type through a 16359 // type dependent on a template-parameter and this causes 16360 // a declaration that does not use the syntactic form of a 16361 // function declarator to have a function type, the program 16362 // is ill-formed. 16363 if (!TInfo->getType()->isFunctionType()) { 16364 Diag(Loc, diag::err_unexpected_friend); 16365 16366 // It might be worthwhile to try to recover by creating an 16367 // appropriate declaration. 16368 return nullptr; 16369 } 16370 16371 // C++ [namespace.memdef]p3 16372 // - If a friend declaration in a non-local class first declares a 16373 // class or function, the friend class or function is a member 16374 // of the innermost enclosing namespace. 16375 // - The name of the friend is not found by simple name lookup 16376 // until a matching declaration is provided in that namespace 16377 // scope (either before or after the class declaration granting 16378 // friendship). 16379 // - If a friend function is called, its name may be found by the 16380 // name lookup that considers functions from namespaces and 16381 // classes associated with the types of the function arguments. 16382 // - When looking for a prior declaration of a class or a function 16383 // declared as a friend, scopes outside the innermost enclosing 16384 // namespace scope are not considered. 16385 16386 CXXScopeSpec &SS = D.getCXXScopeSpec(); 16387 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 16388 assert(NameInfo.getName()); 16389 16390 // Check for unexpanded parameter packs. 16391 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || 16392 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || 16393 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) 16394 return nullptr; 16395 16396 // The context we found the declaration in, or in which we should 16397 // create the declaration. 16398 DeclContext *DC; 16399 Scope *DCScope = S; 16400 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 16401 ForExternalRedeclaration); 16402 16403 // There are five cases here. 16404 // - There's no scope specifier and we're in a local class. Only look 16405 // for functions declared in the immediately-enclosing block scope. 16406 // We recover from invalid scope qualifiers as if they just weren't there. 16407 FunctionDecl *FunctionContainingLocalClass = nullptr; 16408 if ((SS.isInvalid() || !SS.isSet()) && 16409 (FunctionContainingLocalClass = 16410 cast<CXXRecordDecl>(CurContext)->isLocalClass())) { 16411 // C++11 [class.friend]p11: 16412 // If a friend declaration appears in a local class and the name 16413 // specified is an unqualified name, a prior declaration is 16414 // looked up without considering scopes that are outside the 16415 // innermost enclosing non-class scope. For a friend function 16416 // declaration, if there is no prior declaration, the program is 16417 // ill-formed. 16418 16419 // Find the innermost enclosing non-class scope. This is the block 16420 // scope containing the local class definition (or for a nested class, 16421 // the outer local class). 16422 DCScope = S->getFnParent(); 16423 16424 // Look up the function name in the scope. 16425 Previous.clear(LookupLocalFriendName); 16426 LookupName(Previous, S, /*AllowBuiltinCreation*/false); 16427 16428 if (!Previous.empty()) { 16429 // All possible previous declarations must have the same context: 16430 // either they were declared at block scope or they are members of 16431 // one of the enclosing local classes. 16432 DC = Previous.getRepresentativeDecl()->getDeclContext(); 16433 } else { 16434 // This is ill-formed, but provide the context that we would have 16435 // declared the function in, if we were permitted to, for error recovery. 16436 DC = FunctionContainingLocalClass; 16437 } 16438 adjustContextForLocalExternDecl(DC); 16439 16440 // C++ [class.friend]p6: 16441 // A function can be defined in a friend declaration of a class if and 16442 // only if the class is a non-local class (9.8), the function name is 16443 // unqualified, and the function has namespace scope. 16444 if (D.isFunctionDefinition()) { 16445 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); 16446 } 16447 16448 // - There's no scope specifier, in which case we just go to the 16449 // appropriate scope and look for a function or function template 16450 // there as appropriate. 16451 } else if (SS.isInvalid() || !SS.isSet()) { 16452 // C++11 [namespace.memdef]p3: 16453 // If the name in a friend declaration is neither qualified nor 16454 // a template-id and the declaration is a function or an 16455 // elaborated-type-specifier, the lookup to determine whether 16456 // the entity has been previously declared shall not consider 16457 // any scopes outside the innermost enclosing namespace. 16458 bool isTemplateId = 16459 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId; 16460 16461 // Find the appropriate context according to the above. 16462 DC = CurContext; 16463 16464 // Skip class contexts. If someone can cite chapter and verse 16465 // for this behavior, that would be nice --- it's what GCC and 16466 // EDG do, and it seems like a reasonable intent, but the spec 16467 // really only says that checks for unqualified existing 16468 // declarations should stop at the nearest enclosing namespace, 16469 // not that they should only consider the nearest enclosing 16470 // namespace. 16471 while (DC->isRecord()) 16472 DC = DC->getParent(); 16473 16474 DeclContext *LookupDC = DC; 16475 while (LookupDC->isTransparentContext()) 16476 LookupDC = LookupDC->getParent(); 16477 16478 while (true) { 16479 LookupQualifiedName(Previous, LookupDC); 16480 16481 if (!Previous.empty()) { 16482 DC = LookupDC; 16483 break; 16484 } 16485 16486 if (isTemplateId) { 16487 if (isa<TranslationUnitDecl>(LookupDC)) break; 16488 } else { 16489 if (LookupDC->isFileContext()) break; 16490 } 16491 LookupDC = LookupDC->getParent(); 16492 } 16493 16494 DCScope = getScopeForDeclContext(S, DC); 16495 16496 // - There's a non-dependent scope specifier, in which case we 16497 // compute it and do a previous lookup there for a function 16498 // or function template. 16499 } else if (!SS.getScopeRep()->isDependent()) { 16500 DC = computeDeclContext(SS); 16501 if (!DC) return nullptr; 16502 16503 if (RequireCompleteDeclContext(SS, DC)) return nullptr; 16504 16505 LookupQualifiedName(Previous, DC); 16506 16507 // C++ [class.friend]p1: A friend of a class is a function or 16508 // class that is not a member of the class . . . 16509 if (DC->Equals(CurContext)) 16510 Diag(DS.getFriendSpecLoc(), 16511 getLangOpts().CPlusPlus11 ? 16512 diag::warn_cxx98_compat_friend_is_member : 16513 diag::err_friend_is_member); 16514 16515 if (D.isFunctionDefinition()) { 16516 // C++ [class.friend]p6: 16517 // A function can be defined in a friend declaration of a class if and 16518 // only if the class is a non-local class (9.8), the function name is 16519 // unqualified, and the function has namespace scope. 16520 // 16521 // FIXME: We should only do this if the scope specifier names the 16522 // innermost enclosing namespace; otherwise the fixit changes the 16523 // meaning of the code. 16524 SemaDiagnosticBuilder DB 16525 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); 16526 16527 DB << SS.getScopeRep(); 16528 if (DC->isFileContext()) 16529 DB << FixItHint::CreateRemoval(SS.getRange()); 16530 SS.clear(); 16531 } 16532 16533 // - There's a scope specifier that does not match any template 16534 // parameter lists, in which case we use some arbitrary context, 16535 // create a method or method template, and wait for instantiation. 16536 // - There's a scope specifier that does match some template 16537 // parameter lists, which we don't handle right now. 16538 } else { 16539 if (D.isFunctionDefinition()) { 16540 // C++ [class.friend]p6: 16541 // A function can be defined in a friend declaration of a class if and 16542 // only if the class is a non-local class (9.8), the function name is 16543 // unqualified, and the function has namespace scope. 16544 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def) 16545 << SS.getScopeRep(); 16546 } 16547 16548 DC = CurContext; 16549 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?"); 16550 } 16551 16552 if (!DC->isRecord()) { 16553 int DiagArg = -1; 16554 switch (D.getName().getKind()) { 16555 case UnqualifiedIdKind::IK_ConstructorTemplateId: 16556 case UnqualifiedIdKind::IK_ConstructorName: 16557 DiagArg = 0; 16558 break; 16559 case UnqualifiedIdKind::IK_DestructorName: 16560 DiagArg = 1; 16561 break; 16562 case UnqualifiedIdKind::IK_ConversionFunctionId: 16563 DiagArg = 2; 16564 break; 16565 case UnqualifiedIdKind::IK_DeductionGuideName: 16566 DiagArg = 3; 16567 break; 16568 case UnqualifiedIdKind::IK_Identifier: 16569 case UnqualifiedIdKind::IK_ImplicitSelfParam: 16570 case UnqualifiedIdKind::IK_LiteralOperatorId: 16571 case UnqualifiedIdKind::IK_OperatorFunctionId: 16572 case UnqualifiedIdKind::IK_TemplateId: 16573 break; 16574 } 16575 // This implies that it has to be an operator or function. 16576 if (DiagArg >= 0) { 16577 Diag(Loc, diag::err_introducing_special_friend) << DiagArg; 16578 return nullptr; 16579 } 16580 } 16581 16582 // FIXME: This is an egregious hack to cope with cases where the scope stack 16583 // does not contain the declaration context, i.e., in an out-of-line 16584 // definition of a class. 16585 Scope FakeDCScope(S, Scope::DeclScope, Diags); 16586 if (!DCScope) { 16587 FakeDCScope.setEntity(DC); 16588 DCScope = &FakeDCScope; 16589 } 16590 16591 bool AddToScope = true; 16592 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous, 16593 TemplateParams, AddToScope); 16594 if (!ND) return nullptr; 16595 16596 assert(ND->getLexicalDeclContext() == CurContext); 16597 16598 // If we performed typo correction, we might have added a scope specifier 16599 // and changed the decl context. 16600 DC = ND->getDeclContext(); 16601 16602 // Add the function declaration to the appropriate lookup tables, 16603 // adjusting the redeclarations list as necessary. We don't 16604 // want to do this yet if the friending class is dependent. 16605 // 16606 // Also update the scope-based lookup if the target context's 16607 // lookup context is in lexical scope. 16608 if (!CurContext->isDependentContext()) { 16609 DC = DC->getRedeclContext(); 16610 DC->makeDeclVisibleInContext(ND); 16611 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 16612 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); 16613 } 16614 16615 FriendDecl *FrD = FriendDecl::Create(Context, CurContext, 16616 D.getIdentifierLoc(), ND, 16617 DS.getFriendSpecLoc()); 16618 FrD->setAccess(AS_public); 16619 CurContext->addDecl(FrD); 16620 16621 if (ND->isInvalidDecl()) { 16622 FrD->setInvalidDecl(); 16623 } else { 16624 if (DC->isRecord()) CheckFriendAccess(ND); 16625 16626 FunctionDecl *FD; 16627 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 16628 FD = FTD->getTemplatedDecl(); 16629 else 16630 FD = cast<FunctionDecl>(ND); 16631 16632 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a 16633 // default argument expression, that declaration shall be a definition 16634 // and shall be the only declaration of the function or function 16635 // template in the translation unit. 16636 if (functionDeclHasDefaultArgument(FD)) { 16637 // We can't look at FD->getPreviousDecl() because it may not have been set 16638 // if we're in a dependent context. If the function is known to be a 16639 // redeclaration, we will have narrowed Previous down to the right decl. 16640 if (D.isRedeclaration()) { 16641 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 16642 Diag(Previous.getRepresentativeDecl()->getLocation(), 16643 diag::note_previous_declaration); 16644 } else if (!D.isFunctionDefinition()) 16645 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); 16646 } 16647 16648 // Mark templated-scope function declarations as unsupported. 16649 if (FD->getNumTemplateParameterLists() && SS.isValid()) { 16650 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) 16651 << SS.getScopeRep() << SS.getRange() 16652 << cast<CXXRecordDecl>(CurContext); 16653 FrD->setUnsupportedFriend(true); 16654 } 16655 } 16656 16657 return ND; 16658 } 16659 16660 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { 16661 AdjustDeclIfTemplate(Dcl); 16662 16663 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl); 16664 if (!Fn) { 16665 Diag(DelLoc, diag::err_deleted_non_function); 16666 return; 16667 } 16668 16669 // Deleted function does not have a body. 16670 Fn->setWillHaveBody(false); 16671 16672 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { 16673 // Don't consider the implicit declaration we generate for explicit 16674 // specializations. FIXME: Do not generate these implicit declarations. 16675 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || 16676 Prev->getPreviousDecl()) && 16677 !Prev->isDefined()) { 16678 Diag(DelLoc, diag::err_deleted_decl_not_first); 16679 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), 16680 Prev->isImplicit() ? diag::note_previous_implicit_declaration 16681 : diag::note_previous_declaration); 16682 // We can't recover from this; the declaration might have already 16683 // been used. 16684 Fn->setInvalidDecl(); 16685 return; 16686 } 16687 16688 // To maintain the invariant that functions are only deleted on their first 16689 // declaration, mark the implicitly-instantiated declaration of the 16690 // explicitly-specialized function as deleted instead of marking the 16691 // instantiated redeclaration. 16692 Fn = Fn->getCanonicalDecl(); 16693 } 16694 16695 // dllimport/dllexport cannot be deleted. 16696 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { 16697 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; 16698 Fn->setInvalidDecl(); 16699 } 16700 16701 // C++11 [basic.start.main]p3: 16702 // A program that defines main as deleted [...] is ill-formed. 16703 if (Fn->isMain()) 16704 Diag(DelLoc, diag::err_deleted_main); 16705 16706 // C++11 [dcl.fct.def.delete]p4: 16707 // A deleted function is implicitly inline. 16708 Fn->setImplicitlyInline(); 16709 Fn->setDeletedAsWritten(); 16710 } 16711 16712 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { 16713 if (!Dcl || Dcl->isInvalidDecl()) 16714 return; 16715 16716 auto *FD = dyn_cast<FunctionDecl>(Dcl); 16717 if (!FD) { 16718 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) { 16719 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) { 16720 Diag(DefaultLoc, diag::err_defaulted_comparison_template); 16721 return; 16722 } 16723 } 16724 16725 Diag(DefaultLoc, diag::err_default_special_members) 16726 << getLangOpts().CPlusPlus20; 16727 return; 16728 } 16729 16730 // Reject if this can't possibly be a defaultable function. 16731 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 16732 if (!DefKind && 16733 // A dependent function that doesn't locally look defaultable can 16734 // still instantiate to a defaultable function if it's a constructor 16735 // or assignment operator. 16736 (!FD->isDependentContext() || 16737 (!isa<CXXConstructorDecl>(FD) && 16738 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) { 16739 Diag(DefaultLoc, diag::err_default_special_members) 16740 << getLangOpts().CPlusPlus20; 16741 return; 16742 } 16743 16744 if (DefKind.isComparison() && 16745 !isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 16746 Diag(FD->getLocation(), diag::err_defaulted_comparison_out_of_class) 16747 << (int)DefKind.asComparison(); 16748 return; 16749 } 16750 16751 // Issue compatibility warning. We already warned if the operator is 16752 // 'operator<=>' when parsing the '<=>' token. 16753 if (DefKind.isComparison() && 16754 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) { 16755 Diag(DefaultLoc, getLangOpts().CPlusPlus20 16756 ? diag::warn_cxx17_compat_defaulted_comparison 16757 : diag::ext_defaulted_comparison); 16758 } 16759 16760 FD->setDefaulted(); 16761 FD->setExplicitlyDefaulted(); 16762 16763 // Defer checking functions that are defaulted in a dependent context. 16764 if (FD->isDependentContext()) 16765 return; 16766 16767 // Unset that we will have a body for this function. We might not, 16768 // if it turns out to be trivial, and we don't need this marking now 16769 // that we've marked it as defaulted. 16770 FD->setWillHaveBody(false); 16771 16772 // If this definition appears within the record, do the checking when 16773 // the record is complete. This is always the case for a defaulted 16774 // comparison. 16775 if (DefKind.isComparison()) 16776 return; 16777 auto *MD = cast<CXXMethodDecl>(FD); 16778 16779 const FunctionDecl *Primary = FD; 16780 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 16781 // Ask the template instantiation pattern that actually had the 16782 // '= default' on it. 16783 Primary = Pattern; 16784 16785 // If the method was defaulted on its first declaration, we will have 16786 // already performed the checking in CheckCompletedCXXClass. Such a 16787 // declaration doesn't trigger an implicit definition. 16788 if (Primary->getCanonicalDecl()->isDefaulted()) 16789 return; 16790 16791 // FIXME: Once we support defining comparisons out of class, check for a 16792 // defaulted comparison here. 16793 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember())) 16794 MD->setInvalidDecl(); 16795 else 16796 DefineDefaultedFunction(*this, MD, DefaultLoc); 16797 } 16798 16799 static void SearchForReturnInStmt(Sema &Self, Stmt *S) { 16800 for (Stmt *SubStmt : S->children()) { 16801 if (!SubStmt) 16802 continue; 16803 if (isa<ReturnStmt>(SubStmt)) 16804 Self.Diag(SubStmt->getBeginLoc(), 16805 diag::err_return_in_constructor_handler); 16806 if (!isa<Expr>(SubStmt)) 16807 SearchForReturnInStmt(Self, SubStmt); 16808 } 16809 } 16810 16811 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { 16812 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { 16813 CXXCatchStmt *Handler = TryBlock->getHandler(I); 16814 SearchForReturnInStmt(*this, Handler); 16815 } 16816 } 16817 16818 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, 16819 const CXXMethodDecl *Old) { 16820 const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); 16821 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>(); 16822 16823 if (OldFT->hasExtParameterInfos()) { 16824 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I) 16825 // A parameter of the overriding method should be annotated with noescape 16826 // if the corresponding parameter of the overridden method is annotated. 16827 if (OldFT->getExtParameterInfo(I).isNoEscape() && 16828 !NewFT->getExtParameterInfo(I).isNoEscape()) { 16829 Diag(New->getParamDecl(I)->getLocation(), 16830 diag::warn_overriding_method_missing_noescape); 16831 Diag(Old->getParamDecl(I)->getLocation(), 16832 diag::note_overridden_marked_noescape); 16833 } 16834 } 16835 16836 // Virtual overrides must have the same code_seg. 16837 const auto *OldCSA = Old->getAttr<CodeSegAttr>(); 16838 const auto *NewCSA = New->getAttr<CodeSegAttr>(); 16839 if ((NewCSA || OldCSA) && 16840 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) { 16841 Diag(New->getLocation(), diag::err_mismatched_code_seg_override); 16842 Diag(Old->getLocation(), diag::note_previous_declaration); 16843 return true; 16844 } 16845 16846 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); 16847 16848 // If the calling conventions match, everything is fine 16849 if (NewCC == OldCC) 16850 return false; 16851 16852 // If the calling conventions mismatch because the new function is static, 16853 // suppress the calling convention mismatch error; the error about static 16854 // function override (err_static_overrides_virtual from 16855 // Sema::CheckFunctionDeclaration) is more clear. 16856 if (New->getStorageClass() == SC_Static) 16857 return false; 16858 16859 Diag(New->getLocation(), 16860 diag::err_conflicting_overriding_cc_attributes) 16861 << New->getDeclName() << New->getType() << Old->getType(); 16862 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 16863 return true; 16864 } 16865 16866 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, 16867 const CXXMethodDecl *Old) { 16868 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType(); 16869 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType(); 16870 16871 if (Context.hasSameType(NewTy, OldTy) || 16872 NewTy->isDependentType() || OldTy->isDependentType()) 16873 return false; 16874 16875 // Check if the return types are covariant 16876 QualType NewClassTy, OldClassTy; 16877 16878 /// Both types must be pointers or references to classes. 16879 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { 16880 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { 16881 NewClassTy = NewPT->getPointeeType(); 16882 OldClassTy = OldPT->getPointeeType(); 16883 } 16884 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { 16885 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { 16886 if (NewRT->getTypeClass() == OldRT->getTypeClass()) { 16887 NewClassTy = NewRT->getPointeeType(); 16888 OldClassTy = OldRT->getPointeeType(); 16889 } 16890 } 16891 } 16892 16893 // The return types aren't either both pointers or references to a class type. 16894 if (NewClassTy.isNull()) { 16895 Diag(New->getLocation(), 16896 diag::err_different_return_type_for_overriding_virtual_function) 16897 << New->getDeclName() << NewTy << OldTy 16898 << New->getReturnTypeSourceRange(); 16899 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 16900 << Old->getReturnTypeSourceRange(); 16901 16902 return true; 16903 } 16904 16905 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { 16906 // C++14 [class.virtual]p8: 16907 // If the class type in the covariant return type of D::f differs from 16908 // that of B::f, the class type in the return type of D::f shall be 16909 // complete at the point of declaration of D::f or shall be the class 16910 // type D. 16911 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { 16912 if (!RT->isBeingDefined() && 16913 RequireCompleteType(New->getLocation(), NewClassTy, 16914 diag::err_covariant_return_incomplete, 16915 New->getDeclName())) 16916 return true; 16917 } 16918 16919 // Check if the new class derives from the old class. 16920 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) { 16921 Diag(New->getLocation(), diag::err_covariant_return_not_derived) 16922 << New->getDeclName() << NewTy << OldTy 16923 << New->getReturnTypeSourceRange(); 16924 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 16925 << Old->getReturnTypeSourceRange(); 16926 return true; 16927 } 16928 16929 // Check if we the conversion from derived to base is valid. 16930 if (CheckDerivedToBaseConversion( 16931 NewClassTy, OldClassTy, 16932 diag::err_covariant_return_inaccessible_base, 16933 diag::err_covariant_return_ambiguous_derived_to_base_conv, 16934 New->getLocation(), New->getReturnTypeSourceRange(), 16935 New->getDeclName(), nullptr)) { 16936 // FIXME: this note won't trigger for delayed access control 16937 // diagnostics, and it's impossible to get an undelayed error 16938 // here from access control during the original parse because 16939 // the ParsingDeclSpec/ParsingDeclarator are still in scope. 16940 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 16941 << Old->getReturnTypeSourceRange(); 16942 return true; 16943 } 16944 } 16945 16946 // The qualifiers of the return types must be the same. 16947 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { 16948 Diag(New->getLocation(), 16949 diag::err_covariant_return_type_different_qualifications) 16950 << New->getDeclName() << NewTy << OldTy 16951 << New->getReturnTypeSourceRange(); 16952 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 16953 << Old->getReturnTypeSourceRange(); 16954 return true; 16955 } 16956 16957 16958 // The new class type must have the same or less qualifiers as the old type. 16959 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { 16960 Diag(New->getLocation(), 16961 diag::err_covariant_return_type_class_type_more_qualified) 16962 << New->getDeclName() << NewTy << OldTy 16963 << New->getReturnTypeSourceRange(); 16964 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 16965 << Old->getReturnTypeSourceRange(); 16966 return true; 16967 } 16968 16969 return false; 16970 } 16971 16972 /// Mark the given method pure. 16973 /// 16974 /// \param Method the method to be marked pure. 16975 /// 16976 /// \param InitRange the source range that covers the "0" initializer. 16977 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { 16978 SourceLocation EndLoc = InitRange.getEnd(); 16979 if (EndLoc.isValid()) 16980 Method->setRangeEnd(EndLoc); 16981 16982 if (Method->isVirtual() || Method->getParent()->isDependentContext()) { 16983 Method->setPure(); 16984 return false; 16985 } 16986 16987 if (!Method->isInvalidDecl()) 16988 Diag(Method->getLocation(), diag::err_non_virtual_pure) 16989 << Method->getDeclName() << InitRange; 16990 return true; 16991 } 16992 16993 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) { 16994 if (D->getFriendObjectKind()) 16995 Diag(D->getLocation(), diag::err_pure_friend); 16996 else if (auto *M = dyn_cast<CXXMethodDecl>(D)) 16997 CheckPureMethod(M, ZeroLoc); 16998 else 16999 Diag(D->getLocation(), diag::err_illegal_initializer); 17000 } 17001 17002 /// Determine whether the given declaration is a global variable or 17003 /// static data member. 17004 static bool isNonlocalVariable(const Decl *D) { 17005 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D)) 17006 return Var->hasGlobalStorage(); 17007 17008 return false; 17009 } 17010 17011 /// Invoked when we are about to parse an initializer for the declaration 17012 /// 'Dcl'. 17013 /// 17014 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a 17015 /// static data member of class X, names should be looked up in the scope of 17016 /// class X. If the declaration had a scope specifier, a scope will have 17017 /// been created and passed in for this purpose. Otherwise, S will be null. 17018 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { 17019 // If there is no declaration, there was an error parsing it. 17020 if (!D || D->isInvalidDecl()) 17021 return; 17022 17023 // We will always have a nested name specifier here, but this declaration 17024 // might not be out of line if the specifier names the current namespace: 17025 // extern int n; 17026 // int ::n = 0; 17027 if (S && D->isOutOfLine()) 17028 EnterDeclaratorContext(S, D->getDeclContext()); 17029 17030 // If we are parsing the initializer for a static data member, push a 17031 // new expression evaluation context that is associated with this static 17032 // data member. 17033 if (isNonlocalVariable(D)) 17034 PushExpressionEvaluationContext( 17035 ExpressionEvaluationContext::PotentiallyEvaluated, D); 17036 } 17037 17038 /// Invoked after we are finished parsing an initializer for the declaration D. 17039 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { 17040 // If there is no declaration, there was an error parsing it. 17041 if (!D || D->isInvalidDecl()) 17042 return; 17043 17044 if (isNonlocalVariable(D)) 17045 PopExpressionEvaluationContext(); 17046 17047 if (S && D->isOutOfLine()) 17048 ExitDeclaratorContext(S); 17049 } 17050 17051 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a 17052 /// C++ if/switch/while/for statement. 17053 /// e.g: "if (int x = f()) {...}" 17054 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { 17055 // C++ 6.4p2: 17056 // The declarator shall not specify a function or an array. 17057 // The type-specifier-seq shall not contain typedef and shall not declare a 17058 // new class or enumeration. 17059 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 17060 "Parser allowed 'typedef' as storage class of condition decl."); 17061 17062 Decl *Dcl = ActOnDeclarator(S, D); 17063 if (!Dcl) 17064 return true; 17065 17066 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function. 17067 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) 17068 << D.getSourceRange(); 17069 return true; 17070 } 17071 17072 return Dcl; 17073 } 17074 17075 void Sema::LoadExternalVTableUses() { 17076 if (!ExternalSource) 17077 return; 17078 17079 SmallVector<ExternalVTableUse, 4> VTables; 17080 ExternalSource->ReadUsedVTables(VTables); 17081 SmallVector<VTableUse, 4> NewUses; 17082 for (unsigned I = 0, N = VTables.size(); I != N; ++I) { 17083 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos 17084 = VTablesUsed.find(VTables[I].Record); 17085 // Even if a definition wasn't required before, it may be required now. 17086 if (Pos != VTablesUsed.end()) { 17087 if (!Pos->second && VTables[I].DefinitionRequired) 17088 Pos->second = true; 17089 continue; 17090 } 17091 17092 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; 17093 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location)); 17094 } 17095 17096 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end()); 17097 } 17098 17099 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, 17100 bool DefinitionRequired) { 17101 // Ignore any vtable uses in unevaluated operands or for classes that do 17102 // not have a vtable. 17103 if (!Class->isDynamicClass() || Class->isDependentContext() || 17104 CurContext->isDependentContext() || isUnevaluatedContext()) 17105 return; 17106 // Do not mark as used if compiling for the device outside of the target 17107 // region. 17108 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsDevice && 17109 !isInOpenMPDeclareTargetContext() && 17110 !isInOpenMPTargetExecutionDirective()) { 17111 if (!DefinitionRequired) 17112 MarkVirtualMembersReferenced(Loc, Class); 17113 return; 17114 } 17115 17116 // Try to insert this class into the map. 17117 LoadExternalVTableUses(); 17118 Class = Class->getCanonicalDecl(); 17119 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> 17120 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); 17121 if (!Pos.second) { 17122 // If we already had an entry, check to see if we are promoting this vtable 17123 // to require a definition. If so, we need to reappend to the VTableUses 17124 // list, since we may have already processed the first entry. 17125 if (DefinitionRequired && !Pos.first->second) { 17126 Pos.first->second = true; 17127 } else { 17128 // Otherwise, we can early exit. 17129 return; 17130 } 17131 } else { 17132 // The Microsoft ABI requires that we perform the destructor body 17133 // checks (i.e. operator delete() lookup) when the vtable is marked used, as 17134 // the deleting destructor is emitted with the vtable, not with the 17135 // destructor definition as in the Itanium ABI. 17136 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 17137 CXXDestructorDecl *DD = Class->getDestructor(); 17138 if (DD && DD->isVirtual() && !DD->isDeleted()) { 17139 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) { 17140 // If this is an out-of-line declaration, marking it referenced will 17141 // not do anything. Manually call CheckDestructor to look up operator 17142 // delete(). 17143 ContextRAII SavedContext(*this, DD); 17144 CheckDestructor(DD); 17145 } else { 17146 MarkFunctionReferenced(Loc, Class->getDestructor()); 17147 } 17148 } 17149 } 17150 } 17151 17152 // Local classes need to have their virtual members marked 17153 // immediately. For all other classes, we mark their virtual members 17154 // at the end of the translation unit. 17155 if (Class->isLocalClass()) 17156 MarkVirtualMembersReferenced(Loc, Class); 17157 else 17158 VTableUses.push_back(std::make_pair(Class, Loc)); 17159 } 17160 17161 bool Sema::DefineUsedVTables() { 17162 LoadExternalVTableUses(); 17163 if (VTableUses.empty()) 17164 return false; 17165 17166 // Note: The VTableUses vector could grow as a result of marking 17167 // the members of a class as "used", so we check the size each 17168 // time through the loop and prefer indices (which are stable) to 17169 // iterators (which are not). 17170 bool DefinedAnything = false; 17171 for (unsigned I = 0; I != VTableUses.size(); ++I) { 17172 CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); 17173 if (!Class) 17174 continue; 17175 TemplateSpecializationKind ClassTSK = 17176 Class->getTemplateSpecializationKind(); 17177 17178 SourceLocation Loc = VTableUses[I].second; 17179 17180 bool DefineVTable = true; 17181 17182 // If this class has a key function, but that key function is 17183 // defined in another translation unit, we don't need to emit the 17184 // vtable even though we're using it. 17185 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class); 17186 if (KeyFunction && !KeyFunction->hasBody()) { 17187 // The key function is in another translation unit. 17188 DefineVTable = false; 17189 TemplateSpecializationKind TSK = 17190 KeyFunction->getTemplateSpecializationKind(); 17191 assert(TSK != TSK_ExplicitInstantiationDefinition && 17192 TSK != TSK_ImplicitInstantiation && 17193 "Instantiations don't have key functions"); 17194 (void)TSK; 17195 } else if (!KeyFunction) { 17196 // If we have a class with no key function that is the subject 17197 // of an explicit instantiation declaration, suppress the 17198 // vtable; it will live with the explicit instantiation 17199 // definition. 17200 bool IsExplicitInstantiationDeclaration = 17201 ClassTSK == TSK_ExplicitInstantiationDeclaration; 17202 for (auto R : Class->redecls()) { 17203 TemplateSpecializationKind TSK 17204 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind(); 17205 if (TSK == TSK_ExplicitInstantiationDeclaration) 17206 IsExplicitInstantiationDeclaration = true; 17207 else if (TSK == TSK_ExplicitInstantiationDefinition) { 17208 IsExplicitInstantiationDeclaration = false; 17209 break; 17210 } 17211 } 17212 17213 if (IsExplicitInstantiationDeclaration) 17214 DefineVTable = false; 17215 } 17216 17217 // The exception specifications for all virtual members may be needed even 17218 // if we are not providing an authoritative form of the vtable in this TU. 17219 // We may choose to emit it available_externally anyway. 17220 if (!DefineVTable) { 17221 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class); 17222 continue; 17223 } 17224 17225 // Mark all of the virtual members of this class as referenced, so 17226 // that we can build a vtable. Then, tell the AST consumer that a 17227 // vtable for this class is required. 17228 DefinedAnything = true; 17229 MarkVirtualMembersReferenced(Loc, Class); 17230 CXXRecordDecl *Canonical = Class->getCanonicalDecl(); 17231 if (VTablesUsed[Canonical]) 17232 Consumer.HandleVTable(Class); 17233 17234 // Warn if we're emitting a weak vtable. The vtable will be weak if there is 17235 // no key function or the key function is inlined. Don't warn in C++ ABIs 17236 // that lack key functions, since the user won't be able to make one. 17237 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() && 17238 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) { 17239 const FunctionDecl *KeyFunctionDef = nullptr; 17240 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) && 17241 KeyFunctionDef->isInlined())) { 17242 Diag(Class->getLocation(), 17243 ClassTSK == TSK_ExplicitInstantiationDefinition 17244 ? diag::warn_weak_template_vtable 17245 : diag::warn_weak_vtable) 17246 << Class; 17247 } 17248 } 17249 } 17250 VTableUses.clear(); 17251 17252 return DefinedAnything; 17253 } 17254 17255 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, 17256 const CXXRecordDecl *RD) { 17257 for (const auto *I : RD->methods()) 17258 if (I->isVirtual() && !I->isPure()) 17259 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>()); 17260 } 17261 17262 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, 17263 const CXXRecordDecl *RD, 17264 bool ConstexprOnly) { 17265 // Mark all functions which will appear in RD's vtable as used. 17266 CXXFinalOverriderMap FinalOverriders; 17267 RD->getFinalOverriders(FinalOverriders); 17268 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), 17269 E = FinalOverriders.end(); 17270 I != E; ++I) { 17271 for (OverridingMethods::const_iterator OI = I->second.begin(), 17272 OE = I->second.end(); 17273 OI != OE; ++OI) { 17274 assert(OI->second.size() > 0 && "no final overrider"); 17275 CXXMethodDecl *Overrider = OI->second.front().Method; 17276 17277 // C++ [basic.def.odr]p2: 17278 // [...] A virtual member function is used if it is not pure. [...] 17279 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr())) 17280 MarkFunctionReferenced(Loc, Overrider); 17281 } 17282 } 17283 17284 // Only classes that have virtual bases need a VTT. 17285 if (RD->getNumVBases() == 0) 17286 return; 17287 17288 for (const auto &I : RD->bases()) { 17289 const auto *Base = 17290 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 17291 if (Base->getNumVBases() == 0) 17292 continue; 17293 MarkVirtualMembersReferenced(Loc, Base); 17294 } 17295 } 17296 17297 /// SetIvarInitializers - This routine builds initialization ASTs for the 17298 /// Objective-C implementation whose ivars need be initialized. 17299 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { 17300 if (!getLangOpts().CPlusPlus) 17301 return; 17302 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { 17303 SmallVector<ObjCIvarDecl*, 8> ivars; 17304 CollectIvarsToConstructOrDestruct(OID, ivars); 17305 if (ivars.empty()) 17306 return; 17307 SmallVector<CXXCtorInitializer*, 32> AllToInit; 17308 for (unsigned i = 0; i < ivars.size(); i++) { 17309 FieldDecl *Field = ivars[i]; 17310 if (Field->isInvalidDecl()) 17311 continue; 17312 17313 CXXCtorInitializer *Member; 17314 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); 17315 InitializationKind InitKind = 17316 InitializationKind::CreateDefault(ObjCImplementation->getLocation()); 17317 17318 InitializationSequence InitSeq(*this, InitEntity, InitKind, None); 17319 ExprResult MemberInit = 17320 InitSeq.Perform(*this, InitEntity, InitKind, None); 17321 MemberInit = MaybeCreateExprWithCleanups(MemberInit); 17322 // Note, MemberInit could actually come back empty if no initialization 17323 // is required (e.g., because it would call a trivial default constructor) 17324 if (!MemberInit.get() || MemberInit.isInvalid()) 17325 continue; 17326 17327 Member = 17328 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(), 17329 SourceLocation(), 17330 MemberInit.getAs<Expr>(), 17331 SourceLocation()); 17332 AllToInit.push_back(Member); 17333 17334 // Be sure that the destructor is accessible and is marked as referenced. 17335 if (const RecordType *RecordTy = 17336 Context.getBaseElementType(Field->getType()) 17337 ->getAs<RecordType>()) { 17338 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); 17339 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 17340 MarkFunctionReferenced(Field->getLocation(), Destructor); 17341 CheckDestructorAccess(Field->getLocation(), Destructor, 17342 PDiag(diag::err_access_dtor_ivar) 17343 << Context.getBaseElementType(Field->getType())); 17344 } 17345 } 17346 } 17347 ObjCImplementation->setIvarInitializers(Context, 17348 AllToInit.data(), AllToInit.size()); 17349 } 17350 } 17351 17352 static 17353 void DelegatingCycleHelper(CXXConstructorDecl* Ctor, 17354 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid, 17355 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid, 17356 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current, 17357 Sema &S) { 17358 if (Ctor->isInvalidDecl()) 17359 return; 17360 17361 CXXConstructorDecl *Target = Ctor->getTargetConstructor(); 17362 17363 // Target may not be determinable yet, for instance if this is a dependent 17364 // call in an uninstantiated template. 17365 if (Target) { 17366 const FunctionDecl *FNTarget = nullptr; 17367 (void)Target->hasBody(FNTarget); 17368 Target = const_cast<CXXConstructorDecl*>( 17369 cast_or_null<CXXConstructorDecl>(FNTarget)); 17370 } 17371 17372 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), 17373 // Avoid dereferencing a null pointer here. 17374 *TCanonical = Target? Target->getCanonicalDecl() : nullptr; 17375 17376 if (!Current.insert(Canonical).second) 17377 return; 17378 17379 // We know that beyond here, we aren't chaining into a cycle. 17380 if (!Target || !Target->isDelegatingConstructor() || 17381 Target->isInvalidDecl() || Valid.count(TCanonical)) { 17382 Valid.insert(Current.begin(), Current.end()); 17383 Current.clear(); 17384 // We've hit a cycle. 17385 } else if (TCanonical == Canonical || Invalid.count(TCanonical) || 17386 Current.count(TCanonical)) { 17387 // If we haven't diagnosed this cycle yet, do so now. 17388 if (!Invalid.count(TCanonical)) { 17389 S.Diag((*Ctor->init_begin())->getSourceLocation(), 17390 diag::warn_delegating_ctor_cycle) 17391 << Ctor; 17392 17393 // Don't add a note for a function delegating directly to itself. 17394 if (TCanonical != Canonical) 17395 S.Diag(Target->getLocation(), diag::note_it_delegates_to); 17396 17397 CXXConstructorDecl *C = Target; 17398 while (C->getCanonicalDecl() != Canonical) { 17399 const FunctionDecl *FNTarget = nullptr; 17400 (void)C->getTargetConstructor()->hasBody(FNTarget); 17401 assert(FNTarget && "Ctor cycle through bodiless function"); 17402 17403 C = const_cast<CXXConstructorDecl*>( 17404 cast<CXXConstructorDecl>(FNTarget)); 17405 S.Diag(C->getLocation(), diag::note_which_delegates_to); 17406 } 17407 } 17408 17409 Invalid.insert(Current.begin(), Current.end()); 17410 Current.clear(); 17411 } else { 17412 DelegatingCycleHelper(Target, Valid, Invalid, Current, S); 17413 } 17414 } 17415 17416 17417 void Sema::CheckDelegatingCtorCycles() { 17418 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; 17419 17420 for (DelegatingCtorDeclsType::iterator 17421 I = DelegatingCtorDecls.begin(ExternalSource), 17422 E = DelegatingCtorDecls.end(); 17423 I != E; ++I) 17424 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); 17425 17426 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) 17427 (*CI)->setInvalidDecl(); 17428 } 17429 17430 namespace { 17431 /// AST visitor that finds references to the 'this' expression. 17432 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> { 17433 Sema &S; 17434 17435 public: 17436 explicit FindCXXThisExpr(Sema &S) : S(S) { } 17437 17438 bool VisitCXXThisExpr(CXXThisExpr *E) { 17439 S.Diag(E->getLocation(), diag::err_this_static_member_func) 17440 << E->isImplicit(); 17441 return false; 17442 } 17443 }; 17444 } 17445 17446 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { 17447 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 17448 if (!TSInfo) 17449 return false; 17450 17451 TypeLoc TL = TSInfo->getTypeLoc(); 17452 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 17453 if (!ProtoTL) 17454 return false; 17455 17456 // C++11 [expr.prim.general]p3: 17457 // [The expression this] shall not appear before the optional 17458 // cv-qualifier-seq and it shall not appear within the declaration of a 17459 // static member function (although its type and value category are defined 17460 // within a static member function as they are within a non-static member 17461 // function). [ Note: this is because declaration matching does not occur 17462 // until the complete declarator is known. - end note ] 17463 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 17464 FindCXXThisExpr Finder(*this); 17465 17466 // If the return type came after the cv-qualifier-seq, check it now. 17467 if (Proto->hasTrailingReturn() && 17468 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) 17469 return true; 17470 17471 // Check the exception specification. 17472 if (checkThisInStaticMemberFunctionExceptionSpec(Method)) 17473 return true; 17474 17475 // Check the trailing requires clause 17476 if (Expr *E = Method->getTrailingRequiresClause()) 17477 if (!Finder.TraverseStmt(E)) 17478 return true; 17479 17480 return checkThisInStaticMemberFunctionAttributes(Method); 17481 } 17482 17483 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { 17484 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 17485 if (!TSInfo) 17486 return false; 17487 17488 TypeLoc TL = TSInfo->getTypeLoc(); 17489 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 17490 if (!ProtoTL) 17491 return false; 17492 17493 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 17494 FindCXXThisExpr Finder(*this); 17495 17496 switch (Proto->getExceptionSpecType()) { 17497 case EST_Unparsed: 17498 case EST_Uninstantiated: 17499 case EST_Unevaluated: 17500 case EST_BasicNoexcept: 17501 case EST_NoThrow: 17502 case EST_DynamicNone: 17503 case EST_MSAny: 17504 case EST_None: 17505 break; 17506 17507 case EST_DependentNoexcept: 17508 case EST_NoexceptFalse: 17509 case EST_NoexceptTrue: 17510 if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) 17511 return true; 17512 LLVM_FALLTHROUGH; 17513 17514 case EST_Dynamic: 17515 for (const auto &E : Proto->exceptions()) { 17516 if (!Finder.TraverseType(E)) 17517 return true; 17518 } 17519 break; 17520 } 17521 17522 return false; 17523 } 17524 17525 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { 17526 FindCXXThisExpr Finder(*this); 17527 17528 // Check attributes. 17529 for (const auto *A : Method->attrs()) { 17530 // FIXME: This should be emitted by tblgen. 17531 Expr *Arg = nullptr; 17532 ArrayRef<Expr *> Args; 17533 if (const auto *G = dyn_cast<GuardedByAttr>(A)) 17534 Arg = G->getArg(); 17535 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A)) 17536 Arg = G->getArg(); 17537 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A)) 17538 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size()); 17539 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A)) 17540 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size()); 17541 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) { 17542 Arg = ETLF->getSuccessValue(); 17543 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size()); 17544 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) { 17545 Arg = STLF->getSuccessValue(); 17546 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size()); 17547 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A)) 17548 Arg = LR->getArg(); 17549 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A)) 17550 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size()); 17551 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A)) 17552 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); 17553 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A)) 17554 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); 17555 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A)) 17556 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); 17557 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A)) 17558 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); 17559 17560 if (Arg && !Finder.TraverseStmt(Arg)) 17561 return true; 17562 17563 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 17564 if (!Finder.TraverseStmt(Args[I])) 17565 return true; 17566 } 17567 } 17568 17569 return false; 17570 } 17571 17572 void Sema::checkExceptionSpecification( 17573 bool IsTopLevel, ExceptionSpecificationType EST, 17574 ArrayRef<ParsedType> DynamicExceptions, 17575 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr, 17576 SmallVectorImpl<QualType> &Exceptions, 17577 FunctionProtoType::ExceptionSpecInfo &ESI) { 17578 Exceptions.clear(); 17579 ESI.Type = EST; 17580 if (EST == EST_Dynamic) { 17581 Exceptions.reserve(DynamicExceptions.size()); 17582 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { 17583 // FIXME: Preserve type source info. 17584 QualType ET = GetTypeFromParser(DynamicExceptions[ei]); 17585 17586 if (IsTopLevel) { 17587 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 17588 collectUnexpandedParameterPacks(ET, Unexpanded); 17589 if (!Unexpanded.empty()) { 17590 DiagnoseUnexpandedParameterPacks( 17591 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType, 17592 Unexpanded); 17593 continue; 17594 } 17595 } 17596 17597 // Check that the type is valid for an exception spec, and 17598 // drop it if not. 17599 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei])) 17600 Exceptions.push_back(ET); 17601 } 17602 ESI.Exceptions = Exceptions; 17603 return; 17604 } 17605 17606 if (isComputedNoexcept(EST)) { 17607 assert((NoexceptExpr->isTypeDependent() || 17608 NoexceptExpr->getType()->getCanonicalTypeUnqualified() == 17609 Context.BoolTy) && 17610 "Parser should have made sure that the expression is boolean"); 17611 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) { 17612 ESI.Type = EST_BasicNoexcept; 17613 return; 17614 } 17615 17616 ESI.NoexceptExpr = NoexceptExpr; 17617 return; 17618 } 17619 } 17620 17621 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD, 17622 ExceptionSpecificationType EST, 17623 SourceRange SpecificationRange, 17624 ArrayRef<ParsedType> DynamicExceptions, 17625 ArrayRef<SourceRange> DynamicExceptionRanges, 17626 Expr *NoexceptExpr) { 17627 if (!MethodD) 17628 return; 17629 17630 // Dig out the method we're referring to. 17631 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD)) 17632 MethodD = FunTmpl->getTemplatedDecl(); 17633 17634 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD); 17635 if (!Method) 17636 return; 17637 17638 // Check the exception specification. 17639 llvm::SmallVector<QualType, 4> Exceptions; 17640 FunctionProtoType::ExceptionSpecInfo ESI; 17641 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions, 17642 DynamicExceptionRanges, NoexceptExpr, Exceptions, 17643 ESI); 17644 17645 // Update the exception specification on the function type. 17646 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true); 17647 17648 if (Method->isStatic()) 17649 checkThisInStaticMemberFunctionExceptionSpec(Method); 17650 17651 if (Method->isVirtual()) { 17652 // Check overrides, which we previously had to delay. 17653 for (const CXXMethodDecl *O : Method->overridden_methods()) 17654 CheckOverridingFunctionExceptionSpec(Method, O); 17655 } 17656 } 17657 17658 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. 17659 /// 17660 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, 17661 SourceLocation DeclStart, Declarator &D, 17662 Expr *BitWidth, 17663 InClassInitStyle InitStyle, 17664 AccessSpecifier AS, 17665 const ParsedAttr &MSPropertyAttr) { 17666 IdentifierInfo *II = D.getIdentifier(); 17667 if (!II) { 17668 Diag(DeclStart, diag::err_anonymous_property); 17669 return nullptr; 17670 } 17671 SourceLocation Loc = D.getIdentifierLoc(); 17672 17673 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 17674 QualType T = TInfo->getType(); 17675 if (getLangOpts().CPlusPlus) { 17676 CheckExtraCXXDefaultArguments(D); 17677 17678 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 17679 UPPC_DataMemberType)) { 17680 D.setInvalidType(); 17681 T = Context.IntTy; 17682 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 17683 } 17684 } 17685 17686 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 17687 17688 if (D.getDeclSpec().isInlineSpecified()) 17689 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 17690 << getLangOpts().CPlusPlus17; 17691 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 17692 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 17693 diag::err_invalid_thread) 17694 << DeclSpec::getSpecifierName(TSCS); 17695 17696 // Check to see if this name was declared as a member previously 17697 NamedDecl *PrevDecl = nullptr; 17698 LookupResult Previous(*this, II, Loc, LookupMemberName, 17699 ForVisibleRedeclaration); 17700 LookupName(Previous, S); 17701 switch (Previous.getResultKind()) { 17702 case LookupResult::Found: 17703 case LookupResult::FoundUnresolvedValue: 17704 PrevDecl = Previous.getAsSingle<NamedDecl>(); 17705 break; 17706 17707 case LookupResult::FoundOverloaded: 17708 PrevDecl = Previous.getRepresentativeDecl(); 17709 break; 17710 17711 case LookupResult::NotFound: 17712 case LookupResult::NotFoundInCurrentInstantiation: 17713 case LookupResult::Ambiguous: 17714 break; 17715 } 17716 17717 if (PrevDecl && PrevDecl->isTemplateParameter()) { 17718 // Maybe we will complain about the shadowed template parameter. 17719 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 17720 // Just pretend that we didn't see the previous declaration. 17721 PrevDecl = nullptr; 17722 } 17723 17724 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 17725 PrevDecl = nullptr; 17726 17727 SourceLocation TSSL = D.getBeginLoc(); 17728 MSPropertyDecl *NewPD = 17729 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL, 17730 MSPropertyAttr.getPropertyDataGetter(), 17731 MSPropertyAttr.getPropertyDataSetter()); 17732 ProcessDeclAttributes(TUScope, NewPD, D); 17733 NewPD->setAccess(AS); 17734 17735 if (NewPD->isInvalidDecl()) 17736 Record->setInvalidDecl(); 17737 17738 if (D.getDeclSpec().isModulePrivateSpecified()) 17739 NewPD->setModulePrivate(); 17740 17741 if (NewPD->isInvalidDecl() && PrevDecl) { 17742 // Don't introduce NewFD into scope; there's already something 17743 // with the same name in the same scope. 17744 } else if (II) { 17745 PushOnScopeChains(NewPD, S); 17746 } else 17747 Record->addDecl(NewPD); 17748 17749 return NewPD; 17750 } 17751 17752 void Sema::ActOnStartFunctionDeclarationDeclarator( 17753 Declarator &Declarator, unsigned TemplateParameterDepth) { 17754 auto &Info = InventedParameterInfos.emplace_back(); 17755 TemplateParameterList *ExplicitParams = nullptr; 17756 ArrayRef<TemplateParameterList *> ExplicitLists = 17757 Declarator.getTemplateParameterLists(); 17758 if (!ExplicitLists.empty()) { 17759 bool IsMemberSpecialization, IsInvalid; 17760 ExplicitParams = MatchTemplateParametersToScopeSpecifier( 17761 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(), 17762 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr, 17763 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid, 17764 /*SuppressDiagnostic=*/true); 17765 } 17766 if (ExplicitParams) { 17767 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth(); 17768 for (NamedDecl *Param : *ExplicitParams) 17769 Info.TemplateParams.push_back(Param); 17770 Info.NumExplicitTemplateParams = ExplicitParams->size(); 17771 } else { 17772 Info.AutoTemplateParameterDepth = TemplateParameterDepth; 17773 Info.NumExplicitTemplateParams = 0; 17774 } 17775 } 17776 17777 void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) { 17778 auto &FSI = InventedParameterInfos.back(); 17779 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) { 17780 if (FSI.NumExplicitTemplateParams != 0) { 17781 TemplateParameterList *ExplicitParams = 17782 Declarator.getTemplateParameterLists().back(); 17783 Declarator.setInventedTemplateParameterList( 17784 TemplateParameterList::Create( 17785 Context, ExplicitParams->getTemplateLoc(), 17786 ExplicitParams->getLAngleLoc(), FSI.TemplateParams, 17787 ExplicitParams->getRAngleLoc(), 17788 ExplicitParams->getRequiresClause())); 17789 } else { 17790 Declarator.setInventedTemplateParameterList( 17791 TemplateParameterList::Create( 17792 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams, 17793 SourceLocation(), /*RequiresClause=*/nullptr)); 17794 } 17795 } 17796 InventedParameterInfos.pop_back(); 17797 } 17798