1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTConsumer.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/ComparisonCategories.h" 20 #include "clang/AST/EvaluatedExprVisitor.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/AST/TypeLoc.h" 26 #include "clang/AST/TypeOrdering.h" 27 #include "clang/Basic/AttributeCommonInfo.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Lex/LiteralSupport.h" 31 #include "clang/Lex/Preprocessor.h" 32 #include "clang/Sema/CXXFieldCollector.h" 33 #include "clang/Sema/DeclSpec.h" 34 #include "clang/Sema/Initialization.h" 35 #include "clang/Sema/Lookup.h" 36 #include "clang/Sema/ParsedTemplate.h" 37 #include "clang/Sema/Scope.h" 38 #include "clang/Sema/ScopeInfo.h" 39 #include "clang/Sema/SemaInternal.h" 40 #include "clang/Sema/Template.h" 41 #include "llvm/ADT/STLExtras.h" 42 #include "llvm/ADT/SmallString.h" 43 #include "llvm/ADT/StringExtras.h" 44 #include <map> 45 #include <set> 46 47 using namespace clang; 48 49 //===----------------------------------------------------------------------===// 50 // CheckDefaultArgumentVisitor 51 //===----------------------------------------------------------------------===// 52 53 namespace { 54 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses 55 /// the default argument of a parameter to determine whether it 56 /// contains any ill-formed subexpressions. For example, this will 57 /// diagnose the use of local variables or parameters within the 58 /// default argument expression. 59 class CheckDefaultArgumentVisitor 60 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> { 61 Expr *DefaultArg; 62 Sema *S; 63 64 public: 65 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) 66 : DefaultArg(defarg), S(s) {} 67 68 bool VisitExpr(Expr *Node); 69 bool VisitDeclRefExpr(DeclRefExpr *DRE); 70 bool VisitCXXThisExpr(CXXThisExpr *ThisE); 71 bool VisitLambdaExpr(LambdaExpr *Lambda); 72 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE); 73 }; 74 75 /// VisitExpr - Visit all of the children of this expression. 76 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { 77 bool IsInvalid = false; 78 for (Stmt *SubStmt : Node->children()) 79 IsInvalid |= Visit(SubStmt); 80 return IsInvalid; 81 } 82 83 /// VisitDeclRefExpr - Visit a reference to a declaration, to 84 /// determine whether this declaration can be used in the default 85 /// argument expression. 86 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { 87 NamedDecl *Decl = DRE->getDecl(); 88 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) { 89 // C++ [dcl.fct.default]p9 90 // Default arguments are evaluated each time the function is 91 // called. The order of evaluation of function arguments is 92 // unspecified. Consequently, parameters of a function shall not 93 // be used in default argument expressions, even if they are not 94 // evaluated. Parameters of a function declared before a default 95 // argument expression are in scope and can hide namespace and 96 // class member names. 97 return S->Diag(DRE->getBeginLoc(), 98 diag::err_param_default_argument_references_param) 99 << Param->getDeclName() << DefaultArg->getSourceRange(); 100 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) { 101 // C++ [dcl.fct.default]p7 102 // Local variables shall not be used in default argument 103 // expressions. 104 if (VDecl->isLocalVarDecl()) 105 return S->Diag(DRE->getBeginLoc(), 106 diag::err_param_default_argument_references_local) 107 << VDecl->getDeclName() << DefaultArg->getSourceRange(); 108 } 109 110 return false; 111 } 112 113 /// VisitCXXThisExpr - Visit a C++ "this" expression. 114 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { 115 // C++ [dcl.fct.default]p8: 116 // The keyword this shall not be used in a default argument of a 117 // member function. 118 return S->Diag(ThisE->getBeginLoc(), 119 diag::err_param_default_argument_references_this) 120 << ThisE->getSourceRange(); 121 } 122 123 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) { 124 bool Invalid = false; 125 for (PseudoObjectExpr::semantics_iterator 126 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) { 127 Expr *E = *i; 128 129 // Look through bindings. 130 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 131 E = OVE->getSourceExpr(); 132 assert(E && "pseudo-object binding without source expression?"); 133 } 134 135 Invalid |= Visit(E); 136 } 137 return Invalid; 138 } 139 140 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) { 141 // C++11 [expr.lambda.prim]p13: 142 // A lambda-expression appearing in a default argument shall not 143 // implicitly or explicitly capture any entity. 144 if (Lambda->capture_begin() == Lambda->capture_end()) 145 return false; 146 147 return S->Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg); 148 } 149 } 150 151 void 152 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, 153 const CXXMethodDecl *Method) { 154 // If we have an MSAny spec already, don't bother. 155 if (!Method || ComputedEST == EST_MSAny) 156 return; 157 158 const FunctionProtoType *Proto 159 = Method->getType()->getAs<FunctionProtoType>(); 160 Proto = Self->ResolveExceptionSpec(CallLoc, Proto); 161 if (!Proto) 162 return; 163 164 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 165 166 // If we have a throw-all spec at this point, ignore the function. 167 if (ComputedEST == EST_None) 168 return; 169 170 if (EST == EST_None && Method->hasAttr<NoThrowAttr>()) 171 EST = EST_BasicNoexcept; 172 173 switch (EST) { 174 case EST_Unparsed: 175 case EST_Uninstantiated: 176 case EST_Unevaluated: 177 llvm_unreachable("should not see unresolved exception specs here"); 178 179 // If this function can throw any exceptions, make a note of that. 180 case EST_MSAny: 181 case EST_None: 182 // FIXME: Whichever we see last of MSAny and None determines our result. 183 // We should make a consistent, order-independent choice here. 184 ClearExceptions(); 185 ComputedEST = EST; 186 return; 187 case EST_NoexceptFalse: 188 ClearExceptions(); 189 ComputedEST = EST_None; 190 return; 191 // FIXME: If the call to this decl is using any of its default arguments, we 192 // need to search them for potentially-throwing calls. 193 // If this function has a basic noexcept, it doesn't affect the outcome. 194 case EST_BasicNoexcept: 195 case EST_NoexceptTrue: 196 case EST_NoThrow: 197 return; 198 // If we're still at noexcept(true) and there's a throw() callee, 199 // change to that specification. 200 case EST_DynamicNone: 201 if (ComputedEST == EST_BasicNoexcept) 202 ComputedEST = EST_DynamicNone; 203 return; 204 case EST_DependentNoexcept: 205 llvm_unreachable( 206 "should not generate implicit declarations for dependent cases"); 207 case EST_Dynamic: 208 break; 209 } 210 assert(EST == EST_Dynamic && "EST case not considered earlier."); 211 assert(ComputedEST != EST_None && 212 "Shouldn't collect exceptions when throw-all is guaranteed."); 213 ComputedEST = EST_Dynamic; 214 // Record the exceptions in this function's exception specification. 215 for (const auto &E : Proto->exceptions()) 216 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) 217 Exceptions.push_back(E); 218 } 219 220 void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) { 221 if (!E || ComputedEST == EST_MSAny) 222 return; 223 224 // FIXME: 225 // 226 // C++0x [except.spec]p14: 227 // [An] implicit exception-specification specifies the type-id T if and 228 // only if T is allowed by the exception-specification of a function directly 229 // invoked by f's implicit definition; f shall allow all exceptions if any 230 // function it directly invokes allows all exceptions, and f shall allow no 231 // exceptions if every function it directly invokes allows no exceptions. 232 // 233 // Note in particular that if an implicit exception-specification is generated 234 // for a function containing a throw-expression, that specification can still 235 // be noexcept(true). 236 // 237 // Note also that 'directly invoked' is not defined in the standard, and there 238 // is no indication that we should only consider potentially-evaluated calls. 239 // 240 // Ultimately we should implement the intent of the standard: the exception 241 // specification should be the set of exceptions which can be thrown by the 242 // implicit definition. For now, we assume that any non-nothrow expression can 243 // throw any exception. 244 245 if (Self->canThrow(E)) 246 ComputedEST = EST_None; 247 } 248 249 bool 250 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 251 SourceLocation EqualLoc) { 252 if (RequireCompleteType(Param->getLocation(), Param->getType(), 253 diag::err_typecheck_decl_incomplete_type)) { 254 Param->setInvalidDecl(); 255 return true; 256 } 257 258 // C++ [dcl.fct.default]p5 259 // A default argument expression is implicitly converted (clause 260 // 4) to the parameter type. The default argument expression has 261 // the same semantic constraints as the initializer expression in 262 // a declaration of a variable of the parameter type, using the 263 // copy-initialization semantics (8.5). 264 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 265 Param); 266 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), 267 EqualLoc); 268 InitializationSequence InitSeq(*this, Entity, Kind, Arg); 269 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg); 270 if (Result.isInvalid()) 271 return true; 272 Arg = Result.getAs<Expr>(); 273 274 CheckCompletedExpr(Arg, EqualLoc); 275 Arg = MaybeCreateExprWithCleanups(Arg); 276 277 // Okay: add the default argument to the parameter 278 Param->setDefaultArg(Arg); 279 280 // We have already instantiated this parameter; provide each of the 281 // instantiations with the uninstantiated default argument. 282 UnparsedDefaultArgInstantiationsMap::iterator InstPos 283 = UnparsedDefaultArgInstantiations.find(Param); 284 if (InstPos != UnparsedDefaultArgInstantiations.end()) { 285 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) 286 InstPos->second[I]->setUninstantiatedDefaultArg(Arg); 287 288 // We're done tracking this parameter's instantiations. 289 UnparsedDefaultArgInstantiations.erase(InstPos); 290 } 291 292 return false; 293 } 294 295 /// ActOnParamDefaultArgument - Check whether the default argument 296 /// provided for a function parameter is well-formed. If so, attach it 297 /// to the parameter declaration. 298 void 299 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, 300 Expr *DefaultArg) { 301 if (!param || !DefaultArg) 302 return; 303 304 ParmVarDecl *Param = cast<ParmVarDecl>(param); 305 UnparsedDefaultArgLocs.erase(Param); 306 307 // Default arguments are only permitted in C++ 308 if (!getLangOpts().CPlusPlus) { 309 Diag(EqualLoc, diag::err_param_default_argument) 310 << DefaultArg->getSourceRange(); 311 Param->setInvalidDecl(); 312 return; 313 } 314 315 // Check for unexpanded parameter packs. 316 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) { 317 Param->setInvalidDecl(); 318 return; 319 } 320 321 // C++11 [dcl.fct.default]p3 322 // A default argument expression [...] shall not be specified for a 323 // parameter pack. 324 if (Param->isParameterPack()) { 325 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack) 326 << DefaultArg->getSourceRange(); 327 return; 328 } 329 330 // Check that the default argument is well-formed 331 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this); 332 if (DefaultArgChecker.Visit(DefaultArg)) { 333 Param->setInvalidDecl(); 334 return; 335 } 336 337 SetParamDefaultArgument(Param, DefaultArg, EqualLoc); 338 } 339 340 /// ActOnParamUnparsedDefaultArgument - We've seen a default 341 /// argument for a function parameter, but we can't parse it yet 342 /// because we're inside a class definition. Note that this default 343 /// argument will be parsed later. 344 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, 345 SourceLocation EqualLoc, 346 SourceLocation ArgLoc) { 347 if (!param) 348 return; 349 350 ParmVarDecl *Param = cast<ParmVarDecl>(param); 351 Param->setUnparsedDefaultArg(); 352 UnparsedDefaultArgLocs[Param] = ArgLoc; 353 } 354 355 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of 356 /// the default argument for the parameter param failed. 357 void Sema::ActOnParamDefaultArgumentError(Decl *param, 358 SourceLocation EqualLoc) { 359 if (!param) 360 return; 361 362 ParmVarDecl *Param = cast<ParmVarDecl>(param); 363 Param->setInvalidDecl(); 364 UnparsedDefaultArgLocs.erase(Param); 365 Param->setDefaultArg(new(Context) 366 OpaqueValueExpr(EqualLoc, 367 Param->getType().getNonReferenceType(), 368 VK_RValue)); 369 } 370 371 /// CheckExtraCXXDefaultArguments - Check for any extra default 372 /// arguments in the declarator, which is not a function declaration 373 /// or definition and therefore is not permitted to have default 374 /// arguments. This routine should be invoked for every declarator 375 /// that is not a function declaration or definition. 376 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { 377 // C++ [dcl.fct.default]p3 378 // A default argument expression shall be specified only in the 379 // parameter-declaration-clause of a function declaration or in a 380 // template-parameter (14.1). It shall not be specified for a 381 // parameter pack. If it is specified in a 382 // parameter-declaration-clause, it shall not occur within a 383 // declarator or abstract-declarator of a parameter-declaration. 384 bool MightBeFunction = D.isFunctionDeclarationContext(); 385 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { 386 DeclaratorChunk &chunk = D.getTypeObject(i); 387 if (chunk.Kind == DeclaratorChunk::Function) { 388 if (MightBeFunction) { 389 // This is a function declaration. It can have default arguments, but 390 // keep looking in case its return type is a function type with default 391 // arguments. 392 MightBeFunction = false; 393 continue; 394 } 395 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; 396 ++argIdx) { 397 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param); 398 if (Param->hasUnparsedDefaultArg()) { 399 std::unique_ptr<CachedTokens> Toks = 400 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens); 401 SourceRange SR; 402 if (Toks->size() > 1) 403 SR = SourceRange((*Toks)[1].getLocation(), 404 Toks->back().getLocation()); 405 else 406 SR = UnparsedDefaultArgLocs[Param]; 407 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 408 << SR; 409 } else if (Param->getDefaultArg()) { 410 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 411 << Param->getDefaultArg()->getSourceRange(); 412 Param->setDefaultArg(nullptr); 413 } 414 } 415 } else if (chunk.Kind != DeclaratorChunk::Paren) { 416 MightBeFunction = false; 417 } 418 } 419 } 420 421 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { 422 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) { 423 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1); 424 if (!PVD->hasDefaultArg()) 425 return false; 426 if (!PVD->hasInheritedDefaultArg()) 427 return true; 428 } 429 return false; 430 } 431 432 /// MergeCXXFunctionDecl - Merge two declarations of the same C++ 433 /// function, once we already know that they have the same 434 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an 435 /// error, false otherwise. 436 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, 437 Scope *S) { 438 bool Invalid = false; 439 440 // The declaration context corresponding to the scope is the semantic 441 // parent, unless this is a local function declaration, in which case 442 // it is that surrounding function. 443 DeclContext *ScopeDC = New->isLocalExternDecl() 444 ? New->getLexicalDeclContext() 445 : New->getDeclContext(); 446 447 // Find the previous declaration for the purpose of default arguments. 448 FunctionDecl *PrevForDefaultArgs = Old; 449 for (/**/; PrevForDefaultArgs; 450 // Don't bother looking back past the latest decl if this is a local 451 // extern declaration; nothing else could work. 452 PrevForDefaultArgs = New->isLocalExternDecl() 453 ? nullptr 454 : PrevForDefaultArgs->getPreviousDecl()) { 455 // Ignore hidden declarations. 456 if (!LookupResult::isVisible(*this, PrevForDefaultArgs)) 457 continue; 458 459 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) && 460 !New->isCXXClassMember()) { 461 // Ignore default arguments of old decl if they are not in 462 // the same scope and this is not an out-of-line definition of 463 // a member function. 464 continue; 465 } 466 467 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) { 468 // If only one of these is a local function declaration, then they are 469 // declared in different scopes, even though isDeclInScope may think 470 // they're in the same scope. (If both are local, the scope check is 471 // sufficient, and if neither is local, then they are in the same scope.) 472 continue; 473 } 474 475 // We found the right previous declaration. 476 break; 477 } 478 479 // C++ [dcl.fct.default]p4: 480 // For non-template functions, default arguments can be added in 481 // later declarations of a function in the same 482 // scope. Declarations in different scopes have completely 483 // distinct sets of default arguments. That is, declarations in 484 // inner scopes do not acquire default arguments from 485 // declarations in outer scopes, and vice versa. In a given 486 // function declaration, all parameters subsequent to a 487 // parameter with a default argument shall have default 488 // arguments supplied in this or previous declarations. A 489 // default argument shall not be redefined by a later 490 // declaration (not even to the same value). 491 // 492 // C++ [dcl.fct.default]p6: 493 // Except for member functions of class templates, the default arguments 494 // in a member function definition that appears outside of the class 495 // definition are added to the set of default arguments provided by the 496 // member function declaration in the class definition. 497 for (unsigned p = 0, NumParams = PrevForDefaultArgs 498 ? PrevForDefaultArgs->getNumParams() 499 : 0; 500 p < NumParams; ++p) { 501 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p); 502 ParmVarDecl *NewParam = New->getParamDecl(p); 503 504 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; 505 bool NewParamHasDfl = NewParam->hasDefaultArg(); 506 507 if (OldParamHasDfl && NewParamHasDfl) { 508 unsigned DiagDefaultParamID = 509 diag::err_param_default_argument_redefinition; 510 511 // MSVC accepts that default parameters be redefined for member functions 512 // of template class. The new default parameter's value is ignored. 513 Invalid = true; 514 if (getLangOpts().MicrosoftExt) { 515 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New); 516 if (MD && MD->getParent()->getDescribedClassTemplate()) { 517 // Merge the old default argument into the new parameter. 518 NewParam->setHasInheritedDefaultArg(); 519 if (OldParam->hasUninstantiatedDefaultArg()) 520 NewParam->setUninstantiatedDefaultArg( 521 OldParam->getUninstantiatedDefaultArg()); 522 else 523 NewParam->setDefaultArg(OldParam->getInit()); 524 DiagDefaultParamID = diag::ext_param_default_argument_redefinition; 525 Invalid = false; 526 } 527 } 528 529 // FIXME: If we knew where the '=' was, we could easily provide a fix-it 530 // hint here. Alternatively, we could walk the type-source information 531 // for NewParam to find the last source location in the type... but it 532 // isn't worth the effort right now. This is the kind of test case that 533 // is hard to get right: 534 // int f(int); 535 // void g(int (*fp)(int) = f); 536 // void g(int (*fp)(int) = &f); 537 Diag(NewParam->getLocation(), DiagDefaultParamID) 538 << NewParam->getDefaultArgRange(); 539 540 // Look for the function declaration where the default argument was 541 // actually written, which may be a declaration prior to Old. 542 for (auto Older = PrevForDefaultArgs; 543 OldParam->hasInheritedDefaultArg(); /**/) { 544 Older = Older->getPreviousDecl(); 545 OldParam = Older->getParamDecl(p); 546 } 547 548 Diag(OldParam->getLocation(), diag::note_previous_definition) 549 << OldParam->getDefaultArgRange(); 550 } else if (OldParamHasDfl) { 551 // Merge the old default argument into the new parameter unless the new 552 // function is a friend declaration in a template class. In the latter 553 // case the default arguments will be inherited when the friend 554 // declaration will be instantiated. 555 if (New->getFriendObjectKind() == Decl::FOK_None || 556 !New->getLexicalDeclContext()->isDependentContext()) { 557 // It's important to use getInit() here; getDefaultArg() 558 // strips off any top-level ExprWithCleanups. 559 NewParam->setHasInheritedDefaultArg(); 560 if (OldParam->hasUnparsedDefaultArg()) 561 NewParam->setUnparsedDefaultArg(); 562 else if (OldParam->hasUninstantiatedDefaultArg()) 563 NewParam->setUninstantiatedDefaultArg( 564 OldParam->getUninstantiatedDefaultArg()); 565 else 566 NewParam->setDefaultArg(OldParam->getInit()); 567 } 568 } else if (NewParamHasDfl) { 569 if (New->getDescribedFunctionTemplate()) { 570 // Paragraph 4, quoted above, only applies to non-template functions. 571 Diag(NewParam->getLocation(), 572 diag::err_param_default_argument_template_redecl) 573 << NewParam->getDefaultArgRange(); 574 Diag(PrevForDefaultArgs->getLocation(), 575 diag::note_template_prev_declaration) 576 << false; 577 } else if (New->getTemplateSpecializationKind() 578 != TSK_ImplicitInstantiation && 579 New->getTemplateSpecializationKind() != TSK_Undeclared) { 580 // C++ [temp.expr.spec]p21: 581 // Default function arguments shall not be specified in a declaration 582 // or a definition for one of the following explicit specializations: 583 // - the explicit specialization of a function template; 584 // - the explicit specialization of a member function template; 585 // - the explicit specialization of a member function of a class 586 // template where the class template specialization to which the 587 // member function specialization belongs is implicitly 588 // instantiated. 589 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) 590 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) 591 << New->getDeclName() 592 << NewParam->getDefaultArgRange(); 593 } else if (New->getDeclContext()->isDependentContext()) { 594 // C++ [dcl.fct.default]p6 (DR217): 595 // Default arguments for a member function of a class template shall 596 // be specified on the initial declaration of the member function 597 // within the class template. 598 // 599 // Reading the tea leaves a bit in DR217 and its reference to DR205 600 // leads me to the conclusion that one cannot add default function 601 // arguments for an out-of-line definition of a member function of a 602 // dependent type. 603 int WhichKind = 2; 604 if (CXXRecordDecl *Record 605 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { 606 if (Record->getDescribedClassTemplate()) 607 WhichKind = 0; 608 else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) 609 WhichKind = 1; 610 else 611 WhichKind = 2; 612 } 613 614 Diag(NewParam->getLocation(), 615 diag::err_param_default_argument_member_template_redecl) 616 << WhichKind 617 << NewParam->getDefaultArgRange(); 618 } 619 } 620 } 621 622 // DR1344: If a default argument is added outside a class definition and that 623 // default argument makes the function a special member function, the program 624 // is ill-formed. This can only happen for constructors. 625 if (isa<CXXConstructorDecl>(New) && 626 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { 627 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)), 628 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old)); 629 if (NewSM != OldSM) { 630 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); 631 assert(NewParam->hasDefaultArg()); 632 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) 633 << NewParam->getDefaultArgRange() << NewSM; 634 Diag(Old->getLocation(), diag::note_previous_declaration); 635 } 636 } 637 638 const FunctionDecl *Def; 639 // C++11 [dcl.constexpr]p1: If any declaration of a function or function 640 // template has a constexpr specifier then all its declarations shall 641 // contain the constexpr specifier. 642 if (New->getConstexprKind() != Old->getConstexprKind()) { 643 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) 644 << New << New->getConstexprKind() << Old->getConstexprKind(); 645 Diag(Old->getLocation(), diag::note_previous_declaration); 646 Invalid = true; 647 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && 648 Old->isDefined(Def) && 649 // If a friend function is inlined but does not have 'inline' 650 // specifier, it is a definition. Do not report attribute conflict 651 // in this case, redefinition will be diagnosed later. 652 (New->isInlineSpecified() || 653 New->getFriendObjectKind() == Decl::FOK_None)) { 654 // C++11 [dcl.fcn.spec]p4: 655 // If the definition of a function appears in a translation unit before its 656 // first declaration as inline, the program is ill-formed. 657 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 658 Diag(Def->getLocation(), diag::note_previous_definition); 659 Invalid = true; 660 } 661 662 // C++17 [temp.deduct.guide]p3: 663 // Two deduction guide declarations in the same translation unit 664 // for the same class template shall not have equivalent 665 // parameter-declaration-clauses. 666 if (isa<CXXDeductionGuideDecl>(New) && 667 !New->isFunctionTemplateSpecialization()) { 668 Diag(New->getLocation(), diag::err_deduction_guide_redeclared); 669 Diag(Old->getLocation(), diag::note_previous_declaration); 670 } 671 672 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default 673 // argument expression, that declaration shall be a definition and shall be 674 // the only declaration of the function or function template in the 675 // translation unit. 676 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && 677 functionDeclHasDefaultArgument(Old)) { 678 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 679 Diag(Old->getLocation(), diag::note_previous_declaration); 680 Invalid = true; 681 } 682 683 return Invalid; 684 } 685 686 NamedDecl * 687 Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, 688 MultiTemplateParamsArg TemplateParamLists) { 689 assert(D.isDecompositionDeclarator()); 690 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); 691 692 // The syntax only allows a decomposition declarator as a simple-declaration, 693 // a for-range-declaration, or a condition in Clang, but we parse it in more 694 // cases than that. 695 if (!D.mayHaveDecompositionDeclarator()) { 696 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) 697 << Decomp.getSourceRange(); 698 return nullptr; 699 } 700 701 if (!TemplateParamLists.empty()) { 702 // FIXME: There's no rule against this, but there are also no rules that 703 // would actually make it usable, so we reject it for now. 704 Diag(TemplateParamLists.front()->getTemplateLoc(), 705 diag::err_decomp_decl_template); 706 return nullptr; 707 } 708 709 Diag(Decomp.getLSquareLoc(), 710 !getLangOpts().CPlusPlus17 711 ? diag::ext_decomp_decl 712 : D.getContext() == DeclaratorContext::ConditionContext 713 ? diag::ext_decomp_decl_cond 714 : diag::warn_cxx14_compat_decomp_decl) 715 << Decomp.getSourceRange(); 716 717 // The semantic context is always just the current context. 718 DeclContext *const DC = CurContext; 719 720 // C++17 [dcl.dcl]/8: 721 // The decl-specifier-seq shall contain only the type-specifier auto 722 // and cv-qualifiers. 723 // C++2a [dcl.dcl]/8: 724 // If decl-specifier-seq contains any decl-specifier other than static, 725 // thread_local, auto, or cv-qualifiers, the program is ill-formed. 726 auto &DS = D.getDeclSpec(); 727 { 728 SmallVector<StringRef, 8> BadSpecifiers; 729 SmallVector<SourceLocation, 8> BadSpecifierLocs; 730 SmallVector<StringRef, 8> CPlusPlus20Specifiers; 731 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; 732 if (auto SCS = DS.getStorageClassSpec()) { 733 if (SCS == DeclSpec::SCS_static) { 734 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS)); 735 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 736 } else { 737 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS)); 738 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 739 } 740 } 741 if (auto TSCS = DS.getThreadStorageClassSpec()) { 742 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS)); 743 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc()); 744 } 745 if (DS.hasConstexprSpecifier()) { 746 BadSpecifiers.push_back( 747 DeclSpec::getSpecifierName(DS.getConstexprSpecifier())); 748 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc()); 749 } 750 if (DS.isInlineSpecified()) { 751 BadSpecifiers.push_back("inline"); 752 BadSpecifierLocs.push_back(DS.getInlineSpecLoc()); 753 } 754 if (!BadSpecifiers.empty()) { 755 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); 756 Err << (int)BadSpecifiers.size() 757 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " "); 758 // Don't add FixItHints to remove the specifiers; we do still respect 759 // them when building the underlying variable. 760 for (auto Loc : BadSpecifierLocs) 761 Err << SourceRange(Loc, Loc); 762 } else if (!CPlusPlus20Specifiers.empty()) { 763 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(), 764 getLangOpts().CPlusPlus2a 765 ? diag::warn_cxx17_compat_decomp_decl_spec 766 : diag::ext_decomp_decl_spec); 767 Warn << (int)CPlusPlus20Specifiers.size() 768 << llvm::join(CPlusPlus20Specifiers.begin(), 769 CPlusPlus20Specifiers.end(), " "); 770 for (auto Loc : CPlusPlus20SpecifierLocs) 771 Warn << SourceRange(Loc, Loc); 772 } 773 // We can't recover from it being declared as a typedef. 774 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 775 return nullptr; 776 } 777 778 // C++2a [dcl.struct.bind]p1: 779 // A cv that includes volatile is deprecated 780 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && 781 getLangOpts().CPlusPlus2a) 782 Diag(DS.getVolatileSpecLoc(), 783 diag::warn_deprecated_volatile_structured_binding); 784 785 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 786 QualType R = TInfo->getType(); 787 788 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 789 UPPC_DeclarationType)) 790 D.setInvalidType(); 791 792 // The syntax only allows a single ref-qualifier prior to the decomposition 793 // declarator. No other declarator chunks are permitted. Also check the type 794 // specifier here. 795 if (DS.getTypeSpecType() != DeclSpec::TST_auto || 796 D.hasGroupingParens() || D.getNumTypeObjects() > 1 || 797 (D.getNumTypeObjects() == 1 && 798 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) { 799 Diag(Decomp.getLSquareLoc(), 800 (D.hasGroupingParens() || 801 (D.getNumTypeObjects() && 802 D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) 803 ? diag::err_decomp_decl_parens 804 : diag::err_decomp_decl_type) 805 << R; 806 807 // In most cases, there's no actual problem with an explicitly-specified 808 // type, but a function type won't work here, and ActOnVariableDeclarator 809 // shouldn't be called for such a type. 810 if (R->isFunctionType()) 811 D.setInvalidType(); 812 } 813 814 // Build the BindingDecls. 815 SmallVector<BindingDecl*, 8> Bindings; 816 817 // Build the BindingDecls. 818 for (auto &B : D.getDecompositionDeclarator().bindings()) { 819 // Check for name conflicts. 820 DeclarationNameInfo NameInfo(B.Name, B.NameLoc); 821 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 822 ForVisibleRedeclaration); 823 LookupName(Previous, S, 824 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit()); 825 826 // It's not permitted to shadow a template parameter name. 827 if (Previous.isSingleResult() && 828 Previous.getFoundDecl()->isTemplateParameter()) { 829 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 830 Previous.getFoundDecl()); 831 Previous.clear(); 832 } 833 834 bool ConsiderLinkage = DC->isFunctionOrMethod() && 835 DS.getStorageClassSpec() == DeclSpec::SCS_extern; 836 FilterLookupForScope(Previous, DC, S, ConsiderLinkage, 837 /*AllowInlineNamespace*/false); 838 if (!Previous.empty()) { 839 auto *Old = Previous.getRepresentativeDecl(); 840 Diag(B.NameLoc, diag::err_redefinition) << B.Name; 841 Diag(Old->getLocation(), diag::note_previous_definition); 842 } 843 844 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name); 845 PushOnScopeChains(BD, S, true); 846 Bindings.push_back(BD); 847 ParsingInitForAutoVars.insert(BD); 848 } 849 850 // There are no prior lookup results for the variable itself, because it 851 // is unnamed. 852 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, 853 Decomp.getLSquareLoc()); 854 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 855 ForVisibleRedeclaration); 856 857 // Build the variable that holds the non-decomposed object. 858 bool AddToScope = true; 859 NamedDecl *New = 860 ActOnVariableDeclarator(S, D, DC, TInfo, Previous, 861 MultiTemplateParamsArg(), AddToScope, Bindings); 862 if (AddToScope) { 863 S->AddDecl(New); 864 CurContext->addHiddenDecl(New); 865 } 866 867 if (isInOpenMPDeclareTargetContext()) 868 checkDeclIsAllowedInOpenMPTarget(nullptr, New); 869 870 return New; 871 } 872 873 static bool checkSimpleDecomposition( 874 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, 875 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType, 876 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { 877 if ((int64_t)Bindings.size() != NumElems) { 878 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 879 << DecompType << (unsigned)Bindings.size() << NumElems.toString(10) 880 << (NumElems < Bindings.size()); 881 return true; 882 } 883 884 unsigned I = 0; 885 for (auto *B : Bindings) { 886 SourceLocation Loc = B->getLocation(); 887 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 888 if (E.isInvalid()) 889 return true; 890 E = GetInit(Loc, E.get(), I++); 891 if (E.isInvalid()) 892 return true; 893 B->setBinding(ElemType, E.get()); 894 } 895 896 return false; 897 } 898 899 static bool checkArrayLikeDecomposition(Sema &S, 900 ArrayRef<BindingDecl *> Bindings, 901 ValueDecl *Src, QualType DecompType, 902 const llvm::APSInt &NumElems, 903 QualType ElemType) { 904 return checkSimpleDecomposition( 905 S, Bindings, Src, DecompType, NumElems, ElemType, 906 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 907 ExprResult E = S.ActOnIntegerConstant(Loc, I); 908 if (E.isInvalid()) 909 return ExprError(); 910 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc); 911 }); 912 } 913 914 static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 915 ValueDecl *Src, QualType DecompType, 916 const ConstantArrayType *CAT) { 917 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, 918 llvm::APSInt(CAT->getSize()), 919 CAT->getElementType()); 920 } 921 922 static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 923 ValueDecl *Src, QualType DecompType, 924 const VectorType *VT) { 925 return checkArrayLikeDecomposition( 926 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()), 927 S.Context.getQualifiedType(VT->getElementType(), 928 DecompType.getQualifiers())); 929 } 930 931 static bool checkComplexDecomposition(Sema &S, 932 ArrayRef<BindingDecl *> Bindings, 933 ValueDecl *Src, QualType DecompType, 934 const ComplexType *CT) { 935 return checkSimpleDecomposition( 936 S, Bindings, Src, DecompType, llvm::APSInt::get(2), 937 S.Context.getQualifiedType(CT->getElementType(), 938 DecompType.getQualifiers()), 939 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 940 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base); 941 }); 942 } 943 944 static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, 945 TemplateArgumentListInfo &Args) { 946 SmallString<128> SS; 947 llvm::raw_svector_ostream OS(SS); 948 bool First = true; 949 for (auto &Arg : Args.arguments()) { 950 if (!First) 951 OS << ", "; 952 Arg.getArgument().print(PrintingPolicy, OS); 953 First = false; 954 } 955 return OS.str(); 956 } 957 958 static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, 959 SourceLocation Loc, StringRef Trait, 960 TemplateArgumentListInfo &Args, 961 unsigned DiagID) { 962 auto DiagnoseMissing = [&] { 963 if (DiagID) 964 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(), 965 Args); 966 return true; 967 }; 968 969 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. 970 NamespaceDecl *Std = S.getStdNamespace(); 971 if (!Std) 972 return DiagnoseMissing(); 973 974 // Look up the trait itself, within namespace std. We can diagnose various 975 // problems with this lookup even if we've been asked to not diagnose a 976 // missing specialization, because this can only fail if the user has been 977 // declaring their own names in namespace std or we don't support the 978 // standard library implementation in use. 979 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait), 980 Loc, Sema::LookupOrdinaryName); 981 if (!S.LookupQualifiedName(Result, Std)) 982 return DiagnoseMissing(); 983 if (Result.isAmbiguous()) 984 return true; 985 986 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); 987 if (!TraitTD) { 988 Result.suppressDiagnostics(); 989 NamedDecl *Found = *Result.begin(); 990 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; 991 S.Diag(Found->getLocation(), diag::note_declared_at); 992 return true; 993 } 994 995 // Build the template-id. 996 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args); 997 if (TraitTy.isNull()) 998 return true; 999 if (!S.isCompleteType(Loc, TraitTy)) { 1000 if (DiagID) 1001 S.RequireCompleteType( 1002 Loc, TraitTy, DiagID, 1003 printTemplateArgs(S.Context.getPrintingPolicy(), Args)); 1004 return true; 1005 } 1006 1007 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); 1008 assert(RD && "specialization of class template is not a class?"); 1009 1010 // Look up the member of the trait type. 1011 S.LookupQualifiedName(TraitMemberLookup, RD); 1012 return TraitMemberLookup.isAmbiguous(); 1013 } 1014 1015 static TemplateArgumentLoc 1016 getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, 1017 uint64_t I) { 1018 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T); 1019 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc); 1020 } 1021 1022 static TemplateArgumentLoc 1023 getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { 1024 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc); 1025 } 1026 1027 namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } 1028 1029 static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, 1030 llvm::APSInt &Size) { 1031 EnterExpressionEvaluationContext ContextRAII( 1032 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1033 1034 DeclarationName Value = S.PP.getIdentifierInfo("value"); 1035 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); 1036 1037 // Form template argument list for tuple_size<T>. 1038 TemplateArgumentListInfo Args(Loc, Loc); 1039 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1040 1041 // If there's no tuple_size specialization or the lookup of 'value' is empty, 1042 // it's not tuple-like. 1043 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) || 1044 R.empty()) 1045 return IsTupleLike::NotTupleLike; 1046 1047 // If we get this far, we've committed to the tuple interpretation, but 1048 // we can still fail if there actually isn't a usable ::value. 1049 1050 struct ICEDiagnoser : Sema::VerifyICEDiagnoser { 1051 LookupResult &R; 1052 TemplateArgumentListInfo &Args; 1053 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) 1054 : R(R), Args(Args) {} 1055 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) { 1056 S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) 1057 << printTemplateArgs(S.Context.getPrintingPolicy(), Args); 1058 } 1059 } Diagnoser(R, Args); 1060 1061 ExprResult E = 1062 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false); 1063 if (E.isInvalid()) 1064 return IsTupleLike::Error; 1065 1066 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false); 1067 if (E.isInvalid()) 1068 return IsTupleLike::Error; 1069 1070 return IsTupleLike::TupleLike; 1071 } 1072 1073 /// \return std::tuple_element<I, T>::type. 1074 static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, 1075 unsigned I, QualType T) { 1076 // Form template argument list for tuple_element<I, T>. 1077 TemplateArgumentListInfo Args(Loc, Loc); 1078 Args.addArgument( 1079 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1080 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1081 1082 DeclarationName TypeDN = S.PP.getIdentifierInfo("type"); 1083 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); 1084 if (lookupStdTypeTraitMember( 1085 S, R, Loc, "tuple_element", Args, 1086 diag::err_decomp_decl_std_tuple_element_not_specialized)) 1087 return QualType(); 1088 1089 auto *TD = R.getAsSingle<TypeDecl>(); 1090 if (!TD) { 1091 R.suppressDiagnostics(); 1092 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) 1093 << printTemplateArgs(S.Context.getPrintingPolicy(), Args); 1094 if (!R.empty()) 1095 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); 1096 return QualType(); 1097 } 1098 1099 return S.Context.getTypeDeclType(TD); 1100 } 1101 1102 namespace { 1103 struct BindingDiagnosticTrap { 1104 Sema &S; 1105 DiagnosticErrorTrap Trap; 1106 BindingDecl *BD; 1107 1108 BindingDiagnosticTrap(Sema &S, BindingDecl *BD) 1109 : S(S), Trap(S.Diags), BD(BD) {} 1110 ~BindingDiagnosticTrap() { 1111 if (Trap.hasErrorOccurred()) 1112 S.Diag(BD->getLocation(), diag::note_in_binding_decl_init) << BD; 1113 } 1114 }; 1115 } 1116 1117 static bool checkTupleLikeDecomposition(Sema &S, 1118 ArrayRef<BindingDecl *> Bindings, 1119 VarDecl *Src, QualType DecompType, 1120 const llvm::APSInt &TupleSize) { 1121 if ((int64_t)Bindings.size() != TupleSize) { 1122 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1123 << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10) 1124 << (TupleSize < Bindings.size()); 1125 return true; 1126 } 1127 1128 if (Bindings.empty()) 1129 return false; 1130 1131 DeclarationName GetDN = S.PP.getIdentifierInfo("get"); 1132 1133 // [dcl.decomp]p3: 1134 // The unqualified-id get is looked up in the scope of E by class member 1135 // access lookup ... 1136 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); 1137 bool UseMemberGet = false; 1138 if (S.isCompleteType(Src->getLocation(), DecompType)) { 1139 if (auto *RD = DecompType->getAsCXXRecordDecl()) 1140 S.LookupQualifiedName(MemberGet, RD); 1141 if (MemberGet.isAmbiguous()) 1142 return true; 1143 // ... and if that finds at least one declaration that is a function 1144 // template whose first template parameter is a non-type parameter ... 1145 for (NamedDecl *D : MemberGet) { 1146 if (FunctionTemplateDecl *FTD = 1147 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { 1148 TemplateParameterList *TPL = FTD->getTemplateParameters(); 1149 if (TPL->size() != 0 && 1150 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { 1151 // ... the initializer is e.get<i>(). 1152 UseMemberGet = true; 1153 break; 1154 } 1155 } 1156 } 1157 } 1158 1159 unsigned I = 0; 1160 for (auto *B : Bindings) { 1161 BindingDiagnosticTrap Trap(S, B); 1162 SourceLocation Loc = B->getLocation(); 1163 1164 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1165 if (E.isInvalid()) 1166 return true; 1167 1168 // e is an lvalue if the type of the entity is an lvalue reference and 1169 // an xvalue otherwise 1170 if (!Src->getType()->isLValueReferenceType()) 1171 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp, 1172 E.get(), nullptr, VK_XValue); 1173 1174 TemplateArgumentListInfo Args(Loc, Loc); 1175 Args.addArgument( 1176 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1177 1178 if (UseMemberGet) { 1179 // if [lookup of member get] finds at least one declaration, the 1180 // initializer is e.get<i-1>(). 1181 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false, 1182 CXXScopeSpec(), SourceLocation(), nullptr, 1183 MemberGet, &Args, nullptr); 1184 if (E.isInvalid()) 1185 return true; 1186 1187 E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc); 1188 } else { 1189 // Otherwise, the initializer is get<i-1>(e), where get is looked up 1190 // in the associated namespaces. 1191 Expr *Get = UnresolvedLookupExpr::Create( 1192 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(), 1193 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args, 1194 UnresolvedSetIterator(), UnresolvedSetIterator()); 1195 1196 Expr *Arg = E.get(); 1197 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc); 1198 } 1199 if (E.isInvalid()) 1200 return true; 1201 Expr *Init = E.get(); 1202 1203 // Given the type T designated by std::tuple_element<i - 1, E>::type, 1204 QualType T = getTupleLikeElementType(S, Loc, I, DecompType); 1205 if (T.isNull()) 1206 return true; 1207 1208 // each vi is a variable of type "reference to T" initialized with the 1209 // initializer, where the reference is an lvalue reference if the 1210 // initializer is an lvalue and an rvalue reference otherwise 1211 QualType RefType = 1212 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName()); 1213 if (RefType.isNull()) 1214 return true; 1215 auto *RefVD = VarDecl::Create( 1216 S.Context, Src->getDeclContext(), Loc, Loc, 1217 B->getDeclName().getAsIdentifierInfo(), RefType, 1218 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass()); 1219 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); 1220 RefVD->setTSCSpec(Src->getTSCSpec()); 1221 RefVD->setImplicit(); 1222 if (Src->isInlineSpecified()) 1223 RefVD->setInlineSpecified(); 1224 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); 1225 1226 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD); 1227 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc); 1228 InitializationSequence Seq(S, Entity, Kind, Init); 1229 E = Seq.Perform(S, Entity, Kind, Init); 1230 if (E.isInvalid()) 1231 return true; 1232 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false); 1233 if (E.isInvalid()) 1234 return true; 1235 RefVD->setInit(E.get()); 1236 if (!E.get()->isValueDependent()) 1237 RefVD->checkInitIsICE(); 1238 1239 E = S.BuildDeclarationNameExpr(CXXScopeSpec(), 1240 DeclarationNameInfo(B->getDeclName(), Loc), 1241 RefVD); 1242 if (E.isInvalid()) 1243 return true; 1244 1245 B->setBinding(T, E.get()); 1246 I++; 1247 } 1248 1249 return false; 1250 } 1251 1252 /// Find the base class to decompose in a built-in decomposition of a class type. 1253 /// This base class search is, unfortunately, not quite like any other that we 1254 /// perform anywhere else in C++. 1255 static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, 1256 const CXXRecordDecl *RD, 1257 CXXCastPath &BasePath) { 1258 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, 1259 CXXBasePath &Path) { 1260 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); 1261 }; 1262 1263 const CXXRecordDecl *ClassWithFields = nullptr; 1264 AccessSpecifier AS = AS_public; 1265 if (RD->hasDirectFields()) 1266 // [dcl.decomp]p4: 1267 // Otherwise, all of E's non-static data members shall be public direct 1268 // members of E ... 1269 ClassWithFields = RD; 1270 else { 1271 // ... or of ... 1272 CXXBasePaths Paths; 1273 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); 1274 if (!RD->lookupInBases(BaseHasFields, Paths)) { 1275 // If no classes have fields, just decompose RD itself. (This will work 1276 // if and only if zero bindings were provided.) 1277 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); 1278 } 1279 1280 CXXBasePath *BestPath = nullptr; 1281 for (auto &P : Paths) { 1282 if (!BestPath) 1283 BestPath = &P; 1284 else if (!S.Context.hasSameType(P.back().Base->getType(), 1285 BestPath->back().Base->getType())) { 1286 // ... the same ... 1287 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1288 << false << RD << BestPath->back().Base->getType() 1289 << P.back().Base->getType(); 1290 return DeclAccessPair(); 1291 } else if (P.Access < BestPath->Access) { 1292 BestPath = &P; 1293 } 1294 } 1295 1296 // ... unambiguous ... 1297 QualType BaseType = BestPath->back().Base->getType(); 1298 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) { 1299 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) 1300 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); 1301 return DeclAccessPair(); 1302 } 1303 1304 // ... [accessible, implied by other rules] base class of E. 1305 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), 1306 *BestPath, diag::err_decomp_decl_inaccessible_base); 1307 AS = BestPath->Access; 1308 1309 ClassWithFields = BaseType->getAsCXXRecordDecl(); 1310 S.BuildBasePathArray(Paths, BasePath); 1311 } 1312 1313 // The above search did not check whether the selected class itself has base 1314 // classes with fields, so check that now. 1315 CXXBasePaths Paths; 1316 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) { 1317 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1318 << (ClassWithFields == RD) << RD << ClassWithFields 1319 << Paths.front().back().Base->getType(); 1320 return DeclAccessPair(); 1321 } 1322 1323 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); 1324 } 1325 1326 static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 1327 ValueDecl *Src, QualType DecompType, 1328 const CXXRecordDecl *OrigRD) { 1329 if (S.RequireCompleteType(Src->getLocation(), DecompType, 1330 diag::err_incomplete_type)) 1331 return true; 1332 1333 CXXCastPath BasePath; 1334 DeclAccessPair BasePair = 1335 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); 1336 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl()); 1337 if (!RD) 1338 return true; 1339 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD), 1340 DecompType.getQualifiers()); 1341 1342 auto DiagnoseBadNumberOfBindings = [&]() -> bool { 1343 unsigned NumFields = 1344 std::count_if(RD->field_begin(), RD->field_end(), 1345 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); }); 1346 assert(Bindings.size() != NumFields); 1347 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1348 << DecompType << (unsigned)Bindings.size() << NumFields 1349 << (NumFields < Bindings.size()); 1350 return true; 1351 }; 1352 1353 // all of E's non-static data members shall be [...] well-formed 1354 // when named as e.name in the context of the structured binding, 1355 // E shall not have an anonymous union member, ... 1356 unsigned I = 0; 1357 for (auto *FD : RD->fields()) { 1358 if (FD->isUnnamedBitfield()) 1359 continue; 1360 1361 if (FD->isAnonymousStructOrUnion()) { 1362 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member) 1363 << DecompType << FD->getType()->isUnionType(); 1364 S.Diag(FD->getLocation(), diag::note_declared_at); 1365 return true; 1366 } 1367 1368 // We have a real field to bind. 1369 if (I >= Bindings.size()) 1370 return DiagnoseBadNumberOfBindings(); 1371 auto *B = Bindings[I++]; 1372 SourceLocation Loc = B->getLocation(); 1373 1374 // The field must be accessible in the context of the structured binding. 1375 // We already checked that the base class is accessible. 1376 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the 1377 // const_cast here. 1378 S.CheckStructuredBindingMemberAccess( 1379 Loc, const_cast<CXXRecordDecl *>(OrigRD), 1380 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( 1381 BasePair.getAccess(), FD->getAccess()))); 1382 1383 // Initialize the binding to Src.FD. 1384 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1385 if (E.isInvalid()) 1386 return true; 1387 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, 1388 VK_LValue, &BasePath); 1389 if (E.isInvalid()) 1390 return true; 1391 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, 1392 CXXScopeSpec(), FD, 1393 DeclAccessPair::make(FD, FD->getAccess()), 1394 DeclarationNameInfo(FD->getDeclName(), Loc)); 1395 if (E.isInvalid()) 1396 return true; 1397 1398 // If the type of the member is T, the referenced type is cv T, where cv is 1399 // the cv-qualification of the decomposition expression. 1400 // 1401 // FIXME: We resolve a defect here: if the field is mutable, we do not add 1402 // 'const' to the type of the field. 1403 Qualifiers Q = DecompType.getQualifiers(); 1404 if (FD->isMutable()) 1405 Q.removeConst(); 1406 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); 1407 } 1408 1409 if (I != Bindings.size()) 1410 return DiagnoseBadNumberOfBindings(); 1411 1412 return false; 1413 } 1414 1415 void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { 1416 QualType DecompType = DD->getType(); 1417 1418 // If the type of the decomposition is dependent, then so is the type of 1419 // each binding. 1420 if (DecompType->isDependentType()) { 1421 for (auto *B : DD->bindings()) 1422 B->setType(Context.DependentTy); 1423 return; 1424 } 1425 1426 DecompType = DecompType.getNonReferenceType(); 1427 ArrayRef<BindingDecl*> Bindings = DD->bindings(); 1428 1429 // C++1z [dcl.decomp]/2: 1430 // If E is an array type [...] 1431 // As an extension, we also support decomposition of built-in complex and 1432 // vector types. 1433 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { 1434 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) 1435 DD->setInvalidDecl(); 1436 return; 1437 } 1438 if (auto *VT = DecompType->getAs<VectorType>()) { 1439 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) 1440 DD->setInvalidDecl(); 1441 return; 1442 } 1443 if (auto *CT = DecompType->getAs<ComplexType>()) { 1444 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) 1445 DD->setInvalidDecl(); 1446 return; 1447 } 1448 1449 // C++1z [dcl.decomp]/3: 1450 // if the expression std::tuple_size<E>::value is a well-formed integral 1451 // constant expression, [...] 1452 llvm::APSInt TupleSize(32); 1453 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { 1454 case IsTupleLike::Error: 1455 DD->setInvalidDecl(); 1456 return; 1457 1458 case IsTupleLike::TupleLike: 1459 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) 1460 DD->setInvalidDecl(); 1461 return; 1462 1463 case IsTupleLike::NotTupleLike: 1464 break; 1465 } 1466 1467 // C++1z [dcl.dcl]/8: 1468 // [E shall be of array or non-union class type] 1469 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); 1470 if (!RD || RD->isUnion()) { 1471 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) 1472 << DD << !RD << DecompType; 1473 DD->setInvalidDecl(); 1474 return; 1475 } 1476 1477 // C++1z [dcl.decomp]/4: 1478 // all of E's non-static data members shall be [...] direct members of 1479 // E or of the same unambiguous public base class of E, ... 1480 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) 1481 DD->setInvalidDecl(); 1482 } 1483 1484 /// Merge the exception specifications of two variable declarations. 1485 /// 1486 /// This is called when there's a redeclaration of a VarDecl. The function 1487 /// checks if the redeclaration might have an exception specification and 1488 /// validates compatibility and merges the specs if necessary. 1489 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { 1490 // Shortcut if exceptions are disabled. 1491 if (!getLangOpts().CXXExceptions) 1492 return; 1493 1494 assert(Context.hasSameType(New->getType(), Old->getType()) && 1495 "Should only be called if types are otherwise the same."); 1496 1497 QualType NewType = New->getType(); 1498 QualType OldType = Old->getType(); 1499 1500 // We're only interested in pointers and references to functions, as well 1501 // as pointers to member functions. 1502 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { 1503 NewType = R->getPointeeType(); 1504 OldType = OldType->getAs<ReferenceType>()->getPointeeType(); 1505 } else if (const PointerType *P = NewType->getAs<PointerType>()) { 1506 NewType = P->getPointeeType(); 1507 OldType = OldType->getAs<PointerType>()->getPointeeType(); 1508 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { 1509 NewType = M->getPointeeType(); 1510 OldType = OldType->getAs<MemberPointerType>()->getPointeeType(); 1511 } 1512 1513 if (!NewType->isFunctionProtoType()) 1514 return; 1515 1516 // There's lots of special cases for functions. For function pointers, system 1517 // libraries are hopefully not as broken so that we don't need these 1518 // workarounds. 1519 if (CheckEquivalentExceptionSpec( 1520 OldType->getAs<FunctionProtoType>(), Old->getLocation(), 1521 NewType->getAs<FunctionProtoType>(), New->getLocation())) { 1522 New->setInvalidDecl(); 1523 } 1524 } 1525 1526 /// CheckCXXDefaultArguments - Verify that the default arguments for a 1527 /// function declaration are well-formed according to C++ 1528 /// [dcl.fct.default]. 1529 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { 1530 unsigned NumParams = FD->getNumParams(); 1531 unsigned p; 1532 1533 // Find first parameter with a default argument 1534 for (p = 0; p < NumParams; ++p) { 1535 ParmVarDecl *Param = FD->getParamDecl(p); 1536 if (Param->hasDefaultArg()) 1537 break; 1538 } 1539 1540 // C++11 [dcl.fct.default]p4: 1541 // In a given function declaration, each parameter subsequent to a parameter 1542 // with a default argument shall have a default argument supplied in this or 1543 // a previous declaration or shall be a function parameter pack. A default 1544 // argument shall not be redefined by a later declaration (not even to the 1545 // same value). 1546 unsigned LastMissingDefaultArg = 0; 1547 for (; p < NumParams; ++p) { 1548 ParmVarDecl *Param = FD->getParamDecl(p); 1549 if (!Param->hasDefaultArg() && !Param->isParameterPack()) { 1550 if (Param->isInvalidDecl()) 1551 /* We already complained about this parameter. */; 1552 else if (Param->getIdentifier()) 1553 Diag(Param->getLocation(), 1554 diag::err_param_default_argument_missing_name) 1555 << Param->getIdentifier(); 1556 else 1557 Diag(Param->getLocation(), 1558 diag::err_param_default_argument_missing); 1559 1560 LastMissingDefaultArg = p; 1561 } 1562 } 1563 1564 if (LastMissingDefaultArg > 0) { 1565 // Some default arguments were missing. Clear out all of the 1566 // default arguments up to (and including) the last missing 1567 // default argument, so that we leave the function parameters 1568 // in a semantically valid state. 1569 for (p = 0; p <= LastMissingDefaultArg; ++p) { 1570 ParmVarDecl *Param = FD->getParamDecl(p); 1571 if (Param->hasDefaultArg()) { 1572 Param->setDefaultArg(nullptr); 1573 } 1574 } 1575 } 1576 } 1577 1578 /// Check that the given type is a literal type. Issue a diagnostic if not, 1579 /// if Kind is Diagnose. 1580 /// \return \c true if a problem has been found (and optionally diagnosed). 1581 template <typename... Ts> 1582 static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, 1583 SourceLocation Loc, QualType T, unsigned DiagID, 1584 Ts &&...DiagArgs) { 1585 if (T->isDependentType()) 1586 return false; 1587 1588 switch (Kind) { 1589 case Sema::CheckConstexprKind::Diagnose: 1590 return SemaRef.RequireLiteralType(Loc, T, DiagID, 1591 std::forward<Ts>(DiagArgs)...); 1592 1593 case Sema::CheckConstexprKind::CheckValid: 1594 return !T->isLiteralType(SemaRef.Context); 1595 } 1596 1597 llvm_unreachable("unknown CheckConstexprKind"); 1598 } 1599 1600 /// Determine whether a destructor cannot be constexpr due to 1601 static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, 1602 const CXXDestructorDecl *DD, 1603 Sema::CheckConstexprKind Kind) { 1604 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { 1605 const CXXRecordDecl *RD = 1606 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1607 if (!RD || RD->hasConstexprDestructor()) 1608 return true; 1609 1610 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1611 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) 1612 << DD->getConstexprKind() << !FD 1613 << (FD ? FD->getDeclName() : DeclarationName()) << T; 1614 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) 1615 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; 1616 } 1617 return false; 1618 }; 1619 1620 const CXXRecordDecl *RD = DD->getParent(); 1621 for (const CXXBaseSpecifier &B : RD->bases()) 1622 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) 1623 return false; 1624 for (const FieldDecl *FD : RD->fields()) 1625 if (!Check(FD->getLocation(), FD->getType(), FD)) 1626 return false; 1627 return true; 1628 } 1629 1630 // CheckConstexprParameterTypes - Check whether a function's parameter types 1631 // are all literal types. If so, return true. If not, produce a suitable 1632 // diagnostic and return false. 1633 static bool CheckConstexprParameterTypes(Sema &SemaRef, 1634 const FunctionDecl *FD, 1635 Sema::CheckConstexprKind Kind) { 1636 unsigned ArgIndex = 0; 1637 const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>(); 1638 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), 1639 e = FT->param_type_end(); 1640 i != e; ++i, ++ArgIndex) { 1641 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); 1642 SourceLocation ParamLoc = PD->getLocation(); 1643 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, 1644 diag::err_constexpr_non_literal_param, ArgIndex + 1, 1645 PD->getSourceRange(), isa<CXXConstructorDecl>(FD), 1646 FD->isConsteval())) 1647 return false; 1648 } 1649 return true; 1650 } 1651 1652 /// Get diagnostic %select index for tag kind for 1653 /// record diagnostic message. 1654 /// WARNING: Indexes apply to particular diagnostics only! 1655 /// 1656 /// \returns diagnostic %select index. 1657 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { 1658 switch (Tag) { 1659 case TTK_Struct: return 0; 1660 case TTK_Interface: return 1; 1661 case TTK_Class: return 2; 1662 default: llvm_unreachable("Invalid tag kind for record diagnostic!"); 1663 } 1664 } 1665 1666 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 1667 Stmt *Body, 1668 Sema::CheckConstexprKind Kind); 1669 1670 // Check whether a function declaration satisfies the requirements of a 1671 // constexpr function definition or a constexpr constructor definition. If so, 1672 // return true. If not, produce appropriate diagnostics (unless asked not to by 1673 // Kind) and return false. 1674 // 1675 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360. 1676 bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, 1677 CheckConstexprKind Kind) { 1678 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 1679 if (MD && MD->isInstance()) { 1680 // C++11 [dcl.constexpr]p4: 1681 // The definition of a constexpr constructor shall satisfy the following 1682 // constraints: 1683 // - the class shall not have any virtual base classes; 1684 // 1685 // FIXME: This only applies to constructors and destructors, not arbitrary 1686 // member functions. 1687 const CXXRecordDecl *RD = MD->getParent(); 1688 if (RD->getNumVBases()) { 1689 if (Kind == CheckConstexprKind::CheckValid) 1690 return false; 1691 1692 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) 1693 << isa<CXXConstructorDecl>(NewFD) 1694 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); 1695 for (const auto &I : RD->vbases()) 1696 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) 1697 << I.getSourceRange(); 1698 return false; 1699 } 1700 } 1701 1702 if (!isa<CXXConstructorDecl>(NewFD)) { 1703 // C++11 [dcl.constexpr]p3: 1704 // The definition of a constexpr function shall satisfy the following 1705 // constraints: 1706 // - it shall not be virtual; (removed in C++20) 1707 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); 1708 if (Method && Method->isVirtual()) { 1709 if (getLangOpts().CPlusPlus2a) { 1710 if (Kind == CheckConstexprKind::Diagnose) 1711 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); 1712 } else { 1713 if (Kind == CheckConstexprKind::CheckValid) 1714 return false; 1715 1716 Method = Method->getCanonicalDecl(); 1717 Diag(Method->getLocation(), diag::err_constexpr_virtual); 1718 1719 // If it's not obvious why this function is virtual, find an overridden 1720 // function which uses the 'virtual' keyword. 1721 const CXXMethodDecl *WrittenVirtual = Method; 1722 while (!WrittenVirtual->isVirtualAsWritten()) 1723 WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); 1724 if (WrittenVirtual != Method) 1725 Diag(WrittenVirtual->getLocation(), 1726 diag::note_overridden_virtual_function); 1727 return false; 1728 } 1729 } 1730 1731 // - its return type shall be a literal type; 1732 QualType RT = NewFD->getReturnType(); 1733 if (CheckLiteralType(*this, Kind, NewFD->getLocation(), RT, 1734 diag::err_constexpr_non_literal_return, 1735 NewFD->isConsteval())) 1736 return false; 1737 } 1738 1739 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) { 1740 // A destructor can be constexpr only if the defaulted destructor could be; 1741 // we don't need to check the members and bases if we already know they all 1742 // have constexpr destructors. 1743 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) { 1744 if (Kind == CheckConstexprKind::CheckValid) 1745 return false; 1746 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind)) 1747 return false; 1748 } 1749 } 1750 1751 // - each of its parameter types shall be a literal type; 1752 if (!CheckConstexprParameterTypes(*this, NewFD, Kind)) 1753 return false; 1754 1755 Stmt *Body = NewFD->getBody(); 1756 assert(Body && 1757 "CheckConstexprFunctionDefinition called on function with no body"); 1758 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind); 1759 } 1760 1761 /// Check the given declaration statement is legal within a constexpr function 1762 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. 1763 /// 1764 /// \return true if the body is OK (maybe only as an extension), false if we 1765 /// have diagnosed a problem. 1766 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, 1767 DeclStmt *DS, SourceLocation &Cxx1yLoc, 1768 Sema::CheckConstexprKind Kind) { 1769 // C++11 [dcl.constexpr]p3 and p4: 1770 // The definition of a constexpr function(p3) or constructor(p4) [...] shall 1771 // contain only 1772 for (const auto *DclIt : DS->decls()) { 1773 switch (DclIt->getKind()) { 1774 case Decl::StaticAssert: 1775 case Decl::Using: 1776 case Decl::UsingShadow: 1777 case Decl::UsingDirective: 1778 case Decl::UnresolvedUsingTypename: 1779 case Decl::UnresolvedUsingValue: 1780 // - static_assert-declarations 1781 // - using-declarations, 1782 // - using-directives, 1783 continue; 1784 1785 case Decl::Typedef: 1786 case Decl::TypeAlias: { 1787 // - typedef declarations and alias-declarations that do not define 1788 // classes or enumerations, 1789 const auto *TN = cast<TypedefNameDecl>(DclIt); 1790 if (TN->getUnderlyingType()->isVariablyModifiedType()) { 1791 // Don't allow variably-modified types in constexpr functions. 1792 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1793 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); 1794 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) 1795 << TL.getSourceRange() << TL.getType() 1796 << isa<CXXConstructorDecl>(Dcl); 1797 } 1798 return false; 1799 } 1800 continue; 1801 } 1802 1803 case Decl::Enum: 1804 case Decl::CXXRecord: 1805 // C++1y allows types to be defined, not just declared. 1806 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) { 1807 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1808 SemaRef.Diag(DS->getBeginLoc(), 1809 SemaRef.getLangOpts().CPlusPlus14 1810 ? diag::warn_cxx11_compat_constexpr_type_definition 1811 : diag::ext_constexpr_type_definition) 1812 << isa<CXXConstructorDecl>(Dcl); 1813 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1814 return false; 1815 } 1816 } 1817 continue; 1818 1819 case Decl::EnumConstant: 1820 case Decl::IndirectField: 1821 case Decl::ParmVar: 1822 // These can only appear with other declarations which are banned in 1823 // C++11 and permitted in C++1y, so ignore them. 1824 continue; 1825 1826 case Decl::Var: 1827 case Decl::Decomposition: { 1828 // C++1y [dcl.constexpr]p3 allows anything except: 1829 // a definition of a variable of non-literal type or of static or 1830 // thread storage duration or [before C++2a] for which no 1831 // initialization is performed. 1832 const auto *VD = cast<VarDecl>(DclIt); 1833 if (VD->isThisDeclarationADefinition()) { 1834 if (VD->isStaticLocal()) { 1835 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1836 SemaRef.Diag(VD->getLocation(), 1837 diag::err_constexpr_local_var_static) 1838 << isa<CXXConstructorDecl>(Dcl) 1839 << (VD->getTLSKind() == VarDecl::TLS_Dynamic); 1840 } 1841 return false; 1842 } 1843 if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), 1844 diag::err_constexpr_local_var_non_literal_type, 1845 isa<CXXConstructorDecl>(Dcl))) 1846 return false; 1847 if (!VD->getType()->isDependentType() && 1848 !VD->hasInit() && !VD->isCXXForRangeDecl()) { 1849 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1850 SemaRef.Diag( 1851 VD->getLocation(), 1852 SemaRef.getLangOpts().CPlusPlus2a 1853 ? diag::warn_cxx17_compat_constexpr_local_var_no_init 1854 : diag::ext_constexpr_local_var_no_init) 1855 << isa<CXXConstructorDecl>(Dcl); 1856 } else if (!SemaRef.getLangOpts().CPlusPlus2a) { 1857 return false; 1858 } 1859 continue; 1860 } 1861 } 1862 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1863 SemaRef.Diag(VD->getLocation(), 1864 SemaRef.getLangOpts().CPlusPlus14 1865 ? diag::warn_cxx11_compat_constexpr_local_var 1866 : diag::ext_constexpr_local_var) 1867 << isa<CXXConstructorDecl>(Dcl); 1868 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1869 return false; 1870 } 1871 continue; 1872 } 1873 1874 case Decl::NamespaceAlias: 1875 case Decl::Function: 1876 // These are disallowed in C++11 and permitted in C++1y. Allow them 1877 // everywhere as an extension. 1878 if (!Cxx1yLoc.isValid()) 1879 Cxx1yLoc = DS->getBeginLoc(); 1880 continue; 1881 1882 default: 1883 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1884 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 1885 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 1886 } 1887 return false; 1888 } 1889 } 1890 1891 return true; 1892 } 1893 1894 /// Check that the given field is initialized within a constexpr constructor. 1895 /// 1896 /// \param Dcl The constexpr constructor being checked. 1897 /// \param Field The field being checked. This may be a member of an anonymous 1898 /// struct or union nested within the class being checked. 1899 /// \param Inits All declarations, including anonymous struct/union members and 1900 /// indirect members, for which any initialization was provided. 1901 /// \param Diagnosed Whether we've emitted the error message yet. Used to attach 1902 /// multiple notes for different members to the same error. 1903 /// \param Kind Whether we're diagnosing a constructor as written or determining 1904 /// whether the formal requirements are satisfied. 1905 /// \return \c false if we're checking for validity and the constructor does 1906 /// not satisfy the requirements on a constexpr constructor. 1907 static bool CheckConstexprCtorInitializer(Sema &SemaRef, 1908 const FunctionDecl *Dcl, 1909 FieldDecl *Field, 1910 llvm::SmallSet<Decl*, 16> &Inits, 1911 bool &Diagnosed, 1912 Sema::CheckConstexprKind Kind) { 1913 // In C++20 onwards, there's nothing to check for validity. 1914 if (Kind == Sema::CheckConstexprKind::CheckValid && 1915 SemaRef.getLangOpts().CPlusPlus2a) 1916 return true; 1917 1918 if (Field->isInvalidDecl()) 1919 return true; 1920 1921 if (Field->isUnnamedBitfield()) 1922 return true; 1923 1924 // Anonymous unions with no variant members and empty anonymous structs do not 1925 // need to be explicitly initialized. FIXME: Anonymous structs that contain no 1926 // indirect fields don't need initializing. 1927 if (Field->isAnonymousStructOrUnion() && 1928 (Field->getType()->isUnionType() 1929 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() 1930 : Field->getType()->getAsCXXRecordDecl()->isEmpty())) 1931 return true; 1932 1933 if (!Inits.count(Field)) { 1934 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1935 if (!Diagnosed) { 1936 SemaRef.Diag(Dcl->getLocation(), 1937 SemaRef.getLangOpts().CPlusPlus2a 1938 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init 1939 : diag::ext_constexpr_ctor_missing_init); 1940 Diagnosed = true; 1941 } 1942 SemaRef.Diag(Field->getLocation(), 1943 diag::note_constexpr_ctor_missing_init); 1944 } else if (!SemaRef.getLangOpts().CPlusPlus2a) { 1945 return false; 1946 } 1947 } else if (Field->isAnonymousStructOrUnion()) { 1948 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); 1949 for (auto *I : RD->fields()) 1950 // If an anonymous union contains an anonymous struct of which any member 1951 // is initialized, all members must be initialized. 1952 if (!RD->isUnion() || Inits.count(I)) 1953 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 1954 Kind)) 1955 return false; 1956 } 1957 return true; 1958 } 1959 1960 /// Check the provided statement is allowed in a constexpr function 1961 /// definition. 1962 static bool 1963 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, 1964 SmallVectorImpl<SourceLocation> &ReturnStmts, 1965 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, 1966 Sema::CheckConstexprKind Kind) { 1967 // - its function-body shall be [...] a compound-statement that contains only 1968 switch (S->getStmtClass()) { 1969 case Stmt::NullStmtClass: 1970 // - null statements, 1971 return true; 1972 1973 case Stmt::DeclStmtClass: 1974 // - static_assert-declarations 1975 // - using-declarations, 1976 // - using-directives, 1977 // - typedef declarations and alias-declarations that do not define 1978 // classes or enumerations, 1979 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind)) 1980 return false; 1981 return true; 1982 1983 case Stmt::ReturnStmtClass: 1984 // - and exactly one return statement; 1985 if (isa<CXXConstructorDecl>(Dcl)) { 1986 // C++1y allows return statements in constexpr constructors. 1987 if (!Cxx1yLoc.isValid()) 1988 Cxx1yLoc = S->getBeginLoc(); 1989 return true; 1990 } 1991 1992 ReturnStmts.push_back(S->getBeginLoc()); 1993 return true; 1994 1995 case Stmt::CompoundStmtClass: { 1996 // C++1y allows compound-statements. 1997 if (!Cxx1yLoc.isValid()) 1998 Cxx1yLoc = S->getBeginLoc(); 1999 2000 CompoundStmt *CompStmt = cast<CompoundStmt>(S); 2001 for (auto *BodyIt : CompStmt->body()) { 2002 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, 2003 Cxx1yLoc, Cxx2aLoc, Kind)) 2004 return false; 2005 } 2006 return true; 2007 } 2008 2009 case Stmt::AttributedStmtClass: 2010 if (!Cxx1yLoc.isValid()) 2011 Cxx1yLoc = S->getBeginLoc(); 2012 return true; 2013 2014 case Stmt::IfStmtClass: { 2015 // C++1y allows if-statements. 2016 if (!Cxx1yLoc.isValid()) 2017 Cxx1yLoc = S->getBeginLoc(); 2018 2019 IfStmt *If = cast<IfStmt>(S); 2020 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, 2021 Cxx1yLoc, Cxx2aLoc, Kind)) 2022 return false; 2023 if (If->getElse() && 2024 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, 2025 Cxx1yLoc, Cxx2aLoc, Kind)) 2026 return false; 2027 return true; 2028 } 2029 2030 case Stmt::WhileStmtClass: 2031 case Stmt::DoStmtClass: 2032 case Stmt::ForStmtClass: 2033 case Stmt::CXXForRangeStmtClass: 2034 case Stmt::ContinueStmtClass: 2035 // C++1y allows all of these. We don't allow them as extensions in C++11, 2036 // because they don't make sense without variable mutation. 2037 if (!SemaRef.getLangOpts().CPlusPlus14) 2038 break; 2039 if (!Cxx1yLoc.isValid()) 2040 Cxx1yLoc = S->getBeginLoc(); 2041 for (Stmt *SubStmt : S->children()) 2042 if (SubStmt && 2043 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2044 Cxx1yLoc, Cxx2aLoc, Kind)) 2045 return false; 2046 return true; 2047 2048 case Stmt::SwitchStmtClass: 2049 case Stmt::CaseStmtClass: 2050 case Stmt::DefaultStmtClass: 2051 case Stmt::BreakStmtClass: 2052 // C++1y allows switch-statements, and since they don't need variable 2053 // mutation, we can reasonably allow them in C++11 as an extension. 2054 if (!Cxx1yLoc.isValid()) 2055 Cxx1yLoc = S->getBeginLoc(); 2056 for (Stmt *SubStmt : S->children()) 2057 if (SubStmt && 2058 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2059 Cxx1yLoc, Cxx2aLoc, Kind)) 2060 return false; 2061 return true; 2062 2063 case Stmt::GCCAsmStmtClass: 2064 case Stmt::MSAsmStmtClass: 2065 // C++2a allows inline assembly statements. 2066 case Stmt::CXXTryStmtClass: 2067 if (Cxx2aLoc.isInvalid()) 2068 Cxx2aLoc = S->getBeginLoc(); 2069 for (Stmt *SubStmt : S->children()) { 2070 if (SubStmt && 2071 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2072 Cxx1yLoc, Cxx2aLoc, Kind)) 2073 return false; 2074 } 2075 return true; 2076 2077 case Stmt::CXXCatchStmtClass: 2078 // Do not bother checking the language mode (already covered by the 2079 // try block check). 2080 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, 2081 cast<CXXCatchStmt>(S)->getHandlerBlock(), 2082 ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind)) 2083 return false; 2084 return true; 2085 2086 default: 2087 if (!isa<Expr>(S)) 2088 break; 2089 2090 // C++1y allows expression-statements. 2091 if (!Cxx1yLoc.isValid()) 2092 Cxx1yLoc = S->getBeginLoc(); 2093 return true; 2094 } 2095 2096 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2097 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 2098 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2099 } 2100 return false; 2101 } 2102 2103 /// Check the body for the given constexpr function declaration only contains 2104 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. 2105 /// 2106 /// \return true if the body is OK, false if we have found or diagnosed a 2107 /// problem. 2108 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 2109 Stmt *Body, 2110 Sema::CheckConstexprKind Kind) { 2111 SmallVector<SourceLocation, 4> ReturnStmts; 2112 2113 if (isa<CXXTryStmt>(Body)) { 2114 // C++11 [dcl.constexpr]p3: 2115 // The definition of a constexpr function shall satisfy the following 2116 // constraints: [...] 2117 // - its function-body shall be = delete, = default, or a 2118 // compound-statement 2119 // 2120 // C++11 [dcl.constexpr]p4: 2121 // In the definition of a constexpr constructor, [...] 2122 // - its function-body shall not be a function-try-block; 2123 // 2124 // This restriction is lifted in C++2a, as long as inner statements also 2125 // apply the general constexpr rules. 2126 switch (Kind) { 2127 case Sema::CheckConstexprKind::CheckValid: 2128 if (!SemaRef.getLangOpts().CPlusPlus2a) 2129 return false; 2130 break; 2131 2132 case Sema::CheckConstexprKind::Diagnose: 2133 SemaRef.Diag(Body->getBeginLoc(), 2134 !SemaRef.getLangOpts().CPlusPlus2a 2135 ? diag::ext_constexpr_function_try_block_cxx2a 2136 : diag::warn_cxx17_compat_constexpr_function_try_block) 2137 << isa<CXXConstructorDecl>(Dcl); 2138 break; 2139 } 2140 } 2141 2142 // - its function-body shall be [...] a compound-statement that contains only 2143 // [... list of cases ...] 2144 // 2145 // Note that walking the children here is enough to properly check for 2146 // CompoundStmt and CXXTryStmt body. 2147 SourceLocation Cxx1yLoc, Cxx2aLoc; 2148 for (Stmt *SubStmt : Body->children()) { 2149 if (SubStmt && 2150 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2151 Cxx1yLoc, Cxx2aLoc, Kind)) 2152 return false; 2153 } 2154 2155 if (Kind == Sema::CheckConstexprKind::CheckValid) { 2156 // If this is only valid as an extension, report that we don't satisfy the 2157 // constraints of the current language. 2158 if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus2a) || 2159 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) 2160 return false; 2161 } else if (Cxx2aLoc.isValid()) { 2162 SemaRef.Diag(Cxx2aLoc, 2163 SemaRef.getLangOpts().CPlusPlus2a 2164 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt 2165 : diag::ext_constexpr_body_invalid_stmt_cxx2a) 2166 << isa<CXXConstructorDecl>(Dcl); 2167 } else if (Cxx1yLoc.isValid()) { 2168 SemaRef.Diag(Cxx1yLoc, 2169 SemaRef.getLangOpts().CPlusPlus14 2170 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt 2171 : diag::ext_constexpr_body_invalid_stmt) 2172 << isa<CXXConstructorDecl>(Dcl); 2173 } 2174 2175 if (const CXXConstructorDecl *Constructor 2176 = dyn_cast<CXXConstructorDecl>(Dcl)) { 2177 const CXXRecordDecl *RD = Constructor->getParent(); 2178 // DR1359: 2179 // - every non-variant non-static data member and base class sub-object 2180 // shall be initialized; 2181 // DR1460: 2182 // - if the class is a union having variant members, exactly one of them 2183 // shall be initialized; 2184 if (RD->isUnion()) { 2185 if (Constructor->getNumCtorInitializers() == 0 && 2186 RD->hasVariantMembers()) { 2187 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2188 SemaRef.Diag( 2189 Dcl->getLocation(), 2190 SemaRef.getLangOpts().CPlusPlus2a 2191 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init 2192 : diag::ext_constexpr_union_ctor_no_init); 2193 } else if (!SemaRef.getLangOpts().CPlusPlus2a) { 2194 return false; 2195 } 2196 } 2197 } else if (!Constructor->isDependentContext() && 2198 !Constructor->isDelegatingConstructor()) { 2199 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"); 2200 2201 // Skip detailed checking if we have enough initializers, and we would 2202 // allow at most one initializer per member. 2203 bool AnyAnonStructUnionMembers = false; 2204 unsigned Fields = 0; 2205 for (CXXRecordDecl::field_iterator I = RD->field_begin(), 2206 E = RD->field_end(); I != E; ++I, ++Fields) { 2207 if (I->isAnonymousStructOrUnion()) { 2208 AnyAnonStructUnionMembers = true; 2209 break; 2210 } 2211 } 2212 // DR1460: 2213 // - if the class is a union-like class, but is not a union, for each of 2214 // its anonymous union members having variant members, exactly one of 2215 // them shall be initialized; 2216 if (AnyAnonStructUnionMembers || 2217 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { 2218 // Check initialization of non-static data members. Base classes are 2219 // always initialized so do not need to be checked. Dependent bases 2220 // might not have initializers in the member initializer list. 2221 llvm::SmallSet<Decl*, 16> Inits; 2222 for (const auto *I: Constructor->inits()) { 2223 if (FieldDecl *FD = I->getMember()) 2224 Inits.insert(FD); 2225 else if (IndirectFieldDecl *ID = I->getIndirectMember()) 2226 Inits.insert(ID->chain_begin(), ID->chain_end()); 2227 } 2228 2229 bool Diagnosed = false; 2230 for (auto *I : RD->fields()) 2231 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2232 Kind)) 2233 return false; 2234 } 2235 } 2236 } else { 2237 if (ReturnStmts.empty()) { 2238 // C++1y doesn't require constexpr functions to contain a 'return' 2239 // statement. We still do, unless the return type might be void, because 2240 // otherwise if there's no return statement, the function cannot 2241 // be used in a core constant expression. 2242 bool OK = SemaRef.getLangOpts().CPlusPlus14 && 2243 (Dcl->getReturnType()->isVoidType() || 2244 Dcl->getReturnType()->isDependentType()); 2245 switch (Kind) { 2246 case Sema::CheckConstexprKind::Diagnose: 2247 SemaRef.Diag(Dcl->getLocation(), 2248 OK ? diag::warn_cxx11_compat_constexpr_body_no_return 2249 : diag::err_constexpr_body_no_return) 2250 << Dcl->isConsteval(); 2251 if (!OK) 2252 return false; 2253 break; 2254 2255 case Sema::CheckConstexprKind::CheckValid: 2256 // The formal requirements don't include this rule in C++14, even 2257 // though the "must be able to produce a constant expression" rules 2258 // still imply it in some cases. 2259 if (!SemaRef.getLangOpts().CPlusPlus14) 2260 return false; 2261 break; 2262 } 2263 } else if (ReturnStmts.size() > 1) { 2264 switch (Kind) { 2265 case Sema::CheckConstexprKind::Diagnose: 2266 SemaRef.Diag( 2267 ReturnStmts.back(), 2268 SemaRef.getLangOpts().CPlusPlus14 2269 ? diag::warn_cxx11_compat_constexpr_body_multiple_return 2270 : diag::ext_constexpr_body_multiple_return); 2271 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) 2272 SemaRef.Diag(ReturnStmts[I], 2273 diag::note_constexpr_body_previous_return); 2274 break; 2275 2276 case Sema::CheckConstexprKind::CheckValid: 2277 if (!SemaRef.getLangOpts().CPlusPlus14) 2278 return false; 2279 break; 2280 } 2281 } 2282 } 2283 2284 // C++11 [dcl.constexpr]p5: 2285 // if no function argument values exist such that the function invocation 2286 // substitution would produce a constant expression, the program is 2287 // ill-formed; no diagnostic required. 2288 // C++11 [dcl.constexpr]p3: 2289 // - every constructor call and implicit conversion used in initializing the 2290 // return value shall be one of those allowed in a constant expression. 2291 // C++11 [dcl.constexpr]p4: 2292 // - every constructor involved in initializing non-static data members and 2293 // base class sub-objects shall be a constexpr constructor. 2294 // 2295 // Note that this rule is distinct from the "requirements for a constexpr 2296 // function", so is not checked in CheckValid mode. 2297 SmallVector<PartialDiagnosticAt, 8> Diags; 2298 if (Kind == Sema::CheckConstexprKind::Diagnose && 2299 !Expr::isPotentialConstantExpr(Dcl, Diags)) { 2300 SemaRef.Diag(Dcl->getLocation(), 2301 diag::ext_constexpr_function_never_constant_expr) 2302 << isa<CXXConstructorDecl>(Dcl); 2303 for (size_t I = 0, N = Diags.size(); I != N; ++I) 2304 SemaRef.Diag(Diags[I].first, Diags[I].second); 2305 // Don't return false here: we allow this for compatibility in 2306 // system headers. 2307 } 2308 2309 return true; 2310 } 2311 2312 /// Get the class that is directly named by the current context. This is the 2313 /// class for which an unqualified-id in this scope could name a constructor 2314 /// or destructor. 2315 /// 2316 /// If the scope specifier denotes a class, this will be that class. 2317 /// If the scope specifier is empty, this will be the class whose 2318 /// member-specification we are currently within. Otherwise, there 2319 /// is no such class. 2320 CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { 2321 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2322 2323 if (SS && SS->isInvalid()) 2324 return nullptr; 2325 2326 if (SS && SS->isNotEmpty()) { 2327 DeclContext *DC = computeDeclContext(*SS, true); 2328 return dyn_cast_or_null<CXXRecordDecl>(DC); 2329 } 2330 2331 return dyn_cast_or_null<CXXRecordDecl>(CurContext); 2332 } 2333 2334 /// isCurrentClassName - Determine whether the identifier II is the 2335 /// name of the class type currently being defined. In the case of 2336 /// nested classes, this will only return true if II is the name of 2337 /// the innermost class. 2338 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, 2339 const CXXScopeSpec *SS) { 2340 CXXRecordDecl *CurDecl = getCurrentClass(S, SS); 2341 return CurDecl && &II == CurDecl->getIdentifier(); 2342 } 2343 2344 /// Determine whether the identifier II is a typo for the name of 2345 /// the class type currently being defined. If so, update it to the identifier 2346 /// that should have been used. 2347 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { 2348 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2349 2350 if (!getLangOpts().SpellChecking) 2351 return false; 2352 2353 CXXRecordDecl *CurDecl; 2354 if (SS && SS->isSet() && !SS->isInvalid()) { 2355 DeclContext *DC = computeDeclContext(*SS, true); 2356 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); 2357 } else 2358 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); 2359 2360 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && 2361 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) 2362 < II->getLength()) { 2363 II = CurDecl->getIdentifier(); 2364 return true; 2365 } 2366 2367 return false; 2368 } 2369 2370 /// Determine whether the given class is a base class of the given 2371 /// class, including looking at dependent bases. 2372 static bool findCircularInheritance(const CXXRecordDecl *Class, 2373 const CXXRecordDecl *Current) { 2374 SmallVector<const CXXRecordDecl*, 8> Queue; 2375 2376 Class = Class->getCanonicalDecl(); 2377 while (true) { 2378 for (const auto &I : Current->bases()) { 2379 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 2380 if (!Base) 2381 continue; 2382 2383 Base = Base->getDefinition(); 2384 if (!Base) 2385 continue; 2386 2387 if (Base->getCanonicalDecl() == Class) 2388 return true; 2389 2390 Queue.push_back(Base); 2391 } 2392 2393 if (Queue.empty()) 2394 return false; 2395 2396 Current = Queue.pop_back_val(); 2397 } 2398 2399 return false; 2400 } 2401 2402 /// Check the validity of a C++ base class specifier. 2403 /// 2404 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics 2405 /// and returns NULL otherwise. 2406 CXXBaseSpecifier * 2407 Sema::CheckBaseSpecifier(CXXRecordDecl *Class, 2408 SourceRange SpecifierRange, 2409 bool Virtual, AccessSpecifier Access, 2410 TypeSourceInfo *TInfo, 2411 SourceLocation EllipsisLoc) { 2412 QualType BaseType = TInfo->getType(); 2413 2414 // C++ [class.union]p1: 2415 // A union shall not have base classes. 2416 if (Class->isUnion()) { 2417 Diag(Class->getLocation(), diag::err_base_clause_on_union) 2418 << SpecifierRange; 2419 return nullptr; 2420 } 2421 2422 if (EllipsisLoc.isValid() && 2423 !TInfo->getType()->containsUnexpandedParameterPack()) { 2424 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 2425 << TInfo->getTypeLoc().getSourceRange(); 2426 EllipsisLoc = SourceLocation(); 2427 } 2428 2429 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); 2430 2431 if (BaseType->isDependentType()) { 2432 // Make sure that we don't have circular inheritance among our dependent 2433 // bases. For non-dependent bases, the check for completeness below handles 2434 // this. 2435 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) { 2436 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() || 2437 ((BaseDecl = BaseDecl->getDefinition()) && 2438 findCircularInheritance(Class, BaseDecl))) { 2439 Diag(BaseLoc, diag::err_circular_inheritance) 2440 << BaseType << Context.getTypeDeclType(Class); 2441 2442 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl()) 2443 Diag(BaseDecl->getLocation(), diag::note_previous_decl) 2444 << BaseType; 2445 2446 return nullptr; 2447 } 2448 } 2449 2450 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2451 Class->getTagKind() == TTK_Class, 2452 Access, TInfo, EllipsisLoc); 2453 } 2454 2455 // Base specifiers must be record types. 2456 if (!BaseType->isRecordType()) { 2457 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; 2458 return nullptr; 2459 } 2460 2461 // C++ [class.union]p1: 2462 // A union shall not be used as a base class. 2463 if (BaseType->isUnionType()) { 2464 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; 2465 return nullptr; 2466 } 2467 2468 // For the MS ABI, propagate DLL attributes to base class templates. 2469 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2470 if (Attr *ClassAttr = getDLLAttr(Class)) { 2471 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 2472 BaseType->getAsCXXRecordDecl())) { 2473 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate, 2474 BaseLoc); 2475 } 2476 } 2477 } 2478 2479 // C++ [class.derived]p2: 2480 // The class-name in a base-specifier shall not be an incompletely 2481 // defined class. 2482 if (RequireCompleteType(BaseLoc, BaseType, 2483 diag::err_incomplete_base_class, SpecifierRange)) { 2484 Class->setInvalidDecl(); 2485 return nullptr; 2486 } 2487 2488 // If the base class is polymorphic or isn't empty, the new one is/isn't, too. 2489 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl(); 2490 assert(BaseDecl && "Record type has no declaration"); 2491 BaseDecl = BaseDecl->getDefinition(); 2492 assert(BaseDecl && "Base type is not incomplete, but has no definition"); 2493 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); 2494 assert(CXXBaseDecl && "Base type is not a C++ type"); 2495 2496 // Microsoft docs say: 2497 // "If a base-class has a code_seg attribute, derived classes must have the 2498 // same attribute." 2499 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>(); 2500 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); 2501 if ((DerivedCSA || BaseCSA) && 2502 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) { 2503 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); 2504 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here) 2505 << CXXBaseDecl; 2506 return nullptr; 2507 } 2508 2509 // A class which contains a flexible array member is not suitable for use as a 2510 // base class: 2511 // - If the layout determines that a base comes before another base, 2512 // the flexible array member would index into the subsequent base. 2513 // - If the layout determines that base comes before the derived class, 2514 // the flexible array member would index into the derived class. 2515 if (CXXBaseDecl->hasFlexibleArrayMember()) { 2516 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) 2517 << CXXBaseDecl->getDeclName(); 2518 return nullptr; 2519 } 2520 2521 // C++ [class]p3: 2522 // If a class is marked final and it appears as a base-type-specifier in 2523 // base-clause, the program is ill-formed. 2524 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) { 2525 Diag(BaseLoc, diag::err_class_marked_final_used_as_base) 2526 << CXXBaseDecl->getDeclName() 2527 << FA->isSpelledAsSealed(); 2528 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at) 2529 << CXXBaseDecl->getDeclName() << FA->getRange(); 2530 return nullptr; 2531 } 2532 2533 if (BaseDecl->isInvalidDecl()) 2534 Class->setInvalidDecl(); 2535 2536 // Create the base specifier. 2537 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2538 Class->getTagKind() == TTK_Class, 2539 Access, TInfo, EllipsisLoc); 2540 } 2541 2542 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is 2543 /// one entry in the base class list of a class specifier, for 2544 /// example: 2545 /// class foo : public bar, virtual private baz { 2546 /// 'public bar' and 'virtual private baz' are each base-specifiers. 2547 BaseResult 2548 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, 2549 ParsedAttributes &Attributes, 2550 bool Virtual, AccessSpecifier Access, 2551 ParsedType basetype, SourceLocation BaseLoc, 2552 SourceLocation EllipsisLoc) { 2553 if (!classdecl) 2554 return true; 2555 2556 AdjustDeclIfTemplate(classdecl); 2557 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); 2558 if (!Class) 2559 return true; 2560 2561 // We haven't yet attached the base specifiers. 2562 Class->setIsParsingBaseSpecifiers(); 2563 2564 // We do not support any C++11 attributes on base-specifiers yet. 2565 // Diagnose any attributes we see. 2566 for (const ParsedAttr &AL : Attributes) { 2567 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) 2568 continue; 2569 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute 2570 ? (unsigned)diag::warn_unknown_attribute_ignored 2571 : (unsigned)diag::err_base_specifier_attribute) 2572 << AL; 2573 } 2574 2575 TypeSourceInfo *TInfo = nullptr; 2576 GetTypeFromParser(basetype, &TInfo); 2577 2578 if (EllipsisLoc.isInvalid() && 2579 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, 2580 UPPC_BaseType)) 2581 return true; 2582 2583 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, 2584 Virtual, Access, TInfo, 2585 EllipsisLoc)) 2586 return BaseSpec; 2587 else 2588 Class->setInvalidDecl(); 2589 2590 return true; 2591 } 2592 2593 /// Use small set to collect indirect bases. As this is only used 2594 /// locally, there's no need to abstract the small size parameter. 2595 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; 2596 2597 /// Recursively add the bases of Type. Don't add Type itself. 2598 static void 2599 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, 2600 const QualType &Type) 2601 { 2602 // Even though the incoming type is a base, it might not be 2603 // a class -- it could be a template parm, for instance. 2604 if (auto Rec = Type->getAs<RecordType>()) { 2605 auto Decl = Rec->getAsCXXRecordDecl(); 2606 2607 // Iterate over its bases. 2608 for (const auto &BaseSpec : Decl->bases()) { 2609 QualType Base = Context.getCanonicalType(BaseSpec.getType()) 2610 .getUnqualifiedType(); 2611 if (Set.insert(Base).second) 2612 // If we've not already seen it, recurse. 2613 NoteIndirectBases(Context, Set, Base); 2614 } 2615 } 2616 } 2617 2618 /// Performs the actual work of attaching the given base class 2619 /// specifiers to a C++ class. 2620 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, 2621 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2622 if (Bases.empty()) 2623 return false; 2624 2625 // Used to keep track of which base types we have already seen, so 2626 // that we can properly diagnose redundant direct base types. Note 2627 // that the key is always the unqualified canonical type of the base 2628 // class. 2629 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; 2630 2631 // Used to track indirect bases so we can see if a direct base is 2632 // ambiguous. 2633 IndirectBaseSet IndirectBaseTypes; 2634 2635 // Copy non-redundant base specifiers into permanent storage. 2636 unsigned NumGoodBases = 0; 2637 bool Invalid = false; 2638 for (unsigned idx = 0; idx < Bases.size(); ++idx) { 2639 QualType NewBaseType 2640 = Context.getCanonicalType(Bases[idx]->getType()); 2641 NewBaseType = NewBaseType.getLocalUnqualifiedType(); 2642 2643 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; 2644 if (KnownBase) { 2645 // C++ [class.mi]p3: 2646 // A class shall not be specified as a direct base class of a 2647 // derived class more than once. 2648 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) 2649 << KnownBase->getType() << Bases[idx]->getSourceRange(); 2650 2651 // Delete the duplicate base class specifier; we're going to 2652 // overwrite its pointer later. 2653 Context.Deallocate(Bases[idx]); 2654 2655 Invalid = true; 2656 } else { 2657 // Okay, add this new base class. 2658 KnownBase = Bases[idx]; 2659 Bases[NumGoodBases++] = Bases[idx]; 2660 2661 // Note this base's direct & indirect bases, if there could be ambiguity. 2662 if (Bases.size() > 1) 2663 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType); 2664 2665 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { 2666 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); 2667 if (Class->isInterface() && 2668 (!RD->isInterfaceLike() || 2669 KnownBase->getAccessSpecifier() != AS_public)) { 2670 // The Microsoft extension __interface does not permit bases that 2671 // are not themselves public interfaces. 2672 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) 2673 << getRecordDiagFromTagKind(RD->getTagKind()) << RD 2674 << RD->getSourceRange(); 2675 Invalid = true; 2676 } 2677 if (RD->hasAttr<WeakAttr>()) 2678 Class->addAttr(WeakAttr::CreateImplicit(Context)); 2679 } 2680 } 2681 } 2682 2683 // Attach the remaining base class specifiers to the derived class. 2684 Class->setBases(Bases.data(), NumGoodBases); 2685 2686 // Check that the only base classes that are duplicate are virtual. 2687 for (unsigned idx = 0; idx < NumGoodBases; ++idx) { 2688 // Check whether this direct base is inaccessible due to ambiguity. 2689 QualType BaseType = Bases[idx]->getType(); 2690 2691 // Skip all dependent types in templates being used as base specifiers. 2692 // Checks below assume that the base specifier is a CXXRecord. 2693 if (BaseType->isDependentType()) 2694 continue; 2695 2696 CanQualType CanonicalBase = Context.getCanonicalType(BaseType) 2697 .getUnqualifiedType(); 2698 2699 if (IndirectBaseTypes.count(CanonicalBase)) { 2700 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2701 /*DetectVirtual=*/true); 2702 bool found 2703 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); 2704 assert(found); 2705 (void)found; 2706 2707 if (Paths.isAmbiguous(CanonicalBase)) 2708 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) 2709 << BaseType << getAmbiguousPathsDisplayString(Paths) 2710 << Bases[idx]->getSourceRange(); 2711 else 2712 assert(Bases[idx]->isVirtual()); 2713 } 2714 2715 // Delete the base class specifier, since its data has been copied 2716 // into the CXXRecordDecl. 2717 Context.Deallocate(Bases[idx]); 2718 } 2719 2720 return Invalid; 2721 } 2722 2723 /// ActOnBaseSpecifiers - Attach the given base specifiers to the 2724 /// class, after checking whether there are any duplicate base 2725 /// classes. 2726 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, 2727 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2728 if (!ClassDecl || Bases.empty()) 2729 return; 2730 2731 AdjustDeclIfTemplate(ClassDecl); 2732 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases); 2733 } 2734 2735 /// Determine whether the type \p Derived is a C++ class that is 2736 /// derived from the type \p Base. 2737 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { 2738 if (!getLangOpts().CPlusPlus) 2739 return false; 2740 2741 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2742 if (!DerivedRD) 2743 return false; 2744 2745 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2746 if (!BaseRD) 2747 return false; 2748 2749 // If either the base or the derived type is invalid, don't try to 2750 // check whether one is derived from the other. 2751 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) 2752 return false; 2753 2754 // FIXME: In a modules build, do we need the entire path to be visible for us 2755 // to be able to use the inheritance relationship? 2756 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2757 return false; 2758 2759 return DerivedRD->isDerivedFrom(BaseRD); 2760 } 2761 2762 /// Determine whether the type \p Derived is a C++ class that is 2763 /// derived from the type \p Base. 2764 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, 2765 CXXBasePaths &Paths) { 2766 if (!getLangOpts().CPlusPlus) 2767 return false; 2768 2769 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2770 if (!DerivedRD) 2771 return false; 2772 2773 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2774 if (!BaseRD) 2775 return false; 2776 2777 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2778 return false; 2779 2780 return DerivedRD->isDerivedFrom(BaseRD, Paths); 2781 } 2782 2783 static void BuildBasePathArray(const CXXBasePath &Path, 2784 CXXCastPath &BasePathArray) { 2785 // We first go backward and check if we have a virtual base. 2786 // FIXME: It would be better if CXXBasePath had the base specifier for 2787 // the nearest virtual base. 2788 unsigned Start = 0; 2789 for (unsigned I = Path.size(); I != 0; --I) { 2790 if (Path[I - 1].Base->isVirtual()) { 2791 Start = I - 1; 2792 break; 2793 } 2794 } 2795 2796 // Now add all bases. 2797 for (unsigned I = Start, E = Path.size(); I != E; ++I) 2798 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); 2799 } 2800 2801 2802 void Sema::BuildBasePathArray(const CXXBasePaths &Paths, 2803 CXXCastPath &BasePathArray) { 2804 assert(BasePathArray.empty() && "Base path array must be empty!"); 2805 assert(Paths.isRecordingPaths() && "Must record paths!"); 2806 return ::BuildBasePathArray(Paths.front(), BasePathArray); 2807 } 2808 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base 2809 /// conversion (where Derived and Base are class types) is 2810 /// well-formed, meaning that the conversion is unambiguous (and 2811 /// that all of the base classes are accessible). Returns true 2812 /// and emits a diagnostic if the code is ill-formed, returns false 2813 /// otherwise. Loc is the location where this routine should point to 2814 /// if there is an error, and Range is the source range to highlight 2815 /// if there is an error. 2816 /// 2817 /// If either InaccessibleBaseID or AmbigiousBaseConvID are 0, then the 2818 /// diagnostic for the respective type of error will be suppressed, but the 2819 /// check for ill-formed code will still be performed. 2820 bool 2821 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 2822 unsigned InaccessibleBaseID, 2823 unsigned AmbigiousBaseConvID, 2824 SourceLocation Loc, SourceRange Range, 2825 DeclarationName Name, 2826 CXXCastPath *BasePath, 2827 bool IgnoreAccess) { 2828 // First, determine whether the path from Derived to Base is 2829 // ambiguous. This is slightly more expensive than checking whether 2830 // the Derived to Base conversion exists, because here we need to 2831 // explore multiple paths to determine if there is an ambiguity. 2832 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2833 /*DetectVirtual=*/false); 2834 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 2835 if (!DerivationOkay) 2836 return true; 2837 2838 const CXXBasePath *Path = nullptr; 2839 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) 2840 Path = &Paths.front(); 2841 2842 // For MSVC compatibility, check if Derived directly inherits from Base. Clang 2843 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the 2844 // user to access such bases. 2845 if (!Path && getLangOpts().MSVCCompat) { 2846 for (const CXXBasePath &PossiblePath : Paths) { 2847 if (PossiblePath.size() == 1) { 2848 Path = &PossiblePath; 2849 if (AmbigiousBaseConvID) 2850 Diag(Loc, diag::ext_ms_ambiguous_direct_base) 2851 << Base << Derived << Range; 2852 break; 2853 } 2854 } 2855 } 2856 2857 if (Path) { 2858 if (!IgnoreAccess) { 2859 // Check that the base class can be accessed. 2860 switch ( 2861 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) { 2862 case AR_inaccessible: 2863 return true; 2864 case AR_accessible: 2865 case AR_dependent: 2866 case AR_delayed: 2867 break; 2868 } 2869 } 2870 2871 // Build a base path if necessary. 2872 if (BasePath) 2873 ::BuildBasePathArray(*Path, *BasePath); 2874 return false; 2875 } 2876 2877 if (AmbigiousBaseConvID) { 2878 // We know that the derived-to-base conversion is ambiguous, and 2879 // we're going to produce a diagnostic. Perform the derived-to-base 2880 // search just one more time to compute all of the possible paths so 2881 // that we can print them out. This is more expensive than any of 2882 // the previous derived-to-base checks we've done, but at this point 2883 // performance isn't as much of an issue. 2884 Paths.clear(); 2885 Paths.setRecordingPaths(true); 2886 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 2887 assert(StillOkay && "Can only be used with a derived-to-base conversion"); 2888 (void)StillOkay; 2889 2890 // Build up a textual representation of the ambiguous paths, e.g., 2891 // D -> B -> A, that will be used to illustrate the ambiguous 2892 // conversions in the diagnostic. We only print one of the paths 2893 // to each base class subobject. 2894 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 2895 2896 Diag(Loc, AmbigiousBaseConvID) 2897 << Derived << Base << PathDisplayStr << Range << Name; 2898 } 2899 return true; 2900 } 2901 2902 bool 2903 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 2904 SourceLocation Loc, SourceRange Range, 2905 CXXCastPath *BasePath, 2906 bool IgnoreAccess) { 2907 return CheckDerivedToBaseConversion( 2908 Derived, Base, diag::err_upcast_to_inaccessible_base, 2909 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), 2910 BasePath, IgnoreAccess); 2911 } 2912 2913 2914 /// Builds a string representing ambiguous paths from a 2915 /// specific derived class to different subobjects of the same base 2916 /// class. 2917 /// 2918 /// This function builds a string that can be used in error messages 2919 /// to show the different paths that one can take through the 2920 /// inheritance hierarchy to go from the derived class to different 2921 /// subobjects of a base class. The result looks something like this: 2922 /// @code 2923 /// struct D -> struct B -> struct A 2924 /// struct D -> struct C -> struct A 2925 /// @endcode 2926 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { 2927 std::string PathDisplayStr; 2928 std::set<unsigned> DisplayedPaths; 2929 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 2930 Path != Paths.end(); ++Path) { 2931 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { 2932 // We haven't displayed a path to this particular base 2933 // class subobject yet. 2934 PathDisplayStr += "\n "; 2935 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); 2936 for (CXXBasePath::const_iterator Element = Path->begin(); 2937 Element != Path->end(); ++Element) 2938 PathDisplayStr += " -> " + Element->Base->getType().getAsString(); 2939 } 2940 } 2941 2942 return PathDisplayStr; 2943 } 2944 2945 //===----------------------------------------------------------------------===// 2946 // C++ class member Handling 2947 //===----------------------------------------------------------------------===// 2948 2949 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. 2950 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, 2951 SourceLocation ColonLoc, 2952 const ParsedAttributesView &Attrs) { 2953 assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); 2954 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, 2955 ASLoc, ColonLoc); 2956 CurContext->addHiddenDecl(ASDecl); 2957 return ProcessAccessDeclAttributeList(ASDecl, Attrs); 2958 } 2959 2960 /// CheckOverrideControl - Check C++11 override control semantics. 2961 void Sema::CheckOverrideControl(NamedDecl *D) { 2962 if (D->isInvalidDecl()) 2963 return; 2964 2965 // We only care about "override" and "final" declarations. 2966 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) 2967 return; 2968 2969 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 2970 2971 // We can't check dependent instance methods. 2972 if (MD && MD->isInstance() && 2973 (MD->getParent()->hasAnyDependentBases() || 2974 MD->getType()->isDependentType())) 2975 return; 2976 2977 if (MD && !MD->isVirtual()) { 2978 // If we have a non-virtual method, check if if hides a virtual method. 2979 // (In that case, it's most likely the method has the wrong type.) 2980 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 2981 FindHiddenVirtualMethods(MD, OverloadedMethods); 2982 2983 if (!OverloadedMethods.empty()) { 2984 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 2985 Diag(OA->getLocation(), 2986 diag::override_keyword_hides_virtual_member_function) 2987 << "override" << (OverloadedMethods.size() > 1); 2988 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 2989 Diag(FA->getLocation(), 2990 diag::override_keyword_hides_virtual_member_function) 2991 << (FA->isSpelledAsSealed() ? "sealed" : "final") 2992 << (OverloadedMethods.size() > 1); 2993 } 2994 NoteHiddenVirtualMethods(MD, OverloadedMethods); 2995 MD->setInvalidDecl(); 2996 return; 2997 } 2998 // Fall through into the general case diagnostic. 2999 // FIXME: We might want to attempt typo correction here. 3000 } 3001 3002 if (!MD || !MD->isVirtual()) { 3003 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3004 Diag(OA->getLocation(), 3005 diag::override_keyword_only_allowed_on_virtual_member_functions) 3006 << "override" << FixItHint::CreateRemoval(OA->getLocation()); 3007 D->dropAttr<OverrideAttr>(); 3008 } 3009 if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3010 Diag(FA->getLocation(), 3011 diag::override_keyword_only_allowed_on_virtual_member_functions) 3012 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3013 << FixItHint::CreateRemoval(FA->getLocation()); 3014 D->dropAttr<FinalAttr>(); 3015 } 3016 return; 3017 } 3018 3019 // C++11 [class.virtual]p5: 3020 // If a function is marked with the virt-specifier override and 3021 // does not override a member function of a base class, the program is 3022 // ill-formed. 3023 bool HasOverriddenMethods = MD->size_overridden_methods() != 0; 3024 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) 3025 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) 3026 << MD->getDeclName(); 3027 } 3028 3029 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) { 3030 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) 3031 return; 3032 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3033 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) 3034 return; 3035 3036 SourceLocation Loc = MD->getLocation(); 3037 SourceLocation SpellingLoc = Loc; 3038 if (getSourceManager().isMacroArgExpansion(Loc)) 3039 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); 3040 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); 3041 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) 3042 return; 3043 3044 if (MD->size_overridden_methods() > 0) { 3045 unsigned DiagID = isa<CXXDestructorDecl>(MD) 3046 ? diag::warn_destructor_marked_not_override_overriding 3047 : diag::warn_function_marked_not_override_overriding; 3048 Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 3049 const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); 3050 Diag(OMD->getLocation(), diag::note_overridden_virtual_function); 3051 } 3052 } 3053 3054 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member 3055 /// function overrides a virtual member function marked 'final', according to 3056 /// C++11 [class.virtual]p4. 3057 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, 3058 const CXXMethodDecl *Old) { 3059 FinalAttr *FA = Old->getAttr<FinalAttr>(); 3060 if (!FA) 3061 return false; 3062 3063 Diag(New->getLocation(), diag::err_final_function_overridden) 3064 << New->getDeclName() 3065 << FA->isSpelledAsSealed(); 3066 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 3067 return true; 3068 } 3069 3070 static bool InitializationHasSideEffects(const FieldDecl &FD) { 3071 const Type *T = FD.getType()->getBaseElementTypeUnsafe(); 3072 // FIXME: Destruction of ObjC lifetime types has side-effects. 3073 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3074 return !RD->isCompleteDefinition() || 3075 !RD->hasTrivialDefaultConstructor() || 3076 !RD->hasTrivialDestructor(); 3077 return false; 3078 } 3079 3080 static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) { 3081 ParsedAttributesView::const_iterator Itr = 3082 llvm::find_if(list, [](const ParsedAttr &AL) { 3083 return AL.isDeclspecPropertyAttribute(); 3084 }); 3085 if (Itr != list.end()) 3086 return &*Itr; 3087 return nullptr; 3088 } 3089 3090 // Check if there is a field shadowing. 3091 void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, 3092 DeclarationName FieldName, 3093 const CXXRecordDecl *RD, 3094 bool DeclIsField) { 3095 if (Diags.isIgnored(diag::warn_shadow_field, Loc)) 3096 return; 3097 3098 // To record a shadowed field in a base 3099 std::map<CXXRecordDecl*, NamedDecl*> Bases; 3100 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, 3101 CXXBasePath &Path) { 3102 const auto Base = Specifier->getType()->getAsCXXRecordDecl(); 3103 // Record an ambiguous path directly 3104 if (Bases.find(Base) != Bases.end()) 3105 return true; 3106 for (const auto Field : Base->lookup(FieldName)) { 3107 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && 3108 Field->getAccess() != AS_private) { 3109 assert(Field->getAccess() != AS_none); 3110 assert(Bases.find(Base) == Bases.end()); 3111 Bases[Base] = Field; 3112 return true; 3113 } 3114 } 3115 return false; 3116 }; 3117 3118 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3119 /*DetectVirtual=*/true); 3120 if (!RD->lookupInBases(FieldShadowed, Paths)) 3121 return; 3122 3123 for (const auto &P : Paths) { 3124 auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); 3125 auto It = Bases.find(Base); 3126 // Skip duplicated bases 3127 if (It == Bases.end()) 3128 continue; 3129 auto BaseField = It->second; 3130 assert(BaseField->getAccess() != AS_private); 3131 if (AS_none != 3132 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) { 3133 Diag(Loc, diag::warn_shadow_field) 3134 << FieldName << RD << Base << DeclIsField; 3135 Diag(BaseField->getLocation(), diag::note_shadow_field); 3136 Bases.erase(It); 3137 } 3138 } 3139 } 3140 3141 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member 3142 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the 3143 /// bitfield width if there is one, 'InitExpr' specifies the initializer if 3144 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is 3145 /// present (but parsing it has been deferred). 3146 NamedDecl * 3147 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, 3148 MultiTemplateParamsArg TemplateParameterLists, 3149 Expr *BW, const VirtSpecifiers &VS, 3150 InClassInitStyle InitStyle) { 3151 const DeclSpec &DS = D.getDeclSpec(); 3152 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 3153 DeclarationName Name = NameInfo.getName(); 3154 SourceLocation Loc = NameInfo.getLoc(); 3155 3156 // For anonymous bitfields, the location should point to the type. 3157 if (Loc.isInvalid()) 3158 Loc = D.getBeginLoc(); 3159 3160 Expr *BitWidth = static_cast<Expr*>(BW); 3161 3162 assert(isa<CXXRecordDecl>(CurContext)); 3163 assert(!DS.isFriendSpecified()); 3164 3165 bool isFunc = D.isDeclarationOfFunction(); 3166 const ParsedAttr *MSPropertyAttr = 3167 getMSPropertyAttr(D.getDeclSpec().getAttributes()); 3168 3169 if (cast<CXXRecordDecl>(CurContext)->isInterface()) { 3170 // The Microsoft extension __interface only permits public member functions 3171 // and prohibits constructors, destructors, operators, non-public member 3172 // functions, static methods and data members. 3173 unsigned InvalidDecl; 3174 bool ShowDeclName = true; 3175 if (!isFunc && 3176 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) 3177 InvalidDecl = 0; 3178 else if (!isFunc) 3179 InvalidDecl = 1; 3180 else if (AS != AS_public) 3181 InvalidDecl = 2; 3182 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) 3183 InvalidDecl = 3; 3184 else switch (Name.getNameKind()) { 3185 case DeclarationName::CXXConstructorName: 3186 InvalidDecl = 4; 3187 ShowDeclName = false; 3188 break; 3189 3190 case DeclarationName::CXXDestructorName: 3191 InvalidDecl = 5; 3192 ShowDeclName = false; 3193 break; 3194 3195 case DeclarationName::CXXOperatorName: 3196 case DeclarationName::CXXConversionFunctionName: 3197 InvalidDecl = 6; 3198 break; 3199 3200 default: 3201 InvalidDecl = 0; 3202 break; 3203 } 3204 3205 if (InvalidDecl) { 3206 if (ShowDeclName) 3207 Diag(Loc, diag::err_invalid_member_in_interface) 3208 << (InvalidDecl-1) << Name; 3209 else 3210 Diag(Loc, diag::err_invalid_member_in_interface) 3211 << (InvalidDecl-1) << ""; 3212 return nullptr; 3213 } 3214 } 3215 3216 // C++ 9.2p6: A member shall not be declared to have automatic storage 3217 // duration (auto, register) or with the extern storage-class-specifier. 3218 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class 3219 // data members and cannot be applied to names declared const or static, 3220 // and cannot be applied to reference members. 3221 switch (DS.getStorageClassSpec()) { 3222 case DeclSpec::SCS_unspecified: 3223 case DeclSpec::SCS_typedef: 3224 case DeclSpec::SCS_static: 3225 break; 3226 case DeclSpec::SCS_mutable: 3227 if (isFunc) { 3228 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); 3229 3230 // FIXME: It would be nicer if the keyword was ignored only for this 3231 // declarator. Otherwise we could get follow-up errors. 3232 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3233 } 3234 break; 3235 default: 3236 Diag(DS.getStorageClassSpecLoc(), 3237 diag::err_storageclass_invalid_for_member); 3238 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3239 break; 3240 } 3241 3242 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || 3243 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && 3244 !isFunc); 3245 3246 if (DS.hasConstexprSpecifier() && isInstField) { 3247 SemaDiagnosticBuilder B = 3248 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); 3249 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); 3250 if (InitStyle == ICIS_NoInit) { 3251 B << 0 << 0; 3252 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) 3253 B << FixItHint::CreateRemoval(ConstexprLoc); 3254 else { 3255 B << FixItHint::CreateReplacement(ConstexprLoc, "const"); 3256 D.getMutableDeclSpec().ClearConstexprSpec(); 3257 const char *PrevSpec; 3258 unsigned DiagID; 3259 bool Failed = D.getMutableDeclSpec().SetTypeQual( 3260 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); 3261 (void)Failed; 3262 assert(!Failed && "Making a constexpr member const shouldn't fail"); 3263 } 3264 } else { 3265 B << 1; 3266 const char *PrevSpec; 3267 unsigned DiagID; 3268 if (D.getMutableDeclSpec().SetStorageClassSpec( 3269 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, 3270 Context.getPrintingPolicy())) { 3271 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable && 3272 "This is the only DeclSpec that should fail to be applied"); 3273 B << 1; 3274 } else { 3275 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); 3276 isInstField = false; 3277 } 3278 } 3279 } 3280 3281 NamedDecl *Member; 3282 if (isInstField) { 3283 CXXScopeSpec &SS = D.getCXXScopeSpec(); 3284 3285 // Data members must have identifiers for names. 3286 if (!Name.isIdentifier()) { 3287 Diag(Loc, diag::err_bad_variable_name) 3288 << Name; 3289 return nullptr; 3290 } 3291 3292 IdentifierInfo *II = Name.getAsIdentifierInfo(); 3293 3294 // Member field could not be with "template" keyword. 3295 // So TemplateParameterLists should be empty in this case. 3296 if (TemplateParameterLists.size()) { 3297 TemplateParameterList* TemplateParams = TemplateParameterLists[0]; 3298 if (TemplateParams->size()) { 3299 // There is no such thing as a member field template. 3300 Diag(D.getIdentifierLoc(), diag::err_template_member) 3301 << II 3302 << SourceRange(TemplateParams->getTemplateLoc(), 3303 TemplateParams->getRAngleLoc()); 3304 } else { 3305 // There is an extraneous 'template<>' for this member. 3306 Diag(TemplateParams->getTemplateLoc(), 3307 diag::err_template_member_noparams) 3308 << II 3309 << SourceRange(TemplateParams->getTemplateLoc(), 3310 TemplateParams->getRAngleLoc()); 3311 } 3312 return nullptr; 3313 } 3314 3315 if (SS.isSet() && !SS.isInvalid()) { 3316 // The user provided a superfluous scope specifier inside a class 3317 // definition: 3318 // 3319 // class X { 3320 // int X::member; 3321 // }; 3322 if (DeclContext *DC = computeDeclContext(SS, false)) 3323 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(), 3324 D.getName().getKind() == 3325 UnqualifiedIdKind::IK_TemplateId); 3326 else 3327 Diag(D.getIdentifierLoc(), diag::err_member_qualification) 3328 << Name << SS.getRange(); 3329 3330 SS.clear(); 3331 } 3332 3333 if (MSPropertyAttr) { 3334 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3335 BitWidth, InitStyle, AS, *MSPropertyAttr); 3336 if (!Member) 3337 return nullptr; 3338 isInstField = false; 3339 } else { 3340 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3341 BitWidth, InitStyle, AS); 3342 if (!Member) 3343 return nullptr; 3344 } 3345 3346 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext)); 3347 } else { 3348 Member = HandleDeclarator(S, D, TemplateParameterLists); 3349 if (!Member) 3350 return nullptr; 3351 3352 // Non-instance-fields can't have a bitfield. 3353 if (BitWidth) { 3354 if (Member->isInvalidDecl()) { 3355 // don't emit another diagnostic. 3356 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) { 3357 // C++ 9.6p3: A bit-field shall not be a static member. 3358 // "static member 'A' cannot be a bit-field" 3359 Diag(Loc, diag::err_static_not_bitfield) 3360 << Name << BitWidth->getSourceRange(); 3361 } else if (isa<TypedefDecl>(Member)) { 3362 // "typedef member 'x' cannot be a bit-field" 3363 Diag(Loc, diag::err_typedef_not_bitfield) 3364 << Name << BitWidth->getSourceRange(); 3365 } else { 3366 // A function typedef ("typedef int f(); f a;"). 3367 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 3368 Diag(Loc, diag::err_not_integral_type_bitfield) 3369 << Name << cast<ValueDecl>(Member)->getType() 3370 << BitWidth->getSourceRange(); 3371 } 3372 3373 BitWidth = nullptr; 3374 Member->setInvalidDecl(); 3375 } 3376 3377 NamedDecl *NonTemplateMember = Member; 3378 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) 3379 NonTemplateMember = FunTmpl->getTemplatedDecl(); 3380 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member)) 3381 NonTemplateMember = VarTmpl->getTemplatedDecl(); 3382 3383 Member->setAccess(AS); 3384 3385 // If we have declared a member function template or static data member 3386 // template, set the access of the templated declaration as well. 3387 if (NonTemplateMember != Member) 3388 NonTemplateMember->setAccess(AS); 3389 3390 // C++ [temp.deduct.guide]p3: 3391 // A deduction guide [...] for a member class template [shall be 3392 // declared] with the same access [as the template]. 3393 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) { 3394 auto *TD = DG->getDeducedTemplate(); 3395 // Access specifiers are only meaningful if both the template and the 3396 // deduction guide are from the same scope. 3397 if (AS != TD->getAccess() && 3398 TD->getDeclContext()->getRedeclContext()->Equals( 3399 DG->getDeclContext()->getRedeclContext())) { 3400 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); 3401 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) 3402 << TD->getAccess(); 3403 const AccessSpecDecl *LastAccessSpec = nullptr; 3404 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { 3405 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) 3406 LastAccessSpec = AccessSpec; 3407 } 3408 assert(LastAccessSpec && "differing access with no access specifier"); 3409 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) 3410 << AS; 3411 } 3412 } 3413 } 3414 3415 if (VS.isOverrideSpecified()) 3416 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(), 3417 AttributeCommonInfo::AS_Keyword)); 3418 if (VS.isFinalSpecified()) 3419 Member->addAttr(FinalAttr::Create( 3420 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword, 3421 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed()))); 3422 3423 if (VS.getLastLocation().isValid()) { 3424 // Update the end location of a method that has a virt-specifiers. 3425 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) 3426 MD->setRangeEnd(VS.getLastLocation()); 3427 } 3428 3429 CheckOverrideControl(Member); 3430 3431 assert((Name || isInstField) && "No identifier for non-field ?"); 3432 3433 if (isInstField) { 3434 FieldDecl *FD = cast<FieldDecl>(Member); 3435 FieldCollector->Add(FD); 3436 3437 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) { 3438 // Remember all explicit private FieldDecls that have a name, no side 3439 // effects and are not part of a dependent type declaration. 3440 if (!FD->isImplicit() && FD->getDeclName() && 3441 FD->getAccess() == AS_private && 3442 !FD->hasAttr<UnusedAttr>() && 3443 !FD->getParent()->isDependentContext() && 3444 !InitializationHasSideEffects(*FD)) 3445 UnusedPrivateFields.insert(FD); 3446 } 3447 } 3448 3449 return Member; 3450 } 3451 3452 namespace { 3453 class UninitializedFieldVisitor 3454 : public EvaluatedExprVisitor<UninitializedFieldVisitor> { 3455 Sema &S; 3456 // List of Decls to generate a warning on. Also remove Decls that become 3457 // initialized. 3458 llvm::SmallPtrSetImpl<ValueDecl*> &Decls; 3459 // List of base classes of the record. Classes are removed after their 3460 // initializers. 3461 llvm::SmallPtrSetImpl<QualType> &BaseClasses; 3462 // Vector of decls to be removed from the Decl set prior to visiting the 3463 // nodes. These Decls may have been initialized in the prior initializer. 3464 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; 3465 // If non-null, add a note to the warning pointing back to the constructor. 3466 const CXXConstructorDecl *Constructor; 3467 // Variables to hold state when processing an initializer list. When 3468 // InitList is true, special case initialization of FieldDecls matching 3469 // InitListFieldDecl. 3470 bool InitList; 3471 FieldDecl *InitListFieldDecl; 3472 llvm::SmallVector<unsigned, 4> InitFieldIndex; 3473 3474 public: 3475 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; 3476 UninitializedFieldVisitor(Sema &S, 3477 llvm::SmallPtrSetImpl<ValueDecl*> &Decls, 3478 llvm::SmallPtrSetImpl<QualType> &BaseClasses) 3479 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), 3480 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} 3481 3482 // Returns true if the use of ME is not an uninitialized use. 3483 bool IsInitListMemberExprInitialized(MemberExpr *ME, 3484 bool CheckReferenceOnly) { 3485 llvm::SmallVector<FieldDecl*, 4> Fields; 3486 bool ReferenceField = false; 3487 while (ME) { 3488 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 3489 if (!FD) 3490 return false; 3491 Fields.push_back(FD); 3492 if (FD->getType()->isReferenceType()) 3493 ReferenceField = true; 3494 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts()); 3495 } 3496 3497 // Binding a reference to an uninitialized field is not an 3498 // uninitialized use. 3499 if (CheckReferenceOnly && !ReferenceField) 3500 return true; 3501 3502 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 3503 // Discard the first field since it is the field decl that is being 3504 // initialized. 3505 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) { 3506 UsedFieldIndex.push_back((*I)->getFieldIndex()); 3507 } 3508 3509 for (auto UsedIter = UsedFieldIndex.begin(), 3510 UsedEnd = UsedFieldIndex.end(), 3511 OrigIter = InitFieldIndex.begin(), 3512 OrigEnd = InitFieldIndex.end(); 3513 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 3514 if (*UsedIter < *OrigIter) 3515 return true; 3516 if (*UsedIter > *OrigIter) 3517 break; 3518 } 3519 3520 return false; 3521 } 3522 3523 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, 3524 bool AddressOf) { 3525 if (isa<EnumConstantDecl>(ME->getMemberDecl())) 3526 return; 3527 3528 // FieldME is the inner-most MemberExpr that is not an anonymous struct 3529 // or union. 3530 MemberExpr *FieldME = ME; 3531 3532 bool AllPODFields = FieldME->getType().isPODType(S.Context); 3533 3534 Expr *Base = ME; 3535 while (MemberExpr *SubME = 3536 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) { 3537 3538 if (isa<VarDecl>(SubME->getMemberDecl())) 3539 return; 3540 3541 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl())) 3542 if (!FD->isAnonymousStructOrUnion()) 3543 FieldME = SubME; 3544 3545 if (!FieldME->getType().isPODType(S.Context)) 3546 AllPODFields = false; 3547 3548 Base = SubME->getBase(); 3549 } 3550 3551 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) 3552 return; 3553 3554 if (AddressOf && AllPODFields) 3555 return; 3556 3557 ValueDecl* FoundVD = FieldME->getMemberDecl(); 3558 3559 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) { 3560 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { 3561 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); 3562 } 3563 3564 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { 3565 QualType T = BaseCast->getType(); 3566 if (T->isPointerType() && 3567 BaseClasses.count(T->getPointeeType())) { 3568 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) 3569 << T->getPointeeType() << FoundVD; 3570 } 3571 } 3572 } 3573 3574 if (!Decls.count(FoundVD)) 3575 return; 3576 3577 const bool IsReference = FoundVD->getType()->isReferenceType(); 3578 3579 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { 3580 // Special checking for initializer lists. 3581 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { 3582 return; 3583 } 3584 } else { 3585 // Prevent double warnings on use of unbounded references. 3586 if (CheckReferenceOnly && !IsReference) 3587 return; 3588 } 3589 3590 unsigned diag = IsReference 3591 ? diag::warn_reference_field_is_uninit 3592 : diag::warn_field_is_uninit; 3593 S.Diag(FieldME->getExprLoc(), diag) << FoundVD; 3594 if (Constructor) 3595 S.Diag(Constructor->getLocation(), 3596 diag::note_uninit_in_this_constructor) 3597 << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); 3598 3599 } 3600 3601 void HandleValue(Expr *E, bool AddressOf) { 3602 E = E->IgnoreParens(); 3603 3604 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 3605 HandleMemberExpr(ME, false /*CheckReferenceOnly*/, 3606 AddressOf /*AddressOf*/); 3607 return; 3608 } 3609 3610 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 3611 Visit(CO->getCond()); 3612 HandleValue(CO->getTrueExpr(), AddressOf); 3613 HandleValue(CO->getFalseExpr(), AddressOf); 3614 return; 3615 } 3616 3617 if (BinaryConditionalOperator *BCO = 3618 dyn_cast<BinaryConditionalOperator>(E)) { 3619 Visit(BCO->getCond()); 3620 HandleValue(BCO->getFalseExpr(), AddressOf); 3621 return; 3622 } 3623 3624 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 3625 HandleValue(OVE->getSourceExpr(), AddressOf); 3626 return; 3627 } 3628 3629 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3630 switch (BO->getOpcode()) { 3631 default: 3632 break; 3633 case(BO_PtrMemD): 3634 case(BO_PtrMemI): 3635 HandleValue(BO->getLHS(), AddressOf); 3636 Visit(BO->getRHS()); 3637 return; 3638 case(BO_Comma): 3639 Visit(BO->getLHS()); 3640 HandleValue(BO->getRHS(), AddressOf); 3641 return; 3642 } 3643 } 3644 3645 Visit(E); 3646 } 3647 3648 void CheckInitListExpr(InitListExpr *ILE) { 3649 InitFieldIndex.push_back(0); 3650 for (auto Child : ILE->children()) { 3651 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) { 3652 CheckInitListExpr(SubList); 3653 } else { 3654 Visit(Child); 3655 } 3656 ++InitFieldIndex.back(); 3657 } 3658 InitFieldIndex.pop_back(); 3659 } 3660 3661 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, 3662 FieldDecl *Field, const Type *BaseClass) { 3663 // Remove Decls that may have been initialized in the previous 3664 // initializer. 3665 for (ValueDecl* VD : DeclsToRemove) 3666 Decls.erase(VD); 3667 DeclsToRemove.clear(); 3668 3669 Constructor = FieldConstructor; 3670 InitListExpr *ILE = dyn_cast<InitListExpr>(E); 3671 3672 if (ILE && Field) { 3673 InitList = true; 3674 InitListFieldDecl = Field; 3675 InitFieldIndex.clear(); 3676 CheckInitListExpr(ILE); 3677 } else { 3678 InitList = false; 3679 Visit(E); 3680 } 3681 3682 if (Field) 3683 Decls.erase(Field); 3684 if (BaseClass) 3685 BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); 3686 } 3687 3688 void VisitMemberExpr(MemberExpr *ME) { 3689 // All uses of unbounded reference fields will warn. 3690 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); 3691 } 3692 3693 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 3694 if (E->getCastKind() == CK_LValueToRValue) { 3695 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3696 return; 3697 } 3698 3699 Inherited::VisitImplicitCastExpr(E); 3700 } 3701 3702 void VisitCXXConstructExpr(CXXConstructExpr *E) { 3703 if (E->getConstructor()->isCopyConstructor()) { 3704 Expr *ArgExpr = E->getArg(0); 3705 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 3706 if (ILE->getNumInits() == 1) 3707 ArgExpr = ILE->getInit(0); 3708 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 3709 if (ICE->getCastKind() == CK_NoOp) 3710 ArgExpr = ICE->getSubExpr(); 3711 HandleValue(ArgExpr, false /*AddressOf*/); 3712 return; 3713 } 3714 Inherited::VisitCXXConstructExpr(E); 3715 } 3716 3717 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3718 Expr *Callee = E->getCallee(); 3719 if (isa<MemberExpr>(Callee)) { 3720 HandleValue(Callee, false /*AddressOf*/); 3721 for (auto Arg : E->arguments()) 3722 Visit(Arg); 3723 return; 3724 } 3725 3726 Inherited::VisitCXXMemberCallExpr(E); 3727 } 3728 3729 void VisitCallExpr(CallExpr *E) { 3730 // Treat std::move as a use. 3731 if (E->isCallToStdMove()) { 3732 HandleValue(E->getArg(0), /*AddressOf=*/false); 3733 return; 3734 } 3735 3736 Inherited::VisitCallExpr(E); 3737 } 3738 3739 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 3740 Expr *Callee = E->getCallee(); 3741 3742 if (isa<UnresolvedLookupExpr>(Callee)) 3743 return Inherited::VisitCXXOperatorCallExpr(E); 3744 3745 Visit(Callee); 3746 for (auto Arg : E->arguments()) 3747 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); 3748 } 3749 3750 void VisitBinaryOperator(BinaryOperator *E) { 3751 // If a field assignment is detected, remove the field from the 3752 // uninitiailized field set. 3753 if (E->getOpcode() == BO_Assign) 3754 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS())) 3755 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3756 if (!FD->getType()->isReferenceType()) 3757 DeclsToRemove.push_back(FD); 3758 3759 if (E->isCompoundAssignmentOp()) { 3760 HandleValue(E->getLHS(), false /*AddressOf*/); 3761 Visit(E->getRHS()); 3762 return; 3763 } 3764 3765 Inherited::VisitBinaryOperator(E); 3766 } 3767 3768 void VisitUnaryOperator(UnaryOperator *E) { 3769 if (E->isIncrementDecrementOp()) { 3770 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3771 return; 3772 } 3773 if (E->getOpcode() == UO_AddrOf) { 3774 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) { 3775 HandleValue(ME->getBase(), true /*AddressOf*/); 3776 return; 3777 } 3778 } 3779 3780 Inherited::VisitUnaryOperator(E); 3781 } 3782 }; 3783 3784 // Diagnose value-uses of fields to initialize themselves, e.g. 3785 // foo(foo) 3786 // where foo is not also a parameter to the constructor. 3787 // Also diagnose across field uninitialized use such as 3788 // x(y), y(x) 3789 // TODO: implement -Wuninitialized and fold this into that framework. 3790 static void DiagnoseUninitializedFields( 3791 Sema &SemaRef, const CXXConstructorDecl *Constructor) { 3792 3793 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, 3794 Constructor->getLocation())) { 3795 return; 3796 } 3797 3798 if (Constructor->isInvalidDecl()) 3799 return; 3800 3801 const CXXRecordDecl *RD = Constructor->getParent(); 3802 3803 if (RD->getDescribedClassTemplate()) 3804 return; 3805 3806 // Holds fields that are uninitialized. 3807 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; 3808 3809 // At the beginning, all fields are uninitialized. 3810 for (auto *I : RD->decls()) { 3811 if (auto *FD = dyn_cast<FieldDecl>(I)) { 3812 UninitializedFields.insert(FD); 3813 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { 3814 UninitializedFields.insert(IFD->getAnonField()); 3815 } 3816 } 3817 3818 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; 3819 for (auto I : RD->bases()) 3820 UninitializedBaseClasses.insert(I.getType().getCanonicalType()); 3821 3822 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3823 return; 3824 3825 UninitializedFieldVisitor UninitializedChecker(SemaRef, 3826 UninitializedFields, 3827 UninitializedBaseClasses); 3828 3829 for (const auto *FieldInit : Constructor->inits()) { 3830 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3831 break; 3832 3833 Expr *InitExpr = FieldInit->getInit(); 3834 if (!InitExpr) 3835 continue; 3836 3837 if (CXXDefaultInitExpr *Default = 3838 dyn_cast<CXXDefaultInitExpr>(InitExpr)) { 3839 InitExpr = Default->getExpr(); 3840 if (!InitExpr) 3841 continue; 3842 // In class initializers will point to the constructor. 3843 UninitializedChecker.CheckInitializer(InitExpr, Constructor, 3844 FieldInit->getAnyMember(), 3845 FieldInit->getBaseClass()); 3846 } else { 3847 UninitializedChecker.CheckInitializer(InitExpr, nullptr, 3848 FieldInit->getAnyMember(), 3849 FieldInit->getBaseClass()); 3850 } 3851 } 3852 } 3853 } // namespace 3854 3855 /// Enter a new C++ default initializer scope. After calling this, the 3856 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if 3857 /// parsing or instantiating the initializer failed. 3858 void Sema::ActOnStartCXXInClassMemberInitializer() { 3859 // Create a synthetic function scope to represent the call to the constructor 3860 // that notionally surrounds a use of this initializer. 3861 PushFunctionScope(); 3862 } 3863 3864 /// This is invoked after parsing an in-class initializer for a 3865 /// non-static C++ class member, and after instantiating an in-class initializer 3866 /// in a class template. Such actions are deferred until the class is complete. 3867 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, 3868 SourceLocation InitLoc, 3869 Expr *InitExpr) { 3870 // Pop the notional constructor scope we created earlier. 3871 PopFunctionScopeInfo(nullptr, D); 3872 3873 FieldDecl *FD = dyn_cast<FieldDecl>(D); 3874 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && 3875 "must set init style when field is created"); 3876 3877 if (!InitExpr) { 3878 D->setInvalidDecl(); 3879 if (FD) 3880 FD->removeInClassInitializer(); 3881 return; 3882 } 3883 3884 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { 3885 FD->setInvalidDecl(); 3886 FD->removeInClassInitializer(); 3887 return; 3888 } 3889 3890 ExprResult Init = InitExpr; 3891 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) { 3892 InitializedEntity Entity = 3893 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD); 3894 InitializationKind Kind = 3895 FD->getInClassInitStyle() == ICIS_ListInit 3896 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), 3897 InitExpr->getBeginLoc(), 3898 InitExpr->getEndLoc()) 3899 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc); 3900 InitializationSequence Seq(*this, Entity, Kind, InitExpr); 3901 Init = Seq.Perform(*this, Entity, Kind, InitExpr); 3902 if (Init.isInvalid()) { 3903 FD->setInvalidDecl(); 3904 return; 3905 } 3906 } 3907 3908 // C++11 [class.base.init]p7: 3909 // The initialization of each base and member constitutes a 3910 // full-expression. 3911 Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false); 3912 if (Init.isInvalid()) { 3913 FD->setInvalidDecl(); 3914 return; 3915 } 3916 3917 InitExpr = Init.get(); 3918 3919 FD->setInClassInitializer(InitExpr); 3920 } 3921 3922 /// Find the direct and/or virtual base specifiers that 3923 /// correspond to the given base type, for use in base initialization 3924 /// within a constructor. 3925 static bool FindBaseInitializer(Sema &SemaRef, 3926 CXXRecordDecl *ClassDecl, 3927 QualType BaseType, 3928 const CXXBaseSpecifier *&DirectBaseSpec, 3929 const CXXBaseSpecifier *&VirtualBaseSpec) { 3930 // First, check for a direct base class. 3931 DirectBaseSpec = nullptr; 3932 for (const auto &Base : ClassDecl->bases()) { 3933 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { 3934 // We found a direct base of this type. That's what we're 3935 // initializing. 3936 DirectBaseSpec = &Base; 3937 break; 3938 } 3939 } 3940 3941 // Check for a virtual base class. 3942 // FIXME: We might be able to short-circuit this if we know in advance that 3943 // there are no virtual bases. 3944 VirtualBaseSpec = nullptr; 3945 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { 3946 // We haven't found a base yet; search the class hierarchy for a 3947 // virtual base class. 3948 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3949 /*DetectVirtual=*/false); 3950 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), 3951 SemaRef.Context.getTypeDeclType(ClassDecl), 3952 BaseType, Paths)) { 3953 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 3954 Path != Paths.end(); ++Path) { 3955 if (Path->back().Base->isVirtual()) { 3956 VirtualBaseSpec = Path->back().Base; 3957 break; 3958 } 3959 } 3960 } 3961 } 3962 3963 return DirectBaseSpec || VirtualBaseSpec; 3964 } 3965 3966 /// Handle a C++ member initializer using braced-init-list syntax. 3967 MemInitResult 3968 Sema::ActOnMemInitializer(Decl *ConstructorD, 3969 Scope *S, 3970 CXXScopeSpec &SS, 3971 IdentifierInfo *MemberOrBase, 3972 ParsedType TemplateTypeTy, 3973 const DeclSpec &DS, 3974 SourceLocation IdLoc, 3975 Expr *InitList, 3976 SourceLocation EllipsisLoc) { 3977 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 3978 DS, IdLoc, InitList, 3979 EllipsisLoc); 3980 } 3981 3982 /// Handle a C++ member initializer using parentheses syntax. 3983 MemInitResult 3984 Sema::ActOnMemInitializer(Decl *ConstructorD, 3985 Scope *S, 3986 CXXScopeSpec &SS, 3987 IdentifierInfo *MemberOrBase, 3988 ParsedType TemplateTypeTy, 3989 const DeclSpec &DS, 3990 SourceLocation IdLoc, 3991 SourceLocation LParenLoc, 3992 ArrayRef<Expr *> Args, 3993 SourceLocation RParenLoc, 3994 SourceLocation EllipsisLoc) { 3995 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc); 3996 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 3997 DS, IdLoc, List, EllipsisLoc); 3998 } 3999 4000 namespace { 4001 4002 // Callback to only accept typo corrections that can be a valid C++ member 4003 // intializer: either a non-static field member or a base class. 4004 class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { 4005 public: 4006 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) 4007 : ClassDecl(ClassDecl) {} 4008 4009 bool ValidateCandidate(const TypoCorrection &candidate) override { 4010 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 4011 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) 4012 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); 4013 return isa<TypeDecl>(ND); 4014 } 4015 return false; 4016 } 4017 4018 std::unique_ptr<CorrectionCandidateCallback> clone() override { 4019 return std::make_unique<MemInitializerValidatorCCC>(*this); 4020 } 4021 4022 private: 4023 CXXRecordDecl *ClassDecl; 4024 }; 4025 4026 } 4027 4028 ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, 4029 CXXScopeSpec &SS, 4030 ParsedType TemplateTypeTy, 4031 IdentifierInfo *MemberOrBase) { 4032 if (SS.getScopeRep() || TemplateTypeTy) 4033 return nullptr; 4034 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase); 4035 if (Result.empty()) 4036 return nullptr; 4037 ValueDecl *Member; 4038 if ((Member = dyn_cast<FieldDecl>(Result.front())) || 4039 (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) 4040 return Member; 4041 return nullptr; 4042 } 4043 4044 /// Handle a C++ member initializer. 4045 MemInitResult 4046 Sema::BuildMemInitializer(Decl *ConstructorD, 4047 Scope *S, 4048 CXXScopeSpec &SS, 4049 IdentifierInfo *MemberOrBase, 4050 ParsedType TemplateTypeTy, 4051 const DeclSpec &DS, 4052 SourceLocation IdLoc, 4053 Expr *Init, 4054 SourceLocation EllipsisLoc) { 4055 ExprResult Res = CorrectDelayedTyposInExpr(Init); 4056 if (!Res.isUsable()) 4057 return true; 4058 Init = Res.get(); 4059 4060 if (!ConstructorD) 4061 return true; 4062 4063 AdjustDeclIfTemplate(ConstructorD); 4064 4065 CXXConstructorDecl *Constructor 4066 = dyn_cast<CXXConstructorDecl>(ConstructorD); 4067 if (!Constructor) { 4068 // The user wrote a constructor initializer on a function that is 4069 // not a C++ constructor. Ignore the error for now, because we may 4070 // have more member initializers coming; we'll diagnose it just 4071 // once in ActOnMemInitializers. 4072 return true; 4073 } 4074 4075 CXXRecordDecl *ClassDecl = Constructor->getParent(); 4076 4077 // C++ [class.base.init]p2: 4078 // Names in a mem-initializer-id are looked up in the scope of the 4079 // constructor's class and, if not found in that scope, are looked 4080 // up in the scope containing the constructor's definition. 4081 // [Note: if the constructor's class contains a member with the 4082 // same name as a direct or virtual base class of the class, a 4083 // mem-initializer-id naming the member or base class and composed 4084 // of a single identifier refers to the class member. A 4085 // mem-initializer-id for the hidden base class may be specified 4086 // using a qualified name. ] 4087 4088 // Look for a member, first. 4089 if (ValueDecl *Member = tryLookupCtorInitMemberDecl( 4090 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { 4091 if (EllipsisLoc.isValid()) 4092 Diag(EllipsisLoc, diag::err_pack_expansion_member_init) 4093 << MemberOrBase 4094 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 4095 4096 return BuildMemberInitializer(Member, Init, IdLoc); 4097 } 4098 // It didn't name a member, so see if it names a class. 4099 QualType BaseType; 4100 TypeSourceInfo *TInfo = nullptr; 4101 4102 if (TemplateTypeTy) { 4103 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); 4104 if (BaseType.isNull()) 4105 return true; 4106 } else if (DS.getTypeSpecType() == TST_decltype) { 4107 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 4108 } else if (DS.getTypeSpecType() == TST_decltype_auto) { 4109 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 4110 return true; 4111 } else { 4112 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); 4113 LookupParsedName(R, S, &SS); 4114 4115 TypeDecl *TyD = R.getAsSingle<TypeDecl>(); 4116 if (!TyD) { 4117 if (R.isAmbiguous()) return true; 4118 4119 // We don't want access-control diagnostics here. 4120 R.suppressDiagnostics(); 4121 4122 if (SS.isSet() && isDependentScopeSpecifier(SS)) { 4123 bool NotUnknownSpecialization = false; 4124 DeclContext *DC = computeDeclContext(SS, false); 4125 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) 4126 NotUnknownSpecialization = !Record->hasAnyDependentBases(); 4127 4128 if (!NotUnknownSpecialization) { 4129 // When the scope specifier can refer to a member of an unknown 4130 // specialization, we take it as a type name. 4131 BaseType = CheckTypenameType(ETK_None, SourceLocation(), 4132 SS.getWithLocInContext(Context), 4133 *MemberOrBase, IdLoc); 4134 if (BaseType.isNull()) 4135 return true; 4136 4137 TInfo = Context.CreateTypeSourceInfo(BaseType); 4138 DependentNameTypeLoc TL = 4139 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); 4140 if (!TL.isNull()) { 4141 TL.setNameLoc(IdLoc); 4142 TL.setElaboratedKeywordLoc(SourceLocation()); 4143 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4144 } 4145 4146 R.clear(); 4147 R.setLookupName(MemberOrBase); 4148 } 4149 } 4150 4151 // If no results were found, try to correct typos. 4152 TypoCorrection Corr; 4153 MemInitializerValidatorCCC CCC(ClassDecl); 4154 if (R.empty() && BaseType.isNull() && 4155 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, 4156 CCC, CTK_ErrorRecovery, ClassDecl))) { 4157 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { 4158 // We have found a non-static data member with a similar 4159 // name to what was typed; complain and initialize that 4160 // member. 4161 diagnoseTypo(Corr, 4162 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4163 << MemberOrBase << true); 4164 return BuildMemberInitializer(Member, Init, IdLoc); 4165 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { 4166 const CXXBaseSpecifier *DirectBaseSpec; 4167 const CXXBaseSpecifier *VirtualBaseSpec; 4168 if (FindBaseInitializer(*this, ClassDecl, 4169 Context.getTypeDeclType(Type), 4170 DirectBaseSpec, VirtualBaseSpec)) { 4171 // We have found a direct or virtual base class with a 4172 // similar name to what was typed; complain and initialize 4173 // that base class. 4174 diagnoseTypo(Corr, 4175 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4176 << MemberOrBase << false, 4177 PDiag() /*Suppress note, we provide our own.*/); 4178 4179 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec 4180 : VirtualBaseSpec; 4181 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) 4182 << BaseSpec->getType() << BaseSpec->getSourceRange(); 4183 4184 TyD = Type; 4185 } 4186 } 4187 } 4188 4189 if (!TyD && BaseType.isNull()) { 4190 Diag(IdLoc, diag::err_mem_init_not_member_or_class) 4191 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); 4192 return true; 4193 } 4194 } 4195 4196 if (BaseType.isNull()) { 4197 BaseType = Context.getTypeDeclType(TyD); 4198 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); 4199 if (SS.isSet()) { 4200 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(), 4201 BaseType); 4202 TInfo = Context.CreateTypeSourceInfo(BaseType); 4203 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); 4204 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 4205 TL.setElaboratedKeywordLoc(SourceLocation()); 4206 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4207 } 4208 } 4209 } 4210 4211 if (!TInfo) 4212 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); 4213 4214 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); 4215 } 4216 4217 MemInitResult 4218 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, 4219 SourceLocation IdLoc) { 4220 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); 4221 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); 4222 assert((DirectMember || IndirectMember) && 4223 "Member must be a FieldDecl or IndirectFieldDecl"); 4224 4225 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4226 return true; 4227 4228 if (Member->isInvalidDecl()) 4229 return true; 4230 4231 MultiExprArg Args; 4232 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4233 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4234 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 4235 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 4236 } else { 4237 // Template instantiation doesn't reconstruct ParenListExprs for us. 4238 Args = Init; 4239 } 4240 4241 SourceRange InitRange = Init->getSourceRange(); 4242 4243 if (Member->getType()->isDependentType() || Init->isTypeDependent()) { 4244 // Can't check initialization for a member of dependent type or when 4245 // any of the arguments are type-dependent expressions. 4246 DiscardCleanupsInEvaluationContext(); 4247 } else { 4248 bool InitList = false; 4249 if (isa<InitListExpr>(Init)) { 4250 InitList = true; 4251 Args = Init; 4252 } 4253 4254 // Initialize the member. 4255 InitializedEntity MemberEntity = 4256 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) 4257 : InitializedEntity::InitializeMember(IndirectMember, 4258 nullptr); 4259 InitializationKind Kind = 4260 InitList ? InitializationKind::CreateDirectList( 4261 IdLoc, Init->getBeginLoc(), Init->getEndLoc()) 4262 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), 4263 InitRange.getEnd()); 4264 4265 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); 4266 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 4267 nullptr); 4268 if (MemberInit.isInvalid()) 4269 return true; 4270 4271 // C++11 [class.base.init]p7: 4272 // The initialization of each base and member constitutes a 4273 // full-expression. 4274 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(), 4275 /*DiscardedValue*/ false); 4276 if (MemberInit.isInvalid()) 4277 return true; 4278 4279 Init = MemberInit.get(); 4280 } 4281 4282 if (DirectMember) { 4283 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, 4284 InitRange.getBegin(), Init, 4285 InitRange.getEnd()); 4286 } else { 4287 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, 4288 InitRange.getBegin(), Init, 4289 InitRange.getEnd()); 4290 } 4291 } 4292 4293 MemInitResult 4294 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, 4295 CXXRecordDecl *ClassDecl) { 4296 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin(); 4297 if (!LangOpts.CPlusPlus11) 4298 return Diag(NameLoc, diag::err_delegating_ctor) 4299 << TInfo->getTypeLoc().getLocalSourceRange(); 4300 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); 4301 4302 bool InitList = true; 4303 MultiExprArg Args = Init; 4304 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4305 InitList = false; 4306 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4307 } 4308 4309 SourceRange InitRange = Init->getSourceRange(); 4310 // Initialize the object. 4311 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( 4312 QualType(ClassDecl->getTypeForDecl(), 0)); 4313 InitializationKind Kind = 4314 InitList ? InitializationKind::CreateDirectList( 4315 NameLoc, Init->getBeginLoc(), Init->getEndLoc()) 4316 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), 4317 InitRange.getEnd()); 4318 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); 4319 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, 4320 Args, nullptr); 4321 if (DelegationInit.isInvalid()) 4322 return true; 4323 4324 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && 4325 "Delegating constructor with no target?"); 4326 4327 // C++11 [class.base.init]p7: 4328 // The initialization of each base and member constitutes a 4329 // full-expression. 4330 DelegationInit = ActOnFinishFullExpr( 4331 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); 4332 if (DelegationInit.isInvalid()) 4333 return true; 4334 4335 // If we are in a dependent context, template instantiation will 4336 // perform this type-checking again. Just save the arguments that we 4337 // received in a ParenListExpr. 4338 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4339 // of the information that we have about the base 4340 // initializer. However, deconstructing the ASTs is a dicey process, 4341 // and this approach is far more likely to get the corner cases right. 4342 if (CurContext->isDependentContext()) 4343 DelegationInit = Init; 4344 4345 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), 4346 DelegationInit.getAs<Expr>(), 4347 InitRange.getEnd()); 4348 } 4349 4350 MemInitResult 4351 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, 4352 Expr *Init, CXXRecordDecl *ClassDecl, 4353 SourceLocation EllipsisLoc) { 4354 SourceLocation BaseLoc 4355 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); 4356 4357 if (!BaseType->isDependentType() && !BaseType->isRecordType()) 4358 return Diag(BaseLoc, diag::err_base_init_does_not_name_class) 4359 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4360 4361 // C++ [class.base.init]p2: 4362 // [...] Unless the mem-initializer-id names a nonstatic data 4363 // member of the constructor's class or a direct or virtual base 4364 // of that class, the mem-initializer is ill-formed. A 4365 // mem-initializer-list can initialize a base class using any 4366 // name that denotes that base class type. 4367 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent(); 4368 4369 SourceRange InitRange = Init->getSourceRange(); 4370 if (EllipsisLoc.isValid()) { 4371 // This is a pack expansion. 4372 if (!BaseType->containsUnexpandedParameterPack()) { 4373 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 4374 << SourceRange(BaseLoc, InitRange.getEnd()); 4375 4376 EllipsisLoc = SourceLocation(); 4377 } 4378 } else { 4379 // Check for any unexpanded parameter packs. 4380 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) 4381 return true; 4382 4383 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4384 return true; 4385 } 4386 4387 // Check for direct and virtual base classes. 4388 const CXXBaseSpecifier *DirectBaseSpec = nullptr; 4389 const CXXBaseSpecifier *VirtualBaseSpec = nullptr; 4390 if (!Dependent) { 4391 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), 4392 BaseType)) 4393 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); 4394 4395 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, 4396 VirtualBaseSpec); 4397 4398 // C++ [base.class.init]p2: 4399 // Unless the mem-initializer-id names a nonstatic data member of the 4400 // constructor's class or a direct or virtual base of that class, the 4401 // mem-initializer is ill-formed. 4402 if (!DirectBaseSpec && !VirtualBaseSpec) { 4403 // If the class has any dependent bases, then it's possible that 4404 // one of those types will resolve to the same type as 4405 // BaseType. Therefore, just treat this as a dependent base 4406 // class initialization. FIXME: Should we try to check the 4407 // initialization anyway? It seems odd. 4408 if (ClassDecl->hasAnyDependentBases()) 4409 Dependent = true; 4410 else 4411 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) 4412 << BaseType << Context.getTypeDeclType(ClassDecl) 4413 << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4414 } 4415 } 4416 4417 if (Dependent) { 4418 DiscardCleanupsInEvaluationContext(); 4419 4420 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4421 /*IsVirtual=*/false, 4422 InitRange.getBegin(), Init, 4423 InitRange.getEnd(), EllipsisLoc); 4424 } 4425 4426 // C++ [base.class.init]p2: 4427 // If a mem-initializer-id is ambiguous because it designates both 4428 // a direct non-virtual base class and an inherited virtual base 4429 // class, the mem-initializer is ill-formed. 4430 if (DirectBaseSpec && VirtualBaseSpec) 4431 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) 4432 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4433 4434 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; 4435 if (!BaseSpec) 4436 BaseSpec = VirtualBaseSpec; 4437 4438 // Initialize the base. 4439 bool InitList = true; 4440 MultiExprArg Args = Init; 4441 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4442 InitList = false; 4443 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4444 } 4445 4446 InitializedEntity BaseEntity = 4447 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); 4448 InitializationKind Kind = 4449 InitList ? InitializationKind::CreateDirectList(BaseLoc) 4450 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), 4451 InitRange.getEnd()); 4452 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); 4453 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); 4454 if (BaseInit.isInvalid()) 4455 return true; 4456 4457 // C++11 [class.base.init]p7: 4458 // The initialization of each base and member constitutes a 4459 // full-expression. 4460 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(), 4461 /*DiscardedValue*/ false); 4462 if (BaseInit.isInvalid()) 4463 return true; 4464 4465 // If we are in a dependent context, template instantiation will 4466 // perform this type-checking again. Just save the arguments that we 4467 // received in a ParenListExpr. 4468 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4469 // of the information that we have about the base 4470 // initializer. However, deconstructing the ASTs is a dicey process, 4471 // and this approach is far more likely to get the corner cases right. 4472 if (CurContext->isDependentContext()) 4473 BaseInit = Init; 4474 4475 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4476 BaseSpec->isVirtual(), 4477 InitRange.getBegin(), 4478 BaseInit.getAs<Expr>(), 4479 InitRange.getEnd(), EllipsisLoc); 4480 } 4481 4482 // Create a static_cast\<T&&>(expr). 4483 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) { 4484 if (T.isNull()) T = E->getType(); 4485 QualType TargetType = SemaRef.BuildReferenceType( 4486 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName()); 4487 SourceLocation ExprLoc = E->getBeginLoc(); 4488 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( 4489 TargetType, ExprLoc); 4490 4491 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 4492 SourceRange(ExprLoc, ExprLoc), 4493 E->getSourceRange()).get(); 4494 } 4495 4496 /// ImplicitInitializerKind - How an implicit base or member initializer should 4497 /// initialize its base or member. 4498 enum ImplicitInitializerKind { 4499 IIK_Default, 4500 IIK_Copy, 4501 IIK_Move, 4502 IIK_Inherit 4503 }; 4504 4505 static bool 4506 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4507 ImplicitInitializerKind ImplicitInitKind, 4508 CXXBaseSpecifier *BaseSpec, 4509 bool IsInheritedVirtualBase, 4510 CXXCtorInitializer *&CXXBaseInit) { 4511 InitializedEntity InitEntity 4512 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, 4513 IsInheritedVirtualBase); 4514 4515 ExprResult BaseInit; 4516 4517 switch (ImplicitInitKind) { 4518 case IIK_Inherit: 4519 case IIK_Default: { 4520 InitializationKind InitKind 4521 = InitializationKind::CreateDefault(Constructor->getLocation()); 4522 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); 4523 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None); 4524 break; 4525 } 4526 4527 case IIK_Move: 4528 case IIK_Copy: { 4529 bool Moving = ImplicitInitKind == IIK_Move; 4530 ParmVarDecl *Param = Constructor->getParamDecl(0); 4531 QualType ParamType = Param->getType().getNonReferenceType(); 4532 4533 Expr *CopyCtorArg = 4534 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4535 SourceLocation(), Param, false, 4536 Constructor->getLocation(), ParamType, 4537 VK_LValue, nullptr); 4538 4539 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); 4540 4541 // Cast to the base class to avoid ambiguities. 4542 QualType ArgTy = 4543 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), 4544 ParamType.getQualifiers()); 4545 4546 if (Moving) { 4547 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); 4548 } 4549 4550 CXXCastPath BasePath; 4551 BasePath.push_back(BaseSpec); 4552 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, 4553 CK_UncheckedDerivedToBase, 4554 Moving ? VK_XValue : VK_LValue, 4555 &BasePath).get(); 4556 4557 InitializationKind InitKind 4558 = InitializationKind::CreateDirect(Constructor->getLocation(), 4559 SourceLocation(), SourceLocation()); 4560 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); 4561 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); 4562 break; 4563 } 4564 } 4565 4566 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); 4567 if (BaseInit.isInvalid()) 4568 return true; 4569 4570 CXXBaseInit = 4571 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4572 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), 4573 SourceLocation()), 4574 BaseSpec->isVirtual(), 4575 SourceLocation(), 4576 BaseInit.getAs<Expr>(), 4577 SourceLocation(), 4578 SourceLocation()); 4579 4580 return false; 4581 } 4582 4583 static bool RefersToRValueRef(Expr *MemRef) { 4584 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); 4585 return Referenced->getType()->isRValueReferenceType(); 4586 } 4587 4588 static bool 4589 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4590 ImplicitInitializerKind ImplicitInitKind, 4591 FieldDecl *Field, IndirectFieldDecl *Indirect, 4592 CXXCtorInitializer *&CXXMemberInit) { 4593 if (Field->isInvalidDecl()) 4594 return true; 4595 4596 SourceLocation Loc = Constructor->getLocation(); 4597 4598 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { 4599 bool Moving = ImplicitInitKind == IIK_Move; 4600 ParmVarDecl *Param = Constructor->getParamDecl(0); 4601 QualType ParamType = Param->getType().getNonReferenceType(); 4602 4603 // Suppress copying zero-width bitfields. 4604 if (Field->isZeroLengthBitField(SemaRef.Context)) 4605 return false; 4606 4607 Expr *MemberExprBase = 4608 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4609 SourceLocation(), Param, false, 4610 Loc, ParamType, VK_LValue, nullptr); 4611 4612 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); 4613 4614 if (Moving) { 4615 MemberExprBase = CastForMoving(SemaRef, MemberExprBase); 4616 } 4617 4618 // Build a reference to this field within the parameter. 4619 CXXScopeSpec SS; 4620 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, 4621 Sema::LookupMemberName); 4622 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) 4623 : cast<ValueDecl>(Field), AS_public); 4624 MemberLookup.resolveKind(); 4625 ExprResult CtorArg 4626 = SemaRef.BuildMemberReferenceExpr(MemberExprBase, 4627 ParamType, Loc, 4628 /*IsArrow=*/false, 4629 SS, 4630 /*TemplateKWLoc=*/SourceLocation(), 4631 /*FirstQualifierInScope=*/nullptr, 4632 MemberLookup, 4633 /*TemplateArgs=*/nullptr, 4634 /*S*/nullptr); 4635 if (CtorArg.isInvalid()) 4636 return true; 4637 4638 // C++11 [class.copy]p15: 4639 // - if a member m has rvalue reference type T&&, it is direct-initialized 4640 // with static_cast<T&&>(x.m); 4641 if (RefersToRValueRef(CtorArg.get())) { 4642 CtorArg = CastForMoving(SemaRef, CtorArg.get()); 4643 } 4644 4645 InitializedEntity Entity = 4646 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4647 /*Implicit*/ true) 4648 : InitializedEntity::InitializeMember(Field, nullptr, 4649 /*Implicit*/ true); 4650 4651 // Direct-initialize to use the copy constructor. 4652 InitializationKind InitKind = 4653 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); 4654 4655 Expr *CtorArgE = CtorArg.getAs<Expr>(); 4656 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); 4657 ExprResult MemberInit = 4658 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1)); 4659 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4660 if (MemberInit.isInvalid()) 4661 return true; 4662 4663 if (Indirect) 4664 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4665 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4666 else 4667 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4668 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4669 return false; 4670 } 4671 4672 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && 4673 "Unhandled implicit init kind!"); 4674 4675 QualType FieldBaseElementType = 4676 SemaRef.Context.getBaseElementType(Field->getType()); 4677 4678 if (FieldBaseElementType->isRecordType()) { 4679 InitializedEntity InitEntity = 4680 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4681 /*Implicit*/ true) 4682 : InitializedEntity::InitializeMember(Field, nullptr, 4683 /*Implicit*/ true); 4684 InitializationKind InitKind = 4685 InitializationKind::CreateDefault(Loc); 4686 4687 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); 4688 ExprResult MemberInit = 4689 InitSeq.Perform(SemaRef, InitEntity, InitKind, None); 4690 4691 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4692 if (MemberInit.isInvalid()) 4693 return true; 4694 4695 if (Indirect) 4696 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4697 Indirect, Loc, 4698 Loc, 4699 MemberInit.get(), 4700 Loc); 4701 else 4702 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4703 Field, Loc, Loc, 4704 MemberInit.get(), 4705 Loc); 4706 return false; 4707 } 4708 4709 if (!Field->getParent()->isUnion()) { 4710 if (FieldBaseElementType->isReferenceType()) { 4711 SemaRef.Diag(Constructor->getLocation(), 4712 diag::err_uninitialized_member_in_ctor) 4713 << (int)Constructor->isImplicit() 4714 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4715 << 0 << Field->getDeclName(); 4716 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4717 return true; 4718 } 4719 4720 if (FieldBaseElementType.isConstQualified()) { 4721 SemaRef.Diag(Constructor->getLocation(), 4722 diag::err_uninitialized_member_in_ctor) 4723 << (int)Constructor->isImplicit() 4724 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4725 << 1 << Field->getDeclName(); 4726 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4727 return true; 4728 } 4729 } 4730 4731 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { 4732 // ARC and Weak: 4733 // Default-initialize Objective-C pointers to NULL. 4734 CXXMemberInit 4735 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, 4736 Loc, Loc, 4737 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), 4738 Loc); 4739 return false; 4740 } 4741 4742 // Nothing to initialize. 4743 CXXMemberInit = nullptr; 4744 return false; 4745 } 4746 4747 namespace { 4748 struct BaseAndFieldInfo { 4749 Sema &S; 4750 CXXConstructorDecl *Ctor; 4751 bool AnyErrorsInInits; 4752 ImplicitInitializerKind IIK; 4753 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; 4754 SmallVector<CXXCtorInitializer*, 8> AllToInit; 4755 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; 4756 4757 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) 4758 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { 4759 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); 4760 if (Ctor->getInheritedConstructor()) 4761 IIK = IIK_Inherit; 4762 else if (Generated && Ctor->isCopyConstructor()) 4763 IIK = IIK_Copy; 4764 else if (Generated && Ctor->isMoveConstructor()) 4765 IIK = IIK_Move; 4766 else 4767 IIK = IIK_Default; 4768 } 4769 4770 bool isImplicitCopyOrMove() const { 4771 switch (IIK) { 4772 case IIK_Copy: 4773 case IIK_Move: 4774 return true; 4775 4776 case IIK_Default: 4777 case IIK_Inherit: 4778 return false; 4779 } 4780 4781 llvm_unreachable("Invalid ImplicitInitializerKind!"); 4782 } 4783 4784 bool addFieldInitializer(CXXCtorInitializer *Init) { 4785 AllToInit.push_back(Init); 4786 4787 // Check whether this initializer makes the field "used". 4788 if (Init->getInit()->HasSideEffects(S.Context)) 4789 S.UnusedPrivateFields.remove(Init->getAnyMember()); 4790 4791 return false; 4792 } 4793 4794 bool isInactiveUnionMember(FieldDecl *Field) { 4795 RecordDecl *Record = Field->getParent(); 4796 if (!Record->isUnion()) 4797 return false; 4798 4799 if (FieldDecl *Active = 4800 ActiveUnionMember.lookup(Record->getCanonicalDecl())) 4801 return Active != Field->getCanonicalDecl(); 4802 4803 // In an implicit copy or move constructor, ignore any in-class initializer. 4804 if (isImplicitCopyOrMove()) 4805 return true; 4806 4807 // If there's no explicit initialization, the field is active only if it 4808 // has an in-class initializer... 4809 if (Field->hasInClassInitializer()) 4810 return false; 4811 // ... or it's an anonymous struct or union whose class has an in-class 4812 // initializer. 4813 if (!Field->isAnonymousStructOrUnion()) 4814 return true; 4815 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); 4816 return !FieldRD->hasInClassInitializer(); 4817 } 4818 4819 /// Determine whether the given field is, or is within, a union member 4820 /// that is inactive (because there was an initializer given for a different 4821 /// member of the union, or because the union was not initialized at all). 4822 bool isWithinInactiveUnionMember(FieldDecl *Field, 4823 IndirectFieldDecl *Indirect) { 4824 if (!Indirect) 4825 return isInactiveUnionMember(Field); 4826 4827 for (auto *C : Indirect->chain()) { 4828 FieldDecl *Field = dyn_cast<FieldDecl>(C); 4829 if (Field && isInactiveUnionMember(Field)) 4830 return true; 4831 } 4832 return false; 4833 } 4834 }; 4835 } 4836 4837 /// Determine whether the given type is an incomplete or zero-lenfgth 4838 /// array type. 4839 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { 4840 if (T->isIncompleteArrayType()) 4841 return true; 4842 4843 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { 4844 if (!ArrayT->getSize()) 4845 return true; 4846 4847 T = ArrayT->getElementType(); 4848 } 4849 4850 return false; 4851 } 4852 4853 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, 4854 FieldDecl *Field, 4855 IndirectFieldDecl *Indirect = nullptr) { 4856 if (Field->isInvalidDecl()) 4857 return false; 4858 4859 // Overwhelmingly common case: we have a direct initializer for this field. 4860 if (CXXCtorInitializer *Init = 4861 Info.AllBaseFields.lookup(Field->getCanonicalDecl())) 4862 return Info.addFieldInitializer(Init); 4863 4864 // C++11 [class.base.init]p8: 4865 // if the entity is a non-static data member that has a 4866 // brace-or-equal-initializer and either 4867 // -- the constructor's class is a union and no other variant member of that 4868 // union is designated by a mem-initializer-id or 4869 // -- the constructor's class is not a union, and, if the entity is a member 4870 // of an anonymous union, no other member of that union is designated by 4871 // a mem-initializer-id, 4872 // the entity is initialized as specified in [dcl.init]. 4873 // 4874 // We also apply the same rules to handle anonymous structs within anonymous 4875 // unions. 4876 if (Info.isWithinInactiveUnionMember(Field, Indirect)) 4877 return false; 4878 4879 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { 4880 ExprResult DIE = 4881 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); 4882 if (DIE.isInvalid()) 4883 return true; 4884 4885 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true); 4886 SemaRef.checkInitializerLifetime(Entity, DIE.get()); 4887 4888 CXXCtorInitializer *Init; 4889 if (Indirect) 4890 Init = new (SemaRef.Context) 4891 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), 4892 SourceLocation(), DIE.get(), SourceLocation()); 4893 else 4894 Init = new (SemaRef.Context) 4895 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), 4896 SourceLocation(), DIE.get(), SourceLocation()); 4897 return Info.addFieldInitializer(Init); 4898 } 4899 4900 // Don't initialize incomplete or zero-length arrays. 4901 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) 4902 return false; 4903 4904 // Don't try to build an implicit initializer if there were semantic 4905 // errors in any of the initializers (and therefore we might be 4906 // missing some that the user actually wrote). 4907 if (Info.AnyErrorsInInits) 4908 return false; 4909 4910 CXXCtorInitializer *Init = nullptr; 4911 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, 4912 Indirect, Init)) 4913 return true; 4914 4915 if (!Init) 4916 return false; 4917 4918 return Info.addFieldInitializer(Init); 4919 } 4920 4921 bool 4922 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, 4923 CXXCtorInitializer *Initializer) { 4924 assert(Initializer->isDelegatingInitializer()); 4925 Constructor->setNumCtorInitializers(1); 4926 CXXCtorInitializer **initializer = 4927 new (Context) CXXCtorInitializer*[1]; 4928 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); 4929 Constructor->setCtorInitializers(initializer); 4930 4931 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { 4932 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); 4933 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); 4934 } 4935 4936 DelegatingCtorDecls.push_back(Constructor); 4937 4938 DiagnoseUninitializedFields(*this, Constructor); 4939 4940 return false; 4941 } 4942 4943 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, 4944 ArrayRef<CXXCtorInitializer *> Initializers) { 4945 if (Constructor->isDependentContext()) { 4946 // Just store the initializers as written, they will be checked during 4947 // instantiation. 4948 if (!Initializers.empty()) { 4949 Constructor->setNumCtorInitializers(Initializers.size()); 4950 CXXCtorInitializer **baseOrMemberInitializers = 4951 new (Context) CXXCtorInitializer*[Initializers.size()]; 4952 memcpy(baseOrMemberInitializers, Initializers.data(), 4953 Initializers.size() * sizeof(CXXCtorInitializer*)); 4954 Constructor->setCtorInitializers(baseOrMemberInitializers); 4955 } 4956 4957 // Let template instantiation know whether we had errors. 4958 if (AnyErrors) 4959 Constructor->setInvalidDecl(); 4960 4961 return false; 4962 } 4963 4964 BaseAndFieldInfo Info(*this, Constructor, AnyErrors); 4965 4966 // We need to build the initializer AST according to order of construction 4967 // and not what user specified in the Initializers list. 4968 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); 4969 if (!ClassDecl) 4970 return true; 4971 4972 bool HadError = false; 4973 4974 for (unsigned i = 0; i < Initializers.size(); i++) { 4975 CXXCtorInitializer *Member = Initializers[i]; 4976 4977 if (Member->isBaseInitializer()) 4978 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; 4979 else { 4980 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; 4981 4982 if (IndirectFieldDecl *F = Member->getIndirectMember()) { 4983 for (auto *C : F->chain()) { 4984 FieldDecl *FD = dyn_cast<FieldDecl>(C); 4985 if (FD && FD->getParent()->isUnion()) 4986 Info.ActiveUnionMember.insert(std::make_pair( 4987 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 4988 } 4989 } else if (FieldDecl *FD = Member->getMember()) { 4990 if (FD->getParent()->isUnion()) 4991 Info.ActiveUnionMember.insert(std::make_pair( 4992 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 4993 } 4994 } 4995 } 4996 4997 // Keep track of the direct virtual bases. 4998 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; 4999 for (auto &I : ClassDecl->bases()) { 5000 if (I.isVirtual()) 5001 DirectVBases.insert(&I); 5002 } 5003 5004 // Push virtual bases before others. 5005 for (auto &VBase : ClassDecl->vbases()) { 5006 if (CXXCtorInitializer *Value 5007 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { 5008 // [class.base.init]p7, per DR257: 5009 // A mem-initializer where the mem-initializer-id names a virtual base 5010 // class is ignored during execution of a constructor of any class that 5011 // is not the most derived class. 5012 if (ClassDecl->isAbstract()) { 5013 // FIXME: Provide a fixit to remove the base specifier. This requires 5014 // tracking the location of the associated comma for a base specifier. 5015 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) 5016 << VBase.getType() << ClassDecl; 5017 DiagnoseAbstractType(ClassDecl); 5018 } 5019 5020 Info.AllToInit.push_back(Value); 5021 } else if (!AnyErrors && !ClassDecl->isAbstract()) { 5022 // [class.base.init]p8, per DR257: 5023 // If a given [...] base class is not named by a mem-initializer-id 5024 // [...] and the entity is not a virtual base class of an abstract 5025 // class, then [...] the entity is default-initialized. 5026 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); 5027 CXXCtorInitializer *CXXBaseInit; 5028 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5029 &VBase, IsInheritedVirtualBase, 5030 CXXBaseInit)) { 5031 HadError = true; 5032 continue; 5033 } 5034 5035 Info.AllToInit.push_back(CXXBaseInit); 5036 } 5037 } 5038 5039 // Non-virtual bases. 5040 for (auto &Base : ClassDecl->bases()) { 5041 // Virtuals are in the virtual base list and already constructed. 5042 if (Base.isVirtual()) 5043 continue; 5044 5045 if (CXXCtorInitializer *Value 5046 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { 5047 Info.AllToInit.push_back(Value); 5048 } else if (!AnyErrors) { 5049 CXXCtorInitializer *CXXBaseInit; 5050 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5051 &Base, /*IsInheritedVirtualBase=*/false, 5052 CXXBaseInit)) { 5053 HadError = true; 5054 continue; 5055 } 5056 5057 Info.AllToInit.push_back(CXXBaseInit); 5058 } 5059 } 5060 5061 // Fields. 5062 for (auto *Mem : ClassDecl->decls()) { 5063 if (auto *F = dyn_cast<FieldDecl>(Mem)) { 5064 // C++ [class.bit]p2: 5065 // A declaration for a bit-field that omits the identifier declares an 5066 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 5067 // initialized. 5068 if (F->isUnnamedBitfield()) 5069 continue; 5070 5071 // If we're not generating the implicit copy/move constructor, then we'll 5072 // handle anonymous struct/union fields based on their individual 5073 // indirect fields. 5074 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) 5075 continue; 5076 5077 if (CollectFieldInitializer(*this, Info, F)) 5078 HadError = true; 5079 continue; 5080 } 5081 5082 // Beyond this point, we only consider default initialization. 5083 if (Info.isImplicitCopyOrMove()) 5084 continue; 5085 5086 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { 5087 if (F->getType()->isIncompleteArrayType()) { 5088 assert(ClassDecl->hasFlexibleArrayMember() && 5089 "Incomplete array type is not valid"); 5090 continue; 5091 } 5092 5093 // Initialize each field of an anonymous struct individually. 5094 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) 5095 HadError = true; 5096 5097 continue; 5098 } 5099 } 5100 5101 unsigned NumInitializers = Info.AllToInit.size(); 5102 if (NumInitializers > 0) { 5103 Constructor->setNumCtorInitializers(NumInitializers); 5104 CXXCtorInitializer **baseOrMemberInitializers = 5105 new (Context) CXXCtorInitializer*[NumInitializers]; 5106 memcpy(baseOrMemberInitializers, Info.AllToInit.data(), 5107 NumInitializers * sizeof(CXXCtorInitializer*)); 5108 Constructor->setCtorInitializers(baseOrMemberInitializers); 5109 5110 // Constructors implicitly reference the base and member 5111 // destructors. 5112 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), 5113 Constructor->getParent()); 5114 } 5115 5116 return HadError; 5117 } 5118 5119 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { 5120 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { 5121 const RecordDecl *RD = RT->getDecl(); 5122 if (RD->isAnonymousStructOrUnion()) { 5123 for (auto *Field : RD->fields()) 5124 PopulateKeysForFields(Field, IdealInits); 5125 return; 5126 } 5127 } 5128 IdealInits.push_back(Field->getCanonicalDecl()); 5129 } 5130 5131 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { 5132 return Context.getCanonicalType(BaseType).getTypePtr(); 5133 } 5134 5135 static const void *GetKeyForMember(ASTContext &Context, 5136 CXXCtorInitializer *Member) { 5137 if (!Member->isAnyMemberInitializer()) 5138 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); 5139 5140 return Member->getAnyMember()->getCanonicalDecl(); 5141 } 5142 5143 static void DiagnoseBaseOrMemInitializerOrder( 5144 Sema &SemaRef, const CXXConstructorDecl *Constructor, 5145 ArrayRef<CXXCtorInitializer *> Inits) { 5146 if (Constructor->getDeclContext()->isDependentContext()) 5147 return; 5148 5149 // Don't check initializers order unless the warning is enabled at the 5150 // location of at least one initializer. 5151 bool ShouldCheckOrder = false; 5152 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5153 CXXCtorInitializer *Init = Inits[InitIndex]; 5154 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, 5155 Init->getSourceLocation())) { 5156 ShouldCheckOrder = true; 5157 break; 5158 } 5159 } 5160 if (!ShouldCheckOrder) 5161 return; 5162 5163 // Build the list of bases and members in the order that they'll 5164 // actually be initialized. The explicit initializers should be in 5165 // this same order but may be missing things. 5166 SmallVector<const void*, 32> IdealInitKeys; 5167 5168 const CXXRecordDecl *ClassDecl = Constructor->getParent(); 5169 5170 // 1. Virtual bases. 5171 for (const auto &VBase : ClassDecl->vbases()) 5172 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); 5173 5174 // 2. Non-virtual bases. 5175 for (const auto &Base : ClassDecl->bases()) { 5176 if (Base.isVirtual()) 5177 continue; 5178 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); 5179 } 5180 5181 // 3. Direct fields. 5182 for (auto *Field : ClassDecl->fields()) { 5183 if (Field->isUnnamedBitfield()) 5184 continue; 5185 5186 PopulateKeysForFields(Field, IdealInitKeys); 5187 } 5188 5189 unsigned NumIdealInits = IdealInitKeys.size(); 5190 unsigned IdealIndex = 0; 5191 5192 CXXCtorInitializer *PrevInit = nullptr; 5193 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5194 CXXCtorInitializer *Init = Inits[InitIndex]; 5195 const void *InitKey = GetKeyForMember(SemaRef.Context, Init); 5196 5197 // Scan forward to try to find this initializer in the idealized 5198 // initializers list. 5199 for (; IdealIndex != NumIdealInits; ++IdealIndex) 5200 if (InitKey == IdealInitKeys[IdealIndex]) 5201 break; 5202 5203 // If we didn't find this initializer, it must be because we 5204 // scanned past it on a previous iteration. That can only 5205 // happen if we're out of order; emit a warning. 5206 if (IdealIndex == NumIdealInits && PrevInit) { 5207 Sema::SemaDiagnosticBuilder D = 5208 SemaRef.Diag(PrevInit->getSourceLocation(), 5209 diag::warn_initializer_out_of_order); 5210 5211 if (PrevInit->isAnyMemberInitializer()) 5212 D << 0 << PrevInit->getAnyMember()->getDeclName(); 5213 else 5214 D << 1 << PrevInit->getTypeSourceInfo()->getType(); 5215 5216 if (Init->isAnyMemberInitializer()) 5217 D << 0 << Init->getAnyMember()->getDeclName(); 5218 else 5219 D << 1 << Init->getTypeSourceInfo()->getType(); 5220 5221 // Move back to the initializer's location in the ideal list. 5222 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) 5223 if (InitKey == IdealInitKeys[IdealIndex]) 5224 break; 5225 5226 assert(IdealIndex < NumIdealInits && 5227 "initializer not found in initializer list"); 5228 } 5229 5230 PrevInit = Init; 5231 } 5232 } 5233 5234 namespace { 5235 bool CheckRedundantInit(Sema &S, 5236 CXXCtorInitializer *Init, 5237 CXXCtorInitializer *&PrevInit) { 5238 if (!PrevInit) { 5239 PrevInit = Init; 5240 return false; 5241 } 5242 5243 if (FieldDecl *Field = Init->getAnyMember()) 5244 S.Diag(Init->getSourceLocation(), 5245 diag::err_multiple_mem_initialization) 5246 << Field->getDeclName() 5247 << Init->getSourceRange(); 5248 else { 5249 const Type *BaseClass = Init->getBaseClass(); 5250 assert(BaseClass && "neither field nor base"); 5251 S.Diag(Init->getSourceLocation(), 5252 diag::err_multiple_base_initialization) 5253 << QualType(BaseClass, 0) 5254 << Init->getSourceRange(); 5255 } 5256 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) 5257 << 0 << PrevInit->getSourceRange(); 5258 5259 return true; 5260 } 5261 5262 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; 5263 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; 5264 5265 bool CheckRedundantUnionInit(Sema &S, 5266 CXXCtorInitializer *Init, 5267 RedundantUnionMap &Unions) { 5268 FieldDecl *Field = Init->getAnyMember(); 5269 RecordDecl *Parent = Field->getParent(); 5270 NamedDecl *Child = Field; 5271 5272 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { 5273 if (Parent->isUnion()) { 5274 UnionEntry &En = Unions[Parent]; 5275 if (En.first && En.first != Child) { 5276 S.Diag(Init->getSourceLocation(), 5277 diag::err_multiple_mem_union_initialization) 5278 << Field->getDeclName() 5279 << Init->getSourceRange(); 5280 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) 5281 << 0 << En.second->getSourceRange(); 5282 return true; 5283 } 5284 if (!En.first) { 5285 En.first = Child; 5286 En.second = Init; 5287 } 5288 if (!Parent->isAnonymousStructOrUnion()) 5289 return false; 5290 } 5291 5292 Child = Parent; 5293 Parent = cast<RecordDecl>(Parent->getDeclContext()); 5294 } 5295 5296 return false; 5297 } 5298 } 5299 5300 /// ActOnMemInitializers - Handle the member initializers for a constructor. 5301 void Sema::ActOnMemInitializers(Decl *ConstructorDecl, 5302 SourceLocation ColonLoc, 5303 ArrayRef<CXXCtorInitializer*> MemInits, 5304 bool AnyErrors) { 5305 if (!ConstructorDecl) 5306 return; 5307 5308 AdjustDeclIfTemplate(ConstructorDecl); 5309 5310 CXXConstructorDecl *Constructor 5311 = dyn_cast<CXXConstructorDecl>(ConstructorDecl); 5312 5313 if (!Constructor) { 5314 Diag(ColonLoc, diag::err_only_constructors_take_base_inits); 5315 return; 5316 } 5317 5318 // Mapping for the duplicate initializers check. 5319 // For member initializers, this is keyed with a FieldDecl*. 5320 // For base initializers, this is keyed with a Type*. 5321 llvm::DenseMap<const void *, CXXCtorInitializer *> Members; 5322 5323 // Mapping for the inconsistent anonymous-union initializers check. 5324 RedundantUnionMap MemberUnions; 5325 5326 bool HadError = false; 5327 for (unsigned i = 0; i < MemInits.size(); i++) { 5328 CXXCtorInitializer *Init = MemInits[i]; 5329 5330 // Set the source order index. 5331 Init->setSourceOrder(i); 5332 5333 if (Init->isAnyMemberInitializer()) { 5334 const void *Key = GetKeyForMember(Context, Init); 5335 if (CheckRedundantInit(*this, Init, Members[Key]) || 5336 CheckRedundantUnionInit(*this, Init, MemberUnions)) 5337 HadError = true; 5338 } else if (Init->isBaseInitializer()) { 5339 const void *Key = GetKeyForMember(Context, Init); 5340 if (CheckRedundantInit(*this, Init, Members[Key])) 5341 HadError = true; 5342 } else { 5343 assert(Init->isDelegatingInitializer()); 5344 // This must be the only initializer 5345 if (MemInits.size() != 1) { 5346 Diag(Init->getSourceLocation(), 5347 diag::err_delegating_initializer_alone) 5348 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); 5349 // We will treat this as being the only initializer. 5350 } 5351 SetDelegatingInitializer(Constructor, MemInits[i]); 5352 // Return immediately as the initializer is set. 5353 return; 5354 } 5355 } 5356 5357 if (HadError) 5358 return; 5359 5360 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); 5361 5362 SetCtorInitializers(Constructor, AnyErrors, MemInits); 5363 5364 DiagnoseUninitializedFields(*this, Constructor); 5365 } 5366 5367 void 5368 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, 5369 CXXRecordDecl *ClassDecl) { 5370 // Ignore dependent contexts. Also ignore unions, since their members never 5371 // have destructors implicitly called. 5372 if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) 5373 return; 5374 5375 // FIXME: all the access-control diagnostics are positioned on the 5376 // field/base declaration. That's probably good; that said, the 5377 // user might reasonably want to know why the destructor is being 5378 // emitted, and we currently don't say. 5379 5380 // Non-static data members. 5381 for (auto *Field : ClassDecl->fields()) { 5382 if (Field->isInvalidDecl()) 5383 continue; 5384 5385 // Don't destroy incomplete or zero-length arrays. 5386 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) 5387 continue; 5388 5389 QualType FieldType = Context.getBaseElementType(Field->getType()); 5390 5391 const RecordType* RT = FieldType->getAs<RecordType>(); 5392 if (!RT) 5393 continue; 5394 5395 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5396 if (FieldClassDecl->isInvalidDecl()) 5397 continue; 5398 if (FieldClassDecl->hasIrrelevantDestructor()) 5399 continue; 5400 // The destructor for an implicit anonymous union member is never invoked. 5401 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 5402 continue; 5403 5404 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); 5405 assert(Dtor && "No dtor found for FieldClassDecl!"); 5406 CheckDestructorAccess(Field->getLocation(), Dtor, 5407 PDiag(diag::err_access_dtor_field) 5408 << Field->getDeclName() 5409 << FieldType); 5410 5411 MarkFunctionReferenced(Location, Dtor); 5412 DiagnoseUseOfDecl(Dtor, Location); 5413 } 5414 5415 // We only potentially invoke the destructors of potentially constructed 5416 // subobjects. 5417 bool VisitVirtualBases = !ClassDecl->isAbstract(); 5418 5419 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; 5420 5421 // Bases. 5422 for (const auto &Base : ClassDecl->bases()) { 5423 // Bases are always records in a well-formed non-dependent class. 5424 const RecordType *RT = Base.getType()->getAs<RecordType>(); 5425 5426 // Remember direct virtual bases. 5427 if (Base.isVirtual()) { 5428 if (!VisitVirtualBases) 5429 continue; 5430 DirectVirtualBases.insert(RT); 5431 } 5432 5433 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5434 // If our base class is invalid, we probably can't get its dtor anyway. 5435 if (BaseClassDecl->isInvalidDecl()) 5436 continue; 5437 if (BaseClassDecl->hasIrrelevantDestructor()) 5438 continue; 5439 5440 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5441 assert(Dtor && "No dtor found for BaseClassDecl!"); 5442 5443 // FIXME: caret should be on the start of the class name 5444 CheckDestructorAccess(Base.getBeginLoc(), Dtor, 5445 PDiag(diag::err_access_dtor_base) 5446 << Base.getType() << Base.getSourceRange(), 5447 Context.getTypeDeclType(ClassDecl)); 5448 5449 MarkFunctionReferenced(Location, Dtor); 5450 DiagnoseUseOfDecl(Dtor, Location); 5451 } 5452 5453 if (!VisitVirtualBases) 5454 return; 5455 5456 // Virtual bases. 5457 for (const auto &VBase : ClassDecl->vbases()) { 5458 // Bases are always records in a well-formed non-dependent class. 5459 const RecordType *RT = VBase.getType()->castAs<RecordType>(); 5460 5461 // Ignore direct virtual bases. 5462 if (DirectVirtualBases.count(RT)) 5463 continue; 5464 5465 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5466 // If our base class is invalid, we probably can't get its dtor anyway. 5467 if (BaseClassDecl->isInvalidDecl()) 5468 continue; 5469 if (BaseClassDecl->hasIrrelevantDestructor()) 5470 continue; 5471 5472 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5473 assert(Dtor && "No dtor found for BaseClassDecl!"); 5474 if (CheckDestructorAccess( 5475 ClassDecl->getLocation(), Dtor, 5476 PDiag(diag::err_access_dtor_vbase) 5477 << Context.getTypeDeclType(ClassDecl) << VBase.getType(), 5478 Context.getTypeDeclType(ClassDecl)) == 5479 AR_accessible) { 5480 CheckDerivedToBaseConversion( 5481 Context.getTypeDeclType(ClassDecl), VBase.getType(), 5482 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), 5483 SourceRange(), DeclarationName(), nullptr); 5484 } 5485 5486 MarkFunctionReferenced(Location, Dtor); 5487 DiagnoseUseOfDecl(Dtor, Location); 5488 } 5489 } 5490 5491 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { 5492 if (!CDtorDecl) 5493 return; 5494 5495 if (CXXConstructorDecl *Constructor 5496 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) { 5497 SetCtorInitializers(Constructor, /*AnyErrors=*/false); 5498 DiagnoseUninitializedFields(*this, Constructor); 5499 } 5500 } 5501 5502 bool Sema::isAbstractType(SourceLocation Loc, QualType T) { 5503 if (!getLangOpts().CPlusPlus) 5504 return false; 5505 5506 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); 5507 if (!RD) 5508 return false; 5509 5510 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a 5511 // class template specialization here, but doing so breaks a lot of code. 5512 5513 // We can't answer whether something is abstract until it has a 5514 // definition. If it's currently being defined, we'll walk back 5515 // over all the declarations when we have a full definition. 5516 const CXXRecordDecl *Def = RD->getDefinition(); 5517 if (!Def || Def->isBeingDefined()) 5518 return false; 5519 5520 return RD->isAbstract(); 5521 } 5522 5523 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 5524 TypeDiagnoser &Diagnoser) { 5525 if (!isAbstractType(Loc, T)) 5526 return false; 5527 5528 T = Context.getBaseElementType(T); 5529 Diagnoser.diagnose(*this, Loc, T); 5530 DiagnoseAbstractType(T->getAsCXXRecordDecl()); 5531 return true; 5532 } 5533 5534 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { 5535 // Check if we've already emitted the list of pure virtual functions 5536 // for this class. 5537 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) 5538 return; 5539 5540 // If the diagnostic is suppressed, don't emit the notes. We're only 5541 // going to emit them once, so try to attach them to a diagnostic we're 5542 // actually going to show. 5543 if (Diags.isLastDiagnosticIgnored()) 5544 return; 5545 5546 CXXFinalOverriderMap FinalOverriders; 5547 RD->getFinalOverriders(FinalOverriders); 5548 5549 // Keep a set of seen pure methods so we won't diagnose the same method 5550 // more than once. 5551 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; 5552 5553 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 5554 MEnd = FinalOverriders.end(); 5555 M != MEnd; 5556 ++M) { 5557 for (OverridingMethods::iterator SO = M->second.begin(), 5558 SOEnd = M->second.end(); 5559 SO != SOEnd; ++SO) { 5560 // C++ [class.abstract]p4: 5561 // A class is abstract if it contains or inherits at least one 5562 // pure virtual function for which the final overrider is pure 5563 // virtual. 5564 5565 // 5566 if (SO->second.size() != 1) 5567 continue; 5568 5569 if (!SO->second.front().Method->isPure()) 5570 continue; 5571 5572 if (!SeenPureMethods.insert(SO->second.front().Method).second) 5573 continue; 5574 5575 Diag(SO->second.front().Method->getLocation(), 5576 diag::note_pure_virtual_function) 5577 << SO->second.front().Method->getDeclName() << RD->getDeclName(); 5578 } 5579 } 5580 5581 if (!PureVirtualClassDiagSet) 5582 PureVirtualClassDiagSet.reset(new RecordDeclSetTy); 5583 PureVirtualClassDiagSet->insert(RD); 5584 } 5585 5586 namespace { 5587 struct AbstractUsageInfo { 5588 Sema &S; 5589 CXXRecordDecl *Record; 5590 CanQualType AbstractType; 5591 bool Invalid; 5592 5593 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) 5594 : S(S), Record(Record), 5595 AbstractType(S.Context.getCanonicalType( 5596 S.Context.getTypeDeclType(Record))), 5597 Invalid(false) {} 5598 5599 void DiagnoseAbstractType() { 5600 if (Invalid) return; 5601 S.DiagnoseAbstractType(Record); 5602 Invalid = true; 5603 } 5604 5605 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); 5606 }; 5607 5608 struct CheckAbstractUsage { 5609 AbstractUsageInfo &Info; 5610 const NamedDecl *Ctx; 5611 5612 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) 5613 : Info(Info), Ctx(Ctx) {} 5614 5615 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5616 switch (TL.getTypeLocClass()) { 5617 #define ABSTRACT_TYPELOC(CLASS, PARENT) 5618 #define TYPELOC(CLASS, PARENT) \ 5619 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; 5620 #include "clang/AST/TypeLocNodes.def" 5621 } 5622 } 5623 5624 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5625 Visit(TL.getReturnLoc(), Sema::AbstractReturnType); 5626 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { 5627 if (!TL.getParam(I)) 5628 continue; 5629 5630 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); 5631 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); 5632 } 5633 } 5634 5635 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5636 Visit(TL.getElementLoc(), Sema::AbstractArrayType); 5637 } 5638 5639 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5640 // Visit the type parameters from a permissive context. 5641 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { 5642 TemplateArgumentLoc TAL = TL.getArgLoc(I); 5643 if (TAL.getArgument().getKind() == TemplateArgument::Type) 5644 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) 5645 Visit(TSI->getTypeLoc(), Sema::AbstractNone); 5646 // TODO: other template argument types? 5647 } 5648 } 5649 5650 // Visit pointee types from a permissive context. 5651 #define CheckPolymorphic(Type) \ 5652 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ 5653 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ 5654 } 5655 CheckPolymorphic(PointerTypeLoc) 5656 CheckPolymorphic(ReferenceTypeLoc) 5657 CheckPolymorphic(MemberPointerTypeLoc) 5658 CheckPolymorphic(BlockPointerTypeLoc) 5659 CheckPolymorphic(AtomicTypeLoc) 5660 5661 /// Handle all the types we haven't given a more specific 5662 /// implementation for above. 5663 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5664 // Every other kind of type that we haven't called out already 5665 // that has an inner type is either (1) sugar or (2) contains that 5666 // inner type in some way as a subobject. 5667 if (TypeLoc Next = TL.getNextTypeLoc()) 5668 return Visit(Next, Sel); 5669 5670 // If there's no inner type and we're in a permissive context, 5671 // don't diagnose. 5672 if (Sel == Sema::AbstractNone) return; 5673 5674 // Check whether the type matches the abstract type. 5675 QualType T = TL.getType(); 5676 if (T->isArrayType()) { 5677 Sel = Sema::AbstractArrayType; 5678 T = Info.S.Context.getBaseElementType(T); 5679 } 5680 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); 5681 if (CT != Info.AbstractType) return; 5682 5683 // It matched; do some magic. 5684 if (Sel == Sema::AbstractArrayType) { 5685 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) 5686 << T << TL.getSourceRange(); 5687 } else { 5688 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) 5689 << Sel << T << TL.getSourceRange(); 5690 } 5691 Info.DiagnoseAbstractType(); 5692 } 5693 }; 5694 5695 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, 5696 Sema::AbstractDiagSelID Sel) { 5697 CheckAbstractUsage(*this, D).Visit(TL, Sel); 5698 } 5699 5700 } 5701 5702 /// Check for invalid uses of an abstract type in a method declaration. 5703 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5704 CXXMethodDecl *MD) { 5705 // No need to do the check on definitions, which require that 5706 // the return/param types be complete. 5707 if (MD->doesThisDeclarationHaveABody()) 5708 return; 5709 5710 // For safety's sake, just ignore it if we don't have type source 5711 // information. This should never happen for non-implicit methods, 5712 // but... 5713 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 5714 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); 5715 } 5716 5717 /// Check for invalid uses of an abstract type within a class definition. 5718 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5719 CXXRecordDecl *RD) { 5720 for (auto *D : RD->decls()) { 5721 if (D->isImplicit()) continue; 5722 5723 // Methods and method templates. 5724 if (isa<CXXMethodDecl>(D)) { 5725 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D)); 5726 } else if (isa<FunctionTemplateDecl>(D)) { 5727 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); 5728 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD)); 5729 5730 // Fields and static variables. 5731 } else if (isa<FieldDecl>(D)) { 5732 FieldDecl *FD = cast<FieldDecl>(D); 5733 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 5734 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); 5735 } else if (isa<VarDecl>(D)) { 5736 VarDecl *VD = cast<VarDecl>(D); 5737 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) 5738 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); 5739 5740 // Nested classes and class templates. 5741 } else if (isa<CXXRecordDecl>(D)) { 5742 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D)); 5743 } else if (isa<ClassTemplateDecl>(D)) { 5744 CheckAbstractClassUsage(Info, 5745 cast<ClassTemplateDecl>(D)->getTemplatedDecl()); 5746 } 5747 } 5748 } 5749 5750 static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { 5751 Attr *ClassAttr = getDLLAttr(Class); 5752 if (!ClassAttr) 5753 return; 5754 5755 assert(ClassAttr->getKind() == attr::DLLExport); 5756 5757 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 5758 5759 if (TSK == TSK_ExplicitInstantiationDeclaration) 5760 // Don't go any further if this is just an explicit instantiation 5761 // declaration. 5762 return; 5763 5764 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) 5765 S.MarkVTableUsed(Class->getLocation(), Class, true); 5766 5767 for (Decl *Member : Class->decls()) { 5768 // Defined static variables that are members of an exported base 5769 // class must be marked export too. 5770 auto *VD = dyn_cast<VarDecl>(Member); 5771 if (VD && Member->getAttr<DLLExportAttr>() && 5772 VD->getStorageClass() == SC_Static && 5773 TSK == TSK_ImplicitInstantiation) 5774 S.MarkVariableReferenced(VD->getLocation(), VD); 5775 5776 auto *MD = dyn_cast<CXXMethodDecl>(Member); 5777 if (!MD) 5778 continue; 5779 5780 if (Member->getAttr<DLLExportAttr>()) { 5781 if (MD->isUserProvided()) { 5782 // Instantiate non-default class member functions ... 5783 5784 // .. except for certain kinds of template specializations. 5785 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) 5786 continue; 5787 5788 S.MarkFunctionReferenced(Class->getLocation(), MD); 5789 5790 // The function will be passed to the consumer when its definition is 5791 // encountered. 5792 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() || 5793 MD->isCopyAssignmentOperator() || 5794 MD->isMoveAssignmentOperator()) { 5795 // Synthesize and instantiate non-trivial implicit methods, explicitly 5796 // defaulted methods, and the copy and move assignment operators. The 5797 // latter are exported even if they are trivial, because the address of 5798 // an operator can be taken and should compare equal across libraries. 5799 DiagnosticErrorTrap Trap(S.Diags); 5800 S.MarkFunctionReferenced(Class->getLocation(), MD); 5801 if (Trap.hasErrorOccurred()) { 5802 S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class) 5803 << Class << !S.getLangOpts().CPlusPlus11; 5804 break; 5805 } 5806 5807 // There is no later point when we will see the definition of this 5808 // function, so pass it to the consumer now. 5809 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 5810 } 5811 } 5812 } 5813 } 5814 5815 static void checkForMultipleExportedDefaultConstructors(Sema &S, 5816 CXXRecordDecl *Class) { 5817 // Only the MS ABI has default constructor closures, so we don't need to do 5818 // this semantic checking anywhere else. 5819 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) 5820 return; 5821 5822 CXXConstructorDecl *LastExportedDefaultCtor = nullptr; 5823 for (Decl *Member : Class->decls()) { 5824 // Look for exported default constructors. 5825 auto *CD = dyn_cast<CXXConstructorDecl>(Member); 5826 if (!CD || !CD->isDefaultConstructor()) 5827 continue; 5828 auto *Attr = CD->getAttr<DLLExportAttr>(); 5829 if (!Attr) 5830 continue; 5831 5832 // If the class is non-dependent, mark the default arguments as ODR-used so 5833 // that we can properly codegen the constructor closure. 5834 if (!Class->isDependentContext()) { 5835 for (ParmVarDecl *PD : CD->parameters()) { 5836 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); 5837 S.DiscardCleanupsInEvaluationContext(); 5838 } 5839 } 5840 5841 if (LastExportedDefaultCtor) { 5842 S.Diag(LastExportedDefaultCtor->getLocation(), 5843 diag::err_attribute_dll_ambiguous_default_ctor) 5844 << Class; 5845 S.Diag(CD->getLocation(), diag::note_entity_declared_at) 5846 << CD->getDeclName(); 5847 return; 5848 } 5849 LastExportedDefaultCtor = CD; 5850 } 5851 } 5852 5853 void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { 5854 // Mark any compiler-generated routines with the implicit code_seg attribute. 5855 for (auto *Method : Class->methods()) { 5856 if (Method->isUserProvided()) 5857 continue; 5858 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 5859 Method->addAttr(A); 5860 } 5861 } 5862 5863 /// Check class-level dllimport/dllexport attribute. 5864 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { 5865 Attr *ClassAttr = getDLLAttr(Class); 5866 5867 // MSVC inherits DLL attributes to partial class template specializations. 5868 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) { 5869 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { 5870 if (Attr *TemplateAttr = 5871 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { 5872 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext())); 5873 A->setInherited(true); 5874 ClassAttr = A; 5875 } 5876 } 5877 } 5878 5879 if (!ClassAttr) 5880 return; 5881 5882 if (!Class->isExternallyVisible()) { 5883 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) 5884 << Class << ClassAttr; 5885 return; 5886 } 5887 5888 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 5889 !ClassAttr->isInherited()) { 5890 // Diagnose dll attributes on members of class with dll attribute. 5891 for (Decl *Member : Class->decls()) { 5892 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) 5893 continue; 5894 InheritableAttr *MemberAttr = getDLLAttr(Member); 5895 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) 5896 continue; 5897 5898 Diag(MemberAttr->getLocation(), 5899 diag::err_attribute_dll_member_of_dll_class) 5900 << MemberAttr << ClassAttr; 5901 Diag(ClassAttr->getLocation(), diag::note_previous_attribute); 5902 Member->setInvalidDecl(); 5903 } 5904 } 5905 5906 if (Class->getDescribedClassTemplate()) 5907 // Don't inherit dll attribute until the template is instantiated. 5908 return; 5909 5910 // The class is either imported or exported. 5911 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; 5912 5913 // Check if this was a dllimport attribute propagated from a derived class to 5914 // a base class template specialization. We don't apply these attributes to 5915 // static data members. 5916 const bool PropagatedImport = 5917 !ClassExported && 5918 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate(); 5919 5920 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 5921 5922 // Ignore explicit dllexport on explicit class template instantiation 5923 // declarations, except in MinGW mode. 5924 if (ClassExported && !ClassAttr->isInherited() && 5925 TSK == TSK_ExplicitInstantiationDeclaration && 5926 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 5927 Class->dropAttr<DLLExportAttr>(); 5928 return; 5929 } 5930 5931 // Force declaration of implicit members so they can inherit the attribute. 5932 ForceDeclarationOfImplicitMembers(Class); 5933 5934 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't 5935 // seem to be true in practice? 5936 5937 for (Decl *Member : Class->decls()) { 5938 VarDecl *VD = dyn_cast<VarDecl>(Member); 5939 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); 5940 5941 // Only methods and static fields inherit the attributes. 5942 if (!VD && !MD) 5943 continue; 5944 5945 if (MD) { 5946 // Don't process deleted methods. 5947 if (MD->isDeleted()) 5948 continue; 5949 5950 if (MD->isInlined()) { 5951 // MinGW does not import or export inline methods. But do it for 5952 // template instantiations. 5953 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 5954 !Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment() && 5955 TSK != TSK_ExplicitInstantiationDeclaration && 5956 TSK != TSK_ExplicitInstantiationDefinition) 5957 continue; 5958 5959 // MSVC versions before 2015 don't export the move assignment operators 5960 // and move constructor, so don't attempt to import/export them if 5961 // we have a definition. 5962 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD); 5963 if ((MD->isMoveAssignmentOperator() || 5964 (Ctor && Ctor->isMoveConstructor())) && 5965 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) 5966 continue; 5967 5968 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign 5969 // operator is exported anyway. 5970 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 5971 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial()) 5972 continue; 5973 } 5974 } 5975 5976 // Don't apply dllimport attributes to static data members of class template 5977 // instantiations when the attribute is propagated from a derived class. 5978 if (VD && PropagatedImport) 5979 continue; 5980 5981 if (!cast<NamedDecl>(Member)->isExternallyVisible()) 5982 continue; 5983 5984 if (!getDLLAttr(Member)) { 5985 InheritableAttr *NewAttr = nullptr; 5986 5987 // Do not export/import inline function when -fno-dllexport-inlines is 5988 // passed. But add attribute for later local static var check. 5989 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && 5990 TSK != TSK_ExplicitInstantiationDeclaration && 5991 TSK != TSK_ExplicitInstantiationDefinition) { 5992 if (ClassExported) { 5993 NewAttr = ::new (getASTContext()) 5994 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr); 5995 } else { 5996 NewAttr = ::new (getASTContext()) 5997 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr); 5998 } 5999 } else { 6000 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6001 } 6002 6003 NewAttr->setInherited(true); 6004 Member->addAttr(NewAttr); 6005 6006 if (MD) { 6007 // Propagate DLLAttr to friend re-declarations of MD that have already 6008 // been constructed. 6009 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; 6010 FD = FD->getPreviousDecl()) { 6011 if (FD->getFriendObjectKind() == Decl::FOK_None) 6012 continue; 6013 assert(!getDLLAttr(FD) && 6014 "friend re-decl should not already have a DLLAttr"); 6015 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6016 NewAttr->setInherited(true); 6017 FD->addAttr(NewAttr); 6018 } 6019 } 6020 } 6021 } 6022 6023 if (ClassExported) 6024 DelayedDllExportClasses.push_back(Class); 6025 } 6026 6027 /// Perform propagation of DLL attributes from a derived class to a 6028 /// templated base class for MS compatibility. 6029 void Sema::propagateDLLAttrToBaseClassTemplate( 6030 CXXRecordDecl *Class, Attr *ClassAttr, 6031 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { 6032 if (getDLLAttr( 6033 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { 6034 // If the base class template has a DLL attribute, don't try to change it. 6035 return; 6036 } 6037 6038 auto TSK = BaseTemplateSpec->getSpecializationKind(); 6039 if (!getDLLAttr(BaseTemplateSpec) && 6040 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || 6041 TSK == TSK_ImplicitInstantiation)) { 6042 // The template hasn't been instantiated yet (or it has, but only as an 6043 // explicit instantiation declaration or implicit instantiation, which means 6044 // we haven't codegenned any members yet), so propagate the attribute. 6045 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6046 NewAttr->setInherited(true); 6047 BaseTemplateSpec->addAttr(NewAttr); 6048 6049 // If this was an import, mark that we propagated it from a derived class to 6050 // a base class template specialization. 6051 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr)) 6052 ImportAttr->setPropagatedToBaseTemplate(); 6053 6054 // If the template is already instantiated, checkDLLAttributeRedeclaration() 6055 // needs to be run again to work see the new attribute. Otherwise this will 6056 // get run whenever the template is instantiated. 6057 if (TSK != TSK_Undeclared) 6058 checkClassLevelDLLAttribute(BaseTemplateSpec); 6059 6060 return; 6061 } 6062 6063 if (getDLLAttr(BaseTemplateSpec)) { 6064 // The template has already been specialized or instantiated with an 6065 // attribute, explicitly or through propagation. We should not try to change 6066 // it. 6067 return; 6068 } 6069 6070 // The template was previously instantiated or explicitly specialized without 6071 // a dll attribute, It's too late for us to add an attribute, so warn that 6072 // this is unsupported. 6073 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) 6074 << BaseTemplateSpec->isExplicitSpecialization(); 6075 Diag(ClassAttr->getLocation(), diag::note_attribute); 6076 if (BaseTemplateSpec->isExplicitSpecialization()) { 6077 Diag(BaseTemplateSpec->getLocation(), 6078 diag::note_template_class_explicit_specialization_was_here) 6079 << BaseTemplateSpec; 6080 } else { 6081 Diag(BaseTemplateSpec->getPointOfInstantiation(), 6082 diag::note_template_class_instantiation_was_here) 6083 << BaseTemplateSpec; 6084 } 6085 } 6086 6087 static void DefineImplicitSpecialMember(Sema &S, CXXMethodDecl *MD, 6088 SourceLocation DefaultLoc) { 6089 switch (S.getSpecialMember(MD)) { 6090 case Sema::CXXDefaultConstructor: 6091 S.DefineImplicitDefaultConstructor(DefaultLoc, 6092 cast<CXXConstructorDecl>(MD)); 6093 break; 6094 case Sema::CXXCopyConstructor: 6095 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD)); 6096 break; 6097 case Sema::CXXCopyAssignment: 6098 S.DefineImplicitCopyAssignment(DefaultLoc, MD); 6099 break; 6100 case Sema::CXXDestructor: 6101 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD)); 6102 break; 6103 case Sema::CXXMoveConstructor: 6104 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD)); 6105 break; 6106 case Sema::CXXMoveAssignment: 6107 S.DefineImplicitMoveAssignment(DefaultLoc, MD); 6108 break; 6109 case Sema::CXXInvalid: 6110 llvm_unreachable("Invalid special member."); 6111 } 6112 } 6113 6114 /// Determine whether a type is permitted to be passed or returned in 6115 /// registers, per C++ [class.temporary]p3. 6116 static bool canPassInRegisters(Sema &S, CXXRecordDecl *D, 6117 TargetInfo::CallingConvKind CCK) { 6118 if (D->isDependentType() || D->isInvalidDecl()) 6119 return false; 6120 6121 // Clang <= 4 used the pre-C++11 rule, which ignores move operations. 6122 // The PS4 platform ABI follows the behavior of Clang 3.2. 6123 if (CCK == TargetInfo::CCK_ClangABI4OrPS4) 6124 return !D->hasNonTrivialDestructorForCall() && 6125 !D->hasNonTrivialCopyConstructorForCall(); 6126 6127 if (CCK == TargetInfo::CCK_MicrosoftWin64) { 6128 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false; 6129 bool DtorIsTrivialForCall = false; 6130 6131 // If a class has at least one non-deleted, trivial copy constructor, it 6132 // is passed according to the C ABI. Otherwise, it is passed indirectly. 6133 // 6134 // Note: This permits classes with non-trivial copy or move ctors to be 6135 // passed in registers, so long as they *also* have a trivial copy ctor, 6136 // which is non-conforming. 6137 if (D->needsImplicitCopyConstructor()) { 6138 if (!D->defaultedCopyConstructorIsDeleted()) { 6139 if (D->hasTrivialCopyConstructor()) 6140 CopyCtorIsTrivial = true; 6141 if (D->hasTrivialCopyConstructorForCall()) 6142 CopyCtorIsTrivialForCall = true; 6143 } 6144 } else { 6145 for (const CXXConstructorDecl *CD : D->ctors()) { 6146 if (CD->isCopyConstructor() && !CD->isDeleted()) { 6147 if (CD->isTrivial()) 6148 CopyCtorIsTrivial = true; 6149 if (CD->isTrivialForCall()) 6150 CopyCtorIsTrivialForCall = true; 6151 } 6152 } 6153 } 6154 6155 if (D->needsImplicitDestructor()) { 6156 if (!D->defaultedDestructorIsDeleted() && 6157 D->hasTrivialDestructorForCall()) 6158 DtorIsTrivialForCall = true; 6159 } else if (const auto *DD = D->getDestructor()) { 6160 if (!DD->isDeleted() && DD->isTrivialForCall()) 6161 DtorIsTrivialForCall = true; 6162 } 6163 6164 // If the copy ctor and dtor are both trivial-for-calls, pass direct. 6165 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall) 6166 return true; 6167 6168 // If a class has a destructor, we'd really like to pass it indirectly 6169 // because it allows us to elide copies. Unfortunately, MSVC makes that 6170 // impossible for small types, which it will pass in a single register or 6171 // stack slot. Most objects with dtors are large-ish, so handle that early. 6172 // We can't call out all large objects as being indirect because there are 6173 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate 6174 // how we pass large POD types. 6175 6176 // Note: This permits small classes with nontrivial destructors to be 6177 // passed in registers, which is non-conforming. 6178 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); 6179 uint64_t TypeSize = isAArch64 ? 128 : 64; 6180 6181 if (CopyCtorIsTrivial && 6182 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize) 6183 return true; 6184 return false; 6185 } 6186 6187 // Per C++ [class.temporary]p3, the relevant condition is: 6188 // each copy constructor, move constructor, and destructor of X is 6189 // either trivial or deleted, and X has at least one non-deleted copy 6190 // or move constructor 6191 bool HasNonDeletedCopyOrMove = false; 6192 6193 if (D->needsImplicitCopyConstructor() && 6194 !D->defaultedCopyConstructorIsDeleted()) { 6195 if (!D->hasTrivialCopyConstructorForCall()) 6196 return false; 6197 HasNonDeletedCopyOrMove = true; 6198 } 6199 6200 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() && 6201 !D->defaultedMoveConstructorIsDeleted()) { 6202 if (!D->hasTrivialMoveConstructorForCall()) 6203 return false; 6204 HasNonDeletedCopyOrMove = true; 6205 } 6206 6207 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() && 6208 !D->hasTrivialDestructorForCall()) 6209 return false; 6210 6211 for (const CXXMethodDecl *MD : D->methods()) { 6212 if (MD->isDeleted()) 6213 continue; 6214 6215 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6216 if (CD && CD->isCopyOrMoveConstructor()) 6217 HasNonDeletedCopyOrMove = true; 6218 else if (!isa<CXXDestructorDecl>(MD)) 6219 continue; 6220 6221 if (!MD->isTrivialForCall()) 6222 return false; 6223 } 6224 6225 return HasNonDeletedCopyOrMove; 6226 } 6227 6228 /// Perform semantic checks on a class definition that has been 6229 /// completing, introducing implicitly-declared members, checking for 6230 /// abstract types, etc. 6231 void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) { 6232 if (!Record) 6233 return; 6234 6235 if (Record->isAbstract() && !Record->isInvalidDecl()) { 6236 AbstractUsageInfo Info(*this, Record); 6237 CheckAbstractClassUsage(Info, Record); 6238 } 6239 6240 // If this is not an aggregate type and has no user-declared constructor, 6241 // complain about any non-static data members of reference or const scalar 6242 // type, since they will never get initializers. 6243 if (!Record->isInvalidDecl() && !Record->isDependentType() && 6244 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && 6245 !Record->isLambda()) { 6246 bool Complained = false; 6247 for (const auto *F : Record->fields()) { 6248 if (F->hasInClassInitializer() || F->isUnnamedBitfield()) 6249 continue; 6250 6251 if (F->getType()->isReferenceType() || 6252 (F->getType().isConstQualified() && F->getType()->isScalarType())) { 6253 if (!Complained) { 6254 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) 6255 << Record->getTagKind() << Record; 6256 Complained = true; 6257 } 6258 6259 Diag(F->getLocation(), diag::note_refconst_member_not_initialized) 6260 << F->getType()->isReferenceType() 6261 << F->getDeclName(); 6262 } 6263 } 6264 } 6265 6266 if (Record->getIdentifier()) { 6267 // C++ [class.mem]p13: 6268 // If T is the name of a class, then each of the following shall have a 6269 // name different from T: 6270 // - every member of every anonymous union that is a member of class T. 6271 // 6272 // C++ [class.mem]p14: 6273 // In addition, if class T has a user-declared constructor (12.1), every 6274 // non-static data member of class T shall have a name different from T. 6275 DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); 6276 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; 6277 ++I) { 6278 NamedDecl *D = (*I)->getUnderlyingDecl(); 6279 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) && 6280 Record->hasUserDeclaredConstructor()) || 6281 isa<IndirectFieldDecl>(D)) { 6282 Diag((*I)->getLocation(), diag::err_member_name_of_class) 6283 << D->getDeclName(); 6284 break; 6285 } 6286 } 6287 } 6288 6289 // Warn if the class has virtual methods but non-virtual public destructor. 6290 if (Record->isPolymorphic() && !Record->isDependentType()) { 6291 CXXDestructorDecl *dtor = Record->getDestructor(); 6292 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && 6293 !Record->hasAttr<FinalAttr>()) 6294 Diag(dtor ? dtor->getLocation() : Record->getLocation(), 6295 diag::warn_non_virtual_dtor) << Context.getRecordType(Record); 6296 } 6297 6298 if (Record->isAbstract()) { 6299 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) { 6300 Diag(Record->getLocation(), diag::warn_abstract_final_class) 6301 << FA->isSpelledAsSealed(); 6302 DiagnoseAbstractType(Record); 6303 } 6304 } 6305 6306 // Warn if the class has a final destructor but is not itself marked final. 6307 if (!Record->hasAttr<FinalAttr>()) { 6308 if (const CXXDestructorDecl *dtor = Record->getDestructor()) { 6309 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) { 6310 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class) 6311 << FA->isSpelledAsSealed() 6312 << FixItHint::CreateInsertion( 6313 getLocForEndOfToken(Record->getLocation()), 6314 (FA->isSpelledAsSealed() ? " sealed" : " final")); 6315 Diag(Record->getLocation(), 6316 diag::note_final_dtor_non_final_class_silence) 6317 << Context.getRecordType(Record) << FA->isSpelledAsSealed(); 6318 } 6319 } 6320 } 6321 6322 // See if trivial_abi has to be dropped. 6323 if (Record->hasAttr<TrivialABIAttr>()) 6324 checkIllFormedTrivialABIStruct(*Record); 6325 6326 // Set HasTrivialSpecialMemberForCall if the record has attribute 6327 // "trivial_abi". 6328 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>(); 6329 6330 if (HasTrivialABI) 6331 Record->setHasTrivialSpecialMemberForCall(); 6332 6333 auto CompleteMemberFunction = [&](CXXMethodDecl *M) { 6334 // Check whether the explicitly-defaulted special members are valid. 6335 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted()) 6336 CheckExplicitlyDefaultedSpecialMember(M); 6337 6338 // For an explicitly defaulted or deleted special member, we defer 6339 // determining triviality until the class is complete. That time is now! 6340 CXXSpecialMember CSM = getSpecialMember(M); 6341 if (!M->isImplicit() && !M->isUserProvided()) { 6342 if (CSM != CXXInvalid) { 6343 M->setTrivial(SpecialMemberIsTrivial(M, CSM)); 6344 // Inform the class that we've finished declaring this member. 6345 Record->finishedDefaultedOrDeletedMember(M); 6346 M->setTrivialForCall( 6347 HasTrivialABI || 6348 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI)); 6349 Record->setTrivialForCallFlags(M); 6350 } 6351 } 6352 6353 // Set triviality for the purpose of calls if this is a user-provided 6354 // copy/move constructor or destructor. 6355 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor || 6356 CSM == CXXDestructor) && M->isUserProvided()) { 6357 M->setTrivialForCall(HasTrivialABI); 6358 Record->setTrivialForCallFlags(M); 6359 } 6360 6361 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() && 6362 M->hasAttr<DLLExportAttr>()) { 6363 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6364 M->isTrivial() && 6365 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor || 6366 CSM == CXXDestructor)) 6367 M->dropAttr<DLLExportAttr>(); 6368 6369 if (M->hasAttr<DLLExportAttr>()) { 6370 // Define after any fields with in-class initializers have been parsed. 6371 DelayedDllExportMemberFunctions.push_back(M); 6372 } 6373 } 6374 6375 // Define defaulted constexpr virtual functions that override a base class 6376 // function right away. 6377 // FIXME: We can defer doing this until the vtable is marked as used. 6378 if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods()) 6379 DefineImplicitSpecialMember(*this, M, M->getLocation()); 6380 }; 6381 6382 bool HasMethodWithOverrideControl = false, 6383 HasOverridingMethodWithoutOverrideControl = false; 6384 if (!Record->isDependentType()) { 6385 // Check the destructor before any other member function. We need to 6386 // determine whether it's trivial in order to determine whether the claas 6387 // type is a literal type, which is a prerequisite for determining whether 6388 // other special member functions are valid and whether they're implicitly 6389 // 'constexpr'. 6390 if (CXXDestructorDecl *Dtor = Record->getDestructor()) 6391 CompleteMemberFunction(Dtor); 6392 6393 for (auto *M : Record->methods()) { 6394 // See if a method overloads virtual methods in a base 6395 // class without overriding any. 6396 if (!M->isStatic()) 6397 DiagnoseHiddenVirtualMethods(M); 6398 if (M->hasAttr<OverrideAttr>()) 6399 HasMethodWithOverrideControl = true; 6400 else if (M->size_overridden_methods() > 0) 6401 HasOverridingMethodWithoutOverrideControl = true; 6402 6403 if (!isa<CXXDestructorDecl>(M)) 6404 CompleteMemberFunction(M); 6405 } 6406 } 6407 6408 if (HasMethodWithOverrideControl && 6409 HasOverridingMethodWithoutOverrideControl) { 6410 // At least one method has the 'override' control declared. 6411 // Diagnose all other overridden methods which do not have 'override' specified on them. 6412 for (auto *M : Record->methods()) 6413 DiagnoseAbsenceOfOverrideControl(M); 6414 } 6415 6416 // ms_struct is a request to use the same ABI rules as MSVC. Check 6417 // whether this class uses any C++ features that are implemented 6418 // completely differently in MSVC, and if so, emit a diagnostic. 6419 // That diagnostic defaults to an error, but we allow projects to 6420 // map it down to a warning (or ignore it). It's a fairly common 6421 // practice among users of the ms_struct pragma to mass-annotate 6422 // headers, sweeping up a bunch of types that the project doesn't 6423 // really rely on MSVC-compatible layout for. We must therefore 6424 // support "ms_struct except for C++ stuff" as a secondary ABI. 6425 if (Record->isMsStruct(Context) && 6426 (Record->isPolymorphic() || Record->getNumBases())) { 6427 Diag(Record->getLocation(), diag::warn_cxx_ms_struct); 6428 } 6429 6430 checkClassLevelDLLAttribute(Record); 6431 checkClassLevelCodeSegAttribute(Record); 6432 6433 bool ClangABICompat4 = 6434 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4; 6435 TargetInfo::CallingConvKind CCK = 6436 Context.getTargetInfo().getCallingConvKind(ClangABICompat4); 6437 bool CanPass = canPassInRegisters(*this, Record, CCK); 6438 6439 // Do not change ArgPassingRestrictions if it has already been set to 6440 // APK_CanNeverPassInRegs. 6441 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs) 6442 Record->setArgPassingRestrictions(CanPass 6443 ? RecordDecl::APK_CanPassInRegs 6444 : RecordDecl::APK_CannotPassInRegs); 6445 6446 // If canPassInRegisters returns true despite the record having a non-trivial 6447 // destructor, the record is destructed in the callee. This happens only when 6448 // the record or one of its subobjects has a field annotated with trivial_abi 6449 // or a field qualified with ObjC __strong/__weak. 6450 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee()) 6451 Record->setParamDestroyedInCallee(true); 6452 else if (Record->hasNonTrivialDestructor()) 6453 Record->setParamDestroyedInCallee(CanPass); 6454 6455 if (getLangOpts().ForceEmitVTables) { 6456 // If we want to emit all the vtables, we need to mark it as used. This 6457 // is especially required for cases like vtable assumption loads. 6458 MarkVTableUsed(Record->getInnerLocStart(), Record); 6459 } 6460 } 6461 6462 /// Look up the special member function that would be called by a special 6463 /// member function for a subobject of class type. 6464 /// 6465 /// \param Class The class type of the subobject. 6466 /// \param CSM The kind of special member function. 6467 /// \param FieldQuals If the subobject is a field, its cv-qualifiers. 6468 /// \param ConstRHS True if this is a copy operation with a const object 6469 /// on its RHS, that is, if the argument to the outer special member 6470 /// function is 'const' and this is not a field marked 'mutable'. 6471 static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember( 6472 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM, 6473 unsigned FieldQuals, bool ConstRHS) { 6474 unsigned LHSQuals = 0; 6475 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment) 6476 LHSQuals = FieldQuals; 6477 6478 unsigned RHSQuals = FieldQuals; 6479 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor) 6480 RHSQuals = 0; 6481 else if (ConstRHS) 6482 RHSQuals |= Qualifiers::Const; 6483 6484 return S.LookupSpecialMember(Class, CSM, 6485 RHSQuals & Qualifiers::Const, 6486 RHSQuals & Qualifiers::Volatile, 6487 false, 6488 LHSQuals & Qualifiers::Const, 6489 LHSQuals & Qualifiers::Volatile); 6490 } 6491 6492 class Sema::InheritedConstructorInfo { 6493 Sema &S; 6494 SourceLocation UseLoc; 6495 6496 /// A mapping from the base classes through which the constructor was 6497 /// inherited to the using shadow declaration in that base class (or a null 6498 /// pointer if the constructor was declared in that base class). 6499 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *> 6500 InheritedFromBases; 6501 6502 public: 6503 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc, 6504 ConstructorUsingShadowDecl *Shadow) 6505 : S(S), UseLoc(UseLoc) { 6506 bool DiagnosedMultipleConstructedBases = false; 6507 CXXRecordDecl *ConstructedBase = nullptr; 6508 UsingDecl *ConstructedBaseUsing = nullptr; 6509 6510 // Find the set of such base class subobjects and check that there's a 6511 // unique constructed subobject. 6512 for (auto *D : Shadow->redecls()) { 6513 auto *DShadow = cast<ConstructorUsingShadowDecl>(D); 6514 auto *DNominatedBase = DShadow->getNominatedBaseClass(); 6515 auto *DConstructedBase = DShadow->getConstructedBaseClass(); 6516 6517 InheritedFromBases.insert( 6518 std::make_pair(DNominatedBase->getCanonicalDecl(), 6519 DShadow->getNominatedBaseClassShadowDecl())); 6520 if (DShadow->constructsVirtualBase()) 6521 InheritedFromBases.insert( 6522 std::make_pair(DConstructedBase->getCanonicalDecl(), 6523 DShadow->getConstructedBaseClassShadowDecl())); 6524 else 6525 assert(DNominatedBase == DConstructedBase); 6526 6527 // [class.inhctor.init]p2: 6528 // If the constructor was inherited from multiple base class subobjects 6529 // of type B, the program is ill-formed. 6530 if (!ConstructedBase) { 6531 ConstructedBase = DConstructedBase; 6532 ConstructedBaseUsing = D->getUsingDecl(); 6533 } else if (ConstructedBase != DConstructedBase && 6534 !Shadow->isInvalidDecl()) { 6535 if (!DiagnosedMultipleConstructedBases) { 6536 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor) 6537 << Shadow->getTargetDecl(); 6538 S.Diag(ConstructedBaseUsing->getLocation(), 6539 diag::note_ambiguous_inherited_constructor_using) 6540 << ConstructedBase; 6541 DiagnosedMultipleConstructedBases = true; 6542 } 6543 S.Diag(D->getUsingDecl()->getLocation(), 6544 diag::note_ambiguous_inherited_constructor_using) 6545 << DConstructedBase; 6546 } 6547 } 6548 6549 if (DiagnosedMultipleConstructedBases) 6550 Shadow->setInvalidDecl(); 6551 } 6552 6553 /// Find the constructor to use for inherited construction of a base class, 6554 /// and whether that base class constructor inherits the constructor from a 6555 /// virtual base class (in which case it won't actually invoke it). 6556 std::pair<CXXConstructorDecl *, bool> 6557 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const { 6558 auto It = InheritedFromBases.find(Base->getCanonicalDecl()); 6559 if (It == InheritedFromBases.end()) 6560 return std::make_pair(nullptr, false); 6561 6562 // This is an intermediary class. 6563 if (It->second) 6564 return std::make_pair( 6565 S.findInheritingConstructor(UseLoc, Ctor, It->second), 6566 It->second->constructsVirtualBase()); 6567 6568 // This is the base class from which the constructor was inherited. 6569 return std::make_pair(Ctor, false); 6570 } 6571 }; 6572 6573 /// Is the special member function which would be selected to perform the 6574 /// specified operation on the specified class type a constexpr constructor? 6575 static bool 6576 specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl, 6577 Sema::CXXSpecialMember CSM, unsigned Quals, 6578 bool ConstRHS, 6579 CXXConstructorDecl *InheritedCtor = nullptr, 6580 Sema::InheritedConstructorInfo *Inherited = nullptr) { 6581 // If we're inheriting a constructor, see if we need to call it for this base 6582 // class. 6583 if (InheritedCtor) { 6584 assert(CSM == Sema::CXXDefaultConstructor); 6585 auto BaseCtor = 6586 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first; 6587 if (BaseCtor) 6588 return BaseCtor->isConstexpr(); 6589 } 6590 6591 if (CSM == Sema::CXXDefaultConstructor) 6592 return ClassDecl->hasConstexprDefaultConstructor(); 6593 if (CSM == Sema::CXXDestructor) 6594 return ClassDecl->hasConstexprDestructor(); 6595 6596 Sema::SpecialMemberOverloadResult SMOR = 6597 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS); 6598 if (!SMOR.getMethod()) 6599 // A constructor we wouldn't select can't be "involved in initializing" 6600 // anything. 6601 return true; 6602 return SMOR.getMethod()->isConstexpr(); 6603 } 6604 6605 /// Determine whether the specified special member function would be constexpr 6606 /// if it were implicitly defined. 6607 static bool defaultedSpecialMemberIsConstexpr( 6608 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM, 6609 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr, 6610 Sema::InheritedConstructorInfo *Inherited = nullptr) { 6611 if (!S.getLangOpts().CPlusPlus11) 6612 return false; 6613 6614 // C++11 [dcl.constexpr]p4: 6615 // In the definition of a constexpr constructor [...] 6616 bool Ctor = true; 6617 switch (CSM) { 6618 case Sema::CXXDefaultConstructor: 6619 if (Inherited) 6620 break; 6621 // Since default constructor lookup is essentially trivial (and cannot 6622 // involve, for instance, template instantiation), we compute whether a 6623 // defaulted default constructor is constexpr directly within CXXRecordDecl. 6624 // 6625 // This is important for performance; we need to know whether the default 6626 // constructor is constexpr to determine whether the type is a literal type. 6627 return ClassDecl->defaultedDefaultConstructorIsConstexpr(); 6628 6629 case Sema::CXXCopyConstructor: 6630 case Sema::CXXMoveConstructor: 6631 // For copy or move constructors, we need to perform overload resolution. 6632 break; 6633 6634 case Sema::CXXCopyAssignment: 6635 case Sema::CXXMoveAssignment: 6636 if (!S.getLangOpts().CPlusPlus14) 6637 return false; 6638 // In C++1y, we need to perform overload resolution. 6639 Ctor = false; 6640 break; 6641 6642 case Sema::CXXDestructor: 6643 return ClassDecl->defaultedDestructorIsConstexpr(); 6644 6645 case Sema::CXXInvalid: 6646 return false; 6647 } 6648 6649 // -- if the class is a non-empty union, or for each non-empty anonymous 6650 // union member of a non-union class, exactly one non-static data member 6651 // shall be initialized; [DR1359] 6652 // 6653 // If we squint, this is guaranteed, since exactly one non-static data member 6654 // will be initialized (if the constructor isn't deleted), we just don't know 6655 // which one. 6656 if (Ctor && ClassDecl->isUnion()) 6657 return CSM == Sema::CXXDefaultConstructor 6658 ? ClassDecl->hasInClassInitializer() || 6659 !ClassDecl->hasVariantMembers() 6660 : true; 6661 6662 // -- the class shall not have any virtual base classes; 6663 if (Ctor && ClassDecl->getNumVBases()) 6664 return false; 6665 6666 // C++1y [class.copy]p26: 6667 // -- [the class] is a literal type, and 6668 if (!Ctor && !ClassDecl->isLiteral()) 6669 return false; 6670 6671 // -- every constructor involved in initializing [...] base class 6672 // sub-objects shall be a constexpr constructor; 6673 // -- the assignment operator selected to copy/move each direct base 6674 // class is a constexpr function, and 6675 for (const auto &B : ClassDecl->bases()) { 6676 const RecordType *BaseType = B.getType()->getAs<RecordType>(); 6677 if (!BaseType) continue; 6678 6679 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 6680 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg, 6681 InheritedCtor, Inherited)) 6682 return false; 6683 } 6684 6685 // -- every constructor involved in initializing non-static data members 6686 // [...] shall be a constexpr constructor; 6687 // -- every non-static data member and base class sub-object shall be 6688 // initialized 6689 // -- for each non-static data member of X that is of class type (or array 6690 // thereof), the assignment operator selected to copy/move that member is 6691 // a constexpr function 6692 for (const auto *F : ClassDecl->fields()) { 6693 if (F->isInvalidDecl()) 6694 continue; 6695 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer()) 6696 continue; 6697 QualType BaseType = S.Context.getBaseElementType(F->getType()); 6698 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 6699 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 6700 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, 6701 BaseType.getCVRQualifiers(), 6702 ConstArg && !F->isMutable())) 6703 return false; 6704 } else if (CSM == Sema::CXXDefaultConstructor) { 6705 return false; 6706 } 6707 } 6708 6709 // All OK, it's constexpr! 6710 return true; 6711 } 6712 6713 static Sema::ImplicitExceptionSpecification 6714 ComputeDefaultedSpecialMemberExceptionSpec( 6715 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 6716 Sema::InheritedConstructorInfo *ICI); 6717 6718 static Sema::ImplicitExceptionSpecification 6719 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) { 6720 auto CSM = S.getSpecialMember(MD); 6721 if (CSM != Sema::CXXInvalid) 6722 return ComputeDefaultedSpecialMemberExceptionSpec(S, Loc, MD, CSM, nullptr); 6723 6724 auto *CD = cast<CXXConstructorDecl>(MD); 6725 assert(CD->getInheritedConstructor() && 6726 "only special members have implicit exception specs"); 6727 Sema::InheritedConstructorInfo ICI( 6728 S, Loc, CD->getInheritedConstructor().getShadowDecl()); 6729 return ComputeDefaultedSpecialMemberExceptionSpec( 6730 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI); 6731 } 6732 6733 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, 6734 CXXMethodDecl *MD) { 6735 FunctionProtoType::ExtProtoInfo EPI; 6736 6737 // Build an exception specification pointing back at this member. 6738 EPI.ExceptionSpec.Type = EST_Unevaluated; 6739 EPI.ExceptionSpec.SourceDecl = MD; 6740 6741 // Set the calling convention to the default for C++ instance methods. 6742 EPI.ExtInfo = EPI.ExtInfo.withCallingConv( 6743 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, 6744 /*IsCXXMethod=*/true)); 6745 return EPI; 6746 } 6747 6748 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) { 6749 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 6750 if (FPT->getExceptionSpecType() != EST_Unevaluated) 6751 return; 6752 6753 // Evaluate the exception specification. 6754 auto IES = computeImplicitExceptionSpec(*this, Loc, MD); 6755 auto ESI = IES.getExceptionSpec(); 6756 6757 // Update the type of the special member to use it. 6758 UpdateExceptionSpec(MD, ESI); 6759 6760 // A user-provided destructor can be defined outside the class. When that 6761 // happens, be sure to update the exception specification on both 6762 // declarations. 6763 const FunctionProtoType *CanonicalFPT = 6764 MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>(); 6765 if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated) 6766 UpdateExceptionSpec(MD->getCanonicalDecl(), ESI); 6767 } 6768 6769 void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) { 6770 CXXRecordDecl *RD = MD->getParent(); 6771 CXXSpecialMember CSM = getSpecialMember(MD); 6772 6773 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid && 6774 "not an explicitly-defaulted special member"); 6775 6776 // Whether this was the first-declared instance of the constructor. 6777 // This affects whether we implicitly add an exception spec and constexpr. 6778 bool First = MD == MD->getCanonicalDecl(); 6779 6780 bool HadError = false; 6781 6782 // C++11 [dcl.fct.def.default]p1: 6783 // A function that is explicitly defaulted shall 6784 // -- be a special member function (checked elsewhere), 6785 // -- have the same type (except for ref-qualifiers, and except that a 6786 // copy operation can take a non-const reference) as an implicit 6787 // declaration, and 6788 // -- not have default arguments. 6789 // C++2a changes the second bullet to instead delete the function if it's 6790 // defaulted on its first declaration, unless it's "an assignment operator, 6791 // and its return type differs or its parameter type is not a reference". 6792 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus2a && First; 6793 bool ShouldDeleteForTypeMismatch = false; 6794 unsigned ExpectedParams = 1; 6795 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor) 6796 ExpectedParams = 0; 6797 if (MD->getNumParams() != ExpectedParams) { 6798 // This checks for default arguments: a copy or move constructor with a 6799 // default argument is classified as a default constructor, and assignment 6800 // operations and destructors can't have default arguments. 6801 Diag(MD->getLocation(), diag::err_defaulted_special_member_params) 6802 << CSM << MD->getSourceRange(); 6803 HadError = true; 6804 } else if (MD->isVariadic()) { 6805 if (DeleteOnTypeMismatch) 6806 ShouldDeleteForTypeMismatch = true; 6807 else { 6808 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) 6809 << CSM << MD->getSourceRange(); 6810 HadError = true; 6811 } 6812 } 6813 6814 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>(); 6815 6816 bool CanHaveConstParam = false; 6817 if (CSM == CXXCopyConstructor) 6818 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); 6819 else if (CSM == CXXCopyAssignment) 6820 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); 6821 6822 QualType ReturnType = Context.VoidTy; 6823 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) { 6824 // Check for return type matching. 6825 ReturnType = Type->getReturnType(); 6826 6827 QualType DeclType = Context.getTypeDeclType(RD); 6828 DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace()); 6829 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType); 6830 6831 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) { 6832 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) 6833 << (CSM == CXXMoveAssignment) << ExpectedReturnType; 6834 HadError = true; 6835 } 6836 6837 // A defaulted special member cannot have cv-qualifiers. 6838 if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) { 6839 if (DeleteOnTypeMismatch) 6840 ShouldDeleteForTypeMismatch = true; 6841 else { 6842 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) 6843 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14; 6844 HadError = true; 6845 } 6846 } 6847 } 6848 6849 // Check for parameter type matching. 6850 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType(); 6851 bool HasConstParam = false; 6852 if (ExpectedParams && ArgType->isReferenceType()) { 6853 // Argument must be reference to possibly-const T. 6854 QualType ReferentType = ArgType->getPointeeType(); 6855 HasConstParam = ReferentType.isConstQualified(); 6856 6857 if (ReferentType.isVolatileQualified()) { 6858 if (DeleteOnTypeMismatch) 6859 ShouldDeleteForTypeMismatch = true; 6860 else { 6861 Diag(MD->getLocation(), 6862 diag::err_defaulted_special_member_volatile_param) << CSM; 6863 HadError = true; 6864 } 6865 } 6866 6867 if (HasConstParam && !CanHaveConstParam) { 6868 if (DeleteOnTypeMismatch) 6869 ShouldDeleteForTypeMismatch = true; 6870 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) { 6871 Diag(MD->getLocation(), 6872 diag::err_defaulted_special_member_copy_const_param) 6873 << (CSM == CXXCopyAssignment); 6874 // FIXME: Explain why this special member can't be const. 6875 HadError = true; 6876 } else { 6877 Diag(MD->getLocation(), 6878 diag::err_defaulted_special_member_move_const_param) 6879 << (CSM == CXXMoveAssignment); 6880 HadError = true; 6881 } 6882 } 6883 } else if (ExpectedParams) { 6884 // A copy assignment operator can take its argument by value, but a 6885 // defaulted one cannot. 6886 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument"); 6887 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); 6888 HadError = true; 6889 } 6890 6891 // C++11 [dcl.fct.def.default]p2: 6892 // An explicitly-defaulted function may be declared constexpr only if it 6893 // would have been implicitly declared as constexpr, 6894 // Do not apply this rule to members of class templates, since core issue 1358 6895 // makes such functions always instantiate to constexpr functions. For 6896 // functions which cannot be constexpr (for non-constructors in C++11 and for 6897 // destructors in C++14 and C++17), this is checked elsewhere. 6898 // 6899 // FIXME: This should not apply if the member is deleted. 6900 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM, 6901 HasConstParam); 6902 if ((getLangOpts().CPlusPlus2a || 6903 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD) 6904 : isa<CXXConstructorDecl>(MD))) && 6905 MD->isConstexpr() && !Constexpr && 6906 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { 6907 Diag(MD->getBeginLoc(), MD->isConsteval() 6908 ? diag::err_incorrect_defaulted_consteval 6909 : diag::err_incorrect_defaulted_constexpr) 6910 << CSM; 6911 // FIXME: Explain why the special member can't be constexpr. 6912 HadError = true; 6913 } 6914 6915 if (First) { 6916 // C++2a [dcl.fct.def.default]p3: 6917 // If a function is explicitly defaulted on its first declaration, it is 6918 // implicitly considered to be constexpr if the implicit declaration 6919 // would be. 6920 MD->setConstexprKind(Constexpr ? CSK_constexpr : CSK_unspecified); 6921 6922 if (!Type->hasExceptionSpec()) { 6923 // C++2a [except.spec]p3: 6924 // If a declaration of a function does not have a noexcept-specifier 6925 // [and] is defaulted on its first declaration, [...] the exception 6926 // specification is as specified below 6927 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); 6928 EPI.ExceptionSpec.Type = EST_Unevaluated; 6929 EPI.ExceptionSpec.SourceDecl = MD; 6930 MD->setType(Context.getFunctionType(ReturnType, 6931 llvm::makeArrayRef(&ArgType, 6932 ExpectedParams), 6933 EPI)); 6934 } 6935 } 6936 6937 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) { 6938 if (First) { 6939 SetDeclDeleted(MD, MD->getLocation()); 6940 if (!inTemplateInstantiation() && !HadError) { 6941 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM; 6942 if (ShouldDeleteForTypeMismatch) { 6943 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM; 6944 } else { 6945 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 6946 } 6947 } 6948 if (ShouldDeleteForTypeMismatch && !HadError) { 6949 Diag(MD->getLocation(), 6950 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM; 6951 } 6952 } else { 6953 // C++11 [dcl.fct.def.default]p4: 6954 // [For a] user-provided explicitly-defaulted function [...] if such a 6955 // function is implicitly defined as deleted, the program is ill-formed. 6956 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM; 6957 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl"); 6958 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 6959 HadError = true; 6960 } 6961 } 6962 6963 if (HadError) 6964 MD->setInvalidDecl(); 6965 } 6966 6967 void Sema::CheckDelayedMemberExceptionSpecs() { 6968 decltype(DelayedOverridingExceptionSpecChecks) Overriding; 6969 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent; 6970 6971 std::swap(Overriding, DelayedOverridingExceptionSpecChecks); 6972 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks); 6973 6974 // Perform any deferred checking of exception specifications for virtual 6975 // destructors. 6976 for (auto &Check : Overriding) 6977 CheckOverridingFunctionExceptionSpec(Check.first, Check.second); 6978 6979 // Perform any deferred checking of exception specifications for befriended 6980 // special members. 6981 for (auto &Check : Equivalent) 6982 CheckEquivalentExceptionSpec(Check.second, Check.first); 6983 } 6984 6985 namespace { 6986 /// CRTP base class for visiting operations performed by a special member 6987 /// function (or inherited constructor). 6988 template<typename Derived> 6989 struct SpecialMemberVisitor { 6990 Sema &S; 6991 CXXMethodDecl *MD; 6992 Sema::CXXSpecialMember CSM; 6993 Sema::InheritedConstructorInfo *ICI; 6994 6995 // Properties of the special member, computed for convenience. 6996 bool IsConstructor = false, IsAssignment = false, ConstArg = false; 6997 6998 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 6999 Sema::InheritedConstructorInfo *ICI) 7000 : S(S), MD(MD), CSM(CSM), ICI(ICI) { 7001 switch (CSM) { 7002 case Sema::CXXDefaultConstructor: 7003 case Sema::CXXCopyConstructor: 7004 case Sema::CXXMoveConstructor: 7005 IsConstructor = true; 7006 break; 7007 case Sema::CXXCopyAssignment: 7008 case Sema::CXXMoveAssignment: 7009 IsAssignment = true; 7010 break; 7011 case Sema::CXXDestructor: 7012 break; 7013 case Sema::CXXInvalid: 7014 llvm_unreachable("invalid special member kind"); 7015 } 7016 7017 if (MD->getNumParams()) { 7018 if (const ReferenceType *RT = 7019 MD->getParamDecl(0)->getType()->getAs<ReferenceType>()) 7020 ConstArg = RT->getPointeeType().isConstQualified(); 7021 } 7022 } 7023 7024 Derived &getDerived() { return static_cast<Derived&>(*this); } 7025 7026 /// Is this a "move" special member? 7027 bool isMove() const { 7028 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment; 7029 } 7030 7031 /// Look up the corresponding special member in the given class. 7032 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class, 7033 unsigned Quals, bool IsMutable) { 7034 return lookupCallFromSpecialMember(S, Class, CSM, Quals, 7035 ConstArg && !IsMutable); 7036 } 7037 7038 /// Look up the constructor for the specified base class to see if it's 7039 /// overridden due to this being an inherited constructor. 7040 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) { 7041 if (!ICI) 7042 return {}; 7043 assert(CSM == Sema::CXXDefaultConstructor); 7044 auto *BaseCtor = 7045 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor(); 7046 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first) 7047 return MD; 7048 return {}; 7049 } 7050 7051 /// A base or member subobject. 7052 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject; 7053 7054 /// Get the location to use for a subobject in diagnostics. 7055 static SourceLocation getSubobjectLoc(Subobject Subobj) { 7056 // FIXME: For an indirect virtual base, the direct base leading to 7057 // the indirect virtual base would be a more useful choice. 7058 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>()) 7059 return B->getBaseTypeLoc(); 7060 else 7061 return Subobj.get<FieldDecl*>()->getLocation(); 7062 } 7063 7064 enum BasesToVisit { 7065 /// Visit all non-virtual (direct) bases. 7066 VisitNonVirtualBases, 7067 /// Visit all direct bases, virtual or not. 7068 VisitDirectBases, 7069 /// Visit all non-virtual bases, and all virtual bases if the class 7070 /// is not abstract. 7071 VisitPotentiallyConstructedBases, 7072 /// Visit all direct or virtual bases. 7073 VisitAllBases 7074 }; 7075 7076 // Visit the bases and members of the class. 7077 bool visit(BasesToVisit Bases) { 7078 CXXRecordDecl *RD = MD->getParent(); 7079 7080 if (Bases == VisitPotentiallyConstructedBases) 7081 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases; 7082 7083 for (auto &B : RD->bases()) 7084 if ((Bases == VisitDirectBases || !B.isVirtual()) && 7085 getDerived().visitBase(&B)) 7086 return true; 7087 7088 if (Bases == VisitAllBases) 7089 for (auto &B : RD->vbases()) 7090 if (getDerived().visitBase(&B)) 7091 return true; 7092 7093 for (auto *F : RD->fields()) 7094 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() && 7095 getDerived().visitField(F)) 7096 return true; 7097 7098 return false; 7099 } 7100 }; 7101 } 7102 7103 namespace { 7104 struct SpecialMemberDeletionInfo 7105 : SpecialMemberVisitor<SpecialMemberDeletionInfo> { 7106 bool Diagnose; 7107 7108 SourceLocation Loc; 7109 7110 bool AllFieldsAreConst; 7111 7112 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, 7113 Sema::CXXSpecialMember CSM, 7114 Sema::InheritedConstructorInfo *ICI, bool Diagnose) 7115 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose), 7116 Loc(MD->getLocation()), AllFieldsAreConst(true) {} 7117 7118 bool inUnion() const { return MD->getParent()->isUnion(); } 7119 7120 Sema::CXXSpecialMember getEffectiveCSM() { 7121 return ICI ? Sema::CXXInvalid : CSM; 7122 } 7123 7124 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType); 7125 7126 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); } 7127 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); } 7128 7129 bool shouldDeleteForBase(CXXBaseSpecifier *Base); 7130 bool shouldDeleteForField(FieldDecl *FD); 7131 bool shouldDeleteForAllConstMembers(); 7132 7133 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 7134 unsigned Quals); 7135 bool shouldDeleteForSubobjectCall(Subobject Subobj, 7136 Sema::SpecialMemberOverloadResult SMOR, 7137 bool IsDtorCallInCtor); 7138 7139 bool isAccessible(Subobject Subobj, CXXMethodDecl *D); 7140 }; 7141 } 7142 7143 /// Is the given special member inaccessible when used on the given 7144 /// sub-object. 7145 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, 7146 CXXMethodDecl *target) { 7147 /// If we're operating on a base class, the object type is the 7148 /// type of this special member. 7149 QualType objectTy; 7150 AccessSpecifier access = target->getAccess(); 7151 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) { 7152 objectTy = S.Context.getTypeDeclType(MD->getParent()); 7153 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access); 7154 7155 // If we're operating on a field, the object type is the type of the field. 7156 } else { 7157 objectTy = S.Context.getTypeDeclType(target->getParent()); 7158 } 7159 7160 return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy); 7161 } 7162 7163 /// Check whether we should delete a special member due to the implicit 7164 /// definition containing a call to a special member of a subobject. 7165 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( 7166 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, 7167 bool IsDtorCallInCtor) { 7168 CXXMethodDecl *Decl = SMOR.getMethod(); 7169 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 7170 7171 int DiagKind = -1; 7172 7173 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) 7174 DiagKind = !Decl ? 0 : 1; 7175 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 7176 DiagKind = 2; 7177 else if (!isAccessible(Subobj, Decl)) 7178 DiagKind = 3; 7179 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && 7180 !Decl->isTrivial()) { 7181 // A member of a union must have a trivial corresponding special member. 7182 // As a weird special case, a destructor call from a union's constructor 7183 // must be accessible and non-deleted, but need not be trivial. Such a 7184 // destructor is never actually called, but is semantically checked as 7185 // if it were. 7186 DiagKind = 4; 7187 } 7188 7189 if (DiagKind == -1) 7190 return false; 7191 7192 if (Diagnose) { 7193 if (Field) { 7194 S.Diag(Field->getLocation(), 7195 diag::note_deleted_special_member_class_subobject) 7196 << getEffectiveCSM() << MD->getParent() << /*IsField*/true 7197 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false; 7198 } else { 7199 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>(); 7200 S.Diag(Base->getBeginLoc(), 7201 diag::note_deleted_special_member_class_subobject) 7202 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 7203 << Base->getType() << DiagKind << IsDtorCallInCtor 7204 << /*IsObjCPtr*/false; 7205 } 7206 7207 if (DiagKind == 1) 7208 S.NoteDeletedFunction(Decl); 7209 // FIXME: Explain inaccessibility if DiagKind == 3. 7210 } 7211 7212 return true; 7213 } 7214 7215 /// Check whether we should delete a special member function due to having a 7216 /// direct or virtual base class or non-static data member of class type M. 7217 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( 7218 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { 7219 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 7220 bool IsMutable = Field && Field->isMutable(); 7221 7222 // C++11 [class.ctor]p5: 7223 // -- any direct or virtual base class, or non-static data member with no 7224 // brace-or-equal-initializer, has class type M (or array thereof) and 7225 // either M has no default constructor or overload resolution as applied 7226 // to M's default constructor results in an ambiguity or in a function 7227 // that is deleted or inaccessible 7228 // C++11 [class.copy]p11, C++11 [class.copy]p23: 7229 // -- a direct or virtual base class B that cannot be copied/moved because 7230 // overload resolution, as applied to B's corresponding special member, 7231 // results in an ambiguity or a function that is deleted or inaccessible 7232 // from the defaulted special member 7233 // C++11 [class.dtor]p5: 7234 // -- any direct or virtual base class [...] has a type with a destructor 7235 // that is deleted or inaccessible 7236 if (!(CSM == Sema::CXXDefaultConstructor && 7237 Field && Field->hasInClassInitializer()) && 7238 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable), 7239 false)) 7240 return true; 7241 7242 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 7243 // -- any direct or virtual base class or non-static data member has a 7244 // type with a destructor that is deleted or inaccessible 7245 if (IsConstructor) { 7246 Sema::SpecialMemberOverloadResult SMOR = 7247 S.LookupSpecialMember(Class, Sema::CXXDestructor, 7248 false, false, false, false, false); 7249 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true)) 7250 return true; 7251 } 7252 7253 return false; 7254 } 7255 7256 bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember( 7257 FieldDecl *FD, QualType FieldType) { 7258 // The defaulted special functions are defined as deleted if this is a variant 7259 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak 7260 // type under ARC. 7261 if (!FieldType.hasNonTrivialObjCLifetime()) 7262 return false; 7263 7264 // Don't make the defaulted default constructor defined as deleted if the 7265 // member has an in-class initializer. 7266 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) 7267 return false; 7268 7269 if (Diagnose) { 7270 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent()); 7271 S.Diag(FD->getLocation(), 7272 diag::note_deleted_special_member_class_subobject) 7273 << getEffectiveCSM() << ParentClass << /*IsField*/true 7274 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true; 7275 } 7276 7277 return true; 7278 } 7279 7280 /// Check whether we should delete a special member function due to the class 7281 /// having a particular direct or virtual base class. 7282 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { 7283 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); 7284 // If program is correct, BaseClass cannot be null, but if it is, the error 7285 // must be reported elsewhere. 7286 if (!BaseClass) 7287 return false; 7288 // If we have an inheriting constructor, check whether we're calling an 7289 // inherited constructor instead of a default constructor. 7290 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 7291 if (auto *BaseCtor = SMOR.getMethod()) { 7292 // Note that we do not check access along this path; other than that, 7293 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false); 7294 // FIXME: Check that the base has a usable destructor! Sink this into 7295 // shouldDeleteForClassSubobject. 7296 if (BaseCtor->isDeleted() && Diagnose) { 7297 S.Diag(Base->getBeginLoc(), 7298 diag::note_deleted_special_member_class_subobject) 7299 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 7300 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false 7301 << /*IsObjCPtr*/false; 7302 S.NoteDeletedFunction(BaseCtor); 7303 } 7304 return BaseCtor->isDeleted(); 7305 } 7306 return shouldDeleteForClassSubobject(BaseClass, Base, 0); 7307 } 7308 7309 /// Check whether we should delete a special member function due to the class 7310 /// having a particular non-static data member. 7311 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { 7312 QualType FieldType = S.Context.getBaseElementType(FD->getType()); 7313 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); 7314 7315 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType)) 7316 return true; 7317 7318 if (CSM == Sema::CXXDefaultConstructor) { 7319 // For a default constructor, all references must be initialized in-class 7320 // and, if a union, it must have a non-const member. 7321 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { 7322 if (Diagnose) 7323 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 7324 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0; 7325 return true; 7326 } 7327 // C++11 [class.ctor]p5: any non-variant non-static data member of 7328 // const-qualified type (or array thereof) with no 7329 // brace-or-equal-initializer does not have a user-provided default 7330 // constructor. 7331 if (!inUnion() && FieldType.isConstQualified() && 7332 !FD->hasInClassInitializer() && 7333 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) { 7334 if (Diagnose) 7335 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 7336 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1; 7337 return true; 7338 } 7339 7340 if (inUnion() && !FieldType.isConstQualified()) 7341 AllFieldsAreConst = false; 7342 } else if (CSM == Sema::CXXCopyConstructor) { 7343 // For a copy constructor, data members must not be of rvalue reference 7344 // type. 7345 if (FieldType->isRValueReferenceType()) { 7346 if (Diagnose) 7347 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) 7348 << MD->getParent() << FD << FieldType; 7349 return true; 7350 } 7351 } else if (IsAssignment) { 7352 // For an assignment operator, data members must not be of reference type. 7353 if (FieldType->isReferenceType()) { 7354 if (Diagnose) 7355 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 7356 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0; 7357 return true; 7358 } 7359 if (!FieldRecord && FieldType.isConstQualified()) { 7360 // C++11 [class.copy]p23: 7361 // -- a non-static data member of const non-class type (or array thereof) 7362 if (Diagnose) 7363 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 7364 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1; 7365 return true; 7366 } 7367 } 7368 7369 if (FieldRecord) { 7370 // Some additional restrictions exist on the variant members. 7371 if (!inUnion() && FieldRecord->isUnion() && 7372 FieldRecord->isAnonymousStructOrUnion()) { 7373 bool AllVariantFieldsAreConst = true; 7374 7375 // FIXME: Handle anonymous unions declared within anonymous unions. 7376 for (auto *UI : FieldRecord->fields()) { 7377 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); 7378 7379 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType)) 7380 return true; 7381 7382 if (!UnionFieldType.isConstQualified()) 7383 AllVariantFieldsAreConst = false; 7384 7385 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); 7386 if (UnionFieldRecord && 7387 shouldDeleteForClassSubobject(UnionFieldRecord, UI, 7388 UnionFieldType.getCVRQualifiers())) 7389 return true; 7390 } 7391 7392 // At least one member in each anonymous union must be non-const 7393 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst && 7394 !FieldRecord->field_empty()) { 7395 if (Diagnose) 7396 S.Diag(FieldRecord->getLocation(), 7397 diag::note_deleted_default_ctor_all_const) 7398 << !!ICI << MD->getParent() << /*anonymous union*/1; 7399 return true; 7400 } 7401 7402 // Don't check the implicit member of the anonymous union type. 7403 // This is technically non-conformant, but sanity demands it. 7404 return false; 7405 } 7406 7407 if (shouldDeleteForClassSubobject(FieldRecord, FD, 7408 FieldType.getCVRQualifiers())) 7409 return true; 7410 } 7411 7412 return false; 7413 } 7414 7415 /// C++11 [class.ctor] p5: 7416 /// A defaulted default constructor for a class X is defined as deleted if 7417 /// X is a union and all of its variant members are of const-qualified type. 7418 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { 7419 // This is a silly definition, because it gives an empty union a deleted 7420 // default constructor. Don't do that. 7421 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) { 7422 bool AnyFields = false; 7423 for (auto *F : MD->getParent()->fields()) 7424 if ((AnyFields = !F->isUnnamedBitfield())) 7425 break; 7426 if (!AnyFields) 7427 return false; 7428 if (Diagnose) 7429 S.Diag(MD->getParent()->getLocation(), 7430 diag::note_deleted_default_ctor_all_const) 7431 << !!ICI << MD->getParent() << /*not anonymous union*/0; 7432 return true; 7433 } 7434 return false; 7435 } 7436 7437 /// Determine whether a defaulted special member function should be defined as 7438 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, 7439 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5. 7440 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, 7441 InheritedConstructorInfo *ICI, 7442 bool Diagnose) { 7443 if (MD->isInvalidDecl()) 7444 return false; 7445 CXXRecordDecl *RD = MD->getParent(); 7446 assert(!RD->isDependentType() && "do deletion after instantiation"); 7447 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl()) 7448 return false; 7449 7450 // C++11 [expr.lambda.prim]p19: 7451 // The closure type associated with a lambda-expression has a 7452 // deleted (8.4.3) default constructor and a deleted copy 7453 // assignment operator. 7454 // C++2a adds back these operators if the lambda has no lambda-capture. 7455 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() && 7456 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) { 7457 if (Diagnose) 7458 Diag(RD->getLocation(), diag::note_lambda_decl); 7459 return true; 7460 } 7461 7462 // For an anonymous struct or union, the copy and assignment special members 7463 // will never be used, so skip the check. For an anonymous union declared at 7464 // namespace scope, the constructor and destructor are used. 7465 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor && 7466 RD->isAnonymousStructOrUnion()) 7467 return false; 7468 7469 // C++11 [class.copy]p7, p18: 7470 // If the class definition declares a move constructor or move assignment 7471 // operator, an implicitly declared copy constructor or copy assignment 7472 // operator is defined as deleted. 7473 if (MD->isImplicit() && 7474 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) { 7475 CXXMethodDecl *UserDeclaredMove = nullptr; 7476 7477 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the 7478 // deletion of the corresponding copy operation, not both copy operations. 7479 // MSVC 2015 has adopted the standards conforming behavior. 7480 bool DeletesOnlyMatchingCopy = 7481 getLangOpts().MSVCCompat && 7482 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015); 7483 7484 if (RD->hasUserDeclaredMoveConstructor() && 7485 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) { 7486 if (!Diagnose) return true; 7487 7488 // Find any user-declared move constructor. 7489 for (auto *I : RD->ctors()) { 7490 if (I->isMoveConstructor()) { 7491 UserDeclaredMove = I; 7492 break; 7493 } 7494 } 7495 assert(UserDeclaredMove); 7496 } else if (RD->hasUserDeclaredMoveAssignment() && 7497 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) { 7498 if (!Diagnose) return true; 7499 7500 // Find any user-declared move assignment operator. 7501 for (auto *I : RD->methods()) { 7502 if (I->isMoveAssignmentOperator()) { 7503 UserDeclaredMove = I; 7504 break; 7505 } 7506 } 7507 assert(UserDeclaredMove); 7508 } 7509 7510 if (UserDeclaredMove) { 7511 Diag(UserDeclaredMove->getLocation(), 7512 diag::note_deleted_copy_user_declared_move) 7513 << (CSM == CXXCopyAssignment) << RD 7514 << UserDeclaredMove->isMoveAssignmentOperator(); 7515 return true; 7516 } 7517 } 7518 7519 // Do access control from the special member function 7520 ContextRAII MethodContext(*this, MD); 7521 7522 // C++11 [class.dtor]p5: 7523 // -- for a virtual destructor, lookup of the non-array deallocation function 7524 // results in an ambiguity or in a function that is deleted or inaccessible 7525 if (CSM == CXXDestructor && MD->isVirtual()) { 7526 FunctionDecl *OperatorDelete = nullptr; 7527 DeclarationName Name = 7528 Context.DeclarationNames.getCXXOperatorName(OO_Delete); 7529 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name, 7530 OperatorDelete, /*Diagnose*/false)) { 7531 if (Diagnose) 7532 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); 7533 return true; 7534 } 7535 } 7536 7537 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose); 7538 7539 // Per DR1611, do not consider virtual bases of constructors of abstract 7540 // classes, since we are not going to construct them. 7541 // Per DR1658, do not consider virtual bases of destructors of abstract 7542 // classes either. 7543 // Per DR2180, for assignment operators we only assign (and thus only 7544 // consider) direct bases. 7545 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases 7546 : SMI.VisitPotentiallyConstructedBases)) 7547 return true; 7548 7549 if (SMI.shouldDeleteForAllConstMembers()) 7550 return true; 7551 7552 if (getLangOpts().CUDA) { 7553 // We should delete the special member in CUDA mode if target inference 7554 // failed. 7555 // For inherited constructors (non-null ICI), CSM may be passed so that MD 7556 // is treated as certain special member, which may not reflect what special 7557 // member MD really is. However inferCUDATargetForImplicitSpecialMember 7558 // expects CSM to match MD, therefore recalculate CSM. 7559 assert(ICI || CSM == getSpecialMember(MD)); 7560 auto RealCSM = CSM; 7561 if (ICI) 7562 RealCSM = getSpecialMember(MD); 7563 7564 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD, 7565 SMI.ConstArg, Diagnose); 7566 } 7567 7568 return false; 7569 } 7570 7571 /// Perform lookup for a special member of the specified kind, and determine 7572 /// whether it is trivial. If the triviality can be determined without the 7573 /// lookup, skip it. This is intended for use when determining whether a 7574 /// special member of a containing object is trivial, and thus does not ever 7575 /// perform overload resolution for default constructors. 7576 /// 7577 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the 7578 /// member that was most likely to be intended to be trivial, if any. 7579 /// 7580 /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to 7581 /// determine whether the special member is trivial. 7582 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, 7583 Sema::CXXSpecialMember CSM, unsigned Quals, 7584 bool ConstRHS, 7585 Sema::TrivialABIHandling TAH, 7586 CXXMethodDecl **Selected) { 7587 if (Selected) 7588 *Selected = nullptr; 7589 7590 switch (CSM) { 7591 case Sema::CXXInvalid: 7592 llvm_unreachable("not a special member"); 7593 7594 case Sema::CXXDefaultConstructor: 7595 // C++11 [class.ctor]p5: 7596 // A default constructor is trivial if: 7597 // - all the [direct subobjects] have trivial default constructors 7598 // 7599 // Note, no overload resolution is performed in this case. 7600 if (RD->hasTrivialDefaultConstructor()) 7601 return true; 7602 7603 if (Selected) { 7604 // If there's a default constructor which could have been trivial, dig it 7605 // out. Otherwise, if there's any user-provided default constructor, point 7606 // to that as an example of why there's not a trivial one. 7607 CXXConstructorDecl *DefCtor = nullptr; 7608 if (RD->needsImplicitDefaultConstructor()) 7609 S.DeclareImplicitDefaultConstructor(RD); 7610 for (auto *CI : RD->ctors()) { 7611 if (!CI->isDefaultConstructor()) 7612 continue; 7613 DefCtor = CI; 7614 if (!DefCtor->isUserProvided()) 7615 break; 7616 } 7617 7618 *Selected = DefCtor; 7619 } 7620 7621 return false; 7622 7623 case Sema::CXXDestructor: 7624 // C++11 [class.dtor]p5: 7625 // A destructor is trivial if: 7626 // - all the direct [subobjects] have trivial destructors 7627 if (RD->hasTrivialDestructor() || 7628 (TAH == Sema::TAH_ConsiderTrivialABI && 7629 RD->hasTrivialDestructorForCall())) 7630 return true; 7631 7632 if (Selected) { 7633 if (RD->needsImplicitDestructor()) 7634 S.DeclareImplicitDestructor(RD); 7635 *Selected = RD->getDestructor(); 7636 } 7637 7638 return false; 7639 7640 case Sema::CXXCopyConstructor: 7641 // C++11 [class.copy]p12: 7642 // A copy constructor is trivial if: 7643 // - the constructor selected to copy each direct [subobject] is trivial 7644 if (RD->hasTrivialCopyConstructor() || 7645 (TAH == Sema::TAH_ConsiderTrivialABI && 7646 RD->hasTrivialCopyConstructorForCall())) { 7647 if (Quals == Qualifiers::Const) 7648 // We must either select the trivial copy constructor or reach an 7649 // ambiguity; no need to actually perform overload resolution. 7650 return true; 7651 } else if (!Selected) { 7652 return false; 7653 } 7654 // In C++98, we are not supposed to perform overload resolution here, but we 7655 // treat that as a language defect, as suggested on cxx-abi-dev, to treat 7656 // cases like B as having a non-trivial copy constructor: 7657 // struct A { template<typename T> A(T&); }; 7658 // struct B { mutable A a; }; 7659 goto NeedOverloadResolution; 7660 7661 case Sema::CXXCopyAssignment: 7662 // C++11 [class.copy]p25: 7663 // A copy assignment operator is trivial if: 7664 // - the assignment operator selected to copy each direct [subobject] is 7665 // trivial 7666 if (RD->hasTrivialCopyAssignment()) { 7667 if (Quals == Qualifiers::Const) 7668 return true; 7669 } else if (!Selected) { 7670 return false; 7671 } 7672 // In C++98, we are not supposed to perform overload resolution here, but we 7673 // treat that as a language defect. 7674 goto NeedOverloadResolution; 7675 7676 case Sema::CXXMoveConstructor: 7677 case Sema::CXXMoveAssignment: 7678 NeedOverloadResolution: 7679 Sema::SpecialMemberOverloadResult SMOR = 7680 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS); 7681 7682 // The standard doesn't describe how to behave if the lookup is ambiguous. 7683 // We treat it as not making the member non-trivial, just like the standard 7684 // mandates for the default constructor. This should rarely matter, because 7685 // the member will also be deleted. 7686 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 7687 return true; 7688 7689 if (!SMOR.getMethod()) { 7690 assert(SMOR.getKind() == 7691 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted); 7692 return false; 7693 } 7694 7695 // We deliberately don't check if we found a deleted special member. We're 7696 // not supposed to! 7697 if (Selected) 7698 *Selected = SMOR.getMethod(); 7699 7700 if (TAH == Sema::TAH_ConsiderTrivialABI && 7701 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor)) 7702 return SMOR.getMethod()->isTrivialForCall(); 7703 return SMOR.getMethod()->isTrivial(); 7704 } 7705 7706 llvm_unreachable("unknown special method kind"); 7707 } 7708 7709 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { 7710 for (auto *CI : RD->ctors()) 7711 if (!CI->isImplicit()) 7712 return CI; 7713 7714 // Look for constructor templates. 7715 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter; 7716 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { 7717 if (CXXConstructorDecl *CD = 7718 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl())) 7719 return CD; 7720 } 7721 7722 return nullptr; 7723 } 7724 7725 /// The kind of subobject we are checking for triviality. The values of this 7726 /// enumeration are used in diagnostics. 7727 enum TrivialSubobjectKind { 7728 /// The subobject is a base class. 7729 TSK_BaseClass, 7730 /// The subobject is a non-static data member. 7731 TSK_Field, 7732 /// The object is actually the complete object. 7733 TSK_CompleteObject 7734 }; 7735 7736 /// Check whether the special member selected for a given type would be trivial. 7737 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, 7738 QualType SubType, bool ConstRHS, 7739 Sema::CXXSpecialMember CSM, 7740 TrivialSubobjectKind Kind, 7741 Sema::TrivialABIHandling TAH, bool Diagnose) { 7742 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); 7743 if (!SubRD) 7744 return true; 7745 7746 CXXMethodDecl *Selected; 7747 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(), 7748 ConstRHS, TAH, Diagnose ? &Selected : nullptr)) 7749 return true; 7750 7751 if (Diagnose) { 7752 if (ConstRHS) 7753 SubType.addConst(); 7754 7755 if (!Selected && CSM == Sema::CXXDefaultConstructor) { 7756 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) 7757 << Kind << SubType.getUnqualifiedType(); 7758 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) 7759 S.Diag(CD->getLocation(), diag::note_user_declared_ctor); 7760 } else if (!Selected) 7761 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) 7762 << Kind << SubType.getUnqualifiedType() << CSM << SubType; 7763 else if (Selected->isUserProvided()) { 7764 if (Kind == TSK_CompleteObject) 7765 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) 7766 << Kind << SubType.getUnqualifiedType() << CSM; 7767 else { 7768 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) 7769 << Kind << SubType.getUnqualifiedType() << CSM; 7770 S.Diag(Selected->getLocation(), diag::note_declared_at); 7771 } 7772 } else { 7773 if (Kind != TSK_CompleteObject) 7774 S.Diag(SubobjLoc, diag::note_nontrivial_subobject) 7775 << Kind << SubType.getUnqualifiedType() << CSM; 7776 7777 // Explain why the defaulted or deleted special member isn't trivial. 7778 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI, 7779 Diagnose); 7780 } 7781 } 7782 7783 return false; 7784 } 7785 7786 /// Check whether the members of a class type allow a special member to be 7787 /// trivial. 7788 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, 7789 Sema::CXXSpecialMember CSM, 7790 bool ConstArg, 7791 Sema::TrivialABIHandling TAH, 7792 bool Diagnose) { 7793 for (const auto *FI : RD->fields()) { 7794 if (FI->isInvalidDecl() || FI->isUnnamedBitfield()) 7795 continue; 7796 7797 QualType FieldType = S.Context.getBaseElementType(FI->getType()); 7798 7799 // Pretend anonymous struct or union members are members of this class. 7800 if (FI->isAnonymousStructOrUnion()) { 7801 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), 7802 CSM, ConstArg, TAH, Diagnose)) 7803 return false; 7804 continue; 7805 } 7806 7807 // C++11 [class.ctor]p5: 7808 // A default constructor is trivial if [...] 7809 // -- no non-static data member of its class has a 7810 // brace-or-equal-initializer 7811 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) { 7812 if (Diagnose) 7813 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI; 7814 return false; 7815 } 7816 7817 // Objective C ARC 4.3.5: 7818 // [...] nontrivally ownership-qualified types are [...] not trivially 7819 // default constructible, copy constructible, move constructible, copy 7820 // assignable, move assignable, or destructible [...] 7821 if (FieldType.hasNonTrivialObjCLifetime()) { 7822 if (Diagnose) 7823 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) 7824 << RD << FieldType.getObjCLifetime(); 7825 return false; 7826 } 7827 7828 bool ConstRHS = ConstArg && !FI->isMutable(); 7829 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, 7830 CSM, TSK_Field, TAH, Diagnose)) 7831 return false; 7832 } 7833 7834 return true; 7835 } 7836 7837 /// Diagnose why the specified class does not have a trivial special member of 7838 /// the given kind. 7839 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) { 7840 QualType Ty = Context.getRecordType(RD); 7841 7842 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment); 7843 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, 7844 TSK_CompleteObject, TAH_IgnoreTrivialABI, 7845 /*Diagnose*/true); 7846 } 7847 7848 /// Determine whether a defaulted or deleted special member function is trivial, 7849 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12, 7850 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5. 7851 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM, 7852 TrivialABIHandling TAH, bool Diagnose) { 7853 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough"); 7854 7855 CXXRecordDecl *RD = MD->getParent(); 7856 7857 bool ConstArg = false; 7858 7859 // C++11 [class.copy]p12, p25: [DR1593] 7860 // A [special member] is trivial if [...] its parameter-type-list is 7861 // equivalent to the parameter-type-list of an implicit declaration [...] 7862 switch (CSM) { 7863 case CXXDefaultConstructor: 7864 case CXXDestructor: 7865 // Trivial default constructors and destructors cannot have parameters. 7866 break; 7867 7868 case CXXCopyConstructor: 7869 case CXXCopyAssignment: { 7870 // Trivial copy operations always have const, non-volatile parameter types. 7871 ConstArg = true; 7872 const ParmVarDecl *Param0 = MD->getParamDecl(0); 7873 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>(); 7874 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) { 7875 if (Diagnose) 7876 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 7877 << Param0->getSourceRange() << Param0->getType() 7878 << Context.getLValueReferenceType( 7879 Context.getRecordType(RD).withConst()); 7880 return false; 7881 } 7882 break; 7883 } 7884 7885 case CXXMoveConstructor: 7886 case CXXMoveAssignment: { 7887 // Trivial move operations always have non-cv-qualified parameters. 7888 const ParmVarDecl *Param0 = MD->getParamDecl(0); 7889 const RValueReferenceType *RT = 7890 Param0->getType()->getAs<RValueReferenceType>(); 7891 if (!RT || RT->getPointeeType().getCVRQualifiers()) { 7892 if (Diagnose) 7893 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 7894 << Param0->getSourceRange() << Param0->getType() 7895 << Context.getRValueReferenceType(Context.getRecordType(RD)); 7896 return false; 7897 } 7898 break; 7899 } 7900 7901 case CXXInvalid: 7902 llvm_unreachable("not a special member"); 7903 } 7904 7905 if (MD->getMinRequiredArguments() < MD->getNumParams()) { 7906 if (Diagnose) 7907 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), 7908 diag::note_nontrivial_default_arg) 7909 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); 7910 return false; 7911 } 7912 if (MD->isVariadic()) { 7913 if (Diagnose) 7914 Diag(MD->getLocation(), diag::note_nontrivial_variadic); 7915 return false; 7916 } 7917 7918 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 7919 // A copy/move [constructor or assignment operator] is trivial if 7920 // -- the [member] selected to copy/move each direct base class subobject 7921 // is trivial 7922 // 7923 // C++11 [class.copy]p12, C++11 [class.copy]p25: 7924 // A [default constructor or destructor] is trivial if 7925 // -- all the direct base classes have trivial [default constructors or 7926 // destructors] 7927 for (const auto &BI : RD->bases()) 7928 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(), 7929 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose)) 7930 return false; 7931 7932 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 7933 // A copy/move [constructor or assignment operator] for a class X is 7934 // trivial if 7935 // -- for each non-static data member of X that is of class type (or array 7936 // thereof), the constructor selected to copy/move that member is 7937 // trivial 7938 // 7939 // C++11 [class.copy]p12, C++11 [class.copy]p25: 7940 // A [default constructor or destructor] is trivial if 7941 // -- for all of the non-static data members of its class that are of class 7942 // type (or array thereof), each such class has a trivial [default 7943 // constructor or destructor] 7944 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose)) 7945 return false; 7946 7947 // C++11 [class.dtor]p5: 7948 // A destructor is trivial if [...] 7949 // -- the destructor is not virtual 7950 if (CSM == CXXDestructor && MD->isVirtual()) { 7951 if (Diagnose) 7952 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; 7953 return false; 7954 } 7955 7956 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 7957 // A [special member] for class X is trivial if [...] 7958 // -- class X has no virtual functions and no virtual base classes 7959 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) { 7960 if (!Diagnose) 7961 return false; 7962 7963 if (RD->getNumVBases()) { 7964 // Check for virtual bases. We already know that the corresponding 7965 // member in all bases is trivial, so vbases must all be direct. 7966 CXXBaseSpecifier &BS = *RD->vbases_begin(); 7967 assert(BS.isVirtual()); 7968 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1; 7969 return false; 7970 } 7971 7972 // Must have a virtual method. 7973 for (const auto *MI : RD->methods()) { 7974 if (MI->isVirtual()) { 7975 SourceLocation MLoc = MI->getBeginLoc(); 7976 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; 7977 return false; 7978 } 7979 } 7980 7981 llvm_unreachable("dynamic class with no vbases and no virtual functions"); 7982 } 7983 7984 // Looks like it's trivial! 7985 return true; 7986 } 7987 7988 namespace { 7989 struct FindHiddenVirtualMethod { 7990 Sema *S; 7991 CXXMethodDecl *Method; 7992 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; 7993 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 7994 7995 private: 7996 /// Check whether any most overridden method from MD in Methods 7997 static bool CheckMostOverridenMethods( 7998 const CXXMethodDecl *MD, 7999 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) { 8000 if (MD->size_overridden_methods() == 0) 8001 return Methods.count(MD->getCanonicalDecl()); 8002 for (const CXXMethodDecl *O : MD->overridden_methods()) 8003 if (CheckMostOverridenMethods(O, Methods)) 8004 return true; 8005 return false; 8006 } 8007 8008 public: 8009 /// Member lookup function that determines whether a given C++ 8010 /// method overloads virtual methods in a base class without overriding any, 8011 /// to be used with CXXRecordDecl::lookupInBases(). 8012 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 8013 RecordDecl *BaseRecord = 8014 Specifier->getType()->castAs<RecordType>()->getDecl(); 8015 8016 DeclarationName Name = Method->getDeclName(); 8017 assert(Name.getNameKind() == DeclarationName::Identifier); 8018 8019 bool foundSameNameMethod = false; 8020 SmallVector<CXXMethodDecl *, 8> overloadedMethods; 8021 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty(); 8022 Path.Decls = Path.Decls.slice(1)) { 8023 NamedDecl *D = Path.Decls.front(); 8024 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 8025 MD = MD->getCanonicalDecl(); 8026 foundSameNameMethod = true; 8027 // Interested only in hidden virtual methods. 8028 if (!MD->isVirtual()) 8029 continue; 8030 // If the method we are checking overrides a method from its base 8031 // don't warn about the other overloaded methods. Clang deviates from 8032 // GCC by only diagnosing overloads of inherited virtual functions that 8033 // do not override any other virtual functions in the base. GCC's 8034 // -Woverloaded-virtual diagnoses any derived function hiding a virtual 8035 // function from a base class. These cases may be better served by a 8036 // warning (not specific to virtual functions) on call sites when the 8037 // call would select a different function from the base class, were it 8038 // visible. 8039 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. 8040 if (!S->IsOverload(Method, MD, false)) 8041 return true; 8042 // Collect the overload only if its hidden. 8043 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods)) 8044 overloadedMethods.push_back(MD); 8045 } 8046 } 8047 8048 if (foundSameNameMethod) 8049 OverloadedMethods.append(overloadedMethods.begin(), 8050 overloadedMethods.end()); 8051 return foundSameNameMethod; 8052 } 8053 }; 8054 } // end anonymous namespace 8055 8056 /// Add the most overriden methods from MD to Methods 8057 static void AddMostOverridenMethods(const CXXMethodDecl *MD, 8058 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { 8059 if (MD->size_overridden_methods() == 0) 8060 Methods.insert(MD->getCanonicalDecl()); 8061 else 8062 for (const CXXMethodDecl *O : MD->overridden_methods()) 8063 AddMostOverridenMethods(O, Methods); 8064 } 8065 8066 /// Check if a method overloads virtual methods in a base class without 8067 /// overriding any. 8068 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, 8069 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 8070 if (!MD->getDeclName().isIdentifier()) 8071 return; 8072 8073 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. 8074 /*bool RecordPaths=*/false, 8075 /*bool DetectVirtual=*/false); 8076 FindHiddenVirtualMethod FHVM; 8077 FHVM.Method = MD; 8078 FHVM.S = this; 8079 8080 // Keep the base methods that were overridden or introduced in the subclass 8081 // by 'using' in a set. A base method not in this set is hidden. 8082 CXXRecordDecl *DC = MD->getParent(); 8083 DeclContext::lookup_result R = DC->lookup(MD->getDeclName()); 8084 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { 8085 NamedDecl *ND = *I; 8086 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I)) 8087 ND = shad->getTargetDecl(); 8088 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 8089 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods); 8090 } 8091 8092 if (DC->lookupInBases(FHVM, Paths)) 8093 OverloadedMethods = FHVM.OverloadedMethods; 8094 } 8095 8096 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, 8097 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 8098 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { 8099 CXXMethodDecl *overloadedMD = OverloadedMethods[i]; 8100 PartialDiagnostic PD = PDiag( 8101 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; 8102 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType()); 8103 Diag(overloadedMD->getLocation(), PD); 8104 } 8105 } 8106 8107 /// Diagnose methods which overload virtual methods in a base class 8108 /// without overriding any. 8109 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { 8110 if (MD->isInvalidDecl()) 8111 return; 8112 8113 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) 8114 return; 8115 8116 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 8117 FindHiddenVirtualMethods(MD, OverloadedMethods); 8118 if (!OverloadedMethods.empty()) { 8119 Diag(MD->getLocation(), diag::warn_overloaded_virtual) 8120 << MD << (OverloadedMethods.size() > 1); 8121 8122 NoteHiddenVirtualMethods(MD, OverloadedMethods); 8123 } 8124 } 8125 8126 void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) { 8127 auto PrintDiagAndRemoveAttr = [&]() { 8128 // No diagnostics if this is a template instantiation. 8129 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) 8130 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 8131 diag::ext_cannot_use_trivial_abi) << &RD; 8132 RD.dropAttr<TrivialABIAttr>(); 8133 }; 8134 8135 // Ill-formed if the struct has virtual functions. 8136 if (RD.isPolymorphic()) { 8137 PrintDiagAndRemoveAttr(); 8138 return; 8139 } 8140 8141 for (const auto &B : RD.bases()) { 8142 // Ill-formed if the base class is non-trivial for the purpose of calls or a 8143 // virtual base. 8144 if ((!B.getType()->isDependentType() && 8145 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) || 8146 B.isVirtual()) { 8147 PrintDiagAndRemoveAttr(); 8148 return; 8149 } 8150 } 8151 8152 for (const auto *FD : RD.fields()) { 8153 // Ill-formed if the field is an ObjectiveC pointer or of a type that is 8154 // non-trivial for the purpose of calls. 8155 QualType FT = FD->getType(); 8156 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) { 8157 PrintDiagAndRemoveAttr(); 8158 return; 8159 } 8160 8161 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>()) 8162 if (!RT->isDependentType() && 8163 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) { 8164 PrintDiagAndRemoveAttr(); 8165 return; 8166 } 8167 } 8168 } 8169 8170 void Sema::ActOnFinishCXXMemberSpecification( 8171 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, 8172 SourceLocation RBrac, const ParsedAttributesView &AttrList) { 8173 if (!TagDecl) 8174 return; 8175 8176 AdjustDeclIfTemplate(TagDecl); 8177 8178 for (const ParsedAttr &AL : AttrList) { 8179 if (AL.getKind() != ParsedAttr::AT_Visibility) 8180 continue; 8181 AL.setInvalid(); 8182 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL; 8183 } 8184 8185 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef( 8186 // strict aliasing violation! 8187 reinterpret_cast<Decl**>(FieldCollector->getCurFields()), 8188 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList); 8189 8190 CheckCompletedCXXClass(cast<CXXRecordDecl>(TagDecl)); 8191 } 8192 8193 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared 8194 /// special functions, such as the default constructor, copy 8195 /// constructor, or destructor, to the given C++ class (C++ 8196 /// [special]p1). This routine can only be executed just before the 8197 /// definition of the class is complete. 8198 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { 8199 if (ClassDecl->needsImplicitDefaultConstructor()) { 8200 ++getASTContext().NumImplicitDefaultConstructors; 8201 8202 if (ClassDecl->hasInheritedConstructor()) 8203 DeclareImplicitDefaultConstructor(ClassDecl); 8204 } 8205 8206 if (ClassDecl->needsImplicitCopyConstructor()) { 8207 ++getASTContext().NumImplicitCopyConstructors; 8208 8209 // If the properties or semantics of the copy constructor couldn't be 8210 // determined while the class was being declared, force a declaration 8211 // of it now. 8212 if (ClassDecl->needsOverloadResolutionForCopyConstructor() || 8213 ClassDecl->hasInheritedConstructor()) 8214 DeclareImplicitCopyConstructor(ClassDecl); 8215 // For the MS ABI we need to know whether the copy ctor is deleted. A 8216 // prerequisite for deleting the implicit copy ctor is that the class has a 8217 // move ctor or move assignment that is either user-declared or whose 8218 // semantics are inherited from a subobject. FIXME: We should provide a more 8219 // direct way for CodeGen to ask whether the constructor was deleted. 8220 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 8221 (ClassDecl->hasUserDeclaredMoveConstructor() || 8222 ClassDecl->needsOverloadResolutionForMoveConstructor() || 8223 ClassDecl->hasUserDeclaredMoveAssignment() || 8224 ClassDecl->needsOverloadResolutionForMoveAssignment())) 8225 DeclareImplicitCopyConstructor(ClassDecl); 8226 } 8227 8228 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) { 8229 ++getASTContext().NumImplicitMoveConstructors; 8230 8231 if (ClassDecl->needsOverloadResolutionForMoveConstructor() || 8232 ClassDecl->hasInheritedConstructor()) 8233 DeclareImplicitMoveConstructor(ClassDecl); 8234 } 8235 8236 if (ClassDecl->needsImplicitCopyAssignment()) { 8237 ++getASTContext().NumImplicitCopyAssignmentOperators; 8238 8239 // If we have a dynamic class, then the copy assignment operator may be 8240 // virtual, so we have to declare it immediately. This ensures that, e.g., 8241 // it shows up in the right place in the vtable and that we diagnose 8242 // problems with the implicit exception specification. 8243 if (ClassDecl->isDynamicClass() || 8244 ClassDecl->needsOverloadResolutionForCopyAssignment() || 8245 ClassDecl->hasInheritedAssignment()) 8246 DeclareImplicitCopyAssignment(ClassDecl); 8247 } 8248 8249 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { 8250 ++getASTContext().NumImplicitMoveAssignmentOperators; 8251 8252 // Likewise for the move assignment operator. 8253 if (ClassDecl->isDynamicClass() || 8254 ClassDecl->needsOverloadResolutionForMoveAssignment() || 8255 ClassDecl->hasInheritedAssignment()) 8256 DeclareImplicitMoveAssignment(ClassDecl); 8257 } 8258 8259 if (ClassDecl->needsImplicitDestructor()) { 8260 ++getASTContext().NumImplicitDestructors; 8261 8262 // If we have a dynamic class, then the destructor may be virtual, so we 8263 // have to declare the destructor immediately. This ensures that, e.g., it 8264 // shows up in the right place in the vtable and that we diagnose problems 8265 // with the implicit exception specification. 8266 if (ClassDecl->isDynamicClass() || 8267 ClassDecl->needsOverloadResolutionForDestructor()) 8268 DeclareImplicitDestructor(ClassDecl); 8269 } 8270 } 8271 8272 unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) { 8273 if (!D) 8274 return 0; 8275 8276 // The order of template parameters is not important here. All names 8277 // get added to the same scope. 8278 SmallVector<TemplateParameterList *, 4> ParameterLists; 8279 8280 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) 8281 D = TD->getTemplatedDecl(); 8282 8283 if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) 8284 ParameterLists.push_back(PSD->getTemplateParameters()); 8285 8286 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) { 8287 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) 8288 ParameterLists.push_back(DD->getTemplateParameterList(i)); 8289 8290 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8291 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 8292 ParameterLists.push_back(FTD->getTemplateParameters()); 8293 } 8294 } 8295 8296 if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 8297 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) 8298 ParameterLists.push_back(TD->getTemplateParameterList(i)); 8299 8300 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) { 8301 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) 8302 ParameterLists.push_back(CTD->getTemplateParameters()); 8303 } 8304 } 8305 8306 unsigned Count = 0; 8307 for (TemplateParameterList *Params : ParameterLists) { 8308 if (Params->size() > 0) 8309 // Ignore explicit specializations; they don't contribute to the template 8310 // depth. 8311 ++Count; 8312 for (NamedDecl *Param : *Params) { 8313 if (Param->getDeclName()) { 8314 S->AddDecl(Param); 8315 IdResolver.AddDecl(Param); 8316 } 8317 } 8318 } 8319 8320 return Count; 8321 } 8322 8323 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 8324 if (!RecordD) return; 8325 AdjustDeclIfTemplate(RecordD); 8326 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); 8327 PushDeclContext(S, Record); 8328 } 8329 8330 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 8331 if (!RecordD) return; 8332 PopDeclContext(); 8333 } 8334 8335 /// This is used to implement the constant expression evaluation part of the 8336 /// attribute enable_if extension. There is nothing in standard C++ which would 8337 /// require reentering parameters. 8338 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { 8339 if (!Param) 8340 return; 8341 8342 S->AddDecl(Param); 8343 if (Param->getDeclName()) 8344 IdResolver.AddDecl(Param); 8345 } 8346 8347 /// ActOnStartDelayedCXXMethodDeclaration - We have completed 8348 /// parsing a top-level (non-nested) C++ class, and we are now 8349 /// parsing those parts of the given Method declaration that could 8350 /// not be parsed earlier (C++ [class.mem]p2), such as default 8351 /// arguments. This action should enter the scope of the given 8352 /// Method declaration as if we had just parsed the qualified method 8353 /// name. However, it should not bring the parameters into scope; 8354 /// that will be performed by ActOnDelayedCXXMethodParameter. 8355 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 8356 } 8357 8358 /// ActOnDelayedCXXMethodParameter - We've already started a delayed 8359 /// C++ method declaration. We're (re-)introducing the given 8360 /// function parameter into scope for use in parsing later parts of 8361 /// the method declaration. For example, we could see an 8362 /// ActOnParamDefaultArgument event for this parameter. 8363 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { 8364 if (!ParamD) 8365 return; 8366 8367 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); 8368 8369 // If this parameter has an unparsed default argument, clear it out 8370 // to make way for the parsed default argument. 8371 if (Param->hasUnparsedDefaultArg()) 8372 Param->setDefaultArg(nullptr); 8373 8374 S->AddDecl(Param); 8375 if (Param->getDeclName()) 8376 IdResolver.AddDecl(Param); 8377 } 8378 8379 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished 8380 /// processing the delayed method declaration for Method. The method 8381 /// declaration is now considered finished. There may be a separate 8382 /// ActOnStartOfFunctionDef action later (not necessarily 8383 /// immediately!) for this method, if it was also defined inside the 8384 /// class body. 8385 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 8386 if (!MethodD) 8387 return; 8388 8389 AdjustDeclIfTemplate(MethodD); 8390 8391 FunctionDecl *Method = cast<FunctionDecl>(MethodD); 8392 8393 // Now that we have our default arguments, check the constructor 8394 // again. It could produce additional diagnostics or affect whether 8395 // the class has implicitly-declared destructors, among other 8396 // things. 8397 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) 8398 CheckConstructor(Constructor); 8399 8400 // Check the default arguments, which we may have added. 8401 if (!Method->isInvalidDecl()) 8402 CheckCXXDefaultArguments(Method); 8403 } 8404 8405 // Emit the given diagnostic for each non-address-space qualifier. 8406 // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator. 8407 static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) { 8408 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 8409 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) { 8410 bool DiagOccured = false; 8411 FTI.MethodQualifiers->forEachQualifier( 8412 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName, 8413 SourceLocation SL) { 8414 // This diagnostic should be emitted on any qualifier except an addr 8415 // space qualifier. However, forEachQualifier currently doesn't visit 8416 // addr space qualifiers, so there's no way to write this condition 8417 // right now; we just diagnose on everything. 8418 S.Diag(SL, DiagID) << QualName << SourceRange(SL); 8419 DiagOccured = true; 8420 }); 8421 if (DiagOccured) 8422 D.setInvalidType(); 8423 } 8424 } 8425 8426 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check 8427 /// the well-formedness of the constructor declarator @p D with type @p 8428 /// R. If there are any errors in the declarator, this routine will 8429 /// emit diagnostics and set the invalid bit to true. In any case, the type 8430 /// will be updated to reflect a well-formed type for the constructor and 8431 /// returned. 8432 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, 8433 StorageClass &SC) { 8434 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 8435 8436 // C++ [class.ctor]p3: 8437 // A constructor shall not be virtual (10.3) or static (9.4). A 8438 // constructor can be invoked for a const, volatile or const 8439 // volatile object. A constructor shall not be declared const, 8440 // volatile, or const volatile (9.3.2). 8441 if (isVirtual) { 8442 if (!D.isInvalidType()) 8443 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 8444 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) 8445 << SourceRange(D.getIdentifierLoc()); 8446 D.setInvalidType(); 8447 } 8448 if (SC == SC_Static) { 8449 if (!D.isInvalidType()) 8450 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 8451 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 8452 << SourceRange(D.getIdentifierLoc()); 8453 D.setInvalidType(); 8454 SC = SC_None; 8455 } 8456 8457 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 8458 diagnoseIgnoredQualifiers( 8459 diag::err_constructor_return_type, TypeQuals, SourceLocation(), 8460 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), 8461 D.getDeclSpec().getRestrictSpecLoc(), 8462 D.getDeclSpec().getAtomicSpecLoc()); 8463 D.setInvalidType(); 8464 } 8465 8466 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor); 8467 8468 // C++0x [class.ctor]p4: 8469 // A constructor shall not be declared with a ref-qualifier. 8470 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 8471 if (FTI.hasRefQualifier()) { 8472 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) 8473 << FTI.RefQualifierIsLValueRef 8474 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 8475 D.setInvalidType(); 8476 } 8477 8478 // Rebuild the function type "R" without any type qualifiers (in 8479 // case any of the errors above fired) and with "void" as the 8480 // return type, since constructors don't have return types. 8481 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); 8482 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) 8483 return R; 8484 8485 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 8486 EPI.TypeQuals = Qualifiers(); 8487 EPI.RefQualifier = RQ_None; 8488 8489 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI); 8490 } 8491 8492 /// CheckConstructor - Checks a fully-formed constructor for 8493 /// well-formedness, issuing any diagnostics required. Returns true if 8494 /// the constructor declarator is invalid. 8495 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { 8496 CXXRecordDecl *ClassDecl 8497 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); 8498 if (!ClassDecl) 8499 return Constructor->setInvalidDecl(); 8500 8501 // C++ [class.copy]p3: 8502 // A declaration of a constructor for a class X is ill-formed if 8503 // its first parameter is of type (optionally cv-qualified) X and 8504 // either there are no other parameters or else all other 8505 // parameters have default arguments. 8506 if (!Constructor->isInvalidDecl() && 8507 ((Constructor->getNumParams() == 1) || 8508 (Constructor->getNumParams() > 1 && 8509 Constructor->getParamDecl(1)->hasDefaultArg())) && 8510 Constructor->getTemplateSpecializationKind() 8511 != TSK_ImplicitInstantiation) { 8512 QualType ParamType = Constructor->getParamDecl(0)->getType(); 8513 QualType ClassTy = Context.getTagDeclType(ClassDecl); 8514 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { 8515 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); 8516 const char *ConstRef 8517 = Constructor->getParamDecl(0)->getIdentifier() ? "const &" 8518 : " const &"; 8519 Diag(ParamLoc, diag::err_constructor_byvalue_arg) 8520 << FixItHint::CreateInsertion(ParamLoc, ConstRef); 8521 8522 // FIXME: Rather that making the constructor invalid, we should endeavor 8523 // to fix the type. 8524 Constructor->setInvalidDecl(); 8525 } 8526 } 8527 } 8528 8529 /// CheckDestructor - Checks a fully-formed destructor definition for 8530 /// well-formedness, issuing any diagnostics required. Returns true 8531 /// on error. 8532 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { 8533 CXXRecordDecl *RD = Destructor->getParent(); 8534 8535 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { 8536 SourceLocation Loc; 8537 8538 if (!Destructor->isImplicit()) 8539 Loc = Destructor->getLocation(); 8540 else 8541 Loc = RD->getLocation(); 8542 8543 // If we have a virtual destructor, look up the deallocation function 8544 if (FunctionDecl *OperatorDelete = 8545 FindDeallocationFunctionForDestructor(Loc, RD)) { 8546 Expr *ThisArg = nullptr; 8547 8548 // If the notional 'delete this' expression requires a non-trivial 8549 // conversion from 'this' to the type of a destroying operator delete's 8550 // first parameter, perform that conversion now. 8551 if (OperatorDelete->isDestroyingOperatorDelete()) { 8552 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 8553 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) { 8554 // C++ [class.dtor]p13: 8555 // ... as if for the expression 'delete this' appearing in a 8556 // non-virtual destructor of the destructor's class. 8557 ContextRAII SwitchContext(*this, Destructor); 8558 ExprResult This = 8559 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation()); 8560 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?"); 8561 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing); 8562 if (This.isInvalid()) { 8563 // FIXME: Register this as a context note so that it comes out 8564 // in the right order. 8565 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here); 8566 return true; 8567 } 8568 ThisArg = This.get(); 8569 } 8570 } 8571 8572 DiagnoseUseOfDecl(OperatorDelete, Loc); 8573 MarkFunctionReferenced(Loc, OperatorDelete); 8574 Destructor->setOperatorDelete(OperatorDelete, ThisArg); 8575 } 8576 } 8577 8578 return false; 8579 } 8580 8581 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check 8582 /// the well-formednes of the destructor declarator @p D with type @p 8583 /// R. If there are any errors in the declarator, this routine will 8584 /// emit diagnostics and set the declarator to invalid. Even if this happens, 8585 /// will be updated to reflect a well-formed type for the destructor and 8586 /// returned. 8587 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, 8588 StorageClass& SC) { 8589 // C++ [class.dtor]p1: 8590 // [...] A typedef-name that names a class is a class-name 8591 // (7.1.3); however, a typedef-name that names a class shall not 8592 // be used as the identifier in the declarator for a destructor 8593 // declaration. 8594 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); 8595 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) 8596 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) 8597 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); 8598 else if (const TemplateSpecializationType *TST = 8599 DeclaratorType->getAs<TemplateSpecializationType>()) 8600 if (TST->isTypeAlias()) 8601 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) 8602 << DeclaratorType << 1; 8603 8604 // C++ [class.dtor]p2: 8605 // A destructor is used to destroy objects of its class type. A 8606 // destructor takes no parameters, and no return type can be 8607 // specified for it (not even void). The address of a destructor 8608 // shall not be taken. A destructor shall not be static. A 8609 // destructor can be invoked for a const, volatile or const 8610 // volatile object. A destructor shall not be declared const, 8611 // volatile or const volatile (9.3.2). 8612 if (SC == SC_Static) { 8613 if (!D.isInvalidType()) 8614 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) 8615 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 8616 << SourceRange(D.getIdentifierLoc()) 8617 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 8618 8619 SC = SC_None; 8620 } 8621 if (!D.isInvalidType()) { 8622 // Destructors don't have return types, but the parser will 8623 // happily parse something like: 8624 // 8625 // class X { 8626 // float ~X(); 8627 // }; 8628 // 8629 // The return type will be eliminated later. 8630 if (D.getDeclSpec().hasTypeSpecifier()) 8631 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) 8632 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 8633 << SourceRange(D.getIdentifierLoc()); 8634 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 8635 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, 8636 SourceLocation(), 8637 D.getDeclSpec().getConstSpecLoc(), 8638 D.getDeclSpec().getVolatileSpecLoc(), 8639 D.getDeclSpec().getRestrictSpecLoc(), 8640 D.getDeclSpec().getAtomicSpecLoc()); 8641 D.setInvalidType(); 8642 } 8643 } 8644 8645 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor); 8646 8647 // C++0x [class.dtor]p2: 8648 // A destructor shall not be declared with a ref-qualifier. 8649 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 8650 if (FTI.hasRefQualifier()) { 8651 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) 8652 << FTI.RefQualifierIsLValueRef 8653 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 8654 D.setInvalidType(); 8655 } 8656 8657 // Make sure we don't have any parameters. 8658 if (FTIHasNonVoidParameters(FTI)) { 8659 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); 8660 8661 // Delete the parameters. 8662 FTI.freeParams(); 8663 D.setInvalidType(); 8664 } 8665 8666 // Make sure the destructor isn't variadic. 8667 if (FTI.isVariadic) { 8668 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); 8669 D.setInvalidType(); 8670 } 8671 8672 // Rebuild the function type "R" without any type qualifiers or 8673 // parameters (in case any of the errors above fired) and with 8674 // "void" as the return type, since destructors don't have return 8675 // types. 8676 if (!D.isInvalidType()) 8677 return R; 8678 8679 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); 8680 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 8681 EPI.Variadic = false; 8682 EPI.TypeQuals = Qualifiers(); 8683 EPI.RefQualifier = RQ_None; 8684 return Context.getFunctionType(Context.VoidTy, None, EPI); 8685 } 8686 8687 static void extendLeft(SourceRange &R, SourceRange Before) { 8688 if (Before.isInvalid()) 8689 return; 8690 R.setBegin(Before.getBegin()); 8691 if (R.getEnd().isInvalid()) 8692 R.setEnd(Before.getEnd()); 8693 } 8694 8695 static void extendRight(SourceRange &R, SourceRange After) { 8696 if (After.isInvalid()) 8697 return; 8698 if (R.getBegin().isInvalid()) 8699 R.setBegin(After.getBegin()); 8700 R.setEnd(After.getEnd()); 8701 } 8702 8703 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the 8704 /// well-formednes of the conversion function declarator @p D with 8705 /// type @p R. If there are any errors in the declarator, this routine 8706 /// will emit diagnostics and return true. Otherwise, it will return 8707 /// false. Either way, the type @p R will be updated to reflect a 8708 /// well-formed type for the conversion operator. 8709 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, 8710 StorageClass& SC) { 8711 // C++ [class.conv.fct]p1: 8712 // Neither parameter types nor return type can be specified. The 8713 // type of a conversion function (8.3.5) is "function taking no 8714 // parameter returning conversion-type-id." 8715 if (SC == SC_Static) { 8716 if (!D.isInvalidType()) 8717 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) 8718 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 8719 << D.getName().getSourceRange(); 8720 D.setInvalidType(); 8721 SC = SC_None; 8722 } 8723 8724 TypeSourceInfo *ConvTSI = nullptr; 8725 QualType ConvType = 8726 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI); 8727 8728 const DeclSpec &DS = D.getDeclSpec(); 8729 if (DS.hasTypeSpecifier() && !D.isInvalidType()) { 8730 // Conversion functions don't have return types, but the parser will 8731 // happily parse something like: 8732 // 8733 // class X { 8734 // float operator bool(); 8735 // }; 8736 // 8737 // The return type will be changed later anyway. 8738 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) 8739 << SourceRange(DS.getTypeSpecTypeLoc()) 8740 << SourceRange(D.getIdentifierLoc()); 8741 D.setInvalidType(); 8742 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) { 8743 // It's also plausible that the user writes type qualifiers in the wrong 8744 // place, such as: 8745 // struct S { const operator int(); }; 8746 // FIXME: we could provide a fixit to move the qualifiers onto the 8747 // conversion type. 8748 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) 8749 << SourceRange(D.getIdentifierLoc()) << 0; 8750 D.setInvalidType(); 8751 } 8752 8753 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); 8754 8755 // Make sure we don't have any parameters. 8756 if (Proto->getNumParams() > 0) { 8757 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); 8758 8759 // Delete the parameters. 8760 D.getFunctionTypeInfo().freeParams(); 8761 D.setInvalidType(); 8762 } else if (Proto->isVariadic()) { 8763 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); 8764 D.setInvalidType(); 8765 } 8766 8767 // Diagnose "&operator bool()" and other such nonsense. This 8768 // is actually a gcc extension which we don't support. 8769 if (Proto->getReturnType() != ConvType) { 8770 bool NeedsTypedef = false; 8771 SourceRange Before, After; 8772 8773 // Walk the chunks and extract information on them for our diagnostic. 8774 bool PastFunctionChunk = false; 8775 for (auto &Chunk : D.type_objects()) { 8776 switch (Chunk.Kind) { 8777 case DeclaratorChunk::Function: 8778 if (!PastFunctionChunk) { 8779 if (Chunk.Fun.HasTrailingReturnType) { 8780 TypeSourceInfo *TRT = nullptr; 8781 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT); 8782 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange()); 8783 } 8784 PastFunctionChunk = true; 8785 break; 8786 } 8787 LLVM_FALLTHROUGH; 8788 case DeclaratorChunk::Array: 8789 NeedsTypedef = true; 8790 extendRight(After, Chunk.getSourceRange()); 8791 break; 8792 8793 case DeclaratorChunk::Pointer: 8794 case DeclaratorChunk::BlockPointer: 8795 case DeclaratorChunk::Reference: 8796 case DeclaratorChunk::MemberPointer: 8797 case DeclaratorChunk::Pipe: 8798 extendLeft(Before, Chunk.getSourceRange()); 8799 break; 8800 8801 case DeclaratorChunk::Paren: 8802 extendLeft(Before, Chunk.Loc); 8803 extendRight(After, Chunk.EndLoc); 8804 break; 8805 } 8806 } 8807 8808 SourceLocation Loc = Before.isValid() ? Before.getBegin() : 8809 After.isValid() ? After.getBegin() : 8810 D.getIdentifierLoc(); 8811 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); 8812 DB << Before << After; 8813 8814 if (!NeedsTypedef) { 8815 DB << /*don't need a typedef*/0; 8816 8817 // If we can provide a correct fix-it hint, do so. 8818 if (After.isInvalid() && ConvTSI) { 8819 SourceLocation InsertLoc = 8820 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc()); 8821 DB << FixItHint::CreateInsertion(InsertLoc, " ") 8822 << FixItHint::CreateInsertionFromRange( 8823 InsertLoc, CharSourceRange::getTokenRange(Before)) 8824 << FixItHint::CreateRemoval(Before); 8825 } 8826 } else if (!Proto->getReturnType()->isDependentType()) { 8827 DB << /*typedef*/1 << Proto->getReturnType(); 8828 } else if (getLangOpts().CPlusPlus11) { 8829 DB << /*alias template*/2 << Proto->getReturnType(); 8830 } else { 8831 DB << /*might not be fixable*/3; 8832 } 8833 8834 // Recover by incorporating the other type chunks into the result type. 8835 // Note, this does *not* change the name of the function. This is compatible 8836 // with the GCC extension: 8837 // struct S { &operator int(); } s; 8838 // int &r = s.operator int(); // ok in GCC 8839 // S::operator int&() {} // error in GCC, function name is 'operator int'. 8840 ConvType = Proto->getReturnType(); 8841 } 8842 8843 // C++ [class.conv.fct]p4: 8844 // The conversion-type-id shall not represent a function type nor 8845 // an array type. 8846 if (ConvType->isArrayType()) { 8847 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); 8848 ConvType = Context.getPointerType(ConvType); 8849 D.setInvalidType(); 8850 } else if (ConvType->isFunctionType()) { 8851 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); 8852 ConvType = Context.getPointerType(ConvType); 8853 D.setInvalidType(); 8854 } 8855 8856 // Rebuild the function type "R" without any parameters (in case any 8857 // of the errors above fired) and with the conversion type as the 8858 // return type. 8859 if (D.isInvalidType()) 8860 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo()); 8861 8862 // C++0x explicit conversion operators. 8863 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus2a) 8864 Diag(DS.getExplicitSpecLoc(), 8865 getLangOpts().CPlusPlus11 8866 ? diag::warn_cxx98_compat_explicit_conversion_functions 8867 : diag::ext_explicit_conversion_functions) 8868 << SourceRange(DS.getExplicitSpecRange()); 8869 } 8870 8871 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete 8872 /// the declaration of the given C++ conversion function. This routine 8873 /// is responsible for recording the conversion function in the C++ 8874 /// class, if possible. 8875 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { 8876 assert(Conversion && "Expected to receive a conversion function declaration"); 8877 8878 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); 8879 8880 // Make sure we aren't redeclaring the conversion function. 8881 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); 8882 8883 // C++ [class.conv.fct]p1: 8884 // [...] A conversion function is never used to convert a 8885 // (possibly cv-qualified) object to the (possibly cv-qualified) 8886 // same object type (or a reference to it), to a (possibly 8887 // cv-qualified) base class of that type (or a reference to it), 8888 // or to (possibly cv-qualified) void. 8889 // FIXME: Suppress this warning if the conversion function ends up being a 8890 // virtual function that overrides a virtual function in a base class. 8891 QualType ClassType 8892 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 8893 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) 8894 ConvType = ConvTypeRef->getPointeeType(); 8895 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && 8896 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 8897 /* Suppress diagnostics for instantiations. */; 8898 else if (ConvType->isRecordType()) { 8899 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); 8900 if (ConvType == ClassType) 8901 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) 8902 << ClassType; 8903 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType)) 8904 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) 8905 << ClassType << ConvType; 8906 } else if (ConvType->isVoidType()) { 8907 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) 8908 << ClassType << ConvType; 8909 } 8910 8911 if (FunctionTemplateDecl *ConversionTemplate 8912 = Conversion->getDescribedFunctionTemplate()) 8913 return ConversionTemplate; 8914 8915 return Conversion; 8916 } 8917 8918 namespace { 8919 /// Utility class to accumulate and print a diagnostic listing the invalid 8920 /// specifier(s) on a declaration. 8921 struct BadSpecifierDiagnoser { 8922 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID) 8923 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {} 8924 ~BadSpecifierDiagnoser() { 8925 Diagnostic << Specifiers; 8926 } 8927 8928 template<typename T> void check(SourceLocation SpecLoc, T Spec) { 8929 return check(SpecLoc, DeclSpec::getSpecifierName(Spec)); 8930 } 8931 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) { 8932 return check(SpecLoc, 8933 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy())); 8934 } 8935 void check(SourceLocation SpecLoc, const char *Spec) { 8936 if (SpecLoc.isInvalid()) return; 8937 Diagnostic << SourceRange(SpecLoc, SpecLoc); 8938 if (!Specifiers.empty()) Specifiers += " "; 8939 Specifiers += Spec; 8940 } 8941 8942 Sema &S; 8943 Sema::SemaDiagnosticBuilder Diagnostic; 8944 std::string Specifiers; 8945 }; 8946 } 8947 8948 /// Check the validity of a declarator that we parsed for a deduction-guide. 8949 /// These aren't actually declarators in the grammar, so we need to check that 8950 /// the user didn't specify any pieces that are not part of the deduction-guide 8951 /// grammar. 8952 void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R, 8953 StorageClass &SC) { 8954 TemplateName GuidedTemplate = D.getName().TemplateName.get().get(); 8955 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl(); 8956 assert(GuidedTemplateDecl && "missing template decl for deduction guide"); 8957 8958 // C++ [temp.deduct.guide]p3: 8959 // A deduction-gide shall be declared in the same scope as the 8960 // corresponding class template. 8961 if (!CurContext->getRedeclContext()->Equals( 8962 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) { 8963 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope) 8964 << GuidedTemplateDecl; 8965 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here); 8966 } 8967 8968 auto &DS = D.getMutableDeclSpec(); 8969 // We leave 'friend' and 'virtual' to be rejected in the normal way. 8970 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() || 8971 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() || 8972 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) { 8973 BadSpecifierDiagnoser Diagnoser( 8974 *this, D.getIdentifierLoc(), 8975 diag::err_deduction_guide_invalid_specifier); 8976 8977 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec()); 8978 DS.ClearStorageClassSpecs(); 8979 SC = SC_None; 8980 8981 // 'explicit' is permitted. 8982 Diagnoser.check(DS.getInlineSpecLoc(), "inline"); 8983 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn"); 8984 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr"); 8985 DS.ClearConstexprSpec(); 8986 8987 Diagnoser.check(DS.getConstSpecLoc(), "const"); 8988 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict"); 8989 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile"); 8990 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic"); 8991 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned"); 8992 DS.ClearTypeQualifiers(); 8993 8994 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex()); 8995 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign()); 8996 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth()); 8997 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType()); 8998 DS.ClearTypeSpecType(); 8999 } 9000 9001 if (D.isInvalidType()) 9002 return; 9003 9004 // Check the declarator is simple enough. 9005 bool FoundFunction = false; 9006 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) { 9007 if (Chunk.Kind == DeclaratorChunk::Paren) 9008 continue; 9009 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) { 9010 Diag(D.getDeclSpec().getBeginLoc(), 9011 diag::err_deduction_guide_with_complex_decl) 9012 << D.getSourceRange(); 9013 break; 9014 } 9015 if (!Chunk.Fun.hasTrailingReturnType()) { 9016 Diag(D.getName().getBeginLoc(), 9017 diag::err_deduction_guide_no_trailing_return_type); 9018 break; 9019 } 9020 9021 // Check that the return type is written as a specialization of 9022 // the template specified as the deduction-guide's name. 9023 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType(); 9024 TypeSourceInfo *TSI = nullptr; 9025 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI); 9026 assert(TSI && "deduction guide has valid type but invalid return type?"); 9027 bool AcceptableReturnType = false; 9028 bool MightInstantiateToSpecialization = false; 9029 if (auto RetTST = 9030 TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) { 9031 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName(); 9032 bool TemplateMatches = 9033 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate); 9034 if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches) 9035 AcceptableReturnType = true; 9036 else { 9037 // This could still instantiate to the right type, unless we know it 9038 // names the wrong class template. 9039 auto *TD = SpecifiedName.getAsTemplateDecl(); 9040 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) && 9041 !TemplateMatches); 9042 } 9043 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) { 9044 MightInstantiateToSpecialization = true; 9045 } 9046 9047 if (!AcceptableReturnType) { 9048 Diag(TSI->getTypeLoc().getBeginLoc(), 9049 diag::err_deduction_guide_bad_trailing_return_type) 9050 << GuidedTemplate << TSI->getType() 9051 << MightInstantiateToSpecialization 9052 << TSI->getTypeLoc().getSourceRange(); 9053 } 9054 9055 // Keep going to check that we don't have any inner declarator pieces (we 9056 // could still have a function returning a pointer to a function). 9057 FoundFunction = true; 9058 } 9059 9060 if (D.isFunctionDefinition()) 9061 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function); 9062 } 9063 9064 //===----------------------------------------------------------------------===// 9065 // Namespace Handling 9066 //===----------------------------------------------------------------------===// 9067 9068 /// Diagnose a mismatch in 'inline' qualifiers when a namespace is 9069 /// reopened. 9070 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, 9071 SourceLocation Loc, 9072 IdentifierInfo *II, bool *IsInline, 9073 NamespaceDecl *PrevNS) { 9074 assert(*IsInline != PrevNS->isInline()); 9075 9076 // HACK: Work around a bug in libstdc++4.6's <atomic>, where 9077 // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as 9078 // inline namespaces, with the intention of bringing names into namespace std. 9079 // 9080 // We support this just well enough to get that case working; this is not 9081 // sufficient to support reopening namespaces as inline in general. 9082 if (*IsInline && II && II->getName().startswith("__atomic") && 9083 S.getSourceManager().isInSystemHeader(Loc)) { 9084 // Mark all prior declarations of the namespace as inline. 9085 for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS; 9086 NS = NS->getPreviousDecl()) 9087 NS->setInline(*IsInline); 9088 // Patch up the lookup table for the containing namespace. This isn't really 9089 // correct, but it's good enough for this particular case. 9090 for (auto *I : PrevNS->decls()) 9091 if (auto *ND = dyn_cast<NamedDecl>(I)) 9092 PrevNS->getParent()->makeDeclVisibleInContext(ND); 9093 return; 9094 } 9095 9096 if (PrevNS->isInline()) 9097 // The user probably just forgot the 'inline', so suggest that it 9098 // be added back. 9099 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) 9100 << FixItHint::CreateInsertion(KeywordLoc, "inline "); 9101 else 9102 S.Diag(Loc, diag::err_inline_namespace_mismatch); 9103 9104 S.Diag(PrevNS->getLocation(), diag::note_previous_definition); 9105 *IsInline = PrevNS->isInline(); 9106 } 9107 9108 /// ActOnStartNamespaceDef - This is called at the start of a namespace 9109 /// definition. 9110 Decl *Sema::ActOnStartNamespaceDef( 9111 Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc, 9112 SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace, 9113 const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) { 9114 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; 9115 // For anonymous namespace, take the location of the left brace. 9116 SourceLocation Loc = II ? IdentLoc : LBrace; 9117 bool IsInline = InlineLoc.isValid(); 9118 bool IsInvalid = false; 9119 bool IsStd = false; 9120 bool AddToKnown = false; 9121 Scope *DeclRegionScope = NamespcScope->getParent(); 9122 9123 NamespaceDecl *PrevNS = nullptr; 9124 if (II) { 9125 // C++ [namespace.def]p2: 9126 // The identifier in an original-namespace-definition shall not 9127 // have been previously defined in the declarative region in 9128 // which the original-namespace-definition appears. The 9129 // identifier in an original-namespace-definition is the name of 9130 // the namespace. Subsequently in that declarative region, it is 9131 // treated as an original-namespace-name. 9132 // 9133 // Since namespace names are unique in their scope, and we don't 9134 // look through using directives, just look for any ordinary names 9135 // as if by qualified name lookup. 9136 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, 9137 ForExternalRedeclaration); 9138 LookupQualifiedName(R, CurContext->getRedeclContext()); 9139 NamedDecl *PrevDecl = 9140 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr; 9141 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl); 9142 9143 if (PrevNS) { 9144 // This is an extended namespace definition. 9145 if (IsInline != PrevNS->isInline()) 9146 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II, 9147 &IsInline, PrevNS); 9148 } else if (PrevDecl) { 9149 // This is an invalid name redefinition. 9150 Diag(Loc, diag::err_redefinition_different_kind) 9151 << II; 9152 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 9153 IsInvalid = true; 9154 // Continue on to push Namespc as current DeclContext and return it. 9155 } else if (II->isStr("std") && 9156 CurContext->getRedeclContext()->isTranslationUnit()) { 9157 // This is the first "real" definition of the namespace "std", so update 9158 // our cache of the "std" namespace to point at this definition. 9159 PrevNS = getStdNamespace(); 9160 IsStd = true; 9161 AddToKnown = !IsInline; 9162 } else { 9163 // We've seen this namespace for the first time. 9164 AddToKnown = !IsInline; 9165 } 9166 } else { 9167 // Anonymous namespaces. 9168 9169 // Determine whether the parent already has an anonymous namespace. 9170 DeclContext *Parent = CurContext->getRedeclContext(); 9171 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 9172 PrevNS = TU->getAnonymousNamespace(); 9173 } else { 9174 NamespaceDecl *ND = cast<NamespaceDecl>(Parent); 9175 PrevNS = ND->getAnonymousNamespace(); 9176 } 9177 9178 if (PrevNS && IsInline != PrevNS->isInline()) 9179 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II, 9180 &IsInline, PrevNS); 9181 } 9182 9183 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline, 9184 StartLoc, Loc, II, PrevNS); 9185 if (IsInvalid) 9186 Namespc->setInvalidDecl(); 9187 9188 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); 9189 AddPragmaAttributes(DeclRegionScope, Namespc); 9190 9191 // FIXME: Should we be merging attributes? 9192 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) 9193 PushNamespaceVisibilityAttr(Attr, Loc); 9194 9195 if (IsStd) 9196 StdNamespace = Namespc; 9197 if (AddToKnown) 9198 KnownNamespaces[Namespc] = false; 9199 9200 if (II) { 9201 PushOnScopeChains(Namespc, DeclRegionScope); 9202 } else { 9203 // Link the anonymous namespace into its parent. 9204 DeclContext *Parent = CurContext->getRedeclContext(); 9205 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 9206 TU->setAnonymousNamespace(Namespc); 9207 } else { 9208 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc); 9209 } 9210 9211 CurContext->addDecl(Namespc); 9212 9213 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition 9214 // behaves as if it were replaced by 9215 // namespace unique { /* empty body */ } 9216 // using namespace unique; 9217 // namespace unique { namespace-body } 9218 // where all occurrences of 'unique' in a translation unit are 9219 // replaced by the same identifier and this identifier differs 9220 // from all other identifiers in the entire program. 9221 9222 // We just create the namespace with an empty name and then add an 9223 // implicit using declaration, just like the standard suggests. 9224 // 9225 // CodeGen enforces the "universally unique" aspect by giving all 9226 // declarations semantically contained within an anonymous 9227 // namespace internal linkage. 9228 9229 if (!PrevNS) { 9230 UD = UsingDirectiveDecl::Create(Context, Parent, 9231 /* 'using' */ LBrace, 9232 /* 'namespace' */ SourceLocation(), 9233 /* qualifier */ NestedNameSpecifierLoc(), 9234 /* identifier */ SourceLocation(), 9235 Namespc, 9236 /* Ancestor */ Parent); 9237 UD->setImplicit(); 9238 Parent->addDecl(UD); 9239 } 9240 } 9241 9242 ActOnDocumentableDecl(Namespc); 9243 9244 // Although we could have an invalid decl (i.e. the namespace name is a 9245 // redefinition), push it as current DeclContext and try to continue parsing. 9246 // FIXME: We should be able to push Namespc here, so that the each DeclContext 9247 // for the namespace has the declarations that showed up in that particular 9248 // namespace definition. 9249 PushDeclContext(NamespcScope, Namespc); 9250 return Namespc; 9251 } 9252 9253 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl 9254 /// is a namespace alias, returns the namespace it points to. 9255 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { 9256 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) 9257 return AD->getNamespace(); 9258 return dyn_cast_or_null<NamespaceDecl>(D); 9259 } 9260 9261 /// ActOnFinishNamespaceDef - This callback is called after a namespace is 9262 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. 9263 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { 9264 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); 9265 assert(Namespc && "Invalid parameter, expected NamespaceDecl"); 9266 Namespc->setRBraceLoc(RBrace); 9267 PopDeclContext(); 9268 if (Namespc->hasAttr<VisibilityAttr>()) 9269 PopPragmaVisibility(true, RBrace); 9270 // If this namespace contains an export-declaration, export it now. 9271 if (DeferredExportedNamespaces.erase(Namespc)) 9272 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 9273 } 9274 9275 CXXRecordDecl *Sema::getStdBadAlloc() const { 9276 return cast_or_null<CXXRecordDecl>( 9277 StdBadAlloc.get(Context.getExternalSource())); 9278 } 9279 9280 EnumDecl *Sema::getStdAlignValT() const { 9281 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource())); 9282 } 9283 9284 NamespaceDecl *Sema::getStdNamespace() const { 9285 return cast_or_null<NamespaceDecl>( 9286 StdNamespace.get(Context.getExternalSource())); 9287 } 9288 9289 NamespaceDecl *Sema::lookupStdExperimentalNamespace() { 9290 if (!StdExperimentalNamespaceCache) { 9291 if (auto Std = getStdNamespace()) { 9292 LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"), 9293 SourceLocation(), LookupNamespaceName); 9294 if (!LookupQualifiedName(Result, Std) || 9295 !(StdExperimentalNamespaceCache = 9296 Result.getAsSingle<NamespaceDecl>())) 9297 Result.suppressDiagnostics(); 9298 } 9299 } 9300 return StdExperimentalNamespaceCache; 9301 } 9302 9303 namespace { 9304 9305 enum UnsupportedSTLSelect { 9306 USS_InvalidMember, 9307 USS_MissingMember, 9308 USS_NonTrivial, 9309 USS_Other 9310 }; 9311 9312 struct InvalidSTLDiagnoser { 9313 Sema &S; 9314 SourceLocation Loc; 9315 QualType TyForDiags; 9316 9317 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "", 9318 const VarDecl *VD = nullptr) { 9319 { 9320 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported) 9321 << TyForDiags << ((int)Sel); 9322 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) { 9323 assert(!Name.empty()); 9324 D << Name; 9325 } 9326 } 9327 if (Sel == USS_InvalidMember) { 9328 S.Diag(VD->getLocation(), diag::note_var_declared_here) 9329 << VD << VD->getSourceRange(); 9330 } 9331 return QualType(); 9332 } 9333 }; 9334 } // namespace 9335 9336 QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind, 9337 SourceLocation Loc) { 9338 assert(getLangOpts().CPlusPlus && 9339 "Looking for comparison category type outside of C++."); 9340 9341 // Check if we've already successfully checked the comparison category type 9342 // before. If so, skip checking it again. 9343 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind); 9344 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) 9345 return Info->getType(); 9346 9347 // If lookup failed 9348 if (!Info) { 9349 std::string NameForDiags = "std::"; 9350 NameForDiags += ComparisonCategories::getCategoryString(Kind); 9351 Diag(Loc, diag::err_implied_comparison_category_type_not_found) 9352 << NameForDiags; 9353 return QualType(); 9354 } 9355 9356 assert(Info->Kind == Kind); 9357 assert(Info->Record); 9358 9359 // Update the Record decl in case we encountered a forward declaration on our 9360 // first pass. FIXME: This is a bit of a hack. 9361 if (Info->Record->hasDefinition()) 9362 Info->Record = Info->Record->getDefinition(); 9363 9364 // Use an elaborated type for diagnostics which has a name containing the 9365 // prepended 'std' namespace but not any inline namespace names. 9366 QualType TyForDiags = [&]() { 9367 auto *NNS = 9368 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()); 9369 return Context.getElaboratedType(ETK_None, NNS, Info->getType()); 9370 }(); 9371 9372 if (RequireCompleteType(Loc, TyForDiags, diag::err_incomplete_type)) 9373 return QualType(); 9374 9375 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags}; 9376 9377 if (!Info->Record->isTriviallyCopyable()) 9378 return UnsupportedSTLError(USS_NonTrivial); 9379 9380 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) { 9381 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl(); 9382 // Tolerate empty base classes. 9383 if (Base->isEmpty()) 9384 continue; 9385 // Reject STL implementations which have at least one non-empty base. 9386 return UnsupportedSTLError(); 9387 } 9388 9389 // Check that the STL has implemented the types using a single integer field. 9390 // This expectation allows better codegen for builtin operators. We require: 9391 // (1) The class has exactly one field. 9392 // (2) The field is an integral or enumeration type. 9393 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end(); 9394 if (std::distance(FIt, FEnd) != 1 || 9395 !FIt->getType()->isIntegralOrEnumerationType()) { 9396 return UnsupportedSTLError(); 9397 } 9398 9399 // Build each of the require values and store them in Info. 9400 for (ComparisonCategoryResult CCR : 9401 ComparisonCategories::getPossibleResultsForType(Kind)) { 9402 StringRef MemName = ComparisonCategories::getResultString(CCR); 9403 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR); 9404 9405 if (!ValInfo) 9406 return UnsupportedSTLError(USS_MissingMember, MemName); 9407 9408 VarDecl *VD = ValInfo->VD; 9409 assert(VD && "should not be null!"); 9410 9411 // Attempt to diagnose reasons why the STL definition of this type 9412 // might be foobar, including it failing to be a constant expression. 9413 // TODO Handle more ways the lookup or result can be invalid. 9414 if (!VD->isStaticDataMember() || !VD->isConstexpr() || !VD->hasInit() || 9415 !VD->checkInitIsICE()) 9416 return UnsupportedSTLError(USS_InvalidMember, MemName, VD); 9417 9418 // Attempt to evaluate the var decl as a constant expression and extract 9419 // the value of its first field as a ICE. If this fails, the STL 9420 // implementation is not supported. 9421 if (!ValInfo->hasValidIntValue()) 9422 return UnsupportedSTLError(); 9423 9424 MarkVariableReferenced(Loc, VD); 9425 } 9426 9427 // We've successfully built the required types and expressions. Update 9428 // the cache and return the newly cached value. 9429 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true; 9430 return Info->getType(); 9431 } 9432 9433 /// Retrieve the special "std" namespace, which may require us to 9434 /// implicitly define the namespace. 9435 NamespaceDecl *Sema::getOrCreateStdNamespace() { 9436 if (!StdNamespace) { 9437 // The "std" namespace has not yet been defined, so build one implicitly. 9438 StdNamespace = NamespaceDecl::Create(Context, 9439 Context.getTranslationUnitDecl(), 9440 /*Inline=*/false, 9441 SourceLocation(), SourceLocation(), 9442 &PP.getIdentifierTable().get("std"), 9443 /*PrevDecl=*/nullptr); 9444 getStdNamespace()->setImplicit(true); 9445 } 9446 9447 return getStdNamespace(); 9448 } 9449 9450 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { 9451 assert(getLangOpts().CPlusPlus && 9452 "Looking for std::initializer_list outside of C++."); 9453 9454 // We're looking for implicit instantiations of 9455 // template <typename E> class std::initializer_list. 9456 9457 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it. 9458 return false; 9459 9460 ClassTemplateDecl *Template = nullptr; 9461 const TemplateArgument *Arguments = nullptr; 9462 9463 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9464 9465 ClassTemplateSpecializationDecl *Specialization = 9466 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 9467 if (!Specialization) 9468 return false; 9469 9470 Template = Specialization->getSpecializedTemplate(); 9471 Arguments = Specialization->getTemplateArgs().data(); 9472 } else if (const TemplateSpecializationType *TST = 9473 Ty->getAs<TemplateSpecializationType>()) { 9474 Template = dyn_cast_or_null<ClassTemplateDecl>( 9475 TST->getTemplateName().getAsTemplateDecl()); 9476 Arguments = TST->getArgs(); 9477 } 9478 if (!Template) 9479 return false; 9480 9481 if (!StdInitializerList) { 9482 // Haven't recognized std::initializer_list yet, maybe this is it. 9483 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); 9484 if (TemplateClass->getIdentifier() != 9485 &PP.getIdentifierTable().get("initializer_list") || 9486 !getStdNamespace()->InEnclosingNamespaceSetOf( 9487 TemplateClass->getDeclContext())) 9488 return false; 9489 // This is a template called std::initializer_list, but is it the right 9490 // template? 9491 TemplateParameterList *Params = Template->getTemplateParameters(); 9492 if (Params->getMinRequiredArguments() != 1) 9493 return false; 9494 if (!isa<TemplateTypeParmDecl>(Params->getParam(0))) 9495 return false; 9496 9497 // It's the right template. 9498 StdInitializerList = Template; 9499 } 9500 9501 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl()) 9502 return false; 9503 9504 // This is an instance of std::initializer_list. Find the argument type. 9505 if (Element) 9506 *Element = Arguments[0].getAsType(); 9507 return true; 9508 } 9509 9510 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){ 9511 NamespaceDecl *Std = S.getStdNamespace(); 9512 if (!Std) { 9513 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 9514 return nullptr; 9515 } 9516 9517 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"), 9518 Loc, Sema::LookupOrdinaryName); 9519 if (!S.LookupQualifiedName(Result, Std)) { 9520 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 9521 return nullptr; 9522 } 9523 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); 9524 if (!Template) { 9525 Result.suppressDiagnostics(); 9526 // We found something weird. Complain about the first thing we found. 9527 NamedDecl *Found = *Result.begin(); 9528 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list); 9529 return nullptr; 9530 } 9531 9532 // We found some template called std::initializer_list. Now verify that it's 9533 // correct. 9534 TemplateParameterList *Params = Template->getTemplateParameters(); 9535 if (Params->getMinRequiredArguments() != 1 || 9536 !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 9537 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list); 9538 return nullptr; 9539 } 9540 9541 return Template; 9542 } 9543 9544 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { 9545 if (!StdInitializerList) { 9546 StdInitializerList = LookupStdInitializerList(*this, Loc); 9547 if (!StdInitializerList) 9548 return QualType(); 9549 } 9550 9551 TemplateArgumentListInfo Args(Loc, Loc); 9552 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element), 9553 Context.getTrivialTypeSourceInfo(Element, 9554 Loc))); 9555 return Context.getCanonicalType( 9556 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args)); 9557 } 9558 9559 bool Sema::isInitListConstructor(const FunctionDecl *Ctor) { 9560 // C++ [dcl.init.list]p2: 9561 // A constructor is an initializer-list constructor if its first parameter 9562 // is of type std::initializer_list<E> or reference to possibly cv-qualified 9563 // std::initializer_list<E> for some type E, and either there are no other 9564 // parameters or else all other parameters have default arguments. 9565 if (Ctor->getNumParams() < 1 || 9566 (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg())) 9567 return false; 9568 9569 QualType ArgType = Ctor->getParamDecl(0)->getType(); 9570 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) 9571 ArgType = RT->getPointeeType().getUnqualifiedType(); 9572 9573 return isStdInitializerList(ArgType, nullptr); 9574 } 9575 9576 /// Determine whether a using statement is in a context where it will be 9577 /// apply in all contexts. 9578 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { 9579 switch (CurContext->getDeclKind()) { 9580 case Decl::TranslationUnit: 9581 return true; 9582 case Decl::LinkageSpec: 9583 return IsUsingDirectiveInToplevelContext(CurContext->getParent()); 9584 default: 9585 return false; 9586 } 9587 } 9588 9589 namespace { 9590 9591 // Callback to only accept typo corrections that are namespaces. 9592 class NamespaceValidatorCCC final : public CorrectionCandidateCallback { 9593 public: 9594 bool ValidateCandidate(const TypoCorrection &candidate) override { 9595 if (NamedDecl *ND = candidate.getCorrectionDecl()) 9596 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); 9597 return false; 9598 } 9599 9600 std::unique_ptr<CorrectionCandidateCallback> clone() override { 9601 return std::make_unique<NamespaceValidatorCCC>(*this); 9602 } 9603 }; 9604 9605 } 9606 9607 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, 9608 CXXScopeSpec &SS, 9609 SourceLocation IdentLoc, 9610 IdentifierInfo *Ident) { 9611 R.clear(); 9612 NamespaceValidatorCCC CCC{}; 9613 if (TypoCorrection Corrected = 9614 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC, 9615 Sema::CTK_ErrorRecovery)) { 9616 if (DeclContext *DC = S.computeDeclContext(SS, false)) { 9617 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts())); 9618 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 9619 Ident->getName().equals(CorrectedStr); 9620 S.diagnoseTypo(Corrected, 9621 S.PDiag(diag::err_using_directive_member_suggest) 9622 << Ident << DC << DroppedSpecifier << SS.getRange(), 9623 S.PDiag(diag::note_namespace_defined_here)); 9624 } else { 9625 S.diagnoseTypo(Corrected, 9626 S.PDiag(diag::err_using_directive_suggest) << Ident, 9627 S.PDiag(diag::note_namespace_defined_here)); 9628 } 9629 R.addDecl(Corrected.getFoundDecl()); 9630 return true; 9631 } 9632 return false; 9633 } 9634 9635 Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, 9636 SourceLocation NamespcLoc, CXXScopeSpec &SS, 9637 SourceLocation IdentLoc, 9638 IdentifierInfo *NamespcName, 9639 const ParsedAttributesView &AttrList) { 9640 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 9641 assert(NamespcName && "Invalid NamespcName."); 9642 assert(IdentLoc.isValid() && "Invalid NamespceName location."); 9643 9644 // This can only happen along a recovery path. 9645 while (S->isTemplateParamScope()) 9646 S = S->getParent(); 9647 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 9648 9649 UsingDirectiveDecl *UDir = nullptr; 9650 NestedNameSpecifier *Qualifier = nullptr; 9651 if (SS.isSet()) 9652 Qualifier = SS.getScopeRep(); 9653 9654 // Lookup namespace name. 9655 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); 9656 LookupParsedName(R, S, &SS); 9657 if (R.isAmbiguous()) 9658 return nullptr; 9659 9660 if (R.empty()) { 9661 R.clear(); 9662 // Allow "using namespace std;" or "using namespace ::std;" even if 9663 // "std" hasn't been defined yet, for GCC compatibility. 9664 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && 9665 NamespcName->isStr("std")) { 9666 Diag(IdentLoc, diag::ext_using_undefined_std); 9667 R.addDecl(getOrCreateStdNamespace()); 9668 R.resolveKind(); 9669 } 9670 // Otherwise, attempt typo correction. 9671 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); 9672 } 9673 9674 if (!R.empty()) { 9675 NamedDecl *Named = R.getRepresentativeDecl(); 9676 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>(); 9677 assert(NS && "expected namespace decl"); 9678 9679 // The use of a nested name specifier may trigger deprecation warnings. 9680 DiagnoseUseOfDecl(Named, IdentLoc); 9681 9682 // C++ [namespace.udir]p1: 9683 // A using-directive specifies that the names in the nominated 9684 // namespace can be used in the scope in which the 9685 // using-directive appears after the using-directive. During 9686 // unqualified name lookup (3.4.1), the names appear as if they 9687 // were declared in the nearest enclosing namespace which 9688 // contains both the using-directive and the nominated 9689 // namespace. [Note: in this context, "contains" means "contains 9690 // directly or indirectly". ] 9691 9692 // Find enclosing context containing both using-directive and 9693 // nominated namespace. 9694 DeclContext *CommonAncestor = NS; 9695 while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) 9696 CommonAncestor = CommonAncestor->getParent(); 9697 9698 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, 9699 SS.getWithLocInContext(Context), 9700 IdentLoc, Named, CommonAncestor); 9701 9702 if (IsUsingDirectiveInToplevelContext(CurContext) && 9703 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) { 9704 Diag(IdentLoc, diag::warn_using_directive_in_header); 9705 } 9706 9707 PushUsingDirective(S, UDir); 9708 } else { 9709 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 9710 } 9711 9712 if (UDir) 9713 ProcessDeclAttributeList(S, UDir, AttrList); 9714 9715 return UDir; 9716 } 9717 9718 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { 9719 // If the scope has an associated entity and the using directive is at 9720 // namespace or translation unit scope, add the UsingDirectiveDecl into 9721 // its lookup structure so qualified name lookup can find it. 9722 DeclContext *Ctx = S->getEntity(); 9723 if (Ctx && !Ctx->isFunctionOrMethod()) 9724 Ctx->addDecl(UDir); 9725 else 9726 // Otherwise, it is at block scope. The using-directives will affect lookup 9727 // only to the end of the scope. 9728 S->PushUsingDirective(UDir); 9729 } 9730 9731 Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, 9732 SourceLocation UsingLoc, 9733 SourceLocation TypenameLoc, CXXScopeSpec &SS, 9734 UnqualifiedId &Name, 9735 SourceLocation EllipsisLoc, 9736 const ParsedAttributesView &AttrList) { 9737 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 9738 9739 if (SS.isEmpty()) { 9740 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname); 9741 return nullptr; 9742 } 9743 9744 switch (Name.getKind()) { 9745 case UnqualifiedIdKind::IK_ImplicitSelfParam: 9746 case UnqualifiedIdKind::IK_Identifier: 9747 case UnqualifiedIdKind::IK_OperatorFunctionId: 9748 case UnqualifiedIdKind::IK_LiteralOperatorId: 9749 case UnqualifiedIdKind::IK_ConversionFunctionId: 9750 break; 9751 9752 case UnqualifiedIdKind::IK_ConstructorName: 9753 case UnqualifiedIdKind::IK_ConstructorTemplateId: 9754 // C++11 inheriting constructors. 9755 Diag(Name.getBeginLoc(), 9756 getLangOpts().CPlusPlus11 9757 ? diag::warn_cxx98_compat_using_decl_constructor 9758 : diag::err_using_decl_constructor) 9759 << SS.getRange(); 9760 9761 if (getLangOpts().CPlusPlus11) break; 9762 9763 return nullptr; 9764 9765 case UnqualifiedIdKind::IK_DestructorName: 9766 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange(); 9767 return nullptr; 9768 9769 case UnqualifiedIdKind::IK_TemplateId: 9770 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id) 9771 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); 9772 return nullptr; 9773 9774 case UnqualifiedIdKind::IK_DeductionGuideName: 9775 llvm_unreachable("cannot parse qualified deduction guide name"); 9776 } 9777 9778 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 9779 DeclarationName TargetName = TargetNameInfo.getName(); 9780 if (!TargetName) 9781 return nullptr; 9782 9783 // Warn about access declarations. 9784 if (UsingLoc.isInvalid()) { 9785 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 9786 ? diag::err_access_decl 9787 : diag::warn_access_decl_deprecated) 9788 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); 9789 } 9790 9791 if (EllipsisLoc.isInvalid()) { 9792 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || 9793 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) 9794 return nullptr; 9795 } else { 9796 if (!SS.getScopeRep()->containsUnexpandedParameterPack() && 9797 !TargetNameInfo.containsUnexpandedParameterPack()) { 9798 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 9799 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc()); 9800 EllipsisLoc = SourceLocation(); 9801 } 9802 } 9803 9804 NamedDecl *UD = 9805 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc, 9806 SS, TargetNameInfo, EllipsisLoc, AttrList, 9807 /*IsInstantiation*/false); 9808 if (UD) 9809 PushOnScopeChains(UD, S, /*AddToContext*/ false); 9810 9811 return UD; 9812 } 9813 9814 /// Determine whether a using declaration considers the given 9815 /// declarations as "equivalent", e.g., if they are redeclarations of 9816 /// the same entity or are both typedefs of the same type. 9817 static bool 9818 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { 9819 if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) 9820 return true; 9821 9822 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1)) 9823 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) 9824 return Context.hasSameType(TD1->getUnderlyingType(), 9825 TD2->getUnderlyingType()); 9826 9827 return false; 9828 } 9829 9830 9831 /// Determines whether to create a using shadow decl for a particular 9832 /// decl, given the set of decls existing prior to this using lookup. 9833 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig, 9834 const LookupResult &Previous, 9835 UsingShadowDecl *&PrevShadow) { 9836 // Diagnose finding a decl which is not from a base class of the 9837 // current class. We do this now because there are cases where this 9838 // function will silently decide not to build a shadow decl, which 9839 // will pre-empt further diagnostics. 9840 // 9841 // We don't need to do this in C++11 because we do the check once on 9842 // the qualifier. 9843 // 9844 // FIXME: diagnose the following if we care enough: 9845 // struct A { int foo; }; 9846 // struct B : A { using A::foo; }; 9847 // template <class T> struct C : A {}; 9848 // template <class T> struct D : C<T> { using B::foo; } // <--- 9849 // This is invalid (during instantiation) in C++03 because B::foo 9850 // resolves to the using decl in B, which is not a base class of D<T>. 9851 // We can't diagnose it immediately because C<T> is an unknown 9852 // specialization. The UsingShadowDecl in D<T> then points directly 9853 // to A::foo, which will look well-formed when we instantiate. 9854 // The right solution is to not collapse the shadow-decl chain. 9855 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) { 9856 DeclContext *OrigDC = Orig->getDeclContext(); 9857 9858 // Handle enums and anonymous structs. 9859 if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent(); 9860 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); 9861 while (OrigRec->isAnonymousStructOrUnion()) 9862 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); 9863 9864 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { 9865 if (OrigDC == CurContext) { 9866 Diag(Using->getLocation(), 9867 diag::err_using_decl_nested_name_specifier_is_current_class) 9868 << Using->getQualifierLoc().getSourceRange(); 9869 Diag(Orig->getLocation(), diag::note_using_decl_target); 9870 Using->setInvalidDecl(); 9871 return true; 9872 } 9873 9874 Diag(Using->getQualifierLoc().getBeginLoc(), 9875 diag::err_using_decl_nested_name_specifier_is_not_base_class) 9876 << Using->getQualifier() 9877 << cast<CXXRecordDecl>(CurContext) 9878 << Using->getQualifierLoc().getSourceRange(); 9879 Diag(Orig->getLocation(), diag::note_using_decl_target); 9880 Using->setInvalidDecl(); 9881 return true; 9882 } 9883 } 9884 9885 if (Previous.empty()) return false; 9886 9887 NamedDecl *Target = Orig; 9888 if (isa<UsingShadowDecl>(Target)) 9889 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 9890 9891 // If the target happens to be one of the previous declarations, we 9892 // don't have a conflict. 9893 // 9894 // FIXME: but we might be increasing its access, in which case we 9895 // should redeclare it. 9896 NamedDecl *NonTag = nullptr, *Tag = nullptr; 9897 bool FoundEquivalentDecl = false; 9898 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 9899 I != E; ++I) { 9900 NamedDecl *D = (*I)->getUnderlyingDecl(); 9901 // We can have UsingDecls in our Previous results because we use the same 9902 // LookupResult for checking whether the UsingDecl itself is a valid 9903 // redeclaration. 9904 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D)) 9905 continue; 9906 9907 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 9908 // C++ [class.mem]p19: 9909 // If T is the name of a class, then [every named member other than 9910 // a non-static data member] shall have a name different from T 9911 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) && 9912 !isa<IndirectFieldDecl>(Target) && 9913 !isa<UnresolvedUsingValueDecl>(Target) && 9914 DiagnoseClassNameShadow( 9915 CurContext, 9916 DeclarationNameInfo(Using->getDeclName(), Using->getLocation()))) 9917 return true; 9918 } 9919 9920 if (IsEquivalentForUsingDecl(Context, D, Target)) { 9921 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I)) 9922 PrevShadow = Shadow; 9923 FoundEquivalentDecl = true; 9924 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) { 9925 // We don't conflict with an existing using shadow decl of an equivalent 9926 // declaration, but we're not a redeclaration of it. 9927 FoundEquivalentDecl = true; 9928 } 9929 9930 if (isVisible(D)) 9931 (isa<TagDecl>(D) ? Tag : NonTag) = D; 9932 } 9933 9934 if (FoundEquivalentDecl) 9935 return false; 9936 9937 if (FunctionDecl *FD = Target->getAsFunction()) { 9938 NamedDecl *OldDecl = nullptr; 9939 switch (CheckOverload(nullptr, FD, Previous, OldDecl, 9940 /*IsForUsingDecl*/ true)) { 9941 case Ovl_Overload: 9942 return false; 9943 9944 case Ovl_NonFunction: 9945 Diag(Using->getLocation(), diag::err_using_decl_conflict); 9946 break; 9947 9948 // We found a decl with the exact signature. 9949 case Ovl_Match: 9950 // If we're in a record, we want to hide the target, so we 9951 // return true (without a diagnostic) to tell the caller not to 9952 // build a shadow decl. 9953 if (CurContext->isRecord()) 9954 return true; 9955 9956 // If we're not in a record, this is an error. 9957 Diag(Using->getLocation(), diag::err_using_decl_conflict); 9958 break; 9959 } 9960 9961 Diag(Target->getLocation(), diag::note_using_decl_target); 9962 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); 9963 Using->setInvalidDecl(); 9964 return true; 9965 } 9966 9967 // Target is not a function. 9968 9969 if (isa<TagDecl>(Target)) { 9970 // No conflict between a tag and a non-tag. 9971 if (!Tag) return false; 9972 9973 Diag(Using->getLocation(), diag::err_using_decl_conflict); 9974 Diag(Target->getLocation(), diag::note_using_decl_target); 9975 Diag(Tag->getLocation(), diag::note_using_decl_conflict); 9976 Using->setInvalidDecl(); 9977 return true; 9978 } 9979 9980 // No conflict between a tag and a non-tag. 9981 if (!NonTag) return false; 9982 9983 Diag(Using->getLocation(), diag::err_using_decl_conflict); 9984 Diag(Target->getLocation(), diag::note_using_decl_target); 9985 Diag(NonTag->getLocation(), diag::note_using_decl_conflict); 9986 Using->setInvalidDecl(); 9987 return true; 9988 } 9989 9990 /// Determine whether a direct base class is a virtual base class. 9991 static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) { 9992 if (!Derived->getNumVBases()) 9993 return false; 9994 for (auto &B : Derived->bases()) 9995 if (B.getType()->getAsCXXRecordDecl() == Base) 9996 return B.isVirtual(); 9997 llvm_unreachable("not a direct base class"); 9998 } 9999 10000 /// Builds a shadow declaration corresponding to a 'using' declaration. 10001 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, 10002 UsingDecl *UD, 10003 NamedDecl *Orig, 10004 UsingShadowDecl *PrevDecl) { 10005 // If we resolved to another shadow declaration, just coalesce them. 10006 NamedDecl *Target = Orig; 10007 if (isa<UsingShadowDecl>(Target)) { 10008 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 10009 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); 10010 } 10011 10012 NamedDecl *NonTemplateTarget = Target; 10013 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target)) 10014 NonTemplateTarget = TargetTD->getTemplatedDecl(); 10015 10016 UsingShadowDecl *Shadow; 10017 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) { 10018 bool IsVirtualBase = 10019 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext), 10020 UD->getQualifier()->getAsRecordDecl()); 10021 Shadow = ConstructorUsingShadowDecl::Create( 10022 Context, CurContext, UD->getLocation(), UD, Orig, IsVirtualBase); 10023 } else { 10024 Shadow = UsingShadowDecl::Create(Context, CurContext, UD->getLocation(), UD, 10025 Target); 10026 } 10027 UD->addShadowDecl(Shadow); 10028 10029 Shadow->setAccess(UD->getAccess()); 10030 if (Orig->isInvalidDecl() || UD->isInvalidDecl()) 10031 Shadow->setInvalidDecl(); 10032 10033 Shadow->setPreviousDecl(PrevDecl); 10034 10035 if (S) 10036 PushOnScopeChains(Shadow, S); 10037 else 10038 CurContext->addDecl(Shadow); 10039 10040 10041 return Shadow; 10042 } 10043 10044 /// Hides a using shadow declaration. This is required by the current 10045 /// using-decl implementation when a resolvable using declaration in a 10046 /// class is followed by a declaration which would hide or override 10047 /// one or more of the using decl's targets; for example: 10048 /// 10049 /// struct Base { void foo(int); }; 10050 /// struct Derived : Base { 10051 /// using Base::foo; 10052 /// void foo(int); 10053 /// }; 10054 /// 10055 /// The governing language is C++03 [namespace.udecl]p12: 10056 /// 10057 /// When a using-declaration brings names from a base class into a 10058 /// derived class scope, member functions in the derived class 10059 /// override and/or hide member functions with the same name and 10060 /// parameter types in a base class (rather than conflicting). 10061 /// 10062 /// There are two ways to implement this: 10063 /// (1) optimistically create shadow decls when they're not hidden 10064 /// by existing declarations, or 10065 /// (2) don't create any shadow decls (or at least don't make them 10066 /// visible) until we've fully parsed/instantiated the class. 10067 /// The problem with (1) is that we might have to retroactively remove 10068 /// a shadow decl, which requires several O(n) operations because the 10069 /// decl structures are (very reasonably) not designed for removal. 10070 /// (2) avoids this but is very fiddly and phase-dependent. 10071 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { 10072 if (Shadow->getDeclName().getNameKind() == 10073 DeclarationName::CXXConversionFunctionName) 10074 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); 10075 10076 // Remove it from the DeclContext... 10077 Shadow->getDeclContext()->removeDecl(Shadow); 10078 10079 // ...and the scope, if applicable... 10080 if (S) { 10081 S->RemoveDecl(Shadow); 10082 IdResolver.RemoveDecl(Shadow); 10083 } 10084 10085 // ...and the using decl. 10086 Shadow->getUsingDecl()->removeShadowDecl(Shadow); 10087 10088 // TODO: complain somehow if Shadow was used. It shouldn't 10089 // be possible for this to happen, because...? 10090 } 10091 10092 /// Find the base specifier for a base class with the given type. 10093 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, 10094 QualType DesiredBase, 10095 bool &AnyDependentBases) { 10096 // Check whether the named type is a direct base class. 10097 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified() 10098 .getUnqualifiedType(); 10099 for (auto &Base : Derived->bases()) { 10100 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); 10101 if (CanonicalDesiredBase == BaseType) 10102 return &Base; 10103 if (BaseType->isDependentType()) 10104 AnyDependentBases = true; 10105 } 10106 return nullptr; 10107 } 10108 10109 namespace { 10110 class UsingValidatorCCC final : public CorrectionCandidateCallback { 10111 public: 10112 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, 10113 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) 10114 : HasTypenameKeyword(HasTypenameKeyword), 10115 IsInstantiation(IsInstantiation), OldNNS(NNS), 10116 RequireMemberOf(RequireMemberOf) {} 10117 10118 bool ValidateCandidate(const TypoCorrection &Candidate) override { 10119 NamedDecl *ND = Candidate.getCorrectionDecl(); 10120 10121 // Keywords are not valid here. 10122 if (!ND || isa<NamespaceDecl>(ND)) 10123 return false; 10124 10125 // Completely unqualified names are invalid for a 'using' declaration. 10126 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) 10127 return false; 10128 10129 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would 10130 // reject. 10131 10132 if (RequireMemberOf) { 10133 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 10134 if (FoundRecord && FoundRecord->isInjectedClassName()) { 10135 // No-one ever wants a using-declaration to name an injected-class-name 10136 // of a base class, unless they're declaring an inheriting constructor. 10137 ASTContext &Ctx = ND->getASTContext(); 10138 if (!Ctx.getLangOpts().CPlusPlus11) 10139 return false; 10140 QualType FoundType = Ctx.getRecordType(FoundRecord); 10141 10142 // Check that the injected-class-name is named as a member of its own 10143 // type; we don't want to suggest 'using Derived::Base;', since that 10144 // means something else. 10145 NestedNameSpecifier *Specifier = 10146 Candidate.WillReplaceSpecifier() 10147 ? Candidate.getCorrectionSpecifier() 10148 : OldNNS; 10149 if (!Specifier->getAsType() || 10150 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType)) 10151 return false; 10152 10153 // Check that this inheriting constructor declaration actually names a 10154 // direct base class of the current class. 10155 bool AnyDependentBases = false; 10156 if (!findDirectBaseWithType(RequireMemberOf, 10157 Ctx.getRecordType(FoundRecord), 10158 AnyDependentBases) && 10159 !AnyDependentBases) 10160 return false; 10161 } else { 10162 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()); 10163 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD)) 10164 return false; 10165 10166 // FIXME: Check that the base class member is accessible? 10167 } 10168 } else { 10169 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 10170 if (FoundRecord && FoundRecord->isInjectedClassName()) 10171 return false; 10172 } 10173 10174 if (isa<TypeDecl>(ND)) 10175 return HasTypenameKeyword || !IsInstantiation; 10176 10177 return !HasTypenameKeyword; 10178 } 10179 10180 std::unique_ptr<CorrectionCandidateCallback> clone() override { 10181 return std::make_unique<UsingValidatorCCC>(*this); 10182 } 10183 10184 private: 10185 bool HasTypenameKeyword; 10186 bool IsInstantiation; 10187 NestedNameSpecifier *OldNNS; 10188 CXXRecordDecl *RequireMemberOf; 10189 }; 10190 } // end anonymous namespace 10191 10192 /// Builds a using declaration. 10193 /// 10194 /// \param IsInstantiation - Whether this call arises from an 10195 /// instantiation of an unresolved using declaration. We treat 10196 /// the lookup differently for these declarations. 10197 NamedDecl *Sema::BuildUsingDeclaration( 10198 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, 10199 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, 10200 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, 10201 const ParsedAttributesView &AttrList, bool IsInstantiation) { 10202 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 10203 SourceLocation IdentLoc = NameInfo.getLoc(); 10204 assert(IdentLoc.isValid() && "Invalid TargetName location."); 10205 10206 // FIXME: We ignore attributes for now. 10207 10208 // For an inheriting constructor declaration, the name of the using 10209 // declaration is the name of a constructor in this class, not in the 10210 // base class. 10211 DeclarationNameInfo UsingName = NameInfo; 10212 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) 10213 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext)) 10214 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 10215 Context.getCanonicalType(Context.getRecordType(RD)))); 10216 10217 // Do the redeclaration lookup in the current scope. 10218 LookupResult Previous(*this, UsingName, LookupUsingDeclName, 10219 ForVisibleRedeclaration); 10220 Previous.setHideTags(false); 10221 if (S) { 10222 LookupName(Previous, S); 10223 10224 // It is really dumb that we have to do this. 10225 LookupResult::Filter F = Previous.makeFilter(); 10226 while (F.hasNext()) { 10227 NamedDecl *D = F.next(); 10228 if (!isDeclInScope(D, CurContext, S)) 10229 F.erase(); 10230 // If we found a local extern declaration that's not ordinarily visible, 10231 // and this declaration is being added to a non-block scope, ignore it. 10232 // We're only checking for scope conflicts here, not also for violations 10233 // of the linkage rules. 10234 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && 10235 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) 10236 F.erase(); 10237 } 10238 F.done(); 10239 } else { 10240 assert(IsInstantiation && "no scope in non-instantiation"); 10241 if (CurContext->isRecord()) 10242 LookupQualifiedName(Previous, CurContext); 10243 else { 10244 // No redeclaration check is needed here; in non-member contexts we 10245 // diagnosed all possible conflicts with other using-declarations when 10246 // building the template: 10247 // 10248 // For a dependent non-type using declaration, the only valid case is 10249 // if we instantiate to a single enumerator. We check for conflicts 10250 // between shadow declarations we introduce, and we check in the template 10251 // definition for conflicts between a non-type using declaration and any 10252 // other declaration, which together covers all cases. 10253 // 10254 // A dependent typename using declaration will never successfully 10255 // instantiate, since it will always name a class member, so we reject 10256 // that in the template definition. 10257 } 10258 } 10259 10260 // Check for invalid redeclarations. 10261 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, 10262 SS, IdentLoc, Previous)) 10263 return nullptr; 10264 10265 // Check for bad qualifiers. 10266 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo, 10267 IdentLoc)) 10268 return nullptr; 10269 10270 DeclContext *LookupContext = computeDeclContext(SS); 10271 NamedDecl *D; 10272 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 10273 if (!LookupContext || EllipsisLoc.isValid()) { 10274 if (HasTypenameKeyword) { 10275 // FIXME: not all declaration name kinds are legal here 10276 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, 10277 UsingLoc, TypenameLoc, 10278 QualifierLoc, 10279 IdentLoc, NameInfo.getName(), 10280 EllipsisLoc); 10281 } else { 10282 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, 10283 QualifierLoc, NameInfo, EllipsisLoc); 10284 } 10285 D->setAccess(AS); 10286 CurContext->addDecl(D); 10287 return D; 10288 } 10289 10290 auto Build = [&](bool Invalid) { 10291 UsingDecl *UD = 10292 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, 10293 UsingName, HasTypenameKeyword); 10294 UD->setAccess(AS); 10295 CurContext->addDecl(UD); 10296 UD->setInvalidDecl(Invalid); 10297 return UD; 10298 }; 10299 auto BuildInvalid = [&]{ return Build(true); }; 10300 auto BuildValid = [&]{ return Build(false); }; 10301 10302 if (RequireCompleteDeclContext(SS, LookupContext)) 10303 return BuildInvalid(); 10304 10305 // Look up the target name. 10306 LookupResult R(*this, NameInfo, LookupOrdinaryName); 10307 10308 // Unlike most lookups, we don't always want to hide tag 10309 // declarations: tag names are visible through the using declaration 10310 // even if hidden by ordinary names, *except* in a dependent context 10311 // where it's important for the sanity of two-phase lookup. 10312 if (!IsInstantiation) 10313 R.setHideTags(false); 10314 10315 // For the purposes of this lookup, we have a base object type 10316 // equal to that of the current context. 10317 if (CurContext->isRecord()) { 10318 R.setBaseObjectType( 10319 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))); 10320 } 10321 10322 LookupQualifiedName(R, LookupContext); 10323 10324 // Try to correct typos if possible. If constructor name lookup finds no 10325 // results, that means the named class has no explicit constructors, and we 10326 // suppressed declaring implicit ones (probably because it's dependent or 10327 // invalid). 10328 if (R.empty() && 10329 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) { 10330 // HACK: Work around a bug in libstdc++'s detection of ::gets. Sometimes 10331 // it will believe that glibc provides a ::gets in cases where it does not, 10332 // and will try to pull it into namespace std with a using-declaration. 10333 // Just ignore the using-declaration in that case. 10334 auto *II = NameInfo.getName().getAsIdentifierInfo(); 10335 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") && 10336 CurContext->isStdNamespace() && 10337 isa<TranslationUnitDecl>(LookupContext) && 10338 getSourceManager().isInSystemHeader(UsingLoc)) 10339 return nullptr; 10340 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), 10341 dyn_cast<CXXRecordDecl>(CurContext)); 10342 if (TypoCorrection Corrected = 10343 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, 10344 CTK_ErrorRecovery)) { 10345 // We reject candidates where DroppedSpecifier == true, hence the 10346 // literal '0' below. 10347 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) 10348 << NameInfo.getName() << LookupContext << 0 10349 << SS.getRange()); 10350 10351 // If we picked a correction with no attached Decl we can't do anything 10352 // useful with it, bail out. 10353 NamedDecl *ND = Corrected.getCorrectionDecl(); 10354 if (!ND) 10355 return BuildInvalid(); 10356 10357 // If we corrected to an inheriting constructor, handle it as one. 10358 auto *RD = dyn_cast<CXXRecordDecl>(ND); 10359 if (RD && RD->isInjectedClassName()) { 10360 // The parent of the injected class name is the class itself. 10361 RD = cast<CXXRecordDecl>(RD->getParent()); 10362 10363 // Fix up the information we'll use to build the using declaration. 10364 if (Corrected.WillReplaceSpecifier()) { 10365 NestedNameSpecifierLocBuilder Builder; 10366 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 10367 QualifierLoc.getSourceRange()); 10368 QualifierLoc = Builder.getWithLocInContext(Context); 10369 } 10370 10371 // In this case, the name we introduce is the name of a derived class 10372 // constructor. 10373 auto *CurClass = cast<CXXRecordDecl>(CurContext); 10374 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 10375 Context.getCanonicalType(Context.getRecordType(CurClass)))); 10376 UsingName.setNamedTypeInfo(nullptr); 10377 for (auto *Ctor : LookupConstructors(RD)) 10378 R.addDecl(Ctor); 10379 R.resolveKind(); 10380 } else { 10381 // FIXME: Pick up all the declarations if we found an overloaded 10382 // function. 10383 UsingName.setName(ND->getDeclName()); 10384 R.addDecl(ND); 10385 } 10386 } else { 10387 Diag(IdentLoc, diag::err_no_member) 10388 << NameInfo.getName() << LookupContext << SS.getRange(); 10389 return BuildInvalid(); 10390 } 10391 } 10392 10393 if (R.isAmbiguous()) 10394 return BuildInvalid(); 10395 10396 if (HasTypenameKeyword) { 10397 // If we asked for a typename and got a non-type decl, error out. 10398 if (!R.getAsSingle<TypeDecl>()) { 10399 Diag(IdentLoc, diag::err_using_typename_non_type); 10400 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 10401 Diag((*I)->getUnderlyingDecl()->getLocation(), 10402 diag::note_using_decl_target); 10403 return BuildInvalid(); 10404 } 10405 } else { 10406 // If we asked for a non-typename and we got a type, error out, 10407 // but only if this is an instantiation of an unresolved using 10408 // decl. Otherwise just silently find the type name. 10409 if (IsInstantiation && R.getAsSingle<TypeDecl>()) { 10410 Diag(IdentLoc, diag::err_using_dependent_value_is_type); 10411 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); 10412 return BuildInvalid(); 10413 } 10414 } 10415 10416 // C++14 [namespace.udecl]p6: 10417 // A using-declaration shall not name a namespace. 10418 if (R.getAsSingle<NamespaceDecl>()) { 10419 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) 10420 << SS.getRange(); 10421 return BuildInvalid(); 10422 } 10423 10424 // C++14 [namespace.udecl]p7: 10425 // A using-declaration shall not name a scoped enumerator. 10426 if (auto *ED = R.getAsSingle<EnumConstantDecl>()) { 10427 if (cast<EnumDecl>(ED->getDeclContext())->isScoped()) { 10428 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_scoped_enum) 10429 << SS.getRange(); 10430 return BuildInvalid(); 10431 } 10432 } 10433 10434 UsingDecl *UD = BuildValid(); 10435 10436 // Some additional rules apply to inheriting constructors. 10437 if (UsingName.getName().getNameKind() == 10438 DeclarationName::CXXConstructorName) { 10439 // Suppress access diagnostics; the access check is instead performed at the 10440 // point of use for an inheriting constructor. 10441 R.suppressDiagnostics(); 10442 if (CheckInheritingConstructorUsingDecl(UD)) 10443 return UD; 10444 } 10445 10446 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 10447 UsingShadowDecl *PrevDecl = nullptr; 10448 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) 10449 BuildUsingShadowDecl(S, UD, *I, PrevDecl); 10450 } 10451 10452 return UD; 10453 } 10454 10455 NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom, 10456 ArrayRef<NamedDecl *> Expansions) { 10457 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || 10458 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || 10459 isa<UsingPackDecl>(InstantiatedFrom)); 10460 10461 auto *UPD = 10462 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions); 10463 UPD->setAccess(InstantiatedFrom->getAccess()); 10464 CurContext->addDecl(UPD); 10465 return UPD; 10466 } 10467 10468 /// Additional checks for a using declaration referring to a constructor name. 10469 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { 10470 assert(!UD->hasTypename() && "expecting a constructor name"); 10471 10472 const Type *SourceType = UD->getQualifier()->getAsType(); 10473 assert(SourceType && 10474 "Using decl naming constructor doesn't have type in scope spec."); 10475 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); 10476 10477 // Check whether the named type is a direct base class. 10478 bool AnyDependentBases = false; 10479 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0), 10480 AnyDependentBases); 10481 if (!Base && !AnyDependentBases) { 10482 Diag(UD->getUsingLoc(), 10483 diag::err_using_decl_constructor_not_in_direct_base) 10484 << UD->getNameInfo().getSourceRange() 10485 << QualType(SourceType, 0) << TargetClass; 10486 UD->setInvalidDecl(); 10487 return true; 10488 } 10489 10490 if (Base) 10491 Base->setInheritConstructors(); 10492 10493 return false; 10494 } 10495 10496 /// Checks that the given using declaration is not an invalid 10497 /// redeclaration. Note that this is checking only for the using decl 10498 /// itself, not for any ill-formedness among the UsingShadowDecls. 10499 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, 10500 bool HasTypenameKeyword, 10501 const CXXScopeSpec &SS, 10502 SourceLocation NameLoc, 10503 const LookupResult &Prev) { 10504 NestedNameSpecifier *Qual = SS.getScopeRep(); 10505 10506 // C++03 [namespace.udecl]p8: 10507 // C++0x [namespace.udecl]p10: 10508 // A using-declaration is a declaration and can therefore be used 10509 // repeatedly where (and only where) multiple declarations are 10510 // allowed. 10511 // 10512 // That's in non-member contexts. 10513 if (!CurContext->getRedeclContext()->isRecord()) { 10514 // A dependent qualifier outside a class can only ever resolve to an 10515 // enumeration type. Therefore it conflicts with any other non-type 10516 // declaration in the same scope. 10517 // FIXME: How should we check for dependent type-type conflicts at block 10518 // scope? 10519 if (Qual->isDependent() && !HasTypenameKeyword) { 10520 for (auto *D : Prev) { 10521 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) { 10522 bool OldCouldBeEnumerator = 10523 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D); 10524 Diag(NameLoc, 10525 OldCouldBeEnumerator ? diag::err_redefinition 10526 : diag::err_redefinition_different_kind) 10527 << Prev.getLookupName(); 10528 Diag(D->getLocation(), diag::note_previous_definition); 10529 return true; 10530 } 10531 } 10532 } 10533 return false; 10534 } 10535 10536 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { 10537 NamedDecl *D = *I; 10538 10539 bool DTypename; 10540 NestedNameSpecifier *DQual; 10541 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { 10542 DTypename = UD->hasTypename(); 10543 DQual = UD->getQualifier(); 10544 } else if (UnresolvedUsingValueDecl *UD 10545 = dyn_cast<UnresolvedUsingValueDecl>(D)) { 10546 DTypename = false; 10547 DQual = UD->getQualifier(); 10548 } else if (UnresolvedUsingTypenameDecl *UD 10549 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { 10550 DTypename = true; 10551 DQual = UD->getQualifier(); 10552 } else continue; 10553 10554 // using decls differ if one says 'typename' and the other doesn't. 10555 // FIXME: non-dependent using decls? 10556 if (HasTypenameKeyword != DTypename) continue; 10557 10558 // using decls differ if they name different scopes (but note that 10559 // template instantiation can cause this check to trigger when it 10560 // didn't before instantiation). 10561 if (Context.getCanonicalNestedNameSpecifier(Qual) != 10562 Context.getCanonicalNestedNameSpecifier(DQual)) 10563 continue; 10564 10565 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); 10566 Diag(D->getLocation(), diag::note_using_decl) << 1; 10567 return true; 10568 } 10569 10570 return false; 10571 } 10572 10573 10574 /// Checks that the given nested-name qualifier used in a using decl 10575 /// in the current context is appropriately related to the current 10576 /// scope. If an error is found, diagnoses it and returns true. 10577 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, 10578 bool HasTypename, 10579 const CXXScopeSpec &SS, 10580 const DeclarationNameInfo &NameInfo, 10581 SourceLocation NameLoc) { 10582 DeclContext *NamedContext = computeDeclContext(SS); 10583 10584 if (!CurContext->isRecord()) { 10585 // C++03 [namespace.udecl]p3: 10586 // C++0x [namespace.udecl]p8: 10587 // A using-declaration for a class member shall be a member-declaration. 10588 10589 // If we weren't able to compute a valid scope, it might validly be a 10590 // dependent class scope or a dependent enumeration unscoped scope. If 10591 // we have a 'typename' keyword, the scope must resolve to a class type. 10592 if ((HasTypename && !NamedContext) || 10593 (NamedContext && NamedContext->getRedeclContext()->isRecord())) { 10594 auto *RD = NamedContext 10595 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext()) 10596 : nullptr; 10597 if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD)) 10598 RD = nullptr; 10599 10600 Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member) 10601 << SS.getRange(); 10602 10603 // If we have a complete, non-dependent source type, try to suggest a 10604 // way to get the same effect. 10605 if (!RD) 10606 return true; 10607 10608 // Find what this using-declaration was referring to. 10609 LookupResult R(*this, NameInfo, LookupOrdinaryName); 10610 R.setHideTags(false); 10611 R.suppressDiagnostics(); 10612 LookupQualifiedName(R, RD); 10613 10614 if (R.getAsSingle<TypeDecl>()) { 10615 if (getLangOpts().CPlusPlus11) { 10616 // Convert 'using X::Y;' to 'using Y = X::Y;'. 10617 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) 10618 << 0 // alias declaration 10619 << FixItHint::CreateInsertion(SS.getBeginLoc(), 10620 NameInfo.getName().getAsString() + 10621 " = "); 10622 } else { 10623 // Convert 'using X::Y;' to 'typedef X::Y Y;'. 10624 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc()); 10625 Diag(InsertLoc, diag::note_using_decl_class_member_workaround) 10626 << 1 // typedef declaration 10627 << FixItHint::CreateReplacement(UsingLoc, "typedef") 10628 << FixItHint::CreateInsertion( 10629 InsertLoc, " " + NameInfo.getName().getAsString()); 10630 } 10631 } else if (R.getAsSingle<VarDecl>()) { 10632 // Don't provide a fixit outside C++11 mode; we don't want to suggest 10633 // repeating the type of the static data member here. 10634 FixItHint FixIt; 10635 if (getLangOpts().CPlusPlus11) { 10636 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 10637 FixIt = FixItHint::CreateReplacement( 10638 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = "); 10639 } 10640 10641 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 10642 << 2 // reference declaration 10643 << FixIt; 10644 } else if (R.getAsSingle<EnumConstantDecl>()) { 10645 // Don't provide a fixit outside C++11 mode; we don't want to suggest 10646 // repeating the type of the enumeration here, and we can't do so if 10647 // the type is anonymous. 10648 FixItHint FixIt; 10649 if (getLangOpts().CPlusPlus11) { 10650 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 10651 FixIt = FixItHint::CreateReplacement( 10652 UsingLoc, 10653 "constexpr auto " + NameInfo.getName().getAsString() + " = "); 10654 } 10655 10656 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 10657 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable 10658 << FixIt; 10659 } 10660 return true; 10661 } 10662 10663 // Otherwise, this might be valid. 10664 return false; 10665 } 10666 10667 // The current scope is a record. 10668 10669 // If the named context is dependent, we can't decide much. 10670 if (!NamedContext) { 10671 // FIXME: in C++0x, we can diagnose if we can prove that the 10672 // nested-name-specifier does not refer to a base class, which is 10673 // still possible in some cases. 10674 10675 // Otherwise we have to conservatively report that things might be 10676 // okay. 10677 return false; 10678 } 10679 10680 if (!NamedContext->isRecord()) { 10681 // Ideally this would point at the last name in the specifier, 10682 // but we don't have that level of source info. 10683 Diag(SS.getRange().getBegin(), 10684 diag::err_using_decl_nested_name_specifier_is_not_class) 10685 << SS.getScopeRep() << SS.getRange(); 10686 return true; 10687 } 10688 10689 if (!NamedContext->isDependentContext() && 10690 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) 10691 return true; 10692 10693 if (getLangOpts().CPlusPlus11) { 10694 // C++11 [namespace.udecl]p3: 10695 // In a using-declaration used as a member-declaration, the 10696 // nested-name-specifier shall name a base class of the class 10697 // being defined. 10698 10699 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( 10700 cast<CXXRecordDecl>(NamedContext))) { 10701 if (CurContext == NamedContext) { 10702 Diag(NameLoc, 10703 diag::err_using_decl_nested_name_specifier_is_current_class) 10704 << SS.getRange(); 10705 return true; 10706 } 10707 10708 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) { 10709 Diag(SS.getRange().getBegin(), 10710 diag::err_using_decl_nested_name_specifier_is_not_base_class) 10711 << SS.getScopeRep() 10712 << cast<CXXRecordDecl>(CurContext) 10713 << SS.getRange(); 10714 } 10715 return true; 10716 } 10717 10718 return false; 10719 } 10720 10721 // C++03 [namespace.udecl]p4: 10722 // A using-declaration used as a member-declaration shall refer 10723 // to a member of a base class of the class being defined [etc.]. 10724 10725 // Salient point: SS doesn't have to name a base class as long as 10726 // lookup only finds members from base classes. Therefore we can 10727 // diagnose here only if we can prove that that can't happen, 10728 // i.e. if the class hierarchies provably don't intersect. 10729 10730 // TODO: it would be nice if "definitely valid" results were cached 10731 // in the UsingDecl and UsingShadowDecl so that these checks didn't 10732 // need to be repeated. 10733 10734 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases; 10735 auto Collect = [&Bases](const CXXRecordDecl *Base) { 10736 Bases.insert(Base); 10737 return true; 10738 }; 10739 10740 // Collect all bases. Return false if we find a dependent base. 10741 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect)) 10742 return false; 10743 10744 // Returns true if the base is dependent or is one of the accumulated base 10745 // classes. 10746 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) { 10747 return !Bases.count(Base); 10748 }; 10749 10750 // Return false if the class has a dependent base or if it or one 10751 // of its bases is present in the base set of the current context. 10752 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) || 10753 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase)) 10754 return false; 10755 10756 Diag(SS.getRange().getBegin(), 10757 diag::err_using_decl_nested_name_specifier_is_not_base_class) 10758 << SS.getScopeRep() 10759 << cast<CXXRecordDecl>(CurContext) 10760 << SS.getRange(); 10761 10762 return true; 10763 } 10764 10765 Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS, 10766 MultiTemplateParamsArg TemplateParamLists, 10767 SourceLocation UsingLoc, UnqualifiedId &Name, 10768 const ParsedAttributesView &AttrList, 10769 TypeResult Type, Decl *DeclFromDeclSpec) { 10770 // Skip up to the relevant declaration scope. 10771 while (S->isTemplateParamScope()) 10772 S = S->getParent(); 10773 assert((S->getFlags() & Scope::DeclScope) && 10774 "got alias-declaration outside of declaration scope"); 10775 10776 if (Type.isInvalid()) 10777 return nullptr; 10778 10779 bool Invalid = false; 10780 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); 10781 TypeSourceInfo *TInfo = nullptr; 10782 GetTypeFromParser(Type.get(), &TInfo); 10783 10784 if (DiagnoseClassNameShadow(CurContext, NameInfo)) 10785 return nullptr; 10786 10787 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, 10788 UPPC_DeclarationType)) { 10789 Invalid = true; 10790 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 10791 TInfo->getTypeLoc().getBeginLoc()); 10792 } 10793 10794 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 10795 TemplateParamLists.size() 10796 ? forRedeclarationInCurContext() 10797 : ForVisibleRedeclaration); 10798 LookupName(Previous, S); 10799 10800 // Warn about shadowing the name of a template parameter. 10801 if (Previous.isSingleResult() && 10802 Previous.getFoundDecl()->isTemplateParameter()) { 10803 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); 10804 Previous.clear(); 10805 } 10806 10807 assert(Name.Kind == UnqualifiedIdKind::IK_Identifier && 10808 "name in alias declaration must be an identifier"); 10809 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, 10810 Name.StartLocation, 10811 Name.Identifier, TInfo); 10812 10813 NewTD->setAccess(AS); 10814 10815 if (Invalid) 10816 NewTD->setInvalidDecl(); 10817 10818 ProcessDeclAttributeList(S, NewTD, AttrList); 10819 AddPragmaAttributes(S, NewTD); 10820 10821 CheckTypedefForVariablyModifiedType(S, NewTD); 10822 Invalid |= NewTD->isInvalidDecl(); 10823 10824 bool Redeclaration = false; 10825 10826 NamedDecl *NewND; 10827 if (TemplateParamLists.size()) { 10828 TypeAliasTemplateDecl *OldDecl = nullptr; 10829 TemplateParameterList *OldTemplateParams = nullptr; 10830 10831 if (TemplateParamLists.size() != 1) { 10832 Diag(UsingLoc, diag::err_alias_template_extra_headers) 10833 << SourceRange(TemplateParamLists[1]->getTemplateLoc(), 10834 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); 10835 } 10836 TemplateParameterList *TemplateParams = TemplateParamLists[0]; 10837 10838 // Check that we can declare a template here. 10839 if (CheckTemplateDeclScope(S, TemplateParams)) 10840 return nullptr; 10841 10842 // Only consider previous declarations in the same scope. 10843 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, 10844 /*ExplicitInstantiationOrSpecialization*/false); 10845 if (!Previous.empty()) { 10846 Redeclaration = true; 10847 10848 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); 10849 if (!OldDecl && !Invalid) { 10850 Diag(UsingLoc, diag::err_redefinition_different_kind) 10851 << Name.Identifier; 10852 10853 NamedDecl *OldD = Previous.getRepresentativeDecl(); 10854 if (OldD->getLocation().isValid()) 10855 Diag(OldD->getLocation(), diag::note_previous_definition); 10856 10857 Invalid = true; 10858 } 10859 10860 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { 10861 if (TemplateParameterListsAreEqual(TemplateParams, 10862 OldDecl->getTemplateParameters(), 10863 /*Complain=*/true, 10864 TPL_TemplateMatch)) 10865 OldTemplateParams = 10866 OldDecl->getMostRecentDecl()->getTemplateParameters(); 10867 else 10868 Invalid = true; 10869 10870 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); 10871 if (!Invalid && 10872 !Context.hasSameType(OldTD->getUnderlyingType(), 10873 NewTD->getUnderlyingType())) { 10874 // FIXME: The C++0x standard does not clearly say this is ill-formed, 10875 // but we can't reasonably accept it. 10876 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) 10877 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); 10878 if (OldTD->getLocation().isValid()) 10879 Diag(OldTD->getLocation(), diag::note_previous_definition); 10880 Invalid = true; 10881 } 10882 } 10883 } 10884 10885 // Merge any previous default template arguments into our parameters, 10886 // and check the parameter list. 10887 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, 10888 TPC_TypeAliasTemplate)) 10889 return nullptr; 10890 10891 TypeAliasTemplateDecl *NewDecl = 10892 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, 10893 Name.Identifier, TemplateParams, 10894 NewTD); 10895 NewTD->setDescribedAliasTemplate(NewDecl); 10896 10897 NewDecl->setAccess(AS); 10898 10899 if (Invalid) 10900 NewDecl->setInvalidDecl(); 10901 else if (OldDecl) { 10902 NewDecl->setPreviousDecl(OldDecl); 10903 CheckRedeclarationModuleOwnership(NewDecl, OldDecl); 10904 } 10905 10906 NewND = NewDecl; 10907 } else { 10908 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) { 10909 setTagNameForLinkagePurposes(TD, NewTD); 10910 handleTagNumbering(TD, S); 10911 } 10912 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); 10913 NewND = NewTD; 10914 } 10915 10916 PushOnScopeChains(NewND, S); 10917 ActOnDocumentableDecl(NewND); 10918 return NewND; 10919 } 10920 10921 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, 10922 SourceLocation AliasLoc, 10923 IdentifierInfo *Alias, CXXScopeSpec &SS, 10924 SourceLocation IdentLoc, 10925 IdentifierInfo *Ident) { 10926 10927 // Lookup the namespace name. 10928 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); 10929 LookupParsedName(R, S, &SS); 10930 10931 if (R.isAmbiguous()) 10932 return nullptr; 10933 10934 if (R.empty()) { 10935 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { 10936 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 10937 return nullptr; 10938 } 10939 } 10940 assert(!R.isAmbiguous() && !R.empty()); 10941 NamedDecl *ND = R.getRepresentativeDecl(); 10942 10943 // Check if we have a previous declaration with the same name. 10944 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName, 10945 ForVisibleRedeclaration); 10946 LookupName(PrevR, S); 10947 10948 // Check we're not shadowing a template parameter. 10949 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) { 10950 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl()); 10951 PrevR.clear(); 10952 } 10953 10954 // Filter out any other lookup result from an enclosing scope. 10955 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false, 10956 /*AllowInlineNamespace*/false); 10957 10958 // Find the previous declaration and check that we can redeclare it. 10959 NamespaceAliasDecl *Prev = nullptr; 10960 if (PrevR.isSingleResult()) { 10961 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl(); 10962 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { 10963 // We already have an alias with the same name that points to the same 10964 // namespace; check that it matches. 10965 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) { 10966 Prev = AD; 10967 } else if (isVisible(PrevDecl)) { 10968 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) 10969 << Alias; 10970 Diag(AD->getLocation(), diag::note_previous_namespace_alias) 10971 << AD->getNamespace(); 10972 return nullptr; 10973 } 10974 } else if (isVisible(PrevDecl)) { 10975 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl()) 10976 ? diag::err_redefinition 10977 : diag::err_redefinition_different_kind; 10978 Diag(AliasLoc, DiagID) << Alias; 10979 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 10980 return nullptr; 10981 } 10982 } 10983 10984 // The use of a nested name specifier may trigger deprecation warnings. 10985 DiagnoseUseOfDecl(ND, IdentLoc); 10986 10987 NamespaceAliasDecl *AliasDecl = 10988 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, 10989 Alias, SS.getWithLocInContext(Context), 10990 IdentLoc, ND); 10991 if (Prev) 10992 AliasDecl->setPreviousDecl(Prev); 10993 10994 PushOnScopeChains(AliasDecl, S); 10995 return AliasDecl; 10996 } 10997 10998 namespace { 10999 struct SpecialMemberExceptionSpecInfo 11000 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> { 11001 SourceLocation Loc; 11002 Sema::ImplicitExceptionSpecification ExceptSpec; 11003 11004 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD, 11005 Sema::CXXSpecialMember CSM, 11006 Sema::InheritedConstructorInfo *ICI, 11007 SourceLocation Loc) 11008 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {} 11009 11010 bool visitBase(CXXBaseSpecifier *Base); 11011 bool visitField(FieldDecl *FD); 11012 11013 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 11014 unsigned Quals); 11015 11016 void visitSubobjectCall(Subobject Subobj, 11017 Sema::SpecialMemberOverloadResult SMOR); 11018 }; 11019 } 11020 11021 bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) { 11022 auto *RT = Base->getType()->getAs<RecordType>(); 11023 if (!RT) 11024 return false; 11025 11026 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl()); 11027 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 11028 if (auto *BaseCtor = SMOR.getMethod()) { 11029 visitSubobjectCall(Base, BaseCtor); 11030 return false; 11031 } 11032 11033 visitClassSubobject(BaseClass, Base, 0); 11034 return false; 11035 } 11036 11037 bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) { 11038 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) { 11039 Expr *E = FD->getInClassInitializer(); 11040 if (!E) 11041 // FIXME: It's a little wasteful to build and throw away a 11042 // CXXDefaultInitExpr here. 11043 // FIXME: We should have a single context note pointing at Loc, and 11044 // this location should be MD->getLocation() instead, since that's 11045 // the location where we actually use the default init expression. 11046 E = S.BuildCXXDefaultInitExpr(Loc, FD).get(); 11047 if (E) 11048 ExceptSpec.CalledExpr(E); 11049 } else if (auto *RT = S.Context.getBaseElementType(FD->getType()) 11050 ->getAs<RecordType>()) { 11051 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD, 11052 FD->getType().getCVRQualifiers()); 11053 } 11054 return false; 11055 } 11056 11057 void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class, 11058 Subobject Subobj, 11059 unsigned Quals) { 11060 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 11061 bool IsMutable = Field && Field->isMutable(); 11062 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable)); 11063 } 11064 11065 void SpecialMemberExceptionSpecInfo::visitSubobjectCall( 11066 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) { 11067 // Note, if lookup fails, it doesn't matter what exception specification we 11068 // choose because the special member will be deleted. 11069 if (CXXMethodDecl *MD = SMOR.getMethod()) 11070 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD); 11071 } 11072 11073 namespace { 11074 /// RAII object to register a special member as being currently declared. 11075 struct ComputingExceptionSpec { 11076 Sema &S; 11077 11078 ComputingExceptionSpec(Sema &S, CXXMethodDecl *MD, SourceLocation Loc) 11079 : S(S) { 11080 Sema::CodeSynthesisContext Ctx; 11081 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation; 11082 Ctx.PointOfInstantiation = Loc; 11083 Ctx.Entity = MD; 11084 S.pushCodeSynthesisContext(Ctx); 11085 } 11086 ~ComputingExceptionSpec() { 11087 S.popCodeSynthesisContext(); 11088 } 11089 }; 11090 } 11091 11092 bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) { 11093 llvm::APSInt Result; 11094 ExprResult Converted = CheckConvertedConstantExpression( 11095 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool); 11096 ExplicitSpec.setExpr(Converted.get()); 11097 if (Converted.isUsable() && !Converted.get()->isValueDependent()) { 11098 ExplicitSpec.setKind(Result.getBoolValue() 11099 ? ExplicitSpecKind::ResolvedTrue 11100 : ExplicitSpecKind::ResolvedFalse); 11101 return true; 11102 } 11103 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved); 11104 return false; 11105 } 11106 11107 ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) { 11108 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved); 11109 if (!ExplicitExpr->isTypeDependent()) 11110 tryResolveExplicitSpecifier(ES); 11111 return ES; 11112 } 11113 11114 static Sema::ImplicitExceptionSpecification 11115 ComputeDefaultedSpecialMemberExceptionSpec( 11116 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 11117 Sema::InheritedConstructorInfo *ICI) { 11118 ComputingExceptionSpec CES(S, MD, Loc); 11119 11120 CXXRecordDecl *ClassDecl = MD->getParent(); 11121 11122 // C++ [except.spec]p14: 11123 // An implicitly declared special member function (Clause 12) shall have an 11124 // exception-specification. [...] 11125 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation()); 11126 if (ClassDecl->isInvalidDecl()) 11127 return Info.ExceptSpec; 11128 11129 // FIXME: If this diagnostic fires, we're probably missing a check for 11130 // attempting to resolve an exception specification before it's known 11131 // at a higher level. 11132 if (S.RequireCompleteType(MD->getLocation(), 11133 S.Context.getRecordType(ClassDecl), 11134 diag::err_exception_spec_incomplete_type)) 11135 return Info.ExceptSpec; 11136 11137 // C++1z [except.spec]p7: 11138 // [Look for exceptions thrown by] a constructor selected [...] to 11139 // initialize a potentially constructed subobject, 11140 // C++1z [except.spec]p8: 11141 // The exception specification for an implicitly-declared destructor, or a 11142 // destructor without a noexcept-specifier, is potentially-throwing if and 11143 // only if any of the destructors for any of its potentially constructed 11144 // subojects is potentially throwing. 11145 // FIXME: We respect the first rule but ignore the "potentially constructed" 11146 // in the second rule to resolve a core issue (no number yet) that would have 11147 // us reject: 11148 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; }; 11149 // struct B : A {}; 11150 // struct C : B { void f(); }; 11151 // ... due to giving B::~B() a non-throwing exception specification. 11152 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases 11153 : Info.VisitAllBases); 11154 11155 return Info.ExceptSpec; 11156 } 11157 11158 namespace { 11159 /// RAII object to register a special member as being currently declared. 11160 struct DeclaringSpecialMember { 11161 Sema &S; 11162 Sema::SpecialMemberDecl D; 11163 Sema::ContextRAII SavedContext; 11164 bool WasAlreadyBeingDeclared; 11165 11166 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM) 11167 : S(S), D(RD, CSM), SavedContext(S, RD) { 11168 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second; 11169 if (WasAlreadyBeingDeclared) 11170 // This almost never happens, but if it does, ensure that our cache 11171 // doesn't contain a stale result. 11172 S.SpecialMemberCache.clear(); 11173 else { 11174 // Register a note to be produced if we encounter an error while 11175 // declaring the special member. 11176 Sema::CodeSynthesisContext Ctx; 11177 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember; 11178 // FIXME: We don't have a location to use here. Using the class's 11179 // location maintains the fiction that we declare all special members 11180 // with the class, but (1) it's not clear that lying about that helps our 11181 // users understand what's going on, and (2) there may be outer contexts 11182 // on the stack (some of which are relevant) and printing them exposes 11183 // our lies. 11184 Ctx.PointOfInstantiation = RD->getLocation(); 11185 Ctx.Entity = RD; 11186 Ctx.SpecialMember = CSM; 11187 S.pushCodeSynthesisContext(Ctx); 11188 } 11189 } 11190 ~DeclaringSpecialMember() { 11191 if (!WasAlreadyBeingDeclared) { 11192 S.SpecialMembersBeingDeclared.erase(D); 11193 S.popCodeSynthesisContext(); 11194 } 11195 } 11196 11197 /// Are we already trying to declare this special member? 11198 bool isAlreadyBeingDeclared() const { 11199 return WasAlreadyBeingDeclared; 11200 } 11201 }; 11202 } 11203 11204 void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) { 11205 // Look up any existing declarations, but don't trigger declaration of all 11206 // implicit special members with this name. 11207 DeclarationName Name = FD->getDeclName(); 11208 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName, 11209 ForExternalRedeclaration); 11210 for (auto *D : FD->getParent()->lookup(Name)) 11211 if (auto *Acceptable = R.getAcceptableDecl(D)) 11212 R.addDecl(Acceptable); 11213 R.resolveKind(); 11214 R.suppressDiagnostics(); 11215 11216 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false); 11217 } 11218 11219 void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, 11220 QualType ResultTy, 11221 ArrayRef<QualType> Args) { 11222 // Build an exception specification pointing back at this constructor. 11223 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem); 11224 11225 if (getLangOpts().OpenCLCPlusPlus) { 11226 // OpenCL: Implicitly defaulted special member are of the generic address 11227 // space. 11228 EPI.TypeQuals.addAddressSpace(LangAS::opencl_generic); 11229 } 11230 11231 auto QT = Context.getFunctionType(ResultTy, Args, EPI); 11232 SpecialMem->setType(QT); 11233 } 11234 11235 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( 11236 CXXRecordDecl *ClassDecl) { 11237 // C++ [class.ctor]p5: 11238 // A default constructor for a class X is a constructor of class X 11239 // that can be called without an argument. If there is no 11240 // user-declared constructor for class X, a default constructor is 11241 // implicitly declared. An implicitly-declared default constructor 11242 // is an inline public member of its class. 11243 assert(ClassDecl->needsImplicitDefaultConstructor() && 11244 "Should not build implicit default constructor!"); 11245 11246 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor); 11247 if (DSM.isAlreadyBeingDeclared()) 11248 return nullptr; 11249 11250 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 11251 CXXDefaultConstructor, 11252 false); 11253 11254 // Create the actual constructor declaration. 11255 CanQualType ClassType 11256 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 11257 SourceLocation ClassLoc = ClassDecl->getLocation(); 11258 DeclarationName Name 11259 = Context.DeclarationNames.getCXXConstructorName(ClassType); 11260 DeclarationNameInfo NameInfo(Name, ClassLoc); 11261 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( 11262 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(), 11263 /*TInfo=*/nullptr, ExplicitSpecifier(), 11264 /*isInline=*/true, /*isImplicitlyDeclared=*/true, 11265 Constexpr ? CSK_constexpr : CSK_unspecified); 11266 DefaultCon->setAccess(AS_public); 11267 DefaultCon->setDefaulted(); 11268 11269 if (getLangOpts().CUDA) { 11270 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor, 11271 DefaultCon, 11272 /* ConstRHS */ false, 11273 /* Diagnose */ false); 11274 } 11275 11276 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None); 11277 11278 // We don't need to use SpecialMemberIsTrivial here; triviality for default 11279 // constructors is easy to compute. 11280 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); 11281 11282 // Note that we have declared this constructor. 11283 ++getASTContext().NumImplicitDefaultConstructorsDeclared; 11284 11285 Scope *S = getScopeForContext(ClassDecl); 11286 CheckImplicitSpecialMemberDeclaration(S, DefaultCon); 11287 11288 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor)) 11289 SetDeclDeleted(DefaultCon, ClassLoc); 11290 11291 if (S) 11292 PushOnScopeChains(DefaultCon, S, false); 11293 ClassDecl->addDecl(DefaultCon); 11294 11295 return DefaultCon; 11296 } 11297 11298 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, 11299 CXXConstructorDecl *Constructor) { 11300 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 11301 !Constructor->doesThisDeclarationHaveABody() && 11302 !Constructor->isDeleted()) && 11303 "DefineImplicitDefaultConstructor - call it for implicit default ctor"); 11304 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 11305 return; 11306 11307 CXXRecordDecl *ClassDecl = Constructor->getParent(); 11308 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); 11309 11310 SynthesizedFunctionScope Scope(*this, Constructor); 11311 11312 // The exception specification is needed because we are defining the 11313 // function. 11314 ResolveExceptionSpec(CurrentLocation, 11315 Constructor->getType()->castAs<FunctionProtoType>()); 11316 MarkVTableUsed(CurrentLocation, ClassDecl); 11317 11318 // Add a context note for diagnostics produced after this point. 11319 Scope.addContextNote(CurrentLocation); 11320 11321 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) { 11322 Constructor->setInvalidDecl(); 11323 return; 11324 } 11325 11326 SourceLocation Loc = Constructor->getEndLoc().isValid() 11327 ? Constructor->getEndLoc() 11328 : Constructor->getLocation(); 11329 Constructor->setBody(new (Context) CompoundStmt(Loc)); 11330 Constructor->markUsed(Context); 11331 11332 if (ASTMutationListener *L = getASTMutationListener()) { 11333 L->CompletedImplicitDefinition(Constructor); 11334 } 11335 11336 DiagnoseUninitializedFields(*this, Constructor); 11337 } 11338 11339 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { 11340 // Perform any delayed checks on exception specifications. 11341 CheckDelayedMemberExceptionSpecs(); 11342 } 11343 11344 /// Find or create the fake constructor we synthesize to model constructing an 11345 /// object of a derived class via a constructor of a base class. 11346 CXXConstructorDecl * 11347 Sema::findInheritingConstructor(SourceLocation Loc, 11348 CXXConstructorDecl *BaseCtor, 11349 ConstructorUsingShadowDecl *Shadow) { 11350 CXXRecordDecl *Derived = Shadow->getParent(); 11351 SourceLocation UsingLoc = Shadow->getLocation(); 11352 11353 // FIXME: Add a new kind of DeclarationName for an inherited constructor. 11354 // For now we use the name of the base class constructor as a member of the 11355 // derived class to indicate a (fake) inherited constructor name. 11356 DeclarationName Name = BaseCtor->getDeclName(); 11357 11358 // Check to see if we already have a fake constructor for this inherited 11359 // constructor call. 11360 for (NamedDecl *Ctor : Derived->lookup(Name)) 11361 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor) 11362 ->getInheritedConstructor() 11363 .getConstructor(), 11364 BaseCtor)) 11365 return cast<CXXConstructorDecl>(Ctor); 11366 11367 DeclarationNameInfo NameInfo(Name, UsingLoc); 11368 TypeSourceInfo *TInfo = 11369 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc); 11370 FunctionProtoTypeLoc ProtoLoc = 11371 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>(); 11372 11373 // Check the inherited constructor is valid and find the list of base classes 11374 // from which it was inherited. 11375 InheritedConstructorInfo ICI(*this, Loc, Shadow); 11376 11377 bool Constexpr = 11378 BaseCtor->isConstexpr() && 11379 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor, 11380 false, BaseCtor, &ICI); 11381 11382 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( 11383 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo, 11384 BaseCtor->getExplicitSpecifier(), /*isInline=*/true, 11385 /*isImplicitlyDeclared=*/true, 11386 Constexpr ? BaseCtor->getConstexprKind() : CSK_unspecified, 11387 InheritedConstructor(Shadow, BaseCtor)); 11388 if (Shadow->isInvalidDecl()) 11389 DerivedCtor->setInvalidDecl(); 11390 11391 // Build an unevaluated exception specification for this fake constructor. 11392 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>(); 11393 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 11394 EPI.ExceptionSpec.Type = EST_Unevaluated; 11395 EPI.ExceptionSpec.SourceDecl = DerivedCtor; 11396 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(), 11397 FPT->getParamTypes(), EPI)); 11398 11399 // Build the parameter declarations. 11400 SmallVector<ParmVarDecl *, 16> ParamDecls; 11401 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { 11402 TypeSourceInfo *TInfo = 11403 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc); 11404 ParmVarDecl *PD = ParmVarDecl::Create( 11405 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, 11406 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr); 11407 PD->setScopeInfo(0, I); 11408 PD->setImplicit(); 11409 // Ensure attributes are propagated onto parameters (this matters for 11410 // format, pass_object_size, ...). 11411 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I)); 11412 ParamDecls.push_back(PD); 11413 ProtoLoc.setParam(I, PD); 11414 } 11415 11416 // Set up the new constructor. 11417 assert(!BaseCtor->isDeleted() && "should not use deleted constructor"); 11418 DerivedCtor->setAccess(BaseCtor->getAccess()); 11419 DerivedCtor->setParams(ParamDecls); 11420 Derived->addDecl(DerivedCtor); 11421 11422 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI)) 11423 SetDeclDeleted(DerivedCtor, UsingLoc); 11424 11425 return DerivedCtor; 11426 } 11427 11428 void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) { 11429 InheritedConstructorInfo ICI(*this, Ctor->getLocation(), 11430 Ctor->getInheritedConstructor().getShadowDecl()); 11431 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI, 11432 /*Diagnose*/true); 11433 } 11434 11435 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, 11436 CXXConstructorDecl *Constructor) { 11437 CXXRecordDecl *ClassDecl = Constructor->getParent(); 11438 assert(Constructor->getInheritedConstructor() && 11439 !Constructor->doesThisDeclarationHaveABody() && 11440 !Constructor->isDeleted()); 11441 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 11442 return; 11443 11444 // Initializations are performed "as if by a defaulted default constructor", 11445 // so enter the appropriate scope. 11446 SynthesizedFunctionScope Scope(*this, Constructor); 11447 11448 // The exception specification is needed because we are defining the 11449 // function. 11450 ResolveExceptionSpec(CurrentLocation, 11451 Constructor->getType()->castAs<FunctionProtoType>()); 11452 MarkVTableUsed(CurrentLocation, ClassDecl); 11453 11454 // Add a context note for diagnostics produced after this point. 11455 Scope.addContextNote(CurrentLocation); 11456 11457 ConstructorUsingShadowDecl *Shadow = 11458 Constructor->getInheritedConstructor().getShadowDecl(); 11459 CXXConstructorDecl *InheritedCtor = 11460 Constructor->getInheritedConstructor().getConstructor(); 11461 11462 // [class.inhctor.init]p1: 11463 // initialization proceeds as if a defaulted default constructor is used to 11464 // initialize the D object and each base class subobject from which the 11465 // constructor was inherited 11466 11467 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow); 11468 CXXRecordDecl *RD = Shadow->getParent(); 11469 SourceLocation InitLoc = Shadow->getLocation(); 11470 11471 // Build explicit initializers for all base classes from which the 11472 // constructor was inherited. 11473 SmallVector<CXXCtorInitializer*, 8> Inits; 11474 for (bool VBase : {false, true}) { 11475 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) { 11476 if (B.isVirtual() != VBase) 11477 continue; 11478 11479 auto *BaseRD = B.getType()->getAsCXXRecordDecl(); 11480 if (!BaseRD) 11481 continue; 11482 11483 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor); 11484 if (!BaseCtor.first) 11485 continue; 11486 11487 MarkFunctionReferenced(CurrentLocation, BaseCtor.first); 11488 ExprResult Init = new (Context) CXXInheritedCtorInitExpr( 11489 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second); 11490 11491 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc); 11492 Inits.push_back(new (Context) CXXCtorInitializer( 11493 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc, 11494 SourceLocation())); 11495 } 11496 } 11497 11498 // We now proceed as if for a defaulted default constructor, with the relevant 11499 // initializers replaced. 11500 11501 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) { 11502 Constructor->setInvalidDecl(); 11503 return; 11504 } 11505 11506 Constructor->setBody(new (Context) CompoundStmt(InitLoc)); 11507 Constructor->markUsed(Context); 11508 11509 if (ASTMutationListener *L = getASTMutationListener()) { 11510 L->CompletedImplicitDefinition(Constructor); 11511 } 11512 11513 DiagnoseUninitializedFields(*this, Constructor); 11514 } 11515 11516 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { 11517 // C++ [class.dtor]p2: 11518 // If a class has no user-declared destructor, a destructor is 11519 // declared implicitly. An implicitly-declared destructor is an 11520 // inline public member of its class. 11521 assert(ClassDecl->needsImplicitDestructor()); 11522 11523 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor); 11524 if (DSM.isAlreadyBeingDeclared()) 11525 return nullptr; 11526 11527 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 11528 CXXDestructor, 11529 false); 11530 11531 // Create the actual destructor declaration. 11532 CanQualType ClassType 11533 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 11534 SourceLocation ClassLoc = ClassDecl->getLocation(); 11535 DeclarationName Name 11536 = Context.DeclarationNames.getCXXDestructorName(ClassType); 11537 DeclarationNameInfo NameInfo(Name, ClassLoc); 11538 CXXDestructorDecl *Destructor = 11539 CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, 11540 QualType(), nullptr, /*isInline=*/true, 11541 /*isImplicitlyDeclared=*/true, 11542 Constexpr ? CSK_constexpr : CSK_unspecified); 11543 Destructor->setAccess(AS_public); 11544 Destructor->setDefaulted(); 11545 11546 if (getLangOpts().CUDA) { 11547 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor, 11548 Destructor, 11549 /* ConstRHS */ false, 11550 /* Diagnose */ false); 11551 } 11552 11553 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None); 11554 11555 // We don't need to use SpecialMemberIsTrivial here; triviality for 11556 // destructors is easy to compute. 11557 Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); 11558 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() || 11559 ClassDecl->hasTrivialDestructorForCall()); 11560 11561 // Note that we have declared this destructor. 11562 ++getASTContext().NumImplicitDestructorsDeclared; 11563 11564 Scope *S = getScopeForContext(ClassDecl); 11565 CheckImplicitSpecialMemberDeclaration(S, Destructor); 11566 11567 // We can't check whether an implicit destructor is deleted before we complete 11568 // the definition of the class, because its validity depends on the alignment 11569 // of the class. We'll check this from ActOnFields once the class is complete. 11570 if (ClassDecl->isCompleteDefinition() && 11571 ShouldDeleteSpecialMember(Destructor, CXXDestructor)) 11572 SetDeclDeleted(Destructor, ClassLoc); 11573 11574 // Introduce this destructor into its scope. 11575 if (S) 11576 PushOnScopeChains(Destructor, S, false); 11577 ClassDecl->addDecl(Destructor); 11578 11579 return Destructor; 11580 } 11581 11582 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, 11583 CXXDestructorDecl *Destructor) { 11584 assert((Destructor->isDefaulted() && 11585 !Destructor->doesThisDeclarationHaveABody() && 11586 !Destructor->isDeleted()) && 11587 "DefineImplicitDestructor - call it for implicit default dtor"); 11588 if (Destructor->willHaveBody() || Destructor->isInvalidDecl()) 11589 return; 11590 11591 CXXRecordDecl *ClassDecl = Destructor->getParent(); 11592 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); 11593 11594 SynthesizedFunctionScope Scope(*this, Destructor); 11595 11596 // The exception specification is needed because we are defining the 11597 // function. 11598 ResolveExceptionSpec(CurrentLocation, 11599 Destructor->getType()->castAs<FunctionProtoType>()); 11600 MarkVTableUsed(CurrentLocation, ClassDecl); 11601 11602 // Add a context note for diagnostics produced after this point. 11603 Scope.addContextNote(CurrentLocation); 11604 11605 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 11606 Destructor->getParent()); 11607 11608 if (CheckDestructor(Destructor)) { 11609 Destructor->setInvalidDecl(); 11610 return; 11611 } 11612 11613 SourceLocation Loc = Destructor->getEndLoc().isValid() 11614 ? Destructor->getEndLoc() 11615 : Destructor->getLocation(); 11616 Destructor->setBody(new (Context) CompoundStmt(Loc)); 11617 Destructor->markUsed(Context); 11618 11619 if (ASTMutationListener *L = getASTMutationListener()) { 11620 L->CompletedImplicitDefinition(Destructor); 11621 } 11622 } 11623 11624 /// Perform any semantic analysis which needs to be delayed until all 11625 /// pending class member declarations have been parsed. 11626 void Sema::ActOnFinishCXXMemberDecls() { 11627 // If the context is an invalid C++ class, just suppress these checks. 11628 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) { 11629 if (Record->isInvalidDecl()) { 11630 DelayedOverridingExceptionSpecChecks.clear(); 11631 DelayedEquivalentExceptionSpecChecks.clear(); 11632 return; 11633 } 11634 checkForMultipleExportedDefaultConstructors(*this, Record); 11635 } 11636 } 11637 11638 void Sema::ActOnFinishCXXNonNestedClass(Decl *D) { 11639 referenceDLLExportedClassMethods(); 11640 11641 if (!DelayedDllExportMemberFunctions.empty()) { 11642 SmallVector<CXXMethodDecl*, 4> WorkList; 11643 std::swap(DelayedDllExportMemberFunctions, WorkList); 11644 for (CXXMethodDecl *M : WorkList) { 11645 DefineImplicitSpecialMember(*this, M, M->getLocation()); 11646 11647 // Pass the method to the consumer to get emitted. This is not necessary 11648 // for explicit instantiation definitions, as they will get emitted 11649 // anyway. 11650 if (M->getParent()->getTemplateSpecializationKind() != 11651 TSK_ExplicitInstantiationDefinition) 11652 ActOnFinishInlineFunctionDef(M); 11653 } 11654 } 11655 } 11656 11657 void Sema::referenceDLLExportedClassMethods() { 11658 if (!DelayedDllExportClasses.empty()) { 11659 // Calling ReferenceDllExportedMembers might cause the current function to 11660 // be called again, so use a local copy of DelayedDllExportClasses. 11661 SmallVector<CXXRecordDecl *, 4> WorkList; 11662 std::swap(DelayedDllExportClasses, WorkList); 11663 for (CXXRecordDecl *Class : WorkList) 11664 ReferenceDllExportedMembers(*this, Class); 11665 } 11666 } 11667 11668 void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) { 11669 assert(getLangOpts().CPlusPlus11 && 11670 "adjusting dtor exception specs was introduced in c++11"); 11671 11672 if (Destructor->isDependentContext()) 11673 return; 11674 11675 // C++11 [class.dtor]p3: 11676 // A declaration of a destructor that does not have an exception- 11677 // specification is implicitly considered to have the same exception- 11678 // specification as an implicit declaration. 11679 const FunctionProtoType *DtorType = Destructor->getType()-> 11680 getAs<FunctionProtoType>(); 11681 if (DtorType->hasExceptionSpec()) 11682 return; 11683 11684 // Replace the destructor's type, building off the existing one. Fortunately, 11685 // the only thing of interest in the destructor type is its extended info. 11686 // The return and arguments are fixed. 11687 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); 11688 EPI.ExceptionSpec.Type = EST_Unevaluated; 11689 EPI.ExceptionSpec.SourceDecl = Destructor; 11690 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI)); 11691 11692 // FIXME: If the destructor has a body that could throw, and the newly created 11693 // spec doesn't allow exceptions, we should emit a warning, because this 11694 // change in behavior can break conforming C++03 programs at runtime. 11695 // However, we don't have a body or an exception specification yet, so it 11696 // needs to be done somewhere else. 11697 } 11698 11699 namespace { 11700 /// An abstract base class for all helper classes used in building the 11701 // copy/move operators. These classes serve as factory functions and help us 11702 // avoid using the same Expr* in the AST twice. 11703 class ExprBuilder { 11704 ExprBuilder(const ExprBuilder&) = delete; 11705 ExprBuilder &operator=(const ExprBuilder&) = delete; 11706 11707 protected: 11708 static Expr *assertNotNull(Expr *E) { 11709 assert(E && "Expression construction must not fail."); 11710 return E; 11711 } 11712 11713 public: 11714 ExprBuilder() {} 11715 virtual ~ExprBuilder() {} 11716 11717 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; 11718 }; 11719 11720 class RefBuilder: public ExprBuilder { 11721 VarDecl *Var; 11722 QualType VarType; 11723 11724 public: 11725 Expr *build(Sema &S, SourceLocation Loc) const override { 11726 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc)); 11727 } 11728 11729 RefBuilder(VarDecl *Var, QualType VarType) 11730 : Var(Var), VarType(VarType) {} 11731 }; 11732 11733 class ThisBuilder: public ExprBuilder { 11734 public: 11735 Expr *build(Sema &S, SourceLocation Loc) const override { 11736 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>()); 11737 } 11738 }; 11739 11740 class CastBuilder: public ExprBuilder { 11741 const ExprBuilder &Builder; 11742 QualType Type; 11743 ExprValueKind Kind; 11744 const CXXCastPath &Path; 11745 11746 public: 11747 Expr *build(Sema &S, SourceLocation Loc) const override { 11748 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, 11749 CK_UncheckedDerivedToBase, Kind, 11750 &Path).get()); 11751 } 11752 11753 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, 11754 const CXXCastPath &Path) 11755 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} 11756 }; 11757 11758 class DerefBuilder: public ExprBuilder { 11759 const ExprBuilder &Builder; 11760 11761 public: 11762 Expr *build(Sema &S, SourceLocation Loc) const override { 11763 return assertNotNull( 11764 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get()); 11765 } 11766 11767 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 11768 }; 11769 11770 class MemberBuilder: public ExprBuilder { 11771 const ExprBuilder &Builder; 11772 QualType Type; 11773 CXXScopeSpec SS; 11774 bool IsArrow; 11775 LookupResult &MemberLookup; 11776 11777 public: 11778 Expr *build(Sema &S, SourceLocation Loc) const override { 11779 return assertNotNull(S.BuildMemberReferenceExpr( 11780 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), 11781 nullptr, MemberLookup, nullptr, nullptr).get()); 11782 } 11783 11784 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, 11785 LookupResult &MemberLookup) 11786 : Builder(Builder), Type(Type), IsArrow(IsArrow), 11787 MemberLookup(MemberLookup) {} 11788 }; 11789 11790 class MoveCastBuilder: public ExprBuilder { 11791 const ExprBuilder &Builder; 11792 11793 public: 11794 Expr *build(Sema &S, SourceLocation Loc) const override { 11795 return assertNotNull(CastForMoving(S, Builder.build(S, Loc))); 11796 } 11797 11798 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 11799 }; 11800 11801 class LvalueConvBuilder: public ExprBuilder { 11802 const ExprBuilder &Builder; 11803 11804 public: 11805 Expr *build(Sema &S, SourceLocation Loc) const override { 11806 return assertNotNull( 11807 S.DefaultLvalueConversion(Builder.build(S, Loc)).get()); 11808 } 11809 11810 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 11811 }; 11812 11813 class SubscriptBuilder: public ExprBuilder { 11814 const ExprBuilder &Base; 11815 const ExprBuilder &Index; 11816 11817 public: 11818 Expr *build(Sema &S, SourceLocation Loc) const override { 11819 return assertNotNull(S.CreateBuiltinArraySubscriptExpr( 11820 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get()); 11821 } 11822 11823 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) 11824 : Base(Base), Index(Index) {} 11825 }; 11826 11827 } // end anonymous namespace 11828 11829 /// When generating a defaulted copy or move assignment operator, if a field 11830 /// should be copied with __builtin_memcpy rather than via explicit assignments, 11831 /// do so. This optimization only applies for arrays of scalars, and for arrays 11832 /// of class type where the selected copy/move-assignment operator is trivial. 11833 static StmtResult 11834 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, 11835 const ExprBuilder &ToB, const ExprBuilder &FromB) { 11836 // Compute the size of the memory buffer to be copied. 11837 QualType SizeType = S.Context.getSizeType(); 11838 llvm::APInt Size(S.Context.getTypeSize(SizeType), 11839 S.Context.getTypeSizeInChars(T).getQuantity()); 11840 11841 // Take the address of the field references for "from" and "to". We 11842 // directly construct UnaryOperators here because semantic analysis 11843 // does not permit us to take the address of an xvalue. 11844 Expr *From = FromB.build(S, Loc); 11845 From = new (S.Context) UnaryOperator(From, UO_AddrOf, 11846 S.Context.getPointerType(From->getType()), 11847 VK_RValue, OK_Ordinary, Loc, false); 11848 Expr *To = ToB.build(S, Loc); 11849 To = new (S.Context) UnaryOperator(To, UO_AddrOf, 11850 S.Context.getPointerType(To->getType()), 11851 VK_RValue, OK_Ordinary, Loc, false); 11852 11853 const Type *E = T->getBaseElementTypeUnsafe(); 11854 bool NeedsCollectableMemCpy = 11855 E->isRecordType() && 11856 E->castAs<RecordType>()->getDecl()->hasObjectMember(); 11857 11858 // Create a reference to the __builtin_objc_memmove_collectable function 11859 StringRef MemCpyName = NeedsCollectableMemCpy ? 11860 "__builtin_objc_memmove_collectable" : 11861 "__builtin_memcpy"; 11862 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc, 11863 Sema::LookupOrdinaryName); 11864 S.LookupName(R, S.TUScope, true); 11865 11866 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>(); 11867 if (!MemCpy) 11868 // Something went horribly wrong earlier, and we will have complained 11869 // about it. 11870 return StmtError(); 11871 11872 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, 11873 VK_RValue, Loc, nullptr); 11874 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail"); 11875 11876 Expr *CallArgs[] = { 11877 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc) 11878 }; 11879 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), 11880 Loc, CallArgs, Loc); 11881 11882 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); 11883 return Call.getAs<Stmt>(); 11884 } 11885 11886 /// Builds a statement that copies/moves the given entity from \p From to 11887 /// \c To. 11888 /// 11889 /// This routine is used to copy/move the members of a class with an 11890 /// implicitly-declared copy/move assignment operator. When the entities being 11891 /// copied are arrays, this routine builds for loops to copy them. 11892 /// 11893 /// \param S The Sema object used for type-checking. 11894 /// 11895 /// \param Loc The location where the implicit copy/move is being generated. 11896 /// 11897 /// \param T The type of the expressions being copied/moved. Both expressions 11898 /// must have this type. 11899 /// 11900 /// \param To The expression we are copying/moving to. 11901 /// 11902 /// \param From The expression we are copying/moving from. 11903 /// 11904 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. 11905 /// Otherwise, it's a non-static member subobject. 11906 /// 11907 /// \param Copying Whether we're copying or moving. 11908 /// 11909 /// \param Depth Internal parameter recording the depth of the recursion. 11910 /// 11911 /// \returns A statement or a loop that copies the expressions, or StmtResult(0) 11912 /// if a memcpy should be used instead. 11913 static StmtResult 11914 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, 11915 const ExprBuilder &To, const ExprBuilder &From, 11916 bool CopyingBaseSubobject, bool Copying, 11917 unsigned Depth = 0) { 11918 // C++11 [class.copy]p28: 11919 // Each subobject is assigned in the manner appropriate to its type: 11920 // 11921 // - if the subobject is of class type, as if by a call to operator= with 11922 // the subobject as the object expression and the corresponding 11923 // subobject of x as a single function argument (as if by explicit 11924 // qualification; that is, ignoring any possible virtual overriding 11925 // functions in more derived classes); 11926 // 11927 // C++03 [class.copy]p13: 11928 // - if the subobject is of class type, the copy assignment operator for 11929 // the class is used (as if by explicit qualification; that is, 11930 // ignoring any possible virtual overriding functions in more derived 11931 // classes); 11932 if (const RecordType *RecordTy = T->getAs<RecordType>()) { 11933 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 11934 11935 // Look for operator=. 11936 DeclarationName Name 11937 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); 11938 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); 11939 S.LookupQualifiedName(OpLookup, ClassDecl, false); 11940 11941 // Prior to C++11, filter out any result that isn't a copy/move-assignment 11942 // operator. 11943 if (!S.getLangOpts().CPlusPlus11) { 11944 LookupResult::Filter F = OpLookup.makeFilter(); 11945 while (F.hasNext()) { 11946 NamedDecl *D = F.next(); 11947 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 11948 if (Method->isCopyAssignmentOperator() || 11949 (!Copying && Method->isMoveAssignmentOperator())) 11950 continue; 11951 11952 F.erase(); 11953 } 11954 F.done(); 11955 } 11956 11957 // Suppress the protected check (C++ [class.protected]) for each of the 11958 // assignment operators we found. This strange dance is required when 11959 // we're assigning via a base classes's copy-assignment operator. To 11960 // ensure that we're getting the right base class subobject (without 11961 // ambiguities), we need to cast "this" to that subobject type; to 11962 // ensure that we don't go through the virtual call mechanism, we need 11963 // to qualify the operator= name with the base class (see below). However, 11964 // this means that if the base class has a protected copy assignment 11965 // operator, the protected member access check will fail. So, we 11966 // rewrite "protected" access to "public" access in this case, since we 11967 // know by construction that we're calling from a derived class. 11968 if (CopyingBaseSubobject) { 11969 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); 11970 L != LEnd; ++L) { 11971 if (L.getAccess() == AS_protected) 11972 L.setAccess(AS_public); 11973 } 11974 } 11975 11976 // Create the nested-name-specifier that will be used to qualify the 11977 // reference to operator=; this is required to suppress the virtual 11978 // call mechanism. 11979 CXXScopeSpec SS; 11980 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr()); 11981 SS.MakeTrivial(S.Context, 11982 NestedNameSpecifier::Create(S.Context, nullptr, false, 11983 CanonicalT), 11984 Loc); 11985 11986 // Create the reference to operator=. 11987 ExprResult OpEqualRef 11988 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false, 11989 SS, /*TemplateKWLoc=*/SourceLocation(), 11990 /*FirstQualifierInScope=*/nullptr, 11991 OpLookup, 11992 /*TemplateArgs=*/nullptr, /*S*/nullptr, 11993 /*SuppressQualifierCheck=*/true); 11994 if (OpEqualRef.isInvalid()) 11995 return StmtError(); 11996 11997 // Build the call to the assignment operator. 11998 11999 Expr *FromInst = From.build(S, Loc); 12000 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr, 12001 OpEqualRef.getAs<Expr>(), 12002 Loc, FromInst, Loc); 12003 if (Call.isInvalid()) 12004 return StmtError(); 12005 12006 // If we built a call to a trivial 'operator=' while copying an array, 12007 // bail out. We'll replace the whole shebang with a memcpy. 12008 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get()); 12009 if (CE && CE->getMethodDecl()->isTrivial() && Depth) 12010 return StmtResult((Stmt*)nullptr); 12011 12012 // Convert to an expression-statement, and clean up any produced 12013 // temporaries. 12014 return S.ActOnExprStmt(Call); 12015 } 12016 12017 // - if the subobject is of scalar type, the built-in assignment 12018 // operator is used. 12019 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); 12020 if (!ArrayTy) { 12021 ExprResult Assignment = S.CreateBuiltinBinOp( 12022 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc)); 12023 if (Assignment.isInvalid()) 12024 return StmtError(); 12025 return S.ActOnExprStmt(Assignment); 12026 } 12027 12028 // - if the subobject is an array, each element is assigned, in the 12029 // manner appropriate to the element type; 12030 12031 // Construct a loop over the array bounds, e.g., 12032 // 12033 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) 12034 // 12035 // that will copy each of the array elements. 12036 QualType SizeType = S.Context.getSizeType(); 12037 12038 // Create the iteration variable. 12039 IdentifierInfo *IterationVarName = nullptr; 12040 { 12041 SmallString<8> Str; 12042 llvm::raw_svector_ostream OS(Str); 12043 OS << "__i" << Depth; 12044 IterationVarName = &S.Context.Idents.get(OS.str()); 12045 } 12046 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, 12047 IterationVarName, SizeType, 12048 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), 12049 SC_None); 12050 12051 // Initialize the iteration variable to zero. 12052 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 12053 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 12054 12055 // Creates a reference to the iteration variable. 12056 RefBuilder IterationVarRef(IterationVar, SizeType); 12057 LvalueConvBuilder IterationVarRefRVal(IterationVarRef); 12058 12059 // Create the DeclStmt that holds the iteration variable. 12060 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); 12061 12062 // Subscript the "from" and "to" expressions with the iteration variable. 12063 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); 12064 MoveCastBuilder FromIndexMove(FromIndexCopy); 12065 const ExprBuilder *FromIndex; 12066 if (Copying) 12067 FromIndex = &FromIndexCopy; 12068 else 12069 FromIndex = &FromIndexMove; 12070 12071 SubscriptBuilder ToIndex(To, IterationVarRefRVal); 12072 12073 // Build the copy/move for an individual element of the array. 12074 StmtResult Copy = 12075 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), 12076 ToIndex, *FromIndex, CopyingBaseSubobject, 12077 Copying, Depth + 1); 12078 // Bail out if copying fails or if we determined that we should use memcpy. 12079 if (Copy.isInvalid() || !Copy.get()) 12080 return Copy; 12081 12082 // Create the comparison against the array bound. 12083 llvm::APInt Upper 12084 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); 12085 Expr *Comparison 12086 = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc), 12087 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), 12088 BO_NE, S.Context.BoolTy, 12089 VK_RValue, OK_Ordinary, Loc, FPOptions()); 12090 12091 // Create the pre-increment of the iteration variable. We can determine 12092 // whether the increment will overflow based on the value of the array 12093 // bound. 12094 Expr *Increment = new (S.Context) 12095 UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc, SizeType, 12096 VK_LValue, OK_Ordinary, Loc, Upper.isMaxValue()); 12097 12098 // Construct the loop that copies all elements of this array. 12099 return S.ActOnForStmt( 12100 Loc, Loc, InitStmt, 12101 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean), 12102 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get()); 12103 } 12104 12105 static StmtResult 12106 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, 12107 const ExprBuilder &To, const ExprBuilder &From, 12108 bool CopyingBaseSubobject, bool Copying) { 12109 // Maybe we should use a memcpy? 12110 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && 12111 T.isTriviallyCopyableType(S.Context)) 12112 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 12113 12114 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, 12115 CopyingBaseSubobject, 12116 Copying, 0)); 12117 12118 // If we ended up picking a trivial assignment operator for an array of a 12119 // non-trivially-copyable class type, just emit a memcpy. 12120 if (!Result.isInvalid() && !Result.get()) 12121 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 12122 12123 return Result; 12124 } 12125 12126 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { 12127 // Note: The following rules are largely analoguous to the copy 12128 // constructor rules. Note that virtual bases are not taken into account 12129 // for determining the argument type of the operator. Note also that 12130 // operators taking an object instead of a reference are allowed. 12131 assert(ClassDecl->needsImplicitCopyAssignment()); 12132 12133 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment); 12134 if (DSM.isAlreadyBeingDeclared()) 12135 return nullptr; 12136 12137 QualType ArgType = Context.getTypeDeclType(ClassDecl); 12138 if (Context.getLangOpts().OpenCLCPlusPlus) 12139 ArgType = Context.getAddrSpaceQualType(ArgType, LangAS::opencl_generic); 12140 QualType RetType = Context.getLValueReferenceType(ArgType); 12141 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); 12142 if (Const) 12143 ArgType = ArgType.withConst(); 12144 12145 ArgType = Context.getLValueReferenceType(ArgType); 12146 12147 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 12148 CXXCopyAssignment, 12149 Const); 12150 12151 // An implicitly-declared copy assignment operator is an inline public 12152 // member of its class. 12153 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 12154 SourceLocation ClassLoc = ClassDecl->getLocation(); 12155 DeclarationNameInfo NameInfo(Name, ClassLoc); 12156 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create( 12157 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 12158 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 12159 /*isInline=*/true, Constexpr ? CSK_constexpr : CSK_unspecified, 12160 SourceLocation()); 12161 CopyAssignment->setAccess(AS_public); 12162 CopyAssignment->setDefaulted(); 12163 CopyAssignment->setImplicit(); 12164 12165 if (getLangOpts().CUDA) { 12166 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment, 12167 CopyAssignment, 12168 /* ConstRHS */ Const, 12169 /* Diagnose */ false); 12170 } 12171 12172 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType); 12173 12174 // Add the parameter to the operator. 12175 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, 12176 ClassLoc, ClassLoc, 12177 /*Id=*/nullptr, ArgType, 12178 /*TInfo=*/nullptr, SC_None, 12179 nullptr); 12180 CopyAssignment->setParams(FromParam); 12181 12182 CopyAssignment->setTrivial( 12183 ClassDecl->needsOverloadResolutionForCopyAssignment() 12184 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment) 12185 : ClassDecl->hasTrivialCopyAssignment()); 12186 12187 // Note that we have added this copy-assignment operator. 12188 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared; 12189 12190 Scope *S = getScopeForContext(ClassDecl); 12191 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment); 12192 12193 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) 12194 SetDeclDeleted(CopyAssignment, ClassLoc); 12195 12196 if (S) 12197 PushOnScopeChains(CopyAssignment, S, false); 12198 ClassDecl->addDecl(CopyAssignment); 12199 12200 return CopyAssignment; 12201 } 12202 12203 /// Diagnose an implicit copy operation for a class which is odr-used, but 12204 /// which is deprecated because the class has a user-declared copy constructor, 12205 /// copy assignment operator, or destructor. 12206 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) { 12207 assert(CopyOp->isImplicit()); 12208 12209 CXXRecordDecl *RD = CopyOp->getParent(); 12210 CXXMethodDecl *UserDeclaredOperation = nullptr; 12211 12212 // In Microsoft mode, assignment operations don't affect constructors and 12213 // vice versa. 12214 if (RD->hasUserDeclaredDestructor()) { 12215 UserDeclaredOperation = RD->getDestructor(); 12216 } else if (!isa<CXXConstructorDecl>(CopyOp) && 12217 RD->hasUserDeclaredCopyConstructor() && 12218 !S.getLangOpts().MSVCCompat) { 12219 // Find any user-declared copy constructor. 12220 for (auto *I : RD->ctors()) { 12221 if (I->isCopyConstructor()) { 12222 UserDeclaredOperation = I; 12223 break; 12224 } 12225 } 12226 assert(UserDeclaredOperation); 12227 } else if (isa<CXXConstructorDecl>(CopyOp) && 12228 RD->hasUserDeclaredCopyAssignment() && 12229 !S.getLangOpts().MSVCCompat) { 12230 // Find any user-declared move assignment operator. 12231 for (auto *I : RD->methods()) { 12232 if (I->isCopyAssignmentOperator()) { 12233 UserDeclaredOperation = I; 12234 break; 12235 } 12236 } 12237 assert(UserDeclaredOperation); 12238 } 12239 12240 if (UserDeclaredOperation) { 12241 S.Diag(UserDeclaredOperation->getLocation(), 12242 diag::warn_deprecated_copy_operation) 12243 << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp) 12244 << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation); 12245 } 12246 } 12247 12248 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, 12249 CXXMethodDecl *CopyAssignOperator) { 12250 assert((CopyAssignOperator->isDefaulted() && 12251 CopyAssignOperator->isOverloadedOperator() && 12252 CopyAssignOperator->getOverloadedOperator() == OO_Equal && 12253 !CopyAssignOperator->doesThisDeclarationHaveABody() && 12254 !CopyAssignOperator->isDeleted()) && 12255 "DefineImplicitCopyAssignment called for wrong function"); 12256 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl()) 12257 return; 12258 12259 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); 12260 if (ClassDecl->isInvalidDecl()) { 12261 CopyAssignOperator->setInvalidDecl(); 12262 return; 12263 } 12264 12265 SynthesizedFunctionScope Scope(*this, CopyAssignOperator); 12266 12267 // The exception specification is needed because we are defining the 12268 // function. 12269 ResolveExceptionSpec(CurrentLocation, 12270 CopyAssignOperator->getType()->castAs<FunctionProtoType>()); 12271 12272 // Add a context note for diagnostics produced after this point. 12273 Scope.addContextNote(CurrentLocation); 12274 12275 // C++11 [class.copy]p18: 12276 // The [definition of an implicitly declared copy assignment operator] is 12277 // deprecated if the class has a user-declared copy constructor or a 12278 // user-declared destructor. 12279 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) 12280 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator); 12281 12282 // C++0x [class.copy]p30: 12283 // The implicitly-defined or explicitly-defaulted copy assignment operator 12284 // for a non-union class X performs memberwise copy assignment of its 12285 // subobjects. The direct base classes of X are assigned first, in the 12286 // order of their declaration in the base-specifier-list, and then the 12287 // immediate non-static data members of X are assigned, in the order in 12288 // which they were declared in the class definition. 12289 12290 // The statements that form the synthesized function body. 12291 SmallVector<Stmt*, 8> Statements; 12292 12293 // The parameter for the "other" object, which we are copying from. 12294 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); 12295 Qualifiers OtherQuals = Other->getType().getQualifiers(); 12296 QualType OtherRefType = Other->getType(); 12297 if (const LValueReferenceType *OtherRef 12298 = OtherRefType->getAs<LValueReferenceType>()) { 12299 OtherRefType = OtherRef->getPointeeType(); 12300 OtherQuals = OtherRefType.getQualifiers(); 12301 } 12302 12303 // Our location for everything implicitly-generated. 12304 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid() 12305 ? CopyAssignOperator->getEndLoc() 12306 : CopyAssignOperator->getLocation(); 12307 12308 // Builds a DeclRefExpr for the "other" object. 12309 RefBuilder OtherRef(Other, OtherRefType); 12310 12311 // Builds the "this" pointer. 12312 ThisBuilder This; 12313 12314 // Assign base classes. 12315 bool Invalid = false; 12316 for (auto &Base : ClassDecl->bases()) { 12317 // Form the assignment: 12318 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); 12319 QualType BaseType = Base.getType().getUnqualifiedType(); 12320 if (!BaseType->isRecordType()) { 12321 Invalid = true; 12322 continue; 12323 } 12324 12325 CXXCastPath BasePath; 12326 BasePath.push_back(&Base); 12327 12328 // Construct the "from" expression, which is an implicit cast to the 12329 // appropriately-qualified base type. 12330 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals), 12331 VK_LValue, BasePath); 12332 12333 // Dereference "this". 12334 DerefBuilder DerefThis(This); 12335 CastBuilder To(DerefThis, 12336 Context.getQualifiedType( 12337 BaseType, CopyAssignOperator->getMethodQualifiers()), 12338 VK_LValue, BasePath); 12339 12340 // Build the copy. 12341 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, 12342 To, From, 12343 /*CopyingBaseSubobject=*/true, 12344 /*Copying=*/true); 12345 if (Copy.isInvalid()) { 12346 CopyAssignOperator->setInvalidDecl(); 12347 return; 12348 } 12349 12350 // Success! Record the copy. 12351 Statements.push_back(Copy.getAs<Expr>()); 12352 } 12353 12354 // Assign non-static members. 12355 for (auto *Field : ClassDecl->fields()) { 12356 // FIXME: We should form some kind of AST representation for the implied 12357 // memcpy in a union copy operation. 12358 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 12359 continue; 12360 12361 if (Field->isInvalidDecl()) { 12362 Invalid = true; 12363 continue; 12364 } 12365 12366 // Check for members of reference type; we can't copy those. 12367 if (Field->getType()->isReferenceType()) { 12368 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 12369 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 12370 Diag(Field->getLocation(), diag::note_declared_at); 12371 Invalid = true; 12372 continue; 12373 } 12374 12375 // Check for members of const-qualified, non-class type. 12376 QualType BaseType = Context.getBaseElementType(Field->getType()); 12377 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 12378 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 12379 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 12380 Diag(Field->getLocation(), diag::note_declared_at); 12381 Invalid = true; 12382 continue; 12383 } 12384 12385 // Suppress assigning zero-width bitfields. 12386 if (Field->isZeroLengthBitField(Context)) 12387 continue; 12388 12389 QualType FieldType = Field->getType().getNonReferenceType(); 12390 if (FieldType->isIncompleteArrayType()) { 12391 assert(ClassDecl->hasFlexibleArrayMember() && 12392 "Incomplete array type is not valid"); 12393 continue; 12394 } 12395 12396 // Build references to the field in the object we're copying from and to. 12397 CXXScopeSpec SS; // Intentionally empty 12398 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 12399 LookupMemberName); 12400 MemberLookup.addDecl(Field); 12401 MemberLookup.resolveKind(); 12402 12403 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); 12404 12405 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup); 12406 12407 // Build the copy of this field. 12408 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, 12409 To, From, 12410 /*CopyingBaseSubobject=*/false, 12411 /*Copying=*/true); 12412 if (Copy.isInvalid()) { 12413 CopyAssignOperator->setInvalidDecl(); 12414 return; 12415 } 12416 12417 // Success! Record the copy. 12418 Statements.push_back(Copy.getAs<Stmt>()); 12419 } 12420 12421 if (!Invalid) { 12422 // Add a "return *this;" 12423 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 12424 12425 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 12426 if (Return.isInvalid()) 12427 Invalid = true; 12428 else 12429 Statements.push_back(Return.getAs<Stmt>()); 12430 } 12431 12432 if (Invalid) { 12433 CopyAssignOperator->setInvalidDecl(); 12434 return; 12435 } 12436 12437 StmtResult Body; 12438 { 12439 CompoundScopeRAII CompoundScope(*this); 12440 Body = ActOnCompoundStmt(Loc, Loc, Statements, 12441 /*isStmtExpr=*/false); 12442 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 12443 } 12444 CopyAssignOperator->setBody(Body.getAs<Stmt>()); 12445 CopyAssignOperator->markUsed(Context); 12446 12447 if (ASTMutationListener *L = getASTMutationListener()) { 12448 L->CompletedImplicitDefinition(CopyAssignOperator); 12449 } 12450 } 12451 12452 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { 12453 assert(ClassDecl->needsImplicitMoveAssignment()); 12454 12455 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment); 12456 if (DSM.isAlreadyBeingDeclared()) 12457 return nullptr; 12458 12459 // Note: The following rules are largely analoguous to the move 12460 // constructor rules. 12461 12462 QualType ArgType = Context.getTypeDeclType(ClassDecl); 12463 if (Context.getLangOpts().OpenCLCPlusPlus) 12464 ArgType = Context.getAddrSpaceQualType(ArgType, LangAS::opencl_generic); 12465 QualType RetType = Context.getLValueReferenceType(ArgType); 12466 ArgType = Context.getRValueReferenceType(ArgType); 12467 12468 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 12469 CXXMoveAssignment, 12470 false); 12471 12472 // An implicitly-declared move assignment operator is an inline public 12473 // member of its class. 12474 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 12475 SourceLocation ClassLoc = ClassDecl->getLocation(); 12476 DeclarationNameInfo NameInfo(Name, ClassLoc); 12477 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create( 12478 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 12479 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 12480 /*isInline=*/true, Constexpr ? CSK_constexpr : CSK_unspecified, 12481 SourceLocation()); 12482 MoveAssignment->setAccess(AS_public); 12483 MoveAssignment->setDefaulted(); 12484 MoveAssignment->setImplicit(); 12485 12486 if (getLangOpts().CUDA) { 12487 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment, 12488 MoveAssignment, 12489 /* ConstRHS */ false, 12490 /* Diagnose */ false); 12491 } 12492 12493 // Build an exception specification pointing back at this member. 12494 FunctionProtoType::ExtProtoInfo EPI = 12495 getImplicitMethodEPI(*this, MoveAssignment); 12496 MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI)); 12497 12498 // Add the parameter to the operator. 12499 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, 12500 ClassLoc, ClassLoc, 12501 /*Id=*/nullptr, ArgType, 12502 /*TInfo=*/nullptr, SC_None, 12503 nullptr); 12504 MoveAssignment->setParams(FromParam); 12505 12506 MoveAssignment->setTrivial( 12507 ClassDecl->needsOverloadResolutionForMoveAssignment() 12508 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment) 12509 : ClassDecl->hasTrivialMoveAssignment()); 12510 12511 // Note that we have added this copy-assignment operator. 12512 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared; 12513 12514 Scope *S = getScopeForContext(ClassDecl); 12515 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment); 12516 12517 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) { 12518 ClassDecl->setImplicitMoveAssignmentIsDeleted(); 12519 SetDeclDeleted(MoveAssignment, ClassLoc); 12520 } 12521 12522 if (S) 12523 PushOnScopeChains(MoveAssignment, S, false); 12524 ClassDecl->addDecl(MoveAssignment); 12525 12526 return MoveAssignment; 12527 } 12528 12529 /// Check if we're implicitly defining a move assignment operator for a class 12530 /// with virtual bases. Such a move assignment might move-assign the virtual 12531 /// base multiple times. 12532 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, 12533 SourceLocation CurrentLocation) { 12534 assert(!Class->isDependentContext() && "should not define dependent move"); 12535 12536 // Only a virtual base could get implicitly move-assigned multiple times. 12537 // Only a non-trivial move assignment can observe this. We only want to 12538 // diagnose if we implicitly define an assignment operator that assigns 12539 // two base classes, both of which move-assign the same virtual base. 12540 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || 12541 Class->getNumBases() < 2) 12542 return; 12543 12544 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist; 12545 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap; 12546 VBaseMap VBases; 12547 12548 for (auto &BI : Class->bases()) { 12549 Worklist.push_back(&BI); 12550 while (!Worklist.empty()) { 12551 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); 12552 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); 12553 12554 // If the base has no non-trivial move assignment operators, 12555 // we don't care about moves from it. 12556 if (!Base->hasNonTrivialMoveAssignment()) 12557 continue; 12558 12559 // If there's nothing virtual here, skip it. 12560 if (!BaseSpec->isVirtual() && !Base->getNumVBases()) 12561 continue; 12562 12563 // If we're not actually going to call a move assignment for this base, 12564 // or the selected move assignment is trivial, skip it. 12565 Sema::SpecialMemberOverloadResult SMOR = 12566 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment, 12567 /*ConstArg*/false, /*VolatileArg*/false, 12568 /*RValueThis*/true, /*ConstThis*/false, 12569 /*VolatileThis*/false); 12570 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() || 12571 !SMOR.getMethod()->isMoveAssignmentOperator()) 12572 continue; 12573 12574 if (BaseSpec->isVirtual()) { 12575 // We're going to move-assign this virtual base, and its move 12576 // assignment operator is not trivial. If this can happen for 12577 // multiple distinct direct bases of Class, diagnose it. (If it 12578 // only happens in one base, we'll diagnose it when synthesizing 12579 // that base class's move assignment operator.) 12580 CXXBaseSpecifier *&Existing = 12581 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI)) 12582 .first->second; 12583 if (Existing && Existing != &BI) { 12584 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) 12585 << Class << Base; 12586 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here) 12587 << (Base->getCanonicalDecl() == 12588 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 12589 << Base << Existing->getType() << Existing->getSourceRange(); 12590 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here) 12591 << (Base->getCanonicalDecl() == 12592 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 12593 << Base << BI.getType() << BaseSpec->getSourceRange(); 12594 12595 // Only diagnose each vbase once. 12596 Existing = nullptr; 12597 } 12598 } else { 12599 // Only walk over bases that have defaulted move assignment operators. 12600 // We assume that any user-provided move assignment operator handles 12601 // the multiple-moves-of-vbase case itself somehow. 12602 if (!SMOR.getMethod()->isDefaulted()) 12603 continue; 12604 12605 // We're going to move the base classes of Base. Add them to the list. 12606 for (auto &BI : Base->bases()) 12607 Worklist.push_back(&BI); 12608 } 12609 } 12610 } 12611 } 12612 12613 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, 12614 CXXMethodDecl *MoveAssignOperator) { 12615 assert((MoveAssignOperator->isDefaulted() && 12616 MoveAssignOperator->isOverloadedOperator() && 12617 MoveAssignOperator->getOverloadedOperator() == OO_Equal && 12618 !MoveAssignOperator->doesThisDeclarationHaveABody() && 12619 !MoveAssignOperator->isDeleted()) && 12620 "DefineImplicitMoveAssignment called for wrong function"); 12621 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl()) 12622 return; 12623 12624 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); 12625 if (ClassDecl->isInvalidDecl()) { 12626 MoveAssignOperator->setInvalidDecl(); 12627 return; 12628 } 12629 12630 // C++0x [class.copy]p28: 12631 // The implicitly-defined or move assignment operator for a non-union class 12632 // X performs memberwise move assignment of its subobjects. The direct base 12633 // classes of X are assigned first, in the order of their declaration in the 12634 // base-specifier-list, and then the immediate non-static data members of X 12635 // are assigned, in the order in which they were declared in the class 12636 // definition. 12637 12638 // Issue a warning if our implicit move assignment operator will move 12639 // from a virtual base more than once. 12640 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation); 12641 12642 SynthesizedFunctionScope Scope(*this, MoveAssignOperator); 12643 12644 // The exception specification is needed because we are defining the 12645 // function. 12646 ResolveExceptionSpec(CurrentLocation, 12647 MoveAssignOperator->getType()->castAs<FunctionProtoType>()); 12648 12649 // Add a context note for diagnostics produced after this point. 12650 Scope.addContextNote(CurrentLocation); 12651 12652 // The statements that form the synthesized function body. 12653 SmallVector<Stmt*, 8> Statements; 12654 12655 // The parameter for the "other" object, which we are move from. 12656 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0); 12657 QualType OtherRefType = Other->getType()-> 12658 getAs<RValueReferenceType>()->getPointeeType(); 12659 12660 // Our location for everything implicitly-generated. 12661 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid() 12662 ? MoveAssignOperator->getEndLoc() 12663 : MoveAssignOperator->getLocation(); 12664 12665 // Builds a reference to the "other" object. 12666 RefBuilder OtherRef(Other, OtherRefType); 12667 // Cast to rvalue. 12668 MoveCastBuilder MoveOther(OtherRef); 12669 12670 // Builds the "this" pointer. 12671 ThisBuilder This; 12672 12673 // Assign base classes. 12674 bool Invalid = false; 12675 for (auto &Base : ClassDecl->bases()) { 12676 // C++11 [class.copy]p28: 12677 // It is unspecified whether subobjects representing virtual base classes 12678 // are assigned more than once by the implicitly-defined copy assignment 12679 // operator. 12680 // FIXME: Do not assign to a vbase that will be assigned by some other base 12681 // class. For a move-assignment, this can result in the vbase being moved 12682 // multiple times. 12683 12684 // Form the assignment: 12685 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); 12686 QualType BaseType = Base.getType().getUnqualifiedType(); 12687 if (!BaseType->isRecordType()) { 12688 Invalid = true; 12689 continue; 12690 } 12691 12692 CXXCastPath BasePath; 12693 BasePath.push_back(&Base); 12694 12695 // Construct the "from" expression, which is an implicit cast to the 12696 // appropriately-qualified base type. 12697 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); 12698 12699 // Dereference "this". 12700 DerefBuilder DerefThis(This); 12701 12702 // Implicitly cast "this" to the appropriately-qualified base type. 12703 CastBuilder To(DerefThis, 12704 Context.getQualifiedType( 12705 BaseType, MoveAssignOperator->getMethodQualifiers()), 12706 VK_LValue, BasePath); 12707 12708 // Build the move. 12709 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, 12710 To, From, 12711 /*CopyingBaseSubobject=*/true, 12712 /*Copying=*/false); 12713 if (Move.isInvalid()) { 12714 MoveAssignOperator->setInvalidDecl(); 12715 return; 12716 } 12717 12718 // Success! Record the move. 12719 Statements.push_back(Move.getAs<Expr>()); 12720 } 12721 12722 // Assign non-static members. 12723 for (auto *Field : ClassDecl->fields()) { 12724 // FIXME: We should form some kind of AST representation for the implied 12725 // memcpy in a union copy operation. 12726 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 12727 continue; 12728 12729 if (Field->isInvalidDecl()) { 12730 Invalid = true; 12731 continue; 12732 } 12733 12734 // Check for members of reference type; we can't move those. 12735 if (Field->getType()->isReferenceType()) { 12736 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 12737 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 12738 Diag(Field->getLocation(), diag::note_declared_at); 12739 Invalid = true; 12740 continue; 12741 } 12742 12743 // Check for members of const-qualified, non-class type. 12744 QualType BaseType = Context.getBaseElementType(Field->getType()); 12745 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 12746 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 12747 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 12748 Diag(Field->getLocation(), diag::note_declared_at); 12749 Invalid = true; 12750 continue; 12751 } 12752 12753 // Suppress assigning zero-width bitfields. 12754 if (Field->isZeroLengthBitField(Context)) 12755 continue; 12756 12757 QualType FieldType = Field->getType().getNonReferenceType(); 12758 if (FieldType->isIncompleteArrayType()) { 12759 assert(ClassDecl->hasFlexibleArrayMember() && 12760 "Incomplete array type is not valid"); 12761 continue; 12762 } 12763 12764 // Build references to the field in the object we're copying from and to. 12765 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 12766 LookupMemberName); 12767 MemberLookup.addDecl(Field); 12768 MemberLookup.resolveKind(); 12769 MemberBuilder From(MoveOther, OtherRefType, 12770 /*IsArrow=*/false, MemberLookup); 12771 MemberBuilder To(This, getCurrentThisType(), 12772 /*IsArrow=*/true, MemberLookup); 12773 12774 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue 12775 "Member reference with rvalue base must be rvalue except for reference " 12776 "members, which aren't allowed for move assignment."); 12777 12778 // Build the move of this field. 12779 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, 12780 To, From, 12781 /*CopyingBaseSubobject=*/false, 12782 /*Copying=*/false); 12783 if (Move.isInvalid()) { 12784 MoveAssignOperator->setInvalidDecl(); 12785 return; 12786 } 12787 12788 // Success! Record the copy. 12789 Statements.push_back(Move.getAs<Stmt>()); 12790 } 12791 12792 if (!Invalid) { 12793 // Add a "return *this;" 12794 ExprResult ThisObj = 12795 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 12796 12797 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 12798 if (Return.isInvalid()) 12799 Invalid = true; 12800 else 12801 Statements.push_back(Return.getAs<Stmt>()); 12802 } 12803 12804 if (Invalid) { 12805 MoveAssignOperator->setInvalidDecl(); 12806 return; 12807 } 12808 12809 StmtResult Body; 12810 { 12811 CompoundScopeRAII CompoundScope(*this); 12812 Body = ActOnCompoundStmt(Loc, Loc, Statements, 12813 /*isStmtExpr=*/false); 12814 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 12815 } 12816 MoveAssignOperator->setBody(Body.getAs<Stmt>()); 12817 MoveAssignOperator->markUsed(Context); 12818 12819 if (ASTMutationListener *L = getASTMutationListener()) { 12820 L->CompletedImplicitDefinition(MoveAssignOperator); 12821 } 12822 } 12823 12824 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( 12825 CXXRecordDecl *ClassDecl) { 12826 // C++ [class.copy]p4: 12827 // If the class definition does not explicitly declare a copy 12828 // constructor, one is declared implicitly. 12829 assert(ClassDecl->needsImplicitCopyConstructor()); 12830 12831 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor); 12832 if (DSM.isAlreadyBeingDeclared()) 12833 return nullptr; 12834 12835 QualType ClassType = Context.getTypeDeclType(ClassDecl); 12836 QualType ArgType = ClassType; 12837 bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); 12838 if (Const) 12839 ArgType = ArgType.withConst(); 12840 12841 if (Context.getLangOpts().OpenCLCPlusPlus) 12842 ArgType = Context.getAddrSpaceQualType(ArgType, LangAS::opencl_generic); 12843 12844 ArgType = Context.getLValueReferenceType(ArgType); 12845 12846 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 12847 CXXCopyConstructor, 12848 Const); 12849 12850 DeclarationName Name 12851 = Context.DeclarationNames.getCXXConstructorName( 12852 Context.getCanonicalType(ClassType)); 12853 SourceLocation ClassLoc = ClassDecl->getLocation(); 12854 DeclarationNameInfo NameInfo(Name, ClassLoc); 12855 12856 // An implicitly-declared copy constructor is an inline public 12857 // member of its class. 12858 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( 12859 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 12860 ExplicitSpecifier(), 12861 /*isInline=*/true, 12862 /*isImplicitlyDeclared=*/true, 12863 Constexpr ? CSK_constexpr : CSK_unspecified); 12864 CopyConstructor->setAccess(AS_public); 12865 CopyConstructor->setDefaulted(); 12866 12867 if (getLangOpts().CUDA) { 12868 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor, 12869 CopyConstructor, 12870 /* ConstRHS */ Const, 12871 /* Diagnose */ false); 12872 } 12873 12874 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType); 12875 12876 // Add the parameter to the constructor. 12877 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, 12878 ClassLoc, ClassLoc, 12879 /*IdentifierInfo=*/nullptr, 12880 ArgType, /*TInfo=*/nullptr, 12881 SC_None, nullptr); 12882 CopyConstructor->setParams(FromParam); 12883 12884 CopyConstructor->setTrivial( 12885 ClassDecl->needsOverloadResolutionForCopyConstructor() 12886 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor) 12887 : ClassDecl->hasTrivialCopyConstructor()); 12888 12889 CopyConstructor->setTrivialForCall( 12890 ClassDecl->hasAttr<TrivialABIAttr>() || 12891 (ClassDecl->needsOverloadResolutionForCopyConstructor() 12892 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor, 12893 TAH_ConsiderTrivialABI) 12894 : ClassDecl->hasTrivialCopyConstructorForCall())); 12895 12896 // Note that we have declared this constructor. 12897 ++getASTContext().NumImplicitCopyConstructorsDeclared; 12898 12899 Scope *S = getScopeForContext(ClassDecl); 12900 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor); 12901 12902 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) { 12903 ClassDecl->setImplicitCopyConstructorIsDeleted(); 12904 SetDeclDeleted(CopyConstructor, ClassLoc); 12905 } 12906 12907 if (S) 12908 PushOnScopeChains(CopyConstructor, S, false); 12909 ClassDecl->addDecl(CopyConstructor); 12910 12911 return CopyConstructor; 12912 } 12913 12914 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, 12915 CXXConstructorDecl *CopyConstructor) { 12916 assert((CopyConstructor->isDefaulted() && 12917 CopyConstructor->isCopyConstructor() && 12918 !CopyConstructor->doesThisDeclarationHaveABody() && 12919 !CopyConstructor->isDeleted()) && 12920 "DefineImplicitCopyConstructor - call it for implicit copy ctor"); 12921 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl()) 12922 return; 12923 12924 CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); 12925 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); 12926 12927 SynthesizedFunctionScope Scope(*this, CopyConstructor); 12928 12929 // The exception specification is needed because we are defining the 12930 // function. 12931 ResolveExceptionSpec(CurrentLocation, 12932 CopyConstructor->getType()->castAs<FunctionProtoType>()); 12933 MarkVTableUsed(CurrentLocation, ClassDecl); 12934 12935 // Add a context note for diagnostics produced after this point. 12936 Scope.addContextNote(CurrentLocation); 12937 12938 // C++11 [class.copy]p7: 12939 // The [definition of an implicitly declared copy constructor] is 12940 // deprecated if the class has a user-declared copy assignment operator 12941 // or a user-declared destructor. 12942 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) 12943 diagnoseDeprecatedCopyOperation(*this, CopyConstructor); 12944 12945 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) { 12946 CopyConstructor->setInvalidDecl(); 12947 } else { 12948 SourceLocation Loc = CopyConstructor->getEndLoc().isValid() 12949 ? CopyConstructor->getEndLoc() 12950 : CopyConstructor->getLocation(); 12951 Sema::CompoundScopeRAII CompoundScope(*this); 12952 CopyConstructor->setBody( 12953 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>()); 12954 CopyConstructor->markUsed(Context); 12955 } 12956 12957 if (ASTMutationListener *L = getASTMutationListener()) { 12958 L->CompletedImplicitDefinition(CopyConstructor); 12959 } 12960 } 12961 12962 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( 12963 CXXRecordDecl *ClassDecl) { 12964 assert(ClassDecl->needsImplicitMoveConstructor()); 12965 12966 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor); 12967 if (DSM.isAlreadyBeingDeclared()) 12968 return nullptr; 12969 12970 QualType ClassType = Context.getTypeDeclType(ClassDecl); 12971 12972 QualType ArgType = ClassType; 12973 if (Context.getLangOpts().OpenCLCPlusPlus) 12974 ArgType = Context.getAddrSpaceQualType(ClassType, LangAS::opencl_generic); 12975 ArgType = Context.getRValueReferenceType(ArgType); 12976 12977 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 12978 CXXMoveConstructor, 12979 false); 12980 12981 DeclarationName Name 12982 = Context.DeclarationNames.getCXXConstructorName( 12983 Context.getCanonicalType(ClassType)); 12984 SourceLocation ClassLoc = ClassDecl->getLocation(); 12985 DeclarationNameInfo NameInfo(Name, ClassLoc); 12986 12987 // C++11 [class.copy]p11: 12988 // An implicitly-declared copy/move constructor is an inline public 12989 // member of its class. 12990 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( 12991 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 12992 ExplicitSpecifier(), 12993 /*isInline=*/true, 12994 /*isImplicitlyDeclared=*/true, 12995 Constexpr ? CSK_constexpr : CSK_unspecified); 12996 MoveConstructor->setAccess(AS_public); 12997 MoveConstructor->setDefaulted(); 12998 12999 if (getLangOpts().CUDA) { 13000 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor, 13001 MoveConstructor, 13002 /* ConstRHS */ false, 13003 /* Diagnose */ false); 13004 } 13005 13006 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType); 13007 13008 // Add the parameter to the constructor. 13009 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, 13010 ClassLoc, ClassLoc, 13011 /*IdentifierInfo=*/nullptr, 13012 ArgType, /*TInfo=*/nullptr, 13013 SC_None, nullptr); 13014 MoveConstructor->setParams(FromParam); 13015 13016 MoveConstructor->setTrivial( 13017 ClassDecl->needsOverloadResolutionForMoveConstructor() 13018 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor) 13019 : ClassDecl->hasTrivialMoveConstructor()); 13020 13021 MoveConstructor->setTrivialForCall( 13022 ClassDecl->hasAttr<TrivialABIAttr>() || 13023 (ClassDecl->needsOverloadResolutionForMoveConstructor() 13024 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor, 13025 TAH_ConsiderTrivialABI) 13026 : ClassDecl->hasTrivialMoveConstructorForCall())); 13027 13028 // Note that we have declared this constructor. 13029 ++getASTContext().NumImplicitMoveConstructorsDeclared; 13030 13031 Scope *S = getScopeForContext(ClassDecl); 13032 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor); 13033 13034 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) { 13035 ClassDecl->setImplicitMoveConstructorIsDeleted(); 13036 SetDeclDeleted(MoveConstructor, ClassLoc); 13037 } 13038 13039 if (S) 13040 PushOnScopeChains(MoveConstructor, S, false); 13041 ClassDecl->addDecl(MoveConstructor); 13042 13043 return MoveConstructor; 13044 } 13045 13046 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, 13047 CXXConstructorDecl *MoveConstructor) { 13048 assert((MoveConstructor->isDefaulted() && 13049 MoveConstructor->isMoveConstructor() && 13050 !MoveConstructor->doesThisDeclarationHaveABody() && 13051 !MoveConstructor->isDeleted()) && 13052 "DefineImplicitMoveConstructor - call it for implicit move ctor"); 13053 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl()) 13054 return; 13055 13056 CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); 13057 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"); 13058 13059 SynthesizedFunctionScope Scope(*this, MoveConstructor); 13060 13061 // The exception specification is needed because we are defining the 13062 // function. 13063 ResolveExceptionSpec(CurrentLocation, 13064 MoveConstructor->getType()->castAs<FunctionProtoType>()); 13065 MarkVTableUsed(CurrentLocation, ClassDecl); 13066 13067 // Add a context note for diagnostics produced after this point. 13068 Scope.addContextNote(CurrentLocation); 13069 13070 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) { 13071 MoveConstructor->setInvalidDecl(); 13072 } else { 13073 SourceLocation Loc = MoveConstructor->getEndLoc().isValid() 13074 ? MoveConstructor->getEndLoc() 13075 : MoveConstructor->getLocation(); 13076 Sema::CompoundScopeRAII CompoundScope(*this); 13077 MoveConstructor->setBody(ActOnCompoundStmt( 13078 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>()); 13079 MoveConstructor->markUsed(Context); 13080 } 13081 13082 if (ASTMutationListener *L = getASTMutationListener()) { 13083 L->CompletedImplicitDefinition(MoveConstructor); 13084 } 13085 } 13086 13087 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { 13088 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD); 13089 } 13090 13091 void Sema::DefineImplicitLambdaToFunctionPointerConversion( 13092 SourceLocation CurrentLocation, 13093 CXXConversionDecl *Conv) { 13094 SynthesizedFunctionScope Scope(*this, Conv); 13095 assert(!Conv->getReturnType()->isUndeducedType()); 13096 13097 CXXRecordDecl *Lambda = Conv->getParent(); 13098 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 13099 FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker(); 13100 13101 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) { 13102 CallOp = InstantiateFunctionDeclaration( 13103 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 13104 if (!CallOp) 13105 return; 13106 13107 Invoker = InstantiateFunctionDeclaration( 13108 Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 13109 if (!Invoker) 13110 return; 13111 } 13112 13113 if (CallOp->isInvalidDecl()) 13114 return; 13115 13116 // Mark the call operator referenced (and add to pending instantiations 13117 // if necessary). 13118 // For both the conversion and static-invoker template specializations 13119 // we construct their body's in this function, so no need to add them 13120 // to the PendingInstantiations. 13121 MarkFunctionReferenced(CurrentLocation, CallOp); 13122 13123 // Fill in the __invoke function with a dummy implementation. IR generation 13124 // will fill in the actual details. Update its type in case it contained 13125 // an 'auto'. 13126 Invoker->markUsed(Context); 13127 Invoker->setReferenced(); 13128 Invoker->setType(Conv->getReturnType()->getPointeeType()); 13129 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); 13130 13131 // Construct the body of the conversion function { return __invoke; }. 13132 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), 13133 VK_LValue, Conv->getLocation()); 13134 assert(FunctionRef && "Can't refer to __invoke function?"); 13135 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get(); 13136 Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(), 13137 Conv->getLocation())); 13138 Conv->markUsed(Context); 13139 Conv->setReferenced(); 13140 13141 if (ASTMutationListener *L = getASTMutationListener()) { 13142 L->CompletedImplicitDefinition(Conv); 13143 L->CompletedImplicitDefinition(Invoker); 13144 } 13145 } 13146 13147 13148 13149 void Sema::DefineImplicitLambdaToBlockPointerConversion( 13150 SourceLocation CurrentLocation, 13151 CXXConversionDecl *Conv) 13152 { 13153 assert(!Conv->getParent()->isGenericLambda()); 13154 13155 SynthesizedFunctionScope Scope(*this, Conv); 13156 13157 // Copy-initialize the lambda object as needed to capture it. 13158 Expr *This = ActOnCXXThis(CurrentLocation).get(); 13159 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get(); 13160 13161 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, 13162 Conv->getLocation(), 13163 Conv, DerefThis); 13164 13165 // If we're not under ARC, make sure we still get the _Block_copy/autorelease 13166 // behavior. Note that only the general conversion function does this 13167 // (since it's unusable otherwise); in the case where we inline the 13168 // block literal, it has block literal lifetime semantics. 13169 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) 13170 BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(), 13171 CK_CopyAndAutoreleaseBlockObject, 13172 BuildBlock.get(), nullptr, VK_RValue); 13173 13174 if (BuildBlock.isInvalid()) { 13175 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 13176 Conv->setInvalidDecl(); 13177 return; 13178 } 13179 13180 // Create the return statement that returns the block from the conversion 13181 // function. 13182 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get()); 13183 if (Return.isInvalid()) { 13184 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 13185 Conv->setInvalidDecl(); 13186 return; 13187 } 13188 13189 // Set the body of the conversion function. 13190 Stmt *ReturnS = Return.get(); 13191 Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(), 13192 Conv->getLocation())); 13193 Conv->markUsed(Context); 13194 13195 // We're done; notify the mutation listener, if any. 13196 if (ASTMutationListener *L = getASTMutationListener()) { 13197 L->CompletedImplicitDefinition(Conv); 13198 } 13199 } 13200 13201 /// Determine whether the given list arguments contains exactly one 13202 /// "real" (non-default) argument. 13203 static bool hasOneRealArgument(MultiExprArg Args) { 13204 switch (Args.size()) { 13205 case 0: 13206 return false; 13207 13208 default: 13209 if (!Args[1]->isDefaultArgument()) 13210 return false; 13211 13212 LLVM_FALLTHROUGH; 13213 case 1: 13214 return !Args[0]->isDefaultArgument(); 13215 } 13216 13217 return false; 13218 } 13219 13220 ExprResult 13221 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 13222 NamedDecl *FoundDecl, 13223 CXXConstructorDecl *Constructor, 13224 MultiExprArg ExprArgs, 13225 bool HadMultipleCandidates, 13226 bool IsListInitialization, 13227 bool IsStdInitListInitialization, 13228 bool RequiresZeroInit, 13229 unsigned ConstructKind, 13230 SourceRange ParenRange) { 13231 bool Elidable = false; 13232 13233 // C++0x [class.copy]p34: 13234 // When certain criteria are met, an implementation is allowed to 13235 // omit the copy/move construction of a class object, even if the 13236 // copy/move constructor and/or destructor for the object have 13237 // side effects. [...] 13238 // - when a temporary class object that has not been bound to a 13239 // reference (12.2) would be copied/moved to a class object 13240 // with the same cv-unqualified type, the copy/move operation 13241 // can be omitted by constructing the temporary object 13242 // directly into the target of the omitted copy/move 13243 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor && 13244 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) { 13245 Expr *SubExpr = ExprArgs[0]; 13246 Elidable = SubExpr->isTemporaryObject( 13247 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext())); 13248 } 13249 13250 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, 13251 FoundDecl, Constructor, 13252 Elidable, ExprArgs, HadMultipleCandidates, 13253 IsListInitialization, 13254 IsStdInitListInitialization, RequiresZeroInit, 13255 ConstructKind, ParenRange); 13256 } 13257 13258 ExprResult 13259 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 13260 NamedDecl *FoundDecl, 13261 CXXConstructorDecl *Constructor, 13262 bool Elidable, 13263 MultiExprArg ExprArgs, 13264 bool HadMultipleCandidates, 13265 bool IsListInitialization, 13266 bool IsStdInitListInitialization, 13267 bool RequiresZeroInit, 13268 unsigned ConstructKind, 13269 SourceRange ParenRange) { 13270 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) { 13271 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow); 13272 if (DiagnoseUseOfDecl(Constructor, ConstructLoc)) 13273 return ExprError(); 13274 } 13275 13276 return BuildCXXConstructExpr( 13277 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs, 13278 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, 13279 RequiresZeroInit, ConstructKind, ParenRange); 13280 } 13281 13282 /// BuildCXXConstructExpr - Creates a complete call to a constructor, 13283 /// including handling of its default argument expressions. 13284 ExprResult 13285 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 13286 CXXConstructorDecl *Constructor, 13287 bool Elidable, 13288 MultiExprArg ExprArgs, 13289 bool HadMultipleCandidates, 13290 bool IsListInitialization, 13291 bool IsStdInitListInitialization, 13292 bool RequiresZeroInit, 13293 unsigned ConstructKind, 13294 SourceRange ParenRange) { 13295 assert(declaresSameEntity( 13296 Constructor->getParent(), 13297 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && 13298 "given constructor for wrong type"); 13299 MarkFunctionReferenced(ConstructLoc, Constructor); 13300 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor)) 13301 return ExprError(); 13302 13303 return CXXConstructExpr::Create( 13304 Context, DeclInitType, ConstructLoc, Constructor, Elidable, 13305 ExprArgs, HadMultipleCandidates, IsListInitialization, 13306 IsStdInitListInitialization, RequiresZeroInit, 13307 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind), 13308 ParenRange); 13309 } 13310 13311 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) { 13312 assert(Field->hasInClassInitializer()); 13313 13314 // If we already have the in-class initializer nothing needs to be done. 13315 if (Field->getInClassInitializer()) 13316 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); 13317 13318 // If we might have already tried and failed to instantiate, don't try again. 13319 if (Field->isInvalidDecl()) 13320 return ExprError(); 13321 13322 // Maybe we haven't instantiated the in-class initializer. Go check the 13323 // pattern FieldDecl to see if it has one. 13324 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent()); 13325 13326 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) { 13327 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern(); 13328 DeclContext::lookup_result Lookup = 13329 ClassPattern->lookup(Field->getDeclName()); 13330 13331 // Lookup can return at most two results: the pattern for the field, or the 13332 // injected class name of the parent record. No other member can have the 13333 // same name as the field. 13334 // In modules mode, lookup can return multiple results (coming from 13335 // different modules). 13336 assert((getLangOpts().Modules || (!Lookup.empty() && Lookup.size() <= 2)) && 13337 "more than two lookup results for field name"); 13338 FieldDecl *Pattern = dyn_cast<FieldDecl>(Lookup[0]); 13339 if (!Pattern) { 13340 assert(isa<CXXRecordDecl>(Lookup[0]) && 13341 "cannot have other non-field member with same name"); 13342 for (auto L : Lookup) 13343 if (isa<FieldDecl>(L)) { 13344 Pattern = cast<FieldDecl>(L); 13345 break; 13346 } 13347 assert(Pattern && "We must have set the Pattern!"); 13348 } 13349 13350 if (!Pattern->hasInClassInitializer() || 13351 InstantiateInClassInitializer(Loc, Field, Pattern, 13352 getTemplateInstantiationArgs(Field))) { 13353 // Don't diagnose this again. 13354 Field->setInvalidDecl(); 13355 return ExprError(); 13356 } 13357 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); 13358 } 13359 13360 // DR1351: 13361 // If the brace-or-equal-initializer of a non-static data member 13362 // invokes a defaulted default constructor of its class or of an 13363 // enclosing class in a potentially evaluated subexpression, the 13364 // program is ill-formed. 13365 // 13366 // This resolution is unworkable: the exception specification of the 13367 // default constructor can be needed in an unevaluated context, in 13368 // particular, in the operand of a noexcept-expression, and we can be 13369 // unable to compute an exception specification for an enclosed class. 13370 // 13371 // Any attempt to resolve the exception specification of a defaulted default 13372 // constructor before the initializer is lexically complete will ultimately 13373 // come here at which point we can diagnose it. 13374 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext(); 13375 Diag(Loc, diag::err_in_class_initializer_not_yet_parsed) 13376 << OutermostClass << Field; 13377 Diag(Field->getEndLoc(), diag::note_in_class_initializer_not_yet_parsed); 13378 // Recover by marking the field invalid, unless we're in a SFINAE context. 13379 if (!isSFINAEContext()) 13380 Field->setInvalidDecl(); 13381 return ExprError(); 13382 } 13383 13384 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { 13385 if (VD->isInvalidDecl()) return; 13386 13387 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); 13388 if (ClassDecl->isInvalidDecl()) return; 13389 if (ClassDecl->hasIrrelevantDestructor()) return; 13390 if (ClassDecl->isDependentContext()) return; 13391 13392 if (VD->isNoDestroy(getASTContext())) 13393 return; 13394 13395 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 13396 13397 // If this is an array, we'll require the destructor during initialization, so 13398 // we can skip over this. We still want to emit exit-time destructor warnings 13399 // though. 13400 if (!VD->getType()->isArrayType()) { 13401 MarkFunctionReferenced(VD->getLocation(), Destructor); 13402 CheckDestructorAccess(VD->getLocation(), Destructor, 13403 PDiag(diag::err_access_dtor_var) 13404 << VD->getDeclName() << VD->getType()); 13405 DiagnoseUseOfDecl(Destructor, VD->getLocation()); 13406 } 13407 13408 if (Destructor->isTrivial()) return; 13409 13410 // If the destructor is constexpr, check whether the variable has constant 13411 // destruction now. 13412 if (Destructor->isConstexpr() && VD->getInit() && 13413 !VD->getInit()->isValueDependent() && VD->evaluateValue()) { 13414 SmallVector<PartialDiagnosticAt, 8> Notes; 13415 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr()) { 13416 Diag(VD->getLocation(), 13417 diag::err_constexpr_var_requires_const_destruction) << VD; 13418 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 13419 Diag(Notes[I].first, Notes[I].second); 13420 } 13421 } 13422 13423 if (!VD->hasGlobalStorage()) return; 13424 13425 // Emit warning for non-trivial dtor in global scope (a real global, 13426 // class-static, function-static). 13427 Diag(VD->getLocation(), diag::warn_exit_time_destructor); 13428 13429 // TODO: this should be re-enabled for static locals by !CXAAtExit 13430 if (!VD->isStaticLocal()) 13431 Diag(VD->getLocation(), diag::warn_global_destructor); 13432 } 13433 13434 /// Given a constructor and the set of arguments provided for the 13435 /// constructor, convert the arguments and add any required default arguments 13436 /// to form a proper call to this constructor. 13437 /// 13438 /// \returns true if an error occurred, false otherwise. 13439 bool 13440 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, 13441 MultiExprArg ArgsPtr, 13442 SourceLocation Loc, 13443 SmallVectorImpl<Expr*> &ConvertedArgs, 13444 bool AllowExplicit, 13445 bool IsListInitialization) { 13446 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. 13447 unsigned NumArgs = ArgsPtr.size(); 13448 Expr **Args = ArgsPtr.data(); 13449 13450 const FunctionProtoType *Proto 13451 = Constructor->getType()->getAs<FunctionProtoType>(); 13452 assert(Proto && "Constructor without a prototype?"); 13453 unsigned NumParams = Proto->getNumParams(); 13454 13455 // If too few arguments are available, we'll fill in the rest with defaults. 13456 if (NumArgs < NumParams) 13457 ConvertedArgs.reserve(NumParams); 13458 else 13459 ConvertedArgs.reserve(NumArgs); 13460 13461 VariadicCallType CallType = 13462 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 13463 SmallVector<Expr *, 8> AllArgs; 13464 bool Invalid = GatherArgumentsForCall(Loc, Constructor, 13465 Proto, 0, 13466 llvm::makeArrayRef(Args, NumArgs), 13467 AllArgs, 13468 CallType, AllowExplicit, 13469 IsListInitialization); 13470 ConvertedArgs.append(AllArgs.begin(), AllArgs.end()); 13471 13472 DiagnoseSentinelCalls(Constructor, Loc, AllArgs); 13473 13474 CheckConstructorCall(Constructor, 13475 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()), 13476 Proto, Loc); 13477 13478 return Invalid; 13479 } 13480 13481 static inline bool 13482 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, 13483 const FunctionDecl *FnDecl) { 13484 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); 13485 if (isa<NamespaceDecl>(DC)) { 13486 return SemaRef.Diag(FnDecl->getLocation(), 13487 diag::err_operator_new_delete_declared_in_namespace) 13488 << FnDecl->getDeclName(); 13489 } 13490 13491 if (isa<TranslationUnitDecl>(DC) && 13492 FnDecl->getStorageClass() == SC_Static) { 13493 return SemaRef.Diag(FnDecl->getLocation(), 13494 diag::err_operator_new_delete_declared_static) 13495 << FnDecl->getDeclName(); 13496 } 13497 13498 return false; 13499 } 13500 13501 static QualType 13502 RemoveAddressSpaceFromPtr(Sema &SemaRef, const PointerType *PtrTy) { 13503 QualType QTy = PtrTy->getPointeeType(); 13504 QTy = SemaRef.Context.removeAddrSpaceQualType(QTy); 13505 return SemaRef.Context.getPointerType(QTy); 13506 } 13507 13508 static inline bool 13509 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, 13510 CanQualType ExpectedResultType, 13511 CanQualType ExpectedFirstParamType, 13512 unsigned DependentParamTypeDiag, 13513 unsigned InvalidParamTypeDiag) { 13514 QualType ResultType = 13515 FnDecl->getType()->getAs<FunctionType>()->getReturnType(); 13516 13517 // Check that the result type is not dependent. 13518 if (ResultType->isDependentType()) 13519 return SemaRef.Diag(FnDecl->getLocation(), 13520 diag::err_operator_new_delete_dependent_result_type) 13521 << FnDecl->getDeclName() << ExpectedResultType; 13522 13523 // The operator is valid on any address space for OpenCL. 13524 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 13525 if (auto *PtrTy = ResultType->getAs<PointerType>()) { 13526 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 13527 } 13528 } 13529 13530 // Check that the result type is what we expect. 13531 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) 13532 return SemaRef.Diag(FnDecl->getLocation(), 13533 diag::err_operator_new_delete_invalid_result_type) 13534 << FnDecl->getDeclName() << ExpectedResultType; 13535 13536 // A function template must have at least 2 parameters. 13537 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) 13538 return SemaRef.Diag(FnDecl->getLocation(), 13539 diag::err_operator_new_delete_template_too_few_parameters) 13540 << FnDecl->getDeclName(); 13541 13542 // The function decl must have at least 1 parameter. 13543 if (FnDecl->getNumParams() == 0) 13544 return SemaRef.Diag(FnDecl->getLocation(), 13545 diag::err_operator_new_delete_too_few_parameters) 13546 << FnDecl->getDeclName(); 13547 13548 // Check the first parameter type is not dependent. 13549 QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); 13550 if (FirstParamType->isDependentType()) 13551 return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag) 13552 << FnDecl->getDeclName() << ExpectedFirstParamType; 13553 13554 // Check that the first parameter type is what we expect. 13555 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 13556 // The operator is valid on any address space for OpenCL. 13557 if (auto *PtrTy = 13558 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) { 13559 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 13560 } 13561 } 13562 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != 13563 ExpectedFirstParamType) 13564 return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag) 13565 << FnDecl->getDeclName() << ExpectedFirstParamType; 13566 13567 return false; 13568 } 13569 13570 static bool 13571 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { 13572 // C++ [basic.stc.dynamic.allocation]p1: 13573 // A program is ill-formed if an allocation function is declared in a 13574 // namespace scope other than global scope or declared static in global 13575 // scope. 13576 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 13577 return true; 13578 13579 CanQualType SizeTy = 13580 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); 13581 13582 // C++ [basic.stc.dynamic.allocation]p1: 13583 // The return type shall be void*. The first parameter shall have type 13584 // std::size_t. 13585 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, 13586 SizeTy, 13587 diag::err_operator_new_dependent_param_type, 13588 diag::err_operator_new_param_type)) 13589 return true; 13590 13591 // C++ [basic.stc.dynamic.allocation]p1: 13592 // The first parameter shall not have an associated default argument. 13593 if (FnDecl->getParamDecl(0)->hasDefaultArg()) 13594 return SemaRef.Diag(FnDecl->getLocation(), 13595 diag::err_operator_new_default_arg) 13596 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); 13597 13598 return false; 13599 } 13600 13601 static bool 13602 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { 13603 // C++ [basic.stc.dynamic.deallocation]p1: 13604 // A program is ill-formed if deallocation functions are declared in a 13605 // namespace scope other than global scope or declared static in global 13606 // scope. 13607 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 13608 return true; 13609 13610 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl); 13611 13612 // C++ P0722: 13613 // Within a class C, the first parameter of a destroying operator delete 13614 // shall be of type C *. The first parameter of any other deallocation 13615 // function shall be of type void *. 13616 CanQualType ExpectedFirstParamType = 13617 MD && MD->isDestroyingOperatorDelete() 13618 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType( 13619 SemaRef.Context.getRecordType(MD->getParent()))) 13620 : SemaRef.Context.VoidPtrTy; 13621 13622 // C++ [basic.stc.dynamic.deallocation]p2: 13623 // Each deallocation function shall return void 13624 if (CheckOperatorNewDeleteTypes( 13625 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType, 13626 diag::err_operator_delete_dependent_param_type, 13627 diag::err_operator_delete_param_type)) 13628 return true; 13629 13630 // C++ P0722: 13631 // A destroying operator delete shall be a usual deallocation function. 13632 if (MD && !MD->getParent()->isDependentContext() && 13633 MD->isDestroyingOperatorDelete() && 13634 !SemaRef.isUsualDeallocationFunction(MD)) { 13635 SemaRef.Diag(MD->getLocation(), 13636 diag::err_destroying_operator_delete_not_usual); 13637 return true; 13638 } 13639 13640 return false; 13641 } 13642 13643 /// CheckOverloadedOperatorDeclaration - Check whether the declaration 13644 /// of this overloaded operator is well-formed. If so, returns false; 13645 /// otherwise, emits appropriate diagnostics and returns true. 13646 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { 13647 assert(FnDecl && FnDecl->isOverloadedOperator() && 13648 "Expected an overloaded operator declaration"); 13649 13650 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); 13651 13652 // C++ [over.oper]p5: 13653 // The allocation and deallocation functions, operator new, 13654 // operator new[], operator delete and operator delete[], are 13655 // described completely in 3.7.3. The attributes and restrictions 13656 // found in the rest of this subclause do not apply to them unless 13657 // explicitly stated in 3.7.3. 13658 if (Op == OO_Delete || Op == OO_Array_Delete) 13659 return CheckOperatorDeleteDeclaration(*this, FnDecl); 13660 13661 if (Op == OO_New || Op == OO_Array_New) 13662 return CheckOperatorNewDeclaration(*this, FnDecl); 13663 13664 // C++ [over.oper]p6: 13665 // An operator function shall either be a non-static member 13666 // function or be a non-member function and have at least one 13667 // parameter whose type is a class, a reference to a class, an 13668 // enumeration, or a reference to an enumeration. 13669 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { 13670 if (MethodDecl->isStatic()) 13671 return Diag(FnDecl->getLocation(), 13672 diag::err_operator_overload_static) << FnDecl->getDeclName(); 13673 } else { 13674 bool ClassOrEnumParam = false; 13675 for (auto Param : FnDecl->parameters()) { 13676 QualType ParamType = Param->getType().getNonReferenceType(); 13677 if (ParamType->isDependentType() || ParamType->isRecordType() || 13678 ParamType->isEnumeralType()) { 13679 ClassOrEnumParam = true; 13680 break; 13681 } 13682 } 13683 13684 if (!ClassOrEnumParam) 13685 return Diag(FnDecl->getLocation(), 13686 diag::err_operator_overload_needs_class_or_enum) 13687 << FnDecl->getDeclName(); 13688 } 13689 13690 // C++ [over.oper]p8: 13691 // An operator function cannot have default arguments (8.3.6), 13692 // except where explicitly stated below. 13693 // 13694 // Only the function-call operator allows default arguments 13695 // (C++ [over.call]p1). 13696 if (Op != OO_Call) { 13697 for (auto Param : FnDecl->parameters()) { 13698 if (Param->hasDefaultArg()) 13699 return Diag(Param->getLocation(), 13700 diag::err_operator_overload_default_arg) 13701 << FnDecl->getDeclName() << Param->getDefaultArgRange(); 13702 } 13703 } 13704 13705 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { 13706 { false, false, false } 13707 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 13708 , { Unary, Binary, MemberOnly } 13709 #include "clang/Basic/OperatorKinds.def" 13710 }; 13711 13712 bool CanBeUnaryOperator = OperatorUses[Op][0]; 13713 bool CanBeBinaryOperator = OperatorUses[Op][1]; 13714 bool MustBeMemberOperator = OperatorUses[Op][2]; 13715 13716 // C++ [over.oper]p8: 13717 // [...] Operator functions cannot have more or fewer parameters 13718 // than the number required for the corresponding operator, as 13719 // described in the rest of this subclause. 13720 unsigned NumParams = FnDecl->getNumParams() 13721 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); 13722 if (Op != OO_Call && 13723 ((NumParams == 1 && !CanBeUnaryOperator) || 13724 (NumParams == 2 && !CanBeBinaryOperator) || 13725 (NumParams < 1) || (NumParams > 2))) { 13726 // We have the wrong number of parameters. 13727 unsigned ErrorKind; 13728 if (CanBeUnaryOperator && CanBeBinaryOperator) { 13729 ErrorKind = 2; // 2 -> unary or binary. 13730 } else if (CanBeUnaryOperator) { 13731 ErrorKind = 0; // 0 -> unary 13732 } else { 13733 assert(CanBeBinaryOperator && 13734 "All non-call overloaded operators are unary or binary!"); 13735 ErrorKind = 1; // 1 -> binary 13736 } 13737 13738 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) 13739 << FnDecl->getDeclName() << NumParams << ErrorKind; 13740 } 13741 13742 // Overloaded operators other than operator() cannot be variadic. 13743 if (Op != OO_Call && 13744 FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) { 13745 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) 13746 << FnDecl->getDeclName(); 13747 } 13748 13749 // Some operators must be non-static member functions. 13750 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { 13751 return Diag(FnDecl->getLocation(), 13752 diag::err_operator_overload_must_be_member) 13753 << FnDecl->getDeclName(); 13754 } 13755 13756 // C++ [over.inc]p1: 13757 // The user-defined function called operator++ implements the 13758 // prefix and postfix ++ operator. If this function is a member 13759 // function with no parameters, or a non-member function with one 13760 // parameter of class or enumeration type, it defines the prefix 13761 // increment operator ++ for objects of that type. If the function 13762 // is a member function with one parameter (which shall be of type 13763 // int) or a non-member function with two parameters (the second 13764 // of which shall be of type int), it defines the postfix 13765 // increment operator ++ for objects of that type. 13766 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { 13767 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); 13768 QualType ParamType = LastParam->getType(); 13769 13770 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && 13771 !ParamType->isDependentType()) 13772 return Diag(LastParam->getLocation(), 13773 diag::err_operator_overload_post_incdec_must_be_int) 13774 << LastParam->getType() << (Op == OO_MinusMinus); 13775 } 13776 13777 return false; 13778 } 13779 13780 static bool 13781 checkLiteralOperatorTemplateParameterList(Sema &SemaRef, 13782 FunctionTemplateDecl *TpDecl) { 13783 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters(); 13784 13785 // Must have one or two template parameters. 13786 if (TemplateParams->size() == 1) { 13787 NonTypeTemplateParmDecl *PmDecl = 13788 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0)); 13789 13790 // The template parameter must be a char parameter pack. 13791 if (PmDecl && PmDecl->isTemplateParameterPack() && 13792 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy)) 13793 return false; 13794 13795 } else if (TemplateParams->size() == 2) { 13796 TemplateTypeParmDecl *PmType = 13797 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0)); 13798 NonTypeTemplateParmDecl *PmArgs = 13799 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1)); 13800 13801 // The second template parameter must be a parameter pack with the 13802 // first template parameter as its type. 13803 if (PmType && PmArgs && !PmType->isTemplateParameterPack() && 13804 PmArgs->isTemplateParameterPack()) { 13805 const TemplateTypeParmType *TArgs = 13806 PmArgs->getType()->getAs<TemplateTypeParmType>(); 13807 if (TArgs && TArgs->getDepth() == PmType->getDepth() && 13808 TArgs->getIndex() == PmType->getIndex()) { 13809 if (!SemaRef.inTemplateInstantiation()) 13810 SemaRef.Diag(TpDecl->getLocation(), 13811 diag::ext_string_literal_operator_template); 13812 return false; 13813 } 13814 } 13815 } 13816 13817 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(), 13818 diag::err_literal_operator_template) 13819 << TpDecl->getTemplateParameters()->getSourceRange(); 13820 return true; 13821 } 13822 13823 /// CheckLiteralOperatorDeclaration - Check whether the declaration 13824 /// of this literal operator function is well-formed. If so, returns 13825 /// false; otherwise, emits appropriate diagnostics and returns true. 13826 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { 13827 if (isa<CXXMethodDecl>(FnDecl)) { 13828 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) 13829 << FnDecl->getDeclName(); 13830 return true; 13831 } 13832 13833 if (FnDecl->isExternC()) { 13834 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); 13835 if (const LinkageSpecDecl *LSD = 13836 FnDecl->getDeclContext()->getExternCContext()) 13837 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 13838 return true; 13839 } 13840 13841 // This might be the definition of a literal operator template. 13842 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); 13843 13844 // This might be a specialization of a literal operator template. 13845 if (!TpDecl) 13846 TpDecl = FnDecl->getPrimaryTemplate(); 13847 13848 // template <char...> type operator "" name() and 13849 // template <class T, T...> type operator "" name() are the only valid 13850 // template signatures, and the only valid signatures with no parameters. 13851 if (TpDecl) { 13852 if (FnDecl->param_size() != 0) { 13853 Diag(FnDecl->getLocation(), 13854 diag::err_literal_operator_template_with_params); 13855 return true; 13856 } 13857 13858 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl)) 13859 return true; 13860 13861 } else if (FnDecl->param_size() == 1) { 13862 const ParmVarDecl *Param = FnDecl->getParamDecl(0); 13863 13864 QualType ParamType = Param->getType().getUnqualifiedType(); 13865 13866 // Only unsigned long long int, long double, any character type, and const 13867 // char * are allowed as the only parameters. 13868 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) || 13869 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) || 13870 Context.hasSameType(ParamType, Context.CharTy) || 13871 Context.hasSameType(ParamType, Context.WideCharTy) || 13872 Context.hasSameType(ParamType, Context.Char8Ty) || 13873 Context.hasSameType(ParamType, Context.Char16Ty) || 13874 Context.hasSameType(ParamType, Context.Char32Ty)) { 13875 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) { 13876 QualType InnerType = Ptr->getPointeeType(); 13877 13878 // Pointer parameter must be a const char *. 13879 if (!(Context.hasSameType(InnerType.getUnqualifiedType(), 13880 Context.CharTy) && 13881 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) { 13882 Diag(Param->getSourceRange().getBegin(), 13883 diag::err_literal_operator_param) 13884 << ParamType << "'const char *'" << Param->getSourceRange(); 13885 return true; 13886 } 13887 13888 } else if (ParamType->isRealFloatingType()) { 13889 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 13890 << ParamType << Context.LongDoubleTy << Param->getSourceRange(); 13891 return true; 13892 13893 } else if (ParamType->isIntegerType()) { 13894 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 13895 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange(); 13896 return true; 13897 13898 } else { 13899 Diag(Param->getSourceRange().getBegin(), 13900 diag::err_literal_operator_invalid_param) 13901 << ParamType << Param->getSourceRange(); 13902 return true; 13903 } 13904 13905 } else if (FnDecl->param_size() == 2) { 13906 FunctionDecl::param_iterator Param = FnDecl->param_begin(); 13907 13908 // First, verify that the first parameter is correct. 13909 13910 QualType FirstParamType = (*Param)->getType().getUnqualifiedType(); 13911 13912 // Two parameter function must have a pointer to const as a 13913 // first parameter; let's strip those qualifiers. 13914 const PointerType *PT = FirstParamType->getAs<PointerType>(); 13915 13916 if (!PT) { 13917 Diag((*Param)->getSourceRange().getBegin(), 13918 diag::err_literal_operator_param) 13919 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 13920 return true; 13921 } 13922 13923 QualType PointeeType = PT->getPointeeType(); 13924 // First parameter must be const 13925 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) { 13926 Diag((*Param)->getSourceRange().getBegin(), 13927 diag::err_literal_operator_param) 13928 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 13929 return true; 13930 } 13931 13932 QualType InnerType = PointeeType.getUnqualifiedType(); 13933 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and 13934 // const char32_t* are allowed as the first parameter to a two-parameter 13935 // function 13936 if (!(Context.hasSameType(InnerType, Context.CharTy) || 13937 Context.hasSameType(InnerType, Context.WideCharTy) || 13938 Context.hasSameType(InnerType, Context.Char8Ty) || 13939 Context.hasSameType(InnerType, Context.Char16Ty) || 13940 Context.hasSameType(InnerType, Context.Char32Ty))) { 13941 Diag((*Param)->getSourceRange().getBegin(), 13942 diag::err_literal_operator_param) 13943 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 13944 return true; 13945 } 13946 13947 // Move on to the second and final parameter. 13948 ++Param; 13949 13950 // The second parameter must be a std::size_t. 13951 QualType SecondParamType = (*Param)->getType().getUnqualifiedType(); 13952 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) { 13953 Diag((*Param)->getSourceRange().getBegin(), 13954 diag::err_literal_operator_param) 13955 << SecondParamType << Context.getSizeType() 13956 << (*Param)->getSourceRange(); 13957 return true; 13958 } 13959 } else { 13960 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count); 13961 return true; 13962 } 13963 13964 // Parameters are good. 13965 13966 // A parameter-declaration-clause containing a default argument is not 13967 // equivalent to any of the permitted forms. 13968 for (auto Param : FnDecl->parameters()) { 13969 if (Param->hasDefaultArg()) { 13970 Diag(Param->getDefaultArgRange().getBegin(), 13971 diag::err_literal_operator_default_argument) 13972 << Param->getDefaultArgRange(); 13973 break; 13974 } 13975 } 13976 13977 StringRef LiteralName 13978 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName(); 13979 if (LiteralName[0] != '_' && 13980 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) { 13981 // C++11 [usrlit.suffix]p1: 13982 // Literal suffix identifiers that do not start with an underscore 13983 // are reserved for future standardization. 13984 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) 13985 << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName); 13986 } 13987 13988 return false; 13989 } 13990 13991 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ 13992 /// linkage specification, including the language and (if present) 13993 /// the '{'. ExternLoc is the location of the 'extern', Lang is the 13994 /// language string literal. LBraceLoc, if valid, provides the location of 13995 /// the '{' brace. Otherwise, this linkage specification does not 13996 /// have any braces. 13997 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, 13998 Expr *LangStr, 13999 SourceLocation LBraceLoc) { 14000 StringLiteral *Lit = cast<StringLiteral>(LangStr); 14001 if (!Lit->isAscii()) { 14002 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii) 14003 << LangStr->getSourceRange(); 14004 return nullptr; 14005 } 14006 14007 StringRef Lang = Lit->getString(); 14008 LinkageSpecDecl::LanguageIDs Language; 14009 if (Lang == "C") 14010 Language = LinkageSpecDecl::lang_c; 14011 else if (Lang == "C++") 14012 Language = LinkageSpecDecl::lang_cxx; 14013 else if (Lang == "C++11") 14014 Language = LinkageSpecDecl::lang_cxx_11; 14015 else if (Lang == "C++14") 14016 Language = LinkageSpecDecl::lang_cxx_14; 14017 else { 14018 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) 14019 << LangStr->getSourceRange(); 14020 return nullptr; 14021 } 14022 14023 // FIXME: Add all the various semantics of linkage specifications 14024 14025 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc, 14026 LangStr->getExprLoc(), Language, 14027 LBraceLoc.isValid()); 14028 CurContext->addDecl(D); 14029 PushDeclContext(S, D); 14030 return D; 14031 } 14032 14033 /// ActOnFinishLinkageSpecification - Complete the definition of 14034 /// the C++ linkage specification LinkageSpec. If RBraceLoc is 14035 /// valid, it's the position of the closing '}' brace in a linkage 14036 /// specification that uses braces. 14037 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, 14038 Decl *LinkageSpec, 14039 SourceLocation RBraceLoc) { 14040 if (RBraceLoc.isValid()) { 14041 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec); 14042 LSDecl->setRBraceLoc(RBraceLoc); 14043 } 14044 PopDeclContext(); 14045 return LinkageSpec; 14046 } 14047 14048 Decl *Sema::ActOnEmptyDeclaration(Scope *S, 14049 const ParsedAttributesView &AttrList, 14050 SourceLocation SemiLoc) { 14051 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc); 14052 // Attribute declarations appertain to empty declaration so we handle 14053 // them here. 14054 ProcessDeclAttributeList(S, ED, AttrList); 14055 14056 CurContext->addDecl(ED); 14057 return ED; 14058 } 14059 14060 /// Perform semantic analysis for the variable declaration that 14061 /// occurs within a C++ catch clause, returning the newly-created 14062 /// variable. 14063 VarDecl *Sema::BuildExceptionDeclaration(Scope *S, 14064 TypeSourceInfo *TInfo, 14065 SourceLocation StartLoc, 14066 SourceLocation Loc, 14067 IdentifierInfo *Name) { 14068 bool Invalid = false; 14069 QualType ExDeclType = TInfo->getType(); 14070 14071 // Arrays and functions decay. 14072 if (ExDeclType->isArrayType()) 14073 ExDeclType = Context.getArrayDecayedType(ExDeclType); 14074 else if (ExDeclType->isFunctionType()) 14075 ExDeclType = Context.getPointerType(ExDeclType); 14076 14077 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. 14078 // The exception-declaration shall not denote a pointer or reference to an 14079 // incomplete type, other than [cv] void*. 14080 // N2844 forbids rvalue references. 14081 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { 14082 Diag(Loc, diag::err_catch_rvalue_ref); 14083 Invalid = true; 14084 } 14085 14086 if (ExDeclType->isVariablyModifiedType()) { 14087 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType; 14088 Invalid = true; 14089 } 14090 14091 QualType BaseType = ExDeclType; 14092 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference 14093 unsigned DK = diag::err_catch_incomplete; 14094 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 14095 BaseType = Ptr->getPointeeType(); 14096 Mode = 1; 14097 DK = diag::err_catch_incomplete_ptr; 14098 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { 14099 // For the purpose of error recovery, we treat rvalue refs like lvalue refs. 14100 BaseType = Ref->getPointeeType(); 14101 Mode = 2; 14102 DK = diag::err_catch_incomplete_ref; 14103 } 14104 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && 14105 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) 14106 Invalid = true; 14107 14108 if (!Invalid && !ExDeclType->isDependentType() && 14109 RequireNonAbstractType(Loc, ExDeclType, 14110 diag::err_abstract_type_in_decl, 14111 AbstractVariableType)) 14112 Invalid = true; 14113 14114 // Only the non-fragile NeXT runtime currently supports C++ catches 14115 // of ObjC types, and no runtime supports catching ObjC types by value. 14116 if (!Invalid && getLangOpts().ObjC) { 14117 QualType T = ExDeclType; 14118 if (const ReferenceType *RT = T->getAs<ReferenceType>()) 14119 T = RT->getPointeeType(); 14120 14121 if (T->isObjCObjectType()) { 14122 Diag(Loc, diag::err_objc_object_catch); 14123 Invalid = true; 14124 } else if (T->isObjCObjectPointerType()) { 14125 // FIXME: should this be a test for macosx-fragile specifically? 14126 if (getLangOpts().ObjCRuntime.isFragile()) 14127 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); 14128 } 14129 } 14130 14131 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, 14132 ExDeclType, TInfo, SC_None); 14133 ExDecl->setExceptionVariable(true); 14134 14135 // In ARC, infer 'retaining' for variables of retainable type. 14136 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl)) 14137 Invalid = true; 14138 14139 if (!Invalid && !ExDeclType->isDependentType()) { 14140 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { 14141 // Insulate this from anything else we might currently be parsing. 14142 EnterExpressionEvaluationContext scope( 14143 *this, ExpressionEvaluationContext::PotentiallyEvaluated); 14144 14145 // C++ [except.handle]p16: 14146 // The object declared in an exception-declaration or, if the 14147 // exception-declaration does not specify a name, a temporary (12.2) is 14148 // copy-initialized (8.5) from the exception object. [...] 14149 // The object is destroyed when the handler exits, after the destruction 14150 // of any automatic objects initialized within the handler. 14151 // 14152 // We just pretend to initialize the object with itself, then make sure 14153 // it can be destroyed later. 14154 QualType initType = Context.getExceptionObjectType(ExDeclType); 14155 14156 InitializedEntity entity = 14157 InitializedEntity::InitializeVariable(ExDecl); 14158 InitializationKind initKind = 14159 InitializationKind::CreateCopy(Loc, SourceLocation()); 14160 14161 Expr *opaqueValue = 14162 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); 14163 InitializationSequence sequence(*this, entity, initKind, opaqueValue); 14164 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue); 14165 if (result.isInvalid()) 14166 Invalid = true; 14167 else { 14168 // If the constructor used was non-trivial, set this as the 14169 // "initializer". 14170 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>(); 14171 if (!construct->getConstructor()->isTrivial()) { 14172 Expr *init = MaybeCreateExprWithCleanups(construct); 14173 ExDecl->setInit(init); 14174 } 14175 14176 // And make sure it's destructable. 14177 FinalizeVarWithDestructor(ExDecl, recordType); 14178 } 14179 } 14180 } 14181 14182 if (Invalid) 14183 ExDecl->setInvalidDecl(); 14184 14185 return ExDecl; 14186 } 14187 14188 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch 14189 /// handler. 14190 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { 14191 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 14192 bool Invalid = D.isInvalidType(); 14193 14194 // Check for unexpanded parameter packs. 14195 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 14196 UPPC_ExceptionType)) { 14197 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 14198 D.getIdentifierLoc()); 14199 Invalid = true; 14200 } 14201 14202 IdentifierInfo *II = D.getIdentifier(); 14203 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), 14204 LookupOrdinaryName, 14205 ForVisibleRedeclaration)) { 14206 // The scope should be freshly made just for us. There is just no way 14207 // it contains any previous declaration, except for function parameters in 14208 // a function-try-block's catch statement. 14209 assert(!S->isDeclScope(PrevDecl)); 14210 if (isDeclInScope(PrevDecl, CurContext, S)) { 14211 Diag(D.getIdentifierLoc(), diag::err_redefinition) 14212 << D.getIdentifier(); 14213 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 14214 Invalid = true; 14215 } else if (PrevDecl->isTemplateParameter()) 14216 // Maybe we will complain about the shadowed template parameter. 14217 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 14218 } 14219 14220 if (D.getCXXScopeSpec().isSet() && !Invalid) { 14221 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) 14222 << D.getCXXScopeSpec().getRange(); 14223 Invalid = true; 14224 } 14225 14226 VarDecl *ExDecl = BuildExceptionDeclaration( 14227 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier()); 14228 if (Invalid) 14229 ExDecl->setInvalidDecl(); 14230 14231 // Add the exception declaration into this scope. 14232 if (II) 14233 PushOnScopeChains(ExDecl, S); 14234 else 14235 CurContext->addDecl(ExDecl); 14236 14237 ProcessDeclAttributes(S, ExDecl, D); 14238 return ExDecl; 14239 } 14240 14241 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, 14242 Expr *AssertExpr, 14243 Expr *AssertMessageExpr, 14244 SourceLocation RParenLoc) { 14245 StringLiteral *AssertMessage = 14246 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr; 14247 14248 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) 14249 return nullptr; 14250 14251 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, 14252 AssertMessage, RParenLoc, false); 14253 } 14254 14255 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, 14256 Expr *AssertExpr, 14257 StringLiteral *AssertMessage, 14258 SourceLocation RParenLoc, 14259 bool Failed) { 14260 assert(AssertExpr != nullptr && "Expected non-null condition"); 14261 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && 14262 !Failed) { 14263 // In a static_assert-declaration, the constant-expression shall be a 14264 // constant expression that can be contextually converted to bool. 14265 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr); 14266 if (Converted.isInvalid()) 14267 Failed = true; 14268 14269 ExprResult FullAssertExpr = 14270 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc, 14271 /*DiscardedValue*/ false, 14272 /*IsConstexpr*/ true); 14273 if (FullAssertExpr.isInvalid()) 14274 Failed = true; 14275 else 14276 AssertExpr = FullAssertExpr.get(); 14277 14278 llvm::APSInt Cond; 14279 if (!Failed && VerifyIntegerConstantExpression(AssertExpr, &Cond, 14280 diag::err_static_assert_expression_is_not_constant, 14281 /*AllowFold=*/false).isInvalid()) 14282 Failed = true; 14283 14284 if (!Failed && !Cond) { 14285 SmallString<256> MsgBuffer; 14286 llvm::raw_svector_ostream Msg(MsgBuffer); 14287 if (AssertMessage) 14288 AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy()); 14289 14290 Expr *InnerCond = nullptr; 14291 std::string InnerCondDescription; 14292 std::tie(InnerCond, InnerCondDescription) = 14293 findFailedBooleanCondition(Converted.get()); 14294 if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond) 14295 && !isa<IntegerLiteral>(InnerCond)) { 14296 Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed) 14297 << InnerCondDescription << !AssertMessage 14298 << Msg.str() << InnerCond->getSourceRange(); 14299 } else { 14300 Diag(StaticAssertLoc, diag::err_static_assert_failed) 14301 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); 14302 } 14303 Failed = true; 14304 } 14305 } else { 14306 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc, 14307 /*DiscardedValue*/false, 14308 /*IsConstexpr*/true); 14309 if (FullAssertExpr.isInvalid()) 14310 Failed = true; 14311 else 14312 AssertExpr = FullAssertExpr.get(); 14313 } 14314 14315 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, 14316 AssertExpr, AssertMessage, RParenLoc, 14317 Failed); 14318 14319 CurContext->addDecl(Decl); 14320 return Decl; 14321 } 14322 14323 /// Perform semantic analysis of the given friend type declaration. 14324 /// 14325 /// \returns A friend declaration that. 14326 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart, 14327 SourceLocation FriendLoc, 14328 TypeSourceInfo *TSInfo) { 14329 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration"); 14330 14331 QualType T = TSInfo->getType(); 14332 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange(); 14333 14334 // C++03 [class.friend]p2: 14335 // An elaborated-type-specifier shall be used in a friend declaration 14336 // for a class.* 14337 // 14338 // * The class-key of the elaborated-type-specifier is required. 14339 if (!CodeSynthesisContexts.empty()) { 14340 // Do not complain about the form of friend template types during any kind 14341 // of code synthesis. For template instantiation, we will have complained 14342 // when the template was defined. 14343 } else { 14344 if (!T->isElaboratedTypeSpecifier()) { 14345 // If we evaluated the type to a record type, suggest putting 14346 // a tag in front. 14347 if (const RecordType *RT = T->getAs<RecordType>()) { 14348 RecordDecl *RD = RT->getDecl(); 14349 14350 SmallString<16> InsertionText(" "); 14351 InsertionText += RD->getKindName(); 14352 14353 Diag(TypeRange.getBegin(), 14354 getLangOpts().CPlusPlus11 ? 14355 diag::warn_cxx98_compat_unelaborated_friend_type : 14356 diag::ext_unelaborated_friend_type) 14357 << (unsigned) RD->getTagKind() 14358 << T 14359 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc), 14360 InsertionText); 14361 } else { 14362 Diag(FriendLoc, 14363 getLangOpts().CPlusPlus11 ? 14364 diag::warn_cxx98_compat_nonclass_type_friend : 14365 diag::ext_nonclass_type_friend) 14366 << T 14367 << TypeRange; 14368 } 14369 } else if (T->getAs<EnumType>()) { 14370 Diag(FriendLoc, 14371 getLangOpts().CPlusPlus11 ? 14372 diag::warn_cxx98_compat_enum_friend : 14373 diag::ext_enum_friend) 14374 << T 14375 << TypeRange; 14376 } 14377 14378 // C++11 [class.friend]p3: 14379 // A friend declaration that does not declare a function shall have one 14380 // of the following forms: 14381 // friend elaborated-type-specifier ; 14382 // friend simple-type-specifier ; 14383 // friend typename-specifier ; 14384 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc) 14385 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T; 14386 } 14387 14388 // If the type specifier in a friend declaration designates a (possibly 14389 // cv-qualified) class type, that class is declared as a friend; otherwise, 14390 // the friend declaration is ignored. 14391 return FriendDecl::Create(Context, CurContext, 14392 TSInfo->getTypeLoc().getBeginLoc(), TSInfo, 14393 FriendLoc); 14394 } 14395 14396 /// Handle a friend tag declaration where the scope specifier was 14397 /// templated. 14398 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, 14399 unsigned TagSpec, SourceLocation TagLoc, 14400 CXXScopeSpec &SS, IdentifierInfo *Name, 14401 SourceLocation NameLoc, 14402 const ParsedAttributesView &Attr, 14403 MultiTemplateParamsArg TempParamLists) { 14404 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 14405 14406 bool IsMemberSpecialization = false; 14407 bool Invalid = false; 14408 14409 if (TemplateParameterList *TemplateParams = 14410 MatchTemplateParametersToScopeSpecifier( 14411 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true, 14412 IsMemberSpecialization, Invalid)) { 14413 if (TemplateParams->size() > 0) { 14414 // This is a declaration of a class template. 14415 if (Invalid) 14416 return nullptr; 14417 14418 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name, 14419 NameLoc, Attr, TemplateParams, AS_public, 14420 /*ModulePrivateLoc=*/SourceLocation(), 14421 FriendLoc, TempParamLists.size() - 1, 14422 TempParamLists.data()).get(); 14423 } else { 14424 // The "template<>" header is extraneous. 14425 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 14426 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 14427 IsMemberSpecialization = true; 14428 } 14429 } 14430 14431 if (Invalid) return nullptr; 14432 14433 bool isAllExplicitSpecializations = true; 14434 for (unsigned I = TempParamLists.size(); I-- > 0; ) { 14435 if (TempParamLists[I]->size()) { 14436 isAllExplicitSpecializations = false; 14437 break; 14438 } 14439 } 14440 14441 // FIXME: don't ignore attributes. 14442 14443 // If it's explicit specializations all the way down, just forget 14444 // about the template header and build an appropriate non-templated 14445 // friend. TODO: for source fidelity, remember the headers. 14446 if (isAllExplicitSpecializations) { 14447 if (SS.isEmpty()) { 14448 bool Owned = false; 14449 bool IsDependent = false; 14450 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc, 14451 Attr, AS_public, 14452 /*ModulePrivateLoc=*/SourceLocation(), 14453 MultiTemplateParamsArg(), Owned, IsDependent, 14454 /*ScopedEnumKWLoc=*/SourceLocation(), 14455 /*ScopedEnumUsesClassTag=*/false, 14456 /*UnderlyingType=*/TypeResult(), 14457 /*IsTypeSpecifier=*/false, 14458 /*IsTemplateParamOrArg=*/false); 14459 } 14460 14461 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 14462 ElaboratedTypeKeyword Keyword 14463 = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 14464 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, 14465 *Name, NameLoc); 14466 if (T.isNull()) 14467 return nullptr; 14468 14469 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 14470 if (isa<DependentNameType>(T)) { 14471 DependentNameTypeLoc TL = 14472 TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 14473 TL.setElaboratedKeywordLoc(TagLoc); 14474 TL.setQualifierLoc(QualifierLoc); 14475 TL.setNameLoc(NameLoc); 14476 } else { 14477 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 14478 TL.setElaboratedKeywordLoc(TagLoc); 14479 TL.setQualifierLoc(QualifierLoc); 14480 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc); 14481 } 14482 14483 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 14484 TSI, FriendLoc, TempParamLists); 14485 Friend->setAccess(AS_public); 14486 CurContext->addDecl(Friend); 14487 return Friend; 14488 } 14489 14490 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?"); 14491 14492 14493 14494 // Handle the case of a templated-scope friend class. e.g. 14495 // template <class T> class A<T>::B; 14496 // FIXME: we don't support these right now. 14497 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) 14498 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext); 14499 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 14500 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); 14501 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 14502 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 14503 TL.setElaboratedKeywordLoc(TagLoc); 14504 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 14505 TL.setNameLoc(NameLoc); 14506 14507 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 14508 TSI, FriendLoc, TempParamLists); 14509 Friend->setAccess(AS_public); 14510 Friend->setUnsupportedFriend(true); 14511 CurContext->addDecl(Friend); 14512 return Friend; 14513 } 14514 14515 /// Handle a friend type declaration. This works in tandem with 14516 /// ActOnTag. 14517 /// 14518 /// Notes on friend class templates: 14519 /// 14520 /// We generally treat friend class declarations as if they were 14521 /// declaring a class. So, for example, the elaborated type specifier 14522 /// in a friend declaration is required to obey the restrictions of a 14523 /// class-head (i.e. no typedefs in the scope chain), template 14524 /// parameters are required to match up with simple template-ids, &c. 14525 /// However, unlike when declaring a template specialization, it's 14526 /// okay to refer to a template specialization without an empty 14527 /// template parameter declaration, e.g. 14528 /// friend class A<T>::B<unsigned>; 14529 /// We permit this as a special case; if there are any template 14530 /// parameters present at all, require proper matching, i.e. 14531 /// template <> template \<class T> friend class A<int>::B; 14532 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, 14533 MultiTemplateParamsArg TempParams) { 14534 SourceLocation Loc = DS.getBeginLoc(); 14535 14536 assert(DS.isFriendSpecified()); 14537 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 14538 14539 // C++ [class.friend]p3: 14540 // A friend declaration that does not declare a function shall have one of 14541 // the following forms: 14542 // friend elaborated-type-specifier ; 14543 // friend simple-type-specifier ; 14544 // friend typename-specifier ; 14545 // 14546 // Any declaration with a type qualifier does not have that form. (It's 14547 // legal to specify a qualified type as a friend, you just can't write the 14548 // keywords.) 14549 if (DS.getTypeQualifiers()) { 14550 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 14551 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const"; 14552 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 14553 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile"; 14554 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 14555 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict"; 14556 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 14557 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic"; 14558 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 14559 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned"; 14560 } 14561 14562 // Try to convert the decl specifier to a type. This works for 14563 // friend templates because ActOnTag never produces a ClassTemplateDecl 14564 // for a TUK_Friend. 14565 Declarator TheDeclarator(DS, DeclaratorContext::MemberContext); 14566 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); 14567 QualType T = TSI->getType(); 14568 if (TheDeclarator.isInvalidType()) 14569 return nullptr; 14570 14571 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) 14572 return nullptr; 14573 14574 // This is definitely an error in C++98. It's probably meant to 14575 // be forbidden in C++0x, too, but the specification is just 14576 // poorly written. 14577 // 14578 // The problem is with declarations like the following: 14579 // template <T> friend A<T>::foo; 14580 // where deciding whether a class C is a friend or not now hinges 14581 // on whether there exists an instantiation of A that causes 14582 // 'foo' to equal C. There are restrictions on class-heads 14583 // (which we declare (by fiat) elaborated friend declarations to 14584 // be) that makes this tractable. 14585 // 14586 // FIXME: handle "template <> friend class A<T>;", which 14587 // is possibly well-formed? Who even knows? 14588 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { 14589 Diag(Loc, diag::err_tagless_friend_type_template) 14590 << DS.getSourceRange(); 14591 return nullptr; 14592 } 14593 14594 // C++98 [class.friend]p1: A friend of a class is a function 14595 // or class that is not a member of the class . . . 14596 // This is fixed in DR77, which just barely didn't make the C++03 14597 // deadline. It's also a very silly restriction that seriously 14598 // affects inner classes and which nobody else seems to implement; 14599 // thus we never diagnose it, not even in -pedantic. 14600 // 14601 // But note that we could warn about it: it's always useless to 14602 // friend one of your own members (it's not, however, worthless to 14603 // friend a member of an arbitrary specialization of your template). 14604 14605 Decl *D; 14606 if (!TempParams.empty()) 14607 D = FriendTemplateDecl::Create(Context, CurContext, Loc, 14608 TempParams, 14609 TSI, 14610 DS.getFriendSpecLoc()); 14611 else 14612 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI); 14613 14614 if (!D) 14615 return nullptr; 14616 14617 D->setAccess(AS_public); 14618 CurContext->addDecl(D); 14619 14620 return D; 14621 } 14622 14623 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, 14624 MultiTemplateParamsArg TemplateParams) { 14625 const DeclSpec &DS = D.getDeclSpec(); 14626 14627 assert(DS.isFriendSpecified()); 14628 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 14629 14630 SourceLocation Loc = D.getIdentifierLoc(); 14631 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 14632 14633 // C++ [class.friend]p1 14634 // A friend of a class is a function or class.... 14635 // Note that this sees through typedefs, which is intended. 14636 // It *doesn't* see through dependent types, which is correct 14637 // according to [temp.arg.type]p3: 14638 // If a declaration acquires a function type through a 14639 // type dependent on a template-parameter and this causes 14640 // a declaration that does not use the syntactic form of a 14641 // function declarator to have a function type, the program 14642 // is ill-formed. 14643 if (!TInfo->getType()->isFunctionType()) { 14644 Diag(Loc, diag::err_unexpected_friend); 14645 14646 // It might be worthwhile to try to recover by creating an 14647 // appropriate declaration. 14648 return nullptr; 14649 } 14650 14651 // C++ [namespace.memdef]p3 14652 // - If a friend declaration in a non-local class first declares a 14653 // class or function, the friend class or function is a member 14654 // of the innermost enclosing namespace. 14655 // - The name of the friend is not found by simple name lookup 14656 // until a matching declaration is provided in that namespace 14657 // scope (either before or after the class declaration granting 14658 // friendship). 14659 // - If a friend function is called, its name may be found by the 14660 // name lookup that considers functions from namespaces and 14661 // classes associated with the types of the function arguments. 14662 // - When looking for a prior declaration of a class or a function 14663 // declared as a friend, scopes outside the innermost enclosing 14664 // namespace scope are not considered. 14665 14666 CXXScopeSpec &SS = D.getCXXScopeSpec(); 14667 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 14668 assert(NameInfo.getName()); 14669 14670 // Check for unexpanded parameter packs. 14671 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || 14672 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || 14673 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) 14674 return nullptr; 14675 14676 // The context we found the declaration in, or in which we should 14677 // create the declaration. 14678 DeclContext *DC; 14679 Scope *DCScope = S; 14680 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 14681 ForExternalRedeclaration); 14682 14683 // There are five cases here. 14684 // - There's no scope specifier and we're in a local class. Only look 14685 // for functions declared in the immediately-enclosing block scope. 14686 // We recover from invalid scope qualifiers as if they just weren't there. 14687 FunctionDecl *FunctionContainingLocalClass = nullptr; 14688 if ((SS.isInvalid() || !SS.isSet()) && 14689 (FunctionContainingLocalClass = 14690 cast<CXXRecordDecl>(CurContext)->isLocalClass())) { 14691 // C++11 [class.friend]p11: 14692 // If a friend declaration appears in a local class and the name 14693 // specified is an unqualified name, a prior declaration is 14694 // looked up without considering scopes that are outside the 14695 // innermost enclosing non-class scope. For a friend function 14696 // declaration, if there is no prior declaration, the program is 14697 // ill-formed. 14698 14699 // Find the innermost enclosing non-class scope. This is the block 14700 // scope containing the local class definition (or for a nested class, 14701 // the outer local class). 14702 DCScope = S->getFnParent(); 14703 14704 // Look up the function name in the scope. 14705 Previous.clear(LookupLocalFriendName); 14706 LookupName(Previous, S, /*AllowBuiltinCreation*/false); 14707 14708 if (!Previous.empty()) { 14709 // All possible previous declarations must have the same context: 14710 // either they were declared at block scope or they are members of 14711 // one of the enclosing local classes. 14712 DC = Previous.getRepresentativeDecl()->getDeclContext(); 14713 } else { 14714 // This is ill-formed, but provide the context that we would have 14715 // declared the function in, if we were permitted to, for error recovery. 14716 DC = FunctionContainingLocalClass; 14717 } 14718 adjustContextForLocalExternDecl(DC); 14719 14720 // C++ [class.friend]p6: 14721 // A function can be defined in a friend declaration of a class if and 14722 // only if the class is a non-local class (9.8), the function name is 14723 // unqualified, and the function has namespace scope. 14724 if (D.isFunctionDefinition()) { 14725 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); 14726 } 14727 14728 // - There's no scope specifier, in which case we just go to the 14729 // appropriate scope and look for a function or function template 14730 // there as appropriate. 14731 } else if (SS.isInvalid() || !SS.isSet()) { 14732 // C++11 [namespace.memdef]p3: 14733 // If the name in a friend declaration is neither qualified nor 14734 // a template-id and the declaration is a function or an 14735 // elaborated-type-specifier, the lookup to determine whether 14736 // the entity has been previously declared shall not consider 14737 // any scopes outside the innermost enclosing namespace. 14738 bool isTemplateId = 14739 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId; 14740 14741 // Find the appropriate context according to the above. 14742 DC = CurContext; 14743 14744 // Skip class contexts. If someone can cite chapter and verse 14745 // for this behavior, that would be nice --- it's what GCC and 14746 // EDG do, and it seems like a reasonable intent, but the spec 14747 // really only says that checks for unqualified existing 14748 // declarations should stop at the nearest enclosing namespace, 14749 // not that they should only consider the nearest enclosing 14750 // namespace. 14751 while (DC->isRecord()) 14752 DC = DC->getParent(); 14753 14754 DeclContext *LookupDC = DC; 14755 while (LookupDC->isTransparentContext()) 14756 LookupDC = LookupDC->getParent(); 14757 14758 while (true) { 14759 LookupQualifiedName(Previous, LookupDC); 14760 14761 if (!Previous.empty()) { 14762 DC = LookupDC; 14763 break; 14764 } 14765 14766 if (isTemplateId) { 14767 if (isa<TranslationUnitDecl>(LookupDC)) break; 14768 } else { 14769 if (LookupDC->isFileContext()) break; 14770 } 14771 LookupDC = LookupDC->getParent(); 14772 } 14773 14774 DCScope = getScopeForDeclContext(S, DC); 14775 14776 // - There's a non-dependent scope specifier, in which case we 14777 // compute it and do a previous lookup there for a function 14778 // or function template. 14779 } else if (!SS.getScopeRep()->isDependent()) { 14780 DC = computeDeclContext(SS); 14781 if (!DC) return nullptr; 14782 14783 if (RequireCompleteDeclContext(SS, DC)) return nullptr; 14784 14785 LookupQualifiedName(Previous, DC); 14786 14787 // C++ [class.friend]p1: A friend of a class is a function or 14788 // class that is not a member of the class . . . 14789 if (DC->Equals(CurContext)) 14790 Diag(DS.getFriendSpecLoc(), 14791 getLangOpts().CPlusPlus11 ? 14792 diag::warn_cxx98_compat_friend_is_member : 14793 diag::err_friend_is_member); 14794 14795 if (D.isFunctionDefinition()) { 14796 // C++ [class.friend]p6: 14797 // A function can be defined in a friend declaration of a class if and 14798 // only if the class is a non-local class (9.8), the function name is 14799 // unqualified, and the function has namespace scope. 14800 // 14801 // FIXME: We should only do this if the scope specifier names the 14802 // innermost enclosing namespace; otherwise the fixit changes the 14803 // meaning of the code. 14804 SemaDiagnosticBuilder DB 14805 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); 14806 14807 DB << SS.getScopeRep(); 14808 if (DC->isFileContext()) 14809 DB << FixItHint::CreateRemoval(SS.getRange()); 14810 SS.clear(); 14811 } 14812 14813 // - There's a scope specifier that does not match any template 14814 // parameter lists, in which case we use some arbitrary context, 14815 // create a method or method template, and wait for instantiation. 14816 // - There's a scope specifier that does match some template 14817 // parameter lists, which we don't handle right now. 14818 } else { 14819 if (D.isFunctionDefinition()) { 14820 // C++ [class.friend]p6: 14821 // A function can be defined in a friend declaration of a class if and 14822 // only if the class is a non-local class (9.8), the function name is 14823 // unqualified, and the function has namespace scope. 14824 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def) 14825 << SS.getScopeRep(); 14826 } 14827 14828 DC = CurContext; 14829 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?"); 14830 } 14831 14832 if (!DC->isRecord()) { 14833 int DiagArg = -1; 14834 switch (D.getName().getKind()) { 14835 case UnqualifiedIdKind::IK_ConstructorTemplateId: 14836 case UnqualifiedIdKind::IK_ConstructorName: 14837 DiagArg = 0; 14838 break; 14839 case UnqualifiedIdKind::IK_DestructorName: 14840 DiagArg = 1; 14841 break; 14842 case UnqualifiedIdKind::IK_ConversionFunctionId: 14843 DiagArg = 2; 14844 break; 14845 case UnqualifiedIdKind::IK_DeductionGuideName: 14846 DiagArg = 3; 14847 break; 14848 case UnqualifiedIdKind::IK_Identifier: 14849 case UnqualifiedIdKind::IK_ImplicitSelfParam: 14850 case UnqualifiedIdKind::IK_LiteralOperatorId: 14851 case UnqualifiedIdKind::IK_OperatorFunctionId: 14852 case UnqualifiedIdKind::IK_TemplateId: 14853 break; 14854 } 14855 // This implies that it has to be an operator or function. 14856 if (DiagArg >= 0) { 14857 Diag(Loc, diag::err_introducing_special_friend) << DiagArg; 14858 return nullptr; 14859 } 14860 } 14861 14862 // FIXME: This is an egregious hack to cope with cases where the scope stack 14863 // does not contain the declaration context, i.e., in an out-of-line 14864 // definition of a class. 14865 Scope FakeDCScope(S, Scope::DeclScope, Diags); 14866 if (!DCScope) { 14867 FakeDCScope.setEntity(DC); 14868 DCScope = &FakeDCScope; 14869 } 14870 14871 bool AddToScope = true; 14872 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous, 14873 TemplateParams, AddToScope); 14874 if (!ND) return nullptr; 14875 14876 assert(ND->getLexicalDeclContext() == CurContext); 14877 14878 // If we performed typo correction, we might have added a scope specifier 14879 // and changed the decl context. 14880 DC = ND->getDeclContext(); 14881 14882 // Add the function declaration to the appropriate lookup tables, 14883 // adjusting the redeclarations list as necessary. We don't 14884 // want to do this yet if the friending class is dependent. 14885 // 14886 // Also update the scope-based lookup if the target context's 14887 // lookup context is in lexical scope. 14888 if (!CurContext->isDependentContext()) { 14889 DC = DC->getRedeclContext(); 14890 DC->makeDeclVisibleInContext(ND); 14891 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 14892 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); 14893 } 14894 14895 FriendDecl *FrD = FriendDecl::Create(Context, CurContext, 14896 D.getIdentifierLoc(), ND, 14897 DS.getFriendSpecLoc()); 14898 FrD->setAccess(AS_public); 14899 CurContext->addDecl(FrD); 14900 14901 if (ND->isInvalidDecl()) { 14902 FrD->setInvalidDecl(); 14903 } else { 14904 if (DC->isRecord()) CheckFriendAccess(ND); 14905 14906 FunctionDecl *FD; 14907 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 14908 FD = FTD->getTemplatedDecl(); 14909 else 14910 FD = cast<FunctionDecl>(ND); 14911 14912 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a 14913 // default argument expression, that declaration shall be a definition 14914 // and shall be the only declaration of the function or function 14915 // template in the translation unit. 14916 if (functionDeclHasDefaultArgument(FD)) { 14917 // We can't look at FD->getPreviousDecl() because it may not have been set 14918 // if we're in a dependent context. If the function is known to be a 14919 // redeclaration, we will have narrowed Previous down to the right decl. 14920 if (D.isRedeclaration()) { 14921 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 14922 Diag(Previous.getRepresentativeDecl()->getLocation(), 14923 diag::note_previous_declaration); 14924 } else if (!D.isFunctionDefinition()) 14925 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); 14926 } 14927 14928 // Mark templated-scope function declarations as unsupported. 14929 if (FD->getNumTemplateParameterLists() && SS.isValid()) { 14930 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) 14931 << SS.getScopeRep() << SS.getRange() 14932 << cast<CXXRecordDecl>(CurContext); 14933 FrD->setUnsupportedFriend(true); 14934 } 14935 } 14936 14937 return ND; 14938 } 14939 14940 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { 14941 AdjustDeclIfTemplate(Dcl); 14942 14943 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl); 14944 if (!Fn) { 14945 Diag(DelLoc, diag::err_deleted_non_function); 14946 return; 14947 } 14948 14949 // Deleted function does not have a body. 14950 Fn->setWillHaveBody(false); 14951 14952 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { 14953 // Don't consider the implicit declaration we generate for explicit 14954 // specializations. FIXME: Do not generate these implicit declarations. 14955 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || 14956 Prev->getPreviousDecl()) && 14957 !Prev->isDefined()) { 14958 Diag(DelLoc, diag::err_deleted_decl_not_first); 14959 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), 14960 Prev->isImplicit() ? diag::note_previous_implicit_declaration 14961 : diag::note_previous_declaration); 14962 } 14963 // If the declaration wasn't the first, we delete the function anyway for 14964 // recovery. 14965 Fn = Fn->getCanonicalDecl(); 14966 } 14967 14968 // dllimport/dllexport cannot be deleted. 14969 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { 14970 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; 14971 Fn->setInvalidDecl(); 14972 } 14973 14974 if (Fn->isDeleted()) 14975 return; 14976 14977 // See if we're deleting a function which is already known to override a 14978 // non-deleted virtual function. 14979 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) { 14980 bool IssuedDiagnostic = false; 14981 for (const CXXMethodDecl *O : MD->overridden_methods()) { 14982 if (!(*MD->begin_overridden_methods())->isDeleted()) { 14983 if (!IssuedDiagnostic) { 14984 Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName(); 14985 IssuedDiagnostic = true; 14986 } 14987 Diag(O->getLocation(), diag::note_overridden_virtual_function); 14988 } 14989 } 14990 // If this function was implicitly deleted because it was defaulted, 14991 // explain why it was deleted. 14992 if (IssuedDiagnostic && MD->isDefaulted()) 14993 ShouldDeleteSpecialMember(MD, getSpecialMember(MD), nullptr, 14994 /*Diagnose*/true); 14995 } 14996 14997 // C++11 [basic.start.main]p3: 14998 // A program that defines main as deleted [...] is ill-formed. 14999 if (Fn->isMain()) 15000 Diag(DelLoc, diag::err_deleted_main); 15001 15002 // C++11 [dcl.fct.def.delete]p4: 15003 // A deleted function is implicitly inline. 15004 Fn->setImplicitlyInline(); 15005 Fn->setDeletedAsWritten(); 15006 } 15007 15008 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { 15009 CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl); 15010 15011 if (MD) { 15012 if (MD->getParent()->isDependentType()) { 15013 MD->setDefaulted(); 15014 MD->setExplicitlyDefaulted(); 15015 return; 15016 } 15017 15018 CXXSpecialMember Member = getSpecialMember(MD); 15019 if (Member == CXXInvalid) { 15020 if (!MD->isInvalidDecl()) 15021 Diag(DefaultLoc, diag::err_default_special_members); 15022 return; 15023 } 15024 15025 MD->setDefaulted(); 15026 MD->setExplicitlyDefaulted(); 15027 15028 // Unset that we will have a body for this function. We might not, 15029 // if it turns out to be trivial, and we don't need this marking now 15030 // that we've marked it as defaulted. 15031 MD->setWillHaveBody(false); 15032 15033 // If this definition appears within the record, do the checking when 15034 // the record is complete. 15035 const FunctionDecl *Primary = MD; 15036 if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern()) 15037 // Ask the template instantiation pattern that actually had the 15038 // '= default' on it. 15039 Primary = Pattern; 15040 15041 // If the method was defaulted on its first declaration, we will have 15042 // already performed the checking in CheckCompletedCXXClass. Such a 15043 // declaration doesn't trigger an implicit definition. 15044 if (Primary->getCanonicalDecl()->isDefaulted()) 15045 return; 15046 15047 CheckExplicitlyDefaultedSpecialMember(MD); 15048 15049 if (!MD->isInvalidDecl()) 15050 DefineImplicitSpecialMember(*this, MD, DefaultLoc); 15051 } else { 15052 Diag(DefaultLoc, diag::err_default_special_members); 15053 } 15054 } 15055 15056 static void SearchForReturnInStmt(Sema &Self, Stmt *S) { 15057 for (Stmt *SubStmt : S->children()) { 15058 if (!SubStmt) 15059 continue; 15060 if (isa<ReturnStmt>(SubStmt)) 15061 Self.Diag(SubStmt->getBeginLoc(), 15062 diag::err_return_in_constructor_handler); 15063 if (!isa<Expr>(SubStmt)) 15064 SearchForReturnInStmt(Self, SubStmt); 15065 } 15066 } 15067 15068 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { 15069 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { 15070 CXXCatchStmt *Handler = TryBlock->getHandler(I); 15071 SearchForReturnInStmt(*this, Handler); 15072 } 15073 } 15074 15075 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, 15076 const CXXMethodDecl *Old) { 15077 const auto *NewFT = New->getType()->getAs<FunctionProtoType>(); 15078 const auto *OldFT = Old->getType()->getAs<FunctionProtoType>(); 15079 15080 if (OldFT->hasExtParameterInfos()) { 15081 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I) 15082 // A parameter of the overriding method should be annotated with noescape 15083 // if the corresponding parameter of the overridden method is annotated. 15084 if (OldFT->getExtParameterInfo(I).isNoEscape() && 15085 !NewFT->getExtParameterInfo(I).isNoEscape()) { 15086 Diag(New->getParamDecl(I)->getLocation(), 15087 diag::warn_overriding_method_missing_noescape); 15088 Diag(Old->getParamDecl(I)->getLocation(), 15089 diag::note_overridden_marked_noescape); 15090 } 15091 } 15092 15093 // Virtual overrides must have the same code_seg. 15094 const auto *OldCSA = Old->getAttr<CodeSegAttr>(); 15095 const auto *NewCSA = New->getAttr<CodeSegAttr>(); 15096 if ((NewCSA || OldCSA) && 15097 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) { 15098 Diag(New->getLocation(), diag::err_mismatched_code_seg_override); 15099 Diag(Old->getLocation(), diag::note_previous_declaration); 15100 return true; 15101 } 15102 15103 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); 15104 15105 // If the calling conventions match, everything is fine 15106 if (NewCC == OldCC) 15107 return false; 15108 15109 // If the calling conventions mismatch because the new function is static, 15110 // suppress the calling convention mismatch error; the error about static 15111 // function override (err_static_overrides_virtual from 15112 // Sema::CheckFunctionDeclaration) is more clear. 15113 if (New->getStorageClass() == SC_Static) 15114 return false; 15115 15116 Diag(New->getLocation(), 15117 diag::err_conflicting_overriding_cc_attributes) 15118 << New->getDeclName() << New->getType() << Old->getType(); 15119 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 15120 return true; 15121 } 15122 15123 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, 15124 const CXXMethodDecl *Old) { 15125 QualType NewTy = New->getType()->getAs<FunctionType>()->getReturnType(); 15126 QualType OldTy = Old->getType()->getAs<FunctionType>()->getReturnType(); 15127 15128 if (Context.hasSameType(NewTy, OldTy) || 15129 NewTy->isDependentType() || OldTy->isDependentType()) 15130 return false; 15131 15132 // Check if the return types are covariant 15133 QualType NewClassTy, OldClassTy; 15134 15135 /// Both types must be pointers or references to classes. 15136 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { 15137 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { 15138 NewClassTy = NewPT->getPointeeType(); 15139 OldClassTy = OldPT->getPointeeType(); 15140 } 15141 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { 15142 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { 15143 if (NewRT->getTypeClass() == OldRT->getTypeClass()) { 15144 NewClassTy = NewRT->getPointeeType(); 15145 OldClassTy = OldRT->getPointeeType(); 15146 } 15147 } 15148 } 15149 15150 // The return types aren't either both pointers or references to a class type. 15151 if (NewClassTy.isNull()) { 15152 Diag(New->getLocation(), 15153 diag::err_different_return_type_for_overriding_virtual_function) 15154 << New->getDeclName() << NewTy << OldTy 15155 << New->getReturnTypeSourceRange(); 15156 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 15157 << Old->getReturnTypeSourceRange(); 15158 15159 return true; 15160 } 15161 15162 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { 15163 // C++14 [class.virtual]p8: 15164 // If the class type in the covariant return type of D::f differs from 15165 // that of B::f, the class type in the return type of D::f shall be 15166 // complete at the point of declaration of D::f or shall be the class 15167 // type D. 15168 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { 15169 if (!RT->isBeingDefined() && 15170 RequireCompleteType(New->getLocation(), NewClassTy, 15171 diag::err_covariant_return_incomplete, 15172 New->getDeclName())) 15173 return true; 15174 } 15175 15176 // Check if the new class derives from the old class. 15177 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) { 15178 Diag(New->getLocation(), diag::err_covariant_return_not_derived) 15179 << New->getDeclName() << NewTy << OldTy 15180 << New->getReturnTypeSourceRange(); 15181 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 15182 << Old->getReturnTypeSourceRange(); 15183 return true; 15184 } 15185 15186 // Check if we the conversion from derived to base is valid. 15187 if (CheckDerivedToBaseConversion( 15188 NewClassTy, OldClassTy, 15189 diag::err_covariant_return_inaccessible_base, 15190 diag::err_covariant_return_ambiguous_derived_to_base_conv, 15191 New->getLocation(), New->getReturnTypeSourceRange(), 15192 New->getDeclName(), nullptr)) { 15193 // FIXME: this note won't trigger for delayed access control 15194 // diagnostics, and it's impossible to get an undelayed error 15195 // here from access control during the original parse because 15196 // the ParsingDeclSpec/ParsingDeclarator are still in scope. 15197 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 15198 << Old->getReturnTypeSourceRange(); 15199 return true; 15200 } 15201 } 15202 15203 // The qualifiers of the return types must be the same. 15204 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { 15205 Diag(New->getLocation(), 15206 diag::err_covariant_return_type_different_qualifications) 15207 << New->getDeclName() << NewTy << OldTy 15208 << New->getReturnTypeSourceRange(); 15209 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 15210 << Old->getReturnTypeSourceRange(); 15211 return true; 15212 } 15213 15214 15215 // The new class type must have the same or less qualifiers as the old type. 15216 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { 15217 Diag(New->getLocation(), 15218 diag::err_covariant_return_type_class_type_more_qualified) 15219 << New->getDeclName() << NewTy << OldTy 15220 << New->getReturnTypeSourceRange(); 15221 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 15222 << Old->getReturnTypeSourceRange(); 15223 return true; 15224 } 15225 15226 return false; 15227 } 15228 15229 /// Mark the given method pure. 15230 /// 15231 /// \param Method the method to be marked pure. 15232 /// 15233 /// \param InitRange the source range that covers the "0" initializer. 15234 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { 15235 SourceLocation EndLoc = InitRange.getEnd(); 15236 if (EndLoc.isValid()) 15237 Method->setRangeEnd(EndLoc); 15238 15239 if (Method->isVirtual() || Method->getParent()->isDependentContext()) { 15240 Method->setPure(); 15241 return false; 15242 } 15243 15244 if (!Method->isInvalidDecl()) 15245 Diag(Method->getLocation(), diag::err_non_virtual_pure) 15246 << Method->getDeclName() << InitRange; 15247 return true; 15248 } 15249 15250 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) { 15251 if (D->getFriendObjectKind()) 15252 Diag(D->getLocation(), diag::err_pure_friend); 15253 else if (auto *M = dyn_cast<CXXMethodDecl>(D)) 15254 CheckPureMethod(M, ZeroLoc); 15255 else 15256 Diag(D->getLocation(), diag::err_illegal_initializer); 15257 } 15258 15259 /// Determine whether the given declaration is a global variable or 15260 /// static data member. 15261 static bool isNonlocalVariable(const Decl *D) { 15262 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D)) 15263 return Var->hasGlobalStorage(); 15264 15265 return false; 15266 } 15267 15268 /// Invoked when we are about to parse an initializer for the declaration 15269 /// 'Dcl'. 15270 /// 15271 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a 15272 /// static data member of class X, names should be looked up in the scope of 15273 /// class X. If the declaration had a scope specifier, a scope will have 15274 /// been created and passed in for this purpose. Otherwise, S will be null. 15275 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { 15276 // If there is no declaration, there was an error parsing it. 15277 if (!D || D->isInvalidDecl()) 15278 return; 15279 15280 // We will always have a nested name specifier here, but this declaration 15281 // might not be out of line if the specifier names the current namespace: 15282 // extern int n; 15283 // int ::n = 0; 15284 if (S && D->isOutOfLine()) 15285 EnterDeclaratorContext(S, D->getDeclContext()); 15286 15287 // If we are parsing the initializer for a static data member, push a 15288 // new expression evaluation context that is associated with this static 15289 // data member. 15290 if (isNonlocalVariable(D)) 15291 PushExpressionEvaluationContext( 15292 ExpressionEvaluationContext::PotentiallyEvaluated, D); 15293 } 15294 15295 /// Invoked after we are finished parsing an initializer for the declaration D. 15296 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { 15297 // If there is no declaration, there was an error parsing it. 15298 if (!D || D->isInvalidDecl()) 15299 return; 15300 15301 if (isNonlocalVariable(D)) 15302 PopExpressionEvaluationContext(); 15303 15304 if (S && D->isOutOfLine()) 15305 ExitDeclaratorContext(S); 15306 } 15307 15308 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a 15309 /// C++ if/switch/while/for statement. 15310 /// e.g: "if (int x = f()) {...}" 15311 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { 15312 // C++ 6.4p2: 15313 // The declarator shall not specify a function or an array. 15314 // The type-specifier-seq shall not contain typedef and shall not declare a 15315 // new class or enumeration. 15316 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 15317 "Parser allowed 'typedef' as storage class of condition decl."); 15318 15319 Decl *Dcl = ActOnDeclarator(S, D); 15320 if (!Dcl) 15321 return true; 15322 15323 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function. 15324 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) 15325 << D.getSourceRange(); 15326 return true; 15327 } 15328 15329 return Dcl; 15330 } 15331 15332 void Sema::LoadExternalVTableUses() { 15333 if (!ExternalSource) 15334 return; 15335 15336 SmallVector<ExternalVTableUse, 4> VTables; 15337 ExternalSource->ReadUsedVTables(VTables); 15338 SmallVector<VTableUse, 4> NewUses; 15339 for (unsigned I = 0, N = VTables.size(); I != N; ++I) { 15340 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos 15341 = VTablesUsed.find(VTables[I].Record); 15342 // Even if a definition wasn't required before, it may be required now. 15343 if (Pos != VTablesUsed.end()) { 15344 if (!Pos->second && VTables[I].DefinitionRequired) 15345 Pos->second = true; 15346 continue; 15347 } 15348 15349 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; 15350 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location)); 15351 } 15352 15353 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end()); 15354 } 15355 15356 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, 15357 bool DefinitionRequired) { 15358 // Ignore any vtable uses in unevaluated operands or for classes that do 15359 // not have a vtable. 15360 if (!Class->isDynamicClass() || Class->isDependentContext() || 15361 CurContext->isDependentContext() || isUnevaluatedContext()) 15362 return; 15363 // Do not mark as used if compiling for the device outside of the target 15364 // region. 15365 if (LangOpts.OpenMP && LangOpts.OpenMPIsDevice && 15366 !isInOpenMPDeclareTargetContext() && 15367 !isInOpenMPTargetExecutionDirective()) { 15368 if (!DefinitionRequired) 15369 MarkVirtualMembersReferenced(Loc, Class); 15370 return; 15371 } 15372 15373 // Try to insert this class into the map. 15374 LoadExternalVTableUses(); 15375 Class = Class->getCanonicalDecl(); 15376 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> 15377 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); 15378 if (!Pos.second) { 15379 // If we already had an entry, check to see if we are promoting this vtable 15380 // to require a definition. If so, we need to reappend to the VTableUses 15381 // list, since we may have already processed the first entry. 15382 if (DefinitionRequired && !Pos.first->second) { 15383 Pos.first->second = true; 15384 } else { 15385 // Otherwise, we can early exit. 15386 return; 15387 } 15388 } else { 15389 // The Microsoft ABI requires that we perform the destructor body 15390 // checks (i.e. operator delete() lookup) when the vtable is marked used, as 15391 // the deleting destructor is emitted with the vtable, not with the 15392 // destructor definition as in the Itanium ABI. 15393 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 15394 CXXDestructorDecl *DD = Class->getDestructor(); 15395 if (DD && DD->isVirtual() && !DD->isDeleted()) { 15396 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) { 15397 // If this is an out-of-line declaration, marking it referenced will 15398 // not do anything. Manually call CheckDestructor to look up operator 15399 // delete(). 15400 ContextRAII SavedContext(*this, DD); 15401 CheckDestructor(DD); 15402 } else { 15403 MarkFunctionReferenced(Loc, Class->getDestructor()); 15404 } 15405 } 15406 } 15407 } 15408 15409 // Local classes need to have their virtual members marked 15410 // immediately. For all other classes, we mark their virtual members 15411 // at the end of the translation unit. 15412 if (Class->isLocalClass()) 15413 MarkVirtualMembersReferenced(Loc, Class); 15414 else 15415 VTableUses.push_back(std::make_pair(Class, Loc)); 15416 } 15417 15418 bool Sema::DefineUsedVTables() { 15419 LoadExternalVTableUses(); 15420 if (VTableUses.empty()) 15421 return false; 15422 15423 // Note: The VTableUses vector could grow as a result of marking 15424 // the members of a class as "used", so we check the size each 15425 // time through the loop and prefer indices (which are stable) to 15426 // iterators (which are not). 15427 bool DefinedAnything = false; 15428 for (unsigned I = 0; I != VTableUses.size(); ++I) { 15429 CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); 15430 if (!Class) 15431 continue; 15432 TemplateSpecializationKind ClassTSK = 15433 Class->getTemplateSpecializationKind(); 15434 15435 SourceLocation Loc = VTableUses[I].second; 15436 15437 bool DefineVTable = true; 15438 15439 // If this class has a key function, but that key function is 15440 // defined in another translation unit, we don't need to emit the 15441 // vtable even though we're using it. 15442 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class); 15443 if (KeyFunction && !KeyFunction->hasBody()) { 15444 // The key function is in another translation unit. 15445 DefineVTable = false; 15446 TemplateSpecializationKind TSK = 15447 KeyFunction->getTemplateSpecializationKind(); 15448 assert(TSK != TSK_ExplicitInstantiationDefinition && 15449 TSK != TSK_ImplicitInstantiation && 15450 "Instantiations don't have key functions"); 15451 (void)TSK; 15452 } else if (!KeyFunction) { 15453 // If we have a class with no key function that is the subject 15454 // of an explicit instantiation declaration, suppress the 15455 // vtable; it will live with the explicit instantiation 15456 // definition. 15457 bool IsExplicitInstantiationDeclaration = 15458 ClassTSK == TSK_ExplicitInstantiationDeclaration; 15459 for (auto R : Class->redecls()) { 15460 TemplateSpecializationKind TSK 15461 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind(); 15462 if (TSK == TSK_ExplicitInstantiationDeclaration) 15463 IsExplicitInstantiationDeclaration = true; 15464 else if (TSK == TSK_ExplicitInstantiationDefinition) { 15465 IsExplicitInstantiationDeclaration = false; 15466 break; 15467 } 15468 } 15469 15470 if (IsExplicitInstantiationDeclaration) 15471 DefineVTable = false; 15472 } 15473 15474 // The exception specifications for all virtual members may be needed even 15475 // if we are not providing an authoritative form of the vtable in this TU. 15476 // We may choose to emit it available_externally anyway. 15477 if (!DefineVTable) { 15478 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class); 15479 continue; 15480 } 15481 15482 // Mark all of the virtual members of this class as referenced, so 15483 // that we can build a vtable. Then, tell the AST consumer that a 15484 // vtable for this class is required. 15485 DefinedAnything = true; 15486 MarkVirtualMembersReferenced(Loc, Class); 15487 CXXRecordDecl *Canonical = Class->getCanonicalDecl(); 15488 if (VTablesUsed[Canonical]) 15489 Consumer.HandleVTable(Class); 15490 15491 // Warn if we're emitting a weak vtable. The vtable will be weak if there is 15492 // no key function or the key function is inlined. Don't warn in C++ ABIs 15493 // that lack key functions, since the user won't be able to make one. 15494 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() && 15495 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) { 15496 const FunctionDecl *KeyFunctionDef = nullptr; 15497 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) && 15498 KeyFunctionDef->isInlined())) { 15499 Diag(Class->getLocation(), 15500 ClassTSK == TSK_ExplicitInstantiationDefinition 15501 ? diag::warn_weak_template_vtable 15502 : diag::warn_weak_vtable) 15503 << Class; 15504 } 15505 } 15506 } 15507 VTableUses.clear(); 15508 15509 return DefinedAnything; 15510 } 15511 15512 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, 15513 const CXXRecordDecl *RD) { 15514 for (const auto *I : RD->methods()) 15515 if (I->isVirtual() && !I->isPure()) 15516 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>()); 15517 } 15518 15519 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, 15520 const CXXRecordDecl *RD, 15521 bool ConstexprOnly) { 15522 // Mark all functions which will appear in RD's vtable as used. 15523 CXXFinalOverriderMap FinalOverriders; 15524 RD->getFinalOverriders(FinalOverriders); 15525 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), 15526 E = FinalOverriders.end(); 15527 I != E; ++I) { 15528 for (OverridingMethods::const_iterator OI = I->second.begin(), 15529 OE = I->second.end(); 15530 OI != OE; ++OI) { 15531 assert(OI->second.size() > 0 && "no final overrider"); 15532 CXXMethodDecl *Overrider = OI->second.front().Method; 15533 15534 // C++ [basic.def.odr]p2: 15535 // [...] A virtual member function is used if it is not pure. [...] 15536 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr())) 15537 MarkFunctionReferenced(Loc, Overrider); 15538 } 15539 } 15540 15541 // Only classes that have virtual bases need a VTT. 15542 if (RD->getNumVBases() == 0) 15543 return; 15544 15545 for (const auto &I : RD->bases()) { 15546 const auto *Base = 15547 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 15548 if (Base->getNumVBases() == 0) 15549 continue; 15550 MarkVirtualMembersReferenced(Loc, Base); 15551 } 15552 } 15553 15554 /// SetIvarInitializers - This routine builds initialization ASTs for the 15555 /// Objective-C implementation whose ivars need be initialized. 15556 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { 15557 if (!getLangOpts().CPlusPlus) 15558 return; 15559 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { 15560 SmallVector<ObjCIvarDecl*, 8> ivars; 15561 CollectIvarsToConstructOrDestruct(OID, ivars); 15562 if (ivars.empty()) 15563 return; 15564 SmallVector<CXXCtorInitializer*, 32> AllToInit; 15565 for (unsigned i = 0; i < ivars.size(); i++) { 15566 FieldDecl *Field = ivars[i]; 15567 if (Field->isInvalidDecl()) 15568 continue; 15569 15570 CXXCtorInitializer *Member; 15571 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); 15572 InitializationKind InitKind = 15573 InitializationKind::CreateDefault(ObjCImplementation->getLocation()); 15574 15575 InitializationSequence InitSeq(*this, InitEntity, InitKind, None); 15576 ExprResult MemberInit = 15577 InitSeq.Perform(*this, InitEntity, InitKind, None); 15578 MemberInit = MaybeCreateExprWithCleanups(MemberInit); 15579 // Note, MemberInit could actually come back empty if no initialization 15580 // is required (e.g., because it would call a trivial default constructor) 15581 if (!MemberInit.get() || MemberInit.isInvalid()) 15582 continue; 15583 15584 Member = 15585 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(), 15586 SourceLocation(), 15587 MemberInit.getAs<Expr>(), 15588 SourceLocation()); 15589 AllToInit.push_back(Member); 15590 15591 // Be sure that the destructor is accessible and is marked as referenced. 15592 if (const RecordType *RecordTy = 15593 Context.getBaseElementType(Field->getType()) 15594 ->getAs<RecordType>()) { 15595 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); 15596 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 15597 MarkFunctionReferenced(Field->getLocation(), Destructor); 15598 CheckDestructorAccess(Field->getLocation(), Destructor, 15599 PDiag(diag::err_access_dtor_ivar) 15600 << Context.getBaseElementType(Field->getType())); 15601 } 15602 } 15603 } 15604 ObjCImplementation->setIvarInitializers(Context, 15605 AllToInit.data(), AllToInit.size()); 15606 } 15607 } 15608 15609 static 15610 void DelegatingCycleHelper(CXXConstructorDecl* Ctor, 15611 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid, 15612 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid, 15613 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current, 15614 Sema &S) { 15615 if (Ctor->isInvalidDecl()) 15616 return; 15617 15618 CXXConstructorDecl *Target = Ctor->getTargetConstructor(); 15619 15620 // Target may not be determinable yet, for instance if this is a dependent 15621 // call in an uninstantiated template. 15622 if (Target) { 15623 const FunctionDecl *FNTarget = nullptr; 15624 (void)Target->hasBody(FNTarget); 15625 Target = const_cast<CXXConstructorDecl*>( 15626 cast_or_null<CXXConstructorDecl>(FNTarget)); 15627 } 15628 15629 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), 15630 // Avoid dereferencing a null pointer here. 15631 *TCanonical = Target? Target->getCanonicalDecl() : nullptr; 15632 15633 if (!Current.insert(Canonical).second) 15634 return; 15635 15636 // We know that beyond here, we aren't chaining into a cycle. 15637 if (!Target || !Target->isDelegatingConstructor() || 15638 Target->isInvalidDecl() || Valid.count(TCanonical)) { 15639 Valid.insert(Current.begin(), Current.end()); 15640 Current.clear(); 15641 // We've hit a cycle. 15642 } else if (TCanonical == Canonical || Invalid.count(TCanonical) || 15643 Current.count(TCanonical)) { 15644 // If we haven't diagnosed this cycle yet, do so now. 15645 if (!Invalid.count(TCanonical)) { 15646 S.Diag((*Ctor->init_begin())->getSourceLocation(), 15647 diag::warn_delegating_ctor_cycle) 15648 << Ctor; 15649 15650 // Don't add a note for a function delegating directly to itself. 15651 if (TCanonical != Canonical) 15652 S.Diag(Target->getLocation(), diag::note_it_delegates_to); 15653 15654 CXXConstructorDecl *C = Target; 15655 while (C->getCanonicalDecl() != Canonical) { 15656 const FunctionDecl *FNTarget = nullptr; 15657 (void)C->getTargetConstructor()->hasBody(FNTarget); 15658 assert(FNTarget && "Ctor cycle through bodiless function"); 15659 15660 C = const_cast<CXXConstructorDecl*>( 15661 cast<CXXConstructorDecl>(FNTarget)); 15662 S.Diag(C->getLocation(), diag::note_which_delegates_to); 15663 } 15664 } 15665 15666 Invalid.insert(Current.begin(), Current.end()); 15667 Current.clear(); 15668 } else { 15669 DelegatingCycleHelper(Target, Valid, Invalid, Current, S); 15670 } 15671 } 15672 15673 15674 void Sema::CheckDelegatingCtorCycles() { 15675 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; 15676 15677 for (DelegatingCtorDeclsType::iterator 15678 I = DelegatingCtorDecls.begin(ExternalSource), 15679 E = DelegatingCtorDecls.end(); 15680 I != E; ++I) 15681 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); 15682 15683 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) 15684 (*CI)->setInvalidDecl(); 15685 } 15686 15687 namespace { 15688 /// AST visitor that finds references to the 'this' expression. 15689 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> { 15690 Sema &S; 15691 15692 public: 15693 explicit FindCXXThisExpr(Sema &S) : S(S) { } 15694 15695 bool VisitCXXThisExpr(CXXThisExpr *E) { 15696 S.Diag(E->getLocation(), diag::err_this_static_member_func) 15697 << E->isImplicit(); 15698 return false; 15699 } 15700 }; 15701 } 15702 15703 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { 15704 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 15705 if (!TSInfo) 15706 return false; 15707 15708 TypeLoc TL = TSInfo->getTypeLoc(); 15709 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 15710 if (!ProtoTL) 15711 return false; 15712 15713 // C++11 [expr.prim.general]p3: 15714 // [The expression this] shall not appear before the optional 15715 // cv-qualifier-seq and it shall not appear within the declaration of a 15716 // static member function (although its type and value category are defined 15717 // within a static member function as they are within a non-static member 15718 // function). [ Note: this is because declaration matching does not occur 15719 // until the complete declarator is known. - end note ] 15720 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 15721 FindCXXThisExpr Finder(*this); 15722 15723 // If the return type came after the cv-qualifier-seq, check it now. 15724 if (Proto->hasTrailingReturn() && 15725 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) 15726 return true; 15727 15728 // Check the exception specification. 15729 if (checkThisInStaticMemberFunctionExceptionSpec(Method)) 15730 return true; 15731 15732 return checkThisInStaticMemberFunctionAttributes(Method); 15733 } 15734 15735 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { 15736 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 15737 if (!TSInfo) 15738 return false; 15739 15740 TypeLoc TL = TSInfo->getTypeLoc(); 15741 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 15742 if (!ProtoTL) 15743 return false; 15744 15745 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 15746 FindCXXThisExpr Finder(*this); 15747 15748 switch (Proto->getExceptionSpecType()) { 15749 case EST_Unparsed: 15750 case EST_Uninstantiated: 15751 case EST_Unevaluated: 15752 case EST_BasicNoexcept: 15753 case EST_NoThrow: 15754 case EST_DynamicNone: 15755 case EST_MSAny: 15756 case EST_None: 15757 break; 15758 15759 case EST_DependentNoexcept: 15760 case EST_NoexceptFalse: 15761 case EST_NoexceptTrue: 15762 if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) 15763 return true; 15764 LLVM_FALLTHROUGH; 15765 15766 case EST_Dynamic: 15767 for (const auto &E : Proto->exceptions()) { 15768 if (!Finder.TraverseType(E)) 15769 return true; 15770 } 15771 break; 15772 } 15773 15774 return false; 15775 } 15776 15777 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { 15778 FindCXXThisExpr Finder(*this); 15779 15780 // Check attributes. 15781 for (const auto *A : Method->attrs()) { 15782 // FIXME: This should be emitted by tblgen. 15783 Expr *Arg = nullptr; 15784 ArrayRef<Expr *> Args; 15785 if (const auto *G = dyn_cast<GuardedByAttr>(A)) 15786 Arg = G->getArg(); 15787 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A)) 15788 Arg = G->getArg(); 15789 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A)) 15790 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size()); 15791 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A)) 15792 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size()); 15793 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) { 15794 Arg = ETLF->getSuccessValue(); 15795 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size()); 15796 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) { 15797 Arg = STLF->getSuccessValue(); 15798 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size()); 15799 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A)) 15800 Arg = LR->getArg(); 15801 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A)) 15802 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size()); 15803 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A)) 15804 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); 15805 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A)) 15806 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); 15807 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A)) 15808 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); 15809 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A)) 15810 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); 15811 15812 if (Arg && !Finder.TraverseStmt(Arg)) 15813 return true; 15814 15815 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 15816 if (!Finder.TraverseStmt(Args[I])) 15817 return true; 15818 } 15819 } 15820 15821 return false; 15822 } 15823 15824 void Sema::checkExceptionSpecification( 15825 bool IsTopLevel, ExceptionSpecificationType EST, 15826 ArrayRef<ParsedType> DynamicExceptions, 15827 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr, 15828 SmallVectorImpl<QualType> &Exceptions, 15829 FunctionProtoType::ExceptionSpecInfo &ESI) { 15830 Exceptions.clear(); 15831 ESI.Type = EST; 15832 if (EST == EST_Dynamic) { 15833 Exceptions.reserve(DynamicExceptions.size()); 15834 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { 15835 // FIXME: Preserve type source info. 15836 QualType ET = GetTypeFromParser(DynamicExceptions[ei]); 15837 15838 if (IsTopLevel) { 15839 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 15840 collectUnexpandedParameterPacks(ET, Unexpanded); 15841 if (!Unexpanded.empty()) { 15842 DiagnoseUnexpandedParameterPacks( 15843 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType, 15844 Unexpanded); 15845 continue; 15846 } 15847 } 15848 15849 // Check that the type is valid for an exception spec, and 15850 // drop it if not. 15851 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei])) 15852 Exceptions.push_back(ET); 15853 } 15854 ESI.Exceptions = Exceptions; 15855 return; 15856 } 15857 15858 if (isComputedNoexcept(EST)) { 15859 assert((NoexceptExpr->isTypeDependent() || 15860 NoexceptExpr->getType()->getCanonicalTypeUnqualified() == 15861 Context.BoolTy) && 15862 "Parser should have made sure that the expression is boolean"); 15863 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) { 15864 ESI.Type = EST_BasicNoexcept; 15865 return; 15866 } 15867 15868 ESI.NoexceptExpr = NoexceptExpr; 15869 return; 15870 } 15871 } 15872 15873 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD, 15874 ExceptionSpecificationType EST, 15875 SourceRange SpecificationRange, 15876 ArrayRef<ParsedType> DynamicExceptions, 15877 ArrayRef<SourceRange> DynamicExceptionRanges, 15878 Expr *NoexceptExpr) { 15879 if (!MethodD) 15880 return; 15881 15882 // Dig out the method we're referring to. 15883 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD)) 15884 MethodD = FunTmpl->getTemplatedDecl(); 15885 15886 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD); 15887 if (!Method) 15888 return; 15889 15890 // Check the exception specification. 15891 llvm::SmallVector<QualType, 4> Exceptions; 15892 FunctionProtoType::ExceptionSpecInfo ESI; 15893 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions, 15894 DynamicExceptionRanges, NoexceptExpr, Exceptions, 15895 ESI); 15896 15897 // Update the exception specification on the function type. 15898 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true); 15899 15900 if (Method->isStatic()) 15901 checkThisInStaticMemberFunctionExceptionSpec(Method); 15902 15903 if (Method->isVirtual()) { 15904 // Check overrides, which we previously had to delay. 15905 for (const CXXMethodDecl *O : Method->overridden_methods()) 15906 CheckOverridingFunctionExceptionSpec(Method, O); 15907 } 15908 } 15909 15910 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. 15911 /// 15912 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, 15913 SourceLocation DeclStart, Declarator &D, 15914 Expr *BitWidth, 15915 InClassInitStyle InitStyle, 15916 AccessSpecifier AS, 15917 const ParsedAttr &MSPropertyAttr) { 15918 IdentifierInfo *II = D.getIdentifier(); 15919 if (!II) { 15920 Diag(DeclStart, diag::err_anonymous_property); 15921 return nullptr; 15922 } 15923 SourceLocation Loc = D.getIdentifierLoc(); 15924 15925 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 15926 QualType T = TInfo->getType(); 15927 if (getLangOpts().CPlusPlus) { 15928 CheckExtraCXXDefaultArguments(D); 15929 15930 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 15931 UPPC_DataMemberType)) { 15932 D.setInvalidType(); 15933 T = Context.IntTy; 15934 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 15935 } 15936 } 15937 15938 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 15939 15940 if (D.getDeclSpec().isInlineSpecified()) 15941 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 15942 << getLangOpts().CPlusPlus17; 15943 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 15944 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 15945 diag::err_invalid_thread) 15946 << DeclSpec::getSpecifierName(TSCS); 15947 15948 // Check to see if this name was declared as a member previously 15949 NamedDecl *PrevDecl = nullptr; 15950 LookupResult Previous(*this, II, Loc, LookupMemberName, 15951 ForVisibleRedeclaration); 15952 LookupName(Previous, S); 15953 switch (Previous.getResultKind()) { 15954 case LookupResult::Found: 15955 case LookupResult::FoundUnresolvedValue: 15956 PrevDecl = Previous.getAsSingle<NamedDecl>(); 15957 break; 15958 15959 case LookupResult::FoundOverloaded: 15960 PrevDecl = Previous.getRepresentativeDecl(); 15961 break; 15962 15963 case LookupResult::NotFound: 15964 case LookupResult::NotFoundInCurrentInstantiation: 15965 case LookupResult::Ambiguous: 15966 break; 15967 } 15968 15969 if (PrevDecl && PrevDecl->isTemplateParameter()) { 15970 // Maybe we will complain about the shadowed template parameter. 15971 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 15972 // Just pretend that we didn't see the previous declaration. 15973 PrevDecl = nullptr; 15974 } 15975 15976 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 15977 PrevDecl = nullptr; 15978 15979 SourceLocation TSSL = D.getBeginLoc(); 15980 MSPropertyDecl *NewPD = 15981 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL, 15982 MSPropertyAttr.getPropertyDataGetter(), 15983 MSPropertyAttr.getPropertyDataSetter()); 15984 ProcessDeclAttributes(TUScope, NewPD, D); 15985 NewPD->setAccess(AS); 15986 15987 if (NewPD->isInvalidDecl()) 15988 Record->setInvalidDecl(); 15989 15990 if (D.getDeclSpec().isModulePrivateSpecified()) 15991 NewPD->setModulePrivate(); 15992 15993 if (NewPD->isInvalidDecl() && PrevDecl) { 15994 // Don't introduce NewFD into scope; there's already something 15995 // with the same name in the same scope. 15996 } else if (II) { 15997 PushOnScopeChains(NewPD, S); 15998 } else 15999 Record->addDecl(NewPD); 16000 16001 return NewPD; 16002 } 16003