xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaDeclCXX.cpp (revision 79ac3c12a714bcd3f2354c52d948aed9575c46d6)
1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/ComparisonCategories.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/AST/TypeOrdering.h"
27 #include "clang/Basic/AttributeCommonInfo.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/CXXFieldCollector.h"
33 #include "clang/Sema/DeclSpec.h"
34 #include "clang/Sema/Initialization.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedTemplate.h"
37 #include "clang/Sema/Scope.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/SemaInternal.h"
40 #include "clang/Sema/Template.h"
41 #include "llvm/ADT/ScopeExit.h"
42 #include "llvm/ADT/SmallString.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/ADT/StringExtras.h"
45 #include <map>
46 #include <set>
47 
48 using namespace clang;
49 
50 //===----------------------------------------------------------------------===//
51 // CheckDefaultArgumentVisitor
52 //===----------------------------------------------------------------------===//
53 
54 namespace {
55 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
56 /// the default argument of a parameter to determine whether it
57 /// contains any ill-formed subexpressions. For example, this will
58 /// diagnose the use of local variables or parameters within the
59 /// default argument expression.
60 class CheckDefaultArgumentVisitor
61     : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> {
62   Sema &S;
63   const Expr *DefaultArg;
64 
65 public:
66   CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg)
67       : S(S), DefaultArg(DefaultArg) {}
68 
69   bool VisitExpr(const Expr *Node);
70   bool VisitDeclRefExpr(const DeclRefExpr *DRE);
71   bool VisitCXXThisExpr(const CXXThisExpr *ThisE);
72   bool VisitLambdaExpr(const LambdaExpr *Lambda);
73   bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE);
74 };
75 
76 /// VisitExpr - Visit all of the children of this expression.
77 bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) {
78   bool IsInvalid = false;
79   for (const Stmt *SubStmt : Node->children())
80     IsInvalid |= Visit(SubStmt);
81   return IsInvalid;
82 }
83 
84 /// VisitDeclRefExpr - Visit a reference to a declaration, to
85 /// determine whether this declaration can be used in the default
86 /// argument expression.
87 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) {
88   const NamedDecl *Decl = DRE->getDecl();
89   if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) {
90     // C++ [dcl.fct.default]p9:
91     //   [...] parameters of a function shall not be used in default
92     //   argument expressions, even if they are not evaluated. [...]
93     //
94     // C++17 [dcl.fct.default]p9 (by CWG 2082):
95     //   [...] A parameter shall not appear as a potentially-evaluated
96     //   expression in a default argument. [...]
97     //
98     if (DRE->isNonOdrUse() != NOUR_Unevaluated)
99       return S.Diag(DRE->getBeginLoc(),
100                     diag::err_param_default_argument_references_param)
101              << Param->getDeclName() << DefaultArg->getSourceRange();
102   } else if (const auto *VDecl = dyn_cast<VarDecl>(Decl)) {
103     // C++ [dcl.fct.default]p7:
104     //   Local variables shall not be used in default argument
105     //   expressions.
106     //
107     // C++17 [dcl.fct.default]p7 (by CWG 2082):
108     //   A local variable shall not appear as a potentially-evaluated
109     //   expression in a default argument.
110     //
111     // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346):
112     //   Note: A local variable cannot be odr-used (6.3) in a default argument.
113     //
114     if (VDecl->isLocalVarDecl() && !DRE->isNonOdrUse())
115       return S.Diag(DRE->getBeginLoc(),
116                     diag::err_param_default_argument_references_local)
117              << VDecl->getDeclName() << DefaultArg->getSourceRange();
118   }
119 
120   return false;
121 }
122 
123 /// VisitCXXThisExpr - Visit a C++ "this" expression.
124 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) {
125   // C++ [dcl.fct.default]p8:
126   //   The keyword this shall not be used in a default argument of a
127   //   member function.
128   return S.Diag(ThisE->getBeginLoc(),
129                 diag::err_param_default_argument_references_this)
130          << ThisE->getSourceRange();
131 }
132 
133 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(
134     const PseudoObjectExpr *POE) {
135   bool Invalid = false;
136   for (const Expr *E : POE->semantics()) {
137     // Look through bindings.
138     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
139       E = OVE->getSourceExpr();
140       assert(E && "pseudo-object binding without source expression?");
141     }
142 
143     Invalid |= Visit(E);
144   }
145   return Invalid;
146 }
147 
148 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) {
149   // C++11 [expr.lambda.prim]p13:
150   //   A lambda-expression appearing in a default argument shall not
151   //   implicitly or explicitly capture any entity.
152   if (Lambda->capture_begin() == Lambda->capture_end())
153     return false;
154 
155   return S.Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg);
156 }
157 } // namespace
158 
159 void
160 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
161                                                  const CXXMethodDecl *Method) {
162   // If we have an MSAny spec already, don't bother.
163   if (!Method || ComputedEST == EST_MSAny)
164     return;
165 
166   const FunctionProtoType *Proto
167     = Method->getType()->getAs<FunctionProtoType>();
168   Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
169   if (!Proto)
170     return;
171 
172   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
173 
174   // If we have a throw-all spec at this point, ignore the function.
175   if (ComputedEST == EST_None)
176     return;
177 
178   if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
179     EST = EST_BasicNoexcept;
180 
181   switch (EST) {
182   case EST_Unparsed:
183   case EST_Uninstantiated:
184   case EST_Unevaluated:
185     llvm_unreachable("should not see unresolved exception specs here");
186 
187   // If this function can throw any exceptions, make a note of that.
188   case EST_MSAny:
189   case EST_None:
190     // FIXME: Whichever we see last of MSAny and None determines our result.
191     // We should make a consistent, order-independent choice here.
192     ClearExceptions();
193     ComputedEST = EST;
194     return;
195   case EST_NoexceptFalse:
196     ClearExceptions();
197     ComputedEST = EST_None;
198     return;
199   // FIXME: If the call to this decl is using any of its default arguments, we
200   // need to search them for potentially-throwing calls.
201   // If this function has a basic noexcept, it doesn't affect the outcome.
202   case EST_BasicNoexcept:
203   case EST_NoexceptTrue:
204   case EST_NoThrow:
205     return;
206   // If we're still at noexcept(true) and there's a throw() callee,
207   // change to that specification.
208   case EST_DynamicNone:
209     if (ComputedEST == EST_BasicNoexcept)
210       ComputedEST = EST_DynamicNone;
211     return;
212   case EST_DependentNoexcept:
213     llvm_unreachable(
214         "should not generate implicit declarations for dependent cases");
215   case EST_Dynamic:
216     break;
217   }
218   assert(EST == EST_Dynamic && "EST case not considered earlier.");
219   assert(ComputedEST != EST_None &&
220          "Shouldn't collect exceptions when throw-all is guaranteed.");
221   ComputedEST = EST_Dynamic;
222   // Record the exceptions in this function's exception specification.
223   for (const auto &E : Proto->exceptions())
224     if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
225       Exceptions.push_back(E);
226 }
227 
228 void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) {
229   if (!S || ComputedEST == EST_MSAny)
230     return;
231 
232   // FIXME:
233   //
234   // C++0x [except.spec]p14:
235   //   [An] implicit exception-specification specifies the type-id T if and
236   // only if T is allowed by the exception-specification of a function directly
237   // invoked by f's implicit definition; f shall allow all exceptions if any
238   // function it directly invokes allows all exceptions, and f shall allow no
239   // exceptions if every function it directly invokes allows no exceptions.
240   //
241   // Note in particular that if an implicit exception-specification is generated
242   // for a function containing a throw-expression, that specification can still
243   // be noexcept(true).
244   //
245   // Note also that 'directly invoked' is not defined in the standard, and there
246   // is no indication that we should only consider potentially-evaluated calls.
247   //
248   // Ultimately we should implement the intent of the standard: the exception
249   // specification should be the set of exceptions which can be thrown by the
250   // implicit definition. For now, we assume that any non-nothrow expression can
251   // throw any exception.
252 
253   if (Self->canThrow(S))
254     ComputedEST = EST_None;
255 }
256 
257 ExprResult Sema::ConvertParamDefaultArgument(const ParmVarDecl *Param,
258                                              Expr *Arg,
259                                              SourceLocation EqualLoc) {
260   if (RequireCompleteType(Param->getLocation(), Param->getType(),
261                           diag::err_typecheck_decl_incomplete_type))
262     return true;
263 
264   // C++ [dcl.fct.default]p5
265   //   A default argument expression is implicitly converted (clause
266   //   4) to the parameter type. The default argument expression has
267   //   the same semantic constraints as the initializer expression in
268   //   a declaration of a variable of the parameter type, using the
269   //   copy-initialization semantics (8.5).
270   InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
271                                                                     Param);
272   InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
273                                                            EqualLoc);
274   InitializationSequence InitSeq(*this, Entity, Kind, Arg);
275   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
276   if (Result.isInvalid())
277     return true;
278   Arg = Result.getAs<Expr>();
279 
280   CheckCompletedExpr(Arg, EqualLoc);
281   Arg = MaybeCreateExprWithCleanups(Arg);
282 
283   return Arg;
284 }
285 
286 void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
287                                    SourceLocation EqualLoc) {
288   // Add the default argument to the parameter
289   Param->setDefaultArg(Arg);
290 
291   // We have already instantiated this parameter; provide each of the
292   // instantiations with the uninstantiated default argument.
293   UnparsedDefaultArgInstantiationsMap::iterator InstPos
294     = UnparsedDefaultArgInstantiations.find(Param);
295   if (InstPos != UnparsedDefaultArgInstantiations.end()) {
296     for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
297       InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
298 
299     // We're done tracking this parameter's instantiations.
300     UnparsedDefaultArgInstantiations.erase(InstPos);
301   }
302 }
303 
304 /// ActOnParamDefaultArgument - Check whether the default argument
305 /// provided for a function parameter is well-formed. If so, attach it
306 /// to the parameter declaration.
307 void
308 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
309                                 Expr *DefaultArg) {
310   if (!param || !DefaultArg)
311     return;
312 
313   ParmVarDecl *Param = cast<ParmVarDecl>(param);
314   UnparsedDefaultArgLocs.erase(Param);
315 
316   auto Fail = [&] {
317     Param->setInvalidDecl();
318     Param->setDefaultArg(new (Context) OpaqueValueExpr(
319         EqualLoc, Param->getType().getNonReferenceType(), VK_RValue));
320   };
321 
322   // Default arguments are only permitted in C++
323   if (!getLangOpts().CPlusPlus) {
324     Diag(EqualLoc, diag::err_param_default_argument)
325       << DefaultArg->getSourceRange();
326     return Fail();
327   }
328 
329   // Check for unexpanded parameter packs.
330   if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
331     return Fail();
332   }
333 
334   // C++11 [dcl.fct.default]p3
335   //   A default argument expression [...] shall not be specified for a
336   //   parameter pack.
337   if (Param->isParameterPack()) {
338     Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
339         << DefaultArg->getSourceRange();
340     // Recover by discarding the default argument.
341     Param->setDefaultArg(nullptr);
342     return;
343   }
344 
345   ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc);
346   if (Result.isInvalid())
347     return Fail();
348 
349   DefaultArg = Result.getAs<Expr>();
350 
351   // Check that the default argument is well-formed
352   CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg);
353   if (DefaultArgChecker.Visit(DefaultArg))
354     return Fail();
355 
356   SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
357 }
358 
359 /// ActOnParamUnparsedDefaultArgument - We've seen a default
360 /// argument for a function parameter, but we can't parse it yet
361 /// because we're inside a class definition. Note that this default
362 /// argument will be parsed later.
363 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
364                                              SourceLocation EqualLoc,
365                                              SourceLocation ArgLoc) {
366   if (!param)
367     return;
368 
369   ParmVarDecl *Param = cast<ParmVarDecl>(param);
370   Param->setUnparsedDefaultArg();
371   UnparsedDefaultArgLocs[Param] = ArgLoc;
372 }
373 
374 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
375 /// the default argument for the parameter param failed.
376 void Sema::ActOnParamDefaultArgumentError(Decl *param,
377                                           SourceLocation EqualLoc) {
378   if (!param)
379     return;
380 
381   ParmVarDecl *Param = cast<ParmVarDecl>(param);
382   Param->setInvalidDecl();
383   UnparsedDefaultArgLocs.erase(Param);
384   Param->setDefaultArg(new(Context)
385                        OpaqueValueExpr(EqualLoc,
386                                        Param->getType().getNonReferenceType(),
387                                        VK_RValue));
388 }
389 
390 /// CheckExtraCXXDefaultArguments - Check for any extra default
391 /// arguments in the declarator, which is not a function declaration
392 /// or definition and therefore is not permitted to have default
393 /// arguments. This routine should be invoked for every declarator
394 /// that is not a function declaration or definition.
395 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
396   // C++ [dcl.fct.default]p3
397   //   A default argument expression shall be specified only in the
398   //   parameter-declaration-clause of a function declaration or in a
399   //   template-parameter (14.1). It shall not be specified for a
400   //   parameter pack. If it is specified in a
401   //   parameter-declaration-clause, it shall not occur within a
402   //   declarator or abstract-declarator of a parameter-declaration.
403   bool MightBeFunction = D.isFunctionDeclarationContext();
404   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
405     DeclaratorChunk &chunk = D.getTypeObject(i);
406     if (chunk.Kind == DeclaratorChunk::Function) {
407       if (MightBeFunction) {
408         // This is a function declaration. It can have default arguments, but
409         // keep looking in case its return type is a function type with default
410         // arguments.
411         MightBeFunction = false;
412         continue;
413       }
414       for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
415            ++argIdx) {
416         ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
417         if (Param->hasUnparsedDefaultArg()) {
418           std::unique_ptr<CachedTokens> Toks =
419               std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
420           SourceRange SR;
421           if (Toks->size() > 1)
422             SR = SourceRange((*Toks)[1].getLocation(),
423                              Toks->back().getLocation());
424           else
425             SR = UnparsedDefaultArgLocs[Param];
426           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
427             << SR;
428         } else if (Param->getDefaultArg()) {
429           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
430             << Param->getDefaultArg()->getSourceRange();
431           Param->setDefaultArg(nullptr);
432         }
433       }
434     } else if (chunk.Kind != DeclaratorChunk::Paren) {
435       MightBeFunction = false;
436     }
437   }
438 }
439 
440 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
441   return std::any_of(FD->param_begin(), FD->param_end(), [](ParmVarDecl *P) {
442     return P->hasDefaultArg() && !P->hasInheritedDefaultArg();
443   });
444 }
445 
446 /// MergeCXXFunctionDecl - Merge two declarations of the same C++
447 /// function, once we already know that they have the same
448 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an
449 /// error, false otherwise.
450 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
451                                 Scope *S) {
452   bool Invalid = false;
453 
454   // The declaration context corresponding to the scope is the semantic
455   // parent, unless this is a local function declaration, in which case
456   // it is that surrounding function.
457   DeclContext *ScopeDC = New->isLocalExternDecl()
458                              ? New->getLexicalDeclContext()
459                              : New->getDeclContext();
460 
461   // Find the previous declaration for the purpose of default arguments.
462   FunctionDecl *PrevForDefaultArgs = Old;
463   for (/**/; PrevForDefaultArgs;
464        // Don't bother looking back past the latest decl if this is a local
465        // extern declaration; nothing else could work.
466        PrevForDefaultArgs = New->isLocalExternDecl()
467                                 ? nullptr
468                                 : PrevForDefaultArgs->getPreviousDecl()) {
469     // Ignore hidden declarations.
470     if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
471       continue;
472 
473     if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
474         !New->isCXXClassMember()) {
475       // Ignore default arguments of old decl if they are not in
476       // the same scope and this is not an out-of-line definition of
477       // a member function.
478       continue;
479     }
480 
481     if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
482       // If only one of these is a local function declaration, then they are
483       // declared in different scopes, even though isDeclInScope may think
484       // they're in the same scope. (If both are local, the scope check is
485       // sufficient, and if neither is local, then they are in the same scope.)
486       continue;
487     }
488 
489     // We found the right previous declaration.
490     break;
491   }
492 
493   // C++ [dcl.fct.default]p4:
494   //   For non-template functions, default arguments can be added in
495   //   later declarations of a function in the same
496   //   scope. Declarations in different scopes have completely
497   //   distinct sets of default arguments. That is, declarations in
498   //   inner scopes do not acquire default arguments from
499   //   declarations in outer scopes, and vice versa. In a given
500   //   function declaration, all parameters subsequent to a
501   //   parameter with a default argument shall have default
502   //   arguments supplied in this or previous declarations. A
503   //   default argument shall not be redefined by a later
504   //   declaration (not even to the same value).
505   //
506   // C++ [dcl.fct.default]p6:
507   //   Except for member functions of class templates, the default arguments
508   //   in a member function definition that appears outside of the class
509   //   definition are added to the set of default arguments provided by the
510   //   member function declaration in the class definition.
511   for (unsigned p = 0, NumParams = PrevForDefaultArgs
512                                        ? PrevForDefaultArgs->getNumParams()
513                                        : 0;
514        p < NumParams; ++p) {
515     ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
516     ParmVarDecl *NewParam = New->getParamDecl(p);
517 
518     bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
519     bool NewParamHasDfl = NewParam->hasDefaultArg();
520 
521     if (OldParamHasDfl && NewParamHasDfl) {
522       unsigned DiagDefaultParamID =
523         diag::err_param_default_argument_redefinition;
524 
525       // MSVC accepts that default parameters be redefined for member functions
526       // of template class. The new default parameter's value is ignored.
527       Invalid = true;
528       if (getLangOpts().MicrosoftExt) {
529         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
530         if (MD && MD->getParent()->getDescribedClassTemplate()) {
531           // Merge the old default argument into the new parameter.
532           NewParam->setHasInheritedDefaultArg();
533           if (OldParam->hasUninstantiatedDefaultArg())
534             NewParam->setUninstantiatedDefaultArg(
535                                       OldParam->getUninstantiatedDefaultArg());
536           else
537             NewParam->setDefaultArg(OldParam->getInit());
538           DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
539           Invalid = false;
540         }
541       }
542 
543       // FIXME: If we knew where the '=' was, we could easily provide a fix-it
544       // hint here. Alternatively, we could walk the type-source information
545       // for NewParam to find the last source location in the type... but it
546       // isn't worth the effort right now. This is the kind of test case that
547       // is hard to get right:
548       //   int f(int);
549       //   void g(int (*fp)(int) = f);
550       //   void g(int (*fp)(int) = &f);
551       Diag(NewParam->getLocation(), DiagDefaultParamID)
552         << NewParam->getDefaultArgRange();
553 
554       // Look for the function declaration where the default argument was
555       // actually written, which may be a declaration prior to Old.
556       for (auto Older = PrevForDefaultArgs;
557            OldParam->hasInheritedDefaultArg(); /**/) {
558         Older = Older->getPreviousDecl();
559         OldParam = Older->getParamDecl(p);
560       }
561 
562       Diag(OldParam->getLocation(), diag::note_previous_definition)
563         << OldParam->getDefaultArgRange();
564     } else if (OldParamHasDfl) {
565       // Merge the old default argument into the new parameter unless the new
566       // function is a friend declaration in a template class. In the latter
567       // case the default arguments will be inherited when the friend
568       // declaration will be instantiated.
569       if (New->getFriendObjectKind() == Decl::FOK_None ||
570           !New->getLexicalDeclContext()->isDependentContext()) {
571         // It's important to use getInit() here;  getDefaultArg()
572         // strips off any top-level ExprWithCleanups.
573         NewParam->setHasInheritedDefaultArg();
574         if (OldParam->hasUnparsedDefaultArg())
575           NewParam->setUnparsedDefaultArg();
576         else if (OldParam->hasUninstantiatedDefaultArg())
577           NewParam->setUninstantiatedDefaultArg(
578                                        OldParam->getUninstantiatedDefaultArg());
579         else
580           NewParam->setDefaultArg(OldParam->getInit());
581       }
582     } else if (NewParamHasDfl) {
583       if (New->getDescribedFunctionTemplate()) {
584         // Paragraph 4, quoted above, only applies to non-template functions.
585         Diag(NewParam->getLocation(),
586              diag::err_param_default_argument_template_redecl)
587           << NewParam->getDefaultArgRange();
588         Diag(PrevForDefaultArgs->getLocation(),
589              diag::note_template_prev_declaration)
590             << false;
591       } else if (New->getTemplateSpecializationKind()
592                    != TSK_ImplicitInstantiation &&
593                  New->getTemplateSpecializationKind() != TSK_Undeclared) {
594         // C++ [temp.expr.spec]p21:
595         //   Default function arguments shall not be specified in a declaration
596         //   or a definition for one of the following explicit specializations:
597         //     - the explicit specialization of a function template;
598         //     - the explicit specialization of a member function template;
599         //     - the explicit specialization of a member function of a class
600         //       template where the class template specialization to which the
601         //       member function specialization belongs is implicitly
602         //       instantiated.
603         Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
604           << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
605           << New->getDeclName()
606           << NewParam->getDefaultArgRange();
607       } else if (New->getDeclContext()->isDependentContext()) {
608         // C++ [dcl.fct.default]p6 (DR217):
609         //   Default arguments for a member function of a class template shall
610         //   be specified on the initial declaration of the member function
611         //   within the class template.
612         //
613         // Reading the tea leaves a bit in DR217 and its reference to DR205
614         // leads me to the conclusion that one cannot add default function
615         // arguments for an out-of-line definition of a member function of a
616         // dependent type.
617         int WhichKind = 2;
618         if (CXXRecordDecl *Record
619               = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
620           if (Record->getDescribedClassTemplate())
621             WhichKind = 0;
622           else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
623             WhichKind = 1;
624           else
625             WhichKind = 2;
626         }
627 
628         Diag(NewParam->getLocation(),
629              diag::err_param_default_argument_member_template_redecl)
630           << WhichKind
631           << NewParam->getDefaultArgRange();
632       }
633     }
634   }
635 
636   // DR1344: If a default argument is added outside a class definition and that
637   // default argument makes the function a special member function, the program
638   // is ill-formed. This can only happen for constructors.
639   if (isa<CXXConstructorDecl>(New) &&
640       New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
641     CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
642                      OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
643     if (NewSM != OldSM) {
644       ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
645       assert(NewParam->hasDefaultArg());
646       Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
647         << NewParam->getDefaultArgRange() << NewSM;
648       Diag(Old->getLocation(), diag::note_previous_declaration);
649     }
650   }
651 
652   const FunctionDecl *Def;
653   // C++11 [dcl.constexpr]p1: If any declaration of a function or function
654   // template has a constexpr specifier then all its declarations shall
655   // contain the constexpr specifier.
656   if (New->getConstexprKind() != Old->getConstexprKind()) {
657     Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
658         << New << static_cast<int>(New->getConstexprKind())
659         << static_cast<int>(Old->getConstexprKind());
660     Diag(Old->getLocation(), diag::note_previous_declaration);
661     Invalid = true;
662   } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
663              Old->isDefined(Def) &&
664              // If a friend function is inlined but does not have 'inline'
665              // specifier, it is a definition. Do not report attribute conflict
666              // in this case, redefinition will be diagnosed later.
667              (New->isInlineSpecified() ||
668               New->getFriendObjectKind() == Decl::FOK_None)) {
669     // C++11 [dcl.fcn.spec]p4:
670     //   If the definition of a function appears in a translation unit before its
671     //   first declaration as inline, the program is ill-formed.
672     Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
673     Diag(Def->getLocation(), diag::note_previous_definition);
674     Invalid = true;
675   }
676 
677   // C++17 [temp.deduct.guide]p3:
678   //   Two deduction guide declarations in the same translation unit
679   //   for the same class template shall not have equivalent
680   //   parameter-declaration-clauses.
681   if (isa<CXXDeductionGuideDecl>(New) &&
682       !New->isFunctionTemplateSpecialization() && isVisible(Old)) {
683     Diag(New->getLocation(), diag::err_deduction_guide_redeclared);
684     Diag(Old->getLocation(), diag::note_previous_declaration);
685   }
686 
687   // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
688   // argument expression, that declaration shall be a definition and shall be
689   // the only declaration of the function or function template in the
690   // translation unit.
691   if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
692       functionDeclHasDefaultArgument(Old)) {
693     Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
694     Diag(Old->getLocation(), diag::note_previous_declaration);
695     Invalid = true;
696   }
697 
698   // C++11 [temp.friend]p4 (DR329):
699   //   When a function is defined in a friend function declaration in a class
700   //   template, the function is instantiated when the function is odr-used.
701   //   The same restrictions on multiple declarations and definitions that
702   //   apply to non-template function declarations and definitions also apply
703   //   to these implicit definitions.
704   const FunctionDecl *OldDefinition = nullptr;
705   if (New->isThisDeclarationInstantiatedFromAFriendDefinition() &&
706       Old->isDefined(OldDefinition, true))
707     CheckForFunctionRedefinition(New, OldDefinition);
708 
709   return Invalid;
710 }
711 
712 NamedDecl *
713 Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
714                                    MultiTemplateParamsArg TemplateParamLists) {
715   assert(D.isDecompositionDeclarator());
716   const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
717 
718   // The syntax only allows a decomposition declarator as a simple-declaration,
719   // a for-range-declaration, or a condition in Clang, but we parse it in more
720   // cases than that.
721   if (!D.mayHaveDecompositionDeclarator()) {
722     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
723       << Decomp.getSourceRange();
724     return nullptr;
725   }
726 
727   if (!TemplateParamLists.empty()) {
728     // FIXME: There's no rule against this, but there are also no rules that
729     // would actually make it usable, so we reject it for now.
730     Diag(TemplateParamLists.front()->getTemplateLoc(),
731          diag::err_decomp_decl_template);
732     return nullptr;
733   }
734 
735   Diag(Decomp.getLSquareLoc(),
736        !getLangOpts().CPlusPlus17
737            ? diag::ext_decomp_decl
738            : D.getContext() == DeclaratorContext::Condition
739                  ? diag::ext_decomp_decl_cond
740                  : diag::warn_cxx14_compat_decomp_decl)
741       << Decomp.getSourceRange();
742 
743   // The semantic context is always just the current context.
744   DeclContext *const DC = CurContext;
745 
746   // C++17 [dcl.dcl]/8:
747   //   The decl-specifier-seq shall contain only the type-specifier auto
748   //   and cv-qualifiers.
749   // C++2a [dcl.dcl]/8:
750   //   If decl-specifier-seq contains any decl-specifier other than static,
751   //   thread_local, auto, or cv-qualifiers, the program is ill-formed.
752   auto &DS = D.getDeclSpec();
753   {
754     SmallVector<StringRef, 8> BadSpecifiers;
755     SmallVector<SourceLocation, 8> BadSpecifierLocs;
756     SmallVector<StringRef, 8> CPlusPlus20Specifiers;
757     SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs;
758     if (auto SCS = DS.getStorageClassSpec()) {
759       if (SCS == DeclSpec::SCS_static) {
760         CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS));
761         CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc());
762       } else {
763         BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
764         BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
765       }
766     }
767     if (auto TSCS = DS.getThreadStorageClassSpec()) {
768       CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS));
769       CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
770     }
771     if (DS.hasConstexprSpecifier()) {
772       BadSpecifiers.push_back(
773           DeclSpec::getSpecifierName(DS.getConstexprSpecifier()));
774       BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
775     }
776     if (DS.isInlineSpecified()) {
777       BadSpecifiers.push_back("inline");
778       BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
779     }
780     if (!BadSpecifiers.empty()) {
781       auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
782       Err << (int)BadSpecifiers.size()
783           << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
784       // Don't add FixItHints to remove the specifiers; we do still respect
785       // them when building the underlying variable.
786       for (auto Loc : BadSpecifierLocs)
787         Err << SourceRange(Loc, Loc);
788     } else if (!CPlusPlus20Specifiers.empty()) {
789       auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(),
790                          getLangOpts().CPlusPlus20
791                              ? diag::warn_cxx17_compat_decomp_decl_spec
792                              : diag::ext_decomp_decl_spec);
793       Warn << (int)CPlusPlus20Specifiers.size()
794            << llvm::join(CPlusPlus20Specifiers.begin(),
795                          CPlusPlus20Specifiers.end(), " ");
796       for (auto Loc : CPlusPlus20SpecifierLocs)
797         Warn << SourceRange(Loc, Loc);
798     }
799     // We can't recover from it being declared as a typedef.
800     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
801       return nullptr;
802   }
803 
804   // C++2a [dcl.struct.bind]p1:
805   //   A cv that includes volatile is deprecated
806   if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) &&
807       getLangOpts().CPlusPlus20)
808     Diag(DS.getVolatileSpecLoc(),
809          diag::warn_deprecated_volatile_structured_binding);
810 
811   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
812   QualType R = TInfo->getType();
813 
814   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
815                                       UPPC_DeclarationType))
816     D.setInvalidType();
817 
818   // The syntax only allows a single ref-qualifier prior to the decomposition
819   // declarator. No other declarator chunks are permitted. Also check the type
820   // specifier here.
821   if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
822       D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
823       (D.getNumTypeObjects() == 1 &&
824        D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
825     Diag(Decomp.getLSquareLoc(),
826          (D.hasGroupingParens() ||
827           (D.getNumTypeObjects() &&
828            D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
829              ? diag::err_decomp_decl_parens
830              : diag::err_decomp_decl_type)
831         << R;
832 
833     // In most cases, there's no actual problem with an explicitly-specified
834     // type, but a function type won't work here, and ActOnVariableDeclarator
835     // shouldn't be called for such a type.
836     if (R->isFunctionType())
837       D.setInvalidType();
838   }
839 
840   // Build the BindingDecls.
841   SmallVector<BindingDecl*, 8> Bindings;
842 
843   // Build the BindingDecls.
844   for (auto &B : D.getDecompositionDeclarator().bindings()) {
845     // Check for name conflicts.
846     DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
847     LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
848                           ForVisibleRedeclaration);
849     LookupName(Previous, S,
850                /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
851 
852     // It's not permitted to shadow a template parameter name.
853     if (Previous.isSingleResult() &&
854         Previous.getFoundDecl()->isTemplateParameter()) {
855       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
856                                       Previous.getFoundDecl());
857       Previous.clear();
858     }
859 
860     bool ConsiderLinkage = DC->isFunctionOrMethod() &&
861                            DS.getStorageClassSpec() == DeclSpec::SCS_extern;
862     FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
863                          /*AllowInlineNamespace*/false);
864     if (!Previous.empty()) {
865       auto *Old = Previous.getRepresentativeDecl();
866       Diag(B.NameLoc, diag::err_redefinition) << B.Name;
867       Diag(Old->getLocation(), diag::note_previous_definition);
868     }
869 
870     auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
871     PushOnScopeChains(BD, S, true);
872     Bindings.push_back(BD);
873     ParsingInitForAutoVars.insert(BD);
874   }
875 
876   // There are no prior lookup results for the variable itself, because it
877   // is unnamed.
878   DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
879                                Decomp.getLSquareLoc());
880   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
881                         ForVisibleRedeclaration);
882 
883   // Build the variable that holds the non-decomposed object.
884   bool AddToScope = true;
885   NamedDecl *New =
886       ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
887                               MultiTemplateParamsArg(), AddToScope, Bindings);
888   if (AddToScope) {
889     S->AddDecl(New);
890     CurContext->addHiddenDecl(New);
891   }
892 
893   if (isInOpenMPDeclareTargetContext())
894     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
895 
896   return New;
897 }
898 
899 static bool checkSimpleDecomposition(
900     Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
901     QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
902     llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
903   if ((int64_t)Bindings.size() != NumElems) {
904     S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
905         << DecompType << (unsigned)Bindings.size()
906         << (unsigned)NumElems.getLimitedValue(UINT_MAX) << NumElems.toString(10)
907         << (NumElems < Bindings.size());
908     return true;
909   }
910 
911   unsigned I = 0;
912   for (auto *B : Bindings) {
913     SourceLocation Loc = B->getLocation();
914     ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
915     if (E.isInvalid())
916       return true;
917     E = GetInit(Loc, E.get(), I++);
918     if (E.isInvalid())
919       return true;
920     B->setBinding(ElemType, E.get());
921   }
922 
923   return false;
924 }
925 
926 static bool checkArrayLikeDecomposition(Sema &S,
927                                         ArrayRef<BindingDecl *> Bindings,
928                                         ValueDecl *Src, QualType DecompType,
929                                         const llvm::APSInt &NumElems,
930                                         QualType ElemType) {
931   return checkSimpleDecomposition(
932       S, Bindings, Src, DecompType, NumElems, ElemType,
933       [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
934         ExprResult E = S.ActOnIntegerConstant(Loc, I);
935         if (E.isInvalid())
936           return ExprError();
937         return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
938       });
939 }
940 
941 static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
942                                     ValueDecl *Src, QualType DecompType,
943                                     const ConstantArrayType *CAT) {
944   return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
945                                      llvm::APSInt(CAT->getSize()),
946                                      CAT->getElementType());
947 }
948 
949 static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
950                                      ValueDecl *Src, QualType DecompType,
951                                      const VectorType *VT) {
952   return checkArrayLikeDecomposition(
953       S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
954       S.Context.getQualifiedType(VT->getElementType(),
955                                  DecompType.getQualifiers()));
956 }
957 
958 static bool checkComplexDecomposition(Sema &S,
959                                       ArrayRef<BindingDecl *> Bindings,
960                                       ValueDecl *Src, QualType DecompType,
961                                       const ComplexType *CT) {
962   return checkSimpleDecomposition(
963       S, Bindings, Src, DecompType, llvm::APSInt::get(2),
964       S.Context.getQualifiedType(CT->getElementType(),
965                                  DecompType.getQualifiers()),
966       [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
967         return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
968       });
969 }
970 
971 static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
972                                      TemplateArgumentListInfo &Args) {
973   SmallString<128> SS;
974   llvm::raw_svector_ostream OS(SS);
975   bool First = true;
976   for (auto &Arg : Args.arguments()) {
977     if (!First)
978       OS << ", ";
979     Arg.getArgument().print(PrintingPolicy, OS);
980     First = false;
981   }
982   return std::string(OS.str());
983 }
984 
985 static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
986                                      SourceLocation Loc, StringRef Trait,
987                                      TemplateArgumentListInfo &Args,
988                                      unsigned DiagID) {
989   auto DiagnoseMissing = [&] {
990     if (DiagID)
991       S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
992                                                Args);
993     return true;
994   };
995 
996   // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
997   NamespaceDecl *Std = S.getStdNamespace();
998   if (!Std)
999     return DiagnoseMissing();
1000 
1001   // Look up the trait itself, within namespace std. We can diagnose various
1002   // problems with this lookup even if we've been asked to not diagnose a
1003   // missing specialization, because this can only fail if the user has been
1004   // declaring their own names in namespace std or we don't support the
1005   // standard library implementation in use.
1006   LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
1007                       Loc, Sema::LookupOrdinaryName);
1008   if (!S.LookupQualifiedName(Result, Std))
1009     return DiagnoseMissing();
1010   if (Result.isAmbiguous())
1011     return true;
1012 
1013   ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
1014   if (!TraitTD) {
1015     Result.suppressDiagnostics();
1016     NamedDecl *Found = *Result.begin();
1017     S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
1018     S.Diag(Found->getLocation(), diag::note_declared_at);
1019     return true;
1020   }
1021 
1022   // Build the template-id.
1023   QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
1024   if (TraitTy.isNull())
1025     return true;
1026   if (!S.isCompleteType(Loc, TraitTy)) {
1027     if (DiagID)
1028       S.RequireCompleteType(
1029           Loc, TraitTy, DiagID,
1030           printTemplateArgs(S.Context.getPrintingPolicy(), Args));
1031     return true;
1032   }
1033 
1034   CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
1035   assert(RD && "specialization of class template is not a class?");
1036 
1037   // Look up the member of the trait type.
1038   S.LookupQualifiedName(TraitMemberLookup, RD);
1039   return TraitMemberLookup.isAmbiguous();
1040 }
1041 
1042 static TemplateArgumentLoc
1043 getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
1044                                    uint64_t I) {
1045   TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
1046   return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
1047 }
1048 
1049 static TemplateArgumentLoc
1050 getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
1051   return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
1052 }
1053 
1054 namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1055 
1056 static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1057                                llvm::APSInt &Size) {
1058   EnterExpressionEvaluationContext ContextRAII(
1059       S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1060 
1061   DeclarationName Value = S.PP.getIdentifierInfo("value");
1062   LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1063 
1064   // Form template argument list for tuple_size<T>.
1065   TemplateArgumentListInfo Args(Loc, Loc);
1066   Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1067 
1068   // If there's no tuple_size specialization or the lookup of 'value' is empty,
1069   // it's not tuple-like.
1070   if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) ||
1071       R.empty())
1072     return IsTupleLike::NotTupleLike;
1073 
1074   // If we get this far, we've committed to the tuple interpretation, but
1075   // we can still fail if there actually isn't a usable ::value.
1076 
1077   struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1078     LookupResult &R;
1079     TemplateArgumentListInfo &Args;
1080     ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1081         : R(R), Args(Args) {}
1082     Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
1083                                                SourceLocation Loc) override {
1084       return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1085           << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1086     }
1087   } Diagnoser(R, Args);
1088 
1089   ExprResult E =
1090       S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1091   if (E.isInvalid())
1092     return IsTupleLike::Error;
1093 
1094   E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser);
1095   if (E.isInvalid())
1096     return IsTupleLike::Error;
1097 
1098   return IsTupleLike::TupleLike;
1099 }
1100 
1101 /// \return std::tuple_element<I, T>::type.
1102 static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1103                                         unsigned I, QualType T) {
1104   // Form template argument list for tuple_element<I, T>.
1105   TemplateArgumentListInfo Args(Loc, Loc);
1106   Args.addArgument(
1107       getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1108   Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1109 
1110   DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1111   LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1112   if (lookupStdTypeTraitMember(
1113           S, R, Loc, "tuple_element", Args,
1114           diag::err_decomp_decl_std_tuple_element_not_specialized))
1115     return QualType();
1116 
1117   auto *TD = R.getAsSingle<TypeDecl>();
1118   if (!TD) {
1119     R.suppressDiagnostics();
1120     S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1121       << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1122     if (!R.empty())
1123       S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1124     return QualType();
1125   }
1126 
1127   return S.Context.getTypeDeclType(TD);
1128 }
1129 
1130 namespace {
1131 struct InitializingBinding {
1132   Sema &S;
1133   InitializingBinding(Sema &S, BindingDecl *BD) : S(S) {
1134     Sema::CodeSynthesisContext Ctx;
1135     Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding;
1136     Ctx.PointOfInstantiation = BD->getLocation();
1137     Ctx.Entity = BD;
1138     S.pushCodeSynthesisContext(Ctx);
1139   }
1140   ~InitializingBinding() {
1141     S.popCodeSynthesisContext();
1142   }
1143 };
1144 }
1145 
1146 static bool checkTupleLikeDecomposition(Sema &S,
1147                                         ArrayRef<BindingDecl *> Bindings,
1148                                         VarDecl *Src, QualType DecompType,
1149                                         const llvm::APSInt &TupleSize) {
1150   if ((int64_t)Bindings.size() != TupleSize) {
1151     S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1152         << DecompType << (unsigned)Bindings.size()
1153         << (unsigned)TupleSize.getLimitedValue(UINT_MAX)
1154         << TupleSize.toString(10) << (TupleSize < Bindings.size());
1155     return true;
1156   }
1157 
1158   if (Bindings.empty())
1159     return false;
1160 
1161   DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1162 
1163   // [dcl.decomp]p3:
1164   //   The unqualified-id get is looked up in the scope of E by class member
1165   //   access lookup ...
1166   LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1167   bool UseMemberGet = false;
1168   if (S.isCompleteType(Src->getLocation(), DecompType)) {
1169     if (auto *RD = DecompType->getAsCXXRecordDecl())
1170       S.LookupQualifiedName(MemberGet, RD);
1171     if (MemberGet.isAmbiguous())
1172       return true;
1173     //   ... and if that finds at least one declaration that is a function
1174     //   template whose first template parameter is a non-type parameter ...
1175     for (NamedDecl *D : MemberGet) {
1176       if (FunctionTemplateDecl *FTD =
1177               dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) {
1178         TemplateParameterList *TPL = FTD->getTemplateParameters();
1179         if (TPL->size() != 0 &&
1180             isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) {
1181           //   ... the initializer is e.get<i>().
1182           UseMemberGet = true;
1183           break;
1184         }
1185       }
1186     }
1187   }
1188 
1189   unsigned I = 0;
1190   for (auto *B : Bindings) {
1191     InitializingBinding InitContext(S, B);
1192     SourceLocation Loc = B->getLocation();
1193 
1194     ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1195     if (E.isInvalid())
1196       return true;
1197 
1198     //   e is an lvalue if the type of the entity is an lvalue reference and
1199     //   an xvalue otherwise
1200     if (!Src->getType()->isLValueReferenceType())
1201       E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1202                                    E.get(), nullptr, VK_XValue,
1203                                    FPOptionsOverride());
1204 
1205     TemplateArgumentListInfo Args(Loc, Loc);
1206     Args.addArgument(
1207         getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1208 
1209     if (UseMemberGet) {
1210       //   if [lookup of member get] finds at least one declaration, the
1211       //   initializer is e.get<i-1>().
1212       E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1213                                      CXXScopeSpec(), SourceLocation(), nullptr,
1214                                      MemberGet, &Args, nullptr);
1215       if (E.isInvalid())
1216         return true;
1217 
1218       E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc);
1219     } else {
1220       //   Otherwise, the initializer is get<i-1>(e), where get is looked up
1221       //   in the associated namespaces.
1222       Expr *Get = UnresolvedLookupExpr::Create(
1223           S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1224           DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1225           UnresolvedSetIterator(), UnresolvedSetIterator());
1226 
1227       Expr *Arg = E.get();
1228       E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc);
1229     }
1230     if (E.isInvalid())
1231       return true;
1232     Expr *Init = E.get();
1233 
1234     //   Given the type T designated by std::tuple_element<i - 1, E>::type,
1235     QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1236     if (T.isNull())
1237       return true;
1238 
1239     //   each vi is a variable of type "reference to T" initialized with the
1240     //   initializer, where the reference is an lvalue reference if the
1241     //   initializer is an lvalue and an rvalue reference otherwise
1242     QualType RefType =
1243         S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1244     if (RefType.isNull())
1245       return true;
1246     auto *RefVD = VarDecl::Create(
1247         S.Context, Src->getDeclContext(), Loc, Loc,
1248         B->getDeclName().getAsIdentifierInfo(), RefType,
1249         S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1250     RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1251     RefVD->setTSCSpec(Src->getTSCSpec());
1252     RefVD->setImplicit();
1253     if (Src->isInlineSpecified())
1254       RefVD->setInlineSpecified();
1255     RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1256 
1257     InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1258     InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1259     InitializationSequence Seq(S, Entity, Kind, Init);
1260     E = Seq.Perform(S, Entity, Kind, Init);
1261     if (E.isInvalid())
1262       return true;
1263     E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false);
1264     if (E.isInvalid())
1265       return true;
1266     RefVD->setInit(E.get());
1267     S.CheckCompleteVariableDeclaration(RefVD);
1268 
1269     E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1270                                    DeclarationNameInfo(B->getDeclName(), Loc),
1271                                    RefVD);
1272     if (E.isInvalid())
1273       return true;
1274 
1275     B->setBinding(T, E.get());
1276     I++;
1277   }
1278 
1279   return false;
1280 }
1281 
1282 /// Find the base class to decompose in a built-in decomposition of a class type.
1283 /// This base class search is, unfortunately, not quite like any other that we
1284 /// perform anywhere else in C++.
1285 static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc,
1286                                                 const CXXRecordDecl *RD,
1287                                                 CXXCastPath &BasePath) {
1288   auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1289                           CXXBasePath &Path) {
1290     return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1291   };
1292 
1293   const CXXRecordDecl *ClassWithFields = nullptr;
1294   AccessSpecifier AS = AS_public;
1295   if (RD->hasDirectFields())
1296     // [dcl.decomp]p4:
1297     //   Otherwise, all of E's non-static data members shall be public direct
1298     //   members of E ...
1299     ClassWithFields = RD;
1300   else {
1301     //   ... or of ...
1302     CXXBasePaths Paths;
1303     Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1304     if (!RD->lookupInBases(BaseHasFields, Paths)) {
1305       // If no classes have fields, just decompose RD itself. (This will work
1306       // if and only if zero bindings were provided.)
1307       return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public);
1308     }
1309 
1310     CXXBasePath *BestPath = nullptr;
1311     for (auto &P : Paths) {
1312       if (!BestPath)
1313         BestPath = &P;
1314       else if (!S.Context.hasSameType(P.back().Base->getType(),
1315                                       BestPath->back().Base->getType())) {
1316         //   ... the same ...
1317         S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1318           << false << RD << BestPath->back().Base->getType()
1319           << P.back().Base->getType();
1320         return DeclAccessPair();
1321       } else if (P.Access < BestPath->Access) {
1322         BestPath = &P;
1323       }
1324     }
1325 
1326     //   ... unambiguous ...
1327     QualType BaseType = BestPath->back().Base->getType();
1328     if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1329       S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1330         << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1331       return DeclAccessPair();
1332     }
1333 
1334     //   ... [accessible, implied by other rules] base class of E.
1335     S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD),
1336                            *BestPath, diag::err_decomp_decl_inaccessible_base);
1337     AS = BestPath->Access;
1338 
1339     ClassWithFields = BaseType->getAsCXXRecordDecl();
1340     S.BuildBasePathArray(Paths, BasePath);
1341   }
1342 
1343   // The above search did not check whether the selected class itself has base
1344   // classes with fields, so check that now.
1345   CXXBasePaths Paths;
1346   if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1347     S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1348       << (ClassWithFields == RD) << RD << ClassWithFields
1349       << Paths.front().back().Base->getType();
1350     return DeclAccessPair();
1351   }
1352 
1353   return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS);
1354 }
1355 
1356 static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1357                                      ValueDecl *Src, QualType DecompType,
1358                                      const CXXRecordDecl *OrigRD) {
1359   if (S.RequireCompleteType(Src->getLocation(), DecompType,
1360                             diag::err_incomplete_type))
1361     return true;
1362 
1363   CXXCastPath BasePath;
1364   DeclAccessPair BasePair =
1365       findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath);
1366   const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl());
1367   if (!RD)
1368     return true;
1369   QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1370                                                  DecompType.getQualifiers());
1371 
1372   auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1373     unsigned NumFields =
1374         std::count_if(RD->field_begin(), RD->field_end(),
1375                       [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1376     assert(Bindings.size() != NumFields);
1377     S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1378         << DecompType << (unsigned)Bindings.size() << NumFields << NumFields
1379         << (NumFields < Bindings.size());
1380     return true;
1381   };
1382 
1383   //   all of E's non-static data members shall be [...] well-formed
1384   //   when named as e.name in the context of the structured binding,
1385   //   E shall not have an anonymous union member, ...
1386   unsigned I = 0;
1387   for (auto *FD : RD->fields()) {
1388     if (FD->isUnnamedBitfield())
1389       continue;
1390 
1391     // All the non-static data members are required to be nameable, so they
1392     // must all have names.
1393     if (!FD->getDeclName()) {
1394       if (RD->isLambda()) {
1395         S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda);
1396         S.Diag(RD->getLocation(), diag::note_lambda_decl);
1397         return true;
1398       }
1399 
1400       if (FD->isAnonymousStructOrUnion()) {
1401         S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1402           << DecompType << FD->getType()->isUnionType();
1403         S.Diag(FD->getLocation(), diag::note_declared_at);
1404         return true;
1405       }
1406 
1407       // FIXME: Are there any other ways we could have an anonymous member?
1408     }
1409 
1410     // We have a real field to bind.
1411     if (I >= Bindings.size())
1412       return DiagnoseBadNumberOfBindings();
1413     auto *B = Bindings[I++];
1414     SourceLocation Loc = B->getLocation();
1415 
1416     // The field must be accessible in the context of the structured binding.
1417     // We already checked that the base class is accessible.
1418     // FIXME: Add 'const' to AccessedEntity's classes so we can remove the
1419     // const_cast here.
1420     S.CheckStructuredBindingMemberAccess(
1421         Loc, const_cast<CXXRecordDecl *>(OrigRD),
1422         DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess(
1423                                      BasePair.getAccess(), FD->getAccess())));
1424 
1425     // Initialize the binding to Src.FD.
1426     ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1427     if (E.isInvalid())
1428       return true;
1429     E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1430                             VK_LValue, &BasePath);
1431     if (E.isInvalid())
1432       return true;
1433     E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1434                                   CXXScopeSpec(), FD,
1435                                   DeclAccessPair::make(FD, FD->getAccess()),
1436                                   DeclarationNameInfo(FD->getDeclName(), Loc));
1437     if (E.isInvalid())
1438       return true;
1439 
1440     // If the type of the member is T, the referenced type is cv T, where cv is
1441     // the cv-qualification of the decomposition expression.
1442     //
1443     // FIXME: We resolve a defect here: if the field is mutable, we do not add
1444     // 'const' to the type of the field.
1445     Qualifiers Q = DecompType.getQualifiers();
1446     if (FD->isMutable())
1447       Q.removeConst();
1448     B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1449   }
1450 
1451   if (I != Bindings.size())
1452     return DiagnoseBadNumberOfBindings();
1453 
1454   return false;
1455 }
1456 
1457 void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1458   QualType DecompType = DD->getType();
1459 
1460   // If the type of the decomposition is dependent, then so is the type of
1461   // each binding.
1462   if (DecompType->isDependentType()) {
1463     for (auto *B : DD->bindings())
1464       B->setType(Context.DependentTy);
1465     return;
1466   }
1467 
1468   DecompType = DecompType.getNonReferenceType();
1469   ArrayRef<BindingDecl*> Bindings = DD->bindings();
1470 
1471   // C++1z [dcl.decomp]/2:
1472   //   If E is an array type [...]
1473   // As an extension, we also support decomposition of built-in complex and
1474   // vector types.
1475   if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1476     if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1477       DD->setInvalidDecl();
1478     return;
1479   }
1480   if (auto *VT = DecompType->getAs<VectorType>()) {
1481     if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1482       DD->setInvalidDecl();
1483     return;
1484   }
1485   if (auto *CT = DecompType->getAs<ComplexType>()) {
1486     if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1487       DD->setInvalidDecl();
1488     return;
1489   }
1490 
1491   // C++1z [dcl.decomp]/3:
1492   //   if the expression std::tuple_size<E>::value is a well-formed integral
1493   //   constant expression, [...]
1494   llvm::APSInt TupleSize(32);
1495   switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1496   case IsTupleLike::Error:
1497     DD->setInvalidDecl();
1498     return;
1499 
1500   case IsTupleLike::TupleLike:
1501     if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1502       DD->setInvalidDecl();
1503     return;
1504 
1505   case IsTupleLike::NotTupleLike:
1506     break;
1507   }
1508 
1509   // C++1z [dcl.dcl]/8:
1510   //   [E shall be of array or non-union class type]
1511   CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1512   if (!RD || RD->isUnion()) {
1513     Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1514         << DD << !RD << DecompType;
1515     DD->setInvalidDecl();
1516     return;
1517   }
1518 
1519   // C++1z [dcl.decomp]/4:
1520   //   all of E's non-static data members shall be [...] direct members of
1521   //   E or of the same unambiguous public base class of E, ...
1522   if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1523     DD->setInvalidDecl();
1524 }
1525 
1526 /// Merge the exception specifications of two variable declarations.
1527 ///
1528 /// This is called when there's a redeclaration of a VarDecl. The function
1529 /// checks if the redeclaration might have an exception specification and
1530 /// validates compatibility and merges the specs if necessary.
1531 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1532   // Shortcut if exceptions are disabled.
1533   if (!getLangOpts().CXXExceptions)
1534     return;
1535 
1536   assert(Context.hasSameType(New->getType(), Old->getType()) &&
1537          "Should only be called if types are otherwise the same.");
1538 
1539   QualType NewType = New->getType();
1540   QualType OldType = Old->getType();
1541 
1542   // We're only interested in pointers and references to functions, as well
1543   // as pointers to member functions.
1544   if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1545     NewType = R->getPointeeType();
1546     OldType = OldType->castAs<ReferenceType>()->getPointeeType();
1547   } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1548     NewType = P->getPointeeType();
1549     OldType = OldType->castAs<PointerType>()->getPointeeType();
1550   } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1551     NewType = M->getPointeeType();
1552     OldType = OldType->castAs<MemberPointerType>()->getPointeeType();
1553   }
1554 
1555   if (!NewType->isFunctionProtoType())
1556     return;
1557 
1558   // There's lots of special cases for functions. For function pointers, system
1559   // libraries are hopefully not as broken so that we don't need these
1560   // workarounds.
1561   if (CheckEquivalentExceptionSpec(
1562         OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1563         NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1564     New->setInvalidDecl();
1565   }
1566 }
1567 
1568 /// CheckCXXDefaultArguments - Verify that the default arguments for a
1569 /// function declaration are well-formed according to C++
1570 /// [dcl.fct.default].
1571 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1572   unsigned NumParams = FD->getNumParams();
1573   unsigned ParamIdx = 0;
1574 
1575   // This checking doesn't make sense for explicit specializations; their
1576   // default arguments are determined by the declaration we're specializing,
1577   // not by FD.
1578   if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
1579     return;
1580   if (auto *FTD = FD->getDescribedFunctionTemplate())
1581     if (FTD->isMemberSpecialization())
1582       return;
1583 
1584   // Find first parameter with a default argument
1585   for (; ParamIdx < NumParams; ++ParamIdx) {
1586     ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1587     if (Param->hasDefaultArg())
1588       break;
1589   }
1590 
1591   // C++20 [dcl.fct.default]p4:
1592   //   In a given function declaration, each parameter subsequent to a parameter
1593   //   with a default argument shall have a default argument supplied in this or
1594   //   a previous declaration, unless the parameter was expanded from a
1595   //   parameter pack, or shall be a function parameter pack.
1596   for (; ParamIdx < NumParams; ++ParamIdx) {
1597     ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1598     if (!Param->hasDefaultArg() && !Param->isParameterPack() &&
1599         !(CurrentInstantiationScope &&
1600           CurrentInstantiationScope->isLocalPackExpansion(Param))) {
1601       if (Param->isInvalidDecl())
1602         /* We already complained about this parameter. */;
1603       else if (Param->getIdentifier())
1604         Diag(Param->getLocation(),
1605              diag::err_param_default_argument_missing_name)
1606           << Param->getIdentifier();
1607       else
1608         Diag(Param->getLocation(),
1609              diag::err_param_default_argument_missing);
1610     }
1611   }
1612 }
1613 
1614 /// Check that the given type is a literal type. Issue a diagnostic if not,
1615 /// if Kind is Diagnose.
1616 /// \return \c true if a problem has been found (and optionally diagnosed).
1617 template <typename... Ts>
1618 static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind,
1619                              SourceLocation Loc, QualType T, unsigned DiagID,
1620                              Ts &&...DiagArgs) {
1621   if (T->isDependentType())
1622     return false;
1623 
1624   switch (Kind) {
1625   case Sema::CheckConstexprKind::Diagnose:
1626     return SemaRef.RequireLiteralType(Loc, T, DiagID,
1627                                       std::forward<Ts>(DiagArgs)...);
1628 
1629   case Sema::CheckConstexprKind::CheckValid:
1630     return !T->isLiteralType(SemaRef.Context);
1631   }
1632 
1633   llvm_unreachable("unknown CheckConstexprKind");
1634 }
1635 
1636 /// Determine whether a destructor cannot be constexpr due to
1637 static bool CheckConstexprDestructorSubobjects(Sema &SemaRef,
1638                                                const CXXDestructorDecl *DD,
1639                                                Sema::CheckConstexprKind Kind) {
1640   auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) {
1641     const CXXRecordDecl *RD =
1642         T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1643     if (!RD || RD->hasConstexprDestructor())
1644       return true;
1645 
1646     if (Kind == Sema::CheckConstexprKind::Diagnose) {
1647       SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject)
1648           << static_cast<int>(DD->getConstexprKind()) << !FD
1649           << (FD ? FD->getDeclName() : DeclarationName()) << T;
1650       SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject)
1651           << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T;
1652     }
1653     return false;
1654   };
1655 
1656   const CXXRecordDecl *RD = DD->getParent();
1657   for (const CXXBaseSpecifier &B : RD->bases())
1658     if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr))
1659       return false;
1660   for (const FieldDecl *FD : RD->fields())
1661     if (!Check(FD->getLocation(), FD->getType(), FD))
1662       return false;
1663   return true;
1664 }
1665 
1666 /// Check whether a function's parameter types are all literal types. If so,
1667 /// return true. If not, produce a suitable diagnostic and return false.
1668 static bool CheckConstexprParameterTypes(Sema &SemaRef,
1669                                          const FunctionDecl *FD,
1670                                          Sema::CheckConstexprKind Kind) {
1671   unsigned ArgIndex = 0;
1672   const auto *FT = FD->getType()->castAs<FunctionProtoType>();
1673   for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1674                                               e = FT->param_type_end();
1675        i != e; ++i, ++ArgIndex) {
1676     const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1677     SourceLocation ParamLoc = PD->getLocation();
1678     if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i,
1679                          diag::err_constexpr_non_literal_param, ArgIndex + 1,
1680                          PD->getSourceRange(), isa<CXXConstructorDecl>(FD),
1681                          FD->isConsteval()))
1682       return false;
1683   }
1684   return true;
1685 }
1686 
1687 /// Check whether a function's return type is a literal type. If so, return
1688 /// true. If not, produce a suitable diagnostic and return false.
1689 static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD,
1690                                      Sema::CheckConstexprKind Kind) {
1691   if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(),
1692                        diag::err_constexpr_non_literal_return,
1693                        FD->isConsteval()))
1694     return false;
1695   return true;
1696 }
1697 
1698 /// Get diagnostic %select index for tag kind for
1699 /// record diagnostic message.
1700 /// WARNING: Indexes apply to particular diagnostics only!
1701 ///
1702 /// \returns diagnostic %select index.
1703 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1704   switch (Tag) {
1705   case TTK_Struct: return 0;
1706   case TTK_Interface: return 1;
1707   case TTK_Class:  return 2;
1708   default: llvm_unreachable("Invalid tag kind for record diagnostic!");
1709   }
1710 }
1711 
1712 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
1713                                        Stmt *Body,
1714                                        Sema::CheckConstexprKind Kind);
1715 
1716 // Check whether a function declaration satisfies the requirements of a
1717 // constexpr function definition or a constexpr constructor definition. If so,
1718 // return true. If not, produce appropriate diagnostics (unless asked not to by
1719 // Kind) and return false.
1720 //
1721 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1722 bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD,
1723                                             CheckConstexprKind Kind) {
1724   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1725   if (MD && MD->isInstance()) {
1726     // C++11 [dcl.constexpr]p4:
1727     //  The definition of a constexpr constructor shall satisfy the following
1728     //  constraints:
1729     //  - the class shall not have any virtual base classes;
1730     //
1731     // FIXME: This only applies to constructors and destructors, not arbitrary
1732     // member functions.
1733     const CXXRecordDecl *RD = MD->getParent();
1734     if (RD->getNumVBases()) {
1735       if (Kind == CheckConstexprKind::CheckValid)
1736         return false;
1737 
1738       Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1739         << isa<CXXConstructorDecl>(NewFD)
1740         << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1741       for (const auto &I : RD->vbases())
1742         Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
1743             << I.getSourceRange();
1744       return false;
1745     }
1746   }
1747 
1748   if (!isa<CXXConstructorDecl>(NewFD)) {
1749     // C++11 [dcl.constexpr]p3:
1750     //  The definition of a constexpr function shall satisfy the following
1751     //  constraints:
1752     // - it shall not be virtual; (removed in C++20)
1753     const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1754     if (Method && Method->isVirtual()) {
1755       if (getLangOpts().CPlusPlus20) {
1756         if (Kind == CheckConstexprKind::Diagnose)
1757           Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual);
1758       } else {
1759         if (Kind == CheckConstexprKind::CheckValid)
1760           return false;
1761 
1762         Method = Method->getCanonicalDecl();
1763         Diag(Method->getLocation(), diag::err_constexpr_virtual);
1764 
1765         // If it's not obvious why this function is virtual, find an overridden
1766         // function which uses the 'virtual' keyword.
1767         const CXXMethodDecl *WrittenVirtual = Method;
1768         while (!WrittenVirtual->isVirtualAsWritten())
1769           WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1770         if (WrittenVirtual != Method)
1771           Diag(WrittenVirtual->getLocation(),
1772                diag::note_overridden_virtual_function);
1773         return false;
1774       }
1775     }
1776 
1777     // - its return type shall be a literal type;
1778     if (!CheckConstexprReturnType(*this, NewFD, Kind))
1779       return false;
1780   }
1781 
1782   if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) {
1783     // A destructor can be constexpr only if the defaulted destructor could be;
1784     // we don't need to check the members and bases if we already know they all
1785     // have constexpr destructors.
1786     if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) {
1787       if (Kind == CheckConstexprKind::CheckValid)
1788         return false;
1789       if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind))
1790         return false;
1791     }
1792   }
1793 
1794   // - each of its parameter types shall be a literal type;
1795   if (!CheckConstexprParameterTypes(*this, NewFD, Kind))
1796     return false;
1797 
1798   Stmt *Body = NewFD->getBody();
1799   assert(Body &&
1800          "CheckConstexprFunctionDefinition called on function with no body");
1801   return CheckConstexprFunctionBody(*this, NewFD, Body, Kind);
1802 }
1803 
1804 /// Check the given declaration statement is legal within a constexpr function
1805 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1806 ///
1807 /// \return true if the body is OK (maybe only as an extension), false if we
1808 ///         have diagnosed a problem.
1809 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1810                                    DeclStmt *DS, SourceLocation &Cxx1yLoc,
1811                                    Sema::CheckConstexprKind Kind) {
1812   // C++11 [dcl.constexpr]p3 and p4:
1813   //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
1814   //  contain only
1815   for (const auto *DclIt : DS->decls()) {
1816     switch (DclIt->getKind()) {
1817     case Decl::StaticAssert:
1818     case Decl::Using:
1819     case Decl::UsingShadow:
1820     case Decl::UsingDirective:
1821     case Decl::UnresolvedUsingTypename:
1822     case Decl::UnresolvedUsingValue:
1823       //   - static_assert-declarations
1824       //   - using-declarations,
1825       //   - using-directives,
1826       continue;
1827 
1828     case Decl::Typedef:
1829     case Decl::TypeAlias: {
1830       //   - typedef declarations and alias-declarations that do not define
1831       //     classes or enumerations,
1832       const auto *TN = cast<TypedefNameDecl>(DclIt);
1833       if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1834         // Don't allow variably-modified types in constexpr functions.
1835         if (Kind == Sema::CheckConstexprKind::Diagnose) {
1836           TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1837           SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1838             << TL.getSourceRange() << TL.getType()
1839             << isa<CXXConstructorDecl>(Dcl);
1840         }
1841         return false;
1842       }
1843       continue;
1844     }
1845 
1846     case Decl::Enum:
1847     case Decl::CXXRecord:
1848       // C++1y allows types to be defined, not just declared.
1849       if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) {
1850         if (Kind == Sema::CheckConstexprKind::Diagnose) {
1851           SemaRef.Diag(DS->getBeginLoc(),
1852                        SemaRef.getLangOpts().CPlusPlus14
1853                            ? diag::warn_cxx11_compat_constexpr_type_definition
1854                            : diag::ext_constexpr_type_definition)
1855               << isa<CXXConstructorDecl>(Dcl);
1856         } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1857           return false;
1858         }
1859       }
1860       continue;
1861 
1862     case Decl::EnumConstant:
1863     case Decl::IndirectField:
1864     case Decl::ParmVar:
1865       // These can only appear with other declarations which are banned in
1866       // C++11 and permitted in C++1y, so ignore them.
1867       continue;
1868 
1869     case Decl::Var:
1870     case Decl::Decomposition: {
1871       // C++1y [dcl.constexpr]p3 allows anything except:
1872       //   a definition of a variable of non-literal type or of static or
1873       //   thread storage duration or [before C++2a] for which no
1874       //   initialization is performed.
1875       const auto *VD = cast<VarDecl>(DclIt);
1876       if (VD->isThisDeclarationADefinition()) {
1877         if (VD->isStaticLocal()) {
1878           if (Kind == Sema::CheckConstexprKind::Diagnose) {
1879             SemaRef.Diag(VD->getLocation(),
1880                          diag::err_constexpr_local_var_static)
1881               << isa<CXXConstructorDecl>(Dcl)
1882               << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1883           }
1884           return false;
1885         }
1886         if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(),
1887                              diag::err_constexpr_local_var_non_literal_type,
1888                              isa<CXXConstructorDecl>(Dcl)))
1889           return false;
1890         if (!VD->getType()->isDependentType() &&
1891             !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1892           if (Kind == Sema::CheckConstexprKind::Diagnose) {
1893             SemaRef.Diag(
1894                 VD->getLocation(),
1895                 SemaRef.getLangOpts().CPlusPlus20
1896                     ? diag::warn_cxx17_compat_constexpr_local_var_no_init
1897                     : diag::ext_constexpr_local_var_no_init)
1898                 << isa<CXXConstructorDecl>(Dcl);
1899           } else if (!SemaRef.getLangOpts().CPlusPlus20) {
1900             return false;
1901           }
1902           continue;
1903         }
1904       }
1905       if (Kind == Sema::CheckConstexprKind::Diagnose) {
1906         SemaRef.Diag(VD->getLocation(),
1907                      SemaRef.getLangOpts().CPlusPlus14
1908                       ? diag::warn_cxx11_compat_constexpr_local_var
1909                       : diag::ext_constexpr_local_var)
1910           << isa<CXXConstructorDecl>(Dcl);
1911       } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1912         return false;
1913       }
1914       continue;
1915     }
1916 
1917     case Decl::NamespaceAlias:
1918     case Decl::Function:
1919       // These are disallowed in C++11 and permitted in C++1y. Allow them
1920       // everywhere as an extension.
1921       if (!Cxx1yLoc.isValid())
1922         Cxx1yLoc = DS->getBeginLoc();
1923       continue;
1924 
1925     default:
1926       if (Kind == Sema::CheckConstexprKind::Diagnose) {
1927         SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
1928             << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
1929       }
1930       return false;
1931     }
1932   }
1933 
1934   return true;
1935 }
1936 
1937 /// Check that the given field is initialized within a constexpr constructor.
1938 ///
1939 /// \param Dcl The constexpr constructor being checked.
1940 /// \param Field The field being checked. This may be a member of an anonymous
1941 ///        struct or union nested within the class being checked.
1942 /// \param Inits All declarations, including anonymous struct/union members and
1943 ///        indirect members, for which any initialization was provided.
1944 /// \param Diagnosed Whether we've emitted the error message yet. Used to attach
1945 ///        multiple notes for different members to the same error.
1946 /// \param Kind Whether we're diagnosing a constructor as written or determining
1947 ///        whether the formal requirements are satisfied.
1948 /// \return \c false if we're checking for validity and the constructor does
1949 ///         not satisfy the requirements on a constexpr constructor.
1950 static bool CheckConstexprCtorInitializer(Sema &SemaRef,
1951                                           const FunctionDecl *Dcl,
1952                                           FieldDecl *Field,
1953                                           llvm::SmallSet<Decl*, 16> &Inits,
1954                                           bool &Diagnosed,
1955                                           Sema::CheckConstexprKind Kind) {
1956   // In C++20 onwards, there's nothing to check for validity.
1957   if (Kind == Sema::CheckConstexprKind::CheckValid &&
1958       SemaRef.getLangOpts().CPlusPlus20)
1959     return true;
1960 
1961   if (Field->isInvalidDecl())
1962     return true;
1963 
1964   if (Field->isUnnamedBitfield())
1965     return true;
1966 
1967   // Anonymous unions with no variant members and empty anonymous structs do not
1968   // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1969   // indirect fields don't need initializing.
1970   if (Field->isAnonymousStructOrUnion() &&
1971       (Field->getType()->isUnionType()
1972            ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1973            : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1974     return true;
1975 
1976   if (!Inits.count(Field)) {
1977     if (Kind == Sema::CheckConstexprKind::Diagnose) {
1978       if (!Diagnosed) {
1979         SemaRef.Diag(Dcl->getLocation(),
1980                      SemaRef.getLangOpts().CPlusPlus20
1981                          ? diag::warn_cxx17_compat_constexpr_ctor_missing_init
1982                          : diag::ext_constexpr_ctor_missing_init);
1983         Diagnosed = true;
1984       }
1985       SemaRef.Diag(Field->getLocation(),
1986                    diag::note_constexpr_ctor_missing_init);
1987     } else if (!SemaRef.getLangOpts().CPlusPlus20) {
1988       return false;
1989     }
1990   } else if (Field->isAnonymousStructOrUnion()) {
1991     const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
1992     for (auto *I : RD->fields())
1993       // If an anonymous union contains an anonymous struct of which any member
1994       // is initialized, all members must be initialized.
1995       if (!RD->isUnion() || Inits.count(I))
1996         if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
1997                                            Kind))
1998           return false;
1999   }
2000   return true;
2001 }
2002 
2003 /// Check the provided statement is allowed in a constexpr function
2004 /// definition.
2005 static bool
2006 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
2007                            SmallVectorImpl<SourceLocation> &ReturnStmts,
2008                            SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc,
2009                            Sema::CheckConstexprKind Kind) {
2010   // - its function-body shall be [...] a compound-statement that contains only
2011   switch (S->getStmtClass()) {
2012   case Stmt::NullStmtClass:
2013     //   - null statements,
2014     return true;
2015 
2016   case Stmt::DeclStmtClass:
2017     //   - static_assert-declarations
2018     //   - using-declarations,
2019     //   - using-directives,
2020     //   - typedef declarations and alias-declarations that do not define
2021     //     classes or enumerations,
2022     if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind))
2023       return false;
2024     return true;
2025 
2026   case Stmt::ReturnStmtClass:
2027     //   - and exactly one return statement;
2028     if (isa<CXXConstructorDecl>(Dcl)) {
2029       // C++1y allows return statements in constexpr constructors.
2030       if (!Cxx1yLoc.isValid())
2031         Cxx1yLoc = S->getBeginLoc();
2032       return true;
2033     }
2034 
2035     ReturnStmts.push_back(S->getBeginLoc());
2036     return true;
2037 
2038   case Stmt::CompoundStmtClass: {
2039     // C++1y allows compound-statements.
2040     if (!Cxx1yLoc.isValid())
2041       Cxx1yLoc = S->getBeginLoc();
2042 
2043     CompoundStmt *CompStmt = cast<CompoundStmt>(S);
2044     for (auto *BodyIt : CompStmt->body()) {
2045       if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
2046                                       Cxx1yLoc, Cxx2aLoc, Kind))
2047         return false;
2048     }
2049     return true;
2050   }
2051 
2052   case Stmt::AttributedStmtClass:
2053     if (!Cxx1yLoc.isValid())
2054       Cxx1yLoc = S->getBeginLoc();
2055     return true;
2056 
2057   case Stmt::IfStmtClass: {
2058     // C++1y allows if-statements.
2059     if (!Cxx1yLoc.isValid())
2060       Cxx1yLoc = S->getBeginLoc();
2061 
2062     IfStmt *If = cast<IfStmt>(S);
2063     if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
2064                                     Cxx1yLoc, Cxx2aLoc, Kind))
2065       return false;
2066     if (If->getElse() &&
2067         !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
2068                                     Cxx1yLoc, Cxx2aLoc, Kind))
2069       return false;
2070     return true;
2071   }
2072 
2073   case Stmt::WhileStmtClass:
2074   case Stmt::DoStmtClass:
2075   case Stmt::ForStmtClass:
2076   case Stmt::CXXForRangeStmtClass:
2077   case Stmt::ContinueStmtClass:
2078     // C++1y allows all of these. We don't allow them as extensions in C++11,
2079     // because they don't make sense without variable mutation.
2080     if (!SemaRef.getLangOpts().CPlusPlus14)
2081       break;
2082     if (!Cxx1yLoc.isValid())
2083       Cxx1yLoc = S->getBeginLoc();
2084     for (Stmt *SubStmt : S->children())
2085       if (SubStmt &&
2086           !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2087                                       Cxx1yLoc, Cxx2aLoc, Kind))
2088         return false;
2089     return true;
2090 
2091   case Stmt::SwitchStmtClass:
2092   case Stmt::CaseStmtClass:
2093   case Stmt::DefaultStmtClass:
2094   case Stmt::BreakStmtClass:
2095     // C++1y allows switch-statements, and since they don't need variable
2096     // mutation, we can reasonably allow them in C++11 as an extension.
2097     if (!Cxx1yLoc.isValid())
2098       Cxx1yLoc = S->getBeginLoc();
2099     for (Stmt *SubStmt : S->children())
2100       if (SubStmt &&
2101           !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2102                                       Cxx1yLoc, Cxx2aLoc, Kind))
2103         return false;
2104     return true;
2105 
2106   case Stmt::GCCAsmStmtClass:
2107   case Stmt::MSAsmStmtClass:
2108     // C++2a allows inline assembly statements.
2109   case Stmt::CXXTryStmtClass:
2110     if (Cxx2aLoc.isInvalid())
2111       Cxx2aLoc = S->getBeginLoc();
2112     for (Stmt *SubStmt : S->children()) {
2113       if (SubStmt &&
2114           !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2115                                       Cxx1yLoc, Cxx2aLoc, Kind))
2116         return false;
2117     }
2118     return true;
2119 
2120   case Stmt::CXXCatchStmtClass:
2121     // Do not bother checking the language mode (already covered by the
2122     // try block check).
2123     if (!CheckConstexprFunctionStmt(SemaRef, Dcl,
2124                                     cast<CXXCatchStmt>(S)->getHandlerBlock(),
2125                                     ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind))
2126       return false;
2127     return true;
2128 
2129   default:
2130     if (!isa<Expr>(S))
2131       break;
2132 
2133     // C++1y allows expression-statements.
2134     if (!Cxx1yLoc.isValid())
2135       Cxx1yLoc = S->getBeginLoc();
2136     return true;
2137   }
2138 
2139   if (Kind == Sema::CheckConstexprKind::Diagnose) {
2140     SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2141         << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2142   }
2143   return false;
2144 }
2145 
2146 /// Check the body for the given constexpr function declaration only contains
2147 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
2148 ///
2149 /// \return true if the body is OK, false if we have found or diagnosed a
2150 /// problem.
2151 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
2152                                        Stmt *Body,
2153                                        Sema::CheckConstexprKind Kind) {
2154   SmallVector<SourceLocation, 4> ReturnStmts;
2155 
2156   if (isa<CXXTryStmt>(Body)) {
2157     // C++11 [dcl.constexpr]p3:
2158     //  The definition of a constexpr function shall satisfy the following
2159     //  constraints: [...]
2160     // - its function-body shall be = delete, = default, or a
2161     //   compound-statement
2162     //
2163     // C++11 [dcl.constexpr]p4:
2164     //  In the definition of a constexpr constructor, [...]
2165     // - its function-body shall not be a function-try-block;
2166     //
2167     // This restriction is lifted in C++2a, as long as inner statements also
2168     // apply the general constexpr rules.
2169     switch (Kind) {
2170     case Sema::CheckConstexprKind::CheckValid:
2171       if (!SemaRef.getLangOpts().CPlusPlus20)
2172         return false;
2173       break;
2174 
2175     case Sema::CheckConstexprKind::Diagnose:
2176       SemaRef.Diag(Body->getBeginLoc(),
2177            !SemaRef.getLangOpts().CPlusPlus20
2178                ? diag::ext_constexpr_function_try_block_cxx20
2179                : diag::warn_cxx17_compat_constexpr_function_try_block)
2180           << isa<CXXConstructorDecl>(Dcl);
2181       break;
2182     }
2183   }
2184 
2185   // - its function-body shall be [...] a compound-statement that contains only
2186   //   [... list of cases ...]
2187   //
2188   // Note that walking the children here is enough to properly check for
2189   // CompoundStmt and CXXTryStmt body.
2190   SourceLocation Cxx1yLoc, Cxx2aLoc;
2191   for (Stmt *SubStmt : Body->children()) {
2192     if (SubStmt &&
2193         !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2194                                     Cxx1yLoc, Cxx2aLoc, Kind))
2195       return false;
2196   }
2197 
2198   if (Kind == Sema::CheckConstexprKind::CheckValid) {
2199     // If this is only valid as an extension, report that we don't satisfy the
2200     // constraints of the current language.
2201     if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) ||
2202         (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17))
2203       return false;
2204   } else if (Cxx2aLoc.isValid()) {
2205     SemaRef.Diag(Cxx2aLoc,
2206          SemaRef.getLangOpts().CPlusPlus20
2207            ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt
2208            : diag::ext_constexpr_body_invalid_stmt_cxx20)
2209       << isa<CXXConstructorDecl>(Dcl);
2210   } else if (Cxx1yLoc.isValid()) {
2211     SemaRef.Diag(Cxx1yLoc,
2212          SemaRef.getLangOpts().CPlusPlus14
2213            ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
2214            : diag::ext_constexpr_body_invalid_stmt)
2215       << isa<CXXConstructorDecl>(Dcl);
2216   }
2217 
2218   if (const CXXConstructorDecl *Constructor
2219         = dyn_cast<CXXConstructorDecl>(Dcl)) {
2220     const CXXRecordDecl *RD = Constructor->getParent();
2221     // DR1359:
2222     // - every non-variant non-static data member and base class sub-object
2223     //   shall be initialized;
2224     // DR1460:
2225     // - if the class is a union having variant members, exactly one of them
2226     //   shall be initialized;
2227     if (RD->isUnion()) {
2228       if (Constructor->getNumCtorInitializers() == 0 &&
2229           RD->hasVariantMembers()) {
2230         if (Kind == Sema::CheckConstexprKind::Diagnose) {
2231           SemaRef.Diag(
2232               Dcl->getLocation(),
2233               SemaRef.getLangOpts().CPlusPlus20
2234                   ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init
2235                   : diag::ext_constexpr_union_ctor_no_init);
2236         } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2237           return false;
2238         }
2239       }
2240     } else if (!Constructor->isDependentContext() &&
2241                !Constructor->isDelegatingConstructor()) {
2242       assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
2243 
2244       // Skip detailed checking if we have enough initializers, and we would
2245       // allow at most one initializer per member.
2246       bool AnyAnonStructUnionMembers = false;
2247       unsigned Fields = 0;
2248       for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2249            E = RD->field_end(); I != E; ++I, ++Fields) {
2250         if (I->isAnonymousStructOrUnion()) {
2251           AnyAnonStructUnionMembers = true;
2252           break;
2253         }
2254       }
2255       // DR1460:
2256       // - if the class is a union-like class, but is not a union, for each of
2257       //   its anonymous union members having variant members, exactly one of
2258       //   them shall be initialized;
2259       if (AnyAnonStructUnionMembers ||
2260           Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
2261         // Check initialization of non-static data members. Base classes are
2262         // always initialized so do not need to be checked. Dependent bases
2263         // might not have initializers in the member initializer list.
2264         llvm::SmallSet<Decl*, 16> Inits;
2265         for (const auto *I: Constructor->inits()) {
2266           if (FieldDecl *FD = I->getMember())
2267             Inits.insert(FD);
2268           else if (IndirectFieldDecl *ID = I->getIndirectMember())
2269             Inits.insert(ID->chain_begin(), ID->chain_end());
2270         }
2271 
2272         bool Diagnosed = false;
2273         for (auto *I : RD->fields())
2274           if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2275                                              Kind))
2276             return false;
2277       }
2278     }
2279   } else {
2280     if (ReturnStmts.empty()) {
2281       // C++1y doesn't require constexpr functions to contain a 'return'
2282       // statement. We still do, unless the return type might be void, because
2283       // otherwise if there's no return statement, the function cannot
2284       // be used in a core constant expression.
2285       bool OK = SemaRef.getLangOpts().CPlusPlus14 &&
2286                 (Dcl->getReturnType()->isVoidType() ||
2287                  Dcl->getReturnType()->isDependentType());
2288       switch (Kind) {
2289       case Sema::CheckConstexprKind::Diagnose:
2290         SemaRef.Diag(Dcl->getLocation(),
2291                      OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2292                         : diag::err_constexpr_body_no_return)
2293             << Dcl->isConsteval();
2294         if (!OK)
2295           return false;
2296         break;
2297 
2298       case Sema::CheckConstexprKind::CheckValid:
2299         // The formal requirements don't include this rule in C++14, even
2300         // though the "must be able to produce a constant expression" rules
2301         // still imply it in some cases.
2302         if (!SemaRef.getLangOpts().CPlusPlus14)
2303           return false;
2304         break;
2305       }
2306     } else if (ReturnStmts.size() > 1) {
2307       switch (Kind) {
2308       case Sema::CheckConstexprKind::Diagnose:
2309         SemaRef.Diag(
2310             ReturnStmts.back(),
2311             SemaRef.getLangOpts().CPlusPlus14
2312                 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2313                 : diag::ext_constexpr_body_multiple_return);
2314         for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2315           SemaRef.Diag(ReturnStmts[I],
2316                        diag::note_constexpr_body_previous_return);
2317         break;
2318 
2319       case Sema::CheckConstexprKind::CheckValid:
2320         if (!SemaRef.getLangOpts().CPlusPlus14)
2321           return false;
2322         break;
2323       }
2324     }
2325   }
2326 
2327   // C++11 [dcl.constexpr]p5:
2328   //   if no function argument values exist such that the function invocation
2329   //   substitution would produce a constant expression, the program is
2330   //   ill-formed; no diagnostic required.
2331   // C++11 [dcl.constexpr]p3:
2332   //   - every constructor call and implicit conversion used in initializing the
2333   //     return value shall be one of those allowed in a constant expression.
2334   // C++11 [dcl.constexpr]p4:
2335   //   - every constructor involved in initializing non-static data members and
2336   //     base class sub-objects shall be a constexpr constructor.
2337   //
2338   // Note that this rule is distinct from the "requirements for a constexpr
2339   // function", so is not checked in CheckValid mode.
2340   SmallVector<PartialDiagnosticAt, 8> Diags;
2341   if (Kind == Sema::CheckConstexprKind::Diagnose &&
2342       !Expr::isPotentialConstantExpr(Dcl, Diags)) {
2343     SemaRef.Diag(Dcl->getLocation(),
2344                  diag::ext_constexpr_function_never_constant_expr)
2345         << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2346     for (size_t I = 0, N = Diags.size(); I != N; ++I)
2347       SemaRef.Diag(Diags[I].first, Diags[I].second);
2348     // Don't return false here: we allow this for compatibility in
2349     // system headers.
2350   }
2351 
2352   return true;
2353 }
2354 
2355 /// Get the class that is directly named by the current context. This is the
2356 /// class for which an unqualified-id in this scope could name a constructor
2357 /// or destructor.
2358 ///
2359 /// If the scope specifier denotes a class, this will be that class.
2360 /// If the scope specifier is empty, this will be the class whose
2361 /// member-specification we are currently within. Otherwise, there
2362 /// is no such class.
2363 CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) {
2364   assert(getLangOpts().CPlusPlus && "No class names in C!");
2365 
2366   if (SS && SS->isInvalid())
2367     return nullptr;
2368 
2369   if (SS && SS->isNotEmpty()) {
2370     DeclContext *DC = computeDeclContext(*SS, true);
2371     return dyn_cast_or_null<CXXRecordDecl>(DC);
2372   }
2373 
2374   return dyn_cast_or_null<CXXRecordDecl>(CurContext);
2375 }
2376 
2377 /// isCurrentClassName - Determine whether the identifier II is the
2378 /// name of the class type currently being defined. In the case of
2379 /// nested classes, this will only return true if II is the name of
2380 /// the innermost class.
2381 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S,
2382                               const CXXScopeSpec *SS) {
2383   CXXRecordDecl *CurDecl = getCurrentClass(S, SS);
2384   return CurDecl && &II == CurDecl->getIdentifier();
2385 }
2386 
2387 /// Determine whether the identifier II is a typo for the name of
2388 /// the class type currently being defined. If so, update it to the identifier
2389 /// that should have been used.
2390 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2391   assert(getLangOpts().CPlusPlus && "No class names in C!");
2392 
2393   if (!getLangOpts().SpellChecking)
2394     return false;
2395 
2396   CXXRecordDecl *CurDecl;
2397   if (SS && SS->isSet() && !SS->isInvalid()) {
2398     DeclContext *DC = computeDeclContext(*SS, true);
2399     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2400   } else
2401     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2402 
2403   if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2404       3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2405           < II->getLength()) {
2406     II = CurDecl->getIdentifier();
2407     return true;
2408   }
2409 
2410   return false;
2411 }
2412 
2413 /// Determine whether the given class is a base class of the given
2414 /// class, including looking at dependent bases.
2415 static bool findCircularInheritance(const CXXRecordDecl *Class,
2416                                     const CXXRecordDecl *Current) {
2417   SmallVector<const CXXRecordDecl*, 8> Queue;
2418 
2419   Class = Class->getCanonicalDecl();
2420   while (true) {
2421     for (const auto &I : Current->bases()) {
2422       CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2423       if (!Base)
2424         continue;
2425 
2426       Base = Base->getDefinition();
2427       if (!Base)
2428         continue;
2429 
2430       if (Base->getCanonicalDecl() == Class)
2431         return true;
2432 
2433       Queue.push_back(Base);
2434     }
2435 
2436     if (Queue.empty())
2437       return false;
2438 
2439     Current = Queue.pop_back_val();
2440   }
2441 
2442   return false;
2443 }
2444 
2445 /// Check the validity of a C++ base class specifier.
2446 ///
2447 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2448 /// and returns NULL otherwise.
2449 CXXBaseSpecifier *
2450 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2451                          SourceRange SpecifierRange,
2452                          bool Virtual, AccessSpecifier Access,
2453                          TypeSourceInfo *TInfo,
2454                          SourceLocation EllipsisLoc) {
2455   QualType BaseType = TInfo->getType();
2456   if (BaseType->containsErrors()) {
2457     // Already emitted a diagnostic when parsing the error type.
2458     return nullptr;
2459   }
2460   // C++ [class.union]p1:
2461   //   A union shall not have base classes.
2462   if (Class->isUnion()) {
2463     Diag(Class->getLocation(), diag::err_base_clause_on_union)
2464       << SpecifierRange;
2465     return nullptr;
2466   }
2467 
2468   if (EllipsisLoc.isValid() &&
2469       !TInfo->getType()->containsUnexpandedParameterPack()) {
2470     Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2471       << TInfo->getTypeLoc().getSourceRange();
2472     EllipsisLoc = SourceLocation();
2473   }
2474 
2475   SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2476 
2477   if (BaseType->isDependentType()) {
2478     // Make sure that we don't have circular inheritance among our dependent
2479     // bases. For non-dependent bases, the check for completeness below handles
2480     // this.
2481     if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2482       if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2483           ((BaseDecl = BaseDecl->getDefinition()) &&
2484            findCircularInheritance(Class, BaseDecl))) {
2485         Diag(BaseLoc, diag::err_circular_inheritance)
2486           << BaseType << Context.getTypeDeclType(Class);
2487 
2488         if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2489           Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2490             << BaseType;
2491 
2492         return nullptr;
2493       }
2494     }
2495 
2496     return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2497                                           Class->getTagKind() == TTK_Class,
2498                                           Access, TInfo, EllipsisLoc);
2499   }
2500 
2501   // Base specifiers must be record types.
2502   if (!BaseType->isRecordType()) {
2503     Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2504     return nullptr;
2505   }
2506 
2507   // C++ [class.union]p1:
2508   //   A union shall not be used as a base class.
2509   if (BaseType->isUnionType()) {
2510     Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2511     return nullptr;
2512   }
2513 
2514   // For the MS ABI, propagate DLL attributes to base class templates.
2515   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2516     if (Attr *ClassAttr = getDLLAttr(Class)) {
2517       if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2518               BaseType->getAsCXXRecordDecl())) {
2519         propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2520                                             BaseLoc);
2521       }
2522     }
2523   }
2524 
2525   // C++ [class.derived]p2:
2526   //   The class-name in a base-specifier shall not be an incompletely
2527   //   defined class.
2528   if (RequireCompleteType(BaseLoc, BaseType,
2529                           diag::err_incomplete_base_class, SpecifierRange)) {
2530     Class->setInvalidDecl();
2531     return nullptr;
2532   }
2533 
2534   // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2535   RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl();
2536   assert(BaseDecl && "Record type has no declaration");
2537   BaseDecl = BaseDecl->getDefinition();
2538   assert(BaseDecl && "Base type is not incomplete, but has no definition");
2539   CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2540   assert(CXXBaseDecl && "Base type is not a C++ type");
2541 
2542   // Microsoft docs say:
2543   // "If a base-class has a code_seg attribute, derived classes must have the
2544   // same attribute."
2545   const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>();
2546   const auto *DerivedCSA = Class->getAttr<CodeSegAttr>();
2547   if ((DerivedCSA || BaseCSA) &&
2548       (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) {
2549     Diag(Class->getLocation(), diag::err_mismatched_code_seg_base);
2550     Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here)
2551       << CXXBaseDecl;
2552     return nullptr;
2553   }
2554 
2555   // A class which contains a flexible array member is not suitable for use as a
2556   // base class:
2557   //   - If the layout determines that a base comes before another base,
2558   //     the flexible array member would index into the subsequent base.
2559   //   - If the layout determines that base comes before the derived class,
2560   //     the flexible array member would index into the derived class.
2561   if (CXXBaseDecl->hasFlexibleArrayMember()) {
2562     Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2563       << CXXBaseDecl->getDeclName();
2564     return nullptr;
2565   }
2566 
2567   // C++ [class]p3:
2568   //   If a class is marked final and it appears as a base-type-specifier in
2569   //   base-clause, the program is ill-formed.
2570   if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2571     Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2572       << CXXBaseDecl->getDeclName()
2573       << FA->isSpelledAsSealed();
2574     Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2575         << CXXBaseDecl->getDeclName() << FA->getRange();
2576     return nullptr;
2577   }
2578 
2579   if (BaseDecl->isInvalidDecl())
2580     Class->setInvalidDecl();
2581 
2582   // Create the base specifier.
2583   return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2584                                         Class->getTagKind() == TTK_Class,
2585                                         Access, TInfo, EllipsisLoc);
2586 }
2587 
2588 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2589 /// one entry in the base class list of a class specifier, for
2590 /// example:
2591 ///    class foo : public bar, virtual private baz {
2592 /// 'public bar' and 'virtual private baz' are each base-specifiers.
2593 BaseResult
2594 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2595                          ParsedAttributes &Attributes,
2596                          bool Virtual, AccessSpecifier Access,
2597                          ParsedType basetype, SourceLocation BaseLoc,
2598                          SourceLocation EllipsisLoc) {
2599   if (!classdecl)
2600     return true;
2601 
2602   AdjustDeclIfTemplate(classdecl);
2603   CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2604   if (!Class)
2605     return true;
2606 
2607   // We haven't yet attached the base specifiers.
2608   Class->setIsParsingBaseSpecifiers();
2609 
2610   // We do not support any C++11 attributes on base-specifiers yet.
2611   // Diagnose any attributes we see.
2612   for (const ParsedAttr &AL : Attributes) {
2613     if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
2614       continue;
2615     Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute
2616                           ? (unsigned)diag::warn_unknown_attribute_ignored
2617                           : (unsigned)diag::err_base_specifier_attribute)
2618         << AL << AL.getRange();
2619   }
2620 
2621   TypeSourceInfo *TInfo = nullptr;
2622   GetTypeFromParser(basetype, &TInfo);
2623 
2624   if (EllipsisLoc.isInvalid() &&
2625       DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2626                                       UPPC_BaseType))
2627     return true;
2628 
2629   if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2630                                                       Virtual, Access, TInfo,
2631                                                       EllipsisLoc))
2632     return BaseSpec;
2633   else
2634     Class->setInvalidDecl();
2635 
2636   return true;
2637 }
2638 
2639 /// Use small set to collect indirect bases.  As this is only used
2640 /// locally, there's no need to abstract the small size parameter.
2641 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2642 
2643 /// Recursively add the bases of Type.  Don't add Type itself.
2644 static void
2645 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2646                   const QualType &Type)
2647 {
2648   // Even though the incoming type is a base, it might not be
2649   // a class -- it could be a template parm, for instance.
2650   if (auto Rec = Type->getAs<RecordType>()) {
2651     auto Decl = Rec->getAsCXXRecordDecl();
2652 
2653     // Iterate over its bases.
2654     for (const auto &BaseSpec : Decl->bases()) {
2655       QualType Base = Context.getCanonicalType(BaseSpec.getType())
2656         .getUnqualifiedType();
2657       if (Set.insert(Base).second)
2658         // If we've not already seen it, recurse.
2659         NoteIndirectBases(Context, Set, Base);
2660     }
2661   }
2662 }
2663 
2664 /// Performs the actual work of attaching the given base class
2665 /// specifiers to a C++ class.
2666 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2667                                 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2668  if (Bases.empty())
2669     return false;
2670 
2671   // Used to keep track of which base types we have already seen, so
2672   // that we can properly diagnose redundant direct base types. Note
2673   // that the key is always the unqualified canonical type of the base
2674   // class.
2675   std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2676 
2677   // Used to track indirect bases so we can see if a direct base is
2678   // ambiguous.
2679   IndirectBaseSet IndirectBaseTypes;
2680 
2681   // Copy non-redundant base specifiers into permanent storage.
2682   unsigned NumGoodBases = 0;
2683   bool Invalid = false;
2684   for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2685     QualType NewBaseType
2686       = Context.getCanonicalType(Bases[idx]->getType());
2687     NewBaseType = NewBaseType.getLocalUnqualifiedType();
2688 
2689     CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2690     if (KnownBase) {
2691       // C++ [class.mi]p3:
2692       //   A class shall not be specified as a direct base class of a
2693       //   derived class more than once.
2694       Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class)
2695           << KnownBase->getType() << Bases[idx]->getSourceRange();
2696 
2697       // Delete the duplicate base class specifier; we're going to
2698       // overwrite its pointer later.
2699       Context.Deallocate(Bases[idx]);
2700 
2701       Invalid = true;
2702     } else {
2703       // Okay, add this new base class.
2704       KnownBase = Bases[idx];
2705       Bases[NumGoodBases++] = Bases[idx];
2706 
2707       // Note this base's direct & indirect bases, if there could be ambiguity.
2708       if (Bases.size() > 1)
2709         NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2710 
2711       if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2712         const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2713         if (Class->isInterface() &&
2714               (!RD->isInterfaceLike() ||
2715                KnownBase->getAccessSpecifier() != AS_public)) {
2716           // The Microsoft extension __interface does not permit bases that
2717           // are not themselves public interfaces.
2718           Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface)
2719               << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2720               << RD->getSourceRange();
2721           Invalid = true;
2722         }
2723         if (RD->hasAttr<WeakAttr>())
2724           Class->addAttr(WeakAttr::CreateImplicit(Context));
2725       }
2726     }
2727   }
2728 
2729   // Attach the remaining base class specifiers to the derived class.
2730   Class->setBases(Bases.data(), NumGoodBases);
2731 
2732   // Check that the only base classes that are duplicate are virtual.
2733   for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2734     // Check whether this direct base is inaccessible due to ambiguity.
2735     QualType BaseType = Bases[idx]->getType();
2736 
2737     // Skip all dependent types in templates being used as base specifiers.
2738     // Checks below assume that the base specifier is a CXXRecord.
2739     if (BaseType->isDependentType())
2740       continue;
2741 
2742     CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2743       .getUnqualifiedType();
2744 
2745     if (IndirectBaseTypes.count(CanonicalBase)) {
2746       CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2747                          /*DetectVirtual=*/true);
2748       bool found
2749         = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2750       assert(found);
2751       (void)found;
2752 
2753       if (Paths.isAmbiguous(CanonicalBase))
2754         Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class)
2755             << BaseType << getAmbiguousPathsDisplayString(Paths)
2756             << Bases[idx]->getSourceRange();
2757       else
2758         assert(Bases[idx]->isVirtual());
2759     }
2760 
2761     // Delete the base class specifier, since its data has been copied
2762     // into the CXXRecordDecl.
2763     Context.Deallocate(Bases[idx]);
2764   }
2765 
2766   return Invalid;
2767 }
2768 
2769 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
2770 /// class, after checking whether there are any duplicate base
2771 /// classes.
2772 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2773                                MutableArrayRef<CXXBaseSpecifier *> Bases) {
2774   if (!ClassDecl || Bases.empty())
2775     return;
2776 
2777   AdjustDeclIfTemplate(ClassDecl);
2778   AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2779 }
2780 
2781 /// Determine whether the type \p Derived is a C++ class that is
2782 /// derived from the type \p Base.
2783 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2784   if (!getLangOpts().CPlusPlus)
2785     return false;
2786 
2787   CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2788   if (!DerivedRD)
2789     return false;
2790 
2791   CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2792   if (!BaseRD)
2793     return false;
2794 
2795   // If either the base or the derived type is invalid, don't try to
2796   // check whether one is derived from the other.
2797   if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2798     return false;
2799 
2800   // FIXME: In a modules build, do we need the entire path to be visible for us
2801   // to be able to use the inheritance relationship?
2802   if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2803     return false;
2804 
2805   return DerivedRD->isDerivedFrom(BaseRD);
2806 }
2807 
2808 /// Determine whether the type \p Derived is a C++ class that is
2809 /// derived from the type \p Base.
2810 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2811                          CXXBasePaths &Paths) {
2812   if (!getLangOpts().CPlusPlus)
2813     return false;
2814 
2815   CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2816   if (!DerivedRD)
2817     return false;
2818 
2819   CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2820   if (!BaseRD)
2821     return false;
2822 
2823   if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2824     return false;
2825 
2826   return DerivedRD->isDerivedFrom(BaseRD, Paths);
2827 }
2828 
2829 static void BuildBasePathArray(const CXXBasePath &Path,
2830                                CXXCastPath &BasePathArray) {
2831   // We first go backward and check if we have a virtual base.
2832   // FIXME: It would be better if CXXBasePath had the base specifier for
2833   // the nearest virtual base.
2834   unsigned Start = 0;
2835   for (unsigned I = Path.size(); I != 0; --I) {
2836     if (Path[I - 1].Base->isVirtual()) {
2837       Start = I - 1;
2838       break;
2839     }
2840   }
2841 
2842   // Now add all bases.
2843   for (unsigned I = Start, E = Path.size(); I != E; ++I)
2844     BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2845 }
2846 
2847 
2848 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2849                               CXXCastPath &BasePathArray) {
2850   assert(BasePathArray.empty() && "Base path array must be empty!");
2851   assert(Paths.isRecordingPaths() && "Must record paths!");
2852   return ::BuildBasePathArray(Paths.front(), BasePathArray);
2853 }
2854 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2855 /// conversion (where Derived and Base are class types) is
2856 /// well-formed, meaning that the conversion is unambiguous (and
2857 /// that all of the base classes are accessible). Returns true
2858 /// and emits a diagnostic if the code is ill-formed, returns false
2859 /// otherwise. Loc is the location where this routine should point to
2860 /// if there is an error, and Range is the source range to highlight
2861 /// if there is an error.
2862 ///
2863 /// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the
2864 /// diagnostic for the respective type of error will be suppressed, but the
2865 /// check for ill-formed code will still be performed.
2866 bool
2867 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2868                                    unsigned InaccessibleBaseID,
2869                                    unsigned AmbiguousBaseConvID,
2870                                    SourceLocation Loc, SourceRange Range,
2871                                    DeclarationName Name,
2872                                    CXXCastPath *BasePath,
2873                                    bool IgnoreAccess) {
2874   // First, determine whether the path from Derived to Base is
2875   // ambiguous. This is slightly more expensive than checking whether
2876   // the Derived to Base conversion exists, because here we need to
2877   // explore multiple paths to determine if there is an ambiguity.
2878   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2879                      /*DetectVirtual=*/false);
2880   bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2881   if (!DerivationOkay)
2882     return true;
2883 
2884   const CXXBasePath *Path = nullptr;
2885   if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
2886     Path = &Paths.front();
2887 
2888   // For MSVC compatibility, check if Derived directly inherits from Base. Clang
2889   // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
2890   // user to access such bases.
2891   if (!Path && getLangOpts().MSVCCompat) {
2892     for (const CXXBasePath &PossiblePath : Paths) {
2893       if (PossiblePath.size() == 1) {
2894         Path = &PossiblePath;
2895         if (AmbiguousBaseConvID)
2896           Diag(Loc, diag::ext_ms_ambiguous_direct_base)
2897               << Base << Derived << Range;
2898         break;
2899       }
2900     }
2901   }
2902 
2903   if (Path) {
2904     if (!IgnoreAccess) {
2905       // Check that the base class can be accessed.
2906       switch (
2907           CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
2908       case AR_inaccessible:
2909         return true;
2910       case AR_accessible:
2911       case AR_dependent:
2912       case AR_delayed:
2913         break;
2914       }
2915     }
2916 
2917     // Build a base path if necessary.
2918     if (BasePath)
2919       ::BuildBasePathArray(*Path, *BasePath);
2920     return false;
2921   }
2922 
2923   if (AmbiguousBaseConvID) {
2924     // We know that the derived-to-base conversion is ambiguous, and
2925     // we're going to produce a diagnostic. Perform the derived-to-base
2926     // search just one more time to compute all of the possible paths so
2927     // that we can print them out. This is more expensive than any of
2928     // the previous derived-to-base checks we've done, but at this point
2929     // performance isn't as much of an issue.
2930     Paths.clear();
2931     Paths.setRecordingPaths(true);
2932     bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2933     assert(StillOkay && "Can only be used with a derived-to-base conversion");
2934     (void)StillOkay;
2935 
2936     // Build up a textual representation of the ambiguous paths, e.g.,
2937     // D -> B -> A, that will be used to illustrate the ambiguous
2938     // conversions in the diagnostic. We only print one of the paths
2939     // to each base class subobject.
2940     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2941 
2942     Diag(Loc, AmbiguousBaseConvID)
2943     << Derived << Base << PathDisplayStr << Range << Name;
2944   }
2945   return true;
2946 }
2947 
2948 bool
2949 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2950                                    SourceLocation Loc, SourceRange Range,
2951                                    CXXCastPath *BasePath,
2952                                    bool IgnoreAccess) {
2953   return CheckDerivedToBaseConversion(
2954       Derived, Base, diag::err_upcast_to_inaccessible_base,
2955       diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2956       BasePath, IgnoreAccess);
2957 }
2958 
2959 
2960 /// Builds a string representing ambiguous paths from a
2961 /// specific derived class to different subobjects of the same base
2962 /// class.
2963 ///
2964 /// This function builds a string that can be used in error messages
2965 /// to show the different paths that one can take through the
2966 /// inheritance hierarchy to go from the derived class to different
2967 /// subobjects of a base class. The result looks something like this:
2968 /// @code
2969 /// struct D -> struct B -> struct A
2970 /// struct D -> struct C -> struct A
2971 /// @endcode
2972 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2973   std::string PathDisplayStr;
2974   std::set<unsigned> DisplayedPaths;
2975   for (CXXBasePaths::paths_iterator Path = Paths.begin();
2976        Path != Paths.end(); ++Path) {
2977     if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
2978       // We haven't displayed a path to this particular base
2979       // class subobject yet.
2980       PathDisplayStr += "\n    ";
2981       PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
2982       for (CXXBasePath::const_iterator Element = Path->begin();
2983            Element != Path->end(); ++Element)
2984         PathDisplayStr += " -> " + Element->Base->getType().getAsString();
2985     }
2986   }
2987 
2988   return PathDisplayStr;
2989 }
2990 
2991 //===----------------------------------------------------------------------===//
2992 // C++ class member Handling
2993 //===----------------------------------------------------------------------===//
2994 
2995 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
2996 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
2997                                 SourceLocation ColonLoc,
2998                                 const ParsedAttributesView &Attrs) {
2999   assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
3000   AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
3001                                                   ASLoc, ColonLoc);
3002   CurContext->addHiddenDecl(ASDecl);
3003   return ProcessAccessDeclAttributeList(ASDecl, Attrs);
3004 }
3005 
3006 /// CheckOverrideControl - Check C++11 override control semantics.
3007 void Sema::CheckOverrideControl(NamedDecl *D) {
3008   if (D->isInvalidDecl())
3009     return;
3010 
3011   // We only care about "override" and "final" declarations.
3012   if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
3013     return;
3014 
3015   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3016 
3017   // We can't check dependent instance methods.
3018   if (MD && MD->isInstance() &&
3019       (MD->getParent()->hasAnyDependentBases() ||
3020        MD->getType()->isDependentType()))
3021     return;
3022 
3023   if (MD && !MD->isVirtual()) {
3024     // If we have a non-virtual method, check if if hides a virtual method.
3025     // (In that case, it's most likely the method has the wrong type.)
3026     SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3027     FindHiddenVirtualMethods(MD, OverloadedMethods);
3028 
3029     if (!OverloadedMethods.empty()) {
3030       if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3031         Diag(OA->getLocation(),
3032              diag::override_keyword_hides_virtual_member_function)
3033           << "override" << (OverloadedMethods.size() > 1);
3034       } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3035         Diag(FA->getLocation(),
3036              diag::override_keyword_hides_virtual_member_function)
3037           << (FA->isSpelledAsSealed() ? "sealed" : "final")
3038           << (OverloadedMethods.size() > 1);
3039       }
3040       NoteHiddenVirtualMethods(MD, OverloadedMethods);
3041       MD->setInvalidDecl();
3042       return;
3043     }
3044     // Fall through into the general case diagnostic.
3045     // FIXME: We might want to attempt typo correction here.
3046   }
3047 
3048   if (!MD || !MD->isVirtual()) {
3049     if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3050       Diag(OA->getLocation(),
3051            diag::override_keyword_only_allowed_on_virtual_member_functions)
3052         << "override" << FixItHint::CreateRemoval(OA->getLocation());
3053       D->dropAttr<OverrideAttr>();
3054     }
3055     if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3056       Diag(FA->getLocation(),
3057            diag::override_keyword_only_allowed_on_virtual_member_functions)
3058         << (FA->isSpelledAsSealed() ? "sealed" : "final")
3059         << FixItHint::CreateRemoval(FA->getLocation());
3060       D->dropAttr<FinalAttr>();
3061     }
3062     return;
3063   }
3064 
3065   // C++11 [class.virtual]p5:
3066   //   If a function is marked with the virt-specifier override and
3067   //   does not override a member function of a base class, the program is
3068   //   ill-formed.
3069   bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
3070   if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
3071     Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
3072       << MD->getDeclName();
3073 }
3074 
3075 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) {
3076   if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
3077     return;
3078   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3079   if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
3080     return;
3081 
3082   SourceLocation Loc = MD->getLocation();
3083   SourceLocation SpellingLoc = Loc;
3084   if (getSourceManager().isMacroArgExpansion(Loc))
3085     SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin();
3086   SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
3087   if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
3088       return;
3089 
3090   if (MD->size_overridden_methods() > 0) {
3091     auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) {
3092       unsigned DiagID =
3093           Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation())
3094               ? DiagInconsistent
3095               : DiagSuggest;
3096       Diag(MD->getLocation(), DiagID) << MD->getDeclName();
3097       const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
3098       Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
3099     };
3100     if (isa<CXXDestructorDecl>(MD))
3101       EmitDiag(
3102           diag::warn_inconsistent_destructor_marked_not_override_overriding,
3103           diag::warn_suggest_destructor_marked_not_override_overriding);
3104     else
3105       EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding,
3106                diag::warn_suggest_function_marked_not_override_overriding);
3107   }
3108 }
3109 
3110 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
3111 /// function overrides a virtual member function marked 'final', according to
3112 /// C++11 [class.virtual]p4.
3113 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
3114                                                   const CXXMethodDecl *Old) {
3115   FinalAttr *FA = Old->getAttr<FinalAttr>();
3116   if (!FA)
3117     return false;
3118 
3119   Diag(New->getLocation(), diag::err_final_function_overridden)
3120     << New->getDeclName()
3121     << FA->isSpelledAsSealed();
3122   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3123   return true;
3124 }
3125 
3126 static bool InitializationHasSideEffects(const FieldDecl &FD) {
3127   const Type *T = FD.getType()->getBaseElementTypeUnsafe();
3128   // FIXME: Destruction of ObjC lifetime types has side-effects.
3129   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3130     return !RD->isCompleteDefinition() ||
3131            !RD->hasTrivialDefaultConstructor() ||
3132            !RD->hasTrivialDestructor();
3133   return false;
3134 }
3135 
3136 static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) {
3137   ParsedAttributesView::const_iterator Itr =
3138       llvm::find_if(list, [](const ParsedAttr &AL) {
3139         return AL.isDeclspecPropertyAttribute();
3140       });
3141   if (Itr != list.end())
3142     return &*Itr;
3143   return nullptr;
3144 }
3145 
3146 // Check if there is a field shadowing.
3147 void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
3148                                       DeclarationName FieldName,
3149                                       const CXXRecordDecl *RD,
3150                                       bool DeclIsField) {
3151   if (Diags.isIgnored(diag::warn_shadow_field, Loc))
3152     return;
3153 
3154   // To record a shadowed field in a base
3155   std::map<CXXRecordDecl*, NamedDecl*> Bases;
3156   auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
3157                            CXXBasePath &Path) {
3158     const auto Base = Specifier->getType()->getAsCXXRecordDecl();
3159     // Record an ambiguous path directly
3160     if (Bases.find(Base) != Bases.end())
3161       return true;
3162     for (const auto Field : Base->lookup(FieldName)) {
3163       if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
3164           Field->getAccess() != AS_private) {
3165         assert(Field->getAccess() != AS_none);
3166         assert(Bases.find(Base) == Bases.end());
3167         Bases[Base] = Field;
3168         return true;
3169       }
3170     }
3171     return false;
3172   };
3173 
3174   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3175                      /*DetectVirtual=*/true);
3176   if (!RD->lookupInBases(FieldShadowed, Paths))
3177     return;
3178 
3179   for (const auto &P : Paths) {
3180     auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
3181     auto It = Bases.find(Base);
3182     // Skip duplicated bases
3183     if (It == Bases.end())
3184       continue;
3185     auto BaseField = It->second;
3186     assert(BaseField->getAccess() != AS_private);
3187     if (AS_none !=
3188         CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
3189       Diag(Loc, diag::warn_shadow_field)
3190         << FieldName << RD << Base << DeclIsField;
3191       Diag(BaseField->getLocation(), diag::note_shadow_field);
3192       Bases.erase(It);
3193     }
3194   }
3195 }
3196 
3197 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
3198 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
3199 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
3200 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is
3201 /// present (but parsing it has been deferred).
3202 NamedDecl *
3203 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
3204                                MultiTemplateParamsArg TemplateParameterLists,
3205                                Expr *BW, const VirtSpecifiers &VS,
3206                                InClassInitStyle InitStyle) {
3207   const DeclSpec &DS = D.getDeclSpec();
3208   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3209   DeclarationName Name = NameInfo.getName();
3210   SourceLocation Loc = NameInfo.getLoc();
3211 
3212   // For anonymous bitfields, the location should point to the type.
3213   if (Loc.isInvalid())
3214     Loc = D.getBeginLoc();
3215 
3216   Expr *BitWidth = static_cast<Expr*>(BW);
3217 
3218   assert(isa<CXXRecordDecl>(CurContext));
3219   assert(!DS.isFriendSpecified());
3220 
3221   bool isFunc = D.isDeclarationOfFunction();
3222   const ParsedAttr *MSPropertyAttr =
3223       getMSPropertyAttr(D.getDeclSpec().getAttributes());
3224 
3225   if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
3226     // The Microsoft extension __interface only permits public member functions
3227     // and prohibits constructors, destructors, operators, non-public member
3228     // functions, static methods and data members.
3229     unsigned InvalidDecl;
3230     bool ShowDeclName = true;
3231     if (!isFunc &&
3232         (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
3233       InvalidDecl = 0;
3234     else if (!isFunc)
3235       InvalidDecl = 1;
3236     else if (AS != AS_public)
3237       InvalidDecl = 2;
3238     else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
3239       InvalidDecl = 3;
3240     else switch (Name.getNameKind()) {
3241       case DeclarationName::CXXConstructorName:
3242         InvalidDecl = 4;
3243         ShowDeclName = false;
3244         break;
3245 
3246       case DeclarationName::CXXDestructorName:
3247         InvalidDecl = 5;
3248         ShowDeclName = false;
3249         break;
3250 
3251       case DeclarationName::CXXOperatorName:
3252       case DeclarationName::CXXConversionFunctionName:
3253         InvalidDecl = 6;
3254         break;
3255 
3256       default:
3257         InvalidDecl = 0;
3258         break;
3259     }
3260 
3261     if (InvalidDecl) {
3262       if (ShowDeclName)
3263         Diag(Loc, diag::err_invalid_member_in_interface)
3264           << (InvalidDecl-1) << Name;
3265       else
3266         Diag(Loc, diag::err_invalid_member_in_interface)
3267           << (InvalidDecl-1) << "";
3268       return nullptr;
3269     }
3270   }
3271 
3272   // C++ 9.2p6: A member shall not be declared to have automatic storage
3273   // duration (auto, register) or with the extern storage-class-specifier.
3274   // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
3275   // data members and cannot be applied to names declared const or static,
3276   // and cannot be applied to reference members.
3277   switch (DS.getStorageClassSpec()) {
3278   case DeclSpec::SCS_unspecified:
3279   case DeclSpec::SCS_typedef:
3280   case DeclSpec::SCS_static:
3281     break;
3282   case DeclSpec::SCS_mutable:
3283     if (isFunc) {
3284       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
3285 
3286       // FIXME: It would be nicer if the keyword was ignored only for this
3287       // declarator. Otherwise we could get follow-up errors.
3288       D.getMutableDeclSpec().ClearStorageClassSpecs();
3289     }
3290     break;
3291   default:
3292     Diag(DS.getStorageClassSpecLoc(),
3293          diag::err_storageclass_invalid_for_member);
3294     D.getMutableDeclSpec().ClearStorageClassSpecs();
3295     break;
3296   }
3297 
3298   bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
3299                        DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
3300                       !isFunc);
3301 
3302   if (DS.hasConstexprSpecifier() && isInstField) {
3303     SemaDiagnosticBuilder B =
3304         Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
3305     SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
3306     if (InitStyle == ICIS_NoInit) {
3307       B << 0 << 0;
3308       if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
3309         B << FixItHint::CreateRemoval(ConstexprLoc);
3310       else {
3311         B << FixItHint::CreateReplacement(ConstexprLoc, "const");
3312         D.getMutableDeclSpec().ClearConstexprSpec();
3313         const char *PrevSpec;
3314         unsigned DiagID;
3315         bool Failed = D.getMutableDeclSpec().SetTypeQual(
3316             DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
3317         (void)Failed;
3318         assert(!Failed && "Making a constexpr member const shouldn't fail");
3319       }
3320     } else {
3321       B << 1;
3322       const char *PrevSpec;
3323       unsigned DiagID;
3324       if (D.getMutableDeclSpec().SetStorageClassSpec(
3325           *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
3326           Context.getPrintingPolicy())) {
3327         assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
3328                "This is the only DeclSpec that should fail to be applied");
3329         B << 1;
3330       } else {
3331         B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
3332         isInstField = false;
3333       }
3334     }
3335   }
3336 
3337   NamedDecl *Member;
3338   if (isInstField) {
3339     CXXScopeSpec &SS = D.getCXXScopeSpec();
3340 
3341     // Data members must have identifiers for names.
3342     if (!Name.isIdentifier()) {
3343       Diag(Loc, diag::err_bad_variable_name)
3344         << Name;
3345       return nullptr;
3346     }
3347 
3348     IdentifierInfo *II = Name.getAsIdentifierInfo();
3349 
3350     // Member field could not be with "template" keyword.
3351     // So TemplateParameterLists should be empty in this case.
3352     if (TemplateParameterLists.size()) {
3353       TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3354       if (TemplateParams->size()) {
3355         // There is no such thing as a member field template.
3356         Diag(D.getIdentifierLoc(), diag::err_template_member)
3357             << II
3358             << SourceRange(TemplateParams->getTemplateLoc(),
3359                 TemplateParams->getRAngleLoc());
3360       } else {
3361         // There is an extraneous 'template<>' for this member.
3362         Diag(TemplateParams->getTemplateLoc(),
3363             diag::err_template_member_noparams)
3364             << II
3365             << SourceRange(TemplateParams->getTemplateLoc(),
3366                 TemplateParams->getRAngleLoc());
3367       }
3368       return nullptr;
3369     }
3370 
3371     if (SS.isSet() && !SS.isInvalid()) {
3372       // The user provided a superfluous scope specifier inside a class
3373       // definition:
3374       //
3375       // class X {
3376       //   int X::member;
3377       // };
3378       if (DeclContext *DC = computeDeclContext(SS, false))
3379         diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(),
3380                                      D.getName().getKind() ==
3381                                          UnqualifiedIdKind::IK_TemplateId);
3382       else
3383         Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3384           << Name << SS.getRange();
3385 
3386       SS.clear();
3387     }
3388 
3389     if (MSPropertyAttr) {
3390       Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3391                                 BitWidth, InitStyle, AS, *MSPropertyAttr);
3392       if (!Member)
3393         return nullptr;
3394       isInstField = false;
3395     } else {
3396       Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3397                                 BitWidth, InitStyle, AS);
3398       if (!Member)
3399         return nullptr;
3400     }
3401 
3402     CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3403   } else {
3404     Member = HandleDeclarator(S, D, TemplateParameterLists);
3405     if (!Member)
3406       return nullptr;
3407 
3408     // Non-instance-fields can't have a bitfield.
3409     if (BitWidth) {
3410       if (Member->isInvalidDecl()) {
3411         // don't emit another diagnostic.
3412       } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3413         // C++ 9.6p3: A bit-field shall not be a static member.
3414         // "static member 'A' cannot be a bit-field"
3415         Diag(Loc, diag::err_static_not_bitfield)
3416           << Name << BitWidth->getSourceRange();
3417       } else if (isa<TypedefDecl>(Member)) {
3418         // "typedef member 'x' cannot be a bit-field"
3419         Diag(Loc, diag::err_typedef_not_bitfield)
3420           << Name << BitWidth->getSourceRange();
3421       } else {
3422         // A function typedef ("typedef int f(); f a;").
3423         // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3424         Diag(Loc, diag::err_not_integral_type_bitfield)
3425           << Name << cast<ValueDecl>(Member)->getType()
3426           << BitWidth->getSourceRange();
3427       }
3428 
3429       BitWidth = nullptr;
3430       Member->setInvalidDecl();
3431     }
3432 
3433     NamedDecl *NonTemplateMember = Member;
3434     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3435       NonTemplateMember = FunTmpl->getTemplatedDecl();
3436     else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3437       NonTemplateMember = VarTmpl->getTemplatedDecl();
3438 
3439     Member->setAccess(AS);
3440 
3441     // If we have declared a member function template or static data member
3442     // template, set the access of the templated declaration as well.
3443     if (NonTemplateMember != Member)
3444       NonTemplateMember->setAccess(AS);
3445 
3446     // C++ [temp.deduct.guide]p3:
3447     //   A deduction guide [...] for a member class template [shall be
3448     //   declared] with the same access [as the template].
3449     if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) {
3450       auto *TD = DG->getDeducedTemplate();
3451       // Access specifiers are only meaningful if both the template and the
3452       // deduction guide are from the same scope.
3453       if (AS != TD->getAccess() &&
3454           TD->getDeclContext()->getRedeclContext()->Equals(
3455               DG->getDeclContext()->getRedeclContext())) {
3456         Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access);
3457         Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access)
3458             << TD->getAccess();
3459         const AccessSpecDecl *LastAccessSpec = nullptr;
3460         for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) {
3461           if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D))
3462             LastAccessSpec = AccessSpec;
3463         }
3464         assert(LastAccessSpec && "differing access with no access specifier");
3465         Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access)
3466             << AS;
3467       }
3468     }
3469   }
3470 
3471   if (VS.isOverrideSpecified())
3472     Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(),
3473                                          AttributeCommonInfo::AS_Keyword));
3474   if (VS.isFinalSpecified())
3475     Member->addAttr(FinalAttr::Create(
3476         Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword,
3477         static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed())));
3478 
3479   if (VS.getLastLocation().isValid()) {
3480     // Update the end location of a method that has a virt-specifiers.
3481     if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3482       MD->setRangeEnd(VS.getLastLocation());
3483   }
3484 
3485   CheckOverrideControl(Member);
3486 
3487   assert((Name || isInstField) && "No identifier for non-field ?");
3488 
3489   if (isInstField) {
3490     FieldDecl *FD = cast<FieldDecl>(Member);
3491     FieldCollector->Add(FD);
3492 
3493     if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3494       // Remember all explicit private FieldDecls that have a name, no side
3495       // effects and are not part of a dependent type declaration.
3496       if (!FD->isImplicit() && FD->getDeclName() &&
3497           FD->getAccess() == AS_private &&
3498           !FD->hasAttr<UnusedAttr>() &&
3499           !FD->getParent()->isDependentContext() &&
3500           !InitializationHasSideEffects(*FD))
3501         UnusedPrivateFields.insert(FD);
3502     }
3503   }
3504 
3505   return Member;
3506 }
3507 
3508 namespace {
3509   class UninitializedFieldVisitor
3510       : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3511     Sema &S;
3512     // List of Decls to generate a warning on.  Also remove Decls that become
3513     // initialized.
3514     llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3515     // List of base classes of the record.  Classes are removed after their
3516     // initializers.
3517     llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3518     // Vector of decls to be removed from the Decl set prior to visiting the
3519     // nodes.  These Decls may have been initialized in the prior initializer.
3520     llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3521     // If non-null, add a note to the warning pointing back to the constructor.
3522     const CXXConstructorDecl *Constructor;
3523     // Variables to hold state when processing an initializer list.  When
3524     // InitList is true, special case initialization of FieldDecls matching
3525     // InitListFieldDecl.
3526     bool InitList;
3527     FieldDecl *InitListFieldDecl;
3528     llvm::SmallVector<unsigned, 4> InitFieldIndex;
3529 
3530   public:
3531     typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3532     UninitializedFieldVisitor(Sema &S,
3533                               llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3534                               llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3535       : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3536         Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3537 
3538     // Returns true if the use of ME is not an uninitialized use.
3539     bool IsInitListMemberExprInitialized(MemberExpr *ME,
3540                                          bool CheckReferenceOnly) {
3541       llvm::SmallVector<FieldDecl*, 4> Fields;
3542       bool ReferenceField = false;
3543       while (ME) {
3544         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3545         if (!FD)
3546           return false;
3547         Fields.push_back(FD);
3548         if (FD->getType()->isReferenceType())
3549           ReferenceField = true;
3550         ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3551       }
3552 
3553       // Binding a reference to an uninitialized field is not an
3554       // uninitialized use.
3555       if (CheckReferenceOnly && !ReferenceField)
3556         return true;
3557 
3558       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3559       // Discard the first field since it is the field decl that is being
3560       // initialized.
3561       for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3562         UsedFieldIndex.push_back((*I)->getFieldIndex());
3563       }
3564 
3565       for (auto UsedIter = UsedFieldIndex.begin(),
3566                 UsedEnd = UsedFieldIndex.end(),
3567                 OrigIter = InitFieldIndex.begin(),
3568                 OrigEnd = InitFieldIndex.end();
3569            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3570         if (*UsedIter < *OrigIter)
3571           return true;
3572         if (*UsedIter > *OrigIter)
3573           break;
3574       }
3575 
3576       return false;
3577     }
3578 
3579     void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3580                           bool AddressOf) {
3581       if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3582         return;
3583 
3584       // FieldME is the inner-most MemberExpr that is not an anonymous struct
3585       // or union.
3586       MemberExpr *FieldME = ME;
3587 
3588       bool AllPODFields = FieldME->getType().isPODType(S.Context);
3589 
3590       Expr *Base = ME;
3591       while (MemberExpr *SubME =
3592                  dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3593 
3594         if (isa<VarDecl>(SubME->getMemberDecl()))
3595           return;
3596 
3597         if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3598           if (!FD->isAnonymousStructOrUnion())
3599             FieldME = SubME;
3600 
3601         if (!FieldME->getType().isPODType(S.Context))
3602           AllPODFields = false;
3603 
3604         Base = SubME->getBase();
3605       }
3606 
3607       if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) {
3608         Visit(Base);
3609         return;
3610       }
3611 
3612       if (AddressOf && AllPODFields)
3613         return;
3614 
3615       ValueDecl* FoundVD = FieldME->getMemberDecl();
3616 
3617       if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3618         while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3619           BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3620         }
3621 
3622         if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3623           QualType T = BaseCast->getType();
3624           if (T->isPointerType() &&
3625               BaseClasses.count(T->getPointeeType())) {
3626             S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3627                 << T->getPointeeType() << FoundVD;
3628           }
3629         }
3630       }
3631 
3632       if (!Decls.count(FoundVD))
3633         return;
3634 
3635       const bool IsReference = FoundVD->getType()->isReferenceType();
3636 
3637       if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3638         // Special checking for initializer lists.
3639         if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3640           return;
3641         }
3642       } else {
3643         // Prevent double warnings on use of unbounded references.
3644         if (CheckReferenceOnly && !IsReference)
3645           return;
3646       }
3647 
3648       unsigned diag = IsReference
3649           ? diag::warn_reference_field_is_uninit
3650           : diag::warn_field_is_uninit;
3651       S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3652       if (Constructor)
3653         S.Diag(Constructor->getLocation(),
3654                diag::note_uninit_in_this_constructor)
3655           << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3656 
3657     }
3658 
3659     void HandleValue(Expr *E, bool AddressOf) {
3660       E = E->IgnoreParens();
3661 
3662       if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3663         HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3664                          AddressOf /*AddressOf*/);
3665         return;
3666       }
3667 
3668       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3669         Visit(CO->getCond());
3670         HandleValue(CO->getTrueExpr(), AddressOf);
3671         HandleValue(CO->getFalseExpr(), AddressOf);
3672         return;
3673       }
3674 
3675       if (BinaryConditionalOperator *BCO =
3676               dyn_cast<BinaryConditionalOperator>(E)) {
3677         Visit(BCO->getCond());
3678         HandleValue(BCO->getFalseExpr(), AddressOf);
3679         return;
3680       }
3681 
3682       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3683         HandleValue(OVE->getSourceExpr(), AddressOf);
3684         return;
3685       }
3686 
3687       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3688         switch (BO->getOpcode()) {
3689         default:
3690           break;
3691         case(BO_PtrMemD):
3692         case(BO_PtrMemI):
3693           HandleValue(BO->getLHS(), AddressOf);
3694           Visit(BO->getRHS());
3695           return;
3696         case(BO_Comma):
3697           Visit(BO->getLHS());
3698           HandleValue(BO->getRHS(), AddressOf);
3699           return;
3700         }
3701       }
3702 
3703       Visit(E);
3704     }
3705 
3706     void CheckInitListExpr(InitListExpr *ILE) {
3707       InitFieldIndex.push_back(0);
3708       for (auto Child : ILE->children()) {
3709         if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3710           CheckInitListExpr(SubList);
3711         } else {
3712           Visit(Child);
3713         }
3714         ++InitFieldIndex.back();
3715       }
3716       InitFieldIndex.pop_back();
3717     }
3718 
3719     void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3720                           FieldDecl *Field, const Type *BaseClass) {
3721       // Remove Decls that may have been initialized in the previous
3722       // initializer.
3723       for (ValueDecl* VD : DeclsToRemove)
3724         Decls.erase(VD);
3725       DeclsToRemove.clear();
3726 
3727       Constructor = FieldConstructor;
3728       InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3729 
3730       if (ILE && Field) {
3731         InitList = true;
3732         InitListFieldDecl = Field;
3733         InitFieldIndex.clear();
3734         CheckInitListExpr(ILE);
3735       } else {
3736         InitList = false;
3737         Visit(E);
3738       }
3739 
3740       if (Field)
3741         Decls.erase(Field);
3742       if (BaseClass)
3743         BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3744     }
3745 
3746     void VisitMemberExpr(MemberExpr *ME) {
3747       // All uses of unbounded reference fields will warn.
3748       HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3749     }
3750 
3751     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3752       if (E->getCastKind() == CK_LValueToRValue) {
3753         HandleValue(E->getSubExpr(), false /*AddressOf*/);
3754         return;
3755       }
3756 
3757       Inherited::VisitImplicitCastExpr(E);
3758     }
3759 
3760     void VisitCXXConstructExpr(CXXConstructExpr *E) {
3761       if (E->getConstructor()->isCopyConstructor()) {
3762         Expr *ArgExpr = E->getArg(0);
3763         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3764           if (ILE->getNumInits() == 1)
3765             ArgExpr = ILE->getInit(0);
3766         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3767           if (ICE->getCastKind() == CK_NoOp)
3768             ArgExpr = ICE->getSubExpr();
3769         HandleValue(ArgExpr, false /*AddressOf*/);
3770         return;
3771       }
3772       Inherited::VisitCXXConstructExpr(E);
3773     }
3774 
3775     void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3776       Expr *Callee = E->getCallee();
3777       if (isa<MemberExpr>(Callee)) {
3778         HandleValue(Callee, false /*AddressOf*/);
3779         for (auto Arg : E->arguments())
3780           Visit(Arg);
3781         return;
3782       }
3783 
3784       Inherited::VisitCXXMemberCallExpr(E);
3785     }
3786 
3787     void VisitCallExpr(CallExpr *E) {
3788       // Treat std::move as a use.
3789       if (E->isCallToStdMove()) {
3790         HandleValue(E->getArg(0), /*AddressOf=*/false);
3791         return;
3792       }
3793 
3794       Inherited::VisitCallExpr(E);
3795     }
3796 
3797     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3798       Expr *Callee = E->getCallee();
3799 
3800       if (isa<UnresolvedLookupExpr>(Callee))
3801         return Inherited::VisitCXXOperatorCallExpr(E);
3802 
3803       Visit(Callee);
3804       for (auto Arg : E->arguments())
3805         HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3806     }
3807 
3808     void VisitBinaryOperator(BinaryOperator *E) {
3809       // If a field assignment is detected, remove the field from the
3810       // uninitiailized field set.
3811       if (E->getOpcode() == BO_Assign)
3812         if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3813           if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3814             if (!FD->getType()->isReferenceType())
3815               DeclsToRemove.push_back(FD);
3816 
3817       if (E->isCompoundAssignmentOp()) {
3818         HandleValue(E->getLHS(), false /*AddressOf*/);
3819         Visit(E->getRHS());
3820         return;
3821       }
3822 
3823       Inherited::VisitBinaryOperator(E);
3824     }
3825 
3826     void VisitUnaryOperator(UnaryOperator *E) {
3827       if (E->isIncrementDecrementOp()) {
3828         HandleValue(E->getSubExpr(), false /*AddressOf*/);
3829         return;
3830       }
3831       if (E->getOpcode() == UO_AddrOf) {
3832         if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3833           HandleValue(ME->getBase(), true /*AddressOf*/);
3834           return;
3835         }
3836       }
3837 
3838       Inherited::VisitUnaryOperator(E);
3839     }
3840   };
3841 
3842   // Diagnose value-uses of fields to initialize themselves, e.g.
3843   //   foo(foo)
3844   // where foo is not also a parameter to the constructor.
3845   // Also diagnose across field uninitialized use such as
3846   //   x(y), y(x)
3847   // TODO: implement -Wuninitialized and fold this into that framework.
3848   static void DiagnoseUninitializedFields(
3849       Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3850 
3851     if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3852                                            Constructor->getLocation())) {
3853       return;
3854     }
3855 
3856     if (Constructor->isInvalidDecl())
3857       return;
3858 
3859     const CXXRecordDecl *RD = Constructor->getParent();
3860 
3861     if (RD->isDependentContext())
3862       return;
3863 
3864     // Holds fields that are uninitialized.
3865     llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3866 
3867     // At the beginning, all fields are uninitialized.
3868     for (auto *I : RD->decls()) {
3869       if (auto *FD = dyn_cast<FieldDecl>(I)) {
3870         UninitializedFields.insert(FD);
3871       } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3872         UninitializedFields.insert(IFD->getAnonField());
3873       }
3874     }
3875 
3876     llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3877     for (auto I : RD->bases())
3878       UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3879 
3880     if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3881       return;
3882 
3883     UninitializedFieldVisitor UninitializedChecker(SemaRef,
3884                                                    UninitializedFields,
3885                                                    UninitializedBaseClasses);
3886 
3887     for (const auto *FieldInit : Constructor->inits()) {
3888       if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3889         break;
3890 
3891       Expr *InitExpr = FieldInit->getInit();
3892       if (!InitExpr)
3893         continue;
3894 
3895       if (CXXDefaultInitExpr *Default =
3896               dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3897         InitExpr = Default->getExpr();
3898         if (!InitExpr)
3899           continue;
3900         // In class initializers will point to the constructor.
3901         UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3902                                               FieldInit->getAnyMember(),
3903                                               FieldInit->getBaseClass());
3904       } else {
3905         UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3906                                               FieldInit->getAnyMember(),
3907                                               FieldInit->getBaseClass());
3908       }
3909     }
3910   }
3911 } // namespace
3912 
3913 /// Enter a new C++ default initializer scope. After calling this, the
3914 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3915 /// parsing or instantiating the initializer failed.
3916 void Sema::ActOnStartCXXInClassMemberInitializer() {
3917   // Create a synthetic function scope to represent the call to the constructor
3918   // that notionally surrounds a use of this initializer.
3919   PushFunctionScope();
3920 }
3921 
3922 void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) {
3923   if (!D.isFunctionDeclarator())
3924     return;
3925   auto &FTI = D.getFunctionTypeInfo();
3926   if (!FTI.Params)
3927     return;
3928   for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params,
3929                                                           FTI.NumParams)) {
3930     auto *ParamDecl = cast<NamedDecl>(Param.Param);
3931     if (ParamDecl->getDeclName())
3932       PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false);
3933   }
3934 }
3935 
3936 ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) {
3937   return ActOnRequiresClause(ConstraintExpr);
3938 }
3939 
3940 ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) {
3941   if (ConstraintExpr.isInvalid())
3942     return ExprError();
3943 
3944   ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr);
3945   if (ConstraintExpr.isInvalid())
3946     return ExprError();
3947 
3948   if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(),
3949                                       UPPC_RequiresClause))
3950     return ExprError();
3951 
3952   return ConstraintExpr;
3953 }
3954 
3955 /// This is invoked after parsing an in-class initializer for a
3956 /// non-static C++ class member, and after instantiating an in-class initializer
3957 /// in a class template. Such actions are deferred until the class is complete.
3958 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3959                                                   SourceLocation InitLoc,
3960                                                   Expr *InitExpr) {
3961   // Pop the notional constructor scope we created earlier.
3962   PopFunctionScopeInfo(nullptr, D);
3963 
3964   FieldDecl *FD = dyn_cast<FieldDecl>(D);
3965   assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&
3966          "must set init style when field is created");
3967 
3968   if (!InitExpr) {
3969     D->setInvalidDecl();
3970     if (FD)
3971       FD->removeInClassInitializer();
3972     return;
3973   }
3974 
3975   if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3976     FD->setInvalidDecl();
3977     FD->removeInClassInitializer();
3978     return;
3979   }
3980 
3981   ExprResult Init = InitExpr;
3982   if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
3983     InitializedEntity Entity =
3984         InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD);
3985     InitializationKind Kind =
3986         FD->getInClassInitStyle() == ICIS_ListInit
3987             ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(),
3988                                                    InitExpr->getBeginLoc(),
3989                                                    InitExpr->getEndLoc())
3990             : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc);
3991     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3992     Init = Seq.Perform(*this, Entity, Kind, InitExpr);
3993     if (Init.isInvalid()) {
3994       FD->setInvalidDecl();
3995       return;
3996     }
3997   }
3998 
3999   // C++11 [class.base.init]p7:
4000   //   The initialization of each base and member constitutes a
4001   //   full-expression.
4002   Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false);
4003   if (Init.isInvalid()) {
4004     FD->setInvalidDecl();
4005     return;
4006   }
4007 
4008   InitExpr = Init.get();
4009 
4010   FD->setInClassInitializer(InitExpr);
4011 }
4012 
4013 /// Find the direct and/or virtual base specifiers that
4014 /// correspond to the given base type, for use in base initialization
4015 /// within a constructor.
4016 static bool FindBaseInitializer(Sema &SemaRef,
4017                                 CXXRecordDecl *ClassDecl,
4018                                 QualType BaseType,
4019                                 const CXXBaseSpecifier *&DirectBaseSpec,
4020                                 const CXXBaseSpecifier *&VirtualBaseSpec) {
4021   // First, check for a direct base class.
4022   DirectBaseSpec = nullptr;
4023   for (const auto &Base : ClassDecl->bases()) {
4024     if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
4025       // We found a direct base of this type. That's what we're
4026       // initializing.
4027       DirectBaseSpec = &Base;
4028       break;
4029     }
4030   }
4031 
4032   // Check for a virtual base class.
4033   // FIXME: We might be able to short-circuit this if we know in advance that
4034   // there are no virtual bases.
4035   VirtualBaseSpec = nullptr;
4036   if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
4037     // We haven't found a base yet; search the class hierarchy for a
4038     // virtual base class.
4039     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
4040                        /*DetectVirtual=*/false);
4041     if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
4042                               SemaRef.Context.getTypeDeclType(ClassDecl),
4043                               BaseType, Paths)) {
4044       for (CXXBasePaths::paths_iterator Path = Paths.begin();
4045            Path != Paths.end(); ++Path) {
4046         if (Path->back().Base->isVirtual()) {
4047           VirtualBaseSpec = Path->back().Base;
4048           break;
4049         }
4050       }
4051     }
4052   }
4053 
4054   return DirectBaseSpec || VirtualBaseSpec;
4055 }
4056 
4057 /// Handle a C++ member initializer using braced-init-list syntax.
4058 MemInitResult
4059 Sema::ActOnMemInitializer(Decl *ConstructorD,
4060                           Scope *S,
4061                           CXXScopeSpec &SS,
4062                           IdentifierInfo *MemberOrBase,
4063                           ParsedType TemplateTypeTy,
4064                           const DeclSpec &DS,
4065                           SourceLocation IdLoc,
4066                           Expr *InitList,
4067                           SourceLocation EllipsisLoc) {
4068   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4069                              DS, IdLoc, InitList,
4070                              EllipsisLoc);
4071 }
4072 
4073 /// Handle a C++ member initializer using parentheses syntax.
4074 MemInitResult
4075 Sema::ActOnMemInitializer(Decl *ConstructorD,
4076                           Scope *S,
4077                           CXXScopeSpec &SS,
4078                           IdentifierInfo *MemberOrBase,
4079                           ParsedType TemplateTypeTy,
4080                           const DeclSpec &DS,
4081                           SourceLocation IdLoc,
4082                           SourceLocation LParenLoc,
4083                           ArrayRef<Expr *> Args,
4084                           SourceLocation RParenLoc,
4085                           SourceLocation EllipsisLoc) {
4086   Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc);
4087   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4088                              DS, IdLoc, List, EllipsisLoc);
4089 }
4090 
4091 namespace {
4092 
4093 // Callback to only accept typo corrections that can be a valid C++ member
4094 // intializer: either a non-static field member or a base class.
4095 class MemInitializerValidatorCCC final : public CorrectionCandidateCallback {
4096 public:
4097   explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
4098       : ClassDecl(ClassDecl) {}
4099 
4100   bool ValidateCandidate(const TypoCorrection &candidate) override {
4101     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
4102       if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
4103         return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
4104       return isa<TypeDecl>(ND);
4105     }
4106     return false;
4107   }
4108 
4109   std::unique_ptr<CorrectionCandidateCallback> clone() override {
4110     return std::make_unique<MemInitializerValidatorCCC>(*this);
4111   }
4112 
4113 private:
4114   CXXRecordDecl *ClassDecl;
4115 };
4116 
4117 }
4118 
4119 ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
4120                                              CXXScopeSpec &SS,
4121                                              ParsedType TemplateTypeTy,
4122                                              IdentifierInfo *MemberOrBase) {
4123   if (SS.getScopeRep() || TemplateTypeTy)
4124     return nullptr;
4125   DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
4126   if (Result.empty())
4127     return nullptr;
4128   ValueDecl *Member;
4129   if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
4130       (Member = dyn_cast<IndirectFieldDecl>(Result.front())))
4131     return Member;
4132   return nullptr;
4133 }
4134 
4135 /// Handle a C++ member initializer.
4136 MemInitResult
4137 Sema::BuildMemInitializer(Decl *ConstructorD,
4138                           Scope *S,
4139                           CXXScopeSpec &SS,
4140                           IdentifierInfo *MemberOrBase,
4141                           ParsedType TemplateTypeTy,
4142                           const DeclSpec &DS,
4143                           SourceLocation IdLoc,
4144                           Expr *Init,
4145                           SourceLocation EllipsisLoc) {
4146   ExprResult Res = CorrectDelayedTyposInExpr(Init);
4147   if (!Res.isUsable())
4148     return true;
4149   Init = Res.get();
4150 
4151   if (!ConstructorD)
4152     return true;
4153 
4154   AdjustDeclIfTemplate(ConstructorD);
4155 
4156   CXXConstructorDecl *Constructor
4157     = dyn_cast<CXXConstructorDecl>(ConstructorD);
4158   if (!Constructor) {
4159     // The user wrote a constructor initializer on a function that is
4160     // not a C++ constructor. Ignore the error for now, because we may
4161     // have more member initializers coming; we'll diagnose it just
4162     // once in ActOnMemInitializers.
4163     return true;
4164   }
4165 
4166   CXXRecordDecl *ClassDecl = Constructor->getParent();
4167 
4168   // C++ [class.base.init]p2:
4169   //   Names in a mem-initializer-id are looked up in the scope of the
4170   //   constructor's class and, if not found in that scope, are looked
4171   //   up in the scope containing the constructor's definition.
4172   //   [Note: if the constructor's class contains a member with the
4173   //   same name as a direct or virtual base class of the class, a
4174   //   mem-initializer-id naming the member or base class and composed
4175   //   of a single identifier refers to the class member. A
4176   //   mem-initializer-id for the hidden base class may be specified
4177   //   using a qualified name. ]
4178 
4179   // Look for a member, first.
4180   if (ValueDecl *Member = tryLookupCtorInitMemberDecl(
4181           ClassDecl, SS, TemplateTypeTy, MemberOrBase)) {
4182     if (EllipsisLoc.isValid())
4183       Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
4184           << MemberOrBase
4185           << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4186 
4187     return BuildMemberInitializer(Member, Init, IdLoc);
4188   }
4189   // It didn't name a member, so see if it names a class.
4190   QualType BaseType;
4191   TypeSourceInfo *TInfo = nullptr;
4192 
4193   if (TemplateTypeTy) {
4194     BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
4195     if (BaseType.isNull())
4196       return true;
4197   } else if (DS.getTypeSpecType() == TST_decltype) {
4198     BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
4199   } else if (DS.getTypeSpecType() == TST_decltype_auto) {
4200     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
4201     return true;
4202   } else {
4203     LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
4204     LookupParsedName(R, S, &SS);
4205 
4206     TypeDecl *TyD = R.getAsSingle<TypeDecl>();
4207     if (!TyD) {
4208       if (R.isAmbiguous()) return true;
4209 
4210       // We don't want access-control diagnostics here.
4211       R.suppressDiagnostics();
4212 
4213       if (SS.isSet() && isDependentScopeSpecifier(SS)) {
4214         bool NotUnknownSpecialization = false;
4215         DeclContext *DC = computeDeclContext(SS, false);
4216         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
4217           NotUnknownSpecialization = !Record->hasAnyDependentBases();
4218 
4219         if (!NotUnknownSpecialization) {
4220           // When the scope specifier can refer to a member of an unknown
4221           // specialization, we take it as a type name.
4222           BaseType = CheckTypenameType(ETK_None, SourceLocation(),
4223                                        SS.getWithLocInContext(Context),
4224                                        *MemberOrBase, IdLoc);
4225           if (BaseType.isNull())
4226             return true;
4227 
4228           TInfo = Context.CreateTypeSourceInfo(BaseType);
4229           DependentNameTypeLoc TL =
4230               TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
4231           if (!TL.isNull()) {
4232             TL.setNameLoc(IdLoc);
4233             TL.setElaboratedKeywordLoc(SourceLocation());
4234             TL.setQualifierLoc(SS.getWithLocInContext(Context));
4235           }
4236 
4237           R.clear();
4238           R.setLookupName(MemberOrBase);
4239         }
4240       }
4241 
4242       // If no results were found, try to correct typos.
4243       TypoCorrection Corr;
4244       MemInitializerValidatorCCC CCC(ClassDecl);
4245       if (R.empty() && BaseType.isNull() &&
4246           (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
4247                               CCC, CTK_ErrorRecovery, ClassDecl))) {
4248         if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
4249           // We have found a non-static data member with a similar
4250           // name to what was typed; complain and initialize that
4251           // member.
4252           diagnoseTypo(Corr,
4253                        PDiag(diag::err_mem_init_not_member_or_class_suggest)
4254                          << MemberOrBase << true);
4255           return BuildMemberInitializer(Member, Init, IdLoc);
4256         } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
4257           const CXXBaseSpecifier *DirectBaseSpec;
4258           const CXXBaseSpecifier *VirtualBaseSpec;
4259           if (FindBaseInitializer(*this, ClassDecl,
4260                                   Context.getTypeDeclType(Type),
4261                                   DirectBaseSpec, VirtualBaseSpec)) {
4262             // We have found a direct or virtual base class with a
4263             // similar name to what was typed; complain and initialize
4264             // that base class.
4265             diagnoseTypo(Corr,
4266                          PDiag(diag::err_mem_init_not_member_or_class_suggest)
4267                            << MemberOrBase << false,
4268                          PDiag() /*Suppress note, we provide our own.*/);
4269 
4270             const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
4271                                                               : VirtualBaseSpec;
4272             Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here)
4273                 << BaseSpec->getType() << BaseSpec->getSourceRange();
4274 
4275             TyD = Type;
4276           }
4277         }
4278       }
4279 
4280       if (!TyD && BaseType.isNull()) {
4281         Diag(IdLoc, diag::err_mem_init_not_member_or_class)
4282           << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
4283         return true;
4284       }
4285     }
4286 
4287     if (BaseType.isNull()) {
4288       BaseType = Context.getTypeDeclType(TyD);
4289       MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
4290       if (SS.isSet()) {
4291         BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
4292                                              BaseType);
4293         TInfo = Context.CreateTypeSourceInfo(BaseType);
4294         ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
4295         TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
4296         TL.setElaboratedKeywordLoc(SourceLocation());
4297         TL.setQualifierLoc(SS.getWithLocInContext(Context));
4298       }
4299     }
4300   }
4301 
4302   if (!TInfo)
4303     TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
4304 
4305   return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
4306 }
4307 
4308 MemInitResult
4309 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
4310                              SourceLocation IdLoc) {
4311   FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
4312   IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
4313   assert((DirectMember || IndirectMember) &&
4314          "Member must be a FieldDecl or IndirectFieldDecl");
4315 
4316   if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4317     return true;
4318 
4319   if (Member->isInvalidDecl())
4320     return true;
4321 
4322   MultiExprArg Args;
4323   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4324     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4325   } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
4326     Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
4327   } else {
4328     // Template instantiation doesn't reconstruct ParenListExprs for us.
4329     Args = Init;
4330   }
4331 
4332   SourceRange InitRange = Init->getSourceRange();
4333 
4334   if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
4335     // Can't check initialization for a member of dependent type or when
4336     // any of the arguments are type-dependent expressions.
4337     DiscardCleanupsInEvaluationContext();
4338   } else {
4339     bool InitList = false;
4340     if (isa<InitListExpr>(Init)) {
4341       InitList = true;
4342       Args = Init;
4343     }
4344 
4345     // Initialize the member.
4346     InitializedEntity MemberEntity =
4347       DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
4348                    : InitializedEntity::InitializeMember(IndirectMember,
4349                                                          nullptr);
4350     InitializationKind Kind =
4351         InitList ? InitializationKind::CreateDirectList(
4352                        IdLoc, Init->getBeginLoc(), Init->getEndLoc())
4353                  : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
4354                                                     InitRange.getEnd());
4355 
4356     InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
4357     ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
4358                                             nullptr);
4359     if (MemberInit.isInvalid())
4360       return true;
4361 
4362     // C++11 [class.base.init]p7:
4363     //   The initialization of each base and member constitutes a
4364     //   full-expression.
4365     MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(),
4366                                      /*DiscardedValue*/ false);
4367     if (MemberInit.isInvalid())
4368       return true;
4369 
4370     Init = MemberInit.get();
4371   }
4372 
4373   if (DirectMember) {
4374     return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4375                                             InitRange.getBegin(), Init,
4376                                             InitRange.getEnd());
4377   } else {
4378     return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4379                                             InitRange.getBegin(), Init,
4380                                             InitRange.getEnd());
4381   }
4382 }
4383 
4384 MemInitResult
4385 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4386                                  CXXRecordDecl *ClassDecl) {
4387   SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
4388   if (!LangOpts.CPlusPlus11)
4389     return Diag(NameLoc, diag::err_delegating_ctor)
4390       << TInfo->getTypeLoc().getLocalSourceRange();
4391   Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4392 
4393   bool InitList = true;
4394   MultiExprArg Args = Init;
4395   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4396     InitList = false;
4397     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4398   }
4399 
4400   SourceRange InitRange = Init->getSourceRange();
4401   // Initialize the object.
4402   InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4403                                      QualType(ClassDecl->getTypeForDecl(), 0));
4404   InitializationKind Kind =
4405       InitList ? InitializationKind::CreateDirectList(
4406                      NameLoc, Init->getBeginLoc(), Init->getEndLoc())
4407                : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4408                                                   InitRange.getEnd());
4409   InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4410   ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4411                                               Args, nullptr);
4412   if (DelegationInit.isInvalid())
4413     return true;
4414 
4415   assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
4416          "Delegating constructor with no target?");
4417 
4418   // C++11 [class.base.init]p7:
4419   //   The initialization of each base and member constitutes a
4420   //   full-expression.
4421   DelegationInit = ActOnFinishFullExpr(
4422       DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false);
4423   if (DelegationInit.isInvalid())
4424     return true;
4425 
4426   // If we are in a dependent context, template instantiation will
4427   // perform this type-checking again. Just save the arguments that we
4428   // received in a ParenListExpr.
4429   // FIXME: This isn't quite ideal, since our ASTs don't capture all
4430   // of the information that we have about the base
4431   // initializer. However, deconstructing the ASTs is a dicey process,
4432   // and this approach is far more likely to get the corner cases right.
4433   if (CurContext->isDependentContext())
4434     DelegationInit = Init;
4435 
4436   return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4437                                           DelegationInit.getAs<Expr>(),
4438                                           InitRange.getEnd());
4439 }
4440 
4441 MemInitResult
4442 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4443                            Expr *Init, CXXRecordDecl *ClassDecl,
4444                            SourceLocation EllipsisLoc) {
4445   SourceLocation BaseLoc
4446     = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4447 
4448   if (!BaseType->isDependentType() && !BaseType->isRecordType())
4449     return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4450              << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4451 
4452   // C++ [class.base.init]p2:
4453   //   [...] Unless the mem-initializer-id names a nonstatic data
4454   //   member of the constructor's class or a direct or virtual base
4455   //   of that class, the mem-initializer is ill-formed. A
4456   //   mem-initializer-list can initialize a base class using any
4457   //   name that denotes that base class type.
4458   bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
4459 
4460   SourceRange InitRange = Init->getSourceRange();
4461   if (EllipsisLoc.isValid()) {
4462     // This is a pack expansion.
4463     if (!BaseType->containsUnexpandedParameterPack())  {
4464       Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4465         << SourceRange(BaseLoc, InitRange.getEnd());
4466 
4467       EllipsisLoc = SourceLocation();
4468     }
4469   } else {
4470     // Check for any unexpanded parameter packs.
4471     if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4472       return true;
4473 
4474     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4475       return true;
4476   }
4477 
4478   // Check for direct and virtual base classes.
4479   const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4480   const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4481   if (!Dependent) {
4482     if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4483                                        BaseType))
4484       return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4485 
4486     FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4487                         VirtualBaseSpec);
4488 
4489     // C++ [base.class.init]p2:
4490     // Unless the mem-initializer-id names a nonstatic data member of the
4491     // constructor's class or a direct or virtual base of that class, the
4492     // mem-initializer is ill-formed.
4493     if (!DirectBaseSpec && !VirtualBaseSpec) {
4494       // If the class has any dependent bases, then it's possible that
4495       // one of those types will resolve to the same type as
4496       // BaseType. Therefore, just treat this as a dependent base
4497       // class initialization.  FIXME: Should we try to check the
4498       // initialization anyway? It seems odd.
4499       if (ClassDecl->hasAnyDependentBases())
4500         Dependent = true;
4501       else
4502         return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4503           << BaseType << Context.getTypeDeclType(ClassDecl)
4504           << BaseTInfo->getTypeLoc().getLocalSourceRange();
4505     }
4506   }
4507 
4508   if (Dependent) {
4509     DiscardCleanupsInEvaluationContext();
4510 
4511     return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4512                                             /*IsVirtual=*/false,
4513                                             InitRange.getBegin(), Init,
4514                                             InitRange.getEnd(), EllipsisLoc);
4515   }
4516 
4517   // C++ [base.class.init]p2:
4518   //   If a mem-initializer-id is ambiguous because it designates both
4519   //   a direct non-virtual base class and an inherited virtual base
4520   //   class, the mem-initializer is ill-formed.
4521   if (DirectBaseSpec && VirtualBaseSpec)
4522     return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4523       << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4524 
4525   const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4526   if (!BaseSpec)
4527     BaseSpec = VirtualBaseSpec;
4528 
4529   // Initialize the base.
4530   bool InitList = true;
4531   MultiExprArg Args = Init;
4532   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4533     InitList = false;
4534     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4535   }
4536 
4537   InitializedEntity BaseEntity =
4538     InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4539   InitializationKind Kind =
4540       InitList ? InitializationKind::CreateDirectList(BaseLoc)
4541                : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4542                                                   InitRange.getEnd());
4543   InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4544   ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4545   if (BaseInit.isInvalid())
4546     return true;
4547 
4548   // C++11 [class.base.init]p7:
4549   //   The initialization of each base and member constitutes a
4550   //   full-expression.
4551   BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(),
4552                                  /*DiscardedValue*/ false);
4553   if (BaseInit.isInvalid())
4554     return true;
4555 
4556   // If we are in a dependent context, template instantiation will
4557   // perform this type-checking again. Just save the arguments that we
4558   // received in a ParenListExpr.
4559   // FIXME: This isn't quite ideal, since our ASTs don't capture all
4560   // of the information that we have about the base
4561   // initializer. However, deconstructing the ASTs is a dicey process,
4562   // and this approach is far more likely to get the corner cases right.
4563   if (CurContext->isDependentContext())
4564     BaseInit = Init;
4565 
4566   return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4567                                           BaseSpec->isVirtual(),
4568                                           InitRange.getBegin(),
4569                                           BaseInit.getAs<Expr>(),
4570                                           InitRange.getEnd(), EllipsisLoc);
4571 }
4572 
4573 // Create a static_cast\<T&&>(expr).
4574 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4575   if (T.isNull()) T = E->getType();
4576   QualType TargetType = SemaRef.BuildReferenceType(
4577       T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4578   SourceLocation ExprLoc = E->getBeginLoc();
4579   TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4580       TargetType, ExprLoc);
4581 
4582   return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4583                                    SourceRange(ExprLoc, ExprLoc),
4584                                    E->getSourceRange()).get();
4585 }
4586 
4587 /// ImplicitInitializerKind - How an implicit base or member initializer should
4588 /// initialize its base or member.
4589 enum ImplicitInitializerKind {
4590   IIK_Default,
4591   IIK_Copy,
4592   IIK_Move,
4593   IIK_Inherit
4594 };
4595 
4596 static bool
4597 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4598                              ImplicitInitializerKind ImplicitInitKind,
4599                              CXXBaseSpecifier *BaseSpec,
4600                              bool IsInheritedVirtualBase,
4601                              CXXCtorInitializer *&CXXBaseInit) {
4602   InitializedEntity InitEntity
4603     = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4604                                         IsInheritedVirtualBase);
4605 
4606   ExprResult BaseInit;
4607 
4608   switch (ImplicitInitKind) {
4609   case IIK_Inherit:
4610   case IIK_Default: {
4611     InitializationKind InitKind
4612       = InitializationKind::CreateDefault(Constructor->getLocation());
4613     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4614     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4615     break;
4616   }
4617 
4618   case IIK_Move:
4619   case IIK_Copy: {
4620     bool Moving = ImplicitInitKind == IIK_Move;
4621     ParmVarDecl *Param = Constructor->getParamDecl(0);
4622     QualType ParamType = Param->getType().getNonReferenceType();
4623 
4624     Expr *CopyCtorArg =
4625       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4626                           SourceLocation(), Param, false,
4627                           Constructor->getLocation(), ParamType,
4628                           VK_LValue, nullptr);
4629 
4630     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4631 
4632     // Cast to the base class to avoid ambiguities.
4633     QualType ArgTy =
4634       SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4635                                        ParamType.getQualifiers());
4636 
4637     if (Moving) {
4638       CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4639     }
4640 
4641     CXXCastPath BasePath;
4642     BasePath.push_back(BaseSpec);
4643     CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4644                                             CK_UncheckedDerivedToBase,
4645                                             Moving ? VK_XValue : VK_LValue,
4646                                             &BasePath).get();
4647 
4648     InitializationKind InitKind
4649       = InitializationKind::CreateDirect(Constructor->getLocation(),
4650                                          SourceLocation(), SourceLocation());
4651     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4652     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4653     break;
4654   }
4655   }
4656 
4657   BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4658   if (BaseInit.isInvalid())
4659     return true;
4660 
4661   CXXBaseInit =
4662     new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4663                SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4664                                                         SourceLocation()),
4665                                              BaseSpec->isVirtual(),
4666                                              SourceLocation(),
4667                                              BaseInit.getAs<Expr>(),
4668                                              SourceLocation(),
4669                                              SourceLocation());
4670 
4671   return false;
4672 }
4673 
4674 static bool RefersToRValueRef(Expr *MemRef) {
4675   ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4676   return Referenced->getType()->isRValueReferenceType();
4677 }
4678 
4679 static bool
4680 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4681                                ImplicitInitializerKind ImplicitInitKind,
4682                                FieldDecl *Field, IndirectFieldDecl *Indirect,
4683                                CXXCtorInitializer *&CXXMemberInit) {
4684   if (Field->isInvalidDecl())
4685     return true;
4686 
4687   SourceLocation Loc = Constructor->getLocation();
4688 
4689   if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4690     bool Moving = ImplicitInitKind == IIK_Move;
4691     ParmVarDecl *Param = Constructor->getParamDecl(0);
4692     QualType ParamType = Param->getType().getNonReferenceType();
4693 
4694     // Suppress copying zero-width bitfields.
4695     if (Field->isZeroLengthBitField(SemaRef.Context))
4696       return false;
4697 
4698     Expr *MemberExprBase =
4699       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4700                           SourceLocation(), Param, false,
4701                           Loc, ParamType, VK_LValue, nullptr);
4702 
4703     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4704 
4705     if (Moving) {
4706       MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4707     }
4708 
4709     // Build a reference to this field within the parameter.
4710     CXXScopeSpec SS;
4711     LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4712                               Sema::LookupMemberName);
4713     MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4714                                   : cast<ValueDecl>(Field), AS_public);
4715     MemberLookup.resolveKind();
4716     ExprResult CtorArg
4717       = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4718                                          ParamType, Loc,
4719                                          /*IsArrow=*/false,
4720                                          SS,
4721                                          /*TemplateKWLoc=*/SourceLocation(),
4722                                          /*FirstQualifierInScope=*/nullptr,
4723                                          MemberLookup,
4724                                          /*TemplateArgs=*/nullptr,
4725                                          /*S*/nullptr);
4726     if (CtorArg.isInvalid())
4727       return true;
4728 
4729     // C++11 [class.copy]p15:
4730     //   - if a member m has rvalue reference type T&&, it is direct-initialized
4731     //     with static_cast<T&&>(x.m);
4732     if (RefersToRValueRef(CtorArg.get())) {
4733       CtorArg = CastForMoving(SemaRef, CtorArg.get());
4734     }
4735 
4736     InitializedEntity Entity =
4737         Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4738                                                        /*Implicit*/ true)
4739                  : InitializedEntity::InitializeMember(Field, nullptr,
4740                                                        /*Implicit*/ true);
4741 
4742     // Direct-initialize to use the copy constructor.
4743     InitializationKind InitKind =
4744       InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4745 
4746     Expr *CtorArgE = CtorArg.getAs<Expr>();
4747     InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4748     ExprResult MemberInit =
4749         InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4750     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4751     if (MemberInit.isInvalid())
4752       return true;
4753 
4754     if (Indirect)
4755       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4756           SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4757     else
4758       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4759           SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4760     return false;
4761   }
4762 
4763   assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
4764          "Unhandled implicit init kind!");
4765 
4766   QualType FieldBaseElementType =
4767     SemaRef.Context.getBaseElementType(Field->getType());
4768 
4769   if (FieldBaseElementType->isRecordType()) {
4770     InitializedEntity InitEntity =
4771         Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4772                                                        /*Implicit*/ true)
4773                  : InitializedEntity::InitializeMember(Field, nullptr,
4774                                                        /*Implicit*/ true);
4775     InitializationKind InitKind =
4776       InitializationKind::CreateDefault(Loc);
4777 
4778     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4779     ExprResult MemberInit =
4780       InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4781 
4782     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4783     if (MemberInit.isInvalid())
4784       return true;
4785 
4786     if (Indirect)
4787       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4788                                                                Indirect, Loc,
4789                                                                Loc,
4790                                                                MemberInit.get(),
4791                                                                Loc);
4792     else
4793       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4794                                                                Field, Loc, Loc,
4795                                                                MemberInit.get(),
4796                                                                Loc);
4797     return false;
4798   }
4799 
4800   if (!Field->getParent()->isUnion()) {
4801     if (FieldBaseElementType->isReferenceType()) {
4802       SemaRef.Diag(Constructor->getLocation(),
4803                    diag::err_uninitialized_member_in_ctor)
4804       << (int)Constructor->isImplicit()
4805       << SemaRef.Context.getTagDeclType(Constructor->getParent())
4806       << 0 << Field->getDeclName();
4807       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4808       return true;
4809     }
4810 
4811     if (FieldBaseElementType.isConstQualified()) {
4812       SemaRef.Diag(Constructor->getLocation(),
4813                    diag::err_uninitialized_member_in_ctor)
4814       << (int)Constructor->isImplicit()
4815       << SemaRef.Context.getTagDeclType(Constructor->getParent())
4816       << 1 << Field->getDeclName();
4817       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4818       return true;
4819     }
4820   }
4821 
4822   if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4823     // ARC and Weak:
4824     //   Default-initialize Objective-C pointers to NULL.
4825     CXXMemberInit
4826       = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4827                                                  Loc, Loc,
4828                  new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4829                                                  Loc);
4830     return false;
4831   }
4832 
4833   // Nothing to initialize.
4834   CXXMemberInit = nullptr;
4835   return false;
4836 }
4837 
4838 namespace {
4839 struct BaseAndFieldInfo {
4840   Sema &S;
4841   CXXConstructorDecl *Ctor;
4842   bool AnyErrorsInInits;
4843   ImplicitInitializerKind IIK;
4844   llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4845   SmallVector<CXXCtorInitializer*, 8> AllToInit;
4846   llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4847 
4848   BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4849     : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4850     bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4851     if (Ctor->getInheritedConstructor())
4852       IIK = IIK_Inherit;
4853     else if (Generated && Ctor->isCopyConstructor())
4854       IIK = IIK_Copy;
4855     else if (Generated && Ctor->isMoveConstructor())
4856       IIK = IIK_Move;
4857     else
4858       IIK = IIK_Default;
4859   }
4860 
4861   bool isImplicitCopyOrMove() const {
4862     switch (IIK) {
4863     case IIK_Copy:
4864     case IIK_Move:
4865       return true;
4866 
4867     case IIK_Default:
4868     case IIK_Inherit:
4869       return false;
4870     }
4871 
4872     llvm_unreachable("Invalid ImplicitInitializerKind!");
4873   }
4874 
4875   bool addFieldInitializer(CXXCtorInitializer *Init) {
4876     AllToInit.push_back(Init);
4877 
4878     // Check whether this initializer makes the field "used".
4879     if (Init->getInit()->HasSideEffects(S.Context))
4880       S.UnusedPrivateFields.remove(Init->getAnyMember());
4881 
4882     return false;
4883   }
4884 
4885   bool isInactiveUnionMember(FieldDecl *Field) {
4886     RecordDecl *Record = Field->getParent();
4887     if (!Record->isUnion())
4888       return false;
4889 
4890     if (FieldDecl *Active =
4891             ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4892       return Active != Field->getCanonicalDecl();
4893 
4894     // In an implicit copy or move constructor, ignore any in-class initializer.
4895     if (isImplicitCopyOrMove())
4896       return true;
4897 
4898     // If there's no explicit initialization, the field is active only if it
4899     // has an in-class initializer...
4900     if (Field->hasInClassInitializer())
4901       return false;
4902     // ... or it's an anonymous struct or union whose class has an in-class
4903     // initializer.
4904     if (!Field->isAnonymousStructOrUnion())
4905       return true;
4906     CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4907     return !FieldRD->hasInClassInitializer();
4908   }
4909 
4910   /// Determine whether the given field is, or is within, a union member
4911   /// that is inactive (because there was an initializer given for a different
4912   /// member of the union, or because the union was not initialized at all).
4913   bool isWithinInactiveUnionMember(FieldDecl *Field,
4914                                    IndirectFieldDecl *Indirect) {
4915     if (!Indirect)
4916       return isInactiveUnionMember(Field);
4917 
4918     for (auto *C : Indirect->chain()) {
4919       FieldDecl *Field = dyn_cast<FieldDecl>(C);
4920       if (Field && isInactiveUnionMember(Field))
4921         return true;
4922     }
4923     return false;
4924   }
4925 };
4926 }
4927 
4928 /// Determine whether the given type is an incomplete or zero-lenfgth
4929 /// array type.
4930 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4931   if (T->isIncompleteArrayType())
4932     return true;
4933 
4934   while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4935     if (!ArrayT->getSize())
4936       return true;
4937 
4938     T = ArrayT->getElementType();
4939   }
4940 
4941   return false;
4942 }
4943 
4944 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4945                                     FieldDecl *Field,
4946                                     IndirectFieldDecl *Indirect = nullptr) {
4947   if (Field->isInvalidDecl())
4948     return false;
4949 
4950   // Overwhelmingly common case: we have a direct initializer for this field.
4951   if (CXXCtorInitializer *Init =
4952           Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4953     return Info.addFieldInitializer(Init);
4954 
4955   // C++11 [class.base.init]p8:
4956   //   if the entity is a non-static data member that has a
4957   //   brace-or-equal-initializer and either
4958   //   -- the constructor's class is a union and no other variant member of that
4959   //      union is designated by a mem-initializer-id or
4960   //   -- the constructor's class is not a union, and, if the entity is a member
4961   //      of an anonymous union, no other member of that union is designated by
4962   //      a mem-initializer-id,
4963   //   the entity is initialized as specified in [dcl.init].
4964   //
4965   // We also apply the same rules to handle anonymous structs within anonymous
4966   // unions.
4967   if (Info.isWithinInactiveUnionMember(Field, Indirect))
4968     return false;
4969 
4970   if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
4971     ExprResult DIE =
4972         SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
4973     if (DIE.isInvalid())
4974       return true;
4975 
4976     auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true);
4977     SemaRef.checkInitializerLifetime(Entity, DIE.get());
4978 
4979     CXXCtorInitializer *Init;
4980     if (Indirect)
4981       Init = new (SemaRef.Context)
4982           CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
4983                              SourceLocation(), DIE.get(), SourceLocation());
4984     else
4985       Init = new (SemaRef.Context)
4986           CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
4987                              SourceLocation(), DIE.get(), SourceLocation());
4988     return Info.addFieldInitializer(Init);
4989   }
4990 
4991   // Don't initialize incomplete or zero-length arrays.
4992   if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
4993     return false;
4994 
4995   // Don't try to build an implicit initializer if there were semantic
4996   // errors in any of the initializers (and therefore we might be
4997   // missing some that the user actually wrote).
4998   if (Info.AnyErrorsInInits)
4999     return false;
5000 
5001   CXXCtorInitializer *Init = nullptr;
5002   if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
5003                                      Indirect, Init))
5004     return true;
5005 
5006   if (!Init)
5007     return false;
5008 
5009   return Info.addFieldInitializer(Init);
5010 }
5011 
5012 bool
5013 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
5014                                CXXCtorInitializer *Initializer) {
5015   assert(Initializer->isDelegatingInitializer());
5016   Constructor->setNumCtorInitializers(1);
5017   CXXCtorInitializer **initializer =
5018     new (Context) CXXCtorInitializer*[1];
5019   memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
5020   Constructor->setCtorInitializers(initializer);
5021 
5022   if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
5023     MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
5024     DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
5025   }
5026 
5027   DelegatingCtorDecls.push_back(Constructor);
5028 
5029   DiagnoseUninitializedFields(*this, Constructor);
5030 
5031   return false;
5032 }
5033 
5034 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
5035                                ArrayRef<CXXCtorInitializer *> Initializers) {
5036   if (Constructor->isDependentContext()) {
5037     // Just store the initializers as written, they will be checked during
5038     // instantiation.
5039     if (!Initializers.empty()) {
5040       Constructor->setNumCtorInitializers(Initializers.size());
5041       CXXCtorInitializer **baseOrMemberInitializers =
5042         new (Context) CXXCtorInitializer*[Initializers.size()];
5043       memcpy(baseOrMemberInitializers, Initializers.data(),
5044              Initializers.size() * sizeof(CXXCtorInitializer*));
5045       Constructor->setCtorInitializers(baseOrMemberInitializers);
5046     }
5047 
5048     // Let template instantiation know whether we had errors.
5049     if (AnyErrors)
5050       Constructor->setInvalidDecl();
5051 
5052     return false;
5053   }
5054 
5055   BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
5056 
5057   // We need to build the initializer AST according to order of construction
5058   // and not what user specified in the Initializers list.
5059   CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
5060   if (!ClassDecl)
5061     return true;
5062 
5063   bool HadError = false;
5064 
5065   for (unsigned i = 0; i < Initializers.size(); i++) {
5066     CXXCtorInitializer *Member = Initializers[i];
5067 
5068     if (Member->isBaseInitializer())
5069       Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
5070     else {
5071       Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
5072 
5073       if (IndirectFieldDecl *F = Member->getIndirectMember()) {
5074         for (auto *C : F->chain()) {
5075           FieldDecl *FD = dyn_cast<FieldDecl>(C);
5076           if (FD && FD->getParent()->isUnion())
5077             Info.ActiveUnionMember.insert(std::make_pair(
5078                 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5079         }
5080       } else if (FieldDecl *FD = Member->getMember()) {
5081         if (FD->getParent()->isUnion())
5082           Info.ActiveUnionMember.insert(std::make_pair(
5083               FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5084       }
5085     }
5086   }
5087 
5088   // Keep track of the direct virtual bases.
5089   llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
5090   for (auto &I : ClassDecl->bases()) {
5091     if (I.isVirtual())
5092       DirectVBases.insert(&I);
5093   }
5094 
5095   // Push virtual bases before others.
5096   for (auto &VBase : ClassDecl->vbases()) {
5097     if (CXXCtorInitializer *Value
5098         = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
5099       // [class.base.init]p7, per DR257:
5100       //   A mem-initializer where the mem-initializer-id names a virtual base
5101       //   class is ignored during execution of a constructor of any class that
5102       //   is not the most derived class.
5103       if (ClassDecl->isAbstract()) {
5104         // FIXME: Provide a fixit to remove the base specifier. This requires
5105         // tracking the location of the associated comma for a base specifier.
5106         Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
5107           << VBase.getType() << ClassDecl;
5108         DiagnoseAbstractType(ClassDecl);
5109       }
5110 
5111       Info.AllToInit.push_back(Value);
5112     } else if (!AnyErrors && !ClassDecl->isAbstract()) {
5113       // [class.base.init]p8, per DR257:
5114       //   If a given [...] base class is not named by a mem-initializer-id
5115       //   [...] and the entity is not a virtual base class of an abstract
5116       //   class, then [...] the entity is default-initialized.
5117       bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
5118       CXXCtorInitializer *CXXBaseInit;
5119       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5120                                        &VBase, IsInheritedVirtualBase,
5121                                        CXXBaseInit)) {
5122         HadError = true;
5123         continue;
5124       }
5125 
5126       Info.AllToInit.push_back(CXXBaseInit);
5127     }
5128   }
5129 
5130   // Non-virtual bases.
5131   for (auto &Base : ClassDecl->bases()) {
5132     // Virtuals are in the virtual base list and already constructed.
5133     if (Base.isVirtual())
5134       continue;
5135 
5136     if (CXXCtorInitializer *Value
5137           = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
5138       Info.AllToInit.push_back(Value);
5139     } else if (!AnyErrors) {
5140       CXXCtorInitializer *CXXBaseInit;
5141       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5142                                        &Base, /*IsInheritedVirtualBase=*/false,
5143                                        CXXBaseInit)) {
5144         HadError = true;
5145         continue;
5146       }
5147 
5148       Info.AllToInit.push_back(CXXBaseInit);
5149     }
5150   }
5151 
5152   // Fields.
5153   for (auto *Mem : ClassDecl->decls()) {
5154     if (auto *F = dyn_cast<FieldDecl>(Mem)) {
5155       // C++ [class.bit]p2:
5156       //   A declaration for a bit-field that omits the identifier declares an
5157       //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
5158       //   initialized.
5159       if (F->isUnnamedBitfield())
5160         continue;
5161 
5162       // If we're not generating the implicit copy/move constructor, then we'll
5163       // handle anonymous struct/union fields based on their individual
5164       // indirect fields.
5165       if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
5166         continue;
5167 
5168       if (CollectFieldInitializer(*this, Info, F))
5169         HadError = true;
5170       continue;
5171     }
5172 
5173     // Beyond this point, we only consider default initialization.
5174     if (Info.isImplicitCopyOrMove())
5175       continue;
5176 
5177     if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
5178       if (F->getType()->isIncompleteArrayType()) {
5179         assert(ClassDecl->hasFlexibleArrayMember() &&
5180                "Incomplete array type is not valid");
5181         continue;
5182       }
5183 
5184       // Initialize each field of an anonymous struct individually.
5185       if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
5186         HadError = true;
5187 
5188       continue;
5189     }
5190   }
5191 
5192   unsigned NumInitializers = Info.AllToInit.size();
5193   if (NumInitializers > 0) {
5194     Constructor->setNumCtorInitializers(NumInitializers);
5195     CXXCtorInitializer **baseOrMemberInitializers =
5196       new (Context) CXXCtorInitializer*[NumInitializers];
5197     memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
5198            NumInitializers * sizeof(CXXCtorInitializer*));
5199     Constructor->setCtorInitializers(baseOrMemberInitializers);
5200 
5201     // Constructors implicitly reference the base and member
5202     // destructors.
5203     MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
5204                                            Constructor->getParent());
5205   }
5206 
5207   return HadError;
5208 }
5209 
5210 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
5211   if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
5212     const RecordDecl *RD = RT->getDecl();
5213     if (RD->isAnonymousStructOrUnion()) {
5214       for (auto *Field : RD->fields())
5215         PopulateKeysForFields(Field, IdealInits);
5216       return;
5217     }
5218   }
5219   IdealInits.push_back(Field->getCanonicalDecl());
5220 }
5221 
5222 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
5223   return Context.getCanonicalType(BaseType).getTypePtr();
5224 }
5225 
5226 static const void *GetKeyForMember(ASTContext &Context,
5227                                    CXXCtorInitializer *Member) {
5228   if (!Member->isAnyMemberInitializer())
5229     return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
5230 
5231   return Member->getAnyMember()->getCanonicalDecl();
5232 }
5233 
5234 static void DiagnoseBaseOrMemInitializerOrder(
5235     Sema &SemaRef, const CXXConstructorDecl *Constructor,
5236     ArrayRef<CXXCtorInitializer *> Inits) {
5237   if (Constructor->getDeclContext()->isDependentContext())
5238     return;
5239 
5240   // Don't check initializers order unless the warning is enabled at the
5241   // location of at least one initializer.
5242   bool ShouldCheckOrder = false;
5243   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5244     CXXCtorInitializer *Init = Inits[InitIndex];
5245     if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
5246                                  Init->getSourceLocation())) {
5247       ShouldCheckOrder = true;
5248       break;
5249     }
5250   }
5251   if (!ShouldCheckOrder)
5252     return;
5253 
5254   // Build the list of bases and members in the order that they'll
5255   // actually be initialized.  The explicit initializers should be in
5256   // this same order but may be missing things.
5257   SmallVector<const void*, 32> IdealInitKeys;
5258 
5259   const CXXRecordDecl *ClassDecl = Constructor->getParent();
5260 
5261   // 1. Virtual bases.
5262   for (const auto &VBase : ClassDecl->vbases())
5263     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
5264 
5265   // 2. Non-virtual bases.
5266   for (const auto &Base : ClassDecl->bases()) {
5267     if (Base.isVirtual())
5268       continue;
5269     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
5270   }
5271 
5272   // 3. Direct fields.
5273   for (auto *Field : ClassDecl->fields()) {
5274     if (Field->isUnnamedBitfield())
5275       continue;
5276 
5277     PopulateKeysForFields(Field, IdealInitKeys);
5278   }
5279 
5280   unsigned NumIdealInits = IdealInitKeys.size();
5281   unsigned IdealIndex = 0;
5282 
5283   CXXCtorInitializer *PrevInit = nullptr;
5284   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5285     CXXCtorInitializer *Init = Inits[InitIndex];
5286     const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
5287 
5288     // Scan forward to try to find this initializer in the idealized
5289     // initializers list.
5290     for (; IdealIndex != NumIdealInits; ++IdealIndex)
5291       if (InitKey == IdealInitKeys[IdealIndex])
5292         break;
5293 
5294     // If we didn't find this initializer, it must be because we
5295     // scanned past it on a previous iteration.  That can only
5296     // happen if we're out of order;  emit a warning.
5297     if (IdealIndex == NumIdealInits && PrevInit) {
5298       Sema::SemaDiagnosticBuilder D =
5299         SemaRef.Diag(PrevInit->getSourceLocation(),
5300                      diag::warn_initializer_out_of_order);
5301 
5302       if (PrevInit->isAnyMemberInitializer())
5303         D << 0 << PrevInit->getAnyMember()->getDeclName();
5304       else
5305         D << 1 << PrevInit->getTypeSourceInfo()->getType();
5306 
5307       if (Init->isAnyMemberInitializer())
5308         D << 0 << Init->getAnyMember()->getDeclName();
5309       else
5310         D << 1 << Init->getTypeSourceInfo()->getType();
5311 
5312       // Move back to the initializer's location in the ideal list.
5313       for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
5314         if (InitKey == IdealInitKeys[IdealIndex])
5315           break;
5316 
5317       assert(IdealIndex < NumIdealInits &&
5318              "initializer not found in initializer list");
5319     }
5320 
5321     PrevInit = Init;
5322   }
5323 }
5324 
5325 namespace {
5326 bool CheckRedundantInit(Sema &S,
5327                         CXXCtorInitializer *Init,
5328                         CXXCtorInitializer *&PrevInit) {
5329   if (!PrevInit) {
5330     PrevInit = Init;
5331     return false;
5332   }
5333 
5334   if (FieldDecl *Field = Init->getAnyMember())
5335     S.Diag(Init->getSourceLocation(),
5336            diag::err_multiple_mem_initialization)
5337       << Field->getDeclName()
5338       << Init->getSourceRange();
5339   else {
5340     const Type *BaseClass = Init->getBaseClass();
5341     assert(BaseClass && "neither field nor base");
5342     S.Diag(Init->getSourceLocation(),
5343            diag::err_multiple_base_initialization)
5344       << QualType(BaseClass, 0)
5345       << Init->getSourceRange();
5346   }
5347   S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
5348     << 0 << PrevInit->getSourceRange();
5349 
5350   return true;
5351 }
5352 
5353 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
5354 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
5355 
5356 bool CheckRedundantUnionInit(Sema &S,
5357                              CXXCtorInitializer *Init,
5358                              RedundantUnionMap &Unions) {
5359   FieldDecl *Field = Init->getAnyMember();
5360   RecordDecl *Parent = Field->getParent();
5361   NamedDecl *Child = Field;
5362 
5363   while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5364     if (Parent->isUnion()) {
5365       UnionEntry &En = Unions[Parent];
5366       if (En.first && En.first != Child) {
5367         S.Diag(Init->getSourceLocation(),
5368                diag::err_multiple_mem_union_initialization)
5369           << Field->getDeclName()
5370           << Init->getSourceRange();
5371         S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5372           << 0 << En.second->getSourceRange();
5373         return true;
5374       }
5375       if (!En.first) {
5376         En.first = Child;
5377         En.second = Init;
5378       }
5379       if (!Parent->isAnonymousStructOrUnion())
5380         return false;
5381     }
5382 
5383     Child = Parent;
5384     Parent = cast<RecordDecl>(Parent->getDeclContext());
5385   }
5386 
5387   return false;
5388 }
5389 }
5390 
5391 /// ActOnMemInitializers - Handle the member initializers for a constructor.
5392 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5393                                 SourceLocation ColonLoc,
5394                                 ArrayRef<CXXCtorInitializer*> MemInits,
5395                                 bool AnyErrors) {
5396   if (!ConstructorDecl)
5397     return;
5398 
5399   AdjustDeclIfTemplate(ConstructorDecl);
5400 
5401   CXXConstructorDecl *Constructor
5402     = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5403 
5404   if (!Constructor) {
5405     Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5406     return;
5407   }
5408 
5409   // Mapping for the duplicate initializers check.
5410   // For member initializers, this is keyed with a FieldDecl*.
5411   // For base initializers, this is keyed with a Type*.
5412   llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5413 
5414   // Mapping for the inconsistent anonymous-union initializers check.
5415   RedundantUnionMap MemberUnions;
5416 
5417   bool HadError = false;
5418   for (unsigned i = 0; i < MemInits.size(); i++) {
5419     CXXCtorInitializer *Init = MemInits[i];
5420 
5421     // Set the source order index.
5422     Init->setSourceOrder(i);
5423 
5424     if (Init->isAnyMemberInitializer()) {
5425       const void *Key = GetKeyForMember(Context, Init);
5426       if (CheckRedundantInit(*this, Init, Members[Key]) ||
5427           CheckRedundantUnionInit(*this, Init, MemberUnions))
5428         HadError = true;
5429     } else if (Init->isBaseInitializer()) {
5430       const void *Key = GetKeyForMember(Context, Init);
5431       if (CheckRedundantInit(*this, Init, Members[Key]))
5432         HadError = true;
5433     } else {
5434       assert(Init->isDelegatingInitializer());
5435       // This must be the only initializer
5436       if (MemInits.size() != 1) {
5437         Diag(Init->getSourceLocation(),
5438              diag::err_delegating_initializer_alone)
5439           << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5440         // We will treat this as being the only initializer.
5441       }
5442       SetDelegatingInitializer(Constructor, MemInits[i]);
5443       // Return immediately as the initializer is set.
5444       return;
5445     }
5446   }
5447 
5448   if (HadError)
5449     return;
5450 
5451   DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5452 
5453   SetCtorInitializers(Constructor, AnyErrors, MemInits);
5454 
5455   DiagnoseUninitializedFields(*this, Constructor);
5456 }
5457 
5458 void
5459 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5460                                              CXXRecordDecl *ClassDecl) {
5461   // Ignore dependent contexts. Also ignore unions, since their members never
5462   // have destructors implicitly called.
5463   if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5464     return;
5465 
5466   // FIXME: all the access-control diagnostics are positioned on the
5467   // field/base declaration.  That's probably good; that said, the
5468   // user might reasonably want to know why the destructor is being
5469   // emitted, and we currently don't say.
5470 
5471   // Non-static data members.
5472   for (auto *Field : ClassDecl->fields()) {
5473     if (Field->isInvalidDecl())
5474       continue;
5475 
5476     // Don't destroy incomplete or zero-length arrays.
5477     if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5478       continue;
5479 
5480     QualType FieldType = Context.getBaseElementType(Field->getType());
5481 
5482     const RecordType* RT = FieldType->getAs<RecordType>();
5483     if (!RT)
5484       continue;
5485 
5486     CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5487     if (FieldClassDecl->isInvalidDecl())
5488       continue;
5489     if (FieldClassDecl->hasIrrelevantDestructor())
5490       continue;
5491     // The destructor for an implicit anonymous union member is never invoked.
5492     if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5493       continue;
5494 
5495     CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5496     assert(Dtor && "No dtor found for FieldClassDecl!");
5497     CheckDestructorAccess(Field->getLocation(), Dtor,
5498                           PDiag(diag::err_access_dtor_field)
5499                             << Field->getDeclName()
5500                             << FieldType);
5501 
5502     MarkFunctionReferenced(Location, Dtor);
5503     DiagnoseUseOfDecl(Dtor, Location);
5504   }
5505 
5506   // We only potentially invoke the destructors of potentially constructed
5507   // subobjects.
5508   bool VisitVirtualBases = !ClassDecl->isAbstract();
5509 
5510   // If the destructor exists and has already been marked used in the MS ABI,
5511   // then virtual base destructors have already been checked and marked used.
5512   // Skip checking them again to avoid duplicate diagnostics.
5513   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5514     CXXDestructorDecl *Dtor = ClassDecl->getDestructor();
5515     if (Dtor && Dtor->isUsed())
5516       VisitVirtualBases = false;
5517   }
5518 
5519   llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5520 
5521   // Bases.
5522   for (const auto &Base : ClassDecl->bases()) {
5523     const RecordType *RT = Base.getType()->getAs<RecordType>();
5524     if (!RT)
5525       continue;
5526 
5527     // Remember direct virtual bases.
5528     if (Base.isVirtual()) {
5529       if (!VisitVirtualBases)
5530         continue;
5531       DirectVirtualBases.insert(RT);
5532     }
5533 
5534     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5535     // If our base class is invalid, we probably can't get its dtor anyway.
5536     if (BaseClassDecl->isInvalidDecl())
5537       continue;
5538     if (BaseClassDecl->hasIrrelevantDestructor())
5539       continue;
5540 
5541     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5542     assert(Dtor && "No dtor found for BaseClassDecl!");
5543 
5544     // FIXME: caret should be on the start of the class name
5545     CheckDestructorAccess(Base.getBeginLoc(), Dtor,
5546                           PDiag(diag::err_access_dtor_base)
5547                               << Base.getType() << Base.getSourceRange(),
5548                           Context.getTypeDeclType(ClassDecl));
5549 
5550     MarkFunctionReferenced(Location, Dtor);
5551     DiagnoseUseOfDecl(Dtor, Location);
5552   }
5553 
5554   if (VisitVirtualBases)
5555     MarkVirtualBaseDestructorsReferenced(Location, ClassDecl,
5556                                          &DirectVirtualBases);
5557 }
5558 
5559 void Sema::MarkVirtualBaseDestructorsReferenced(
5560     SourceLocation Location, CXXRecordDecl *ClassDecl,
5561     llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) {
5562   // Virtual bases.
5563   for (const auto &VBase : ClassDecl->vbases()) {
5564     // Bases are always records in a well-formed non-dependent class.
5565     const RecordType *RT = VBase.getType()->castAs<RecordType>();
5566 
5567     // Ignore already visited direct virtual bases.
5568     if (DirectVirtualBases && DirectVirtualBases->count(RT))
5569       continue;
5570 
5571     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5572     // If our base class is invalid, we probably can't get its dtor anyway.
5573     if (BaseClassDecl->isInvalidDecl())
5574       continue;
5575     if (BaseClassDecl->hasIrrelevantDestructor())
5576       continue;
5577 
5578     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5579     assert(Dtor && "No dtor found for BaseClassDecl!");
5580     if (CheckDestructorAccess(
5581             ClassDecl->getLocation(), Dtor,
5582             PDiag(diag::err_access_dtor_vbase)
5583                 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5584             Context.getTypeDeclType(ClassDecl)) ==
5585         AR_accessible) {
5586       CheckDerivedToBaseConversion(
5587           Context.getTypeDeclType(ClassDecl), VBase.getType(),
5588           diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5589           SourceRange(), DeclarationName(), nullptr);
5590     }
5591 
5592     MarkFunctionReferenced(Location, Dtor);
5593     DiagnoseUseOfDecl(Dtor, Location);
5594   }
5595 }
5596 
5597 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5598   if (!CDtorDecl)
5599     return;
5600 
5601   if (CXXConstructorDecl *Constructor
5602       = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5603     SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5604     DiagnoseUninitializedFields(*this, Constructor);
5605   }
5606 }
5607 
5608 bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5609   if (!getLangOpts().CPlusPlus)
5610     return false;
5611 
5612   const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5613   if (!RD)
5614     return false;
5615 
5616   // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5617   // class template specialization here, but doing so breaks a lot of code.
5618 
5619   // We can't answer whether something is abstract until it has a
5620   // definition. If it's currently being defined, we'll walk back
5621   // over all the declarations when we have a full definition.
5622   const CXXRecordDecl *Def = RD->getDefinition();
5623   if (!Def || Def->isBeingDefined())
5624     return false;
5625 
5626   return RD->isAbstract();
5627 }
5628 
5629 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5630                                   TypeDiagnoser &Diagnoser) {
5631   if (!isAbstractType(Loc, T))
5632     return false;
5633 
5634   T = Context.getBaseElementType(T);
5635   Diagnoser.diagnose(*this, Loc, T);
5636   DiagnoseAbstractType(T->getAsCXXRecordDecl());
5637   return true;
5638 }
5639 
5640 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5641   // Check if we've already emitted the list of pure virtual functions
5642   // for this class.
5643   if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5644     return;
5645 
5646   // If the diagnostic is suppressed, don't emit the notes. We're only
5647   // going to emit them once, so try to attach them to a diagnostic we're
5648   // actually going to show.
5649   if (Diags.isLastDiagnosticIgnored())
5650     return;
5651 
5652   CXXFinalOverriderMap FinalOverriders;
5653   RD->getFinalOverriders(FinalOverriders);
5654 
5655   // Keep a set of seen pure methods so we won't diagnose the same method
5656   // more than once.
5657   llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5658 
5659   for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5660                                    MEnd = FinalOverriders.end();
5661        M != MEnd;
5662        ++M) {
5663     for (OverridingMethods::iterator SO = M->second.begin(),
5664                                   SOEnd = M->second.end();
5665          SO != SOEnd; ++SO) {
5666       // C++ [class.abstract]p4:
5667       //   A class is abstract if it contains or inherits at least one
5668       //   pure virtual function for which the final overrider is pure
5669       //   virtual.
5670 
5671       //
5672       if (SO->second.size() != 1)
5673         continue;
5674 
5675       if (!SO->second.front().Method->isPure())
5676         continue;
5677 
5678       if (!SeenPureMethods.insert(SO->second.front().Method).second)
5679         continue;
5680 
5681       Diag(SO->second.front().Method->getLocation(),
5682            diag::note_pure_virtual_function)
5683         << SO->second.front().Method->getDeclName() << RD->getDeclName();
5684     }
5685   }
5686 
5687   if (!PureVirtualClassDiagSet)
5688     PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5689   PureVirtualClassDiagSet->insert(RD);
5690 }
5691 
5692 namespace {
5693 struct AbstractUsageInfo {
5694   Sema &S;
5695   CXXRecordDecl *Record;
5696   CanQualType AbstractType;
5697   bool Invalid;
5698 
5699   AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5700     : S(S), Record(Record),
5701       AbstractType(S.Context.getCanonicalType(
5702                    S.Context.getTypeDeclType(Record))),
5703       Invalid(false) {}
5704 
5705   void DiagnoseAbstractType() {
5706     if (Invalid) return;
5707     S.DiagnoseAbstractType(Record);
5708     Invalid = true;
5709   }
5710 
5711   void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5712 };
5713 
5714 struct CheckAbstractUsage {
5715   AbstractUsageInfo &Info;
5716   const NamedDecl *Ctx;
5717 
5718   CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5719     : Info(Info), Ctx(Ctx) {}
5720 
5721   void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5722     switch (TL.getTypeLocClass()) {
5723 #define ABSTRACT_TYPELOC(CLASS, PARENT)
5724 #define TYPELOC(CLASS, PARENT) \
5725     case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5726 #include "clang/AST/TypeLocNodes.def"
5727     }
5728   }
5729 
5730   void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5731     Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5732     for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5733       if (!TL.getParam(I))
5734         continue;
5735 
5736       TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5737       if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5738     }
5739   }
5740 
5741   void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5742     Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5743   }
5744 
5745   void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5746     // Visit the type parameters from a permissive context.
5747     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5748       TemplateArgumentLoc TAL = TL.getArgLoc(I);
5749       if (TAL.getArgument().getKind() == TemplateArgument::Type)
5750         if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5751           Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5752       // TODO: other template argument types?
5753     }
5754   }
5755 
5756   // Visit pointee types from a permissive context.
5757 #define CheckPolymorphic(Type) \
5758   void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5759     Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5760   }
5761   CheckPolymorphic(PointerTypeLoc)
5762   CheckPolymorphic(ReferenceTypeLoc)
5763   CheckPolymorphic(MemberPointerTypeLoc)
5764   CheckPolymorphic(BlockPointerTypeLoc)
5765   CheckPolymorphic(AtomicTypeLoc)
5766 
5767   /// Handle all the types we haven't given a more specific
5768   /// implementation for above.
5769   void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5770     // Every other kind of type that we haven't called out already
5771     // that has an inner type is either (1) sugar or (2) contains that
5772     // inner type in some way as a subobject.
5773     if (TypeLoc Next = TL.getNextTypeLoc())
5774       return Visit(Next, Sel);
5775 
5776     // If there's no inner type and we're in a permissive context,
5777     // don't diagnose.
5778     if (Sel == Sema::AbstractNone) return;
5779 
5780     // Check whether the type matches the abstract type.
5781     QualType T = TL.getType();
5782     if (T->isArrayType()) {
5783       Sel = Sema::AbstractArrayType;
5784       T = Info.S.Context.getBaseElementType(T);
5785     }
5786     CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5787     if (CT != Info.AbstractType) return;
5788 
5789     // It matched; do some magic.
5790     if (Sel == Sema::AbstractArrayType) {
5791       Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5792         << T << TL.getSourceRange();
5793     } else {
5794       Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5795         << Sel << T << TL.getSourceRange();
5796     }
5797     Info.DiagnoseAbstractType();
5798   }
5799 };
5800 
5801 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5802                                   Sema::AbstractDiagSelID Sel) {
5803   CheckAbstractUsage(*this, D).Visit(TL, Sel);
5804 }
5805 
5806 }
5807 
5808 /// Check for invalid uses of an abstract type in a method declaration.
5809 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5810                                     CXXMethodDecl *MD) {
5811   // No need to do the check on definitions, which require that
5812   // the return/param types be complete.
5813   if (MD->doesThisDeclarationHaveABody())
5814     return;
5815 
5816   // For safety's sake, just ignore it if we don't have type source
5817   // information.  This should never happen for non-implicit methods,
5818   // but...
5819   if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
5820     Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
5821 }
5822 
5823 /// Check for invalid uses of an abstract type within a class definition.
5824 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5825                                     CXXRecordDecl *RD) {
5826   for (auto *D : RD->decls()) {
5827     if (D->isImplicit()) continue;
5828 
5829     // Methods and method templates.
5830     if (isa<CXXMethodDecl>(D)) {
5831       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
5832     } else if (isa<FunctionTemplateDecl>(D)) {
5833       FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
5834       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
5835 
5836     // Fields and static variables.
5837     } else if (isa<FieldDecl>(D)) {
5838       FieldDecl *FD = cast<FieldDecl>(D);
5839       if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5840         Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5841     } else if (isa<VarDecl>(D)) {
5842       VarDecl *VD = cast<VarDecl>(D);
5843       if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
5844         Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
5845 
5846     // Nested classes and class templates.
5847     } else if (isa<CXXRecordDecl>(D)) {
5848       CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
5849     } else if (isa<ClassTemplateDecl>(D)) {
5850       CheckAbstractClassUsage(Info,
5851                              cast<ClassTemplateDecl>(D)->getTemplatedDecl());
5852     }
5853   }
5854 }
5855 
5856 static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) {
5857   Attr *ClassAttr = getDLLAttr(Class);
5858   if (!ClassAttr)
5859     return;
5860 
5861   assert(ClassAttr->getKind() == attr::DLLExport);
5862 
5863   TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5864 
5865   if (TSK == TSK_ExplicitInstantiationDeclaration)
5866     // Don't go any further if this is just an explicit instantiation
5867     // declaration.
5868     return;
5869 
5870   // Add a context note to explain how we got to any diagnostics produced below.
5871   struct MarkingClassDllexported {
5872     Sema &S;
5873     MarkingClassDllexported(Sema &S, CXXRecordDecl *Class,
5874                             SourceLocation AttrLoc)
5875         : S(S) {
5876       Sema::CodeSynthesisContext Ctx;
5877       Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported;
5878       Ctx.PointOfInstantiation = AttrLoc;
5879       Ctx.Entity = Class;
5880       S.pushCodeSynthesisContext(Ctx);
5881     }
5882     ~MarkingClassDllexported() {
5883       S.popCodeSynthesisContext();
5884     }
5885   } MarkingDllexportedContext(S, Class, ClassAttr->getLocation());
5886 
5887   if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
5888     S.MarkVTableUsed(Class->getLocation(), Class, true);
5889 
5890   for (Decl *Member : Class->decls()) {
5891     // Defined static variables that are members of an exported base
5892     // class must be marked export too.
5893     auto *VD = dyn_cast<VarDecl>(Member);
5894     if (VD && Member->getAttr<DLLExportAttr>() &&
5895         VD->getStorageClass() == SC_Static &&
5896         TSK == TSK_ImplicitInstantiation)
5897       S.MarkVariableReferenced(VD->getLocation(), VD);
5898 
5899     auto *MD = dyn_cast<CXXMethodDecl>(Member);
5900     if (!MD)
5901       continue;
5902 
5903     if (Member->getAttr<DLLExportAttr>()) {
5904       if (MD->isUserProvided()) {
5905         // Instantiate non-default class member functions ...
5906 
5907         // .. except for certain kinds of template specializations.
5908         if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
5909           continue;
5910 
5911         S.MarkFunctionReferenced(Class->getLocation(), MD);
5912 
5913         // The function will be passed to the consumer when its definition is
5914         // encountered.
5915       } else if (MD->isExplicitlyDefaulted()) {
5916         // Synthesize and instantiate explicitly defaulted methods.
5917         S.MarkFunctionReferenced(Class->getLocation(), MD);
5918 
5919         if (TSK != TSK_ExplicitInstantiationDefinition) {
5920           // Except for explicit instantiation defs, we will not see the
5921           // definition again later, so pass it to the consumer now.
5922           S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5923         }
5924       } else if (!MD->isTrivial() ||
5925                  MD->isCopyAssignmentOperator() ||
5926                  MD->isMoveAssignmentOperator()) {
5927         // Synthesize and instantiate non-trivial implicit methods, and the copy
5928         // and move assignment operators. The latter are exported even if they
5929         // are trivial, because the address of an operator can be taken and
5930         // should compare equal across libraries.
5931         S.MarkFunctionReferenced(Class->getLocation(), MD);
5932 
5933         // There is no later point when we will see the definition of this
5934         // function, so pass it to the consumer now.
5935         S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5936       }
5937     }
5938   }
5939 }
5940 
5941 static void checkForMultipleExportedDefaultConstructors(Sema &S,
5942                                                         CXXRecordDecl *Class) {
5943   // Only the MS ABI has default constructor closures, so we don't need to do
5944   // this semantic checking anywhere else.
5945   if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
5946     return;
5947 
5948   CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
5949   for (Decl *Member : Class->decls()) {
5950     // Look for exported default constructors.
5951     auto *CD = dyn_cast<CXXConstructorDecl>(Member);
5952     if (!CD || !CD->isDefaultConstructor())
5953       continue;
5954     auto *Attr = CD->getAttr<DLLExportAttr>();
5955     if (!Attr)
5956       continue;
5957 
5958     // If the class is non-dependent, mark the default arguments as ODR-used so
5959     // that we can properly codegen the constructor closure.
5960     if (!Class->isDependentContext()) {
5961       for (ParmVarDecl *PD : CD->parameters()) {
5962         (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
5963         S.DiscardCleanupsInEvaluationContext();
5964       }
5965     }
5966 
5967     if (LastExportedDefaultCtor) {
5968       S.Diag(LastExportedDefaultCtor->getLocation(),
5969              diag::err_attribute_dll_ambiguous_default_ctor)
5970           << Class;
5971       S.Diag(CD->getLocation(), diag::note_entity_declared_at)
5972           << CD->getDeclName();
5973       return;
5974     }
5975     LastExportedDefaultCtor = CD;
5976   }
5977 }
5978 
5979 static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S,
5980                                                        CXXRecordDecl *Class) {
5981   bool ErrorReported = false;
5982   auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
5983                                                      ClassTemplateDecl *TD) {
5984     if (ErrorReported)
5985       return;
5986     S.Diag(TD->getLocation(),
5987            diag::err_cuda_device_builtin_surftex_cls_template)
5988         << /*surface*/ 0 << TD;
5989     ErrorReported = true;
5990   };
5991 
5992   ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
5993   if (!TD) {
5994     auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class);
5995     if (!SD) {
5996       S.Diag(Class->getLocation(),
5997              diag::err_cuda_device_builtin_surftex_ref_decl)
5998           << /*surface*/ 0 << Class;
5999       S.Diag(Class->getLocation(),
6000              diag::note_cuda_device_builtin_surftex_should_be_template_class)
6001           << Class;
6002       return;
6003     }
6004     TD = SD->getSpecializedTemplate();
6005   }
6006 
6007   TemplateParameterList *Params = TD->getTemplateParameters();
6008   unsigned N = Params->size();
6009 
6010   if (N != 2) {
6011     reportIllegalClassTemplate(S, TD);
6012     S.Diag(TD->getLocation(),
6013            diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6014         << TD << 2;
6015   }
6016   if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6017     reportIllegalClassTemplate(S, TD);
6018     S.Diag(TD->getLocation(),
6019            diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6020         << TD << /*1st*/ 0 << /*type*/ 0;
6021   }
6022   if (N > 1) {
6023     auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
6024     if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6025       reportIllegalClassTemplate(S, TD);
6026       S.Diag(TD->getLocation(),
6027              diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6028           << TD << /*2nd*/ 1 << /*integer*/ 1;
6029     }
6030   }
6031 }
6032 
6033 static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S,
6034                                                        CXXRecordDecl *Class) {
6035   bool ErrorReported = false;
6036   auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
6037                                                      ClassTemplateDecl *TD) {
6038     if (ErrorReported)
6039       return;
6040     S.Diag(TD->getLocation(),
6041            diag::err_cuda_device_builtin_surftex_cls_template)
6042         << /*texture*/ 1 << TD;
6043     ErrorReported = true;
6044   };
6045 
6046   ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
6047   if (!TD) {
6048     auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class);
6049     if (!SD) {
6050       S.Diag(Class->getLocation(),
6051              diag::err_cuda_device_builtin_surftex_ref_decl)
6052           << /*texture*/ 1 << Class;
6053       S.Diag(Class->getLocation(),
6054              diag::note_cuda_device_builtin_surftex_should_be_template_class)
6055           << Class;
6056       return;
6057     }
6058     TD = SD->getSpecializedTemplate();
6059   }
6060 
6061   TemplateParameterList *Params = TD->getTemplateParameters();
6062   unsigned N = Params->size();
6063 
6064   if (N != 3) {
6065     reportIllegalClassTemplate(S, TD);
6066     S.Diag(TD->getLocation(),
6067            diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6068         << TD << 3;
6069   }
6070   if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6071     reportIllegalClassTemplate(S, TD);
6072     S.Diag(TD->getLocation(),
6073            diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6074         << TD << /*1st*/ 0 << /*type*/ 0;
6075   }
6076   if (N > 1) {
6077     auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
6078     if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6079       reportIllegalClassTemplate(S, TD);
6080       S.Diag(TD->getLocation(),
6081              diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6082           << TD << /*2nd*/ 1 << /*integer*/ 1;
6083     }
6084   }
6085   if (N > 2) {
6086     auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2));
6087     if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6088       reportIllegalClassTemplate(S, TD);
6089       S.Diag(TD->getLocation(),
6090              diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6091           << TD << /*3rd*/ 2 << /*integer*/ 1;
6092     }
6093   }
6094 }
6095 
6096 void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) {
6097   // Mark any compiler-generated routines with the implicit code_seg attribute.
6098   for (auto *Method : Class->methods()) {
6099     if (Method->isUserProvided())
6100       continue;
6101     if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
6102       Method->addAttr(A);
6103   }
6104 }
6105 
6106 /// Check class-level dllimport/dllexport attribute.
6107 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
6108   Attr *ClassAttr = getDLLAttr(Class);
6109 
6110   // MSVC inherits DLL attributes to partial class template specializations.
6111   if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) {
6112     if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
6113       if (Attr *TemplateAttr =
6114               getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
6115         auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
6116         A->setInherited(true);
6117         ClassAttr = A;
6118       }
6119     }
6120   }
6121 
6122   if (!ClassAttr)
6123     return;
6124 
6125   if (!Class->isExternallyVisible()) {
6126     Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
6127         << Class << ClassAttr;
6128     return;
6129   }
6130 
6131   if (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6132       !ClassAttr->isInherited()) {
6133     // Diagnose dll attributes on members of class with dll attribute.
6134     for (Decl *Member : Class->decls()) {
6135       if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
6136         continue;
6137       InheritableAttr *MemberAttr = getDLLAttr(Member);
6138       if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
6139         continue;
6140 
6141       Diag(MemberAttr->getLocation(),
6142              diag::err_attribute_dll_member_of_dll_class)
6143           << MemberAttr << ClassAttr;
6144       Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
6145       Member->setInvalidDecl();
6146     }
6147   }
6148 
6149   if (Class->getDescribedClassTemplate())
6150     // Don't inherit dll attribute until the template is instantiated.
6151     return;
6152 
6153   // The class is either imported or exported.
6154   const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
6155 
6156   // Check if this was a dllimport attribute propagated from a derived class to
6157   // a base class template specialization. We don't apply these attributes to
6158   // static data members.
6159   const bool PropagatedImport =
6160       !ClassExported &&
6161       cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate();
6162 
6163   TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
6164 
6165   // Ignore explicit dllexport on explicit class template instantiation
6166   // declarations, except in MinGW mode.
6167   if (ClassExported && !ClassAttr->isInherited() &&
6168       TSK == TSK_ExplicitInstantiationDeclaration &&
6169       !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
6170     Class->dropAttr<DLLExportAttr>();
6171     return;
6172   }
6173 
6174   // Force declaration of implicit members so they can inherit the attribute.
6175   ForceDeclarationOfImplicitMembers(Class);
6176 
6177   // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
6178   // seem to be true in practice?
6179 
6180   for (Decl *Member : Class->decls()) {
6181     VarDecl *VD = dyn_cast<VarDecl>(Member);
6182     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
6183 
6184     // Only methods and static fields inherit the attributes.
6185     if (!VD && !MD)
6186       continue;
6187 
6188     if (MD) {
6189       // Don't process deleted methods.
6190       if (MD->isDeleted())
6191         continue;
6192 
6193       if (MD->isInlined()) {
6194         // MinGW does not import or export inline methods. But do it for
6195         // template instantiations.
6196         if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6197             TSK != TSK_ExplicitInstantiationDeclaration &&
6198             TSK != TSK_ExplicitInstantiationDefinition)
6199           continue;
6200 
6201         // MSVC versions before 2015 don't export the move assignment operators
6202         // and move constructor, so don't attempt to import/export them if
6203         // we have a definition.
6204         auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
6205         if ((MD->isMoveAssignmentOperator() ||
6206              (Ctor && Ctor->isMoveConstructor())) &&
6207             !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
6208           continue;
6209 
6210         // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
6211         // operator is exported anyway.
6212         if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6213             (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
6214           continue;
6215       }
6216     }
6217 
6218     // Don't apply dllimport attributes to static data members of class template
6219     // instantiations when the attribute is propagated from a derived class.
6220     if (VD && PropagatedImport)
6221       continue;
6222 
6223     if (!cast<NamedDecl>(Member)->isExternallyVisible())
6224       continue;
6225 
6226     if (!getDLLAttr(Member)) {
6227       InheritableAttr *NewAttr = nullptr;
6228 
6229       // Do not export/import inline function when -fno-dllexport-inlines is
6230       // passed. But add attribute for later local static var check.
6231       if (!getLangOpts().DllExportInlines && MD && MD->isInlined() &&
6232           TSK != TSK_ExplicitInstantiationDeclaration &&
6233           TSK != TSK_ExplicitInstantiationDefinition) {
6234         if (ClassExported) {
6235           NewAttr = ::new (getASTContext())
6236               DLLExportStaticLocalAttr(getASTContext(), *ClassAttr);
6237         } else {
6238           NewAttr = ::new (getASTContext())
6239               DLLImportStaticLocalAttr(getASTContext(), *ClassAttr);
6240         }
6241       } else {
6242         NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6243       }
6244 
6245       NewAttr->setInherited(true);
6246       Member->addAttr(NewAttr);
6247 
6248       if (MD) {
6249         // Propagate DLLAttr to friend re-declarations of MD that have already
6250         // been constructed.
6251         for (FunctionDecl *FD = MD->getMostRecentDecl(); FD;
6252              FD = FD->getPreviousDecl()) {
6253           if (FD->getFriendObjectKind() == Decl::FOK_None)
6254             continue;
6255           assert(!getDLLAttr(FD) &&
6256                  "friend re-decl should not already have a DLLAttr");
6257           NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6258           NewAttr->setInherited(true);
6259           FD->addAttr(NewAttr);
6260         }
6261       }
6262     }
6263   }
6264 
6265   if (ClassExported)
6266     DelayedDllExportClasses.push_back(Class);
6267 }
6268 
6269 /// Perform propagation of DLL attributes from a derived class to a
6270 /// templated base class for MS compatibility.
6271 void Sema::propagateDLLAttrToBaseClassTemplate(
6272     CXXRecordDecl *Class, Attr *ClassAttr,
6273     ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
6274   if (getDLLAttr(
6275           BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
6276     // If the base class template has a DLL attribute, don't try to change it.
6277     return;
6278   }
6279 
6280   auto TSK = BaseTemplateSpec->getSpecializationKind();
6281   if (!getDLLAttr(BaseTemplateSpec) &&
6282       (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
6283        TSK == TSK_ImplicitInstantiation)) {
6284     // The template hasn't been instantiated yet (or it has, but only as an
6285     // explicit instantiation declaration or implicit instantiation, which means
6286     // we haven't codegenned any members yet), so propagate the attribute.
6287     auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6288     NewAttr->setInherited(true);
6289     BaseTemplateSpec->addAttr(NewAttr);
6290 
6291     // If this was an import, mark that we propagated it from a derived class to
6292     // a base class template specialization.
6293     if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr))
6294       ImportAttr->setPropagatedToBaseTemplate();
6295 
6296     // If the template is already instantiated, checkDLLAttributeRedeclaration()
6297     // needs to be run again to work see the new attribute. Otherwise this will
6298     // get run whenever the template is instantiated.
6299     if (TSK != TSK_Undeclared)
6300       checkClassLevelDLLAttribute(BaseTemplateSpec);
6301 
6302     return;
6303   }
6304 
6305   if (getDLLAttr(BaseTemplateSpec)) {
6306     // The template has already been specialized or instantiated with an
6307     // attribute, explicitly or through propagation. We should not try to change
6308     // it.
6309     return;
6310   }
6311 
6312   // The template was previously instantiated or explicitly specialized without
6313   // a dll attribute, It's too late for us to add an attribute, so warn that
6314   // this is unsupported.
6315   Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
6316       << BaseTemplateSpec->isExplicitSpecialization();
6317   Diag(ClassAttr->getLocation(), diag::note_attribute);
6318   if (BaseTemplateSpec->isExplicitSpecialization()) {
6319     Diag(BaseTemplateSpec->getLocation(),
6320            diag::note_template_class_explicit_specialization_was_here)
6321         << BaseTemplateSpec;
6322   } else {
6323     Diag(BaseTemplateSpec->getPointOfInstantiation(),
6324            diag::note_template_class_instantiation_was_here)
6325         << BaseTemplateSpec;
6326   }
6327 }
6328 
6329 /// Determine the kind of defaulting that would be done for a given function.
6330 ///
6331 /// If the function is both a default constructor and a copy / move constructor
6332 /// (due to having a default argument for the first parameter), this picks
6333 /// CXXDefaultConstructor.
6334 ///
6335 /// FIXME: Check that case is properly handled by all callers.
6336 Sema::DefaultedFunctionKind
6337 Sema::getDefaultedFunctionKind(const FunctionDecl *FD) {
6338   if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
6339     if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
6340       if (Ctor->isDefaultConstructor())
6341         return Sema::CXXDefaultConstructor;
6342 
6343       if (Ctor->isCopyConstructor())
6344         return Sema::CXXCopyConstructor;
6345 
6346       if (Ctor->isMoveConstructor())
6347         return Sema::CXXMoveConstructor;
6348     }
6349 
6350     if (MD->isCopyAssignmentOperator())
6351       return Sema::CXXCopyAssignment;
6352 
6353     if (MD->isMoveAssignmentOperator())
6354       return Sema::CXXMoveAssignment;
6355 
6356     if (isa<CXXDestructorDecl>(FD))
6357       return Sema::CXXDestructor;
6358   }
6359 
6360   switch (FD->getDeclName().getCXXOverloadedOperator()) {
6361   case OO_EqualEqual:
6362     return DefaultedComparisonKind::Equal;
6363 
6364   case OO_ExclaimEqual:
6365     return DefaultedComparisonKind::NotEqual;
6366 
6367   case OO_Spaceship:
6368     // No point allowing this if <=> doesn't exist in the current language mode.
6369     if (!getLangOpts().CPlusPlus20)
6370       break;
6371     return DefaultedComparisonKind::ThreeWay;
6372 
6373   case OO_Less:
6374   case OO_LessEqual:
6375   case OO_Greater:
6376   case OO_GreaterEqual:
6377     // No point allowing this if <=> doesn't exist in the current language mode.
6378     if (!getLangOpts().CPlusPlus20)
6379       break;
6380     return DefaultedComparisonKind::Relational;
6381 
6382   default:
6383     break;
6384   }
6385 
6386   // Not defaultable.
6387   return DefaultedFunctionKind();
6388 }
6389 
6390 static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD,
6391                                     SourceLocation DefaultLoc) {
6392   Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD);
6393   if (DFK.isComparison())
6394     return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison());
6395 
6396   switch (DFK.asSpecialMember()) {
6397   case Sema::CXXDefaultConstructor:
6398     S.DefineImplicitDefaultConstructor(DefaultLoc,
6399                                        cast<CXXConstructorDecl>(FD));
6400     break;
6401   case Sema::CXXCopyConstructor:
6402     S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD));
6403     break;
6404   case Sema::CXXCopyAssignment:
6405     S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD));
6406     break;
6407   case Sema::CXXDestructor:
6408     S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD));
6409     break;
6410   case Sema::CXXMoveConstructor:
6411     S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD));
6412     break;
6413   case Sema::CXXMoveAssignment:
6414     S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD));
6415     break;
6416   case Sema::CXXInvalid:
6417     llvm_unreachable("Invalid special member.");
6418   }
6419 }
6420 
6421 /// Determine whether a type is permitted to be passed or returned in
6422 /// registers, per C++ [class.temporary]p3.
6423 static bool canPassInRegisters(Sema &S, CXXRecordDecl *D,
6424                                TargetInfo::CallingConvKind CCK) {
6425   if (D->isDependentType() || D->isInvalidDecl())
6426     return false;
6427 
6428   // Clang <= 4 used the pre-C++11 rule, which ignores move operations.
6429   // The PS4 platform ABI follows the behavior of Clang 3.2.
6430   if (CCK == TargetInfo::CCK_ClangABI4OrPS4)
6431     return !D->hasNonTrivialDestructorForCall() &&
6432            !D->hasNonTrivialCopyConstructorForCall();
6433 
6434   if (CCK == TargetInfo::CCK_MicrosoftWin64) {
6435     bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false;
6436     bool DtorIsTrivialForCall = false;
6437 
6438     // If a class has at least one non-deleted, trivial copy constructor, it
6439     // is passed according to the C ABI. Otherwise, it is passed indirectly.
6440     //
6441     // Note: This permits classes with non-trivial copy or move ctors to be
6442     // passed in registers, so long as they *also* have a trivial copy ctor,
6443     // which is non-conforming.
6444     if (D->needsImplicitCopyConstructor()) {
6445       if (!D->defaultedCopyConstructorIsDeleted()) {
6446         if (D->hasTrivialCopyConstructor())
6447           CopyCtorIsTrivial = true;
6448         if (D->hasTrivialCopyConstructorForCall())
6449           CopyCtorIsTrivialForCall = true;
6450       }
6451     } else {
6452       for (const CXXConstructorDecl *CD : D->ctors()) {
6453         if (CD->isCopyConstructor() && !CD->isDeleted()) {
6454           if (CD->isTrivial())
6455             CopyCtorIsTrivial = true;
6456           if (CD->isTrivialForCall())
6457             CopyCtorIsTrivialForCall = true;
6458         }
6459       }
6460     }
6461 
6462     if (D->needsImplicitDestructor()) {
6463       if (!D->defaultedDestructorIsDeleted() &&
6464           D->hasTrivialDestructorForCall())
6465         DtorIsTrivialForCall = true;
6466     } else if (const auto *DD = D->getDestructor()) {
6467       if (!DD->isDeleted() && DD->isTrivialForCall())
6468         DtorIsTrivialForCall = true;
6469     }
6470 
6471     // If the copy ctor and dtor are both trivial-for-calls, pass direct.
6472     if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall)
6473       return true;
6474 
6475     // If a class has a destructor, we'd really like to pass it indirectly
6476     // because it allows us to elide copies.  Unfortunately, MSVC makes that
6477     // impossible for small types, which it will pass in a single register or
6478     // stack slot. Most objects with dtors are large-ish, so handle that early.
6479     // We can't call out all large objects as being indirect because there are
6480     // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
6481     // how we pass large POD types.
6482 
6483     // Note: This permits small classes with nontrivial destructors to be
6484     // passed in registers, which is non-conforming.
6485     bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
6486     uint64_t TypeSize = isAArch64 ? 128 : 64;
6487 
6488     if (CopyCtorIsTrivial &&
6489         S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize)
6490       return true;
6491     return false;
6492   }
6493 
6494   // Per C++ [class.temporary]p3, the relevant condition is:
6495   //   each copy constructor, move constructor, and destructor of X is
6496   //   either trivial or deleted, and X has at least one non-deleted copy
6497   //   or move constructor
6498   bool HasNonDeletedCopyOrMove = false;
6499 
6500   if (D->needsImplicitCopyConstructor() &&
6501       !D->defaultedCopyConstructorIsDeleted()) {
6502     if (!D->hasTrivialCopyConstructorForCall())
6503       return false;
6504     HasNonDeletedCopyOrMove = true;
6505   }
6506 
6507   if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
6508       !D->defaultedMoveConstructorIsDeleted()) {
6509     if (!D->hasTrivialMoveConstructorForCall())
6510       return false;
6511     HasNonDeletedCopyOrMove = true;
6512   }
6513 
6514   if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
6515       !D->hasTrivialDestructorForCall())
6516     return false;
6517 
6518   for (const CXXMethodDecl *MD : D->methods()) {
6519     if (MD->isDeleted())
6520       continue;
6521 
6522     auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6523     if (CD && CD->isCopyOrMoveConstructor())
6524       HasNonDeletedCopyOrMove = true;
6525     else if (!isa<CXXDestructorDecl>(MD))
6526       continue;
6527 
6528     if (!MD->isTrivialForCall())
6529       return false;
6530   }
6531 
6532   return HasNonDeletedCopyOrMove;
6533 }
6534 
6535 /// Report an error regarding overriding, along with any relevant
6536 /// overridden methods.
6537 ///
6538 /// \param DiagID the primary error to report.
6539 /// \param MD the overriding method.
6540 static bool
6541 ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD,
6542                 llvm::function_ref<bool(const CXXMethodDecl *)> Report) {
6543   bool IssuedDiagnostic = false;
6544   for (const CXXMethodDecl *O : MD->overridden_methods()) {
6545     if (Report(O)) {
6546       if (!IssuedDiagnostic) {
6547         S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6548         IssuedDiagnostic = true;
6549       }
6550       S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
6551     }
6552   }
6553   return IssuedDiagnostic;
6554 }
6555 
6556 /// Perform semantic checks on a class definition that has been
6557 /// completing, introducing implicitly-declared members, checking for
6558 /// abstract types, etc.
6559 ///
6560 /// \param S The scope in which the class was parsed. Null if we didn't just
6561 ///        parse a class definition.
6562 /// \param Record The completed class.
6563 void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
6564   if (!Record)
6565     return;
6566 
6567   if (Record->isAbstract() && !Record->isInvalidDecl()) {
6568     AbstractUsageInfo Info(*this, Record);
6569     CheckAbstractClassUsage(Info, Record);
6570   }
6571 
6572   // If this is not an aggregate type and has no user-declared constructor,
6573   // complain about any non-static data members of reference or const scalar
6574   // type, since they will never get initializers.
6575   if (!Record->isInvalidDecl() && !Record->isDependentType() &&
6576       !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
6577       !Record->isLambda()) {
6578     bool Complained = false;
6579     for (const auto *F : Record->fields()) {
6580       if (F->hasInClassInitializer() || F->isUnnamedBitfield())
6581         continue;
6582 
6583       if (F->getType()->isReferenceType() ||
6584           (F->getType().isConstQualified() && F->getType()->isScalarType())) {
6585         if (!Complained) {
6586           Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
6587             << Record->getTagKind() << Record;
6588           Complained = true;
6589         }
6590 
6591         Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
6592           << F->getType()->isReferenceType()
6593           << F->getDeclName();
6594       }
6595     }
6596   }
6597 
6598   if (Record->getIdentifier()) {
6599     // C++ [class.mem]p13:
6600     //   If T is the name of a class, then each of the following shall have a
6601     //   name different from T:
6602     //     - every member of every anonymous union that is a member of class T.
6603     //
6604     // C++ [class.mem]p14:
6605     //   In addition, if class T has a user-declared constructor (12.1), every
6606     //   non-static data member of class T shall have a name different from T.
6607     DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
6608     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6609          ++I) {
6610       NamedDecl *D = (*I)->getUnderlyingDecl();
6611       if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) &&
6612            Record->hasUserDeclaredConstructor()) ||
6613           isa<IndirectFieldDecl>(D)) {
6614         Diag((*I)->getLocation(), diag::err_member_name_of_class)
6615           << D->getDeclName();
6616         break;
6617       }
6618     }
6619   }
6620 
6621   // Warn if the class has virtual methods but non-virtual public destructor.
6622   if (Record->isPolymorphic() && !Record->isDependentType()) {
6623     CXXDestructorDecl *dtor = Record->getDestructor();
6624     if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
6625         !Record->hasAttr<FinalAttr>())
6626       Diag(dtor ? dtor->getLocation() : Record->getLocation(),
6627            diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
6628   }
6629 
6630   if (Record->isAbstract()) {
6631     if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
6632       Diag(Record->getLocation(), diag::warn_abstract_final_class)
6633         << FA->isSpelledAsSealed();
6634       DiagnoseAbstractType(Record);
6635     }
6636   }
6637 
6638   // Warn if the class has a final destructor but is not itself marked final.
6639   if (!Record->hasAttr<FinalAttr>()) {
6640     if (const CXXDestructorDecl *dtor = Record->getDestructor()) {
6641       if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) {
6642         Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class)
6643             << FA->isSpelledAsSealed()
6644             << FixItHint::CreateInsertion(
6645                    getLocForEndOfToken(Record->getLocation()),
6646                    (FA->isSpelledAsSealed() ? " sealed" : " final"));
6647         Diag(Record->getLocation(),
6648              diag::note_final_dtor_non_final_class_silence)
6649             << Context.getRecordType(Record) << FA->isSpelledAsSealed();
6650       }
6651     }
6652   }
6653 
6654   // See if trivial_abi has to be dropped.
6655   if (Record->hasAttr<TrivialABIAttr>())
6656     checkIllFormedTrivialABIStruct(*Record);
6657 
6658   // Set HasTrivialSpecialMemberForCall if the record has attribute
6659   // "trivial_abi".
6660   bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>();
6661 
6662   if (HasTrivialABI)
6663     Record->setHasTrivialSpecialMemberForCall();
6664 
6665   // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=).
6666   // We check these last because they can depend on the properties of the
6667   // primary comparison functions (==, <=>).
6668   llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons;
6669 
6670   // Perform checks that can't be done until we know all the properties of a
6671   // member function (whether it's defaulted, deleted, virtual, overriding,
6672   // ...).
6673   auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) {
6674     // A static function cannot override anything.
6675     if (MD->getStorageClass() == SC_Static) {
6676       if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD,
6677                           [](const CXXMethodDecl *) { return true; }))
6678         return;
6679     }
6680 
6681     // A deleted function cannot override a non-deleted function and vice
6682     // versa.
6683     if (ReportOverrides(*this,
6684                         MD->isDeleted() ? diag::err_deleted_override
6685                                         : diag::err_non_deleted_override,
6686                         MD, [&](const CXXMethodDecl *V) {
6687                           return MD->isDeleted() != V->isDeleted();
6688                         })) {
6689       if (MD->isDefaulted() && MD->isDeleted())
6690         // Explain why this defaulted function was deleted.
6691         DiagnoseDeletedDefaultedFunction(MD);
6692       return;
6693     }
6694 
6695     // A consteval function cannot override a non-consteval function and vice
6696     // versa.
6697     if (ReportOverrides(*this,
6698                         MD->isConsteval() ? diag::err_consteval_override
6699                                           : diag::err_non_consteval_override,
6700                         MD, [&](const CXXMethodDecl *V) {
6701                           return MD->isConsteval() != V->isConsteval();
6702                         })) {
6703       if (MD->isDefaulted() && MD->isDeleted())
6704         // Explain why this defaulted function was deleted.
6705         DiagnoseDeletedDefaultedFunction(MD);
6706       return;
6707     }
6708   };
6709 
6710   auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool {
6711     if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted())
6712       return false;
6713 
6714     DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
6715     if (DFK.asComparison() == DefaultedComparisonKind::NotEqual ||
6716         DFK.asComparison() == DefaultedComparisonKind::Relational) {
6717       DefaultedSecondaryComparisons.push_back(FD);
6718       return true;
6719     }
6720 
6721     CheckExplicitlyDefaultedFunction(S, FD);
6722     return false;
6723   };
6724 
6725   auto CompleteMemberFunction = [&](CXXMethodDecl *M) {
6726     // Check whether the explicitly-defaulted members are valid.
6727     bool Incomplete = CheckForDefaultedFunction(M);
6728 
6729     // Skip the rest of the checks for a member of a dependent class.
6730     if (Record->isDependentType())
6731       return;
6732 
6733     // For an explicitly defaulted or deleted special member, we defer
6734     // determining triviality until the class is complete. That time is now!
6735     CXXSpecialMember CSM = getSpecialMember(M);
6736     if (!M->isImplicit() && !M->isUserProvided()) {
6737       if (CSM != CXXInvalid) {
6738         M->setTrivial(SpecialMemberIsTrivial(M, CSM));
6739         // Inform the class that we've finished declaring this member.
6740         Record->finishedDefaultedOrDeletedMember(M);
6741         M->setTrivialForCall(
6742             HasTrivialABI ||
6743             SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI));
6744         Record->setTrivialForCallFlags(M);
6745       }
6746     }
6747 
6748     // Set triviality for the purpose of calls if this is a user-provided
6749     // copy/move constructor or destructor.
6750     if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor ||
6751          CSM == CXXDestructor) && M->isUserProvided()) {
6752       M->setTrivialForCall(HasTrivialABI);
6753       Record->setTrivialForCallFlags(M);
6754     }
6755 
6756     if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
6757         M->hasAttr<DLLExportAttr>()) {
6758       if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6759           M->isTrivial() &&
6760           (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
6761            CSM == CXXDestructor))
6762         M->dropAttr<DLLExportAttr>();
6763 
6764       if (M->hasAttr<DLLExportAttr>()) {
6765         // Define after any fields with in-class initializers have been parsed.
6766         DelayedDllExportMemberFunctions.push_back(M);
6767       }
6768     }
6769 
6770     // Define defaulted constexpr virtual functions that override a base class
6771     // function right away.
6772     // FIXME: We can defer doing this until the vtable is marked as used.
6773     if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods())
6774       DefineDefaultedFunction(*this, M, M->getLocation());
6775 
6776     if (!Incomplete)
6777       CheckCompletedMemberFunction(M);
6778   };
6779 
6780   // Check the destructor before any other member function. We need to
6781   // determine whether it's trivial in order to determine whether the claas
6782   // type is a literal type, which is a prerequisite for determining whether
6783   // other special member functions are valid and whether they're implicitly
6784   // 'constexpr'.
6785   if (CXXDestructorDecl *Dtor = Record->getDestructor())
6786     CompleteMemberFunction(Dtor);
6787 
6788   bool HasMethodWithOverrideControl = false,
6789        HasOverridingMethodWithoutOverrideControl = false;
6790   for (auto *D : Record->decls()) {
6791     if (auto *M = dyn_cast<CXXMethodDecl>(D)) {
6792       // FIXME: We could do this check for dependent types with non-dependent
6793       // bases.
6794       if (!Record->isDependentType()) {
6795         // See if a method overloads virtual methods in a base
6796         // class without overriding any.
6797         if (!M->isStatic())
6798           DiagnoseHiddenVirtualMethods(M);
6799         if (M->hasAttr<OverrideAttr>())
6800           HasMethodWithOverrideControl = true;
6801         else if (M->size_overridden_methods() > 0)
6802           HasOverridingMethodWithoutOverrideControl = true;
6803       }
6804 
6805       if (!isa<CXXDestructorDecl>(M))
6806         CompleteMemberFunction(M);
6807     } else if (auto *F = dyn_cast<FriendDecl>(D)) {
6808       CheckForDefaultedFunction(
6809           dyn_cast_or_null<FunctionDecl>(F->getFriendDecl()));
6810     }
6811   }
6812 
6813   if (HasOverridingMethodWithoutOverrideControl) {
6814     bool HasInconsistentOverrideControl = HasMethodWithOverrideControl;
6815     for (auto *M : Record->methods())
6816       DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl);
6817   }
6818 
6819   // Check the defaulted secondary comparisons after any other member functions.
6820   for (FunctionDecl *FD : DefaultedSecondaryComparisons) {
6821     CheckExplicitlyDefaultedFunction(S, FD);
6822 
6823     // If this is a member function, we deferred checking it until now.
6824     if (auto *MD = dyn_cast<CXXMethodDecl>(FD))
6825       CheckCompletedMemberFunction(MD);
6826   }
6827 
6828   // ms_struct is a request to use the same ABI rules as MSVC.  Check
6829   // whether this class uses any C++ features that are implemented
6830   // completely differently in MSVC, and if so, emit a diagnostic.
6831   // That diagnostic defaults to an error, but we allow projects to
6832   // map it down to a warning (or ignore it).  It's a fairly common
6833   // practice among users of the ms_struct pragma to mass-annotate
6834   // headers, sweeping up a bunch of types that the project doesn't
6835   // really rely on MSVC-compatible layout for.  We must therefore
6836   // support "ms_struct except for C++ stuff" as a secondary ABI.
6837   // Don't emit this diagnostic if the feature was enabled as a
6838   // language option (as opposed to via a pragma or attribute), as
6839   // the option -mms-bitfields otherwise essentially makes it impossible
6840   // to build C++ code, unless this diagnostic is turned off.
6841   if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields &&
6842       (Record->isPolymorphic() || Record->getNumBases())) {
6843     Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
6844   }
6845 
6846   checkClassLevelDLLAttribute(Record);
6847   checkClassLevelCodeSegAttribute(Record);
6848 
6849   bool ClangABICompat4 =
6850       Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4;
6851   TargetInfo::CallingConvKind CCK =
6852       Context.getTargetInfo().getCallingConvKind(ClangABICompat4);
6853   bool CanPass = canPassInRegisters(*this, Record, CCK);
6854 
6855   // Do not change ArgPassingRestrictions if it has already been set to
6856   // APK_CanNeverPassInRegs.
6857   if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs)
6858     Record->setArgPassingRestrictions(CanPass
6859                                           ? RecordDecl::APK_CanPassInRegs
6860                                           : RecordDecl::APK_CannotPassInRegs);
6861 
6862   // If canPassInRegisters returns true despite the record having a non-trivial
6863   // destructor, the record is destructed in the callee. This happens only when
6864   // the record or one of its subobjects has a field annotated with trivial_abi
6865   // or a field qualified with ObjC __strong/__weak.
6866   if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee())
6867     Record->setParamDestroyedInCallee(true);
6868   else if (Record->hasNonTrivialDestructor())
6869     Record->setParamDestroyedInCallee(CanPass);
6870 
6871   if (getLangOpts().ForceEmitVTables) {
6872     // If we want to emit all the vtables, we need to mark it as used.  This
6873     // is especially required for cases like vtable assumption loads.
6874     MarkVTableUsed(Record->getInnerLocStart(), Record);
6875   }
6876 
6877   if (getLangOpts().CUDA) {
6878     if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>())
6879       checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record);
6880     else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>())
6881       checkCUDADeviceBuiltinTextureClassTemplate(*this, Record);
6882   }
6883 }
6884 
6885 /// Look up the special member function that would be called by a special
6886 /// member function for a subobject of class type.
6887 ///
6888 /// \param Class The class type of the subobject.
6889 /// \param CSM The kind of special member function.
6890 /// \param FieldQuals If the subobject is a field, its cv-qualifiers.
6891 /// \param ConstRHS True if this is a copy operation with a const object
6892 ///        on its RHS, that is, if the argument to the outer special member
6893 ///        function is 'const' and this is not a field marked 'mutable'.
6894 static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
6895     Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
6896     unsigned FieldQuals, bool ConstRHS) {
6897   unsigned LHSQuals = 0;
6898   if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
6899     LHSQuals = FieldQuals;
6900 
6901   unsigned RHSQuals = FieldQuals;
6902   if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
6903     RHSQuals = 0;
6904   else if (ConstRHS)
6905     RHSQuals |= Qualifiers::Const;
6906 
6907   return S.LookupSpecialMember(Class, CSM,
6908                                RHSQuals & Qualifiers::Const,
6909                                RHSQuals & Qualifiers::Volatile,
6910                                false,
6911                                LHSQuals & Qualifiers::Const,
6912                                LHSQuals & Qualifiers::Volatile);
6913 }
6914 
6915 class Sema::InheritedConstructorInfo {
6916   Sema &S;
6917   SourceLocation UseLoc;
6918 
6919   /// A mapping from the base classes through which the constructor was
6920   /// inherited to the using shadow declaration in that base class (or a null
6921   /// pointer if the constructor was declared in that base class).
6922   llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
6923       InheritedFromBases;
6924 
6925 public:
6926   InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
6927                            ConstructorUsingShadowDecl *Shadow)
6928       : S(S), UseLoc(UseLoc) {
6929     bool DiagnosedMultipleConstructedBases = false;
6930     CXXRecordDecl *ConstructedBase = nullptr;
6931     UsingDecl *ConstructedBaseUsing = nullptr;
6932 
6933     // Find the set of such base class subobjects and check that there's a
6934     // unique constructed subobject.
6935     for (auto *D : Shadow->redecls()) {
6936       auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
6937       auto *DNominatedBase = DShadow->getNominatedBaseClass();
6938       auto *DConstructedBase = DShadow->getConstructedBaseClass();
6939 
6940       InheritedFromBases.insert(
6941           std::make_pair(DNominatedBase->getCanonicalDecl(),
6942                          DShadow->getNominatedBaseClassShadowDecl()));
6943       if (DShadow->constructsVirtualBase())
6944         InheritedFromBases.insert(
6945             std::make_pair(DConstructedBase->getCanonicalDecl(),
6946                            DShadow->getConstructedBaseClassShadowDecl()));
6947       else
6948         assert(DNominatedBase == DConstructedBase);
6949 
6950       // [class.inhctor.init]p2:
6951       //   If the constructor was inherited from multiple base class subobjects
6952       //   of type B, the program is ill-formed.
6953       if (!ConstructedBase) {
6954         ConstructedBase = DConstructedBase;
6955         ConstructedBaseUsing = D->getUsingDecl();
6956       } else if (ConstructedBase != DConstructedBase &&
6957                  !Shadow->isInvalidDecl()) {
6958         if (!DiagnosedMultipleConstructedBases) {
6959           S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
6960               << Shadow->getTargetDecl();
6961           S.Diag(ConstructedBaseUsing->getLocation(),
6962                diag::note_ambiguous_inherited_constructor_using)
6963               << ConstructedBase;
6964           DiagnosedMultipleConstructedBases = true;
6965         }
6966         S.Diag(D->getUsingDecl()->getLocation(),
6967                diag::note_ambiguous_inherited_constructor_using)
6968             << DConstructedBase;
6969       }
6970     }
6971 
6972     if (DiagnosedMultipleConstructedBases)
6973       Shadow->setInvalidDecl();
6974   }
6975 
6976   /// Find the constructor to use for inherited construction of a base class,
6977   /// and whether that base class constructor inherits the constructor from a
6978   /// virtual base class (in which case it won't actually invoke it).
6979   std::pair<CXXConstructorDecl *, bool>
6980   findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
6981     auto It = InheritedFromBases.find(Base->getCanonicalDecl());
6982     if (It == InheritedFromBases.end())
6983       return std::make_pair(nullptr, false);
6984 
6985     // This is an intermediary class.
6986     if (It->second)
6987       return std::make_pair(
6988           S.findInheritingConstructor(UseLoc, Ctor, It->second),
6989           It->second->constructsVirtualBase());
6990 
6991     // This is the base class from which the constructor was inherited.
6992     return std::make_pair(Ctor, false);
6993   }
6994 };
6995 
6996 /// Is the special member function which would be selected to perform the
6997 /// specified operation on the specified class type a constexpr constructor?
6998 static bool
6999 specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
7000                          Sema::CXXSpecialMember CSM, unsigned Quals,
7001                          bool ConstRHS,
7002                          CXXConstructorDecl *InheritedCtor = nullptr,
7003                          Sema::InheritedConstructorInfo *Inherited = nullptr) {
7004   // If we're inheriting a constructor, see if we need to call it for this base
7005   // class.
7006   if (InheritedCtor) {
7007     assert(CSM == Sema::CXXDefaultConstructor);
7008     auto BaseCtor =
7009         Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
7010     if (BaseCtor)
7011       return BaseCtor->isConstexpr();
7012   }
7013 
7014   if (CSM == Sema::CXXDefaultConstructor)
7015     return ClassDecl->hasConstexprDefaultConstructor();
7016   if (CSM == Sema::CXXDestructor)
7017     return ClassDecl->hasConstexprDestructor();
7018 
7019   Sema::SpecialMemberOverloadResult SMOR =
7020       lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
7021   if (!SMOR.getMethod())
7022     // A constructor we wouldn't select can't be "involved in initializing"
7023     // anything.
7024     return true;
7025   return SMOR.getMethod()->isConstexpr();
7026 }
7027 
7028 /// Determine whether the specified special member function would be constexpr
7029 /// if it were implicitly defined.
7030 static bool defaultedSpecialMemberIsConstexpr(
7031     Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
7032     bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
7033     Sema::InheritedConstructorInfo *Inherited = nullptr) {
7034   if (!S.getLangOpts().CPlusPlus11)
7035     return false;
7036 
7037   // C++11 [dcl.constexpr]p4:
7038   // In the definition of a constexpr constructor [...]
7039   bool Ctor = true;
7040   switch (CSM) {
7041   case Sema::CXXDefaultConstructor:
7042     if (Inherited)
7043       break;
7044     // Since default constructor lookup is essentially trivial (and cannot
7045     // involve, for instance, template instantiation), we compute whether a
7046     // defaulted default constructor is constexpr directly within CXXRecordDecl.
7047     //
7048     // This is important for performance; we need to know whether the default
7049     // constructor is constexpr to determine whether the type is a literal type.
7050     return ClassDecl->defaultedDefaultConstructorIsConstexpr();
7051 
7052   case Sema::CXXCopyConstructor:
7053   case Sema::CXXMoveConstructor:
7054     // For copy or move constructors, we need to perform overload resolution.
7055     break;
7056 
7057   case Sema::CXXCopyAssignment:
7058   case Sema::CXXMoveAssignment:
7059     if (!S.getLangOpts().CPlusPlus14)
7060       return false;
7061     // In C++1y, we need to perform overload resolution.
7062     Ctor = false;
7063     break;
7064 
7065   case Sema::CXXDestructor:
7066     return ClassDecl->defaultedDestructorIsConstexpr();
7067 
7068   case Sema::CXXInvalid:
7069     return false;
7070   }
7071 
7072   //   -- if the class is a non-empty union, or for each non-empty anonymous
7073   //      union member of a non-union class, exactly one non-static data member
7074   //      shall be initialized; [DR1359]
7075   //
7076   // If we squint, this is guaranteed, since exactly one non-static data member
7077   // will be initialized (if the constructor isn't deleted), we just don't know
7078   // which one.
7079   if (Ctor && ClassDecl->isUnion())
7080     return CSM == Sema::CXXDefaultConstructor
7081                ? ClassDecl->hasInClassInitializer() ||
7082                      !ClassDecl->hasVariantMembers()
7083                : true;
7084 
7085   //   -- the class shall not have any virtual base classes;
7086   if (Ctor && ClassDecl->getNumVBases())
7087     return false;
7088 
7089   // C++1y [class.copy]p26:
7090   //   -- [the class] is a literal type, and
7091   if (!Ctor && !ClassDecl->isLiteral())
7092     return false;
7093 
7094   //   -- every constructor involved in initializing [...] base class
7095   //      sub-objects shall be a constexpr constructor;
7096   //   -- the assignment operator selected to copy/move each direct base
7097   //      class is a constexpr function, and
7098   for (const auto &B : ClassDecl->bases()) {
7099     const RecordType *BaseType = B.getType()->getAs<RecordType>();
7100     if (!BaseType) continue;
7101 
7102     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7103     if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
7104                                   InheritedCtor, Inherited))
7105       return false;
7106   }
7107 
7108   //   -- every constructor involved in initializing non-static data members
7109   //      [...] shall be a constexpr constructor;
7110   //   -- every non-static data member and base class sub-object shall be
7111   //      initialized
7112   //   -- for each non-static data member of X that is of class type (or array
7113   //      thereof), the assignment operator selected to copy/move that member is
7114   //      a constexpr function
7115   for (const auto *F : ClassDecl->fields()) {
7116     if (F->isInvalidDecl())
7117       continue;
7118     if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
7119       continue;
7120     QualType BaseType = S.Context.getBaseElementType(F->getType());
7121     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
7122       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7123       if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
7124                                     BaseType.getCVRQualifiers(),
7125                                     ConstArg && !F->isMutable()))
7126         return false;
7127     } else if (CSM == Sema::CXXDefaultConstructor) {
7128       return false;
7129     }
7130   }
7131 
7132   // All OK, it's constexpr!
7133   return true;
7134 }
7135 
7136 namespace {
7137 /// RAII object to register a defaulted function as having its exception
7138 /// specification computed.
7139 struct ComputingExceptionSpec {
7140   Sema &S;
7141 
7142   ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc)
7143       : S(S) {
7144     Sema::CodeSynthesisContext Ctx;
7145     Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation;
7146     Ctx.PointOfInstantiation = Loc;
7147     Ctx.Entity = FD;
7148     S.pushCodeSynthesisContext(Ctx);
7149   }
7150   ~ComputingExceptionSpec() {
7151     S.popCodeSynthesisContext();
7152   }
7153 };
7154 }
7155 
7156 static Sema::ImplicitExceptionSpecification
7157 ComputeDefaultedSpecialMemberExceptionSpec(
7158     Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
7159     Sema::InheritedConstructorInfo *ICI);
7160 
7161 static Sema::ImplicitExceptionSpecification
7162 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
7163                                         FunctionDecl *FD,
7164                                         Sema::DefaultedComparisonKind DCK);
7165 
7166 static Sema::ImplicitExceptionSpecification
7167 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) {
7168   auto DFK = S.getDefaultedFunctionKind(FD);
7169   if (DFK.isSpecialMember())
7170     return ComputeDefaultedSpecialMemberExceptionSpec(
7171         S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr);
7172   if (DFK.isComparison())
7173     return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD,
7174                                                    DFK.asComparison());
7175 
7176   auto *CD = cast<CXXConstructorDecl>(FD);
7177   assert(CD->getInheritedConstructor() &&
7178          "only defaulted functions and inherited constructors have implicit "
7179          "exception specs");
7180   Sema::InheritedConstructorInfo ICI(
7181       S, Loc, CD->getInheritedConstructor().getShadowDecl());
7182   return ComputeDefaultedSpecialMemberExceptionSpec(
7183       S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
7184 }
7185 
7186 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
7187                                                             CXXMethodDecl *MD) {
7188   FunctionProtoType::ExtProtoInfo EPI;
7189 
7190   // Build an exception specification pointing back at this member.
7191   EPI.ExceptionSpec.Type = EST_Unevaluated;
7192   EPI.ExceptionSpec.SourceDecl = MD;
7193 
7194   // Set the calling convention to the default for C++ instance methods.
7195   EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
7196       S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
7197                                             /*IsCXXMethod=*/true));
7198   return EPI;
7199 }
7200 
7201 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) {
7202   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
7203   if (FPT->getExceptionSpecType() != EST_Unevaluated)
7204     return;
7205 
7206   // Evaluate the exception specification.
7207   auto IES = computeImplicitExceptionSpec(*this, Loc, FD);
7208   auto ESI = IES.getExceptionSpec();
7209 
7210   // Update the type of the special member to use it.
7211   UpdateExceptionSpec(FD, ESI);
7212 }
7213 
7214 void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) {
7215   assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted");
7216 
7217   DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
7218   if (!DefKind) {
7219     assert(FD->getDeclContext()->isDependentContext());
7220     return;
7221   }
7222 
7223   if (DefKind.isSpecialMember()
7224           ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD),
7225                                                   DefKind.asSpecialMember())
7226           : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison()))
7227     FD->setInvalidDecl();
7228 }
7229 
7230 bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
7231                                                  CXXSpecialMember CSM) {
7232   CXXRecordDecl *RD = MD->getParent();
7233 
7234   assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
7235          "not an explicitly-defaulted special member");
7236 
7237   // Defer all checking for special members of a dependent type.
7238   if (RD->isDependentType())
7239     return false;
7240 
7241   // Whether this was the first-declared instance of the constructor.
7242   // This affects whether we implicitly add an exception spec and constexpr.
7243   bool First = MD == MD->getCanonicalDecl();
7244 
7245   bool HadError = false;
7246 
7247   // C++11 [dcl.fct.def.default]p1:
7248   //   A function that is explicitly defaulted shall
7249   //     -- be a special member function [...] (checked elsewhere),
7250   //     -- have the same type (except for ref-qualifiers, and except that a
7251   //        copy operation can take a non-const reference) as an implicit
7252   //        declaration, and
7253   //     -- not have default arguments.
7254   // C++2a changes the second bullet to instead delete the function if it's
7255   // defaulted on its first declaration, unless it's "an assignment operator,
7256   // and its return type differs or its parameter type is not a reference".
7257   bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First;
7258   bool ShouldDeleteForTypeMismatch = false;
7259   unsigned ExpectedParams = 1;
7260   if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
7261     ExpectedParams = 0;
7262   if (MD->getNumParams() != ExpectedParams) {
7263     // This checks for default arguments: a copy or move constructor with a
7264     // default argument is classified as a default constructor, and assignment
7265     // operations and destructors can't have default arguments.
7266     Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
7267       << CSM << MD->getSourceRange();
7268     HadError = true;
7269   } else if (MD->isVariadic()) {
7270     if (DeleteOnTypeMismatch)
7271       ShouldDeleteForTypeMismatch = true;
7272     else {
7273       Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
7274         << CSM << MD->getSourceRange();
7275       HadError = true;
7276     }
7277   }
7278 
7279   const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
7280 
7281   bool CanHaveConstParam = false;
7282   if (CSM == CXXCopyConstructor)
7283     CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
7284   else if (CSM == CXXCopyAssignment)
7285     CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
7286 
7287   QualType ReturnType = Context.VoidTy;
7288   if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
7289     // Check for return type matching.
7290     ReturnType = Type->getReturnType();
7291 
7292     QualType DeclType = Context.getTypeDeclType(RD);
7293     DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace());
7294     QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType);
7295 
7296     if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
7297       Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
7298         << (CSM == CXXMoveAssignment) << ExpectedReturnType;
7299       HadError = true;
7300     }
7301 
7302     // A defaulted special member cannot have cv-qualifiers.
7303     if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) {
7304       if (DeleteOnTypeMismatch)
7305         ShouldDeleteForTypeMismatch = true;
7306       else {
7307         Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
7308           << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
7309         HadError = true;
7310       }
7311     }
7312   }
7313 
7314   // Check for parameter type matching.
7315   QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
7316   bool HasConstParam = false;
7317   if (ExpectedParams && ArgType->isReferenceType()) {
7318     // Argument must be reference to possibly-const T.
7319     QualType ReferentType = ArgType->getPointeeType();
7320     HasConstParam = ReferentType.isConstQualified();
7321 
7322     if (ReferentType.isVolatileQualified()) {
7323       if (DeleteOnTypeMismatch)
7324         ShouldDeleteForTypeMismatch = true;
7325       else {
7326         Diag(MD->getLocation(),
7327              diag::err_defaulted_special_member_volatile_param) << CSM;
7328         HadError = true;
7329       }
7330     }
7331 
7332     if (HasConstParam && !CanHaveConstParam) {
7333       if (DeleteOnTypeMismatch)
7334         ShouldDeleteForTypeMismatch = true;
7335       else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
7336         Diag(MD->getLocation(),
7337              diag::err_defaulted_special_member_copy_const_param)
7338           << (CSM == CXXCopyAssignment);
7339         // FIXME: Explain why this special member can't be const.
7340         HadError = true;
7341       } else {
7342         Diag(MD->getLocation(),
7343              diag::err_defaulted_special_member_move_const_param)
7344           << (CSM == CXXMoveAssignment);
7345         HadError = true;
7346       }
7347     }
7348   } else if (ExpectedParams) {
7349     // A copy assignment operator can take its argument by value, but a
7350     // defaulted one cannot.
7351     assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
7352     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
7353     HadError = true;
7354   }
7355 
7356   // C++11 [dcl.fct.def.default]p2:
7357   //   An explicitly-defaulted function may be declared constexpr only if it
7358   //   would have been implicitly declared as constexpr,
7359   // Do not apply this rule to members of class templates, since core issue 1358
7360   // makes such functions always instantiate to constexpr functions. For
7361   // functions which cannot be constexpr (for non-constructors in C++11 and for
7362   // destructors in C++14 and C++17), this is checked elsewhere.
7363   //
7364   // FIXME: This should not apply if the member is deleted.
7365   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
7366                                                      HasConstParam);
7367   if ((getLangOpts().CPlusPlus20 ||
7368        (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
7369                                   : isa<CXXConstructorDecl>(MD))) &&
7370       MD->isConstexpr() && !Constexpr &&
7371       MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
7372     Diag(MD->getBeginLoc(), MD->isConsteval()
7373                                 ? diag::err_incorrect_defaulted_consteval
7374                                 : diag::err_incorrect_defaulted_constexpr)
7375         << CSM;
7376     // FIXME: Explain why the special member can't be constexpr.
7377     HadError = true;
7378   }
7379 
7380   if (First) {
7381     // C++2a [dcl.fct.def.default]p3:
7382     //   If a function is explicitly defaulted on its first declaration, it is
7383     //   implicitly considered to be constexpr if the implicit declaration
7384     //   would be.
7385     MD->setConstexprKind(Constexpr ? (MD->isConsteval()
7386                                           ? ConstexprSpecKind::Consteval
7387                                           : ConstexprSpecKind::Constexpr)
7388                                    : ConstexprSpecKind::Unspecified);
7389 
7390     if (!Type->hasExceptionSpec()) {
7391       // C++2a [except.spec]p3:
7392       //   If a declaration of a function does not have a noexcept-specifier
7393       //   [and] is defaulted on its first declaration, [...] the exception
7394       //   specification is as specified below
7395       FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
7396       EPI.ExceptionSpec.Type = EST_Unevaluated;
7397       EPI.ExceptionSpec.SourceDecl = MD;
7398       MD->setType(Context.getFunctionType(ReturnType,
7399                                           llvm::makeArrayRef(&ArgType,
7400                                                              ExpectedParams),
7401                                           EPI));
7402     }
7403   }
7404 
7405   if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) {
7406     if (First) {
7407       SetDeclDeleted(MD, MD->getLocation());
7408       if (!inTemplateInstantiation() && !HadError) {
7409         Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM;
7410         if (ShouldDeleteForTypeMismatch) {
7411           Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM;
7412         } else {
7413           ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7414         }
7415       }
7416       if (ShouldDeleteForTypeMismatch && !HadError) {
7417         Diag(MD->getLocation(),
7418              diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM;
7419       }
7420     } else {
7421       // C++11 [dcl.fct.def.default]p4:
7422       //   [For a] user-provided explicitly-defaulted function [...] if such a
7423       //   function is implicitly defined as deleted, the program is ill-formed.
7424       Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
7425       assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl");
7426       ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7427       HadError = true;
7428     }
7429   }
7430 
7431   return HadError;
7432 }
7433 
7434 namespace {
7435 /// Helper class for building and checking a defaulted comparison.
7436 ///
7437 /// Defaulted functions are built in two phases:
7438 ///
7439 ///  * First, the set of operations that the function will perform are
7440 ///    identified, and some of them are checked. If any of the checked
7441 ///    operations is invalid in certain ways, the comparison function is
7442 ///    defined as deleted and no body is built.
7443 ///  * Then, if the function is not defined as deleted, the body is built.
7444 ///
7445 /// This is accomplished by performing two visitation steps over the eventual
7446 /// body of the function.
7447 template<typename Derived, typename ResultList, typename Result,
7448          typename Subobject>
7449 class DefaultedComparisonVisitor {
7450 public:
7451   using DefaultedComparisonKind = Sema::DefaultedComparisonKind;
7452 
7453   DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7454                              DefaultedComparisonKind DCK)
7455       : S(S), RD(RD), FD(FD), DCK(DCK) {
7456     if (auto *Info = FD->getDefaultedFunctionInfo()) {
7457       // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an
7458       // UnresolvedSet to avoid this copy.
7459       Fns.assign(Info->getUnqualifiedLookups().begin(),
7460                  Info->getUnqualifiedLookups().end());
7461     }
7462   }
7463 
7464   ResultList visit() {
7465     // The type of an lvalue naming a parameter of this function.
7466     QualType ParamLvalType =
7467         FD->getParamDecl(0)->getType().getNonReferenceType();
7468 
7469     ResultList Results;
7470 
7471     switch (DCK) {
7472     case DefaultedComparisonKind::None:
7473       llvm_unreachable("not a defaulted comparison");
7474 
7475     case DefaultedComparisonKind::Equal:
7476     case DefaultedComparisonKind::ThreeWay:
7477       getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers());
7478       return Results;
7479 
7480     case DefaultedComparisonKind::NotEqual:
7481     case DefaultedComparisonKind::Relational:
7482       Results.add(getDerived().visitExpandedSubobject(
7483           ParamLvalType, getDerived().getCompleteObject()));
7484       return Results;
7485     }
7486     llvm_unreachable("");
7487   }
7488 
7489 protected:
7490   Derived &getDerived() { return static_cast<Derived&>(*this); }
7491 
7492   /// Visit the expanded list of subobjects of the given type, as specified in
7493   /// C++2a [class.compare.default].
7494   ///
7495   /// \return \c true if the ResultList object said we're done, \c false if not.
7496   bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record,
7497                        Qualifiers Quals) {
7498     // C++2a [class.compare.default]p4:
7499     //   The direct base class subobjects of C
7500     for (CXXBaseSpecifier &Base : Record->bases())
7501       if (Results.add(getDerived().visitSubobject(
7502               S.Context.getQualifiedType(Base.getType(), Quals),
7503               getDerived().getBase(&Base))))
7504         return true;
7505 
7506     //   followed by the non-static data members of C
7507     for (FieldDecl *Field : Record->fields()) {
7508       // Recursively expand anonymous structs.
7509       if (Field->isAnonymousStructOrUnion()) {
7510         if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(),
7511                             Quals))
7512           return true;
7513         continue;
7514       }
7515 
7516       // Figure out the type of an lvalue denoting this field.
7517       Qualifiers FieldQuals = Quals;
7518       if (Field->isMutable())
7519         FieldQuals.removeConst();
7520       QualType FieldType =
7521           S.Context.getQualifiedType(Field->getType(), FieldQuals);
7522 
7523       if (Results.add(getDerived().visitSubobject(
7524               FieldType, getDerived().getField(Field))))
7525         return true;
7526     }
7527 
7528     //   form a list of subobjects.
7529     return false;
7530   }
7531 
7532   Result visitSubobject(QualType Type, Subobject Subobj) {
7533     //   In that list, any subobject of array type is recursively expanded
7534     const ArrayType *AT = S.Context.getAsArrayType(Type);
7535     if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT))
7536       return getDerived().visitSubobjectArray(CAT->getElementType(),
7537                                               CAT->getSize(), Subobj);
7538     return getDerived().visitExpandedSubobject(Type, Subobj);
7539   }
7540 
7541   Result visitSubobjectArray(QualType Type, const llvm::APInt &Size,
7542                              Subobject Subobj) {
7543     return getDerived().visitSubobject(Type, Subobj);
7544   }
7545 
7546 protected:
7547   Sema &S;
7548   CXXRecordDecl *RD;
7549   FunctionDecl *FD;
7550   DefaultedComparisonKind DCK;
7551   UnresolvedSet<16> Fns;
7552 };
7553 
7554 /// Information about a defaulted comparison, as determined by
7555 /// DefaultedComparisonAnalyzer.
7556 struct DefaultedComparisonInfo {
7557   bool Deleted = false;
7558   bool Constexpr = true;
7559   ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering;
7560 
7561   static DefaultedComparisonInfo deleted() {
7562     DefaultedComparisonInfo Deleted;
7563     Deleted.Deleted = true;
7564     return Deleted;
7565   }
7566 
7567   bool add(const DefaultedComparisonInfo &R) {
7568     Deleted |= R.Deleted;
7569     Constexpr &= R.Constexpr;
7570     Category = commonComparisonType(Category, R.Category);
7571     return Deleted;
7572   }
7573 };
7574 
7575 /// An element in the expanded list of subobjects of a defaulted comparison, as
7576 /// specified in C++2a [class.compare.default]p4.
7577 struct DefaultedComparisonSubobject {
7578   enum { CompleteObject, Member, Base } Kind;
7579   NamedDecl *Decl;
7580   SourceLocation Loc;
7581 };
7582 
7583 /// A visitor over the notional body of a defaulted comparison that determines
7584 /// whether that body would be deleted or constexpr.
7585 class DefaultedComparisonAnalyzer
7586     : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer,
7587                                         DefaultedComparisonInfo,
7588                                         DefaultedComparisonInfo,
7589                                         DefaultedComparisonSubobject> {
7590 public:
7591   enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr };
7592 
7593 private:
7594   DiagnosticKind Diagnose;
7595 
7596 public:
7597   using Base = DefaultedComparisonVisitor;
7598   using Result = DefaultedComparisonInfo;
7599   using Subobject = DefaultedComparisonSubobject;
7600 
7601   friend Base;
7602 
7603   DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7604                               DefaultedComparisonKind DCK,
7605                               DiagnosticKind Diagnose = NoDiagnostics)
7606       : Base(S, RD, FD, DCK), Diagnose(Diagnose) {}
7607 
7608   Result visit() {
7609     if ((DCK == DefaultedComparisonKind::Equal ||
7610          DCK == DefaultedComparisonKind::ThreeWay) &&
7611         RD->hasVariantMembers()) {
7612       // C++2a [class.compare.default]p2 [P2002R0]:
7613       //   A defaulted comparison operator function for class C is defined as
7614       //   deleted if [...] C has variant members.
7615       if (Diagnose == ExplainDeleted) {
7616         S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union)
7617           << FD << RD->isUnion() << RD;
7618       }
7619       return Result::deleted();
7620     }
7621 
7622     return Base::visit();
7623   }
7624 
7625 private:
7626   Subobject getCompleteObject() {
7627     return Subobject{Subobject::CompleteObject, nullptr, FD->getLocation()};
7628   }
7629 
7630   Subobject getBase(CXXBaseSpecifier *Base) {
7631     return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(),
7632                      Base->getBaseTypeLoc()};
7633   }
7634 
7635   Subobject getField(FieldDecl *Field) {
7636     return Subobject{Subobject::Member, Field, Field->getLocation()};
7637   }
7638 
7639   Result visitExpandedSubobject(QualType Type, Subobject Subobj) {
7640     // C++2a [class.compare.default]p2 [P2002R0]:
7641     //   A defaulted <=> or == operator function for class C is defined as
7642     //   deleted if any non-static data member of C is of reference type
7643     if (Type->isReferenceType()) {
7644       if (Diagnose == ExplainDeleted) {
7645         S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member)
7646             << FD << RD;
7647       }
7648       return Result::deleted();
7649     }
7650 
7651     // [...] Let xi be an lvalue denoting the ith element [...]
7652     OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue);
7653     Expr *Args[] = {&Xi, &Xi};
7654 
7655     // All operators start by trying to apply that same operator recursively.
7656     OverloadedOperatorKind OO = FD->getOverloadedOperator();
7657     assert(OO != OO_None && "not an overloaded operator!");
7658     return visitBinaryOperator(OO, Args, Subobj);
7659   }
7660 
7661   Result
7662   visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args,
7663                       Subobject Subobj,
7664                       OverloadCandidateSet *SpaceshipCandidates = nullptr) {
7665     // Note that there is no need to consider rewritten candidates here if
7666     // we've already found there is no viable 'operator<=>' candidate (and are
7667     // considering synthesizing a '<=>' from '==' and '<').
7668     OverloadCandidateSet CandidateSet(
7669         FD->getLocation(), OverloadCandidateSet::CSK_Operator,
7670         OverloadCandidateSet::OperatorRewriteInfo(
7671             OO, /*AllowRewrittenCandidates=*/!SpaceshipCandidates));
7672 
7673     /// C++2a [class.compare.default]p1 [P2002R0]:
7674     ///   [...] the defaulted function itself is never a candidate for overload
7675     ///   resolution [...]
7676     CandidateSet.exclude(FD);
7677 
7678     if (Args[0]->getType()->isOverloadableType())
7679       S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args);
7680     else {
7681       // FIXME: We determine whether this is a valid expression by checking to
7682       // see if there's a viable builtin operator candidate for it. That isn't
7683       // really what the rules ask us to do, but should give the right results.
7684       S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet);
7685     }
7686 
7687     Result R;
7688 
7689     OverloadCandidateSet::iterator Best;
7690     switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) {
7691     case OR_Success: {
7692       // C++2a [class.compare.secondary]p2 [P2002R0]:
7693       //   The operator function [...] is defined as deleted if [...] the
7694       //   candidate selected by overload resolution is not a rewritten
7695       //   candidate.
7696       if ((DCK == DefaultedComparisonKind::NotEqual ||
7697            DCK == DefaultedComparisonKind::Relational) &&
7698           !Best->RewriteKind) {
7699         if (Diagnose == ExplainDeleted) {
7700           S.Diag(Best->Function->getLocation(),
7701                  diag::note_defaulted_comparison_not_rewritten_callee)
7702               << FD;
7703         }
7704         return Result::deleted();
7705       }
7706 
7707       // Throughout C++2a [class.compare]: if overload resolution does not
7708       // result in a usable function, the candidate function is defined as
7709       // deleted. This requires that we selected an accessible function.
7710       //
7711       // Note that this only considers the access of the function when named
7712       // within the type of the subobject, and not the access path for any
7713       // derived-to-base conversion.
7714       CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl();
7715       if (ArgClass && Best->FoundDecl.getDecl() &&
7716           Best->FoundDecl.getDecl()->isCXXClassMember()) {
7717         QualType ObjectType = Subobj.Kind == Subobject::Member
7718                                   ? Args[0]->getType()
7719                                   : S.Context.getRecordType(RD);
7720         if (!S.isMemberAccessibleForDeletion(
7721                 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc,
7722                 Diagnose == ExplainDeleted
7723                     ? S.PDiag(diag::note_defaulted_comparison_inaccessible)
7724                           << FD << Subobj.Kind << Subobj.Decl
7725                     : S.PDiag()))
7726           return Result::deleted();
7727       }
7728 
7729       // C++2a [class.compare.default]p3 [P2002R0]:
7730       //   A defaulted comparison function is constexpr-compatible if [...]
7731       //   no overlod resolution performed [...] results in a non-constexpr
7732       //   function.
7733       if (FunctionDecl *BestFD = Best->Function) {
7734         assert(!BestFD->isDeleted() && "wrong overload resolution result");
7735         // If it's not constexpr, explain why not.
7736         if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) {
7737           if (Subobj.Kind != Subobject::CompleteObject)
7738             S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr)
7739               << Subobj.Kind << Subobj.Decl;
7740           S.Diag(BestFD->getLocation(),
7741                  diag::note_defaulted_comparison_not_constexpr_here);
7742           // Bail out after explaining; we don't want any more notes.
7743           return Result::deleted();
7744         }
7745         R.Constexpr &= BestFD->isConstexpr();
7746       }
7747 
7748       if (OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType()) {
7749         if (auto *BestFD = Best->Function) {
7750           // If any callee has an undeduced return type, deduce it now.
7751           // FIXME: It's not clear how a failure here should be handled. For
7752           // now, we produce an eager diagnostic, because that is forward
7753           // compatible with most (all?) other reasonable options.
7754           if (BestFD->getReturnType()->isUndeducedType() &&
7755               S.DeduceReturnType(BestFD, FD->getLocation(),
7756                                  /*Diagnose=*/false)) {
7757             // Don't produce a duplicate error when asked to explain why the
7758             // comparison is deleted: we diagnosed that when initially checking
7759             // the defaulted operator.
7760             if (Diagnose == NoDiagnostics) {
7761               S.Diag(
7762                   FD->getLocation(),
7763                   diag::err_defaulted_comparison_cannot_deduce_undeduced_auto)
7764                   << Subobj.Kind << Subobj.Decl;
7765               S.Diag(
7766                   Subobj.Loc,
7767                   diag::note_defaulted_comparison_cannot_deduce_undeduced_auto)
7768                   << Subobj.Kind << Subobj.Decl;
7769               S.Diag(BestFD->getLocation(),
7770                      diag::note_defaulted_comparison_cannot_deduce_callee)
7771                   << Subobj.Kind << Subobj.Decl;
7772             }
7773             return Result::deleted();
7774           }
7775           if (auto *Info = S.Context.CompCategories.lookupInfoForType(
7776               BestFD->getCallResultType())) {
7777             R.Category = Info->Kind;
7778           } else {
7779             if (Diagnose == ExplainDeleted) {
7780               S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce)
7781                   << Subobj.Kind << Subobj.Decl
7782                   << BestFD->getCallResultType().withoutLocalFastQualifiers();
7783               S.Diag(BestFD->getLocation(),
7784                      diag::note_defaulted_comparison_cannot_deduce_callee)
7785                   << Subobj.Kind << Subobj.Decl;
7786             }
7787             return Result::deleted();
7788           }
7789         } else {
7790           Optional<ComparisonCategoryType> Cat =
7791               getComparisonCategoryForBuiltinCmp(Args[0]->getType());
7792           assert(Cat && "no category for builtin comparison?");
7793           R.Category = *Cat;
7794         }
7795       }
7796 
7797       // Note that we might be rewriting to a different operator. That call is
7798       // not considered until we come to actually build the comparison function.
7799       break;
7800     }
7801 
7802     case OR_Ambiguous:
7803       if (Diagnose == ExplainDeleted) {
7804         unsigned Kind = 0;
7805         if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship)
7806           Kind = OO == OO_EqualEqual ? 1 : 2;
7807         CandidateSet.NoteCandidates(
7808             PartialDiagnosticAt(
7809                 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous)
7810                                 << FD << Kind << Subobj.Kind << Subobj.Decl),
7811             S, OCD_AmbiguousCandidates, Args);
7812       }
7813       R = Result::deleted();
7814       break;
7815 
7816     case OR_Deleted:
7817       if (Diagnose == ExplainDeleted) {
7818         if ((DCK == DefaultedComparisonKind::NotEqual ||
7819              DCK == DefaultedComparisonKind::Relational) &&
7820             !Best->RewriteKind) {
7821           S.Diag(Best->Function->getLocation(),
7822                  diag::note_defaulted_comparison_not_rewritten_callee)
7823               << FD;
7824         } else {
7825           S.Diag(Subobj.Loc,
7826                  diag::note_defaulted_comparison_calls_deleted)
7827               << FD << Subobj.Kind << Subobj.Decl;
7828           S.NoteDeletedFunction(Best->Function);
7829         }
7830       }
7831       R = Result::deleted();
7832       break;
7833 
7834     case OR_No_Viable_Function:
7835       // If there's no usable candidate, we're done unless we can rewrite a
7836       // '<=>' in terms of '==' and '<'.
7837       if (OO == OO_Spaceship &&
7838           S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) {
7839         // For any kind of comparison category return type, we need a usable
7840         // '==' and a usable '<'.
7841         if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj,
7842                                        &CandidateSet)))
7843           R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet));
7844         break;
7845       }
7846 
7847       if (Diagnose == ExplainDeleted) {
7848         S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function)
7849             << FD << Subobj.Kind << Subobj.Decl;
7850 
7851         // For a three-way comparison, list both the candidates for the
7852         // original operator and the candidates for the synthesized operator.
7853         if (SpaceshipCandidates) {
7854           SpaceshipCandidates->NoteCandidates(
7855               S, Args,
7856               SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates,
7857                                                       Args, FD->getLocation()));
7858           S.Diag(Subobj.Loc,
7859                  diag::note_defaulted_comparison_no_viable_function_synthesized)
7860               << (OO == OO_EqualEqual ? 0 : 1);
7861         }
7862 
7863         CandidateSet.NoteCandidates(
7864             S, Args,
7865             CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args,
7866                                             FD->getLocation()));
7867       }
7868       R = Result::deleted();
7869       break;
7870     }
7871 
7872     return R;
7873   }
7874 };
7875 
7876 /// A list of statements.
7877 struct StmtListResult {
7878   bool IsInvalid = false;
7879   llvm::SmallVector<Stmt*, 16> Stmts;
7880 
7881   bool add(const StmtResult &S) {
7882     IsInvalid |= S.isInvalid();
7883     if (IsInvalid)
7884       return true;
7885     Stmts.push_back(S.get());
7886     return false;
7887   }
7888 };
7889 
7890 /// A visitor over the notional body of a defaulted comparison that synthesizes
7891 /// the actual body.
7892 class DefaultedComparisonSynthesizer
7893     : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer,
7894                                         StmtListResult, StmtResult,
7895                                         std::pair<ExprResult, ExprResult>> {
7896   SourceLocation Loc;
7897   unsigned ArrayDepth = 0;
7898 
7899 public:
7900   using Base = DefaultedComparisonVisitor;
7901   using ExprPair = std::pair<ExprResult, ExprResult>;
7902 
7903   friend Base;
7904 
7905   DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7906                                  DefaultedComparisonKind DCK,
7907                                  SourceLocation BodyLoc)
7908       : Base(S, RD, FD, DCK), Loc(BodyLoc) {}
7909 
7910   /// Build a suitable function body for this defaulted comparison operator.
7911   StmtResult build() {
7912     Sema::CompoundScopeRAII CompoundScope(S);
7913 
7914     StmtListResult Stmts = visit();
7915     if (Stmts.IsInvalid)
7916       return StmtError();
7917 
7918     ExprResult RetVal;
7919     switch (DCK) {
7920     case DefaultedComparisonKind::None:
7921       llvm_unreachable("not a defaulted comparison");
7922 
7923     case DefaultedComparisonKind::Equal: {
7924       // C++2a [class.eq]p3:
7925       //   [...] compar[e] the corresponding elements [...] until the first
7926       //   index i where xi == yi yields [...] false. If no such index exists,
7927       //   V is true. Otherwise, V is false.
7928       //
7929       // Join the comparisons with '&&'s and return the result. Use a right
7930       // fold (traversing the conditions right-to-left), because that
7931       // short-circuits more naturally.
7932       auto OldStmts = std::move(Stmts.Stmts);
7933       Stmts.Stmts.clear();
7934       ExprResult CmpSoFar;
7935       // Finish a particular comparison chain.
7936       auto FinishCmp = [&] {
7937         if (Expr *Prior = CmpSoFar.get()) {
7938           // Convert the last expression to 'return ...;'
7939           if (RetVal.isUnset() && Stmts.Stmts.empty())
7940             RetVal = CmpSoFar;
7941           // Convert any prior comparison to 'if (!(...)) return false;'
7942           else if (Stmts.add(buildIfNotCondReturnFalse(Prior)))
7943             return true;
7944           CmpSoFar = ExprResult();
7945         }
7946         return false;
7947       };
7948       for (Stmt *EAsStmt : llvm::reverse(OldStmts)) {
7949         Expr *E = dyn_cast<Expr>(EAsStmt);
7950         if (!E) {
7951           // Found an array comparison.
7952           if (FinishCmp() || Stmts.add(EAsStmt))
7953             return StmtError();
7954           continue;
7955         }
7956 
7957         if (CmpSoFar.isUnset()) {
7958           CmpSoFar = E;
7959           continue;
7960         }
7961         CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get());
7962         if (CmpSoFar.isInvalid())
7963           return StmtError();
7964       }
7965       if (FinishCmp())
7966         return StmtError();
7967       std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end());
7968       //   If no such index exists, V is true.
7969       if (RetVal.isUnset())
7970         RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true);
7971       break;
7972     }
7973 
7974     case DefaultedComparisonKind::ThreeWay: {
7975       // Per C++2a [class.spaceship]p3, as a fallback add:
7976       // return static_cast<R>(std::strong_ordering::equal);
7977       QualType StrongOrdering = S.CheckComparisonCategoryType(
7978           ComparisonCategoryType::StrongOrdering, Loc,
7979           Sema::ComparisonCategoryUsage::DefaultedOperator);
7980       if (StrongOrdering.isNull())
7981         return StmtError();
7982       VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering)
7983                              .getValueInfo(ComparisonCategoryResult::Equal)
7984                              ->VD;
7985       RetVal = getDecl(EqualVD);
7986       if (RetVal.isInvalid())
7987         return StmtError();
7988       RetVal = buildStaticCastToR(RetVal.get());
7989       break;
7990     }
7991 
7992     case DefaultedComparisonKind::NotEqual:
7993     case DefaultedComparisonKind::Relational:
7994       RetVal = cast<Expr>(Stmts.Stmts.pop_back_val());
7995       break;
7996     }
7997 
7998     // Build the final return statement.
7999     if (RetVal.isInvalid())
8000       return StmtError();
8001     StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get());
8002     if (ReturnStmt.isInvalid())
8003       return StmtError();
8004     Stmts.Stmts.push_back(ReturnStmt.get());
8005 
8006     return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false);
8007   }
8008 
8009 private:
8010   ExprResult getDecl(ValueDecl *VD) {
8011     return S.BuildDeclarationNameExpr(
8012         CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD);
8013   }
8014 
8015   ExprResult getParam(unsigned I) {
8016     ParmVarDecl *PD = FD->getParamDecl(I);
8017     return getDecl(PD);
8018   }
8019 
8020   ExprPair getCompleteObject() {
8021     unsigned Param = 0;
8022     ExprResult LHS;
8023     if (isa<CXXMethodDecl>(FD)) {
8024       // LHS is '*this'.
8025       LHS = S.ActOnCXXThis(Loc);
8026       if (!LHS.isInvalid())
8027         LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get());
8028     } else {
8029       LHS = getParam(Param++);
8030     }
8031     ExprResult RHS = getParam(Param++);
8032     assert(Param == FD->getNumParams());
8033     return {LHS, RHS};
8034   }
8035 
8036   ExprPair getBase(CXXBaseSpecifier *Base) {
8037     ExprPair Obj = getCompleteObject();
8038     if (Obj.first.isInvalid() || Obj.second.isInvalid())
8039       return {ExprError(), ExprError()};
8040     CXXCastPath Path = {Base};
8041     return {S.ImpCastExprToType(Obj.first.get(), Base->getType(),
8042                                 CK_DerivedToBase, VK_LValue, &Path),
8043             S.ImpCastExprToType(Obj.second.get(), Base->getType(),
8044                                 CK_DerivedToBase, VK_LValue, &Path)};
8045   }
8046 
8047   ExprPair getField(FieldDecl *Field) {
8048     ExprPair Obj = getCompleteObject();
8049     if (Obj.first.isInvalid() || Obj.second.isInvalid())
8050       return {ExprError(), ExprError()};
8051 
8052     DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess());
8053     DeclarationNameInfo NameInfo(Field->getDeclName(), Loc);
8054     return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc,
8055                                       CXXScopeSpec(), Field, Found, NameInfo),
8056             S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc,
8057                                       CXXScopeSpec(), Field, Found, NameInfo)};
8058   }
8059 
8060   // FIXME: When expanding a subobject, register a note in the code synthesis
8061   // stack to say which subobject we're comparing.
8062 
8063   StmtResult buildIfNotCondReturnFalse(ExprResult Cond) {
8064     if (Cond.isInvalid())
8065       return StmtError();
8066 
8067     ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get());
8068     if (NotCond.isInvalid())
8069       return StmtError();
8070 
8071     ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false);
8072     assert(!False.isInvalid() && "should never fail");
8073     StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get());
8074     if (ReturnFalse.isInvalid())
8075       return StmtError();
8076 
8077     return S.ActOnIfStmt(Loc, false, Loc, nullptr,
8078                          S.ActOnCondition(nullptr, Loc, NotCond.get(),
8079                                           Sema::ConditionKind::Boolean),
8080                          Loc, ReturnFalse.get(), SourceLocation(), nullptr);
8081   }
8082 
8083   StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size,
8084                                  ExprPair Subobj) {
8085     QualType SizeType = S.Context.getSizeType();
8086     Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType));
8087 
8088     // Build 'size_t i$n = 0'.
8089     IdentifierInfo *IterationVarName = nullptr;
8090     {
8091       SmallString<8> Str;
8092       llvm::raw_svector_ostream OS(Str);
8093       OS << "i" << ArrayDepth;
8094       IterationVarName = &S.Context.Idents.get(OS.str());
8095     }
8096     VarDecl *IterationVar = VarDecl::Create(
8097         S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
8098         S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
8099     llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8100     IterationVar->setInit(
8101         IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8102     Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc);
8103 
8104     auto IterRef = [&] {
8105       ExprResult Ref = S.BuildDeclarationNameExpr(
8106           CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc),
8107           IterationVar);
8108       assert(!Ref.isInvalid() && "can't reference our own variable?");
8109       return Ref.get();
8110     };
8111 
8112     // Build 'i$n != Size'.
8113     ExprResult Cond = S.CreateBuiltinBinOp(
8114         Loc, BO_NE, IterRef(),
8115         IntegerLiteral::Create(S.Context, Size, SizeType, Loc));
8116     assert(!Cond.isInvalid() && "should never fail");
8117 
8118     // Build '++i$n'.
8119     ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef());
8120     assert(!Inc.isInvalid() && "should never fail");
8121 
8122     // Build 'a[i$n]' and 'b[i$n]'.
8123     auto Index = [&](ExprResult E) {
8124       if (E.isInvalid())
8125         return ExprError();
8126       return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc);
8127     };
8128     Subobj.first = Index(Subobj.first);
8129     Subobj.second = Index(Subobj.second);
8130 
8131     // Compare the array elements.
8132     ++ArrayDepth;
8133     StmtResult Substmt = visitSubobject(Type, Subobj);
8134     --ArrayDepth;
8135 
8136     if (Substmt.isInvalid())
8137       return StmtError();
8138 
8139     // For the inner level of an 'operator==', build 'if (!cmp) return false;'.
8140     // For outer levels or for an 'operator<=>' we already have a suitable
8141     // statement that returns as necessary.
8142     if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) {
8143       assert(DCK == DefaultedComparisonKind::Equal &&
8144              "should have non-expression statement");
8145       Substmt = buildIfNotCondReturnFalse(ElemCmp);
8146       if (Substmt.isInvalid())
8147         return StmtError();
8148     }
8149 
8150     // Build 'for (...) ...'
8151     return S.ActOnForStmt(Loc, Loc, Init,
8152                           S.ActOnCondition(nullptr, Loc, Cond.get(),
8153                                            Sema::ConditionKind::Boolean),
8154                           S.MakeFullDiscardedValueExpr(Inc.get()), Loc,
8155                           Substmt.get());
8156   }
8157 
8158   StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) {
8159     if (Obj.first.isInvalid() || Obj.second.isInvalid())
8160       return StmtError();
8161 
8162     OverloadedOperatorKind OO = FD->getOverloadedOperator();
8163     BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO);
8164     ExprResult Op;
8165     if (Type->isOverloadableType())
8166       Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(),
8167                                    Obj.second.get(), /*PerformADL=*/true,
8168                                    /*AllowRewrittenCandidates=*/true, FD);
8169     else
8170       Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get());
8171     if (Op.isInvalid())
8172       return StmtError();
8173 
8174     switch (DCK) {
8175     case DefaultedComparisonKind::None:
8176       llvm_unreachable("not a defaulted comparison");
8177 
8178     case DefaultedComparisonKind::Equal:
8179       // Per C++2a [class.eq]p2, each comparison is individually contextually
8180       // converted to bool.
8181       Op = S.PerformContextuallyConvertToBool(Op.get());
8182       if (Op.isInvalid())
8183         return StmtError();
8184       return Op.get();
8185 
8186     case DefaultedComparisonKind::ThreeWay: {
8187       // Per C++2a [class.spaceship]p3, form:
8188       //   if (R cmp = static_cast<R>(op); cmp != 0)
8189       //     return cmp;
8190       QualType R = FD->getReturnType();
8191       Op = buildStaticCastToR(Op.get());
8192       if (Op.isInvalid())
8193         return StmtError();
8194 
8195       // R cmp = ...;
8196       IdentifierInfo *Name = &S.Context.Idents.get("cmp");
8197       VarDecl *VD =
8198           VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R,
8199                           S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None);
8200       S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false);
8201       Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc);
8202 
8203       // cmp != 0
8204       ExprResult VDRef = getDecl(VD);
8205       if (VDRef.isInvalid())
8206         return StmtError();
8207       llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0);
8208       Expr *Zero =
8209           IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc);
8210       ExprResult Comp;
8211       if (VDRef.get()->getType()->isOverloadableType())
8212         Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true,
8213                                        true, FD);
8214       else
8215         Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero);
8216       if (Comp.isInvalid())
8217         return StmtError();
8218       Sema::ConditionResult Cond = S.ActOnCondition(
8219           nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean);
8220       if (Cond.isInvalid())
8221         return StmtError();
8222 
8223       // return cmp;
8224       VDRef = getDecl(VD);
8225       if (VDRef.isInvalid())
8226         return StmtError();
8227       StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get());
8228       if (ReturnStmt.isInvalid())
8229         return StmtError();
8230 
8231       // if (...)
8232       return S.ActOnIfStmt(Loc, /*IsConstexpr=*/false, Loc, InitStmt, Cond, Loc,
8233                            ReturnStmt.get(),
8234                            /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr);
8235     }
8236 
8237     case DefaultedComparisonKind::NotEqual:
8238     case DefaultedComparisonKind::Relational:
8239       // C++2a [class.compare.secondary]p2:
8240       //   Otherwise, the operator function yields x @ y.
8241       return Op.get();
8242     }
8243     llvm_unreachable("");
8244   }
8245 
8246   /// Build "static_cast<R>(E)".
8247   ExprResult buildStaticCastToR(Expr *E) {
8248     QualType R = FD->getReturnType();
8249     assert(!R->isUndeducedType() && "type should have been deduced already");
8250 
8251     // Don't bother forming a no-op cast in the common case.
8252     if (E->isRValue() && S.Context.hasSameType(E->getType(), R))
8253       return E;
8254     return S.BuildCXXNamedCast(Loc, tok::kw_static_cast,
8255                                S.Context.getTrivialTypeSourceInfo(R, Loc), E,
8256                                SourceRange(Loc, Loc), SourceRange(Loc, Loc));
8257   }
8258 };
8259 }
8260 
8261 /// Perform the unqualified lookups that might be needed to form a defaulted
8262 /// comparison function for the given operator.
8263 static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S,
8264                                                   UnresolvedSetImpl &Operators,
8265                                                   OverloadedOperatorKind Op) {
8266   auto Lookup = [&](OverloadedOperatorKind OO) {
8267     Self.LookupOverloadedOperatorName(OO, S, Operators);
8268   };
8269 
8270   // Every defaulted operator looks up itself.
8271   Lookup(Op);
8272   // ... and the rewritten form of itself, if any.
8273   if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op))
8274     Lookup(ExtraOp);
8275 
8276   // For 'operator<=>', we also form a 'cmp != 0' expression, and might
8277   // synthesize a three-way comparison from '<' and '=='. In a dependent
8278   // context, we also need to look up '==' in case we implicitly declare a
8279   // defaulted 'operator=='.
8280   if (Op == OO_Spaceship) {
8281     Lookup(OO_ExclaimEqual);
8282     Lookup(OO_Less);
8283     Lookup(OO_EqualEqual);
8284   }
8285 }
8286 
8287 bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD,
8288                                               DefaultedComparisonKind DCK) {
8289   assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison");
8290 
8291   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext());
8292   assert(RD && "defaulted comparison is not defaulted in a class");
8293 
8294   // Perform any unqualified lookups we're going to need to default this
8295   // function.
8296   if (S) {
8297     UnresolvedSet<32> Operators;
8298     lookupOperatorsForDefaultedComparison(*this, S, Operators,
8299                                           FD->getOverloadedOperator());
8300     FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create(
8301         Context, Operators.pairs()));
8302   }
8303 
8304   // C++2a [class.compare.default]p1:
8305   //   A defaulted comparison operator function for some class C shall be a
8306   //   non-template function declared in the member-specification of C that is
8307   //    -- a non-static const member of C having one parameter of type
8308   //       const C&, or
8309   //    -- a friend of C having two parameters of type const C& or two
8310   //       parameters of type C.
8311   QualType ExpectedParmType1 = Context.getRecordType(RD);
8312   QualType ExpectedParmType2 =
8313       Context.getLValueReferenceType(ExpectedParmType1.withConst());
8314   if (isa<CXXMethodDecl>(FD))
8315     ExpectedParmType1 = ExpectedParmType2;
8316   for (const ParmVarDecl *Param : FD->parameters()) {
8317     if (!Param->getType()->isDependentType() &&
8318         !Context.hasSameType(Param->getType(), ExpectedParmType1) &&
8319         !Context.hasSameType(Param->getType(), ExpectedParmType2)) {
8320       // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8321       // corresponding defaulted 'operator<=>' already.
8322       if (!FD->isImplicit()) {
8323         Diag(FD->getLocation(), diag::err_defaulted_comparison_param)
8324             << (int)DCK << Param->getType() << ExpectedParmType1
8325             << !isa<CXXMethodDecl>(FD)
8326             << ExpectedParmType2 << Param->getSourceRange();
8327       }
8328       return true;
8329     }
8330   }
8331   if (FD->getNumParams() == 2 &&
8332       !Context.hasSameType(FD->getParamDecl(0)->getType(),
8333                            FD->getParamDecl(1)->getType())) {
8334     if (!FD->isImplicit()) {
8335       Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch)
8336           << (int)DCK
8337           << FD->getParamDecl(0)->getType()
8338           << FD->getParamDecl(0)->getSourceRange()
8339           << FD->getParamDecl(1)->getType()
8340           << FD->getParamDecl(1)->getSourceRange();
8341     }
8342     return true;
8343   }
8344 
8345   // ... non-static const member ...
8346   if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
8347     assert(!MD->isStatic() && "comparison function cannot be a static member");
8348     if (!MD->isConst()) {
8349       SourceLocation InsertLoc;
8350       if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc())
8351         InsertLoc = getLocForEndOfToken(Loc.getRParenLoc());
8352       // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8353       // corresponding defaulted 'operator<=>' already.
8354       if (!MD->isImplicit()) {
8355         Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const)
8356           << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const");
8357       }
8358 
8359       // Add the 'const' to the type to recover.
8360       const auto *FPT = MD->getType()->castAs<FunctionProtoType>();
8361       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8362       EPI.TypeQuals.addConst();
8363       MD->setType(Context.getFunctionType(FPT->getReturnType(),
8364                                           FPT->getParamTypes(), EPI));
8365     }
8366   } else {
8367     // A non-member function declared in a class must be a friend.
8368     assert(FD->getFriendObjectKind() && "expected a friend declaration");
8369   }
8370 
8371   // C++2a [class.eq]p1, [class.rel]p1:
8372   //   A [defaulted comparison other than <=>] shall have a declared return
8373   //   type bool.
8374   if (DCK != DefaultedComparisonKind::ThreeWay &&
8375       !FD->getDeclaredReturnType()->isDependentType() &&
8376       !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) {
8377     Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool)
8378         << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy
8379         << FD->getReturnTypeSourceRange();
8380     return true;
8381   }
8382   // C++2a [class.spaceship]p2 [P2002R0]:
8383   //   Let R be the declared return type [...]. If R is auto, [...]. Otherwise,
8384   //   R shall not contain a placeholder type.
8385   if (DCK == DefaultedComparisonKind::ThreeWay &&
8386       FD->getDeclaredReturnType()->getContainedDeducedType() &&
8387       !Context.hasSameType(FD->getDeclaredReturnType(),
8388                            Context.getAutoDeductType())) {
8389     Diag(FD->getLocation(),
8390          diag::err_defaulted_comparison_deduced_return_type_not_auto)
8391         << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy
8392         << FD->getReturnTypeSourceRange();
8393     return true;
8394   }
8395 
8396   // For a defaulted function in a dependent class, defer all remaining checks
8397   // until instantiation.
8398   if (RD->isDependentType())
8399     return false;
8400 
8401   // Determine whether the function should be defined as deleted.
8402   DefaultedComparisonInfo Info =
8403       DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit();
8404 
8405   bool First = FD == FD->getCanonicalDecl();
8406 
8407   // If we want to delete the function, then do so; there's nothing else to
8408   // check in that case.
8409   if (Info.Deleted) {
8410     if (!First) {
8411       // C++11 [dcl.fct.def.default]p4:
8412       //   [For a] user-provided explicitly-defaulted function [...] if such a
8413       //   function is implicitly defined as deleted, the program is ill-formed.
8414       //
8415       // This is really just a consequence of the general rule that you can
8416       // only delete a function on its first declaration.
8417       Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes)
8418           << FD->isImplicit() << (int)DCK;
8419       DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8420                                   DefaultedComparisonAnalyzer::ExplainDeleted)
8421           .visit();
8422       return true;
8423     }
8424 
8425     SetDeclDeleted(FD, FD->getLocation());
8426     if (!inTemplateInstantiation() && !FD->isImplicit()) {
8427       Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted)
8428           << (int)DCK;
8429       DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8430                                   DefaultedComparisonAnalyzer::ExplainDeleted)
8431           .visit();
8432     }
8433     return false;
8434   }
8435 
8436   // C++2a [class.spaceship]p2:
8437   //   The return type is deduced as the common comparison type of R0, R1, ...
8438   if (DCK == DefaultedComparisonKind::ThreeWay &&
8439       FD->getDeclaredReturnType()->isUndeducedAutoType()) {
8440     SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin();
8441     if (RetLoc.isInvalid())
8442       RetLoc = FD->getBeginLoc();
8443     // FIXME: Should we really care whether we have the complete type and the
8444     // 'enumerator' constants here? A forward declaration seems sufficient.
8445     QualType Cat = CheckComparisonCategoryType(
8446         Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator);
8447     if (Cat.isNull())
8448       return true;
8449     Context.adjustDeducedFunctionResultType(
8450         FD, SubstAutoType(FD->getDeclaredReturnType(), Cat));
8451   }
8452 
8453   // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8454   //   An explicitly-defaulted function that is not defined as deleted may be
8455   //   declared constexpr or consteval only if it is constexpr-compatible.
8456   // C++2a [class.compare.default]p3 [P2002R0]:
8457   //   A defaulted comparison function is constexpr-compatible if it satisfies
8458   //   the requirements for a constexpr function [...]
8459   // The only relevant requirements are that the parameter and return types are
8460   // literal types. The remaining conditions are checked by the analyzer.
8461   if (FD->isConstexpr()) {
8462     if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) &&
8463         CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) &&
8464         !Info.Constexpr) {
8465       Diag(FD->getBeginLoc(),
8466            diag::err_incorrect_defaulted_comparison_constexpr)
8467           << FD->isImplicit() << (int)DCK << FD->isConsteval();
8468       DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8469                                   DefaultedComparisonAnalyzer::ExplainConstexpr)
8470           .visit();
8471     }
8472   }
8473 
8474   // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8475   //   If a constexpr-compatible function is explicitly defaulted on its first
8476   //   declaration, it is implicitly considered to be constexpr.
8477   // FIXME: Only applying this to the first declaration seems problematic, as
8478   // simple reorderings can affect the meaning of the program.
8479   if (First && !FD->isConstexpr() && Info.Constexpr)
8480     FD->setConstexprKind(ConstexprSpecKind::Constexpr);
8481 
8482   // C++2a [except.spec]p3:
8483   //   If a declaration of a function does not have a noexcept-specifier
8484   //   [and] is defaulted on its first declaration, [...] the exception
8485   //   specification is as specified below
8486   if (FD->getExceptionSpecType() == EST_None) {
8487     auto *FPT = FD->getType()->castAs<FunctionProtoType>();
8488     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8489     EPI.ExceptionSpec.Type = EST_Unevaluated;
8490     EPI.ExceptionSpec.SourceDecl = FD;
8491     FD->setType(Context.getFunctionType(FPT->getReturnType(),
8492                                         FPT->getParamTypes(), EPI));
8493   }
8494 
8495   return false;
8496 }
8497 
8498 void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
8499                                              FunctionDecl *Spaceship) {
8500   Sema::CodeSynthesisContext Ctx;
8501   Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison;
8502   Ctx.PointOfInstantiation = Spaceship->getEndLoc();
8503   Ctx.Entity = Spaceship;
8504   pushCodeSynthesisContext(Ctx);
8505 
8506   if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship))
8507     EqualEqual->setImplicit();
8508 
8509   popCodeSynthesisContext();
8510 }
8511 
8512 void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD,
8513                                      DefaultedComparisonKind DCK) {
8514   assert(FD->isDefaulted() && !FD->isDeleted() &&
8515          !FD->doesThisDeclarationHaveABody());
8516   if (FD->willHaveBody() || FD->isInvalidDecl())
8517     return;
8518 
8519   SynthesizedFunctionScope Scope(*this, FD);
8520 
8521   // Add a context note for diagnostics produced after this point.
8522   Scope.addContextNote(UseLoc);
8523 
8524   {
8525     // Build and set up the function body.
8526     CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
8527     SourceLocation BodyLoc =
8528         FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8529     StmtResult Body =
8530         DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build();
8531     if (Body.isInvalid()) {
8532       FD->setInvalidDecl();
8533       return;
8534     }
8535     FD->setBody(Body.get());
8536     FD->markUsed(Context);
8537   }
8538 
8539   // The exception specification is needed because we are defining the
8540   // function. Note that this will reuse the body we just built.
8541   ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>());
8542 
8543   if (ASTMutationListener *L = getASTMutationListener())
8544     L->CompletedImplicitDefinition(FD);
8545 }
8546 
8547 static Sema::ImplicitExceptionSpecification
8548 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
8549                                         FunctionDecl *FD,
8550                                         Sema::DefaultedComparisonKind DCK) {
8551   ComputingExceptionSpec CES(S, FD, Loc);
8552   Sema::ImplicitExceptionSpecification ExceptSpec(S);
8553 
8554   if (FD->isInvalidDecl())
8555     return ExceptSpec;
8556 
8557   // The common case is that we just defined the comparison function. In that
8558   // case, just look at whether the body can throw.
8559   if (FD->hasBody()) {
8560     ExceptSpec.CalledStmt(FD->getBody());
8561   } else {
8562     // Otherwise, build a body so we can check it. This should ideally only
8563     // happen when we're not actually marking the function referenced. (This is
8564     // only really important for efficiency: we don't want to build and throw
8565     // away bodies for comparison functions more than we strictly need to.)
8566 
8567     // Pretend to synthesize the function body in an unevaluated context.
8568     // Note that we can't actually just go ahead and define the function here:
8569     // we are not permitted to mark its callees as referenced.
8570     Sema::SynthesizedFunctionScope Scope(S, FD);
8571     EnterExpressionEvaluationContext Context(
8572         S, Sema::ExpressionEvaluationContext::Unevaluated);
8573 
8574     CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
8575     SourceLocation BodyLoc =
8576         FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8577     StmtResult Body =
8578         DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build();
8579     if (!Body.isInvalid())
8580       ExceptSpec.CalledStmt(Body.get());
8581 
8582     // FIXME: Can we hold onto this body and just transform it to potentially
8583     // evaluated when we're asked to define the function rather than rebuilding
8584     // it? Either that, or we should only build the bits of the body that we
8585     // need (the expressions, not the statements).
8586   }
8587 
8588   return ExceptSpec;
8589 }
8590 
8591 void Sema::CheckDelayedMemberExceptionSpecs() {
8592   decltype(DelayedOverridingExceptionSpecChecks) Overriding;
8593   decltype(DelayedEquivalentExceptionSpecChecks) Equivalent;
8594 
8595   std::swap(Overriding, DelayedOverridingExceptionSpecChecks);
8596   std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks);
8597 
8598   // Perform any deferred checking of exception specifications for virtual
8599   // destructors.
8600   for (auto &Check : Overriding)
8601     CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
8602 
8603   // Perform any deferred checking of exception specifications for befriended
8604   // special members.
8605   for (auto &Check : Equivalent)
8606     CheckEquivalentExceptionSpec(Check.second, Check.first);
8607 }
8608 
8609 namespace {
8610 /// CRTP base class for visiting operations performed by a special member
8611 /// function (or inherited constructor).
8612 template<typename Derived>
8613 struct SpecialMemberVisitor {
8614   Sema &S;
8615   CXXMethodDecl *MD;
8616   Sema::CXXSpecialMember CSM;
8617   Sema::InheritedConstructorInfo *ICI;
8618 
8619   // Properties of the special member, computed for convenience.
8620   bool IsConstructor = false, IsAssignment = false, ConstArg = false;
8621 
8622   SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
8623                        Sema::InheritedConstructorInfo *ICI)
8624       : S(S), MD(MD), CSM(CSM), ICI(ICI) {
8625     switch (CSM) {
8626     case Sema::CXXDefaultConstructor:
8627     case Sema::CXXCopyConstructor:
8628     case Sema::CXXMoveConstructor:
8629       IsConstructor = true;
8630       break;
8631     case Sema::CXXCopyAssignment:
8632     case Sema::CXXMoveAssignment:
8633       IsAssignment = true;
8634       break;
8635     case Sema::CXXDestructor:
8636       break;
8637     case Sema::CXXInvalid:
8638       llvm_unreachable("invalid special member kind");
8639     }
8640 
8641     if (MD->getNumParams()) {
8642       if (const ReferenceType *RT =
8643               MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
8644         ConstArg = RT->getPointeeType().isConstQualified();
8645     }
8646   }
8647 
8648   Derived &getDerived() { return static_cast<Derived&>(*this); }
8649 
8650   /// Is this a "move" special member?
8651   bool isMove() const {
8652     return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
8653   }
8654 
8655   /// Look up the corresponding special member in the given class.
8656   Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
8657                                              unsigned Quals, bool IsMutable) {
8658     return lookupCallFromSpecialMember(S, Class, CSM, Quals,
8659                                        ConstArg && !IsMutable);
8660   }
8661 
8662   /// Look up the constructor for the specified base class to see if it's
8663   /// overridden due to this being an inherited constructor.
8664   Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
8665     if (!ICI)
8666       return {};
8667     assert(CSM == Sema::CXXDefaultConstructor);
8668     auto *BaseCtor =
8669       cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
8670     if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
8671       return MD;
8672     return {};
8673   }
8674 
8675   /// A base or member subobject.
8676   typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
8677 
8678   /// Get the location to use for a subobject in diagnostics.
8679   static SourceLocation getSubobjectLoc(Subobject Subobj) {
8680     // FIXME: For an indirect virtual base, the direct base leading to
8681     // the indirect virtual base would be a more useful choice.
8682     if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
8683       return B->getBaseTypeLoc();
8684     else
8685       return Subobj.get<FieldDecl*>()->getLocation();
8686   }
8687 
8688   enum BasesToVisit {
8689     /// Visit all non-virtual (direct) bases.
8690     VisitNonVirtualBases,
8691     /// Visit all direct bases, virtual or not.
8692     VisitDirectBases,
8693     /// Visit all non-virtual bases, and all virtual bases if the class
8694     /// is not abstract.
8695     VisitPotentiallyConstructedBases,
8696     /// Visit all direct or virtual bases.
8697     VisitAllBases
8698   };
8699 
8700   // Visit the bases and members of the class.
8701   bool visit(BasesToVisit Bases) {
8702     CXXRecordDecl *RD = MD->getParent();
8703 
8704     if (Bases == VisitPotentiallyConstructedBases)
8705       Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
8706 
8707     for (auto &B : RD->bases())
8708       if ((Bases == VisitDirectBases || !B.isVirtual()) &&
8709           getDerived().visitBase(&B))
8710         return true;
8711 
8712     if (Bases == VisitAllBases)
8713       for (auto &B : RD->vbases())
8714         if (getDerived().visitBase(&B))
8715           return true;
8716 
8717     for (auto *F : RD->fields())
8718       if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
8719           getDerived().visitField(F))
8720         return true;
8721 
8722     return false;
8723   }
8724 };
8725 }
8726 
8727 namespace {
8728 struct SpecialMemberDeletionInfo
8729     : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
8730   bool Diagnose;
8731 
8732   SourceLocation Loc;
8733 
8734   bool AllFieldsAreConst;
8735 
8736   SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
8737                             Sema::CXXSpecialMember CSM,
8738                             Sema::InheritedConstructorInfo *ICI, bool Diagnose)
8739       : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
8740         Loc(MD->getLocation()), AllFieldsAreConst(true) {}
8741 
8742   bool inUnion() const { return MD->getParent()->isUnion(); }
8743 
8744   Sema::CXXSpecialMember getEffectiveCSM() {
8745     return ICI ? Sema::CXXInvalid : CSM;
8746   }
8747 
8748   bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType);
8749 
8750   bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
8751   bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
8752 
8753   bool shouldDeleteForBase(CXXBaseSpecifier *Base);
8754   bool shouldDeleteForField(FieldDecl *FD);
8755   bool shouldDeleteForAllConstMembers();
8756 
8757   bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
8758                                      unsigned Quals);
8759   bool shouldDeleteForSubobjectCall(Subobject Subobj,
8760                                     Sema::SpecialMemberOverloadResult SMOR,
8761                                     bool IsDtorCallInCtor);
8762 
8763   bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
8764 };
8765 }
8766 
8767 /// Is the given special member inaccessible when used on the given
8768 /// sub-object.
8769 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
8770                                              CXXMethodDecl *target) {
8771   /// If we're operating on a base class, the object type is the
8772   /// type of this special member.
8773   QualType objectTy;
8774   AccessSpecifier access = target->getAccess();
8775   if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
8776     objectTy = S.Context.getTypeDeclType(MD->getParent());
8777     access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
8778 
8779   // If we're operating on a field, the object type is the type of the field.
8780   } else {
8781     objectTy = S.Context.getTypeDeclType(target->getParent());
8782   }
8783 
8784   return S.isMemberAccessibleForDeletion(
8785       target->getParent(), DeclAccessPair::make(target, access), objectTy);
8786 }
8787 
8788 /// Check whether we should delete a special member due to the implicit
8789 /// definition containing a call to a special member of a subobject.
8790 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
8791     Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
8792     bool IsDtorCallInCtor) {
8793   CXXMethodDecl *Decl = SMOR.getMethod();
8794   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
8795 
8796   int DiagKind = -1;
8797 
8798   if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
8799     DiagKind = !Decl ? 0 : 1;
8800   else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
8801     DiagKind = 2;
8802   else if (!isAccessible(Subobj, Decl))
8803     DiagKind = 3;
8804   else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
8805            !Decl->isTrivial()) {
8806     // A member of a union must have a trivial corresponding special member.
8807     // As a weird special case, a destructor call from a union's constructor
8808     // must be accessible and non-deleted, but need not be trivial. Such a
8809     // destructor is never actually called, but is semantically checked as
8810     // if it were.
8811     DiagKind = 4;
8812   }
8813 
8814   if (DiagKind == -1)
8815     return false;
8816 
8817   if (Diagnose) {
8818     if (Field) {
8819       S.Diag(Field->getLocation(),
8820              diag::note_deleted_special_member_class_subobject)
8821         << getEffectiveCSM() << MD->getParent() << /*IsField*/true
8822         << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false;
8823     } else {
8824       CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
8825       S.Diag(Base->getBeginLoc(),
8826              diag::note_deleted_special_member_class_subobject)
8827           << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
8828           << Base->getType() << DiagKind << IsDtorCallInCtor
8829           << /*IsObjCPtr*/false;
8830     }
8831 
8832     if (DiagKind == 1)
8833       S.NoteDeletedFunction(Decl);
8834     // FIXME: Explain inaccessibility if DiagKind == 3.
8835   }
8836 
8837   return true;
8838 }
8839 
8840 /// Check whether we should delete a special member function due to having a
8841 /// direct or virtual base class or non-static data member of class type M.
8842 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
8843     CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
8844   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
8845   bool IsMutable = Field && Field->isMutable();
8846 
8847   // C++11 [class.ctor]p5:
8848   // -- any direct or virtual base class, or non-static data member with no
8849   //    brace-or-equal-initializer, has class type M (or array thereof) and
8850   //    either M has no default constructor or overload resolution as applied
8851   //    to M's default constructor results in an ambiguity or in a function
8852   //    that is deleted or inaccessible
8853   // C++11 [class.copy]p11, C++11 [class.copy]p23:
8854   // -- a direct or virtual base class B that cannot be copied/moved because
8855   //    overload resolution, as applied to B's corresponding special member,
8856   //    results in an ambiguity or a function that is deleted or inaccessible
8857   //    from the defaulted special member
8858   // C++11 [class.dtor]p5:
8859   // -- any direct or virtual base class [...] has a type with a destructor
8860   //    that is deleted or inaccessible
8861   if (!(CSM == Sema::CXXDefaultConstructor &&
8862         Field && Field->hasInClassInitializer()) &&
8863       shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
8864                                    false))
8865     return true;
8866 
8867   // C++11 [class.ctor]p5, C++11 [class.copy]p11:
8868   // -- any direct or virtual base class or non-static data member has a
8869   //    type with a destructor that is deleted or inaccessible
8870   if (IsConstructor) {
8871     Sema::SpecialMemberOverloadResult SMOR =
8872         S.LookupSpecialMember(Class, Sema::CXXDestructor,
8873                               false, false, false, false, false);
8874     if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
8875       return true;
8876   }
8877 
8878   return false;
8879 }
8880 
8881 bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember(
8882     FieldDecl *FD, QualType FieldType) {
8883   // The defaulted special functions are defined as deleted if this is a variant
8884   // member with a non-trivial ownership type, e.g., ObjC __strong or __weak
8885   // type under ARC.
8886   if (!FieldType.hasNonTrivialObjCLifetime())
8887     return false;
8888 
8889   // Don't make the defaulted default constructor defined as deleted if the
8890   // member has an in-class initializer.
8891   if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())
8892     return false;
8893 
8894   if (Diagnose) {
8895     auto *ParentClass = cast<CXXRecordDecl>(FD->getParent());
8896     S.Diag(FD->getLocation(),
8897            diag::note_deleted_special_member_class_subobject)
8898         << getEffectiveCSM() << ParentClass << /*IsField*/true
8899         << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true;
8900   }
8901 
8902   return true;
8903 }
8904 
8905 /// Check whether we should delete a special member function due to the class
8906 /// having a particular direct or virtual base class.
8907 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
8908   CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
8909   // If program is correct, BaseClass cannot be null, but if it is, the error
8910   // must be reported elsewhere.
8911   if (!BaseClass)
8912     return false;
8913   // If we have an inheriting constructor, check whether we're calling an
8914   // inherited constructor instead of a default constructor.
8915   Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
8916   if (auto *BaseCtor = SMOR.getMethod()) {
8917     // Note that we do not check access along this path; other than that,
8918     // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
8919     // FIXME: Check that the base has a usable destructor! Sink this into
8920     // shouldDeleteForClassSubobject.
8921     if (BaseCtor->isDeleted() && Diagnose) {
8922       S.Diag(Base->getBeginLoc(),
8923              diag::note_deleted_special_member_class_subobject)
8924           << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
8925           << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false
8926           << /*IsObjCPtr*/false;
8927       S.NoteDeletedFunction(BaseCtor);
8928     }
8929     return BaseCtor->isDeleted();
8930   }
8931   return shouldDeleteForClassSubobject(BaseClass, Base, 0);
8932 }
8933 
8934 /// Check whether we should delete a special member function due to the class
8935 /// having a particular non-static data member.
8936 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
8937   QualType FieldType = S.Context.getBaseElementType(FD->getType());
8938   CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
8939 
8940   if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType))
8941     return true;
8942 
8943   if (CSM == Sema::CXXDefaultConstructor) {
8944     // For a default constructor, all references must be initialized in-class
8945     // and, if a union, it must have a non-const member.
8946     if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
8947       if (Diagnose)
8948         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
8949           << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
8950       return true;
8951     }
8952     // C++11 [class.ctor]p5: any non-variant non-static data member of
8953     // const-qualified type (or array thereof) with no
8954     // brace-or-equal-initializer does not have a user-provided default
8955     // constructor.
8956     if (!inUnion() && FieldType.isConstQualified() &&
8957         !FD->hasInClassInitializer() &&
8958         (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
8959       if (Diagnose)
8960         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
8961           << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
8962       return true;
8963     }
8964 
8965     if (inUnion() && !FieldType.isConstQualified())
8966       AllFieldsAreConst = false;
8967   } else if (CSM == Sema::CXXCopyConstructor) {
8968     // For a copy constructor, data members must not be of rvalue reference
8969     // type.
8970     if (FieldType->isRValueReferenceType()) {
8971       if (Diagnose)
8972         S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
8973           << MD->getParent() << FD << FieldType;
8974       return true;
8975     }
8976   } else if (IsAssignment) {
8977     // For an assignment operator, data members must not be of reference type.
8978     if (FieldType->isReferenceType()) {
8979       if (Diagnose)
8980         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
8981           << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
8982       return true;
8983     }
8984     if (!FieldRecord && FieldType.isConstQualified()) {
8985       // C++11 [class.copy]p23:
8986       // -- a non-static data member of const non-class type (or array thereof)
8987       if (Diagnose)
8988         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
8989           << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
8990       return true;
8991     }
8992   }
8993 
8994   if (FieldRecord) {
8995     // Some additional restrictions exist on the variant members.
8996     if (!inUnion() && FieldRecord->isUnion() &&
8997         FieldRecord->isAnonymousStructOrUnion()) {
8998       bool AllVariantFieldsAreConst = true;
8999 
9000       // FIXME: Handle anonymous unions declared within anonymous unions.
9001       for (auto *UI : FieldRecord->fields()) {
9002         QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
9003 
9004         if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType))
9005           return true;
9006 
9007         if (!UnionFieldType.isConstQualified())
9008           AllVariantFieldsAreConst = false;
9009 
9010         CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
9011         if (UnionFieldRecord &&
9012             shouldDeleteForClassSubobject(UnionFieldRecord, UI,
9013                                           UnionFieldType.getCVRQualifiers()))
9014           return true;
9015       }
9016 
9017       // At least one member in each anonymous union must be non-const
9018       if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
9019           !FieldRecord->field_empty()) {
9020         if (Diagnose)
9021           S.Diag(FieldRecord->getLocation(),
9022                  diag::note_deleted_default_ctor_all_const)
9023             << !!ICI << MD->getParent() << /*anonymous union*/1;
9024         return true;
9025       }
9026 
9027       // Don't check the implicit member of the anonymous union type.
9028       // This is technically non-conformant, but sanity demands it.
9029       return false;
9030     }
9031 
9032     if (shouldDeleteForClassSubobject(FieldRecord, FD,
9033                                       FieldType.getCVRQualifiers()))
9034       return true;
9035   }
9036 
9037   return false;
9038 }
9039 
9040 /// C++11 [class.ctor] p5:
9041 ///   A defaulted default constructor for a class X is defined as deleted if
9042 /// X is a union and all of its variant members are of const-qualified type.
9043 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
9044   // This is a silly definition, because it gives an empty union a deleted
9045   // default constructor. Don't do that.
9046   if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
9047     bool AnyFields = false;
9048     for (auto *F : MD->getParent()->fields())
9049       if ((AnyFields = !F->isUnnamedBitfield()))
9050         break;
9051     if (!AnyFields)
9052       return false;
9053     if (Diagnose)
9054       S.Diag(MD->getParent()->getLocation(),
9055              diag::note_deleted_default_ctor_all_const)
9056         << !!ICI << MD->getParent() << /*not anonymous union*/0;
9057     return true;
9058   }
9059   return false;
9060 }
9061 
9062 /// Determine whether a defaulted special member function should be defined as
9063 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
9064 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
9065 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
9066                                      InheritedConstructorInfo *ICI,
9067                                      bool Diagnose) {
9068   if (MD->isInvalidDecl())
9069     return false;
9070   CXXRecordDecl *RD = MD->getParent();
9071   assert(!RD->isDependentType() && "do deletion after instantiation");
9072   if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
9073     return false;
9074 
9075   // C++11 [expr.lambda.prim]p19:
9076   //   The closure type associated with a lambda-expression has a
9077   //   deleted (8.4.3) default constructor and a deleted copy
9078   //   assignment operator.
9079   // C++2a adds back these operators if the lambda has no lambda-capture.
9080   if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() &&
9081       (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
9082     if (Diagnose)
9083       Diag(RD->getLocation(), diag::note_lambda_decl);
9084     return true;
9085   }
9086 
9087   // For an anonymous struct or union, the copy and assignment special members
9088   // will never be used, so skip the check. For an anonymous union declared at
9089   // namespace scope, the constructor and destructor are used.
9090   if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
9091       RD->isAnonymousStructOrUnion())
9092     return false;
9093 
9094   // C++11 [class.copy]p7, p18:
9095   //   If the class definition declares a move constructor or move assignment
9096   //   operator, an implicitly declared copy constructor or copy assignment
9097   //   operator is defined as deleted.
9098   if (MD->isImplicit() &&
9099       (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
9100     CXXMethodDecl *UserDeclaredMove = nullptr;
9101 
9102     // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
9103     // deletion of the corresponding copy operation, not both copy operations.
9104     // MSVC 2015 has adopted the standards conforming behavior.
9105     bool DeletesOnlyMatchingCopy =
9106         getLangOpts().MSVCCompat &&
9107         !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
9108 
9109     if (RD->hasUserDeclaredMoveConstructor() &&
9110         (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
9111       if (!Diagnose) return true;
9112 
9113       // Find any user-declared move constructor.
9114       for (auto *I : RD->ctors()) {
9115         if (I->isMoveConstructor()) {
9116           UserDeclaredMove = I;
9117           break;
9118         }
9119       }
9120       assert(UserDeclaredMove);
9121     } else if (RD->hasUserDeclaredMoveAssignment() &&
9122                (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
9123       if (!Diagnose) return true;
9124 
9125       // Find any user-declared move assignment operator.
9126       for (auto *I : RD->methods()) {
9127         if (I->isMoveAssignmentOperator()) {
9128           UserDeclaredMove = I;
9129           break;
9130         }
9131       }
9132       assert(UserDeclaredMove);
9133     }
9134 
9135     if (UserDeclaredMove) {
9136       Diag(UserDeclaredMove->getLocation(),
9137            diag::note_deleted_copy_user_declared_move)
9138         << (CSM == CXXCopyAssignment) << RD
9139         << UserDeclaredMove->isMoveAssignmentOperator();
9140       return true;
9141     }
9142   }
9143 
9144   // Do access control from the special member function
9145   ContextRAII MethodContext(*this, MD);
9146 
9147   // C++11 [class.dtor]p5:
9148   // -- for a virtual destructor, lookup of the non-array deallocation function
9149   //    results in an ambiguity or in a function that is deleted or inaccessible
9150   if (CSM == CXXDestructor && MD->isVirtual()) {
9151     FunctionDecl *OperatorDelete = nullptr;
9152     DeclarationName Name =
9153       Context.DeclarationNames.getCXXOperatorName(OO_Delete);
9154     if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
9155                                  OperatorDelete, /*Diagnose*/false)) {
9156       if (Diagnose)
9157         Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
9158       return true;
9159     }
9160   }
9161 
9162   SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
9163 
9164   // Per DR1611, do not consider virtual bases of constructors of abstract
9165   // classes, since we are not going to construct them.
9166   // Per DR1658, do not consider virtual bases of destructors of abstract
9167   // classes either.
9168   // Per DR2180, for assignment operators we only assign (and thus only
9169   // consider) direct bases.
9170   if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
9171                                  : SMI.VisitPotentiallyConstructedBases))
9172     return true;
9173 
9174   if (SMI.shouldDeleteForAllConstMembers())
9175     return true;
9176 
9177   if (getLangOpts().CUDA) {
9178     // We should delete the special member in CUDA mode if target inference
9179     // failed.
9180     // For inherited constructors (non-null ICI), CSM may be passed so that MD
9181     // is treated as certain special member, which may not reflect what special
9182     // member MD really is. However inferCUDATargetForImplicitSpecialMember
9183     // expects CSM to match MD, therefore recalculate CSM.
9184     assert(ICI || CSM == getSpecialMember(MD));
9185     auto RealCSM = CSM;
9186     if (ICI)
9187       RealCSM = getSpecialMember(MD);
9188 
9189     return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD,
9190                                                    SMI.ConstArg, Diagnose);
9191   }
9192 
9193   return false;
9194 }
9195 
9196 void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) {
9197   DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
9198   assert(DFK && "not a defaultable function");
9199   assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted");
9200 
9201   if (DFK.isSpecialMember()) {
9202     ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(),
9203                               nullptr, /*Diagnose=*/true);
9204   } else {
9205     DefaultedComparisonAnalyzer(
9206         *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD,
9207         DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted)
9208         .visit();
9209   }
9210 }
9211 
9212 /// Perform lookup for a special member of the specified kind, and determine
9213 /// whether it is trivial. If the triviality can be determined without the
9214 /// lookup, skip it. This is intended for use when determining whether a
9215 /// special member of a containing object is trivial, and thus does not ever
9216 /// perform overload resolution for default constructors.
9217 ///
9218 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the
9219 /// member that was most likely to be intended to be trivial, if any.
9220 ///
9221 /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to
9222 /// determine whether the special member is trivial.
9223 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
9224                                      Sema::CXXSpecialMember CSM, unsigned Quals,
9225                                      bool ConstRHS,
9226                                      Sema::TrivialABIHandling TAH,
9227                                      CXXMethodDecl **Selected) {
9228   if (Selected)
9229     *Selected = nullptr;
9230 
9231   switch (CSM) {
9232   case Sema::CXXInvalid:
9233     llvm_unreachable("not a special member");
9234 
9235   case Sema::CXXDefaultConstructor:
9236     // C++11 [class.ctor]p5:
9237     //   A default constructor is trivial if:
9238     //    - all the [direct subobjects] have trivial default constructors
9239     //
9240     // Note, no overload resolution is performed in this case.
9241     if (RD->hasTrivialDefaultConstructor())
9242       return true;
9243 
9244     if (Selected) {
9245       // If there's a default constructor which could have been trivial, dig it
9246       // out. Otherwise, if there's any user-provided default constructor, point
9247       // to that as an example of why there's not a trivial one.
9248       CXXConstructorDecl *DefCtor = nullptr;
9249       if (RD->needsImplicitDefaultConstructor())
9250         S.DeclareImplicitDefaultConstructor(RD);
9251       for (auto *CI : RD->ctors()) {
9252         if (!CI->isDefaultConstructor())
9253           continue;
9254         DefCtor = CI;
9255         if (!DefCtor->isUserProvided())
9256           break;
9257       }
9258 
9259       *Selected = DefCtor;
9260     }
9261 
9262     return false;
9263 
9264   case Sema::CXXDestructor:
9265     // C++11 [class.dtor]p5:
9266     //   A destructor is trivial if:
9267     //    - all the direct [subobjects] have trivial destructors
9268     if (RD->hasTrivialDestructor() ||
9269         (TAH == Sema::TAH_ConsiderTrivialABI &&
9270          RD->hasTrivialDestructorForCall()))
9271       return true;
9272 
9273     if (Selected) {
9274       if (RD->needsImplicitDestructor())
9275         S.DeclareImplicitDestructor(RD);
9276       *Selected = RD->getDestructor();
9277     }
9278 
9279     return false;
9280 
9281   case Sema::CXXCopyConstructor:
9282     // C++11 [class.copy]p12:
9283     //   A copy constructor is trivial if:
9284     //    - the constructor selected to copy each direct [subobject] is trivial
9285     if (RD->hasTrivialCopyConstructor() ||
9286         (TAH == Sema::TAH_ConsiderTrivialABI &&
9287          RD->hasTrivialCopyConstructorForCall())) {
9288       if (Quals == Qualifiers::Const)
9289         // We must either select the trivial copy constructor or reach an
9290         // ambiguity; no need to actually perform overload resolution.
9291         return true;
9292     } else if (!Selected) {
9293       return false;
9294     }
9295     // In C++98, we are not supposed to perform overload resolution here, but we
9296     // treat that as a language defect, as suggested on cxx-abi-dev, to treat
9297     // cases like B as having a non-trivial copy constructor:
9298     //   struct A { template<typename T> A(T&); };
9299     //   struct B { mutable A a; };
9300     goto NeedOverloadResolution;
9301 
9302   case Sema::CXXCopyAssignment:
9303     // C++11 [class.copy]p25:
9304     //   A copy assignment operator is trivial if:
9305     //    - the assignment operator selected to copy each direct [subobject] is
9306     //      trivial
9307     if (RD->hasTrivialCopyAssignment()) {
9308       if (Quals == Qualifiers::Const)
9309         return true;
9310     } else if (!Selected) {
9311       return false;
9312     }
9313     // In C++98, we are not supposed to perform overload resolution here, but we
9314     // treat that as a language defect.
9315     goto NeedOverloadResolution;
9316 
9317   case Sema::CXXMoveConstructor:
9318   case Sema::CXXMoveAssignment:
9319   NeedOverloadResolution:
9320     Sema::SpecialMemberOverloadResult SMOR =
9321         lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
9322 
9323     // The standard doesn't describe how to behave if the lookup is ambiguous.
9324     // We treat it as not making the member non-trivial, just like the standard
9325     // mandates for the default constructor. This should rarely matter, because
9326     // the member will also be deleted.
9327     if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
9328       return true;
9329 
9330     if (!SMOR.getMethod()) {
9331       assert(SMOR.getKind() ==
9332              Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
9333       return false;
9334     }
9335 
9336     // We deliberately don't check if we found a deleted special member. We're
9337     // not supposed to!
9338     if (Selected)
9339       *Selected = SMOR.getMethod();
9340 
9341     if (TAH == Sema::TAH_ConsiderTrivialABI &&
9342         (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor))
9343       return SMOR.getMethod()->isTrivialForCall();
9344     return SMOR.getMethod()->isTrivial();
9345   }
9346 
9347   llvm_unreachable("unknown special method kind");
9348 }
9349 
9350 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
9351   for (auto *CI : RD->ctors())
9352     if (!CI->isImplicit())
9353       return CI;
9354 
9355   // Look for constructor templates.
9356   typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
9357   for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
9358     if (CXXConstructorDecl *CD =
9359           dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
9360       return CD;
9361   }
9362 
9363   return nullptr;
9364 }
9365 
9366 /// The kind of subobject we are checking for triviality. The values of this
9367 /// enumeration are used in diagnostics.
9368 enum TrivialSubobjectKind {
9369   /// The subobject is a base class.
9370   TSK_BaseClass,
9371   /// The subobject is a non-static data member.
9372   TSK_Field,
9373   /// The object is actually the complete object.
9374   TSK_CompleteObject
9375 };
9376 
9377 /// Check whether the special member selected for a given type would be trivial.
9378 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
9379                                       QualType SubType, bool ConstRHS,
9380                                       Sema::CXXSpecialMember CSM,
9381                                       TrivialSubobjectKind Kind,
9382                                       Sema::TrivialABIHandling TAH, bool Diagnose) {
9383   CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
9384   if (!SubRD)
9385     return true;
9386 
9387   CXXMethodDecl *Selected;
9388   if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
9389                                ConstRHS, TAH, Diagnose ? &Selected : nullptr))
9390     return true;
9391 
9392   if (Diagnose) {
9393     if (ConstRHS)
9394       SubType.addConst();
9395 
9396     if (!Selected && CSM == Sema::CXXDefaultConstructor) {
9397       S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
9398         << Kind << SubType.getUnqualifiedType();
9399       if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
9400         S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
9401     } else if (!Selected)
9402       S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
9403         << Kind << SubType.getUnqualifiedType() << CSM << SubType;
9404     else if (Selected->isUserProvided()) {
9405       if (Kind == TSK_CompleteObject)
9406         S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
9407           << Kind << SubType.getUnqualifiedType() << CSM;
9408       else {
9409         S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
9410           << Kind << SubType.getUnqualifiedType() << CSM;
9411         S.Diag(Selected->getLocation(), diag::note_declared_at);
9412       }
9413     } else {
9414       if (Kind != TSK_CompleteObject)
9415         S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
9416           << Kind << SubType.getUnqualifiedType() << CSM;
9417 
9418       // Explain why the defaulted or deleted special member isn't trivial.
9419       S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI,
9420                                Diagnose);
9421     }
9422   }
9423 
9424   return false;
9425 }
9426 
9427 /// Check whether the members of a class type allow a special member to be
9428 /// trivial.
9429 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
9430                                      Sema::CXXSpecialMember CSM,
9431                                      bool ConstArg,
9432                                      Sema::TrivialABIHandling TAH,
9433                                      bool Diagnose) {
9434   for (const auto *FI : RD->fields()) {
9435     if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
9436       continue;
9437 
9438     QualType FieldType = S.Context.getBaseElementType(FI->getType());
9439 
9440     // Pretend anonymous struct or union members are members of this class.
9441     if (FI->isAnonymousStructOrUnion()) {
9442       if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
9443                                     CSM, ConstArg, TAH, Diagnose))
9444         return false;
9445       continue;
9446     }
9447 
9448     // C++11 [class.ctor]p5:
9449     //   A default constructor is trivial if [...]
9450     //    -- no non-static data member of its class has a
9451     //       brace-or-equal-initializer
9452     if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
9453       if (Diagnose)
9454         S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init)
9455             << FI;
9456       return false;
9457     }
9458 
9459     // Objective C ARC 4.3.5:
9460     //   [...] nontrivally ownership-qualified types are [...] not trivially
9461     //   default constructible, copy constructible, move constructible, copy
9462     //   assignable, move assignable, or destructible [...]
9463     if (FieldType.hasNonTrivialObjCLifetime()) {
9464       if (Diagnose)
9465         S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
9466           << RD << FieldType.getObjCLifetime();
9467       return false;
9468     }
9469 
9470     bool ConstRHS = ConstArg && !FI->isMutable();
9471     if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
9472                                    CSM, TSK_Field, TAH, Diagnose))
9473       return false;
9474   }
9475 
9476   return true;
9477 }
9478 
9479 /// Diagnose why the specified class does not have a trivial special member of
9480 /// the given kind.
9481 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
9482   QualType Ty = Context.getRecordType(RD);
9483 
9484   bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
9485   checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
9486                             TSK_CompleteObject, TAH_IgnoreTrivialABI,
9487                             /*Diagnose*/true);
9488 }
9489 
9490 /// Determine whether a defaulted or deleted special member function is trivial,
9491 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
9492 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
9493 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
9494                                   TrivialABIHandling TAH, bool Diagnose) {
9495   assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
9496 
9497   CXXRecordDecl *RD = MD->getParent();
9498 
9499   bool ConstArg = false;
9500 
9501   // C++11 [class.copy]p12, p25: [DR1593]
9502   //   A [special member] is trivial if [...] its parameter-type-list is
9503   //   equivalent to the parameter-type-list of an implicit declaration [...]
9504   switch (CSM) {
9505   case CXXDefaultConstructor:
9506   case CXXDestructor:
9507     // Trivial default constructors and destructors cannot have parameters.
9508     break;
9509 
9510   case CXXCopyConstructor:
9511   case CXXCopyAssignment: {
9512     // Trivial copy operations always have const, non-volatile parameter types.
9513     ConstArg = true;
9514     const ParmVarDecl *Param0 = MD->getParamDecl(0);
9515     const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
9516     if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
9517       if (Diagnose)
9518         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9519           << Param0->getSourceRange() << Param0->getType()
9520           << Context.getLValueReferenceType(
9521                Context.getRecordType(RD).withConst());
9522       return false;
9523     }
9524     break;
9525   }
9526 
9527   case CXXMoveConstructor:
9528   case CXXMoveAssignment: {
9529     // Trivial move operations always have non-cv-qualified parameters.
9530     const ParmVarDecl *Param0 = MD->getParamDecl(0);
9531     const RValueReferenceType *RT =
9532       Param0->getType()->getAs<RValueReferenceType>();
9533     if (!RT || RT->getPointeeType().getCVRQualifiers()) {
9534       if (Diagnose)
9535         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9536           << Param0->getSourceRange() << Param0->getType()
9537           << Context.getRValueReferenceType(Context.getRecordType(RD));
9538       return false;
9539     }
9540     break;
9541   }
9542 
9543   case CXXInvalid:
9544     llvm_unreachable("not a special member");
9545   }
9546 
9547   if (MD->getMinRequiredArguments() < MD->getNumParams()) {
9548     if (Diagnose)
9549       Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
9550            diag::note_nontrivial_default_arg)
9551         << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
9552     return false;
9553   }
9554   if (MD->isVariadic()) {
9555     if (Diagnose)
9556       Diag(MD->getLocation(), diag::note_nontrivial_variadic);
9557     return false;
9558   }
9559 
9560   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9561   //   A copy/move [constructor or assignment operator] is trivial if
9562   //    -- the [member] selected to copy/move each direct base class subobject
9563   //       is trivial
9564   //
9565   // C++11 [class.copy]p12, C++11 [class.copy]p25:
9566   //   A [default constructor or destructor] is trivial if
9567   //    -- all the direct base classes have trivial [default constructors or
9568   //       destructors]
9569   for (const auto &BI : RD->bases())
9570     if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(),
9571                                    ConstArg, CSM, TSK_BaseClass, TAH, Diagnose))
9572       return false;
9573 
9574   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9575   //   A copy/move [constructor or assignment operator] for a class X is
9576   //   trivial if
9577   //    -- for each non-static data member of X that is of class type (or array
9578   //       thereof), the constructor selected to copy/move that member is
9579   //       trivial
9580   //
9581   // C++11 [class.copy]p12, C++11 [class.copy]p25:
9582   //   A [default constructor or destructor] is trivial if
9583   //    -- for all of the non-static data members of its class that are of class
9584   //       type (or array thereof), each such class has a trivial [default
9585   //       constructor or destructor]
9586   if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose))
9587     return false;
9588 
9589   // C++11 [class.dtor]p5:
9590   //   A destructor is trivial if [...]
9591   //    -- the destructor is not virtual
9592   if (CSM == CXXDestructor && MD->isVirtual()) {
9593     if (Diagnose)
9594       Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
9595     return false;
9596   }
9597 
9598   // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
9599   //   A [special member] for class X is trivial if [...]
9600   //    -- class X has no virtual functions and no virtual base classes
9601   if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
9602     if (!Diagnose)
9603       return false;
9604 
9605     if (RD->getNumVBases()) {
9606       // Check for virtual bases. We already know that the corresponding
9607       // member in all bases is trivial, so vbases must all be direct.
9608       CXXBaseSpecifier &BS = *RD->vbases_begin();
9609       assert(BS.isVirtual());
9610       Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1;
9611       return false;
9612     }
9613 
9614     // Must have a virtual method.
9615     for (const auto *MI : RD->methods()) {
9616       if (MI->isVirtual()) {
9617         SourceLocation MLoc = MI->getBeginLoc();
9618         Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
9619         return false;
9620       }
9621     }
9622 
9623     llvm_unreachable("dynamic class with no vbases and no virtual functions");
9624   }
9625 
9626   // Looks like it's trivial!
9627   return true;
9628 }
9629 
9630 namespace {
9631 struct FindHiddenVirtualMethod {
9632   Sema *S;
9633   CXXMethodDecl *Method;
9634   llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
9635   SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
9636 
9637 private:
9638   /// Check whether any most overridden method from MD in Methods
9639   static bool CheckMostOverridenMethods(
9640       const CXXMethodDecl *MD,
9641       const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
9642     if (MD->size_overridden_methods() == 0)
9643       return Methods.count(MD->getCanonicalDecl());
9644     for (const CXXMethodDecl *O : MD->overridden_methods())
9645       if (CheckMostOverridenMethods(O, Methods))
9646         return true;
9647     return false;
9648   }
9649 
9650 public:
9651   /// Member lookup function that determines whether a given C++
9652   /// method overloads virtual methods in a base class without overriding any,
9653   /// to be used with CXXRecordDecl::lookupInBases().
9654   bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
9655     RecordDecl *BaseRecord =
9656         Specifier->getType()->castAs<RecordType>()->getDecl();
9657 
9658     DeclarationName Name = Method->getDeclName();
9659     assert(Name.getNameKind() == DeclarationName::Identifier);
9660 
9661     bool foundSameNameMethod = false;
9662     SmallVector<CXXMethodDecl *, 8> overloadedMethods;
9663     for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
9664          Path.Decls = Path.Decls.slice(1)) {
9665       NamedDecl *D = Path.Decls.front();
9666       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
9667         MD = MD->getCanonicalDecl();
9668         foundSameNameMethod = true;
9669         // Interested only in hidden virtual methods.
9670         if (!MD->isVirtual())
9671           continue;
9672         // If the method we are checking overrides a method from its base
9673         // don't warn about the other overloaded methods. Clang deviates from
9674         // GCC by only diagnosing overloads of inherited virtual functions that
9675         // do not override any other virtual functions in the base. GCC's
9676         // -Woverloaded-virtual diagnoses any derived function hiding a virtual
9677         // function from a base class. These cases may be better served by a
9678         // warning (not specific to virtual functions) on call sites when the
9679         // call would select a different function from the base class, were it
9680         // visible.
9681         // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
9682         if (!S->IsOverload(Method, MD, false))
9683           return true;
9684         // Collect the overload only if its hidden.
9685         if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
9686           overloadedMethods.push_back(MD);
9687       }
9688     }
9689 
9690     if (foundSameNameMethod)
9691       OverloadedMethods.append(overloadedMethods.begin(),
9692                                overloadedMethods.end());
9693     return foundSameNameMethod;
9694   }
9695 };
9696 } // end anonymous namespace
9697 
9698 /// Add the most overriden methods from MD to Methods
9699 static void AddMostOverridenMethods(const CXXMethodDecl *MD,
9700                         llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
9701   if (MD->size_overridden_methods() == 0)
9702     Methods.insert(MD->getCanonicalDecl());
9703   else
9704     for (const CXXMethodDecl *O : MD->overridden_methods())
9705       AddMostOverridenMethods(O, Methods);
9706 }
9707 
9708 /// Check if a method overloads virtual methods in a base class without
9709 /// overriding any.
9710 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
9711                           SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
9712   if (!MD->getDeclName().isIdentifier())
9713     return;
9714 
9715   CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
9716                      /*bool RecordPaths=*/false,
9717                      /*bool DetectVirtual=*/false);
9718   FindHiddenVirtualMethod FHVM;
9719   FHVM.Method = MD;
9720   FHVM.S = this;
9721 
9722   // Keep the base methods that were overridden or introduced in the subclass
9723   // by 'using' in a set. A base method not in this set is hidden.
9724   CXXRecordDecl *DC = MD->getParent();
9725   DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
9726   for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
9727     NamedDecl *ND = *I;
9728     if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
9729       ND = shad->getTargetDecl();
9730     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
9731       AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
9732   }
9733 
9734   if (DC->lookupInBases(FHVM, Paths))
9735     OverloadedMethods = FHVM.OverloadedMethods;
9736 }
9737 
9738 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
9739                           SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
9740   for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
9741     CXXMethodDecl *overloadedMD = OverloadedMethods[i];
9742     PartialDiagnostic PD = PDiag(
9743          diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
9744     HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
9745     Diag(overloadedMD->getLocation(), PD);
9746   }
9747 }
9748 
9749 /// Diagnose methods which overload virtual methods in a base class
9750 /// without overriding any.
9751 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
9752   if (MD->isInvalidDecl())
9753     return;
9754 
9755   if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
9756     return;
9757 
9758   SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
9759   FindHiddenVirtualMethods(MD, OverloadedMethods);
9760   if (!OverloadedMethods.empty()) {
9761     Diag(MD->getLocation(), diag::warn_overloaded_virtual)
9762       << MD << (OverloadedMethods.size() > 1);
9763 
9764     NoteHiddenVirtualMethods(MD, OverloadedMethods);
9765   }
9766 }
9767 
9768 void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) {
9769   auto PrintDiagAndRemoveAttr = [&](unsigned N) {
9770     // No diagnostics if this is a template instantiation.
9771     if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) {
9772       Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
9773            diag::ext_cannot_use_trivial_abi) << &RD;
9774       Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
9775            diag::note_cannot_use_trivial_abi_reason) << &RD << N;
9776     }
9777     RD.dropAttr<TrivialABIAttr>();
9778   };
9779 
9780   // Ill-formed if the copy and move constructors are deleted.
9781   auto HasNonDeletedCopyOrMoveConstructor = [&]() {
9782     // If the type is dependent, then assume it might have
9783     // implicit copy or move ctor because we won't know yet at this point.
9784     if (RD.isDependentType())
9785       return true;
9786     if (RD.needsImplicitCopyConstructor() &&
9787         !RD.defaultedCopyConstructorIsDeleted())
9788       return true;
9789     if (RD.needsImplicitMoveConstructor() &&
9790         !RD.defaultedMoveConstructorIsDeleted())
9791       return true;
9792     for (const CXXConstructorDecl *CD : RD.ctors())
9793       if (CD->isCopyOrMoveConstructor() && !CD->isDeleted())
9794         return true;
9795     return false;
9796   };
9797 
9798   if (!HasNonDeletedCopyOrMoveConstructor()) {
9799     PrintDiagAndRemoveAttr(0);
9800     return;
9801   }
9802 
9803   // Ill-formed if the struct has virtual functions.
9804   if (RD.isPolymorphic()) {
9805     PrintDiagAndRemoveAttr(1);
9806     return;
9807   }
9808 
9809   for (const auto &B : RD.bases()) {
9810     // Ill-formed if the base class is non-trivial for the purpose of calls or a
9811     // virtual base.
9812     if (!B.getType()->isDependentType() &&
9813         !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) {
9814       PrintDiagAndRemoveAttr(2);
9815       return;
9816     }
9817 
9818     if (B.isVirtual()) {
9819       PrintDiagAndRemoveAttr(3);
9820       return;
9821     }
9822   }
9823 
9824   for (const auto *FD : RD.fields()) {
9825     // Ill-formed if the field is an ObjectiveC pointer or of a type that is
9826     // non-trivial for the purpose of calls.
9827     QualType FT = FD->getType();
9828     if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) {
9829       PrintDiagAndRemoveAttr(4);
9830       return;
9831     }
9832 
9833     if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>())
9834       if (!RT->isDependentType() &&
9835           !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) {
9836         PrintDiagAndRemoveAttr(5);
9837         return;
9838       }
9839   }
9840 }
9841 
9842 void Sema::ActOnFinishCXXMemberSpecification(
9843     Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac,
9844     SourceLocation RBrac, const ParsedAttributesView &AttrList) {
9845   if (!TagDecl)
9846     return;
9847 
9848   AdjustDeclIfTemplate(TagDecl);
9849 
9850   for (const ParsedAttr &AL : AttrList) {
9851     if (AL.getKind() != ParsedAttr::AT_Visibility)
9852       continue;
9853     AL.setInvalid();
9854     Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL;
9855   }
9856 
9857   ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
9858               // strict aliasing violation!
9859               reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
9860               FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
9861 
9862   CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl));
9863 }
9864 
9865 /// Find the equality comparison functions that should be implicitly declared
9866 /// in a given class definition, per C++2a [class.compare.default]p3.
9867 static void findImplicitlyDeclaredEqualityComparisons(
9868     ASTContext &Ctx, CXXRecordDecl *RD,
9869     llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) {
9870   DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual);
9871   if (!RD->lookup(EqEq).empty())
9872     // Member operator== explicitly declared: no implicit operator==s.
9873     return;
9874 
9875   // Traverse friends looking for an '==' or a '<=>'.
9876   for (FriendDecl *Friend : RD->friends()) {
9877     FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl());
9878     if (!FD) continue;
9879 
9880     if (FD->getOverloadedOperator() == OO_EqualEqual) {
9881       // Friend operator== explicitly declared: no implicit operator==s.
9882       Spaceships.clear();
9883       return;
9884     }
9885 
9886     if (FD->getOverloadedOperator() == OO_Spaceship &&
9887         FD->isExplicitlyDefaulted())
9888       Spaceships.push_back(FD);
9889   }
9890 
9891   // Look for members named 'operator<=>'.
9892   DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship);
9893   for (NamedDecl *ND : RD->lookup(Cmp)) {
9894     // Note that we could find a non-function here (either a function template
9895     // or a using-declaration). Neither case results in an implicit
9896     // 'operator=='.
9897     if (auto *FD = dyn_cast<FunctionDecl>(ND))
9898       if (FD->isExplicitlyDefaulted())
9899         Spaceships.push_back(FD);
9900   }
9901 }
9902 
9903 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
9904 /// special functions, such as the default constructor, copy
9905 /// constructor, or destructor, to the given C++ class (C++
9906 /// [special]p1).  This routine can only be executed just before the
9907 /// definition of the class is complete.
9908 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
9909   // Don't add implicit special members to templated classes.
9910   // FIXME: This means unqualified lookups for 'operator=' within a class
9911   // template don't work properly.
9912   if (!ClassDecl->isDependentType()) {
9913     if (ClassDecl->needsImplicitDefaultConstructor()) {
9914       ++getASTContext().NumImplicitDefaultConstructors;
9915 
9916       if (ClassDecl->hasInheritedConstructor())
9917         DeclareImplicitDefaultConstructor(ClassDecl);
9918     }
9919 
9920     if (ClassDecl->needsImplicitCopyConstructor()) {
9921       ++getASTContext().NumImplicitCopyConstructors;
9922 
9923       // If the properties or semantics of the copy constructor couldn't be
9924       // determined while the class was being declared, force a declaration
9925       // of it now.
9926       if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
9927           ClassDecl->hasInheritedConstructor())
9928         DeclareImplicitCopyConstructor(ClassDecl);
9929       // For the MS ABI we need to know whether the copy ctor is deleted. A
9930       // prerequisite for deleting the implicit copy ctor is that the class has
9931       // a move ctor or move assignment that is either user-declared or whose
9932       // semantics are inherited from a subobject. FIXME: We should provide a
9933       // more direct way for CodeGen to ask whether the constructor was deleted.
9934       else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
9935                (ClassDecl->hasUserDeclaredMoveConstructor() ||
9936                 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
9937                 ClassDecl->hasUserDeclaredMoveAssignment() ||
9938                 ClassDecl->needsOverloadResolutionForMoveAssignment()))
9939         DeclareImplicitCopyConstructor(ClassDecl);
9940     }
9941 
9942     if (getLangOpts().CPlusPlus11 &&
9943         ClassDecl->needsImplicitMoveConstructor()) {
9944       ++getASTContext().NumImplicitMoveConstructors;
9945 
9946       if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
9947           ClassDecl->hasInheritedConstructor())
9948         DeclareImplicitMoveConstructor(ClassDecl);
9949     }
9950 
9951     if (ClassDecl->needsImplicitCopyAssignment()) {
9952       ++getASTContext().NumImplicitCopyAssignmentOperators;
9953 
9954       // If we have a dynamic class, then the copy assignment operator may be
9955       // virtual, so we have to declare it immediately. This ensures that, e.g.,
9956       // it shows up in the right place in the vtable and that we diagnose
9957       // problems with the implicit exception specification.
9958       if (ClassDecl->isDynamicClass() ||
9959           ClassDecl->needsOverloadResolutionForCopyAssignment() ||
9960           ClassDecl->hasInheritedAssignment())
9961         DeclareImplicitCopyAssignment(ClassDecl);
9962     }
9963 
9964     if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
9965       ++getASTContext().NumImplicitMoveAssignmentOperators;
9966 
9967       // Likewise for the move assignment operator.
9968       if (ClassDecl->isDynamicClass() ||
9969           ClassDecl->needsOverloadResolutionForMoveAssignment() ||
9970           ClassDecl->hasInheritedAssignment())
9971         DeclareImplicitMoveAssignment(ClassDecl);
9972     }
9973 
9974     if (ClassDecl->needsImplicitDestructor()) {
9975       ++getASTContext().NumImplicitDestructors;
9976 
9977       // If we have a dynamic class, then the destructor may be virtual, so we
9978       // have to declare the destructor immediately. This ensures that, e.g., it
9979       // shows up in the right place in the vtable and that we diagnose problems
9980       // with the implicit exception specification.
9981       if (ClassDecl->isDynamicClass() ||
9982           ClassDecl->needsOverloadResolutionForDestructor())
9983         DeclareImplicitDestructor(ClassDecl);
9984     }
9985   }
9986 
9987   // C++2a [class.compare.default]p3:
9988   //   If the member-specification does not explicitly declare any member or
9989   //   friend named operator==, an == operator function is declared implicitly
9990   //   for each defaulted three-way comparison operator function defined in
9991   //   the member-specification
9992   // FIXME: Consider doing this lazily.
9993   // We do this during the initial parse for a class template, not during
9994   // instantiation, so that we can handle unqualified lookups for 'operator=='
9995   // when parsing the template.
9996   if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) {
9997     llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships;
9998     findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl,
9999                                               DefaultedSpaceships);
10000     for (auto *FD : DefaultedSpaceships)
10001       DeclareImplicitEqualityComparison(ClassDecl, FD);
10002   }
10003 }
10004 
10005 unsigned
10006 Sema::ActOnReenterTemplateScope(Decl *D,
10007                                 llvm::function_ref<Scope *()> EnterScope) {
10008   if (!D)
10009     return 0;
10010   AdjustDeclIfTemplate(D);
10011 
10012   // In order to get name lookup right, reenter template scopes in order from
10013   // outermost to innermost.
10014   SmallVector<TemplateParameterList *, 4> ParameterLists;
10015   DeclContext *LookupDC = dyn_cast<DeclContext>(D);
10016 
10017   if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
10018     for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
10019       ParameterLists.push_back(DD->getTemplateParameterList(i));
10020 
10021     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10022       if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
10023         ParameterLists.push_back(FTD->getTemplateParameters());
10024     } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
10025       LookupDC = VD->getDeclContext();
10026 
10027       if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate())
10028         ParameterLists.push_back(VTD->getTemplateParameters());
10029       else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D))
10030         ParameterLists.push_back(PSD->getTemplateParameters());
10031     }
10032   } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
10033     for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
10034       ParameterLists.push_back(TD->getTemplateParameterList(i));
10035 
10036     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
10037       if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
10038         ParameterLists.push_back(CTD->getTemplateParameters());
10039       else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
10040         ParameterLists.push_back(PSD->getTemplateParameters());
10041     }
10042   }
10043   // FIXME: Alias declarations and concepts.
10044 
10045   unsigned Count = 0;
10046   Scope *InnermostTemplateScope = nullptr;
10047   for (TemplateParameterList *Params : ParameterLists) {
10048     // Ignore explicit specializations; they don't contribute to the template
10049     // depth.
10050     if (Params->size() == 0)
10051       continue;
10052 
10053     InnermostTemplateScope = EnterScope();
10054     for (NamedDecl *Param : *Params) {
10055       if (Param->getDeclName()) {
10056         InnermostTemplateScope->AddDecl(Param);
10057         IdResolver.AddDecl(Param);
10058       }
10059     }
10060     ++Count;
10061   }
10062 
10063   // Associate the new template scopes with the corresponding entities.
10064   if (InnermostTemplateScope) {
10065     assert(LookupDC && "no enclosing DeclContext for template lookup");
10066     EnterTemplatedContext(InnermostTemplateScope, LookupDC);
10067   }
10068 
10069   return Count;
10070 }
10071 
10072 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10073   if (!RecordD) return;
10074   AdjustDeclIfTemplate(RecordD);
10075   CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
10076   PushDeclContext(S, Record);
10077 }
10078 
10079 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10080   if (!RecordD) return;
10081   PopDeclContext();
10082 }
10083 
10084 /// This is used to implement the constant expression evaluation part of the
10085 /// attribute enable_if extension. There is nothing in standard C++ which would
10086 /// require reentering parameters.
10087 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
10088   if (!Param)
10089     return;
10090 
10091   S->AddDecl(Param);
10092   if (Param->getDeclName())
10093     IdResolver.AddDecl(Param);
10094 }
10095 
10096 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
10097 /// parsing a top-level (non-nested) C++ class, and we are now
10098 /// parsing those parts of the given Method declaration that could
10099 /// not be parsed earlier (C++ [class.mem]p2), such as default
10100 /// arguments. This action should enter the scope of the given
10101 /// Method declaration as if we had just parsed the qualified method
10102 /// name. However, it should not bring the parameters into scope;
10103 /// that will be performed by ActOnDelayedCXXMethodParameter.
10104 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10105 }
10106 
10107 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
10108 /// C++ method declaration. We're (re-)introducing the given
10109 /// function parameter into scope for use in parsing later parts of
10110 /// the method declaration. For example, we could see an
10111 /// ActOnParamDefaultArgument event for this parameter.
10112 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
10113   if (!ParamD)
10114     return;
10115 
10116   ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
10117 
10118   S->AddDecl(Param);
10119   if (Param->getDeclName())
10120     IdResolver.AddDecl(Param);
10121 }
10122 
10123 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
10124 /// processing the delayed method declaration for Method. The method
10125 /// declaration is now considered finished. There may be a separate
10126 /// ActOnStartOfFunctionDef action later (not necessarily
10127 /// immediately!) for this method, if it was also defined inside the
10128 /// class body.
10129 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10130   if (!MethodD)
10131     return;
10132 
10133   AdjustDeclIfTemplate(MethodD);
10134 
10135   FunctionDecl *Method = cast<FunctionDecl>(MethodD);
10136 
10137   // Now that we have our default arguments, check the constructor
10138   // again. It could produce additional diagnostics or affect whether
10139   // the class has implicitly-declared destructors, among other
10140   // things.
10141   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
10142     CheckConstructor(Constructor);
10143 
10144   // Check the default arguments, which we may have added.
10145   if (!Method->isInvalidDecl())
10146     CheckCXXDefaultArguments(Method);
10147 }
10148 
10149 // Emit the given diagnostic for each non-address-space qualifier.
10150 // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator.
10151 static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) {
10152   const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10153   if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) {
10154     bool DiagOccured = false;
10155     FTI.MethodQualifiers->forEachQualifier(
10156         [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName,
10157                                    SourceLocation SL) {
10158           // This diagnostic should be emitted on any qualifier except an addr
10159           // space qualifier. However, forEachQualifier currently doesn't visit
10160           // addr space qualifiers, so there's no way to write this condition
10161           // right now; we just diagnose on everything.
10162           S.Diag(SL, DiagID) << QualName << SourceRange(SL);
10163           DiagOccured = true;
10164         });
10165     if (DiagOccured)
10166       D.setInvalidType();
10167   }
10168 }
10169 
10170 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
10171 /// the well-formedness of the constructor declarator @p D with type @p
10172 /// R. If there are any errors in the declarator, this routine will
10173 /// emit diagnostics and set the invalid bit to true.  In any case, the type
10174 /// will be updated to reflect a well-formed type for the constructor and
10175 /// returned.
10176 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
10177                                           StorageClass &SC) {
10178   bool isVirtual = D.getDeclSpec().isVirtualSpecified();
10179 
10180   // C++ [class.ctor]p3:
10181   //   A constructor shall not be virtual (10.3) or static (9.4). A
10182   //   constructor can be invoked for a const, volatile or const
10183   //   volatile object. A constructor shall not be declared const,
10184   //   volatile, or const volatile (9.3.2).
10185   if (isVirtual) {
10186     if (!D.isInvalidType())
10187       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10188         << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
10189         << SourceRange(D.getIdentifierLoc());
10190     D.setInvalidType();
10191   }
10192   if (SC == SC_Static) {
10193     if (!D.isInvalidType())
10194       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10195         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10196         << SourceRange(D.getIdentifierLoc());
10197     D.setInvalidType();
10198     SC = SC_None;
10199   }
10200 
10201   if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10202     diagnoseIgnoredQualifiers(
10203         diag::err_constructor_return_type, TypeQuals, SourceLocation(),
10204         D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
10205         D.getDeclSpec().getRestrictSpecLoc(),
10206         D.getDeclSpec().getAtomicSpecLoc());
10207     D.setInvalidType();
10208   }
10209 
10210   checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor);
10211 
10212   // C++0x [class.ctor]p4:
10213   //   A constructor shall not be declared with a ref-qualifier.
10214   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10215   if (FTI.hasRefQualifier()) {
10216     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
10217       << FTI.RefQualifierIsLValueRef
10218       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10219     D.setInvalidType();
10220   }
10221 
10222   // Rebuild the function type "R" without any type qualifiers (in
10223   // case any of the errors above fired) and with "void" as the
10224   // return type, since constructors don't have return types.
10225   const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10226   if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
10227     return R;
10228 
10229   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10230   EPI.TypeQuals = Qualifiers();
10231   EPI.RefQualifier = RQ_None;
10232 
10233   return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
10234 }
10235 
10236 /// CheckConstructor - Checks a fully-formed constructor for
10237 /// well-formedness, issuing any diagnostics required. Returns true if
10238 /// the constructor declarator is invalid.
10239 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
10240   CXXRecordDecl *ClassDecl
10241     = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
10242   if (!ClassDecl)
10243     return Constructor->setInvalidDecl();
10244 
10245   // C++ [class.copy]p3:
10246   //   A declaration of a constructor for a class X is ill-formed if
10247   //   its first parameter is of type (optionally cv-qualified) X and
10248   //   either there are no other parameters or else all other
10249   //   parameters have default arguments.
10250   if (!Constructor->isInvalidDecl() &&
10251       Constructor->hasOneParamOrDefaultArgs() &&
10252       Constructor->getTemplateSpecializationKind() !=
10253           TSK_ImplicitInstantiation) {
10254     QualType ParamType = Constructor->getParamDecl(0)->getType();
10255     QualType ClassTy = Context.getTagDeclType(ClassDecl);
10256     if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
10257       SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
10258       const char *ConstRef
10259         = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
10260                                                         : " const &";
10261       Diag(ParamLoc, diag::err_constructor_byvalue_arg)
10262         << FixItHint::CreateInsertion(ParamLoc, ConstRef);
10263 
10264       // FIXME: Rather that making the constructor invalid, we should endeavor
10265       // to fix the type.
10266       Constructor->setInvalidDecl();
10267     }
10268   }
10269 }
10270 
10271 /// CheckDestructor - Checks a fully-formed destructor definition for
10272 /// well-formedness, issuing any diagnostics required.  Returns true
10273 /// on error.
10274 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
10275   CXXRecordDecl *RD = Destructor->getParent();
10276 
10277   if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
10278     SourceLocation Loc;
10279 
10280     if (!Destructor->isImplicit())
10281       Loc = Destructor->getLocation();
10282     else
10283       Loc = RD->getLocation();
10284 
10285     // If we have a virtual destructor, look up the deallocation function
10286     if (FunctionDecl *OperatorDelete =
10287             FindDeallocationFunctionForDestructor(Loc, RD)) {
10288       Expr *ThisArg = nullptr;
10289 
10290       // If the notional 'delete this' expression requires a non-trivial
10291       // conversion from 'this' to the type of a destroying operator delete's
10292       // first parameter, perform that conversion now.
10293       if (OperatorDelete->isDestroyingOperatorDelete()) {
10294         QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
10295         if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) {
10296           // C++ [class.dtor]p13:
10297           //   ... as if for the expression 'delete this' appearing in a
10298           //   non-virtual destructor of the destructor's class.
10299           ContextRAII SwitchContext(*this, Destructor);
10300           ExprResult This =
10301               ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation());
10302           assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?");
10303           This = PerformImplicitConversion(This.get(), ParamType, AA_Passing);
10304           if (This.isInvalid()) {
10305             // FIXME: Register this as a context note so that it comes out
10306             // in the right order.
10307             Diag(Loc, diag::note_implicit_delete_this_in_destructor_here);
10308             return true;
10309           }
10310           ThisArg = This.get();
10311         }
10312       }
10313 
10314       DiagnoseUseOfDecl(OperatorDelete, Loc);
10315       MarkFunctionReferenced(Loc, OperatorDelete);
10316       Destructor->setOperatorDelete(OperatorDelete, ThisArg);
10317     }
10318   }
10319 
10320   return false;
10321 }
10322 
10323 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
10324 /// the well-formednes of the destructor declarator @p D with type @p
10325 /// R. If there are any errors in the declarator, this routine will
10326 /// emit diagnostics and set the declarator to invalid.  Even if this happens,
10327 /// will be updated to reflect a well-formed type for the destructor and
10328 /// returned.
10329 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
10330                                          StorageClass& SC) {
10331   // C++ [class.dtor]p1:
10332   //   [...] A typedef-name that names a class is a class-name
10333   //   (7.1.3); however, a typedef-name that names a class shall not
10334   //   be used as the identifier in the declarator for a destructor
10335   //   declaration.
10336   QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
10337   if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
10338     Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
10339       << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
10340   else if (const TemplateSpecializationType *TST =
10341              DeclaratorType->getAs<TemplateSpecializationType>())
10342     if (TST->isTypeAlias())
10343       Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
10344         << DeclaratorType << 1;
10345 
10346   // C++ [class.dtor]p2:
10347   //   A destructor is used to destroy objects of its class type. A
10348   //   destructor takes no parameters, and no return type can be
10349   //   specified for it (not even void). The address of a destructor
10350   //   shall not be taken. A destructor shall not be static. A
10351   //   destructor can be invoked for a const, volatile or const
10352   //   volatile object. A destructor shall not be declared const,
10353   //   volatile or const volatile (9.3.2).
10354   if (SC == SC_Static) {
10355     if (!D.isInvalidType())
10356       Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
10357         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10358         << SourceRange(D.getIdentifierLoc())
10359         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10360 
10361     SC = SC_None;
10362   }
10363   if (!D.isInvalidType()) {
10364     // Destructors don't have return types, but the parser will
10365     // happily parse something like:
10366     //
10367     //   class X {
10368     //     float ~X();
10369     //   };
10370     //
10371     // The return type will be eliminated later.
10372     if (D.getDeclSpec().hasTypeSpecifier())
10373       Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
10374         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
10375         << SourceRange(D.getIdentifierLoc());
10376     else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10377       diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
10378                                 SourceLocation(),
10379                                 D.getDeclSpec().getConstSpecLoc(),
10380                                 D.getDeclSpec().getVolatileSpecLoc(),
10381                                 D.getDeclSpec().getRestrictSpecLoc(),
10382                                 D.getDeclSpec().getAtomicSpecLoc());
10383       D.setInvalidType();
10384     }
10385   }
10386 
10387   checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor);
10388 
10389   // C++0x [class.dtor]p2:
10390   //   A destructor shall not be declared with a ref-qualifier.
10391   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10392   if (FTI.hasRefQualifier()) {
10393     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
10394       << FTI.RefQualifierIsLValueRef
10395       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10396     D.setInvalidType();
10397   }
10398 
10399   // Make sure we don't have any parameters.
10400   if (FTIHasNonVoidParameters(FTI)) {
10401     Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
10402 
10403     // Delete the parameters.
10404     FTI.freeParams();
10405     D.setInvalidType();
10406   }
10407 
10408   // Make sure the destructor isn't variadic.
10409   if (FTI.isVariadic) {
10410     Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
10411     D.setInvalidType();
10412   }
10413 
10414   // Rebuild the function type "R" without any type qualifiers or
10415   // parameters (in case any of the errors above fired) and with
10416   // "void" as the return type, since destructors don't have return
10417   // types.
10418   if (!D.isInvalidType())
10419     return R;
10420 
10421   const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10422   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10423   EPI.Variadic = false;
10424   EPI.TypeQuals = Qualifiers();
10425   EPI.RefQualifier = RQ_None;
10426   return Context.getFunctionType(Context.VoidTy, None, EPI);
10427 }
10428 
10429 static void extendLeft(SourceRange &R, SourceRange Before) {
10430   if (Before.isInvalid())
10431     return;
10432   R.setBegin(Before.getBegin());
10433   if (R.getEnd().isInvalid())
10434     R.setEnd(Before.getEnd());
10435 }
10436 
10437 static void extendRight(SourceRange &R, SourceRange After) {
10438   if (After.isInvalid())
10439     return;
10440   if (R.getBegin().isInvalid())
10441     R.setBegin(After.getBegin());
10442   R.setEnd(After.getEnd());
10443 }
10444 
10445 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
10446 /// well-formednes of the conversion function declarator @p D with
10447 /// type @p R. If there are any errors in the declarator, this routine
10448 /// will emit diagnostics and return true. Otherwise, it will return
10449 /// false. Either way, the type @p R will be updated to reflect a
10450 /// well-formed type for the conversion operator.
10451 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
10452                                      StorageClass& SC) {
10453   // C++ [class.conv.fct]p1:
10454   //   Neither parameter types nor return type can be specified. The
10455   //   type of a conversion function (8.3.5) is "function taking no
10456   //   parameter returning conversion-type-id."
10457   if (SC == SC_Static) {
10458     if (!D.isInvalidType())
10459       Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
10460         << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10461         << D.getName().getSourceRange();
10462     D.setInvalidType();
10463     SC = SC_None;
10464   }
10465 
10466   TypeSourceInfo *ConvTSI = nullptr;
10467   QualType ConvType =
10468       GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
10469 
10470   const DeclSpec &DS = D.getDeclSpec();
10471   if (DS.hasTypeSpecifier() && !D.isInvalidType()) {
10472     // Conversion functions don't have return types, but the parser will
10473     // happily parse something like:
10474     //
10475     //   class X {
10476     //     float operator bool();
10477     //   };
10478     //
10479     // The return type will be changed later anyway.
10480     Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
10481       << SourceRange(DS.getTypeSpecTypeLoc())
10482       << SourceRange(D.getIdentifierLoc());
10483     D.setInvalidType();
10484   } else if (DS.getTypeQualifiers() && !D.isInvalidType()) {
10485     // It's also plausible that the user writes type qualifiers in the wrong
10486     // place, such as:
10487     //   struct S { const operator int(); };
10488     // FIXME: we could provide a fixit to move the qualifiers onto the
10489     // conversion type.
10490     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
10491         << SourceRange(D.getIdentifierLoc()) << 0;
10492     D.setInvalidType();
10493   }
10494 
10495   const auto *Proto = R->castAs<FunctionProtoType>();
10496 
10497   // Make sure we don't have any parameters.
10498   if (Proto->getNumParams() > 0) {
10499     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
10500 
10501     // Delete the parameters.
10502     D.getFunctionTypeInfo().freeParams();
10503     D.setInvalidType();
10504   } else if (Proto->isVariadic()) {
10505     Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
10506     D.setInvalidType();
10507   }
10508 
10509   // Diagnose "&operator bool()" and other such nonsense.  This
10510   // is actually a gcc extension which we don't support.
10511   if (Proto->getReturnType() != ConvType) {
10512     bool NeedsTypedef = false;
10513     SourceRange Before, After;
10514 
10515     // Walk the chunks and extract information on them for our diagnostic.
10516     bool PastFunctionChunk = false;
10517     for (auto &Chunk : D.type_objects()) {
10518       switch (Chunk.Kind) {
10519       case DeclaratorChunk::Function:
10520         if (!PastFunctionChunk) {
10521           if (Chunk.Fun.HasTrailingReturnType) {
10522             TypeSourceInfo *TRT = nullptr;
10523             GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
10524             if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
10525           }
10526           PastFunctionChunk = true;
10527           break;
10528         }
10529         LLVM_FALLTHROUGH;
10530       case DeclaratorChunk::Array:
10531         NeedsTypedef = true;
10532         extendRight(After, Chunk.getSourceRange());
10533         break;
10534 
10535       case DeclaratorChunk::Pointer:
10536       case DeclaratorChunk::BlockPointer:
10537       case DeclaratorChunk::Reference:
10538       case DeclaratorChunk::MemberPointer:
10539       case DeclaratorChunk::Pipe:
10540         extendLeft(Before, Chunk.getSourceRange());
10541         break;
10542 
10543       case DeclaratorChunk::Paren:
10544         extendLeft(Before, Chunk.Loc);
10545         extendRight(After, Chunk.EndLoc);
10546         break;
10547       }
10548     }
10549 
10550     SourceLocation Loc = Before.isValid() ? Before.getBegin() :
10551                          After.isValid()  ? After.getBegin() :
10552                                             D.getIdentifierLoc();
10553     auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
10554     DB << Before << After;
10555 
10556     if (!NeedsTypedef) {
10557       DB << /*don't need a typedef*/0;
10558 
10559       // If we can provide a correct fix-it hint, do so.
10560       if (After.isInvalid() && ConvTSI) {
10561         SourceLocation InsertLoc =
10562             getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc());
10563         DB << FixItHint::CreateInsertion(InsertLoc, " ")
10564            << FixItHint::CreateInsertionFromRange(
10565                   InsertLoc, CharSourceRange::getTokenRange(Before))
10566            << FixItHint::CreateRemoval(Before);
10567       }
10568     } else if (!Proto->getReturnType()->isDependentType()) {
10569       DB << /*typedef*/1 << Proto->getReturnType();
10570     } else if (getLangOpts().CPlusPlus11) {
10571       DB << /*alias template*/2 << Proto->getReturnType();
10572     } else {
10573       DB << /*might not be fixable*/3;
10574     }
10575 
10576     // Recover by incorporating the other type chunks into the result type.
10577     // Note, this does *not* change the name of the function. This is compatible
10578     // with the GCC extension:
10579     //   struct S { &operator int(); } s;
10580     //   int &r = s.operator int(); // ok in GCC
10581     //   S::operator int&() {} // error in GCC, function name is 'operator int'.
10582     ConvType = Proto->getReturnType();
10583   }
10584 
10585   // C++ [class.conv.fct]p4:
10586   //   The conversion-type-id shall not represent a function type nor
10587   //   an array type.
10588   if (ConvType->isArrayType()) {
10589     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
10590     ConvType = Context.getPointerType(ConvType);
10591     D.setInvalidType();
10592   } else if (ConvType->isFunctionType()) {
10593     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
10594     ConvType = Context.getPointerType(ConvType);
10595     D.setInvalidType();
10596   }
10597 
10598   // Rebuild the function type "R" without any parameters (in case any
10599   // of the errors above fired) and with the conversion type as the
10600   // return type.
10601   if (D.isInvalidType())
10602     R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
10603 
10604   // C++0x explicit conversion operators.
10605   if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20)
10606     Diag(DS.getExplicitSpecLoc(),
10607          getLangOpts().CPlusPlus11
10608              ? diag::warn_cxx98_compat_explicit_conversion_functions
10609              : diag::ext_explicit_conversion_functions)
10610         << SourceRange(DS.getExplicitSpecRange());
10611 }
10612 
10613 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
10614 /// the declaration of the given C++ conversion function. This routine
10615 /// is responsible for recording the conversion function in the C++
10616 /// class, if possible.
10617 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
10618   assert(Conversion && "Expected to receive a conversion function declaration");
10619 
10620   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
10621 
10622   // Make sure we aren't redeclaring the conversion function.
10623   QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
10624   // C++ [class.conv.fct]p1:
10625   //   [...] A conversion function is never used to convert a
10626   //   (possibly cv-qualified) object to the (possibly cv-qualified)
10627   //   same object type (or a reference to it), to a (possibly
10628   //   cv-qualified) base class of that type (or a reference to it),
10629   //   or to (possibly cv-qualified) void.
10630   QualType ClassType
10631     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
10632   if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
10633     ConvType = ConvTypeRef->getPointeeType();
10634   if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
10635       Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
10636     /* Suppress diagnostics for instantiations. */;
10637   else if (Conversion->size_overridden_methods() != 0)
10638     /* Suppress diagnostics for overriding virtual function in a base class. */;
10639   else if (ConvType->isRecordType()) {
10640     ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
10641     if (ConvType == ClassType)
10642       Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
10643         << ClassType;
10644     else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType))
10645       Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
10646         <<  ClassType << ConvType;
10647   } else if (ConvType->isVoidType()) {
10648     Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
10649       << ClassType << ConvType;
10650   }
10651 
10652   if (FunctionTemplateDecl *ConversionTemplate
10653                                 = Conversion->getDescribedFunctionTemplate())
10654     return ConversionTemplate;
10655 
10656   return Conversion;
10657 }
10658 
10659 namespace {
10660 /// Utility class to accumulate and print a diagnostic listing the invalid
10661 /// specifier(s) on a declaration.
10662 struct BadSpecifierDiagnoser {
10663   BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID)
10664       : S(S), Diagnostic(S.Diag(Loc, DiagID)) {}
10665   ~BadSpecifierDiagnoser() {
10666     Diagnostic << Specifiers;
10667   }
10668 
10669   template<typename T> void check(SourceLocation SpecLoc, T Spec) {
10670     return check(SpecLoc, DeclSpec::getSpecifierName(Spec));
10671   }
10672   void check(SourceLocation SpecLoc, DeclSpec::TST Spec) {
10673     return check(SpecLoc,
10674                  DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy()));
10675   }
10676   void check(SourceLocation SpecLoc, const char *Spec) {
10677     if (SpecLoc.isInvalid()) return;
10678     Diagnostic << SourceRange(SpecLoc, SpecLoc);
10679     if (!Specifiers.empty()) Specifiers += " ";
10680     Specifiers += Spec;
10681   }
10682 
10683   Sema &S;
10684   Sema::SemaDiagnosticBuilder Diagnostic;
10685   std::string Specifiers;
10686 };
10687 }
10688 
10689 /// Check the validity of a declarator that we parsed for a deduction-guide.
10690 /// These aren't actually declarators in the grammar, so we need to check that
10691 /// the user didn't specify any pieces that are not part of the deduction-guide
10692 /// grammar.
10693 void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
10694                                          StorageClass &SC) {
10695   TemplateName GuidedTemplate = D.getName().TemplateName.get().get();
10696   TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl();
10697   assert(GuidedTemplateDecl && "missing template decl for deduction guide");
10698 
10699   // C++ [temp.deduct.guide]p3:
10700   //   A deduction-gide shall be declared in the same scope as the
10701   //   corresponding class template.
10702   if (!CurContext->getRedeclContext()->Equals(
10703           GuidedTemplateDecl->getDeclContext()->getRedeclContext())) {
10704     Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope)
10705       << GuidedTemplateDecl;
10706     Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here);
10707   }
10708 
10709   auto &DS = D.getMutableDeclSpec();
10710   // We leave 'friend' and 'virtual' to be rejected in the normal way.
10711   if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() ||
10712       DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() ||
10713       DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) {
10714     BadSpecifierDiagnoser Diagnoser(
10715         *this, D.getIdentifierLoc(),
10716         diag::err_deduction_guide_invalid_specifier);
10717 
10718     Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec());
10719     DS.ClearStorageClassSpecs();
10720     SC = SC_None;
10721 
10722     // 'explicit' is permitted.
10723     Diagnoser.check(DS.getInlineSpecLoc(), "inline");
10724     Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn");
10725     Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr");
10726     DS.ClearConstexprSpec();
10727 
10728     Diagnoser.check(DS.getConstSpecLoc(), "const");
10729     Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict");
10730     Diagnoser.check(DS.getVolatileSpecLoc(), "volatile");
10731     Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic");
10732     Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned");
10733     DS.ClearTypeQualifiers();
10734 
10735     Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex());
10736     Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign());
10737     Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth());
10738     Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType());
10739     DS.ClearTypeSpecType();
10740   }
10741 
10742   if (D.isInvalidType())
10743     return;
10744 
10745   // Check the declarator is simple enough.
10746   bool FoundFunction = false;
10747   for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) {
10748     if (Chunk.Kind == DeclaratorChunk::Paren)
10749       continue;
10750     if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) {
10751       Diag(D.getDeclSpec().getBeginLoc(),
10752            diag::err_deduction_guide_with_complex_decl)
10753           << D.getSourceRange();
10754       break;
10755     }
10756     if (!Chunk.Fun.hasTrailingReturnType()) {
10757       Diag(D.getName().getBeginLoc(),
10758            diag::err_deduction_guide_no_trailing_return_type);
10759       break;
10760     }
10761 
10762     // Check that the return type is written as a specialization of
10763     // the template specified as the deduction-guide's name.
10764     ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType();
10765     TypeSourceInfo *TSI = nullptr;
10766     QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI);
10767     assert(TSI && "deduction guide has valid type but invalid return type?");
10768     bool AcceptableReturnType = false;
10769     bool MightInstantiateToSpecialization = false;
10770     if (auto RetTST =
10771             TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) {
10772       TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName();
10773       bool TemplateMatches =
10774           Context.hasSameTemplateName(SpecifiedName, GuidedTemplate);
10775       if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches)
10776         AcceptableReturnType = true;
10777       else {
10778         // This could still instantiate to the right type, unless we know it
10779         // names the wrong class template.
10780         auto *TD = SpecifiedName.getAsTemplateDecl();
10781         MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) &&
10782                                              !TemplateMatches);
10783       }
10784     } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) {
10785       MightInstantiateToSpecialization = true;
10786     }
10787 
10788     if (!AcceptableReturnType) {
10789       Diag(TSI->getTypeLoc().getBeginLoc(),
10790            diag::err_deduction_guide_bad_trailing_return_type)
10791           << GuidedTemplate << TSI->getType()
10792           << MightInstantiateToSpecialization
10793           << TSI->getTypeLoc().getSourceRange();
10794     }
10795 
10796     // Keep going to check that we don't have any inner declarator pieces (we
10797     // could still have a function returning a pointer to a function).
10798     FoundFunction = true;
10799   }
10800 
10801   if (D.isFunctionDefinition())
10802     Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function);
10803 }
10804 
10805 //===----------------------------------------------------------------------===//
10806 // Namespace Handling
10807 //===----------------------------------------------------------------------===//
10808 
10809 /// Diagnose a mismatch in 'inline' qualifiers when a namespace is
10810 /// reopened.
10811 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
10812                                             SourceLocation Loc,
10813                                             IdentifierInfo *II, bool *IsInline,
10814                                             NamespaceDecl *PrevNS) {
10815   assert(*IsInline != PrevNS->isInline());
10816 
10817   // HACK: Work around a bug in libstdc++4.6's <atomic>, where
10818   // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
10819   // inline namespaces, with the intention of bringing names into namespace std.
10820   //
10821   // We support this just well enough to get that case working; this is not
10822   // sufficient to support reopening namespaces as inline in general.
10823   if (*IsInline && II && II->getName().startswith("__atomic") &&
10824       S.getSourceManager().isInSystemHeader(Loc)) {
10825     // Mark all prior declarations of the namespace as inline.
10826     for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
10827          NS = NS->getPreviousDecl())
10828       NS->setInline(*IsInline);
10829     // Patch up the lookup table for the containing namespace. This isn't really
10830     // correct, but it's good enough for this particular case.
10831     for (auto *I : PrevNS->decls())
10832       if (auto *ND = dyn_cast<NamedDecl>(I))
10833         PrevNS->getParent()->makeDeclVisibleInContext(ND);
10834     return;
10835   }
10836 
10837   if (PrevNS->isInline())
10838     // The user probably just forgot the 'inline', so suggest that it
10839     // be added back.
10840     S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
10841       << FixItHint::CreateInsertion(KeywordLoc, "inline ");
10842   else
10843     S.Diag(Loc, diag::err_inline_namespace_mismatch);
10844 
10845   S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
10846   *IsInline = PrevNS->isInline();
10847 }
10848 
10849 /// ActOnStartNamespaceDef - This is called at the start of a namespace
10850 /// definition.
10851 Decl *Sema::ActOnStartNamespaceDef(
10852     Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc,
10853     SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace,
10854     const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) {
10855   SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
10856   // For anonymous namespace, take the location of the left brace.
10857   SourceLocation Loc = II ? IdentLoc : LBrace;
10858   bool IsInline = InlineLoc.isValid();
10859   bool IsInvalid = false;
10860   bool IsStd = false;
10861   bool AddToKnown = false;
10862   Scope *DeclRegionScope = NamespcScope->getParent();
10863 
10864   NamespaceDecl *PrevNS = nullptr;
10865   if (II) {
10866     // C++ [namespace.def]p2:
10867     //   The identifier in an original-namespace-definition shall not
10868     //   have been previously defined in the declarative region in
10869     //   which the original-namespace-definition appears. The
10870     //   identifier in an original-namespace-definition is the name of
10871     //   the namespace. Subsequently in that declarative region, it is
10872     //   treated as an original-namespace-name.
10873     //
10874     // Since namespace names are unique in their scope, and we don't
10875     // look through using directives, just look for any ordinary names
10876     // as if by qualified name lookup.
10877     LookupResult R(*this, II, IdentLoc, LookupOrdinaryName,
10878                    ForExternalRedeclaration);
10879     LookupQualifiedName(R, CurContext->getRedeclContext());
10880     NamedDecl *PrevDecl =
10881         R.isSingleResult() ? R.getRepresentativeDecl() : nullptr;
10882     PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
10883 
10884     if (PrevNS) {
10885       // This is an extended namespace definition.
10886       if (IsInline != PrevNS->isInline())
10887         DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
10888                                         &IsInline, PrevNS);
10889     } else if (PrevDecl) {
10890       // This is an invalid name redefinition.
10891       Diag(Loc, diag::err_redefinition_different_kind)
10892         << II;
10893       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10894       IsInvalid = true;
10895       // Continue on to push Namespc as current DeclContext and return it.
10896     } else if (II->isStr("std") &&
10897                CurContext->getRedeclContext()->isTranslationUnit()) {
10898       // This is the first "real" definition of the namespace "std", so update
10899       // our cache of the "std" namespace to point at this definition.
10900       PrevNS = getStdNamespace();
10901       IsStd = true;
10902       AddToKnown = !IsInline;
10903     } else {
10904       // We've seen this namespace for the first time.
10905       AddToKnown = !IsInline;
10906     }
10907   } else {
10908     // Anonymous namespaces.
10909 
10910     // Determine whether the parent already has an anonymous namespace.
10911     DeclContext *Parent = CurContext->getRedeclContext();
10912     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
10913       PrevNS = TU->getAnonymousNamespace();
10914     } else {
10915       NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
10916       PrevNS = ND->getAnonymousNamespace();
10917     }
10918 
10919     if (PrevNS && IsInline != PrevNS->isInline())
10920       DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
10921                                       &IsInline, PrevNS);
10922   }
10923 
10924   NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
10925                                                  StartLoc, Loc, II, PrevNS);
10926   if (IsInvalid)
10927     Namespc->setInvalidDecl();
10928 
10929   ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
10930   AddPragmaAttributes(DeclRegionScope, Namespc);
10931 
10932   // FIXME: Should we be merging attributes?
10933   if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
10934     PushNamespaceVisibilityAttr(Attr, Loc);
10935 
10936   if (IsStd)
10937     StdNamespace = Namespc;
10938   if (AddToKnown)
10939     KnownNamespaces[Namespc] = false;
10940 
10941   if (II) {
10942     PushOnScopeChains(Namespc, DeclRegionScope);
10943   } else {
10944     // Link the anonymous namespace into its parent.
10945     DeclContext *Parent = CurContext->getRedeclContext();
10946     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
10947       TU->setAnonymousNamespace(Namespc);
10948     } else {
10949       cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
10950     }
10951 
10952     CurContext->addDecl(Namespc);
10953 
10954     // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
10955     //   behaves as if it were replaced by
10956     //     namespace unique { /* empty body */ }
10957     //     using namespace unique;
10958     //     namespace unique { namespace-body }
10959     //   where all occurrences of 'unique' in a translation unit are
10960     //   replaced by the same identifier and this identifier differs
10961     //   from all other identifiers in the entire program.
10962 
10963     // We just create the namespace with an empty name and then add an
10964     // implicit using declaration, just like the standard suggests.
10965     //
10966     // CodeGen enforces the "universally unique" aspect by giving all
10967     // declarations semantically contained within an anonymous
10968     // namespace internal linkage.
10969 
10970     if (!PrevNS) {
10971       UD = UsingDirectiveDecl::Create(Context, Parent,
10972                                       /* 'using' */ LBrace,
10973                                       /* 'namespace' */ SourceLocation(),
10974                                       /* qualifier */ NestedNameSpecifierLoc(),
10975                                       /* identifier */ SourceLocation(),
10976                                       Namespc,
10977                                       /* Ancestor */ Parent);
10978       UD->setImplicit();
10979       Parent->addDecl(UD);
10980     }
10981   }
10982 
10983   ActOnDocumentableDecl(Namespc);
10984 
10985   // Although we could have an invalid decl (i.e. the namespace name is a
10986   // redefinition), push it as current DeclContext and try to continue parsing.
10987   // FIXME: We should be able to push Namespc here, so that the each DeclContext
10988   // for the namespace has the declarations that showed up in that particular
10989   // namespace definition.
10990   PushDeclContext(NamespcScope, Namespc);
10991   return Namespc;
10992 }
10993 
10994 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
10995 /// is a namespace alias, returns the namespace it points to.
10996 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
10997   if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
10998     return AD->getNamespace();
10999   return dyn_cast_or_null<NamespaceDecl>(D);
11000 }
11001 
11002 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
11003 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
11004 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
11005   NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
11006   assert(Namespc && "Invalid parameter, expected NamespaceDecl");
11007   Namespc->setRBraceLoc(RBrace);
11008   PopDeclContext();
11009   if (Namespc->hasAttr<VisibilityAttr>())
11010     PopPragmaVisibility(true, RBrace);
11011   // If this namespace contains an export-declaration, export it now.
11012   if (DeferredExportedNamespaces.erase(Namespc))
11013     Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
11014 }
11015 
11016 CXXRecordDecl *Sema::getStdBadAlloc() const {
11017   return cast_or_null<CXXRecordDecl>(
11018                                   StdBadAlloc.get(Context.getExternalSource()));
11019 }
11020 
11021 EnumDecl *Sema::getStdAlignValT() const {
11022   return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource()));
11023 }
11024 
11025 NamespaceDecl *Sema::getStdNamespace() const {
11026   return cast_or_null<NamespaceDecl>(
11027                                  StdNamespace.get(Context.getExternalSource()));
11028 }
11029 
11030 NamespaceDecl *Sema::lookupStdExperimentalNamespace() {
11031   if (!StdExperimentalNamespaceCache) {
11032     if (auto Std = getStdNamespace()) {
11033       LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"),
11034                           SourceLocation(), LookupNamespaceName);
11035       if (!LookupQualifiedName(Result, Std) ||
11036           !(StdExperimentalNamespaceCache =
11037                 Result.getAsSingle<NamespaceDecl>()))
11038         Result.suppressDiagnostics();
11039     }
11040   }
11041   return StdExperimentalNamespaceCache;
11042 }
11043 
11044 namespace {
11045 
11046 enum UnsupportedSTLSelect {
11047   USS_InvalidMember,
11048   USS_MissingMember,
11049   USS_NonTrivial,
11050   USS_Other
11051 };
11052 
11053 struct InvalidSTLDiagnoser {
11054   Sema &S;
11055   SourceLocation Loc;
11056   QualType TyForDiags;
11057 
11058   QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "",
11059                       const VarDecl *VD = nullptr) {
11060     {
11061       auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported)
11062                << TyForDiags << ((int)Sel);
11063       if (Sel == USS_InvalidMember || Sel == USS_MissingMember) {
11064         assert(!Name.empty());
11065         D << Name;
11066       }
11067     }
11068     if (Sel == USS_InvalidMember) {
11069       S.Diag(VD->getLocation(), diag::note_var_declared_here)
11070           << VD << VD->getSourceRange();
11071     }
11072     return QualType();
11073   }
11074 };
11075 } // namespace
11076 
11077 QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind,
11078                                            SourceLocation Loc,
11079                                            ComparisonCategoryUsage Usage) {
11080   assert(getLangOpts().CPlusPlus &&
11081          "Looking for comparison category type outside of C++.");
11082 
11083   // Use an elaborated type for diagnostics which has a name containing the
11084   // prepended 'std' namespace but not any inline namespace names.
11085   auto TyForDiags = [&](ComparisonCategoryInfo *Info) {
11086     auto *NNS =
11087         NestedNameSpecifier::Create(Context, nullptr, getStdNamespace());
11088     return Context.getElaboratedType(ETK_None, NNS, Info->getType());
11089   };
11090 
11091   // Check if we've already successfully checked the comparison category type
11092   // before. If so, skip checking it again.
11093   ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind);
11094   if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) {
11095     // The only thing we need to check is that the type has a reachable
11096     // definition in the current context.
11097     if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11098       return QualType();
11099 
11100     return Info->getType();
11101   }
11102 
11103   // If lookup failed
11104   if (!Info) {
11105     std::string NameForDiags = "std::";
11106     NameForDiags += ComparisonCategories::getCategoryString(Kind);
11107     Diag(Loc, diag::err_implied_comparison_category_type_not_found)
11108         << NameForDiags << (int)Usage;
11109     return QualType();
11110   }
11111 
11112   assert(Info->Kind == Kind);
11113   assert(Info->Record);
11114 
11115   // Update the Record decl in case we encountered a forward declaration on our
11116   // first pass. FIXME: This is a bit of a hack.
11117   if (Info->Record->hasDefinition())
11118     Info->Record = Info->Record->getDefinition();
11119 
11120   if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11121     return QualType();
11122 
11123   InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)};
11124 
11125   if (!Info->Record->isTriviallyCopyable())
11126     return UnsupportedSTLError(USS_NonTrivial);
11127 
11128   for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) {
11129     CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl();
11130     // Tolerate empty base classes.
11131     if (Base->isEmpty())
11132       continue;
11133     // Reject STL implementations which have at least one non-empty base.
11134     return UnsupportedSTLError();
11135   }
11136 
11137   // Check that the STL has implemented the types using a single integer field.
11138   // This expectation allows better codegen for builtin operators. We require:
11139   //   (1) The class has exactly one field.
11140   //   (2) The field is an integral or enumeration type.
11141   auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end();
11142   if (std::distance(FIt, FEnd) != 1 ||
11143       !FIt->getType()->isIntegralOrEnumerationType()) {
11144     return UnsupportedSTLError();
11145   }
11146 
11147   // Build each of the require values and store them in Info.
11148   for (ComparisonCategoryResult CCR :
11149        ComparisonCategories::getPossibleResultsForType(Kind)) {
11150     StringRef MemName = ComparisonCategories::getResultString(CCR);
11151     ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR);
11152 
11153     if (!ValInfo)
11154       return UnsupportedSTLError(USS_MissingMember, MemName);
11155 
11156     VarDecl *VD = ValInfo->VD;
11157     assert(VD && "should not be null!");
11158 
11159     // Attempt to diagnose reasons why the STL definition of this type
11160     // might be foobar, including it failing to be a constant expression.
11161     // TODO Handle more ways the lookup or result can be invalid.
11162     if (!VD->isStaticDataMember() ||
11163         !VD->isUsableInConstantExpressions(Context))
11164       return UnsupportedSTLError(USS_InvalidMember, MemName, VD);
11165 
11166     // Attempt to evaluate the var decl as a constant expression and extract
11167     // the value of its first field as a ICE. If this fails, the STL
11168     // implementation is not supported.
11169     if (!ValInfo->hasValidIntValue())
11170       return UnsupportedSTLError();
11171 
11172     MarkVariableReferenced(Loc, VD);
11173   }
11174 
11175   // We've successfully built the required types and expressions. Update
11176   // the cache and return the newly cached value.
11177   FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true;
11178   return Info->getType();
11179 }
11180 
11181 /// Retrieve the special "std" namespace, which may require us to
11182 /// implicitly define the namespace.
11183 NamespaceDecl *Sema::getOrCreateStdNamespace() {
11184   if (!StdNamespace) {
11185     // The "std" namespace has not yet been defined, so build one implicitly.
11186     StdNamespace = NamespaceDecl::Create(Context,
11187                                          Context.getTranslationUnitDecl(),
11188                                          /*Inline=*/false,
11189                                          SourceLocation(), SourceLocation(),
11190                                          &PP.getIdentifierTable().get("std"),
11191                                          /*PrevDecl=*/nullptr);
11192     getStdNamespace()->setImplicit(true);
11193   }
11194 
11195   return getStdNamespace();
11196 }
11197 
11198 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
11199   assert(getLangOpts().CPlusPlus &&
11200          "Looking for std::initializer_list outside of C++.");
11201 
11202   // We're looking for implicit instantiations of
11203   // template <typename E> class std::initializer_list.
11204 
11205   if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
11206     return false;
11207 
11208   ClassTemplateDecl *Template = nullptr;
11209   const TemplateArgument *Arguments = nullptr;
11210 
11211   if (const RecordType *RT = Ty->getAs<RecordType>()) {
11212 
11213     ClassTemplateSpecializationDecl *Specialization =
11214         dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
11215     if (!Specialization)
11216       return false;
11217 
11218     Template = Specialization->getSpecializedTemplate();
11219     Arguments = Specialization->getTemplateArgs().data();
11220   } else if (const TemplateSpecializationType *TST =
11221                  Ty->getAs<TemplateSpecializationType>()) {
11222     Template = dyn_cast_or_null<ClassTemplateDecl>(
11223         TST->getTemplateName().getAsTemplateDecl());
11224     Arguments = TST->getArgs();
11225   }
11226   if (!Template)
11227     return false;
11228 
11229   if (!StdInitializerList) {
11230     // Haven't recognized std::initializer_list yet, maybe this is it.
11231     CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
11232     if (TemplateClass->getIdentifier() !=
11233             &PP.getIdentifierTable().get("initializer_list") ||
11234         !getStdNamespace()->InEnclosingNamespaceSetOf(
11235             TemplateClass->getDeclContext()))
11236       return false;
11237     // This is a template called std::initializer_list, but is it the right
11238     // template?
11239     TemplateParameterList *Params = Template->getTemplateParameters();
11240     if (Params->getMinRequiredArguments() != 1)
11241       return false;
11242     if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
11243       return false;
11244 
11245     // It's the right template.
11246     StdInitializerList = Template;
11247   }
11248 
11249   if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
11250     return false;
11251 
11252   // This is an instance of std::initializer_list. Find the argument type.
11253   if (Element)
11254     *Element = Arguments[0].getAsType();
11255   return true;
11256 }
11257 
11258 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
11259   NamespaceDecl *Std = S.getStdNamespace();
11260   if (!Std) {
11261     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
11262     return nullptr;
11263   }
11264 
11265   LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
11266                       Loc, Sema::LookupOrdinaryName);
11267   if (!S.LookupQualifiedName(Result, Std)) {
11268     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
11269     return nullptr;
11270   }
11271   ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
11272   if (!Template) {
11273     Result.suppressDiagnostics();
11274     // We found something weird. Complain about the first thing we found.
11275     NamedDecl *Found = *Result.begin();
11276     S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
11277     return nullptr;
11278   }
11279 
11280   // We found some template called std::initializer_list. Now verify that it's
11281   // correct.
11282   TemplateParameterList *Params = Template->getTemplateParameters();
11283   if (Params->getMinRequiredArguments() != 1 ||
11284       !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
11285     S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
11286     return nullptr;
11287   }
11288 
11289   return Template;
11290 }
11291 
11292 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
11293   if (!StdInitializerList) {
11294     StdInitializerList = LookupStdInitializerList(*this, Loc);
11295     if (!StdInitializerList)
11296       return QualType();
11297   }
11298 
11299   TemplateArgumentListInfo Args(Loc, Loc);
11300   Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
11301                                        Context.getTrivialTypeSourceInfo(Element,
11302                                                                         Loc)));
11303   return Context.getCanonicalType(
11304       CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
11305 }
11306 
11307 bool Sema::isInitListConstructor(const FunctionDecl *Ctor) {
11308   // C++ [dcl.init.list]p2:
11309   //   A constructor is an initializer-list constructor if its first parameter
11310   //   is of type std::initializer_list<E> or reference to possibly cv-qualified
11311   //   std::initializer_list<E> for some type E, and either there are no other
11312   //   parameters or else all other parameters have default arguments.
11313   if (!Ctor->hasOneParamOrDefaultArgs())
11314     return false;
11315 
11316   QualType ArgType = Ctor->getParamDecl(0)->getType();
11317   if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
11318     ArgType = RT->getPointeeType().getUnqualifiedType();
11319 
11320   return isStdInitializerList(ArgType, nullptr);
11321 }
11322 
11323 /// Determine whether a using statement is in a context where it will be
11324 /// apply in all contexts.
11325 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
11326   switch (CurContext->getDeclKind()) {
11327     case Decl::TranslationUnit:
11328       return true;
11329     case Decl::LinkageSpec:
11330       return IsUsingDirectiveInToplevelContext(CurContext->getParent());
11331     default:
11332       return false;
11333   }
11334 }
11335 
11336 namespace {
11337 
11338 // Callback to only accept typo corrections that are namespaces.
11339 class NamespaceValidatorCCC final : public CorrectionCandidateCallback {
11340 public:
11341   bool ValidateCandidate(const TypoCorrection &candidate) override {
11342     if (NamedDecl *ND = candidate.getCorrectionDecl())
11343       return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
11344     return false;
11345   }
11346 
11347   std::unique_ptr<CorrectionCandidateCallback> clone() override {
11348     return std::make_unique<NamespaceValidatorCCC>(*this);
11349   }
11350 };
11351 
11352 }
11353 
11354 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
11355                                        CXXScopeSpec &SS,
11356                                        SourceLocation IdentLoc,
11357                                        IdentifierInfo *Ident) {
11358   R.clear();
11359   NamespaceValidatorCCC CCC{};
11360   if (TypoCorrection Corrected =
11361           S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC,
11362                         Sema::CTK_ErrorRecovery)) {
11363     if (DeclContext *DC = S.computeDeclContext(SS, false)) {
11364       std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
11365       bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
11366                               Ident->getName().equals(CorrectedStr);
11367       S.diagnoseTypo(Corrected,
11368                      S.PDiag(diag::err_using_directive_member_suggest)
11369                        << Ident << DC << DroppedSpecifier << SS.getRange(),
11370                      S.PDiag(diag::note_namespace_defined_here));
11371     } else {
11372       S.diagnoseTypo(Corrected,
11373                      S.PDiag(diag::err_using_directive_suggest) << Ident,
11374                      S.PDiag(diag::note_namespace_defined_here));
11375     }
11376     R.addDecl(Corrected.getFoundDecl());
11377     return true;
11378   }
11379   return false;
11380 }
11381 
11382 Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc,
11383                                 SourceLocation NamespcLoc, CXXScopeSpec &SS,
11384                                 SourceLocation IdentLoc,
11385                                 IdentifierInfo *NamespcName,
11386                                 const ParsedAttributesView &AttrList) {
11387   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
11388   assert(NamespcName && "Invalid NamespcName.");
11389   assert(IdentLoc.isValid() && "Invalid NamespceName location.");
11390 
11391   // This can only happen along a recovery path.
11392   while (S->isTemplateParamScope())
11393     S = S->getParent();
11394   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
11395 
11396   UsingDirectiveDecl *UDir = nullptr;
11397   NestedNameSpecifier *Qualifier = nullptr;
11398   if (SS.isSet())
11399     Qualifier = SS.getScopeRep();
11400 
11401   // Lookup namespace name.
11402   LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
11403   LookupParsedName(R, S, &SS);
11404   if (R.isAmbiguous())
11405     return nullptr;
11406 
11407   if (R.empty()) {
11408     R.clear();
11409     // Allow "using namespace std;" or "using namespace ::std;" even if
11410     // "std" hasn't been defined yet, for GCC compatibility.
11411     if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
11412         NamespcName->isStr("std")) {
11413       Diag(IdentLoc, diag::ext_using_undefined_std);
11414       R.addDecl(getOrCreateStdNamespace());
11415       R.resolveKind();
11416     }
11417     // Otherwise, attempt typo correction.
11418     else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
11419   }
11420 
11421   if (!R.empty()) {
11422     NamedDecl *Named = R.getRepresentativeDecl();
11423     NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>();
11424     assert(NS && "expected namespace decl");
11425 
11426     // The use of a nested name specifier may trigger deprecation warnings.
11427     DiagnoseUseOfDecl(Named, IdentLoc);
11428 
11429     // C++ [namespace.udir]p1:
11430     //   A using-directive specifies that the names in the nominated
11431     //   namespace can be used in the scope in which the
11432     //   using-directive appears after the using-directive. During
11433     //   unqualified name lookup (3.4.1), the names appear as if they
11434     //   were declared in the nearest enclosing namespace which
11435     //   contains both the using-directive and the nominated
11436     //   namespace. [Note: in this context, "contains" means "contains
11437     //   directly or indirectly". ]
11438 
11439     // Find enclosing context containing both using-directive and
11440     // nominated namespace.
11441     DeclContext *CommonAncestor = NS;
11442     while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
11443       CommonAncestor = CommonAncestor->getParent();
11444 
11445     UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
11446                                       SS.getWithLocInContext(Context),
11447                                       IdentLoc, Named, CommonAncestor);
11448 
11449     if (IsUsingDirectiveInToplevelContext(CurContext) &&
11450         !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
11451       Diag(IdentLoc, diag::warn_using_directive_in_header);
11452     }
11453 
11454     PushUsingDirective(S, UDir);
11455   } else {
11456     Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
11457   }
11458 
11459   if (UDir)
11460     ProcessDeclAttributeList(S, UDir, AttrList);
11461 
11462   return UDir;
11463 }
11464 
11465 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
11466   // If the scope has an associated entity and the using directive is at
11467   // namespace or translation unit scope, add the UsingDirectiveDecl into
11468   // its lookup structure so qualified name lookup can find it.
11469   DeclContext *Ctx = S->getEntity();
11470   if (Ctx && !Ctx->isFunctionOrMethod())
11471     Ctx->addDecl(UDir);
11472   else
11473     // Otherwise, it is at block scope. The using-directives will affect lookup
11474     // only to the end of the scope.
11475     S->PushUsingDirective(UDir);
11476 }
11477 
11478 Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS,
11479                                   SourceLocation UsingLoc,
11480                                   SourceLocation TypenameLoc, CXXScopeSpec &SS,
11481                                   UnqualifiedId &Name,
11482                                   SourceLocation EllipsisLoc,
11483                                   const ParsedAttributesView &AttrList) {
11484   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
11485 
11486   if (SS.isEmpty()) {
11487     Diag(Name.getBeginLoc(), diag::err_using_requires_qualname);
11488     return nullptr;
11489   }
11490 
11491   switch (Name.getKind()) {
11492   case UnqualifiedIdKind::IK_ImplicitSelfParam:
11493   case UnqualifiedIdKind::IK_Identifier:
11494   case UnqualifiedIdKind::IK_OperatorFunctionId:
11495   case UnqualifiedIdKind::IK_LiteralOperatorId:
11496   case UnqualifiedIdKind::IK_ConversionFunctionId:
11497     break;
11498 
11499   case UnqualifiedIdKind::IK_ConstructorName:
11500   case UnqualifiedIdKind::IK_ConstructorTemplateId:
11501     // C++11 inheriting constructors.
11502     Diag(Name.getBeginLoc(),
11503          getLangOpts().CPlusPlus11
11504              ? diag::warn_cxx98_compat_using_decl_constructor
11505              : diag::err_using_decl_constructor)
11506         << SS.getRange();
11507 
11508     if (getLangOpts().CPlusPlus11) break;
11509 
11510     return nullptr;
11511 
11512   case UnqualifiedIdKind::IK_DestructorName:
11513     Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange();
11514     return nullptr;
11515 
11516   case UnqualifiedIdKind::IK_TemplateId:
11517     Diag(Name.getBeginLoc(), diag::err_using_decl_template_id)
11518         << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
11519     return nullptr;
11520 
11521   case UnqualifiedIdKind::IK_DeductionGuideName:
11522     llvm_unreachable("cannot parse qualified deduction guide name");
11523   }
11524 
11525   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
11526   DeclarationName TargetName = TargetNameInfo.getName();
11527   if (!TargetName)
11528     return nullptr;
11529 
11530   // Warn about access declarations.
11531   if (UsingLoc.isInvalid()) {
11532     Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11
11533                                  ? diag::err_access_decl
11534                                  : diag::warn_access_decl_deprecated)
11535         << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
11536   }
11537 
11538   if (EllipsisLoc.isInvalid()) {
11539     if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
11540         DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
11541       return nullptr;
11542   } else {
11543     if (!SS.getScopeRep()->containsUnexpandedParameterPack() &&
11544         !TargetNameInfo.containsUnexpandedParameterPack()) {
11545       Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
11546         << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc());
11547       EllipsisLoc = SourceLocation();
11548     }
11549   }
11550 
11551   NamedDecl *UD =
11552       BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc,
11553                             SS, TargetNameInfo, EllipsisLoc, AttrList,
11554                             /*IsInstantiation*/false);
11555   if (UD)
11556     PushOnScopeChains(UD, S, /*AddToContext*/ false);
11557 
11558   return UD;
11559 }
11560 
11561 /// Determine whether a using declaration considers the given
11562 /// declarations as "equivalent", e.g., if they are redeclarations of
11563 /// the same entity or are both typedefs of the same type.
11564 static bool
11565 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
11566   if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
11567     return true;
11568 
11569   if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
11570     if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
11571       return Context.hasSameType(TD1->getUnderlyingType(),
11572                                  TD2->getUnderlyingType());
11573 
11574   return false;
11575 }
11576 
11577 
11578 /// Determines whether to create a using shadow decl for a particular
11579 /// decl, given the set of decls existing prior to this using lookup.
11580 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
11581                                 const LookupResult &Previous,
11582                                 UsingShadowDecl *&PrevShadow) {
11583   // Diagnose finding a decl which is not from a base class of the
11584   // current class.  We do this now because there are cases where this
11585   // function will silently decide not to build a shadow decl, which
11586   // will pre-empt further diagnostics.
11587   //
11588   // We don't need to do this in C++11 because we do the check once on
11589   // the qualifier.
11590   //
11591   // FIXME: diagnose the following if we care enough:
11592   //   struct A { int foo; };
11593   //   struct B : A { using A::foo; };
11594   //   template <class T> struct C : A {};
11595   //   template <class T> struct D : C<T> { using B::foo; } // <---
11596   // This is invalid (during instantiation) in C++03 because B::foo
11597   // resolves to the using decl in B, which is not a base class of D<T>.
11598   // We can't diagnose it immediately because C<T> is an unknown
11599   // specialization.  The UsingShadowDecl in D<T> then points directly
11600   // to A::foo, which will look well-formed when we instantiate.
11601   // The right solution is to not collapse the shadow-decl chain.
11602   if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
11603     DeclContext *OrigDC = Orig->getDeclContext();
11604 
11605     // Handle enums and anonymous structs.
11606     if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
11607     CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
11608     while (OrigRec->isAnonymousStructOrUnion())
11609       OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
11610 
11611     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
11612       if (OrigDC == CurContext) {
11613         Diag(Using->getLocation(),
11614              diag::err_using_decl_nested_name_specifier_is_current_class)
11615           << Using->getQualifierLoc().getSourceRange();
11616         Diag(Orig->getLocation(), diag::note_using_decl_target);
11617         Using->setInvalidDecl();
11618         return true;
11619       }
11620 
11621       Diag(Using->getQualifierLoc().getBeginLoc(),
11622            diag::err_using_decl_nested_name_specifier_is_not_base_class)
11623         << Using->getQualifier()
11624         << cast<CXXRecordDecl>(CurContext)
11625         << Using->getQualifierLoc().getSourceRange();
11626       Diag(Orig->getLocation(), diag::note_using_decl_target);
11627       Using->setInvalidDecl();
11628       return true;
11629     }
11630   }
11631 
11632   if (Previous.empty()) return false;
11633 
11634   NamedDecl *Target = Orig;
11635   if (isa<UsingShadowDecl>(Target))
11636     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
11637 
11638   // If the target happens to be one of the previous declarations, we
11639   // don't have a conflict.
11640   //
11641   // FIXME: but we might be increasing its access, in which case we
11642   // should redeclare it.
11643   NamedDecl *NonTag = nullptr, *Tag = nullptr;
11644   bool FoundEquivalentDecl = false;
11645   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
11646          I != E; ++I) {
11647     NamedDecl *D = (*I)->getUnderlyingDecl();
11648     // We can have UsingDecls in our Previous results because we use the same
11649     // LookupResult for checking whether the UsingDecl itself is a valid
11650     // redeclaration.
11651     if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D))
11652       continue;
11653 
11654     if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
11655       // C++ [class.mem]p19:
11656       //   If T is the name of a class, then [every named member other than
11657       //   a non-static data member] shall have a name different from T
11658       if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) &&
11659           !isa<IndirectFieldDecl>(Target) &&
11660           !isa<UnresolvedUsingValueDecl>(Target) &&
11661           DiagnoseClassNameShadow(
11662               CurContext,
11663               DeclarationNameInfo(Using->getDeclName(), Using->getLocation())))
11664         return true;
11665     }
11666 
11667     if (IsEquivalentForUsingDecl(Context, D, Target)) {
11668       if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
11669         PrevShadow = Shadow;
11670       FoundEquivalentDecl = true;
11671     } else if (isEquivalentInternalLinkageDeclaration(D, Target)) {
11672       // We don't conflict with an existing using shadow decl of an equivalent
11673       // declaration, but we're not a redeclaration of it.
11674       FoundEquivalentDecl = true;
11675     }
11676 
11677     if (isVisible(D))
11678       (isa<TagDecl>(D) ? Tag : NonTag) = D;
11679   }
11680 
11681   if (FoundEquivalentDecl)
11682     return false;
11683 
11684   if (FunctionDecl *FD = Target->getAsFunction()) {
11685     NamedDecl *OldDecl = nullptr;
11686     switch (CheckOverload(nullptr, FD, Previous, OldDecl,
11687                           /*IsForUsingDecl*/ true)) {
11688     case Ovl_Overload:
11689       return false;
11690 
11691     case Ovl_NonFunction:
11692       Diag(Using->getLocation(), diag::err_using_decl_conflict);
11693       break;
11694 
11695     // We found a decl with the exact signature.
11696     case Ovl_Match:
11697       // If we're in a record, we want to hide the target, so we
11698       // return true (without a diagnostic) to tell the caller not to
11699       // build a shadow decl.
11700       if (CurContext->isRecord())
11701         return true;
11702 
11703       // If we're not in a record, this is an error.
11704       Diag(Using->getLocation(), diag::err_using_decl_conflict);
11705       break;
11706     }
11707 
11708     Diag(Target->getLocation(), diag::note_using_decl_target);
11709     Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
11710     Using->setInvalidDecl();
11711     return true;
11712   }
11713 
11714   // Target is not a function.
11715 
11716   if (isa<TagDecl>(Target)) {
11717     // No conflict between a tag and a non-tag.
11718     if (!Tag) return false;
11719 
11720     Diag(Using->getLocation(), diag::err_using_decl_conflict);
11721     Diag(Target->getLocation(), diag::note_using_decl_target);
11722     Diag(Tag->getLocation(), diag::note_using_decl_conflict);
11723     Using->setInvalidDecl();
11724     return true;
11725   }
11726 
11727   // No conflict between a tag and a non-tag.
11728   if (!NonTag) return false;
11729 
11730   Diag(Using->getLocation(), diag::err_using_decl_conflict);
11731   Diag(Target->getLocation(), diag::note_using_decl_target);
11732   Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
11733   Using->setInvalidDecl();
11734   return true;
11735 }
11736 
11737 /// Determine whether a direct base class is a virtual base class.
11738 static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) {
11739   if (!Derived->getNumVBases())
11740     return false;
11741   for (auto &B : Derived->bases())
11742     if (B.getType()->getAsCXXRecordDecl() == Base)
11743       return B.isVirtual();
11744   llvm_unreachable("not a direct base class");
11745 }
11746 
11747 /// Builds a shadow declaration corresponding to a 'using' declaration.
11748 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
11749                                             UsingDecl *UD,
11750                                             NamedDecl *Orig,
11751                                             UsingShadowDecl *PrevDecl) {
11752   // If we resolved to another shadow declaration, just coalesce them.
11753   NamedDecl *Target = Orig;
11754   if (isa<UsingShadowDecl>(Target)) {
11755     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
11756     assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
11757   }
11758 
11759   NamedDecl *NonTemplateTarget = Target;
11760   if (auto *TargetTD = dyn_cast<TemplateDecl>(Target))
11761     NonTemplateTarget = TargetTD->getTemplatedDecl();
11762 
11763   UsingShadowDecl *Shadow;
11764   if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) {
11765     bool IsVirtualBase =
11766         isVirtualDirectBase(cast<CXXRecordDecl>(CurContext),
11767                             UD->getQualifier()->getAsRecordDecl());
11768     Shadow = ConstructorUsingShadowDecl::Create(
11769         Context, CurContext, UD->getLocation(), UD, Orig, IsVirtualBase);
11770   } else {
11771     Shadow = UsingShadowDecl::Create(Context, CurContext, UD->getLocation(), UD,
11772                                      Target);
11773   }
11774   UD->addShadowDecl(Shadow);
11775 
11776   Shadow->setAccess(UD->getAccess());
11777   if (Orig->isInvalidDecl() || UD->isInvalidDecl())
11778     Shadow->setInvalidDecl();
11779 
11780   Shadow->setPreviousDecl(PrevDecl);
11781 
11782   if (S)
11783     PushOnScopeChains(Shadow, S);
11784   else
11785     CurContext->addDecl(Shadow);
11786 
11787 
11788   return Shadow;
11789 }
11790 
11791 /// Hides a using shadow declaration.  This is required by the current
11792 /// using-decl implementation when a resolvable using declaration in a
11793 /// class is followed by a declaration which would hide or override
11794 /// one or more of the using decl's targets; for example:
11795 ///
11796 ///   struct Base { void foo(int); };
11797 ///   struct Derived : Base {
11798 ///     using Base::foo;
11799 ///     void foo(int);
11800 ///   };
11801 ///
11802 /// The governing language is C++03 [namespace.udecl]p12:
11803 ///
11804 ///   When a using-declaration brings names from a base class into a
11805 ///   derived class scope, member functions in the derived class
11806 ///   override and/or hide member functions with the same name and
11807 ///   parameter types in a base class (rather than conflicting).
11808 ///
11809 /// There are two ways to implement this:
11810 ///   (1) optimistically create shadow decls when they're not hidden
11811 ///       by existing declarations, or
11812 ///   (2) don't create any shadow decls (or at least don't make them
11813 ///       visible) until we've fully parsed/instantiated the class.
11814 /// The problem with (1) is that we might have to retroactively remove
11815 /// a shadow decl, which requires several O(n) operations because the
11816 /// decl structures are (very reasonably) not designed for removal.
11817 /// (2) avoids this but is very fiddly and phase-dependent.
11818 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
11819   if (Shadow->getDeclName().getNameKind() ==
11820         DeclarationName::CXXConversionFunctionName)
11821     cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
11822 
11823   // Remove it from the DeclContext...
11824   Shadow->getDeclContext()->removeDecl(Shadow);
11825 
11826   // ...and the scope, if applicable...
11827   if (S) {
11828     S->RemoveDecl(Shadow);
11829     IdResolver.RemoveDecl(Shadow);
11830   }
11831 
11832   // ...and the using decl.
11833   Shadow->getUsingDecl()->removeShadowDecl(Shadow);
11834 
11835   // TODO: complain somehow if Shadow was used.  It shouldn't
11836   // be possible for this to happen, because...?
11837 }
11838 
11839 /// Find the base specifier for a base class with the given type.
11840 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
11841                                                 QualType DesiredBase,
11842                                                 bool &AnyDependentBases) {
11843   // Check whether the named type is a direct base class.
11844   CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified()
11845     .getUnqualifiedType();
11846   for (auto &Base : Derived->bases()) {
11847     CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
11848     if (CanonicalDesiredBase == BaseType)
11849       return &Base;
11850     if (BaseType->isDependentType())
11851       AnyDependentBases = true;
11852   }
11853   return nullptr;
11854 }
11855 
11856 namespace {
11857 class UsingValidatorCCC final : public CorrectionCandidateCallback {
11858 public:
11859   UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
11860                     NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
11861       : HasTypenameKeyword(HasTypenameKeyword),
11862         IsInstantiation(IsInstantiation), OldNNS(NNS),
11863         RequireMemberOf(RequireMemberOf) {}
11864 
11865   bool ValidateCandidate(const TypoCorrection &Candidate) override {
11866     NamedDecl *ND = Candidate.getCorrectionDecl();
11867 
11868     // Keywords are not valid here.
11869     if (!ND || isa<NamespaceDecl>(ND))
11870       return false;
11871 
11872     // Completely unqualified names are invalid for a 'using' declaration.
11873     if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
11874       return false;
11875 
11876     // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would
11877     // reject.
11878 
11879     if (RequireMemberOf) {
11880       auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
11881       if (FoundRecord && FoundRecord->isInjectedClassName()) {
11882         // No-one ever wants a using-declaration to name an injected-class-name
11883         // of a base class, unless they're declaring an inheriting constructor.
11884         ASTContext &Ctx = ND->getASTContext();
11885         if (!Ctx.getLangOpts().CPlusPlus11)
11886           return false;
11887         QualType FoundType = Ctx.getRecordType(FoundRecord);
11888 
11889         // Check that the injected-class-name is named as a member of its own
11890         // type; we don't want to suggest 'using Derived::Base;', since that
11891         // means something else.
11892         NestedNameSpecifier *Specifier =
11893             Candidate.WillReplaceSpecifier()
11894                 ? Candidate.getCorrectionSpecifier()
11895                 : OldNNS;
11896         if (!Specifier->getAsType() ||
11897             !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
11898           return false;
11899 
11900         // Check that this inheriting constructor declaration actually names a
11901         // direct base class of the current class.
11902         bool AnyDependentBases = false;
11903         if (!findDirectBaseWithType(RequireMemberOf,
11904                                     Ctx.getRecordType(FoundRecord),
11905                                     AnyDependentBases) &&
11906             !AnyDependentBases)
11907           return false;
11908       } else {
11909         auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
11910         if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
11911           return false;
11912 
11913         // FIXME: Check that the base class member is accessible?
11914       }
11915     } else {
11916       auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
11917       if (FoundRecord && FoundRecord->isInjectedClassName())
11918         return false;
11919     }
11920 
11921     if (isa<TypeDecl>(ND))
11922       return HasTypenameKeyword || !IsInstantiation;
11923 
11924     return !HasTypenameKeyword;
11925   }
11926 
11927   std::unique_ptr<CorrectionCandidateCallback> clone() override {
11928     return std::make_unique<UsingValidatorCCC>(*this);
11929   }
11930 
11931 private:
11932   bool HasTypenameKeyword;
11933   bool IsInstantiation;
11934   NestedNameSpecifier *OldNNS;
11935   CXXRecordDecl *RequireMemberOf;
11936 };
11937 } // end anonymous namespace
11938 
11939 /// Builds a using declaration.
11940 ///
11941 /// \param IsInstantiation - Whether this call arises from an
11942 ///   instantiation of an unresolved using declaration.  We treat
11943 ///   the lookup differently for these declarations.
11944 NamedDecl *Sema::BuildUsingDeclaration(
11945     Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
11946     bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
11947     DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
11948     const ParsedAttributesView &AttrList, bool IsInstantiation) {
11949   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
11950   SourceLocation IdentLoc = NameInfo.getLoc();
11951   assert(IdentLoc.isValid() && "Invalid TargetName location.");
11952 
11953   // FIXME: We ignore attributes for now.
11954 
11955   // For an inheriting constructor declaration, the name of the using
11956   // declaration is the name of a constructor in this class, not in the
11957   // base class.
11958   DeclarationNameInfo UsingName = NameInfo;
11959   if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName)
11960     if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext))
11961       UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
11962           Context.getCanonicalType(Context.getRecordType(RD))));
11963 
11964   // Do the redeclaration lookup in the current scope.
11965   LookupResult Previous(*this, UsingName, LookupUsingDeclName,
11966                         ForVisibleRedeclaration);
11967   Previous.setHideTags(false);
11968   if (S) {
11969     LookupName(Previous, S);
11970 
11971     // It is really dumb that we have to do this.
11972     LookupResult::Filter F = Previous.makeFilter();
11973     while (F.hasNext()) {
11974       NamedDecl *D = F.next();
11975       if (!isDeclInScope(D, CurContext, S))
11976         F.erase();
11977       // If we found a local extern declaration that's not ordinarily visible,
11978       // and this declaration is being added to a non-block scope, ignore it.
11979       // We're only checking for scope conflicts here, not also for violations
11980       // of the linkage rules.
11981       else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
11982                !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
11983         F.erase();
11984     }
11985     F.done();
11986   } else {
11987     assert(IsInstantiation && "no scope in non-instantiation");
11988     if (CurContext->isRecord())
11989       LookupQualifiedName(Previous, CurContext);
11990     else {
11991       // No redeclaration check is needed here; in non-member contexts we
11992       // diagnosed all possible conflicts with other using-declarations when
11993       // building the template:
11994       //
11995       // For a dependent non-type using declaration, the only valid case is
11996       // if we instantiate to a single enumerator. We check for conflicts
11997       // between shadow declarations we introduce, and we check in the template
11998       // definition for conflicts between a non-type using declaration and any
11999       // other declaration, which together covers all cases.
12000       //
12001       // A dependent typename using declaration will never successfully
12002       // instantiate, since it will always name a class member, so we reject
12003       // that in the template definition.
12004     }
12005   }
12006 
12007   // Check for invalid redeclarations.
12008   if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
12009                                   SS, IdentLoc, Previous))
12010     return nullptr;
12011 
12012   // Check for bad qualifiers.
12013   if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo,
12014                               IdentLoc))
12015     return nullptr;
12016 
12017   DeclContext *LookupContext = computeDeclContext(SS);
12018   NamedDecl *D;
12019   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
12020   if (!LookupContext || EllipsisLoc.isValid()) {
12021     if (HasTypenameKeyword) {
12022       // FIXME: not all declaration name kinds are legal here
12023       D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
12024                                               UsingLoc, TypenameLoc,
12025                                               QualifierLoc,
12026                                               IdentLoc, NameInfo.getName(),
12027                                               EllipsisLoc);
12028     } else {
12029       D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
12030                                            QualifierLoc, NameInfo, EllipsisLoc);
12031     }
12032     D->setAccess(AS);
12033     CurContext->addDecl(D);
12034     return D;
12035   }
12036 
12037   auto Build = [&](bool Invalid) {
12038     UsingDecl *UD =
12039         UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
12040                           UsingName, HasTypenameKeyword);
12041     UD->setAccess(AS);
12042     CurContext->addDecl(UD);
12043     UD->setInvalidDecl(Invalid);
12044     return UD;
12045   };
12046   auto BuildInvalid = [&]{ return Build(true); };
12047   auto BuildValid = [&]{ return Build(false); };
12048 
12049   if (RequireCompleteDeclContext(SS, LookupContext))
12050     return BuildInvalid();
12051 
12052   // Look up the target name.
12053   LookupResult R(*this, NameInfo, LookupOrdinaryName);
12054 
12055   // Unlike most lookups, we don't always want to hide tag
12056   // declarations: tag names are visible through the using declaration
12057   // even if hidden by ordinary names, *except* in a dependent context
12058   // where it's important for the sanity of two-phase lookup.
12059   if (!IsInstantiation)
12060     R.setHideTags(false);
12061 
12062   // For the purposes of this lookup, we have a base object type
12063   // equal to that of the current context.
12064   if (CurContext->isRecord()) {
12065     R.setBaseObjectType(
12066                    Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
12067   }
12068 
12069   LookupQualifiedName(R, LookupContext);
12070 
12071   // Try to correct typos if possible. If constructor name lookup finds no
12072   // results, that means the named class has no explicit constructors, and we
12073   // suppressed declaring implicit ones (probably because it's dependent or
12074   // invalid).
12075   if (R.empty() &&
12076       NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
12077     // HACK: Work around a bug in libstdc++'s detection of ::gets. Sometimes
12078     // it will believe that glibc provides a ::gets in cases where it does not,
12079     // and will try to pull it into namespace std with a using-declaration.
12080     // Just ignore the using-declaration in that case.
12081     auto *II = NameInfo.getName().getAsIdentifierInfo();
12082     if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") &&
12083         CurContext->isStdNamespace() &&
12084         isa<TranslationUnitDecl>(LookupContext) &&
12085         getSourceManager().isInSystemHeader(UsingLoc))
12086       return nullptr;
12087     UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
12088                           dyn_cast<CXXRecordDecl>(CurContext));
12089     if (TypoCorrection Corrected =
12090             CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
12091                         CTK_ErrorRecovery)) {
12092       // We reject candidates where DroppedSpecifier == true, hence the
12093       // literal '0' below.
12094       diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
12095                                 << NameInfo.getName() << LookupContext << 0
12096                                 << SS.getRange());
12097 
12098       // If we picked a correction with no attached Decl we can't do anything
12099       // useful with it, bail out.
12100       NamedDecl *ND = Corrected.getCorrectionDecl();
12101       if (!ND)
12102         return BuildInvalid();
12103 
12104       // If we corrected to an inheriting constructor, handle it as one.
12105       auto *RD = dyn_cast<CXXRecordDecl>(ND);
12106       if (RD && RD->isInjectedClassName()) {
12107         // The parent of the injected class name is the class itself.
12108         RD = cast<CXXRecordDecl>(RD->getParent());
12109 
12110         // Fix up the information we'll use to build the using declaration.
12111         if (Corrected.WillReplaceSpecifier()) {
12112           NestedNameSpecifierLocBuilder Builder;
12113           Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
12114                               QualifierLoc.getSourceRange());
12115           QualifierLoc = Builder.getWithLocInContext(Context);
12116         }
12117 
12118         // In this case, the name we introduce is the name of a derived class
12119         // constructor.
12120         auto *CurClass = cast<CXXRecordDecl>(CurContext);
12121         UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
12122             Context.getCanonicalType(Context.getRecordType(CurClass))));
12123         UsingName.setNamedTypeInfo(nullptr);
12124         for (auto *Ctor : LookupConstructors(RD))
12125           R.addDecl(Ctor);
12126         R.resolveKind();
12127       } else {
12128         // FIXME: Pick up all the declarations if we found an overloaded
12129         // function.
12130         UsingName.setName(ND->getDeclName());
12131         R.addDecl(ND);
12132       }
12133     } else {
12134       Diag(IdentLoc, diag::err_no_member)
12135         << NameInfo.getName() << LookupContext << SS.getRange();
12136       return BuildInvalid();
12137     }
12138   }
12139 
12140   if (R.isAmbiguous())
12141     return BuildInvalid();
12142 
12143   if (HasTypenameKeyword) {
12144     // If we asked for a typename and got a non-type decl, error out.
12145     if (!R.getAsSingle<TypeDecl>()) {
12146       Diag(IdentLoc, diag::err_using_typename_non_type);
12147       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
12148         Diag((*I)->getUnderlyingDecl()->getLocation(),
12149              diag::note_using_decl_target);
12150       return BuildInvalid();
12151     }
12152   } else {
12153     // If we asked for a non-typename and we got a type, error out,
12154     // but only if this is an instantiation of an unresolved using
12155     // decl.  Otherwise just silently find the type name.
12156     if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
12157       Diag(IdentLoc, diag::err_using_dependent_value_is_type);
12158       Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
12159       return BuildInvalid();
12160     }
12161   }
12162 
12163   // C++14 [namespace.udecl]p6:
12164   // A using-declaration shall not name a namespace.
12165   if (R.getAsSingle<NamespaceDecl>()) {
12166     Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
12167       << SS.getRange();
12168     return BuildInvalid();
12169   }
12170 
12171   // C++14 [namespace.udecl]p7:
12172   // A using-declaration shall not name a scoped enumerator.
12173   if (auto *ED = R.getAsSingle<EnumConstantDecl>()) {
12174     if (cast<EnumDecl>(ED->getDeclContext())->isScoped()) {
12175       Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_scoped_enum)
12176         << SS.getRange();
12177       return BuildInvalid();
12178     }
12179   }
12180 
12181   UsingDecl *UD = BuildValid();
12182 
12183   // Some additional rules apply to inheriting constructors.
12184   if (UsingName.getName().getNameKind() ==
12185         DeclarationName::CXXConstructorName) {
12186     // Suppress access diagnostics; the access check is instead performed at the
12187     // point of use for an inheriting constructor.
12188     R.suppressDiagnostics();
12189     if (CheckInheritingConstructorUsingDecl(UD))
12190       return UD;
12191   }
12192 
12193   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
12194     UsingShadowDecl *PrevDecl = nullptr;
12195     if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
12196       BuildUsingShadowDecl(S, UD, *I, PrevDecl);
12197   }
12198 
12199   return UD;
12200 }
12201 
12202 NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
12203                                     ArrayRef<NamedDecl *> Expansions) {
12204   assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||
12205          isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||
12206          isa<UsingPackDecl>(InstantiatedFrom));
12207 
12208   auto *UPD =
12209       UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions);
12210   UPD->setAccess(InstantiatedFrom->getAccess());
12211   CurContext->addDecl(UPD);
12212   return UPD;
12213 }
12214 
12215 /// Additional checks for a using declaration referring to a constructor name.
12216 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
12217   assert(!UD->hasTypename() && "expecting a constructor name");
12218 
12219   const Type *SourceType = UD->getQualifier()->getAsType();
12220   assert(SourceType &&
12221          "Using decl naming constructor doesn't have type in scope spec.");
12222   CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
12223 
12224   // Check whether the named type is a direct base class.
12225   bool AnyDependentBases = false;
12226   auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
12227                                       AnyDependentBases);
12228   if (!Base && !AnyDependentBases) {
12229     Diag(UD->getUsingLoc(),
12230          diag::err_using_decl_constructor_not_in_direct_base)
12231       << UD->getNameInfo().getSourceRange()
12232       << QualType(SourceType, 0) << TargetClass;
12233     UD->setInvalidDecl();
12234     return true;
12235   }
12236 
12237   if (Base)
12238     Base->setInheritConstructors();
12239 
12240   return false;
12241 }
12242 
12243 /// Checks that the given using declaration is not an invalid
12244 /// redeclaration.  Note that this is checking only for the using decl
12245 /// itself, not for any ill-formedness among the UsingShadowDecls.
12246 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
12247                                        bool HasTypenameKeyword,
12248                                        const CXXScopeSpec &SS,
12249                                        SourceLocation NameLoc,
12250                                        const LookupResult &Prev) {
12251   NestedNameSpecifier *Qual = SS.getScopeRep();
12252 
12253   // C++03 [namespace.udecl]p8:
12254   // C++0x [namespace.udecl]p10:
12255   //   A using-declaration is a declaration and can therefore be used
12256   //   repeatedly where (and only where) multiple declarations are
12257   //   allowed.
12258   //
12259   // That's in non-member contexts.
12260   if (!CurContext->getRedeclContext()->isRecord()) {
12261     // A dependent qualifier outside a class can only ever resolve to an
12262     // enumeration type. Therefore it conflicts with any other non-type
12263     // declaration in the same scope.
12264     // FIXME: How should we check for dependent type-type conflicts at block
12265     // scope?
12266     if (Qual->isDependent() && !HasTypenameKeyword) {
12267       for (auto *D : Prev) {
12268         if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) {
12269           bool OldCouldBeEnumerator =
12270               isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D);
12271           Diag(NameLoc,
12272                OldCouldBeEnumerator ? diag::err_redefinition
12273                                     : diag::err_redefinition_different_kind)
12274               << Prev.getLookupName();
12275           Diag(D->getLocation(), diag::note_previous_definition);
12276           return true;
12277         }
12278       }
12279     }
12280     return false;
12281   }
12282 
12283   for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
12284     NamedDecl *D = *I;
12285 
12286     bool DTypename;
12287     NestedNameSpecifier *DQual;
12288     if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
12289       DTypename = UD->hasTypename();
12290       DQual = UD->getQualifier();
12291     } else if (UnresolvedUsingValueDecl *UD
12292                  = dyn_cast<UnresolvedUsingValueDecl>(D)) {
12293       DTypename = false;
12294       DQual = UD->getQualifier();
12295     } else if (UnresolvedUsingTypenameDecl *UD
12296                  = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
12297       DTypename = true;
12298       DQual = UD->getQualifier();
12299     } else continue;
12300 
12301     // using decls differ if one says 'typename' and the other doesn't.
12302     // FIXME: non-dependent using decls?
12303     if (HasTypenameKeyword != DTypename) continue;
12304 
12305     // using decls differ if they name different scopes (but note that
12306     // template instantiation can cause this check to trigger when it
12307     // didn't before instantiation).
12308     if (Context.getCanonicalNestedNameSpecifier(Qual) !=
12309         Context.getCanonicalNestedNameSpecifier(DQual))
12310       continue;
12311 
12312     Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
12313     Diag(D->getLocation(), diag::note_using_decl) << 1;
12314     return true;
12315   }
12316 
12317   return false;
12318 }
12319 
12320 
12321 /// Checks that the given nested-name qualifier used in a using decl
12322 /// in the current context is appropriately related to the current
12323 /// scope.  If an error is found, diagnoses it and returns true.
12324 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
12325                                    bool HasTypename,
12326                                    const CXXScopeSpec &SS,
12327                                    const DeclarationNameInfo &NameInfo,
12328                                    SourceLocation NameLoc) {
12329   DeclContext *NamedContext = computeDeclContext(SS);
12330 
12331   if (!CurContext->isRecord()) {
12332     // C++03 [namespace.udecl]p3:
12333     // C++0x [namespace.udecl]p8:
12334     //   A using-declaration for a class member shall be a member-declaration.
12335 
12336     // If we weren't able to compute a valid scope, it might validly be a
12337     // dependent class scope or a dependent enumeration unscoped scope. If
12338     // we have a 'typename' keyword, the scope must resolve to a class type.
12339     if ((HasTypename && !NamedContext) ||
12340         (NamedContext && NamedContext->getRedeclContext()->isRecord())) {
12341       auto *RD = NamedContext
12342                      ? cast<CXXRecordDecl>(NamedContext->getRedeclContext())
12343                      : nullptr;
12344       if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
12345         RD = nullptr;
12346 
12347       Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
12348         << SS.getRange();
12349 
12350       // If we have a complete, non-dependent source type, try to suggest a
12351       // way to get the same effect.
12352       if (!RD)
12353         return true;
12354 
12355       // Find what this using-declaration was referring to.
12356       LookupResult R(*this, NameInfo, LookupOrdinaryName);
12357       R.setHideTags(false);
12358       R.suppressDiagnostics();
12359       LookupQualifiedName(R, RD);
12360 
12361       if (R.getAsSingle<TypeDecl>()) {
12362         if (getLangOpts().CPlusPlus11) {
12363           // Convert 'using X::Y;' to 'using Y = X::Y;'.
12364           Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
12365             << 0 // alias declaration
12366             << FixItHint::CreateInsertion(SS.getBeginLoc(),
12367                                           NameInfo.getName().getAsString() +
12368                                               " = ");
12369         } else {
12370           // Convert 'using X::Y;' to 'typedef X::Y Y;'.
12371           SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc());
12372           Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
12373             << 1 // typedef declaration
12374             << FixItHint::CreateReplacement(UsingLoc, "typedef")
12375             << FixItHint::CreateInsertion(
12376                    InsertLoc, " " + NameInfo.getName().getAsString());
12377         }
12378       } else if (R.getAsSingle<VarDecl>()) {
12379         // Don't provide a fixit outside C++11 mode; we don't want to suggest
12380         // repeating the type of the static data member here.
12381         FixItHint FixIt;
12382         if (getLangOpts().CPlusPlus11) {
12383           // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12384           FixIt = FixItHint::CreateReplacement(
12385               UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
12386         }
12387 
12388         Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12389           << 2 // reference declaration
12390           << FixIt;
12391       } else if (R.getAsSingle<EnumConstantDecl>()) {
12392         // Don't provide a fixit outside C++11 mode; we don't want to suggest
12393         // repeating the type of the enumeration here, and we can't do so if
12394         // the type is anonymous.
12395         FixItHint FixIt;
12396         if (getLangOpts().CPlusPlus11) {
12397           // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12398           FixIt = FixItHint::CreateReplacement(
12399               UsingLoc,
12400               "constexpr auto " + NameInfo.getName().getAsString() + " = ");
12401         }
12402 
12403         Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12404           << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable
12405           << FixIt;
12406       }
12407       return true;
12408     }
12409 
12410     // Otherwise, this might be valid.
12411     return false;
12412   }
12413 
12414   // The current scope is a record.
12415 
12416   // If the named context is dependent, we can't decide much.
12417   if (!NamedContext) {
12418     // FIXME: in C++0x, we can diagnose if we can prove that the
12419     // nested-name-specifier does not refer to a base class, which is
12420     // still possible in some cases.
12421 
12422     // Otherwise we have to conservatively report that things might be
12423     // okay.
12424     return false;
12425   }
12426 
12427   if (!NamedContext->isRecord()) {
12428     // Ideally this would point at the last name in the specifier,
12429     // but we don't have that level of source info.
12430     Diag(SS.getRange().getBegin(),
12431          diag::err_using_decl_nested_name_specifier_is_not_class)
12432       << SS.getScopeRep() << SS.getRange();
12433     return true;
12434   }
12435 
12436   if (!NamedContext->isDependentContext() &&
12437       RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
12438     return true;
12439 
12440   if (getLangOpts().CPlusPlus11) {
12441     // C++11 [namespace.udecl]p3:
12442     //   In a using-declaration used as a member-declaration, the
12443     //   nested-name-specifier shall name a base class of the class
12444     //   being defined.
12445 
12446     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
12447                                  cast<CXXRecordDecl>(NamedContext))) {
12448       if (CurContext == NamedContext) {
12449         Diag(NameLoc,
12450              diag::err_using_decl_nested_name_specifier_is_current_class)
12451           << SS.getRange();
12452         return true;
12453       }
12454 
12455       if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) {
12456         Diag(SS.getRange().getBegin(),
12457              diag::err_using_decl_nested_name_specifier_is_not_base_class)
12458           << SS.getScopeRep()
12459           << cast<CXXRecordDecl>(CurContext)
12460           << SS.getRange();
12461       }
12462       return true;
12463     }
12464 
12465     return false;
12466   }
12467 
12468   // C++03 [namespace.udecl]p4:
12469   //   A using-declaration used as a member-declaration shall refer
12470   //   to a member of a base class of the class being defined [etc.].
12471 
12472   // Salient point: SS doesn't have to name a base class as long as
12473   // lookup only finds members from base classes.  Therefore we can
12474   // diagnose here only if we can prove that that can't happen,
12475   // i.e. if the class hierarchies provably don't intersect.
12476 
12477   // TODO: it would be nice if "definitely valid" results were cached
12478   // in the UsingDecl and UsingShadowDecl so that these checks didn't
12479   // need to be repeated.
12480 
12481   llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases;
12482   auto Collect = [&Bases](const CXXRecordDecl *Base) {
12483     Bases.insert(Base);
12484     return true;
12485   };
12486 
12487   // Collect all bases. Return false if we find a dependent base.
12488   if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect))
12489     return false;
12490 
12491   // Returns true if the base is dependent or is one of the accumulated base
12492   // classes.
12493   auto IsNotBase = [&Bases](const CXXRecordDecl *Base) {
12494     return !Bases.count(Base);
12495   };
12496 
12497   // Return false if the class has a dependent base or if it or one
12498   // of its bases is present in the base set of the current context.
12499   if (Bases.count(cast<CXXRecordDecl>(NamedContext)) ||
12500       !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase))
12501     return false;
12502 
12503   Diag(SS.getRange().getBegin(),
12504        diag::err_using_decl_nested_name_specifier_is_not_base_class)
12505     << SS.getScopeRep()
12506     << cast<CXXRecordDecl>(CurContext)
12507     << SS.getRange();
12508 
12509   return true;
12510 }
12511 
12512 Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS,
12513                                   MultiTemplateParamsArg TemplateParamLists,
12514                                   SourceLocation UsingLoc, UnqualifiedId &Name,
12515                                   const ParsedAttributesView &AttrList,
12516                                   TypeResult Type, Decl *DeclFromDeclSpec) {
12517   // Skip up to the relevant declaration scope.
12518   while (S->isTemplateParamScope())
12519     S = S->getParent();
12520   assert((S->getFlags() & Scope::DeclScope) &&
12521          "got alias-declaration outside of declaration scope");
12522 
12523   if (Type.isInvalid())
12524     return nullptr;
12525 
12526   bool Invalid = false;
12527   DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
12528   TypeSourceInfo *TInfo = nullptr;
12529   GetTypeFromParser(Type.get(), &TInfo);
12530 
12531   if (DiagnoseClassNameShadow(CurContext, NameInfo))
12532     return nullptr;
12533 
12534   if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
12535                                       UPPC_DeclarationType)) {
12536     Invalid = true;
12537     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
12538                                              TInfo->getTypeLoc().getBeginLoc());
12539   }
12540 
12541   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
12542                         TemplateParamLists.size()
12543                             ? forRedeclarationInCurContext()
12544                             : ForVisibleRedeclaration);
12545   LookupName(Previous, S);
12546 
12547   // Warn about shadowing the name of a template parameter.
12548   if (Previous.isSingleResult() &&
12549       Previous.getFoundDecl()->isTemplateParameter()) {
12550     DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
12551     Previous.clear();
12552   }
12553 
12554   assert(Name.Kind == UnqualifiedIdKind::IK_Identifier &&
12555          "name in alias declaration must be an identifier");
12556   TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
12557                                                Name.StartLocation,
12558                                                Name.Identifier, TInfo);
12559 
12560   NewTD->setAccess(AS);
12561 
12562   if (Invalid)
12563     NewTD->setInvalidDecl();
12564 
12565   ProcessDeclAttributeList(S, NewTD, AttrList);
12566   AddPragmaAttributes(S, NewTD);
12567 
12568   CheckTypedefForVariablyModifiedType(S, NewTD);
12569   Invalid |= NewTD->isInvalidDecl();
12570 
12571   bool Redeclaration = false;
12572 
12573   NamedDecl *NewND;
12574   if (TemplateParamLists.size()) {
12575     TypeAliasTemplateDecl *OldDecl = nullptr;
12576     TemplateParameterList *OldTemplateParams = nullptr;
12577 
12578     if (TemplateParamLists.size() != 1) {
12579       Diag(UsingLoc, diag::err_alias_template_extra_headers)
12580         << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
12581          TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
12582     }
12583     TemplateParameterList *TemplateParams = TemplateParamLists[0];
12584 
12585     // Check that we can declare a template here.
12586     if (CheckTemplateDeclScope(S, TemplateParams))
12587       return nullptr;
12588 
12589     // Only consider previous declarations in the same scope.
12590     FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
12591                          /*ExplicitInstantiationOrSpecialization*/false);
12592     if (!Previous.empty()) {
12593       Redeclaration = true;
12594 
12595       OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
12596       if (!OldDecl && !Invalid) {
12597         Diag(UsingLoc, diag::err_redefinition_different_kind)
12598           << Name.Identifier;
12599 
12600         NamedDecl *OldD = Previous.getRepresentativeDecl();
12601         if (OldD->getLocation().isValid())
12602           Diag(OldD->getLocation(), diag::note_previous_definition);
12603 
12604         Invalid = true;
12605       }
12606 
12607       if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
12608         if (TemplateParameterListsAreEqual(TemplateParams,
12609                                            OldDecl->getTemplateParameters(),
12610                                            /*Complain=*/true,
12611                                            TPL_TemplateMatch))
12612           OldTemplateParams =
12613               OldDecl->getMostRecentDecl()->getTemplateParameters();
12614         else
12615           Invalid = true;
12616 
12617         TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
12618         if (!Invalid &&
12619             !Context.hasSameType(OldTD->getUnderlyingType(),
12620                                  NewTD->getUnderlyingType())) {
12621           // FIXME: The C++0x standard does not clearly say this is ill-formed,
12622           // but we can't reasonably accept it.
12623           Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
12624             << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
12625           if (OldTD->getLocation().isValid())
12626             Diag(OldTD->getLocation(), diag::note_previous_definition);
12627           Invalid = true;
12628         }
12629       }
12630     }
12631 
12632     // Merge any previous default template arguments into our parameters,
12633     // and check the parameter list.
12634     if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
12635                                    TPC_TypeAliasTemplate))
12636       return nullptr;
12637 
12638     TypeAliasTemplateDecl *NewDecl =
12639       TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
12640                                     Name.Identifier, TemplateParams,
12641                                     NewTD);
12642     NewTD->setDescribedAliasTemplate(NewDecl);
12643 
12644     NewDecl->setAccess(AS);
12645 
12646     if (Invalid)
12647       NewDecl->setInvalidDecl();
12648     else if (OldDecl) {
12649       NewDecl->setPreviousDecl(OldDecl);
12650       CheckRedeclarationModuleOwnership(NewDecl, OldDecl);
12651     }
12652 
12653     NewND = NewDecl;
12654   } else {
12655     if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
12656       setTagNameForLinkagePurposes(TD, NewTD);
12657       handleTagNumbering(TD, S);
12658     }
12659     ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
12660     NewND = NewTD;
12661   }
12662 
12663   PushOnScopeChains(NewND, S);
12664   ActOnDocumentableDecl(NewND);
12665   return NewND;
12666 }
12667 
12668 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
12669                                    SourceLocation AliasLoc,
12670                                    IdentifierInfo *Alias, CXXScopeSpec &SS,
12671                                    SourceLocation IdentLoc,
12672                                    IdentifierInfo *Ident) {
12673 
12674   // Lookup the namespace name.
12675   LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
12676   LookupParsedName(R, S, &SS);
12677 
12678   if (R.isAmbiguous())
12679     return nullptr;
12680 
12681   if (R.empty()) {
12682     if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
12683       Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
12684       return nullptr;
12685     }
12686   }
12687   assert(!R.isAmbiguous() && !R.empty());
12688   NamedDecl *ND = R.getRepresentativeDecl();
12689 
12690   // Check if we have a previous declaration with the same name.
12691   LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName,
12692                      ForVisibleRedeclaration);
12693   LookupName(PrevR, S);
12694 
12695   // Check we're not shadowing a template parameter.
12696   if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) {
12697     DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl());
12698     PrevR.clear();
12699   }
12700 
12701   // Filter out any other lookup result from an enclosing scope.
12702   FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false,
12703                        /*AllowInlineNamespace*/false);
12704 
12705   // Find the previous declaration and check that we can redeclare it.
12706   NamespaceAliasDecl *Prev = nullptr;
12707   if (PrevR.isSingleResult()) {
12708     NamedDecl *PrevDecl = PrevR.getRepresentativeDecl();
12709     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
12710       // We already have an alias with the same name that points to the same
12711       // namespace; check that it matches.
12712       if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
12713         Prev = AD;
12714       } else if (isVisible(PrevDecl)) {
12715         Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
12716           << Alias;
12717         Diag(AD->getLocation(), diag::note_previous_namespace_alias)
12718           << AD->getNamespace();
12719         return nullptr;
12720       }
12721     } else if (isVisible(PrevDecl)) {
12722       unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl())
12723                             ? diag::err_redefinition
12724                             : diag::err_redefinition_different_kind;
12725       Diag(AliasLoc, DiagID) << Alias;
12726       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12727       return nullptr;
12728     }
12729   }
12730 
12731   // The use of a nested name specifier may trigger deprecation warnings.
12732   DiagnoseUseOfDecl(ND, IdentLoc);
12733 
12734   NamespaceAliasDecl *AliasDecl =
12735     NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
12736                                Alias, SS.getWithLocInContext(Context),
12737                                IdentLoc, ND);
12738   if (Prev)
12739     AliasDecl->setPreviousDecl(Prev);
12740 
12741   PushOnScopeChains(AliasDecl, S);
12742   return AliasDecl;
12743 }
12744 
12745 namespace {
12746 struct SpecialMemberExceptionSpecInfo
12747     : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> {
12748   SourceLocation Loc;
12749   Sema::ImplicitExceptionSpecification ExceptSpec;
12750 
12751   SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD,
12752                                  Sema::CXXSpecialMember CSM,
12753                                  Sema::InheritedConstructorInfo *ICI,
12754                                  SourceLocation Loc)
12755       : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {}
12756 
12757   bool visitBase(CXXBaseSpecifier *Base);
12758   bool visitField(FieldDecl *FD);
12759 
12760   void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
12761                            unsigned Quals);
12762 
12763   void visitSubobjectCall(Subobject Subobj,
12764                           Sema::SpecialMemberOverloadResult SMOR);
12765 };
12766 }
12767 
12768 bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) {
12769   auto *RT = Base->getType()->getAs<RecordType>();
12770   if (!RT)
12771     return false;
12772 
12773   auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl());
12774   Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
12775   if (auto *BaseCtor = SMOR.getMethod()) {
12776     visitSubobjectCall(Base, BaseCtor);
12777     return false;
12778   }
12779 
12780   visitClassSubobject(BaseClass, Base, 0);
12781   return false;
12782 }
12783 
12784 bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) {
12785   if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) {
12786     Expr *E = FD->getInClassInitializer();
12787     if (!E)
12788       // FIXME: It's a little wasteful to build and throw away a
12789       // CXXDefaultInitExpr here.
12790       // FIXME: We should have a single context note pointing at Loc, and
12791       // this location should be MD->getLocation() instead, since that's
12792       // the location where we actually use the default init expression.
12793       E = S.BuildCXXDefaultInitExpr(Loc, FD).get();
12794     if (E)
12795       ExceptSpec.CalledExpr(E);
12796   } else if (auto *RT = S.Context.getBaseElementType(FD->getType())
12797                             ->getAs<RecordType>()) {
12798     visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD,
12799                         FD->getType().getCVRQualifiers());
12800   }
12801   return false;
12802 }
12803 
12804 void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class,
12805                                                          Subobject Subobj,
12806                                                          unsigned Quals) {
12807   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
12808   bool IsMutable = Field && Field->isMutable();
12809   visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable));
12810 }
12811 
12812 void SpecialMemberExceptionSpecInfo::visitSubobjectCall(
12813     Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) {
12814   // Note, if lookup fails, it doesn't matter what exception specification we
12815   // choose because the special member will be deleted.
12816   if (CXXMethodDecl *MD = SMOR.getMethod())
12817     ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD);
12818 }
12819 
12820 bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) {
12821   llvm::APSInt Result;
12822   ExprResult Converted = CheckConvertedConstantExpression(
12823       ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool);
12824   ExplicitSpec.setExpr(Converted.get());
12825   if (Converted.isUsable() && !Converted.get()->isValueDependent()) {
12826     ExplicitSpec.setKind(Result.getBoolValue()
12827                              ? ExplicitSpecKind::ResolvedTrue
12828                              : ExplicitSpecKind::ResolvedFalse);
12829     return true;
12830   }
12831   ExplicitSpec.setKind(ExplicitSpecKind::Unresolved);
12832   return false;
12833 }
12834 
12835 ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) {
12836   ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved);
12837   if (!ExplicitExpr->isTypeDependent())
12838     tryResolveExplicitSpecifier(ES);
12839   return ES;
12840 }
12841 
12842 static Sema::ImplicitExceptionSpecification
12843 ComputeDefaultedSpecialMemberExceptionSpec(
12844     Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
12845     Sema::InheritedConstructorInfo *ICI) {
12846   ComputingExceptionSpec CES(S, MD, Loc);
12847 
12848   CXXRecordDecl *ClassDecl = MD->getParent();
12849 
12850   // C++ [except.spec]p14:
12851   //   An implicitly declared special member function (Clause 12) shall have an
12852   //   exception-specification. [...]
12853   SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation());
12854   if (ClassDecl->isInvalidDecl())
12855     return Info.ExceptSpec;
12856 
12857   // FIXME: If this diagnostic fires, we're probably missing a check for
12858   // attempting to resolve an exception specification before it's known
12859   // at a higher level.
12860   if (S.RequireCompleteType(MD->getLocation(),
12861                             S.Context.getRecordType(ClassDecl),
12862                             diag::err_exception_spec_incomplete_type))
12863     return Info.ExceptSpec;
12864 
12865   // C++1z [except.spec]p7:
12866   //   [Look for exceptions thrown by] a constructor selected [...] to
12867   //   initialize a potentially constructed subobject,
12868   // C++1z [except.spec]p8:
12869   //   The exception specification for an implicitly-declared destructor, or a
12870   //   destructor without a noexcept-specifier, is potentially-throwing if and
12871   //   only if any of the destructors for any of its potentially constructed
12872   //   subojects is potentially throwing.
12873   // FIXME: We respect the first rule but ignore the "potentially constructed"
12874   // in the second rule to resolve a core issue (no number yet) that would have
12875   // us reject:
12876   //   struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; };
12877   //   struct B : A {};
12878   //   struct C : B { void f(); };
12879   // ... due to giving B::~B() a non-throwing exception specification.
12880   Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases
12881                                 : Info.VisitAllBases);
12882 
12883   return Info.ExceptSpec;
12884 }
12885 
12886 namespace {
12887 /// RAII object to register a special member as being currently declared.
12888 struct DeclaringSpecialMember {
12889   Sema &S;
12890   Sema::SpecialMemberDecl D;
12891   Sema::ContextRAII SavedContext;
12892   bool WasAlreadyBeingDeclared;
12893 
12894   DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
12895       : S(S), D(RD, CSM), SavedContext(S, RD) {
12896     WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
12897     if (WasAlreadyBeingDeclared)
12898       // This almost never happens, but if it does, ensure that our cache
12899       // doesn't contain a stale result.
12900       S.SpecialMemberCache.clear();
12901     else {
12902       // Register a note to be produced if we encounter an error while
12903       // declaring the special member.
12904       Sema::CodeSynthesisContext Ctx;
12905       Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember;
12906       // FIXME: We don't have a location to use here. Using the class's
12907       // location maintains the fiction that we declare all special members
12908       // with the class, but (1) it's not clear that lying about that helps our
12909       // users understand what's going on, and (2) there may be outer contexts
12910       // on the stack (some of which are relevant) and printing them exposes
12911       // our lies.
12912       Ctx.PointOfInstantiation = RD->getLocation();
12913       Ctx.Entity = RD;
12914       Ctx.SpecialMember = CSM;
12915       S.pushCodeSynthesisContext(Ctx);
12916     }
12917   }
12918   ~DeclaringSpecialMember() {
12919     if (!WasAlreadyBeingDeclared) {
12920       S.SpecialMembersBeingDeclared.erase(D);
12921       S.popCodeSynthesisContext();
12922     }
12923   }
12924 
12925   /// Are we already trying to declare this special member?
12926   bool isAlreadyBeingDeclared() const {
12927     return WasAlreadyBeingDeclared;
12928   }
12929 };
12930 }
12931 
12932 void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) {
12933   // Look up any existing declarations, but don't trigger declaration of all
12934   // implicit special members with this name.
12935   DeclarationName Name = FD->getDeclName();
12936   LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName,
12937                  ForExternalRedeclaration);
12938   for (auto *D : FD->getParent()->lookup(Name))
12939     if (auto *Acceptable = R.getAcceptableDecl(D))
12940       R.addDecl(Acceptable);
12941   R.resolveKind();
12942   R.suppressDiagnostics();
12943 
12944   CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false);
12945 }
12946 
12947 void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
12948                                           QualType ResultTy,
12949                                           ArrayRef<QualType> Args) {
12950   // Build an exception specification pointing back at this constructor.
12951   FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem);
12952 
12953   LangAS AS = getDefaultCXXMethodAddrSpace();
12954   if (AS != LangAS::Default) {
12955     EPI.TypeQuals.addAddressSpace(AS);
12956   }
12957 
12958   auto QT = Context.getFunctionType(ResultTy, Args, EPI);
12959   SpecialMem->setType(QT);
12960 }
12961 
12962 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
12963                                                      CXXRecordDecl *ClassDecl) {
12964   // C++ [class.ctor]p5:
12965   //   A default constructor for a class X is a constructor of class X
12966   //   that can be called without an argument. If there is no
12967   //   user-declared constructor for class X, a default constructor is
12968   //   implicitly declared. An implicitly-declared default constructor
12969   //   is an inline public member of its class.
12970   assert(ClassDecl->needsImplicitDefaultConstructor() &&
12971          "Should not build implicit default constructor!");
12972 
12973   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
12974   if (DSM.isAlreadyBeingDeclared())
12975     return nullptr;
12976 
12977   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
12978                                                      CXXDefaultConstructor,
12979                                                      false);
12980 
12981   // Create the actual constructor declaration.
12982   CanQualType ClassType
12983     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
12984   SourceLocation ClassLoc = ClassDecl->getLocation();
12985   DeclarationName Name
12986     = Context.DeclarationNames.getCXXConstructorName(ClassType);
12987   DeclarationNameInfo NameInfo(Name, ClassLoc);
12988   CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
12989       Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(),
12990       /*TInfo=*/nullptr, ExplicitSpecifier(),
12991       /*isInline=*/true, /*isImplicitlyDeclared=*/true,
12992       Constexpr ? ConstexprSpecKind::Constexpr
12993                 : ConstexprSpecKind::Unspecified);
12994   DefaultCon->setAccess(AS_public);
12995   DefaultCon->setDefaulted();
12996 
12997   if (getLangOpts().CUDA) {
12998     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
12999                                             DefaultCon,
13000                                             /* ConstRHS */ false,
13001                                             /* Diagnose */ false);
13002   }
13003 
13004   setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None);
13005 
13006   // We don't need to use SpecialMemberIsTrivial here; triviality for default
13007   // constructors is easy to compute.
13008   DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
13009 
13010   // Note that we have declared this constructor.
13011   ++getASTContext().NumImplicitDefaultConstructorsDeclared;
13012 
13013   Scope *S = getScopeForContext(ClassDecl);
13014   CheckImplicitSpecialMemberDeclaration(S, DefaultCon);
13015 
13016   if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
13017     SetDeclDeleted(DefaultCon, ClassLoc);
13018 
13019   if (S)
13020     PushOnScopeChains(DefaultCon, S, false);
13021   ClassDecl->addDecl(DefaultCon);
13022 
13023   return DefaultCon;
13024 }
13025 
13026 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
13027                                             CXXConstructorDecl *Constructor) {
13028   assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
13029           !Constructor->doesThisDeclarationHaveABody() &&
13030           !Constructor->isDeleted()) &&
13031     "DefineImplicitDefaultConstructor - call it for implicit default ctor");
13032   if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
13033     return;
13034 
13035   CXXRecordDecl *ClassDecl = Constructor->getParent();
13036   assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
13037 
13038   SynthesizedFunctionScope Scope(*this, Constructor);
13039 
13040   // The exception specification is needed because we are defining the
13041   // function.
13042   ResolveExceptionSpec(CurrentLocation,
13043                        Constructor->getType()->castAs<FunctionProtoType>());
13044   MarkVTableUsed(CurrentLocation, ClassDecl);
13045 
13046   // Add a context note for diagnostics produced after this point.
13047   Scope.addContextNote(CurrentLocation);
13048 
13049   if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) {
13050     Constructor->setInvalidDecl();
13051     return;
13052   }
13053 
13054   SourceLocation Loc = Constructor->getEndLoc().isValid()
13055                            ? Constructor->getEndLoc()
13056                            : Constructor->getLocation();
13057   Constructor->setBody(new (Context) CompoundStmt(Loc));
13058   Constructor->markUsed(Context);
13059 
13060   if (ASTMutationListener *L = getASTMutationListener()) {
13061     L->CompletedImplicitDefinition(Constructor);
13062   }
13063 
13064   DiagnoseUninitializedFields(*this, Constructor);
13065 }
13066 
13067 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
13068   // Perform any delayed checks on exception specifications.
13069   CheckDelayedMemberExceptionSpecs();
13070 }
13071 
13072 /// Find or create the fake constructor we synthesize to model constructing an
13073 /// object of a derived class via a constructor of a base class.
13074 CXXConstructorDecl *
13075 Sema::findInheritingConstructor(SourceLocation Loc,
13076                                 CXXConstructorDecl *BaseCtor,
13077                                 ConstructorUsingShadowDecl *Shadow) {
13078   CXXRecordDecl *Derived = Shadow->getParent();
13079   SourceLocation UsingLoc = Shadow->getLocation();
13080 
13081   // FIXME: Add a new kind of DeclarationName for an inherited constructor.
13082   // For now we use the name of the base class constructor as a member of the
13083   // derived class to indicate a (fake) inherited constructor name.
13084   DeclarationName Name = BaseCtor->getDeclName();
13085 
13086   // Check to see if we already have a fake constructor for this inherited
13087   // constructor call.
13088   for (NamedDecl *Ctor : Derived->lookup(Name))
13089     if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor)
13090                                ->getInheritedConstructor()
13091                                .getConstructor(),
13092                            BaseCtor))
13093       return cast<CXXConstructorDecl>(Ctor);
13094 
13095   DeclarationNameInfo NameInfo(Name, UsingLoc);
13096   TypeSourceInfo *TInfo =
13097       Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc);
13098   FunctionProtoTypeLoc ProtoLoc =
13099       TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
13100 
13101   // Check the inherited constructor is valid and find the list of base classes
13102   // from which it was inherited.
13103   InheritedConstructorInfo ICI(*this, Loc, Shadow);
13104 
13105   bool Constexpr =
13106       BaseCtor->isConstexpr() &&
13107       defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor,
13108                                         false, BaseCtor, &ICI);
13109 
13110   CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
13111       Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo,
13112       BaseCtor->getExplicitSpecifier(), /*isInline=*/true,
13113       /*isImplicitlyDeclared=*/true,
13114       Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified,
13115       InheritedConstructor(Shadow, BaseCtor),
13116       BaseCtor->getTrailingRequiresClause());
13117   if (Shadow->isInvalidDecl())
13118     DerivedCtor->setInvalidDecl();
13119 
13120   // Build an unevaluated exception specification for this fake constructor.
13121   const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>();
13122   FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
13123   EPI.ExceptionSpec.Type = EST_Unevaluated;
13124   EPI.ExceptionSpec.SourceDecl = DerivedCtor;
13125   DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
13126                                                FPT->getParamTypes(), EPI));
13127 
13128   // Build the parameter declarations.
13129   SmallVector<ParmVarDecl *, 16> ParamDecls;
13130   for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
13131     TypeSourceInfo *TInfo =
13132         Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
13133     ParmVarDecl *PD = ParmVarDecl::Create(
13134         Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
13135         FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr);
13136     PD->setScopeInfo(0, I);
13137     PD->setImplicit();
13138     // Ensure attributes are propagated onto parameters (this matters for
13139     // format, pass_object_size, ...).
13140     mergeDeclAttributes(PD, BaseCtor->getParamDecl(I));
13141     ParamDecls.push_back(PD);
13142     ProtoLoc.setParam(I, PD);
13143   }
13144 
13145   // Set up the new constructor.
13146   assert(!BaseCtor->isDeleted() && "should not use deleted constructor");
13147   DerivedCtor->setAccess(BaseCtor->getAccess());
13148   DerivedCtor->setParams(ParamDecls);
13149   Derived->addDecl(DerivedCtor);
13150 
13151   if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI))
13152     SetDeclDeleted(DerivedCtor, UsingLoc);
13153 
13154   return DerivedCtor;
13155 }
13156 
13157 void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) {
13158   InheritedConstructorInfo ICI(*this, Ctor->getLocation(),
13159                                Ctor->getInheritedConstructor().getShadowDecl());
13160   ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI,
13161                             /*Diagnose*/true);
13162 }
13163 
13164 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
13165                                        CXXConstructorDecl *Constructor) {
13166   CXXRecordDecl *ClassDecl = Constructor->getParent();
13167   assert(Constructor->getInheritedConstructor() &&
13168          !Constructor->doesThisDeclarationHaveABody() &&
13169          !Constructor->isDeleted());
13170   if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
13171     return;
13172 
13173   // Initializations are performed "as if by a defaulted default constructor",
13174   // so enter the appropriate scope.
13175   SynthesizedFunctionScope Scope(*this, Constructor);
13176 
13177   // The exception specification is needed because we are defining the
13178   // function.
13179   ResolveExceptionSpec(CurrentLocation,
13180                        Constructor->getType()->castAs<FunctionProtoType>());
13181   MarkVTableUsed(CurrentLocation, ClassDecl);
13182 
13183   // Add a context note for diagnostics produced after this point.
13184   Scope.addContextNote(CurrentLocation);
13185 
13186   ConstructorUsingShadowDecl *Shadow =
13187       Constructor->getInheritedConstructor().getShadowDecl();
13188   CXXConstructorDecl *InheritedCtor =
13189       Constructor->getInheritedConstructor().getConstructor();
13190 
13191   // [class.inhctor.init]p1:
13192   //   initialization proceeds as if a defaulted default constructor is used to
13193   //   initialize the D object and each base class subobject from which the
13194   //   constructor was inherited
13195 
13196   InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow);
13197   CXXRecordDecl *RD = Shadow->getParent();
13198   SourceLocation InitLoc = Shadow->getLocation();
13199 
13200   // Build explicit initializers for all base classes from which the
13201   // constructor was inherited.
13202   SmallVector<CXXCtorInitializer*, 8> Inits;
13203   for (bool VBase : {false, true}) {
13204     for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) {
13205       if (B.isVirtual() != VBase)
13206         continue;
13207 
13208       auto *BaseRD = B.getType()->getAsCXXRecordDecl();
13209       if (!BaseRD)
13210         continue;
13211 
13212       auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor);
13213       if (!BaseCtor.first)
13214         continue;
13215 
13216       MarkFunctionReferenced(CurrentLocation, BaseCtor.first);
13217       ExprResult Init = new (Context) CXXInheritedCtorInitExpr(
13218           InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second);
13219 
13220       auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc);
13221       Inits.push_back(new (Context) CXXCtorInitializer(
13222           Context, TInfo, VBase, InitLoc, Init.get(), InitLoc,
13223           SourceLocation()));
13224     }
13225   }
13226 
13227   // We now proceed as if for a defaulted default constructor, with the relevant
13228   // initializers replaced.
13229 
13230   if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) {
13231     Constructor->setInvalidDecl();
13232     return;
13233   }
13234 
13235   Constructor->setBody(new (Context) CompoundStmt(InitLoc));
13236   Constructor->markUsed(Context);
13237 
13238   if (ASTMutationListener *L = getASTMutationListener()) {
13239     L->CompletedImplicitDefinition(Constructor);
13240   }
13241 
13242   DiagnoseUninitializedFields(*this, Constructor);
13243 }
13244 
13245 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
13246   // C++ [class.dtor]p2:
13247   //   If a class has no user-declared destructor, a destructor is
13248   //   declared implicitly. An implicitly-declared destructor is an
13249   //   inline public member of its class.
13250   assert(ClassDecl->needsImplicitDestructor());
13251 
13252   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
13253   if (DSM.isAlreadyBeingDeclared())
13254     return nullptr;
13255 
13256   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13257                                                      CXXDestructor,
13258                                                      false);
13259 
13260   // Create the actual destructor declaration.
13261   CanQualType ClassType
13262     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
13263   SourceLocation ClassLoc = ClassDecl->getLocation();
13264   DeclarationName Name
13265     = Context.DeclarationNames.getCXXDestructorName(ClassType);
13266   DeclarationNameInfo NameInfo(Name, ClassLoc);
13267   CXXDestructorDecl *Destructor =
13268       CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
13269                                 QualType(), nullptr, /*isInline=*/true,
13270                                 /*isImplicitlyDeclared=*/true,
13271                                 Constexpr ? ConstexprSpecKind::Constexpr
13272                                           : ConstexprSpecKind::Unspecified);
13273   Destructor->setAccess(AS_public);
13274   Destructor->setDefaulted();
13275 
13276   if (getLangOpts().CUDA) {
13277     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
13278                                             Destructor,
13279                                             /* ConstRHS */ false,
13280                                             /* Diagnose */ false);
13281   }
13282 
13283   setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None);
13284 
13285   // We don't need to use SpecialMemberIsTrivial here; triviality for
13286   // destructors is easy to compute.
13287   Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
13288   Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() ||
13289                                 ClassDecl->hasTrivialDestructorForCall());
13290 
13291   // Note that we have declared this destructor.
13292   ++getASTContext().NumImplicitDestructorsDeclared;
13293 
13294   Scope *S = getScopeForContext(ClassDecl);
13295   CheckImplicitSpecialMemberDeclaration(S, Destructor);
13296 
13297   // We can't check whether an implicit destructor is deleted before we complete
13298   // the definition of the class, because its validity depends on the alignment
13299   // of the class. We'll check this from ActOnFields once the class is complete.
13300   if (ClassDecl->isCompleteDefinition() &&
13301       ShouldDeleteSpecialMember(Destructor, CXXDestructor))
13302     SetDeclDeleted(Destructor, ClassLoc);
13303 
13304   // Introduce this destructor into its scope.
13305   if (S)
13306     PushOnScopeChains(Destructor, S, false);
13307   ClassDecl->addDecl(Destructor);
13308 
13309   return Destructor;
13310 }
13311 
13312 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
13313                                     CXXDestructorDecl *Destructor) {
13314   assert((Destructor->isDefaulted() &&
13315           !Destructor->doesThisDeclarationHaveABody() &&
13316           !Destructor->isDeleted()) &&
13317          "DefineImplicitDestructor - call it for implicit default dtor");
13318   if (Destructor->willHaveBody() || Destructor->isInvalidDecl())
13319     return;
13320 
13321   CXXRecordDecl *ClassDecl = Destructor->getParent();
13322   assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
13323 
13324   SynthesizedFunctionScope Scope(*this, Destructor);
13325 
13326   // The exception specification is needed because we are defining the
13327   // function.
13328   ResolveExceptionSpec(CurrentLocation,
13329                        Destructor->getType()->castAs<FunctionProtoType>());
13330   MarkVTableUsed(CurrentLocation, ClassDecl);
13331 
13332   // Add a context note for diagnostics produced after this point.
13333   Scope.addContextNote(CurrentLocation);
13334 
13335   MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
13336                                          Destructor->getParent());
13337 
13338   if (CheckDestructor(Destructor)) {
13339     Destructor->setInvalidDecl();
13340     return;
13341   }
13342 
13343   SourceLocation Loc = Destructor->getEndLoc().isValid()
13344                            ? Destructor->getEndLoc()
13345                            : Destructor->getLocation();
13346   Destructor->setBody(new (Context) CompoundStmt(Loc));
13347   Destructor->markUsed(Context);
13348 
13349   if (ASTMutationListener *L = getASTMutationListener()) {
13350     L->CompletedImplicitDefinition(Destructor);
13351   }
13352 }
13353 
13354 void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
13355                                           CXXDestructorDecl *Destructor) {
13356   if (Destructor->isInvalidDecl())
13357     return;
13358 
13359   CXXRecordDecl *ClassDecl = Destructor->getParent();
13360   assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&
13361          "implicit complete dtors unneeded outside MS ABI");
13362   assert(ClassDecl->getNumVBases() > 0 &&
13363          "complete dtor only exists for classes with vbases");
13364 
13365   SynthesizedFunctionScope Scope(*this, Destructor);
13366 
13367   // Add a context note for diagnostics produced after this point.
13368   Scope.addContextNote(CurrentLocation);
13369 
13370   MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl);
13371 }
13372 
13373 /// Perform any semantic analysis which needs to be delayed until all
13374 /// pending class member declarations have been parsed.
13375 void Sema::ActOnFinishCXXMemberDecls() {
13376   // If the context is an invalid C++ class, just suppress these checks.
13377   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
13378     if (Record->isInvalidDecl()) {
13379       DelayedOverridingExceptionSpecChecks.clear();
13380       DelayedEquivalentExceptionSpecChecks.clear();
13381       return;
13382     }
13383     checkForMultipleExportedDefaultConstructors(*this, Record);
13384   }
13385 }
13386 
13387 void Sema::ActOnFinishCXXNonNestedClass() {
13388   referenceDLLExportedClassMethods();
13389 
13390   if (!DelayedDllExportMemberFunctions.empty()) {
13391     SmallVector<CXXMethodDecl*, 4> WorkList;
13392     std::swap(DelayedDllExportMemberFunctions, WorkList);
13393     for (CXXMethodDecl *M : WorkList) {
13394       DefineDefaultedFunction(*this, M, M->getLocation());
13395 
13396       // Pass the method to the consumer to get emitted. This is not necessary
13397       // for explicit instantiation definitions, as they will get emitted
13398       // anyway.
13399       if (M->getParent()->getTemplateSpecializationKind() !=
13400           TSK_ExplicitInstantiationDefinition)
13401         ActOnFinishInlineFunctionDef(M);
13402     }
13403   }
13404 }
13405 
13406 void Sema::referenceDLLExportedClassMethods() {
13407   if (!DelayedDllExportClasses.empty()) {
13408     // Calling ReferenceDllExportedMembers might cause the current function to
13409     // be called again, so use a local copy of DelayedDllExportClasses.
13410     SmallVector<CXXRecordDecl *, 4> WorkList;
13411     std::swap(DelayedDllExportClasses, WorkList);
13412     for (CXXRecordDecl *Class : WorkList)
13413       ReferenceDllExportedMembers(*this, Class);
13414   }
13415 }
13416 
13417 void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) {
13418   assert(getLangOpts().CPlusPlus11 &&
13419          "adjusting dtor exception specs was introduced in c++11");
13420 
13421   if (Destructor->isDependentContext())
13422     return;
13423 
13424   // C++11 [class.dtor]p3:
13425   //   A declaration of a destructor that does not have an exception-
13426   //   specification is implicitly considered to have the same exception-
13427   //   specification as an implicit declaration.
13428   const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>();
13429   if (DtorType->hasExceptionSpec())
13430     return;
13431 
13432   // Replace the destructor's type, building off the existing one. Fortunately,
13433   // the only thing of interest in the destructor type is its extended info.
13434   // The return and arguments are fixed.
13435   FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
13436   EPI.ExceptionSpec.Type = EST_Unevaluated;
13437   EPI.ExceptionSpec.SourceDecl = Destructor;
13438   Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
13439 
13440   // FIXME: If the destructor has a body that could throw, and the newly created
13441   // spec doesn't allow exceptions, we should emit a warning, because this
13442   // change in behavior can break conforming C++03 programs at runtime.
13443   // However, we don't have a body or an exception specification yet, so it
13444   // needs to be done somewhere else.
13445 }
13446 
13447 namespace {
13448 /// An abstract base class for all helper classes used in building the
13449 //  copy/move operators. These classes serve as factory functions and help us
13450 //  avoid using the same Expr* in the AST twice.
13451 class ExprBuilder {
13452   ExprBuilder(const ExprBuilder&) = delete;
13453   ExprBuilder &operator=(const ExprBuilder&) = delete;
13454 
13455 protected:
13456   static Expr *assertNotNull(Expr *E) {
13457     assert(E && "Expression construction must not fail.");
13458     return E;
13459   }
13460 
13461 public:
13462   ExprBuilder() {}
13463   virtual ~ExprBuilder() {}
13464 
13465   virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
13466 };
13467 
13468 class RefBuilder: public ExprBuilder {
13469   VarDecl *Var;
13470   QualType VarType;
13471 
13472 public:
13473   Expr *build(Sema &S, SourceLocation Loc) const override {
13474     return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc));
13475   }
13476 
13477   RefBuilder(VarDecl *Var, QualType VarType)
13478       : Var(Var), VarType(VarType) {}
13479 };
13480 
13481 class ThisBuilder: public ExprBuilder {
13482 public:
13483   Expr *build(Sema &S, SourceLocation Loc) const override {
13484     return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
13485   }
13486 };
13487 
13488 class CastBuilder: public ExprBuilder {
13489   const ExprBuilder &Builder;
13490   QualType Type;
13491   ExprValueKind Kind;
13492   const CXXCastPath &Path;
13493 
13494 public:
13495   Expr *build(Sema &S, SourceLocation Loc) const override {
13496     return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
13497                                              CK_UncheckedDerivedToBase, Kind,
13498                                              &Path).get());
13499   }
13500 
13501   CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
13502               const CXXCastPath &Path)
13503       : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
13504 };
13505 
13506 class DerefBuilder: public ExprBuilder {
13507   const ExprBuilder &Builder;
13508 
13509 public:
13510   Expr *build(Sema &S, SourceLocation Loc) const override {
13511     return assertNotNull(
13512         S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
13513   }
13514 
13515   DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13516 };
13517 
13518 class MemberBuilder: public ExprBuilder {
13519   const ExprBuilder &Builder;
13520   QualType Type;
13521   CXXScopeSpec SS;
13522   bool IsArrow;
13523   LookupResult &MemberLookup;
13524 
13525 public:
13526   Expr *build(Sema &S, SourceLocation Loc) const override {
13527     return assertNotNull(S.BuildMemberReferenceExpr(
13528         Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
13529         nullptr, MemberLookup, nullptr, nullptr).get());
13530   }
13531 
13532   MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
13533                 LookupResult &MemberLookup)
13534       : Builder(Builder), Type(Type), IsArrow(IsArrow),
13535         MemberLookup(MemberLookup) {}
13536 };
13537 
13538 class MoveCastBuilder: public ExprBuilder {
13539   const ExprBuilder &Builder;
13540 
13541 public:
13542   Expr *build(Sema &S, SourceLocation Loc) const override {
13543     return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
13544   }
13545 
13546   MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13547 };
13548 
13549 class LvalueConvBuilder: public ExprBuilder {
13550   const ExprBuilder &Builder;
13551 
13552 public:
13553   Expr *build(Sema &S, SourceLocation Loc) const override {
13554     return assertNotNull(
13555         S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
13556   }
13557 
13558   LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13559 };
13560 
13561 class SubscriptBuilder: public ExprBuilder {
13562   const ExprBuilder &Base;
13563   const ExprBuilder &Index;
13564 
13565 public:
13566   Expr *build(Sema &S, SourceLocation Loc) const override {
13567     return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
13568         Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
13569   }
13570 
13571   SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
13572       : Base(Base), Index(Index) {}
13573 };
13574 
13575 } // end anonymous namespace
13576 
13577 /// When generating a defaulted copy or move assignment operator, if a field
13578 /// should be copied with __builtin_memcpy rather than via explicit assignments,
13579 /// do so. This optimization only applies for arrays of scalars, and for arrays
13580 /// of class type where the selected copy/move-assignment operator is trivial.
13581 static StmtResult
13582 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
13583                            const ExprBuilder &ToB, const ExprBuilder &FromB) {
13584   // Compute the size of the memory buffer to be copied.
13585   QualType SizeType = S.Context.getSizeType();
13586   llvm::APInt Size(S.Context.getTypeSize(SizeType),
13587                    S.Context.getTypeSizeInChars(T).getQuantity());
13588 
13589   // Take the address of the field references for "from" and "to". We
13590   // directly construct UnaryOperators here because semantic analysis
13591   // does not permit us to take the address of an xvalue.
13592   Expr *From = FromB.build(S, Loc);
13593   From = UnaryOperator::Create(
13594       S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()),
13595       VK_RValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides());
13596   Expr *To = ToB.build(S, Loc);
13597   To = UnaryOperator::Create(
13598       S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()),
13599       VK_RValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides());
13600 
13601   const Type *E = T->getBaseElementTypeUnsafe();
13602   bool NeedsCollectableMemCpy =
13603       E->isRecordType() &&
13604       E->castAs<RecordType>()->getDecl()->hasObjectMember();
13605 
13606   // Create a reference to the __builtin_objc_memmove_collectable function
13607   StringRef MemCpyName = NeedsCollectableMemCpy ?
13608     "__builtin_objc_memmove_collectable" :
13609     "__builtin_memcpy";
13610   LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
13611                  Sema::LookupOrdinaryName);
13612   S.LookupName(R, S.TUScope, true);
13613 
13614   FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
13615   if (!MemCpy)
13616     // Something went horribly wrong earlier, and we will have complained
13617     // about it.
13618     return StmtError();
13619 
13620   ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
13621                                             VK_RValue, Loc, nullptr);
13622   assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
13623 
13624   Expr *CallArgs[] = {
13625     To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
13626   };
13627   ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
13628                                     Loc, CallArgs, Loc);
13629 
13630   assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
13631   return Call.getAs<Stmt>();
13632 }
13633 
13634 /// Builds a statement that copies/moves the given entity from \p From to
13635 /// \c To.
13636 ///
13637 /// This routine is used to copy/move the members of a class with an
13638 /// implicitly-declared copy/move assignment operator. When the entities being
13639 /// copied are arrays, this routine builds for loops to copy them.
13640 ///
13641 /// \param S The Sema object used for type-checking.
13642 ///
13643 /// \param Loc The location where the implicit copy/move is being generated.
13644 ///
13645 /// \param T The type of the expressions being copied/moved. Both expressions
13646 /// must have this type.
13647 ///
13648 /// \param To The expression we are copying/moving to.
13649 ///
13650 /// \param From The expression we are copying/moving from.
13651 ///
13652 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
13653 /// Otherwise, it's a non-static member subobject.
13654 ///
13655 /// \param Copying Whether we're copying or moving.
13656 ///
13657 /// \param Depth Internal parameter recording the depth of the recursion.
13658 ///
13659 /// \returns A statement or a loop that copies the expressions, or StmtResult(0)
13660 /// if a memcpy should be used instead.
13661 static StmtResult
13662 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
13663                                  const ExprBuilder &To, const ExprBuilder &From,
13664                                  bool CopyingBaseSubobject, bool Copying,
13665                                  unsigned Depth = 0) {
13666   // C++11 [class.copy]p28:
13667   //   Each subobject is assigned in the manner appropriate to its type:
13668   //
13669   //     - if the subobject is of class type, as if by a call to operator= with
13670   //       the subobject as the object expression and the corresponding
13671   //       subobject of x as a single function argument (as if by explicit
13672   //       qualification; that is, ignoring any possible virtual overriding
13673   //       functions in more derived classes);
13674   //
13675   // C++03 [class.copy]p13:
13676   //     - if the subobject is of class type, the copy assignment operator for
13677   //       the class is used (as if by explicit qualification; that is,
13678   //       ignoring any possible virtual overriding functions in more derived
13679   //       classes);
13680   if (const RecordType *RecordTy = T->getAs<RecordType>()) {
13681     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
13682 
13683     // Look for operator=.
13684     DeclarationName Name
13685       = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
13686     LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
13687     S.LookupQualifiedName(OpLookup, ClassDecl, false);
13688 
13689     // Prior to C++11, filter out any result that isn't a copy/move-assignment
13690     // operator.
13691     if (!S.getLangOpts().CPlusPlus11) {
13692       LookupResult::Filter F = OpLookup.makeFilter();
13693       while (F.hasNext()) {
13694         NamedDecl *D = F.next();
13695         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
13696           if (Method->isCopyAssignmentOperator() ||
13697               (!Copying && Method->isMoveAssignmentOperator()))
13698             continue;
13699 
13700         F.erase();
13701       }
13702       F.done();
13703     }
13704 
13705     // Suppress the protected check (C++ [class.protected]) for each of the
13706     // assignment operators we found. This strange dance is required when
13707     // we're assigning via a base classes's copy-assignment operator. To
13708     // ensure that we're getting the right base class subobject (without
13709     // ambiguities), we need to cast "this" to that subobject type; to
13710     // ensure that we don't go through the virtual call mechanism, we need
13711     // to qualify the operator= name with the base class (see below). However,
13712     // this means that if the base class has a protected copy assignment
13713     // operator, the protected member access check will fail. So, we
13714     // rewrite "protected" access to "public" access in this case, since we
13715     // know by construction that we're calling from a derived class.
13716     if (CopyingBaseSubobject) {
13717       for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
13718            L != LEnd; ++L) {
13719         if (L.getAccess() == AS_protected)
13720           L.setAccess(AS_public);
13721       }
13722     }
13723 
13724     // Create the nested-name-specifier that will be used to qualify the
13725     // reference to operator=; this is required to suppress the virtual
13726     // call mechanism.
13727     CXXScopeSpec SS;
13728     const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
13729     SS.MakeTrivial(S.Context,
13730                    NestedNameSpecifier::Create(S.Context, nullptr, false,
13731                                                CanonicalT),
13732                    Loc);
13733 
13734     // Create the reference to operator=.
13735     ExprResult OpEqualRef
13736       = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false,
13737                                    SS, /*TemplateKWLoc=*/SourceLocation(),
13738                                    /*FirstQualifierInScope=*/nullptr,
13739                                    OpLookup,
13740                                    /*TemplateArgs=*/nullptr, /*S*/nullptr,
13741                                    /*SuppressQualifierCheck=*/true);
13742     if (OpEqualRef.isInvalid())
13743       return StmtError();
13744 
13745     // Build the call to the assignment operator.
13746 
13747     Expr *FromInst = From.build(S, Loc);
13748     ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
13749                                                   OpEqualRef.getAs<Expr>(),
13750                                                   Loc, FromInst, Loc);
13751     if (Call.isInvalid())
13752       return StmtError();
13753 
13754     // If we built a call to a trivial 'operator=' while copying an array,
13755     // bail out. We'll replace the whole shebang with a memcpy.
13756     CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
13757     if (CE && CE->getMethodDecl()->isTrivial() && Depth)
13758       return StmtResult((Stmt*)nullptr);
13759 
13760     // Convert to an expression-statement, and clean up any produced
13761     // temporaries.
13762     return S.ActOnExprStmt(Call);
13763   }
13764 
13765   //     - if the subobject is of scalar type, the built-in assignment
13766   //       operator is used.
13767   const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
13768   if (!ArrayTy) {
13769     ExprResult Assignment = S.CreateBuiltinBinOp(
13770         Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
13771     if (Assignment.isInvalid())
13772       return StmtError();
13773     return S.ActOnExprStmt(Assignment);
13774   }
13775 
13776   //     - if the subobject is an array, each element is assigned, in the
13777   //       manner appropriate to the element type;
13778 
13779   // Construct a loop over the array bounds, e.g.,
13780   //
13781   //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
13782   //
13783   // that will copy each of the array elements.
13784   QualType SizeType = S.Context.getSizeType();
13785 
13786   // Create the iteration variable.
13787   IdentifierInfo *IterationVarName = nullptr;
13788   {
13789     SmallString<8> Str;
13790     llvm::raw_svector_ostream OS(Str);
13791     OS << "__i" << Depth;
13792     IterationVarName = &S.Context.Idents.get(OS.str());
13793   }
13794   VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
13795                                           IterationVarName, SizeType,
13796                             S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
13797                                           SC_None);
13798 
13799   // Initialize the iteration variable to zero.
13800   llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
13801   IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
13802 
13803   // Creates a reference to the iteration variable.
13804   RefBuilder IterationVarRef(IterationVar, SizeType);
13805   LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
13806 
13807   // Create the DeclStmt that holds the iteration variable.
13808   Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
13809 
13810   // Subscript the "from" and "to" expressions with the iteration variable.
13811   SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
13812   MoveCastBuilder FromIndexMove(FromIndexCopy);
13813   const ExprBuilder *FromIndex;
13814   if (Copying)
13815     FromIndex = &FromIndexCopy;
13816   else
13817     FromIndex = &FromIndexMove;
13818 
13819   SubscriptBuilder ToIndex(To, IterationVarRefRVal);
13820 
13821   // Build the copy/move for an individual element of the array.
13822   StmtResult Copy =
13823     buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
13824                                      ToIndex, *FromIndex, CopyingBaseSubobject,
13825                                      Copying, Depth + 1);
13826   // Bail out if copying fails or if we determined that we should use memcpy.
13827   if (Copy.isInvalid() || !Copy.get())
13828     return Copy;
13829 
13830   // Create the comparison against the array bound.
13831   llvm::APInt Upper
13832     = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
13833   Expr *Comparison = BinaryOperator::Create(
13834       S.Context, IterationVarRefRVal.build(S, Loc),
13835       IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE,
13836       S.Context.BoolTy, VK_RValue, OK_Ordinary, Loc, S.CurFPFeatureOverrides());
13837 
13838   // Create the pre-increment of the iteration variable. We can determine
13839   // whether the increment will overflow based on the value of the array
13840   // bound.
13841   Expr *Increment = UnaryOperator::Create(
13842       S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue,
13843       OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides());
13844 
13845   // Construct the loop that copies all elements of this array.
13846   return S.ActOnForStmt(
13847       Loc, Loc, InitStmt,
13848       S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean),
13849       S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get());
13850 }
13851 
13852 static StmtResult
13853 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
13854                       const ExprBuilder &To, const ExprBuilder &From,
13855                       bool CopyingBaseSubobject, bool Copying) {
13856   // Maybe we should use a memcpy?
13857   if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
13858       T.isTriviallyCopyableType(S.Context))
13859     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
13860 
13861   StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
13862                                                      CopyingBaseSubobject,
13863                                                      Copying, 0));
13864 
13865   // If we ended up picking a trivial assignment operator for an array of a
13866   // non-trivially-copyable class type, just emit a memcpy.
13867   if (!Result.isInvalid() && !Result.get())
13868     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
13869 
13870   return Result;
13871 }
13872 
13873 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
13874   // Note: The following rules are largely analoguous to the copy
13875   // constructor rules. Note that virtual bases are not taken into account
13876   // for determining the argument type of the operator. Note also that
13877   // operators taking an object instead of a reference are allowed.
13878   assert(ClassDecl->needsImplicitCopyAssignment());
13879 
13880   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
13881   if (DSM.isAlreadyBeingDeclared())
13882     return nullptr;
13883 
13884   QualType ArgType = Context.getTypeDeclType(ClassDecl);
13885   LangAS AS = getDefaultCXXMethodAddrSpace();
13886   if (AS != LangAS::Default)
13887     ArgType = Context.getAddrSpaceQualType(ArgType, AS);
13888   QualType RetType = Context.getLValueReferenceType(ArgType);
13889   bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
13890   if (Const)
13891     ArgType = ArgType.withConst();
13892 
13893   ArgType = Context.getLValueReferenceType(ArgType);
13894 
13895   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13896                                                      CXXCopyAssignment,
13897                                                      Const);
13898 
13899   //   An implicitly-declared copy assignment operator is an inline public
13900   //   member of its class.
13901   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
13902   SourceLocation ClassLoc = ClassDecl->getLocation();
13903   DeclarationNameInfo NameInfo(Name, ClassLoc);
13904   CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create(
13905       Context, ClassDecl, ClassLoc, NameInfo, QualType(),
13906       /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
13907       /*isInline=*/true,
13908       Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
13909       SourceLocation());
13910   CopyAssignment->setAccess(AS_public);
13911   CopyAssignment->setDefaulted();
13912   CopyAssignment->setImplicit();
13913 
13914   if (getLangOpts().CUDA) {
13915     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
13916                                             CopyAssignment,
13917                                             /* ConstRHS */ Const,
13918                                             /* Diagnose */ false);
13919   }
13920 
13921   setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType);
13922 
13923   // Add the parameter to the operator.
13924   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
13925                                                ClassLoc, ClassLoc,
13926                                                /*Id=*/nullptr, ArgType,
13927                                                /*TInfo=*/nullptr, SC_None,
13928                                                nullptr);
13929   CopyAssignment->setParams(FromParam);
13930 
13931   CopyAssignment->setTrivial(
13932     ClassDecl->needsOverloadResolutionForCopyAssignment()
13933       ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
13934       : ClassDecl->hasTrivialCopyAssignment());
13935 
13936   // Note that we have added this copy-assignment operator.
13937   ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared;
13938 
13939   Scope *S = getScopeForContext(ClassDecl);
13940   CheckImplicitSpecialMemberDeclaration(S, CopyAssignment);
13941 
13942   if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) {
13943     ClassDecl->setImplicitCopyAssignmentIsDeleted();
13944     SetDeclDeleted(CopyAssignment, ClassLoc);
13945   }
13946 
13947   if (S)
13948     PushOnScopeChains(CopyAssignment, S, false);
13949   ClassDecl->addDecl(CopyAssignment);
13950 
13951   return CopyAssignment;
13952 }
13953 
13954 /// Diagnose an implicit copy operation for a class which is odr-used, but
13955 /// which is deprecated because the class has a user-declared copy constructor,
13956 /// copy assignment operator, or destructor.
13957 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) {
13958   assert(CopyOp->isImplicit());
13959 
13960   CXXRecordDecl *RD = CopyOp->getParent();
13961   CXXMethodDecl *UserDeclaredOperation = nullptr;
13962 
13963   // In Microsoft mode, assignment operations don't affect constructors and
13964   // vice versa.
13965   if (RD->hasUserDeclaredDestructor()) {
13966     UserDeclaredOperation = RD->getDestructor();
13967   } else if (!isa<CXXConstructorDecl>(CopyOp) &&
13968              RD->hasUserDeclaredCopyConstructor() &&
13969              !S.getLangOpts().MSVCCompat) {
13970     // Find any user-declared copy constructor.
13971     for (auto *I : RD->ctors()) {
13972       if (I->isCopyConstructor()) {
13973         UserDeclaredOperation = I;
13974         break;
13975       }
13976     }
13977     assert(UserDeclaredOperation);
13978   } else if (isa<CXXConstructorDecl>(CopyOp) &&
13979              RD->hasUserDeclaredCopyAssignment() &&
13980              !S.getLangOpts().MSVCCompat) {
13981     // Find any user-declared move assignment operator.
13982     for (auto *I : RD->methods()) {
13983       if (I->isCopyAssignmentOperator()) {
13984         UserDeclaredOperation = I;
13985         break;
13986       }
13987     }
13988     assert(UserDeclaredOperation);
13989   }
13990 
13991   if (UserDeclaredOperation && UserDeclaredOperation->isUserProvided()) {
13992     S.Diag(UserDeclaredOperation->getLocation(),
13993            isa<CXXDestructorDecl>(UserDeclaredOperation)
13994                ? diag::warn_deprecated_copy_dtor_operation
13995                : diag::warn_deprecated_copy_operation)
13996         << RD << /*copy assignment*/ !isa<CXXConstructorDecl>(CopyOp);
13997   }
13998 }
13999 
14000 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
14001                                         CXXMethodDecl *CopyAssignOperator) {
14002   assert((CopyAssignOperator->isDefaulted() &&
14003           CopyAssignOperator->isOverloadedOperator() &&
14004           CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
14005           !CopyAssignOperator->doesThisDeclarationHaveABody() &&
14006           !CopyAssignOperator->isDeleted()) &&
14007          "DefineImplicitCopyAssignment called for wrong function");
14008   if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl())
14009     return;
14010 
14011   CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
14012   if (ClassDecl->isInvalidDecl()) {
14013     CopyAssignOperator->setInvalidDecl();
14014     return;
14015   }
14016 
14017   SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
14018 
14019   // The exception specification is needed because we are defining the
14020   // function.
14021   ResolveExceptionSpec(CurrentLocation,
14022                        CopyAssignOperator->getType()->castAs<FunctionProtoType>());
14023 
14024   // Add a context note for diagnostics produced after this point.
14025   Scope.addContextNote(CurrentLocation);
14026 
14027   // C++11 [class.copy]p18:
14028   //   The [definition of an implicitly declared copy assignment operator] is
14029   //   deprecated if the class has a user-declared copy constructor or a
14030   //   user-declared destructor.
14031   if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
14032     diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator);
14033 
14034   // C++0x [class.copy]p30:
14035   //   The implicitly-defined or explicitly-defaulted copy assignment operator
14036   //   for a non-union class X performs memberwise copy assignment of its
14037   //   subobjects. The direct base classes of X are assigned first, in the
14038   //   order of their declaration in the base-specifier-list, and then the
14039   //   immediate non-static data members of X are assigned, in the order in
14040   //   which they were declared in the class definition.
14041 
14042   // The statements that form the synthesized function body.
14043   SmallVector<Stmt*, 8> Statements;
14044 
14045   // The parameter for the "other" object, which we are copying from.
14046   ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
14047   Qualifiers OtherQuals = Other->getType().getQualifiers();
14048   QualType OtherRefType = Other->getType();
14049   if (const LValueReferenceType *OtherRef
14050                                 = OtherRefType->getAs<LValueReferenceType>()) {
14051     OtherRefType = OtherRef->getPointeeType();
14052     OtherQuals = OtherRefType.getQualifiers();
14053   }
14054 
14055   // Our location for everything implicitly-generated.
14056   SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid()
14057                            ? CopyAssignOperator->getEndLoc()
14058                            : CopyAssignOperator->getLocation();
14059 
14060   // Builds a DeclRefExpr for the "other" object.
14061   RefBuilder OtherRef(Other, OtherRefType);
14062 
14063   // Builds the "this" pointer.
14064   ThisBuilder This;
14065 
14066   // Assign base classes.
14067   bool Invalid = false;
14068   for (auto &Base : ClassDecl->bases()) {
14069     // Form the assignment:
14070     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
14071     QualType BaseType = Base.getType().getUnqualifiedType();
14072     if (!BaseType->isRecordType()) {
14073       Invalid = true;
14074       continue;
14075     }
14076 
14077     CXXCastPath BasePath;
14078     BasePath.push_back(&Base);
14079 
14080     // Construct the "from" expression, which is an implicit cast to the
14081     // appropriately-qualified base type.
14082     CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
14083                      VK_LValue, BasePath);
14084 
14085     // Dereference "this".
14086     DerefBuilder DerefThis(This);
14087     CastBuilder To(DerefThis,
14088                    Context.getQualifiedType(
14089                        BaseType, CopyAssignOperator->getMethodQualifiers()),
14090                    VK_LValue, BasePath);
14091 
14092     // Build the copy.
14093     StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
14094                                             To, From,
14095                                             /*CopyingBaseSubobject=*/true,
14096                                             /*Copying=*/true);
14097     if (Copy.isInvalid()) {
14098       CopyAssignOperator->setInvalidDecl();
14099       return;
14100     }
14101 
14102     // Success! Record the copy.
14103     Statements.push_back(Copy.getAs<Expr>());
14104   }
14105 
14106   // Assign non-static members.
14107   for (auto *Field : ClassDecl->fields()) {
14108     // FIXME: We should form some kind of AST representation for the implied
14109     // memcpy in a union copy operation.
14110     if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
14111       continue;
14112 
14113     if (Field->isInvalidDecl()) {
14114       Invalid = true;
14115       continue;
14116     }
14117 
14118     // Check for members of reference type; we can't copy those.
14119     if (Field->getType()->isReferenceType()) {
14120       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14121         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
14122       Diag(Field->getLocation(), diag::note_declared_at);
14123       Invalid = true;
14124       continue;
14125     }
14126 
14127     // Check for members of const-qualified, non-class type.
14128     QualType BaseType = Context.getBaseElementType(Field->getType());
14129     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
14130       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14131         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
14132       Diag(Field->getLocation(), diag::note_declared_at);
14133       Invalid = true;
14134       continue;
14135     }
14136 
14137     // Suppress assigning zero-width bitfields.
14138     if (Field->isZeroLengthBitField(Context))
14139       continue;
14140 
14141     QualType FieldType = Field->getType().getNonReferenceType();
14142     if (FieldType->isIncompleteArrayType()) {
14143       assert(ClassDecl->hasFlexibleArrayMember() &&
14144              "Incomplete array type is not valid");
14145       continue;
14146     }
14147 
14148     // Build references to the field in the object we're copying from and to.
14149     CXXScopeSpec SS; // Intentionally empty
14150     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
14151                               LookupMemberName);
14152     MemberLookup.addDecl(Field);
14153     MemberLookup.resolveKind();
14154 
14155     MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
14156 
14157     MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
14158 
14159     // Build the copy of this field.
14160     StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
14161                                             To, From,
14162                                             /*CopyingBaseSubobject=*/false,
14163                                             /*Copying=*/true);
14164     if (Copy.isInvalid()) {
14165       CopyAssignOperator->setInvalidDecl();
14166       return;
14167     }
14168 
14169     // Success! Record the copy.
14170     Statements.push_back(Copy.getAs<Stmt>());
14171   }
14172 
14173   if (!Invalid) {
14174     // Add a "return *this;"
14175     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
14176 
14177     StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
14178     if (Return.isInvalid())
14179       Invalid = true;
14180     else
14181       Statements.push_back(Return.getAs<Stmt>());
14182   }
14183 
14184   if (Invalid) {
14185     CopyAssignOperator->setInvalidDecl();
14186     return;
14187   }
14188 
14189   StmtResult Body;
14190   {
14191     CompoundScopeRAII CompoundScope(*this);
14192     Body = ActOnCompoundStmt(Loc, Loc, Statements,
14193                              /*isStmtExpr=*/false);
14194     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
14195   }
14196   CopyAssignOperator->setBody(Body.getAs<Stmt>());
14197   CopyAssignOperator->markUsed(Context);
14198 
14199   if (ASTMutationListener *L = getASTMutationListener()) {
14200     L->CompletedImplicitDefinition(CopyAssignOperator);
14201   }
14202 }
14203 
14204 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
14205   assert(ClassDecl->needsImplicitMoveAssignment());
14206 
14207   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
14208   if (DSM.isAlreadyBeingDeclared())
14209     return nullptr;
14210 
14211   // Note: The following rules are largely analoguous to the move
14212   // constructor rules.
14213 
14214   QualType ArgType = Context.getTypeDeclType(ClassDecl);
14215   LangAS AS = getDefaultCXXMethodAddrSpace();
14216   if (AS != LangAS::Default)
14217     ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14218   QualType RetType = Context.getLValueReferenceType(ArgType);
14219   ArgType = Context.getRValueReferenceType(ArgType);
14220 
14221   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14222                                                      CXXMoveAssignment,
14223                                                      false);
14224 
14225   //   An implicitly-declared move assignment operator is an inline public
14226   //   member of its class.
14227   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
14228   SourceLocation ClassLoc = ClassDecl->getLocation();
14229   DeclarationNameInfo NameInfo(Name, ClassLoc);
14230   CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create(
14231       Context, ClassDecl, ClassLoc, NameInfo, QualType(),
14232       /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
14233       /*isInline=*/true,
14234       Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
14235       SourceLocation());
14236   MoveAssignment->setAccess(AS_public);
14237   MoveAssignment->setDefaulted();
14238   MoveAssignment->setImplicit();
14239 
14240   if (getLangOpts().CUDA) {
14241     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
14242                                             MoveAssignment,
14243                                             /* ConstRHS */ false,
14244                                             /* Diagnose */ false);
14245   }
14246 
14247   // Build an exception specification pointing back at this member.
14248   FunctionProtoType::ExtProtoInfo EPI =
14249       getImplicitMethodEPI(*this, MoveAssignment);
14250   MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
14251 
14252   // Add the parameter to the operator.
14253   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
14254                                                ClassLoc, ClassLoc,
14255                                                /*Id=*/nullptr, ArgType,
14256                                                /*TInfo=*/nullptr, SC_None,
14257                                                nullptr);
14258   MoveAssignment->setParams(FromParam);
14259 
14260   MoveAssignment->setTrivial(
14261     ClassDecl->needsOverloadResolutionForMoveAssignment()
14262       ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
14263       : ClassDecl->hasTrivialMoveAssignment());
14264 
14265   // Note that we have added this copy-assignment operator.
14266   ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared;
14267 
14268   Scope *S = getScopeForContext(ClassDecl);
14269   CheckImplicitSpecialMemberDeclaration(S, MoveAssignment);
14270 
14271   if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
14272     ClassDecl->setImplicitMoveAssignmentIsDeleted();
14273     SetDeclDeleted(MoveAssignment, ClassLoc);
14274   }
14275 
14276   if (S)
14277     PushOnScopeChains(MoveAssignment, S, false);
14278   ClassDecl->addDecl(MoveAssignment);
14279 
14280   return MoveAssignment;
14281 }
14282 
14283 /// Check if we're implicitly defining a move assignment operator for a class
14284 /// with virtual bases. Such a move assignment might move-assign the virtual
14285 /// base multiple times.
14286 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
14287                                                SourceLocation CurrentLocation) {
14288   assert(!Class->isDependentContext() && "should not define dependent move");
14289 
14290   // Only a virtual base could get implicitly move-assigned multiple times.
14291   // Only a non-trivial move assignment can observe this. We only want to
14292   // diagnose if we implicitly define an assignment operator that assigns
14293   // two base classes, both of which move-assign the same virtual base.
14294   if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
14295       Class->getNumBases() < 2)
14296     return;
14297 
14298   llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
14299   typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
14300   VBaseMap VBases;
14301 
14302   for (auto &BI : Class->bases()) {
14303     Worklist.push_back(&BI);
14304     while (!Worklist.empty()) {
14305       CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
14306       CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
14307 
14308       // If the base has no non-trivial move assignment operators,
14309       // we don't care about moves from it.
14310       if (!Base->hasNonTrivialMoveAssignment())
14311         continue;
14312 
14313       // If there's nothing virtual here, skip it.
14314       if (!BaseSpec->isVirtual() && !Base->getNumVBases())
14315         continue;
14316 
14317       // If we're not actually going to call a move assignment for this base,
14318       // or the selected move assignment is trivial, skip it.
14319       Sema::SpecialMemberOverloadResult SMOR =
14320         S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
14321                               /*ConstArg*/false, /*VolatileArg*/false,
14322                               /*RValueThis*/true, /*ConstThis*/false,
14323                               /*VolatileThis*/false);
14324       if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() ||
14325           !SMOR.getMethod()->isMoveAssignmentOperator())
14326         continue;
14327 
14328       if (BaseSpec->isVirtual()) {
14329         // We're going to move-assign this virtual base, and its move
14330         // assignment operator is not trivial. If this can happen for
14331         // multiple distinct direct bases of Class, diagnose it. (If it
14332         // only happens in one base, we'll diagnose it when synthesizing
14333         // that base class's move assignment operator.)
14334         CXXBaseSpecifier *&Existing =
14335             VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
14336                 .first->second;
14337         if (Existing && Existing != &BI) {
14338           S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
14339             << Class << Base;
14340           S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here)
14341               << (Base->getCanonicalDecl() ==
14342                   Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
14343               << Base << Existing->getType() << Existing->getSourceRange();
14344           S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here)
14345               << (Base->getCanonicalDecl() ==
14346                   BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
14347               << Base << BI.getType() << BaseSpec->getSourceRange();
14348 
14349           // Only diagnose each vbase once.
14350           Existing = nullptr;
14351         }
14352       } else {
14353         // Only walk over bases that have defaulted move assignment operators.
14354         // We assume that any user-provided move assignment operator handles
14355         // the multiple-moves-of-vbase case itself somehow.
14356         if (!SMOR.getMethod()->isDefaulted())
14357           continue;
14358 
14359         // We're going to move the base classes of Base. Add them to the list.
14360         for (auto &BI : Base->bases())
14361           Worklist.push_back(&BI);
14362       }
14363     }
14364   }
14365 }
14366 
14367 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
14368                                         CXXMethodDecl *MoveAssignOperator) {
14369   assert((MoveAssignOperator->isDefaulted() &&
14370           MoveAssignOperator->isOverloadedOperator() &&
14371           MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
14372           !MoveAssignOperator->doesThisDeclarationHaveABody() &&
14373           !MoveAssignOperator->isDeleted()) &&
14374          "DefineImplicitMoveAssignment called for wrong function");
14375   if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl())
14376     return;
14377 
14378   CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
14379   if (ClassDecl->isInvalidDecl()) {
14380     MoveAssignOperator->setInvalidDecl();
14381     return;
14382   }
14383 
14384   // C++0x [class.copy]p28:
14385   //   The implicitly-defined or move assignment operator for a non-union class
14386   //   X performs memberwise move assignment of its subobjects. The direct base
14387   //   classes of X are assigned first, in the order of their declaration in the
14388   //   base-specifier-list, and then the immediate non-static data members of X
14389   //   are assigned, in the order in which they were declared in the class
14390   //   definition.
14391 
14392   // Issue a warning if our implicit move assignment operator will move
14393   // from a virtual base more than once.
14394   checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
14395 
14396   SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
14397 
14398   // The exception specification is needed because we are defining the
14399   // function.
14400   ResolveExceptionSpec(CurrentLocation,
14401                        MoveAssignOperator->getType()->castAs<FunctionProtoType>());
14402 
14403   // Add a context note for diagnostics produced after this point.
14404   Scope.addContextNote(CurrentLocation);
14405 
14406   // The statements that form the synthesized function body.
14407   SmallVector<Stmt*, 8> Statements;
14408 
14409   // The parameter for the "other" object, which we are move from.
14410   ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
14411   QualType OtherRefType =
14412       Other->getType()->castAs<RValueReferenceType>()->getPointeeType();
14413 
14414   // Our location for everything implicitly-generated.
14415   SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid()
14416                            ? MoveAssignOperator->getEndLoc()
14417                            : MoveAssignOperator->getLocation();
14418 
14419   // Builds a reference to the "other" object.
14420   RefBuilder OtherRef(Other, OtherRefType);
14421   // Cast to rvalue.
14422   MoveCastBuilder MoveOther(OtherRef);
14423 
14424   // Builds the "this" pointer.
14425   ThisBuilder This;
14426 
14427   // Assign base classes.
14428   bool Invalid = false;
14429   for (auto &Base : ClassDecl->bases()) {
14430     // C++11 [class.copy]p28:
14431     //   It is unspecified whether subobjects representing virtual base classes
14432     //   are assigned more than once by the implicitly-defined copy assignment
14433     //   operator.
14434     // FIXME: Do not assign to a vbase that will be assigned by some other base
14435     // class. For a move-assignment, this can result in the vbase being moved
14436     // multiple times.
14437 
14438     // Form the assignment:
14439     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
14440     QualType BaseType = Base.getType().getUnqualifiedType();
14441     if (!BaseType->isRecordType()) {
14442       Invalid = true;
14443       continue;
14444     }
14445 
14446     CXXCastPath BasePath;
14447     BasePath.push_back(&Base);
14448 
14449     // Construct the "from" expression, which is an implicit cast to the
14450     // appropriately-qualified base type.
14451     CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
14452 
14453     // Dereference "this".
14454     DerefBuilder DerefThis(This);
14455 
14456     // Implicitly cast "this" to the appropriately-qualified base type.
14457     CastBuilder To(DerefThis,
14458                    Context.getQualifiedType(
14459                        BaseType, MoveAssignOperator->getMethodQualifiers()),
14460                    VK_LValue, BasePath);
14461 
14462     // Build the move.
14463     StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
14464                                             To, From,
14465                                             /*CopyingBaseSubobject=*/true,
14466                                             /*Copying=*/false);
14467     if (Move.isInvalid()) {
14468       MoveAssignOperator->setInvalidDecl();
14469       return;
14470     }
14471 
14472     // Success! Record the move.
14473     Statements.push_back(Move.getAs<Expr>());
14474   }
14475 
14476   // Assign non-static members.
14477   for (auto *Field : ClassDecl->fields()) {
14478     // FIXME: We should form some kind of AST representation for the implied
14479     // memcpy in a union copy operation.
14480     if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
14481       continue;
14482 
14483     if (Field->isInvalidDecl()) {
14484       Invalid = true;
14485       continue;
14486     }
14487 
14488     // Check for members of reference type; we can't move those.
14489     if (Field->getType()->isReferenceType()) {
14490       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14491         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
14492       Diag(Field->getLocation(), diag::note_declared_at);
14493       Invalid = true;
14494       continue;
14495     }
14496 
14497     // Check for members of const-qualified, non-class type.
14498     QualType BaseType = Context.getBaseElementType(Field->getType());
14499     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
14500       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14501         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
14502       Diag(Field->getLocation(), diag::note_declared_at);
14503       Invalid = true;
14504       continue;
14505     }
14506 
14507     // Suppress assigning zero-width bitfields.
14508     if (Field->isZeroLengthBitField(Context))
14509       continue;
14510 
14511     QualType FieldType = Field->getType().getNonReferenceType();
14512     if (FieldType->isIncompleteArrayType()) {
14513       assert(ClassDecl->hasFlexibleArrayMember() &&
14514              "Incomplete array type is not valid");
14515       continue;
14516     }
14517 
14518     // Build references to the field in the object we're copying from and to.
14519     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
14520                               LookupMemberName);
14521     MemberLookup.addDecl(Field);
14522     MemberLookup.resolveKind();
14523     MemberBuilder From(MoveOther, OtherRefType,
14524                        /*IsArrow=*/false, MemberLookup);
14525     MemberBuilder To(This, getCurrentThisType(),
14526                      /*IsArrow=*/true, MemberLookup);
14527 
14528     assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
14529         "Member reference with rvalue base must be rvalue except for reference "
14530         "members, which aren't allowed for move assignment.");
14531 
14532     // Build the move of this field.
14533     StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
14534                                             To, From,
14535                                             /*CopyingBaseSubobject=*/false,
14536                                             /*Copying=*/false);
14537     if (Move.isInvalid()) {
14538       MoveAssignOperator->setInvalidDecl();
14539       return;
14540     }
14541 
14542     // Success! Record the copy.
14543     Statements.push_back(Move.getAs<Stmt>());
14544   }
14545 
14546   if (!Invalid) {
14547     // Add a "return *this;"
14548     ExprResult ThisObj =
14549         CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
14550 
14551     StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
14552     if (Return.isInvalid())
14553       Invalid = true;
14554     else
14555       Statements.push_back(Return.getAs<Stmt>());
14556   }
14557 
14558   if (Invalid) {
14559     MoveAssignOperator->setInvalidDecl();
14560     return;
14561   }
14562 
14563   StmtResult Body;
14564   {
14565     CompoundScopeRAII CompoundScope(*this);
14566     Body = ActOnCompoundStmt(Loc, Loc, Statements,
14567                              /*isStmtExpr=*/false);
14568     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
14569   }
14570   MoveAssignOperator->setBody(Body.getAs<Stmt>());
14571   MoveAssignOperator->markUsed(Context);
14572 
14573   if (ASTMutationListener *L = getASTMutationListener()) {
14574     L->CompletedImplicitDefinition(MoveAssignOperator);
14575   }
14576 }
14577 
14578 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
14579                                                     CXXRecordDecl *ClassDecl) {
14580   // C++ [class.copy]p4:
14581   //   If the class definition does not explicitly declare a copy
14582   //   constructor, one is declared implicitly.
14583   assert(ClassDecl->needsImplicitCopyConstructor());
14584 
14585   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
14586   if (DSM.isAlreadyBeingDeclared())
14587     return nullptr;
14588 
14589   QualType ClassType = Context.getTypeDeclType(ClassDecl);
14590   QualType ArgType = ClassType;
14591   bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
14592   if (Const)
14593     ArgType = ArgType.withConst();
14594 
14595   LangAS AS = getDefaultCXXMethodAddrSpace();
14596   if (AS != LangAS::Default)
14597     ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14598 
14599   ArgType = Context.getLValueReferenceType(ArgType);
14600 
14601   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14602                                                      CXXCopyConstructor,
14603                                                      Const);
14604 
14605   DeclarationName Name
14606     = Context.DeclarationNames.getCXXConstructorName(
14607                                            Context.getCanonicalType(ClassType));
14608   SourceLocation ClassLoc = ClassDecl->getLocation();
14609   DeclarationNameInfo NameInfo(Name, ClassLoc);
14610 
14611   //   An implicitly-declared copy constructor is an inline public
14612   //   member of its class.
14613   CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
14614       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
14615       ExplicitSpecifier(),
14616       /*isInline=*/true,
14617       /*isImplicitlyDeclared=*/true,
14618       Constexpr ? ConstexprSpecKind::Constexpr
14619                 : ConstexprSpecKind::Unspecified);
14620   CopyConstructor->setAccess(AS_public);
14621   CopyConstructor->setDefaulted();
14622 
14623   if (getLangOpts().CUDA) {
14624     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
14625                                             CopyConstructor,
14626                                             /* ConstRHS */ Const,
14627                                             /* Diagnose */ false);
14628   }
14629 
14630   setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType);
14631 
14632   // Add the parameter to the constructor.
14633   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
14634                                                ClassLoc, ClassLoc,
14635                                                /*IdentifierInfo=*/nullptr,
14636                                                ArgType, /*TInfo=*/nullptr,
14637                                                SC_None, nullptr);
14638   CopyConstructor->setParams(FromParam);
14639 
14640   CopyConstructor->setTrivial(
14641       ClassDecl->needsOverloadResolutionForCopyConstructor()
14642           ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
14643           : ClassDecl->hasTrivialCopyConstructor());
14644 
14645   CopyConstructor->setTrivialForCall(
14646       ClassDecl->hasAttr<TrivialABIAttr>() ||
14647       (ClassDecl->needsOverloadResolutionForCopyConstructor()
14648            ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor,
14649              TAH_ConsiderTrivialABI)
14650            : ClassDecl->hasTrivialCopyConstructorForCall()));
14651 
14652   // Note that we have declared this constructor.
14653   ++getASTContext().NumImplicitCopyConstructorsDeclared;
14654 
14655   Scope *S = getScopeForContext(ClassDecl);
14656   CheckImplicitSpecialMemberDeclaration(S, CopyConstructor);
14657 
14658   if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) {
14659     ClassDecl->setImplicitCopyConstructorIsDeleted();
14660     SetDeclDeleted(CopyConstructor, ClassLoc);
14661   }
14662 
14663   if (S)
14664     PushOnScopeChains(CopyConstructor, S, false);
14665   ClassDecl->addDecl(CopyConstructor);
14666 
14667   return CopyConstructor;
14668 }
14669 
14670 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
14671                                          CXXConstructorDecl *CopyConstructor) {
14672   assert((CopyConstructor->isDefaulted() &&
14673           CopyConstructor->isCopyConstructor() &&
14674           !CopyConstructor->doesThisDeclarationHaveABody() &&
14675           !CopyConstructor->isDeleted()) &&
14676          "DefineImplicitCopyConstructor - call it for implicit copy ctor");
14677   if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl())
14678     return;
14679 
14680   CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
14681   assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
14682 
14683   SynthesizedFunctionScope Scope(*this, CopyConstructor);
14684 
14685   // The exception specification is needed because we are defining the
14686   // function.
14687   ResolveExceptionSpec(CurrentLocation,
14688                        CopyConstructor->getType()->castAs<FunctionProtoType>());
14689   MarkVTableUsed(CurrentLocation, ClassDecl);
14690 
14691   // Add a context note for diagnostics produced after this point.
14692   Scope.addContextNote(CurrentLocation);
14693 
14694   // C++11 [class.copy]p7:
14695   //   The [definition of an implicitly declared copy constructor] is
14696   //   deprecated if the class has a user-declared copy assignment operator
14697   //   or a user-declared destructor.
14698   if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
14699     diagnoseDeprecatedCopyOperation(*this, CopyConstructor);
14700 
14701   if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) {
14702     CopyConstructor->setInvalidDecl();
14703   }  else {
14704     SourceLocation Loc = CopyConstructor->getEndLoc().isValid()
14705                              ? CopyConstructor->getEndLoc()
14706                              : CopyConstructor->getLocation();
14707     Sema::CompoundScopeRAII CompoundScope(*this);
14708     CopyConstructor->setBody(
14709         ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
14710     CopyConstructor->markUsed(Context);
14711   }
14712 
14713   if (ASTMutationListener *L = getASTMutationListener()) {
14714     L->CompletedImplicitDefinition(CopyConstructor);
14715   }
14716 }
14717 
14718 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
14719                                                     CXXRecordDecl *ClassDecl) {
14720   assert(ClassDecl->needsImplicitMoveConstructor());
14721 
14722   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
14723   if (DSM.isAlreadyBeingDeclared())
14724     return nullptr;
14725 
14726   QualType ClassType = Context.getTypeDeclType(ClassDecl);
14727 
14728   QualType ArgType = ClassType;
14729   LangAS AS = getDefaultCXXMethodAddrSpace();
14730   if (AS != LangAS::Default)
14731     ArgType = Context.getAddrSpaceQualType(ClassType, AS);
14732   ArgType = Context.getRValueReferenceType(ArgType);
14733 
14734   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14735                                                      CXXMoveConstructor,
14736                                                      false);
14737 
14738   DeclarationName Name
14739     = Context.DeclarationNames.getCXXConstructorName(
14740                                            Context.getCanonicalType(ClassType));
14741   SourceLocation ClassLoc = ClassDecl->getLocation();
14742   DeclarationNameInfo NameInfo(Name, ClassLoc);
14743 
14744   // C++11 [class.copy]p11:
14745   //   An implicitly-declared copy/move constructor is an inline public
14746   //   member of its class.
14747   CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
14748       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
14749       ExplicitSpecifier(),
14750       /*isInline=*/true,
14751       /*isImplicitlyDeclared=*/true,
14752       Constexpr ? ConstexprSpecKind::Constexpr
14753                 : ConstexprSpecKind::Unspecified);
14754   MoveConstructor->setAccess(AS_public);
14755   MoveConstructor->setDefaulted();
14756 
14757   if (getLangOpts().CUDA) {
14758     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
14759                                             MoveConstructor,
14760                                             /* ConstRHS */ false,
14761                                             /* Diagnose */ false);
14762   }
14763 
14764   setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType);
14765 
14766   // Add the parameter to the constructor.
14767   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
14768                                                ClassLoc, ClassLoc,
14769                                                /*IdentifierInfo=*/nullptr,
14770                                                ArgType, /*TInfo=*/nullptr,
14771                                                SC_None, nullptr);
14772   MoveConstructor->setParams(FromParam);
14773 
14774   MoveConstructor->setTrivial(
14775       ClassDecl->needsOverloadResolutionForMoveConstructor()
14776           ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
14777           : ClassDecl->hasTrivialMoveConstructor());
14778 
14779   MoveConstructor->setTrivialForCall(
14780       ClassDecl->hasAttr<TrivialABIAttr>() ||
14781       (ClassDecl->needsOverloadResolutionForMoveConstructor()
14782            ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor,
14783                                     TAH_ConsiderTrivialABI)
14784            : ClassDecl->hasTrivialMoveConstructorForCall()));
14785 
14786   // Note that we have declared this constructor.
14787   ++getASTContext().NumImplicitMoveConstructorsDeclared;
14788 
14789   Scope *S = getScopeForContext(ClassDecl);
14790   CheckImplicitSpecialMemberDeclaration(S, MoveConstructor);
14791 
14792   if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
14793     ClassDecl->setImplicitMoveConstructorIsDeleted();
14794     SetDeclDeleted(MoveConstructor, ClassLoc);
14795   }
14796 
14797   if (S)
14798     PushOnScopeChains(MoveConstructor, S, false);
14799   ClassDecl->addDecl(MoveConstructor);
14800 
14801   return MoveConstructor;
14802 }
14803 
14804 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
14805                                          CXXConstructorDecl *MoveConstructor) {
14806   assert((MoveConstructor->isDefaulted() &&
14807           MoveConstructor->isMoveConstructor() &&
14808           !MoveConstructor->doesThisDeclarationHaveABody() &&
14809           !MoveConstructor->isDeleted()) &&
14810          "DefineImplicitMoveConstructor - call it for implicit move ctor");
14811   if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl())
14812     return;
14813 
14814   CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
14815   assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
14816 
14817   SynthesizedFunctionScope Scope(*this, MoveConstructor);
14818 
14819   // The exception specification is needed because we are defining the
14820   // function.
14821   ResolveExceptionSpec(CurrentLocation,
14822                        MoveConstructor->getType()->castAs<FunctionProtoType>());
14823   MarkVTableUsed(CurrentLocation, ClassDecl);
14824 
14825   // Add a context note for diagnostics produced after this point.
14826   Scope.addContextNote(CurrentLocation);
14827 
14828   if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) {
14829     MoveConstructor->setInvalidDecl();
14830   } else {
14831     SourceLocation Loc = MoveConstructor->getEndLoc().isValid()
14832                              ? MoveConstructor->getEndLoc()
14833                              : MoveConstructor->getLocation();
14834     Sema::CompoundScopeRAII CompoundScope(*this);
14835     MoveConstructor->setBody(ActOnCompoundStmt(
14836         Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
14837     MoveConstructor->markUsed(Context);
14838   }
14839 
14840   if (ASTMutationListener *L = getASTMutationListener()) {
14841     L->CompletedImplicitDefinition(MoveConstructor);
14842   }
14843 }
14844 
14845 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
14846   return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
14847 }
14848 
14849 void Sema::DefineImplicitLambdaToFunctionPointerConversion(
14850                             SourceLocation CurrentLocation,
14851                             CXXConversionDecl *Conv) {
14852   SynthesizedFunctionScope Scope(*this, Conv);
14853   assert(!Conv->getReturnType()->isUndeducedType());
14854 
14855   QualType ConvRT = Conv->getType()->getAs<FunctionType>()->getReturnType();
14856   CallingConv CC =
14857       ConvRT->getPointeeType()->getAs<FunctionType>()->getCallConv();
14858 
14859   CXXRecordDecl *Lambda = Conv->getParent();
14860   FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
14861   FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker(CC);
14862 
14863   if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) {
14864     CallOp = InstantiateFunctionDeclaration(
14865         CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
14866     if (!CallOp)
14867       return;
14868 
14869     Invoker = InstantiateFunctionDeclaration(
14870         Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
14871     if (!Invoker)
14872       return;
14873   }
14874 
14875   if (CallOp->isInvalidDecl())
14876     return;
14877 
14878   // Mark the call operator referenced (and add to pending instantiations
14879   // if necessary).
14880   // For both the conversion and static-invoker template specializations
14881   // we construct their body's in this function, so no need to add them
14882   // to the PendingInstantiations.
14883   MarkFunctionReferenced(CurrentLocation, CallOp);
14884 
14885   // Fill in the __invoke function with a dummy implementation. IR generation
14886   // will fill in the actual details. Update its type in case it contained
14887   // an 'auto'.
14888   Invoker->markUsed(Context);
14889   Invoker->setReferenced();
14890   Invoker->setType(Conv->getReturnType()->getPointeeType());
14891   Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
14892 
14893   // Construct the body of the conversion function { return __invoke; }.
14894   Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
14895                                        VK_LValue, Conv->getLocation());
14896   assert(FunctionRef && "Can't refer to __invoke function?");
14897   Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
14898   Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(),
14899                                      Conv->getLocation()));
14900   Conv->markUsed(Context);
14901   Conv->setReferenced();
14902 
14903   if (ASTMutationListener *L = getASTMutationListener()) {
14904     L->CompletedImplicitDefinition(Conv);
14905     L->CompletedImplicitDefinition(Invoker);
14906   }
14907 }
14908 
14909 
14910 
14911 void Sema::DefineImplicitLambdaToBlockPointerConversion(
14912        SourceLocation CurrentLocation,
14913        CXXConversionDecl *Conv)
14914 {
14915   assert(!Conv->getParent()->isGenericLambda());
14916 
14917   SynthesizedFunctionScope Scope(*this, Conv);
14918 
14919   // Copy-initialize the lambda object as needed to capture it.
14920   Expr *This = ActOnCXXThis(CurrentLocation).get();
14921   Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
14922 
14923   ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
14924                                                         Conv->getLocation(),
14925                                                         Conv, DerefThis);
14926 
14927   // If we're not under ARC, make sure we still get the _Block_copy/autorelease
14928   // behavior.  Note that only the general conversion function does this
14929   // (since it's unusable otherwise); in the case where we inline the
14930   // block literal, it has block literal lifetime semantics.
14931   if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
14932     BuildBlock = ImplicitCastExpr::Create(
14933         Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject,
14934         BuildBlock.get(), nullptr, VK_RValue, FPOptionsOverride());
14935 
14936   if (BuildBlock.isInvalid()) {
14937     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
14938     Conv->setInvalidDecl();
14939     return;
14940   }
14941 
14942   // Create the return statement that returns the block from the conversion
14943   // function.
14944   StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
14945   if (Return.isInvalid()) {
14946     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
14947     Conv->setInvalidDecl();
14948     return;
14949   }
14950 
14951   // Set the body of the conversion function.
14952   Stmt *ReturnS = Return.get();
14953   Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(),
14954                                      Conv->getLocation()));
14955   Conv->markUsed(Context);
14956 
14957   // We're done; notify the mutation listener, if any.
14958   if (ASTMutationListener *L = getASTMutationListener()) {
14959     L->CompletedImplicitDefinition(Conv);
14960   }
14961 }
14962 
14963 /// Determine whether the given list arguments contains exactly one
14964 /// "real" (non-default) argument.
14965 static bool hasOneRealArgument(MultiExprArg Args) {
14966   switch (Args.size()) {
14967   case 0:
14968     return false;
14969 
14970   default:
14971     if (!Args[1]->isDefaultArgument())
14972       return false;
14973 
14974     LLVM_FALLTHROUGH;
14975   case 1:
14976     return !Args[0]->isDefaultArgument();
14977   }
14978 
14979   return false;
14980 }
14981 
14982 ExprResult
14983 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
14984                             NamedDecl *FoundDecl,
14985                             CXXConstructorDecl *Constructor,
14986                             MultiExprArg ExprArgs,
14987                             bool HadMultipleCandidates,
14988                             bool IsListInitialization,
14989                             bool IsStdInitListInitialization,
14990                             bool RequiresZeroInit,
14991                             unsigned ConstructKind,
14992                             SourceRange ParenRange) {
14993   bool Elidable = false;
14994 
14995   // C++0x [class.copy]p34:
14996   //   When certain criteria are met, an implementation is allowed to
14997   //   omit the copy/move construction of a class object, even if the
14998   //   copy/move constructor and/or destructor for the object have
14999   //   side effects. [...]
15000   //     - when a temporary class object that has not been bound to a
15001   //       reference (12.2) would be copied/moved to a class object
15002   //       with the same cv-unqualified type, the copy/move operation
15003   //       can be omitted by constructing the temporary object
15004   //       directly into the target of the omitted copy/move
15005   if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor &&
15006       Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
15007     Expr *SubExpr = ExprArgs[0];
15008     Elidable = SubExpr->isTemporaryObject(
15009         Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
15010   }
15011 
15012   return BuildCXXConstructExpr(ConstructLoc, DeclInitType,
15013                                FoundDecl, Constructor,
15014                                Elidable, ExprArgs, HadMultipleCandidates,
15015                                IsListInitialization,
15016                                IsStdInitListInitialization, RequiresZeroInit,
15017                                ConstructKind, ParenRange);
15018 }
15019 
15020 ExprResult
15021 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15022                             NamedDecl *FoundDecl,
15023                             CXXConstructorDecl *Constructor,
15024                             bool Elidable,
15025                             MultiExprArg ExprArgs,
15026                             bool HadMultipleCandidates,
15027                             bool IsListInitialization,
15028                             bool IsStdInitListInitialization,
15029                             bool RequiresZeroInit,
15030                             unsigned ConstructKind,
15031                             SourceRange ParenRange) {
15032   if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) {
15033     Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow);
15034     if (DiagnoseUseOfDecl(Constructor, ConstructLoc))
15035       return ExprError();
15036   }
15037 
15038   return BuildCXXConstructExpr(
15039       ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs,
15040       HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
15041       RequiresZeroInit, ConstructKind, ParenRange);
15042 }
15043 
15044 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
15045 /// including handling of its default argument expressions.
15046 ExprResult
15047 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15048                             CXXConstructorDecl *Constructor,
15049                             bool Elidable,
15050                             MultiExprArg ExprArgs,
15051                             bool HadMultipleCandidates,
15052                             bool IsListInitialization,
15053                             bool IsStdInitListInitialization,
15054                             bool RequiresZeroInit,
15055                             unsigned ConstructKind,
15056                             SourceRange ParenRange) {
15057   assert(declaresSameEntity(
15058              Constructor->getParent(),
15059              DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
15060          "given constructor for wrong type");
15061   MarkFunctionReferenced(ConstructLoc, Constructor);
15062   if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor))
15063     return ExprError();
15064   if (getLangOpts().SYCLIsDevice &&
15065       !checkSYCLDeviceFunction(ConstructLoc, Constructor))
15066     return ExprError();
15067 
15068   return CheckForImmediateInvocation(
15069       CXXConstructExpr::Create(
15070           Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs,
15071           HadMultipleCandidates, IsListInitialization,
15072           IsStdInitListInitialization, RequiresZeroInit,
15073           static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
15074           ParenRange),
15075       Constructor);
15076 }
15077 
15078 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
15079   assert(Field->hasInClassInitializer());
15080 
15081   // If we already have the in-class initializer nothing needs to be done.
15082   if (Field->getInClassInitializer())
15083     return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
15084 
15085   // If we might have already tried and failed to instantiate, don't try again.
15086   if (Field->isInvalidDecl())
15087     return ExprError();
15088 
15089   // Maybe we haven't instantiated the in-class initializer. Go check the
15090   // pattern FieldDecl to see if it has one.
15091   CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
15092 
15093   if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
15094     CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
15095     DeclContext::lookup_result Lookup =
15096         ClassPattern->lookup(Field->getDeclName());
15097 
15098     FieldDecl *Pattern = nullptr;
15099     for (auto L : Lookup) {
15100       if (isa<FieldDecl>(L)) {
15101         Pattern = cast<FieldDecl>(L);
15102         break;
15103       }
15104     }
15105     assert(Pattern && "We must have set the Pattern!");
15106 
15107     if (!Pattern->hasInClassInitializer() ||
15108         InstantiateInClassInitializer(Loc, Field, Pattern,
15109                                       getTemplateInstantiationArgs(Field))) {
15110       // Don't diagnose this again.
15111       Field->setInvalidDecl();
15112       return ExprError();
15113     }
15114     return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
15115   }
15116 
15117   // DR1351:
15118   //   If the brace-or-equal-initializer of a non-static data member
15119   //   invokes a defaulted default constructor of its class or of an
15120   //   enclosing class in a potentially evaluated subexpression, the
15121   //   program is ill-formed.
15122   //
15123   // This resolution is unworkable: the exception specification of the
15124   // default constructor can be needed in an unevaluated context, in
15125   // particular, in the operand of a noexcept-expression, and we can be
15126   // unable to compute an exception specification for an enclosed class.
15127   //
15128   // Any attempt to resolve the exception specification of a defaulted default
15129   // constructor before the initializer is lexically complete will ultimately
15130   // come here at which point we can diagnose it.
15131   RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
15132   Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
15133       << OutermostClass << Field;
15134   Diag(Field->getEndLoc(),
15135        diag::note_default_member_initializer_not_yet_parsed);
15136   // Recover by marking the field invalid, unless we're in a SFINAE context.
15137   if (!isSFINAEContext())
15138     Field->setInvalidDecl();
15139   return ExprError();
15140 }
15141 
15142 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
15143   if (VD->isInvalidDecl()) return;
15144   // If initializing the variable failed, don't also diagnose problems with
15145   // the desctructor, they're likely related.
15146   if (VD->getInit() && VD->getInit()->containsErrors())
15147     return;
15148 
15149   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
15150   if (ClassDecl->isInvalidDecl()) return;
15151   if (ClassDecl->hasIrrelevantDestructor()) return;
15152   if (ClassDecl->isDependentContext()) return;
15153 
15154   if (VD->isNoDestroy(getASTContext()))
15155     return;
15156 
15157   CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
15158 
15159   // If this is an array, we'll require the destructor during initialization, so
15160   // we can skip over this. We still want to emit exit-time destructor warnings
15161   // though.
15162   if (!VD->getType()->isArrayType()) {
15163     MarkFunctionReferenced(VD->getLocation(), Destructor);
15164     CheckDestructorAccess(VD->getLocation(), Destructor,
15165                           PDiag(diag::err_access_dtor_var)
15166                               << VD->getDeclName() << VD->getType());
15167     DiagnoseUseOfDecl(Destructor, VD->getLocation());
15168   }
15169 
15170   if (Destructor->isTrivial()) return;
15171 
15172   // If the destructor is constexpr, check whether the variable has constant
15173   // destruction now.
15174   if (Destructor->isConstexpr()) {
15175     bool HasConstantInit = false;
15176     if (VD->getInit() && !VD->getInit()->isValueDependent())
15177       HasConstantInit = VD->evaluateValue();
15178     SmallVector<PartialDiagnosticAt, 8> Notes;
15179     if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() &&
15180         HasConstantInit) {
15181       Diag(VD->getLocation(),
15182            diag::err_constexpr_var_requires_const_destruction) << VD;
15183       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
15184         Diag(Notes[I].first, Notes[I].second);
15185     }
15186   }
15187 
15188   if (!VD->hasGlobalStorage()) return;
15189 
15190   // Emit warning for non-trivial dtor in global scope (a real global,
15191   // class-static, function-static).
15192   Diag(VD->getLocation(), diag::warn_exit_time_destructor);
15193 
15194   // TODO: this should be re-enabled for static locals by !CXAAtExit
15195   if (!VD->isStaticLocal())
15196     Diag(VD->getLocation(), diag::warn_global_destructor);
15197 }
15198 
15199 /// Given a constructor and the set of arguments provided for the
15200 /// constructor, convert the arguments and add any required default arguments
15201 /// to form a proper call to this constructor.
15202 ///
15203 /// \returns true if an error occurred, false otherwise.
15204 bool
15205 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
15206                               MultiExprArg ArgsPtr,
15207                               SourceLocation Loc,
15208                               SmallVectorImpl<Expr*> &ConvertedArgs,
15209                               bool AllowExplicit,
15210                               bool IsListInitialization) {
15211   // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
15212   unsigned NumArgs = ArgsPtr.size();
15213   Expr **Args = ArgsPtr.data();
15214 
15215   const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>();
15216   unsigned NumParams = Proto->getNumParams();
15217 
15218   // If too few arguments are available, we'll fill in the rest with defaults.
15219   if (NumArgs < NumParams)
15220     ConvertedArgs.reserve(NumParams);
15221   else
15222     ConvertedArgs.reserve(NumArgs);
15223 
15224   VariadicCallType CallType =
15225     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
15226   SmallVector<Expr *, 8> AllArgs;
15227   bool Invalid = GatherArgumentsForCall(Loc, Constructor,
15228                                         Proto, 0,
15229                                         llvm::makeArrayRef(Args, NumArgs),
15230                                         AllArgs,
15231                                         CallType, AllowExplicit,
15232                                         IsListInitialization);
15233   ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
15234 
15235   DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
15236 
15237   CheckConstructorCall(Constructor,
15238                        llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
15239                        Proto, Loc);
15240 
15241   return Invalid;
15242 }
15243 
15244 static inline bool
15245 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
15246                                        const FunctionDecl *FnDecl) {
15247   const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
15248   if (isa<NamespaceDecl>(DC)) {
15249     return SemaRef.Diag(FnDecl->getLocation(),
15250                         diag::err_operator_new_delete_declared_in_namespace)
15251       << FnDecl->getDeclName();
15252   }
15253 
15254   if (isa<TranslationUnitDecl>(DC) &&
15255       FnDecl->getStorageClass() == SC_Static) {
15256     return SemaRef.Diag(FnDecl->getLocation(),
15257                         diag::err_operator_new_delete_declared_static)
15258       << FnDecl->getDeclName();
15259   }
15260 
15261   return false;
15262 }
15263 
15264 static QualType
15265 RemoveAddressSpaceFromPtr(Sema &SemaRef, const PointerType *PtrTy) {
15266   QualType QTy = PtrTy->getPointeeType();
15267   QTy = SemaRef.Context.removeAddrSpaceQualType(QTy);
15268   return SemaRef.Context.getPointerType(QTy);
15269 }
15270 
15271 static inline bool
15272 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
15273                             CanQualType ExpectedResultType,
15274                             CanQualType ExpectedFirstParamType,
15275                             unsigned DependentParamTypeDiag,
15276                             unsigned InvalidParamTypeDiag) {
15277   QualType ResultType =
15278       FnDecl->getType()->castAs<FunctionType>()->getReturnType();
15279 
15280   // The operator is valid on any address space for OpenCL.
15281   if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
15282     if (auto *PtrTy = ResultType->getAs<PointerType>()) {
15283       ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
15284     }
15285   }
15286 
15287   // Check that the result type is what we expect.
15288   if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) {
15289     // Reject even if the type is dependent; an operator delete function is
15290     // required to have a non-dependent result type.
15291     return SemaRef.Diag(
15292                FnDecl->getLocation(),
15293                ResultType->isDependentType()
15294                    ? diag::err_operator_new_delete_dependent_result_type
15295                    : diag::err_operator_new_delete_invalid_result_type)
15296            << FnDecl->getDeclName() << ExpectedResultType;
15297   }
15298 
15299   // A function template must have at least 2 parameters.
15300   if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
15301     return SemaRef.Diag(FnDecl->getLocation(),
15302                       diag::err_operator_new_delete_template_too_few_parameters)
15303         << FnDecl->getDeclName();
15304 
15305   // The function decl must have at least 1 parameter.
15306   if (FnDecl->getNumParams() == 0)
15307     return SemaRef.Diag(FnDecl->getLocation(),
15308                         diag::err_operator_new_delete_too_few_parameters)
15309       << FnDecl->getDeclName();
15310 
15311   QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
15312   if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
15313     // The operator is valid on any address space for OpenCL.
15314     if (auto *PtrTy =
15315             FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) {
15316       FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
15317     }
15318   }
15319 
15320   // Check that the first parameter type is what we expect.
15321   if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
15322       ExpectedFirstParamType) {
15323     // The first parameter type is not allowed to be dependent. As a tentative
15324     // DR resolution, we allow a dependent parameter type if it is the right
15325     // type anyway, to allow destroying operator delete in class templates.
15326     return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType()
15327                                                    ? DependentParamTypeDiag
15328                                                    : InvalidParamTypeDiag)
15329            << FnDecl->getDeclName() << ExpectedFirstParamType;
15330   }
15331 
15332   return false;
15333 }
15334 
15335 static bool
15336 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
15337   // C++ [basic.stc.dynamic.allocation]p1:
15338   //   A program is ill-formed if an allocation function is declared in a
15339   //   namespace scope other than global scope or declared static in global
15340   //   scope.
15341   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
15342     return true;
15343 
15344   CanQualType SizeTy =
15345     SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
15346 
15347   // C++ [basic.stc.dynamic.allocation]p1:
15348   //  The return type shall be void*. The first parameter shall have type
15349   //  std::size_t.
15350   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
15351                                   SizeTy,
15352                                   diag::err_operator_new_dependent_param_type,
15353                                   diag::err_operator_new_param_type))
15354     return true;
15355 
15356   // C++ [basic.stc.dynamic.allocation]p1:
15357   //  The first parameter shall not have an associated default argument.
15358   if (FnDecl->getParamDecl(0)->hasDefaultArg())
15359     return SemaRef.Diag(FnDecl->getLocation(),
15360                         diag::err_operator_new_default_arg)
15361       << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
15362 
15363   return false;
15364 }
15365 
15366 static bool
15367 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
15368   // C++ [basic.stc.dynamic.deallocation]p1:
15369   //   A program is ill-formed if deallocation functions are declared in a
15370   //   namespace scope other than global scope or declared static in global
15371   //   scope.
15372   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
15373     return true;
15374 
15375   auto *MD = dyn_cast<CXXMethodDecl>(FnDecl);
15376 
15377   // C++ P0722:
15378   //   Within a class C, the first parameter of a destroying operator delete
15379   //   shall be of type C *. The first parameter of any other deallocation
15380   //   function shall be of type void *.
15381   CanQualType ExpectedFirstParamType =
15382       MD && MD->isDestroyingOperatorDelete()
15383           ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType(
15384                 SemaRef.Context.getRecordType(MD->getParent())))
15385           : SemaRef.Context.VoidPtrTy;
15386 
15387   // C++ [basic.stc.dynamic.deallocation]p2:
15388   //   Each deallocation function shall return void
15389   if (CheckOperatorNewDeleteTypes(
15390           SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType,
15391           diag::err_operator_delete_dependent_param_type,
15392           diag::err_operator_delete_param_type))
15393     return true;
15394 
15395   // C++ P0722:
15396   //   A destroying operator delete shall be a usual deallocation function.
15397   if (MD && !MD->getParent()->isDependentContext() &&
15398       MD->isDestroyingOperatorDelete() &&
15399       !SemaRef.isUsualDeallocationFunction(MD)) {
15400     SemaRef.Diag(MD->getLocation(),
15401                  diag::err_destroying_operator_delete_not_usual);
15402     return true;
15403   }
15404 
15405   return false;
15406 }
15407 
15408 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
15409 /// of this overloaded operator is well-formed. If so, returns false;
15410 /// otherwise, emits appropriate diagnostics and returns true.
15411 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
15412   assert(FnDecl && FnDecl->isOverloadedOperator() &&
15413          "Expected an overloaded operator declaration");
15414 
15415   OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
15416 
15417   // C++ [over.oper]p5:
15418   //   The allocation and deallocation functions, operator new,
15419   //   operator new[], operator delete and operator delete[], are
15420   //   described completely in 3.7.3. The attributes and restrictions
15421   //   found in the rest of this subclause do not apply to them unless
15422   //   explicitly stated in 3.7.3.
15423   if (Op == OO_Delete || Op == OO_Array_Delete)
15424     return CheckOperatorDeleteDeclaration(*this, FnDecl);
15425 
15426   if (Op == OO_New || Op == OO_Array_New)
15427     return CheckOperatorNewDeclaration(*this, FnDecl);
15428 
15429   // C++ [over.oper]p6:
15430   //   An operator function shall either be a non-static member
15431   //   function or be a non-member function and have at least one
15432   //   parameter whose type is a class, a reference to a class, an
15433   //   enumeration, or a reference to an enumeration.
15434   if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
15435     if (MethodDecl->isStatic())
15436       return Diag(FnDecl->getLocation(),
15437                   diag::err_operator_overload_static) << FnDecl->getDeclName();
15438   } else {
15439     bool ClassOrEnumParam = false;
15440     for (auto Param : FnDecl->parameters()) {
15441       QualType ParamType = Param->getType().getNonReferenceType();
15442       if (ParamType->isDependentType() || ParamType->isRecordType() ||
15443           ParamType->isEnumeralType()) {
15444         ClassOrEnumParam = true;
15445         break;
15446       }
15447     }
15448 
15449     if (!ClassOrEnumParam)
15450       return Diag(FnDecl->getLocation(),
15451                   diag::err_operator_overload_needs_class_or_enum)
15452         << FnDecl->getDeclName();
15453   }
15454 
15455   // C++ [over.oper]p8:
15456   //   An operator function cannot have default arguments (8.3.6),
15457   //   except where explicitly stated below.
15458   //
15459   // Only the function-call operator allows default arguments
15460   // (C++ [over.call]p1).
15461   if (Op != OO_Call) {
15462     for (auto Param : FnDecl->parameters()) {
15463       if (Param->hasDefaultArg())
15464         return Diag(Param->getLocation(),
15465                     diag::err_operator_overload_default_arg)
15466           << FnDecl->getDeclName() << Param->getDefaultArgRange();
15467     }
15468   }
15469 
15470   static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
15471     { false, false, false }
15472 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
15473     , { Unary, Binary, MemberOnly }
15474 #include "clang/Basic/OperatorKinds.def"
15475   };
15476 
15477   bool CanBeUnaryOperator = OperatorUses[Op][0];
15478   bool CanBeBinaryOperator = OperatorUses[Op][1];
15479   bool MustBeMemberOperator = OperatorUses[Op][2];
15480 
15481   // C++ [over.oper]p8:
15482   //   [...] Operator functions cannot have more or fewer parameters
15483   //   than the number required for the corresponding operator, as
15484   //   described in the rest of this subclause.
15485   unsigned NumParams = FnDecl->getNumParams()
15486                      + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
15487   if (Op != OO_Call &&
15488       ((NumParams == 1 && !CanBeUnaryOperator) ||
15489        (NumParams == 2 && !CanBeBinaryOperator) ||
15490        (NumParams < 1) || (NumParams > 2))) {
15491     // We have the wrong number of parameters.
15492     unsigned ErrorKind;
15493     if (CanBeUnaryOperator && CanBeBinaryOperator) {
15494       ErrorKind = 2;  // 2 -> unary or binary.
15495     } else if (CanBeUnaryOperator) {
15496       ErrorKind = 0;  // 0 -> unary
15497     } else {
15498       assert(CanBeBinaryOperator &&
15499              "All non-call overloaded operators are unary or binary!");
15500       ErrorKind = 1;  // 1 -> binary
15501     }
15502 
15503     return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
15504       << FnDecl->getDeclName() << NumParams << ErrorKind;
15505   }
15506 
15507   // Overloaded operators other than operator() cannot be variadic.
15508   if (Op != OO_Call &&
15509       FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) {
15510     return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
15511       << FnDecl->getDeclName();
15512   }
15513 
15514   // Some operators must be non-static member functions.
15515   if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
15516     return Diag(FnDecl->getLocation(),
15517                 diag::err_operator_overload_must_be_member)
15518       << FnDecl->getDeclName();
15519   }
15520 
15521   // C++ [over.inc]p1:
15522   //   The user-defined function called operator++ implements the
15523   //   prefix and postfix ++ operator. If this function is a member
15524   //   function with no parameters, or a non-member function with one
15525   //   parameter of class or enumeration type, it defines the prefix
15526   //   increment operator ++ for objects of that type. If the function
15527   //   is a member function with one parameter (which shall be of type
15528   //   int) or a non-member function with two parameters (the second
15529   //   of which shall be of type int), it defines the postfix
15530   //   increment operator ++ for objects of that type.
15531   if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
15532     ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
15533     QualType ParamType = LastParam->getType();
15534 
15535     if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
15536         !ParamType->isDependentType())
15537       return Diag(LastParam->getLocation(),
15538                   diag::err_operator_overload_post_incdec_must_be_int)
15539         << LastParam->getType() << (Op == OO_MinusMinus);
15540   }
15541 
15542   return false;
15543 }
15544 
15545 static bool
15546 checkLiteralOperatorTemplateParameterList(Sema &SemaRef,
15547                                           FunctionTemplateDecl *TpDecl) {
15548   TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters();
15549 
15550   // Must have one or two template parameters.
15551   if (TemplateParams->size() == 1) {
15552     NonTypeTemplateParmDecl *PmDecl =
15553         dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0));
15554 
15555     // The template parameter must be a char parameter pack.
15556     if (PmDecl && PmDecl->isTemplateParameterPack() &&
15557         SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy))
15558       return false;
15559 
15560     // C++20 [over.literal]p5:
15561     //   A string literal operator template is a literal operator template
15562     //   whose template-parameter-list comprises a single non-type
15563     //   template-parameter of class type.
15564     //
15565     // As a DR resolution, we also allow placeholders for deduced class
15566     // template specializations.
15567     if (SemaRef.getLangOpts().CPlusPlus20 &&
15568         !PmDecl->isTemplateParameterPack() &&
15569         (PmDecl->getType()->isRecordType() ||
15570          PmDecl->getType()->getAs<DeducedTemplateSpecializationType>()))
15571       return false;
15572   } else if (TemplateParams->size() == 2) {
15573     TemplateTypeParmDecl *PmType =
15574         dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0));
15575     NonTypeTemplateParmDecl *PmArgs =
15576         dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1));
15577 
15578     // The second template parameter must be a parameter pack with the
15579     // first template parameter as its type.
15580     if (PmType && PmArgs && !PmType->isTemplateParameterPack() &&
15581         PmArgs->isTemplateParameterPack()) {
15582       const TemplateTypeParmType *TArgs =
15583           PmArgs->getType()->getAs<TemplateTypeParmType>();
15584       if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
15585           TArgs->getIndex() == PmType->getIndex()) {
15586         if (!SemaRef.inTemplateInstantiation())
15587           SemaRef.Diag(TpDecl->getLocation(),
15588                        diag::ext_string_literal_operator_template);
15589         return false;
15590       }
15591     }
15592   }
15593 
15594   SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(),
15595                diag::err_literal_operator_template)
15596       << TpDecl->getTemplateParameters()->getSourceRange();
15597   return true;
15598 }
15599 
15600 /// CheckLiteralOperatorDeclaration - Check whether the declaration
15601 /// of this literal operator function is well-formed. If so, returns
15602 /// false; otherwise, emits appropriate diagnostics and returns true.
15603 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
15604   if (isa<CXXMethodDecl>(FnDecl)) {
15605     Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
15606       << FnDecl->getDeclName();
15607     return true;
15608   }
15609 
15610   if (FnDecl->isExternC()) {
15611     Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
15612     if (const LinkageSpecDecl *LSD =
15613             FnDecl->getDeclContext()->getExternCContext())
15614       Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
15615     return true;
15616   }
15617 
15618   // This might be the definition of a literal operator template.
15619   FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
15620 
15621   // This might be a specialization of a literal operator template.
15622   if (!TpDecl)
15623     TpDecl = FnDecl->getPrimaryTemplate();
15624 
15625   // template <char...> type operator "" name() and
15626   // template <class T, T...> type operator "" name() are the only valid
15627   // template signatures, and the only valid signatures with no parameters.
15628   //
15629   // C++20 also allows template <SomeClass T> type operator "" name().
15630   if (TpDecl) {
15631     if (FnDecl->param_size() != 0) {
15632       Diag(FnDecl->getLocation(),
15633            diag::err_literal_operator_template_with_params);
15634       return true;
15635     }
15636 
15637     if (checkLiteralOperatorTemplateParameterList(*this, TpDecl))
15638       return true;
15639 
15640   } else if (FnDecl->param_size() == 1) {
15641     const ParmVarDecl *Param = FnDecl->getParamDecl(0);
15642 
15643     QualType ParamType = Param->getType().getUnqualifiedType();
15644 
15645     // Only unsigned long long int, long double, any character type, and const
15646     // char * are allowed as the only parameters.
15647     if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
15648         ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) ||
15649         Context.hasSameType(ParamType, Context.CharTy) ||
15650         Context.hasSameType(ParamType, Context.WideCharTy) ||
15651         Context.hasSameType(ParamType, Context.Char8Ty) ||
15652         Context.hasSameType(ParamType, Context.Char16Ty) ||
15653         Context.hasSameType(ParamType, Context.Char32Ty)) {
15654     } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) {
15655       QualType InnerType = Ptr->getPointeeType();
15656 
15657       // Pointer parameter must be a const char *.
15658       if (!(Context.hasSameType(InnerType.getUnqualifiedType(),
15659                                 Context.CharTy) &&
15660             InnerType.isConstQualified() && !InnerType.isVolatileQualified())) {
15661         Diag(Param->getSourceRange().getBegin(),
15662              diag::err_literal_operator_param)
15663             << ParamType << "'const char *'" << Param->getSourceRange();
15664         return true;
15665       }
15666 
15667     } else if (ParamType->isRealFloatingType()) {
15668       Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
15669           << ParamType << Context.LongDoubleTy << Param->getSourceRange();
15670       return true;
15671 
15672     } else if (ParamType->isIntegerType()) {
15673       Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
15674           << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange();
15675       return true;
15676 
15677     } else {
15678       Diag(Param->getSourceRange().getBegin(),
15679            diag::err_literal_operator_invalid_param)
15680           << ParamType << Param->getSourceRange();
15681       return true;
15682     }
15683 
15684   } else if (FnDecl->param_size() == 2) {
15685     FunctionDecl::param_iterator Param = FnDecl->param_begin();
15686 
15687     // First, verify that the first parameter is correct.
15688 
15689     QualType FirstParamType = (*Param)->getType().getUnqualifiedType();
15690 
15691     // Two parameter function must have a pointer to const as a
15692     // first parameter; let's strip those qualifiers.
15693     const PointerType *PT = FirstParamType->getAs<PointerType>();
15694 
15695     if (!PT) {
15696       Diag((*Param)->getSourceRange().getBegin(),
15697            diag::err_literal_operator_param)
15698           << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15699       return true;
15700     }
15701 
15702     QualType PointeeType = PT->getPointeeType();
15703     // First parameter must be const
15704     if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) {
15705       Diag((*Param)->getSourceRange().getBegin(),
15706            diag::err_literal_operator_param)
15707           << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15708       return true;
15709     }
15710 
15711     QualType InnerType = PointeeType.getUnqualifiedType();
15712     // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and
15713     // const char32_t* are allowed as the first parameter to a two-parameter
15714     // function
15715     if (!(Context.hasSameType(InnerType, Context.CharTy) ||
15716           Context.hasSameType(InnerType, Context.WideCharTy) ||
15717           Context.hasSameType(InnerType, Context.Char8Ty) ||
15718           Context.hasSameType(InnerType, Context.Char16Ty) ||
15719           Context.hasSameType(InnerType, Context.Char32Ty))) {
15720       Diag((*Param)->getSourceRange().getBegin(),
15721            diag::err_literal_operator_param)
15722           << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15723       return true;
15724     }
15725 
15726     // Move on to the second and final parameter.
15727     ++Param;
15728 
15729     // The second parameter must be a std::size_t.
15730     QualType SecondParamType = (*Param)->getType().getUnqualifiedType();
15731     if (!Context.hasSameType(SecondParamType, Context.getSizeType())) {
15732       Diag((*Param)->getSourceRange().getBegin(),
15733            diag::err_literal_operator_param)
15734           << SecondParamType << Context.getSizeType()
15735           << (*Param)->getSourceRange();
15736       return true;
15737     }
15738   } else {
15739     Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count);
15740     return true;
15741   }
15742 
15743   // Parameters are good.
15744 
15745   // A parameter-declaration-clause containing a default argument is not
15746   // equivalent to any of the permitted forms.
15747   for (auto Param : FnDecl->parameters()) {
15748     if (Param->hasDefaultArg()) {
15749       Diag(Param->getDefaultArgRange().getBegin(),
15750            diag::err_literal_operator_default_argument)
15751         << Param->getDefaultArgRange();
15752       break;
15753     }
15754   }
15755 
15756   StringRef LiteralName
15757     = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
15758   if (LiteralName[0] != '_' &&
15759       !getSourceManager().isInSystemHeader(FnDecl->getLocation())) {
15760     // C++11 [usrlit.suffix]p1:
15761     //   Literal suffix identifiers that do not start with an underscore
15762     //   are reserved for future standardization.
15763     Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
15764       << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
15765   }
15766 
15767   return false;
15768 }
15769 
15770 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
15771 /// linkage specification, including the language and (if present)
15772 /// the '{'. ExternLoc is the location of the 'extern', Lang is the
15773 /// language string literal. LBraceLoc, if valid, provides the location of
15774 /// the '{' brace. Otherwise, this linkage specification does not
15775 /// have any braces.
15776 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
15777                                            Expr *LangStr,
15778                                            SourceLocation LBraceLoc) {
15779   StringLiteral *Lit = cast<StringLiteral>(LangStr);
15780   if (!Lit->isAscii()) {
15781     Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
15782       << LangStr->getSourceRange();
15783     return nullptr;
15784   }
15785 
15786   StringRef Lang = Lit->getString();
15787   LinkageSpecDecl::LanguageIDs Language;
15788   if (Lang == "C")
15789     Language = LinkageSpecDecl::lang_c;
15790   else if (Lang == "C++")
15791     Language = LinkageSpecDecl::lang_cxx;
15792   else {
15793     Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
15794       << LangStr->getSourceRange();
15795     return nullptr;
15796   }
15797 
15798   // FIXME: Add all the various semantics of linkage specifications
15799 
15800   LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
15801                                                LangStr->getExprLoc(), Language,
15802                                                LBraceLoc.isValid());
15803   CurContext->addDecl(D);
15804   PushDeclContext(S, D);
15805   return D;
15806 }
15807 
15808 /// ActOnFinishLinkageSpecification - Complete the definition of
15809 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
15810 /// valid, it's the position of the closing '}' brace in a linkage
15811 /// specification that uses braces.
15812 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
15813                                             Decl *LinkageSpec,
15814                                             SourceLocation RBraceLoc) {
15815   if (RBraceLoc.isValid()) {
15816     LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
15817     LSDecl->setRBraceLoc(RBraceLoc);
15818   }
15819   PopDeclContext();
15820   return LinkageSpec;
15821 }
15822 
15823 Decl *Sema::ActOnEmptyDeclaration(Scope *S,
15824                                   const ParsedAttributesView &AttrList,
15825                                   SourceLocation SemiLoc) {
15826   Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
15827   // Attribute declarations appertain to empty declaration so we handle
15828   // them here.
15829   ProcessDeclAttributeList(S, ED, AttrList);
15830 
15831   CurContext->addDecl(ED);
15832   return ED;
15833 }
15834 
15835 /// Perform semantic analysis for the variable declaration that
15836 /// occurs within a C++ catch clause, returning the newly-created
15837 /// variable.
15838 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
15839                                          TypeSourceInfo *TInfo,
15840                                          SourceLocation StartLoc,
15841                                          SourceLocation Loc,
15842                                          IdentifierInfo *Name) {
15843   bool Invalid = false;
15844   QualType ExDeclType = TInfo->getType();
15845 
15846   // Arrays and functions decay.
15847   if (ExDeclType->isArrayType())
15848     ExDeclType = Context.getArrayDecayedType(ExDeclType);
15849   else if (ExDeclType->isFunctionType())
15850     ExDeclType = Context.getPointerType(ExDeclType);
15851 
15852   // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
15853   // The exception-declaration shall not denote a pointer or reference to an
15854   // incomplete type, other than [cv] void*.
15855   // N2844 forbids rvalue references.
15856   if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
15857     Diag(Loc, diag::err_catch_rvalue_ref);
15858     Invalid = true;
15859   }
15860 
15861   if (ExDeclType->isVariablyModifiedType()) {
15862     Diag(Loc, diag::err_catch_variably_modified) << ExDeclType;
15863     Invalid = true;
15864   }
15865 
15866   QualType BaseType = ExDeclType;
15867   int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
15868   unsigned DK = diag::err_catch_incomplete;
15869   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
15870     BaseType = Ptr->getPointeeType();
15871     Mode = 1;
15872     DK = diag::err_catch_incomplete_ptr;
15873   } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
15874     // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
15875     BaseType = Ref->getPointeeType();
15876     Mode = 2;
15877     DK = diag::err_catch_incomplete_ref;
15878   }
15879   if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
15880       !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
15881     Invalid = true;
15882 
15883   if (!Invalid && Mode != 1 && BaseType->isSizelessType()) {
15884     Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType;
15885     Invalid = true;
15886   }
15887 
15888   if (!Invalid && !ExDeclType->isDependentType() &&
15889       RequireNonAbstractType(Loc, ExDeclType,
15890                              diag::err_abstract_type_in_decl,
15891                              AbstractVariableType))
15892     Invalid = true;
15893 
15894   // Only the non-fragile NeXT runtime currently supports C++ catches
15895   // of ObjC types, and no runtime supports catching ObjC types by value.
15896   if (!Invalid && getLangOpts().ObjC) {
15897     QualType T = ExDeclType;
15898     if (const ReferenceType *RT = T->getAs<ReferenceType>())
15899       T = RT->getPointeeType();
15900 
15901     if (T->isObjCObjectType()) {
15902       Diag(Loc, diag::err_objc_object_catch);
15903       Invalid = true;
15904     } else if (T->isObjCObjectPointerType()) {
15905       // FIXME: should this be a test for macosx-fragile specifically?
15906       if (getLangOpts().ObjCRuntime.isFragile())
15907         Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
15908     }
15909   }
15910 
15911   VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
15912                                     ExDeclType, TInfo, SC_None);
15913   ExDecl->setExceptionVariable(true);
15914 
15915   // In ARC, infer 'retaining' for variables of retainable type.
15916   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
15917     Invalid = true;
15918 
15919   if (!Invalid && !ExDeclType->isDependentType()) {
15920     if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
15921       // Insulate this from anything else we might currently be parsing.
15922       EnterExpressionEvaluationContext scope(
15923           *this, ExpressionEvaluationContext::PotentiallyEvaluated);
15924 
15925       // C++ [except.handle]p16:
15926       //   The object declared in an exception-declaration or, if the
15927       //   exception-declaration does not specify a name, a temporary (12.2) is
15928       //   copy-initialized (8.5) from the exception object. [...]
15929       //   The object is destroyed when the handler exits, after the destruction
15930       //   of any automatic objects initialized within the handler.
15931       //
15932       // We just pretend to initialize the object with itself, then make sure
15933       // it can be destroyed later.
15934       QualType initType = Context.getExceptionObjectType(ExDeclType);
15935 
15936       InitializedEntity entity =
15937         InitializedEntity::InitializeVariable(ExDecl);
15938       InitializationKind initKind =
15939         InitializationKind::CreateCopy(Loc, SourceLocation());
15940 
15941       Expr *opaqueValue =
15942         new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
15943       InitializationSequence sequence(*this, entity, initKind, opaqueValue);
15944       ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
15945       if (result.isInvalid())
15946         Invalid = true;
15947       else {
15948         // If the constructor used was non-trivial, set this as the
15949         // "initializer".
15950         CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
15951         if (!construct->getConstructor()->isTrivial()) {
15952           Expr *init = MaybeCreateExprWithCleanups(construct);
15953           ExDecl->setInit(init);
15954         }
15955 
15956         // And make sure it's destructable.
15957         FinalizeVarWithDestructor(ExDecl, recordType);
15958       }
15959     }
15960   }
15961 
15962   if (Invalid)
15963     ExDecl->setInvalidDecl();
15964 
15965   return ExDecl;
15966 }
15967 
15968 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
15969 /// handler.
15970 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
15971   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15972   bool Invalid = D.isInvalidType();
15973 
15974   // Check for unexpanded parameter packs.
15975   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
15976                                       UPPC_ExceptionType)) {
15977     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
15978                                              D.getIdentifierLoc());
15979     Invalid = true;
15980   }
15981 
15982   IdentifierInfo *II = D.getIdentifier();
15983   if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
15984                                              LookupOrdinaryName,
15985                                              ForVisibleRedeclaration)) {
15986     // The scope should be freshly made just for us. There is just no way
15987     // it contains any previous declaration, except for function parameters in
15988     // a function-try-block's catch statement.
15989     assert(!S->isDeclScope(PrevDecl));
15990     if (isDeclInScope(PrevDecl, CurContext, S)) {
15991       Diag(D.getIdentifierLoc(), diag::err_redefinition)
15992         << D.getIdentifier();
15993       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
15994       Invalid = true;
15995     } else if (PrevDecl->isTemplateParameter())
15996       // Maybe we will complain about the shadowed template parameter.
15997       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15998   }
15999 
16000   if (D.getCXXScopeSpec().isSet() && !Invalid) {
16001     Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
16002       << D.getCXXScopeSpec().getRange();
16003     Invalid = true;
16004   }
16005 
16006   VarDecl *ExDecl = BuildExceptionDeclaration(
16007       S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier());
16008   if (Invalid)
16009     ExDecl->setInvalidDecl();
16010 
16011   // Add the exception declaration into this scope.
16012   if (II)
16013     PushOnScopeChains(ExDecl, S);
16014   else
16015     CurContext->addDecl(ExDecl);
16016 
16017   ProcessDeclAttributes(S, ExDecl, D);
16018   return ExDecl;
16019 }
16020 
16021 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
16022                                          Expr *AssertExpr,
16023                                          Expr *AssertMessageExpr,
16024                                          SourceLocation RParenLoc) {
16025   StringLiteral *AssertMessage =
16026       AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
16027 
16028   if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
16029     return nullptr;
16030 
16031   return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
16032                                       AssertMessage, RParenLoc, false);
16033 }
16034 
16035 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
16036                                          Expr *AssertExpr,
16037                                          StringLiteral *AssertMessage,
16038                                          SourceLocation RParenLoc,
16039                                          bool Failed) {
16040   assert(AssertExpr != nullptr && "Expected non-null condition");
16041   if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
16042       !Failed) {
16043     // In a static_assert-declaration, the constant-expression shall be a
16044     // constant expression that can be contextually converted to bool.
16045     ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
16046     if (Converted.isInvalid())
16047       Failed = true;
16048 
16049     ExprResult FullAssertExpr =
16050         ActOnFinishFullExpr(Converted.get(), StaticAssertLoc,
16051                             /*DiscardedValue*/ false,
16052                             /*IsConstexpr*/ true);
16053     if (FullAssertExpr.isInvalid())
16054       Failed = true;
16055     else
16056       AssertExpr = FullAssertExpr.get();
16057 
16058     llvm::APSInt Cond;
16059     if (!Failed && VerifyIntegerConstantExpression(
16060                        AssertExpr, &Cond,
16061                        diag::err_static_assert_expression_is_not_constant)
16062                        .isInvalid())
16063       Failed = true;
16064 
16065     if (!Failed && !Cond) {
16066       SmallString<256> MsgBuffer;
16067       llvm::raw_svector_ostream Msg(MsgBuffer);
16068       if (AssertMessage)
16069         AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
16070 
16071       Expr *InnerCond = nullptr;
16072       std::string InnerCondDescription;
16073       std::tie(InnerCond, InnerCondDescription) =
16074         findFailedBooleanCondition(Converted.get());
16075       if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) {
16076         // Drill down into concept specialization expressions to see why they
16077         // weren't satisfied.
16078         Diag(StaticAssertLoc, diag::err_static_assert_failed)
16079           << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
16080         ConstraintSatisfaction Satisfaction;
16081         if (!CheckConstraintSatisfaction(InnerCond, Satisfaction))
16082           DiagnoseUnsatisfiedConstraint(Satisfaction);
16083       } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond)
16084                            && !isa<IntegerLiteral>(InnerCond)) {
16085         Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed)
16086           << InnerCondDescription << !AssertMessage
16087           << Msg.str() << InnerCond->getSourceRange();
16088       } else {
16089         Diag(StaticAssertLoc, diag::err_static_assert_failed)
16090           << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
16091       }
16092       Failed = true;
16093     }
16094   } else {
16095     ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc,
16096                                                     /*DiscardedValue*/false,
16097                                                     /*IsConstexpr*/true);
16098     if (FullAssertExpr.isInvalid())
16099       Failed = true;
16100     else
16101       AssertExpr = FullAssertExpr.get();
16102   }
16103 
16104   Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
16105                                         AssertExpr, AssertMessage, RParenLoc,
16106                                         Failed);
16107 
16108   CurContext->addDecl(Decl);
16109   return Decl;
16110 }
16111 
16112 /// Perform semantic analysis of the given friend type declaration.
16113 ///
16114 /// \returns A friend declaration that.
16115 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
16116                                       SourceLocation FriendLoc,
16117                                       TypeSourceInfo *TSInfo) {
16118   assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
16119 
16120   QualType T = TSInfo->getType();
16121   SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
16122 
16123   // C++03 [class.friend]p2:
16124   //   An elaborated-type-specifier shall be used in a friend declaration
16125   //   for a class.*
16126   //
16127   //   * The class-key of the elaborated-type-specifier is required.
16128   if (!CodeSynthesisContexts.empty()) {
16129     // Do not complain about the form of friend template types during any kind
16130     // of code synthesis. For template instantiation, we will have complained
16131     // when the template was defined.
16132   } else {
16133     if (!T->isElaboratedTypeSpecifier()) {
16134       // If we evaluated the type to a record type, suggest putting
16135       // a tag in front.
16136       if (const RecordType *RT = T->getAs<RecordType>()) {
16137         RecordDecl *RD = RT->getDecl();
16138 
16139         SmallString<16> InsertionText(" ");
16140         InsertionText += RD->getKindName();
16141 
16142         Diag(TypeRange.getBegin(),
16143              getLangOpts().CPlusPlus11 ?
16144                diag::warn_cxx98_compat_unelaborated_friend_type :
16145                diag::ext_unelaborated_friend_type)
16146           << (unsigned) RD->getTagKind()
16147           << T
16148           << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc),
16149                                         InsertionText);
16150       } else {
16151         Diag(FriendLoc,
16152              getLangOpts().CPlusPlus11 ?
16153                diag::warn_cxx98_compat_nonclass_type_friend :
16154                diag::ext_nonclass_type_friend)
16155           << T
16156           << TypeRange;
16157       }
16158     } else if (T->getAs<EnumType>()) {
16159       Diag(FriendLoc,
16160            getLangOpts().CPlusPlus11 ?
16161              diag::warn_cxx98_compat_enum_friend :
16162              diag::ext_enum_friend)
16163         << T
16164         << TypeRange;
16165     }
16166 
16167     // C++11 [class.friend]p3:
16168     //   A friend declaration that does not declare a function shall have one
16169     //   of the following forms:
16170     //     friend elaborated-type-specifier ;
16171     //     friend simple-type-specifier ;
16172     //     friend typename-specifier ;
16173     if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
16174       Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
16175   }
16176 
16177   //   If the type specifier in a friend declaration designates a (possibly
16178   //   cv-qualified) class type, that class is declared as a friend; otherwise,
16179   //   the friend declaration is ignored.
16180   return FriendDecl::Create(Context, CurContext,
16181                             TSInfo->getTypeLoc().getBeginLoc(), TSInfo,
16182                             FriendLoc);
16183 }
16184 
16185 /// Handle a friend tag declaration where the scope specifier was
16186 /// templated.
16187 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
16188                                     unsigned TagSpec, SourceLocation TagLoc,
16189                                     CXXScopeSpec &SS, IdentifierInfo *Name,
16190                                     SourceLocation NameLoc,
16191                                     const ParsedAttributesView &Attr,
16192                                     MultiTemplateParamsArg TempParamLists) {
16193   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
16194 
16195   bool IsMemberSpecialization = false;
16196   bool Invalid = false;
16197 
16198   if (TemplateParameterList *TemplateParams =
16199           MatchTemplateParametersToScopeSpecifier(
16200               TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
16201               IsMemberSpecialization, Invalid)) {
16202     if (TemplateParams->size() > 0) {
16203       // This is a declaration of a class template.
16204       if (Invalid)
16205         return nullptr;
16206 
16207       return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
16208                                 NameLoc, Attr, TemplateParams, AS_public,
16209                                 /*ModulePrivateLoc=*/SourceLocation(),
16210                                 FriendLoc, TempParamLists.size() - 1,
16211                                 TempParamLists.data()).get();
16212     } else {
16213       // The "template<>" header is extraneous.
16214       Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
16215         << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
16216       IsMemberSpecialization = true;
16217     }
16218   }
16219 
16220   if (Invalid) return nullptr;
16221 
16222   bool isAllExplicitSpecializations = true;
16223   for (unsigned I = TempParamLists.size(); I-- > 0; ) {
16224     if (TempParamLists[I]->size()) {
16225       isAllExplicitSpecializations = false;
16226       break;
16227     }
16228   }
16229 
16230   // FIXME: don't ignore attributes.
16231 
16232   // If it's explicit specializations all the way down, just forget
16233   // about the template header and build an appropriate non-templated
16234   // friend.  TODO: for source fidelity, remember the headers.
16235   if (isAllExplicitSpecializations) {
16236     if (SS.isEmpty()) {
16237       bool Owned = false;
16238       bool IsDependent = false;
16239       return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
16240                       Attr, AS_public,
16241                       /*ModulePrivateLoc=*/SourceLocation(),
16242                       MultiTemplateParamsArg(), Owned, IsDependent,
16243                       /*ScopedEnumKWLoc=*/SourceLocation(),
16244                       /*ScopedEnumUsesClassTag=*/false,
16245                       /*UnderlyingType=*/TypeResult(),
16246                       /*IsTypeSpecifier=*/false,
16247                       /*IsTemplateParamOrArg=*/false);
16248     }
16249 
16250     NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
16251     ElaboratedTypeKeyword Keyword
16252       = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
16253     QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
16254                                    *Name, NameLoc);
16255     if (T.isNull())
16256       return nullptr;
16257 
16258     TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
16259     if (isa<DependentNameType>(T)) {
16260       DependentNameTypeLoc TL =
16261           TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
16262       TL.setElaboratedKeywordLoc(TagLoc);
16263       TL.setQualifierLoc(QualifierLoc);
16264       TL.setNameLoc(NameLoc);
16265     } else {
16266       ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
16267       TL.setElaboratedKeywordLoc(TagLoc);
16268       TL.setQualifierLoc(QualifierLoc);
16269       TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
16270     }
16271 
16272     FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
16273                                             TSI, FriendLoc, TempParamLists);
16274     Friend->setAccess(AS_public);
16275     CurContext->addDecl(Friend);
16276     return Friend;
16277   }
16278 
16279   assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
16280 
16281 
16282 
16283   // Handle the case of a templated-scope friend class.  e.g.
16284   //   template <class T> class A<T>::B;
16285   // FIXME: we don't support these right now.
16286   Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
16287     << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
16288   ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
16289   QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
16290   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
16291   DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
16292   TL.setElaboratedKeywordLoc(TagLoc);
16293   TL.setQualifierLoc(SS.getWithLocInContext(Context));
16294   TL.setNameLoc(NameLoc);
16295 
16296   FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
16297                                           TSI, FriendLoc, TempParamLists);
16298   Friend->setAccess(AS_public);
16299   Friend->setUnsupportedFriend(true);
16300   CurContext->addDecl(Friend);
16301   return Friend;
16302 }
16303 
16304 /// Handle a friend type declaration.  This works in tandem with
16305 /// ActOnTag.
16306 ///
16307 /// Notes on friend class templates:
16308 ///
16309 /// We generally treat friend class declarations as if they were
16310 /// declaring a class.  So, for example, the elaborated type specifier
16311 /// in a friend declaration is required to obey the restrictions of a
16312 /// class-head (i.e. no typedefs in the scope chain), template
16313 /// parameters are required to match up with simple template-ids, &c.
16314 /// However, unlike when declaring a template specialization, it's
16315 /// okay to refer to a template specialization without an empty
16316 /// template parameter declaration, e.g.
16317 ///   friend class A<T>::B<unsigned>;
16318 /// We permit this as a special case; if there are any template
16319 /// parameters present at all, require proper matching, i.e.
16320 ///   template <> template \<class T> friend class A<int>::B;
16321 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
16322                                 MultiTemplateParamsArg TempParams) {
16323   SourceLocation Loc = DS.getBeginLoc();
16324 
16325   assert(DS.isFriendSpecified());
16326   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
16327 
16328   // C++ [class.friend]p3:
16329   // A friend declaration that does not declare a function shall have one of
16330   // the following forms:
16331   //     friend elaborated-type-specifier ;
16332   //     friend simple-type-specifier ;
16333   //     friend typename-specifier ;
16334   //
16335   // Any declaration with a type qualifier does not have that form. (It's
16336   // legal to specify a qualified type as a friend, you just can't write the
16337   // keywords.)
16338   if (DS.getTypeQualifiers()) {
16339     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
16340       Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const";
16341     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
16342       Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile";
16343     if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
16344       Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict";
16345     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
16346       Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic";
16347     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
16348       Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned";
16349   }
16350 
16351   // Try to convert the decl specifier to a type.  This works for
16352   // friend templates because ActOnTag never produces a ClassTemplateDecl
16353   // for a TUK_Friend.
16354   Declarator TheDeclarator(DS, DeclaratorContext::Member);
16355   TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
16356   QualType T = TSI->getType();
16357   if (TheDeclarator.isInvalidType())
16358     return nullptr;
16359 
16360   if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
16361     return nullptr;
16362 
16363   // This is definitely an error in C++98.  It's probably meant to
16364   // be forbidden in C++0x, too, but the specification is just
16365   // poorly written.
16366   //
16367   // The problem is with declarations like the following:
16368   //   template <T> friend A<T>::foo;
16369   // where deciding whether a class C is a friend or not now hinges
16370   // on whether there exists an instantiation of A that causes
16371   // 'foo' to equal C.  There are restrictions on class-heads
16372   // (which we declare (by fiat) elaborated friend declarations to
16373   // be) that makes this tractable.
16374   //
16375   // FIXME: handle "template <> friend class A<T>;", which
16376   // is possibly well-formed?  Who even knows?
16377   if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
16378     Diag(Loc, diag::err_tagless_friend_type_template)
16379       << DS.getSourceRange();
16380     return nullptr;
16381   }
16382 
16383   // C++98 [class.friend]p1: A friend of a class is a function
16384   //   or class that is not a member of the class . . .
16385   // This is fixed in DR77, which just barely didn't make the C++03
16386   // deadline.  It's also a very silly restriction that seriously
16387   // affects inner classes and which nobody else seems to implement;
16388   // thus we never diagnose it, not even in -pedantic.
16389   //
16390   // But note that we could warn about it: it's always useless to
16391   // friend one of your own members (it's not, however, worthless to
16392   // friend a member of an arbitrary specialization of your template).
16393 
16394   Decl *D;
16395   if (!TempParams.empty())
16396     D = FriendTemplateDecl::Create(Context, CurContext, Loc,
16397                                    TempParams,
16398                                    TSI,
16399                                    DS.getFriendSpecLoc());
16400   else
16401     D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
16402 
16403   if (!D)
16404     return nullptr;
16405 
16406   D->setAccess(AS_public);
16407   CurContext->addDecl(D);
16408 
16409   return D;
16410 }
16411 
16412 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
16413                                         MultiTemplateParamsArg TemplateParams) {
16414   const DeclSpec &DS = D.getDeclSpec();
16415 
16416   assert(DS.isFriendSpecified());
16417   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
16418 
16419   SourceLocation Loc = D.getIdentifierLoc();
16420   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16421 
16422   // C++ [class.friend]p1
16423   //   A friend of a class is a function or class....
16424   // Note that this sees through typedefs, which is intended.
16425   // It *doesn't* see through dependent types, which is correct
16426   // according to [temp.arg.type]p3:
16427   //   If a declaration acquires a function type through a
16428   //   type dependent on a template-parameter and this causes
16429   //   a declaration that does not use the syntactic form of a
16430   //   function declarator to have a function type, the program
16431   //   is ill-formed.
16432   if (!TInfo->getType()->isFunctionType()) {
16433     Diag(Loc, diag::err_unexpected_friend);
16434 
16435     // It might be worthwhile to try to recover by creating an
16436     // appropriate declaration.
16437     return nullptr;
16438   }
16439 
16440   // C++ [namespace.memdef]p3
16441   //  - If a friend declaration in a non-local class first declares a
16442   //    class or function, the friend class or function is a member
16443   //    of the innermost enclosing namespace.
16444   //  - The name of the friend is not found by simple name lookup
16445   //    until a matching declaration is provided in that namespace
16446   //    scope (either before or after the class declaration granting
16447   //    friendship).
16448   //  - If a friend function is called, its name may be found by the
16449   //    name lookup that considers functions from namespaces and
16450   //    classes associated with the types of the function arguments.
16451   //  - When looking for a prior declaration of a class or a function
16452   //    declared as a friend, scopes outside the innermost enclosing
16453   //    namespace scope are not considered.
16454 
16455   CXXScopeSpec &SS = D.getCXXScopeSpec();
16456   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
16457   assert(NameInfo.getName());
16458 
16459   // Check for unexpanded parameter packs.
16460   if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
16461       DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
16462       DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
16463     return nullptr;
16464 
16465   // The context we found the declaration in, or in which we should
16466   // create the declaration.
16467   DeclContext *DC;
16468   Scope *DCScope = S;
16469   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
16470                         ForExternalRedeclaration);
16471 
16472   // There are five cases here.
16473   //   - There's no scope specifier and we're in a local class. Only look
16474   //     for functions declared in the immediately-enclosing block scope.
16475   // We recover from invalid scope qualifiers as if they just weren't there.
16476   FunctionDecl *FunctionContainingLocalClass = nullptr;
16477   if ((SS.isInvalid() || !SS.isSet()) &&
16478       (FunctionContainingLocalClass =
16479            cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
16480     // C++11 [class.friend]p11:
16481     //   If a friend declaration appears in a local class and the name
16482     //   specified is an unqualified name, a prior declaration is
16483     //   looked up without considering scopes that are outside the
16484     //   innermost enclosing non-class scope. For a friend function
16485     //   declaration, if there is no prior declaration, the program is
16486     //   ill-formed.
16487 
16488     // Find the innermost enclosing non-class scope. This is the block
16489     // scope containing the local class definition (or for a nested class,
16490     // the outer local class).
16491     DCScope = S->getFnParent();
16492 
16493     // Look up the function name in the scope.
16494     Previous.clear(LookupLocalFriendName);
16495     LookupName(Previous, S, /*AllowBuiltinCreation*/false);
16496 
16497     if (!Previous.empty()) {
16498       // All possible previous declarations must have the same context:
16499       // either they were declared at block scope or they are members of
16500       // one of the enclosing local classes.
16501       DC = Previous.getRepresentativeDecl()->getDeclContext();
16502     } else {
16503       // This is ill-formed, but provide the context that we would have
16504       // declared the function in, if we were permitted to, for error recovery.
16505       DC = FunctionContainingLocalClass;
16506     }
16507     adjustContextForLocalExternDecl(DC);
16508 
16509     // C++ [class.friend]p6:
16510     //   A function can be defined in a friend declaration of a class if and
16511     //   only if the class is a non-local class (9.8), the function name is
16512     //   unqualified, and the function has namespace scope.
16513     if (D.isFunctionDefinition()) {
16514       Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
16515     }
16516 
16517   //   - There's no scope specifier, in which case we just go to the
16518   //     appropriate scope and look for a function or function template
16519   //     there as appropriate.
16520   } else if (SS.isInvalid() || !SS.isSet()) {
16521     // C++11 [namespace.memdef]p3:
16522     //   If the name in a friend declaration is neither qualified nor
16523     //   a template-id and the declaration is a function or an
16524     //   elaborated-type-specifier, the lookup to determine whether
16525     //   the entity has been previously declared shall not consider
16526     //   any scopes outside the innermost enclosing namespace.
16527     bool isTemplateId =
16528         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId;
16529 
16530     // Find the appropriate context according to the above.
16531     DC = CurContext;
16532 
16533     // Skip class contexts.  If someone can cite chapter and verse
16534     // for this behavior, that would be nice --- it's what GCC and
16535     // EDG do, and it seems like a reasonable intent, but the spec
16536     // really only says that checks for unqualified existing
16537     // declarations should stop at the nearest enclosing namespace,
16538     // not that they should only consider the nearest enclosing
16539     // namespace.
16540     while (DC->isRecord())
16541       DC = DC->getParent();
16542 
16543     DeclContext *LookupDC = DC;
16544     while (LookupDC->isTransparentContext())
16545       LookupDC = LookupDC->getParent();
16546 
16547     while (true) {
16548       LookupQualifiedName(Previous, LookupDC);
16549 
16550       if (!Previous.empty()) {
16551         DC = LookupDC;
16552         break;
16553       }
16554 
16555       if (isTemplateId) {
16556         if (isa<TranslationUnitDecl>(LookupDC)) break;
16557       } else {
16558         if (LookupDC->isFileContext()) break;
16559       }
16560       LookupDC = LookupDC->getParent();
16561     }
16562 
16563     DCScope = getScopeForDeclContext(S, DC);
16564 
16565   //   - There's a non-dependent scope specifier, in which case we
16566   //     compute it and do a previous lookup there for a function
16567   //     or function template.
16568   } else if (!SS.getScopeRep()->isDependent()) {
16569     DC = computeDeclContext(SS);
16570     if (!DC) return nullptr;
16571 
16572     if (RequireCompleteDeclContext(SS, DC)) return nullptr;
16573 
16574     LookupQualifiedName(Previous, DC);
16575 
16576     // C++ [class.friend]p1: A friend of a class is a function or
16577     //   class that is not a member of the class . . .
16578     if (DC->Equals(CurContext))
16579       Diag(DS.getFriendSpecLoc(),
16580            getLangOpts().CPlusPlus11 ?
16581              diag::warn_cxx98_compat_friend_is_member :
16582              diag::err_friend_is_member);
16583 
16584     if (D.isFunctionDefinition()) {
16585       // C++ [class.friend]p6:
16586       //   A function can be defined in a friend declaration of a class if and
16587       //   only if the class is a non-local class (9.8), the function name is
16588       //   unqualified, and the function has namespace scope.
16589       //
16590       // FIXME: We should only do this if the scope specifier names the
16591       // innermost enclosing namespace; otherwise the fixit changes the
16592       // meaning of the code.
16593       SemaDiagnosticBuilder DB
16594         = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
16595 
16596       DB << SS.getScopeRep();
16597       if (DC->isFileContext())
16598         DB << FixItHint::CreateRemoval(SS.getRange());
16599       SS.clear();
16600     }
16601 
16602   //   - There's a scope specifier that does not match any template
16603   //     parameter lists, in which case we use some arbitrary context,
16604   //     create a method or method template, and wait for instantiation.
16605   //   - There's a scope specifier that does match some template
16606   //     parameter lists, which we don't handle right now.
16607   } else {
16608     if (D.isFunctionDefinition()) {
16609       // C++ [class.friend]p6:
16610       //   A function can be defined in a friend declaration of a class if and
16611       //   only if the class is a non-local class (9.8), the function name is
16612       //   unqualified, and the function has namespace scope.
16613       Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
16614         << SS.getScopeRep();
16615     }
16616 
16617     DC = CurContext;
16618     assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
16619   }
16620 
16621   if (!DC->isRecord()) {
16622     int DiagArg = -1;
16623     switch (D.getName().getKind()) {
16624     case UnqualifiedIdKind::IK_ConstructorTemplateId:
16625     case UnqualifiedIdKind::IK_ConstructorName:
16626       DiagArg = 0;
16627       break;
16628     case UnqualifiedIdKind::IK_DestructorName:
16629       DiagArg = 1;
16630       break;
16631     case UnqualifiedIdKind::IK_ConversionFunctionId:
16632       DiagArg = 2;
16633       break;
16634     case UnqualifiedIdKind::IK_DeductionGuideName:
16635       DiagArg = 3;
16636       break;
16637     case UnqualifiedIdKind::IK_Identifier:
16638     case UnqualifiedIdKind::IK_ImplicitSelfParam:
16639     case UnqualifiedIdKind::IK_LiteralOperatorId:
16640     case UnqualifiedIdKind::IK_OperatorFunctionId:
16641     case UnqualifiedIdKind::IK_TemplateId:
16642       break;
16643     }
16644     // This implies that it has to be an operator or function.
16645     if (DiagArg >= 0) {
16646       Diag(Loc, diag::err_introducing_special_friend) << DiagArg;
16647       return nullptr;
16648     }
16649   }
16650 
16651   // FIXME: This is an egregious hack to cope with cases where the scope stack
16652   // does not contain the declaration context, i.e., in an out-of-line
16653   // definition of a class.
16654   Scope FakeDCScope(S, Scope::DeclScope, Diags);
16655   if (!DCScope) {
16656     FakeDCScope.setEntity(DC);
16657     DCScope = &FakeDCScope;
16658   }
16659 
16660   bool AddToScope = true;
16661   NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
16662                                           TemplateParams, AddToScope);
16663   if (!ND) return nullptr;
16664 
16665   assert(ND->getLexicalDeclContext() == CurContext);
16666 
16667   // If we performed typo correction, we might have added a scope specifier
16668   // and changed the decl context.
16669   DC = ND->getDeclContext();
16670 
16671   // Add the function declaration to the appropriate lookup tables,
16672   // adjusting the redeclarations list as necessary.  We don't
16673   // want to do this yet if the friending class is dependent.
16674   //
16675   // Also update the scope-based lookup if the target context's
16676   // lookup context is in lexical scope.
16677   if (!CurContext->isDependentContext()) {
16678     DC = DC->getRedeclContext();
16679     DC->makeDeclVisibleInContext(ND);
16680     if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
16681       PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
16682   }
16683 
16684   FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
16685                                        D.getIdentifierLoc(), ND,
16686                                        DS.getFriendSpecLoc());
16687   FrD->setAccess(AS_public);
16688   CurContext->addDecl(FrD);
16689 
16690   if (ND->isInvalidDecl()) {
16691     FrD->setInvalidDecl();
16692   } else {
16693     if (DC->isRecord()) CheckFriendAccess(ND);
16694 
16695     FunctionDecl *FD;
16696     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
16697       FD = FTD->getTemplatedDecl();
16698     else
16699       FD = cast<FunctionDecl>(ND);
16700 
16701     // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
16702     // default argument expression, that declaration shall be a definition
16703     // and shall be the only declaration of the function or function
16704     // template in the translation unit.
16705     if (functionDeclHasDefaultArgument(FD)) {
16706       // We can't look at FD->getPreviousDecl() because it may not have been set
16707       // if we're in a dependent context. If the function is known to be a
16708       // redeclaration, we will have narrowed Previous down to the right decl.
16709       if (D.isRedeclaration()) {
16710         Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
16711         Diag(Previous.getRepresentativeDecl()->getLocation(),
16712              diag::note_previous_declaration);
16713       } else if (!D.isFunctionDefinition())
16714         Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
16715     }
16716 
16717     // Mark templated-scope function declarations as unsupported.
16718     if (FD->getNumTemplateParameterLists() && SS.isValid()) {
16719       Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
16720         << SS.getScopeRep() << SS.getRange()
16721         << cast<CXXRecordDecl>(CurContext);
16722       FrD->setUnsupportedFriend(true);
16723     }
16724   }
16725 
16726   return ND;
16727 }
16728 
16729 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
16730   AdjustDeclIfTemplate(Dcl);
16731 
16732   FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
16733   if (!Fn) {
16734     Diag(DelLoc, diag::err_deleted_non_function);
16735     return;
16736   }
16737 
16738   // Deleted function does not have a body.
16739   Fn->setWillHaveBody(false);
16740 
16741   if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
16742     // Don't consider the implicit declaration we generate for explicit
16743     // specializations. FIXME: Do not generate these implicit declarations.
16744     if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
16745          Prev->getPreviousDecl()) &&
16746         !Prev->isDefined()) {
16747       Diag(DelLoc, diag::err_deleted_decl_not_first);
16748       Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
16749            Prev->isImplicit() ? diag::note_previous_implicit_declaration
16750                               : diag::note_previous_declaration);
16751       // We can't recover from this; the declaration might have already
16752       // been used.
16753       Fn->setInvalidDecl();
16754       return;
16755     }
16756 
16757     // To maintain the invariant that functions are only deleted on their first
16758     // declaration, mark the implicitly-instantiated declaration of the
16759     // explicitly-specialized function as deleted instead of marking the
16760     // instantiated redeclaration.
16761     Fn = Fn->getCanonicalDecl();
16762   }
16763 
16764   // dllimport/dllexport cannot be deleted.
16765   if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
16766     Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
16767     Fn->setInvalidDecl();
16768   }
16769 
16770   // C++11 [basic.start.main]p3:
16771   //   A program that defines main as deleted [...] is ill-formed.
16772   if (Fn->isMain())
16773     Diag(DelLoc, diag::err_deleted_main);
16774 
16775   // C++11 [dcl.fct.def.delete]p4:
16776   //  A deleted function is implicitly inline.
16777   Fn->setImplicitlyInline();
16778   Fn->setDeletedAsWritten();
16779 }
16780 
16781 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
16782   if (!Dcl || Dcl->isInvalidDecl())
16783     return;
16784 
16785   auto *FD = dyn_cast<FunctionDecl>(Dcl);
16786   if (!FD) {
16787     if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) {
16788       if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) {
16789         Diag(DefaultLoc, diag::err_defaulted_comparison_template);
16790         return;
16791       }
16792     }
16793 
16794     Diag(DefaultLoc, diag::err_default_special_members)
16795         << getLangOpts().CPlusPlus20;
16796     return;
16797   }
16798 
16799   // Reject if this can't possibly be a defaultable function.
16800   DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
16801   if (!DefKind &&
16802       // A dependent function that doesn't locally look defaultable can
16803       // still instantiate to a defaultable function if it's a constructor
16804       // or assignment operator.
16805       (!FD->isDependentContext() ||
16806        (!isa<CXXConstructorDecl>(FD) &&
16807         FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) {
16808     Diag(DefaultLoc, diag::err_default_special_members)
16809         << getLangOpts().CPlusPlus20;
16810     return;
16811   }
16812 
16813   if (DefKind.isComparison() &&
16814       !isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
16815     Diag(FD->getLocation(), diag::err_defaulted_comparison_out_of_class)
16816         << (int)DefKind.asComparison();
16817     return;
16818   }
16819 
16820   // Issue compatibility warning. We already warned if the operator is
16821   // 'operator<=>' when parsing the '<=>' token.
16822   if (DefKind.isComparison() &&
16823       DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) {
16824     Diag(DefaultLoc, getLangOpts().CPlusPlus20
16825                          ? diag::warn_cxx17_compat_defaulted_comparison
16826                          : diag::ext_defaulted_comparison);
16827   }
16828 
16829   FD->setDefaulted();
16830   FD->setExplicitlyDefaulted();
16831 
16832   // Defer checking functions that are defaulted in a dependent context.
16833   if (FD->isDependentContext())
16834     return;
16835 
16836   // Unset that we will have a body for this function. We might not,
16837   // if it turns out to be trivial, and we don't need this marking now
16838   // that we've marked it as defaulted.
16839   FD->setWillHaveBody(false);
16840 
16841   // If this definition appears within the record, do the checking when
16842   // the record is complete. This is always the case for a defaulted
16843   // comparison.
16844   if (DefKind.isComparison())
16845     return;
16846   auto *MD = cast<CXXMethodDecl>(FD);
16847 
16848   const FunctionDecl *Primary = FD;
16849   if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
16850     // Ask the template instantiation pattern that actually had the
16851     // '= default' on it.
16852     Primary = Pattern;
16853 
16854   // If the method was defaulted on its first declaration, we will have
16855   // already performed the checking in CheckCompletedCXXClass. Such a
16856   // declaration doesn't trigger an implicit definition.
16857   if (Primary->getCanonicalDecl()->isDefaulted())
16858     return;
16859 
16860   // FIXME: Once we support defining comparisons out of class, check for a
16861   // defaulted comparison here.
16862   if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember()))
16863     MD->setInvalidDecl();
16864   else
16865     DefineDefaultedFunction(*this, MD, DefaultLoc);
16866 }
16867 
16868 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
16869   for (Stmt *SubStmt : S->children()) {
16870     if (!SubStmt)
16871       continue;
16872     if (isa<ReturnStmt>(SubStmt))
16873       Self.Diag(SubStmt->getBeginLoc(),
16874                 diag::err_return_in_constructor_handler);
16875     if (!isa<Expr>(SubStmt))
16876       SearchForReturnInStmt(Self, SubStmt);
16877   }
16878 }
16879 
16880 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
16881   for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
16882     CXXCatchStmt *Handler = TryBlock->getHandler(I);
16883     SearchForReturnInStmt(*this, Handler);
16884   }
16885 }
16886 
16887 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
16888                                              const CXXMethodDecl *Old) {
16889   const auto *NewFT = New->getType()->castAs<FunctionProtoType>();
16890   const auto *OldFT = Old->getType()->castAs<FunctionProtoType>();
16891 
16892   if (OldFT->hasExtParameterInfos()) {
16893     for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I)
16894       // A parameter of the overriding method should be annotated with noescape
16895       // if the corresponding parameter of the overridden method is annotated.
16896       if (OldFT->getExtParameterInfo(I).isNoEscape() &&
16897           !NewFT->getExtParameterInfo(I).isNoEscape()) {
16898         Diag(New->getParamDecl(I)->getLocation(),
16899              diag::warn_overriding_method_missing_noescape);
16900         Diag(Old->getParamDecl(I)->getLocation(),
16901              diag::note_overridden_marked_noescape);
16902       }
16903   }
16904 
16905   // Virtual overrides must have the same code_seg.
16906   const auto *OldCSA = Old->getAttr<CodeSegAttr>();
16907   const auto *NewCSA = New->getAttr<CodeSegAttr>();
16908   if ((NewCSA || OldCSA) &&
16909       (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) {
16910     Diag(New->getLocation(), diag::err_mismatched_code_seg_override);
16911     Diag(Old->getLocation(), diag::note_previous_declaration);
16912     return true;
16913   }
16914 
16915   CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
16916 
16917   // If the calling conventions match, everything is fine
16918   if (NewCC == OldCC)
16919     return false;
16920 
16921   // If the calling conventions mismatch because the new function is static,
16922   // suppress the calling convention mismatch error; the error about static
16923   // function override (err_static_overrides_virtual from
16924   // Sema::CheckFunctionDeclaration) is more clear.
16925   if (New->getStorageClass() == SC_Static)
16926     return false;
16927 
16928   Diag(New->getLocation(),
16929        diag::err_conflicting_overriding_cc_attributes)
16930     << New->getDeclName() << New->getType() << Old->getType();
16931   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
16932   return true;
16933 }
16934 
16935 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
16936                                              const CXXMethodDecl *Old) {
16937   QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType();
16938   QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType();
16939 
16940   if (Context.hasSameType(NewTy, OldTy) ||
16941       NewTy->isDependentType() || OldTy->isDependentType())
16942     return false;
16943 
16944   // Check if the return types are covariant
16945   QualType NewClassTy, OldClassTy;
16946 
16947   /// Both types must be pointers or references to classes.
16948   if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
16949     if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
16950       NewClassTy = NewPT->getPointeeType();
16951       OldClassTy = OldPT->getPointeeType();
16952     }
16953   } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
16954     if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
16955       if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
16956         NewClassTy = NewRT->getPointeeType();
16957         OldClassTy = OldRT->getPointeeType();
16958       }
16959     }
16960   }
16961 
16962   // The return types aren't either both pointers or references to a class type.
16963   if (NewClassTy.isNull()) {
16964     Diag(New->getLocation(),
16965          diag::err_different_return_type_for_overriding_virtual_function)
16966         << New->getDeclName() << NewTy << OldTy
16967         << New->getReturnTypeSourceRange();
16968     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
16969         << Old->getReturnTypeSourceRange();
16970 
16971     return true;
16972   }
16973 
16974   if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
16975     // C++14 [class.virtual]p8:
16976     //   If the class type in the covariant return type of D::f differs from
16977     //   that of B::f, the class type in the return type of D::f shall be
16978     //   complete at the point of declaration of D::f or shall be the class
16979     //   type D.
16980     if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
16981       if (!RT->isBeingDefined() &&
16982           RequireCompleteType(New->getLocation(), NewClassTy,
16983                               diag::err_covariant_return_incomplete,
16984                               New->getDeclName()))
16985         return true;
16986     }
16987 
16988     // Check if the new class derives from the old class.
16989     if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) {
16990       Diag(New->getLocation(), diag::err_covariant_return_not_derived)
16991           << New->getDeclName() << NewTy << OldTy
16992           << New->getReturnTypeSourceRange();
16993       Diag(Old->getLocation(), diag::note_overridden_virtual_function)
16994           << Old->getReturnTypeSourceRange();
16995       return true;
16996     }
16997 
16998     // Check if we the conversion from derived to base is valid.
16999     if (CheckDerivedToBaseConversion(
17000             NewClassTy, OldClassTy,
17001             diag::err_covariant_return_inaccessible_base,
17002             diag::err_covariant_return_ambiguous_derived_to_base_conv,
17003             New->getLocation(), New->getReturnTypeSourceRange(),
17004             New->getDeclName(), nullptr)) {
17005       // FIXME: this note won't trigger for delayed access control
17006       // diagnostics, and it's impossible to get an undelayed error
17007       // here from access control during the original parse because
17008       // the ParsingDeclSpec/ParsingDeclarator are still in scope.
17009       Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17010           << Old->getReturnTypeSourceRange();
17011       return true;
17012     }
17013   }
17014 
17015   // The qualifiers of the return types must be the same.
17016   if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
17017     Diag(New->getLocation(),
17018          diag::err_covariant_return_type_different_qualifications)
17019         << New->getDeclName() << NewTy << OldTy
17020         << New->getReturnTypeSourceRange();
17021     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17022         << Old->getReturnTypeSourceRange();
17023     return true;
17024   }
17025 
17026 
17027   // The new class type must have the same or less qualifiers as the old type.
17028   if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
17029     Diag(New->getLocation(),
17030          diag::err_covariant_return_type_class_type_more_qualified)
17031         << New->getDeclName() << NewTy << OldTy
17032         << New->getReturnTypeSourceRange();
17033     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17034         << Old->getReturnTypeSourceRange();
17035     return true;
17036   }
17037 
17038   return false;
17039 }
17040 
17041 /// Mark the given method pure.
17042 ///
17043 /// \param Method the method to be marked pure.
17044 ///
17045 /// \param InitRange the source range that covers the "0" initializer.
17046 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
17047   SourceLocation EndLoc = InitRange.getEnd();
17048   if (EndLoc.isValid())
17049     Method->setRangeEnd(EndLoc);
17050 
17051   if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
17052     Method->setPure();
17053     return false;
17054   }
17055 
17056   if (!Method->isInvalidDecl())
17057     Diag(Method->getLocation(), diag::err_non_virtual_pure)
17058       << Method->getDeclName() << InitRange;
17059   return true;
17060 }
17061 
17062 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) {
17063   if (D->getFriendObjectKind())
17064     Diag(D->getLocation(), diag::err_pure_friend);
17065   else if (auto *M = dyn_cast<CXXMethodDecl>(D))
17066     CheckPureMethod(M, ZeroLoc);
17067   else
17068     Diag(D->getLocation(), diag::err_illegal_initializer);
17069 }
17070 
17071 /// Determine whether the given declaration is a global variable or
17072 /// static data member.
17073 static bool isNonlocalVariable(const Decl *D) {
17074   if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
17075     return Var->hasGlobalStorage();
17076 
17077   return false;
17078 }
17079 
17080 /// Invoked when we are about to parse an initializer for the declaration
17081 /// 'Dcl'.
17082 ///
17083 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
17084 /// static data member of class X, names should be looked up in the scope of
17085 /// class X. If the declaration had a scope specifier, a scope will have
17086 /// been created and passed in for this purpose. Otherwise, S will be null.
17087 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
17088   // If there is no declaration, there was an error parsing it.
17089   if (!D || D->isInvalidDecl())
17090     return;
17091 
17092   // We will always have a nested name specifier here, but this declaration
17093   // might not be out of line if the specifier names the current namespace:
17094   //   extern int n;
17095   //   int ::n = 0;
17096   if (S && D->isOutOfLine())
17097     EnterDeclaratorContext(S, D->getDeclContext());
17098 
17099   // If we are parsing the initializer for a static data member, push a
17100   // new expression evaluation context that is associated with this static
17101   // data member.
17102   if (isNonlocalVariable(D))
17103     PushExpressionEvaluationContext(
17104         ExpressionEvaluationContext::PotentiallyEvaluated, D);
17105 }
17106 
17107 /// Invoked after we are finished parsing an initializer for the declaration D.
17108 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
17109   // If there is no declaration, there was an error parsing it.
17110   if (!D || D->isInvalidDecl())
17111     return;
17112 
17113   if (isNonlocalVariable(D))
17114     PopExpressionEvaluationContext();
17115 
17116   if (S && D->isOutOfLine())
17117     ExitDeclaratorContext(S);
17118 }
17119 
17120 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
17121 /// C++ if/switch/while/for statement.
17122 /// e.g: "if (int x = f()) {...}"
17123 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
17124   // C++ 6.4p2:
17125   // The declarator shall not specify a function or an array.
17126   // The type-specifier-seq shall not contain typedef and shall not declare a
17127   // new class or enumeration.
17128   assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
17129          "Parser allowed 'typedef' as storage class of condition decl.");
17130 
17131   Decl *Dcl = ActOnDeclarator(S, D);
17132   if (!Dcl)
17133     return true;
17134 
17135   if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
17136     Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
17137       << D.getSourceRange();
17138     return true;
17139   }
17140 
17141   return Dcl;
17142 }
17143 
17144 void Sema::LoadExternalVTableUses() {
17145   if (!ExternalSource)
17146     return;
17147 
17148   SmallVector<ExternalVTableUse, 4> VTables;
17149   ExternalSource->ReadUsedVTables(VTables);
17150   SmallVector<VTableUse, 4> NewUses;
17151   for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
17152     llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
17153       = VTablesUsed.find(VTables[I].Record);
17154     // Even if a definition wasn't required before, it may be required now.
17155     if (Pos != VTablesUsed.end()) {
17156       if (!Pos->second && VTables[I].DefinitionRequired)
17157         Pos->second = true;
17158       continue;
17159     }
17160 
17161     VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
17162     NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
17163   }
17164 
17165   VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
17166 }
17167 
17168 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
17169                           bool DefinitionRequired) {
17170   // Ignore any vtable uses in unevaluated operands or for classes that do
17171   // not have a vtable.
17172   if (!Class->isDynamicClass() || Class->isDependentContext() ||
17173       CurContext->isDependentContext() || isUnevaluatedContext())
17174     return;
17175   // Do not mark as used if compiling for the device outside of the target
17176   // region.
17177   if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsDevice &&
17178       !isInOpenMPDeclareTargetContext() &&
17179       !isInOpenMPTargetExecutionDirective()) {
17180     if (!DefinitionRequired)
17181       MarkVirtualMembersReferenced(Loc, Class);
17182     return;
17183   }
17184 
17185   // Try to insert this class into the map.
17186   LoadExternalVTableUses();
17187   Class = Class->getCanonicalDecl();
17188   std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
17189     Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
17190   if (!Pos.second) {
17191     // If we already had an entry, check to see if we are promoting this vtable
17192     // to require a definition. If so, we need to reappend to the VTableUses
17193     // list, since we may have already processed the first entry.
17194     if (DefinitionRequired && !Pos.first->second) {
17195       Pos.first->second = true;
17196     } else {
17197       // Otherwise, we can early exit.
17198       return;
17199     }
17200   } else {
17201     // The Microsoft ABI requires that we perform the destructor body
17202     // checks (i.e. operator delete() lookup) when the vtable is marked used, as
17203     // the deleting destructor is emitted with the vtable, not with the
17204     // destructor definition as in the Itanium ABI.
17205     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
17206       CXXDestructorDecl *DD = Class->getDestructor();
17207       if (DD && DD->isVirtual() && !DD->isDeleted()) {
17208         if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) {
17209           // If this is an out-of-line declaration, marking it referenced will
17210           // not do anything. Manually call CheckDestructor to look up operator
17211           // delete().
17212           ContextRAII SavedContext(*this, DD);
17213           CheckDestructor(DD);
17214         } else {
17215           MarkFunctionReferenced(Loc, Class->getDestructor());
17216         }
17217       }
17218     }
17219   }
17220 
17221   // Local classes need to have their virtual members marked
17222   // immediately. For all other classes, we mark their virtual members
17223   // at the end of the translation unit.
17224   if (Class->isLocalClass())
17225     MarkVirtualMembersReferenced(Loc, Class);
17226   else
17227     VTableUses.push_back(std::make_pair(Class, Loc));
17228 }
17229 
17230 bool Sema::DefineUsedVTables() {
17231   LoadExternalVTableUses();
17232   if (VTableUses.empty())
17233     return false;
17234 
17235   // Note: The VTableUses vector could grow as a result of marking
17236   // the members of a class as "used", so we check the size each
17237   // time through the loop and prefer indices (which are stable) to
17238   // iterators (which are not).
17239   bool DefinedAnything = false;
17240   for (unsigned I = 0; I != VTableUses.size(); ++I) {
17241     CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
17242     if (!Class)
17243       continue;
17244     TemplateSpecializationKind ClassTSK =
17245         Class->getTemplateSpecializationKind();
17246 
17247     SourceLocation Loc = VTableUses[I].second;
17248 
17249     bool DefineVTable = true;
17250 
17251     // If this class has a key function, but that key function is
17252     // defined in another translation unit, we don't need to emit the
17253     // vtable even though we're using it.
17254     const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
17255     if (KeyFunction && !KeyFunction->hasBody()) {
17256       // The key function is in another translation unit.
17257       DefineVTable = false;
17258       TemplateSpecializationKind TSK =
17259           KeyFunction->getTemplateSpecializationKind();
17260       assert(TSK != TSK_ExplicitInstantiationDefinition &&
17261              TSK != TSK_ImplicitInstantiation &&
17262              "Instantiations don't have key functions");
17263       (void)TSK;
17264     } else if (!KeyFunction) {
17265       // If we have a class with no key function that is the subject
17266       // of an explicit instantiation declaration, suppress the
17267       // vtable; it will live with the explicit instantiation
17268       // definition.
17269       bool IsExplicitInstantiationDeclaration =
17270           ClassTSK == TSK_ExplicitInstantiationDeclaration;
17271       for (auto R : Class->redecls()) {
17272         TemplateSpecializationKind TSK
17273           = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
17274         if (TSK == TSK_ExplicitInstantiationDeclaration)
17275           IsExplicitInstantiationDeclaration = true;
17276         else if (TSK == TSK_ExplicitInstantiationDefinition) {
17277           IsExplicitInstantiationDeclaration = false;
17278           break;
17279         }
17280       }
17281 
17282       if (IsExplicitInstantiationDeclaration)
17283         DefineVTable = false;
17284     }
17285 
17286     // The exception specifications for all virtual members may be needed even
17287     // if we are not providing an authoritative form of the vtable in this TU.
17288     // We may choose to emit it available_externally anyway.
17289     if (!DefineVTable) {
17290       MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
17291       continue;
17292     }
17293 
17294     // Mark all of the virtual members of this class as referenced, so
17295     // that we can build a vtable. Then, tell the AST consumer that a
17296     // vtable for this class is required.
17297     DefinedAnything = true;
17298     MarkVirtualMembersReferenced(Loc, Class);
17299     CXXRecordDecl *Canonical = Class->getCanonicalDecl();
17300     if (VTablesUsed[Canonical])
17301       Consumer.HandleVTable(Class);
17302 
17303     // Warn if we're emitting a weak vtable. The vtable will be weak if there is
17304     // no key function or the key function is inlined. Don't warn in C++ ABIs
17305     // that lack key functions, since the user won't be able to make one.
17306     if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() &&
17307         Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) {
17308       const FunctionDecl *KeyFunctionDef = nullptr;
17309       if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) &&
17310                            KeyFunctionDef->isInlined())) {
17311         Diag(Class->getLocation(),
17312              ClassTSK == TSK_ExplicitInstantiationDefinition
17313                  ? diag::warn_weak_template_vtable
17314                  : diag::warn_weak_vtable)
17315             << Class;
17316       }
17317     }
17318   }
17319   VTableUses.clear();
17320 
17321   return DefinedAnything;
17322 }
17323 
17324 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
17325                                                  const CXXRecordDecl *RD) {
17326   for (const auto *I : RD->methods())
17327     if (I->isVirtual() && !I->isPure())
17328       ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
17329 }
17330 
17331 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
17332                                         const CXXRecordDecl *RD,
17333                                         bool ConstexprOnly) {
17334   // Mark all functions which will appear in RD's vtable as used.
17335   CXXFinalOverriderMap FinalOverriders;
17336   RD->getFinalOverriders(FinalOverriders);
17337   for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
17338                                             E = FinalOverriders.end();
17339        I != E; ++I) {
17340     for (OverridingMethods::const_iterator OI = I->second.begin(),
17341                                            OE = I->second.end();
17342          OI != OE; ++OI) {
17343       assert(OI->second.size() > 0 && "no final overrider");
17344       CXXMethodDecl *Overrider = OI->second.front().Method;
17345 
17346       // C++ [basic.def.odr]p2:
17347       //   [...] A virtual member function is used if it is not pure. [...]
17348       if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr()))
17349         MarkFunctionReferenced(Loc, Overrider);
17350     }
17351   }
17352 
17353   // Only classes that have virtual bases need a VTT.
17354   if (RD->getNumVBases() == 0)
17355     return;
17356 
17357   for (const auto &I : RD->bases()) {
17358     const auto *Base =
17359         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
17360     if (Base->getNumVBases() == 0)
17361       continue;
17362     MarkVirtualMembersReferenced(Loc, Base);
17363   }
17364 }
17365 
17366 /// SetIvarInitializers - This routine builds initialization ASTs for the
17367 /// Objective-C implementation whose ivars need be initialized.
17368 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
17369   if (!getLangOpts().CPlusPlus)
17370     return;
17371   if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
17372     SmallVector<ObjCIvarDecl*, 8> ivars;
17373     CollectIvarsToConstructOrDestruct(OID, ivars);
17374     if (ivars.empty())
17375       return;
17376     SmallVector<CXXCtorInitializer*, 32> AllToInit;
17377     for (unsigned i = 0; i < ivars.size(); i++) {
17378       FieldDecl *Field = ivars[i];
17379       if (Field->isInvalidDecl())
17380         continue;
17381 
17382       CXXCtorInitializer *Member;
17383       InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
17384       InitializationKind InitKind =
17385         InitializationKind::CreateDefault(ObjCImplementation->getLocation());
17386 
17387       InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
17388       ExprResult MemberInit =
17389         InitSeq.Perform(*this, InitEntity, InitKind, None);
17390       MemberInit = MaybeCreateExprWithCleanups(MemberInit);
17391       // Note, MemberInit could actually come back empty if no initialization
17392       // is required (e.g., because it would call a trivial default constructor)
17393       if (!MemberInit.get() || MemberInit.isInvalid())
17394         continue;
17395 
17396       Member =
17397         new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
17398                                          SourceLocation(),
17399                                          MemberInit.getAs<Expr>(),
17400                                          SourceLocation());
17401       AllToInit.push_back(Member);
17402 
17403       // Be sure that the destructor is accessible and is marked as referenced.
17404       if (const RecordType *RecordTy =
17405               Context.getBaseElementType(Field->getType())
17406                   ->getAs<RecordType>()) {
17407         CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
17408         if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
17409           MarkFunctionReferenced(Field->getLocation(), Destructor);
17410           CheckDestructorAccess(Field->getLocation(), Destructor,
17411                             PDiag(diag::err_access_dtor_ivar)
17412                               << Context.getBaseElementType(Field->getType()));
17413         }
17414       }
17415     }
17416     ObjCImplementation->setIvarInitializers(Context,
17417                                             AllToInit.data(), AllToInit.size());
17418   }
17419 }
17420 
17421 static
17422 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
17423                            llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid,
17424                            llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid,
17425                            llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current,
17426                            Sema &S) {
17427   if (Ctor->isInvalidDecl())
17428     return;
17429 
17430   CXXConstructorDecl *Target = Ctor->getTargetConstructor();
17431 
17432   // Target may not be determinable yet, for instance if this is a dependent
17433   // call in an uninstantiated template.
17434   if (Target) {
17435     const FunctionDecl *FNTarget = nullptr;
17436     (void)Target->hasBody(FNTarget);
17437     Target = const_cast<CXXConstructorDecl*>(
17438       cast_or_null<CXXConstructorDecl>(FNTarget));
17439   }
17440 
17441   CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
17442                      // Avoid dereferencing a null pointer here.
17443                      *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
17444 
17445   if (!Current.insert(Canonical).second)
17446     return;
17447 
17448   // We know that beyond here, we aren't chaining into a cycle.
17449   if (!Target || !Target->isDelegatingConstructor() ||
17450       Target->isInvalidDecl() || Valid.count(TCanonical)) {
17451     Valid.insert(Current.begin(), Current.end());
17452     Current.clear();
17453   // We've hit a cycle.
17454   } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
17455              Current.count(TCanonical)) {
17456     // If we haven't diagnosed this cycle yet, do so now.
17457     if (!Invalid.count(TCanonical)) {
17458       S.Diag((*Ctor->init_begin())->getSourceLocation(),
17459              diag::warn_delegating_ctor_cycle)
17460         << Ctor;
17461 
17462       // Don't add a note for a function delegating directly to itself.
17463       if (TCanonical != Canonical)
17464         S.Diag(Target->getLocation(), diag::note_it_delegates_to);
17465 
17466       CXXConstructorDecl *C = Target;
17467       while (C->getCanonicalDecl() != Canonical) {
17468         const FunctionDecl *FNTarget = nullptr;
17469         (void)C->getTargetConstructor()->hasBody(FNTarget);
17470         assert(FNTarget && "Ctor cycle through bodiless function");
17471 
17472         C = const_cast<CXXConstructorDecl*>(
17473           cast<CXXConstructorDecl>(FNTarget));
17474         S.Diag(C->getLocation(), diag::note_which_delegates_to);
17475       }
17476     }
17477 
17478     Invalid.insert(Current.begin(), Current.end());
17479     Current.clear();
17480   } else {
17481     DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
17482   }
17483 }
17484 
17485 
17486 void Sema::CheckDelegatingCtorCycles() {
17487   llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
17488 
17489   for (DelegatingCtorDeclsType::iterator
17490          I = DelegatingCtorDecls.begin(ExternalSource),
17491          E = DelegatingCtorDecls.end();
17492        I != E; ++I)
17493     DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
17494 
17495   for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
17496     (*CI)->setInvalidDecl();
17497 }
17498 
17499 namespace {
17500   /// AST visitor that finds references to the 'this' expression.
17501   class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
17502     Sema &S;
17503 
17504   public:
17505     explicit FindCXXThisExpr(Sema &S) : S(S) { }
17506 
17507     bool VisitCXXThisExpr(CXXThisExpr *E) {
17508       S.Diag(E->getLocation(), diag::err_this_static_member_func)
17509         << E->isImplicit();
17510       return false;
17511     }
17512   };
17513 }
17514 
17515 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
17516   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
17517   if (!TSInfo)
17518     return false;
17519 
17520   TypeLoc TL = TSInfo->getTypeLoc();
17521   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
17522   if (!ProtoTL)
17523     return false;
17524 
17525   // C++11 [expr.prim.general]p3:
17526   //   [The expression this] shall not appear before the optional
17527   //   cv-qualifier-seq and it shall not appear within the declaration of a
17528   //   static member function (although its type and value category are defined
17529   //   within a static member function as they are within a non-static member
17530   //   function). [ Note: this is because declaration matching does not occur
17531   //  until the complete declarator is known. - end note ]
17532   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
17533   FindCXXThisExpr Finder(*this);
17534 
17535   // If the return type came after the cv-qualifier-seq, check it now.
17536   if (Proto->hasTrailingReturn() &&
17537       !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
17538     return true;
17539 
17540   // Check the exception specification.
17541   if (checkThisInStaticMemberFunctionExceptionSpec(Method))
17542     return true;
17543 
17544   // Check the trailing requires clause
17545   if (Expr *E = Method->getTrailingRequiresClause())
17546     if (!Finder.TraverseStmt(E))
17547       return true;
17548 
17549   return checkThisInStaticMemberFunctionAttributes(Method);
17550 }
17551 
17552 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
17553   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
17554   if (!TSInfo)
17555     return false;
17556 
17557   TypeLoc TL = TSInfo->getTypeLoc();
17558   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
17559   if (!ProtoTL)
17560     return false;
17561 
17562   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
17563   FindCXXThisExpr Finder(*this);
17564 
17565   switch (Proto->getExceptionSpecType()) {
17566   case EST_Unparsed:
17567   case EST_Uninstantiated:
17568   case EST_Unevaluated:
17569   case EST_BasicNoexcept:
17570   case EST_NoThrow:
17571   case EST_DynamicNone:
17572   case EST_MSAny:
17573   case EST_None:
17574     break;
17575 
17576   case EST_DependentNoexcept:
17577   case EST_NoexceptFalse:
17578   case EST_NoexceptTrue:
17579     if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
17580       return true;
17581     LLVM_FALLTHROUGH;
17582 
17583   case EST_Dynamic:
17584     for (const auto &E : Proto->exceptions()) {
17585       if (!Finder.TraverseType(E))
17586         return true;
17587     }
17588     break;
17589   }
17590 
17591   return false;
17592 }
17593 
17594 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
17595   FindCXXThisExpr Finder(*this);
17596 
17597   // Check attributes.
17598   for (const auto *A : Method->attrs()) {
17599     // FIXME: This should be emitted by tblgen.
17600     Expr *Arg = nullptr;
17601     ArrayRef<Expr *> Args;
17602     if (const auto *G = dyn_cast<GuardedByAttr>(A))
17603       Arg = G->getArg();
17604     else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
17605       Arg = G->getArg();
17606     else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
17607       Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
17608     else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
17609       Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
17610     else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
17611       Arg = ETLF->getSuccessValue();
17612       Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
17613     } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
17614       Arg = STLF->getSuccessValue();
17615       Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
17616     } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
17617       Arg = LR->getArg();
17618     else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
17619       Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
17620     else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
17621       Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
17622     else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
17623       Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
17624     else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
17625       Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
17626     else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
17627       Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
17628 
17629     if (Arg && !Finder.TraverseStmt(Arg))
17630       return true;
17631 
17632     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
17633       if (!Finder.TraverseStmt(Args[I]))
17634         return true;
17635     }
17636   }
17637 
17638   return false;
17639 }
17640 
17641 void Sema::checkExceptionSpecification(
17642     bool IsTopLevel, ExceptionSpecificationType EST,
17643     ArrayRef<ParsedType> DynamicExceptions,
17644     ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
17645     SmallVectorImpl<QualType> &Exceptions,
17646     FunctionProtoType::ExceptionSpecInfo &ESI) {
17647   Exceptions.clear();
17648   ESI.Type = EST;
17649   if (EST == EST_Dynamic) {
17650     Exceptions.reserve(DynamicExceptions.size());
17651     for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
17652       // FIXME: Preserve type source info.
17653       QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
17654 
17655       if (IsTopLevel) {
17656         SmallVector<UnexpandedParameterPack, 2> Unexpanded;
17657         collectUnexpandedParameterPacks(ET, Unexpanded);
17658         if (!Unexpanded.empty()) {
17659           DiagnoseUnexpandedParameterPacks(
17660               DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
17661               Unexpanded);
17662           continue;
17663         }
17664       }
17665 
17666       // Check that the type is valid for an exception spec, and
17667       // drop it if not.
17668       if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
17669         Exceptions.push_back(ET);
17670     }
17671     ESI.Exceptions = Exceptions;
17672     return;
17673   }
17674 
17675   if (isComputedNoexcept(EST)) {
17676     assert((NoexceptExpr->isTypeDependent() ||
17677             NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
17678             Context.BoolTy) &&
17679            "Parser should have made sure that the expression is boolean");
17680     if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
17681       ESI.Type = EST_BasicNoexcept;
17682       return;
17683     }
17684 
17685     ESI.NoexceptExpr = NoexceptExpr;
17686     return;
17687   }
17688 }
17689 
17690 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
17691              ExceptionSpecificationType EST,
17692              SourceRange SpecificationRange,
17693              ArrayRef<ParsedType> DynamicExceptions,
17694              ArrayRef<SourceRange> DynamicExceptionRanges,
17695              Expr *NoexceptExpr) {
17696   if (!MethodD)
17697     return;
17698 
17699   // Dig out the method we're referring to.
17700   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
17701     MethodD = FunTmpl->getTemplatedDecl();
17702 
17703   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
17704   if (!Method)
17705     return;
17706 
17707   // Check the exception specification.
17708   llvm::SmallVector<QualType, 4> Exceptions;
17709   FunctionProtoType::ExceptionSpecInfo ESI;
17710   checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
17711                               DynamicExceptionRanges, NoexceptExpr, Exceptions,
17712                               ESI);
17713 
17714   // Update the exception specification on the function type.
17715   Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
17716 
17717   if (Method->isStatic())
17718     checkThisInStaticMemberFunctionExceptionSpec(Method);
17719 
17720   if (Method->isVirtual()) {
17721     // Check overrides, which we previously had to delay.
17722     for (const CXXMethodDecl *O : Method->overridden_methods())
17723       CheckOverridingFunctionExceptionSpec(Method, O);
17724   }
17725 }
17726 
17727 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
17728 ///
17729 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
17730                                        SourceLocation DeclStart, Declarator &D,
17731                                        Expr *BitWidth,
17732                                        InClassInitStyle InitStyle,
17733                                        AccessSpecifier AS,
17734                                        const ParsedAttr &MSPropertyAttr) {
17735   IdentifierInfo *II = D.getIdentifier();
17736   if (!II) {
17737     Diag(DeclStart, diag::err_anonymous_property);
17738     return nullptr;
17739   }
17740   SourceLocation Loc = D.getIdentifierLoc();
17741 
17742   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
17743   QualType T = TInfo->getType();
17744   if (getLangOpts().CPlusPlus) {
17745     CheckExtraCXXDefaultArguments(D);
17746 
17747     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
17748                                         UPPC_DataMemberType)) {
17749       D.setInvalidType();
17750       T = Context.IntTy;
17751       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
17752     }
17753   }
17754 
17755   DiagnoseFunctionSpecifiers(D.getDeclSpec());
17756 
17757   if (D.getDeclSpec().isInlineSpecified())
17758     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
17759         << getLangOpts().CPlusPlus17;
17760   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
17761     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
17762          diag::err_invalid_thread)
17763       << DeclSpec::getSpecifierName(TSCS);
17764 
17765   // Check to see if this name was declared as a member previously
17766   NamedDecl *PrevDecl = nullptr;
17767   LookupResult Previous(*this, II, Loc, LookupMemberName,
17768                         ForVisibleRedeclaration);
17769   LookupName(Previous, S);
17770   switch (Previous.getResultKind()) {
17771   case LookupResult::Found:
17772   case LookupResult::FoundUnresolvedValue:
17773     PrevDecl = Previous.getAsSingle<NamedDecl>();
17774     break;
17775 
17776   case LookupResult::FoundOverloaded:
17777     PrevDecl = Previous.getRepresentativeDecl();
17778     break;
17779 
17780   case LookupResult::NotFound:
17781   case LookupResult::NotFoundInCurrentInstantiation:
17782   case LookupResult::Ambiguous:
17783     break;
17784   }
17785 
17786   if (PrevDecl && PrevDecl->isTemplateParameter()) {
17787     // Maybe we will complain about the shadowed template parameter.
17788     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
17789     // Just pretend that we didn't see the previous declaration.
17790     PrevDecl = nullptr;
17791   }
17792 
17793   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
17794     PrevDecl = nullptr;
17795 
17796   SourceLocation TSSL = D.getBeginLoc();
17797   MSPropertyDecl *NewPD =
17798       MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL,
17799                              MSPropertyAttr.getPropertyDataGetter(),
17800                              MSPropertyAttr.getPropertyDataSetter());
17801   ProcessDeclAttributes(TUScope, NewPD, D);
17802   NewPD->setAccess(AS);
17803 
17804   if (NewPD->isInvalidDecl())
17805     Record->setInvalidDecl();
17806 
17807   if (D.getDeclSpec().isModulePrivateSpecified())
17808     NewPD->setModulePrivate();
17809 
17810   if (NewPD->isInvalidDecl() && PrevDecl) {
17811     // Don't introduce NewFD into scope; there's already something
17812     // with the same name in the same scope.
17813   } else if (II) {
17814     PushOnScopeChains(NewPD, S);
17815   } else
17816     Record->addDecl(NewPD);
17817 
17818   return NewPD;
17819 }
17820 
17821 void Sema::ActOnStartFunctionDeclarationDeclarator(
17822     Declarator &Declarator, unsigned TemplateParameterDepth) {
17823   auto &Info = InventedParameterInfos.emplace_back();
17824   TemplateParameterList *ExplicitParams = nullptr;
17825   ArrayRef<TemplateParameterList *> ExplicitLists =
17826       Declarator.getTemplateParameterLists();
17827   if (!ExplicitLists.empty()) {
17828     bool IsMemberSpecialization, IsInvalid;
17829     ExplicitParams = MatchTemplateParametersToScopeSpecifier(
17830         Declarator.getBeginLoc(), Declarator.getIdentifierLoc(),
17831         Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr,
17832         ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid,
17833         /*SuppressDiagnostic=*/true);
17834   }
17835   if (ExplicitParams) {
17836     Info.AutoTemplateParameterDepth = ExplicitParams->getDepth();
17837     for (NamedDecl *Param : *ExplicitParams)
17838       Info.TemplateParams.push_back(Param);
17839     Info.NumExplicitTemplateParams = ExplicitParams->size();
17840   } else {
17841     Info.AutoTemplateParameterDepth = TemplateParameterDepth;
17842     Info.NumExplicitTemplateParams = 0;
17843   }
17844 }
17845 
17846 void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) {
17847   auto &FSI = InventedParameterInfos.back();
17848   if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) {
17849     if (FSI.NumExplicitTemplateParams != 0) {
17850       TemplateParameterList *ExplicitParams =
17851           Declarator.getTemplateParameterLists().back();
17852       Declarator.setInventedTemplateParameterList(
17853           TemplateParameterList::Create(
17854               Context, ExplicitParams->getTemplateLoc(),
17855               ExplicitParams->getLAngleLoc(), FSI.TemplateParams,
17856               ExplicitParams->getRAngleLoc(),
17857               ExplicitParams->getRequiresClause()));
17858     } else {
17859       Declarator.setInventedTemplateParameterList(
17860           TemplateParameterList::Create(
17861               Context, SourceLocation(), SourceLocation(), FSI.TemplateParams,
17862               SourceLocation(), /*RequiresClause=*/nullptr));
17863     }
17864   }
17865   InventedParameterInfos.pop_back();
17866 }
17867