1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTConsumer.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/ComparisonCategories.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/RecursiveASTVisitor.h" 26 #include "clang/AST/StmtVisitor.h" 27 #include "clang/AST/TypeLoc.h" 28 #include "clang/AST/TypeOrdering.h" 29 #include "clang/Basic/AttributeCommonInfo.h" 30 #include "clang/Basic/PartialDiagnostic.h" 31 #include "clang/Basic/Specifiers.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/Lex/LiteralSupport.h" 34 #include "clang/Lex/Preprocessor.h" 35 #include "clang/Sema/CXXFieldCollector.h" 36 #include "clang/Sema/DeclSpec.h" 37 #include "clang/Sema/Initialization.h" 38 #include "clang/Sema/Lookup.h" 39 #include "clang/Sema/ParsedTemplate.h" 40 #include "clang/Sema/Scope.h" 41 #include "clang/Sema/ScopeInfo.h" 42 #include "clang/Sema/SemaInternal.h" 43 #include "clang/Sema/Template.h" 44 #include "llvm/ADT/ScopeExit.h" 45 #include "llvm/ADT/SmallString.h" 46 #include "llvm/ADT/STLExtras.h" 47 #include "llvm/ADT/StringExtras.h" 48 #include <map> 49 #include <optional> 50 #include <set> 51 52 using namespace clang; 53 54 //===----------------------------------------------------------------------===// 55 // CheckDefaultArgumentVisitor 56 //===----------------------------------------------------------------------===// 57 58 namespace { 59 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses 60 /// the default argument of a parameter to determine whether it 61 /// contains any ill-formed subexpressions. For example, this will 62 /// diagnose the use of local variables or parameters within the 63 /// default argument expression. 64 class CheckDefaultArgumentVisitor 65 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> { 66 Sema &S; 67 const Expr *DefaultArg; 68 69 public: 70 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg) 71 : S(S), DefaultArg(DefaultArg) {} 72 73 bool VisitExpr(const Expr *Node); 74 bool VisitDeclRefExpr(const DeclRefExpr *DRE); 75 bool VisitCXXThisExpr(const CXXThisExpr *ThisE); 76 bool VisitLambdaExpr(const LambdaExpr *Lambda); 77 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE); 78 }; 79 80 /// VisitExpr - Visit all of the children of this expression. 81 bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) { 82 bool IsInvalid = false; 83 for (const Stmt *SubStmt : Node->children()) 84 IsInvalid |= Visit(SubStmt); 85 return IsInvalid; 86 } 87 88 /// VisitDeclRefExpr - Visit a reference to a declaration, to 89 /// determine whether this declaration can be used in the default 90 /// argument expression. 91 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) { 92 const ValueDecl *Decl = dyn_cast<ValueDecl>(DRE->getDecl()); 93 94 if (!isa<VarDecl, BindingDecl>(Decl)) 95 return false; 96 97 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) { 98 // C++ [dcl.fct.default]p9: 99 // [...] parameters of a function shall not be used in default 100 // argument expressions, even if they are not evaluated. [...] 101 // 102 // C++17 [dcl.fct.default]p9 (by CWG 2082): 103 // [...] A parameter shall not appear as a potentially-evaluated 104 // expression in a default argument. [...] 105 // 106 if (DRE->isNonOdrUse() != NOUR_Unevaluated) 107 return S.Diag(DRE->getBeginLoc(), 108 diag::err_param_default_argument_references_param) 109 << Param->getDeclName() << DefaultArg->getSourceRange(); 110 } else if (auto *VD = Decl->getPotentiallyDecomposedVarDecl()) { 111 // C++ [dcl.fct.default]p7: 112 // Local variables shall not be used in default argument 113 // expressions. 114 // 115 // C++17 [dcl.fct.default]p7 (by CWG 2082): 116 // A local variable shall not appear as a potentially-evaluated 117 // expression in a default argument. 118 // 119 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346): 120 // Note: A local variable cannot be odr-used (6.3) in a default 121 // argument. 122 // 123 if (VD->isLocalVarDecl() && !DRE->isNonOdrUse()) 124 return S.Diag(DRE->getBeginLoc(), 125 diag::err_param_default_argument_references_local) 126 << Decl << DefaultArg->getSourceRange(); 127 } 128 return false; 129 } 130 131 /// VisitCXXThisExpr - Visit a C++ "this" expression. 132 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) { 133 // C++ [dcl.fct.default]p8: 134 // The keyword this shall not be used in a default argument of a 135 // member function. 136 return S.Diag(ThisE->getBeginLoc(), 137 diag::err_param_default_argument_references_this) 138 << ThisE->getSourceRange(); 139 } 140 141 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr( 142 const PseudoObjectExpr *POE) { 143 bool Invalid = false; 144 for (const Expr *E : POE->semantics()) { 145 // Look through bindings. 146 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) { 147 E = OVE->getSourceExpr(); 148 assert(E && "pseudo-object binding without source expression?"); 149 } 150 151 Invalid |= Visit(E); 152 } 153 return Invalid; 154 } 155 156 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) { 157 // [expr.prim.lambda.capture]p9 158 // a lambda-expression appearing in a default argument cannot implicitly or 159 // explicitly capture any local entity. Such a lambda-expression can still 160 // have an init-capture if any full-expression in its initializer satisfies 161 // the constraints of an expression appearing in a default argument. 162 bool Invalid = false; 163 for (const LambdaCapture &LC : Lambda->captures()) { 164 if (!Lambda->isInitCapture(&LC)) 165 return S.Diag(LC.getLocation(), diag::err_lambda_capture_default_arg); 166 // Init captures are always VarDecl. 167 auto *D = cast<VarDecl>(LC.getCapturedVar()); 168 Invalid |= Visit(D->getInit()); 169 } 170 return Invalid; 171 } 172 } // namespace 173 174 void 175 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, 176 const CXXMethodDecl *Method) { 177 // If we have an MSAny spec already, don't bother. 178 if (!Method || ComputedEST == EST_MSAny) 179 return; 180 181 const FunctionProtoType *Proto 182 = Method->getType()->getAs<FunctionProtoType>(); 183 Proto = Self->ResolveExceptionSpec(CallLoc, Proto); 184 if (!Proto) 185 return; 186 187 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 188 189 // If we have a throw-all spec at this point, ignore the function. 190 if (ComputedEST == EST_None) 191 return; 192 193 if (EST == EST_None && Method->hasAttr<NoThrowAttr>()) 194 EST = EST_BasicNoexcept; 195 196 switch (EST) { 197 case EST_Unparsed: 198 case EST_Uninstantiated: 199 case EST_Unevaluated: 200 llvm_unreachable("should not see unresolved exception specs here"); 201 202 // If this function can throw any exceptions, make a note of that. 203 case EST_MSAny: 204 case EST_None: 205 // FIXME: Whichever we see last of MSAny and None determines our result. 206 // We should make a consistent, order-independent choice here. 207 ClearExceptions(); 208 ComputedEST = EST; 209 return; 210 case EST_NoexceptFalse: 211 ClearExceptions(); 212 ComputedEST = EST_None; 213 return; 214 // FIXME: If the call to this decl is using any of its default arguments, we 215 // need to search them for potentially-throwing calls. 216 // If this function has a basic noexcept, it doesn't affect the outcome. 217 case EST_BasicNoexcept: 218 case EST_NoexceptTrue: 219 case EST_NoThrow: 220 return; 221 // If we're still at noexcept(true) and there's a throw() callee, 222 // change to that specification. 223 case EST_DynamicNone: 224 if (ComputedEST == EST_BasicNoexcept) 225 ComputedEST = EST_DynamicNone; 226 return; 227 case EST_DependentNoexcept: 228 llvm_unreachable( 229 "should not generate implicit declarations for dependent cases"); 230 case EST_Dynamic: 231 break; 232 } 233 assert(EST == EST_Dynamic && "EST case not considered earlier."); 234 assert(ComputedEST != EST_None && 235 "Shouldn't collect exceptions when throw-all is guaranteed."); 236 ComputedEST = EST_Dynamic; 237 // Record the exceptions in this function's exception specification. 238 for (const auto &E : Proto->exceptions()) 239 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) 240 Exceptions.push_back(E); 241 } 242 243 void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) { 244 if (!S || ComputedEST == EST_MSAny) 245 return; 246 247 // FIXME: 248 // 249 // C++0x [except.spec]p14: 250 // [An] implicit exception-specification specifies the type-id T if and 251 // only if T is allowed by the exception-specification of a function directly 252 // invoked by f's implicit definition; f shall allow all exceptions if any 253 // function it directly invokes allows all exceptions, and f shall allow no 254 // exceptions if every function it directly invokes allows no exceptions. 255 // 256 // Note in particular that if an implicit exception-specification is generated 257 // for a function containing a throw-expression, that specification can still 258 // be noexcept(true). 259 // 260 // Note also that 'directly invoked' is not defined in the standard, and there 261 // is no indication that we should only consider potentially-evaluated calls. 262 // 263 // Ultimately we should implement the intent of the standard: the exception 264 // specification should be the set of exceptions which can be thrown by the 265 // implicit definition. For now, we assume that any non-nothrow expression can 266 // throw any exception. 267 268 if (Self->canThrow(S)) 269 ComputedEST = EST_None; 270 } 271 272 ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 273 SourceLocation EqualLoc) { 274 if (RequireCompleteType(Param->getLocation(), Param->getType(), 275 diag::err_typecheck_decl_incomplete_type)) 276 return true; 277 278 // C++ [dcl.fct.default]p5 279 // A default argument expression is implicitly converted (clause 280 // 4) to the parameter type. The default argument expression has 281 // the same semantic constraints as the initializer expression in 282 // a declaration of a variable of the parameter type, using the 283 // copy-initialization semantics (8.5). 284 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 285 Param); 286 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), 287 EqualLoc); 288 InitializationSequence InitSeq(*this, Entity, Kind, Arg); 289 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg); 290 if (Result.isInvalid()) 291 return true; 292 Arg = Result.getAs<Expr>(); 293 294 CheckCompletedExpr(Arg, EqualLoc); 295 Arg = MaybeCreateExprWithCleanups(Arg); 296 297 return Arg; 298 } 299 300 void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 301 SourceLocation EqualLoc) { 302 // Add the default argument to the parameter 303 Param->setDefaultArg(Arg); 304 305 // We have already instantiated this parameter; provide each of the 306 // instantiations with the uninstantiated default argument. 307 UnparsedDefaultArgInstantiationsMap::iterator InstPos 308 = UnparsedDefaultArgInstantiations.find(Param); 309 if (InstPos != UnparsedDefaultArgInstantiations.end()) { 310 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) 311 InstPos->second[I]->setUninstantiatedDefaultArg(Arg); 312 313 // We're done tracking this parameter's instantiations. 314 UnparsedDefaultArgInstantiations.erase(InstPos); 315 } 316 } 317 318 /// ActOnParamDefaultArgument - Check whether the default argument 319 /// provided for a function parameter is well-formed. If so, attach it 320 /// to the parameter declaration. 321 void 322 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, 323 Expr *DefaultArg) { 324 if (!param || !DefaultArg) 325 return; 326 327 ParmVarDecl *Param = cast<ParmVarDecl>(param); 328 UnparsedDefaultArgLocs.erase(Param); 329 330 auto Fail = [&] { 331 Param->setInvalidDecl(); 332 Param->setDefaultArg(new (Context) OpaqueValueExpr( 333 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue)); 334 }; 335 336 // Default arguments are only permitted in C++ 337 if (!getLangOpts().CPlusPlus) { 338 Diag(EqualLoc, diag::err_param_default_argument) 339 << DefaultArg->getSourceRange(); 340 return Fail(); 341 } 342 343 // Check for unexpanded parameter packs. 344 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) { 345 return Fail(); 346 } 347 348 // C++11 [dcl.fct.default]p3 349 // A default argument expression [...] shall not be specified for a 350 // parameter pack. 351 if (Param->isParameterPack()) { 352 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack) 353 << DefaultArg->getSourceRange(); 354 // Recover by discarding the default argument. 355 Param->setDefaultArg(nullptr); 356 return; 357 } 358 359 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc); 360 if (Result.isInvalid()) 361 return Fail(); 362 363 DefaultArg = Result.getAs<Expr>(); 364 365 // Check that the default argument is well-formed 366 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg); 367 if (DefaultArgChecker.Visit(DefaultArg)) 368 return Fail(); 369 370 SetParamDefaultArgument(Param, DefaultArg, EqualLoc); 371 } 372 373 /// ActOnParamUnparsedDefaultArgument - We've seen a default 374 /// argument for a function parameter, but we can't parse it yet 375 /// because we're inside a class definition. Note that this default 376 /// argument will be parsed later. 377 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, 378 SourceLocation EqualLoc, 379 SourceLocation ArgLoc) { 380 if (!param) 381 return; 382 383 ParmVarDecl *Param = cast<ParmVarDecl>(param); 384 Param->setUnparsedDefaultArg(); 385 UnparsedDefaultArgLocs[Param] = ArgLoc; 386 } 387 388 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of 389 /// the default argument for the parameter param failed. 390 void Sema::ActOnParamDefaultArgumentError(Decl *param, 391 SourceLocation EqualLoc) { 392 if (!param) 393 return; 394 395 ParmVarDecl *Param = cast<ParmVarDecl>(param); 396 Param->setInvalidDecl(); 397 UnparsedDefaultArgLocs.erase(Param); 398 Param->setDefaultArg(new (Context) OpaqueValueExpr( 399 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue)); 400 } 401 402 /// CheckExtraCXXDefaultArguments - Check for any extra default 403 /// arguments in the declarator, which is not a function declaration 404 /// or definition and therefore is not permitted to have default 405 /// arguments. This routine should be invoked for every declarator 406 /// that is not a function declaration or definition. 407 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { 408 // C++ [dcl.fct.default]p3 409 // A default argument expression shall be specified only in the 410 // parameter-declaration-clause of a function declaration or in a 411 // template-parameter (14.1). It shall not be specified for a 412 // parameter pack. If it is specified in a 413 // parameter-declaration-clause, it shall not occur within a 414 // declarator or abstract-declarator of a parameter-declaration. 415 bool MightBeFunction = D.isFunctionDeclarationContext(); 416 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { 417 DeclaratorChunk &chunk = D.getTypeObject(i); 418 if (chunk.Kind == DeclaratorChunk::Function) { 419 if (MightBeFunction) { 420 // This is a function declaration. It can have default arguments, but 421 // keep looking in case its return type is a function type with default 422 // arguments. 423 MightBeFunction = false; 424 continue; 425 } 426 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; 427 ++argIdx) { 428 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param); 429 if (Param->hasUnparsedDefaultArg()) { 430 std::unique_ptr<CachedTokens> Toks = 431 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens); 432 SourceRange SR; 433 if (Toks->size() > 1) 434 SR = SourceRange((*Toks)[1].getLocation(), 435 Toks->back().getLocation()); 436 else 437 SR = UnparsedDefaultArgLocs[Param]; 438 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 439 << SR; 440 } else if (Param->getDefaultArg()) { 441 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 442 << Param->getDefaultArg()->getSourceRange(); 443 Param->setDefaultArg(nullptr); 444 } 445 } 446 } else if (chunk.Kind != DeclaratorChunk::Paren) { 447 MightBeFunction = false; 448 } 449 } 450 } 451 452 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { 453 return llvm::any_of(FD->parameters(), [](ParmVarDecl *P) { 454 return P->hasDefaultArg() && !P->hasInheritedDefaultArg(); 455 }); 456 } 457 458 /// MergeCXXFunctionDecl - Merge two declarations of the same C++ 459 /// function, once we already know that they have the same 460 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an 461 /// error, false otherwise. 462 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, 463 Scope *S) { 464 bool Invalid = false; 465 466 // The declaration context corresponding to the scope is the semantic 467 // parent, unless this is a local function declaration, in which case 468 // it is that surrounding function. 469 DeclContext *ScopeDC = New->isLocalExternDecl() 470 ? New->getLexicalDeclContext() 471 : New->getDeclContext(); 472 473 // Find the previous declaration for the purpose of default arguments. 474 FunctionDecl *PrevForDefaultArgs = Old; 475 for (/**/; PrevForDefaultArgs; 476 // Don't bother looking back past the latest decl if this is a local 477 // extern declaration; nothing else could work. 478 PrevForDefaultArgs = New->isLocalExternDecl() 479 ? nullptr 480 : PrevForDefaultArgs->getPreviousDecl()) { 481 // Ignore hidden declarations. 482 if (!LookupResult::isVisible(*this, PrevForDefaultArgs)) 483 continue; 484 485 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) && 486 !New->isCXXClassMember()) { 487 // Ignore default arguments of old decl if they are not in 488 // the same scope and this is not an out-of-line definition of 489 // a member function. 490 continue; 491 } 492 493 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) { 494 // If only one of these is a local function declaration, then they are 495 // declared in different scopes, even though isDeclInScope may think 496 // they're in the same scope. (If both are local, the scope check is 497 // sufficient, and if neither is local, then they are in the same scope.) 498 continue; 499 } 500 501 // We found the right previous declaration. 502 break; 503 } 504 505 // C++ [dcl.fct.default]p4: 506 // For non-template functions, default arguments can be added in 507 // later declarations of a function in the same 508 // scope. Declarations in different scopes have completely 509 // distinct sets of default arguments. That is, declarations in 510 // inner scopes do not acquire default arguments from 511 // declarations in outer scopes, and vice versa. In a given 512 // function declaration, all parameters subsequent to a 513 // parameter with a default argument shall have default 514 // arguments supplied in this or previous declarations. A 515 // default argument shall not be redefined by a later 516 // declaration (not even to the same value). 517 // 518 // C++ [dcl.fct.default]p6: 519 // Except for member functions of class templates, the default arguments 520 // in a member function definition that appears outside of the class 521 // definition are added to the set of default arguments provided by the 522 // member function declaration in the class definition. 523 for (unsigned p = 0, NumParams = PrevForDefaultArgs 524 ? PrevForDefaultArgs->getNumParams() 525 : 0; 526 p < NumParams; ++p) { 527 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p); 528 ParmVarDecl *NewParam = New->getParamDecl(p); 529 530 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; 531 bool NewParamHasDfl = NewParam->hasDefaultArg(); 532 533 if (OldParamHasDfl && NewParamHasDfl) { 534 unsigned DiagDefaultParamID = 535 diag::err_param_default_argument_redefinition; 536 537 // MSVC accepts that default parameters be redefined for member functions 538 // of template class. The new default parameter's value is ignored. 539 Invalid = true; 540 if (getLangOpts().MicrosoftExt) { 541 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New); 542 if (MD && MD->getParent()->getDescribedClassTemplate()) { 543 // Merge the old default argument into the new parameter. 544 NewParam->setHasInheritedDefaultArg(); 545 if (OldParam->hasUninstantiatedDefaultArg()) 546 NewParam->setUninstantiatedDefaultArg( 547 OldParam->getUninstantiatedDefaultArg()); 548 else 549 NewParam->setDefaultArg(OldParam->getInit()); 550 DiagDefaultParamID = diag::ext_param_default_argument_redefinition; 551 Invalid = false; 552 } 553 } 554 555 // FIXME: If we knew where the '=' was, we could easily provide a fix-it 556 // hint here. Alternatively, we could walk the type-source information 557 // for NewParam to find the last source location in the type... but it 558 // isn't worth the effort right now. This is the kind of test case that 559 // is hard to get right: 560 // int f(int); 561 // void g(int (*fp)(int) = f); 562 // void g(int (*fp)(int) = &f); 563 Diag(NewParam->getLocation(), DiagDefaultParamID) 564 << NewParam->getDefaultArgRange(); 565 566 // Look for the function declaration where the default argument was 567 // actually written, which may be a declaration prior to Old. 568 for (auto Older = PrevForDefaultArgs; 569 OldParam->hasInheritedDefaultArg(); /**/) { 570 Older = Older->getPreviousDecl(); 571 OldParam = Older->getParamDecl(p); 572 } 573 574 Diag(OldParam->getLocation(), diag::note_previous_definition) 575 << OldParam->getDefaultArgRange(); 576 } else if (OldParamHasDfl) { 577 // Merge the old default argument into the new parameter unless the new 578 // function is a friend declaration in a template class. In the latter 579 // case the default arguments will be inherited when the friend 580 // declaration will be instantiated. 581 if (New->getFriendObjectKind() == Decl::FOK_None || 582 !New->getLexicalDeclContext()->isDependentContext()) { 583 // It's important to use getInit() here; getDefaultArg() 584 // strips off any top-level ExprWithCleanups. 585 NewParam->setHasInheritedDefaultArg(); 586 if (OldParam->hasUnparsedDefaultArg()) 587 NewParam->setUnparsedDefaultArg(); 588 else if (OldParam->hasUninstantiatedDefaultArg()) 589 NewParam->setUninstantiatedDefaultArg( 590 OldParam->getUninstantiatedDefaultArg()); 591 else 592 NewParam->setDefaultArg(OldParam->getInit()); 593 } 594 } else if (NewParamHasDfl) { 595 if (New->getDescribedFunctionTemplate()) { 596 // Paragraph 4, quoted above, only applies to non-template functions. 597 Diag(NewParam->getLocation(), 598 diag::err_param_default_argument_template_redecl) 599 << NewParam->getDefaultArgRange(); 600 Diag(PrevForDefaultArgs->getLocation(), 601 diag::note_template_prev_declaration) 602 << false; 603 } else if (New->getTemplateSpecializationKind() 604 != TSK_ImplicitInstantiation && 605 New->getTemplateSpecializationKind() != TSK_Undeclared) { 606 // C++ [temp.expr.spec]p21: 607 // Default function arguments shall not be specified in a declaration 608 // or a definition for one of the following explicit specializations: 609 // - the explicit specialization of a function template; 610 // - the explicit specialization of a member function template; 611 // - the explicit specialization of a member function of a class 612 // template where the class template specialization to which the 613 // member function specialization belongs is implicitly 614 // instantiated. 615 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) 616 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) 617 << New->getDeclName() 618 << NewParam->getDefaultArgRange(); 619 } else if (New->getDeclContext()->isDependentContext()) { 620 // C++ [dcl.fct.default]p6 (DR217): 621 // Default arguments for a member function of a class template shall 622 // be specified on the initial declaration of the member function 623 // within the class template. 624 // 625 // Reading the tea leaves a bit in DR217 and its reference to DR205 626 // leads me to the conclusion that one cannot add default function 627 // arguments for an out-of-line definition of a member function of a 628 // dependent type. 629 int WhichKind = 2; 630 if (CXXRecordDecl *Record 631 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { 632 if (Record->getDescribedClassTemplate()) 633 WhichKind = 0; 634 else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) 635 WhichKind = 1; 636 else 637 WhichKind = 2; 638 } 639 640 Diag(NewParam->getLocation(), 641 diag::err_param_default_argument_member_template_redecl) 642 << WhichKind 643 << NewParam->getDefaultArgRange(); 644 } 645 } 646 } 647 648 // DR1344: If a default argument is added outside a class definition and that 649 // default argument makes the function a special member function, the program 650 // is ill-formed. This can only happen for constructors. 651 if (isa<CXXConstructorDecl>(New) && 652 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { 653 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)), 654 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old)); 655 if (NewSM != OldSM) { 656 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); 657 assert(NewParam->hasDefaultArg()); 658 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) 659 << NewParam->getDefaultArgRange() << NewSM; 660 Diag(Old->getLocation(), diag::note_previous_declaration); 661 } 662 } 663 664 const FunctionDecl *Def; 665 // C++11 [dcl.constexpr]p1: If any declaration of a function or function 666 // template has a constexpr specifier then all its declarations shall 667 // contain the constexpr specifier. 668 if (New->getConstexprKind() != Old->getConstexprKind()) { 669 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) 670 << New << static_cast<int>(New->getConstexprKind()) 671 << static_cast<int>(Old->getConstexprKind()); 672 Diag(Old->getLocation(), diag::note_previous_declaration); 673 Invalid = true; 674 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && 675 Old->isDefined(Def) && 676 // If a friend function is inlined but does not have 'inline' 677 // specifier, it is a definition. Do not report attribute conflict 678 // in this case, redefinition will be diagnosed later. 679 (New->isInlineSpecified() || 680 New->getFriendObjectKind() == Decl::FOK_None)) { 681 // C++11 [dcl.fcn.spec]p4: 682 // If the definition of a function appears in a translation unit before its 683 // first declaration as inline, the program is ill-formed. 684 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 685 Diag(Def->getLocation(), diag::note_previous_definition); 686 Invalid = true; 687 } 688 689 // C++17 [temp.deduct.guide]p3: 690 // Two deduction guide declarations in the same translation unit 691 // for the same class template shall not have equivalent 692 // parameter-declaration-clauses. 693 if (isa<CXXDeductionGuideDecl>(New) && 694 !New->isFunctionTemplateSpecialization() && isVisible(Old)) { 695 Diag(New->getLocation(), diag::err_deduction_guide_redeclared); 696 Diag(Old->getLocation(), diag::note_previous_declaration); 697 } 698 699 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default 700 // argument expression, that declaration shall be a definition and shall be 701 // the only declaration of the function or function template in the 702 // translation unit. 703 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && 704 functionDeclHasDefaultArgument(Old)) { 705 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 706 Diag(Old->getLocation(), diag::note_previous_declaration); 707 Invalid = true; 708 } 709 710 // C++11 [temp.friend]p4 (DR329): 711 // When a function is defined in a friend function declaration in a class 712 // template, the function is instantiated when the function is odr-used. 713 // The same restrictions on multiple declarations and definitions that 714 // apply to non-template function declarations and definitions also apply 715 // to these implicit definitions. 716 const FunctionDecl *OldDefinition = nullptr; 717 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() && 718 Old->isDefined(OldDefinition, true)) 719 CheckForFunctionRedefinition(New, OldDefinition); 720 721 return Invalid; 722 } 723 724 NamedDecl * 725 Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, 726 MultiTemplateParamsArg TemplateParamLists) { 727 assert(D.isDecompositionDeclarator()); 728 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); 729 730 // The syntax only allows a decomposition declarator as a simple-declaration, 731 // a for-range-declaration, or a condition in Clang, but we parse it in more 732 // cases than that. 733 if (!D.mayHaveDecompositionDeclarator()) { 734 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) 735 << Decomp.getSourceRange(); 736 return nullptr; 737 } 738 739 if (!TemplateParamLists.empty()) { 740 // FIXME: There's no rule against this, but there are also no rules that 741 // would actually make it usable, so we reject it for now. 742 Diag(TemplateParamLists.front()->getTemplateLoc(), 743 diag::err_decomp_decl_template); 744 return nullptr; 745 } 746 747 Diag(Decomp.getLSquareLoc(), 748 !getLangOpts().CPlusPlus17 749 ? diag::ext_decomp_decl 750 : D.getContext() == DeclaratorContext::Condition 751 ? diag::ext_decomp_decl_cond 752 : diag::warn_cxx14_compat_decomp_decl) 753 << Decomp.getSourceRange(); 754 755 // The semantic context is always just the current context. 756 DeclContext *const DC = CurContext; 757 758 // C++17 [dcl.dcl]/8: 759 // The decl-specifier-seq shall contain only the type-specifier auto 760 // and cv-qualifiers. 761 // C++20 [dcl.dcl]/8: 762 // If decl-specifier-seq contains any decl-specifier other than static, 763 // thread_local, auto, or cv-qualifiers, the program is ill-formed. 764 // C++2b [dcl.pre]/6: 765 // Each decl-specifier in the decl-specifier-seq shall be static, 766 // thread_local, auto (9.2.9.6 [dcl.spec.auto]), or a cv-qualifier. 767 auto &DS = D.getDeclSpec(); 768 { 769 // Note: While constrained-auto needs to be checked, we do so separately so 770 // we can emit a better diagnostic. 771 SmallVector<StringRef, 8> BadSpecifiers; 772 SmallVector<SourceLocation, 8> BadSpecifierLocs; 773 SmallVector<StringRef, 8> CPlusPlus20Specifiers; 774 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; 775 if (auto SCS = DS.getStorageClassSpec()) { 776 if (SCS == DeclSpec::SCS_static) { 777 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS)); 778 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 779 } else { 780 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS)); 781 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 782 } 783 } 784 if (auto TSCS = DS.getThreadStorageClassSpec()) { 785 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS)); 786 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc()); 787 } 788 if (DS.hasConstexprSpecifier()) { 789 BadSpecifiers.push_back( 790 DeclSpec::getSpecifierName(DS.getConstexprSpecifier())); 791 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc()); 792 } 793 if (DS.isInlineSpecified()) { 794 BadSpecifiers.push_back("inline"); 795 BadSpecifierLocs.push_back(DS.getInlineSpecLoc()); 796 } 797 798 if (!BadSpecifiers.empty()) { 799 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); 800 Err << (int)BadSpecifiers.size() 801 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " "); 802 // Don't add FixItHints to remove the specifiers; we do still respect 803 // them when building the underlying variable. 804 for (auto Loc : BadSpecifierLocs) 805 Err << SourceRange(Loc, Loc); 806 } else if (!CPlusPlus20Specifiers.empty()) { 807 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(), 808 getLangOpts().CPlusPlus20 809 ? diag::warn_cxx17_compat_decomp_decl_spec 810 : diag::ext_decomp_decl_spec); 811 Warn << (int)CPlusPlus20Specifiers.size() 812 << llvm::join(CPlusPlus20Specifiers.begin(), 813 CPlusPlus20Specifiers.end(), " "); 814 for (auto Loc : CPlusPlus20SpecifierLocs) 815 Warn << SourceRange(Loc, Loc); 816 } 817 // We can't recover from it being declared as a typedef. 818 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 819 return nullptr; 820 } 821 822 // C++2a [dcl.struct.bind]p1: 823 // A cv that includes volatile is deprecated 824 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && 825 getLangOpts().CPlusPlus20) 826 Diag(DS.getVolatileSpecLoc(), 827 diag::warn_deprecated_volatile_structured_binding); 828 829 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 830 QualType R = TInfo->getType(); 831 832 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 833 UPPC_DeclarationType)) 834 D.setInvalidType(); 835 836 // The syntax only allows a single ref-qualifier prior to the decomposition 837 // declarator. No other declarator chunks are permitted. Also check the type 838 // specifier here. 839 if (DS.getTypeSpecType() != DeclSpec::TST_auto || 840 D.hasGroupingParens() || D.getNumTypeObjects() > 1 || 841 (D.getNumTypeObjects() == 1 && 842 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) { 843 Diag(Decomp.getLSquareLoc(), 844 (D.hasGroupingParens() || 845 (D.getNumTypeObjects() && 846 D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) 847 ? diag::err_decomp_decl_parens 848 : diag::err_decomp_decl_type) 849 << R; 850 851 // In most cases, there's no actual problem with an explicitly-specified 852 // type, but a function type won't work here, and ActOnVariableDeclarator 853 // shouldn't be called for such a type. 854 if (R->isFunctionType()) 855 D.setInvalidType(); 856 } 857 858 // Constrained auto is prohibited by [decl.pre]p6, so check that here. 859 if (DS.isConstrainedAuto()) { 860 TemplateIdAnnotation *TemplRep = DS.getRepAsTemplateId(); 861 assert(TemplRep->Kind == TNK_Concept_template && 862 "No other template kind should be possible for a constrained auto"); 863 864 SourceRange TemplRange{TemplRep->TemplateNameLoc, 865 TemplRep->RAngleLoc.isValid() 866 ? TemplRep->RAngleLoc 867 : TemplRep->TemplateNameLoc}; 868 Diag(TemplRep->TemplateNameLoc, diag::err_decomp_decl_constraint) 869 << TemplRange << FixItHint::CreateRemoval(TemplRange); 870 } 871 872 // Build the BindingDecls. 873 SmallVector<BindingDecl*, 8> Bindings; 874 875 // Build the BindingDecls. 876 for (auto &B : D.getDecompositionDeclarator().bindings()) { 877 // Check for name conflicts. 878 DeclarationNameInfo NameInfo(B.Name, B.NameLoc); 879 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 880 ForVisibleRedeclaration); 881 LookupName(Previous, S, 882 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit()); 883 884 // It's not permitted to shadow a template parameter name. 885 if (Previous.isSingleResult() && 886 Previous.getFoundDecl()->isTemplateParameter()) { 887 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 888 Previous.getFoundDecl()); 889 Previous.clear(); 890 } 891 892 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name); 893 894 // Find the shadowed declaration before filtering for scope. 895 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() 896 ? getShadowedDeclaration(BD, Previous) 897 : nullptr; 898 899 bool ConsiderLinkage = DC->isFunctionOrMethod() && 900 DS.getStorageClassSpec() == DeclSpec::SCS_extern; 901 FilterLookupForScope(Previous, DC, S, ConsiderLinkage, 902 /*AllowInlineNamespace*/false); 903 904 if (!Previous.empty()) { 905 auto *Old = Previous.getRepresentativeDecl(); 906 Diag(B.NameLoc, diag::err_redefinition) << B.Name; 907 Diag(Old->getLocation(), diag::note_previous_definition); 908 } else if (ShadowedDecl && !D.isRedeclaration()) { 909 CheckShadow(BD, ShadowedDecl, Previous); 910 } 911 PushOnScopeChains(BD, S, true); 912 Bindings.push_back(BD); 913 ParsingInitForAutoVars.insert(BD); 914 } 915 916 // There are no prior lookup results for the variable itself, because it 917 // is unnamed. 918 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, 919 Decomp.getLSquareLoc()); 920 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 921 ForVisibleRedeclaration); 922 923 // Build the variable that holds the non-decomposed object. 924 bool AddToScope = true; 925 NamedDecl *New = 926 ActOnVariableDeclarator(S, D, DC, TInfo, Previous, 927 MultiTemplateParamsArg(), AddToScope, Bindings); 928 if (AddToScope) { 929 S->AddDecl(New); 930 CurContext->addHiddenDecl(New); 931 } 932 933 if (isInOpenMPDeclareTargetContext()) 934 checkDeclIsAllowedInOpenMPTarget(nullptr, New); 935 936 return New; 937 } 938 939 static bool checkSimpleDecomposition( 940 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, 941 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType, 942 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { 943 if ((int64_t)Bindings.size() != NumElems) { 944 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 945 << DecompType << (unsigned)Bindings.size() 946 << (unsigned)NumElems.getLimitedValue(UINT_MAX) 947 << toString(NumElems, 10) << (NumElems < Bindings.size()); 948 return true; 949 } 950 951 unsigned I = 0; 952 for (auto *B : Bindings) { 953 SourceLocation Loc = B->getLocation(); 954 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 955 if (E.isInvalid()) 956 return true; 957 E = GetInit(Loc, E.get(), I++); 958 if (E.isInvalid()) 959 return true; 960 B->setBinding(ElemType, E.get()); 961 } 962 963 return false; 964 } 965 966 static bool checkArrayLikeDecomposition(Sema &S, 967 ArrayRef<BindingDecl *> Bindings, 968 ValueDecl *Src, QualType DecompType, 969 const llvm::APSInt &NumElems, 970 QualType ElemType) { 971 return checkSimpleDecomposition( 972 S, Bindings, Src, DecompType, NumElems, ElemType, 973 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 974 ExprResult E = S.ActOnIntegerConstant(Loc, I); 975 if (E.isInvalid()) 976 return ExprError(); 977 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc); 978 }); 979 } 980 981 static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 982 ValueDecl *Src, QualType DecompType, 983 const ConstantArrayType *CAT) { 984 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, 985 llvm::APSInt(CAT->getSize()), 986 CAT->getElementType()); 987 } 988 989 static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 990 ValueDecl *Src, QualType DecompType, 991 const VectorType *VT) { 992 return checkArrayLikeDecomposition( 993 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()), 994 S.Context.getQualifiedType(VT->getElementType(), 995 DecompType.getQualifiers())); 996 } 997 998 static bool checkComplexDecomposition(Sema &S, 999 ArrayRef<BindingDecl *> Bindings, 1000 ValueDecl *Src, QualType DecompType, 1001 const ComplexType *CT) { 1002 return checkSimpleDecomposition( 1003 S, Bindings, Src, DecompType, llvm::APSInt::get(2), 1004 S.Context.getQualifiedType(CT->getElementType(), 1005 DecompType.getQualifiers()), 1006 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 1007 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base); 1008 }); 1009 } 1010 1011 static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, 1012 TemplateArgumentListInfo &Args, 1013 const TemplateParameterList *Params) { 1014 SmallString<128> SS; 1015 llvm::raw_svector_ostream OS(SS); 1016 bool First = true; 1017 unsigned I = 0; 1018 for (auto &Arg : Args.arguments()) { 1019 if (!First) 1020 OS << ", "; 1021 Arg.getArgument().print(PrintingPolicy, OS, 1022 TemplateParameterList::shouldIncludeTypeForArgument( 1023 PrintingPolicy, Params, I)); 1024 First = false; 1025 I++; 1026 } 1027 return std::string(OS.str()); 1028 } 1029 1030 static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, 1031 SourceLocation Loc, StringRef Trait, 1032 TemplateArgumentListInfo &Args, 1033 unsigned DiagID) { 1034 auto DiagnoseMissing = [&] { 1035 if (DiagID) 1036 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(), 1037 Args, /*Params*/ nullptr); 1038 return true; 1039 }; 1040 1041 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. 1042 NamespaceDecl *Std = S.getStdNamespace(); 1043 if (!Std) 1044 return DiagnoseMissing(); 1045 1046 // Look up the trait itself, within namespace std. We can diagnose various 1047 // problems with this lookup even if we've been asked to not diagnose a 1048 // missing specialization, because this can only fail if the user has been 1049 // declaring their own names in namespace std or we don't support the 1050 // standard library implementation in use. 1051 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait), 1052 Loc, Sema::LookupOrdinaryName); 1053 if (!S.LookupQualifiedName(Result, Std)) 1054 return DiagnoseMissing(); 1055 if (Result.isAmbiguous()) 1056 return true; 1057 1058 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); 1059 if (!TraitTD) { 1060 Result.suppressDiagnostics(); 1061 NamedDecl *Found = *Result.begin(); 1062 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; 1063 S.Diag(Found->getLocation(), diag::note_declared_at); 1064 return true; 1065 } 1066 1067 // Build the template-id. 1068 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args); 1069 if (TraitTy.isNull()) 1070 return true; 1071 if (!S.isCompleteType(Loc, TraitTy)) { 1072 if (DiagID) 1073 S.RequireCompleteType( 1074 Loc, TraitTy, DiagID, 1075 printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1076 TraitTD->getTemplateParameters())); 1077 return true; 1078 } 1079 1080 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); 1081 assert(RD && "specialization of class template is not a class?"); 1082 1083 // Look up the member of the trait type. 1084 S.LookupQualifiedName(TraitMemberLookup, RD); 1085 return TraitMemberLookup.isAmbiguous(); 1086 } 1087 1088 static TemplateArgumentLoc 1089 getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, 1090 uint64_t I) { 1091 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T); 1092 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc); 1093 } 1094 1095 static TemplateArgumentLoc 1096 getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { 1097 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc); 1098 } 1099 1100 namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } 1101 1102 static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, 1103 llvm::APSInt &Size) { 1104 EnterExpressionEvaluationContext ContextRAII( 1105 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1106 1107 DeclarationName Value = S.PP.getIdentifierInfo("value"); 1108 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); 1109 1110 // Form template argument list for tuple_size<T>. 1111 TemplateArgumentListInfo Args(Loc, Loc); 1112 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1113 1114 // If there's no tuple_size specialization or the lookup of 'value' is empty, 1115 // it's not tuple-like. 1116 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) || 1117 R.empty()) 1118 return IsTupleLike::NotTupleLike; 1119 1120 // If we get this far, we've committed to the tuple interpretation, but 1121 // we can still fail if there actually isn't a usable ::value. 1122 1123 struct ICEDiagnoser : Sema::VerifyICEDiagnoser { 1124 LookupResult &R; 1125 TemplateArgumentListInfo &Args; 1126 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) 1127 : R(R), Args(Args) {} 1128 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, 1129 SourceLocation Loc) override { 1130 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) 1131 << printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1132 /*Params*/ nullptr); 1133 } 1134 } Diagnoser(R, Args); 1135 1136 ExprResult E = 1137 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false); 1138 if (E.isInvalid()) 1139 return IsTupleLike::Error; 1140 1141 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser); 1142 if (E.isInvalid()) 1143 return IsTupleLike::Error; 1144 1145 return IsTupleLike::TupleLike; 1146 } 1147 1148 /// \return std::tuple_element<I, T>::type. 1149 static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, 1150 unsigned I, QualType T) { 1151 // Form template argument list for tuple_element<I, T>. 1152 TemplateArgumentListInfo Args(Loc, Loc); 1153 Args.addArgument( 1154 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1155 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1156 1157 DeclarationName TypeDN = S.PP.getIdentifierInfo("type"); 1158 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); 1159 if (lookupStdTypeTraitMember( 1160 S, R, Loc, "tuple_element", Args, 1161 diag::err_decomp_decl_std_tuple_element_not_specialized)) 1162 return QualType(); 1163 1164 auto *TD = R.getAsSingle<TypeDecl>(); 1165 if (!TD) { 1166 R.suppressDiagnostics(); 1167 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) 1168 << printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1169 /*Params*/ nullptr); 1170 if (!R.empty()) 1171 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); 1172 return QualType(); 1173 } 1174 1175 return S.Context.getTypeDeclType(TD); 1176 } 1177 1178 namespace { 1179 struct InitializingBinding { 1180 Sema &S; 1181 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) { 1182 Sema::CodeSynthesisContext Ctx; 1183 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding; 1184 Ctx.PointOfInstantiation = BD->getLocation(); 1185 Ctx.Entity = BD; 1186 S.pushCodeSynthesisContext(Ctx); 1187 } 1188 ~InitializingBinding() { 1189 S.popCodeSynthesisContext(); 1190 } 1191 }; 1192 } 1193 1194 static bool checkTupleLikeDecomposition(Sema &S, 1195 ArrayRef<BindingDecl *> Bindings, 1196 VarDecl *Src, QualType DecompType, 1197 const llvm::APSInt &TupleSize) { 1198 if ((int64_t)Bindings.size() != TupleSize) { 1199 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1200 << DecompType << (unsigned)Bindings.size() 1201 << (unsigned)TupleSize.getLimitedValue(UINT_MAX) 1202 << toString(TupleSize, 10) << (TupleSize < Bindings.size()); 1203 return true; 1204 } 1205 1206 if (Bindings.empty()) 1207 return false; 1208 1209 DeclarationName GetDN = S.PP.getIdentifierInfo("get"); 1210 1211 // [dcl.decomp]p3: 1212 // The unqualified-id get is looked up in the scope of E by class member 1213 // access lookup ... 1214 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); 1215 bool UseMemberGet = false; 1216 if (S.isCompleteType(Src->getLocation(), DecompType)) { 1217 if (auto *RD = DecompType->getAsCXXRecordDecl()) 1218 S.LookupQualifiedName(MemberGet, RD); 1219 if (MemberGet.isAmbiguous()) 1220 return true; 1221 // ... and if that finds at least one declaration that is a function 1222 // template whose first template parameter is a non-type parameter ... 1223 for (NamedDecl *D : MemberGet) { 1224 if (FunctionTemplateDecl *FTD = 1225 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { 1226 TemplateParameterList *TPL = FTD->getTemplateParameters(); 1227 if (TPL->size() != 0 && 1228 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { 1229 // ... the initializer is e.get<i>(). 1230 UseMemberGet = true; 1231 break; 1232 } 1233 } 1234 } 1235 } 1236 1237 unsigned I = 0; 1238 for (auto *B : Bindings) { 1239 InitializingBinding InitContext(S, B); 1240 SourceLocation Loc = B->getLocation(); 1241 1242 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1243 if (E.isInvalid()) 1244 return true; 1245 1246 // e is an lvalue if the type of the entity is an lvalue reference and 1247 // an xvalue otherwise 1248 if (!Src->getType()->isLValueReferenceType()) 1249 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp, 1250 E.get(), nullptr, VK_XValue, 1251 FPOptionsOverride()); 1252 1253 TemplateArgumentListInfo Args(Loc, Loc); 1254 Args.addArgument( 1255 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1256 1257 if (UseMemberGet) { 1258 // if [lookup of member get] finds at least one declaration, the 1259 // initializer is e.get<i-1>(). 1260 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false, 1261 CXXScopeSpec(), SourceLocation(), nullptr, 1262 MemberGet, &Args, nullptr); 1263 if (E.isInvalid()) 1264 return true; 1265 1266 E = S.BuildCallExpr(nullptr, E.get(), Loc, std::nullopt, Loc); 1267 } else { 1268 // Otherwise, the initializer is get<i-1>(e), where get is looked up 1269 // in the associated namespaces. 1270 Expr *Get = UnresolvedLookupExpr::Create( 1271 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(), 1272 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args, 1273 UnresolvedSetIterator(), UnresolvedSetIterator()); 1274 1275 Expr *Arg = E.get(); 1276 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc); 1277 } 1278 if (E.isInvalid()) 1279 return true; 1280 Expr *Init = E.get(); 1281 1282 // Given the type T designated by std::tuple_element<i - 1, E>::type, 1283 QualType T = getTupleLikeElementType(S, Loc, I, DecompType); 1284 if (T.isNull()) 1285 return true; 1286 1287 // each vi is a variable of type "reference to T" initialized with the 1288 // initializer, where the reference is an lvalue reference if the 1289 // initializer is an lvalue and an rvalue reference otherwise 1290 QualType RefType = 1291 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName()); 1292 if (RefType.isNull()) 1293 return true; 1294 auto *RefVD = VarDecl::Create( 1295 S.Context, Src->getDeclContext(), Loc, Loc, 1296 B->getDeclName().getAsIdentifierInfo(), RefType, 1297 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass()); 1298 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); 1299 RefVD->setTSCSpec(Src->getTSCSpec()); 1300 RefVD->setImplicit(); 1301 if (Src->isInlineSpecified()) 1302 RefVD->setInlineSpecified(); 1303 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); 1304 1305 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD); 1306 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc); 1307 InitializationSequence Seq(S, Entity, Kind, Init); 1308 E = Seq.Perform(S, Entity, Kind, Init); 1309 if (E.isInvalid()) 1310 return true; 1311 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false); 1312 if (E.isInvalid()) 1313 return true; 1314 RefVD->setInit(E.get()); 1315 S.CheckCompleteVariableDeclaration(RefVD); 1316 1317 E = S.BuildDeclarationNameExpr(CXXScopeSpec(), 1318 DeclarationNameInfo(B->getDeclName(), Loc), 1319 RefVD); 1320 if (E.isInvalid()) 1321 return true; 1322 1323 B->setBinding(T, E.get()); 1324 I++; 1325 } 1326 1327 return false; 1328 } 1329 1330 /// Find the base class to decompose in a built-in decomposition of a class type. 1331 /// This base class search is, unfortunately, not quite like any other that we 1332 /// perform anywhere else in C++. 1333 static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, 1334 const CXXRecordDecl *RD, 1335 CXXCastPath &BasePath) { 1336 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, 1337 CXXBasePath &Path) { 1338 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); 1339 }; 1340 1341 const CXXRecordDecl *ClassWithFields = nullptr; 1342 AccessSpecifier AS = AS_public; 1343 if (RD->hasDirectFields()) 1344 // [dcl.decomp]p4: 1345 // Otherwise, all of E's non-static data members shall be public direct 1346 // members of E ... 1347 ClassWithFields = RD; 1348 else { 1349 // ... or of ... 1350 CXXBasePaths Paths; 1351 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); 1352 if (!RD->lookupInBases(BaseHasFields, Paths)) { 1353 // If no classes have fields, just decompose RD itself. (This will work 1354 // if and only if zero bindings were provided.) 1355 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); 1356 } 1357 1358 CXXBasePath *BestPath = nullptr; 1359 for (auto &P : Paths) { 1360 if (!BestPath) 1361 BestPath = &P; 1362 else if (!S.Context.hasSameType(P.back().Base->getType(), 1363 BestPath->back().Base->getType())) { 1364 // ... the same ... 1365 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1366 << false << RD << BestPath->back().Base->getType() 1367 << P.back().Base->getType(); 1368 return DeclAccessPair(); 1369 } else if (P.Access < BestPath->Access) { 1370 BestPath = &P; 1371 } 1372 } 1373 1374 // ... unambiguous ... 1375 QualType BaseType = BestPath->back().Base->getType(); 1376 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) { 1377 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) 1378 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); 1379 return DeclAccessPair(); 1380 } 1381 1382 // ... [accessible, implied by other rules] base class of E. 1383 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), 1384 *BestPath, diag::err_decomp_decl_inaccessible_base); 1385 AS = BestPath->Access; 1386 1387 ClassWithFields = BaseType->getAsCXXRecordDecl(); 1388 S.BuildBasePathArray(Paths, BasePath); 1389 } 1390 1391 // The above search did not check whether the selected class itself has base 1392 // classes with fields, so check that now. 1393 CXXBasePaths Paths; 1394 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) { 1395 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1396 << (ClassWithFields == RD) << RD << ClassWithFields 1397 << Paths.front().back().Base->getType(); 1398 return DeclAccessPair(); 1399 } 1400 1401 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); 1402 } 1403 1404 static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 1405 ValueDecl *Src, QualType DecompType, 1406 const CXXRecordDecl *OrigRD) { 1407 if (S.RequireCompleteType(Src->getLocation(), DecompType, 1408 diag::err_incomplete_type)) 1409 return true; 1410 1411 CXXCastPath BasePath; 1412 DeclAccessPair BasePair = 1413 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); 1414 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl()); 1415 if (!RD) 1416 return true; 1417 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD), 1418 DecompType.getQualifiers()); 1419 1420 auto DiagnoseBadNumberOfBindings = [&]() -> bool { 1421 unsigned NumFields = llvm::count_if( 1422 RD->fields(), [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); }); 1423 assert(Bindings.size() != NumFields); 1424 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1425 << DecompType << (unsigned)Bindings.size() << NumFields << NumFields 1426 << (NumFields < Bindings.size()); 1427 return true; 1428 }; 1429 1430 // all of E's non-static data members shall be [...] well-formed 1431 // when named as e.name in the context of the structured binding, 1432 // E shall not have an anonymous union member, ... 1433 unsigned I = 0; 1434 for (auto *FD : RD->fields()) { 1435 if (FD->isUnnamedBitfield()) 1436 continue; 1437 1438 // All the non-static data members are required to be nameable, so they 1439 // must all have names. 1440 if (!FD->getDeclName()) { 1441 if (RD->isLambda()) { 1442 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda); 1443 S.Diag(RD->getLocation(), diag::note_lambda_decl); 1444 return true; 1445 } 1446 1447 if (FD->isAnonymousStructOrUnion()) { 1448 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member) 1449 << DecompType << FD->getType()->isUnionType(); 1450 S.Diag(FD->getLocation(), diag::note_declared_at); 1451 return true; 1452 } 1453 1454 // FIXME: Are there any other ways we could have an anonymous member? 1455 } 1456 1457 // We have a real field to bind. 1458 if (I >= Bindings.size()) 1459 return DiagnoseBadNumberOfBindings(); 1460 auto *B = Bindings[I++]; 1461 SourceLocation Loc = B->getLocation(); 1462 1463 // The field must be accessible in the context of the structured binding. 1464 // We already checked that the base class is accessible. 1465 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the 1466 // const_cast here. 1467 S.CheckStructuredBindingMemberAccess( 1468 Loc, const_cast<CXXRecordDecl *>(OrigRD), 1469 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( 1470 BasePair.getAccess(), FD->getAccess()))); 1471 1472 // Initialize the binding to Src.FD. 1473 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1474 if (E.isInvalid()) 1475 return true; 1476 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, 1477 VK_LValue, &BasePath); 1478 if (E.isInvalid()) 1479 return true; 1480 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, 1481 CXXScopeSpec(), FD, 1482 DeclAccessPair::make(FD, FD->getAccess()), 1483 DeclarationNameInfo(FD->getDeclName(), Loc)); 1484 if (E.isInvalid()) 1485 return true; 1486 1487 // If the type of the member is T, the referenced type is cv T, where cv is 1488 // the cv-qualification of the decomposition expression. 1489 // 1490 // FIXME: We resolve a defect here: if the field is mutable, we do not add 1491 // 'const' to the type of the field. 1492 Qualifiers Q = DecompType.getQualifiers(); 1493 if (FD->isMutable()) 1494 Q.removeConst(); 1495 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); 1496 } 1497 1498 if (I != Bindings.size()) 1499 return DiagnoseBadNumberOfBindings(); 1500 1501 return false; 1502 } 1503 1504 void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { 1505 QualType DecompType = DD->getType(); 1506 1507 // If the type of the decomposition is dependent, then so is the type of 1508 // each binding. 1509 if (DecompType->isDependentType()) { 1510 for (auto *B : DD->bindings()) 1511 B->setType(Context.DependentTy); 1512 return; 1513 } 1514 1515 DecompType = DecompType.getNonReferenceType(); 1516 ArrayRef<BindingDecl*> Bindings = DD->bindings(); 1517 1518 // C++1z [dcl.decomp]/2: 1519 // If E is an array type [...] 1520 // As an extension, we also support decomposition of built-in complex and 1521 // vector types. 1522 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { 1523 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) 1524 DD->setInvalidDecl(); 1525 return; 1526 } 1527 if (auto *VT = DecompType->getAs<VectorType>()) { 1528 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) 1529 DD->setInvalidDecl(); 1530 return; 1531 } 1532 if (auto *CT = DecompType->getAs<ComplexType>()) { 1533 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) 1534 DD->setInvalidDecl(); 1535 return; 1536 } 1537 1538 // C++1z [dcl.decomp]/3: 1539 // if the expression std::tuple_size<E>::value is a well-formed integral 1540 // constant expression, [...] 1541 llvm::APSInt TupleSize(32); 1542 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { 1543 case IsTupleLike::Error: 1544 DD->setInvalidDecl(); 1545 return; 1546 1547 case IsTupleLike::TupleLike: 1548 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) 1549 DD->setInvalidDecl(); 1550 return; 1551 1552 case IsTupleLike::NotTupleLike: 1553 break; 1554 } 1555 1556 // C++1z [dcl.dcl]/8: 1557 // [E shall be of array or non-union class type] 1558 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); 1559 if (!RD || RD->isUnion()) { 1560 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) 1561 << DD << !RD << DecompType; 1562 DD->setInvalidDecl(); 1563 return; 1564 } 1565 1566 // C++1z [dcl.decomp]/4: 1567 // all of E's non-static data members shall be [...] direct members of 1568 // E or of the same unambiguous public base class of E, ... 1569 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) 1570 DD->setInvalidDecl(); 1571 } 1572 1573 /// Merge the exception specifications of two variable declarations. 1574 /// 1575 /// This is called when there's a redeclaration of a VarDecl. The function 1576 /// checks if the redeclaration might have an exception specification and 1577 /// validates compatibility and merges the specs if necessary. 1578 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { 1579 // Shortcut if exceptions are disabled. 1580 if (!getLangOpts().CXXExceptions) 1581 return; 1582 1583 assert(Context.hasSameType(New->getType(), Old->getType()) && 1584 "Should only be called if types are otherwise the same."); 1585 1586 QualType NewType = New->getType(); 1587 QualType OldType = Old->getType(); 1588 1589 // We're only interested in pointers and references to functions, as well 1590 // as pointers to member functions. 1591 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { 1592 NewType = R->getPointeeType(); 1593 OldType = OldType->castAs<ReferenceType>()->getPointeeType(); 1594 } else if (const PointerType *P = NewType->getAs<PointerType>()) { 1595 NewType = P->getPointeeType(); 1596 OldType = OldType->castAs<PointerType>()->getPointeeType(); 1597 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { 1598 NewType = M->getPointeeType(); 1599 OldType = OldType->castAs<MemberPointerType>()->getPointeeType(); 1600 } 1601 1602 if (!NewType->isFunctionProtoType()) 1603 return; 1604 1605 // There's lots of special cases for functions. For function pointers, system 1606 // libraries are hopefully not as broken so that we don't need these 1607 // workarounds. 1608 if (CheckEquivalentExceptionSpec( 1609 OldType->getAs<FunctionProtoType>(), Old->getLocation(), 1610 NewType->getAs<FunctionProtoType>(), New->getLocation())) { 1611 New->setInvalidDecl(); 1612 } 1613 } 1614 1615 /// CheckCXXDefaultArguments - Verify that the default arguments for a 1616 /// function declaration are well-formed according to C++ 1617 /// [dcl.fct.default]. 1618 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { 1619 unsigned NumParams = FD->getNumParams(); 1620 unsigned ParamIdx = 0; 1621 1622 // This checking doesn't make sense for explicit specializations; their 1623 // default arguments are determined by the declaration we're specializing, 1624 // not by FD. 1625 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 1626 return; 1627 if (auto *FTD = FD->getDescribedFunctionTemplate()) 1628 if (FTD->isMemberSpecialization()) 1629 return; 1630 1631 // Find first parameter with a default argument 1632 for (; ParamIdx < NumParams; ++ParamIdx) { 1633 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1634 if (Param->hasDefaultArg()) 1635 break; 1636 } 1637 1638 // C++20 [dcl.fct.default]p4: 1639 // In a given function declaration, each parameter subsequent to a parameter 1640 // with a default argument shall have a default argument supplied in this or 1641 // a previous declaration, unless the parameter was expanded from a 1642 // parameter pack, or shall be a function parameter pack. 1643 for (; ParamIdx < NumParams; ++ParamIdx) { 1644 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1645 if (!Param->hasDefaultArg() && !Param->isParameterPack() && 1646 !(CurrentInstantiationScope && 1647 CurrentInstantiationScope->isLocalPackExpansion(Param))) { 1648 if (Param->isInvalidDecl()) 1649 /* We already complained about this parameter. */; 1650 else if (Param->getIdentifier()) 1651 Diag(Param->getLocation(), 1652 diag::err_param_default_argument_missing_name) 1653 << Param->getIdentifier(); 1654 else 1655 Diag(Param->getLocation(), 1656 diag::err_param_default_argument_missing); 1657 } 1658 } 1659 } 1660 1661 /// Check that the given type is a literal type. Issue a diagnostic if not, 1662 /// if Kind is Diagnose. 1663 /// \return \c true if a problem has been found (and optionally diagnosed). 1664 template <typename... Ts> 1665 static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, 1666 SourceLocation Loc, QualType T, unsigned DiagID, 1667 Ts &&...DiagArgs) { 1668 if (T->isDependentType()) 1669 return false; 1670 1671 switch (Kind) { 1672 case Sema::CheckConstexprKind::Diagnose: 1673 return SemaRef.RequireLiteralType(Loc, T, DiagID, 1674 std::forward<Ts>(DiagArgs)...); 1675 1676 case Sema::CheckConstexprKind::CheckValid: 1677 return !T->isLiteralType(SemaRef.Context); 1678 } 1679 1680 llvm_unreachable("unknown CheckConstexprKind"); 1681 } 1682 1683 /// Determine whether a destructor cannot be constexpr due to 1684 static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, 1685 const CXXDestructorDecl *DD, 1686 Sema::CheckConstexprKind Kind) { 1687 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { 1688 const CXXRecordDecl *RD = 1689 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1690 if (!RD || RD->hasConstexprDestructor()) 1691 return true; 1692 1693 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1694 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) 1695 << static_cast<int>(DD->getConstexprKind()) << !FD 1696 << (FD ? FD->getDeclName() : DeclarationName()) << T; 1697 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) 1698 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; 1699 } 1700 return false; 1701 }; 1702 1703 const CXXRecordDecl *RD = DD->getParent(); 1704 for (const CXXBaseSpecifier &B : RD->bases()) 1705 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) 1706 return false; 1707 for (const FieldDecl *FD : RD->fields()) 1708 if (!Check(FD->getLocation(), FD->getType(), FD)) 1709 return false; 1710 return true; 1711 } 1712 1713 /// Check whether a function's parameter types are all literal types. If so, 1714 /// return true. If not, produce a suitable diagnostic and return false. 1715 static bool CheckConstexprParameterTypes(Sema &SemaRef, 1716 const FunctionDecl *FD, 1717 Sema::CheckConstexprKind Kind) { 1718 unsigned ArgIndex = 0; 1719 const auto *FT = FD->getType()->castAs<FunctionProtoType>(); 1720 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), 1721 e = FT->param_type_end(); 1722 i != e; ++i, ++ArgIndex) { 1723 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); 1724 SourceLocation ParamLoc = PD->getLocation(); 1725 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, 1726 diag::err_constexpr_non_literal_param, ArgIndex + 1, 1727 PD->getSourceRange(), isa<CXXConstructorDecl>(FD), 1728 FD->isConsteval())) 1729 return false; 1730 } 1731 return true; 1732 } 1733 1734 /// Check whether a function's return type is a literal type. If so, return 1735 /// true. If not, produce a suitable diagnostic and return false. 1736 static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD, 1737 Sema::CheckConstexprKind Kind) { 1738 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(), 1739 diag::err_constexpr_non_literal_return, 1740 FD->isConsteval())) 1741 return false; 1742 return true; 1743 } 1744 1745 /// Get diagnostic %select index for tag kind for 1746 /// record diagnostic message. 1747 /// WARNING: Indexes apply to particular diagnostics only! 1748 /// 1749 /// \returns diagnostic %select index. 1750 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { 1751 switch (Tag) { 1752 case TTK_Struct: return 0; 1753 case TTK_Interface: return 1; 1754 case TTK_Class: return 2; 1755 default: llvm_unreachable("Invalid tag kind for record diagnostic!"); 1756 } 1757 } 1758 1759 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 1760 Stmt *Body, 1761 Sema::CheckConstexprKind Kind); 1762 1763 // Check whether a function declaration satisfies the requirements of a 1764 // constexpr function definition or a constexpr constructor definition. If so, 1765 // return true. If not, produce appropriate diagnostics (unless asked not to by 1766 // Kind) and return false. 1767 // 1768 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360. 1769 bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, 1770 CheckConstexprKind Kind) { 1771 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 1772 if (MD && MD->isInstance()) { 1773 // C++11 [dcl.constexpr]p4: 1774 // The definition of a constexpr constructor shall satisfy the following 1775 // constraints: 1776 // - the class shall not have any virtual base classes; 1777 // 1778 // FIXME: This only applies to constructors and destructors, not arbitrary 1779 // member functions. 1780 const CXXRecordDecl *RD = MD->getParent(); 1781 if (RD->getNumVBases()) { 1782 if (Kind == CheckConstexprKind::CheckValid) 1783 return false; 1784 1785 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) 1786 << isa<CXXConstructorDecl>(NewFD) 1787 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); 1788 for (const auto &I : RD->vbases()) 1789 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) 1790 << I.getSourceRange(); 1791 return false; 1792 } 1793 } 1794 1795 if (!isa<CXXConstructorDecl>(NewFD)) { 1796 // C++11 [dcl.constexpr]p3: 1797 // The definition of a constexpr function shall satisfy the following 1798 // constraints: 1799 // - it shall not be virtual; (removed in C++20) 1800 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); 1801 if (Method && Method->isVirtual()) { 1802 if (getLangOpts().CPlusPlus20) { 1803 if (Kind == CheckConstexprKind::Diagnose) 1804 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); 1805 } else { 1806 if (Kind == CheckConstexprKind::CheckValid) 1807 return false; 1808 1809 Method = Method->getCanonicalDecl(); 1810 Diag(Method->getLocation(), diag::err_constexpr_virtual); 1811 1812 // If it's not obvious why this function is virtual, find an overridden 1813 // function which uses the 'virtual' keyword. 1814 const CXXMethodDecl *WrittenVirtual = Method; 1815 while (!WrittenVirtual->isVirtualAsWritten()) 1816 WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); 1817 if (WrittenVirtual != Method) 1818 Diag(WrittenVirtual->getLocation(), 1819 diag::note_overridden_virtual_function); 1820 return false; 1821 } 1822 } 1823 1824 // - its return type shall be a literal type; 1825 if (!CheckConstexprReturnType(*this, NewFD, Kind)) 1826 return false; 1827 } 1828 1829 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) { 1830 // A destructor can be constexpr only if the defaulted destructor could be; 1831 // we don't need to check the members and bases if we already know they all 1832 // have constexpr destructors. 1833 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) { 1834 if (Kind == CheckConstexprKind::CheckValid) 1835 return false; 1836 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind)) 1837 return false; 1838 } 1839 } 1840 1841 // - each of its parameter types shall be a literal type; 1842 if (!CheckConstexprParameterTypes(*this, NewFD, Kind)) 1843 return false; 1844 1845 Stmt *Body = NewFD->getBody(); 1846 assert(Body && 1847 "CheckConstexprFunctionDefinition called on function with no body"); 1848 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind); 1849 } 1850 1851 /// Check the given declaration statement is legal within a constexpr function 1852 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. 1853 /// 1854 /// \return true if the body is OK (maybe only as an extension), false if we 1855 /// have diagnosed a problem. 1856 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, 1857 DeclStmt *DS, SourceLocation &Cxx1yLoc, 1858 Sema::CheckConstexprKind Kind) { 1859 // C++11 [dcl.constexpr]p3 and p4: 1860 // The definition of a constexpr function(p3) or constructor(p4) [...] shall 1861 // contain only 1862 for (const auto *DclIt : DS->decls()) { 1863 switch (DclIt->getKind()) { 1864 case Decl::StaticAssert: 1865 case Decl::Using: 1866 case Decl::UsingShadow: 1867 case Decl::UsingDirective: 1868 case Decl::UnresolvedUsingTypename: 1869 case Decl::UnresolvedUsingValue: 1870 case Decl::UsingEnum: 1871 // - static_assert-declarations 1872 // - using-declarations, 1873 // - using-directives, 1874 // - using-enum-declaration 1875 continue; 1876 1877 case Decl::Typedef: 1878 case Decl::TypeAlias: { 1879 // - typedef declarations and alias-declarations that do not define 1880 // classes or enumerations, 1881 const auto *TN = cast<TypedefNameDecl>(DclIt); 1882 if (TN->getUnderlyingType()->isVariablyModifiedType()) { 1883 // Don't allow variably-modified types in constexpr functions. 1884 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1885 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); 1886 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) 1887 << TL.getSourceRange() << TL.getType() 1888 << isa<CXXConstructorDecl>(Dcl); 1889 } 1890 return false; 1891 } 1892 continue; 1893 } 1894 1895 case Decl::Enum: 1896 case Decl::CXXRecord: 1897 // C++1y allows types to be defined, not just declared. 1898 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) { 1899 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1900 SemaRef.Diag(DS->getBeginLoc(), 1901 SemaRef.getLangOpts().CPlusPlus14 1902 ? diag::warn_cxx11_compat_constexpr_type_definition 1903 : diag::ext_constexpr_type_definition) 1904 << isa<CXXConstructorDecl>(Dcl); 1905 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1906 return false; 1907 } 1908 } 1909 continue; 1910 1911 case Decl::EnumConstant: 1912 case Decl::IndirectField: 1913 case Decl::ParmVar: 1914 // These can only appear with other declarations which are banned in 1915 // C++11 and permitted in C++1y, so ignore them. 1916 continue; 1917 1918 case Decl::Var: 1919 case Decl::Decomposition: { 1920 // C++1y [dcl.constexpr]p3 allows anything except: 1921 // a definition of a variable of non-literal type or of static or 1922 // thread storage duration or [before C++2a] for which no 1923 // initialization is performed. 1924 const auto *VD = cast<VarDecl>(DclIt); 1925 if (VD->isThisDeclarationADefinition()) { 1926 if (VD->isStaticLocal()) { 1927 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1928 SemaRef.Diag(VD->getLocation(), 1929 SemaRef.getLangOpts().CPlusPlus2b 1930 ? diag::warn_cxx20_compat_constexpr_var 1931 : diag::ext_constexpr_static_var) 1932 << isa<CXXConstructorDecl>(Dcl) 1933 << (VD->getTLSKind() == VarDecl::TLS_Dynamic); 1934 } else if (!SemaRef.getLangOpts().CPlusPlus2b) { 1935 return false; 1936 } 1937 } 1938 if (SemaRef.LangOpts.CPlusPlus2b) { 1939 CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), 1940 diag::warn_cxx20_compat_constexpr_var, 1941 isa<CXXConstructorDecl>(Dcl), 1942 /*variable of non-literal type*/ 2); 1943 } else if (CheckLiteralType( 1944 SemaRef, Kind, VD->getLocation(), VD->getType(), 1945 diag::err_constexpr_local_var_non_literal_type, 1946 isa<CXXConstructorDecl>(Dcl))) { 1947 return false; 1948 } 1949 if (!VD->getType()->isDependentType() && 1950 !VD->hasInit() && !VD->isCXXForRangeDecl()) { 1951 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1952 SemaRef.Diag( 1953 VD->getLocation(), 1954 SemaRef.getLangOpts().CPlusPlus20 1955 ? diag::warn_cxx17_compat_constexpr_local_var_no_init 1956 : diag::ext_constexpr_local_var_no_init) 1957 << isa<CXXConstructorDecl>(Dcl); 1958 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 1959 return false; 1960 } 1961 continue; 1962 } 1963 } 1964 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1965 SemaRef.Diag(VD->getLocation(), 1966 SemaRef.getLangOpts().CPlusPlus14 1967 ? diag::warn_cxx11_compat_constexpr_local_var 1968 : diag::ext_constexpr_local_var) 1969 << isa<CXXConstructorDecl>(Dcl); 1970 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1971 return false; 1972 } 1973 continue; 1974 } 1975 1976 case Decl::NamespaceAlias: 1977 case Decl::Function: 1978 // These are disallowed in C++11 and permitted in C++1y. Allow them 1979 // everywhere as an extension. 1980 if (!Cxx1yLoc.isValid()) 1981 Cxx1yLoc = DS->getBeginLoc(); 1982 continue; 1983 1984 default: 1985 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1986 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 1987 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 1988 } 1989 return false; 1990 } 1991 } 1992 1993 return true; 1994 } 1995 1996 /// Check that the given field is initialized within a constexpr constructor. 1997 /// 1998 /// \param Dcl The constexpr constructor being checked. 1999 /// \param Field The field being checked. This may be a member of an anonymous 2000 /// struct or union nested within the class being checked. 2001 /// \param Inits All declarations, including anonymous struct/union members and 2002 /// indirect members, for which any initialization was provided. 2003 /// \param Diagnosed Whether we've emitted the error message yet. Used to attach 2004 /// multiple notes for different members to the same error. 2005 /// \param Kind Whether we're diagnosing a constructor as written or determining 2006 /// whether the formal requirements are satisfied. 2007 /// \return \c false if we're checking for validity and the constructor does 2008 /// not satisfy the requirements on a constexpr constructor. 2009 static bool CheckConstexprCtorInitializer(Sema &SemaRef, 2010 const FunctionDecl *Dcl, 2011 FieldDecl *Field, 2012 llvm::SmallSet<Decl*, 16> &Inits, 2013 bool &Diagnosed, 2014 Sema::CheckConstexprKind Kind) { 2015 // In C++20 onwards, there's nothing to check for validity. 2016 if (Kind == Sema::CheckConstexprKind::CheckValid && 2017 SemaRef.getLangOpts().CPlusPlus20) 2018 return true; 2019 2020 if (Field->isInvalidDecl()) 2021 return true; 2022 2023 if (Field->isUnnamedBitfield()) 2024 return true; 2025 2026 // Anonymous unions with no variant members and empty anonymous structs do not 2027 // need to be explicitly initialized. FIXME: Anonymous structs that contain no 2028 // indirect fields don't need initializing. 2029 if (Field->isAnonymousStructOrUnion() && 2030 (Field->getType()->isUnionType() 2031 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() 2032 : Field->getType()->getAsCXXRecordDecl()->isEmpty())) 2033 return true; 2034 2035 if (!Inits.count(Field)) { 2036 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2037 if (!Diagnosed) { 2038 SemaRef.Diag(Dcl->getLocation(), 2039 SemaRef.getLangOpts().CPlusPlus20 2040 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init 2041 : diag::ext_constexpr_ctor_missing_init); 2042 Diagnosed = true; 2043 } 2044 SemaRef.Diag(Field->getLocation(), 2045 diag::note_constexpr_ctor_missing_init); 2046 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2047 return false; 2048 } 2049 } else if (Field->isAnonymousStructOrUnion()) { 2050 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); 2051 for (auto *I : RD->fields()) 2052 // If an anonymous union contains an anonymous struct of which any member 2053 // is initialized, all members must be initialized. 2054 if (!RD->isUnion() || Inits.count(I)) 2055 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2056 Kind)) 2057 return false; 2058 } 2059 return true; 2060 } 2061 2062 /// Check the provided statement is allowed in a constexpr function 2063 /// definition. 2064 static bool 2065 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, 2066 SmallVectorImpl<SourceLocation> &ReturnStmts, 2067 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, 2068 SourceLocation &Cxx2bLoc, 2069 Sema::CheckConstexprKind Kind) { 2070 // - its function-body shall be [...] a compound-statement that contains only 2071 switch (S->getStmtClass()) { 2072 case Stmt::NullStmtClass: 2073 // - null statements, 2074 return true; 2075 2076 case Stmt::DeclStmtClass: 2077 // - static_assert-declarations 2078 // - using-declarations, 2079 // - using-directives, 2080 // - typedef declarations and alias-declarations that do not define 2081 // classes or enumerations, 2082 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind)) 2083 return false; 2084 return true; 2085 2086 case Stmt::ReturnStmtClass: 2087 // - and exactly one return statement; 2088 if (isa<CXXConstructorDecl>(Dcl)) { 2089 // C++1y allows return statements in constexpr constructors. 2090 if (!Cxx1yLoc.isValid()) 2091 Cxx1yLoc = S->getBeginLoc(); 2092 return true; 2093 } 2094 2095 ReturnStmts.push_back(S->getBeginLoc()); 2096 return true; 2097 2098 case Stmt::AttributedStmtClass: 2099 // Attributes on a statement don't affect its formal kind and hence don't 2100 // affect its validity in a constexpr function. 2101 return CheckConstexprFunctionStmt( 2102 SemaRef, Dcl, cast<AttributedStmt>(S)->getSubStmt(), ReturnStmts, 2103 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind); 2104 2105 case Stmt::CompoundStmtClass: { 2106 // C++1y allows compound-statements. 2107 if (!Cxx1yLoc.isValid()) 2108 Cxx1yLoc = S->getBeginLoc(); 2109 2110 CompoundStmt *CompStmt = cast<CompoundStmt>(S); 2111 for (auto *BodyIt : CompStmt->body()) { 2112 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, 2113 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2114 return false; 2115 } 2116 return true; 2117 } 2118 2119 case Stmt::IfStmtClass: { 2120 // C++1y allows if-statements. 2121 if (!Cxx1yLoc.isValid()) 2122 Cxx1yLoc = S->getBeginLoc(); 2123 2124 IfStmt *If = cast<IfStmt>(S); 2125 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, 2126 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2127 return false; 2128 if (If->getElse() && 2129 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, 2130 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2131 return false; 2132 return true; 2133 } 2134 2135 case Stmt::WhileStmtClass: 2136 case Stmt::DoStmtClass: 2137 case Stmt::ForStmtClass: 2138 case Stmt::CXXForRangeStmtClass: 2139 case Stmt::ContinueStmtClass: 2140 // C++1y allows all of these. We don't allow them as extensions in C++11, 2141 // because they don't make sense without variable mutation. 2142 if (!SemaRef.getLangOpts().CPlusPlus14) 2143 break; 2144 if (!Cxx1yLoc.isValid()) 2145 Cxx1yLoc = S->getBeginLoc(); 2146 for (Stmt *SubStmt : S->children()) { 2147 if (SubStmt && 2148 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2149 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2150 return false; 2151 } 2152 return true; 2153 2154 case Stmt::SwitchStmtClass: 2155 case Stmt::CaseStmtClass: 2156 case Stmt::DefaultStmtClass: 2157 case Stmt::BreakStmtClass: 2158 // C++1y allows switch-statements, and since they don't need variable 2159 // mutation, we can reasonably allow them in C++11 as an extension. 2160 if (!Cxx1yLoc.isValid()) 2161 Cxx1yLoc = S->getBeginLoc(); 2162 for (Stmt *SubStmt : S->children()) { 2163 if (SubStmt && 2164 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2165 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2166 return false; 2167 } 2168 return true; 2169 2170 case Stmt::LabelStmtClass: 2171 case Stmt::GotoStmtClass: 2172 if (Cxx2bLoc.isInvalid()) 2173 Cxx2bLoc = S->getBeginLoc(); 2174 for (Stmt *SubStmt : S->children()) { 2175 if (SubStmt && 2176 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2177 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2178 return false; 2179 } 2180 return true; 2181 2182 case Stmt::GCCAsmStmtClass: 2183 case Stmt::MSAsmStmtClass: 2184 // C++2a allows inline assembly statements. 2185 case Stmt::CXXTryStmtClass: 2186 if (Cxx2aLoc.isInvalid()) 2187 Cxx2aLoc = S->getBeginLoc(); 2188 for (Stmt *SubStmt : S->children()) { 2189 if (SubStmt && 2190 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2191 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2192 return false; 2193 } 2194 return true; 2195 2196 case Stmt::CXXCatchStmtClass: 2197 // Do not bother checking the language mode (already covered by the 2198 // try block check). 2199 if (!CheckConstexprFunctionStmt( 2200 SemaRef, Dcl, cast<CXXCatchStmt>(S)->getHandlerBlock(), ReturnStmts, 2201 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2202 return false; 2203 return true; 2204 2205 default: 2206 if (!isa<Expr>(S)) 2207 break; 2208 2209 // C++1y allows expression-statements. 2210 if (!Cxx1yLoc.isValid()) 2211 Cxx1yLoc = S->getBeginLoc(); 2212 return true; 2213 } 2214 2215 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2216 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 2217 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2218 } 2219 return false; 2220 } 2221 2222 /// Check the body for the given constexpr function declaration only contains 2223 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. 2224 /// 2225 /// \return true if the body is OK, false if we have found or diagnosed a 2226 /// problem. 2227 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 2228 Stmt *Body, 2229 Sema::CheckConstexprKind Kind) { 2230 SmallVector<SourceLocation, 4> ReturnStmts; 2231 2232 if (isa<CXXTryStmt>(Body)) { 2233 // C++11 [dcl.constexpr]p3: 2234 // The definition of a constexpr function shall satisfy the following 2235 // constraints: [...] 2236 // - its function-body shall be = delete, = default, or a 2237 // compound-statement 2238 // 2239 // C++11 [dcl.constexpr]p4: 2240 // In the definition of a constexpr constructor, [...] 2241 // - its function-body shall not be a function-try-block; 2242 // 2243 // This restriction is lifted in C++2a, as long as inner statements also 2244 // apply the general constexpr rules. 2245 switch (Kind) { 2246 case Sema::CheckConstexprKind::CheckValid: 2247 if (!SemaRef.getLangOpts().CPlusPlus20) 2248 return false; 2249 break; 2250 2251 case Sema::CheckConstexprKind::Diagnose: 2252 SemaRef.Diag(Body->getBeginLoc(), 2253 !SemaRef.getLangOpts().CPlusPlus20 2254 ? diag::ext_constexpr_function_try_block_cxx20 2255 : diag::warn_cxx17_compat_constexpr_function_try_block) 2256 << isa<CXXConstructorDecl>(Dcl); 2257 break; 2258 } 2259 } 2260 2261 // - its function-body shall be [...] a compound-statement that contains only 2262 // [... list of cases ...] 2263 // 2264 // Note that walking the children here is enough to properly check for 2265 // CompoundStmt and CXXTryStmt body. 2266 SourceLocation Cxx1yLoc, Cxx2aLoc, Cxx2bLoc; 2267 for (Stmt *SubStmt : Body->children()) { 2268 if (SubStmt && 2269 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2270 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2271 return false; 2272 } 2273 2274 if (Kind == Sema::CheckConstexprKind::CheckValid) { 2275 // If this is only valid as an extension, report that we don't satisfy the 2276 // constraints of the current language. 2277 if ((Cxx2bLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus2b) || 2278 (Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) || 2279 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) 2280 return false; 2281 } else if (Cxx2bLoc.isValid()) { 2282 SemaRef.Diag(Cxx2bLoc, 2283 SemaRef.getLangOpts().CPlusPlus2b 2284 ? diag::warn_cxx20_compat_constexpr_body_invalid_stmt 2285 : diag::ext_constexpr_body_invalid_stmt_cxx2b) 2286 << isa<CXXConstructorDecl>(Dcl); 2287 } else if (Cxx2aLoc.isValid()) { 2288 SemaRef.Diag(Cxx2aLoc, 2289 SemaRef.getLangOpts().CPlusPlus20 2290 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt 2291 : diag::ext_constexpr_body_invalid_stmt_cxx20) 2292 << isa<CXXConstructorDecl>(Dcl); 2293 } else if (Cxx1yLoc.isValid()) { 2294 SemaRef.Diag(Cxx1yLoc, 2295 SemaRef.getLangOpts().CPlusPlus14 2296 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt 2297 : diag::ext_constexpr_body_invalid_stmt) 2298 << isa<CXXConstructorDecl>(Dcl); 2299 } 2300 2301 if (const CXXConstructorDecl *Constructor 2302 = dyn_cast<CXXConstructorDecl>(Dcl)) { 2303 const CXXRecordDecl *RD = Constructor->getParent(); 2304 // DR1359: 2305 // - every non-variant non-static data member and base class sub-object 2306 // shall be initialized; 2307 // DR1460: 2308 // - if the class is a union having variant members, exactly one of them 2309 // shall be initialized; 2310 if (RD->isUnion()) { 2311 if (Constructor->getNumCtorInitializers() == 0 && 2312 RD->hasVariantMembers()) { 2313 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2314 SemaRef.Diag( 2315 Dcl->getLocation(), 2316 SemaRef.getLangOpts().CPlusPlus20 2317 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init 2318 : diag::ext_constexpr_union_ctor_no_init); 2319 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2320 return false; 2321 } 2322 } 2323 } else if (!Constructor->isDependentContext() && 2324 !Constructor->isDelegatingConstructor()) { 2325 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"); 2326 2327 // Skip detailed checking if we have enough initializers, and we would 2328 // allow at most one initializer per member. 2329 bool AnyAnonStructUnionMembers = false; 2330 unsigned Fields = 0; 2331 for (CXXRecordDecl::field_iterator I = RD->field_begin(), 2332 E = RD->field_end(); I != E; ++I, ++Fields) { 2333 if (I->isAnonymousStructOrUnion()) { 2334 AnyAnonStructUnionMembers = true; 2335 break; 2336 } 2337 } 2338 // DR1460: 2339 // - if the class is a union-like class, but is not a union, for each of 2340 // its anonymous union members having variant members, exactly one of 2341 // them shall be initialized; 2342 if (AnyAnonStructUnionMembers || 2343 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { 2344 // Check initialization of non-static data members. Base classes are 2345 // always initialized so do not need to be checked. Dependent bases 2346 // might not have initializers in the member initializer list. 2347 llvm::SmallSet<Decl*, 16> Inits; 2348 for (const auto *I: Constructor->inits()) { 2349 if (FieldDecl *FD = I->getMember()) 2350 Inits.insert(FD); 2351 else if (IndirectFieldDecl *ID = I->getIndirectMember()) 2352 Inits.insert(ID->chain_begin(), ID->chain_end()); 2353 } 2354 2355 bool Diagnosed = false; 2356 for (auto *I : RD->fields()) 2357 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2358 Kind)) 2359 return false; 2360 } 2361 } 2362 } else { 2363 if (ReturnStmts.empty()) { 2364 // C++1y doesn't require constexpr functions to contain a 'return' 2365 // statement. We still do, unless the return type might be void, because 2366 // otherwise if there's no return statement, the function cannot 2367 // be used in a core constant expression. 2368 bool OK = SemaRef.getLangOpts().CPlusPlus14 && 2369 (Dcl->getReturnType()->isVoidType() || 2370 Dcl->getReturnType()->isDependentType()); 2371 switch (Kind) { 2372 case Sema::CheckConstexprKind::Diagnose: 2373 SemaRef.Diag(Dcl->getLocation(), 2374 OK ? diag::warn_cxx11_compat_constexpr_body_no_return 2375 : diag::err_constexpr_body_no_return) 2376 << Dcl->isConsteval(); 2377 if (!OK) 2378 return false; 2379 break; 2380 2381 case Sema::CheckConstexprKind::CheckValid: 2382 // The formal requirements don't include this rule in C++14, even 2383 // though the "must be able to produce a constant expression" rules 2384 // still imply it in some cases. 2385 if (!SemaRef.getLangOpts().CPlusPlus14) 2386 return false; 2387 break; 2388 } 2389 } else if (ReturnStmts.size() > 1) { 2390 switch (Kind) { 2391 case Sema::CheckConstexprKind::Diagnose: 2392 SemaRef.Diag( 2393 ReturnStmts.back(), 2394 SemaRef.getLangOpts().CPlusPlus14 2395 ? diag::warn_cxx11_compat_constexpr_body_multiple_return 2396 : diag::ext_constexpr_body_multiple_return); 2397 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) 2398 SemaRef.Diag(ReturnStmts[I], 2399 diag::note_constexpr_body_previous_return); 2400 break; 2401 2402 case Sema::CheckConstexprKind::CheckValid: 2403 if (!SemaRef.getLangOpts().CPlusPlus14) 2404 return false; 2405 break; 2406 } 2407 } 2408 } 2409 2410 // C++11 [dcl.constexpr]p5: 2411 // if no function argument values exist such that the function invocation 2412 // substitution would produce a constant expression, the program is 2413 // ill-formed; no diagnostic required. 2414 // C++11 [dcl.constexpr]p3: 2415 // - every constructor call and implicit conversion used in initializing the 2416 // return value shall be one of those allowed in a constant expression. 2417 // C++11 [dcl.constexpr]p4: 2418 // - every constructor involved in initializing non-static data members and 2419 // base class sub-objects shall be a constexpr constructor. 2420 // 2421 // Note that this rule is distinct from the "requirements for a constexpr 2422 // function", so is not checked in CheckValid mode. 2423 SmallVector<PartialDiagnosticAt, 8> Diags; 2424 if (Kind == Sema::CheckConstexprKind::Diagnose && 2425 !Expr::isPotentialConstantExpr(Dcl, Diags)) { 2426 SemaRef.Diag(Dcl->getLocation(), 2427 diag::ext_constexpr_function_never_constant_expr) 2428 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2429 for (size_t I = 0, N = Diags.size(); I != N; ++I) 2430 SemaRef.Diag(Diags[I].first, Diags[I].second); 2431 // Don't return false here: we allow this for compatibility in 2432 // system headers. 2433 } 2434 2435 return true; 2436 } 2437 2438 /// Get the class that is directly named by the current context. This is the 2439 /// class for which an unqualified-id in this scope could name a constructor 2440 /// or destructor. 2441 /// 2442 /// If the scope specifier denotes a class, this will be that class. 2443 /// If the scope specifier is empty, this will be the class whose 2444 /// member-specification we are currently within. Otherwise, there 2445 /// is no such class. 2446 CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { 2447 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2448 2449 if (SS && SS->isInvalid()) 2450 return nullptr; 2451 2452 if (SS && SS->isNotEmpty()) { 2453 DeclContext *DC = computeDeclContext(*SS, true); 2454 return dyn_cast_or_null<CXXRecordDecl>(DC); 2455 } 2456 2457 return dyn_cast_or_null<CXXRecordDecl>(CurContext); 2458 } 2459 2460 /// isCurrentClassName - Determine whether the identifier II is the 2461 /// name of the class type currently being defined. In the case of 2462 /// nested classes, this will only return true if II is the name of 2463 /// the innermost class. 2464 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, 2465 const CXXScopeSpec *SS) { 2466 CXXRecordDecl *CurDecl = getCurrentClass(S, SS); 2467 return CurDecl && &II == CurDecl->getIdentifier(); 2468 } 2469 2470 /// Determine whether the identifier II is a typo for the name of 2471 /// the class type currently being defined. If so, update it to the identifier 2472 /// that should have been used. 2473 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { 2474 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2475 2476 if (!getLangOpts().SpellChecking) 2477 return false; 2478 2479 CXXRecordDecl *CurDecl; 2480 if (SS && SS->isSet() && !SS->isInvalid()) { 2481 DeclContext *DC = computeDeclContext(*SS, true); 2482 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); 2483 } else 2484 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); 2485 2486 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && 2487 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) 2488 < II->getLength()) { 2489 II = CurDecl->getIdentifier(); 2490 return true; 2491 } 2492 2493 return false; 2494 } 2495 2496 /// Determine whether the given class is a base class of the given 2497 /// class, including looking at dependent bases. 2498 static bool findCircularInheritance(const CXXRecordDecl *Class, 2499 const CXXRecordDecl *Current) { 2500 SmallVector<const CXXRecordDecl*, 8> Queue; 2501 2502 Class = Class->getCanonicalDecl(); 2503 while (true) { 2504 for (const auto &I : Current->bases()) { 2505 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 2506 if (!Base) 2507 continue; 2508 2509 Base = Base->getDefinition(); 2510 if (!Base) 2511 continue; 2512 2513 if (Base->getCanonicalDecl() == Class) 2514 return true; 2515 2516 Queue.push_back(Base); 2517 } 2518 2519 if (Queue.empty()) 2520 return false; 2521 2522 Current = Queue.pop_back_val(); 2523 } 2524 2525 return false; 2526 } 2527 2528 /// Check the validity of a C++ base class specifier. 2529 /// 2530 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics 2531 /// and returns NULL otherwise. 2532 CXXBaseSpecifier * 2533 Sema::CheckBaseSpecifier(CXXRecordDecl *Class, 2534 SourceRange SpecifierRange, 2535 bool Virtual, AccessSpecifier Access, 2536 TypeSourceInfo *TInfo, 2537 SourceLocation EllipsisLoc) { 2538 // In HLSL, unspecified class access is public rather than private. 2539 if (getLangOpts().HLSL && Class->getTagKind() == TTK_Class && 2540 Access == AS_none) 2541 Access = AS_public; 2542 2543 QualType BaseType = TInfo->getType(); 2544 if (BaseType->containsErrors()) { 2545 // Already emitted a diagnostic when parsing the error type. 2546 return nullptr; 2547 } 2548 // C++ [class.union]p1: 2549 // A union shall not have base classes. 2550 if (Class->isUnion()) { 2551 Diag(Class->getLocation(), diag::err_base_clause_on_union) 2552 << SpecifierRange; 2553 return nullptr; 2554 } 2555 2556 if (EllipsisLoc.isValid() && 2557 !TInfo->getType()->containsUnexpandedParameterPack()) { 2558 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 2559 << TInfo->getTypeLoc().getSourceRange(); 2560 EllipsisLoc = SourceLocation(); 2561 } 2562 2563 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); 2564 2565 if (BaseType->isDependentType()) { 2566 // Make sure that we don't have circular inheritance among our dependent 2567 // bases. For non-dependent bases, the check for completeness below handles 2568 // this. 2569 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) { 2570 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() || 2571 ((BaseDecl = BaseDecl->getDefinition()) && 2572 findCircularInheritance(Class, BaseDecl))) { 2573 Diag(BaseLoc, diag::err_circular_inheritance) 2574 << BaseType << Context.getTypeDeclType(Class); 2575 2576 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl()) 2577 Diag(BaseDecl->getLocation(), diag::note_previous_decl) 2578 << BaseType; 2579 2580 return nullptr; 2581 } 2582 } 2583 2584 // Make sure that we don't make an ill-formed AST where the type of the 2585 // Class is non-dependent and its attached base class specifier is an 2586 // dependent type, which violates invariants in many clang code paths (e.g. 2587 // constexpr evaluator). If this case happens (in errory-recovery mode), we 2588 // explicitly mark the Class decl invalid. The diagnostic was already 2589 // emitted. 2590 if (!Class->getTypeForDecl()->isDependentType()) 2591 Class->setInvalidDecl(); 2592 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2593 Class->getTagKind() == TTK_Class, 2594 Access, TInfo, EllipsisLoc); 2595 } 2596 2597 // Base specifiers must be record types. 2598 if (!BaseType->isRecordType()) { 2599 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; 2600 return nullptr; 2601 } 2602 2603 // C++ [class.union]p1: 2604 // A union shall not be used as a base class. 2605 if (BaseType->isUnionType()) { 2606 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; 2607 return nullptr; 2608 } 2609 2610 // For the MS ABI, propagate DLL attributes to base class templates. 2611 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2612 if (Attr *ClassAttr = getDLLAttr(Class)) { 2613 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 2614 BaseType->getAsCXXRecordDecl())) { 2615 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate, 2616 BaseLoc); 2617 } 2618 } 2619 } 2620 2621 // C++ [class.derived]p2: 2622 // The class-name in a base-specifier shall not be an incompletely 2623 // defined class. 2624 if (RequireCompleteType(BaseLoc, BaseType, 2625 diag::err_incomplete_base_class, SpecifierRange)) { 2626 Class->setInvalidDecl(); 2627 return nullptr; 2628 } 2629 2630 // If the base class is polymorphic or isn't empty, the new one is/isn't, too. 2631 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl(); 2632 assert(BaseDecl && "Record type has no declaration"); 2633 BaseDecl = BaseDecl->getDefinition(); 2634 assert(BaseDecl && "Base type is not incomplete, but has no definition"); 2635 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); 2636 assert(CXXBaseDecl && "Base type is not a C++ type"); 2637 2638 // Microsoft docs say: 2639 // "If a base-class has a code_seg attribute, derived classes must have the 2640 // same attribute." 2641 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>(); 2642 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); 2643 if ((DerivedCSA || BaseCSA) && 2644 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) { 2645 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); 2646 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here) 2647 << CXXBaseDecl; 2648 return nullptr; 2649 } 2650 2651 // A class which contains a flexible array member is not suitable for use as a 2652 // base class: 2653 // - If the layout determines that a base comes before another base, 2654 // the flexible array member would index into the subsequent base. 2655 // - If the layout determines that base comes before the derived class, 2656 // the flexible array member would index into the derived class. 2657 if (CXXBaseDecl->hasFlexibleArrayMember()) { 2658 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) 2659 << CXXBaseDecl->getDeclName(); 2660 return nullptr; 2661 } 2662 2663 // C++ [class]p3: 2664 // If a class is marked final and it appears as a base-type-specifier in 2665 // base-clause, the program is ill-formed. 2666 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) { 2667 Diag(BaseLoc, diag::err_class_marked_final_used_as_base) 2668 << CXXBaseDecl->getDeclName() 2669 << FA->isSpelledAsSealed(); 2670 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at) 2671 << CXXBaseDecl->getDeclName() << FA->getRange(); 2672 return nullptr; 2673 } 2674 2675 if (BaseDecl->isInvalidDecl()) 2676 Class->setInvalidDecl(); 2677 2678 // Create the base specifier. 2679 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2680 Class->getTagKind() == TTK_Class, 2681 Access, TInfo, EllipsisLoc); 2682 } 2683 2684 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is 2685 /// one entry in the base class list of a class specifier, for 2686 /// example: 2687 /// class foo : public bar, virtual private baz { 2688 /// 'public bar' and 'virtual private baz' are each base-specifiers. 2689 BaseResult Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, 2690 const ParsedAttributesView &Attributes, 2691 bool Virtual, AccessSpecifier Access, 2692 ParsedType basetype, SourceLocation BaseLoc, 2693 SourceLocation EllipsisLoc) { 2694 if (!classdecl) 2695 return true; 2696 2697 AdjustDeclIfTemplate(classdecl); 2698 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); 2699 if (!Class) 2700 return true; 2701 2702 // We haven't yet attached the base specifiers. 2703 Class->setIsParsingBaseSpecifiers(); 2704 2705 // We do not support any C++11 attributes on base-specifiers yet. 2706 // Diagnose any attributes we see. 2707 for (const ParsedAttr &AL : Attributes) { 2708 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) 2709 continue; 2710 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute 2711 ? (unsigned)diag::warn_unknown_attribute_ignored 2712 : (unsigned)diag::err_base_specifier_attribute) 2713 << AL << AL.getRange(); 2714 } 2715 2716 TypeSourceInfo *TInfo = nullptr; 2717 GetTypeFromParser(basetype, &TInfo); 2718 2719 if (EllipsisLoc.isInvalid() && 2720 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, 2721 UPPC_BaseType)) 2722 return true; 2723 2724 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, 2725 Virtual, Access, TInfo, 2726 EllipsisLoc)) 2727 return BaseSpec; 2728 else 2729 Class->setInvalidDecl(); 2730 2731 return true; 2732 } 2733 2734 /// Use small set to collect indirect bases. As this is only used 2735 /// locally, there's no need to abstract the small size parameter. 2736 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; 2737 2738 /// Recursively add the bases of Type. Don't add Type itself. 2739 static void 2740 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, 2741 const QualType &Type) 2742 { 2743 // Even though the incoming type is a base, it might not be 2744 // a class -- it could be a template parm, for instance. 2745 if (auto Rec = Type->getAs<RecordType>()) { 2746 auto Decl = Rec->getAsCXXRecordDecl(); 2747 2748 // Iterate over its bases. 2749 for (const auto &BaseSpec : Decl->bases()) { 2750 QualType Base = Context.getCanonicalType(BaseSpec.getType()) 2751 .getUnqualifiedType(); 2752 if (Set.insert(Base).second) 2753 // If we've not already seen it, recurse. 2754 NoteIndirectBases(Context, Set, Base); 2755 } 2756 } 2757 } 2758 2759 /// Performs the actual work of attaching the given base class 2760 /// specifiers to a C++ class. 2761 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, 2762 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2763 if (Bases.empty()) 2764 return false; 2765 2766 // Used to keep track of which base types we have already seen, so 2767 // that we can properly diagnose redundant direct base types. Note 2768 // that the key is always the unqualified canonical type of the base 2769 // class. 2770 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; 2771 2772 // Used to track indirect bases so we can see if a direct base is 2773 // ambiguous. 2774 IndirectBaseSet IndirectBaseTypes; 2775 2776 // Copy non-redundant base specifiers into permanent storage. 2777 unsigned NumGoodBases = 0; 2778 bool Invalid = false; 2779 for (unsigned idx = 0; idx < Bases.size(); ++idx) { 2780 QualType NewBaseType 2781 = Context.getCanonicalType(Bases[idx]->getType()); 2782 NewBaseType = NewBaseType.getLocalUnqualifiedType(); 2783 2784 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; 2785 if (KnownBase) { 2786 // C++ [class.mi]p3: 2787 // A class shall not be specified as a direct base class of a 2788 // derived class more than once. 2789 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) 2790 << KnownBase->getType() << Bases[idx]->getSourceRange(); 2791 2792 // Delete the duplicate base class specifier; we're going to 2793 // overwrite its pointer later. 2794 Context.Deallocate(Bases[idx]); 2795 2796 Invalid = true; 2797 } else { 2798 // Okay, add this new base class. 2799 KnownBase = Bases[idx]; 2800 Bases[NumGoodBases++] = Bases[idx]; 2801 2802 if (NewBaseType->isDependentType()) 2803 continue; 2804 // Note this base's direct & indirect bases, if there could be ambiguity. 2805 if (Bases.size() > 1) 2806 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType); 2807 2808 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { 2809 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); 2810 if (Class->isInterface() && 2811 (!RD->isInterfaceLike() || 2812 KnownBase->getAccessSpecifier() != AS_public)) { 2813 // The Microsoft extension __interface does not permit bases that 2814 // are not themselves public interfaces. 2815 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) 2816 << getRecordDiagFromTagKind(RD->getTagKind()) << RD 2817 << RD->getSourceRange(); 2818 Invalid = true; 2819 } 2820 if (RD->hasAttr<WeakAttr>()) 2821 Class->addAttr(WeakAttr::CreateImplicit(Context)); 2822 } 2823 } 2824 } 2825 2826 // Attach the remaining base class specifiers to the derived class. 2827 Class->setBases(Bases.data(), NumGoodBases); 2828 2829 // Check that the only base classes that are duplicate are virtual. 2830 for (unsigned idx = 0; idx < NumGoodBases; ++idx) { 2831 // Check whether this direct base is inaccessible due to ambiguity. 2832 QualType BaseType = Bases[idx]->getType(); 2833 2834 // Skip all dependent types in templates being used as base specifiers. 2835 // Checks below assume that the base specifier is a CXXRecord. 2836 if (BaseType->isDependentType()) 2837 continue; 2838 2839 CanQualType CanonicalBase = Context.getCanonicalType(BaseType) 2840 .getUnqualifiedType(); 2841 2842 if (IndirectBaseTypes.count(CanonicalBase)) { 2843 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2844 /*DetectVirtual=*/true); 2845 bool found 2846 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); 2847 assert(found); 2848 (void)found; 2849 2850 if (Paths.isAmbiguous(CanonicalBase)) 2851 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) 2852 << BaseType << getAmbiguousPathsDisplayString(Paths) 2853 << Bases[idx]->getSourceRange(); 2854 else 2855 assert(Bases[idx]->isVirtual()); 2856 } 2857 2858 // Delete the base class specifier, since its data has been copied 2859 // into the CXXRecordDecl. 2860 Context.Deallocate(Bases[idx]); 2861 } 2862 2863 return Invalid; 2864 } 2865 2866 /// ActOnBaseSpecifiers - Attach the given base specifiers to the 2867 /// class, after checking whether there are any duplicate base 2868 /// classes. 2869 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, 2870 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2871 if (!ClassDecl || Bases.empty()) 2872 return; 2873 2874 AdjustDeclIfTemplate(ClassDecl); 2875 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases); 2876 } 2877 2878 /// Determine whether the type \p Derived is a C++ class that is 2879 /// derived from the type \p Base. 2880 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { 2881 if (!getLangOpts().CPlusPlus) 2882 return false; 2883 2884 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2885 if (!DerivedRD) 2886 return false; 2887 2888 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2889 if (!BaseRD) 2890 return false; 2891 2892 // If either the base or the derived type is invalid, don't try to 2893 // check whether one is derived from the other. 2894 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) 2895 return false; 2896 2897 // FIXME: In a modules build, do we need the entire path to be visible for us 2898 // to be able to use the inheritance relationship? 2899 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2900 return false; 2901 2902 return DerivedRD->isDerivedFrom(BaseRD); 2903 } 2904 2905 /// Determine whether the type \p Derived is a C++ class that is 2906 /// derived from the type \p Base. 2907 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, 2908 CXXBasePaths &Paths) { 2909 if (!getLangOpts().CPlusPlus) 2910 return false; 2911 2912 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2913 if (!DerivedRD) 2914 return false; 2915 2916 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2917 if (!BaseRD) 2918 return false; 2919 2920 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2921 return false; 2922 2923 return DerivedRD->isDerivedFrom(BaseRD, Paths); 2924 } 2925 2926 static void BuildBasePathArray(const CXXBasePath &Path, 2927 CXXCastPath &BasePathArray) { 2928 // We first go backward and check if we have a virtual base. 2929 // FIXME: It would be better if CXXBasePath had the base specifier for 2930 // the nearest virtual base. 2931 unsigned Start = 0; 2932 for (unsigned I = Path.size(); I != 0; --I) { 2933 if (Path[I - 1].Base->isVirtual()) { 2934 Start = I - 1; 2935 break; 2936 } 2937 } 2938 2939 // Now add all bases. 2940 for (unsigned I = Start, E = Path.size(); I != E; ++I) 2941 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); 2942 } 2943 2944 2945 void Sema::BuildBasePathArray(const CXXBasePaths &Paths, 2946 CXXCastPath &BasePathArray) { 2947 assert(BasePathArray.empty() && "Base path array must be empty!"); 2948 assert(Paths.isRecordingPaths() && "Must record paths!"); 2949 return ::BuildBasePathArray(Paths.front(), BasePathArray); 2950 } 2951 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base 2952 /// conversion (where Derived and Base are class types) is 2953 /// well-formed, meaning that the conversion is unambiguous (and 2954 /// that all of the base classes are accessible). Returns true 2955 /// and emits a diagnostic if the code is ill-formed, returns false 2956 /// otherwise. Loc is the location where this routine should point to 2957 /// if there is an error, and Range is the source range to highlight 2958 /// if there is an error. 2959 /// 2960 /// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the 2961 /// diagnostic for the respective type of error will be suppressed, but the 2962 /// check for ill-formed code will still be performed. 2963 bool 2964 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 2965 unsigned InaccessibleBaseID, 2966 unsigned AmbiguousBaseConvID, 2967 SourceLocation Loc, SourceRange Range, 2968 DeclarationName Name, 2969 CXXCastPath *BasePath, 2970 bool IgnoreAccess) { 2971 // First, determine whether the path from Derived to Base is 2972 // ambiguous. This is slightly more expensive than checking whether 2973 // the Derived to Base conversion exists, because here we need to 2974 // explore multiple paths to determine if there is an ambiguity. 2975 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2976 /*DetectVirtual=*/false); 2977 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 2978 if (!DerivationOkay) 2979 return true; 2980 2981 const CXXBasePath *Path = nullptr; 2982 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) 2983 Path = &Paths.front(); 2984 2985 // For MSVC compatibility, check if Derived directly inherits from Base. Clang 2986 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the 2987 // user to access such bases. 2988 if (!Path && getLangOpts().MSVCCompat) { 2989 for (const CXXBasePath &PossiblePath : Paths) { 2990 if (PossiblePath.size() == 1) { 2991 Path = &PossiblePath; 2992 if (AmbiguousBaseConvID) 2993 Diag(Loc, diag::ext_ms_ambiguous_direct_base) 2994 << Base << Derived << Range; 2995 break; 2996 } 2997 } 2998 } 2999 3000 if (Path) { 3001 if (!IgnoreAccess) { 3002 // Check that the base class can be accessed. 3003 switch ( 3004 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) { 3005 case AR_inaccessible: 3006 return true; 3007 case AR_accessible: 3008 case AR_dependent: 3009 case AR_delayed: 3010 break; 3011 } 3012 } 3013 3014 // Build a base path if necessary. 3015 if (BasePath) 3016 ::BuildBasePathArray(*Path, *BasePath); 3017 return false; 3018 } 3019 3020 if (AmbiguousBaseConvID) { 3021 // We know that the derived-to-base conversion is ambiguous, and 3022 // we're going to produce a diagnostic. Perform the derived-to-base 3023 // search just one more time to compute all of the possible paths so 3024 // that we can print them out. This is more expensive than any of 3025 // the previous derived-to-base checks we've done, but at this point 3026 // performance isn't as much of an issue. 3027 Paths.clear(); 3028 Paths.setRecordingPaths(true); 3029 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 3030 assert(StillOkay && "Can only be used with a derived-to-base conversion"); 3031 (void)StillOkay; 3032 3033 // Build up a textual representation of the ambiguous paths, e.g., 3034 // D -> B -> A, that will be used to illustrate the ambiguous 3035 // conversions in the diagnostic. We only print one of the paths 3036 // to each base class subobject. 3037 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 3038 3039 Diag(Loc, AmbiguousBaseConvID) 3040 << Derived << Base << PathDisplayStr << Range << Name; 3041 } 3042 return true; 3043 } 3044 3045 bool 3046 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 3047 SourceLocation Loc, SourceRange Range, 3048 CXXCastPath *BasePath, 3049 bool IgnoreAccess) { 3050 return CheckDerivedToBaseConversion( 3051 Derived, Base, diag::err_upcast_to_inaccessible_base, 3052 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), 3053 BasePath, IgnoreAccess); 3054 } 3055 3056 3057 /// Builds a string representing ambiguous paths from a 3058 /// specific derived class to different subobjects of the same base 3059 /// class. 3060 /// 3061 /// This function builds a string that can be used in error messages 3062 /// to show the different paths that one can take through the 3063 /// inheritance hierarchy to go from the derived class to different 3064 /// subobjects of a base class. The result looks something like this: 3065 /// @code 3066 /// struct D -> struct B -> struct A 3067 /// struct D -> struct C -> struct A 3068 /// @endcode 3069 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { 3070 std::string PathDisplayStr; 3071 std::set<unsigned> DisplayedPaths; 3072 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 3073 Path != Paths.end(); ++Path) { 3074 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { 3075 // We haven't displayed a path to this particular base 3076 // class subobject yet. 3077 PathDisplayStr += "\n "; 3078 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); 3079 for (CXXBasePath::const_iterator Element = Path->begin(); 3080 Element != Path->end(); ++Element) 3081 PathDisplayStr += " -> " + Element->Base->getType().getAsString(); 3082 } 3083 } 3084 3085 return PathDisplayStr; 3086 } 3087 3088 //===----------------------------------------------------------------------===// 3089 // C++ class member Handling 3090 //===----------------------------------------------------------------------===// 3091 3092 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. 3093 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, 3094 SourceLocation ColonLoc, 3095 const ParsedAttributesView &Attrs) { 3096 assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); 3097 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, 3098 ASLoc, ColonLoc); 3099 CurContext->addHiddenDecl(ASDecl); 3100 return ProcessAccessDeclAttributeList(ASDecl, Attrs); 3101 } 3102 3103 /// CheckOverrideControl - Check C++11 override control semantics. 3104 void Sema::CheckOverrideControl(NamedDecl *D) { 3105 if (D->isInvalidDecl()) 3106 return; 3107 3108 // We only care about "override" and "final" declarations. 3109 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) 3110 return; 3111 3112 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3113 3114 // We can't check dependent instance methods. 3115 if (MD && MD->isInstance() && 3116 (MD->getParent()->hasAnyDependentBases() || 3117 MD->getType()->isDependentType())) 3118 return; 3119 3120 if (MD && !MD->isVirtual()) { 3121 // If we have a non-virtual method, check if it hides a virtual method. 3122 // (In that case, it's most likely the method has the wrong type.) 3123 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 3124 FindHiddenVirtualMethods(MD, OverloadedMethods); 3125 3126 if (!OverloadedMethods.empty()) { 3127 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3128 Diag(OA->getLocation(), 3129 diag::override_keyword_hides_virtual_member_function) 3130 << "override" << (OverloadedMethods.size() > 1); 3131 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3132 Diag(FA->getLocation(), 3133 diag::override_keyword_hides_virtual_member_function) 3134 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3135 << (OverloadedMethods.size() > 1); 3136 } 3137 NoteHiddenVirtualMethods(MD, OverloadedMethods); 3138 MD->setInvalidDecl(); 3139 return; 3140 } 3141 // Fall through into the general case diagnostic. 3142 // FIXME: We might want to attempt typo correction here. 3143 } 3144 3145 if (!MD || !MD->isVirtual()) { 3146 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3147 Diag(OA->getLocation(), 3148 diag::override_keyword_only_allowed_on_virtual_member_functions) 3149 << "override" << FixItHint::CreateRemoval(OA->getLocation()); 3150 D->dropAttr<OverrideAttr>(); 3151 } 3152 if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3153 Diag(FA->getLocation(), 3154 diag::override_keyword_only_allowed_on_virtual_member_functions) 3155 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3156 << FixItHint::CreateRemoval(FA->getLocation()); 3157 D->dropAttr<FinalAttr>(); 3158 } 3159 return; 3160 } 3161 3162 // C++11 [class.virtual]p5: 3163 // If a function is marked with the virt-specifier override and 3164 // does not override a member function of a base class, the program is 3165 // ill-formed. 3166 bool HasOverriddenMethods = MD->size_overridden_methods() != 0; 3167 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) 3168 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) 3169 << MD->getDeclName(); 3170 } 3171 3172 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) { 3173 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) 3174 return; 3175 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3176 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) 3177 return; 3178 3179 SourceLocation Loc = MD->getLocation(); 3180 SourceLocation SpellingLoc = Loc; 3181 if (getSourceManager().isMacroArgExpansion(Loc)) 3182 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); 3183 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); 3184 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) 3185 return; 3186 3187 if (MD->size_overridden_methods() > 0) { 3188 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) { 3189 unsigned DiagID = 3190 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation()) 3191 ? DiagInconsistent 3192 : DiagSuggest; 3193 Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 3194 const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); 3195 Diag(OMD->getLocation(), diag::note_overridden_virtual_function); 3196 }; 3197 if (isa<CXXDestructorDecl>(MD)) 3198 EmitDiag( 3199 diag::warn_inconsistent_destructor_marked_not_override_overriding, 3200 diag::warn_suggest_destructor_marked_not_override_overriding); 3201 else 3202 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding, 3203 diag::warn_suggest_function_marked_not_override_overriding); 3204 } 3205 } 3206 3207 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member 3208 /// function overrides a virtual member function marked 'final', according to 3209 /// C++11 [class.virtual]p4. 3210 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, 3211 const CXXMethodDecl *Old) { 3212 FinalAttr *FA = Old->getAttr<FinalAttr>(); 3213 if (!FA) 3214 return false; 3215 3216 Diag(New->getLocation(), diag::err_final_function_overridden) 3217 << New->getDeclName() 3218 << FA->isSpelledAsSealed(); 3219 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 3220 return true; 3221 } 3222 3223 static bool InitializationHasSideEffects(const FieldDecl &FD) { 3224 const Type *T = FD.getType()->getBaseElementTypeUnsafe(); 3225 // FIXME: Destruction of ObjC lifetime types has side-effects. 3226 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3227 return !RD->isCompleteDefinition() || 3228 !RD->hasTrivialDefaultConstructor() || 3229 !RD->hasTrivialDestructor(); 3230 return false; 3231 } 3232 3233 static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) { 3234 ParsedAttributesView::const_iterator Itr = 3235 llvm::find_if(list, [](const ParsedAttr &AL) { 3236 return AL.isDeclspecPropertyAttribute(); 3237 }); 3238 if (Itr != list.end()) 3239 return &*Itr; 3240 return nullptr; 3241 } 3242 3243 // Check if there is a field shadowing. 3244 void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, 3245 DeclarationName FieldName, 3246 const CXXRecordDecl *RD, 3247 bool DeclIsField) { 3248 if (Diags.isIgnored(diag::warn_shadow_field, Loc)) 3249 return; 3250 3251 // To record a shadowed field in a base 3252 std::map<CXXRecordDecl*, NamedDecl*> Bases; 3253 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, 3254 CXXBasePath &Path) { 3255 const auto Base = Specifier->getType()->getAsCXXRecordDecl(); 3256 // Record an ambiguous path directly 3257 if (Bases.find(Base) != Bases.end()) 3258 return true; 3259 for (const auto Field : Base->lookup(FieldName)) { 3260 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && 3261 Field->getAccess() != AS_private) { 3262 assert(Field->getAccess() != AS_none); 3263 assert(Bases.find(Base) == Bases.end()); 3264 Bases[Base] = Field; 3265 return true; 3266 } 3267 } 3268 return false; 3269 }; 3270 3271 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3272 /*DetectVirtual=*/true); 3273 if (!RD->lookupInBases(FieldShadowed, Paths)) 3274 return; 3275 3276 for (const auto &P : Paths) { 3277 auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); 3278 auto It = Bases.find(Base); 3279 // Skip duplicated bases 3280 if (It == Bases.end()) 3281 continue; 3282 auto BaseField = It->second; 3283 assert(BaseField->getAccess() != AS_private); 3284 if (AS_none != 3285 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) { 3286 Diag(Loc, diag::warn_shadow_field) 3287 << FieldName << RD << Base << DeclIsField; 3288 Diag(BaseField->getLocation(), diag::note_shadow_field); 3289 Bases.erase(It); 3290 } 3291 } 3292 } 3293 3294 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member 3295 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the 3296 /// bitfield width if there is one, 'InitExpr' specifies the initializer if 3297 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is 3298 /// present (but parsing it has been deferred). 3299 NamedDecl * 3300 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, 3301 MultiTemplateParamsArg TemplateParameterLists, 3302 Expr *BW, const VirtSpecifiers &VS, 3303 InClassInitStyle InitStyle) { 3304 const DeclSpec &DS = D.getDeclSpec(); 3305 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 3306 DeclarationName Name = NameInfo.getName(); 3307 SourceLocation Loc = NameInfo.getLoc(); 3308 3309 // For anonymous bitfields, the location should point to the type. 3310 if (Loc.isInvalid()) 3311 Loc = D.getBeginLoc(); 3312 3313 Expr *BitWidth = static_cast<Expr*>(BW); 3314 3315 assert(isa<CXXRecordDecl>(CurContext)); 3316 assert(!DS.isFriendSpecified()); 3317 3318 bool isFunc = D.isDeclarationOfFunction(); 3319 const ParsedAttr *MSPropertyAttr = 3320 getMSPropertyAttr(D.getDeclSpec().getAttributes()); 3321 3322 if (cast<CXXRecordDecl>(CurContext)->isInterface()) { 3323 // The Microsoft extension __interface only permits public member functions 3324 // and prohibits constructors, destructors, operators, non-public member 3325 // functions, static methods and data members. 3326 unsigned InvalidDecl; 3327 bool ShowDeclName = true; 3328 if (!isFunc && 3329 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) 3330 InvalidDecl = 0; 3331 else if (!isFunc) 3332 InvalidDecl = 1; 3333 else if (AS != AS_public) 3334 InvalidDecl = 2; 3335 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) 3336 InvalidDecl = 3; 3337 else switch (Name.getNameKind()) { 3338 case DeclarationName::CXXConstructorName: 3339 InvalidDecl = 4; 3340 ShowDeclName = false; 3341 break; 3342 3343 case DeclarationName::CXXDestructorName: 3344 InvalidDecl = 5; 3345 ShowDeclName = false; 3346 break; 3347 3348 case DeclarationName::CXXOperatorName: 3349 case DeclarationName::CXXConversionFunctionName: 3350 InvalidDecl = 6; 3351 break; 3352 3353 default: 3354 InvalidDecl = 0; 3355 break; 3356 } 3357 3358 if (InvalidDecl) { 3359 if (ShowDeclName) 3360 Diag(Loc, diag::err_invalid_member_in_interface) 3361 << (InvalidDecl-1) << Name; 3362 else 3363 Diag(Loc, diag::err_invalid_member_in_interface) 3364 << (InvalidDecl-1) << ""; 3365 return nullptr; 3366 } 3367 } 3368 3369 // C++ 9.2p6: A member shall not be declared to have automatic storage 3370 // duration (auto, register) or with the extern storage-class-specifier. 3371 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class 3372 // data members and cannot be applied to names declared const or static, 3373 // and cannot be applied to reference members. 3374 switch (DS.getStorageClassSpec()) { 3375 case DeclSpec::SCS_unspecified: 3376 case DeclSpec::SCS_typedef: 3377 case DeclSpec::SCS_static: 3378 break; 3379 case DeclSpec::SCS_mutable: 3380 if (isFunc) { 3381 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); 3382 3383 // FIXME: It would be nicer if the keyword was ignored only for this 3384 // declarator. Otherwise we could get follow-up errors. 3385 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3386 } 3387 break; 3388 default: 3389 Diag(DS.getStorageClassSpecLoc(), 3390 diag::err_storageclass_invalid_for_member); 3391 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3392 break; 3393 } 3394 3395 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || 3396 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && 3397 !isFunc); 3398 3399 if (DS.hasConstexprSpecifier() && isInstField) { 3400 SemaDiagnosticBuilder B = 3401 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); 3402 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); 3403 if (InitStyle == ICIS_NoInit) { 3404 B << 0 << 0; 3405 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) 3406 B << FixItHint::CreateRemoval(ConstexprLoc); 3407 else { 3408 B << FixItHint::CreateReplacement(ConstexprLoc, "const"); 3409 D.getMutableDeclSpec().ClearConstexprSpec(); 3410 const char *PrevSpec; 3411 unsigned DiagID; 3412 bool Failed = D.getMutableDeclSpec().SetTypeQual( 3413 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); 3414 (void)Failed; 3415 assert(!Failed && "Making a constexpr member const shouldn't fail"); 3416 } 3417 } else { 3418 B << 1; 3419 const char *PrevSpec; 3420 unsigned DiagID; 3421 if (D.getMutableDeclSpec().SetStorageClassSpec( 3422 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, 3423 Context.getPrintingPolicy())) { 3424 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable && 3425 "This is the only DeclSpec that should fail to be applied"); 3426 B << 1; 3427 } else { 3428 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); 3429 isInstField = false; 3430 } 3431 } 3432 } 3433 3434 NamedDecl *Member; 3435 if (isInstField) { 3436 CXXScopeSpec &SS = D.getCXXScopeSpec(); 3437 3438 // Data members must have identifiers for names. 3439 if (!Name.isIdentifier()) { 3440 Diag(Loc, diag::err_bad_variable_name) 3441 << Name; 3442 return nullptr; 3443 } 3444 3445 IdentifierInfo *II = Name.getAsIdentifierInfo(); 3446 3447 // Member field could not be with "template" keyword. 3448 // So TemplateParameterLists should be empty in this case. 3449 if (TemplateParameterLists.size()) { 3450 TemplateParameterList* TemplateParams = TemplateParameterLists[0]; 3451 if (TemplateParams->size()) { 3452 // There is no such thing as a member field template. 3453 Diag(D.getIdentifierLoc(), diag::err_template_member) 3454 << II 3455 << SourceRange(TemplateParams->getTemplateLoc(), 3456 TemplateParams->getRAngleLoc()); 3457 } else { 3458 // There is an extraneous 'template<>' for this member. 3459 Diag(TemplateParams->getTemplateLoc(), 3460 diag::err_template_member_noparams) 3461 << II 3462 << SourceRange(TemplateParams->getTemplateLoc(), 3463 TemplateParams->getRAngleLoc()); 3464 } 3465 return nullptr; 3466 } 3467 3468 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 3469 Diag(D.getIdentifierLoc(), diag::err_member_with_template_arguments) 3470 << II 3471 << SourceRange(D.getName().TemplateId->LAngleLoc, 3472 D.getName().TemplateId->RAngleLoc) 3473 << D.getName().TemplateId->LAngleLoc; 3474 D.SetIdentifier(II, Loc); 3475 } 3476 3477 if (SS.isSet() && !SS.isInvalid()) { 3478 // The user provided a superfluous scope specifier inside a class 3479 // definition: 3480 // 3481 // class X { 3482 // int X::member; 3483 // }; 3484 if (DeclContext *DC = computeDeclContext(SS, false)) 3485 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(), 3486 D.getName().getKind() == 3487 UnqualifiedIdKind::IK_TemplateId); 3488 else 3489 Diag(D.getIdentifierLoc(), diag::err_member_qualification) 3490 << Name << SS.getRange(); 3491 3492 SS.clear(); 3493 } 3494 3495 if (MSPropertyAttr) { 3496 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3497 BitWidth, InitStyle, AS, *MSPropertyAttr); 3498 if (!Member) 3499 return nullptr; 3500 isInstField = false; 3501 } else { 3502 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3503 BitWidth, InitStyle, AS); 3504 if (!Member) 3505 return nullptr; 3506 } 3507 3508 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext)); 3509 } else { 3510 Member = HandleDeclarator(S, D, TemplateParameterLists); 3511 if (!Member) 3512 return nullptr; 3513 3514 // Non-instance-fields can't have a bitfield. 3515 if (BitWidth) { 3516 if (Member->isInvalidDecl()) { 3517 // don't emit another diagnostic. 3518 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) { 3519 // C++ 9.6p3: A bit-field shall not be a static member. 3520 // "static member 'A' cannot be a bit-field" 3521 Diag(Loc, diag::err_static_not_bitfield) 3522 << Name << BitWidth->getSourceRange(); 3523 } else if (isa<TypedefDecl>(Member)) { 3524 // "typedef member 'x' cannot be a bit-field" 3525 Diag(Loc, diag::err_typedef_not_bitfield) 3526 << Name << BitWidth->getSourceRange(); 3527 } else { 3528 // A function typedef ("typedef int f(); f a;"). 3529 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 3530 Diag(Loc, diag::err_not_integral_type_bitfield) 3531 << Name << cast<ValueDecl>(Member)->getType() 3532 << BitWidth->getSourceRange(); 3533 } 3534 3535 BitWidth = nullptr; 3536 Member->setInvalidDecl(); 3537 } 3538 3539 NamedDecl *NonTemplateMember = Member; 3540 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) 3541 NonTemplateMember = FunTmpl->getTemplatedDecl(); 3542 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member)) 3543 NonTemplateMember = VarTmpl->getTemplatedDecl(); 3544 3545 Member->setAccess(AS); 3546 3547 // If we have declared a member function template or static data member 3548 // template, set the access of the templated declaration as well. 3549 if (NonTemplateMember != Member) 3550 NonTemplateMember->setAccess(AS); 3551 3552 // C++ [temp.deduct.guide]p3: 3553 // A deduction guide [...] for a member class template [shall be 3554 // declared] with the same access [as the template]. 3555 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) { 3556 auto *TD = DG->getDeducedTemplate(); 3557 // Access specifiers are only meaningful if both the template and the 3558 // deduction guide are from the same scope. 3559 if (AS != TD->getAccess() && 3560 TD->getDeclContext()->getRedeclContext()->Equals( 3561 DG->getDeclContext()->getRedeclContext())) { 3562 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); 3563 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) 3564 << TD->getAccess(); 3565 const AccessSpecDecl *LastAccessSpec = nullptr; 3566 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { 3567 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) 3568 LastAccessSpec = AccessSpec; 3569 } 3570 assert(LastAccessSpec && "differing access with no access specifier"); 3571 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) 3572 << AS; 3573 } 3574 } 3575 } 3576 3577 if (VS.isOverrideSpecified()) 3578 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(), 3579 AttributeCommonInfo::AS_Keyword)); 3580 if (VS.isFinalSpecified()) 3581 Member->addAttr(FinalAttr::Create( 3582 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword, 3583 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed()))); 3584 3585 if (VS.getLastLocation().isValid()) { 3586 // Update the end location of a method that has a virt-specifiers. 3587 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) 3588 MD->setRangeEnd(VS.getLastLocation()); 3589 } 3590 3591 CheckOverrideControl(Member); 3592 3593 assert((Name || isInstField) && "No identifier for non-field ?"); 3594 3595 if (isInstField) { 3596 FieldDecl *FD = cast<FieldDecl>(Member); 3597 FieldCollector->Add(FD); 3598 3599 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) { 3600 // Remember all explicit private FieldDecls that have a name, no side 3601 // effects and are not part of a dependent type declaration. 3602 if (!FD->isImplicit() && FD->getDeclName() && 3603 FD->getAccess() == AS_private && 3604 !FD->hasAttr<UnusedAttr>() && 3605 !FD->getParent()->isDependentContext() && 3606 !InitializationHasSideEffects(*FD)) 3607 UnusedPrivateFields.insert(FD); 3608 } 3609 } 3610 3611 return Member; 3612 } 3613 3614 namespace { 3615 class UninitializedFieldVisitor 3616 : public EvaluatedExprVisitor<UninitializedFieldVisitor> { 3617 Sema &S; 3618 // List of Decls to generate a warning on. Also remove Decls that become 3619 // initialized. 3620 llvm::SmallPtrSetImpl<ValueDecl*> &Decls; 3621 // List of base classes of the record. Classes are removed after their 3622 // initializers. 3623 llvm::SmallPtrSetImpl<QualType> &BaseClasses; 3624 // Vector of decls to be removed from the Decl set prior to visiting the 3625 // nodes. These Decls may have been initialized in the prior initializer. 3626 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; 3627 // If non-null, add a note to the warning pointing back to the constructor. 3628 const CXXConstructorDecl *Constructor; 3629 // Variables to hold state when processing an initializer list. When 3630 // InitList is true, special case initialization of FieldDecls matching 3631 // InitListFieldDecl. 3632 bool InitList; 3633 FieldDecl *InitListFieldDecl; 3634 llvm::SmallVector<unsigned, 4> InitFieldIndex; 3635 3636 public: 3637 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; 3638 UninitializedFieldVisitor(Sema &S, 3639 llvm::SmallPtrSetImpl<ValueDecl*> &Decls, 3640 llvm::SmallPtrSetImpl<QualType> &BaseClasses) 3641 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), 3642 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} 3643 3644 // Returns true if the use of ME is not an uninitialized use. 3645 bool IsInitListMemberExprInitialized(MemberExpr *ME, 3646 bool CheckReferenceOnly) { 3647 llvm::SmallVector<FieldDecl*, 4> Fields; 3648 bool ReferenceField = false; 3649 while (ME) { 3650 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 3651 if (!FD) 3652 return false; 3653 Fields.push_back(FD); 3654 if (FD->getType()->isReferenceType()) 3655 ReferenceField = true; 3656 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts()); 3657 } 3658 3659 // Binding a reference to an uninitialized field is not an 3660 // uninitialized use. 3661 if (CheckReferenceOnly && !ReferenceField) 3662 return true; 3663 3664 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 3665 // Discard the first field since it is the field decl that is being 3666 // initialized. 3667 for (const FieldDecl *FD : llvm::drop_begin(llvm::reverse(Fields))) 3668 UsedFieldIndex.push_back(FD->getFieldIndex()); 3669 3670 for (auto UsedIter = UsedFieldIndex.begin(), 3671 UsedEnd = UsedFieldIndex.end(), 3672 OrigIter = InitFieldIndex.begin(), 3673 OrigEnd = InitFieldIndex.end(); 3674 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 3675 if (*UsedIter < *OrigIter) 3676 return true; 3677 if (*UsedIter > *OrigIter) 3678 break; 3679 } 3680 3681 return false; 3682 } 3683 3684 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, 3685 bool AddressOf) { 3686 if (isa<EnumConstantDecl>(ME->getMemberDecl())) 3687 return; 3688 3689 // FieldME is the inner-most MemberExpr that is not an anonymous struct 3690 // or union. 3691 MemberExpr *FieldME = ME; 3692 3693 bool AllPODFields = FieldME->getType().isPODType(S.Context); 3694 3695 Expr *Base = ME; 3696 while (MemberExpr *SubME = 3697 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) { 3698 3699 if (isa<VarDecl>(SubME->getMemberDecl())) 3700 return; 3701 3702 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl())) 3703 if (!FD->isAnonymousStructOrUnion()) 3704 FieldME = SubME; 3705 3706 if (!FieldME->getType().isPODType(S.Context)) 3707 AllPODFields = false; 3708 3709 Base = SubME->getBase(); 3710 } 3711 3712 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) { 3713 Visit(Base); 3714 return; 3715 } 3716 3717 if (AddressOf && AllPODFields) 3718 return; 3719 3720 ValueDecl* FoundVD = FieldME->getMemberDecl(); 3721 3722 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) { 3723 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { 3724 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); 3725 } 3726 3727 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { 3728 QualType T = BaseCast->getType(); 3729 if (T->isPointerType() && 3730 BaseClasses.count(T->getPointeeType())) { 3731 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) 3732 << T->getPointeeType() << FoundVD; 3733 } 3734 } 3735 } 3736 3737 if (!Decls.count(FoundVD)) 3738 return; 3739 3740 const bool IsReference = FoundVD->getType()->isReferenceType(); 3741 3742 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { 3743 // Special checking for initializer lists. 3744 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { 3745 return; 3746 } 3747 } else { 3748 // Prevent double warnings on use of unbounded references. 3749 if (CheckReferenceOnly && !IsReference) 3750 return; 3751 } 3752 3753 unsigned diag = IsReference 3754 ? diag::warn_reference_field_is_uninit 3755 : diag::warn_field_is_uninit; 3756 S.Diag(FieldME->getExprLoc(), diag) << FoundVD; 3757 if (Constructor) 3758 S.Diag(Constructor->getLocation(), 3759 diag::note_uninit_in_this_constructor) 3760 << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); 3761 3762 } 3763 3764 void HandleValue(Expr *E, bool AddressOf) { 3765 E = E->IgnoreParens(); 3766 3767 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 3768 HandleMemberExpr(ME, false /*CheckReferenceOnly*/, 3769 AddressOf /*AddressOf*/); 3770 return; 3771 } 3772 3773 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 3774 Visit(CO->getCond()); 3775 HandleValue(CO->getTrueExpr(), AddressOf); 3776 HandleValue(CO->getFalseExpr(), AddressOf); 3777 return; 3778 } 3779 3780 if (BinaryConditionalOperator *BCO = 3781 dyn_cast<BinaryConditionalOperator>(E)) { 3782 Visit(BCO->getCond()); 3783 HandleValue(BCO->getFalseExpr(), AddressOf); 3784 return; 3785 } 3786 3787 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 3788 HandleValue(OVE->getSourceExpr(), AddressOf); 3789 return; 3790 } 3791 3792 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3793 switch (BO->getOpcode()) { 3794 default: 3795 break; 3796 case(BO_PtrMemD): 3797 case(BO_PtrMemI): 3798 HandleValue(BO->getLHS(), AddressOf); 3799 Visit(BO->getRHS()); 3800 return; 3801 case(BO_Comma): 3802 Visit(BO->getLHS()); 3803 HandleValue(BO->getRHS(), AddressOf); 3804 return; 3805 } 3806 } 3807 3808 Visit(E); 3809 } 3810 3811 void CheckInitListExpr(InitListExpr *ILE) { 3812 InitFieldIndex.push_back(0); 3813 for (auto *Child : ILE->children()) { 3814 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) { 3815 CheckInitListExpr(SubList); 3816 } else { 3817 Visit(Child); 3818 } 3819 ++InitFieldIndex.back(); 3820 } 3821 InitFieldIndex.pop_back(); 3822 } 3823 3824 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, 3825 FieldDecl *Field, const Type *BaseClass) { 3826 // Remove Decls that may have been initialized in the previous 3827 // initializer. 3828 for (ValueDecl* VD : DeclsToRemove) 3829 Decls.erase(VD); 3830 DeclsToRemove.clear(); 3831 3832 Constructor = FieldConstructor; 3833 InitListExpr *ILE = dyn_cast<InitListExpr>(E); 3834 3835 if (ILE && Field) { 3836 InitList = true; 3837 InitListFieldDecl = Field; 3838 InitFieldIndex.clear(); 3839 CheckInitListExpr(ILE); 3840 } else { 3841 InitList = false; 3842 Visit(E); 3843 } 3844 3845 if (Field) 3846 Decls.erase(Field); 3847 if (BaseClass) 3848 BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); 3849 } 3850 3851 void VisitMemberExpr(MemberExpr *ME) { 3852 // All uses of unbounded reference fields will warn. 3853 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); 3854 } 3855 3856 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 3857 if (E->getCastKind() == CK_LValueToRValue) { 3858 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3859 return; 3860 } 3861 3862 Inherited::VisitImplicitCastExpr(E); 3863 } 3864 3865 void VisitCXXConstructExpr(CXXConstructExpr *E) { 3866 if (E->getConstructor()->isCopyConstructor()) { 3867 Expr *ArgExpr = E->getArg(0); 3868 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 3869 if (ILE->getNumInits() == 1) 3870 ArgExpr = ILE->getInit(0); 3871 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 3872 if (ICE->getCastKind() == CK_NoOp) 3873 ArgExpr = ICE->getSubExpr(); 3874 HandleValue(ArgExpr, false /*AddressOf*/); 3875 return; 3876 } 3877 Inherited::VisitCXXConstructExpr(E); 3878 } 3879 3880 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3881 Expr *Callee = E->getCallee(); 3882 if (isa<MemberExpr>(Callee)) { 3883 HandleValue(Callee, false /*AddressOf*/); 3884 for (auto *Arg : E->arguments()) 3885 Visit(Arg); 3886 return; 3887 } 3888 3889 Inherited::VisitCXXMemberCallExpr(E); 3890 } 3891 3892 void VisitCallExpr(CallExpr *E) { 3893 // Treat std::move as a use. 3894 if (E->isCallToStdMove()) { 3895 HandleValue(E->getArg(0), /*AddressOf=*/false); 3896 return; 3897 } 3898 3899 Inherited::VisitCallExpr(E); 3900 } 3901 3902 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 3903 Expr *Callee = E->getCallee(); 3904 3905 if (isa<UnresolvedLookupExpr>(Callee)) 3906 return Inherited::VisitCXXOperatorCallExpr(E); 3907 3908 Visit(Callee); 3909 for (auto *Arg : E->arguments()) 3910 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); 3911 } 3912 3913 void VisitBinaryOperator(BinaryOperator *E) { 3914 // If a field assignment is detected, remove the field from the 3915 // uninitiailized field set. 3916 if (E->getOpcode() == BO_Assign) 3917 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS())) 3918 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3919 if (!FD->getType()->isReferenceType()) 3920 DeclsToRemove.push_back(FD); 3921 3922 if (E->isCompoundAssignmentOp()) { 3923 HandleValue(E->getLHS(), false /*AddressOf*/); 3924 Visit(E->getRHS()); 3925 return; 3926 } 3927 3928 Inherited::VisitBinaryOperator(E); 3929 } 3930 3931 void VisitUnaryOperator(UnaryOperator *E) { 3932 if (E->isIncrementDecrementOp()) { 3933 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3934 return; 3935 } 3936 if (E->getOpcode() == UO_AddrOf) { 3937 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) { 3938 HandleValue(ME->getBase(), true /*AddressOf*/); 3939 return; 3940 } 3941 } 3942 3943 Inherited::VisitUnaryOperator(E); 3944 } 3945 }; 3946 3947 // Diagnose value-uses of fields to initialize themselves, e.g. 3948 // foo(foo) 3949 // where foo is not also a parameter to the constructor. 3950 // Also diagnose across field uninitialized use such as 3951 // x(y), y(x) 3952 // TODO: implement -Wuninitialized and fold this into that framework. 3953 static void DiagnoseUninitializedFields( 3954 Sema &SemaRef, const CXXConstructorDecl *Constructor) { 3955 3956 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, 3957 Constructor->getLocation())) { 3958 return; 3959 } 3960 3961 if (Constructor->isInvalidDecl()) 3962 return; 3963 3964 const CXXRecordDecl *RD = Constructor->getParent(); 3965 3966 if (RD->isDependentContext()) 3967 return; 3968 3969 // Holds fields that are uninitialized. 3970 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; 3971 3972 // At the beginning, all fields are uninitialized. 3973 for (auto *I : RD->decls()) { 3974 if (auto *FD = dyn_cast<FieldDecl>(I)) { 3975 UninitializedFields.insert(FD); 3976 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { 3977 UninitializedFields.insert(IFD->getAnonField()); 3978 } 3979 } 3980 3981 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; 3982 for (auto I : RD->bases()) 3983 UninitializedBaseClasses.insert(I.getType().getCanonicalType()); 3984 3985 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3986 return; 3987 3988 UninitializedFieldVisitor UninitializedChecker(SemaRef, 3989 UninitializedFields, 3990 UninitializedBaseClasses); 3991 3992 for (const auto *FieldInit : Constructor->inits()) { 3993 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3994 break; 3995 3996 Expr *InitExpr = FieldInit->getInit(); 3997 if (!InitExpr) 3998 continue; 3999 4000 if (CXXDefaultInitExpr *Default = 4001 dyn_cast<CXXDefaultInitExpr>(InitExpr)) { 4002 InitExpr = Default->getExpr(); 4003 if (!InitExpr) 4004 continue; 4005 // In class initializers will point to the constructor. 4006 UninitializedChecker.CheckInitializer(InitExpr, Constructor, 4007 FieldInit->getAnyMember(), 4008 FieldInit->getBaseClass()); 4009 } else { 4010 UninitializedChecker.CheckInitializer(InitExpr, nullptr, 4011 FieldInit->getAnyMember(), 4012 FieldInit->getBaseClass()); 4013 } 4014 } 4015 } 4016 } // namespace 4017 4018 /// Enter a new C++ default initializer scope. After calling this, the 4019 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if 4020 /// parsing or instantiating the initializer failed. 4021 void Sema::ActOnStartCXXInClassMemberInitializer() { 4022 // Create a synthetic function scope to represent the call to the constructor 4023 // that notionally surrounds a use of this initializer. 4024 PushFunctionScope(); 4025 } 4026 4027 void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) { 4028 if (!D.isFunctionDeclarator()) 4029 return; 4030 auto &FTI = D.getFunctionTypeInfo(); 4031 if (!FTI.Params) 4032 return; 4033 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params, 4034 FTI.NumParams)) { 4035 auto *ParamDecl = cast<NamedDecl>(Param.Param); 4036 if (ParamDecl->getDeclName()) 4037 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false); 4038 } 4039 } 4040 4041 ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) { 4042 return ActOnRequiresClause(ConstraintExpr); 4043 } 4044 4045 ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) { 4046 if (ConstraintExpr.isInvalid()) 4047 return ExprError(); 4048 4049 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr); 4050 if (ConstraintExpr.isInvalid()) 4051 return ExprError(); 4052 4053 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(), 4054 UPPC_RequiresClause)) 4055 return ExprError(); 4056 4057 return ConstraintExpr; 4058 } 4059 4060 ExprResult Sema::ConvertMemberDefaultInitExpression(FieldDecl *FD, 4061 Expr *InitExpr, 4062 SourceLocation InitLoc) { 4063 InitializedEntity Entity = 4064 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD); 4065 InitializationKind Kind = 4066 FD->getInClassInitStyle() == ICIS_ListInit 4067 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), 4068 InitExpr->getBeginLoc(), 4069 InitExpr->getEndLoc()) 4070 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc); 4071 InitializationSequence Seq(*this, Entity, Kind, InitExpr); 4072 return Seq.Perform(*this, Entity, Kind, InitExpr); 4073 } 4074 4075 /// This is invoked after parsing an in-class initializer for a 4076 /// non-static C++ class member, and after instantiating an in-class initializer 4077 /// in a class template. Such actions are deferred until the class is complete. 4078 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, 4079 SourceLocation InitLoc, 4080 Expr *InitExpr) { 4081 // Pop the notional constructor scope we created earlier. 4082 PopFunctionScopeInfo(nullptr, D); 4083 4084 FieldDecl *FD = dyn_cast<FieldDecl>(D); 4085 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && 4086 "must set init style when field is created"); 4087 4088 if (!InitExpr) { 4089 D->setInvalidDecl(); 4090 if (FD) 4091 FD->removeInClassInitializer(); 4092 return; 4093 } 4094 4095 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { 4096 FD->setInvalidDecl(); 4097 FD->removeInClassInitializer(); 4098 return; 4099 } 4100 4101 ExprResult Init = CorrectDelayedTyposInExpr(InitExpr, /*InitDecl=*/nullptr, 4102 /*RecoverUncorrectedTypos=*/true); 4103 assert(Init.isUsable() && "Init should at least have a RecoveryExpr"); 4104 if (!FD->getType()->isDependentType() && !Init.get()->isTypeDependent()) { 4105 Init = ConvertMemberDefaultInitExpression(FD, Init.get(), InitLoc); 4106 // C++11 [class.base.init]p7: 4107 // The initialization of each base and member constitutes a 4108 // full-expression. 4109 if (!Init.isInvalid()) 4110 Init = ActOnFinishFullExpr(Init.get(), /*DiscarededValue=*/false); 4111 if (Init.isInvalid()) { 4112 FD->setInvalidDecl(); 4113 return; 4114 } 4115 } 4116 4117 FD->setInClassInitializer(Init.get()); 4118 } 4119 4120 /// Find the direct and/or virtual base specifiers that 4121 /// correspond to the given base type, for use in base initialization 4122 /// within a constructor. 4123 static bool FindBaseInitializer(Sema &SemaRef, 4124 CXXRecordDecl *ClassDecl, 4125 QualType BaseType, 4126 const CXXBaseSpecifier *&DirectBaseSpec, 4127 const CXXBaseSpecifier *&VirtualBaseSpec) { 4128 // First, check for a direct base class. 4129 DirectBaseSpec = nullptr; 4130 for (const auto &Base : ClassDecl->bases()) { 4131 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { 4132 // We found a direct base of this type. That's what we're 4133 // initializing. 4134 DirectBaseSpec = &Base; 4135 break; 4136 } 4137 } 4138 4139 // Check for a virtual base class. 4140 // FIXME: We might be able to short-circuit this if we know in advance that 4141 // there are no virtual bases. 4142 VirtualBaseSpec = nullptr; 4143 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { 4144 // We haven't found a base yet; search the class hierarchy for a 4145 // virtual base class. 4146 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 4147 /*DetectVirtual=*/false); 4148 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), 4149 SemaRef.Context.getTypeDeclType(ClassDecl), 4150 BaseType, Paths)) { 4151 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 4152 Path != Paths.end(); ++Path) { 4153 if (Path->back().Base->isVirtual()) { 4154 VirtualBaseSpec = Path->back().Base; 4155 break; 4156 } 4157 } 4158 } 4159 } 4160 4161 return DirectBaseSpec || VirtualBaseSpec; 4162 } 4163 4164 /// Handle a C++ member initializer using braced-init-list syntax. 4165 MemInitResult 4166 Sema::ActOnMemInitializer(Decl *ConstructorD, 4167 Scope *S, 4168 CXXScopeSpec &SS, 4169 IdentifierInfo *MemberOrBase, 4170 ParsedType TemplateTypeTy, 4171 const DeclSpec &DS, 4172 SourceLocation IdLoc, 4173 Expr *InitList, 4174 SourceLocation EllipsisLoc) { 4175 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4176 DS, IdLoc, InitList, 4177 EllipsisLoc); 4178 } 4179 4180 /// Handle a C++ member initializer using parentheses syntax. 4181 MemInitResult 4182 Sema::ActOnMemInitializer(Decl *ConstructorD, 4183 Scope *S, 4184 CXXScopeSpec &SS, 4185 IdentifierInfo *MemberOrBase, 4186 ParsedType TemplateTypeTy, 4187 const DeclSpec &DS, 4188 SourceLocation IdLoc, 4189 SourceLocation LParenLoc, 4190 ArrayRef<Expr *> Args, 4191 SourceLocation RParenLoc, 4192 SourceLocation EllipsisLoc) { 4193 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc); 4194 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4195 DS, IdLoc, List, EllipsisLoc); 4196 } 4197 4198 namespace { 4199 4200 // Callback to only accept typo corrections that can be a valid C++ member 4201 // initializer: either a non-static field member or a base class. 4202 class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { 4203 public: 4204 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) 4205 : ClassDecl(ClassDecl) {} 4206 4207 bool ValidateCandidate(const TypoCorrection &candidate) override { 4208 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 4209 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) 4210 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); 4211 return isa<TypeDecl>(ND); 4212 } 4213 return false; 4214 } 4215 4216 std::unique_ptr<CorrectionCandidateCallback> clone() override { 4217 return std::make_unique<MemInitializerValidatorCCC>(*this); 4218 } 4219 4220 private: 4221 CXXRecordDecl *ClassDecl; 4222 }; 4223 4224 } 4225 4226 ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, 4227 CXXScopeSpec &SS, 4228 ParsedType TemplateTypeTy, 4229 IdentifierInfo *MemberOrBase) { 4230 if (SS.getScopeRep() || TemplateTypeTy) 4231 return nullptr; 4232 for (auto *D : ClassDecl->lookup(MemberOrBase)) 4233 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) 4234 return cast<ValueDecl>(D); 4235 return nullptr; 4236 } 4237 4238 /// Handle a C++ member initializer. 4239 MemInitResult 4240 Sema::BuildMemInitializer(Decl *ConstructorD, 4241 Scope *S, 4242 CXXScopeSpec &SS, 4243 IdentifierInfo *MemberOrBase, 4244 ParsedType TemplateTypeTy, 4245 const DeclSpec &DS, 4246 SourceLocation IdLoc, 4247 Expr *Init, 4248 SourceLocation EllipsisLoc) { 4249 ExprResult Res = CorrectDelayedTyposInExpr(Init, /*InitDecl=*/nullptr, 4250 /*RecoverUncorrectedTypos=*/true); 4251 if (!Res.isUsable()) 4252 return true; 4253 Init = Res.get(); 4254 4255 if (!ConstructorD) 4256 return true; 4257 4258 AdjustDeclIfTemplate(ConstructorD); 4259 4260 CXXConstructorDecl *Constructor 4261 = dyn_cast<CXXConstructorDecl>(ConstructorD); 4262 if (!Constructor) { 4263 // The user wrote a constructor initializer on a function that is 4264 // not a C++ constructor. Ignore the error for now, because we may 4265 // have more member initializers coming; we'll diagnose it just 4266 // once in ActOnMemInitializers. 4267 return true; 4268 } 4269 4270 CXXRecordDecl *ClassDecl = Constructor->getParent(); 4271 4272 // C++ [class.base.init]p2: 4273 // Names in a mem-initializer-id are looked up in the scope of the 4274 // constructor's class and, if not found in that scope, are looked 4275 // up in the scope containing the constructor's definition. 4276 // [Note: if the constructor's class contains a member with the 4277 // same name as a direct or virtual base class of the class, a 4278 // mem-initializer-id naming the member or base class and composed 4279 // of a single identifier refers to the class member. A 4280 // mem-initializer-id for the hidden base class may be specified 4281 // using a qualified name. ] 4282 4283 // Look for a member, first. 4284 if (ValueDecl *Member = tryLookupCtorInitMemberDecl( 4285 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { 4286 if (EllipsisLoc.isValid()) 4287 Diag(EllipsisLoc, diag::err_pack_expansion_member_init) 4288 << MemberOrBase 4289 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 4290 4291 return BuildMemberInitializer(Member, Init, IdLoc); 4292 } 4293 // It didn't name a member, so see if it names a class. 4294 QualType BaseType; 4295 TypeSourceInfo *TInfo = nullptr; 4296 4297 if (TemplateTypeTy) { 4298 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); 4299 if (BaseType.isNull()) 4300 return true; 4301 } else if (DS.getTypeSpecType() == TST_decltype) { 4302 BaseType = BuildDecltypeType(DS.getRepAsExpr()); 4303 } else if (DS.getTypeSpecType() == TST_decltype_auto) { 4304 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 4305 return true; 4306 } else { 4307 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); 4308 LookupParsedName(R, S, &SS); 4309 4310 TypeDecl *TyD = R.getAsSingle<TypeDecl>(); 4311 if (!TyD) { 4312 if (R.isAmbiguous()) return true; 4313 4314 // We don't want access-control diagnostics here. 4315 R.suppressDiagnostics(); 4316 4317 if (SS.isSet() && isDependentScopeSpecifier(SS)) { 4318 bool NotUnknownSpecialization = false; 4319 DeclContext *DC = computeDeclContext(SS, false); 4320 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) 4321 NotUnknownSpecialization = !Record->hasAnyDependentBases(); 4322 4323 if (!NotUnknownSpecialization) { 4324 // When the scope specifier can refer to a member of an unknown 4325 // specialization, we take it as a type name. 4326 BaseType = CheckTypenameType(ETK_None, SourceLocation(), 4327 SS.getWithLocInContext(Context), 4328 *MemberOrBase, IdLoc); 4329 if (BaseType.isNull()) 4330 return true; 4331 4332 TInfo = Context.CreateTypeSourceInfo(BaseType); 4333 DependentNameTypeLoc TL = 4334 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); 4335 if (!TL.isNull()) { 4336 TL.setNameLoc(IdLoc); 4337 TL.setElaboratedKeywordLoc(SourceLocation()); 4338 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4339 } 4340 4341 R.clear(); 4342 R.setLookupName(MemberOrBase); 4343 } 4344 } 4345 4346 if (getLangOpts().MSVCCompat && !getLangOpts().CPlusPlus20) { 4347 if (auto UnqualifiedBase = R.getAsSingle<ClassTemplateDecl>()) { 4348 auto *TempSpec = cast<TemplateSpecializationType>( 4349 UnqualifiedBase->getInjectedClassNameSpecialization()); 4350 TemplateName TN = TempSpec->getTemplateName(); 4351 for (auto const &Base : ClassDecl->bases()) { 4352 auto BaseTemplate = 4353 Base.getType()->getAs<TemplateSpecializationType>(); 4354 if (BaseTemplate && Context.hasSameTemplateName( 4355 BaseTemplate->getTemplateName(), TN)) { 4356 Diag(IdLoc, diag::ext_unqualified_base_class) 4357 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 4358 BaseType = Base.getType(); 4359 break; 4360 } 4361 } 4362 } 4363 } 4364 4365 // If no results were found, try to correct typos. 4366 TypoCorrection Corr; 4367 MemInitializerValidatorCCC CCC(ClassDecl); 4368 if (R.empty() && BaseType.isNull() && 4369 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, 4370 CCC, CTK_ErrorRecovery, ClassDecl))) { 4371 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { 4372 // We have found a non-static data member with a similar 4373 // name to what was typed; complain and initialize that 4374 // member. 4375 diagnoseTypo(Corr, 4376 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4377 << MemberOrBase << true); 4378 return BuildMemberInitializer(Member, Init, IdLoc); 4379 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { 4380 const CXXBaseSpecifier *DirectBaseSpec; 4381 const CXXBaseSpecifier *VirtualBaseSpec; 4382 if (FindBaseInitializer(*this, ClassDecl, 4383 Context.getTypeDeclType(Type), 4384 DirectBaseSpec, VirtualBaseSpec)) { 4385 // We have found a direct or virtual base class with a 4386 // similar name to what was typed; complain and initialize 4387 // that base class. 4388 diagnoseTypo(Corr, 4389 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4390 << MemberOrBase << false, 4391 PDiag() /*Suppress note, we provide our own.*/); 4392 4393 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec 4394 : VirtualBaseSpec; 4395 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) 4396 << BaseSpec->getType() << BaseSpec->getSourceRange(); 4397 4398 TyD = Type; 4399 } 4400 } 4401 } 4402 4403 if (!TyD && BaseType.isNull()) { 4404 Diag(IdLoc, diag::err_mem_init_not_member_or_class) 4405 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); 4406 return true; 4407 } 4408 } 4409 4410 if (BaseType.isNull()) { 4411 BaseType = getElaboratedType(ETK_None, SS, Context.getTypeDeclType(TyD)); 4412 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); 4413 TInfo = Context.CreateTypeSourceInfo(BaseType); 4414 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); 4415 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 4416 TL.setElaboratedKeywordLoc(SourceLocation()); 4417 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4418 } 4419 } 4420 4421 if (!TInfo) 4422 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); 4423 4424 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); 4425 } 4426 4427 MemInitResult 4428 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, 4429 SourceLocation IdLoc) { 4430 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); 4431 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); 4432 assert((DirectMember || IndirectMember) && 4433 "Member must be a FieldDecl or IndirectFieldDecl"); 4434 4435 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4436 return true; 4437 4438 if (Member->isInvalidDecl()) 4439 return true; 4440 4441 MultiExprArg Args; 4442 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4443 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4444 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 4445 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 4446 } else { 4447 // Template instantiation doesn't reconstruct ParenListExprs for us. 4448 Args = Init; 4449 } 4450 4451 SourceRange InitRange = Init->getSourceRange(); 4452 4453 if (Member->getType()->isDependentType() || Init->isTypeDependent()) { 4454 // Can't check initialization for a member of dependent type or when 4455 // any of the arguments are type-dependent expressions. 4456 DiscardCleanupsInEvaluationContext(); 4457 } else { 4458 bool InitList = false; 4459 if (isa<InitListExpr>(Init)) { 4460 InitList = true; 4461 Args = Init; 4462 } 4463 4464 // Initialize the member. 4465 InitializedEntity MemberEntity = 4466 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) 4467 : InitializedEntity::InitializeMember(IndirectMember, 4468 nullptr); 4469 InitializationKind Kind = 4470 InitList ? InitializationKind::CreateDirectList( 4471 IdLoc, Init->getBeginLoc(), Init->getEndLoc()) 4472 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), 4473 InitRange.getEnd()); 4474 4475 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); 4476 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 4477 nullptr); 4478 if (!MemberInit.isInvalid()) { 4479 // C++11 [class.base.init]p7: 4480 // The initialization of each base and member constitutes a 4481 // full-expression. 4482 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(), 4483 /*DiscardedValue*/ false); 4484 } 4485 4486 if (MemberInit.isInvalid()) { 4487 // Args were sensible expressions but we couldn't initialize the member 4488 // from them. Preserve them in a RecoveryExpr instead. 4489 Init = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args, 4490 Member->getType()) 4491 .get(); 4492 if (!Init) 4493 return true; 4494 } else { 4495 Init = MemberInit.get(); 4496 } 4497 } 4498 4499 if (DirectMember) { 4500 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, 4501 InitRange.getBegin(), Init, 4502 InitRange.getEnd()); 4503 } else { 4504 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, 4505 InitRange.getBegin(), Init, 4506 InitRange.getEnd()); 4507 } 4508 } 4509 4510 MemInitResult 4511 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, 4512 CXXRecordDecl *ClassDecl) { 4513 SourceLocation NameLoc = TInfo->getTypeLoc().getSourceRange().getBegin(); 4514 if (!LangOpts.CPlusPlus11) 4515 return Diag(NameLoc, diag::err_delegating_ctor) 4516 << TInfo->getTypeLoc().getSourceRange(); 4517 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); 4518 4519 bool InitList = true; 4520 MultiExprArg Args = Init; 4521 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4522 InitList = false; 4523 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4524 } 4525 4526 SourceRange InitRange = Init->getSourceRange(); 4527 // Initialize the object. 4528 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( 4529 QualType(ClassDecl->getTypeForDecl(), 0)); 4530 InitializationKind Kind = 4531 InitList ? InitializationKind::CreateDirectList( 4532 NameLoc, Init->getBeginLoc(), Init->getEndLoc()) 4533 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), 4534 InitRange.getEnd()); 4535 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); 4536 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, 4537 Args, nullptr); 4538 if (!DelegationInit.isInvalid()) { 4539 assert((DelegationInit.get()->containsErrors() || 4540 cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && 4541 "Delegating constructor with no target?"); 4542 4543 // C++11 [class.base.init]p7: 4544 // The initialization of each base and member constitutes a 4545 // full-expression. 4546 DelegationInit = ActOnFinishFullExpr( 4547 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); 4548 } 4549 4550 if (DelegationInit.isInvalid()) { 4551 DelegationInit = 4552 CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args, 4553 QualType(ClassDecl->getTypeForDecl(), 0)); 4554 if (DelegationInit.isInvalid()) 4555 return true; 4556 } else { 4557 // If we are in a dependent context, template instantiation will 4558 // perform this type-checking again. Just save the arguments that we 4559 // received in a ParenListExpr. 4560 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4561 // of the information that we have about the base 4562 // initializer. However, deconstructing the ASTs is a dicey process, 4563 // and this approach is far more likely to get the corner cases right. 4564 if (CurContext->isDependentContext()) 4565 DelegationInit = Init; 4566 } 4567 4568 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), 4569 DelegationInit.getAs<Expr>(), 4570 InitRange.getEnd()); 4571 } 4572 4573 MemInitResult 4574 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, 4575 Expr *Init, CXXRecordDecl *ClassDecl, 4576 SourceLocation EllipsisLoc) { 4577 SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getBeginLoc(); 4578 4579 if (!BaseType->isDependentType() && !BaseType->isRecordType()) 4580 return Diag(BaseLoc, diag::err_base_init_does_not_name_class) 4581 << BaseType << BaseTInfo->getTypeLoc().getSourceRange(); 4582 4583 // C++ [class.base.init]p2: 4584 // [...] Unless the mem-initializer-id names a nonstatic data 4585 // member of the constructor's class or a direct or virtual base 4586 // of that class, the mem-initializer is ill-formed. A 4587 // mem-initializer-list can initialize a base class using any 4588 // name that denotes that base class type. 4589 4590 // We can store the initializers in "as-written" form and delay analysis until 4591 // instantiation if the constructor is dependent. But not for dependent 4592 // (broken) code in a non-template! SetCtorInitializers does not expect this. 4593 bool Dependent = CurContext->isDependentContext() && 4594 (BaseType->isDependentType() || Init->isTypeDependent()); 4595 4596 SourceRange InitRange = Init->getSourceRange(); 4597 if (EllipsisLoc.isValid()) { 4598 // This is a pack expansion. 4599 if (!BaseType->containsUnexpandedParameterPack()) { 4600 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 4601 << SourceRange(BaseLoc, InitRange.getEnd()); 4602 4603 EllipsisLoc = SourceLocation(); 4604 } 4605 } else { 4606 // Check for any unexpanded parameter packs. 4607 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) 4608 return true; 4609 4610 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4611 return true; 4612 } 4613 4614 // Check for direct and virtual base classes. 4615 const CXXBaseSpecifier *DirectBaseSpec = nullptr; 4616 const CXXBaseSpecifier *VirtualBaseSpec = nullptr; 4617 if (!Dependent) { 4618 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), 4619 BaseType)) 4620 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); 4621 4622 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, 4623 VirtualBaseSpec); 4624 4625 // C++ [base.class.init]p2: 4626 // Unless the mem-initializer-id names a nonstatic data member of the 4627 // constructor's class or a direct or virtual base of that class, the 4628 // mem-initializer is ill-formed. 4629 if (!DirectBaseSpec && !VirtualBaseSpec) { 4630 // If the class has any dependent bases, then it's possible that 4631 // one of those types will resolve to the same type as 4632 // BaseType. Therefore, just treat this as a dependent base 4633 // class initialization. FIXME: Should we try to check the 4634 // initialization anyway? It seems odd. 4635 if (ClassDecl->hasAnyDependentBases()) 4636 Dependent = true; 4637 else 4638 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) 4639 << BaseType << Context.getTypeDeclType(ClassDecl) 4640 << BaseTInfo->getTypeLoc().getSourceRange(); 4641 } 4642 } 4643 4644 if (Dependent) { 4645 DiscardCleanupsInEvaluationContext(); 4646 4647 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4648 /*IsVirtual=*/false, 4649 InitRange.getBegin(), Init, 4650 InitRange.getEnd(), EllipsisLoc); 4651 } 4652 4653 // C++ [base.class.init]p2: 4654 // If a mem-initializer-id is ambiguous because it designates both 4655 // a direct non-virtual base class and an inherited virtual base 4656 // class, the mem-initializer is ill-formed. 4657 if (DirectBaseSpec && VirtualBaseSpec) 4658 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) 4659 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4660 4661 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; 4662 if (!BaseSpec) 4663 BaseSpec = VirtualBaseSpec; 4664 4665 // Initialize the base. 4666 bool InitList = true; 4667 MultiExprArg Args = Init; 4668 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4669 InitList = false; 4670 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4671 } 4672 4673 InitializedEntity BaseEntity = 4674 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); 4675 InitializationKind Kind = 4676 InitList ? InitializationKind::CreateDirectList(BaseLoc) 4677 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), 4678 InitRange.getEnd()); 4679 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); 4680 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); 4681 if (!BaseInit.isInvalid()) { 4682 // C++11 [class.base.init]p7: 4683 // The initialization of each base and member constitutes a 4684 // full-expression. 4685 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(), 4686 /*DiscardedValue*/ false); 4687 } 4688 4689 if (BaseInit.isInvalid()) { 4690 BaseInit = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), 4691 Args, BaseType); 4692 if (BaseInit.isInvalid()) 4693 return true; 4694 } else { 4695 // If we are in a dependent context, template instantiation will 4696 // perform this type-checking again. Just save the arguments that we 4697 // received in a ParenListExpr. 4698 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4699 // of the information that we have about the base 4700 // initializer. However, deconstructing the ASTs is a dicey process, 4701 // and this approach is far more likely to get the corner cases right. 4702 if (CurContext->isDependentContext()) 4703 BaseInit = Init; 4704 } 4705 4706 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4707 BaseSpec->isVirtual(), 4708 InitRange.getBegin(), 4709 BaseInit.getAs<Expr>(), 4710 InitRange.getEnd(), EllipsisLoc); 4711 } 4712 4713 // Create a static_cast\<T&&>(expr). 4714 static Expr *CastForMoving(Sema &SemaRef, Expr *E) { 4715 QualType TargetType = 4716 SemaRef.BuildReferenceType(E->getType(), /*SpelledAsLValue*/ false, 4717 SourceLocation(), DeclarationName()); 4718 SourceLocation ExprLoc = E->getBeginLoc(); 4719 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( 4720 TargetType, ExprLoc); 4721 4722 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 4723 SourceRange(ExprLoc, ExprLoc), 4724 E->getSourceRange()).get(); 4725 } 4726 4727 /// ImplicitInitializerKind - How an implicit base or member initializer should 4728 /// initialize its base or member. 4729 enum ImplicitInitializerKind { 4730 IIK_Default, 4731 IIK_Copy, 4732 IIK_Move, 4733 IIK_Inherit 4734 }; 4735 4736 static bool 4737 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4738 ImplicitInitializerKind ImplicitInitKind, 4739 CXXBaseSpecifier *BaseSpec, 4740 bool IsInheritedVirtualBase, 4741 CXXCtorInitializer *&CXXBaseInit) { 4742 InitializedEntity InitEntity 4743 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, 4744 IsInheritedVirtualBase); 4745 4746 ExprResult BaseInit; 4747 4748 switch (ImplicitInitKind) { 4749 case IIK_Inherit: 4750 case IIK_Default: { 4751 InitializationKind InitKind 4752 = InitializationKind::CreateDefault(Constructor->getLocation()); 4753 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, std::nullopt); 4754 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, std::nullopt); 4755 break; 4756 } 4757 4758 case IIK_Move: 4759 case IIK_Copy: { 4760 bool Moving = ImplicitInitKind == IIK_Move; 4761 ParmVarDecl *Param = Constructor->getParamDecl(0); 4762 QualType ParamType = Param->getType().getNonReferenceType(); 4763 4764 Expr *CopyCtorArg = 4765 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4766 SourceLocation(), Param, false, 4767 Constructor->getLocation(), ParamType, 4768 VK_LValue, nullptr); 4769 4770 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); 4771 4772 // Cast to the base class to avoid ambiguities. 4773 QualType ArgTy = 4774 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), 4775 ParamType.getQualifiers()); 4776 4777 if (Moving) { 4778 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); 4779 } 4780 4781 CXXCastPath BasePath; 4782 BasePath.push_back(BaseSpec); 4783 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, 4784 CK_UncheckedDerivedToBase, 4785 Moving ? VK_XValue : VK_LValue, 4786 &BasePath).get(); 4787 4788 InitializationKind InitKind 4789 = InitializationKind::CreateDirect(Constructor->getLocation(), 4790 SourceLocation(), SourceLocation()); 4791 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); 4792 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); 4793 break; 4794 } 4795 } 4796 4797 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); 4798 if (BaseInit.isInvalid()) 4799 return true; 4800 4801 CXXBaseInit = 4802 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4803 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), 4804 SourceLocation()), 4805 BaseSpec->isVirtual(), 4806 SourceLocation(), 4807 BaseInit.getAs<Expr>(), 4808 SourceLocation(), 4809 SourceLocation()); 4810 4811 return false; 4812 } 4813 4814 static bool RefersToRValueRef(Expr *MemRef) { 4815 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); 4816 return Referenced->getType()->isRValueReferenceType(); 4817 } 4818 4819 static bool 4820 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4821 ImplicitInitializerKind ImplicitInitKind, 4822 FieldDecl *Field, IndirectFieldDecl *Indirect, 4823 CXXCtorInitializer *&CXXMemberInit) { 4824 if (Field->isInvalidDecl()) 4825 return true; 4826 4827 SourceLocation Loc = Constructor->getLocation(); 4828 4829 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { 4830 bool Moving = ImplicitInitKind == IIK_Move; 4831 ParmVarDecl *Param = Constructor->getParamDecl(0); 4832 QualType ParamType = Param->getType().getNonReferenceType(); 4833 4834 // Suppress copying zero-width bitfields. 4835 if (Field->isZeroLengthBitField(SemaRef.Context)) 4836 return false; 4837 4838 Expr *MemberExprBase = 4839 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4840 SourceLocation(), Param, false, 4841 Loc, ParamType, VK_LValue, nullptr); 4842 4843 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); 4844 4845 if (Moving) { 4846 MemberExprBase = CastForMoving(SemaRef, MemberExprBase); 4847 } 4848 4849 // Build a reference to this field within the parameter. 4850 CXXScopeSpec SS; 4851 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, 4852 Sema::LookupMemberName); 4853 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) 4854 : cast<ValueDecl>(Field), AS_public); 4855 MemberLookup.resolveKind(); 4856 ExprResult CtorArg 4857 = SemaRef.BuildMemberReferenceExpr(MemberExprBase, 4858 ParamType, Loc, 4859 /*IsArrow=*/false, 4860 SS, 4861 /*TemplateKWLoc=*/SourceLocation(), 4862 /*FirstQualifierInScope=*/nullptr, 4863 MemberLookup, 4864 /*TemplateArgs=*/nullptr, 4865 /*S*/nullptr); 4866 if (CtorArg.isInvalid()) 4867 return true; 4868 4869 // C++11 [class.copy]p15: 4870 // - if a member m has rvalue reference type T&&, it is direct-initialized 4871 // with static_cast<T&&>(x.m); 4872 if (RefersToRValueRef(CtorArg.get())) { 4873 CtorArg = CastForMoving(SemaRef, CtorArg.get()); 4874 } 4875 4876 InitializedEntity Entity = 4877 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4878 /*Implicit*/ true) 4879 : InitializedEntity::InitializeMember(Field, nullptr, 4880 /*Implicit*/ true); 4881 4882 // Direct-initialize to use the copy constructor. 4883 InitializationKind InitKind = 4884 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); 4885 4886 Expr *CtorArgE = CtorArg.getAs<Expr>(); 4887 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); 4888 ExprResult MemberInit = 4889 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1)); 4890 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4891 if (MemberInit.isInvalid()) 4892 return true; 4893 4894 if (Indirect) 4895 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4896 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4897 else 4898 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4899 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4900 return false; 4901 } 4902 4903 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && 4904 "Unhandled implicit init kind!"); 4905 4906 QualType FieldBaseElementType = 4907 SemaRef.Context.getBaseElementType(Field->getType()); 4908 4909 if (FieldBaseElementType->isRecordType()) { 4910 InitializedEntity InitEntity = 4911 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4912 /*Implicit*/ true) 4913 : InitializedEntity::InitializeMember(Field, nullptr, 4914 /*Implicit*/ true); 4915 InitializationKind InitKind = 4916 InitializationKind::CreateDefault(Loc); 4917 4918 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, std::nullopt); 4919 ExprResult MemberInit = 4920 InitSeq.Perform(SemaRef, InitEntity, InitKind, std::nullopt); 4921 4922 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4923 if (MemberInit.isInvalid()) 4924 return true; 4925 4926 if (Indirect) 4927 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4928 Indirect, Loc, 4929 Loc, 4930 MemberInit.get(), 4931 Loc); 4932 else 4933 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4934 Field, Loc, Loc, 4935 MemberInit.get(), 4936 Loc); 4937 return false; 4938 } 4939 4940 if (!Field->getParent()->isUnion()) { 4941 if (FieldBaseElementType->isReferenceType()) { 4942 SemaRef.Diag(Constructor->getLocation(), 4943 diag::err_uninitialized_member_in_ctor) 4944 << (int)Constructor->isImplicit() 4945 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4946 << 0 << Field->getDeclName(); 4947 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4948 return true; 4949 } 4950 4951 if (FieldBaseElementType.isConstQualified()) { 4952 SemaRef.Diag(Constructor->getLocation(), 4953 diag::err_uninitialized_member_in_ctor) 4954 << (int)Constructor->isImplicit() 4955 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4956 << 1 << Field->getDeclName(); 4957 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4958 return true; 4959 } 4960 } 4961 4962 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { 4963 // ARC and Weak: 4964 // Default-initialize Objective-C pointers to NULL. 4965 CXXMemberInit 4966 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, 4967 Loc, Loc, 4968 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), 4969 Loc); 4970 return false; 4971 } 4972 4973 // Nothing to initialize. 4974 CXXMemberInit = nullptr; 4975 return false; 4976 } 4977 4978 namespace { 4979 struct BaseAndFieldInfo { 4980 Sema &S; 4981 CXXConstructorDecl *Ctor; 4982 bool AnyErrorsInInits; 4983 ImplicitInitializerKind IIK; 4984 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; 4985 SmallVector<CXXCtorInitializer*, 8> AllToInit; 4986 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; 4987 4988 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) 4989 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { 4990 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); 4991 if (Ctor->getInheritedConstructor()) 4992 IIK = IIK_Inherit; 4993 else if (Generated && Ctor->isCopyConstructor()) 4994 IIK = IIK_Copy; 4995 else if (Generated && Ctor->isMoveConstructor()) 4996 IIK = IIK_Move; 4997 else 4998 IIK = IIK_Default; 4999 } 5000 5001 bool isImplicitCopyOrMove() const { 5002 switch (IIK) { 5003 case IIK_Copy: 5004 case IIK_Move: 5005 return true; 5006 5007 case IIK_Default: 5008 case IIK_Inherit: 5009 return false; 5010 } 5011 5012 llvm_unreachable("Invalid ImplicitInitializerKind!"); 5013 } 5014 5015 bool addFieldInitializer(CXXCtorInitializer *Init) { 5016 AllToInit.push_back(Init); 5017 5018 // Check whether this initializer makes the field "used". 5019 if (Init->getInit()->HasSideEffects(S.Context)) 5020 S.UnusedPrivateFields.remove(Init->getAnyMember()); 5021 5022 return false; 5023 } 5024 5025 bool isInactiveUnionMember(FieldDecl *Field) { 5026 RecordDecl *Record = Field->getParent(); 5027 if (!Record->isUnion()) 5028 return false; 5029 5030 if (FieldDecl *Active = 5031 ActiveUnionMember.lookup(Record->getCanonicalDecl())) 5032 return Active != Field->getCanonicalDecl(); 5033 5034 // In an implicit copy or move constructor, ignore any in-class initializer. 5035 if (isImplicitCopyOrMove()) 5036 return true; 5037 5038 // If there's no explicit initialization, the field is active only if it 5039 // has an in-class initializer... 5040 if (Field->hasInClassInitializer()) 5041 return false; 5042 // ... or it's an anonymous struct or union whose class has an in-class 5043 // initializer. 5044 if (!Field->isAnonymousStructOrUnion()) 5045 return true; 5046 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); 5047 return !FieldRD->hasInClassInitializer(); 5048 } 5049 5050 /// Determine whether the given field is, or is within, a union member 5051 /// that is inactive (because there was an initializer given for a different 5052 /// member of the union, or because the union was not initialized at all). 5053 bool isWithinInactiveUnionMember(FieldDecl *Field, 5054 IndirectFieldDecl *Indirect) { 5055 if (!Indirect) 5056 return isInactiveUnionMember(Field); 5057 5058 for (auto *C : Indirect->chain()) { 5059 FieldDecl *Field = dyn_cast<FieldDecl>(C); 5060 if (Field && isInactiveUnionMember(Field)) 5061 return true; 5062 } 5063 return false; 5064 } 5065 }; 5066 } 5067 5068 /// Determine whether the given type is an incomplete or zero-lenfgth 5069 /// array type. 5070 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { 5071 if (T->isIncompleteArrayType()) 5072 return true; 5073 5074 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { 5075 if (!ArrayT->getSize()) 5076 return true; 5077 5078 T = ArrayT->getElementType(); 5079 } 5080 5081 return false; 5082 } 5083 5084 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, 5085 FieldDecl *Field, 5086 IndirectFieldDecl *Indirect = nullptr) { 5087 if (Field->isInvalidDecl()) 5088 return false; 5089 5090 // Overwhelmingly common case: we have a direct initializer for this field. 5091 if (CXXCtorInitializer *Init = 5092 Info.AllBaseFields.lookup(Field->getCanonicalDecl())) 5093 return Info.addFieldInitializer(Init); 5094 5095 // C++11 [class.base.init]p8: 5096 // if the entity is a non-static data member that has a 5097 // brace-or-equal-initializer and either 5098 // -- the constructor's class is a union and no other variant member of that 5099 // union is designated by a mem-initializer-id or 5100 // -- the constructor's class is not a union, and, if the entity is a member 5101 // of an anonymous union, no other member of that union is designated by 5102 // a mem-initializer-id, 5103 // the entity is initialized as specified in [dcl.init]. 5104 // 5105 // We also apply the same rules to handle anonymous structs within anonymous 5106 // unions. 5107 if (Info.isWithinInactiveUnionMember(Field, Indirect)) 5108 return false; 5109 5110 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { 5111 ExprResult DIE = 5112 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); 5113 if (DIE.isInvalid()) 5114 return true; 5115 5116 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true); 5117 SemaRef.checkInitializerLifetime(Entity, DIE.get()); 5118 5119 CXXCtorInitializer *Init; 5120 if (Indirect) 5121 Init = new (SemaRef.Context) 5122 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), 5123 SourceLocation(), DIE.get(), SourceLocation()); 5124 else 5125 Init = new (SemaRef.Context) 5126 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), 5127 SourceLocation(), DIE.get(), SourceLocation()); 5128 return Info.addFieldInitializer(Init); 5129 } 5130 5131 // Don't initialize incomplete or zero-length arrays. 5132 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) 5133 return false; 5134 5135 // Don't try to build an implicit initializer if there were semantic 5136 // errors in any of the initializers (and therefore we might be 5137 // missing some that the user actually wrote). 5138 if (Info.AnyErrorsInInits) 5139 return false; 5140 5141 CXXCtorInitializer *Init = nullptr; 5142 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, 5143 Indirect, Init)) 5144 return true; 5145 5146 if (!Init) 5147 return false; 5148 5149 return Info.addFieldInitializer(Init); 5150 } 5151 5152 bool 5153 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, 5154 CXXCtorInitializer *Initializer) { 5155 assert(Initializer->isDelegatingInitializer()); 5156 Constructor->setNumCtorInitializers(1); 5157 CXXCtorInitializer **initializer = 5158 new (Context) CXXCtorInitializer*[1]; 5159 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); 5160 Constructor->setCtorInitializers(initializer); 5161 5162 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { 5163 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); 5164 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); 5165 } 5166 5167 DelegatingCtorDecls.push_back(Constructor); 5168 5169 DiagnoseUninitializedFields(*this, Constructor); 5170 5171 return false; 5172 } 5173 5174 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, 5175 ArrayRef<CXXCtorInitializer *> Initializers) { 5176 if (Constructor->isDependentContext()) { 5177 // Just store the initializers as written, they will be checked during 5178 // instantiation. 5179 if (!Initializers.empty()) { 5180 Constructor->setNumCtorInitializers(Initializers.size()); 5181 CXXCtorInitializer **baseOrMemberInitializers = 5182 new (Context) CXXCtorInitializer*[Initializers.size()]; 5183 memcpy(baseOrMemberInitializers, Initializers.data(), 5184 Initializers.size() * sizeof(CXXCtorInitializer*)); 5185 Constructor->setCtorInitializers(baseOrMemberInitializers); 5186 } 5187 5188 // Let template instantiation know whether we had errors. 5189 if (AnyErrors) 5190 Constructor->setInvalidDecl(); 5191 5192 return false; 5193 } 5194 5195 BaseAndFieldInfo Info(*this, Constructor, AnyErrors); 5196 5197 // We need to build the initializer AST according to order of construction 5198 // and not what user specified in the Initializers list. 5199 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); 5200 if (!ClassDecl) 5201 return true; 5202 5203 bool HadError = false; 5204 5205 for (unsigned i = 0; i < Initializers.size(); i++) { 5206 CXXCtorInitializer *Member = Initializers[i]; 5207 5208 if (Member->isBaseInitializer()) 5209 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; 5210 else { 5211 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; 5212 5213 if (IndirectFieldDecl *F = Member->getIndirectMember()) { 5214 for (auto *C : F->chain()) { 5215 FieldDecl *FD = dyn_cast<FieldDecl>(C); 5216 if (FD && FD->getParent()->isUnion()) 5217 Info.ActiveUnionMember.insert(std::make_pair( 5218 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5219 } 5220 } else if (FieldDecl *FD = Member->getMember()) { 5221 if (FD->getParent()->isUnion()) 5222 Info.ActiveUnionMember.insert(std::make_pair( 5223 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5224 } 5225 } 5226 } 5227 5228 // Keep track of the direct virtual bases. 5229 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; 5230 for (auto &I : ClassDecl->bases()) { 5231 if (I.isVirtual()) 5232 DirectVBases.insert(&I); 5233 } 5234 5235 // Push virtual bases before others. 5236 for (auto &VBase : ClassDecl->vbases()) { 5237 if (CXXCtorInitializer *Value 5238 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { 5239 // [class.base.init]p7, per DR257: 5240 // A mem-initializer where the mem-initializer-id names a virtual base 5241 // class is ignored during execution of a constructor of any class that 5242 // is not the most derived class. 5243 if (ClassDecl->isAbstract()) { 5244 // FIXME: Provide a fixit to remove the base specifier. This requires 5245 // tracking the location of the associated comma for a base specifier. 5246 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) 5247 << VBase.getType() << ClassDecl; 5248 DiagnoseAbstractType(ClassDecl); 5249 } 5250 5251 Info.AllToInit.push_back(Value); 5252 } else if (!AnyErrors && !ClassDecl->isAbstract()) { 5253 // [class.base.init]p8, per DR257: 5254 // If a given [...] base class is not named by a mem-initializer-id 5255 // [...] and the entity is not a virtual base class of an abstract 5256 // class, then [...] the entity is default-initialized. 5257 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); 5258 CXXCtorInitializer *CXXBaseInit; 5259 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5260 &VBase, IsInheritedVirtualBase, 5261 CXXBaseInit)) { 5262 HadError = true; 5263 continue; 5264 } 5265 5266 Info.AllToInit.push_back(CXXBaseInit); 5267 } 5268 } 5269 5270 // Non-virtual bases. 5271 for (auto &Base : ClassDecl->bases()) { 5272 // Virtuals are in the virtual base list and already constructed. 5273 if (Base.isVirtual()) 5274 continue; 5275 5276 if (CXXCtorInitializer *Value 5277 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { 5278 Info.AllToInit.push_back(Value); 5279 } else if (!AnyErrors) { 5280 CXXCtorInitializer *CXXBaseInit; 5281 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5282 &Base, /*IsInheritedVirtualBase=*/false, 5283 CXXBaseInit)) { 5284 HadError = true; 5285 continue; 5286 } 5287 5288 Info.AllToInit.push_back(CXXBaseInit); 5289 } 5290 } 5291 5292 // Fields. 5293 for (auto *Mem : ClassDecl->decls()) { 5294 if (auto *F = dyn_cast<FieldDecl>(Mem)) { 5295 // C++ [class.bit]p2: 5296 // A declaration for a bit-field that omits the identifier declares an 5297 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 5298 // initialized. 5299 if (F->isUnnamedBitfield()) 5300 continue; 5301 5302 // If we're not generating the implicit copy/move constructor, then we'll 5303 // handle anonymous struct/union fields based on their individual 5304 // indirect fields. 5305 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) 5306 continue; 5307 5308 if (CollectFieldInitializer(*this, Info, F)) 5309 HadError = true; 5310 continue; 5311 } 5312 5313 // Beyond this point, we only consider default initialization. 5314 if (Info.isImplicitCopyOrMove()) 5315 continue; 5316 5317 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { 5318 if (F->getType()->isIncompleteArrayType()) { 5319 assert(ClassDecl->hasFlexibleArrayMember() && 5320 "Incomplete array type is not valid"); 5321 continue; 5322 } 5323 5324 // Initialize each field of an anonymous struct individually. 5325 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) 5326 HadError = true; 5327 5328 continue; 5329 } 5330 } 5331 5332 unsigned NumInitializers = Info.AllToInit.size(); 5333 if (NumInitializers > 0) { 5334 Constructor->setNumCtorInitializers(NumInitializers); 5335 CXXCtorInitializer **baseOrMemberInitializers = 5336 new (Context) CXXCtorInitializer*[NumInitializers]; 5337 memcpy(baseOrMemberInitializers, Info.AllToInit.data(), 5338 NumInitializers * sizeof(CXXCtorInitializer*)); 5339 Constructor->setCtorInitializers(baseOrMemberInitializers); 5340 5341 // Constructors implicitly reference the base and member 5342 // destructors. 5343 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), 5344 Constructor->getParent()); 5345 } 5346 5347 return HadError; 5348 } 5349 5350 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { 5351 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { 5352 const RecordDecl *RD = RT->getDecl(); 5353 if (RD->isAnonymousStructOrUnion()) { 5354 for (auto *Field : RD->fields()) 5355 PopulateKeysForFields(Field, IdealInits); 5356 return; 5357 } 5358 } 5359 IdealInits.push_back(Field->getCanonicalDecl()); 5360 } 5361 5362 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { 5363 return Context.getCanonicalType(BaseType).getTypePtr(); 5364 } 5365 5366 static const void *GetKeyForMember(ASTContext &Context, 5367 CXXCtorInitializer *Member) { 5368 if (!Member->isAnyMemberInitializer()) 5369 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); 5370 5371 return Member->getAnyMember()->getCanonicalDecl(); 5372 } 5373 5374 static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag, 5375 const CXXCtorInitializer *Previous, 5376 const CXXCtorInitializer *Current) { 5377 if (Previous->isAnyMemberInitializer()) 5378 Diag << 0 << Previous->getAnyMember(); 5379 else 5380 Diag << 1 << Previous->getTypeSourceInfo()->getType(); 5381 5382 if (Current->isAnyMemberInitializer()) 5383 Diag << 0 << Current->getAnyMember(); 5384 else 5385 Diag << 1 << Current->getTypeSourceInfo()->getType(); 5386 } 5387 5388 static void DiagnoseBaseOrMemInitializerOrder( 5389 Sema &SemaRef, const CXXConstructorDecl *Constructor, 5390 ArrayRef<CXXCtorInitializer *> Inits) { 5391 if (Constructor->getDeclContext()->isDependentContext()) 5392 return; 5393 5394 // Don't check initializers order unless the warning is enabled at the 5395 // location of at least one initializer. 5396 bool ShouldCheckOrder = false; 5397 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5398 CXXCtorInitializer *Init = Inits[InitIndex]; 5399 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, 5400 Init->getSourceLocation())) { 5401 ShouldCheckOrder = true; 5402 break; 5403 } 5404 } 5405 if (!ShouldCheckOrder) 5406 return; 5407 5408 // Build the list of bases and members in the order that they'll 5409 // actually be initialized. The explicit initializers should be in 5410 // this same order but may be missing things. 5411 SmallVector<const void*, 32> IdealInitKeys; 5412 5413 const CXXRecordDecl *ClassDecl = Constructor->getParent(); 5414 5415 // 1. Virtual bases. 5416 for (const auto &VBase : ClassDecl->vbases()) 5417 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); 5418 5419 // 2. Non-virtual bases. 5420 for (const auto &Base : ClassDecl->bases()) { 5421 if (Base.isVirtual()) 5422 continue; 5423 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); 5424 } 5425 5426 // 3. Direct fields. 5427 for (auto *Field : ClassDecl->fields()) { 5428 if (Field->isUnnamedBitfield()) 5429 continue; 5430 5431 PopulateKeysForFields(Field, IdealInitKeys); 5432 } 5433 5434 unsigned NumIdealInits = IdealInitKeys.size(); 5435 unsigned IdealIndex = 0; 5436 5437 // Track initializers that are in an incorrect order for either a warning or 5438 // note if multiple ones occur. 5439 SmallVector<unsigned> WarnIndexes; 5440 // Correlates the index of an initializer in the init-list to the index of 5441 // the field/base in the class. 5442 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder; 5443 5444 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5445 const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]); 5446 5447 // Scan forward to try to find this initializer in the idealized 5448 // initializers list. 5449 for (; IdealIndex != NumIdealInits; ++IdealIndex) 5450 if (InitKey == IdealInitKeys[IdealIndex]) 5451 break; 5452 5453 // If we didn't find this initializer, it must be because we 5454 // scanned past it on a previous iteration. That can only 5455 // happen if we're out of order; emit a warning. 5456 if (IdealIndex == NumIdealInits && InitIndex) { 5457 WarnIndexes.push_back(InitIndex); 5458 5459 // Move back to the initializer's location in the ideal list. 5460 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) 5461 if (InitKey == IdealInitKeys[IdealIndex]) 5462 break; 5463 5464 assert(IdealIndex < NumIdealInits && 5465 "initializer not found in initializer list"); 5466 } 5467 CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex); 5468 } 5469 5470 if (WarnIndexes.empty()) 5471 return; 5472 5473 // Sort based on the ideal order, first in the pair. 5474 llvm::sort(CorrelatedInitOrder, llvm::less_first()); 5475 5476 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to 5477 // emit the diagnostic before we can try adding notes. 5478 { 5479 Sema::SemaDiagnosticBuilder D = SemaRef.Diag( 5480 Inits[WarnIndexes.front() - 1]->getSourceLocation(), 5481 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order 5482 : diag::warn_some_initializers_out_of_order); 5483 5484 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) { 5485 if (CorrelatedInitOrder[I].second == I) 5486 continue; 5487 // Ideally we would be using InsertFromRange here, but clang doesn't 5488 // appear to handle InsertFromRange correctly when the source range is 5489 // modified by another fix-it. 5490 D << FixItHint::CreateReplacement( 5491 Inits[I]->getSourceRange(), 5492 Lexer::getSourceText( 5493 CharSourceRange::getTokenRange( 5494 Inits[CorrelatedInitOrder[I].second]->getSourceRange()), 5495 SemaRef.getSourceManager(), SemaRef.getLangOpts())); 5496 } 5497 5498 // If there is only 1 item out of order, the warning expects the name and 5499 // type of each being added to it. 5500 if (WarnIndexes.size() == 1) { 5501 AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1], 5502 Inits[WarnIndexes.front()]); 5503 return; 5504 } 5505 } 5506 // More than 1 item to warn, create notes letting the user know which ones 5507 // are bad. 5508 for (unsigned WarnIndex : WarnIndexes) { 5509 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1]; 5510 auto D = SemaRef.Diag(PrevInit->getSourceLocation(), 5511 diag::note_initializer_out_of_order); 5512 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]); 5513 D << PrevInit->getSourceRange(); 5514 } 5515 } 5516 5517 namespace { 5518 bool CheckRedundantInit(Sema &S, 5519 CXXCtorInitializer *Init, 5520 CXXCtorInitializer *&PrevInit) { 5521 if (!PrevInit) { 5522 PrevInit = Init; 5523 return false; 5524 } 5525 5526 if (FieldDecl *Field = Init->getAnyMember()) 5527 S.Diag(Init->getSourceLocation(), 5528 diag::err_multiple_mem_initialization) 5529 << Field->getDeclName() 5530 << Init->getSourceRange(); 5531 else { 5532 const Type *BaseClass = Init->getBaseClass(); 5533 assert(BaseClass && "neither field nor base"); 5534 S.Diag(Init->getSourceLocation(), 5535 diag::err_multiple_base_initialization) 5536 << QualType(BaseClass, 0) 5537 << Init->getSourceRange(); 5538 } 5539 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) 5540 << 0 << PrevInit->getSourceRange(); 5541 5542 return true; 5543 } 5544 5545 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; 5546 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; 5547 5548 bool CheckRedundantUnionInit(Sema &S, 5549 CXXCtorInitializer *Init, 5550 RedundantUnionMap &Unions) { 5551 FieldDecl *Field = Init->getAnyMember(); 5552 RecordDecl *Parent = Field->getParent(); 5553 NamedDecl *Child = Field; 5554 5555 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { 5556 if (Parent->isUnion()) { 5557 UnionEntry &En = Unions[Parent]; 5558 if (En.first && En.first != Child) { 5559 S.Diag(Init->getSourceLocation(), 5560 diag::err_multiple_mem_union_initialization) 5561 << Field->getDeclName() 5562 << Init->getSourceRange(); 5563 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) 5564 << 0 << En.second->getSourceRange(); 5565 return true; 5566 } 5567 if (!En.first) { 5568 En.first = Child; 5569 En.second = Init; 5570 } 5571 if (!Parent->isAnonymousStructOrUnion()) 5572 return false; 5573 } 5574 5575 Child = Parent; 5576 Parent = cast<RecordDecl>(Parent->getDeclContext()); 5577 } 5578 5579 return false; 5580 } 5581 } // namespace 5582 5583 /// ActOnMemInitializers - Handle the member initializers for a constructor. 5584 void Sema::ActOnMemInitializers(Decl *ConstructorDecl, 5585 SourceLocation ColonLoc, 5586 ArrayRef<CXXCtorInitializer*> MemInits, 5587 bool AnyErrors) { 5588 if (!ConstructorDecl) 5589 return; 5590 5591 AdjustDeclIfTemplate(ConstructorDecl); 5592 5593 CXXConstructorDecl *Constructor 5594 = dyn_cast<CXXConstructorDecl>(ConstructorDecl); 5595 5596 if (!Constructor) { 5597 Diag(ColonLoc, diag::err_only_constructors_take_base_inits); 5598 return; 5599 } 5600 5601 // Mapping for the duplicate initializers check. 5602 // For member initializers, this is keyed with a FieldDecl*. 5603 // For base initializers, this is keyed with a Type*. 5604 llvm::DenseMap<const void *, CXXCtorInitializer *> Members; 5605 5606 // Mapping for the inconsistent anonymous-union initializers check. 5607 RedundantUnionMap MemberUnions; 5608 5609 bool HadError = false; 5610 for (unsigned i = 0; i < MemInits.size(); i++) { 5611 CXXCtorInitializer *Init = MemInits[i]; 5612 5613 // Set the source order index. 5614 Init->setSourceOrder(i); 5615 5616 if (Init->isAnyMemberInitializer()) { 5617 const void *Key = GetKeyForMember(Context, Init); 5618 if (CheckRedundantInit(*this, Init, Members[Key]) || 5619 CheckRedundantUnionInit(*this, Init, MemberUnions)) 5620 HadError = true; 5621 } else if (Init->isBaseInitializer()) { 5622 const void *Key = GetKeyForMember(Context, Init); 5623 if (CheckRedundantInit(*this, Init, Members[Key])) 5624 HadError = true; 5625 } else { 5626 assert(Init->isDelegatingInitializer()); 5627 // This must be the only initializer 5628 if (MemInits.size() != 1) { 5629 Diag(Init->getSourceLocation(), 5630 diag::err_delegating_initializer_alone) 5631 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); 5632 // We will treat this as being the only initializer. 5633 } 5634 SetDelegatingInitializer(Constructor, MemInits[i]); 5635 // Return immediately as the initializer is set. 5636 return; 5637 } 5638 } 5639 5640 if (HadError) 5641 return; 5642 5643 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); 5644 5645 SetCtorInitializers(Constructor, AnyErrors, MemInits); 5646 5647 DiagnoseUninitializedFields(*this, Constructor); 5648 } 5649 5650 void 5651 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, 5652 CXXRecordDecl *ClassDecl) { 5653 // Ignore dependent contexts. Also ignore unions, since their members never 5654 // have destructors implicitly called. 5655 if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) 5656 return; 5657 5658 // FIXME: all the access-control diagnostics are positioned on the 5659 // field/base declaration. That's probably good; that said, the 5660 // user might reasonably want to know why the destructor is being 5661 // emitted, and we currently don't say. 5662 5663 // Non-static data members. 5664 for (auto *Field : ClassDecl->fields()) { 5665 if (Field->isInvalidDecl()) 5666 continue; 5667 5668 // Don't destroy incomplete or zero-length arrays. 5669 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) 5670 continue; 5671 5672 QualType FieldType = Context.getBaseElementType(Field->getType()); 5673 5674 const RecordType* RT = FieldType->getAs<RecordType>(); 5675 if (!RT) 5676 continue; 5677 5678 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5679 if (FieldClassDecl->isInvalidDecl()) 5680 continue; 5681 if (FieldClassDecl->hasIrrelevantDestructor()) 5682 continue; 5683 // The destructor for an implicit anonymous union member is never invoked. 5684 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 5685 continue; 5686 5687 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); 5688 // Dtor might still be missing, e.g because it's invalid. 5689 if (!Dtor) 5690 continue; 5691 CheckDestructorAccess(Field->getLocation(), Dtor, 5692 PDiag(diag::err_access_dtor_field) 5693 << Field->getDeclName() 5694 << FieldType); 5695 5696 MarkFunctionReferenced(Location, Dtor); 5697 DiagnoseUseOfDecl(Dtor, Location); 5698 } 5699 5700 // We only potentially invoke the destructors of potentially constructed 5701 // subobjects. 5702 bool VisitVirtualBases = !ClassDecl->isAbstract(); 5703 5704 // If the destructor exists and has already been marked used in the MS ABI, 5705 // then virtual base destructors have already been checked and marked used. 5706 // Skip checking them again to avoid duplicate diagnostics. 5707 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5708 CXXDestructorDecl *Dtor = ClassDecl->getDestructor(); 5709 if (Dtor && Dtor->isUsed()) 5710 VisitVirtualBases = false; 5711 } 5712 5713 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; 5714 5715 // Bases. 5716 for (const auto &Base : ClassDecl->bases()) { 5717 const RecordType *RT = Base.getType()->getAs<RecordType>(); 5718 if (!RT) 5719 continue; 5720 5721 // Remember direct virtual bases. 5722 if (Base.isVirtual()) { 5723 if (!VisitVirtualBases) 5724 continue; 5725 DirectVirtualBases.insert(RT); 5726 } 5727 5728 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5729 // If our base class is invalid, we probably can't get its dtor anyway. 5730 if (BaseClassDecl->isInvalidDecl()) 5731 continue; 5732 if (BaseClassDecl->hasIrrelevantDestructor()) 5733 continue; 5734 5735 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5736 // Dtor might still be missing, e.g because it's invalid. 5737 if (!Dtor) 5738 continue; 5739 5740 // FIXME: caret should be on the start of the class name 5741 CheckDestructorAccess(Base.getBeginLoc(), Dtor, 5742 PDiag(diag::err_access_dtor_base) 5743 << Base.getType() << Base.getSourceRange(), 5744 Context.getTypeDeclType(ClassDecl)); 5745 5746 MarkFunctionReferenced(Location, Dtor); 5747 DiagnoseUseOfDecl(Dtor, Location); 5748 } 5749 5750 if (VisitVirtualBases) 5751 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl, 5752 &DirectVirtualBases); 5753 } 5754 5755 void Sema::MarkVirtualBaseDestructorsReferenced( 5756 SourceLocation Location, CXXRecordDecl *ClassDecl, 5757 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) { 5758 // Virtual bases. 5759 for (const auto &VBase : ClassDecl->vbases()) { 5760 // Bases are always records in a well-formed non-dependent class. 5761 const RecordType *RT = VBase.getType()->castAs<RecordType>(); 5762 5763 // Ignore already visited direct virtual bases. 5764 if (DirectVirtualBases && DirectVirtualBases->count(RT)) 5765 continue; 5766 5767 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5768 // If our base class is invalid, we probably can't get its dtor anyway. 5769 if (BaseClassDecl->isInvalidDecl()) 5770 continue; 5771 if (BaseClassDecl->hasIrrelevantDestructor()) 5772 continue; 5773 5774 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5775 // Dtor might still be missing, e.g because it's invalid. 5776 if (!Dtor) 5777 continue; 5778 if (CheckDestructorAccess( 5779 ClassDecl->getLocation(), Dtor, 5780 PDiag(diag::err_access_dtor_vbase) 5781 << Context.getTypeDeclType(ClassDecl) << VBase.getType(), 5782 Context.getTypeDeclType(ClassDecl)) == 5783 AR_accessible) { 5784 CheckDerivedToBaseConversion( 5785 Context.getTypeDeclType(ClassDecl), VBase.getType(), 5786 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), 5787 SourceRange(), DeclarationName(), nullptr); 5788 } 5789 5790 MarkFunctionReferenced(Location, Dtor); 5791 DiagnoseUseOfDecl(Dtor, Location); 5792 } 5793 } 5794 5795 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { 5796 if (!CDtorDecl) 5797 return; 5798 5799 if (CXXConstructorDecl *Constructor 5800 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) { 5801 SetCtorInitializers(Constructor, /*AnyErrors=*/false); 5802 DiagnoseUninitializedFields(*this, Constructor); 5803 } 5804 } 5805 5806 bool Sema::isAbstractType(SourceLocation Loc, QualType T) { 5807 if (!getLangOpts().CPlusPlus) 5808 return false; 5809 5810 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); 5811 if (!RD) 5812 return false; 5813 5814 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a 5815 // class template specialization here, but doing so breaks a lot of code. 5816 5817 // We can't answer whether something is abstract until it has a 5818 // definition. If it's currently being defined, we'll walk back 5819 // over all the declarations when we have a full definition. 5820 const CXXRecordDecl *Def = RD->getDefinition(); 5821 if (!Def || Def->isBeingDefined()) 5822 return false; 5823 5824 return RD->isAbstract(); 5825 } 5826 5827 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 5828 TypeDiagnoser &Diagnoser) { 5829 if (!isAbstractType(Loc, T)) 5830 return false; 5831 5832 T = Context.getBaseElementType(T); 5833 Diagnoser.diagnose(*this, Loc, T); 5834 DiagnoseAbstractType(T->getAsCXXRecordDecl()); 5835 return true; 5836 } 5837 5838 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { 5839 // Check if we've already emitted the list of pure virtual functions 5840 // for this class. 5841 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) 5842 return; 5843 5844 // If the diagnostic is suppressed, don't emit the notes. We're only 5845 // going to emit them once, so try to attach them to a diagnostic we're 5846 // actually going to show. 5847 if (Diags.isLastDiagnosticIgnored()) 5848 return; 5849 5850 CXXFinalOverriderMap FinalOverriders; 5851 RD->getFinalOverriders(FinalOverriders); 5852 5853 // Keep a set of seen pure methods so we won't diagnose the same method 5854 // more than once. 5855 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; 5856 5857 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 5858 MEnd = FinalOverriders.end(); 5859 M != MEnd; 5860 ++M) { 5861 for (OverridingMethods::iterator SO = M->second.begin(), 5862 SOEnd = M->second.end(); 5863 SO != SOEnd; ++SO) { 5864 // C++ [class.abstract]p4: 5865 // A class is abstract if it contains or inherits at least one 5866 // pure virtual function for which the final overrider is pure 5867 // virtual. 5868 5869 // 5870 if (SO->second.size() != 1) 5871 continue; 5872 5873 if (!SO->second.front().Method->isPure()) 5874 continue; 5875 5876 if (!SeenPureMethods.insert(SO->second.front().Method).second) 5877 continue; 5878 5879 Diag(SO->second.front().Method->getLocation(), 5880 diag::note_pure_virtual_function) 5881 << SO->second.front().Method->getDeclName() << RD->getDeclName(); 5882 } 5883 } 5884 5885 if (!PureVirtualClassDiagSet) 5886 PureVirtualClassDiagSet.reset(new RecordDeclSetTy); 5887 PureVirtualClassDiagSet->insert(RD); 5888 } 5889 5890 namespace { 5891 struct AbstractUsageInfo { 5892 Sema &S; 5893 CXXRecordDecl *Record; 5894 CanQualType AbstractType; 5895 bool Invalid; 5896 5897 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) 5898 : S(S), Record(Record), 5899 AbstractType(S.Context.getCanonicalType( 5900 S.Context.getTypeDeclType(Record))), 5901 Invalid(false) {} 5902 5903 void DiagnoseAbstractType() { 5904 if (Invalid) return; 5905 S.DiagnoseAbstractType(Record); 5906 Invalid = true; 5907 } 5908 5909 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); 5910 }; 5911 5912 struct CheckAbstractUsage { 5913 AbstractUsageInfo &Info; 5914 const NamedDecl *Ctx; 5915 5916 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) 5917 : Info(Info), Ctx(Ctx) {} 5918 5919 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5920 switch (TL.getTypeLocClass()) { 5921 #define ABSTRACT_TYPELOC(CLASS, PARENT) 5922 #define TYPELOC(CLASS, PARENT) \ 5923 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; 5924 #include "clang/AST/TypeLocNodes.def" 5925 } 5926 } 5927 5928 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5929 Visit(TL.getReturnLoc(), Sema::AbstractReturnType); 5930 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { 5931 if (!TL.getParam(I)) 5932 continue; 5933 5934 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); 5935 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); 5936 } 5937 } 5938 5939 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5940 Visit(TL.getElementLoc(), Sema::AbstractArrayType); 5941 } 5942 5943 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5944 // Visit the type parameters from a permissive context. 5945 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { 5946 TemplateArgumentLoc TAL = TL.getArgLoc(I); 5947 if (TAL.getArgument().getKind() == TemplateArgument::Type) 5948 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) 5949 Visit(TSI->getTypeLoc(), Sema::AbstractNone); 5950 // TODO: other template argument types? 5951 } 5952 } 5953 5954 // Visit pointee types from a permissive context. 5955 #define CheckPolymorphic(Type) \ 5956 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ 5957 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ 5958 } 5959 CheckPolymorphic(PointerTypeLoc) 5960 CheckPolymorphic(ReferenceTypeLoc) 5961 CheckPolymorphic(MemberPointerTypeLoc) 5962 CheckPolymorphic(BlockPointerTypeLoc) 5963 CheckPolymorphic(AtomicTypeLoc) 5964 5965 /// Handle all the types we haven't given a more specific 5966 /// implementation for above. 5967 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5968 // Every other kind of type that we haven't called out already 5969 // that has an inner type is either (1) sugar or (2) contains that 5970 // inner type in some way as a subobject. 5971 if (TypeLoc Next = TL.getNextTypeLoc()) 5972 return Visit(Next, Sel); 5973 5974 // If there's no inner type and we're in a permissive context, 5975 // don't diagnose. 5976 if (Sel == Sema::AbstractNone) return; 5977 5978 // Check whether the type matches the abstract type. 5979 QualType T = TL.getType(); 5980 if (T->isArrayType()) { 5981 Sel = Sema::AbstractArrayType; 5982 T = Info.S.Context.getBaseElementType(T); 5983 } 5984 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); 5985 if (CT != Info.AbstractType) return; 5986 5987 // It matched; do some magic. 5988 // FIXME: These should be at most warnings. See P0929R2, CWG1640, CWG1646. 5989 if (Sel == Sema::AbstractArrayType) { 5990 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) 5991 << T << TL.getSourceRange(); 5992 } else { 5993 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) 5994 << Sel << T << TL.getSourceRange(); 5995 } 5996 Info.DiagnoseAbstractType(); 5997 } 5998 }; 5999 6000 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, 6001 Sema::AbstractDiagSelID Sel) { 6002 CheckAbstractUsage(*this, D).Visit(TL, Sel); 6003 } 6004 6005 } 6006 6007 /// Check for invalid uses of an abstract type in a function declaration. 6008 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 6009 FunctionDecl *FD) { 6010 // No need to do the check on definitions, which require that 6011 // the return/param types be complete. 6012 if (FD->doesThisDeclarationHaveABody()) 6013 return; 6014 6015 // For safety's sake, just ignore it if we don't have type source 6016 // information. This should never happen for non-implicit methods, 6017 // but... 6018 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 6019 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractNone); 6020 } 6021 6022 /// Check for invalid uses of an abstract type in a variable0 declaration. 6023 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 6024 VarDecl *VD) { 6025 // No need to do the check on definitions, which require that 6026 // the type is complete. 6027 if (VD->isThisDeclarationADefinition()) 6028 return; 6029 6030 Info.CheckType(VD, VD->getTypeSourceInfo()->getTypeLoc(), 6031 Sema::AbstractVariableType); 6032 } 6033 6034 /// Check for invalid uses of an abstract type within a class definition. 6035 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 6036 CXXRecordDecl *RD) { 6037 for (auto *D : RD->decls()) { 6038 if (D->isImplicit()) continue; 6039 6040 // Step through friends to the befriended declaration. 6041 if (auto *FD = dyn_cast<FriendDecl>(D)) { 6042 D = FD->getFriendDecl(); 6043 if (!D) continue; 6044 } 6045 6046 // Functions and function templates. 6047 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 6048 CheckAbstractClassUsage(Info, FD); 6049 } else if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D)) { 6050 CheckAbstractClassUsage(Info, FTD->getTemplatedDecl()); 6051 6052 // Fields and static variables. 6053 } else if (auto *FD = dyn_cast<FieldDecl>(D)) { 6054 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 6055 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); 6056 } else if (auto *VD = dyn_cast<VarDecl>(D)) { 6057 CheckAbstractClassUsage(Info, VD); 6058 } else if (auto *VTD = dyn_cast<VarTemplateDecl>(D)) { 6059 CheckAbstractClassUsage(Info, VTD->getTemplatedDecl()); 6060 6061 // Nested classes and class templates. 6062 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 6063 CheckAbstractClassUsage(Info, RD); 6064 } else if (auto *CTD = dyn_cast<ClassTemplateDecl>(D)) { 6065 CheckAbstractClassUsage(Info, CTD->getTemplatedDecl()); 6066 } 6067 } 6068 } 6069 6070 static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { 6071 Attr *ClassAttr = getDLLAttr(Class); 6072 if (!ClassAttr) 6073 return; 6074 6075 assert(ClassAttr->getKind() == attr::DLLExport); 6076 6077 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 6078 6079 if (TSK == TSK_ExplicitInstantiationDeclaration) 6080 // Don't go any further if this is just an explicit instantiation 6081 // declaration. 6082 return; 6083 6084 // Add a context note to explain how we got to any diagnostics produced below. 6085 struct MarkingClassDllexported { 6086 Sema &S; 6087 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class, 6088 SourceLocation AttrLoc) 6089 : S(S) { 6090 Sema::CodeSynthesisContext Ctx; 6091 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported; 6092 Ctx.PointOfInstantiation = AttrLoc; 6093 Ctx.Entity = Class; 6094 S.pushCodeSynthesisContext(Ctx); 6095 } 6096 ~MarkingClassDllexported() { 6097 S.popCodeSynthesisContext(); 6098 } 6099 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation()); 6100 6101 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) 6102 S.MarkVTableUsed(Class->getLocation(), Class, true); 6103 6104 for (Decl *Member : Class->decls()) { 6105 // Skip members that were not marked exported. 6106 if (!Member->hasAttr<DLLExportAttr>()) 6107 continue; 6108 6109 // Defined static variables that are members of an exported base 6110 // class must be marked export too. 6111 auto *VD = dyn_cast<VarDecl>(Member); 6112 if (VD && VD->getStorageClass() == SC_Static && 6113 TSK == TSK_ImplicitInstantiation) 6114 S.MarkVariableReferenced(VD->getLocation(), VD); 6115 6116 auto *MD = dyn_cast<CXXMethodDecl>(Member); 6117 if (!MD) 6118 continue; 6119 6120 if (MD->isUserProvided()) { 6121 // Instantiate non-default class member functions ... 6122 6123 // .. except for certain kinds of template specializations. 6124 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) 6125 continue; 6126 6127 // If this is an MS ABI dllexport default constructor, instantiate any 6128 // default arguments. 6129 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 6130 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6131 if (CD && CD->isDefaultConstructor() && TSK == TSK_Undeclared) { 6132 S.InstantiateDefaultCtorDefaultArgs(CD); 6133 } 6134 } 6135 6136 S.MarkFunctionReferenced(Class->getLocation(), MD); 6137 6138 // The function will be passed to the consumer when its definition is 6139 // encountered. 6140 } else if (MD->isExplicitlyDefaulted()) { 6141 // Synthesize and instantiate explicitly defaulted methods. 6142 S.MarkFunctionReferenced(Class->getLocation(), MD); 6143 6144 if (TSK != TSK_ExplicitInstantiationDefinition) { 6145 // Except for explicit instantiation defs, we will not see the 6146 // definition again later, so pass it to the consumer now. 6147 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 6148 } 6149 } else if (!MD->isTrivial() || 6150 MD->isCopyAssignmentOperator() || 6151 MD->isMoveAssignmentOperator()) { 6152 // Synthesize and instantiate non-trivial implicit methods, and the copy 6153 // and move assignment operators. The latter are exported even if they 6154 // are trivial, because the address of an operator can be taken and 6155 // should compare equal across libraries. 6156 S.MarkFunctionReferenced(Class->getLocation(), MD); 6157 6158 // There is no later point when we will see the definition of this 6159 // function, so pass it to the consumer now. 6160 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 6161 } 6162 } 6163 } 6164 6165 static void checkForMultipleExportedDefaultConstructors(Sema &S, 6166 CXXRecordDecl *Class) { 6167 // Only the MS ABI has default constructor closures, so we don't need to do 6168 // this semantic checking anywhere else. 6169 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) 6170 return; 6171 6172 CXXConstructorDecl *LastExportedDefaultCtor = nullptr; 6173 for (Decl *Member : Class->decls()) { 6174 // Look for exported default constructors. 6175 auto *CD = dyn_cast<CXXConstructorDecl>(Member); 6176 if (!CD || !CD->isDefaultConstructor()) 6177 continue; 6178 auto *Attr = CD->getAttr<DLLExportAttr>(); 6179 if (!Attr) 6180 continue; 6181 6182 // If the class is non-dependent, mark the default arguments as ODR-used so 6183 // that we can properly codegen the constructor closure. 6184 if (!Class->isDependentContext()) { 6185 for (ParmVarDecl *PD : CD->parameters()) { 6186 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); 6187 S.DiscardCleanupsInEvaluationContext(); 6188 } 6189 } 6190 6191 if (LastExportedDefaultCtor) { 6192 S.Diag(LastExportedDefaultCtor->getLocation(), 6193 diag::err_attribute_dll_ambiguous_default_ctor) 6194 << Class; 6195 S.Diag(CD->getLocation(), diag::note_entity_declared_at) 6196 << CD->getDeclName(); 6197 return; 6198 } 6199 LastExportedDefaultCtor = CD; 6200 } 6201 } 6202 6203 static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S, 6204 CXXRecordDecl *Class) { 6205 bool ErrorReported = false; 6206 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6207 ClassTemplateDecl *TD) { 6208 if (ErrorReported) 6209 return; 6210 S.Diag(TD->getLocation(), 6211 diag::err_cuda_device_builtin_surftex_cls_template) 6212 << /*surface*/ 0 << TD; 6213 ErrorReported = true; 6214 }; 6215 6216 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6217 if (!TD) { 6218 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6219 if (!SD) { 6220 S.Diag(Class->getLocation(), 6221 diag::err_cuda_device_builtin_surftex_ref_decl) 6222 << /*surface*/ 0 << Class; 6223 S.Diag(Class->getLocation(), 6224 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6225 << Class; 6226 return; 6227 } 6228 TD = SD->getSpecializedTemplate(); 6229 } 6230 6231 TemplateParameterList *Params = TD->getTemplateParameters(); 6232 unsigned N = Params->size(); 6233 6234 if (N != 2) { 6235 reportIllegalClassTemplate(S, TD); 6236 S.Diag(TD->getLocation(), 6237 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6238 << TD << 2; 6239 } 6240 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6241 reportIllegalClassTemplate(S, TD); 6242 S.Diag(TD->getLocation(), 6243 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6244 << TD << /*1st*/ 0 << /*type*/ 0; 6245 } 6246 if (N > 1) { 6247 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6248 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6249 reportIllegalClassTemplate(S, TD); 6250 S.Diag(TD->getLocation(), 6251 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6252 << TD << /*2nd*/ 1 << /*integer*/ 1; 6253 } 6254 } 6255 } 6256 6257 static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S, 6258 CXXRecordDecl *Class) { 6259 bool ErrorReported = false; 6260 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6261 ClassTemplateDecl *TD) { 6262 if (ErrorReported) 6263 return; 6264 S.Diag(TD->getLocation(), 6265 diag::err_cuda_device_builtin_surftex_cls_template) 6266 << /*texture*/ 1 << TD; 6267 ErrorReported = true; 6268 }; 6269 6270 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6271 if (!TD) { 6272 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6273 if (!SD) { 6274 S.Diag(Class->getLocation(), 6275 diag::err_cuda_device_builtin_surftex_ref_decl) 6276 << /*texture*/ 1 << Class; 6277 S.Diag(Class->getLocation(), 6278 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6279 << Class; 6280 return; 6281 } 6282 TD = SD->getSpecializedTemplate(); 6283 } 6284 6285 TemplateParameterList *Params = TD->getTemplateParameters(); 6286 unsigned N = Params->size(); 6287 6288 if (N != 3) { 6289 reportIllegalClassTemplate(S, TD); 6290 S.Diag(TD->getLocation(), 6291 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6292 << TD << 3; 6293 } 6294 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6295 reportIllegalClassTemplate(S, TD); 6296 S.Diag(TD->getLocation(), 6297 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6298 << TD << /*1st*/ 0 << /*type*/ 0; 6299 } 6300 if (N > 1) { 6301 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6302 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6303 reportIllegalClassTemplate(S, TD); 6304 S.Diag(TD->getLocation(), 6305 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6306 << TD << /*2nd*/ 1 << /*integer*/ 1; 6307 } 6308 } 6309 if (N > 2) { 6310 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2)); 6311 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6312 reportIllegalClassTemplate(S, TD); 6313 S.Diag(TD->getLocation(), 6314 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6315 << TD << /*3rd*/ 2 << /*integer*/ 1; 6316 } 6317 } 6318 } 6319 6320 void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { 6321 // Mark any compiler-generated routines with the implicit code_seg attribute. 6322 for (auto *Method : Class->methods()) { 6323 if (Method->isUserProvided()) 6324 continue; 6325 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 6326 Method->addAttr(A); 6327 } 6328 } 6329 6330 /// Check class-level dllimport/dllexport attribute. 6331 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { 6332 Attr *ClassAttr = getDLLAttr(Class); 6333 6334 // MSVC inherits DLL attributes to partial class template specializations. 6335 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) { 6336 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { 6337 if (Attr *TemplateAttr = 6338 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { 6339 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext())); 6340 A->setInherited(true); 6341 ClassAttr = A; 6342 } 6343 } 6344 } 6345 6346 if (!ClassAttr) 6347 return; 6348 6349 if (!Class->isExternallyVisible()) { 6350 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) 6351 << Class << ClassAttr; 6352 return; 6353 } 6354 6355 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6356 !ClassAttr->isInherited()) { 6357 // Diagnose dll attributes on members of class with dll attribute. 6358 for (Decl *Member : Class->decls()) { 6359 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) 6360 continue; 6361 InheritableAttr *MemberAttr = getDLLAttr(Member); 6362 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) 6363 continue; 6364 6365 Diag(MemberAttr->getLocation(), 6366 diag::err_attribute_dll_member_of_dll_class) 6367 << MemberAttr << ClassAttr; 6368 Diag(ClassAttr->getLocation(), diag::note_previous_attribute); 6369 Member->setInvalidDecl(); 6370 } 6371 } 6372 6373 if (Class->getDescribedClassTemplate()) 6374 // Don't inherit dll attribute until the template is instantiated. 6375 return; 6376 6377 // The class is either imported or exported. 6378 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; 6379 6380 // Check if this was a dllimport attribute propagated from a derived class to 6381 // a base class template specialization. We don't apply these attributes to 6382 // static data members. 6383 const bool PropagatedImport = 6384 !ClassExported && 6385 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate(); 6386 6387 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 6388 6389 // Ignore explicit dllexport on explicit class template instantiation 6390 // declarations, except in MinGW mode. 6391 if (ClassExported && !ClassAttr->isInherited() && 6392 TSK == TSK_ExplicitInstantiationDeclaration && 6393 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 6394 Class->dropAttr<DLLExportAttr>(); 6395 return; 6396 } 6397 6398 // Force declaration of implicit members so they can inherit the attribute. 6399 ForceDeclarationOfImplicitMembers(Class); 6400 6401 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't 6402 // seem to be true in practice? 6403 6404 for (Decl *Member : Class->decls()) { 6405 VarDecl *VD = dyn_cast<VarDecl>(Member); 6406 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); 6407 6408 // Only methods and static fields inherit the attributes. 6409 if (!VD && !MD) 6410 continue; 6411 6412 if (MD) { 6413 // Don't process deleted methods. 6414 if (MD->isDeleted()) 6415 continue; 6416 6417 if (MD->isInlined()) { 6418 // MinGW does not import or export inline methods. But do it for 6419 // template instantiations. 6420 if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6421 TSK != TSK_ExplicitInstantiationDeclaration && 6422 TSK != TSK_ExplicitInstantiationDefinition) 6423 continue; 6424 6425 // MSVC versions before 2015 don't export the move assignment operators 6426 // and move constructor, so don't attempt to import/export them if 6427 // we have a definition. 6428 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD); 6429 if ((MD->isMoveAssignmentOperator() || 6430 (Ctor && Ctor->isMoveConstructor())) && 6431 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) 6432 continue; 6433 6434 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign 6435 // operator is exported anyway. 6436 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6437 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial()) 6438 continue; 6439 } 6440 } 6441 6442 // Don't apply dllimport attributes to static data members of class template 6443 // instantiations when the attribute is propagated from a derived class. 6444 if (VD && PropagatedImport) 6445 continue; 6446 6447 if (!cast<NamedDecl>(Member)->isExternallyVisible()) 6448 continue; 6449 6450 if (!getDLLAttr(Member)) { 6451 InheritableAttr *NewAttr = nullptr; 6452 6453 // Do not export/import inline function when -fno-dllexport-inlines is 6454 // passed. But add attribute for later local static var check. 6455 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && 6456 TSK != TSK_ExplicitInstantiationDeclaration && 6457 TSK != TSK_ExplicitInstantiationDefinition) { 6458 if (ClassExported) { 6459 NewAttr = ::new (getASTContext()) 6460 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr); 6461 } else { 6462 NewAttr = ::new (getASTContext()) 6463 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr); 6464 } 6465 } else { 6466 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6467 } 6468 6469 NewAttr->setInherited(true); 6470 Member->addAttr(NewAttr); 6471 6472 if (MD) { 6473 // Propagate DLLAttr to friend re-declarations of MD that have already 6474 // been constructed. 6475 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; 6476 FD = FD->getPreviousDecl()) { 6477 if (FD->getFriendObjectKind() == Decl::FOK_None) 6478 continue; 6479 assert(!getDLLAttr(FD) && 6480 "friend re-decl should not already have a DLLAttr"); 6481 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6482 NewAttr->setInherited(true); 6483 FD->addAttr(NewAttr); 6484 } 6485 } 6486 } 6487 } 6488 6489 if (ClassExported) 6490 DelayedDllExportClasses.push_back(Class); 6491 } 6492 6493 /// Perform propagation of DLL attributes from a derived class to a 6494 /// templated base class for MS compatibility. 6495 void Sema::propagateDLLAttrToBaseClassTemplate( 6496 CXXRecordDecl *Class, Attr *ClassAttr, 6497 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { 6498 if (getDLLAttr( 6499 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { 6500 // If the base class template has a DLL attribute, don't try to change it. 6501 return; 6502 } 6503 6504 auto TSK = BaseTemplateSpec->getSpecializationKind(); 6505 if (!getDLLAttr(BaseTemplateSpec) && 6506 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || 6507 TSK == TSK_ImplicitInstantiation)) { 6508 // The template hasn't been instantiated yet (or it has, but only as an 6509 // explicit instantiation declaration or implicit instantiation, which means 6510 // we haven't codegenned any members yet), so propagate the attribute. 6511 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6512 NewAttr->setInherited(true); 6513 BaseTemplateSpec->addAttr(NewAttr); 6514 6515 // If this was an import, mark that we propagated it from a derived class to 6516 // a base class template specialization. 6517 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr)) 6518 ImportAttr->setPropagatedToBaseTemplate(); 6519 6520 // If the template is already instantiated, checkDLLAttributeRedeclaration() 6521 // needs to be run again to work see the new attribute. Otherwise this will 6522 // get run whenever the template is instantiated. 6523 if (TSK != TSK_Undeclared) 6524 checkClassLevelDLLAttribute(BaseTemplateSpec); 6525 6526 return; 6527 } 6528 6529 if (getDLLAttr(BaseTemplateSpec)) { 6530 // The template has already been specialized or instantiated with an 6531 // attribute, explicitly or through propagation. We should not try to change 6532 // it. 6533 return; 6534 } 6535 6536 // The template was previously instantiated or explicitly specialized without 6537 // a dll attribute, It's too late for us to add an attribute, so warn that 6538 // this is unsupported. 6539 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) 6540 << BaseTemplateSpec->isExplicitSpecialization(); 6541 Diag(ClassAttr->getLocation(), diag::note_attribute); 6542 if (BaseTemplateSpec->isExplicitSpecialization()) { 6543 Diag(BaseTemplateSpec->getLocation(), 6544 diag::note_template_class_explicit_specialization_was_here) 6545 << BaseTemplateSpec; 6546 } else { 6547 Diag(BaseTemplateSpec->getPointOfInstantiation(), 6548 diag::note_template_class_instantiation_was_here) 6549 << BaseTemplateSpec; 6550 } 6551 } 6552 6553 /// Determine the kind of defaulting that would be done for a given function. 6554 /// 6555 /// If the function is both a default constructor and a copy / move constructor 6556 /// (due to having a default argument for the first parameter), this picks 6557 /// CXXDefaultConstructor. 6558 /// 6559 /// FIXME: Check that case is properly handled by all callers. 6560 Sema::DefaultedFunctionKind 6561 Sema::getDefaultedFunctionKind(const FunctionDecl *FD) { 6562 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 6563 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { 6564 if (Ctor->isDefaultConstructor()) 6565 return Sema::CXXDefaultConstructor; 6566 6567 if (Ctor->isCopyConstructor()) 6568 return Sema::CXXCopyConstructor; 6569 6570 if (Ctor->isMoveConstructor()) 6571 return Sema::CXXMoveConstructor; 6572 } 6573 6574 if (MD->isCopyAssignmentOperator()) 6575 return Sema::CXXCopyAssignment; 6576 6577 if (MD->isMoveAssignmentOperator()) 6578 return Sema::CXXMoveAssignment; 6579 6580 if (isa<CXXDestructorDecl>(FD)) 6581 return Sema::CXXDestructor; 6582 } 6583 6584 switch (FD->getDeclName().getCXXOverloadedOperator()) { 6585 case OO_EqualEqual: 6586 return DefaultedComparisonKind::Equal; 6587 6588 case OO_ExclaimEqual: 6589 return DefaultedComparisonKind::NotEqual; 6590 6591 case OO_Spaceship: 6592 // No point allowing this if <=> doesn't exist in the current language mode. 6593 if (!getLangOpts().CPlusPlus20) 6594 break; 6595 return DefaultedComparisonKind::ThreeWay; 6596 6597 case OO_Less: 6598 case OO_LessEqual: 6599 case OO_Greater: 6600 case OO_GreaterEqual: 6601 // No point allowing this if <=> doesn't exist in the current language mode. 6602 if (!getLangOpts().CPlusPlus20) 6603 break; 6604 return DefaultedComparisonKind::Relational; 6605 6606 default: 6607 break; 6608 } 6609 6610 // Not defaultable. 6611 return DefaultedFunctionKind(); 6612 } 6613 6614 static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD, 6615 SourceLocation DefaultLoc) { 6616 Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD); 6617 if (DFK.isComparison()) 6618 return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison()); 6619 6620 switch (DFK.asSpecialMember()) { 6621 case Sema::CXXDefaultConstructor: 6622 S.DefineImplicitDefaultConstructor(DefaultLoc, 6623 cast<CXXConstructorDecl>(FD)); 6624 break; 6625 case Sema::CXXCopyConstructor: 6626 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6627 break; 6628 case Sema::CXXCopyAssignment: 6629 S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6630 break; 6631 case Sema::CXXDestructor: 6632 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD)); 6633 break; 6634 case Sema::CXXMoveConstructor: 6635 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6636 break; 6637 case Sema::CXXMoveAssignment: 6638 S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6639 break; 6640 case Sema::CXXInvalid: 6641 llvm_unreachable("Invalid special member."); 6642 } 6643 } 6644 6645 /// Determine whether a type is permitted to be passed or returned in 6646 /// registers, per C++ [class.temporary]p3. 6647 static bool canPassInRegisters(Sema &S, CXXRecordDecl *D, 6648 TargetInfo::CallingConvKind CCK) { 6649 if (D->isDependentType() || D->isInvalidDecl()) 6650 return false; 6651 6652 // Clang <= 4 used the pre-C++11 rule, which ignores move operations. 6653 // The PS4 platform ABI follows the behavior of Clang 3.2. 6654 if (CCK == TargetInfo::CCK_ClangABI4OrPS4) 6655 return !D->hasNonTrivialDestructorForCall() && 6656 !D->hasNonTrivialCopyConstructorForCall(); 6657 6658 if (CCK == TargetInfo::CCK_MicrosoftWin64) { 6659 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false; 6660 bool DtorIsTrivialForCall = false; 6661 6662 // If a class has at least one eligible, trivial copy constructor, it 6663 // is passed according to the C ABI. Otherwise, it is passed indirectly. 6664 // 6665 // Note: This permits classes with non-trivial copy or move ctors to be 6666 // passed in registers, so long as they *also* have a trivial copy ctor, 6667 // which is non-conforming. 6668 if (D->needsImplicitCopyConstructor()) { 6669 if (!D->defaultedCopyConstructorIsDeleted()) { 6670 if (D->hasTrivialCopyConstructor()) 6671 CopyCtorIsTrivial = true; 6672 if (D->hasTrivialCopyConstructorForCall()) 6673 CopyCtorIsTrivialForCall = true; 6674 } 6675 } else { 6676 for (const CXXConstructorDecl *CD : D->ctors()) { 6677 if (CD->isCopyConstructor() && !CD->isDeleted() && 6678 !CD->isIneligibleOrNotSelected()) { 6679 if (CD->isTrivial()) 6680 CopyCtorIsTrivial = true; 6681 if (CD->isTrivialForCall()) 6682 CopyCtorIsTrivialForCall = true; 6683 } 6684 } 6685 } 6686 6687 if (D->needsImplicitDestructor()) { 6688 if (!D->defaultedDestructorIsDeleted() && 6689 D->hasTrivialDestructorForCall()) 6690 DtorIsTrivialForCall = true; 6691 } else if (const auto *DD = D->getDestructor()) { 6692 if (!DD->isDeleted() && DD->isTrivialForCall()) 6693 DtorIsTrivialForCall = true; 6694 } 6695 6696 // If the copy ctor and dtor are both trivial-for-calls, pass direct. 6697 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall) 6698 return true; 6699 6700 // If a class has a destructor, we'd really like to pass it indirectly 6701 // because it allows us to elide copies. Unfortunately, MSVC makes that 6702 // impossible for small types, which it will pass in a single register or 6703 // stack slot. Most objects with dtors are large-ish, so handle that early. 6704 // We can't call out all large objects as being indirect because there are 6705 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate 6706 // how we pass large POD types. 6707 6708 // Note: This permits small classes with nontrivial destructors to be 6709 // passed in registers, which is non-conforming. 6710 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); 6711 uint64_t TypeSize = isAArch64 ? 128 : 64; 6712 6713 if (CopyCtorIsTrivial && 6714 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize) 6715 return true; 6716 return false; 6717 } 6718 6719 // Per C++ [class.temporary]p3, the relevant condition is: 6720 // each copy constructor, move constructor, and destructor of X is 6721 // either trivial or deleted, and X has at least one non-deleted copy 6722 // or move constructor 6723 bool HasNonDeletedCopyOrMove = false; 6724 6725 if (D->needsImplicitCopyConstructor() && 6726 !D->defaultedCopyConstructorIsDeleted()) { 6727 if (!D->hasTrivialCopyConstructorForCall()) 6728 return false; 6729 HasNonDeletedCopyOrMove = true; 6730 } 6731 6732 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() && 6733 !D->defaultedMoveConstructorIsDeleted()) { 6734 if (!D->hasTrivialMoveConstructorForCall()) 6735 return false; 6736 HasNonDeletedCopyOrMove = true; 6737 } 6738 6739 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() && 6740 !D->hasTrivialDestructorForCall()) 6741 return false; 6742 6743 for (const CXXMethodDecl *MD : D->methods()) { 6744 if (MD->isDeleted() || MD->isIneligibleOrNotSelected()) 6745 continue; 6746 6747 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6748 if (CD && CD->isCopyOrMoveConstructor()) 6749 HasNonDeletedCopyOrMove = true; 6750 else if (!isa<CXXDestructorDecl>(MD)) 6751 continue; 6752 6753 if (!MD->isTrivialForCall()) 6754 return false; 6755 } 6756 6757 return HasNonDeletedCopyOrMove; 6758 } 6759 6760 /// Report an error regarding overriding, along with any relevant 6761 /// overridden methods. 6762 /// 6763 /// \param DiagID the primary error to report. 6764 /// \param MD the overriding method. 6765 static bool 6766 ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD, 6767 llvm::function_ref<bool(const CXXMethodDecl *)> Report) { 6768 bool IssuedDiagnostic = false; 6769 for (const CXXMethodDecl *O : MD->overridden_methods()) { 6770 if (Report(O)) { 6771 if (!IssuedDiagnostic) { 6772 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 6773 IssuedDiagnostic = true; 6774 } 6775 S.Diag(O->getLocation(), diag::note_overridden_virtual_function); 6776 } 6777 } 6778 return IssuedDiagnostic; 6779 } 6780 6781 /// Perform semantic checks on a class definition that has been 6782 /// completing, introducing implicitly-declared members, checking for 6783 /// abstract types, etc. 6784 /// 6785 /// \param S The scope in which the class was parsed. Null if we didn't just 6786 /// parse a class definition. 6787 /// \param Record The completed class. 6788 void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) { 6789 if (!Record) 6790 return; 6791 6792 if (Record->isAbstract() && !Record->isInvalidDecl()) { 6793 AbstractUsageInfo Info(*this, Record); 6794 CheckAbstractClassUsage(Info, Record); 6795 } 6796 6797 // If this is not an aggregate type and has no user-declared constructor, 6798 // complain about any non-static data members of reference or const scalar 6799 // type, since they will never get initializers. 6800 if (!Record->isInvalidDecl() && !Record->isDependentType() && 6801 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && 6802 !Record->isLambda()) { 6803 bool Complained = false; 6804 for (const auto *F : Record->fields()) { 6805 if (F->hasInClassInitializer() || F->isUnnamedBitfield()) 6806 continue; 6807 6808 if (F->getType()->isReferenceType() || 6809 (F->getType().isConstQualified() && F->getType()->isScalarType())) { 6810 if (!Complained) { 6811 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) 6812 << Record->getTagKind() << Record; 6813 Complained = true; 6814 } 6815 6816 Diag(F->getLocation(), diag::note_refconst_member_not_initialized) 6817 << F->getType()->isReferenceType() 6818 << F->getDeclName(); 6819 } 6820 } 6821 } 6822 6823 if (Record->getIdentifier()) { 6824 // C++ [class.mem]p13: 6825 // If T is the name of a class, then each of the following shall have a 6826 // name different from T: 6827 // - every member of every anonymous union that is a member of class T. 6828 // 6829 // C++ [class.mem]p14: 6830 // In addition, if class T has a user-declared constructor (12.1), every 6831 // non-static data member of class T shall have a name different from T. 6832 DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); 6833 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; 6834 ++I) { 6835 NamedDecl *D = (*I)->getUnderlyingDecl(); 6836 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) && 6837 Record->hasUserDeclaredConstructor()) || 6838 isa<IndirectFieldDecl>(D)) { 6839 Diag((*I)->getLocation(), diag::err_member_name_of_class) 6840 << D->getDeclName(); 6841 break; 6842 } 6843 } 6844 } 6845 6846 // Warn if the class has virtual methods but non-virtual public destructor. 6847 if (Record->isPolymorphic() && !Record->isDependentType()) { 6848 CXXDestructorDecl *dtor = Record->getDestructor(); 6849 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && 6850 !Record->hasAttr<FinalAttr>()) 6851 Diag(dtor ? dtor->getLocation() : Record->getLocation(), 6852 diag::warn_non_virtual_dtor) << Context.getRecordType(Record); 6853 } 6854 6855 if (Record->isAbstract()) { 6856 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) { 6857 Diag(Record->getLocation(), diag::warn_abstract_final_class) 6858 << FA->isSpelledAsSealed(); 6859 DiagnoseAbstractType(Record); 6860 } 6861 } 6862 6863 // Warn if the class has a final destructor but is not itself marked final. 6864 if (!Record->hasAttr<FinalAttr>()) { 6865 if (const CXXDestructorDecl *dtor = Record->getDestructor()) { 6866 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) { 6867 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class) 6868 << FA->isSpelledAsSealed() 6869 << FixItHint::CreateInsertion( 6870 getLocForEndOfToken(Record->getLocation()), 6871 (FA->isSpelledAsSealed() ? " sealed" : " final")); 6872 Diag(Record->getLocation(), 6873 diag::note_final_dtor_non_final_class_silence) 6874 << Context.getRecordType(Record) << FA->isSpelledAsSealed(); 6875 } 6876 } 6877 } 6878 6879 // See if trivial_abi has to be dropped. 6880 if (Record->hasAttr<TrivialABIAttr>()) 6881 checkIllFormedTrivialABIStruct(*Record); 6882 6883 // Set HasTrivialSpecialMemberForCall if the record has attribute 6884 // "trivial_abi". 6885 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>(); 6886 6887 if (HasTrivialABI) 6888 Record->setHasTrivialSpecialMemberForCall(); 6889 6890 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=). 6891 // We check these last because they can depend on the properties of the 6892 // primary comparison functions (==, <=>). 6893 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons; 6894 6895 // Perform checks that can't be done until we know all the properties of a 6896 // member function (whether it's defaulted, deleted, virtual, overriding, 6897 // ...). 6898 auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) { 6899 // A static function cannot override anything. 6900 if (MD->getStorageClass() == SC_Static) { 6901 if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD, 6902 [](const CXXMethodDecl *) { return true; })) 6903 return; 6904 } 6905 6906 // A deleted function cannot override a non-deleted function and vice 6907 // versa. 6908 if (ReportOverrides(*this, 6909 MD->isDeleted() ? diag::err_deleted_override 6910 : diag::err_non_deleted_override, 6911 MD, [&](const CXXMethodDecl *V) { 6912 return MD->isDeleted() != V->isDeleted(); 6913 })) { 6914 if (MD->isDefaulted() && MD->isDeleted()) 6915 // Explain why this defaulted function was deleted. 6916 DiagnoseDeletedDefaultedFunction(MD); 6917 return; 6918 } 6919 6920 // A consteval function cannot override a non-consteval function and vice 6921 // versa. 6922 if (ReportOverrides(*this, 6923 MD->isConsteval() ? diag::err_consteval_override 6924 : diag::err_non_consteval_override, 6925 MD, [&](const CXXMethodDecl *V) { 6926 return MD->isConsteval() != V->isConsteval(); 6927 })) { 6928 if (MD->isDefaulted() && MD->isDeleted()) 6929 // Explain why this defaulted function was deleted. 6930 DiagnoseDeletedDefaultedFunction(MD); 6931 return; 6932 } 6933 }; 6934 6935 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool { 6936 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted()) 6937 return false; 6938 6939 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 6940 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual || 6941 DFK.asComparison() == DefaultedComparisonKind::Relational) { 6942 DefaultedSecondaryComparisons.push_back(FD); 6943 return true; 6944 } 6945 6946 CheckExplicitlyDefaultedFunction(S, FD); 6947 return false; 6948 }; 6949 6950 auto CompleteMemberFunction = [&](CXXMethodDecl *M) { 6951 // Check whether the explicitly-defaulted members are valid. 6952 bool Incomplete = CheckForDefaultedFunction(M); 6953 6954 // Skip the rest of the checks for a member of a dependent class. 6955 if (Record->isDependentType()) 6956 return; 6957 6958 // For an explicitly defaulted or deleted special member, we defer 6959 // determining triviality until the class is complete. That time is now! 6960 CXXSpecialMember CSM = getSpecialMember(M); 6961 if (!M->isImplicit() && !M->isUserProvided()) { 6962 if (CSM != CXXInvalid) { 6963 M->setTrivial(SpecialMemberIsTrivial(M, CSM)); 6964 // Inform the class that we've finished declaring this member. 6965 Record->finishedDefaultedOrDeletedMember(M); 6966 M->setTrivialForCall( 6967 HasTrivialABI || 6968 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI)); 6969 Record->setTrivialForCallFlags(M); 6970 } 6971 } 6972 6973 // Set triviality for the purpose of calls if this is a user-provided 6974 // copy/move constructor or destructor. 6975 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor || 6976 CSM == CXXDestructor) && M->isUserProvided()) { 6977 M->setTrivialForCall(HasTrivialABI); 6978 Record->setTrivialForCallFlags(M); 6979 } 6980 6981 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() && 6982 M->hasAttr<DLLExportAttr>()) { 6983 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6984 M->isTrivial() && 6985 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor || 6986 CSM == CXXDestructor)) 6987 M->dropAttr<DLLExportAttr>(); 6988 6989 if (M->hasAttr<DLLExportAttr>()) { 6990 // Define after any fields with in-class initializers have been parsed. 6991 DelayedDllExportMemberFunctions.push_back(M); 6992 } 6993 } 6994 6995 // Define defaulted constexpr virtual functions that override a base class 6996 // function right away. 6997 // FIXME: We can defer doing this until the vtable is marked as used. 6998 if (CSM != CXXInvalid && !M->isDeleted() && M->isDefaulted() && 6999 M->isConstexpr() && M->size_overridden_methods()) 7000 DefineDefaultedFunction(*this, M, M->getLocation()); 7001 7002 if (!Incomplete) 7003 CheckCompletedMemberFunction(M); 7004 }; 7005 7006 // Check the destructor before any other member function. We need to 7007 // determine whether it's trivial in order to determine whether the claas 7008 // type is a literal type, which is a prerequisite for determining whether 7009 // other special member functions are valid and whether they're implicitly 7010 // 'constexpr'. 7011 if (CXXDestructorDecl *Dtor = Record->getDestructor()) 7012 CompleteMemberFunction(Dtor); 7013 7014 bool HasMethodWithOverrideControl = false, 7015 HasOverridingMethodWithoutOverrideControl = false; 7016 for (auto *D : Record->decls()) { 7017 if (auto *M = dyn_cast<CXXMethodDecl>(D)) { 7018 // FIXME: We could do this check for dependent types with non-dependent 7019 // bases. 7020 if (!Record->isDependentType()) { 7021 // See if a method overloads virtual methods in a base 7022 // class without overriding any. 7023 if (!M->isStatic()) 7024 DiagnoseHiddenVirtualMethods(M); 7025 if (M->hasAttr<OverrideAttr>()) 7026 HasMethodWithOverrideControl = true; 7027 else if (M->size_overridden_methods() > 0) 7028 HasOverridingMethodWithoutOverrideControl = true; 7029 } 7030 7031 if (!isa<CXXDestructorDecl>(M)) 7032 CompleteMemberFunction(M); 7033 } else if (auto *F = dyn_cast<FriendDecl>(D)) { 7034 CheckForDefaultedFunction( 7035 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl())); 7036 } 7037 } 7038 7039 if (HasOverridingMethodWithoutOverrideControl) { 7040 bool HasInconsistentOverrideControl = HasMethodWithOverrideControl; 7041 for (auto *M : Record->methods()) 7042 DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl); 7043 } 7044 7045 // Check the defaulted secondary comparisons after any other member functions. 7046 for (FunctionDecl *FD : DefaultedSecondaryComparisons) { 7047 CheckExplicitlyDefaultedFunction(S, FD); 7048 7049 // If this is a member function, we deferred checking it until now. 7050 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) 7051 CheckCompletedMemberFunction(MD); 7052 } 7053 7054 // ms_struct is a request to use the same ABI rules as MSVC. Check 7055 // whether this class uses any C++ features that are implemented 7056 // completely differently in MSVC, and if so, emit a diagnostic. 7057 // That diagnostic defaults to an error, but we allow projects to 7058 // map it down to a warning (or ignore it). It's a fairly common 7059 // practice among users of the ms_struct pragma to mass-annotate 7060 // headers, sweeping up a bunch of types that the project doesn't 7061 // really rely on MSVC-compatible layout for. We must therefore 7062 // support "ms_struct except for C++ stuff" as a secondary ABI. 7063 // Don't emit this diagnostic if the feature was enabled as a 7064 // language option (as opposed to via a pragma or attribute), as 7065 // the option -mms-bitfields otherwise essentially makes it impossible 7066 // to build C++ code, unless this diagnostic is turned off. 7067 if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields && 7068 (Record->isPolymorphic() || Record->getNumBases())) { 7069 Diag(Record->getLocation(), diag::warn_cxx_ms_struct); 7070 } 7071 7072 checkClassLevelDLLAttribute(Record); 7073 checkClassLevelCodeSegAttribute(Record); 7074 7075 bool ClangABICompat4 = 7076 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4; 7077 TargetInfo::CallingConvKind CCK = 7078 Context.getTargetInfo().getCallingConvKind(ClangABICompat4); 7079 bool CanPass = canPassInRegisters(*this, Record, CCK); 7080 7081 // Do not change ArgPassingRestrictions if it has already been set to 7082 // APK_CanNeverPassInRegs. 7083 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs) 7084 Record->setArgPassingRestrictions(CanPass 7085 ? RecordDecl::APK_CanPassInRegs 7086 : RecordDecl::APK_CannotPassInRegs); 7087 7088 // If canPassInRegisters returns true despite the record having a non-trivial 7089 // destructor, the record is destructed in the callee. This happens only when 7090 // the record or one of its subobjects has a field annotated with trivial_abi 7091 // or a field qualified with ObjC __strong/__weak. 7092 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee()) 7093 Record->setParamDestroyedInCallee(true); 7094 else if (Record->hasNonTrivialDestructor()) 7095 Record->setParamDestroyedInCallee(CanPass); 7096 7097 if (getLangOpts().ForceEmitVTables) { 7098 // If we want to emit all the vtables, we need to mark it as used. This 7099 // is especially required for cases like vtable assumption loads. 7100 MarkVTableUsed(Record->getInnerLocStart(), Record); 7101 } 7102 7103 if (getLangOpts().CUDA) { 7104 if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) 7105 checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record); 7106 else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>()) 7107 checkCUDADeviceBuiltinTextureClassTemplate(*this, Record); 7108 } 7109 } 7110 7111 /// Look up the special member function that would be called by a special 7112 /// member function for a subobject of class type. 7113 /// 7114 /// \param Class The class type of the subobject. 7115 /// \param CSM The kind of special member function. 7116 /// \param FieldQuals If the subobject is a field, its cv-qualifiers. 7117 /// \param ConstRHS True if this is a copy operation with a const object 7118 /// on its RHS, that is, if the argument to the outer special member 7119 /// function is 'const' and this is not a field marked 'mutable'. 7120 static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember( 7121 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM, 7122 unsigned FieldQuals, bool ConstRHS) { 7123 unsigned LHSQuals = 0; 7124 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment) 7125 LHSQuals = FieldQuals; 7126 7127 unsigned RHSQuals = FieldQuals; 7128 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor) 7129 RHSQuals = 0; 7130 else if (ConstRHS) 7131 RHSQuals |= Qualifiers::Const; 7132 7133 return S.LookupSpecialMember(Class, CSM, 7134 RHSQuals & Qualifiers::Const, 7135 RHSQuals & Qualifiers::Volatile, 7136 false, 7137 LHSQuals & Qualifiers::Const, 7138 LHSQuals & Qualifiers::Volatile); 7139 } 7140 7141 class Sema::InheritedConstructorInfo { 7142 Sema &S; 7143 SourceLocation UseLoc; 7144 7145 /// A mapping from the base classes through which the constructor was 7146 /// inherited to the using shadow declaration in that base class (or a null 7147 /// pointer if the constructor was declared in that base class). 7148 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *> 7149 InheritedFromBases; 7150 7151 public: 7152 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc, 7153 ConstructorUsingShadowDecl *Shadow) 7154 : S(S), UseLoc(UseLoc) { 7155 bool DiagnosedMultipleConstructedBases = false; 7156 CXXRecordDecl *ConstructedBase = nullptr; 7157 BaseUsingDecl *ConstructedBaseIntroducer = nullptr; 7158 7159 // Find the set of such base class subobjects and check that there's a 7160 // unique constructed subobject. 7161 for (auto *D : Shadow->redecls()) { 7162 auto *DShadow = cast<ConstructorUsingShadowDecl>(D); 7163 auto *DNominatedBase = DShadow->getNominatedBaseClass(); 7164 auto *DConstructedBase = DShadow->getConstructedBaseClass(); 7165 7166 InheritedFromBases.insert( 7167 std::make_pair(DNominatedBase->getCanonicalDecl(), 7168 DShadow->getNominatedBaseClassShadowDecl())); 7169 if (DShadow->constructsVirtualBase()) 7170 InheritedFromBases.insert( 7171 std::make_pair(DConstructedBase->getCanonicalDecl(), 7172 DShadow->getConstructedBaseClassShadowDecl())); 7173 else 7174 assert(DNominatedBase == DConstructedBase); 7175 7176 // [class.inhctor.init]p2: 7177 // If the constructor was inherited from multiple base class subobjects 7178 // of type B, the program is ill-formed. 7179 if (!ConstructedBase) { 7180 ConstructedBase = DConstructedBase; 7181 ConstructedBaseIntroducer = D->getIntroducer(); 7182 } else if (ConstructedBase != DConstructedBase && 7183 !Shadow->isInvalidDecl()) { 7184 if (!DiagnosedMultipleConstructedBases) { 7185 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor) 7186 << Shadow->getTargetDecl(); 7187 S.Diag(ConstructedBaseIntroducer->getLocation(), 7188 diag::note_ambiguous_inherited_constructor_using) 7189 << ConstructedBase; 7190 DiagnosedMultipleConstructedBases = true; 7191 } 7192 S.Diag(D->getIntroducer()->getLocation(), 7193 diag::note_ambiguous_inherited_constructor_using) 7194 << DConstructedBase; 7195 } 7196 } 7197 7198 if (DiagnosedMultipleConstructedBases) 7199 Shadow->setInvalidDecl(); 7200 } 7201 7202 /// Find the constructor to use for inherited construction of a base class, 7203 /// and whether that base class constructor inherits the constructor from a 7204 /// virtual base class (in which case it won't actually invoke it). 7205 std::pair<CXXConstructorDecl *, bool> 7206 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const { 7207 auto It = InheritedFromBases.find(Base->getCanonicalDecl()); 7208 if (It == InheritedFromBases.end()) 7209 return std::make_pair(nullptr, false); 7210 7211 // This is an intermediary class. 7212 if (It->second) 7213 return std::make_pair( 7214 S.findInheritingConstructor(UseLoc, Ctor, It->second), 7215 It->second->constructsVirtualBase()); 7216 7217 // This is the base class from which the constructor was inherited. 7218 return std::make_pair(Ctor, false); 7219 } 7220 }; 7221 7222 /// Is the special member function which would be selected to perform the 7223 /// specified operation on the specified class type a constexpr constructor? 7224 static bool 7225 specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl, 7226 Sema::CXXSpecialMember CSM, unsigned Quals, 7227 bool ConstRHS, 7228 CXXConstructorDecl *InheritedCtor = nullptr, 7229 Sema::InheritedConstructorInfo *Inherited = nullptr) { 7230 // Suppress duplicate constraint checking here, in case a constraint check 7231 // caused us to decide to do this. Any truely recursive checks will get 7232 // caught during these checks anyway. 7233 Sema::SatisfactionStackResetRAII SSRAII{S}; 7234 7235 // If we're inheriting a constructor, see if we need to call it for this base 7236 // class. 7237 if (InheritedCtor) { 7238 assert(CSM == Sema::CXXDefaultConstructor); 7239 auto BaseCtor = 7240 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first; 7241 if (BaseCtor) 7242 return BaseCtor->isConstexpr(); 7243 } 7244 7245 if (CSM == Sema::CXXDefaultConstructor) 7246 return ClassDecl->hasConstexprDefaultConstructor(); 7247 if (CSM == Sema::CXXDestructor) 7248 return ClassDecl->hasConstexprDestructor(); 7249 7250 Sema::SpecialMemberOverloadResult SMOR = 7251 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS); 7252 if (!SMOR.getMethod()) 7253 // A constructor we wouldn't select can't be "involved in initializing" 7254 // anything. 7255 return true; 7256 return SMOR.getMethod()->isConstexpr(); 7257 } 7258 7259 /// Determine whether the specified special member function would be constexpr 7260 /// if it were implicitly defined. 7261 static bool defaultedSpecialMemberIsConstexpr( 7262 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM, 7263 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr, 7264 Sema::InheritedConstructorInfo *Inherited = nullptr) { 7265 if (!S.getLangOpts().CPlusPlus11) 7266 return false; 7267 7268 // C++11 [dcl.constexpr]p4: 7269 // In the definition of a constexpr constructor [...] 7270 bool Ctor = true; 7271 switch (CSM) { 7272 case Sema::CXXDefaultConstructor: 7273 if (Inherited) 7274 break; 7275 // Since default constructor lookup is essentially trivial (and cannot 7276 // involve, for instance, template instantiation), we compute whether a 7277 // defaulted default constructor is constexpr directly within CXXRecordDecl. 7278 // 7279 // This is important for performance; we need to know whether the default 7280 // constructor is constexpr to determine whether the type is a literal type. 7281 return ClassDecl->defaultedDefaultConstructorIsConstexpr(); 7282 7283 case Sema::CXXCopyConstructor: 7284 case Sema::CXXMoveConstructor: 7285 // For copy or move constructors, we need to perform overload resolution. 7286 break; 7287 7288 case Sema::CXXCopyAssignment: 7289 case Sema::CXXMoveAssignment: 7290 if (!S.getLangOpts().CPlusPlus14) 7291 return false; 7292 // In C++1y, we need to perform overload resolution. 7293 Ctor = false; 7294 break; 7295 7296 case Sema::CXXDestructor: 7297 return ClassDecl->defaultedDestructorIsConstexpr(); 7298 7299 case Sema::CXXInvalid: 7300 return false; 7301 } 7302 7303 // -- if the class is a non-empty union, or for each non-empty anonymous 7304 // union member of a non-union class, exactly one non-static data member 7305 // shall be initialized; [DR1359] 7306 // 7307 // If we squint, this is guaranteed, since exactly one non-static data member 7308 // will be initialized (if the constructor isn't deleted), we just don't know 7309 // which one. 7310 if (Ctor && ClassDecl->isUnion()) 7311 return CSM == Sema::CXXDefaultConstructor 7312 ? ClassDecl->hasInClassInitializer() || 7313 !ClassDecl->hasVariantMembers() 7314 : true; 7315 7316 // -- the class shall not have any virtual base classes; 7317 if (Ctor && ClassDecl->getNumVBases()) 7318 return false; 7319 7320 // C++1y [class.copy]p26: 7321 // -- [the class] is a literal type, and 7322 if (!Ctor && !ClassDecl->isLiteral()) 7323 return false; 7324 7325 // -- every constructor involved in initializing [...] base class 7326 // sub-objects shall be a constexpr constructor; 7327 // -- the assignment operator selected to copy/move each direct base 7328 // class is a constexpr function, and 7329 for (const auto &B : ClassDecl->bases()) { 7330 const RecordType *BaseType = B.getType()->getAs<RecordType>(); 7331 if (!BaseType) 7332 continue; 7333 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 7334 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg, 7335 InheritedCtor, Inherited)) 7336 return false; 7337 } 7338 7339 // -- every constructor involved in initializing non-static data members 7340 // [...] shall be a constexpr constructor; 7341 // -- every non-static data member and base class sub-object shall be 7342 // initialized 7343 // -- for each non-static data member of X that is of class type (or array 7344 // thereof), the assignment operator selected to copy/move that member is 7345 // a constexpr function 7346 for (const auto *F : ClassDecl->fields()) { 7347 if (F->isInvalidDecl()) 7348 continue; 7349 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer()) 7350 continue; 7351 QualType BaseType = S.Context.getBaseElementType(F->getType()); 7352 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 7353 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 7354 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, 7355 BaseType.getCVRQualifiers(), 7356 ConstArg && !F->isMutable())) 7357 return false; 7358 } else if (CSM == Sema::CXXDefaultConstructor) { 7359 return false; 7360 } 7361 } 7362 7363 // All OK, it's constexpr! 7364 return true; 7365 } 7366 7367 namespace { 7368 /// RAII object to register a defaulted function as having its exception 7369 /// specification computed. 7370 struct ComputingExceptionSpec { 7371 Sema &S; 7372 7373 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc) 7374 : S(S) { 7375 Sema::CodeSynthesisContext Ctx; 7376 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation; 7377 Ctx.PointOfInstantiation = Loc; 7378 Ctx.Entity = FD; 7379 S.pushCodeSynthesisContext(Ctx); 7380 } 7381 ~ComputingExceptionSpec() { 7382 S.popCodeSynthesisContext(); 7383 } 7384 }; 7385 } 7386 7387 static Sema::ImplicitExceptionSpecification 7388 ComputeDefaultedSpecialMemberExceptionSpec( 7389 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 7390 Sema::InheritedConstructorInfo *ICI); 7391 7392 static Sema::ImplicitExceptionSpecification 7393 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 7394 FunctionDecl *FD, 7395 Sema::DefaultedComparisonKind DCK); 7396 7397 static Sema::ImplicitExceptionSpecification 7398 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) { 7399 auto DFK = S.getDefaultedFunctionKind(FD); 7400 if (DFK.isSpecialMember()) 7401 return ComputeDefaultedSpecialMemberExceptionSpec( 7402 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr); 7403 if (DFK.isComparison()) 7404 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD, 7405 DFK.asComparison()); 7406 7407 auto *CD = cast<CXXConstructorDecl>(FD); 7408 assert(CD->getInheritedConstructor() && 7409 "only defaulted functions and inherited constructors have implicit " 7410 "exception specs"); 7411 Sema::InheritedConstructorInfo ICI( 7412 S, Loc, CD->getInheritedConstructor().getShadowDecl()); 7413 return ComputeDefaultedSpecialMemberExceptionSpec( 7414 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI); 7415 } 7416 7417 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, 7418 CXXMethodDecl *MD) { 7419 FunctionProtoType::ExtProtoInfo EPI; 7420 7421 // Build an exception specification pointing back at this member. 7422 EPI.ExceptionSpec.Type = EST_Unevaluated; 7423 EPI.ExceptionSpec.SourceDecl = MD; 7424 7425 // Set the calling convention to the default for C++ instance methods. 7426 EPI.ExtInfo = EPI.ExtInfo.withCallingConv( 7427 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, 7428 /*IsCXXMethod=*/true)); 7429 return EPI; 7430 } 7431 7432 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) { 7433 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 7434 if (FPT->getExceptionSpecType() != EST_Unevaluated) 7435 return; 7436 7437 // Evaluate the exception specification. 7438 auto IES = computeImplicitExceptionSpec(*this, Loc, FD); 7439 auto ESI = IES.getExceptionSpec(); 7440 7441 // Update the type of the special member to use it. 7442 UpdateExceptionSpec(FD, ESI); 7443 } 7444 7445 void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) { 7446 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted"); 7447 7448 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 7449 if (!DefKind) { 7450 assert(FD->getDeclContext()->isDependentContext()); 7451 return; 7452 } 7453 7454 if (DefKind.isComparison()) 7455 UnusedPrivateFields.clear(); 7456 7457 if (DefKind.isSpecialMember() 7458 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD), 7459 DefKind.asSpecialMember(), 7460 FD->getDefaultLoc()) 7461 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison())) 7462 FD->setInvalidDecl(); 7463 } 7464 7465 bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, 7466 CXXSpecialMember CSM, 7467 SourceLocation DefaultLoc) { 7468 CXXRecordDecl *RD = MD->getParent(); 7469 7470 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid && 7471 "not an explicitly-defaulted special member"); 7472 7473 // Defer all checking for special members of a dependent type. 7474 if (RD->isDependentType()) 7475 return false; 7476 7477 // Whether this was the first-declared instance of the constructor. 7478 // This affects whether we implicitly add an exception spec and constexpr. 7479 bool First = MD == MD->getCanonicalDecl(); 7480 7481 bool HadError = false; 7482 7483 // C++11 [dcl.fct.def.default]p1: 7484 // A function that is explicitly defaulted shall 7485 // -- be a special member function [...] (checked elsewhere), 7486 // -- have the same type (except for ref-qualifiers, and except that a 7487 // copy operation can take a non-const reference) as an implicit 7488 // declaration, and 7489 // -- not have default arguments. 7490 // C++2a changes the second bullet to instead delete the function if it's 7491 // defaulted on its first declaration, unless it's "an assignment operator, 7492 // and its return type differs or its parameter type is not a reference". 7493 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First; 7494 bool ShouldDeleteForTypeMismatch = false; 7495 unsigned ExpectedParams = 1; 7496 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor) 7497 ExpectedParams = 0; 7498 if (MD->getNumParams() != ExpectedParams) { 7499 // This checks for default arguments: a copy or move constructor with a 7500 // default argument is classified as a default constructor, and assignment 7501 // operations and destructors can't have default arguments. 7502 Diag(MD->getLocation(), diag::err_defaulted_special_member_params) 7503 << CSM << MD->getSourceRange(); 7504 HadError = true; 7505 } else if (MD->isVariadic()) { 7506 if (DeleteOnTypeMismatch) 7507 ShouldDeleteForTypeMismatch = true; 7508 else { 7509 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) 7510 << CSM << MD->getSourceRange(); 7511 HadError = true; 7512 } 7513 } 7514 7515 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>(); 7516 7517 bool CanHaveConstParam = false; 7518 if (CSM == CXXCopyConstructor) 7519 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); 7520 else if (CSM == CXXCopyAssignment) 7521 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); 7522 7523 QualType ReturnType = Context.VoidTy; 7524 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) { 7525 // Check for return type matching. 7526 ReturnType = Type->getReturnType(); 7527 7528 QualType DeclType = Context.getTypeDeclType(RD); 7529 DeclType = Context.getElaboratedType(ETK_None, nullptr, DeclType, nullptr); 7530 DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace()); 7531 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType); 7532 7533 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) { 7534 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) 7535 << (CSM == CXXMoveAssignment) << ExpectedReturnType; 7536 HadError = true; 7537 } 7538 7539 // A defaulted special member cannot have cv-qualifiers. 7540 if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) { 7541 if (DeleteOnTypeMismatch) 7542 ShouldDeleteForTypeMismatch = true; 7543 else { 7544 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) 7545 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14; 7546 HadError = true; 7547 } 7548 } 7549 } 7550 7551 // Check for parameter type matching. 7552 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType(); 7553 bool HasConstParam = false; 7554 if (ExpectedParams && ArgType->isReferenceType()) { 7555 // Argument must be reference to possibly-const T. 7556 QualType ReferentType = ArgType->getPointeeType(); 7557 HasConstParam = ReferentType.isConstQualified(); 7558 7559 if (ReferentType.isVolatileQualified()) { 7560 if (DeleteOnTypeMismatch) 7561 ShouldDeleteForTypeMismatch = true; 7562 else { 7563 Diag(MD->getLocation(), 7564 diag::err_defaulted_special_member_volatile_param) << CSM; 7565 HadError = true; 7566 } 7567 } 7568 7569 if (HasConstParam && !CanHaveConstParam) { 7570 if (DeleteOnTypeMismatch) 7571 ShouldDeleteForTypeMismatch = true; 7572 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) { 7573 Diag(MD->getLocation(), 7574 diag::err_defaulted_special_member_copy_const_param) 7575 << (CSM == CXXCopyAssignment); 7576 // FIXME: Explain why this special member can't be const. 7577 HadError = true; 7578 } else { 7579 Diag(MD->getLocation(), 7580 diag::err_defaulted_special_member_move_const_param) 7581 << (CSM == CXXMoveAssignment); 7582 HadError = true; 7583 } 7584 } 7585 } else if (ExpectedParams) { 7586 // A copy assignment operator can take its argument by value, but a 7587 // defaulted one cannot. 7588 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument"); 7589 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); 7590 HadError = true; 7591 } 7592 7593 // C++11 [dcl.fct.def.default]p2: 7594 // An explicitly-defaulted function may be declared constexpr only if it 7595 // would have been implicitly declared as constexpr, 7596 // Do not apply this rule to members of class templates, since core issue 1358 7597 // makes such functions always instantiate to constexpr functions. For 7598 // functions which cannot be constexpr (for non-constructors in C++11 and for 7599 // destructors in C++14 and C++17), this is checked elsewhere. 7600 // 7601 // FIXME: This should not apply if the member is deleted. 7602 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM, 7603 HasConstParam); 7604 7605 // C++14 [dcl.constexpr]p6 (CWG DR647/CWG DR1358): 7606 // If the instantiated template specialization of a constexpr function 7607 // template or member function of a class template would fail to satisfy 7608 // the requirements for a constexpr function or constexpr constructor, that 7609 // specialization is still a constexpr function or constexpr constructor, 7610 // even though a call to such a function cannot appear in a constant 7611 // expression. 7612 if (MD->isTemplateInstantiation() && MD->isConstexpr()) 7613 Constexpr = true; 7614 7615 if ((getLangOpts().CPlusPlus20 || 7616 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD) 7617 : isa<CXXConstructorDecl>(MD))) && 7618 MD->isConstexpr() && !Constexpr && 7619 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { 7620 Diag(MD->getBeginLoc(), MD->isConsteval() 7621 ? diag::err_incorrect_defaulted_consteval 7622 : diag::err_incorrect_defaulted_constexpr) 7623 << CSM; 7624 // FIXME: Explain why the special member can't be constexpr. 7625 HadError = true; 7626 } 7627 7628 if (First) { 7629 // C++2a [dcl.fct.def.default]p3: 7630 // If a function is explicitly defaulted on its first declaration, it is 7631 // implicitly considered to be constexpr if the implicit declaration 7632 // would be. 7633 MD->setConstexprKind(Constexpr ? (MD->isConsteval() 7634 ? ConstexprSpecKind::Consteval 7635 : ConstexprSpecKind::Constexpr) 7636 : ConstexprSpecKind::Unspecified); 7637 7638 if (!Type->hasExceptionSpec()) { 7639 // C++2a [except.spec]p3: 7640 // If a declaration of a function does not have a noexcept-specifier 7641 // [and] is defaulted on its first declaration, [...] the exception 7642 // specification is as specified below 7643 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); 7644 EPI.ExceptionSpec.Type = EST_Unevaluated; 7645 EPI.ExceptionSpec.SourceDecl = MD; 7646 MD->setType(Context.getFunctionType( 7647 ReturnType, llvm::ArrayRef(&ArgType, ExpectedParams), EPI)); 7648 } 7649 } 7650 7651 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) { 7652 if (First) { 7653 SetDeclDeleted(MD, MD->getLocation()); 7654 if (!inTemplateInstantiation() && !HadError) { 7655 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM; 7656 if (ShouldDeleteForTypeMismatch) { 7657 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM; 7658 } else if (ShouldDeleteSpecialMember(MD, CSM, nullptr, 7659 /*Diagnose*/ true) && 7660 DefaultLoc.isValid()) { 7661 Diag(DefaultLoc, diag::note_replace_equals_default_to_delete) 7662 << FixItHint::CreateReplacement(DefaultLoc, "delete"); 7663 } 7664 } 7665 if (ShouldDeleteForTypeMismatch && !HadError) { 7666 Diag(MD->getLocation(), 7667 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM; 7668 } 7669 } else { 7670 // C++11 [dcl.fct.def.default]p4: 7671 // [For a] user-provided explicitly-defaulted function [...] if such a 7672 // function is implicitly defined as deleted, the program is ill-formed. 7673 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM; 7674 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl"); 7675 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 7676 HadError = true; 7677 } 7678 } 7679 7680 return HadError; 7681 } 7682 7683 namespace { 7684 /// Helper class for building and checking a defaulted comparison. 7685 /// 7686 /// Defaulted functions are built in two phases: 7687 /// 7688 /// * First, the set of operations that the function will perform are 7689 /// identified, and some of them are checked. If any of the checked 7690 /// operations is invalid in certain ways, the comparison function is 7691 /// defined as deleted and no body is built. 7692 /// * Then, if the function is not defined as deleted, the body is built. 7693 /// 7694 /// This is accomplished by performing two visitation steps over the eventual 7695 /// body of the function. 7696 template<typename Derived, typename ResultList, typename Result, 7697 typename Subobject> 7698 class DefaultedComparisonVisitor { 7699 public: 7700 using DefaultedComparisonKind = Sema::DefaultedComparisonKind; 7701 7702 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7703 DefaultedComparisonKind DCK) 7704 : S(S), RD(RD), FD(FD), DCK(DCK) { 7705 if (auto *Info = FD->getDefaultedFunctionInfo()) { 7706 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an 7707 // UnresolvedSet to avoid this copy. 7708 Fns.assign(Info->getUnqualifiedLookups().begin(), 7709 Info->getUnqualifiedLookups().end()); 7710 } 7711 } 7712 7713 ResultList visit() { 7714 // The type of an lvalue naming a parameter of this function. 7715 QualType ParamLvalType = 7716 FD->getParamDecl(0)->getType().getNonReferenceType(); 7717 7718 ResultList Results; 7719 7720 switch (DCK) { 7721 case DefaultedComparisonKind::None: 7722 llvm_unreachable("not a defaulted comparison"); 7723 7724 case DefaultedComparisonKind::Equal: 7725 case DefaultedComparisonKind::ThreeWay: 7726 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers()); 7727 return Results; 7728 7729 case DefaultedComparisonKind::NotEqual: 7730 case DefaultedComparisonKind::Relational: 7731 Results.add(getDerived().visitExpandedSubobject( 7732 ParamLvalType, getDerived().getCompleteObject())); 7733 return Results; 7734 } 7735 llvm_unreachable(""); 7736 } 7737 7738 protected: 7739 Derived &getDerived() { return static_cast<Derived&>(*this); } 7740 7741 /// Visit the expanded list of subobjects of the given type, as specified in 7742 /// C++2a [class.compare.default]. 7743 /// 7744 /// \return \c true if the ResultList object said we're done, \c false if not. 7745 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record, 7746 Qualifiers Quals) { 7747 // C++2a [class.compare.default]p4: 7748 // The direct base class subobjects of C 7749 for (CXXBaseSpecifier &Base : Record->bases()) 7750 if (Results.add(getDerived().visitSubobject( 7751 S.Context.getQualifiedType(Base.getType(), Quals), 7752 getDerived().getBase(&Base)))) 7753 return true; 7754 7755 // followed by the non-static data members of C 7756 for (FieldDecl *Field : Record->fields()) { 7757 // Recursively expand anonymous structs. 7758 if (Field->isAnonymousStructOrUnion()) { 7759 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(), 7760 Quals)) 7761 return true; 7762 continue; 7763 } 7764 7765 // Figure out the type of an lvalue denoting this field. 7766 Qualifiers FieldQuals = Quals; 7767 if (Field->isMutable()) 7768 FieldQuals.removeConst(); 7769 QualType FieldType = 7770 S.Context.getQualifiedType(Field->getType(), FieldQuals); 7771 7772 if (Results.add(getDerived().visitSubobject( 7773 FieldType, getDerived().getField(Field)))) 7774 return true; 7775 } 7776 7777 // form a list of subobjects. 7778 return false; 7779 } 7780 7781 Result visitSubobject(QualType Type, Subobject Subobj) { 7782 // In that list, any subobject of array type is recursively expanded 7783 const ArrayType *AT = S.Context.getAsArrayType(Type); 7784 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT)) 7785 return getDerived().visitSubobjectArray(CAT->getElementType(), 7786 CAT->getSize(), Subobj); 7787 return getDerived().visitExpandedSubobject(Type, Subobj); 7788 } 7789 7790 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size, 7791 Subobject Subobj) { 7792 return getDerived().visitSubobject(Type, Subobj); 7793 } 7794 7795 protected: 7796 Sema &S; 7797 CXXRecordDecl *RD; 7798 FunctionDecl *FD; 7799 DefaultedComparisonKind DCK; 7800 UnresolvedSet<16> Fns; 7801 }; 7802 7803 /// Information about a defaulted comparison, as determined by 7804 /// DefaultedComparisonAnalyzer. 7805 struct DefaultedComparisonInfo { 7806 bool Deleted = false; 7807 bool Constexpr = true; 7808 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering; 7809 7810 static DefaultedComparisonInfo deleted() { 7811 DefaultedComparisonInfo Deleted; 7812 Deleted.Deleted = true; 7813 return Deleted; 7814 } 7815 7816 bool add(const DefaultedComparisonInfo &R) { 7817 Deleted |= R.Deleted; 7818 Constexpr &= R.Constexpr; 7819 Category = commonComparisonType(Category, R.Category); 7820 return Deleted; 7821 } 7822 }; 7823 7824 /// An element in the expanded list of subobjects of a defaulted comparison, as 7825 /// specified in C++2a [class.compare.default]p4. 7826 struct DefaultedComparisonSubobject { 7827 enum { CompleteObject, Member, Base } Kind; 7828 NamedDecl *Decl; 7829 SourceLocation Loc; 7830 }; 7831 7832 /// A visitor over the notional body of a defaulted comparison that determines 7833 /// whether that body would be deleted or constexpr. 7834 class DefaultedComparisonAnalyzer 7835 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer, 7836 DefaultedComparisonInfo, 7837 DefaultedComparisonInfo, 7838 DefaultedComparisonSubobject> { 7839 public: 7840 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr }; 7841 7842 private: 7843 DiagnosticKind Diagnose; 7844 7845 public: 7846 using Base = DefaultedComparisonVisitor; 7847 using Result = DefaultedComparisonInfo; 7848 using Subobject = DefaultedComparisonSubobject; 7849 7850 friend Base; 7851 7852 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7853 DefaultedComparisonKind DCK, 7854 DiagnosticKind Diagnose = NoDiagnostics) 7855 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {} 7856 7857 Result visit() { 7858 if ((DCK == DefaultedComparisonKind::Equal || 7859 DCK == DefaultedComparisonKind::ThreeWay) && 7860 RD->hasVariantMembers()) { 7861 // C++2a [class.compare.default]p2 [P2002R0]: 7862 // A defaulted comparison operator function for class C is defined as 7863 // deleted if [...] C has variant members. 7864 if (Diagnose == ExplainDeleted) { 7865 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union) 7866 << FD << RD->isUnion() << RD; 7867 } 7868 return Result::deleted(); 7869 } 7870 7871 return Base::visit(); 7872 } 7873 7874 private: 7875 Subobject getCompleteObject() { 7876 return Subobject{Subobject::CompleteObject, RD, FD->getLocation()}; 7877 } 7878 7879 Subobject getBase(CXXBaseSpecifier *Base) { 7880 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(), 7881 Base->getBaseTypeLoc()}; 7882 } 7883 7884 Subobject getField(FieldDecl *Field) { 7885 return Subobject{Subobject::Member, Field, Field->getLocation()}; 7886 } 7887 7888 Result visitExpandedSubobject(QualType Type, Subobject Subobj) { 7889 // C++2a [class.compare.default]p2 [P2002R0]: 7890 // A defaulted <=> or == operator function for class C is defined as 7891 // deleted if any non-static data member of C is of reference type 7892 if (Type->isReferenceType()) { 7893 if (Diagnose == ExplainDeleted) { 7894 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member) 7895 << FD << RD; 7896 } 7897 return Result::deleted(); 7898 } 7899 7900 // [...] Let xi be an lvalue denoting the ith element [...] 7901 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue); 7902 Expr *Args[] = {&Xi, &Xi}; 7903 7904 // All operators start by trying to apply that same operator recursively. 7905 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 7906 assert(OO != OO_None && "not an overloaded operator!"); 7907 return visitBinaryOperator(OO, Args, Subobj); 7908 } 7909 7910 Result 7911 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args, 7912 Subobject Subobj, 7913 OverloadCandidateSet *SpaceshipCandidates = nullptr) { 7914 // Note that there is no need to consider rewritten candidates here if 7915 // we've already found there is no viable 'operator<=>' candidate (and are 7916 // considering synthesizing a '<=>' from '==' and '<'). 7917 OverloadCandidateSet CandidateSet( 7918 FD->getLocation(), OverloadCandidateSet::CSK_Operator, 7919 OverloadCandidateSet::OperatorRewriteInfo( 7920 OO, FD->getLocation(), 7921 /*AllowRewrittenCandidates=*/!SpaceshipCandidates)); 7922 7923 /// C++2a [class.compare.default]p1 [P2002R0]: 7924 /// [...] the defaulted function itself is never a candidate for overload 7925 /// resolution [...] 7926 CandidateSet.exclude(FD); 7927 7928 if (Args[0]->getType()->isOverloadableType()) 7929 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args); 7930 else 7931 // FIXME: We determine whether this is a valid expression by checking to 7932 // see if there's a viable builtin operator candidate for it. That isn't 7933 // really what the rules ask us to do, but should give the right results. 7934 S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet); 7935 7936 Result R; 7937 7938 OverloadCandidateSet::iterator Best; 7939 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) { 7940 case OR_Success: { 7941 // C++2a [class.compare.secondary]p2 [P2002R0]: 7942 // The operator function [...] is defined as deleted if [...] the 7943 // candidate selected by overload resolution is not a rewritten 7944 // candidate. 7945 if ((DCK == DefaultedComparisonKind::NotEqual || 7946 DCK == DefaultedComparisonKind::Relational) && 7947 !Best->RewriteKind) { 7948 if (Diagnose == ExplainDeleted) { 7949 if (Best->Function) { 7950 S.Diag(Best->Function->getLocation(), 7951 diag::note_defaulted_comparison_not_rewritten_callee) 7952 << FD; 7953 } else { 7954 assert(Best->Conversions.size() == 2 && 7955 Best->Conversions[0].isUserDefined() && 7956 "non-user-defined conversion from class to built-in " 7957 "comparison"); 7958 S.Diag(Best->Conversions[0] 7959 .UserDefined.FoundConversionFunction.getDecl() 7960 ->getLocation(), 7961 diag::note_defaulted_comparison_not_rewritten_conversion) 7962 << FD; 7963 } 7964 } 7965 return Result::deleted(); 7966 } 7967 7968 // Throughout C++2a [class.compare]: if overload resolution does not 7969 // result in a usable function, the candidate function is defined as 7970 // deleted. This requires that we selected an accessible function. 7971 // 7972 // Note that this only considers the access of the function when named 7973 // within the type of the subobject, and not the access path for any 7974 // derived-to-base conversion. 7975 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl(); 7976 if (ArgClass && Best->FoundDecl.getDecl() && 7977 Best->FoundDecl.getDecl()->isCXXClassMember()) { 7978 QualType ObjectType = Subobj.Kind == Subobject::Member 7979 ? Args[0]->getType() 7980 : S.Context.getRecordType(RD); 7981 if (!S.isMemberAccessibleForDeletion( 7982 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc, 7983 Diagnose == ExplainDeleted 7984 ? S.PDiag(diag::note_defaulted_comparison_inaccessible) 7985 << FD << Subobj.Kind << Subobj.Decl 7986 : S.PDiag())) 7987 return Result::deleted(); 7988 } 7989 7990 bool NeedsDeducing = 7991 OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType(); 7992 7993 if (FunctionDecl *BestFD = Best->Function) { 7994 // C++2a [class.compare.default]p3 [P2002R0]: 7995 // A defaulted comparison function is constexpr-compatible if 7996 // [...] no overlod resolution performed [...] results in a 7997 // non-constexpr function. 7998 assert(!BestFD->isDeleted() && "wrong overload resolution result"); 7999 // If it's not constexpr, explain why not. 8000 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) { 8001 if (Subobj.Kind != Subobject::CompleteObject) 8002 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr) 8003 << Subobj.Kind << Subobj.Decl; 8004 S.Diag(BestFD->getLocation(), 8005 diag::note_defaulted_comparison_not_constexpr_here); 8006 // Bail out after explaining; we don't want any more notes. 8007 return Result::deleted(); 8008 } 8009 R.Constexpr &= BestFD->isConstexpr(); 8010 8011 if (NeedsDeducing) { 8012 // If any callee has an undeduced return type, deduce it now. 8013 // FIXME: It's not clear how a failure here should be handled. For 8014 // now, we produce an eager diagnostic, because that is forward 8015 // compatible with most (all?) other reasonable options. 8016 if (BestFD->getReturnType()->isUndeducedType() && 8017 S.DeduceReturnType(BestFD, FD->getLocation(), 8018 /*Diagnose=*/false)) { 8019 // Don't produce a duplicate error when asked to explain why the 8020 // comparison is deleted: we diagnosed that when initially checking 8021 // the defaulted operator. 8022 if (Diagnose == NoDiagnostics) { 8023 S.Diag( 8024 FD->getLocation(), 8025 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto) 8026 << Subobj.Kind << Subobj.Decl; 8027 S.Diag( 8028 Subobj.Loc, 8029 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto) 8030 << Subobj.Kind << Subobj.Decl; 8031 S.Diag(BestFD->getLocation(), 8032 diag::note_defaulted_comparison_cannot_deduce_callee) 8033 << Subobj.Kind << Subobj.Decl; 8034 } 8035 return Result::deleted(); 8036 } 8037 auto *Info = S.Context.CompCategories.lookupInfoForType( 8038 BestFD->getCallResultType()); 8039 if (!Info) { 8040 if (Diagnose == ExplainDeleted) { 8041 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce) 8042 << Subobj.Kind << Subobj.Decl 8043 << BestFD->getCallResultType().withoutLocalFastQualifiers(); 8044 S.Diag(BestFD->getLocation(), 8045 diag::note_defaulted_comparison_cannot_deduce_callee) 8046 << Subobj.Kind << Subobj.Decl; 8047 } 8048 return Result::deleted(); 8049 } 8050 R.Category = Info->Kind; 8051 } 8052 } else { 8053 QualType T = Best->BuiltinParamTypes[0]; 8054 assert(T == Best->BuiltinParamTypes[1] && 8055 "builtin comparison for different types?"); 8056 assert(Best->BuiltinParamTypes[2].isNull() && 8057 "invalid builtin comparison"); 8058 8059 if (NeedsDeducing) { 8060 std::optional<ComparisonCategoryType> Cat = 8061 getComparisonCategoryForBuiltinCmp(T); 8062 assert(Cat && "no category for builtin comparison?"); 8063 R.Category = *Cat; 8064 } 8065 } 8066 8067 // Note that we might be rewriting to a different operator. That call is 8068 // not considered until we come to actually build the comparison function. 8069 break; 8070 } 8071 8072 case OR_Ambiguous: 8073 if (Diagnose == ExplainDeleted) { 8074 unsigned Kind = 0; 8075 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship) 8076 Kind = OO == OO_EqualEqual ? 1 : 2; 8077 CandidateSet.NoteCandidates( 8078 PartialDiagnosticAt( 8079 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous) 8080 << FD << Kind << Subobj.Kind << Subobj.Decl), 8081 S, OCD_AmbiguousCandidates, Args); 8082 } 8083 R = Result::deleted(); 8084 break; 8085 8086 case OR_Deleted: 8087 if (Diagnose == ExplainDeleted) { 8088 if ((DCK == DefaultedComparisonKind::NotEqual || 8089 DCK == DefaultedComparisonKind::Relational) && 8090 !Best->RewriteKind) { 8091 S.Diag(Best->Function->getLocation(), 8092 diag::note_defaulted_comparison_not_rewritten_callee) 8093 << FD; 8094 } else { 8095 S.Diag(Subobj.Loc, 8096 diag::note_defaulted_comparison_calls_deleted) 8097 << FD << Subobj.Kind << Subobj.Decl; 8098 S.NoteDeletedFunction(Best->Function); 8099 } 8100 } 8101 R = Result::deleted(); 8102 break; 8103 8104 case OR_No_Viable_Function: 8105 // If there's no usable candidate, we're done unless we can rewrite a 8106 // '<=>' in terms of '==' and '<'. 8107 if (OO == OO_Spaceship && 8108 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) { 8109 // For any kind of comparison category return type, we need a usable 8110 // '==' and a usable '<'. 8111 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj, 8112 &CandidateSet))) 8113 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet)); 8114 break; 8115 } 8116 8117 if (Diagnose == ExplainDeleted) { 8118 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function) 8119 << FD << (OO == OO_ExclaimEqual) << Subobj.Kind << Subobj.Decl; 8120 8121 // For a three-way comparison, list both the candidates for the 8122 // original operator and the candidates for the synthesized operator. 8123 if (SpaceshipCandidates) { 8124 SpaceshipCandidates->NoteCandidates( 8125 S, Args, 8126 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates, 8127 Args, FD->getLocation())); 8128 S.Diag(Subobj.Loc, 8129 diag::note_defaulted_comparison_no_viable_function_synthesized) 8130 << (OO == OO_EqualEqual ? 0 : 1); 8131 } 8132 8133 CandidateSet.NoteCandidates( 8134 S, Args, 8135 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args, 8136 FD->getLocation())); 8137 } 8138 R = Result::deleted(); 8139 break; 8140 } 8141 8142 return R; 8143 } 8144 }; 8145 8146 /// A list of statements. 8147 struct StmtListResult { 8148 bool IsInvalid = false; 8149 llvm::SmallVector<Stmt*, 16> Stmts; 8150 8151 bool add(const StmtResult &S) { 8152 IsInvalid |= S.isInvalid(); 8153 if (IsInvalid) 8154 return true; 8155 Stmts.push_back(S.get()); 8156 return false; 8157 } 8158 }; 8159 8160 /// A visitor over the notional body of a defaulted comparison that synthesizes 8161 /// the actual body. 8162 class DefaultedComparisonSynthesizer 8163 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer, 8164 StmtListResult, StmtResult, 8165 std::pair<ExprResult, ExprResult>> { 8166 SourceLocation Loc; 8167 unsigned ArrayDepth = 0; 8168 8169 public: 8170 using Base = DefaultedComparisonVisitor; 8171 using ExprPair = std::pair<ExprResult, ExprResult>; 8172 8173 friend Base; 8174 8175 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 8176 DefaultedComparisonKind DCK, 8177 SourceLocation BodyLoc) 8178 : Base(S, RD, FD, DCK), Loc(BodyLoc) {} 8179 8180 /// Build a suitable function body for this defaulted comparison operator. 8181 StmtResult build() { 8182 Sema::CompoundScopeRAII CompoundScope(S); 8183 8184 StmtListResult Stmts = visit(); 8185 if (Stmts.IsInvalid) 8186 return StmtError(); 8187 8188 ExprResult RetVal; 8189 switch (DCK) { 8190 case DefaultedComparisonKind::None: 8191 llvm_unreachable("not a defaulted comparison"); 8192 8193 case DefaultedComparisonKind::Equal: { 8194 // C++2a [class.eq]p3: 8195 // [...] compar[e] the corresponding elements [...] until the first 8196 // index i where xi == yi yields [...] false. If no such index exists, 8197 // V is true. Otherwise, V is false. 8198 // 8199 // Join the comparisons with '&&'s and return the result. Use a right 8200 // fold (traversing the conditions right-to-left), because that 8201 // short-circuits more naturally. 8202 auto OldStmts = std::move(Stmts.Stmts); 8203 Stmts.Stmts.clear(); 8204 ExprResult CmpSoFar; 8205 // Finish a particular comparison chain. 8206 auto FinishCmp = [&] { 8207 if (Expr *Prior = CmpSoFar.get()) { 8208 // Convert the last expression to 'return ...;' 8209 if (RetVal.isUnset() && Stmts.Stmts.empty()) 8210 RetVal = CmpSoFar; 8211 // Convert any prior comparison to 'if (!(...)) return false;' 8212 else if (Stmts.add(buildIfNotCondReturnFalse(Prior))) 8213 return true; 8214 CmpSoFar = ExprResult(); 8215 } 8216 return false; 8217 }; 8218 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) { 8219 Expr *E = dyn_cast<Expr>(EAsStmt); 8220 if (!E) { 8221 // Found an array comparison. 8222 if (FinishCmp() || Stmts.add(EAsStmt)) 8223 return StmtError(); 8224 continue; 8225 } 8226 8227 if (CmpSoFar.isUnset()) { 8228 CmpSoFar = E; 8229 continue; 8230 } 8231 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get()); 8232 if (CmpSoFar.isInvalid()) 8233 return StmtError(); 8234 } 8235 if (FinishCmp()) 8236 return StmtError(); 8237 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end()); 8238 // If no such index exists, V is true. 8239 if (RetVal.isUnset()) 8240 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true); 8241 break; 8242 } 8243 8244 case DefaultedComparisonKind::ThreeWay: { 8245 // Per C++2a [class.spaceship]p3, as a fallback add: 8246 // return static_cast<R>(std::strong_ordering::equal); 8247 QualType StrongOrdering = S.CheckComparisonCategoryType( 8248 ComparisonCategoryType::StrongOrdering, Loc, 8249 Sema::ComparisonCategoryUsage::DefaultedOperator); 8250 if (StrongOrdering.isNull()) 8251 return StmtError(); 8252 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering) 8253 .getValueInfo(ComparisonCategoryResult::Equal) 8254 ->VD; 8255 RetVal = getDecl(EqualVD); 8256 if (RetVal.isInvalid()) 8257 return StmtError(); 8258 RetVal = buildStaticCastToR(RetVal.get()); 8259 break; 8260 } 8261 8262 case DefaultedComparisonKind::NotEqual: 8263 case DefaultedComparisonKind::Relational: 8264 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val()); 8265 break; 8266 } 8267 8268 // Build the final return statement. 8269 if (RetVal.isInvalid()) 8270 return StmtError(); 8271 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get()); 8272 if (ReturnStmt.isInvalid()) 8273 return StmtError(); 8274 Stmts.Stmts.push_back(ReturnStmt.get()); 8275 8276 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false); 8277 } 8278 8279 private: 8280 ExprResult getDecl(ValueDecl *VD) { 8281 return S.BuildDeclarationNameExpr( 8282 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD); 8283 } 8284 8285 ExprResult getParam(unsigned I) { 8286 ParmVarDecl *PD = FD->getParamDecl(I); 8287 return getDecl(PD); 8288 } 8289 8290 ExprPair getCompleteObject() { 8291 unsigned Param = 0; 8292 ExprResult LHS; 8293 if (isa<CXXMethodDecl>(FD)) { 8294 // LHS is '*this'. 8295 LHS = S.ActOnCXXThis(Loc); 8296 if (!LHS.isInvalid()) 8297 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get()); 8298 } else { 8299 LHS = getParam(Param++); 8300 } 8301 ExprResult RHS = getParam(Param++); 8302 assert(Param == FD->getNumParams()); 8303 return {LHS, RHS}; 8304 } 8305 8306 ExprPair getBase(CXXBaseSpecifier *Base) { 8307 ExprPair Obj = getCompleteObject(); 8308 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8309 return {ExprError(), ExprError()}; 8310 CXXCastPath Path = {Base}; 8311 return {S.ImpCastExprToType(Obj.first.get(), Base->getType(), 8312 CK_DerivedToBase, VK_LValue, &Path), 8313 S.ImpCastExprToType(Obj.second.get(), Base->getType(), 8314 CK_DerivedToBase, VK_LValue, &Path)}; 8315 } 8316 8317 ExprPair getField(FieldDecl *Field) { 8318 ExprPair Obj = getCompleteObject(); 8319 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8320 return {ExprError(), ExprError()}; 8321 8322 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess()); 8323 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc); 8324 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc, 8325 CXXScopeSpec(), Field, Found, NameInfo), 8326 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc, 8327 CXXScopeSpec(), Field, Found, NameInfo)}; 8328 } 8329 8330 // FIXME: When expanding a subobject, register a note in the code synthesis 8331 // stack to say which subobject we're comparing. 8332 8333 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) { 8334 if (Cond.isInvalid()) 8335 return StmtError(); 8336 8337 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get()); 8338 if (NotCond.isInvalid()) 8339 return StmtError(); 8340 8341 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false); 8342 assert(!False.isInvalid() && "should never fail"); 8343 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get()); 8344 if (ReturnFalse.isInvalid()) 8345 return StmtError(); 8346 8347 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, nullptr, 8348 S.ActOnCondition(nullptr, Loc, NotCond.get(), 8349 Sema::ConditionKind::Boolean), 8350 Loc, ReturnFalse.get(), SourceLocation(), nullptr); 8351 } 8352 8353 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size, 8354 ExprPair Subobj) { 8355 QualType SizeType = S.Context.getSizeType(); 8356 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType)); 8357 8358 // Build 'size_t i$n = 0'. 8359 IdentifierInfo *IterationVarName = nullptr; 8360 { 8361 SmallString<8> Str; 8362 llvm::raw_svector_ostream OS(Str); 8363 OS << "i" << ArrayDepth; 8364 IterationVarName = &S.Context.Idents.get(OS.str()); 8365 } 8366 VarDecl *IterationVar = VarDecl::Create( 8367 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType, 8368 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None); 8369 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 8370 IterationVar->setInit( 8371 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 8372 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc); 8373 8374 auto IterRef = [&] { 8375 ExprResult Ref = S.BuildDeclarationNameExpr( 8376 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc), 8377 IterationVar); 8378 assert(!Ref.isInvalid() && "can't reference our own variable?"); 8379 return Ref.get(); 8380 }; 8381 8382 // Build 'i$n != Size'. 8383 ExprResult Cond = S.CreateBuiltinBinOp( 8384 Loc, BO_NE, IterRef(), 8385 IntegerLiteral::Create(S.Context, Size, SizeType, Loc)); 8386 assert(!Cond.isInvalid() && "should never fail"); 8387 8388 // Build '++i$n'. 8389 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef()); 8390 assert(!Inc.isInvalid() && "should never fail"); 8391 8392 // Build 'a[i$n]' and 'b[i$n]'. 8393 auto Index = [&](ExprResult E) { 8394 if (E.isInvalid()) 8395 return ExprError(); 8396 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc); 8397 }; 8398 Subobj.first = Index(Subobj.first); 8399 Subobj.second = Index(Subobj.second); 8400 8401 // Compare the array elements. 8402 ++ArrayDepth; 8403 StmtResult Substmt = visitSubobject(Type, Subobj); 8404 --ArrayDepth; 8405 8406 if (Substmt.isInvalid()) 8407 return StmtError(); 8408 8409 // For the inner level of an 'operator==', build 'if (!cmp) return false;'. 8410 // For outer levels or for an 'operator<=>' we already have a suitable 8411 // statement that returns as necessary. 8412 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) { 8413 assert(DCK == DefaultedComparisonKind::Equal && 8414 "should have non-expression statement"); 8415 Substmt = buildIfNotCondReturnFalse(ElemCmp); 8416 if (Substmt.isInvalid()) 8417 return StmtError(); 8418 } 8419 8420 // Build 'for (...) ...' 8421 return S.ActOnForStmt(Loc, Loc, Init, 8422 S.ActOnCondition(nullptr, Loc, Cond.get(), 8423 Sema::ConditionKind::Boolean), 8424 S.MakeFullDiscardedValueExpr(Inc.get()), Loc, 8425 Substmt.get()); 8426 } 8427 8428 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) { 8429 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8430 return StmtError(); 8431 8432 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 8433 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO); 8434 ExprResult Op; 8435 if (Type->isOverloadableType()) 8436 Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(), 8437 Obj.second.get(), /*PerformADL=*/true, 8438 /*AllowRewrittenCandidates=*/true, FD); 8439 else 8440 Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get()); 8441 if (Op.isInvalid()) 8442 return StmtError(); 8443 8444 switch (DCK) { 8445 case DefaultedComparisonKind::None: 8446 llvm_unreachable("not a defaulted comparison"); 8447 8448 case DefaultedComparisonKind::Equal: 8449 // Per C++2a [class.eq]p2, each comparison is individually contextually 8450 // converted to bool. 8451 Op = S.PerformContextuallyConvertToBool(Op.get()); 8452 if (Op.isInvalid()) 8453 return StmtError(); 8454 return Op.get(); 8455 8456 case DefaultedComparisonKind::ThreeWay: { 8457 // Per C++2a [class.spaceship]p3, form: 8458 // if (R cmp = static_cast<R>(op); cmp != 0) 8459 // return cmp; 8460 QualType R = FD->getReturnType(); 8461 Op = buildStaticCastToR(Op.get()); 8462 if (Op.isInvalid()) 8463 return StmtError(); 8464 8465 // R cmp = ...; 8466 IdentifierInfo *Name = &S.Context.Idents.get("cmp"); 8467 VarDecl *VD = 8468 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R, 8469 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None); 8470 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false); 8471 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc); 8472 8473 // cmp != 0 8474 ExprResult VDRef = getDecl(VD); 8475 if (VDRef.isInvalid()) 8476 return StmtError(); 8477 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0); 8478 Expr *Zero = 8479 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc); 8480 ExprResult Comp; 8481 if (VDRef.get()->getType()->isOverloadableType()) 8482 Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true, 8483 true, FD); 8484 else 8485 Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero); 8486 if (Comp.isInvalid()) 8487 return StmtError(); 8488 Sema::ConditionResult Cond = S.ActOnCondition( 8489 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean); 8490 if (Cond.isInvalid()) 8491 return StmtError(); 8492 8493 // return cmp; 8494 VDRef = getDecl(VD); 8495 if (VDRef.isInvalid()) 8496 return StmtError(); 8497 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get()); 8498 if (ReturnStmt.isInvalid()) 8499 return StmtError(); 8500 8501 // if (...) 8502 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, InitStmt, Cond, 8503 Loc, ReturnStmt.get(), 8504 /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr); 8505 } 8506 8507 case DefaultedComparisonKind::NotEqual: 8508 case DefaultedComparisonKind::Relational: 8509 // C++2a [class.compare.secondary]p2: 8510 // Otherwise, the operator function yields x @ y. 8511 return Op.get(); 8512 } 8513 llvm_unreachable(""); 8514 } 8515 8516 /// Build "static_cast<R>(E)". 8517 ExprResult buildStaticCastToR(Expr *E) { 8518 QualType R = FD->getReturnType(); 8519 assert(!R->isUndeducedType() && "type should have been deduced already"); 8520 8521 // Don't bother forming a no-op cast in the common case. 8522 if (E->isPRValue() && S.Context.hasSameType(E->getType(), R)) 8523 return E; 8524 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast, 8525 S.Context.getTrivialTypeSourceInfo(R, Loc), E, 8526 SourceRange(Loc, Loc), SourceRange(Loc, Loc)); 8527 } 8528 }; 8529 } 8530 8531 /// Perform the unqualified lookups that might be needed to form a defaulted 8532 /// comparison function for the given operator. 8533 static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S, 8534 UnresolvedSetImpl &Operators, 8535 OverloadedOperatorKind Op) { 8536 auto Lookup = [&](OverloadedOperatorKind OO) { 8537 Self.LookupOverloadedOperatorName(OO, S, Operators); 8538 }; 8539 8540 // Every defaulted operator looks up itself. 8541 Lookup(Op); 8542 // ... and the rewritten form of itself, if any. 8543 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op)) 8544 Lookup(ExtraOp); 8545 8546 // For 'operator<=>', we also form a 'cmp != 0' expression, and might 8547 // synthesize a three-way comparison from '<' and '=='. In a dependent 8548 // context, we also need to look up '==' in case we implicitly declare a 8549 // defaulted 'operator=='. 8550 if (Op == OO_Spaceship) { 8551 Lookup(OO_ExclaimEqual); 8552 Lookup(OO_Less); 8553 Lookup(OO_EqualEqual); 8554 } 8555 } 8556 8557 bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD, 8558 DefaultedComparisonKind DCK) { 8559 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison"); 8560 8561 // Perform any unqualified lookups we're going to need to default this 8562 // function. 8563 if (S) { 8564 UnresolvedSet<32> Operators; 8565 lookupOperatorsForDefaultedComparison(*this, S, Operators, 8566 FD->getOverloadedOperator()); 8567 FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create( 8568 Context, Operators.pairs())); 8569 } 8570 8571 // C++2a [class.compare.default]p1: 8572 // A defaulted comparison operator function for some class C shall be a 8573 // non-template function declared in the member-specification of C that is 8574 // -- a non-static const member of C having one parameter of type 8575 // const C&, or 8576 // -- a friend of C having two parameters of type const C& or two 8577 // parameters of type C. 8578 8579 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()); 8580 bool IsMethod = isa<CXXMethodDecl>(FD); 8581 if (IsMethod) { 8582 auto *MD = cast<CXXMethodDecl>(FD); 8583 assert(!MD->isStatic() && "comparison function cannot be a static member"); 8584 8585 // If we're out-of-class, this is the class we're comparing. 8586 if (!RD) 8587 RD = MD->getParent(); 8588 8589 if (!MD->isConst()) { 8590 SourceLocation InsertLoc; 8591 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc()) 8592 InsertLoc = getLocForEndOfToken(Loc.getRParenLoc()); 8593 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8594 // corresponding defaulted 'operator<=>' already. 8595 if (!MD->isImplicit()) { 8596 Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const) 8597 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const"); 8598 } 8599 8600 // Add the 'const' to the type to recover. 8601 const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); 8602 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8603 EPI.TypeQuals.addConst(); 8604 MD->setType(Context.getFunctionType(FPT->getReturnType(), 8605 FPT->getParamTypes(), EPI)); 8606 } 8607 } 8608 8609 if (FD->getNumParams() != (IsMethod ? 1 : 2)) { 8610 // Let's not worry about using a variadic template pack here -- who would do 8611 // such a thing? 8612 Diag(FD->getLocation(), diag::err_defaulted_comparison_num_args) 8613 << int(IsMethod) << int(DCK); 8614 return true; 8615 } 8616 8617 const ParmVarDecl *KnownParm = nullptr; 8618 for (const ParmVarDecl *Param : FD->parameters()) { 8619 QualType ParmTy = Param->getType(); 8620 if (ParmTy->isDependentType()) 8621 continue; 8622 if (!KnownParm) { 8623 auto CTy = ParmTy; 8624 // Is it `T const &`? 8625 bool Ok = !IsMethod; 8626 QualType ExpectedTy; 8627 if (RD) 8628 ExpectedTy = Context.getRecordType(RD); 8629 if (auto *Ref = CTy->getAs<ReferenceType>()) { 8630 CTy = Ref->getPointeeType(); 8631 if (RD) 8632 ExpectedTy.addConst(); 8633 Ok = true; 8634 } 8635 8636 // Is T a class? 8637 if (!Ok) { 8638 } else if (RD) { 8639 if (!RD->isDependentType() && !Context.hasSameType(CTy, ExpectedTy)) 8640 Ok = false; 8641 } else if (auto *CRD = CTy->getAsRecordDecl()) { 8642 RD = cast<CXXRecordDecl>(CRD); 8643 } else { 8644 Ok = false; 8645 } 8646 8647 if (Ok) { 8648 KnownParm = Param; 8649 } else { 8650 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8651 // corresponding defaulted 'operator<=>' already. 8652 if (!FD->isImplicit()) { 8653 if (RD) { 8654 QualType PlainTy = Context.getRecordType(RD); 8655 QualType RefTy = 8656 Context.getLValueReferenceType(PlainTy.withConst()); 8657 Diag(FD->getLocation(), diag::err_defaulted_comparison_param) 8658 << int(DCK) << ParmTy << RefTy << int(!IsMethod) << PlainTy 8659 << Param->getSourceRange(); 8660 } else { 8661 assert(!IsMethod && "should know expected type for method"); 8662 Diag(FD->getLocation(), 8663 diag::err_defaulted_comparison_param_unknown) 8664 << int(DCK) << ParmTy << Param->getSourceRange(); 8665 } 8666 } 8667 return true; 8668 } 8669 } else if (!Context.hasSameType(KnownParm->getType(), ParmTy)) { 8670 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch) 8671 << int(DCK) << KnownParm->getType() << KnownParm->getSourceRange() 8672 << ParmTy << Param->getSourceRange(); 8673 return true; 8674 } 8675 } 8676 8677 assert(RD && "must have determined class"); 8678 if (IsMethod) { 8679 } else if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 8680 // In-class, must be a friend decl. 8681 assert(FD->getFriendObjectKind() && "expected a friend declaration"); 8682 } else { 8683 // Out of class, require the defaulted comparison to be a friend (of a 8684 // complete type). 8685 if (RequireCompleteType(FD->getLocation(), Context.getRecordType(RD), 8686 diag::err_defaulted_comparison_not_friend, int(DCK), 8687 int(1))) 8688 return true; 8689 8690 if (llvm::none_of(RD->friends(), [&](const FriendDecl *F) { 8691 return FD->getCanonicalDecl() == 8692 F->getFriendDecl()->getCanonicalDecl(); 8693 })) { 8694 Diag(FD->getLocation(), diag::err_defaulted_comparison_not_friend) 8695 << int(DCK) << int(0) << RD; 8696 Diag(RD->getCanonicalDecl()->getLocation(), diag::note_declared_at); 8697 return true; 8698 } 8699 } 8700 8701 // C++2a [class.eq]p1, [class.rel]p1: 8702 // A [defaulted comparison other than <=>] shall have a declared return 8703 // type bool. 8704 if (DCK != DefaultedComparisonKind::ThreeWay && 8705 !FD->getDeclaredReturnType()->isDependentType() && 8706 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) { 8707 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool) 8708 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy 8709 << FD->getReturnTypeSourceRange(); 8710 return true; 8711 } 8712 // C++2a [class.spaceship]p2 [P2002R0]: 8713 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise, 8714 // R shall not contain a placeholder type. 8715 if (QualType RT = FD->getDeclaredReturnType(); 8716 DCK == DefaultedComparisonKind::ThreeWay && 8717 RT->getContainedDeducedType() && 8718 (!Context.hasSameType(RT, Context.getAutoDeductType()) || 8719 RT->getContainedAutoType()->isConstrained())) { 8720 Diag(FD->getLocation(), 8721 diag::err_defaulted_comparison_deduced_return_type_not_auto) 8722 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy 8723 << FD->getReturnTypeSourceRange(); 8724 return true; 8725 } 8726 8727 // For a defaulted function in a dependent class, defer all remaining checks 8728 // until instantiation. 8729 if (RD->isDependentType()) 8730 return false; 8731 8732 // Determine whether the function should be defined as deleted. 8733 DefaultedComparisonInfo Info = 8734 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit(); 8735 8736 bool First = FD == FD->getCanonicalDecl(); 8737 8738 if (!First) { 8739 if (Info.Deleted) { 8740 // C++11 [dcl.fct.def.default]p4: 8741 // [For a] user-provided explicitly-defaulted function [...] if such a 8742 // function is implicitly defined as deleted, the program is ill-formed. 8743 // 8744 // This is really just a consequence of the general rule that you can 8745 // only delete a function on its first declaration. 8746 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes) 8747 << FD->isImplicit() << (int)DCK; 8748 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8749 DefaultedComparisonAnalyzer::ExplainDeleted) 8750 .visit(); 8751 return true; 8752 } 8753 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 8754 // C++20 [class.compare.default]p1: 8755 // [...] A definition of a comparison operator as defaulted that appears 8756 // in a class shall be the first declaration of that function. 8757 Diag(FD->getLocation(), diag::err_non_first_default_compare_in_class) 8758 << (int)DCK; 8759 Diag(FD->getCanonicalDecl()->getLocation(), 8760 diag::note_previous_declaration); 8761 return true; 8762 } 8763 } 8764 8765 // If we want to delete the function, then do so; there's nothing else to 8766 // check in that case. 8767 if (Info.Deleted) { 8768 SetDeclDeleted(FD, FD->getLocation()); 8769 if (!inTemplateInstantiation() && !FD->isImplicit()) { 8770 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted) 8771 << (int)DCK; 8772 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8773 DefaultedComparisonAnalyzer::ExplainDeleted) 8774 .visit(); 8775 if (FD->getDefaultLoc().isValid()) 8776 Diag(FD->getDefaultLoc(), diag::note_replace_equals_default_to_delete) 8777 << FixItHint::CreateReplacement(FD->getDefaultLoc(), "delete"); 8778 } 8779 return false; 8780 } 8781 8782 // C++2a [class.spaceship]p2: 8783 // The return type is deduced as the common comparison type of R0, R1, ... 8784 if (DCK == DefaultedComparisonKind::ThreeWay && 8785 FD->getDeclaredReturnType()->isUndeducedAutoType()) { 8786 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin(); 8787 if (RetLoc.isInvalid()) 8788 RetLoc = FD->getBeginLoc(); 8789 // FIXME: Should we really care whether we have the complete type and the 8790 // 'enumerator' constants here? A forward declaration seems sufficient. 8791 QualType Cat = CheckComparisonCategoryType( 8792 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator); 8793 if (Cat.isNull()) 8794 return true; 8795 Context.adjustDeducedFunctionResultType( 8796 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat)); 8797 } 8798 8799 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8800 // An explicitly-defaulted function that is not defined as deleted may be 8801 // declared constexpr or consteval only if it is constexpr-compatible. 8802 // C++2a [class.compare.default]p3 [P2002R0]: 8803 // A defaulted comparison function is constexpr-compatible if it satisfies 8804 // the requirements for a constexpr function [...] 8805 // The only relevant requirements are that the parameter and return types are 8806 // literal types. The remaining conditions are checked by the analyzer. 8807 if (FD->isConstexpr()) { 8808 if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) && 8809 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) && 8810 !Info.Constexpr) { 8811 Diag(FD->getBeginLoc(), 8812 diag::err_incorrect_defaulted_comparison_constexpr) 8813 << FD->isImplicit() << (int)DCK << FD->isConsteval(); 8814 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8815 DefaultedComparisonAnalyzer::ExplainConstexpr) 8816 .visit(); 8817 } 8818 } 8819 8820 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8821 // If a constexpr-compatible function is explicitly defaulted on its first 8822 // declaration, it is implicitly considered to be constexpr. 8823 // FIXME: Only applying this to the first declaration seems problematic, as 8824 // simple reorderings can affect the meaning of the program. 8825 if (First && !FD->isConstexpr() && Info.Constexpr) 8826 FD->setConstexprKind(ConstexprSpecKind::Constexpr); 8827 8828 // C++2a [except.spec]p3: 8829 // If a declaration of a function does not have a noexcept-specifier 8830 // [and] is defaulted on its first declaration, [...] the exception 8831 // specification is as specified below 8832 if (FD->getExceptionSpecType() == EST_None) { 8833 auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 8834 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8835 EPI.ExceptionSpec.Type = EST_Unevaluated; 8836 EPI.ExceptionSpec.SourceDecl = FD; 8837 FD->setType(Context.getFunctionType(FPT->getReturnType(), 8838 FPT->getParamTypes(), EPI)); 8839 } 8840 8841 return false; 8842 } 8843 8844 void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD, 8845 FunctionDecl *Spaceship) { 8846 Sema::CodeSynthesisContext Ctx; 8847 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison; 8848 Ctx.PointOfInstantiation = Spaceship->getEndLoc(); 8849 Ctx.Entity = Spaceship; 8850 pushCodeSynthesisContext(Ctx); 8851 8852 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship)) 8853 EqualEqual->setImplicit(); 8854 8855 popCodeSynthesisContext(); 8856 } 8857 8858 void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD, 8859 DefaultedComparisonKind DCK) { 8860 assert(FD->isDefaulted() && !FD->isDeleted() && 8861 !FD->doesThisDeclarationHaveABody()); 8862 if (FD->willHaveBody() || FD->isInvalidDecl()) 8863 return; 8864 8865 SynthesizedFunctionScope Scope(*this, FD); 8866 8867 // Add a context note for diagnostics produced after this point. 8868 Scope.addContextNote(UseLoc); 8869 8870 { 8871 // Build and set up the function body. 8872 // The first parameter has type maybe-ref-to maybe-const T, use that to get 8873 // the type of the class being compared. 8874 auto PT = FD->getParamDecl(0)->getType(); 8875 CXXRecordDecl *RD = PT.getNonReferenceType()->getAsCXXRecordDecl(); 8876 SourceLocation BodyLoc = 8877 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 8878 StmtResult Body = 8879 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build(); 8880 if (Body.isInvalid()) { 8881 FD->setInvalidDecl(); 8882 return; 8883 } 8884 FD->setBody(Body.get()); 8885 FD->markUsed(Context); 8886 } 8887 8888 // The exception specification is needed because we are defining the 8889 // function. Note that this will reuse the body we just built. 8890 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>()); 8891 8892 if (ASTMutationListener *L = getASTMutationListener()) 8893 L->CompletedImplicitDefinition(FD); 8894 } 8895 8896 static Sema::ImplicitExceptionSpecification 8897 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 8898 FunctionDecl *FD, 8899 Sema::DefaultedComparisonKind DCK) { 8900 ComputingExceptionSpec CES(S, FD, Loc); 8901 Sema::ImplicitExceptionSpecification ExceptSpec(S); 8902 8903 if (FD->isInvalidDecl()) 8904 return ExceptSpec; 8905 8906 // The common case is that we just defined the comparison function. In that 8907 // case, just look at whether the body can throw. 8908 if (FD->hasBody()) { 8909 ExceptSpec.CalledStmt(FD->getBody()); 8910 } else { 8911 // Otherwise, build a body so we can check it. This should ideally only 8912 // happen when we're not actually marking the function referenced. (This is 8913 // only really important for efficiency: we don't want to build and throw 8914 // away bodies for comparison functions more than we strictly need to.) 8915 8916 // Pretend to synthesize the function body in an unevaluated context. 8917 // Note that we can't actually just go ahead and define the function here: 8918 // we are not permitted to mark its callees as referenced. 8919 Sema::SynthesizedFunctionScope Scope(S, FD); 8920 EnterExpressionEvaluationContext Context( 8921 S, Sema::ExpressionEvaluationContext::Unevaluated); 8922 8923 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent()); 8924 SourceLocation BodyLoc = 8925 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 8926 StmtResult Body = 8927 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build(); 8928 if (!Body.isInvalid()) 8929 ExceptSpec.CalledStmt(Body.get()); 8930 8931 // FIXME: Can we hold onto this body and just transform it to potentially 8932 // evaluated when we're asked to define the function rather than rebuilding 8933 // it? Either that, or we should only build the bits of the body that we 8934 // need (the expressions, not the statements). 8935 } 8936 8937 return ExceptSpec; 8938 } 8939 8940 void Sema::CheckDelayedMemberExceptionSpecs() { 8941 decltype(DelayedOverridingExceptionSpecChecks) Overriding; 8942 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent; 8943 8944 std::swap(Overriding, DelayedOverridingExceptionSpecChecks); 8945 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks); 8946 8947 // Perform any deferred checking of exception specifications for virtual 8948 // destructors. 8949 for (auto &Check : Overriding) 8950 CheckOverridingFunctionExceptionSpec(Check.first, Check.second); 8951 8952 // Perform any deferred checking of exception specifications for befriended 8953 // special members. 8954 for (auto &Check : Equivalent) 8955 CheckEquivalentExceptionSpec(Check.second, Check.first); 8956 } 8957 8958 namespace { 8959 /// CRTP base class for visiting operations performed by a special member 8960 /// function (or inherited constructor). 8961 template<typename Derived> 8962 struct SpecialMemberVisitor { 8963 Sema &S; 8964 CXXMethodDecl *MD; 8965 Sema::CXXSpecialMember CSM; 8966 Sema::InheritedConstructorInfo *ICI; 8967 8968 // Properties of the special member, computed for convenience. 8969 bool IsConstructor = false, IsAssignment = false, ConstArg = false; 8970 8971 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 8972 Sema::InheritedConstructorInfo *ICI) 8973 : S(S), MD(MD), CSM(CSM), ICI(ICI) { 8974 switch (CSM) { 8975 case Sema::CXXDefaultConstructor: 8976 case Sema::CXXCopyConstructor: 8977 case Sema::CXXMoveConstructor: 8978 IsConstructor = true; 8979 break; 8980 case Sema::CXXCopyAssignment: 8981 case Sema::CXXMoveAssignment: 8982 IsAssignment = true; 8983 break; 8984 case Sema::CXXDestructor: 8985 break; 8986 case Sema::CXXInvalid: 8987 llvm_unreachable("invalid special member kind"); 8988 } 8989 8990 if (MD->getNumParams()) { 8991 if (const ReferenceType *RT = 8992 MD->getParamDecl(0)->getType()->getAs<ReferenceType>()) 8993 ConstArg = RT->getPointeeType().isConstQualified(); 8994 } 8995 } 8996 8997 Derived &getDerived() { return static_cast<Derived&>(*this); } 8998 8999 /// Is this a "move" special member? 9000 bool isMove() const { 9001 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment; 9002 } 9003 9004 /// Look up the corresponding special member in the given class. 9005 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class, 9006 unsigned Quals, bool IsMutable) { 9007 return lookupCallFromSpecialMember(S, Class, CSM, Quals, 9008 ConstArg && !IsMutable); 9009 } 9010 9011 /// Look up the constructor for the specified base class to see if it's 9012 /// overridden due to this being an inherited constructor. 9013 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) { 9014 if (!ICI) 9015 return {}; 9016 assert(CSM == Sema::CXXDefaultConstructor); 9017 auto *BaseCtor = 9018 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor(); 9019 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first) 9020 return MD; 9021 return {}; 9022 } 9023 9024 /// A base or member subobject. 9025 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject; 9026 9027 /// Get the location to use for a subobject in diagnostics. 9028 static SourceLocation getSubobjectLoc(Subobject Subobj) { 9029 // FIXME: For an indirect virtual base, the direct base leading to 9030 // the indirect virtual base would be a more useful choice. 9031 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>()) 9032 return B->getBaseTypeLoc(); 9033 else 9034 return Subobj.get<FieldDecl*>()->getLocation(); 9035 } 9036 9037 enum BasesToVisit { 9038 /// Visit all non-virtual (direct) bases. 9039 VisitNonVirtualBases, 9040 /// Visit all direct bases, virtual or not. 9041 VisitDirectBases, 9042 /// Visit all non-virtual bases, and all virtual bases if the class 9043 /// is not abstract. 9044 VisitPotentiallyConstructedBases, 9045 /// Visit all direct or virtual bases. 9046 VisitAllBases 9047 }; 9048 9049 // Visit the bases and members of the class. 9050 bool visit(BasesToVisit Bases) { 9051 CXXRecordDecl *RD = MD->getParent(); 9052 9053 if (Bases == VisitPotentiallyConstructedBases) 9054 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases; 9055 9056 for (auto &B : RD->bases()) 9057 if ((Bases == VisitDirectBases || !B.isVirtual()) && 9058 getDerived().visitBase(&B)) 9059 return true; 9060 9061 if (Bases == VisitAllBases) 9062 for (auto &B : RD->vbases()) 9063 if (getDerived().visitBase(&B)) 9064 return true; 9065 9066 for (auto *F : RD->fields()) 9067 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() && 9068 getDerived().visitField(F)) 9069 return true; 9070 9071 return false; 9072 } 9073 }; 9074 } 9075 9076 namespace { 9077 struct SpecialMemberDeletionInfo 9078 : SpecialMemberVisitor<SpecialMemberDeletionInfo> { 9079 bool Diagnose; 9080 9081 SourceLocation Loc; 9082 9083 bool AllFieldsAreConst; 9084 9085 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, 9086 Sema::CXXSpecialMember CSM, 9087 Sema::InheritedConstructorInfo *ICI, bool Diagnose) 9088 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose), 9089 Loc(MD->getLocation()), AllFieldsAreConst(true) {} 9090 9091 bool inUnion() const { return MD->getParent()->isUnion(); } 9092 9093 Sema::CXXSpecialMember getEffectiveCSM() { 9094 return ICI ? Sema::CXXInvalid : CSM; 9095 } 9096 9097 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType); 9098 9099 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); } 9100 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); } 9101 9102 bool shouldDeleteForBase(CXXBaseSpecifier *Base); 9103 bool shouldDeleteForField(FieldDecl *FD); 9104 bool shouldDeleteForAllConstMembers(); 9105 9106 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 9107 unsigned Quals); 9108 bool shouldDeleteForSubobjectCall(Subobject Subobj, 9109 Sema::SpecialMemberOverloadResult SMOR, 9110 bool IsDtorCallInCtor); 9111 9112 bool isAccessible(Subobject Subobj, CXXMethodDecl *D); 9113 }; 9114 } 9115 9116 /// Is the given special member inaccessible when used on the given 9117 /// sub-object. 9118 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, 9119 CXXMethodDecl *target) { 9120 /// If we're operating on a base class, the object type is the 9121 /// type of this special member. 9122 QualType objectTy; 9123 AccessSpecifier access = target->getAccess(); 9124 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) { 9125 objectTy = S.Context.getTypeDeclType(MD->getParent()); 9126 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access); 9127 9128 // If we're operating on a field, the object type is the type of the field. 9129 } else { 9130 objectTy = S.Context.getTypeDeclType(target->getParent()); 9131 } 9132 9133 return S.isMemberAccessibleForDeletion( 9134 target->getParent(), DeclAccessPair::make(target, access), objectTy); 9135 } 9136 9137 /// Check whether we should delete a special member due to the implicit 9138 /// definition containing a call to a special member of a subobject. 9139 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( 9140 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, 9141 bool IsDtorCallInCtor) { 9142 CXXMethodDecl *Decl = SMOR.getMethod(); 9143 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 9144 9145 int DiagKind = -1; 9146 9147 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) 9148 DiagKind = !Decl ? 0 : 1; 9149 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 9150 DiagKind = 2; 9151 else if (!isAccessible(Subobj, Decl)) 9152 DiagKind = 3; 9153 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && 9154 !Decl->isTrivial()) { 9155 // A member of a union must have a trivial corresponding special member. 9156 // As a weird special case, a destructor call from a union's constructor 9157 // must be accessible and non-deleted, but need not be trivial. Such a 9158 // destructor is never actually called, but is semantically checked as 9159 // if it were. 9160 DiagKind = 4; 9161 } 9162 9163 if (DiagKind == -1) 9164 return false; 9165 9166 if (Diagnose) { 9167 if (Field) { 9168 S.Diag(Field->getLocation(), 9169 diag::note_deleted_special_member_class_subobject) 9170 << getEffectiveCSM() << MD->getParent() << /*IsField*/true 9171 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false; 9172 } else { 9173 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>(); 9174 S.Diag(Base->getBeginLoc(), 9175 diag::note_deleted_special_member_class_subobject) 9176 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 9177 << Base->getType() << DiagKind << IsDtorCallInCtor 9178 << /*IsObjCPtr*/false; 9179 } 9180 9181 if (DiagKind == 1) 9182 S.NoteDeletedFunction(Decl); 9183 // FIXME: Explain inaccessibility if DiagKind == 3. 9184 } 9185 9186 return true; 9187 } 9188 9189 /// Check whether we should delete a special member function due to having a 9190 /// direct or virtual base class or non-static data member of class type M. 9191 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( 9192 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { 9193 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 9194 bool IsMutable = Field && Field->isMutable(); 9195 9196 // C++11 [class.ctor]p5: 9197 // -- any direct or virtual base class, or non-static data member with no 9198 // brace-or-equal-initializer, has class type M (or array thereof) and 9199 // either M has no default constructor or overload resolution as applied 9200 // to M's default constructor results in an ambiguity or in a function 9201 // that is deleted or inaccessible 9202 // C++11 [class.copy]p11, C++11 [class.copy]p23: 9203 // -- a direct or virtual base class B that cannot be copied/moved because 9204 // overload resolution, as applied to B's corresponding special member, 9205 // results in an ambiguity or a function that is deleted or inaccessible 9206 // from the defaulted special member 9207 // C++11 [class.dtor]p5: 9208 // -- any direct or virtual base class [...] has a type with a destructor 9209 // that is deleted or inaccessible 9210 if (!(CSM == Sema::CXXDefaultConstructor && 9211 Field && Field->hasInClassInitializer()) && 9212 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable), 9213 false)) 9214 return true; 9215 9216 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 9217 // -- any direct or virtual base class or non-static data member has a 9218 // type with a destructor that is deleted or inaccessible 9219 if (IsConstructor) { 9220 Sema::SpecialMemberOverloadResult SMOR = 9221 S.LookupSpecialMember(Class, Sema::CXXDestructor, 9222 false, false, false, false, false); 9223 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true)) 9224 return true; 9225 } 9226 9227 return false; 9228 } 9229 9230 bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember( 9231 FieldDecl *FD, QualType FieldType) { 9232 // The defaulted special functions are defined as deleted if this is a variant 9233 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak 9234 // type under ARC. 9235 if (!FieldType.hasNonTrivialObjCLifetime()) 9236 return false; 9237 9238 // Don't make the defaulted default constructor defined as deleted if the 9239 // member has an in-class initializer. 9240 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) 9241 return false; 9242 9243 if (Diagnose) { 9244 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent()); 9245 S.Diag(FD->getLocation(), 9246 diag::note_deleted_special_member_class_subobject) 9247 << getEffectiveCSM() << ParentClass << /*IsField*/true 9248 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true; 9249 } 9250 9251 return true; 9252 } 9253 9254 /// Check whether we should delete a special member function due to the class 9255 /// having a particular direct or virtual base class. 9256 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { 9257 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); 9258 // If program is correct, BaseClass cannot be null, but if it is, the error 9259 // must be reported elsewhere. 9260 if (!BaseClass) 9261 return false; 9262 // If we have an inheriting constructor, check whether we're calling an 9263 // inherited constructor instead of a default constructor. 9264 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 9265 if (auto *BaseCtor = SMOR.getMethod()) { 9266 // Note that we do not check access along this path; other than that, 9267 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false); 9268 // FIXME: Check that the base has a usable destructor! Sink this into 9269 // shouldDeleteForClassSubobject. 9270 if (BaseCtor->isDeleted() && Diagnose) { 9271 S.Diag(Base->getBeginLoc(), 9272 diag::note_deleted_special_member_class_subobject) 9273 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 9274 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false 9275 << /*IsObjCPtr*/false; 9276 S.NoteDeletedFunction(BaseCtor); 9277 } 9278 return BaseCtor->isDeleted(); 9279 } 9280 return shouldDeleteForClassSubobject(BaseClass, Base, 0); 9281 } 9282 9283 /// Check whether we should delete a special member function due to the class 9284 /// having a particular non-static data member. 9285 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { 9286 QualType FieldType = S.Context.getBaseElementType(FD->getType()); 9287 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); 9288 9289 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType)) 9290 return true; 9291 9292 if (CSM == Sema::CXXDefaultConstructor) { 9293 // For a default constructor, all references must be initialized in-class 9294 // and, if a union, it must have a non-const member. 9295 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { 9296 if (Diagnose) 9297 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 9298 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0; 9299 return true; 9300 } 9301 // C++11 [class.ctor]p5 (modified by DR2394): any non-variant non-static 9302 // data member of const-qualified type (or array thereof) with no 9303 // brace-or-equal-initializer is not const-default-constructible. 9304 if (!inUnion() && FieldType.isConstQualified() && 9305 !FD->hasInClassInitializer() && 9306 (!FieldRecord || !FieldRecord->allowConstDefaultInit())) { 9307 if (Diagnose) 9308 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 9309 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1; 9310 return true; 9311 } 9312 9313 if (inUnion() && !FieldType.isConstQualified()) 9314 AllFieldsAreConst = false; 9315 } else if (CSM == Sema::CXXCopyConstructor) { 9316 // For a copy constructor, data members must not be of rvalue reference 9317 // type. 9318 if (FieldType->isRValueReferenceType()) { 9319 if (Diagnose) 9320 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) 9321 << MD->getParent() << FD << FieldType; 9322 return true; 9323 } 9324 } else if (IsAssignment) { 9325 // For an assignment operator, data members must not be of reference type. 9326 if (FieldType->isReferenceType()) { 9327 if (Diagnose) 9328 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 9329 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0; 9330 return true; 9331 } 9332 if (!FieldRecord && FieldType.isConstQualified()) { 9333 // C++11 [class.copy]p23: 9334 // -- a non-static data member of const non-class type (or array thereof) 9335 if (Diagnose) 9336 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 9337 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1; 9338 return true; 9339 } 9340 } 9341 9342 if (FieldRecord) { 9343 // Some additional restrictions exist on the variant members. 9344 if (!inUnion() && FieldRecord->isUnion() && 9345 FieldRecord->isAnonymousStructOrUnion()) { 9346 bool AllVariantFieldsAreConst = true; 9347 9348 // FIXME: Handle anonymous unions declared within anonymous unions. 9349 for (auto *UI : FieldRecord->fields()) { 9350 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); 9351 9352 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType)) 9353 return true; 9354 9355 if (!UnionFieldType.isConstQualified()) 9356 AllVariantFieldsAreConst = false; 9357 9358 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); 9359 if (UnionFieldRecord && 9360 shouldDeleteForClassSubobject(UnionFieldRecord, UI, 9361 UnionFieldType.getCVRQualifiers())) 9362 return true; 9363 } 9364 9365 // At least one member in each anonymous union must be non-const 9366 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst && 9367 !FieldRecord->field_empty()) { 9368 if (Diagnose) 9369 S.Diag(FieldRecord->getLocation(), 9370 diag::note_deleted_default_ctor_all_const) 9371 << !!ICI << MD->getParent() << /*anonymous union*/1; 9372 return true; 9373 } 9374 9375 // Don't check the implicit member of the anonymous union type. 9376 // This is technically non-conformant but supported, and we have a 9377 // diagnostic for this elsewhere. 9378 return false; 9379 } 9380 9381 if (shouldDeleteForClassSubobject(FieldRecord, FD, 9382 FieldType.getCVRQualifiers())) 9383 return true; 9384 } 9385 9386 return false; 9387 } 9388 9389 /// C++11 [class.ctor] p5: 9390 /// A defaulted default constructor for a class X is defined as deleted if 9391 /// X is a union and all of its variant members are of const-qualified type. 9392 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { 9393 // This is a silly definition, because it gives an empty union a deleted 9394 // default constructor. Don't do that. 9395 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) { 9396 bool AnyFields = false; 9397 for (auto *F : MD->getParent()->fields()) 9398 if ((AnyFields = !F->isUnnamedBitfield())) 9399 break; 9400 if (!AnyFields) 9401 return false; 9402 if (Diagnose) 9403 S.Diag(MD->getParent()->getLocation(), 9404 diag::note_deleted_default_ctor_all_const) 9405 << !!ICI << MD->getParent() << /*not anonymous union*/0; 9406 return true; 9407 } 9408 return false; 9409 } 9410 9411 /// Determine whether a defaulted special member function should be defined as 9412 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, 9413 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5. 9414 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, 9415 InheritedConstructorInfo *ICI, 9416 bool Diagnose) { 9417 if (MD->isInvalidDecl()) 9418 return false; 9419 CXXRecordDecl *RD = MD->getParent(); 9420 assert(!RD->isDependentType() && "do deletion after instantiation"); 9421 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl()) 9422 return false; 9423 9424 // C++11 [expr.lambda.prim]p19: 9425 // The closure type associated with a lambda-expression has a 9426 // deleted (8.4.3) default constructor and a deleted copy 9427 // assignment operator. 9428 // C++2a adds back these operators if the lambda has no lambda-capture. 9429 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() && 9430 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) { 9431 if (Diagnose) 9432 Diag(RD->getLocation(), diag::note_lambda_decl); 9433 return true; 9434 } 9435 9436 // For an anonymous struct or union, the copy and assignment special members 9437 // will never be used, so skip the check. For an anonymous union declared at 9438 // namespace scope, the constructor and destructor are used. 9439 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor && 9440 RD->isAnonymousStructOrUnion()) 9441 return false; 9442 9443 // C++11 [class.copy]p7, p18: 9444 // If the class definition declares a move constructor or move assignment 9445 // operator, an implicitly declared copy constructor or copy assignment 9446 // operator is defined as deleted. 9447 if (MD->isImplicit() && 9448 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) { 9449 CXXMethodDecl *UserDeclaredMove = nullptr; 9450 9451 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the 9452 // deletion of the corresponding copy operation, not both copy operations. 9453 // MSVC 2015 has adopted the standards conforming behavior. 9454 bool DeletesOnlyMatchingCopy = 9455 getLangOpts().MSVCCompat && 9456 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015); 9457 9458 if (RD->hasUserDeclaredMoveConstructor() && 9459 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) { 9460 if (!Diagnose) return true; 9461 9462 // Find any user-declared move constructor. 9463 for (auto *I : RD->ctors()) { 9464 if (I->isMoveConstructor()) { 9465 UserDeclaredMove = I; 9466 break; 9467 } 9468 } 9469 assert(UserDeclaredMove); 9470 } else if (RD->hasUserDeclaredMoveAssignment() && 9471 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) { 9472 if (!Diagnose) return true; 9473 9474 // Find any user-declared move assignment operator. 9475 for (auto *I : RD->methods()) { 9476 if (I->isMoveAssignmentOperator()) { 9477 UserDeclaredMove = I; 9478 break; 9479 } 9480 } 9481 assert(UserDeclaredMove); 9482 } 9483 9484 if (UserDeclaredMove) { 9485 Diag(UserDeclaredMove->getLocation(), 9486 diag::note_deleted_copy_user_declared_move) 9487 << (CSM == CXXCopyAssignment) << RD 9488 << UserDeclaredMove->isMoveAssignmentOperator(); 9489 return true; 9490 } 9491 } 9492 9493 // Do access control from the special member function 9494 ContextRAII MethodContext(*this, MD); 9495 9496 // C++11 [class.dtor]p5: 9497 // -- for a virtual destructor, lookup of the non-array deallocation function 9498 // results in an ambiguity or in a function that is deleted or inaccessible 9499 if (CSM == CXXDestructor && MD->isVirtual()) { 9500 FunctionDecl *OperatorDelete = nullptr; 9501 DeclarationName Name = 9502 Context.DeclarationNames.getCXXOperatorName(OO_Delete); 9503 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name, 9504 OperatorDelete, /*Diagnose*/false)) { 9505 if (Diagnose) 9506 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); 9507 return true; 9508 } 9509 } 9510 9511 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose); 9512 9513 // Per DR1611, do not consider virtual bases of constructors of abstract 9514 // classes, since we are not going to construct them. 9515 // Per DR1658, do not consider virtual bases of destructors of abstract 9516 // classes either. 9517 // Per DR2180, for assignment operators we only assign (and thus only 9518 // consider) direct bases. 9519 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases 9520 : SMI.VisitPotentiallyConstructedBases)) 9521 return true; 9522 9523 if (SMI.shouldDeleteForAllConstMembers()) 9524 return true; 9525 9526 if (getLangOpts().CUDA) { 9527 // We should delete the special member in CUDA mode if target inference 9528 // failed. 9529 // For inherited constructors (non-null ICI), CSM may be passed so that MD 9530 // is treated as certain special member, which may not reflect what special 9531 // member MD really is. However inferCUDATargetForImplicitSpecialMember 9532 // expects CSM to match MD, therefore recalculate CSM. 9533 assert(ICI || CSM == getSpecialMember(MD)); 9534 auto RealCSM = CSM; 9535 if (ICI) 9536 RealCSM = getSpecialMember(MD); 9537 9538 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD, 9539 SMI.ConstArg, Diagnose); 9540 } 9541 9542 return false; 9543 } 9544 9545 void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) { 9546 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 9547 assert(DFK && "not a defaultable function"); 9548 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted"); 9549 9550 if (DFK.isSpecialMember()) { 9551 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), 9552 nullptr, /*Diagnose=*/true); 9553 } else { 9554 DefaultedComparisonAnalyzer( 9555 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD, 9556 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted) 9557 .visit(); 9558 } 9559 } 9560 9561 /// Perform lookup for a special member of the specified kind, and determine 9562 /// whether it is trivial. If the triviality can be determined without the 9563 /// lookup, skip it. This is intended for use when determining whether a 9564 /// special member of a containing object is trivial, and thus does not ever 9565 /// perform overload resolution for default constructors. 9566 /// 9567 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the 9568 /// member that was most likely to be intended to be trivial, if any. 9569 /// 9570 /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to 9571 /// determine whether the special member is trivial. 9572 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, 9573 Sema::CXXSpecialMember CSM, unsigned Quals, 9574 bool ConstRHS, 9575 Sema::TrivialABIHandling TAH, 9576 CXXMethodDecl **Selected) { 9577 if (Selected) 9578 *Selected = nullptr; 9579 9580 switch (CSM) { 9581 case Sema::CXXInvalid: 9582 llvm_unreachable("not a special member"); 9583 9584 case Sema::CXXDefaultConstructor: 9585 // C++11 [class.ctor]p5: 9586 // A default constructor is trivial if: 9587 // - all the [direct subobjects] have trivial default constructors 9588 // 9589 // Note, no overload resolution is performed in this case. 9590 if (RD->hasTrivialDefaultConstructor()) 9591 return true; 9592 9593 if (Selected) { 9594 // If there's a default constructor which could have been trivial, dig it 9595 // out. Otherwise, if there's any user-provided default constructor, point 9596 // to that as an example of why there's not a trivial one. 9597 CXXConstructorDecl *DefCtor = nullptr; 9598 if (RD->needsImplicitDefaultConstructor()) 9599 S.DeclareImplicitDefaultConstructor(RD); 9600 for (auto *CI : RD->ctors()) { 9601 if (!CI->isDefaultConstructor()) 9602 continue; 9603 DefCtor = CI; 9604 if (!DefCtor->isUserProvided()) 9605 break; 9606 } 9607 9608 *Selected = DefCtor; 9609 } 9610 9611 return false; 9612 9613 case Sema::CXXDestructor: 9614 // C++11 [class.dtor]p5: 9615 // A destructor is trivial if: 9616 // - all the direct [subobjects] have trivial destructors 9617 if (RD->hasTrivialDestructor() || 9618 (TAH == Sema::TAH_ConsiderTrivialABI && 9619 RD->hasTrivialDestructorForCall())) 9620 return true; 9621 9622 if (Selected) { 9623 if (RD->needsImplicitDestructor()) 9624 S.DeclareImplicitDestructor(RD); 9625 *Selected = RD->getDestructor(); 9626 } 9627 9628 return false; 9629 9630 case Sema::CXXCopyConstructor: 9631 // C++11 [class.copy]p12: 9632 // A copy constructor is trivial if: 9633 // - the constructor selected to copy each direct [subobject] is trivial 9634 if (RD->hasTrivialCopyConstructor() || 9635 (TAH == Sema::TAH_ConsiderTrivialABI && 9636 RD->hasTrivialCopyConstructorForCall())) { 9637 if (Quals == Qualifiers::Const) 9638 // We must either select the trivial copy constructor or reach an 9639 // ambiguity; no need to actually perform overload resolution. 9640 return true; 9641 } else if (!Selected) { 9642 return false; 9643 } 9644 // In C++98, we are not supposed to perform overload resolution here, but we 9645 // treat that as a language defect, as suggested on cxx-abi-dev, to treat 9646 // cases like B as having a non-trivial copy constructor: 9647 // struct A { template<typename T> A(T&); }; 9648 // struct B { mutable A a; }; 9649 goto NeedOverloadResolution; 9650 9651 case Sema::CXXCopyAssignment: 9652 // C++11 [class.copy]p25: 9653 // A copy assignment operator is trivial if: 9654 // - the assignment operator selected to copy each direct [subobject] is 9655 // trivial 9656 if (RD->hasTrivialCopyAssignment()) { 9657 if (Quals == Qualifiers::Const) 9658 return true; 9659 } else if (!Selected) { 9660 return false; 9661 } 9662 // In C++98, we are not supposed to perform overload resolution here, but we 9663 // treat that as a language defect. 9664 goto NeedOverloadResolution; 9665 9666 case Sema::CXXMoveConstructor: 9667 case Sema::CXXMoveAssignment: 9668 NeedOverloadResolution: 9669 Sema::SpecialMemberOverloadResult SMOR = 9670 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS); 9671 9672 // The standard doesn't describe how to behave if the lookup is ambiguous. 9673 // We treat it as not making the member non-trivial, just like the standard 9674 // mandates for the default constructor. This should rarely matter, because 9675 // the member will also be deleted. 9676 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 9677 return true; 9678 9679 if (!SMOR.getMethod()) { 9680 assert(SMOR.getKind() == 9681 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted); 9682 return false; 9683 } 9684 9685 // We deliberately don't check if we found a deleted special member. We're 9686 // not supposed to! 9687 if (Selected) 9688 *Selected = SMOR.getMethod(); 9689 9690 if (TAH == Sema::TAH_ConsiderTrivialABI && 9691 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor)) 9692 return SMOR.getMethod()->isTrivialForCall(); 9693 return SMOR.getMethod()->isTrivial(); 9694 } 9695 9696 llvm_unreachable("unknown special method kind"); 9697 } 9698 9699 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { 9700 for (auto *CI : RD->ctors()) 9701 if (!CI->isImplicit()) 9702 return CI; 9703 9704 // Look for constructor templates. 9705 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter; 9706 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { 9707 if (CXXConstructorDecl *CD = 9708 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl())) 9709 return CD; 9710 } 9711 9712 return nullptr; 9713 } 9714 9715 /// The kind of subobject we are checking for triviality. The values of this 9716 /// enumeration are used in diagnostics. 9717 enum TrivialSubobjectKind { 9718 /// The subobject is a base class. 9719 TSK_BaseClass, 9720 /// The subobject is a non-static data member. 9721 TSK_Field, 9722 /// The object is actually the complete object. 9723 TSK_CompleteObject 9724 }; 9725 9726 /// Check whether the special member selected for a given type would be trivial. 9727 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, 9728 QualType SubType, bool ConstRHS, 9729 Sema::CXXSpecialMember CSM, 9730 TrivialSubobjectKind Kind, 9731 Sema::TrivialABIHandling TAH, bool Diagnose) { 9732 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); 9733 if (!SubRD) 9734 return true; 9735 9736 CXXMethodDecl *Selected; 9737 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(), 9738 ConstRHS, TAH, Diagnose ? &Selected : nullptr)) 9739 return true; 9740 9741 if (Diagnose) { 9742 if (ConstRHS) 9743 SubType.addConst(); 9744 9745 if (!Selected && CSM == Sema::CXXDefaultConstructor) { 9746 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) 9747 << Kind << SubType.getUnqualifiedType(); 9748 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) 9749 S.Diag(CD->getLocation(), diag::note_user_declared_ctor); 9750 } else if (!Selected) 9751 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) 9752 << Kind << SubType.getUnqualifiedType() << CSM << SubType; 9753 else if (Selected->isUserProvided()) { 9754 if (Kind == TSK_CompleteObject) 9755 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) 9756 << Kind << SubType.getUnqualifiedType() << CSM; 9757 else { 9758 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) 9759 << Kind << SubType.getUnqualifiedType() << CSM; 9760 S.Diag(Selected->getLocation(), diag::note_declared_at); 9761 } 9762 } else { 9763 if (Kind != TSK_CompleteObject) 9764 S.Diag(SubobjLoc, diag::note_nontrivial_subobject) 9765 << Kind << SubType.getUnqualifiedType() << CSM; 9766 9767 // Explain why the defaulted or deleted special member isn't trivial. 9768 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI, 9769 Diagnose); 9770 } 9771 } 9772 9773 return false; 9774 } 9775 9776 /// Check whether the members of a class type allow a special member to be 9777 /// trivial. 9778 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, 9779 Sema::CXXSpecialMember CSM, 9780 bool ConstArg, 9781 Sema::TrivialABIHandling TAH, 9782 bool Diagnose) { 9783 for (const auto *FI : RD->fields()) { 9784 if (FI->isInvalidDecl() || FI->isUnnamedBitfield()) 9785 continue; 9786 9787 QualType FieldType = S.Context.getBaseElementType(FI->getType()); 9788 9789 // Pretend anonymous struct or union members are members of this class. 9790 if (FI->isAnonymousStructOrUnion()) { 9791 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), 9792 CSM, ConstArg, TAH, Diagnose)) 9793 return false; 9794 continue; 9795 } 9796 9797 // C++11 [class.ctor]p5: 9798 // A default constructor is trivial if [...] 9799 // -- no non-static data member of its class has a 9800 // brace-or-equal-initializer 9801 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) { 9802 if (Diagnose) 9803 S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init) 9804 << FI; 9805 return false; 9806 } 9807 9808 // Objective C ARC 4.3.5: 9809 // [...] nontrivally ownership-qualified types are [...] not trivially 9810 // default constructible, copy constructible, move constructible, copy 9811 // assignable, move assignable, or destructible [...] 9812 if (FieldType.hasNonTrivialObjCLifetime()) { 9813 if (Diagnose) 9814 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) 9815 << RD << FieldType.getObjCLifetime(); 9816 return false; 9817 } 9818 9819 bool ConstRHS = ConstArg && !FI->isMutable(); 9820 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, 9821 CSM, TSK_Field, TAH, Diagnose)) 9822 return false; 9823 } 9824 9825 return true; 9826 } 9827 9828 /// Diagnose why the specified class does not have a trivial special member of 9829 /// the given kind. 9830 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) { 9831 QualType Ty = Context.getRecordType(RD); 9832 9833 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment); 9834 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, 9835 TSK_CompleteObject, TAH_IgnoreTrivialABI, 9836 /*Diagnose*/true); 9837 } 9838 9839 /// Determine whether a defaulted or deleted special member function is trivial, 9840 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12, 9841 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5. 9842 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM, 9843 TrivialABIHandling TAH, bool Diagnose) { 9844 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough"); 9845 9846 CXXRecordDecl *RD = MD->getParent(); 9847 9848 bool ConstArg = false; 9849 9850 // C++11 [class.copy]p12, p25: [DR1593] 9851 // A [special member] is trivial if [...] its parameter-type-list is 9852 // equivalent to the parameter-type-list of an implicit declaration [...] 9853 switch (CSM) { 9854 case CXXDefaultConstructor: 9855 case CXXDestructor: 9856 // Trivial default constructors and destructors cannot have parameters. 9857 break; 9858 9859 case CXXCopyConstructor: 9860 case CXXCopyAssignment: { 9861 const ParmVarDecl *Param0 = MD->getParamDecl(0); 9862 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>(); 9863 9864 // When ClangABICompat14 is true, CXX copy constructors will only be trivial 9865 // if they are not user-provided and their parameter-type-list is equivalent 9866 // to the parameter-type-list of an implicit declaration. This maintains the 9867 // behavior before dr2171 was implemented. 9868 // 9869 // Otherwise, if ClangABICompat14 is false, All copy constructors can be 9870 // trivial, if they are not user-provided, regardless of the qualifiers on 9871 // the reference type. 9872 const bool ClangABICompat14 = Context.getLangOpts().getClangABICompat() <= 9873 LangOptions::ClangABI::Ver14; 9874 if (!RT || 9875 ((RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) && 9876 ClangABICompat14)) { 9877 if (Diagnose) 9878 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 9879 << Param0->getSourceRange() << Param0->getType() 9880 << Context.getLValueReferenceType( 9881 Context.getRecordType(RD).withConst()); 9882 return false; 9883 } 9884 9885 ConstArg = RT->getPointeeType().isConstQualified(); 9886 break; 9887 } 9888 9889 case CXXMoveConstructor: 9890 case CXXMoveAssignment: { 9891 // Trivial move operations always have non-cv-qualified parameters. 9892 const ParmVarDecl *Param0 = MD->getParamDecl(0); 9893 const RValueReferenceType *RT = 9894 Param0->getType()->getAs<RValueReferenceType>(); 9895 if (!RT || RT->getPointeeType().getCVRQualifiers()) { 9896 if (Diagnose) 9897 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 9898 << Param0->getSourceRange() << Param0->getType() 9899 << Context.getRValueReferenceType(Context.getRecordType(RD)); 9900 return false; 9901 } 9902 break; 9903 } 9904 9905 case CXXInvalid: 9906 llvm_unreachable("not a special member"); 9907 } 9908 9909 if (MD->getMinRequiredArguments() < MD->getNumParams()) { 9910 if (Diagnose) 9911 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), 9912 diag::note_nontrivial_default_arg) 9913 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); 9914 return false; 9915 } 9916 if (MD->isVariadic()) { 9917 if (Diagnose) 9918 Diag(MD->getLocation(), diag::note_nontrivial_variadic); 9919 return false; 9920 } 9921 9922 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 9923 // A copy/move [constructor or assignment operator] is trivial if 9924 // -- the [member] selected to copy/move each direct base class subobject 9925 // is trivial 9926 // 9927 // C++11 [class.copy]p12, C++11 [class.copy]p25: 9928 // A [default constructor or destructor] is trivial if 9929 // -- all the direct base classes have trivial [default constructors or 9930 // destructors] 9931 for (const auto &BI : RD->bases()) 9932 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(), 9933 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose)) 9934 return false; 9935 9936 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 9937 // A copy/move [constructor or assignment operator] for a class X is 9938 // trivial if 9939 // -- for each non-static data member of X that is of class type (or array 9940 // thereof), the constructor selected to copy/move that member is 9941 // trivial 9942 // 9943 // C++11 [class.copy]p12, C++11 [class.copy]p25: 9944 // A [default constructor or destructor] is trivial if 9945 // -- for all of the non-static data members of its class that are of class 9946 // type (or array thereof), each such class has a trivial [default 9947 // constructor or destructor] 9948 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose)) 9949 return false; 9950 9951 // C++11 [class.dtor]p5: 9952 // A destructor is trivial if [...] 9953 // -- the destructor is not virtual 9954 if (CSM == CXXDestructor && MD->isVirtual()) { 9955 if (Diagnose) 9956 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; 9957 return false; 9958 } 9959 9960 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 9961 // A [special member] for class X is trivial if [...] 9962 // -- class X has no virtual functions and no virtual base classes 9963 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) { 9964 if (!Diagnose) 9965 return false; 9966 9967 if (RD->getNumVBases()) { 9968 // Check for virtual bases. We already know that the corresponding 9969 // member in all bases is trivial, so vbases must all be direct. 9970 CXXBaseSpecifier &BS = *RD->vbases_begin(); 9971 assert(BS.isVirtual()); 9972 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1; 9973 return false; 9974 } 9975 9976 // Must have a virtual method. 9977 for (const auto *MI : RD->methods()) { 9978 if (MI->isVirtual()) { 9979 SourceLocation MLoc = MI->getBeginLoc(); 9980 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; 9981 return false; 9982 } 9983 } 9984 9985 llvm_unreachable("dynamic class with no vbases and no virtual functions"); 9986 } 9987 9988 // Looks like it's trivial! 9989 return true; 9990 } 9991 9992 namespace { 9993 struct FindHiddenVirtualMethod { 9994 Sema *S; 9995 CXXMethodDecl *Method; 9996 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; 9997 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 9998 9999 private: 10000 /// Check whether any most overridden method from MD in Methods 10001 static bool CheckMostOverridenMethods( 10002 const CXXMethodDecl *MD, 10003 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) { 10004 if (MD->size_overridden_methods() == 0) 10005 return Methods.count(MD->getCanonicalDecl()); 10006 for (const CXXMethodDecl *O : MD->overridden_methods()) 10007 if (CheckMostOverridenMethods(O, Methods)) 10008 return true; 10009 return false; 10010 } 10011 10012 public: 10013 /// Member lookup function that determines whether a given C++ 10014 /// method overloads virtual methods in a base class without overriding any, 10015 /// to be used with CXXRecordDecl::lookupInBases(). 10016 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 10017 RecordDecl *BaseRecord = 10018 Specifier->getType()->castAs<RecordType>()->getDecl(); 10019 10020 DeclarationName Name = Method->getDeclName(); 10021 assert(Name.getNameKind() == DeclarationName::Identifier); 10022 10023 bool foundSameNameMethod = false; 10024 SmallVector<CXXMethodDecl *, 8> overloadedMethods; 10025 for (Path.Decls = BaseRecord->lookup(Name).begin(); 10026 Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) { 10027 NamedDecl *D = *Path.Decls; 10028 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 10029 MD = MD->getCanonicalDecl(); 10030 foundSameNameMethod = true; 10031 // Interested only in hidden virtual methods. 10032 if (!MD->isVirtual()) 10033 continue; 10034 // If the method we are checking overrides a method from its base 10035 // don't warn about the other overloaded methods. Clang deviates from 10036 // GCC by only diagnosing overloads of inherited virtual functions that 10037 // do not override any other virtual functions in the base. GCC's 10038 // -Woverloaded-virtual diagnoses any derived function hiding a virtual 10039 // function from a base class. These cases may be better served by a 10040 // warning (not specific to virtual functions) on call sites when the 10041 // call would select a different function from the base class, were it 10042 // visible. 10043 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. 10044 if (!S->IsOverload(Method, MD, false)) 10045 return true; 10046 // Collect the overload only if its hidden. 10047 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods)) 10048 overloadedMethods.push_back(MD); 10049 } 10050 } 10051 10052 if (foundSameNameMethod) 10053 OverloadedMethods.append(overloadedMethods.begin(), 10054 overloadedMethods.end()); 10055 return foundSameNameMethod; 10056 } 10057 }; 10058 } // end anonymous namespace 10059 10060 /// Add the most overridden methods from MD to Methods 10061 static void AddMostOverridenMethods(const CXXMethodDecl *MD, 10062 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { 10063 if (MD->size_overridden_methods() == 0) 10064 Methods.insert(MD->getCanonicalDecl()); 10065 else 10066 for (const CXXMethodDecl *O : MD->overridden_methods()) 10067 AddMostOverridenMethods(O, Methods); 10068 } 10069 10070 /// Check if a method overloads virtual methods in a base class without 10071 /// overriding any. 10072 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, 10073 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 10074 if (!MD->getDeclName().isIdentifier()) 10075 return; 10076 10077 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. 10078 /*bool RecordPaths=*/false, 10079 /*bool DetectVirtual=*/false); 10080 FindHiddenVirtualMethod FHVM; 10081 FHVM.Method = MD; 10082 FHVM.S = this; 10083 10084 // Keep the base methods that were overridden or introduced in the subclass 10085 // by 'using' in a set. A base method not in this set is hidden. 10086 CXXRecordDecl *DC = MD->getParent(); 10087 DeclContext::lookup_result R = DC->lookup(MD->getDeclName()); 10088 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { 10089 NamedDecl *ND = *I; 10090 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I)) 10091 ND = shad->getTargetDecl(); 10092 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 10093 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods); 10094 } 10095 10096 if (DC->lookupInBases(FHVM, Paths)) 10097 OverloadedMethods = FHVM.OverloadedMethods; 10098 } 10099 10100 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, 10101 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 10102 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { 10103 CXXMethodDecl *overloadedMD = OverloadedMethods[i]; 10104 PartialDiagnostic PD = PDiag( 10105 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; 10106 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType()); 10107 Diag(overloadedMD->getLocation(), PD); 10108 } 10109 } 10110 10111 /// Diagnose methods which overload virtual methods in a base class 10112 /// without overriding any. 10113 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { 10114 if (MD->isInvalidDecl()) 10115 return; 10116 10117 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) 10118 return; 10119 10120 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 10121 FindHiddenVirtualMethods(MD, OverloadedMethods); 10122 if (!OverloadedMethods.empty()) { 10123 Diag(MD->getLocation(), diag::warn_overloaded_virtual) 10124 << MD << (OverloadedMethods.size() > 1); 10125 10126 NoteHiddenVirtualMethods(MD, OverloadedMethods); 10127 } 10128 } 10129 10130 void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) { 10131 auto PrintDiagAndRemoveAttr = [&](unsigned N) { 10132 // No diagnostics if this is a template instantiation. 10133 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) { 10134 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 10135 diag::ext_cannot_use_trivial_abi) << &RD; 10136 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 10137 diag::note_cannot_use_trivial_abi_reason) << &RD << N; 10138 } 10139 RD.dropAttr<TrivialABIAttr>(); 10140 }; 10141 10142 // Ill-formed if the copy and move constructors are deleted. 10143 auto HasNonDeletedCopyOrMoveConstructor = [&]() { 10144 // If the type is dependent, then assume it might have 10145 // implicit copy or move ctor because we won't know yet at this point. 10146 if (RD.isDependentType()) 10147 return true; 10148 if (RD.needsImplicitCopyConstructor() && 10149 !RD.defaultedCopyConstructorIsDeleted()) 10150 return true; 10151 if (RD.needsImplicitMoveConstructor() && 10152 !RD.defaultedMoveConstructorIsDeleted()) 10153 return true; 10154 for (const CXXConstructorDecl *CD : RD.ctors()) 10155 if (CD->isCopyOrMoveConstructor() && !CD->isDeleted()) 10156 return true; 10157 return false; 10158 }; 10159 10160 if (!HasNonDeletedCopyOrMoveConstructor()) { 10161 PrintDiagAndRemoveAttr(0); 10162 return; 10163 } 10164 10165 // Ill-formed if the struct has virtual functions. 10166 if (RD.isPolymorphic()) { 10167 PrintDiagAndRemoveAttr(1); 10168 return; 10169 } 10170 10171 for (const auto &B : RD.bases()) { 10172 // Ill-formed if the base class is non-trivial for the purpose of calls or a 10173 // virtual base. 10174 if (!B.getType()->isDependentType() && 10175 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) { 10176 PrintDiagAndRemoveAttr(2); 10177 return; 10178 } 10179 10180 if (B.isVirtual()) { 10181 PrintDiagAndRemoveAttr(3); 10182 return; 10183 } 10184 } 10185 10186 for (const auto *FD : RD.fields()) { 10187 // Ill-formed if the field is an ObjectiveC pointer or of a type that is 10188 // non-trivial for the purpose of calls. 10189 QualType FT = FD->getType(); 10190 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) { 10191 PrintDiagAndRemoveAttr(4); 10192 return; 10193 } 10194 10195 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>()) 10196 if (!RT->isDependentType() && 10197 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) { 10198 PrintDiagAndRemoveAttr(5); 10199 return; 10200 } 10201 } 10202 } 10203 10204 void Sema::ActOnFinishCXXMemberSpecification( 10205 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, 10206 SourceLocation RBrac, const ParsedAttributesView &AttrList) { 10207 if (!TagDecl) 10208 return; 10209 10210 AdjustDeclIfTemplate(TagDecl); 10211 10212 for (const ParsedAttr &AL : AttrList) { 10213 if (AL.getKind() != ParsedAttr::AT_Visibility) 10214 continue; 10215 AL.setInvalid(); 10216 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL; 10217 } 10218 10219 ActOnFields(S, RLoc, TagDecl, 10220 llvm::ArrayRef( 10221 // strict aliasing violation! 10222 reinterpret_cast<Decl **>(FieldCollector->getCurFields()), 10223 FieldCollector->getCurNumFields()), 10224 LBrac, RBrac, AttrList); 10225 10226 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl)); 10227 } 10228 10229 /// Find the equality comparison functions that should be implicitly declared 10230 /// in a given class definition, per C++2a [class.compare.default]p3. 10231 static void findImplicitlyDeclaredEqualityComparisons( 10232 ASTContext &Ctx, CXXRecordDecl *RD, 10233 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) { 10234 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual); 10235 if (!RD->lookup(EqEq).empty()) 10236 // Member operator== explicitly declared: no implicit operator==s. 10237 return; 10238 10239 // Traverse friends looking for an '==' or a '<=>'. 10240 for (FriendDecl *Friend : RD->friends()) { 10241 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl()); 10242 if (!FD) continue; 10243 10244 if (FD->getOverloadedOperator() == OO_EqualEqual) { 10245 // Friend operator== explicitly declared: no implicit operator==s. 10246 Spaceships.clear(); 10247 return; 10248 } 10249 10250 if (FD->getOverloadedOperator() == OO_Spaceship && 10251 FD->isExplicitlyDefaulted()) 10252 Spaceships.push_back(FD); 10253 } 10254 10255 // Look for members named 'operator<=>'. 10256 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship); 10257 for (NamedDecl *ND : RD->lookup(Cmp)) { 10258 // Note that we could find a non-function here (either a function template 10259 // or a using-declaration). Neither case results in an implicit 10260 // 'operator=='. 10261 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 10262 if (FD->isExplicitlyDefaulted()) 10263 Spaceships.push_back(FD); 10264 } 10265 } 10266 10267 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared 10268 /// special functions, such as the default constructor, copy 10269 /// constructor, or destructor, to the given C++ class (C++ 10270 /// [special]p1). This routine can only be executed just before the 10271 /// definition of the class is complete. 10272 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { 10273 // Don't add implicit special members to templated classes. 10274 // FIXME: This means unqualified lookups for 'operator=' within a class 10275 // template don't work properly. 10276 if (!ClassDecl->isDependentType()) { 10277 if (ClassDecl->needsImplicitDefaultConstructor()) { 10278 ++getASTContext().NumImplicitDefaultConstructors; 10279 10280 if (ClassDecl->hasInheritedConstructor()) 10281 DeclareImplicitDefaultConstructor(ClassDecl); 10282 } 10283 10284 if (ClassDecl->needsImplicitCopyConstructor()) { 10285 ++getASTContext().NumImplicitCopyConstructors; 10286 10287 // If the properties or semantics of the copy constructor couldn't be 10288 // determined while the class was being declared, force a declaration 10289 // of it now. 10290 if (ClassDecl->needsOverloadResolutionForCopyConstructor() || 10291 ClassDecl->hasInheritedConstructor()) 10292 DeclareImplicitCopyConstructor(ClassDecl); 10293 // For the MS ABI we need to know whether the copy ctor is deleted. A 10294 // prerequisite for deleting the implicit copy ctor is that the class has 10295 // a move ctor or move assignment that is either user-declared or whose 10296 // semantics are inherited from a subobject. FIXME: We should provide a 10297 // more direct way for CodeGen to ask whether the constructor was deleted. 10298 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 10299 (ClassDecl->hasUserDeclaredMoveConstructor() || 10300 ClassDecl->needsOverloadResolutionForMoveConstructor() || 10301 ClassDecl->hasUserDeclaredMoveAssignment() || 10302 ClassDecl->needsOverloadResolutionForMoveAssignment())) 10303 DeclareImplicitCopyConstructor(ClassDecl); 10304 } 10305 10306 if (getLangOpts().CPlusPlus11 && 10307 ClassDecl->needsImplicitMoveConstructor()) { 10308 ++getASTContext().NumImplicitMoveConstructors; 10309 10310 if (ClassDecl->needsOverloadResolutionForMoveConstructor() || 10311 ClassDecl->hasInheritedConstructor()) 10312 DeclareImplicitMoveConstructor(ClassDecl); 10313 } 10314 10315 if (ClassDecl->needsImplicitCopyAssignment()) { 10316 ++getASTContext().NumImplicitCopyAssignmentOperators; 10317 10318 // If we have a dynamic class, then the copy assignment operator may be 10319 // virtual, so we have to declare it immediately. This ensures that, e.g., 10320 // it shows up in the right place in the vtable and that we diagnose 10321 // problems with the implicit exception specification. 10322 if (ClassDecl->isDynamicClass() || 10323 ClassDecl->needsOverloadResolutionForCopyAssignment() || 10324 ClassDecl->hasInheritedAssignment()) 10325 DeclareImplicitCopyAssignment(ClassDecl); 10326 } 10327 10328 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { 10329 ++getASTContext().NumImplicitMoveAssignmentOperators; 10330 10331 // Likewise for the move assignment operator. 10332 if (ClassDecl->isDynamicClass() || 10333 ClassDecl->needsOverloadResolutionForMoveAssignment() || 10334 ClassDecl->hasInheritedAssignment()) 10335 DeclareImplicitMoveAssignment(ClassDecl); 10336 } 10337 10338 if (ClassDecl->needsImplicitDestructor()) { 10339 ++getASTContext().NumImplicitDestructors; 10340 10341 // If we have a dynamic class, then the destructor may be virtual, so we 10342 // have to declare the destructor immediately. This ensures that, e.g., it 10343 // shows up in the right place in the vtable and that we diagnose problems 10344 // with the implicit exception specification. 10345 if (ClassDecl->isDynamicClass() || 10346 ClassDecl->needsOverloadResolutionForDestructor()) 10347 DeclareImplicitDestructor(ClassDecl); 10348 } 10349 } 10350 10351 // C++2a [class.compare.default]p3: 10352 // If the member-specification does not explicitly declare any member or 10353 // friend named operator==, an == operator function is declared implicitly 10354 // for each defaulted three-way comparison operator function defined in 10355 // the member-specification 10356 // FIXME: Consider doing this lazily. 10357 // We do this during the initial parse for a class template, not during 10358 // instantiation, so that we can handle unqualified lookups for 'operator==' 10359 // when parsing the template. 10360 if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) { 10361 llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships; 10362 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl, 10363 DefaultedSpaceships); 10364 for (auto *FD : DefaultedSpaceships) 10365 DeclareImplicitEqualityComparison(ClassDecl, FD); 10366 } 10367 } 10368 10369 unsigned 10370 Sema::ActOnReenterTemplateScope(Decl *D, 10371 llvm::function_ref<Scope *()> EnterScope) { 10372 if (!D) 10373 return 0; 10374 AdjustDeclIfTemplate(D); 10375 10376 // In order to get name lookup right, reenter template scopes in order from 10377 // outermost to innermost. 10378 SmallVector<TemplateParameterList *, 4> ParameterLists; 10379 DeclContext *LookupDC = dyn_cast<DeclContext>(D); 10380 10381 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) { 10382 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) 10383 ParameterLists.push_back(DD->getTemplateParameterList(i)); 10384 10385 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10386 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 10387 ParameterLists.push_back(FTD->getTemplateParameters()); 10388 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) { 10389 LookupDC = VD->getDeclContext(); 10390 10391 if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate()) 10392 ParameterLists.push_back(VTD->getTemplateParameters()); 10393 else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D)) 10394 ParameterLists.push_back(PSD->getTemplateParameters()); 10395 } 10396 } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 10397 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) 10398 ParameterLists.push_back(TD->getTemplateParameterList(i)); 10399 10400 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) { 10401 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) 10402 ParameterLists.push_back(CTD->getTemplateParameters()); 10403 else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) 10404 ParameterLists.push_back(PSD->getTemplateParameters()); 10405 } 10406 } 10407 // FIXME: Alias declarations and concepts. 10408 10409 unsigned Count = 0; 10410 Scope *InnermostTemplateScope = nullptr; 10411 for (TemplateParameterList *Params : ParameterLists) { 10412 // Ignore explicit specializations; they don't contribute to the template 10413 // depth. 10414 if (Params->size() == 0) 10415 continue; 10416 10417 InnermostTemplateScope = EnterScope(); 10418 for (NamedDecl *Param : *Params) { 10419 if (Param->getDeclName()) { 10420 InnermostTemplateScope->AddDecl(Param); 10421 IdResolver.AddDecl(Param); 10422 } 10423 } 10424 ++Count; 10425 } 10426 10427 // Associate the new template scopes with the corresponding entities. 10428 if (InnermostTemplateScope) { 10429 assert(LookupDC && "no enclosing DeclContext for template lookup"); 10430 EnterTemplatedContext(InnermostTemplateScope, LookupDC); 10431 } 10432 10433 return Count; 10434 } 10435 10436 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10437 if (!RecordD) return; 10438 AdjustDeclIfTemplate(RecordD); 10439 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); 10440 PushDeclContext(S, Record); 10441 } 10442 10443 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10444 if (!RecordD) return; 10445 PopDeclContext(); 10446 } 10447 10448 /// This is used to implement the constant expression evaluation part of the 10449 /// attribute enable_if extension. There is nothing in standard C++ which would 10450 /// require reentering parameters. 10451 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { 10452 if (!Param) 10453 return; 10454 10455 S->AddDecl(Param); 10456 if (Param->getDeclName()) 10457 IdResolver.AddDecl(Param); 10458 } 10459 10460 /// ActOnStartDelayedCXXMethodDeclaration - We have completed 10461 /// parsing a top-level (non-nested) C++ class, and we are now 10462 /// parsing those parts of the given Method declaration that could 10463 /// not be parsed earlier (C++ [class.mem]p2), such as default 10464 /// arguments. This action should enter the scope of the given 10465 /// Method declaration as if we had just parsed the qualified method 10466 /// name. However, it should not bring the parameters into scope; 10467 /// that will be performed by ActOnDelayedCXXMethodParameter. 10468 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10469 } 10470 10471 /// ActOnDelayedCXXMethodParameter - We've already started a delayed 10472 /// C++ method declaration. We're (re-)introducing the given 10473 /// function parameter into scope for use in parsing later parts of 10474 /// the method declaration. For example, we could see an 10475 /// ActOnParamDefaultArgument event for this parameter. 10476 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { 10477 if (!ParamD) 10478 return; 10479 10480 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); 10481 10482 S->AddDecl(Param); 10483 if (Param->getDeclName()) 10484 IdResolver.AddDecl(Param); 10485 } 10486 10487 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished 10488 /// processing the delayed method declaration for Method. The method 10489 /// declaration is now considered finished. There may be a separate 10490 /// ActOnStartOfFunctionDef action later (not necessarily 10491 /// immediately!) for this method, if it was also defined inside the 10492 /// class body. 10493 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10494 if (!MethodD) 10495 return; 10496 10497 AdjustDeclIfTemplate(MethodD); 10498 10499 FunctionDecl *Method = cast<FunctionDecl>(MethodD); 10500 10501 // Now that we have our default arguments, check the constructor 10502 // again. It could produce additional diagnostics or affect whether 10503 // the class has implicitly-declared destructors, among other 10504 // things. 10505 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) 10506 CheckConstructor(Constructor); 10507 10508 // Check the default arguments, which we may have added. 10509 if (!Method->isInvalidDecl()) 10510 CheckCXXDefaultArguments(Method); 10511 } 10512 10513 // Emit the given diagnostic for each non-address-space qualifier. 10514 // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator. 10515 static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) { 10516 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10517 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) { 10518 bool DiagOccured = false; 10519 FTI.MethodQualifiers->forEachQualifier( 10520 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName, 10521 SourceLocation SL) { 10522 // This diagnostic should be emitted on any qualifier except an addr 10523 // space qualifier. However, forEachQualifier currently doesn't visit 10524 // addr space qualifiers, so there's no way to write this condition 10525 // right now; we just diagnose on everything. 10526 S.Diag(SL, DiagID) << QualName << SourceRange(SL); 10527 DiagOccured = true; 10528 }); 10529 if (DiagOccured) 10530 D.setInvalidType(); 10531 } 10532 } 10533 10534 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check 10535 /// the well-formedness of the constructor declarator @p D with type @p 10536 /// R. If there are any errors in the declarator, this routine will 10537 /// emit diagnostics and set the invalid bit to true. In any case, the type 10538 /// will be updated to reflect a well-formed type for the constructor and 10539 /// returned. 10540 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, 10541 StorageClass &SC) { 10542 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 10543 10544 // C++ [class.ctor]p3: 10545 // A constructor shall not be virtual (10.3) or static (9.4). A 10546 // constructor can be invoked for a const, volatile or const 10547 // volatile object. A constructor shall not be declared const, 10548 // volatile, or const volatile (9.3.2). 10549 if (isVirtual) { 10550 if (!D.isInvalidType()) 10551 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10552 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) 10553 << SourceRange(D.getIdentifierLoc()); 10554 D.setInvalidType(); 10555 } 10556 if (SC == SC_Static) { 10557 if (!D.isInvalidType()) 10558 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10559 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10560 << SourceRange(D.getIdentifierLoc()); 10561 D.setInvalidType(); 10562 SC = SC_None; 10563 } 10564 10565 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10566 diagnoseIgnoredQualifiers( 10567 diag::err_constructor_return_type, TypeQuals, SourceLocation(), 10568 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), 10569 D.getDeclSpec().getRestrictSpecLoc(), 10570 D.getDeclSpec().getAtomicSpecLoc()); 10571 D.setInvalidType(); 10572 } 10573 10574 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor); 10575 10576 // C++0x [class.ctor]p4: 10577 // A constructor shall not be declared with a ref-qualifier. 10578 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10579 if (FTI.hasRefQualifier()) { 10580 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) 10581 << FTI.RefQualifierIsLValueRef 10582 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10583 D.setInvalidType(); 10584 } 10585 10586 // Rebuild the function type "R" without any type qualifiers (in 10587 // case any of the errors above fired) and with "void" as the 10588 // return type, since constructors don't have return types. 10589 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10590 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) 10591 return R; 10592 10593 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10594 EPI.TypeQuals = Qualifiers(); 10595 EPI.RefQualifier = RQ_None; 10596 10597 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI); 10598 } 10599 10600 /// CheckConstructor - Checks a fully-formed constructor for 10601 /// well-formedness, issuing any diagnostics required. Returns true if 10602 /// the constructor declarator is invalid. 10603 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { 10604 CXXRecordDecl *ClassDecl 10605 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); 10606 if (!ClassDecl) 10607 return Constructor->setInvalidDecl(); 10608 10609 // C++ [class.copy]p3: 10610 // A declaration of a constructor for a class X is ill-formed if 10611 // its first parameter is of type (optionally cv-qualified) X and 10612 // either there are no other parameters or else all other 10613 // parameters have default arguments. 10614 if (!Constructor->isInvalidDecl() && 10615 Constructor->hasOneParamOrDefaultArgs() && 10616 Constructor->getTemplateSpecializationKind() != 10617 TSK_ImplicitInstantiation) { 10618 QualType ParamType = Constructor->getParamDecl(0)->getType(); 10619 QualType ClassTy = Context.getTagDeclType(ClassDecl); 10620 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { 10621 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); 10622 const char *ConstRef 10623 = Constructor->getParamDecl(0)->getIdentifier() ? "const &" 10624 : " const &"; 10625 Diag(ParamLoc, diag::err_constructor_byvalue_arg) 10626 << FixItHint::CreateInsertion(ParamLoc, ConstRef); 10627 10628 // FIXME: Rather that making the constructor invalid, we should endeavor 10629 // to fix the type. 10630 Constructor->setInvalidDecl(); 10631 } 10632 } 10633 } 10634 10635 /// CheckDestructor - Checks a fully-formed destructor definition for 10636 /// well-formedness, issuing any diagnostics required. Returns true 10637 /// on error. 10638 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { 10639 CXXRecordDecl *RD = Destructor->getParent(); 10640 10641 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { 10642 SourceLocation Loc; 10643 10644 if (!Destructor->isImplicit()) 10645 Loc = Destructor->getLocation(); 10646 else 10647 Loc = RD->getLocation(); 10648 10649 // If we have a virtual destructor, look up the deallocation function 10650 if (FunctionDecl *OperatorDelete = 10651 FindDeallocationFunctionForDestructor(Loc, RD)) { 10652 Expr *ThisArg = nullptr; 10653 10654 // If the notional 'delete this' expression requires a non-trivial 10655 // conversion from 'this' to the type of a destroying operator delete's 10656 // first parameter, perform that conversion now. 10657 if (OperatorDelete->isDestroyingOperatorDelete()) { 10658 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 10659 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) { 10660 // C++ [class.dtor]p13: 10661 // ... as if for the expression 'delete this' appearing in a 10662 // non-virtual destructor of the destructor's class. 10663 ContextRAII SwitchContext(*this, Destructor); 10664 ExprResult This = 10665 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation()); 10666 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?"); 10667 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing); 10668 if (This.isInvalid()) { 10669 // FIXME: Register this as a context note so that it comes out 10670 // in the right order. 10671 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here); 10672 return true; 10673 } 10674 ThisArg = This.get(); 10675 } 10676 } 10677 10678 DiagnoseUseOfDecl(OperatorDelete, Loc); 10679 MarkFunctionReferenced(Loc, OperatorDelete); 10680 Destructor->setOperatorDelete(OperatorDelete, ThisArg); 10681 } 10682 } 10683 10684 return false; 10685 } 10686 10687 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check 10688 /// the well-formednes of the destructor declarator @p D with type @p 10689 /// R. If there are any errors in the declarator, this routine will 10690 /// emit diagnostics and set the declarator to invalid. Even if this happens, 10691 /// will be updated to reflect a well-formed type for the destructor and 10692 /// returned. 10693 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, 10694 StorageClass& SC) { 10695 // C++ [class.dtor]p1: 10696 // [...] A typedef-name that names a class is a class-name 10697 // (7.1.3); however, a typedef-name that names a class shall not 10698 // be used as the identifier in the declarator for a destructor 10699 // declaration. 10700 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); 10701 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) 10702 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10703 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); 10704 else if (const TemplateSpecializationType *TST = 10705 DeclaratorType->getAs<TemplateSpecializationType>()) 10706 if (TST->isTypeAlias()) 10707 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10708 << DeclaratorType << 1; 10709 10710 // C++ [class.dtor]p2: 10711 // A destructor is used to destroy objects of its class type. A 10712 // destructor takes no parameters, and no return type can be 10713 // specified for it (not even void). The address of a destructor 10714 // shall not be taken. A destructor shall not be static. A 10715 // destructor can be invoked for a const, volatile or const 10716 // volatile object. A destructor shall not be declared const, 10717 // volatile or const volatile (9.3.2). 10718 if (SC == SC_Static) { 10719 if (!D.isInvalidType()) 10720 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) 10721 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10722 << SourceRange(D.getIdentifierLoc()) 10723 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 10724 10725 SC = SC_None; 10726 } 10727 if (!D.isInvalidType()) { 10728 // Destructors don't have return types, but the parser will 10729 // happily parse something like: 10730 // 10731 // class X { 10732 // float ~X(); 10733 // }; 10734 // 10735 // The return type will be eliminated later. 10736 if (D.getDeclSpec().hasTypeSpecifier()) 10737 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) 10738 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 10739 << SourceRange(D.getIdentifierLoc()); 10740 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10741 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, 10742 SourceLocation(), 10743 D.getDeclSpec().getConstSpecLoc(), 10744 D.getDeclSpec().getVolatileSpecLoc(), 10745 D.getDeclSpec().getRestrictSpecLoc(), 10746 D.getDeclSpec().getAtomicSpecLoc()); 10747 D.setInvalidType(); 10748 } 10749 } 10750 10751 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor); 10752 10753 // C++0x [class.dtor]p2: 10754 // A destructor shall not be declared with a ref-qualifier. 10755 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10756 if (FTI.hasRefQualifier()) { 10757 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) 10758 << FTI.RefQualifierIsLValueRef 10759 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10760 D.setInvalidType(); 10761 } 10762 10763 // Make sure we don't have any parameters. 10764 if (FTIHasNonVoidParameters(FTI)) { 10765 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); 10766 10767 // Delete the parameters. 10768 FTI.freeParams(); 10769 D.setInvalidType(); 10770 } 10771 10772 // Make sure the destructor isn't variadic. 10773 if (FTI.isVariadic) { 10774 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); 10775 D.setInvalidType(); 10776 } 10777 10778 // Rebuild the function type "R" without any type qualifiers or 10779 // parameters (in case any of the errors above fired) and with 10780 // "void" as the return type, since destructors don't have return 10781 // types. 10782 if (!D.isInvalidType()) 10783 return R; 10784 10785 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10786 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10787 EPI.Variadic = false; 10788 EPI.TypeQuals = Qualifiers(); 10789 EPI.RefQualifier = RQ_None; 10790 return Context.getFunctionType(Context.VoidTy, std::nullopt, EPI); 10791 } 10792 10793 static void extendLeft(SourceRange &R, SourceRange Before) { 10794 if (Before.isInvalid()) 10795 return; 10796 R.setBegin(Before.getBegin()); 10797 if (R.getEnd().isInvalid()) 10798 R.setEnd(Before.getEnd()); 10799 } 10800 10801 static void extendRight(SourceRange &R, SourceRange After) { 10802 if (After.isInvalid()) 10803 return; 10804 if (R.getBegin().isInvalid()) 10805 R.setBegin(After.getBegin()); 10806 R.setEnd(After.getEnd()); 10807 } 10808 10809 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the 10810 /// well-formednes of the conversion function declarator @p D with 10811 /// type @p R. If there are any errors in the declarator, this routine 10812 /// will emit diagnostics and return true. Otherwise, it will return 10813 /// false. Either way, the type @p R will be updated to reflect a 10814 /// well-formed type for the conversion operator. 10815 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, 10816 StorageClass& SC) { 10817 // C++ [class.conv.fct]p1: 10818 // Neither parameter types nor return type can be specified. The 10819 // type of a conversion function (8.3.5) is "function taking no 10820 // parameter returning conversion-type-id." 10821 if (SC == SC_Static) { 10822 if (!D.isInvalidType()) 10823 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) 10824 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10825 << D.getName().getSourceRange(); 10826 D.setInvalidType(); 10827 SC = SC_None; 10828 } 10829 10830 TypeSourceInfo *ConvTSI = nullptr; 10831 QualType ConvType = 10832 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI); 10833 10834 const DeclSpec &DS = D.getDeclSpec(); 10835 if (DS.hasTypeSpecifier() && !D.isInvalidType()) { 10836 // Conversion functions don't have return types, but the parser will 10837 // happily parse something like: 10838 // 10839 // class X { 10840 // float operator bool(); 10841 // }; 10842 // 10843 // The return type will be changed later anyway. 10844 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) 10845 << SourceRange(DS.getTypeSpecTypeLoc()) 10846 << SourceRange(D.getIdentifierLoc()); 10847 D.setInvalidType(); 10848 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) { 10849 // It's also plausible that the user writes type qualifiers in the wrong 10850 // place, such as: 10851 // struct S { const operator int(); }; 10852 // FIXME: we could provide a fixit to move the qualifiers onto the 10853 // conversion type. 10854 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) 10855 << SourceRange(D.getIdentifierLoc()) << 0; 10856 D.setInvalidType(); 10857 } 10858 10859 const auto *Proto = R->castAs<FunctionProtoType>(); 10860 10861 // Make sure we don't have any parameters. 10862 if (Proto->getNumParams() > 0) { 10863 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); 10864 10865 // Delete the parameters. 10866 D.getFunctionTypeInfo().freeParams(); 10867 D.setInvalidType(); 10868 } else if (Proto->isVariadic()) { 10869 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); 10870 D.setInvalidType(); 10871 } 10872 10873 // Diagnose "&operator bool()" and other such nonsense. This 10874 // is actually a gcc extension which we don't support. 10875 if (Proto->getReturnType() != ConvType) { 10876 bool NeedsTypedef = false; 10877 SourceRange Before, After; 10878 10879 // Walk the chunks and extract information on them for our diagnostic. 10880 bool PastFunctionChunk = false; 10881 for (auto &Chunk : D.type_objects()) { 10882 switch (Chunk.Kind) { 10883 case DeclaratorChunk::Function: 10884 if (!PastFunctionChunk) { 10885 if (Chunk.Fun.HasTrailingReturnType) { 10886 TypeSourceInfo *TRT = nullptr; 10887 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT); 10888 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange()); 10889 } 10890 PastFunctionChunk = true; 10891 break; 10892 } 10893 [[fallthrough]]; 10894 case DeclaratorChunk::Array: 10895 NeedsTypedef = true; 10896 extendRight(After, Chunk.getSourceRange()); 10897 break; 10898 10899 case DeclaratorChunk::Pointer: 10900 case DeclaratorChunk::BlockPointer: 10901 case DeclaratorChunk::Reference: 10902 case DeclaratorChunk::MemberPointer: 10903 case DeclaratorChunk::Pipe: 10904 extendLeft(Before, Chunk.getSourceRange()); 10905 break; 10906 10907 case DeclaratorChunk::Paren: 10908 extendLeft(Before, Chunk.Loc); 10909 extendRight(After, Chunk.EndLoc); 10910 break; 10911 } 10912 } 10913 10914 SourceLocation Loc = Before.isValid() ? Before.getBegin() : 10915 After.isValid() ? After.getBegin() : 10916 D.getIdentifierLoc(); 10917 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); 10918 DB << Before << After; 10919 10920 if (!NeedsTypedef) { 10921 DB << /*don't need a typedef*/0; 10922 10923 // If we can provide a correct fix-it hint, do so. 10924 if (After.isInvalid() && ConvTSI) { 10925 SourceLocation InsertLoc = 10926 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc()); 10927 DB << FixItHint::CreateInsertion(InsertLoc, " ") 10928 << FixItHint::CreateInsertionFromRange( 10929 InsertLoc, CharSourceRange::getTokenRange(Before)) 10930 << FixItHint::CreateRemoval(Before); 10931 } 10932 } else if (!Proto->getReturnType()->isDependentType()) { 10933 DB << /*typedef*/1 << Proto->getReturnType(); 10934 } else if (getLangOpts().CPlusPlus11) { 10935 DB << /*alias template*/2 << Proto->getReturnType(); 10936 } else { 10937 DB << /*might not be fixable*/3; 10938 } 10939 10940 // Recover by incorporating the other type chunks into the result type. 10941 // Note, this does *not* change the name of the function. This is compatible 10942 // with the GCC extension: 10943 // struct S { &operator int(); } s; 10944 // int &r = s.operator int(); // ok in GCC 10945 // S::operator int&() {} // error in GCC, function name is 'operator int'. 10946 ConvType = Proto->getReturnType(); 10947 } 10948 10949 // C++ [class.conv.fct]p4: 10950 // The conversion-type-id shall not represent a function type nor 10951 // an array type. 10952 if (ConvType->isArrayType()) { 10953 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); 10954 ConvType = Context.getPointerType(ConvType); 10955 D.setInvalidType(); 10956 } else if (ConvType->isFunctionType()) { 10957 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); 10958 ConvType = Context.getPointerType(ConvType); 10959 D.setInvalidType(); 10960 } 10961 10962 // Rebuild the function type "R" without any parameters (in case any 10963 // of the errors above fired) and with the conversion type as the 10964 // return type. 10965 if (D.isInvalidType()) 10966 R = Context.getFunctionType(ConvType, std::nullopt, 10967 Proto->getExtProtoInfo()); 10968 10969 // C++0x explicit conversion operators. 10970 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20) 10971 Diag(DS.getExplicitSpecLoc(), 10972 getLangOpts().CPlusPlus11 10973 ? diag::warn_cxx98_compat_explicit_conversion_functions 10974 : diag::ext_explicit_conversion_functions) 10975 << SourceRange(DS.getExplicitSpecRange()); 10976 } 10977 10978 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete 10979 /// the declaration of the given C++ conversion function. This routine 10980 /// is responsible for recording the conversion function in the C++ 10981 /// class, if possible. 10982 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { 10983 assert(Conversion && "Expected to receive a conversion function declaration"); 10984 10985 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); 10986 10987 // Make sure we aren't redeclaring the conversion function. 10988 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); 10989 // C++ [class.conv.fct]p1: 10990 // [...] A conversion function is never used to convert a 10991 // (possibly cv-qualified) object to the (possibly cv-qualified) 10992 // same object type (or a reference to it), to a (possibly 10993 // cv-qualified) base class of that type (or a reference to it), 10994 // or to (possibly cv-qualified) void. 10995 QualType ClassType 10996 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 10997 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) 10998 ConvType = ConvTypeRef->getPointeeType(); 10999 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && 11000 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 11001 /* Suppress diagnostics for instantiations. */; 11002 else if (Conversion->size_overridden_methods() != 0) 11003 /* Suppress diagnostics for overriding virtual function in a base class. */; 11004 else if (ConvType->isRecordType()) { 11005 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); 11006 if (ConvType == ClassType) 11007 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) 11008 << ClassType; 11009 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType)) 11010 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) 11011 << ClassType << ConvType; 11012 } else if (ConvType->isVoidType()) { 11013 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) 11014 << ClassType << ConvType; 11015 } 11016 11017 if (FunctionTemplateDecl *ConversionTemplate 11018 = Conversion->getDescribedFunctionTemplate()) 11019 return ConversionTemplate; 11020 11021 return Conversion; 11022 } 11023 11024 namespace { 11025 /// Utility class to accumulate and print a diagnostic listing the invalid 11026 /// specifier(s) on a declaration. 11027 struct BadSpecifierDiagnoser { 11028 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID) 11029 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {} 11030 ~BadSpecifierDiagnoser() { 11031 Diagnostic << Specifiers; 11032 } 11033 11034 template<typename T> void check(SourceLocation SpecLoc, T Spec) { 11035 return check(SpecLoc, DeclSpec::getSpecifierName(Spec)); 11036 } 11037 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) { 11038 return check(SpecLoc, 11039 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy())); 11040 } 11041 void check(SourceLocation SpecLoc, const char *Spec) { 11042 if (SpecLoc.isInvalid()) return; 11043 Diagnostic << SourceRange(SpecLoc, SpecLoc); 11044 if (!Specifiers.empty()) Specifiers += " "; 11045 Specifiers += Spec; 11046 } 11047 11048 Sema &S; 11049 Sema::SemaDiagnosticBuilder Diagnostic; 11050 std::string Specifiers; 11051 }; 11052 } 11053 11054 /// Check the validity of a declarator that we parsed for a deduction-guide. 11055 /// These aren't actually declarators in the grammar, so we need to check that 11056 /// the user didn't specify any pieces that are not part of the deduction-guide 11057 /// grammar. 11058 void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R, 11059 StorageClass &SC) { 11060 TemplateName GuidedTemplate = D.getName().TemplateName.get().get(); 11061 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl(); 11062 assert(GuidedTemplateDecl && "missing template decl for deduction guide"); 11063 11064 // C++ [temp.deduct.guide]p3: 11065 // A deduction-gide shall be declared in the same scope as the 11066 // corresponding class template. 11067 if (!CurContext->getRedeclContext()->Equals( 11068 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) { 11069 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope) 11070 << GuidedTemplateDecl; 11071 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here); 11072 } 11073 11074 auto &DS = D.getMutableDeclSpec(); 11075 // We leave 'friend' and 'virtual' to be rejected in the normal way. 11076 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() || 11077 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() || 11078 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) { 11079 BadSpecifierDiagnoser Diagnoser( 11080 *this, D.getIdentifierLoc(), 11081 diag::err_deduction_guide_invalid_specifier); 11082 11083 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec()); 11084 DS.ClearStorageClassSpecs(); 11085 SC = SC_None; 11086 11087 // 'explicit' is permitted. 11088 Diagnoser.check(DS.getInlineSpecLoc(), "inline"); 11089 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn"); 11090 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr"); 11091 DS.ClearConstexprSpec(); 11092 11093 Diagnoser.check(DS.getConstSpecLoc(), "const"); 11094 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict"); 11095 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile"); 11096 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic"); 11097 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned"); 11098 DS.ClearTypeQualifiers(); 11099 11100 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex()); 11101 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign()); 11102 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth()); 11103 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType()); 11104 DS.ClearTypeSpecType(); 11105 } 11106 11107 if (D.isInvalidType()) 11108 return; 11109 11110 // Check the declarator is simple enough. 11111 bool FoundFunction = false; 11112 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) { 11113 if (Chunk.Kind == DeclaratorChunk::Paren) 11114 continue; 11115 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) { 11116 Diag(D.getDeclSpec().getBeginLoc(), 11117 diag::err_deduction_guide_with_complex_decl) 11118 << D.getSourceRange(); 11119 break; 11120 } 11121 if (!Chunk.Fun.hasTrailingReturnType()) { 11122 Diag(D.getName().getBeginLoc(), 11123 diag::err_deduction_guide_no_trailing_return_type); 11124 break; 11125 } 11126 11127 // Check that the return type is written as a specialization of 11128 // the template specified as the deduction-guide's name. 11129 // The template name may not be qualified. [temp.deduct.guide] 11130 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType(); 11131 TypeSourceInfo *TSI = nullptr; 11132 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI); 11133 assert(TSI && "deduction guide has valid type but invalid return type?"); 11134 bool AcceptableReturnType = false; 11135 bool MightInstantiateToSpecialization = false; 11136 if (auto RetTST = 11137 TSI->getTypeLoc().getAsAdjusted<TemplateSpecializationTypeLoc>()) { 11138 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName(); 11139 bool TemplateMatches = 11140 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate); 11141 auto TKind = SpecifiedName.getKind(); 11142 // A Using TemplateName can't actually be valid (either it's qualified, or 11143 // we're in the wrong scope). But we have diagnosed these problems 11144 // already. 11145 bool SimplyWritten = TKind == TemplateName::Template || 11146 TKind == TemplateName::UsingTemplate; 11147 if (SimplyWritten && TemplateMatches) 11148 AcceptableReturnType = true; 11149 else { 11150 // This could still instantiate to the right type, unless we know it 11151 // names the wrong class template. 11152 auto *TD = SpecifiedName.getAsTemplateDecl(); 11153 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) && 11154 !TemplateMatches); 11155 } 11156 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) { 11157 MightInstantiateToSpecialization = true; 11158 } 11159 11160 if (!AcceptableReturnType) { 11161 Diag(TSI->getTypeLoc().getBeginLoc(), 11162 diag::err_deduction_guide_bad_trailing_return_type) 11163 << GuidedTemplate << TSI->getType() 11164 << MightInstantiateToSpecialization 11165 << TSI->getTypeLoc().getSourceRange(); 11166 } 11167 11168 // Keep going to check that we don't have any inner declarator pieces (we 11169 // could still have a function returning a pointer to a function). 11170 FoundFunction = true; 11171 } 11172 11173 if (D.isFunctionDefinition()) 11174 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function); 11175 } 11176 11177 //===----------------------------------------------------------------------===// 11178 // Namespace Handling 11179 //===----------------------------------------------------------------------===// 11180 11181 /// Diagnose a mismatch in 'inline' qualifiers when a namespace is 11182 /// reopened. 11183 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, 11184 SourceLocation Loc, 11185 IdentifierInfo *II, bool *IsInline, 11186 NamespaceDecl *PrevNS) { 11187 assert(*IsInline != PrevNS->isInline()); 11188 11189 // 'inline' must appear on the original definition, but not necessarily 11190 // on all extension definitions, so the note should point to the first 11191 // definition to avoid confusion. 11192 PrevNS = PrevNS->getFirstDecl(); 11193 11194 if (PrevNS->isInline()) 11195 // The user probably just forgot the 'inline', so suggest that it 11196 // be added back. 11197 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) 11198 << FixItHint::CreateInsertion(KeywordLoc, "inline "); 11199 else 11200 S.Diag(Loc, diag::err_inline_namespace_mismatch); 11201 11202 S.Diag(PrevNS->getLocation(), diag::note_previous_definition); 11203 *IsInline = PrevNS->isInline(); 11204 } 11205 11206 /// ActOnStartNamespaceDef - This is called at the start of a namespace 11207 /// definition. 11208 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope, 11209 SourceLocation InlineLoc, 11210 SourceLocation NamespaceLoc, 11211 SourceLocation IdentLoc, IdentifierInfo *II, 11212 SourceLocation LBrace, 11213 const ParsedAttributesView &AttrList, 11214 UsingDirectiveDecl *&UD, bool IsNested) { 11215 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; 11216 // For anonymous namespace, take the location of the left brace. 11217 SourceLocation Loc = II ? IdentLoc : LBrace; 11218 bool IsInline = InlineLoc.isValid(); 11219 bool IsInvalid = false; 11220 bool IsStd = false; 11221 bool AddToKnown = false; 11222 Scope *DeclRegionScope = NamespcScope->getParent(); 11223 11224 NamespaceDecl *PrevNS = nullptr; 11225 if (II) { 11226 // C++ [namespace.def]p2: 11227 // The identifier in an original-namespace-definition shall not 11228 // have been previously defined in the declarative region in 11229 // which the original-namespace-definition appears. The 11230 // identifier in an original-namespace-definition is the name of 11231 // the namespace. Subsequently in that declarative region, it is 11232 // treated as an original-namespace-name. 11233 // 11234 // Since namespace names are unique in their scope, and we don't 11235 // look through using directives, just look for any ordinary names 11236 // as if by qualified name lookup. 11237 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, 11238 ForExternalRedeclaration); 11239 LookupQualifiedName(R, CurContext->getRedeclContext()); 11240 NamedDecl *PrevDecl = 11241 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr; 11242 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl); 11243 11244 if (PrevNS) { 11245 // This is an extended namespace definition. 11246 if (IsInline != PrevNS->isInline()) 11247 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II, 11248 &IsInline, PrevNS); 11249 } else if (PrevDecl) { 11250 // This is an invalid name redefinition. 11251 Diag(Loc, diag::err_redefinition_different_kind) 11252 << II; 11253 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 11254 IsInvalid = true; 11255 // Continue on to push Namespc as current DeclContext and return it. 11256 } else if (II->isStr("std") && 11257 CurContext->getRedeclContext()->isTranslationUnit()) { 11258 // This is the first "real" definition of the namespace "std", so update 11259 // our cache of the "std" namespace to point at this definition. 11260 PrevNS = getStdNamespace(); 11261 IsStd = true; 11262 AddToKnown = !IsInline; 11263 } else { 11264 // We've seen this namespace for the first time. 11265 AddToKnown = !IsInline; 11266 } 11267 } else { 11268 // Anonymous namespaces. 11269 11270 // Determine whether the parent already has an anonymous namespace. 11271 DeclContext *Parent = CurContext->getRedeclContext(); 11272 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 11273 PrevNS = TU->getAnonymousNamespace(); 11274 } else { 11275 NamespaceDecl *ND = cast<NamespaceDecl>(Parent); 11276 PrevNS = ND->getAnonymousNamespace(); 11277 } 11278 11279 if (PrevNS && IsInline != PrevNS->isInline()) 11280 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II, 11281 &IsInline, PrevNS); 11282 } 11283 11284 NamespaceDecl *Namespc = NamespaceDecl::Create( 11285 Context, CurContext, IsInline, StartLoc, Loc, II, PrevNS, IsNested); 11286 if (IsInvalid) 11287 Namespc->setInvalidDecl(); 11288 11289 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); 11290 AddPragmaAttributes(DeclRegionScope, Namespc); 11291 11292 // FIXME: Should we be merging attributes? 11293 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) 11294 PushNamespaceVisibilityAttr(Attr, Loc); 11295 11296 if (IsStd) 11297 StdNamespace = Namespc; 11298 if (AddToKnown) 11299 KnownNamespaces[Namespc] = false; 11300 11301 if (II) { 11302 PushOnScopeChains(Namespc, DeclRegionScope); 11303 } else { 11304 // Link the anonymous namespace into its parent. 11305 DeclContext *Parent = CurContext->getRedeclContext(); 11306 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 11307 TU->setAnonymousNamespace(Namespc); 11308 } else { 11309 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc); 11310 } 11311 11312 CurContext->addDecl(Namespc); 11313 11314 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition 11315 // behaves as if it were replaced by 11316 // namespace unique { /* empty body */ } 11317 // using namespace unique; 11318 // namespace unique { namespace-body } 11319 // where all occurrences of 'unique' in a translation unit are 11320 // replaced by the same identifier and this identifier differs 11321 // from all other identifiers in the entire program. 11322 11323 // We just create the namespace with an empty name and then add an 11324 // implicit using declaration, just like the standard suggests. 11325 // 11326 // CodeGen enforces the "universally unique" aspect by giving all 11327 // declarations semantically contained within an anonymous 11328 // namespace internal linkage. 11329 11330 if (!PrevNS) { 11331 UD = UsingDirectiveDecl::Create(Context, Parent, 11332 /* 'using' */ LBrace, 11333 /* 'namespace' */ SourceLocation(), 11334 /* qualifier */ NestedNameSpecifierLoc(), 11335 /* identifier */ SourceLocation(), 11336 Namespc, 11337 /* Ancestor */ Parent); 11338 UD->setImplicit(); 11339 Parent->addDecl(UD); 11340 } 11341 } 11342 11343 ActOnDocumentableDecl(Namespc); 11344 11345 // Although we could have an invalid decl (i.e. the namespace name is a 11346 // redefinition), push it as current DeclContext and try to continue parsing. 11347 // FIXME: We should be able to push Namespc here, so that the each DeclContext 11348 // for the namespace has the declarations that showed up in that particular 11349 // namespace definition. 11350 PushDeclContext(NamespcScope, Namespc); 11351 return Namespc; 11352 } 11353 11354 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl 11355 /// is a namespace alias, returns the namespace it points to. 11356 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { 11357 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) 11358 return AD->getNamespace(); 11359 return dyn_cast_or_null<NamespaceDecl>(D); 11360 } 11361 11362 /// ActOnFinishNamespaceDef - This callback is called after a namespace is 11363 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. 11364 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { 11365 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); 11366 assert(Namespc && "Invalid parameter, expected NamespaceDecl"); 11367 Namespc->setRBraceLoc(RBrace); 11368 PopDeclContext(); 11369 if (Namespc->hasAttr<VisibilityAttr>()) 11370 PopPragmaVisibility(true, RBrace); 11371 // If this namespace contains an export-declaration, export it now. 11372 if (DeferredExportedNamespaces.erase(Namespc)) 11373 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 11374 } 11375 11376 CXXRecordDecl *Sema::getStdBadAlloc() const { 11377 return cast_or_null<CXXRecordDecl>( 11378 StdBadAlloc.get(Context.getExternalSource())); 11379 } 11380 11381 EnumDecl *Sema::getStdAlignValT() const { 11382 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource())); 11383 } 11384 11385 NamespaceDecl *Sema::getStdNamespace() const { 11386 return cast_or_null<NamespaceDecl>( 11387 StdNamespace.get(Context.getExternalSource())); 11388 } 11389 11390 NamespaceDecl *Sema::lookupStdExperimentalNamespace() { 11391 if (!StdExperimentalNamespaceCache) { 11392 if (auto Std = getStdNamespace()) { 11393 LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"), 11394 SourceLocation(), LookupNamespaceName); 11395 if (!LookupQualifiedName(Result, Std) || 11396 !(StdExperimentalNamespaceCache = 11397 Result.getAsSingle<NamespaceDecl>())) 11398 Result.suppressDiagnostics(); 11399 } 11400 } 11401 return StdExperimentalNamespaceCache; 11402 } 11403 11404 namespace { 11405 11406 enum UnsupportedSTLSelect { 11407 USS_InvalidMember, 11408 USS_MissingMember, 11409 USS_NonTrivial, 11410 USS_Other 11411 }; 11412 11413 struct InvalidSTLDiagnoser { 11414 Sema &S; 11415 SourceLocation Loc; 11416 QualType TyForDiags; 11417 11418 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "", 11419 const VarDecl *VD = nullptr) { 11420 { 11421 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported) 11422 << TyForDiags << ((int)Sel); 11423 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) { 11424 assert(!Name.empty()); 11425 D << Name; 11426 } 11427 } 11428 if (Sel == USS_InvalidMember) { 11429 S.Diag(VD->getLocation(), diag::note_var_declared_here) 11430 << VD << VD->getSourceRange(); 11431 } 11432 return QualType(); 11433 } 11434 }; 11435 } // namespace 11436 11437 QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind, 11438 SourceLocation Loc, 11439 ComparisonCategoryUsage Usage) { 11440 assert(getLangOpts().CPlusPlus && 11441 "Looking for comparison category type outside of C++."); 11442 11443 // Use an elaborated type for diagnostics which has a name containing the 11444 // prepended 'std' namespace but not any inline namespace names. 11445 auto TyForDiags = [&](ComparisonCategoryInfo *Info) { 11446 auto *NNS = 11447 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()); 11448 return Context.getElaboratedType(ETK_None, NNS, Info->getType()); 11449 }; 11450 11451 // Check if we've already successfully checked the comparison category type 11452 // before. If so, skip checking it again. 11453 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind); 11454 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) { 11455 // The only thing we need to check is that the type has a reachable 11456 // definition in the current context. 11457 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11458 return QualType(); 11459 11460 return Info->getType(); 11461 } 11462 11463 // If lookup failed 11464 if (!Info) { 11465 std::string NameForDiags = "std::"; 11466 NameForDiags += ComparisonCategories::getCategoryString(Kind); 11467 Diag(Loc, diag::err_implied_comparison_category_type_not_found) 11468 << NameForDiags << (int)Usage; 11469 return QualType(); 11470 } 11471 11472 assert(Info->Kind == Kind); 11473 assert(Info->Record); 11474 11475 // Update the Record decl in case we encountered a forward declaration on our 11476 // first pass. FIXME: This is a bit of a hack. 11477 if (Info->Record->hasDefinition()) 11478 Info->Record = Info->Record->getDefinition(); 11479 11480 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11481 return QualType(); 11482 11483 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)}; 11484 11485 if (!Info->Record->isTriviallyCopyable()) 11486 return UnsupportedSTLError(USS_NonTrivial); 11487 11488 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) { 11489 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl(); 11490 // Tolerate empty base classes. 11491 if (Base->isEmpty()) 11492 continue; 11493 // Reject STL implementations which have at least one non-empty base. 11494 return UnsupportedSTLError(); 11495 } 11496 11497 // Check that the STL has implemented the types using a single integer field. 11498 // This expectation allows better codegen for builtin operators. We require: 11499 // (1) The class has exactly one field. 11500 // (2) The field is an integral or enumeration type. 11501 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end(); 11502 if (std::distance(FIt, FEnd) != 1 || 11503 !FIt->getType()->isIntegralOrEnumerationType()) { 11504 return UnsupportedSTLError(); 11505 } 11506 11507 // Build each of the require values and store them in Info. 11508 for (ComparisonCategoryResult CCR : 11509 ComparisonCategories::getPossibleResultsForType(Kind)) { 11510 StringRef MemName = ComparisonCategories::getResultString(CCR); 11511 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR); 11512 11513 if (!ValInfo) 11514 return UnsupportedSTLError(USS_MissingMember, MemName); 11515 11516 VarDecl *VD = ValInfo->VD; 11517 assert(VD && "should not be null!"); 11518 11519 // Attempt to diagnose reasons why the STL definition of this type 11520 // might be foobar, including it failing to be a constant expression. 11521 // TODO Handle more ways the lookup or result can be invalid. 11522 if (!VD->isStaticDataMember() || 11523 !VD->isUsableInConstantExpressions(Context)) 11524 return UnsupportedSTLError(USS_InvalidMember, MemName, VD); 11525 11526 // Attempt to evaluate the var decl as a constant expression and extract 11527 // the value of its first field as a ICE. If this fails, the STL 11528 // implementation is not supported. 11529 if (!ValInfo->hasValidIntValue()) 11530 return UnsupportedSTLError(); 11531 11532 MarkVariableReferenced(Loc, VD); 11533 } 11534 11535 // We've successfully built the required types and expressions. Update 11536 // the cache and return the newly cached value. 11537 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true; 11538 return Info->getType(); 11539 } 11540 11541 /// Retrieve the special "std" namespace, which may require us to 11542 /// implicitly define the namespace. 11543 NamespaceDecl *Sema::getOrCreateStdNamespace() { 11544 if (!StdNamespace) { 11545 // The "std" namespace has not yet been defined, so build one implicitly. 11546 StdNamespace = NamespaceDecl::Create( 11547 Context, Context.getTranslationUnitDecl(), 11548 /*Inline=*/false, SourceLocation(), SourceLocation(), 11549 &PP.getIdentifierTable().get("std"), 11550 /*PrevDecl=*/nullptr, /*Nested=*/false); 11551 getStdNamespace()->setImplicit(true); 11552 } 11553 11554 return getStdNamespace(); 11555 } 11556 11557 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { 11558 assert(getLangOpts().CPlusPlus && 11559 "Looking for std::initializer_list outside of C++."); 11560 11561 // We're looking for implicit instantiations of 11562 // template <typename E> class std::initializer_list. 11563 11564 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it. 11565 return false; 11566 11567 ClassTemplateDecl *Template = nullptr; 11568 const TemplateArgument *Arguments = nullptr; 11569 11570 if (const RecordType *RT = Ty->getAs<RecordType>()) { 11571 11572 ClassTemplateSpecializationDecl *Specialization = 11573 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 11574 if (!Specialization) 11575 return false; 11576 11577 Template = Specialization->getSpecializedTemplate(); 11578 Arguments = Specialization->getTemplateArgs().data(); 11579 } else if (const TemplateSpecializationType *TST = 11580 Ty->getAs<TemplateSpecializationType>()) { 11581 Template = dyn_cast_or_null<ClassTemplateDecl>( 11582 TST->getTemplateName().getAsTemplateDecl()); 11583 Arguments = TST->template_arguments().begin(); 11584 } 11585 if (!Template) 11586 return false; 11587 11588 if (!StdInitializerList) { 11589 // Haven't recognized std::initializer_list yet, maybe this is it. 11590 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); 11591 if (TemplateClass->getIdentifier() != 11592 &PP.getIdentifierTable().get("initializer_list") || 11593 !getStdNamespace()->InEnclosingNamespaceSetOf( 11594 TemplateClass->getDeclContext())) 11595 return false; 11596 // This is a template called std::initializer_list, but is it the right 11597 // template? 11598 TemplateParameterList *Params = Template->getTemplateParameters(); 11599 if (Params->getMinRequiredArguments() != 1) 11600 return false; 11601 if (!isa<TemplateTypeParmDecl>(Params->getParam(0))) 11602 return false; 11603 11604 // It's the right template. 11605 StdInitializerList = Template; 11606 } 11607 11608 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl()) 11609 return false; 11610 11611 // This is an instance of std::initializer_list. Find the argument type. 11612 if (Element) 11613 *Element = Arguments[0].getAsType(); 11614 return true; 11615 } 11616 11617 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){ 11618 NamespaceDecl *Std = S.getStdNamespace(); 11619 if (!Std) { 11620 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 11621 return nullptr; 11622 } 11623 11624 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"), 11625 Loc, Sema::LookupOrdinaryName); 11626 if (!S.LookupQualifiedName(Result, Std)) { 11627 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 11628 return nullptr; 11629 } 11630 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); 11631 if (!Template) { 11632 Result.suppressDiagnostics(); 11633 // We found something weird. Complain about the first thing we found. 11634 NamedDecl *Found = *Result.begin(); 11635 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list); 11636 return nullptr; 11637 } 11638 11639 // We found some template called std::initializer_list. Now verify that it's 11640 // correct. 11641 TemplateParameterList *Params = Template->getTemplateParameters(); 11642 if (Params->getMinRequiredArguments() != 1 || 11643 !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 11644 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list); 11645 return nullptr; 11646 } 11647 11648 return Template; 11649 } 11650 11651 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { 11652 if (!StdInitializerList) { 11653 StdInitializerList = LookupStdInitializerList(*this, Loc); 11654 if (!StdInitializerList) 11655 return QualType(); 11656 } 11657 11658 TemplateArgumentListInfo Args(Loc, Loc); 11659 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element), 11660 Context.getTrivialTypeSourceInfo(Element, 11661 Loc))); 11662 return Context.getElaboratedType( 11663 ElaboratedTypeKeyword::ETK_None, 11664 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()), 11665 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args)); 11666 } 11667 11668 bool Sema::isInitListConstructor(const FunctionDecl *Ctor) { 11669 // C++ [dcl.init.list]p2: 11670 // A constructor is an initializer-list constructor if its first parameter 11671 // is of type std::initializer_list<E> or reference to possibly cv-qualified 11672 // std::initializer_list<E> for some type E, and either there are no other 11673 // parameters or else all other parameters have default arguments. 11674 if (!Ctor->hasOneParamOrDefaultArgs()) 11675 return false; 11676 11677 QualType ArgType = Ctor->getParamDecl(0)->getType(); 11678 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) 11679 ArgType = RT->getPointeeType().getUnqualifiedType(); 11680 11681 return isStdInitializerList(ArgType, nullptr); 11682 } 11683 11684 /// Determine whether a using statement is in a context where it will be 11685 /// apply in all contexts. 11686 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { 11687 switch (CurContext->getDeclKind()) { 11688 case Decl::TranslationUnit: 11689 return true; 11690 case Decl::LinkageSpec: 11691 return IsUsingDirectiveInToplevelContext(CurContext->getParent()); 11692 default: 11693 return false; 11694 } 11695 } 11696 11697 namespace { 11698 11699 // Callback to only accept typo corrections that are namespaces. 11700 class NamespaceValidatorCCC final : public CorrectionCandidateCallback { 11701 public: 11702 bool ValidateCandidate(const TypoCorrection &candidate) override { 11703 if (NamedDecl *ND = candidate.getCorrectionDecl()) 11704 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); 11705 return false; 11706 } 11707 11708 std::unique_ptr<CorrectionCandidateCallback> clone() override { 11709 return std::make_unique<NamespaceValidatorCCC>(*this); 11710 } 11711 }; 11712 11713 } 11714 11715 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, 11716 CXXScopeSpec &SS, 11717 SourceLocation IdentLoc, 11718 IdentifierInfo *Ident) { 11719 R.clear(); 11720 NamespaceValidatorCCC CCC{}; 11721 if (TypoCorrection Corrected = 11722 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC, 11723 Sema::CTK_ErrorRecovery)) { 11724 if (DeclContext *DC = S.computeDeclContext(SS, false)) { 11725 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts())); 11726 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 11727 Ident->getName().equals(CorrectedStr); 11728 S.diagnoseTypo(Corrected, 11729 S.PDiag(diag::err_using_directive_member_suggest) 11730 << Ident << DC << DroppedSpecifier << SS.getRange(), 11731 S.PDiag(diag::note_namespace_defined_here)); 11732 } else { 11733 S.diagnoseTypo(Corrected, 11734 S.PDiag(diag::err_using_directive_suggest) << Ident, 11735 S.PDiag(diag::note_namespace_defined_here)); 11736 } 11737 R.addDecl(Corrected.getFoundDecl()); 11738 return true; 11739 } 11740 return false; 11741 } 11742 11743 Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, 11744 SourceLocation NamespcLoc, CXXScopeSpec &SS, 11745 SourceLocation IdentLoc, 11746 IdentifierInfo *NamespcName, 11747 const ParsedAttributesView &AttrList) { 11748 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 11749 assert(NamespcName && "Invalid NamespcName."); 11750 assert(IdentLoc.isValid() && "Invalid NamespceName location."); 11751 11752 // This can only happen along a recovery path. 11753 while (S->isTemplateParamScope()) 11754 S = S->getParent(); 11755 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 11756 11757 UsingDirectiveDecl *UDir = nullptr; 11758 NestedNameSpecifier *Qualifier = nullptr; 11759 if (SS.isSet()) 11760 Qualifier = SS.getScopeRep(); 11761 11762 // Lookup namespace name. 11763 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); 11764 LookupParsedName(R, S, &SS); 11765 if (R.isAmbiguous()) 11766 return nullptr; 11767 11768 if (R.empty()) { 11769 R.clear(); 11770 // Allow "using namespace std;" or "using namespace ::std;" even if 11771 // "std" hasn't been defined yet, for GCC compatibility. 11772 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && 11773 NamespcName->isStr("std")) { 11774 Diag(IdentLoc, diag::ext_using_undefined_std); 11775 R.addDecl(getOrCreateStdNamespace()); 11776 R.resolveKind(); 11777 } 11778 // Otherwise, attempt typo correction. 11779 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); 11780 } 11781 11782 if (!R.empty()) { 11783 NamedDecl *Named = R.getRepresentativeDecl(); 11784 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>(); 11785 assert(NS && "expected namespace decl"); 11786 11787 // The use of a nested name specifier may trigger deprecation warnings. 11788 DiagnoseUseOfDecl(Named, IdentLoc); 11789 11790 // C++ [namespace.udir]p1: 11791 // A using-directive specifies that the names in the nominated 11792 // namespace can be used in the scope in which the 11793 // using-directive appears after the using-directive. During 11794 // unqualified name lookup (3.4.1), the names appear as if they 11795 // were declared in the nearest enclosing namespace which 11796 // contains both the using-directive and the nominated 11797 // namespace. [Note: in this context, "contains" means "contains 11798 // directly or indirectly". ] 11799 11800 // Find enclosing context containing both using-directive and 11801 // nominated namespace. 11802 DeclContext *CommonAncestor = NS; 11803 while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) 11804 CommonAncestor = CommonAncestor->getParent(); 11805 11806 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, 11807 SS.getWithLocInContext(Context), 11808 IdentLoc, Named, CommonAncestor); 11809 11810 if (IsUsingDirectiveInToplevelContext(CurContext) && 11811 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) { 11812 Diag(IdentLoc, diag::warn_using_directive_in_header); 11813 } 11814 11815 PushUsingDirective(S, UDir); 11816 } else { 11817 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 11818 } 11819 11820 if (UDir) 11821 ProcessDeclAttributeList(S, UDir, AttrList); 11822 11823 return UDir; 11824 } 11825 11826 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { 11827 // If the scope has an associated entity and the using directive is at 11828 // namespace or translation unit scope, add the UsingDirectiveDecl into 11829 // its lookup structure so qualified name lookup can find it. 11830 DeclContext *Ctx = S->getEntity(); 11831 if (Ctx && !Ctx->isFunctionOrMethod()) 11832 Ctx->addDecl(UDir); 11833 else 11834 // Otherwise, it is at block scope. The using-directives will affect lookup 11835 // only to the end of the scope. 11836 S->PushUsingDirective(UDir); 11837 } 11838 11839 Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, 11840 SourceLocation UsingLoc, 11841 SourceLocation TypenameLoc, CXXScopeSpec &SS, 11842 UnqualifiedId &Name, 11843 SourceLocation EllipsisLoc, 11844 const ParsedAttributesView &AttrList) { 11845 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 11846 11847 if (SS.isEmpty()) { 11848 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname); 11849 return nullptr; 11850 } 11851 11852 switch (Name.getKind()) { 11853 case UnqualifiedIdKind::IK_ImplicitSelfParam: 11854 case UnqualifiedIdKind::IK_Identifier: 11855 case UnqualifiedIdKind::IK_OperatorFunctionId: 11856 case UnqualifiedIdKind::IK_LiteralOperatorId: 11857 case UnqualifiedIdKind::IK_ConversionFunctionId: 11858 break; 11859 11860 case UnqualifiedIdKind::IK_ConstructorName: 11861 case UnqualifiedIdKind::IK_ConstructorTemplateId: 11862 // C++11 inheriting constructors. 11863 Diag(Name.getBeginLoc(), 11864 getLangOpts().CPlusPlus11 11865 ? diag::warn_cxx98_compat_using_decl_constructor 11866 : diag::err_using_decl_constructor) 11867 << SS.getRange(); 11868 11869 if (getLangOpts().CPlusPlus11) break; 11870 11871 return nullptr; 11872 11873 case UnqualifiedIdKind::IK_DestructorName: 11874 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange(); 11875 return nullptr; 11876 11877 case UnqualifiedIdKind::IK_TemplateId: 11878 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id) 11879 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); 11880 return nullptr; 11881 11882 case UnqualifiedIdKind::IK_DeductionGuideName: 11883 llvm_unreachable("cannot parse qualified deduction guide name"); 11884 } 11885 11886 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 11887 DeclarationName TargetName = TargetNameInfo.getName(); 11888 if (!TargetName) 11889 return nullptr; 11890 11891 // Warn about access declarations. 11892 if (UsingLoc.isInvalid()) { 11893 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 11894 ? diag::err_access_decl 11895 : diag::warn_access_decl_deprecated) 11896 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); 11897 } 11898 11899 if (EllipsisLoc.isInvalid()) { 11900 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || 11901 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) 11902 return nullptr; 11903 } else { 11904 if (!SS.getScopeRep()->containsUnexpandedParameterPack() && 11905 !TargetNameInfo.containsUnexpandedParameterPack()) { 11906 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 11907 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc()); 11908 EllipsisLoc = SourceLocation(); 11909 } 11910 } 11911 11912 NamedDecl *UD = 11913 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc, 11914 SS, TargetNameInfo, EllipsisLoc, AttrList, 11915 /*IsInstantiation*/ false, 11916 AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists)); 11917 if (UD) 11918 PushOnScopeChains(UD, S, /*AddToContext*/ false); 11919 11920 return UD; 11921 } 11922 11923 Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS, 11924 SourceLocation UsingLoc, 11925 SourceLocation EnumLoc, 11926 SourceLocation IdentLoc, 11927 IdentifierInfo &II, CXXScopeSpec *SS) { 11928 assert(!SS->isInvalid() && "ScopeSpec is invalid"); 11929 TypeSourceInfo *TSI = nullptr; 11930 QualType EnumTy = GetTypeFromParser( 11931 getTypeName(II, IdentLoc, S, SS, /*isClassName=*/false, 11932 /*HasTrailingDot=*/false, 11933 /*ObjectType=*/nullptr, /*IsCtorOrDtorName=*/false, 11934 /*WantNontrivialTypeSourceInfo=*/true), 11935 &TSI); 11936 if (EnumTy.isNull()) { 11937 Diag(IdentLoc, SS && isDependentScopeSpecifier(*SS) 11938 ? diag::err_using_enum_is_dependent 11939 : diag::err_unknown_typename) 11940 << II.getName() 11941 << SourceRange(SS ? SS->getBeginLoc() : IdentLoc, IdentLoc); 11942 return nullptr; 11943 } 11944 11945 auto *Enum = dyn_cast_if_present<EnumDecl>(EnumTy->getAsTagDecl()); 11946 if (!Enum) { 11947 Diag(IdentLoc, diag::err_using_enum_not_enum) << EnumTy; 11948 return nullptr; 11949 } 11950 11951 if (auto *Def = Enum->getDefinition()) 11952 Enum = Def; 11953 11954 if (TSI == nullptr) 11955 TSI = Context.getTrivialTypeSourceInfo(EnumTy, IdentLoc); 11956 11957 auto *UD = 11958 BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc, IdentLoc, TSI, Enum); 11959 11960 if (UD) 11961 PushOnScopeChains(UD, S, /*AddToContext*/ false); 11962 11963 return UD; 11964 } 11965 11966 /// Determine whether a using declaration considers the given 11967 /// declarations as "equivalent", e.g., if they are redeclarations of 11968 /// the same entity or are both typedefs of the same type. 11969 static bool 11970 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { 11971 if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) 11972 return true; 11973 11974 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1)) 11975 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) 11976 return Context.hasSameType(TD1->getUnderlyingType(), 11977 TD2->getUnderlyingType()); 11978 11979 // Two using_if_exists using-declarations are equivalent if both are 11980 // unresolved. 11981 if (isa<UnresolvedUsingIfExistsDecl>(D1) && 11982 isa<UnresolvedUsingIfExistsDecl>(D2)) 11983 return true; 11984 11985 return false; 11986 } 11987 11988 11989 /// Determines whether to create a using shadow decl for a particular 11990 /// decl, given the set of decls existing prior to this using lookup. 11991 bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig, 11992 const LookupResult &Previous, 11993 UsingShadowDecl *&PrevShadow) { 11994 // Diagnose finding a decl which is not from a base class of the 11995 // current class. We do this now because there are cases where this 11996 // function will silently decide not to build a shadow decl, which 11997 // will pre-empt further diagnostics. 11998 // 11999 // We don't need to do this in C++11 because we do the check once on 12000 // the qualifier. 12001 // 12002 // FIXME: diagnose the following if we care enough: 12003 // struct A { int foo; }; 12004 // struct B : A { using A::foo; }; 12005 // template <class T> struct C : A {}; 12006 // template <class T> struct D : C<T> { using B::foo; } // <--- 12007 // This is invalid (during instantiation) in C++03 because B::foo 12008 // resolves to the using decl in B, which is not a base class of D<T>. 12009 // We can't diagnose it immediately because C<T> is an unknown 12010 // specialization. The UsingShadowDecl in D<T> then points directly 12011 // to A::foo, which will look well-formed when we instantiate. 12012 // The right solution is to not collapse the shadow-decl chain. 12013 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) 12014 if (auto *Using = dyn_cast<UsingDecl>(BUD)) { 12015 DeclContext *OrigDC = Orig->getDeclContext(); 12016 12017 // Handle enums and anonymous structs. 12018 if (isa<EnumDecl>(OrigDC)) 12019 OrigDC = OrigDC->getParent(); 12020 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); 12021 while (OrigRec->isAnonymousStructOrUnion()) 12022 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); 12023 12024 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { 12025 if (OrigDC == CurContext) { 12026 Diag(Using->getLocation(), 12027 diag::err_using_decl_nested_name_specifier_is_current_class) 12028 << Using->getQualifierLoc().getSourceRange(); 12029 Diag(Orig->getLocation(), diag::note_using_decl_target); 12030 Using->setInvalidDecl(); 12031 return true; 12032 } 12033 12034 Diag(Using->getQualifierLoc().getBeginLoc(), 12035 diag::err_using_decl_nested_name_specifier_is_not_base_class) 12036 << Using->getQualifier() << cast<CXXRecordDecl>(CurContext) 12037 << Using->getQualifierLoc().getSourceRange(); 12038 Diag(Orig->getLocation(), diag::note_using_decl_target); 12039 Using->setInvalidDecl(); 12040 return true; 12041 } 12042 } 12043 12044 if (Previous.empty()) return false; 12045 12046 NamedDecl *Target = Orig; 12047 if (isa<UsingShadowDecl>(Target)) 12048 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 12049 12050 // If the target happens to be one of the previous declarations, we 12051 // don't have a conflict. 12052 // 12053 // FIXME: but we might be increasing its access, in which case we 12054 // should redeclare it. 12055 NamedDecl *NonTag = nullptr, *Tag = nullptr; 12056 bool FoundEquivalentDecl = false; 12057 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 12058 I != E; ++I) { 12059 NamedDecl *D = (*I)->getUnderlyingDecl(); 12060 // We can have UsingDecls in our Previous results because we use the same 12061 // LookupResult for checking whether the UsingDecl itself is a valid 12062 // redeclaration. 12063 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D) || isa<UsingEnumDecl>(D)) 12064 continue; 12065 12066 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 12067 // C++ [class.mem]p19: 12068 // If T is the name of a class, then [every named member other than 12069 // a non-static data member] shall have a name different from T 12070 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) && 12071 !isa<IndirectFieldDecl>(Target) && 12072 !isa<UnresolvedUsingValueDecl>(Target) && 12073 DiagnoseClassNameShadow( 12074 CurContext, 12075 DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation()))) 12076 return true; 12077 } 12078 12079 if (IsEquivalentForUsingDecl(Context, D, Target)) { 12080 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I)) 12081 PrevShadow = Shadow; 12082 FoundEquivalentDecl = true; 12083 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) { 12084 // We don't conflict with an existing using shadow decl of an equivalent 12085 // declaration, but we're not a redeclaration of it. 12086 FoundEquivalentDecl = true; 12087 } 12088 12089 if (isVisible(D)) 12090 (isa<TagDecl>(D) ? Tag : NonTag) = D; 12091 } 12092 12093 if (FoundEquivalentDecl) 12094 return false; 12095 12096 // Always emit a diagnostic for a mismatch between an unresolved 12097 // using_if_exists and a resolved using declaration in either direction. 12098 if (isa<UnresolvedUsingIfExistsDecl>(Target) != 12099 (isa_and_nonnull<UnresolvedUsingIfExistsDecl>(NonTag))) { 12100 if (!NonTag && !Tag) 12101 return false; 12102 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12103 Diag(Target->getLocation(), diag::note_using_decl_target); 12104 Diag((NonTag ? NonTag : Tag)->getLocation(), 12105 diag::note_using_decl_conflict); 12106 BUD->setInvalidDecl(); 12107 return true; 12108 } 12109 12110 if (FunctionDecl *FD = Target->getAsFunction()) { 12111 NamedDecl *OldDecl = nullptr; 12112 switch (CheckOverload(nullptr, FD, Previous, OldDecl, 12113 /*IsForUsingDecl*/ true)) { 12114 case Ovl_Overload: 12115 return false; 12116 12117 case Ovl_NonFunction: 12118 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12119 break; 12120 12121 // We found a decl with the exact signature. 12122 case Ovl_Match: 12123 // If we're in a record, we want to hide the target, so we 12124 // return true (without a diagnostic) to tell the caller not to 12125 // build a shadow decl. 12126 if (CurContext->isRecord()) 12127 return true; 12128 12129 // If we're not in a record, this is an error. 12130 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12131 break; 12132 } 12133 12134 Diag(Target->getLocation(), diag::note_using_decl_target); 12135 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); 12136 BUD->setInvalidDecl(); 12137 return true; 12138 } 12139 12140 // Target is not a function. 12141 12142 if (isa<TagDecl>(Target)) { 12143 // No conflict between a tag and a non-tag. 12144 if (!Tag) return false; 12145 12146 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12147 Diag(Target->getLocation(), diag::note_using_decl_target); 12148 Diag(Tag->getLocation(), diag::note_using_decl_conflict); 12149 BUD->setInvalidDecl(); 12150 return true; 12151 } 12152 12153 // No conflict between a tag and a non-tag. 12154 if (!NonTag) return false; 12155 12156 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12157 Diag(Target->getLocation(), diag::note_using_decl_target); 12158 Diag(NonTag->getLocation(), diag::note_using_decl_conflict); 12159 BUD->setInvalidDecl(); 12160 return true; 12161 } 12162 12163 /// Determine whether a direct base class is a virtual base class. 12164 static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) { 12165 if (!Derived->getNumVBases()) 12166 return false; 12167 for (auto &B : Derived->bases()) 12168 if (B.getType()->getAsCXXRecordDecl() == Base) 12169 return B.isVirtual(); 12170 llvm_unreachable("not a direct base class"); 12171 } 12172 12173 /// Builds a shadow declaration corresponding to a 'using' declaration. 12174 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD, 12175 NamedDecl *Orig, 12176 UsingShadowDecl *PrevDecl) { 12177 // If we resolved to another shadow declaration, just coalesce them. 12178 NamedDecl *Target = Orig; 12179 if (isa<UsingShadowDecl>(Target)) { 12180 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 12181 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); 12182 } 12183 12184 NamedDecl *NonTemplateTarget = Target; 12185 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target)) 12186 NonTemplateTarget = TargetTD->getTemplatedDecl(); 12187 12188 UsingShadowDecl *Shadow; 12189 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) { 12190 UsingDecl *Using = cast<UsingDecl>(BUD); 12191 bool IsVirtualBase = 12192 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext), 12193 Using->getQualifier()->getAsRecordDecl()); 12194 Shadow = ConstructorUsingShadowDecl::Create( 12195 Context, CurContext, Using->getLocation(), Using, Orig, IsVirtualBase); 12196 } else { 12197 Shadow = UsingShadowDecl::Create(Context, CurContext, BUD->getLocation(), 12198 Target->getDeclName(), BUD, Target); 12199 } 12200 BUD->addShadowDecl(Shadow); 12201 12202 Shadow->setAccess(BUD->getAccess()); 12203 if (Orig->isInvalidDecl() || BUD->isInvalidDecl()) 12204 Shadow->setInvalidDecl(); 12205 12206 Shadow->setPreviousDecl(PrevDecl); 12207 12208 if (S) 12209 PushOnScopeChains(Shadow, S); 12210 else 12211 CurContext->addDecl(Shadow); 12212 12213 12214 return Shadow; 12215 } 12216 12217 /// Hides a using shadow declaration. This is required by the current 12218 /// using-decl implementation when a resolvable using declaration in a 12219 /// class is followed by a declaration which would hide or override 12220 /// one or more of the using decl's targets; for example: 12221 /// 12222 /// struct Base { void foo(int); }; 12223 /// struct Derived : Base { 12224 /// using Base::foo; 12225 /// void foo(int); 12226 /// }; 12227 /// 12228 /// The governing language is C++03 [namespace.udecl]p12: 12229 /// 12230 /// When a using-declaration brings names from a base class into a 12231 /// derived class scope, member functions in the derived class 12232 /// override and/or hide member functions with the same name and 12233 /// parameter types in a base class (rather than conflicting). 12234 /// 12235 /// There are two ways to implement this: 12236 /// (1) optimistically create shadow decls when they're not hidden 12237 /// by existing declarations, or 12238 /// (2) don't create any shadow decls (or at least don't make them 12239 /// visible) until we've fully parsed/instantiated the class. 12240 /// The problem with (1) is that we might have to retroactively remove 12241 /// a shadow decl, which requires several O(n) operations because the 12242 /// decl structures are (very reasonably) not designed for removal. 12243 /// (2) avoids this but is very fiddly and phase-dependent. 12244 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { 12245 if (Shadow->getDeclName().getNameKind() == 12246 DeclarationName::CXXConversionFunctionName) 12247 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); 12248 12249 // Remove it from the DeclContext... 12250 Shadow->getDeclContext()->removeDecl(Shadow); 12251 12252 // ...and the scope, if applicable... 12253 if (S) { 12254 S->RemoveDecl(Shadow); 12255 IdResolver.RemoveDecl(Shadow); 12256 } 12257 12258 // ...and the using decl. 12259 Shadow->getIntroducer()->removeShadowDecl(Shadow); 12260 12261 // TODO: complain somehow if Shadow was used. It shouldn't 12262 // be possible for this to happen, because...? 12263 } 12264 12265 /// Find the base specifier for a base class with the given type. 12266 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, 12267 QualType DesiredBase, 12268 bool &AnyDependentBases) { 12269 // Check whether the named type is a direct base class. 12270 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified() 12271 .getUnqualifiedType(); 12272 for (auto &Base : Derived->bases()) { 12273 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); 12274 if (CanonicalDesiredBase == BaseType) 12275 return &Base; 12276 if (BaseType->isDependentType()) 12277 AnyDependentBases = true; 12278 } 12279 return nullptr; 12280 } 12281 12282 namespace { 12283 class UsingValidatorCCC final : public CorrectionCandidateCallback { 12284 public: 12285 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, 12286 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) 12287 : HasTypenameKeyword(HasTypenameKeyword), 12288 IsInstantiation(IsInstantiation), OldNNS(NNS), 12289 RequireMemberOf(RequireMemberOf) {} 12290 12291 bool ValidateCandidate(const TypoCorrection &Candidate) override { 12292 NamedDecl *ND = Candidate.getCorrectionDecl(); 12293 12294 // Keywords are not valid here. 12295 if (!ND || isa<NamespaceDecl>(ND)) 12296 return false; 12297 12298 // Completely unqualified names are invalid for a 'using' declaration. 12299 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) 12300 return false; 12301 12302 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would 12303 // reject. 12304 12305 if (RequireMemberOf) { 12306 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 12307 if (FoundRecord && FoundRecord->isInjectedClassName()) { 12308 // No-one ever wants a using-declaration to name an injected-class-name 12309 // of a base class, unless they're declaring an inheriting constructor. 12310 ASTContext &Ctx = ND->getASTContext(); 12311 if (!Ctx.getLangOpts().CPlusPlus11) 12312 return false; 12313 QualType FoundType = Ctx.getRecordType(FoundRecord); 12314 12315 // Check that the injected-class-name is named as a member of its own 12316 // type; we don't want to suggest 'using Derived::Base;', since that 12317 // means something else. 12318 NestedNameSpecifier *Specifier = 12319 Candidate.WillReplaceSpecifier() 12320 ? Candidate.getCorrectionSpecifier() 12321 : OldNNS; 12322 if (!Specifier->getAsType() || 12323 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType)) 12324 return false; 12325 12326 // Check that this inheriting constructor declaration actually names a 12327 // direct base class of the current class. 12328 bool AnyDependentBases = false; 12329 if (!findDirectBaseWithType(RequireMemberOf, 12330 Ctx.getRecordType(FoundRecord), 12331 AnyDependentBases) && 12332 !AnyDependentBases) 12333 return false; 12334 } else { 12335 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()); 12336 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD)) 12337 return false; 12338 12339 // FIXME: Check that the base class member is accessible? 12340 } 12341 } else { 12342 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 12343 if (FoundRecord && FoundRecord->isInjectedClassName()) 12344 return false; 12345 } 12346 12347 if (isa<TypeDecl>(ND)) 12348 return HasTypenameKeyword || !IsInstantiation; 12349 12350 return !HasTypenameKeyword; 12351 } 12352 12353 std::unique_ptr<CorrectionCandidateCallback> clone() override { 12354 return std::make_unique<UsingValidatorCCC>(*this); 12355 } 12356 12357 private: 12358 bool HasTypenameKeyword; 12359 bool IsInstantiation; 12360 NestedNameSpecifier *OldNNS; 12361 CXXRecordDecl *RequireMemberOf; 12362 }; 12363 } // end anonymous namespace 12364 12365 /// Remove decls we can't actually see from a lookup being used to declare 12366 /// shadow using decls. 12367 /// 12368 /// \param S - The scope of the potential shadow decl 12369 /// \param Previous - The lookup of a potential shadow decl's name. 12370 void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) { 12371 // It is really dumb that we have to do this. 12372 LookupResult::Filter F = Previous.makeFilter(); 12373 while (F.hasNext()) { 12374 NamedDecl *D = F.next(); 12375 if (!isDeclInScope(D, CurContext, S)) 12376 F.erase(); 12377 // If we found a local extern declaration that's not ordinarily visible, 12378 // and this declaration is being added to a non-block scope, ignore it. 12379 // We're only checking for scope conflicts here, not also for violations 12380 // of the linkage rules. 12381 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && 12382 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) 12383 F.erase(); 12384 } 12385 F.done(); 12386 } 12387 12388 /// Builds a using declaration. 12389 /// 12390 /// \param IsInstantiation - Whether this call arises from an 12391 /// instantiation of an unresolved using declaration. We treat 12392 /// the lookup differently for these declarations. 12393 NamedDecl *Sema::BuildUsingDeclaration( 12394 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, 12395 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, 12396 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, 12397 const ParsedAttributesView &AttrList, bool IsInstantiation, 12398 bool IsUsingIfExists) { 12399 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 12400 SourceLocation IdentLoc = NameInfo.getLoc(); 12401 assert(IdentLoc.isValid() && "Invalid TargetName location."); 12402 12403 // FIXME: We ignore attributes for now. 12404 12405 // For an inheriting constructor declaration, the name of the using 12406 // declaration is the name of a constructor in this class, not in the 12407 // base class. 12408 DeclarationNameInfo UsingName = NameInfo; 12409 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) 12410 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext)) 12411 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12412 Context.getCanonicalType(Context.getRecordType(RD)))); 12413 12414 // Do the redeclaration lookup in the current scope. 12415 LookupResult Previous(*this, UsingName, LookupUsingDeclName, 12416 ForVisibleRedeclaration); 12417 Previous.setHideTags(false); 12418 if (S) { 12419 LookupName(Previous, S); 12420 12421 FilterUsingLookup(S, Previous); 12422 } else { 12423 assert(IsInstantiation && "no scope in non-instantiation"); 12424 if (CurContext->isRecord()) 12425 LookupQualifiedName(Previous, CurContext); 12426 else { 12427 // No redeclaration check is needed here; in non-member contexts we 12428 // diagnosed all possible conflicts with other using-declarations when 12429 // building the template: 12430 // 12431 // For a dependent non-type using declaration, the only valid case is 12432 // if we instantiate to a single enumerator. We check for conflicts 12433 // between shadow declarations we introduce, and we check in the template 12434 // definition for conflicts between a non-type using declaration and any 12435 // other declaration, which together covers all cases. 12436 // 12437 // A dependent typename using declaration will never successfully 12438 // instantiate, since it will always name a class member, so we reject 12439 // that in the template definition. 12440 } 12441 } 12442 12443 // Check for invalid redeclarations. 12444 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, 12445 SS, IdentLoc, Previous)) 12446 return nullptr; 12447 12448 // 'using_if_exists' doesn't make sense on an inherited constructor. 12449 if (IsUsingIfExists && UsingName.getName().getNameKind() == 12450 DeclarationName::CXXConstructorName) { 12451 Diag(UsingLoc, diag::err_using_if_exists_on_ctor); 12452 return nullptr; 12453 } 12454 12455 DeclContext *LookupContext = computeDeclContext(SS); 12456 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 12457 if (!LookupContext || EllipsisLoc.isValid()) { 12458 NamedDecl *D; 12459 // Dependent scope, or an unexpanded pack 12460 if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, 12461 SS, NameInfo, IdentLoc)) 12462 return nullptr; 12463 12464 if (HasTypenameKeyword) { 12465 // FIXME: not all declaration name kinds are legal here 12466 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, 12467 UsingLoc, TypenameLoc, 12468 QualifierLoc, 12469 IdentLoc, NameInfo.getName(), 12470 EllipsisLoc); 12471 } else { 12472 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, 12473 QualifierLoc, NameInfo, EllipsisLoc); 12474 } 12475 D->setAccess(AS); 12476 CurContext->addDecl(D); 12477 ProcessDeclAttributeList(S, D, AttrList); 12478 return D; 12479 } 12480 12481 auto Build = [&](bool Invalid) { 12482 UsingDecl *UD = 12483 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, 12484 UsingName, HasTypenameKeyword); 12485 UD->setAccess(AS); 12486 CurContext->addDecl(UD); 12487 ProcessDeclAttributeList(S, UD, AttrList); 12488 UD->setInvalidDecl(Invalid); 12489 return UD; 12490 }; 12491 auto BuildInvalid = [&]{ return Build(true); }; 12492 auto BuildValid = [&]{ return Build(false); }; 12493 12494 if (RequireCompleteDeclContext(SS, LookupContext)) 12495 return BuildInvalid(); 12496 12497 // Look up the target name. 12498 LookupResult R(*this, NameInfo, LookupOrdinaryName); 12499 12500 // Unlike most lookups, we don't always want to hide tag 12501 // declarations: tag names are visible through the using declaration 12502 // even if hidden by ordinary names, *except* in a dependent context 12503 // where they may be used by two-phase lookup. 12504 if (!IsInstantiation) 12505 R.setHideTags(false); 12506 12507 // For the purposes of this lookup, we have a base object type 12508 // equal to that of the current context. 12509 if (CurContext->isRecord()) { 12510 R.setBaseObjectType( 12511 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))); 12512 } 12513 12514 LookupQualifiedName(R, LookupContext); 12515 12516 // Validate the context, now we have a lookup 12517 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo, 12518 IdentLoc, &R)) 12519 return nullptr; 12520 12521 if (R.empty() && IsUsingIfExists) 12522 R.addDecl(UnresolvedUsingIfExistsDecl::Create(Context, CurContext, UsingLoc, 12523 UsingName.getName()), 12524 AS_public); 12525 12526 // Try to correct typos if possible. If constructor name lookup finds no 12527 // results, that means the named class has no explicit constructors, and we 12528 // suppressed declaring implicit ones (probably because it's dependent or 12529 // invalid). 12530 if (R.empty() && 12531 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) { 12532 // HACK 2017-01-08: Work around an issue with libstdc++'s detection of 12533 // ::gets. Sometimes it believes that glibc provides a ::gets in cases where 12534 // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later. 12535 auto *II = NameInfo.getName().getAsIdentifierInfo(); 12536 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") && 12537 CurContext->isStdNamespace() && 12538 isa<TranslationUnitDecl>(LookupContext) && 12539 getSourceManager().isInSystemHeader(UsingLoc)) 12540 return nullptr; 12541 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), 12542 dyn_cast<CXXRecordDecl>(CurContext)); 12543 if (TypoCorrection Corrected = 12544 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, 12545 CTK_ErrorRecovery)) { 12546 // We reject candidates where DroppedSpecifier == true, hence the 12547 // literal '0' below. 12548 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) 12549 << NameInfo.getName() << LookupContext << 0 12550 << SS.getRange()); 12551 12552 // If we picked a correction with no attached Decl we can't do anything 12553 // useful with it, bail out. 12554 NamedDecl *ND = Corrected.getCorrectionDecl(); 12555 if (!ND) 12556 return BuildInvalid(); 12557 12558 // If we corrected to an inheriting constructor, handle it as one. 12559 auto *RD = dyn_cast<CXXRecordDecl>(ND); 12560 if (RD && RD->isInjectedClassName()) { 12561 // The parent of the injected class name is the class itself. 12562 RD = cast<CXXRecordDecl>(RD->getParent()); 12563 12564 // Fix up the information we'll use to build the using declaration. 12565 if (Corrected.WillReplaceSpecifier()) { 12566 NestedNameSpecifierLocBuilder Builder; 12567 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 12568 QualifierLoc.getSourceRange()); 12569 QualifierLoc = Builder.getWithLocInContext(Context); 12570 } 12571 12572 // In this case, the name we introduce is the name of a derived class 12573 // constructor. 12574 auto *CurClass = cast<CXXRecordDecl>(CurContext); 12575 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12576 Context.getCanonicalType(Context.getRecordType(CurClass)))); 12577 UsingName.setNamedTypeInfo(nullptr); 12578 for (auto *Ctor : LookupConstructors(RD)) 12579 R.addDecl(Ctor); 12580 R.resolveKind(); 12581 } else { 12582 // FIXME: Pick up all the declarations if we found an overloaded 12583 // function. 12584 UsingName.setName(ND->getDeclName()); 12585 R.addDecl(ND); 12586 } 12587 } else { 12588 Diag(IdentLoc, diag::err_no_member) 12589 << NameInfo.getName() << LookupContext << SS.getRange(); 12590 return BuildInvalid(); 12591 } 12592 } 12593 12594 if (R.isAmbiguous()) 12595 return BuildInvalid(); 12596 12597 if (HasTypenameKeyword) { 12598 // If we asked for a typename and got a non-type decl, error out. 12599 if (!R.getAsSingle<TypeDecl>() && 12600 !R.getAsSingle<UnresolvedUsingIfExistsDecl>()) { 12601 Diag(IdentLoc, diag::err_using_typename_non_type); 12602 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 12603 Diag((*I)->getUnderlyingDecl()->getLocation(), 12604 diag::note_using_decl_target); 12605 return BuildInvalid(); 12606 } 12607 } else { 12608 // If we asked for a non-typename and we got a type, error out, 12609 // but only if this is an instantiation of an unresolved using 12610 // decl. Otherwise just silently find the type name. 12611 if (IsInstantiation && R.getAsSingle<TypeDecl>()) { 12612 Diag(IdentLoc, diag::err_using_dependent_value_is_type); 12613 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); 12614 return BuildInvalid(); 12615 } 12616 } 12617 12618 // C++14 [namespace.udecl]p6: 12619 // A using-declaration shall not name a namespace. 12620 if (R.getAsSingle<NamespaceDecl>()) { 12621 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) 12622 << SS.getRange(); 12623 return BuildInvalid(); 12624 } 12625 12626 UsingDecl *UD = BuildValid(); 12627 12628 // Some additional rules apply to inheriting constructors. 12629 if (UsingName.getName().getNameKind() == 12630 DeclarationName::CXXConstructorName) { 12631 // Suppress access diagnostics; the access check is instead performed at the 12632 // point of use for an inheriting constructor. 12633 R.suppressDiagnostics(); 12634 if (CheckInheritingConstructorUsingDecl(UD)) 12635 return UD; 12636 } 12637 12638 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 12639 UsingShadowDecl *PrevDecl = nullptr; 12640 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) 12641 BuildUsingShadowDecl(S, UD, *I, PrevDecl); 12642 } 12643 12644 return UD; 12645 } 12646 12647 NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS, 12648 SourceLocation UsingLoc, 12649 SourceLocation EnumLoc, 12650 SourceLocation NameLoc, 12651 TypeSourceInfo *EnumType, 12652 EnumDecl *ED) { 12653 bool Invalid = false; 12654 12655 if (CurContext->getRedeclContext()->isRecord()) { 12656 /// In class scope, check if this is a duplicate, for better a diagnostic. 12657 DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc); 12658 LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName, 12659 ForVisibleRedeclaration); 12660 12661 LookupName(Previous, S); 12662 12663 for (NamedDecl *D : Previous) 12664 if (UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) 12665 if (UED->getEnumDecl() == ED) { 12666 Diag(UsingLoc, diag::err_using_enum_decl_redeclaration) 12667 << SourceRange(EnumLoc, NameLoc); 12668 Diag(D->getLocation(), diag::note_using_enum_decl) << 1; 12669 Invalid = true; 12670 break; 12671 } 12672 } 12673 12674 if (RequireCompleteEnumDecl(ED, NameLoc)) 12675 Invalid = true; 12676 12677 UsingEnumDecl *UD = UsingEnumDecl::Create(Context, CurContext, UsingLoc, 12678 EnumLoc, NameLoc, EnumType); 12679 UD->setAccess(AS); 12680 CurContext->addDecl(UD); 12681 12682 if (Invalid) { 12683 UD->setInvalidDecl(); 12684 return UD; 12685 } 12686 12687 // Create the shadow decls for each enumerator 12688 for (EnumConstantDecl *EC : ED->enumerators()) { 12689 UsingShadowDecl *PrevDecl = nullptr; 12690 DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation()); 12691 LookupResult Previous(*this, DNI, LookupOrdinaryName, 12692 ForVisibleRedeclaration); 12693 LookupName(Previous, S); 12694 FilterUsingLookup(S, Previous); 12695 12696 if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl)) 12697 BuildUsingShadowDecl(S, UD, EC, PrevDecl); 12698 } 12699 12700 return UD; 12701 } 12702 12703 NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom, 12704 ArrayRef<NamedDecl *> Expansions) { 12705 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || 12706 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || 12707 isa<UsingPackDecl>(InstantiatedFrom)); 12708 12709 auto *UPD = 12710 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions); 12711 UPD->setAccess(InstantiatedFrom->getAccess()); 12712 CurContext->addDecl(UPD); 12713 return UPD; 12714 } 12715 12716 /// Additional checks for a using declaration referring to a constructor name. 12717 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { 12718 assert(!UD->hasTypename() && "expecting a constructor name"); 12719 12720 const Type *SourceType = UD->getQualifier()->getAsType(); 12721 assert(SourceType && 12722 "Using decl naming constructor doesn't have type in scope spec."); 12723 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); 12724 12725 // Check whether the named type is a direct base class. 12726 bool AnyDependentBases = false; 12727 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0), 12728 AnyDependentBases); 12729 if (!Base && !AnyDependentBases) { 12730 Diag(UD->getUsingLoc(), 12731 diag::err_using_decl_constructor_not_in_direct_base) 12732 << UD->getNameInfo().getSourceRange() 12733 << QualType(SourceType, 0) << TargetClass; 12734 UD->setInvalidDecl(); 12735 return true; 12736 } 12737 12738 if (Base) 12739 Base->setInheritConstructors(); 12740 12741 return false; 12742 } 12743 12744 /// Checks that the given using declaration is not an invalid 12745 /// redeclaration. Note that this is checking only for the using decl 12746 /// itself, not for any ill-formedness among the UsingShadowDecls. 12747 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, 12748 bool HasTypenameKeyword, 12749 const CXXScopeSpec &SS, 12750 SourceLocation NameLoc, 12751 const LookupResult &Prev) { 12752 NestedNameSpecifier *Qual = SS.getScopeRep(); 12753 12754 // C++03 [namespace.udecl]p8: 12755 // C++0x [namespace.udecl]p10: 12756 // A using-declaration is a declaration and can therefore be used 12757 // repeatedly where (and only where) multiple declarations are 12758 // allowed. 12759 // 12760 // That's in non-member contexts. 12761 if (!CurContext->getRedeclContext()->isRecord()) { 12762 // A dependent qualifier outside a class can only ever resolve to an 12763 // enumeration type. Therefore it conflicts with any other non-type 12764 // declaration in the same scope. 12765 // FIXME: How should we check for dependent type-type conflicts at block 12766 // scope? 12767 if (Qual->isDependent() && !HasTypenameKeyword) { 12768 for (auto *D : Prev) { 12769 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) { 12770 bool OldCouldBeEnumerator = 12771 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D); 12772 Diag(NameLoc, 12773 OldCouldBeEnumerator ? diag::err_redefinition 12774 : diag::err_redefinition_different_kind) 12775 << Prev.getLookupName(); 12776 Diag(D->getLocation(), diag::note_previous_definition); 12777 return true; 12778 } 12779 } 12780 } 12781 return false; 12782 } 12783 12784 const NestedNameSpecifier *CNNS = 12785 Context.getCanonicalNestedNameSpecifier(Qual); 12786 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { 12787 NamedDecl *D = *I; 12788 12789 bool DTypename; 12790 NestedNameSpecifier *DQual; 12791 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { 12792 DTypename = UD->hasTypename(); 12793 DQual = UD->getQualifier(); 12794 } else if (UnresolvedUsingValueDecl *UD 12795 = dyn_cast<UnresolvedUsingValueDecl>(D)) { 12796 DTypename = false; 12797 DQual = UD->getQualifier(); 12798 } else if (UnresolvedUsingTypenameDecl *UD 12799 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { 12800 DTypename = true; 12801 DQual = UD->getQualifier(); 12802 } else continue; 12803 12804 // using decls differ if one says 'typename' and the other doesn't. 12805 // FIXME: non-dependent using decls? 12806 if (HasTypenameKeyword != DTypename) continue; 12807 12808 // using decls differ if they name different scopes (but note that 12809 // template instantiation can cause this check to trigger when it 12810 // didn't before instantiation). 12811 if (CNNS != Context.getCanonicalNestedNameSpecifier(DQual)) 12812 continue; 12813 12814 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); 12815 Diag(D->getLocation(), diag::note_using_decl) << 1; 12816 return true; 12817 } 12818 12819 return false; 12820 } 12821 12822 /// Checks that the given nested-name qualifier used in a using decl 12823 /// in the current context is appropriately related to the current 12824 /// scope. If an error is found, diagnoses it and returns true. 12825 /// R is nullptr, if the caller has not (yet) done a lookup, otherwise it's the 12826 /// result of that lookup. UD is likewise nullptr, except when we have an 12827 /// already-populated UsingDecl whose shadow decls contain the same information 12828 /// (i.e. we're instantiating a UsingDecl with non-dependent scope). 12829 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename, 12830 const CXXScopeSpec &SS, 12831 const DeclarationNameInfo &NameInfo, 12832 SourceLocation NameLoc, 12833 const LookupResult *R, const UsingDecl *UD) { 12834 DeclContext *NamedContext = computeDeclContext(SS); 12835 assert(bool(NamedContext) == (R || UD) && !(R && UD) && 12836 "resolvable context must have exactly one set of decls"); 12837 12838 // C++ 20 permits using an enumerator that does not have a class-hierarchy 12839 // relationship. 12840 bool Cxx20Enumerator = false; 12841 if (NamedContext) { 12842 EnumConstantDecl *EC = nullptr; 12843 if (R) 12844 EC = R->getAsSingle<EnumConstantDecl>(); 12845 else if (UD && UD->shadow_size() == 1) 12846 EC = dyn_cast<EnumConstantDecl>(UD->shadow_begin()->getTargetDecl()); 12847 if (EC) 12848 Cxx20Enumerator = getLangOpts().CPlusPlus20; 12849 12850 if (auto *ED = dyn_cast<EnumDecl>(NamedContext)) { 12851 // C++14 [namespace.udecl]p7: 12852 // A using-declaration shall not name a scoped enumerator. 12853 // C++20 p1099 permits enumerators. 12854 if (EC && R && ED->isScoped()) 12855 Diag(SS.getBeginLoc(), 12856 getLangOpts().CPlusPlus20 12857 ? diag::warn_cxx17_compat_using_decl_scoped_enumerator 12858 : diag::ext_using_decl_scoped_enumerator) 12859 << SS.getRange(); 12860 12861 // We want to consider the scope of the enumerator 12862 NamedContext = ED->getDeclContext(); 12863 } 12864 } 12865 12866 if (!CurContext->isRecord()) { 12867 // C++03 [namespace.udecl]p3: 12868 // C++0x [namespace.udecl]p8: 12869 // A using-declaration for a class member shall be a member-declaration. 12870 // C++20 [namespace.udecl]p7 12871 // ... other than an enumerator ... 12872 12873 // If we weren't able to compute a valid scope, it might validly be a 12874 // dependent class or enumeration scope. If we have a 'typename' keyword, 12875 // the scope must resolve to a class type. 12876 if (NamedContext ? !NamedContext->getRedeclContext()->isRecord() 12877 : !HasTypename) 12878 return false; // OK 12879 12880 Diag(NameLoc, 12881 Cxx20Enumerator 12882 ? diag::warn_cxx17_compat_using_decl_class_member_enumerator 12883 : diag::err_using_decl_can_not_refer_to_class_member) 12884 << SS.getRange(); 12885 12886 if (Cxx20Enumerator) 12887 return false; // OK 12888 12889 auto *RD = NamedContext 12890 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext()) 12891 : nullptr; 12892 if (RD && !RequireCompleteDeclContext(const_cast<CXXScopeSpec &>(SS), RD)) { 12893 // See if there's a helpful fixit 12894 12895 if (!R) { 12896 // We will have already diagnosed the problem on the template 12897 // definition, Maybe we should do so again? 12898 } else if (R->getAsSingle<TypeDecl>()) { 12899 if (getLangOpts().CPlusPlus11) { 12900 // Convert 'using X::Y;' to 'using Y = X::Y;'. 12901 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) 12902 << 0 // alias declaration 12903 << FixItHint::CreateInsertion(SS.getBeginLoc(), 12904 NameInfo.getName().getAsString() + 12905 " = "); 12906 } else { 12907 // Convert 'using X::Y;' to 'typedef X::Y Y;'. 12908 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc()); 12909 Diag(InsertLoc, diag::note_using_decl_class_member_workaround) 12910 << 1 // typedef declaration 12911 << FixItHint::CreateReplacement(UsingLoc, "typedef") 12912 << FixItHint::CreateInsertion( 12913 InsertLoc, " " + NameInfo.getName().getAsString()); 12914 } 12915 } else if (R->getAsSingle<VarDecl>()) { 12916 // Don't provide a fixit outside C++11 mode; we don't want to suggest 12917 // repeating the type of the static data member here. 12918 FixItHint FixIt; 12919 if (getLangOpts().CPlusPlus11) { 12920 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 12921 FixIt = FixItHint::CreateReplacement( 12922 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = "); 12923 } 12924 12925 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 12926 << 2 // reference declaration 12927 << FixIt; 12928 } else if (R->getAsSingle<EnumConstantDecl>()) { 12929 // Don't provide a fixit outside C++11 mode; we don't want to suggest 12930 // repeating the type of the enumeration here, and we can't do so if 12931 // the type is anonymous. 12932 FixItHint FixIt; 12933 if (getLangOpts().CPlusPlus11) { 12934 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 12935 FixIt = FixItHint::CreateReplacement( 12936 UsingLoc, 12937 "constexpr auto " + NameInfo.getName().getAsString() + " = "); 12938 } 12939 12940 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 12941 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable 12942 << FixIt; 12943 } 12944 } 12945 12946 return true; // Fail 12947 } 12948 12949 // If the named context is dependent, we can't decide much. 12950 if (!NamedContext) { 12951 // FIXME: in C++0x, we can diagnose if we can prove that the 12952 // nested-name-specifier does not refer to a base class, which is 12953 // still possible in some cases. 12954 12955 // Otherwise we have to conservatively report that things might be 12956 // okay. 12957 return false; 12958 } 12959 12960 // The current scope is a record. 12961 if (!NamedContext->isRecord()) { 12962 // Ideally this would point at the last name in the specifier, 12963 // but we don't have that level of source info. 12964 Diag(SS.getBeginLoc(), 12965 Cxx20Enumerator 12966 ? diag::warn_cxx17_compat_using_decl_non_member_enumerator 12967 : diag::err_using_decl_nested_name_specifier_is_not_class) 12968 << SS.getScopeRep() << SS.getRange(); 12969 12970 if (Cxx20Enumerator) 12971 return false; // OK 12972 12973 return true; 12974 } 12975 12976 if (!NamedContext->isDependentContext() && 12977 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) 12978 return true; 12979 12980 if (getLangOpts().CPlusPlus11) { 12981 // C++11 [namespace.udecl]p3: 12982 // In a using-declaration used as a member-declaration, the 12983 // nested-name-specifier shall name a base class of the class 12984 // being defined. 12985 12986 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( 12987 cast<CXXRecordDecl>(NamedContext))) { 12988 12989 if (Cxx20Enumerator) { 12990 Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator) 12991 << SS.getRange(); 12992 return false; 12993 } 12994 12995 if (CurContext == NamedContext) { 12996 Diag(SS.getBeginLoc(), 12997 diag::err_using_decl_nested_name_specifier_is_current_class) 12998 << SS.getRange(); 12999 return !getLangOpts().CPlusPlus20; 13000 } 13001 13002 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) { 13003 Diag(SS.getBeginLoc(), 13004 diag::err_using_decl_nested_name_specifier_is_not_base_class) 13005 << SS.getScopeRep() << cast<CXXRecordDecl>(CurContext) 13006 << SS.getRange(); 13007 } 13008 return true; 13009 } 13010 13011 return false; 13012 } 13013 13014 // C++03 [namespace.udecl]p4: 13015 // A using-declaration used as a member-declaration shall refer 13016 // to a member of a base class of the class being defined [etc.]. 13017 13018 // Salient point: SS doesn't have to name a base class as long as 13019 // lookup only finds members from base classes. Therefore we can 13020 // diagnose here only if we can prove that can't happen, 13021 // i.e. if the class hierarchies provably don't intersect. 13022 13023 // TODO: it would be nice if "definitely valid" results were cached 13024 // in the UsingDecl and UsingShadowDecl so that these checks didn't 13025 // need to be repeated. 13026 13027 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases; 13028 auto Collect = [&Bases](const CXXRecordDecl *Base) { 13029 Bases.insert(Base); 13030 return true; 13031 }; 13032 13033 // Collect all bases. Return false if we find a dependent base. 13034 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect)) 13035 return false; 13036 13037 // Returns true if the base is dependent or is one of the accumulated base 13038 // classes. 13039 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) { 13040 return !Bases.count(Base); 13041 }; 13042 13043 // Return false if the class has a dependent base or if it or one 13044 // of its bases is present in the base set of the current context. 13045 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) || 13046 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase)) 13047 return false; 13048 13049 Diag(SS.getRange().getBegin(), 13050 diag::err_using_decl_nested_name_specifier_is_not_base_class) 13051 << SS.getScopeRep() 13052 << cast<CXXRecordDecl>(CurContext) 13053 << SS.getRange(); 13054 13055 return true; 13056 } 13057 13058 Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS, 13059 MultiTemplateParamsArg TemplateParamLists, 13060 SourceLocation UsingLoc, UnqualifiedId &Name, 13061 const ParsedAttributesView &AttrList, 13062 TypeResult Type, Decl *DeclFromDeclSpec) { 13063 // Skip up to the relevant declaration scope. 13064 while (S->isTemplateParamScope()) 13065 S = S->getParent(); 13066 assert((S->getFlags() & Scope::DeclScope) && 13067 "got alias-declaration outside of declaration scope"); 13068 13069 if (Type.isInvalid()) 13070 return nullptr; 13071 13072 bool Invalid = false; 13073 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); 13074 TypeSourceInfo *TInfo = nullptr; 13075 GetTypeFromParser(Type.get(), &TInfo); 13076 13077 if (DiagnoseClassNameShadow(CurContext, NameInfo)) 13078 return nullptr; 13079 13080 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, 13081 UPPC_DeclarationType)) { 13082 Invalid = true; 13083 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 13084 TInfo->getTypeLoc().getBeginLoc()); 13085 } 13086 13087 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 13088 TemplateParamLists.size() 13089 ? forRedeclarationInCurContext() 13090 : ForVisibleRedeclaration); 13091 LookupName(Previous, S); 13092 13093 // Warn about shadowing the name of a template parameter. 13094 if (Previous.isSingleResult() && 13095 Previous.getFoundDecl()->isTemplateParameter()) { 13096 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); 13097 Previous.clear(); 13098 } 13099 13100 assert(Name.getKind() == UnqualifiedIdKind::IK_Identifier && 13101 "name in alias declaration must be an identifier"); 13102 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, 13103 Name.StartLocation, 13104 Name.Identifier, TInfo); 13105 13106 NewTD->setAccess(AS); 13107 13108 if (Invalid) 13109 NewTD->setInvalidDecl(); 13110 13111 ProcessDeclAttributeList(S, NewTD, AttrList); 13112 AddPragmaAttributes(S, NewTD); 13113 13114 CheckTypedefForVariablyModifiedType(S, NewTD); 13115 Invalid |= NewTD->isInvalidDecl(); 13116 13117 bool Redeclaration = false; 13118 13119 NamedDecl *NewND; 13120 if (TemplateParamLists.size()) { 13121 TypeAliasTemplateDecl *OldDecl = nullptr; 13122 TemplateParameterList *OldTemplateParams = nullptr; 13123 13124 if (TemplateParamLists.size() != 1) { 13125 Diag(UsingLoc, diag::err_alias_template_extra_headers) 13126 << SourceRange(TemplateParamLists[1]->getTemplateLoc(), 13127 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); 13128 } 13129 TemplateParameterList *TemplateParams = TemplateParamLists[0]; 13130 13131 // Check that we can declare a template here. 13132 if (CheckTemplateDeclScope(S, TemplateParams)) 13133 return nullptr; 13134 13135 // Only consider previous declarations in the same scope. 13136 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, 13137 /*ExplicitInstantiationOrSpecialization*/false); 13138 if (!Previous.empty()) { 13139 Redeclaration = true; 13140 13141 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); 13142 if (!OldDecl && !Invalid) { 13143 Diag(UsingLoc, diag::err_redefinition_different_kind) 13144 << Name.Identifier; 13145 13146 NamedDecl *OldD = Previous.getRepresentativeDecl(); 13147 if (OldD->getLocation().isValid()) 13148 Diag(OldD->getLocation(), diag::note_previous_definition); 13149 13150 Invalid = true; 13151 } 13152 13153 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { 13154 if (TemplateParameterListsAreEqual(TemplateParams, 13155 OldDecl->getTemplateParameters(), 13156 /*Complain=*/true, 13157 TPL_TemplateMatch)) 13158 OldTemplateParams = 13159 OldDecl->getMostRecentDecl()->getTemplateParameters(); 13160 else 13161 Invalid = true; 13162 13163 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); 13164 if (!Invalid && 13165 !Context.hasSameType(OldTD->getUnderlyingType(), 13166 NewTD->getUnderlyingType())) { 13167 // FIXME: The C++0x standard does not clearly say this is ill-formed, 13168 // but we can't reasonably accept it. 13169 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) 13170 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); 13171 if (OldTD->getLocation().isValid()) 13172 Diag(OldTD->getLocation(), diag::note_previous_definition); 13173 Invalid = true; 13174 } 13175 } 13176 } 13177 13178 // Merge any previous default template arguments into our parameters, 13179 // and check the parameter list. 13180 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, 13181 TPC_TypeAliasTemplate)) 13182 return nullptr; 13183 13184 TypeAliasTemplateDecl *NewDecl = 13185 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, 13186 Name.Identifier, TemplateParams, 13187 NewTD); 13188 NewTD->setDescribedAliasTemplate(NewDecl); 13189 13190 NewDecl->setAccess(AS); 13191 13192 if (Invalid) 13193 NewDecl->setInvalidDecl(); 13194 else if (OldDecl) { 13195 NewDecl->setPreviousDecl(OldDecl); 13196 CheckRedeclarationInModule(NewDecl, OldDecl); 13197 } 13198 13199 NewND = NewDecl; 13200 } else { 13201 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) { 13202 setTagNameForLinkagePurposes(TD, NewTD); 13203 handleTagNumbering(TD, S); 13204 } 13205 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); 13206 NewND = NewTD; 13207 } 13208 13209 PushOnScopeChains(NewND, S); 13210 ActOnDocumentableDecl(NewND); 13211 return NewND; 13212 } 13213 13214 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, 13215 SourceLocation AliasLoc, 13216 IdentifierInfo *Alias, CXXScopeSpec &SS, 13217 SourceLocation IdentLoc, 13218 IdentifierInfo *Ident) { 13219 13220 // Lookup the namespace name. 13221 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); 13222 LookupParsedName(R, S, &SS); 13223 13224 if (R.isAmbiguous()) 13225 return nullptr; 13226 13227 if (R.empty()) { 13228 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { 13229 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 13230 return nullptr; 13231 } 13232 } 13233 assert(!R.isAmbiguous() && !R.empty()); 13234 NamedDecl *ND = R.getRepresentativeDecl(); 13235 13236 // Check if we have a previous declaration with the same name. 13237 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName, 13238 ForVisibleRedeclaration); 13239 LookupName(PrevR, S); 13240 13241 // Check we're not shadowing a template parameter. 13242 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) { 13243 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl()); 13244 PrevR.clear(); 13245 } 13246 13247 // Filter out any other lookup result from an enclosing scope. 13248 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false, 13249 /*AllowInlineNamespace*/false); 13250 13251 // Find the previous declaration and check that we can redeclare it. 13252 NamespaceAliasDecl *Prev = nullptr; 13253 if (PrevR.isSingleResult()) { 13254 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl(); 13255 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { 13256 // We already have an alias with the same name that points to the same 13257 // namespace; check that it matches. 13258 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) { 13259 Prev = AD; 13260 } else if (isVisible(PrevDecl)) { 13261 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) 13262 << Alias; 13263 Diag(AD->getLocation(), diag::note_previous_namespace_alias) 13264 << AD->getNamespace(); 13265 return nullptr; 13266 } 13267 } else if (isVisible(PrevDecl)) { 13268 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl()) 13269 ? diag::err_redefinition 13270 : diag::err_redefinition_different_kind; 13271 Diag(AliasLoc, DiagID) << Alias; 13272 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 13273 return nullptr; 13274 } 13275 } 13276 13277 // The use of a nested name specifier may trigger deprecation warnings. 13278 DiagnoseUseOfDecl(ND, IdentLoc); 13279 13280 NamespaceAliasDecl *AliasDecl = 13281 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, 13282 Alias, SS.getWithLocInContext(Context), 13283 IdentLoc, ND); 13284 if (Prev) 13285 AliasDecl->setPreviousDecl(Prev); 13286 13287 PushOnScopeChains(AliasDecl, S); 13288 return AliasDecl; 13289 } 13290 13291 namespace { 13292 struct SpecialMemberExceptionSpecInfo 13293 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> { 13294 SourceLocation Loc; 13295 Sema::ImplicitExceptionSpecification ExceptSpec; 13296 13297 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD, 13298 Sema::CXXSpecialMember CSM, 13299 Sema::InheritedConstructorInfo *ICI, 13300 SourceLocation Loc) 13301 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {} 13302 13303 bool visitBase(CXXBaseSpecifier *Base); 13304 bool visitField(FieldDecl *FD); 13305 13306 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 13307 unsigned Quals); 13308 13309 void visitSubobjectCall(Subobject Subobj, 13310 Sema::SpecialMemberOverloadResult SMOR); 13311 }; 13312 } 13313 13314 bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) { 13315 auto *RT = Base->getType()->getAs<RecordType>(); 13316 if (!RT) 13317 return false; 13318 13319 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl()); 13320 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 13321 if (auto *BaseCtor = SMOR.getMethod()) { 13322 visitSubobjectCall(Base, BaseCtor); 13323 return false; 13324 } 13325 13326 visitClassSubobject(BaseClass, Base, 0); 13327 return false; 13328 } 13329 13330 bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) { 13331 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) { 13332 Expr *E = FD->getInClassInitializer(); 13333 if (!E) 13334 // FIXME: It's a little wasteful to build and throw away a 13335 // CXXDefaultInitExpr here. 13336 // FIXME: We should have a single context note pointing at Loc, and 13337 // this location should be MD->getLocation() instead, since that's 13338 // the location where we actually use the default init expression. 13339 E = S.BuildCXXDefaultInitExpr(Loc, FD).get(); 13340 if (E) 13341 ExceptSpec.CalledExpr(E); 13342 } else if (auto *RT = S.Context.getBaseElementType(FD->getType()) 13343 ->getAs<RecordType>()) { 13344 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD, 13345 FD->getType().getCVRQualifiers()); 13346 } 13347 return false; 13348 } 13349 13350 void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class, 13351 Subobject Subobj, 13352 unsigned Quals) { 13353 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 13354 bool IsMutable = Field && Field->isMutable(); 13355 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable)); 13356 } 13357 13358 void SpecialMemberExceptionSpecInfo::visitSubobjectCall( 13359 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) { 13360 // Note, if lookup fails, it doesn't matter what exception specification we 13361 // choose because the special member will be deleted. 13362 if (CXXMethodDecl *MD = SMOR.getMethod()) 13363 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD); 13364 } 13365 13366 bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) { 13367 llvm::APSInt Result; 13368 ExprResult Converted = CheckConvertedConstantExpression( 13369 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool); 13370 ExplicitSpec.setExpr(Converted.get()); 13371 if (Converted.isUsable() && !Converted.get()->isValueDependent()) { 13372 ExplicitSpec.setKind(Result.getBoolValue() 13373 ? ExplicitSpecKind::ResolvedTrue 13374 : ExplicitSpecKind::ResolvedFalse); 13375 return true; 13376 } 13377 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved); 13378 return false; 13379 } 13380 13381 ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) { 13382 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved); 13383 if (!ExplicitExpr->isTypeDependent()) 13384 tryResolveExplicitSpecifier(ES); 13385 return ES; 13386 } 13387 13388 static Sema::ImplicitExceptionSpecification 13389 ComputeDefaultedSpecialMemberExceptionSpec( 13390 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 13391 Sema::InheritedConstructorInfo *ICI) { 13392 ComputingExceptionSpec CES(S, MD, Loc); 13393 13394 CXXRecordDecl *ClassDecl = MD->getParent(); 13395 13396 // C++ [except.spec]p14: 13397 // An implicitly declared special member function (Clause 12) shall have an 13398 // exception-specification. [...] 13399 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation()); 13400 if (ClassDecl->isInvalidDecl()) 13401 return Info.ExceptSpec; 13402 13403 // FIXME: If this diagnostic fires, we're probably missing a check for 13404 // attempting to resolve an exception specification before it's known 13405 // at a higher level. 13406 if (S.RequireCompleteType(MD->getLocation(), 13407 S.Context.getRecordType(ClassDecl), 13408 diag::err_exception_spec_incomplete_type)) 13409 return Info.ExceptSpec; 13410 13411 // C++1z [except.spec]p7: 13412 // [Look for exceptions thrown by] a constructor selected [...] to 13413 // initialize a potentially constructed subobject, 13414 // C++1z [except.spec]p8: 13415 // The exception specification for an implicitly-declared destructor, or a 13416 // destructor without a noexcept-specifier, is potentially-throwing if and 13417 // only if any of the destructors for any of its potentially constructed 13418 // subojects is potentially throwing. 13419 // FIXME: We respect the first rule but ignore the "potentially constructed" 13420 // in the second rule to resolve a core issue (no number yet) that would have 13421 // us reject: 13422 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; }; 13423 // struct B : A {}; 13424 // struct C : B { void f(); }; 13425 // ... due to giving B::~B() a non-throwing exception specification. 13426 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases 13427 : Info.VisitAllBases); 13428 13429 return Info.ExceptSpec; 13430 } 13431 13432 namespace { 13433 /// RAII object to register a special member as being currently declared. 13434 struct DeclaringSpecialMember { 13435 Sema &S; 13436 Sema::SpecialMemberDecl D; 13437 Sema::ContextRAII SavedContext; 13438 bool WasAlreadyBeingDeclared; 13439 13440 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM) 13441 : S(S), D(RD, CSM), SavedContext(S, RD) { 13442 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second; 13443 if (WasAlreadyBeingDeclared) 13444 // This almost never happens, but if it does, ensure that our cache 13445 // doesn't contain a stale result. 13446 S.SpecialMemberCache.clear(); 13447 else { 13448 // Register a note to be produced if we encounter an error while 13449 // declaring the special member. 13450 Sema::CodeSynthesisContext Ctx; 13451 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember; 13452 // FIXME: We don't have a location to use here. Using the class's 13453 // location maintains the fiction that we declare all special members 13454 // with the class, but (1) it's not clear that lying about that helps our 13455 // users understand what's going on, and (2) there may be outer contexts 13456 // on the stack (some of which are relevant) and printing them exposes 13457 // our lies. 13458 Ctx.PointOfInstantiation = RD->getLocation(); 13459 Ctx.Entity = RD; 13460 Ctx.SpecialMember = CSM; 13461 S.pushCodeSynthesisContext(Ctx); 13462 } 13463 } 13464 ~DeclaringSpecialMember() { 13465 if (!WasAlreadyBeingDeclared) { 13466 S.SpecialMembersBeingDeclared.erase(D); 13467 S.popCodeSynthesisContext(); 13468 } 13469 } 13470 13471 /// Are we already trying to declare this special member? 13472 bool isAlreadyBeingDeclared() const { 13473 return WasAlreadyBeingDeclared; 13474 } 13475 }; 13476 } 13477 13478 void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) { 13479 // Look up any existing declarations, but don't trigger declaration of all 13480 // implicit special members with this name. 13481 DeclarationName Name = FD->getDeclName(); 13482 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName, 13483 ForExternalRedeclaration); 13484 for (auto *D : FD->getParent()->lookup(Name)) 13485 if (auto *Acceptable = R.getAcceptableDecl(D)) 13486 R.addDecl(Acceptable); 13487 R.resolveKind(); 13488 R.suppressDiagnostics(); 13489 13490 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/ false, 13491 FD->isThisDeclarationADefinition()); 13492 } 13493 13494 void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, 13495 QualType ResultTy, 13496 ArrayRef<QualType> Args) { 13497 // Build an exception specification pointing back at this constructor. 13498 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem); 13499 13500 LangAS AS = getDefaultCXXMethodAddrSpace(); 13501 if (AS != LangAS::Default) { 13502 EPI.TypeQuals.addAddressSpace(AS); 13503 } 13504 13505 auto QT = Context.getFunctionType(ResultTy, Args, EPI); 13506 SpecialMem->setType(QT); 13507 13508 // During template instantiation of implicit special member functions we need 13509 // a reliable TypeSourceInfo for the function prototype in order to allow 13510 // functions to be substituted. 13511 if (inTemplateInstantiation() && 13512 cast<CXXRecordDecl>(SpecialMem->getParent())->isLambda()) { 13513 TypeSourceInfo *TSI = 13514 Context.getTrivialTypeSourceInfo(SpecialMem->getType()); 13515 SpecialMem->setTypeSourceInfo(TSI); 13516 } 13517 } 13518 13519 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( 13520 CXXRecordDecl *ClassDecl) { 13521 // C++ [class.ctor]p5: 13522 // A default constructor for a class X is a constructor of class X 13523 // that can be called without an argument. If there is no 13524 // user-declared constructor for class X, a default constructor is 13525 // implicitly declared. An implicitly-declared default constructor 13526 // is an inline public member of its class. 13527 assert(ClassDecl->needsImplicitDefaultConstructor() && 13528 "Should not build implicit default constructor!"); 13529 13530 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor); 13531 if (DSM.isAlreadyBeingDeclared()) 13532 return nullptr; 13533 13534 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 13535 CXXDefaultConstructor, 13536 false); 13537 13538 // Create the actual constructor declaration. 13539 CanQualType ClassType 13540 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 13541 SourceLocation ClassLoc = ClassDecl->getLocation(); 13542 DeclarationName Name 13543 = Context.DeclarationNames.getCXXConstructorName(ClassType); 13544 DeclarationNameInfo NameInfo(Name, ClassLoc); 13545 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( 13546 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(), 13547 /*TInfo=*/nullptr, ExplicitSpecifier(), 13548 getCurFPFeatures().isFPConstrained(), 13549 /*isInline=*/true, /*isImplicitlyDeclared=*/true, 13550 Constexpr ? ConstexprSpecKind::Constexpr 13551 : ConstexprSpecKind::Unspecified); 13552 DefaultCon->setAccess(AS_public); 13553 DefaultCon->setDefaulted(); 13554 13555 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, std::nullopt); 13556 13557 if (getLangOpts().CUDA) 13558 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor, 13559 DefaultCon, 13560 /* ConstRHS */ false, 13561 /* Diagnose */ false); 13562 13563 // We don't need to use SpecialMemberIsTrivial here; triviality for default 13564 // constructors is easy to compute. 13565 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); 13566 13567 // Note that we have declared this constructor. 13568 ++getASTContext().NumImplicitDefaultConstructorsDeclared; 13569 13570 Scope *S = getScopeForContext(ClassDecl); 13571 CheckImplicitSpecialMemberDeclaration(S, DefaultCon); 13572 13573 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor)) 13574 SetDeclDeleted(DefaultCon, ClassLoc); 13575 13576 if (S) 13577 PushOnScopeChains(DefaultCon, S, false); 13578 ClassDecl->addDecl(DefaultCon); 13579 13580 return DefaultCon; 13581 } 13582 13583 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, 13584 CXXConstructorDecl *Constructor) { 13585 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 13586 !Constructor->doesThisDeclarationHaveABody() && 13587 !Constructor->isDeleted()) && 13588 "DefineImplicitDefaultConstructor - call it for implicit default ctor"); 13589 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 13590 return; 13591 13592 CXXRecordDecl *ClassDecl = Constructor->getParent(); 13593 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); 13594 13595 SynthesizedFunctionScope Scope(*this, Constructor); 13596 13597 // The exception specification is needed because we are defining the 13598 // function. 13599 ResolveExceptionSpec(CurrentLocation, 13600 Constructor->getType()->castAs<FunctionProtoType>()); 13601 MarkVTableUsed(CurrentLocation, ClassDecl); 13602 13603 // Add a context note for diagnostics produced after this point. 13604 Scope.addContextNote(CurrentLocation); 13605 13606 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) { 13607 Constructor->setInvalidDecl(); 13608 return; 13609 } 13610 13611 SourceLocation Loc = Constructor->getEndLoc().isValid() 13612 ? Constructor->getEndLoc() 13613 : Constructor->getLocation(); 13614 Constructor->setBody(new (Context) CompoundStmt(Loc)); 13615 Constructor->markUsed(Context); 13616 13617 if (ASTMutationListener *L = getASTMutationListener()) { 13618 L->CompletedImplicitDefinition(Constructor); 13619 } 13620 13621 DiagnoseUninitializedFields(*this, Constructor); 13622 } 13623 13624 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { 13625 // Perform any delayed checks on exception specifications. 13626 CheckDelayedMemberExceptionSpecs(); 13627 } 13628 13629 /// Find or create the fake constructor we synthesize to model constructing an 13630 /// object of a derived class via a constructor of a base class. 13631 CXXConstructorDecl * 13632 Sema::findInheritingConstructor(SourceLocation Loc, 13633 CXXConstructorDecl *BaseCtor, 13634 ConstructorUsingShadowDecl *Shadow) { 13635 CXXRecordDecl *Derived = Shadow->getParent(); 13636 SourceLocation UsingLoc = Shadow->getLocation(); 13637 13638 // FIXME: Add a new kind of DeclarationName for an inherited constructor. 13639 // For now we use the name of the base class constructor as a member of the 13640 // derived class to indicate a (fake) inherited constructor name. 13641 DeclarationName Name = BaseCtor->getDeclName(); 13642 13643 // Check to see if we already have a fake constructor for this inherited 13644 // constructor call. 13645 for (NamedDecl *Ctor : Derived->lookup(Name)) 13646 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor) 13647 ->getInheritedConstructor() 13648 .getConstructor(), 13649 BaseCtor)) 13650 return cast<CXXConstructorDecl>(Ctor); 13651 13652 DeclarationNameInfo NameInfo(Name, UsingLoc); 13653 TypeSourceInfo *TInfo = 13654 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc); 13655 FunctionProtoTypeLoc ProtoLoc = 13656 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>(); 13657 13658 // Check the inherited constructor is valid and find the list of base classes 13659 // from which it was inherited. 13660 InheritedConstructorInfo ICI(*this, Loc, Shadow); 13661 13662 bool Constexpr = 13663 BaseCtor->isConstexpr() && 13664 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor, 13665 false, BaseCtor, &ICI); 13666 13667 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( 13668 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo, 13669 BaseCtor->getExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 13670 /*isInline=*/true, 13671 /*isImplicitlyDeclared=*/true, 13672 Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified, 13673 InheritedConstructor(Shadow, BaseCtor), 13674 BaseCtor->getTrailingRequiresClause()); 13675 if (Shadow->isInvalidDecl()) 13676 DerivedCtor->setInvalidDecl(); 13677 13678 // Build an unevaluated exception specification for this fake constructor. 13679 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>(); 13680 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 13681 EPI.ExceptionSpec.Type = EST_Unevaluated; 13682 EPI.ExceptionSpec.SourceDecl = DerivedCtor; 13683 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(), 13684 FPT->getParamTypes(), EPI)); 13685 13686 // Build the parameter declarations. 13687 SmallVector<ParmVarDecl *, 16> ParamDecls; 13688 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { 13689 TypeSourceInfo *TInfo = 13690 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc); 13691 ParmVarDecl *PD = ParmVarDecl::Create( 13692 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, 13693 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr); 13694 PD->setScopeInfo(0, I); 13695 PD->setImplicit(); 13696 // Ensure attributes are propagated onto parameters (this matters for 13697 // format, pass_object_size, ...). 13698 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I)); 13699 ParamDecls.push_back(PD); 13700 ProtoLoc.setParam(I, PD); 13701 } 13702 13703 // Set up the new constructor. 13704 assert(!BaseCtor->isDeleted() && "should not use deleted constructor"); 13705 DerivedCtor->setAccess(BaseCtor->getAccess()); 13706 DerivedCtor->setParams(ParamDecls); 13707 Derived->addDecl(DerivedCtor); 13708 13709 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI)) 13710 SetDeclDeleted(DerivedCtor, UsingLoc); 13711 13712 return DerivedCtor; 13713 } 13714 13715 void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) { 13716 InheritedConstructorInfo ICI(*this, Ctor->getLocation(), 13717 Ctor->getInheritedConstructor().getShadowDecl()); 13718 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI, 13719 /*Diagnose*/true); 13720 } 13721 13722 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, 13723 CXXConstructorDecl *Constructor) { 13724 CXXRecordDecl *ClassDecl = Constructor->getParent(); 13725 assert(Constructor->getInheritedConstructor() && 13726 !Constructor->doesThisDeclarationHaveABody() && 13727 !Constructor->isDeleted()); 13728 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 13729 return; 13730 13731 // Initializations are performed "as if by a defaulted default constructor", 13732 // so enter the appropriate scope. 13733 SynthesizedFunctionScope Scope(*this, Constructor); 13734 13735 // The exception specification is needed because we are defining the 13736 // function. 13737 ResolveExceptionSpec(CurrentLocation, 13738 Constructor->getType()->castAs<FunctionProtoType>()); 13739 MarkVTableUsed(CurrentLocation, ClassDecl); 13740 13741 // Add a context note for diagnostics produced after this point. 13742 Scope.addContextNote(CurrentLocation); 13743 13744 ConstructorUsingShadowDecl *Shadow = 13745 Constructor->getInheritedConstructor().getShadowDecl(); 13746 CXXConstructorDecl *InheritedCtor = 13747 Constructor->getInheritedConstructor().getConstructor(); 13748 13749 // [class.inhctor.init]p1: 13750 // initialization proceeds as if a defaulted default constructor is used to 13751 // initialize the D object and each base class subobject from which the 13752 // constructor was inherited 13753 13754 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow); 13755 CXXRecordDecl *RD = Shadow->getParent(); 13756 SourceLocation InitLoc = Shadow->getLocation(); 13757 13758 // Build explicit initializers for all base classes from which the 13759 // constructor was inherited. 13760 SmallVector<CXXCtorInitializer*, 8> Inits; 13761 for (bool VBase : {false, true}) { 13762 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) { 13763 if (B.isVirtual() != VBase) 13764 continue; 13765 13766 auto *BaseRD = B.getType()->getAsCXXRecordDecl(); 13767 if (!BaseRD) 13768 continue; 13769 13770 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor); 13771 if (!BaseCtor.first) 13772 continue; 13773 13774 MarkFunctionReferenced(CurrentLocation, BaseCtor.first); 13775 ExprResult Init = new (Context) CXXInheritedCtorInitExpr( 13776 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second); 13777 13778 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc); 13779 Inits.push_back(new (Context) CXXCtorInitializer( 13780 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc, 13781 SourceLocation())); 13782 } 13783 } 13784 13785 // We now proceed as if for a defaulted default constructor, with the relevant 13786 // initializers replaced. 13787 13788 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) { 13789 Constructor->setInvalidDecl(); 13790 return; 13791 } 13792 13793 Constructor->setBody(new (Context) CompoundStmt(InitLoc)); 13794 Constructor->markUsed(Context); 13795 13796 if (ASTMutationListener *L = getASTMutationListener()) { 13797 L->CompletedImplicitDefinition(Constructor); 13798 } 13799 13800 DiagnoseUninitializedFields(*this, Constructor); 13801 } 13802 13803 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { 13804 // C++ [class.dtor]p2: 13805 // If a class has no user-declared destructor, a destructor is 13806 // declared implicitly. An implicitly-declared destructor is an 13807 // inline public member of its class. 13808 assert(ClassDecl->needsImplicitDestructor()); 13809 13810 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor); 13811 if (DSM.isAlreadyBeingDeclared()) 13812 return nullptr; 13813 13814 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 13815 CXXDestructor, 13816 false); 13817 13818 // Create the actual destructor declaration. 13819 CanQualType ClassType 13820 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 13821 SourceLocation ClassLoc = ClassDecl->getLocation(); 13822 DeclarationName Name 13823 = Context.DeclarationNames.getCXXDestructorName(ClassType); 13824 DeclarationNameInfo NameInfo(Name, ClassLoc); 13825 CXXDestructorDecl *Destructor = CXXDestructorDecl::Create( 13826 Context, ClassDecl, ClassLoc, NameInfo, QualType(), nullptr, 13827 getCurFPFeatures().isFPConstrained(), 13828 /*isInline=*/true, 13829 /*isImplicitlyDeclared=*/true, 13830 Constexpr ? ConstexprSpecKind::Constexpr 13831 : ConstexprSpecKind::Unspecified); 13832 Destructor->setAccess(AS_public); 13833 Destructor->setDefaulted(); 13834 13835 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, std::nullopt); 13836 13837 if (getLangOpts().CUDA) 13838 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor, 13839 Destructor, 13840 /* ConstRHS */ false, 13841 /* Diagnose */ false); 13842 13843 // We don't need to use SpecialMemberIsTrivial here; triviality for 13844 // destructors is easy to compute. 13845 Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); 13846 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() || 13847 ClassDecl->hasTrivialDestructorForCall()); 13848 13849 // Note that we have declared this destructor. 13850 ++getASTContext().NumImplicitDestructorsDeclared; 13851 13852 Scope *S = getScopeForContext(ClassDecl); 13853 CheckImplicitSpecialMemberDeclaration(S, Destructor); 13854 13855 // We can't check whether an implicit destructor is deleted before we complete 13856 // the definition of the class, because its validity depends on the alignment 13857 // of the class. We'll check this from ActOnFields once the class is complete. 13858 if (ClassDecl->isCompleteDefinition() && 13859 ShouldDeleteSpecialMember(Destructor, CXXDestructor)) 13860 SetDeclDeleted(Destructor, ClassLoc); 13861 13862 // Introduce this destructor into its scope. 13863 if (S) 13864 PushOnScopeChains(Destructor, S, false); 13865 ClassDecl->addDecl(Destructor); 13866 13867 return Destructor; 13868 } 13869 13870 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, 13871 CXXDestructorDecl *Destructor) { 13872 assert((Destructor->isDefaulted() && 13873 !Destructor->doesThisDeclarationHaveABody() && 13874 !Destructor->isDeleted()) && 13875 "DefineImplicitDestructor - call it for implicit default dtor"); 13876 if (Destructor->willHaveBody() || Destructor->isInvalidDecl()) 13877 return; 13878 13879 CXXRecordDecl *ClassDecl = Destructor->getParent(); 13880 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); 13881 13882 SynthesizedFunctionScope Scope(*this, Destructor); 13883 13884 // The exception specification is needed because we are defining the 13885 // function. 13886 ResolveExceptionSpec(CurrentLocation, 13887 Destructor->getType()->castAs<FunctionProtoType>()); 13888 MarkVTableUsed(CurrentLocation, ClassDecl); 13889 13890 // Add a context note for diagnostics produced after this point. 13891 Scope.addContextNote(CurrentLocation); 13892 13893 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 13894 Destructor->getParent()); 13895 13896 if (CheckDestructor(Destructor)) { 13897 Destructor->setInvalidDecl(); 13898 return; 13899 } 13900 13901 SourceLocation Loc = Destructor->getEndLoc().isValid() 13902 ? Destructor->getEndLoc() 13903 : Destructor->getLocation(); 13904 Destructor->setBody(new (Context) CompoundStmt(Loc)); 13905 Destructor->markUsed(Context); 13906 13907 if (ASTMutationListener *L = getASTMutationListener()) { 13908 L->CompletedImplicitDefinition(Destructor); 13909 } 13910 } 13911 13912 void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation, 13913 CXXDestructorDecl *Destructor) { 13914 if (Destructor->isInvalidDecl()) 13915 return; 13916 13917 CXXRecordDecl *ClassDecl = Destructor->getParent(); 13918 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() && 13919 "implicit complete dtors unneeded outside MS ABI"); 13920 assert(ClassDecl->getNumVBases() > 0 && 13921 "complete dtor only exists for classes with vbases"); 13922 13923 SynthesizedFunctionScope Scope(*this, Destructor); 13924 13925 // Add a context note for diagnostics produced after this point. 13926 Scope.addContextNote(CurrentLocation); 13927 13928 MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl); 13929 } 13930 13931 /// Perform any semantic analysis which needs to be delayed until all 13932 /// pending class member declarations have been parsed. 13933 void Sema::ActOnFinishCXXMemberDecls() { 13934 // If the context is an invalid C++ class, just suppress these checks. 13935 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) { 13936 if (Record->isInvalidDecl()) { 13937 DelayedOverridingExceptionSpecChecks.clear(); 13938 DelayedEquivalentExceptionSpecChecks.clear(); 13939 return; 13940 } 13941 checkForMultipleExportedDefaultConstructors(*this, Record); 13942 } 13943 } 13944 13945 void Sema::ActOnFinishCXXNonNestedClass() { 13946 referenceDLLExportedClassMethods(); 13947 13948 if (!DelayedDllExportMemberFunctions.empty()) { 13949 SmallVector<CXXMethodDecl*, 4> WorkList; 13950 std::swap(DelayedDllExportMemberFunctions, WorkList); 13951 for (CXXMethodDecl *M : WorkList) { 13952 DefineDefaultedFunction(*this, M, M->getLocation()); 13953 13954 // Pass the method to the consumer to get emitted. This is not necessary 13955 // for explicit instantiation definitions, as they will get emitted 13956 // anyway. 13957 if (M->getParent()->getTemplateSpecializationKind() != 13958 TSK_ExplicitInstantiationDefinition) 13959 ActOnFinishInlineFunctionDef(M); 13960 } 13961 } 13962 } 13963 13964 void Sema::referenceDLLExportedClassMethods() { 13965 if (!DelayedDllExportClasses.empty()) { 13966 // Calling ReferenceDllExportedMembers might cause the current function to 13967 // be called again, so use a local copy of DelayedDllExportClasses. 13968 SmallVector<CXXRecordDecl *, 4> WorkList; 13969 std::swap(DelayedDllExportClasses, WorkList); 13970 for (CXXRecordDecl *Class : WorkList) 13971 ReferenceDllExportedMembers(*this, Class); 13972 } 13973 } 13974 13975 void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) { 13976 assert(getLangOpts().CPlusPlus11 && 13977 "adjusting dtor exception specs was introduced in c++11"); 13978 13979 if (Destructor->isDependentContext()) 13980 return; 13981 13982 // C++11 [class.dtor]p3: 13983 // A declaration of a destructor that does not have an exception- 13984 // specification is implicitly considered to have the same exception- 13985 // specification as an implicit declaration. 13986 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>(); 13987 if (DtorType->hasExceptionSpec()) 13988 return; 13989 13990 // Replace the destructor's type, building off the existing one. Fortunately, 13991 // the only thing of interest in the destructor type is its extended info. 13992 // The return and arguments are fixed. 13993 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); 13994 EPI.ExceptionSpec.Type = EST_Unevaluated; 13995 EPI.ExceptionSpec.SourceDecl = Destructor; 13996 Destructor->setType( 13997 Context.getFunctionType(Context.VoidTy, std::nullopt, EPI)); 13998 13999 // FIXME: If the destructor has a body that could throw, and the newly created 14000 // spec doesn't allow exceptions, we should emit a warning, because this 14001 // change in behavior can break conforming C++03 programs at runtime. 14002 // However, we don't have a body or an exception specification yet, so it 14003 // needs to be done somewhere else. 14004 } 14005 14006 namespace { 14007 /// An abstract base class for all helper classes used in building the 14008 // copy/move operators. These classes serve as factory functions and help us 14009 // avoid using the same Expr* in the AST twice. 14010 class ExprBuilder { 14011 ExprBuilder(const ExprBuilder&) = delete; 14012 ExprBuilder &operator=(const ExprBuilder&) = delete; 14013 14014 protected: 14015 static Expr *assertNotNull(Expr *E) { 14016 assert(E && "Expression construction must not fail."); 14017 return E; 14018 } 14019 14020 public: 14021 ExprBuilder() {} 14022 virtual ~ExprBuilder() {} 14023 14024 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; 14025 }; 14026 14027 class RefBuilder: public ExprBuilder { 14028 VarDecl *Var; 14029 QualType VarType; 14030 14031 public: 14032 Expr *build(Sema &S, SourceLocation Loc) const override { 14033 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc)); 14034 } 14035 14036 RefBuilder(VarDecl *Var, QualType VarType) 14037 : Var(Var), VarType(VarType) {} 14038 }; 14039 14040 class ThisBuilder: public ExprBuilder { 14041 public: 14042 Expr *build(Sema &S, SourceLocation Loc) const override { 14043 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>()); 14044 } 14045 }; 14046 14047 class CastBuilder: public ExprBuilder { 14048 const ExprBuilder &Builder; 14049 QualType Type; 14050 ExprValueKind Kind; 14051 const CXXCastPath &Path; 14052 14053 public: 14054 Expr *build(Sema &S, SourceLocation Loc) const override { 14055 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, 14056 CK_UncheckedDerivedToBase, Kind, 14057 &Path).get()); 14058 } 14059 14060 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, 14061 const CXXCastPath &Path) 14062 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} 14063 }; 14064 14065 class DerefBuilder: public ExprBuilder { 14066 const ExprBuilder &Builder; 14067 14068 public: 14069 Expr *build(Sema &S, SourceLocation Loc) const override { 14070 return assertNotNull( 14071 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get()); 14072 } 14073 14074 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 14075 }; 14076 14077 class MemberBuilder: public ExprBuilder { 14078 const ExprBuilder &Builder; 14079 QualType Type; 14080 CXXScopeSpec SS; 14081 bool IsArrow; 14082 LookupResult &MemberLookup; 14083 14084 public: 14085 Expr *build(Sema &S, SourceLocation Loc) const override { 14086 return assertNotNull(S.BuildMemberReferenceExpr( 14087 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), 14088 nullptr, MemberLookup, nullptr, nullptr).get()); 14089 } 14090 14091 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, 14092 LookupResult &MemberLookup) 14093 : Builder(Builder), Type(Type), IsArrow(IsArrow), 14094 MemberLookup(MemberLookup) {} 14095 }; 14096 14097 class MoveCastBuilder: public ExprBuilder { 14098 const ExprBuilder &Builder; 14099 14100 public: 14101 Expr *build(Sema &S, SourceLocation Loc) const override { 14102 return assertNotNull(CastForMoving(S, Builder.build(S, Loc))); 14103 } 14104 14105 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 14106 }; 14107 14108 class LvalueConvBuilder: public ExprBuilder { 14109 const ExprBuilder &Builder; 14110 14111 public: 14112 Expr *build(Sema &S, SourceLocation Loc) const override { 14113 return assertNotNull( 14114 S.DefaultLvalueConversion(Builder.build(S, Loc)).get()); 14115 } 14116 14117 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 14118 }; 14119 14120 class SubscriptBuilder: public ExprBuilder { 14121 const ExprBuilder &Base; 14122 const ExprBuilder &Index; 14123 14124 public: 14125 Expr *build(Sema &S, SourceLocation Loc) const override { 14126 return assertNotNull(S.CreateBuiltinArraySubscriptExpr( 14127 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get()); 14128 } 14129 14130 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) 14131 : Base(Base), Index(Index) {} 14132 }; 14133 14134 } // end anonymous namespace 14135 14136 /// When generating a defaulted copy or move assignment operator, if a field 14137 /// should be copied with __builtin_memcpy rather than via explicit assignments, 14138 /// do so. This optimization only applies for arrays of scalars, and for arrays 14139 /// of class type where the selected copy/move-assignment operator is trivial. 14140 static StmtResult 14141 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, 14142 const ExprBuilder &ToB, const ExprBuilder &FromB) { 14143 // Compute the size of the memory buffer to be copied. 14144 QualType SizeType = S.Context.getSizeType(); 14145 llvm::APInt Size(S.Context.getTypeSize(SizeType), 14146 S.Context.getTypeSizeInChars(T).getQuantity()); 14147 14148 // Take the address of the field references for "from" and "to". We 14149 // directly construct UnaryOperators here because semantic analysis 14150 // does not permit us to take the address of an xvalue. 14151 Expr *From = FromB.build(S, Loc); 14152 From = UnaryOperator::Create( 14153 S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()), 14154 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 14155 Expr *To = ToB.build(S, Loc); 14156 To = UnaryOperator::Create( 14157 S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()), 14158 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 14159 14160 const Type *E = T->getBaseElementTypeUnsafe(); 14161 bool NeedsCollectableMemCpy = 14162 E->isRecordType() && 14163 E->castAs<RecordType>()->getDecl()->hasObjectMember(); 14164 14165 // Create a reference to the __builtin_objc_memmove_collectable function 14166 StringRef MemCpyName = NeedsCollectableMemCpy ? 14167 "__builtin_objc_memmove_collectable" : 14168 "__builtin_memcpy"; 14169 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc, 14170 Sema::LookupOrdinaryName); 14171 S.LookupName(R, S.TUScope, true); 14172 14173 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>(); 14174 if (!MemCpy) 14175 // Something went horribly wrong earlier, and we will have complained 14176 // about it. 14177 return StmtError(); 14178 14179 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, 14180 VK_PRValue, Loc, nullptr); 14181 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail"); 14182 14183 Expr *CallArgs[] = { 14184 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc) 14185 }; 14186 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), 14187 Loc, CallArgs, Loc); 14188 14189 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); 14190 return Call.getAs<Stmt>(); 14191 } 14192 14193 /// Builds a statement that copies/moves the given entity from \p From to 14194 /// \c To. 14195 /// 14196 /// This routine is used to copy/move the members of a class with an 14197 /// implicitly-declared copy/move assignment operator. When the entities being 14198 /// copied are arrays, this routine builds for loops to copy them. 14199 /// 14200 /// \param S The Sema object used for type-checking. 14201 /// 14202 /// \param Loc The location where the implicit copy/move is being generated. 14203 /// 14204 /// \param T The type of the expressions being copied/moved. Both expressions 14205 /// must have this type. 14206 /// 14207 /// \param To The expression we are copying/moving to. 14208 /// 14209 /// \param From The expression we are copying/moving from. 14210 /// 14211 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. 14212 /// Otherwise, it's a non-static member subobject. 14213 /// 14214 /// \param Copying Whether we're copying or moving. 14215 /// 14216 /// \param Depth Internal parameter recording the depth of the recursion. 14217 /// 14218 /// \returns A statement or a loop that copies the expressions, or StmtResult(0) 14219 /// if a memcpy should be used instead. 14220 static StmtResult 14221 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, 14222 const ExprBuilder &To, const ExprBuilder &From, 14223 bool CopyingBaseSubobject, bool Copying, 14224 unsigned Depth = 0) { 14225 // C++11 [class.copy]p28: 14226 // Each subobject is assigned in the manner appropriate to its type: 14227 // 14228 // - if the subobject is of class type, as if by a call to operator= with 14229 // the subobject as the object expression and the corresponding 14230 // subobject of x as a single function argument (as if by explicit 14231 // qualification; that is, ignoring any possible virtual overriding 14232 // functions in more derived classes); 14233 // 14234 // C++03 [class.copy]p13: 14235 // - if the subobject is of class type, the copy assignment operator for 14236 // the class is used (as if by explicit qualification; that is, 14237 // ignoring any possible virtual overriding functions in more derived 14238 // classes); 14239 if (const RecordType *RecordTy = T->getAs<RecordType>()) { 14240 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 14241 14242 // Look for operator=. 14243 DeclarationName Name 14244 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14245 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); 14246 S.LookupQualifiedName(OpLookup, ClassDecl, false); 14247 14248 // Prior to C++11, filter out any result that isn't a copy/move-assignment 14249 // operator. 14250 if (!S.getLangOpts().CPlusPlus11) { 14251 LookupResult::Filter F = OpLookup.makeFilter(); 14252 while (F.hasNext()) { 14253 NamedDecl *D = F.next(); 14254 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 14255 if (Method->isCopyAssignmentOperator() || 14256 (!Copying && Method->isMoveAssignmentOperator())) 14257 continue; 14258 14259 F.erase(); 14260 } 14261 F.done(); 14262 } 14263 14264 // Suppress the protected check (C++ [class.protected]) for each of the 14265 // assignment operators we found. This strange dance is required when 14266 // we're assigning via a base classes's copy-assignment operator. To 14267 // ensure that we're getting the right base class subobject (without 14268 // ambiguities), we need to cast "this" to that subobject type; to 14269 // ensure that we don't go through the virtual call mechanism, we need 14270 // to qualify the operator= name with the base class (see below). However, 14271 // this means that if the base class has a protected copy assignment 14272 // operator, the protected member access check will fail. So, we 14273 // rewrite "protected" access to "public" access in this case, since we 14274 // know by construction that we're calling from a derived class. 14275 if (CopyingBaseSubobject) { 14276 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); 14277 L != LEnd; ++L) { 14278 if (L.getAccess() == AS_protected) 14279 L.setAccess(AS_public); 14280 } 14281 } 14282 14283 // Create the nested-name-specifier that will be used to qualify the 14284 // reference to operator=; this is required to suppress the virtual 14285 // call mechanism. 14286 CXXScopeSpec SS; 14287 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr()); 14288 SS.MakeTrivial(S.Context, 14289 NestedNameSpecifier::Create(S.Context, nullptr, false, 14290 CanonicalT), 14291 Loc); 14292 14293 // Create the reference to operator=. 14294 ExprResult OpEqualRef 14295 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false, 14296 SS, /*TemplateKWLoc=*/SourceLocation(), 14297 /*FirstQualifierInScope=*/nullptr, 14298 OpLookup, 14299 /*TemplateArgs=*/nullptr, /*S*/nullptr, 14300 /*SuppressQualifierCheck=*/true); 14301 if (OpEqualRef.isInvalid()) 14302 return StmtError(); 14303 14304 // Build the call to the assignment operator. 14305 14306 Expr *FromInst = From.build(S, Loc); 14307 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr, 14308 OpEqualRef.getAs<Expr>(), 14309 Loc, FromInst, Loc); 14310 if (Call.isInvalid()) 14311 return StmtError(); 14312 14313 // If we built a call to a trivial 'operator=' while copying an array, 14314 // bail out. We'll replace the whole shebang with a memcpy. 14315 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get()); 14316 if (CE && CE->getMethodDecl()->isTrivial() && Depth) 14317 return StmtResult((Stmt*)nullptr); 14318 14319 // Convert to an expression-statement, and clean up any produced 14320 // temporaries. 14321 return S.ActOnExprStmt(Call); 14322 } 14323 14324 // - if the subobject is of scalar type, the built-in assignment 14325 // operator is used. 14326 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); 14327 if (!ArrayTy) { 14328 ExprResult Assignment = S.CreateBuiltinBinOp( 14329 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc)); 14330 if (Assignment.isInvalid()) 14331 return StmtError(); 14332 return S.ActOnExprStmt(Assignment); 14333 } 14334 14335 // - if the subobject is an array, each element is assigned, in the 14336 // manner appropriate to the element type; 14337 14338 // Construct a loop over the array bounds, e.g., 14339 // 14340 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) 14341 // 14342 // that will copy each of the array elements. 14343 QualType SizeType = S.Context.getSizeType(); 14344 14345 // Create the iteration variable. 14346 IdentifierInfo *IterationVarName = nullptr; 14347 { 14348 SmallString<8> Str; 14349 llvm::raw_svector_ostream OS(Str); 14350 OS << "__i" << Depth; 14351 IterationVarName = &S.Context.Idents.get(OS.str()); 14352 } 14353 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, 14354 IterationVarName, SizeType, 14355 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), 14356 SC_None); 14357 14358 // Initialize the iteration variable to zero. 14359 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 14360 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 14361 14362 // Creates a reference to the iteration variable. 14363 RefBuilder IterationVarRef(IterationVar, SizeType); 14364 LvalueConvBuilder IterationVarRefRVal(IterationVarRef); 14365 14366 // Create the DeclStmt that holds the iteration variable. 14367 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); 14368 14369 // Subscript the "from" and "to" expressions with the iteration variable. 14370 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); 14371 MoveCastBuilder FromIndexMove(FromIndexCopy); 14372 const ExprBuilder *FromIndex; 14373 if (Copying) 14374 FromIndex = &FromIndexCopy; 14375 else 14376 FromIndex = &FromIndexMove; 14377 14378 SubscriptBuilder ToIndex(To, IterationVarRefRVal); 14379 14380 // Build the copy/move for an individual element of the array. 14381 StmtResult Copy = 14382 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), 14383 ToIndex, *FromIndex, CopyingBaseSubobject, 14384 Copying, Depth + 1); 14385 // Bail out if copying fails or if we determined that we should use memcpy. 14386 if (Copy.isInvalid() || !Copy.get()) 14387 return Copy; 14388 14389 // Create the comparison against the array bound. 14390 llvm::APInt Upper 14391 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); 14392 Expr *Comparison = BinaryOperator::Create( 14393 S.Context, IterationVarRefRVal.build(S, Loc), 14394 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE, 14395 S.Context.BoolTy, VK_PRValue, OK_Ordinary, Loc, 14396 S.CurFPFeatureOverrides()); 14397 14398 // Create the pre-increment of the iteration variable. We can determine 14399 // whether the increment will overflow based on the value of the array 14400 // bound. 14401 Expr *Increment = UnaryOperator::Create( 14402 S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue, 14403 OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides()); 14404 14405 // Construct the loop that copies all elements of this array. 14406 return S.ActOnForStmt( 14407 Loc, Loc, InitStmt, 14408 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean), 14409 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get()); 14410 } 14411 14412 static StmtResult 14413 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, 14414 const ExprBuilder &To, const ExprBuilder &From, 14415 bool CopyingBaseSubobject, bool Copying) { 14416 // Maybe we should use a memcpy? 14417 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && 14418 T.isTriviallyCopyableType(S.Context)) 14419 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 14420 14421 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, 14422 CopyingBaseSubobject, 14423 Copying, 0)); 14424 14425 // If we ended up picking a trivial assignment operator for an array of a 14426 // non-trivially-copyable class type, just emit a memcpy. 14427 if (!Result.isInvalid() && !Result.get()) 14428 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 14429 14430 return Result; 14431 } 14432 14433 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { 14434 // Note: The following rules are largely analoguous to the copy 14435 // constructor rules. Note that virtual bases are not taken into account 14436 // for determining the argument type of the operator. Note also that 14437 // operators taking an object instead of a reference are allowed. 14438 assert(ClassDecl->needsImplicitCopyAssignment()); 14439 14440 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment); 14441 if (DSM.isAlreadyBeingDeclared()) 14442 return nullptr; 14443 14444 QualType ArgType = Context.getTypeDeclType(ClassDecl); 14445 ArgType = Context.getElaboratedType(ETK_None, nullptr, ArgType, nullptr); 14446 LangAS AS = getDefaultCXXMethodAddrSpace(); 14447 if (AS != LangAS::Default) 14448 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14449 QualType RetType = Context.getLValueReferenceType(ArgType); 14450 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); 14451 if (Const) 14452 ArgType = ArgType.withConst(); 14453 14454 ArgType = Context.getLValueReferenceType(ArgType); 14455 14456 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14457 CXXCopyAssignment, 14458 Const); 14459 14460 // An implicitly-declared copy assignment operator is an inline public 14461 // member of its class. 14462 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14463 SourceLocation ClassLoc = ClassDecl->getLocation(); 14464 DeclarationNameInfo NameInfo(Name, ClassLoc); 14465 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create( 14466 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 14467 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 14468 getCurFPFeatures().isFPConstrained(), 14469 /*isInline=*/true, 14470 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, 14471 SourceLocation()); 14472 CopyAssignment->setAccess(AS_public); 14473 CopyAssignment->setDefaulted(); 14474 CopyAssignment->setImplicit(); 14475 14476 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType); 14477 14478 if (getLangOpts().CUDA) 14479 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment, 14480 CopyAssignment, 14481 /* ConstRHS */ Const, 14482 /* Diagnose */ false); 14483 14484 // Add the parameter to the operator. 14485 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, 14486 ClassLoc, ClassLoc, 14487 /*Id=*/nullptr, ArgType, 14488 /*TInfo=*/nullptr, SC_None, 14489 nullptr); 14490 CopyAssignment->setParams(FromParam); 14491 14492 CopyAssignment->setTrivial( 14493 ClassDecl->needsOverloadResolutionForCopyAssignment() 14494 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment) 14495 : ClassDecl->hasTrivialCopyAssignment()); 14496 14497 // Note that we have added this copy-assignment operator. 14498 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared; 14499 14500 Scope *S = getScopeForContext(ClassDecl); 14501 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment); 14502 14503 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) { 14504 ClassDecl->setImplicitCopyAssignmentIsDeleted(); 14505 SetDeclDeleted(CopyAssignment, ClassLoc); 14506 } 14507 14508 if (S) 14509 PushOnScopeChains(CopyAssignment, S, false); 14510 ClassDecl->addDecl(CopyAssignment); 14511 14512 return CopyAssignment; 14513 } 14514 14515 /// Diagnose an implicit copy operation for a class which is odr-used, but 14516 /// which is deprecated because the class has a user-declared copy constructor, 14517 /// copy assignment operator, or destructor. 14518 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) { 14519 assert(CopyOp->isImplicit()); 14520 14521 CXXRecordDecl *RD = CopyOp->getParent(); 14522 CXXMethodDecl *UserDeclaredOperation = nullptr; 14523 14524 if (RD->hasUserDeclaredDestructor()) { 14525 UserDeclaredOperation = RD->getDestructor(); 14526 } else if (!isa<CXXConstructorDecl>(CopyOp) && 14527 RD->hasUserDeclaredCopyConstructor()) { 14528 // Find any user-declared copy constructor. 14529 for (auto *I : RD->ctors()) { 14530 if (I->isCopyConstructor()) { 14531 UserDeclaredOperation = I; 14532 break; 14533 } 14534 } 14535 assert(UserDeclaredOperation); 14536 } else if (isa<CXXConstructorDecl>(CopyOp) && 14537 RD->hasUserDeclaredCopyAssignment()) { 14538 // Find any user-declared move assignment operator. 14539 for (auto *I : RD->methods()) { 14540 if (I->isCopyAssignmentOperator()) { 14541 UserDeclaredOperation = I; 14542 break; 14543 } 14544 } 14545 assert(UserDeclaredOperation); 14546 } 14547 14548 if (UserDeclaredOperation) { 14549 bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided(); 14550 bool UDOIsDestructor = isa<CXXDestructorDecl>(UserDeclaredOperation); 14551 bool IsCopyAssignment = !isa<CXXConstructorDecl>(CopyOp); 14552 unsigned DiagID = 14553 (UDOIsUserProvided && UDOIsDestructor) 14554 ? diag::warn_deprecated_copy_with_user_provided_dtor 14555 : (UDOIsUserProvided && !UDOIsDestructor) 14556 ? diag::warn_deprecated_copy_with_user_provided_copy 14557 : (!UDOIsUserProvided && UDOIsDestructor) 14558 ? diag::warn_deprecated_copy_with_dtor 14559 : diag::warn_deprecated_copy; 14560 S.Diag(UserDeclaredOperation->getLocation(), DiagID) 14561 << RD << IsCopyAssignment; 14562 } 14563 } 14564 14565 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, 14566 CXXMethodDecl *CopyAssignOperator) { 14567 assert((CopyAssignOperator->isDefaulted() && 14568 CopyAssignOperator->isOverloadedOperator() && 14569 CopyAssignOperator->getOverloadedOperator() == OO_Equal && 14570 !CopyAssignOperator->doesThisDeclarationHaveABody() && 14571 !CopyAssignOperator->isDeleted()) && 14572 "DefineImplicitCopyAssignment called for wrong function"); 14573 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl()) 14574 return; 14575 14576 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); 14577 if (ClassDecl->isInvalidDecl()) { 14578 CopyAssignOperator->setInvalidDecl(); 14579 return; 14580 } 14581 14582 SynthesizedFunctionScope Scope(*this, CopyAssignOperator); 14583 14584 // The exception specification is needed because we are defining the 14585 // function. 14586 ResolveExceptionSpec(CurrentLocation, 14587 CopyAssignOperator->getType()->castAs<FunctionProtoType>()); 14588 14589 // Add a context note for diagnostics produced after this point. 14590 Scope.addContextNote(CurrentLocation); 14591 14592 // C++11 [class.copy]p18: 14593 // The [definition of an implicitly declared copy assignment operator] is 14594 // deprecated if the class has a user-declared copy constructor or a 14595 // user-declared destructor. 14596 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) 14597 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator); 14598 14599 // C++0x [class.copy]p30: 14600 // The implicitly-defined or explicitly-defaulted copy assignment operator 14601 // for a non-union class X performs memberwise copy assignment of its 14602 // subobjects. The direct base classes of X are assigned first, in the 14603 // order of their declaration in the base-specifier-list, and then the 14604 // immediate non-static data members of X are assigned, in the order in 14605 // which they were declared in the class definition. 14606 14607 // The statements that form the synthesized function body. 14608 SmallVector<Stmt*, 8> Statements; 14609 14610 // The parameter for the "other" object, which we are copying from. 14611 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); 14612 Qualifiers OtherQuals = Other->getType().getQualifiers(); 14613 QualType OtherRefType = Other->getType(); 14614 if (const LValueReferenceType *OtherRef 14615 = OtherRefType->getAs<LValueReferenceType>()) { 14616 OtherRefType = OtherRef->getPointeeType(); 14617 OtherQuals = OtherRefType.getQualifiers(); 14618 } 14619 14620 // Our location for everything implicitly-generated. 14621 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid() 14622 ? CopyAssignOperator->getEndLoc() 14623 : CopyAssignOperator->getLocation(); 14624 14625 // Builds a DeclRefExpr for the "other" object. 14626 RefBuilder OtherRef(Other, OtherRefType); 14627 14628 // Builds the "this" pointer. 14629 ThisBuilder This; 14630 14631 // Assign base classes. 14632 bool Invalid = false; 14633 for (auto &Base : ClassDecl->bases()) { 14634 // Form the assignment: 14635 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); 14636 QualType BaseType = Base.getType().getUnqualifiedType(); 14637 if (!BaseType->isRecordType()) { 14638 Invalid = true; 14639 continue; 14640 } 14641 14642 CXXCastPath BasePath; 14643 BasePath.push_back(&Base); 14644 14645 // Construct the "from" expression, which is an implicit cast to the 14646 // appropriately-qualified base type. 14647 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals), 14648 VK_LValue, BasePath); 14649 14650 // Dereference "this". 14651 DerefBuilder DerefThis(This); 14652 CastBuilder To(DerefThis, 14653 Context.getQualifiedType( 14654 BaseType, CopyAssignOperator->getMethodQualifiers()), 14655 VK_LValue, BasePath); 14656 14657 // Build the copy. 14658 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, 14659 To, From, 14660 /*CopyingBaseSubobject=*/true, 14661 /*Copying=*/true); 14662 if (Copy.isInvalid()) { 14663 CopyAssignOperator->setInvalidDecl(); 14664 return; 14665 } 14666 14667 // Success! Record the copy. 14668 Statements.push_back(Copy.getAs<Expr>()); 14669 } 14670 14671 // Assign non-static members. 14672 for (auto *Field : ClassDecl->fields()) { 14673 // FIXME: We should form some kind of AST representation for the implied 14674 // memcpy in a union copy operation. 14675 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 14676 continue; 14677 14678 if (Field->isInvalidDecl()) { 14679 Invalid = true; 14680 continue; 14681 } 14682 14683 // Check for members of reference type; we can't copy those. 14684 if (Field->getType()->isReferenceType()) { 14685 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14686 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 14687 Diag(Field->getLocation(), diag::note_declared_at); 14688 Invalid = true; 14689 continue; 14690 } 14691 14692 // Check for members of const-qualified, non-class type. 14693 QualType BaseType = Context.getBaseElementType(Field->getType()); 14694 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 14695 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14696 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 14697 Diag(Field->getLocation(), diag::note_declared_at); 14698 Invalid = true; 14699 continue; 14700 } 14701 14702 // Suppress assigning zero-width bitfields. 14703 if (Field->isZeroLengthBitField(Context)) 14704 continue; 14705 14706 QualType FieldType = Field->getType().getNonReferenceType(); 14707 if (FieldType->isIncompleteArrayType()) { 14708 assert(ClassDecl->hasFlexibleArrayMember() && 14709 "Incomplete array type is not valid"); 14710 continue; 14711 } 14712 14713 // Build references to the field in the object we're copying from and to. 14714 CXXScopeSpec SS; // Intentionally empty 14715 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 14716 LookupMemberName); 14717 MemberLookup.addDecl(Field); 14718 MemberLookup.resolveKind(); 14719 14720 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); 14721 14722 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/!LangOpts.HLSL, 14723 MemberLookup); 14724 14725 // Build the copy of this field. 14726 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, 14727 To, From, 14728 /*CopyingBaseSubobject=*/false, 14729 /*Copying=*/true); 14730 if (Copy.isInvalid()) { 14731 CopyAssignOperator->setInvalidDecl(); 14732 return; 14733 } 14734 14735 // Success! Record the copy. 14736 Statements.push_back(Copy.getAs<Stmt>()); 14737 } 14738 14739 if (!Invalid) { 14740 // Add a "return *this;" 14741 Expr *ThisExpr = nullptr; 14742 if (!LangOpts.HLSL) { 14743 ExprResult ThisObj = 14744 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 14745 ThisExpr = ThisObj.get(); 14746 } else { 14747 ThisExpr = This.build(*this, Loc); 14748 } 14749 14750 StmtResult Return = BuildReturnStmt(Loc, ThisExpr); 14751 if (Return.isInvalid()) 14752 Invalid = true; 14753 else 14754 Statements.push_back(Return.getAs<Stmt>()); 14755 } 14756 14757 if (Invalid) { 14758 CopyAssignOperator->setInvalidDecl(); 14759 return; 14760 } 14761 14762 StmtResult Body; 14763 { 14764 CompoundScopeRAII CompoundScope(*this); 14765 Body = ActOnCompoundStmt(Loc, Loc, Statements, 14766 /*isStmtExpr=*/false); 14767 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 14768 } 14769 CopyAssignOperator->setBody(Body.getAs<Stmt>()); 14770 CopyAssignOperator->markUsed(Context); 14771 14772 if (ASTMutationListener *L = getASTMutationListener()) { 14773 L->CompletedImplicitDefinition(CopyAssignOperator); 14774 } 14775 } 14776 14777 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { 14778 assert(ClassDecl->needsImplicitMoveAssignment()); 14779 14780 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment); 14781 if (DSM.isAlreadyBeingDeclared()) 14782 return nullptr; 14783 14784 // Note: The following rules are largely analoguous to the move 14785 // constructor rules. 14786 14787 QualType ArgType = Context.getTypeDeclType(ClassDecl); 14788 ArgType = Context.getElaboratedType(ETK_None, nullptr, ArgType, nullptr); 14789 LangAS AS = getDefaultCXXMethodAddrSpace(); 14790 if (AS != LangAS::Default) 14791 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14792 QualType RetType = Context.getLValueReferenceType(ArgType); 14793 ArgType = Context.getRValueReferenceType(ArgType); 14794 14795 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14796 CXXMoveAssignment, 14797 false); 14798 14799 // An implicitly-declared move assignment operator is an inline public 14800 // member of its class. 14801 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14802 SourceLocation ClassLoc = ClassDecl->getLocation(); 14803 DeclarationNameInfo NameInfo(Name, ClassLoc); 14804 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create( 14805 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 14806 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 14807 getCurFPFeatures().isFPConstrained(), 14808 /*isInline=*/true, 14809 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, 14810 SourceLocation()); 14811 MoveAssignment->setAccess(AS_public); 14812 MoveAssignment->setDefaulted(); 14813 MoveAssignment->setImplicit(); 14814 14815 setupImplicitSpecialMemberType(MoveAssignment, RetType, ArgType); 14816 14817 if (getLangOpts().CUDA) 14818 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment, 14819 MoveAssignment, 14820 /* ConstRHS */ false, 14821 /* Diagnose */ false); 14822 14823 // Add the parameter to the operator. 14824 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, 14825 ClassLoc, ClassLoc, 14826 /*Id=*/nullptr, ArgType, 14827 /*TInfo=*/nullptr, SC_None, 14828 nullptr); 14829 MoveAssignment->setParams(FromParam); 14830 14831 MoveAssignment->setTrivial( 14832 ClassDecl->needsOverloadResolutionForMoveAssignment() 14833 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment) 14834 : ClassDecl->hasTrivialMoveAssignment()); 14835 14836 // Note that we have added this copy-assignment operator. 14837 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared; 14838 14839 Scope *S = getScopeForContext(ClassDecl); 14840 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment); 14841 14842 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) { 14843 ClassDecl->setImplicitMoveAssignmentIsDeleted(); 14844 SetDeclDeleted(MoveAssignment, ClassLoc); 14845 } 14846 14847 if (S) 14848 PushOnScopeChains(MoveAssignment, S, false); 14849 ClassDecl->addDecl(MoveAssignment); 14850 14851 return MoveAssignment; 14852 } 14853 14854 /// Check if we're implicitly defining a move assignment operator for a class 14855 /// with virtual bases. Such a move assignment might move-assign the virtual 14856 /// base multiple times. 14857 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, 14858 SourceLocation CurrentLocation) { 14859 assert(!Class->isDependentContext() && "should not define dependent move"); 14860 14861 // Only a virtual base could get implicitly move-assigned multiple times. 14862 // Only a non-trivial move assignment can observe this. We only want to 14863 // diagnose if we implicitly define an assignment operator that assigns 14864 // two base classes, both of which move-assign the same virtual base. 14865 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || 14866 Class->getNumBases() < 2) 14867 return; 14868 14869 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist; 14870 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap; 14871 VBaseMap VBases; 14872 14873 for (auto &BI : Class->bases()) { 14874 Worklist.push_back(&BI); 14875 while (!Worklist.empty()) { 14876 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); 14877 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); 14878 14879 // If the base has no non-trivial move assignment operators, 14880 // we don't care about moves from it. 14881 if (!Base->hasNonTrivialMoveAssignment()) 14882 continue; 14883 14884 // If there's nothing virtual here, skip it. 14885 if (!BaseSpec->isVirtual() && !Base->getNumVBases()) 14886 continue; 14887 14888 // If we're not actually going to call a move assignment for this base, 14889 // or the selected move assignment is trivial, skip it. 14890 Sema::SpecialMemberOverloadResult SMOR = 14891 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment, 14892 /*ConstArg*/false, /*VolatileArg*/false, 14893 /*RValueThis*/true, /*ConstThis*/false, 14894 /*VolatileThis*/false); 14895 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() || 14896 !SMOR.getMethod()->isMoveAssignmentOperator()) 14897 continue; 14898 14899 if (BaseSpec->isVirtual()) { 14900 // We're going to move-assign this virtual base, and its move 14901 // assignment operator is not trivial. If this can happen for 14902 // multiple distinct direct bases of Class, diagnose it. (If it 14903 // only happens in one base, we'll diagnose it when synthesizing 14904 // that base class's move assignment operator.) 14905 CXXBaseSpecifier *&Existing = 14906 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI)) 14907 .first->second; 14908 if (Existing && Existing != &BI) { 14909 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) 14910 << Class << Base; 14911 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here) 14912 << (Base->getCanonicalDecl() == 14913 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 14914 << Base << Existing->getType() << Existing->getSourceRange(); 14915 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here) 14916 << (Base->getCanonicalDecl() == 14917 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 14918 << Base << BI.getType() << BaseSpec->getSourceRange(); 14919 14920 // Only diagnose each vbase once. 14921 Existing = nullptr; 14922 } 14923 } else { 14924 // Only walk over bases that have defaulted move assignment operators. 14925 // We assume that any user-provided move assignment operator handles 14926 // the multiple-moves-of-vbase case itself somehow. 14927 if (!SMOR.getMethod()->isDefaulted()) 14928 continue; 14929 14930 // We're going to move the base classes of Base. Add them to the list. 14931 llvm::append_range(Worklist, llvm::make_pointer_range(Base->bases())); 14932 } 14933 } 14934 } 14935 } 14936 14937 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, 14938 CXXMethodDecl *MoveAssignOperator) { 14939 assert((MoveAssignOperator->isDefaulted() && 14940 MoveAssignOperator->isOverloadedOperator() && 14941 MoveAssignOperator->getOverloadedOperator() == OO_Equal && 14942 !MoveAssignOperator->doesThisDeclarationHaveABody() && 14943 !MoveAssignOperator->isDeleted()) && 14944 "DefineImplicitMoveAssignment called for wrong function"); 14945 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl()) 14946 return; 14947 14948 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); 14949 if (ClassDecl->isInvalidDecl()) { 14950 MoveAssignOperator->setInvalidDecl(); 14951 return; 14952 } 14953 14954 // C++0x [class.copy]p28: 14955 // The implicitly-defined or move assignment operator for a non-union class 14956 // X performs memberwise move assignment of its subobjects. The direct base 14957 // classes of X are assigned first, in the order of their declaration in the 14958 // base-specifier-list, and then the immediate non-static data members of X 14959 // are assigned, in the order in which they were declared in the class 14960 // definition. 14961 14962 // Issue a warning if our implicit move assignment operator will move 14963 // from a virtual base more than once. 14964 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation); 14965 14966 SynthesizedFunctionScope Scope(*this, MoveAssignOperator); 14967 14968 // The exception specification is needed because we are defining the 14969 // function. 14970 ResolveExceptionSpec(CurrentLocation, 14971 MoveAssignOperator->getType()->castAs<FunctionProtoType>()); 14972 14973 // Add a context note for diagnostics produced after this point. 14974 Scope.addContextNote(CurrentLocation); 14975 14976 // The statements that form the synthesized function body. 14977 SmallVector<Stmt*, 8> Statements; 14978 14979 // The parameter for the "other" object, which we are move from. 14980 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0); 14981 QualType OtherRefType = 14982 Other->getType()->castAs<RValueReferenceType>()->getPointeeType(); 14983 14984 // Our location for everything implicitly-generated. 14985 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid() 14986 ? MoveAssignOperator->getEndLoc() 14987 : MoveAssignOperator->getLocation(); 14988 14989 // Builds a reference to the "other" object. 14990 RefBuilder OtherRef(Other, OtherRefType); 14991 // Cast to rvalue. 14992 MoveCastBuilder MoveOther(OtherRef); 14993 14994 // Builds the "this" pointer. 14995 ThisBuilder This; 14996 14997 // Assign base classes. 14998 bool Invalid = false; 14999 for (auto &Base : ClassDecl->bases()) { 15000 // C++11 [class.copy]p28: 15001 // It is unspecified whether subobjects representing virtual base classes 15002 // are assigned more than once by the implicitly-defined copy assignment 15003 // operator. 15004 // FIXME: Do not assign to a vbase that will be assigned by some other base 15005 // class. For a move-assignment, this can result in the vbase being moved 15006 // multiple times. 15007 15008 // Form the assignment: 15009 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); 15010 QualType BaseType = Base.getType().getUnqualifiedType(); 15011 if (!BaseType->isRecordType()) { 15012 Invalid = true; 15013 continue; 15014 } 15015 15016 CXXCastPath BasePath; 15017 BasePath.push_back(&Base); 15018 15019 // Construct the "from" expression, which is an implicit cast to the 15020 // appropriately-qualified base type. 15021 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); 15022 15023 // Dereference "this". 15024 DerefBuilder DerefThis(This); 15025 15026 // Implicitly cast "this" to the appropriately-qualified base type. 15027 CastBuilder To(DerefThis, 15028 Context.getQualifiedType( 15029 BaseType, MoveAssignOperator->getMethodQualifiers()), 15030 VK_LValue, BasePath); 15031 15032 // Build the move. 15033 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, 15034 To, From, 15035 /*CopyingBaseSubobject=*/true, 15036 /*Copying=*/false); 15037 if (Move.isInvalid()) { 15038 MoveAssignOperator->setInvalidDecl(); 15039 return; 15040 } 15041 15042 // Success! Record the move. 15043 Statements.push_back(Move.getAs<Expr>()); 15044 } 15045 15046 // Assign non-static members. 15047 for (auto *Field : ClassDecl->fields()) { 15048 // FIXME: We should form some kind of AST representation for the implied 15049 // memcpy in a union copy operation. 15050 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 15051 continue; 15052 15053 if (Field->isInvalidDecl()) { 15054 Invalid = true; 15055 continue; 15056 } 15057 15058 // Check for members of reference type; we can't move those. 15059 if (Field->getType()->isReferenceType()) { 15060 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 15061 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 15062 Diag(Field->getLocation(), diag::note_declared_at); 15063 Invalid = true; 15064 continue; 15065 } 15066 15067 // Check for members of const-qualified, non-class type. 15068 QualType BaseType = Context.getBaseElementType(Field->getType()); 15069 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 15070 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 15071 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 15072 Diag(Field->getLocation(), diag::note_declared_at); 15073 Invalid = true; 15074 continue; 15075 } 15076 15077 // Suppress assigning zero-width bitfields. 15078 if (Field->isZeroLengthBitField(Context)) 15079 continue; 15080 15081 QualType FieldType = Field->getType().getNonReferenceType(); 15082 if (FieldType->isIncompleteArrayType()) { 15083 assert(ClassDecl->hasFlexibleArrayMember() && 15084 "Incomplete array type is not valid"); 15085 continue; 15086 } 15087 15088 // Build references to the field in the object we're copying from and to. 15089 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 15090 LookupMemberName); 15091 MemberLookup.addDecl(Field); 15092 MemberLookup.resolveKind(); 15093 MemberBuilder From(MoveOther, OtherRefType, 15094 /*IsArrow=*/false, MemberLookup); 15095 MemberBuilder To(This, getCurrentThisType(), 15096 /*IsArrow=*/true, MemberLookup); 15097 15098 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue 15099 "Member reference with rvalue base must be rvalue except for reference " 15100 "members, which aren't allowed for move assignment."); 15101 15102 // Build the move of this field. 15103 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, 15104 To, From, 15105 /*CopyingBaseSubobject=*/false, 15106 /*Copying=*/false); 15107 if (Move.isInvalid()) { 15108 MoveAssignOperator->setInvalidDecl(); 15109 return; 15110 } 15111 15112 // Success! Record the copy. 15113 Statements.push_back(Move.getAs<Stmt>()); 15114 } 15115 15116 if (!Invalid) { 15117 // Add a "return *this;" 15118 ExprResult ThisObj = 15119 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 15120 15121 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 15122 if (Return.isInvalid()) 15123 Invalid = true; 15124 else 15125 Statements.push_back(Return.getAs<Stmt>()); 15126 } 15127 15128 if (Invalid) { 15129 MoveAssignOperator->setInvalidDecl(); 15130 return; 15131 } 15132 15133 StmtResult Body; 15134 { 15135 CompoundScopeRAII CompoundScope(*this); 15136 Body = ActOnCompoundStmt(Loc, Loc, Statements, 15137 /*isStmtExpr=*/false); 15138 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 15139 } 15140 MoveAssignOperator->setBody(Body.getAs<Stmt>()); 15141 MoveAssignOperator->markUsed(Context); 15142 15143 if (ASTMutationListener *L = getASTMutationListener()) { 15144 L->CompletedImplicitDefinition(MoveAssignOperator); 15145 } 15146 } 15147 15148 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( 15149 CXXRecordDecl *ClassDecl) { 15150 // C++ [class.copy]p4: 15151 // If the class definition does not explicitly declare a copy 15152 // constructor, one is declared implicitly. 15153 assert(ClassDecl->needsImplicitCopyConstructor()); 15154 15155 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor); 15156 if (DSM.isAlreadyBeingDeclared()) 15157 return nullptr; 15158 15159 QualType ClassType = Context.getTypeDeclType(ClassDecl); 15160 QualType ArgType = ClassType; 15161 ArgType = Context.getElaboratedType(ETK_None, nullptr, ArgType, nullptr); 15162 bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); 15163 if (Const) 15164 ArgType = ArgType.withConst(); 15165 15166 LangAS AS = getDefaultCXXMethodAddrSpace(); 15167 if (AS != LangAS::Default) 15168 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 15169 15170 ArgType = Context.getLValueReferenceType(ArgType); 15171 15172 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 15173 CXXCopyConstructor, 15174 Const); 15175 15176 DeclarationName Name 15177 = Context.DeclarationNames.getCXXConstructorName( 15178 Context.getCanonicalType(ClassType)); 15179 SourceLocation ClassLoc = ClassDecl->getLocation(); 15180 DeclarationNameInfo NameInfo(Name, ClassLoc); 15181 15182 // An implicitly-declared copy constructor is an inline public 15183 // member of its class. 15184 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( 15185 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 15186 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 15187 /*isInline=*/true, 15188 /*isImplicitlyDeclared=*/true, 15189 Constexpr ? ConstexprSpecKind::Constexpr 15190 : ConstexprSpecKind::Unspecified); 15191 CopyConstructor->setAccess(AS_public); 15192 CopyConstructor->setDefaulted(); 15193 15194 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType); 15195 15196 if (getLangOpts().CUDA) 15197 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor, 15198 CopyConstructor, 15199 /* ConstRHS */ Const, 15200 /* Diagnose */ false); 15201 15202 // During template instantiation of special member functions we need a 15203 // reliable TypeSourceInfo for the parameter types in order to allow functions 15204 // to be substituted. 15205 TypeSourceInfo *TSI = nullptr; 15206 if (inTemplateInstantiation() && ClassDecl->isLambda()) 15207 TSI = Context.getTrivialTypeSourceInfo(ArgType); 15208 15209 // Add the parameter to the constructor. 15210 ParmVarDecl *FromParam = 15211 ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc, 15212 /*IdentifierInfo=*/nullptr, ArgType, 15213 /*TInfo=*/TSI, SC_None, nullptr); 15214 CopyConstructor->setParams(FromParam); 15215 15216 CopyConstructor->setTrivial( 15217 ClassDecl->needsOverloadResolutionForCopyConstructor() 15218 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor) 15219 : ClassDecl->hasTrivialCopyConstructor()); 15220 15221 CopyConstructor->setTrivialForCall( 15222 ClassDecl->hasAttr<TrivialABIAttr>() || 15223 (ClassDecl->needsOverloadResolutionForCopyConstructor() 15224 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor, 15225 TAH_ConsiderTrivialABI) 15226 : ClassDecl->hasTrivialCopyConstructorForCall())); 15227 15228 // Note that we have declared this constructor. 15229 ++getASTContext().NumImplicitCopyConstructorsDeclared; 15230 15231 Scope *S = getScopeForContext(ClassDecl); 15232 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor); 15233 15234 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) { 15235 ClassDecl->setImplicitCopyConstructorIsDeleted(); 15236 SetDeclDeleted(CopyConstructor, ClassLoc); 15237 } 15238 15239 if (S) 15240 PushOnScopeChains(CopyConstructor, S, false); 15241 ClassDecl->addDecl(CopyConstructor); 15242 15243 return CopyConstructor; 15244 } 15245 15246 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, 15247 CXXConstructorDecl *CopyConstructor) { 15248 assert((CopyConstructor->isDefaulted() && 15249 CopyConstructor->isCopyConstructor() && 15250 !CopyConstructor->doesThisDeclarationHaveABody() && 15251 !CopyConstructor->isDeleted()) && 15252 "DefineImplicitCopyConstructor - call it for implicit copy ctor"); 15253 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl()) 15254 return; 15255 15256 CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); 15257 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); 15258 15259 SynthesizedFunctionScope Scope(*this, CopyConstructor); 15260 15261 // The exception specification is needed because we are defining the 15262 // function. 15263 ResolveExceptionSpec(CurrentLocation, 15264 CopyConstructor->getType()->castAs<FunctionProtoType>()); 15265 MarkVTableUsed(CurrentLocation, ClassDecl); 15266 15267 // Add a context note for diagnostics produced after this point. 15268 Scope.addContextNote(CurrentLocation); 15269 15270 // C++11 [class.copy]p7: 15271 // The [definition of an implicitly declared copy constructor] is 15272 // deprecated if the class has a user-declared copy assignment operator 15273 // or a user-declared destructor. 15274 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) 15275 diagnoseDeprecatedCopyOperation(*this, CopyConstructor); 15276 15277 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) { 15278 CopyConstructor->setInvalidDecl(); 15279 } else { 15280 SourceLocation Loc = CopyConstructor->getEndLoc().isValid() 15281 ? CopyConstructor->getEndLoc() 15282 : CopyConstructor->getLocation(); 15283 Sema::CompoundScopeRAII CompoundScope(*this); 15284 CopyConstructor->setBody( 15285 ActOnCompoundStmt(Loc, Loc, std::nullopt, /*isStmtExpr=*/false) 15286 .getAs<Stmt>()); 15287 CopyConstructor->markUsed(Context); 15288 } 15289 15290 if (ASTMutationListener *L = getASTMutationListener()) { 15291 L->CompletedImplicitDefinition(CopyConstructor); 15292 } 15293 } 15294 15295 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( 15296 CXXRecordDecl *ClassDecl) { 15297 assert(ClassDecl->needsImplicitMoveConstructor()); 15298 15299 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor); 15300 if (DSM.isAlreadyBeingDeclared()) 15301 return nullptr; 15302 15303 QualType ClassType = Context.getTypeDeclType(ClassDecl); 15304 15305 QualType ArgType = ClassType; 15306 ArgType = Context.getElaboratedType(ETK_None, nullptr, ArgType, nullptr); 15307 LangAS AS = getDefaultCXXMethodAddrSpace(); 15308 if (AS != LangAS::Default) 15309 ArgType = Context.getAddrSpaceQualType(ClassType, AS); 15310 ArgType = Context.getRValueReferenceType(ArgType); 15311 15312 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 15313 CXXMoveConstructor, 15314 false); 15315 15316 DeclarationName Name 15317 = Context.DeclarationNames.getCXXConstructorName( 15318 Context.getCanonicalType(ClassType)); 15319 SourceLocation ClassLoc = ClassDecl->getLocation(); 15320 DeclarationNameInfo NameInfo(Name, ClassLoc); 15321 15322 // C++11 [class.copy]p11: 15323 // An implicitly-declared copy/move constructor is an inline public 15324 // member of its class. 15325 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( 15326 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 15327 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 15328 /*isInline=*/true, 15329 /*isImplicitlyDeclared=*/true, 15330 Constexpr ? ConstexprSpecKind::Constexpr 15331 : ConstexprSpecKind::Unspecified); 15332 MoveConstructor->setAccess(AS_public); 15333 MoveConstructor->setDefaulted(); 15334 15335 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType); 15336 15337 if (getLangOpts().CUDA) 15338 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor, 15339 MoveConstructor, 15340 /* ConstRHS */ false, 15341 /* Diagnose */ false); 15342 15343 // Add the parameter to the constructor. 15344 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, 15345 ClassLoc, ClassLoc, 15346 /*IdentifierInfo=*/nullptr, 15347 ArgType, /*TInfo=*/nullptr, 15348 SC_None, nullptr); 15349 MoveConstructor->setParams(FromParam); 15350 15351 MoveConstructor->setTrivial( 15352 ClassDecl->needsOverloadResolutionForMoveConstructor() 15353 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor) 15354 : ClassDecl->hasTrivialMoveConstructor()); 15355 15356 MoveConstructor->setTrivialForCall( 15357 ClassDecl->hasAttr<TrivialABIAttr>() || 15358 (ClassDecl->needsOverloadResolutionForMoveConstructor() 15359 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor, 15360 TAH_ConsiderTrivialABI) 15361 : ClassDecl->hasTrivialMoveConstructorForCall())); 15362 15363 // Note that we have declared this constructor. 15364 ++getASTContext().NumImplicitMoveConstructorsDeclared; 15365 15366 Scope *S = getScopeForContext(ClassDecl); 15367 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor); 15368 15369 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) { 15370 ClassDecl->setImplicitMoveConstructorIsDeleted(); 15371 SetDeclDeleted(MoveConstructor, ClassLoc); 15372 } 15373 15374 if (S) 15375 PushOnScopeChains(MoveConstructor, S, false); 15376 ClassDecl->addDecl(MoveConstructor); 15377 15378 return MoveConstructor; 15379 } 15380 15381 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, 15382 CXXConstructorDecl *MoveConstructor) { 15383 assert((MoveConstructor->isDefaulted() && 15384 MoveConstructor->isMoveConstructor() && 15385 !MoveConstructor->doesThisDeclarationHaveABody() && 15386 !MoveConstructor->isDeleted()) && 15387 "DefineImplicitMoveConstructor - call it for implicit move ctor"); 15388 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl()) 15389 return; 15390 15391 CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); 15392 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"); 15393 15394 SynthesizedFunctionScope Scope(*this, MoveConstructor); 15395 15396 // The exception specification is needed because we are defining the 15397 // function. 15398 ResolveExceptionSpec(CurrentLocation, 15399 MoveConstructor->getType()->castAs<FunctionProtoType>()); 15400 MarkVTableUsed(CurrentLocation, ClassDecl); 15401 15402 // Add a context note for diagnostics produced after this point. 15403 Scope.addContextNote(CurrentLocation); 15404 15405 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) { 15406 MoveConstructor->setInvalidDecl(); 15407 } else { 15408 SourceLocation Loc = MoveConstructor->getEndLoc().isValid() 15409 ? MoveConstructor->getEndLoc() 15410 : MoveConstructor->getLocation(); 15411 Sema::CompoundScopeRAII CompoundScope(*this); 15412 MoveConstructor->setBody( 15413 ActOnCompoundStmt(Loc, Loc, std::nullopt, /*isStmtExpr=*/false) 15414 .getAs<Stmt>()); 15415 MoveConstructor->markUsed(Context); 15416 } 15417 15418 if (ASTMutationListener *L = getASTMutationListener()) { 15419 L->CompletedImplicitDefinition(MoveConstructor); 15420 } 15421 } 15422 15423 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { 15424 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD); 15425 } 15426 15427 void Sema::DefineImplicitLambdaToFunctionPointerConversion( 15428 SourceLocation CurrentLocation, 15429 CXXConversionDecl *Conv) { 15430 SynthesizedFunctionScope Scope(*this, Conv); 15431 assert(!Conv->getReturnType()->isUndeducedType()); 15432 15433 QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType(); 15434 CallingConv CC = 15435 ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv(); 15436 15437 CXXRecordDecl *Lambda = Conv->getParent(); 15438 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 15439 FunctionDecl *Invoker = 15440 CallOp->isStatic() ? CallOp : Lambda->getLambdaStaticInvoker(CC); 15441 15442 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) { 15443 CallOp = InstantiateFunctionDeclaration( 15444 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 15445 if (!CallOp) 15446 return; 15447 15448 if (CallOp != Invoker) { 15449 Invoker = InstantiateFunctionDeclaration( 15450 Invoker->getDescribedFunctionTemplate(), TemplateArgs, 15451 CurrentLocation); 15452 if (!Invoker) 15453 return; 15454 } 15455 } 15456 15457 if (CallOp->isInvalidDecl()) 15458 return; 15459 15460 // Mark the call operator referenced (and add to pending instantiations 15461 // if necessary). 15462 // For both the conversion and static-invoker template specializations 15463 // we construct their body's in this function, so no need to add them 15464 // to the PendingInstantiations. 15465 MarkFunctionReferenced(CurrentLocation, CallOp); 15466 15467 if (Invoker != CallOp) { 15468 // Fill in the __invoke function with a dummy implementation. IR generation 15469 // will fill in the actual details. Update its type in case it contained 15470 // an 'auto'. 15471 Invoker->markUsed(Context); 15472 Invoker->setReferenced(); 15473 Invoker->setType(Conv->getReturnType()->getPointeeType()); 15474 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); 15475 } 15476 15477 // Construct the body of the conversion function { return __invoke; }. 15478 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), VK_LValue, 15479 Conv->getLocation()); 15480 assert(FunctionRef && "Can't refer to __invoke function?"); 15481 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get(); 15482 Conv->setBody(CompoundStmt::Create(Context, Return, FPOptionsOverride(), 15483 Conv->getLocation(), Conv->getLocation())); 15484 Conv->markUsed(Context); 15485 Conv->setReferenced(); 15486 15487 if (ASTMutationListener *L = getASTMutationListener()) { 15488 L->CompletedImplicitDefinition(Conv); 15489 if (Invoker != CallOp) 15490 L->CompletedImplicitDefinition(Invoker); 15491 } 15492 } 15493 15494 void Sema::DefineImplicitLambdaToBlockPointerConversion( 15495 SourceLocation CurrentLocation, CXXConversionDecl *Conv) { 15496 assert(!Conv->getParent()->isGenericLambda()); 15497 15498 SynthesizedFunctionScope Scope(*this, Conv); 15499 15500 // Copy-initialize the lambda object as needed to capture it. 15501 Expr *This = ActOnCXXThis(CurrentLocation).get(); 15502 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get(); 15503 15504 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, 15505 Conv->getLocation(), 15506 Conv, DerefThis); 15507 15508 // If we're not under ARC, make sure we still get the _Block_copy/autorelease 15509 // behavior. Note that only the general conversion function does this 15510 // (since it's unusable otherwise); in the case where we inline the 15511 // block literal, it has block literal lifetime semantics. 15512 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) 15513 BuildBlock = ImplicitCastExpr::Create( 15514 Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject, 15515 BuildBlock.get(), nullptr, VK_PRValue, FPOptionsOverride()); 15516 15517 if (BuildBlock.isInvalid()) { 15518 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 15519 Conv->setInvalidDecl(); 15520 return; 15521 } 15522 15523 // Create the return statement that returns the block from the conversion 15524 // function. 15525 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get()); 15526 if (Return.isInvalid()) { 15527 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 15528 Conv->setInvalidDecl(); 15529 return; 15530 } 15531 15532 // Set the body of the conversion function. 15533 Stmt *ReturnS = Return.get(); 15534 Conv->setBody(CompoundStmt::Create(Context, ReturnS, FPOptionsOverride(), 15535 Conv->getLocation(), Conv->getLocation())); 15536 Conv->markUsed(Context); 15537 15538 // We're done; notify the mutation listener, if any. 15539 if (ASTMutationListener *L = getASTMutationListener()) { 15540 L->CompletedImplicitDefinition(Conv); 15541 } 15542 } 15543 15544 /// Determine whether the given list arguments contains exactly one 15545 /// "real" (non-default) argument. 15546 static bool hasOneRealArgument(MultiExprArg Args) { 15547 switch (Args.size()) { 15548 case 0: 15549 return false; 15550 15551 default: 15552 if (!Args[1]->isDefaultArgument()) 15553 return false; 15554 15555 [[fallthrough]]; 15556 case 1: 15557 return !Args[0]->isDefaultArgument(); 15558 } 15559 15560 return false; 15561 } 15562 15563 ExprResult 15564 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15565 NamedDecl *FoundDecl, 15566 CXXConstructorDecl *Constructor, 15567 MultiExprArg ExprArgs, 15568 bool HadMultipleCandidates, 15569 bool IsListInitialization, 15570 bool IsStdInitListInitialization, 15571 bool RequiresZeroInit, 15572 unsigned ConstructKind, 15573 SourceRange ParenRange) { 15574 bool Elidable = false; 15575 15576 // C++0x [class.copy]p34: 15577 // When certain criteria are met, an implementation is allowed to 15578 // omit the copy/move construction of a class object, even if the 15579 // copy/move constructor and/or destructor for the object have 15580 // side effects. [...] 15581 // - when a temporary class object that has not been bound to a 15582 // reference (12.2) would be copied/moved to a class object 15583 // with the same cv-unqualified type, the copy/move operation 15584 // can be omitted by constructing the temporary object 15585 // directly into the target of the omitted copy/move 15586 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor && 15587 // FIXME: Converting constructors should also be accepted. 15588 // But to fix this, the logic that digs down into a CXXConstructExpr 15589 // to find the source object needs to handle it. 15590 // Right now it assumes the source object is passed directly as the 15591 // first argument. 15592 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) { 15593 Expr *SubExpr = ExprArgs[0]; 15594 // FIXME: Per above, this is also incorrect if we want to accept 15595 // converting constructors, as isTemporaryObject will 15596 // reject temporaries with different type from the 15597 // CXXRecord itself. 15598 Elidable = SubExpr->isTemporaryObject( 15599 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext())); 15600 } 15601 15602 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, 15603 FoundDecl, Constructor, 15604 Elidable, ExprArgs, HadMultipleCandidates, 15605 IsListInitialization, 15606 IsStdInitListInitialization, RequiresZeroInit, 15607 ConstructKind, ParenRange); 15608 } 15609 15610 ExprResult 15611 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15612 NamedDecl *FoundDecl, 15613 CXXConstructorDecl *Constructor, 15614 bool Elidable, 15615 MultiExprArg ExprArgs, 15616 bool HadMultipleCandidates, 15617 bool IsListInitialization, 15618 bool IsStdInitListInitialization, 15619 bool RequiresZeroInit, 15620 unsigned ConstructKind, 15621 SourceRange ParenRange) { 15622 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) { 15623 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow); 15624 // The only way to get here is if we did overlaod resolution to find the 15625 // shadow decl, so we don't need to worry about re-checking the trailing 15626 // requires clause. 15627 if (DiagnoseUseOfOverloadedDecl(Constructor, ConstructLoc)) 15628 return ExprError(); 15629 } 15630 15631 return BuildCXXConstructExpr( 15632 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs, 15633 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, 15634 RequiresZeroInit, ConstructKind, ParenRange); 15635 } 15636 15637 /// BuildCXXConstructExpr - Creates a complete call to a constructor, 15638 /// including handling of its default argument expressions. 15639 ExprResult 15640 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15641 CXXConstructorDecl *Constructor, 15642 bool Elidable, 15643 MultiExprArg ExprArgs, 15644 bool HadMultipleCandidates, 15645 bool IsListInitialization, 15646 bool IsStdInitListInitialization, 15647 bool RequiresZeroInit, 15648 unsigned ConstructKind, 15649 SourceRange ParenRange) { 15650 assert(declaresSameEntity( 15651 Constructor->getParent(), 15652 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && 15653 "given constructor for wrong type"); 15654 MarkFunctionReferenced(ConstructLoc, Constructor); 15655 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor)) 15656 return ExprError(); 15657 if (getLangOpts().SYCLIsDevice && 15658 !checkSYCLDeviceFunction(ConstructLoc, Constructor)) 15659 return ExprError(); 15660 15661 return CheckForImmediateInvocation( 15662 CXXConstructExpr::Create( 15663 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs, 15664 HadMultipleCandidates, IsListInitialization, 15665 IsStdInitListInitialization, RequiresZeroInit, 15666 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind), 15667 ParenRange), 15668 Constructor); 15669 } 15670 15671 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { 15672 if (VD->isInvalidDecl()) return; 15673 // If initializing the variable failed, don't also diagnose problems with 15674 // the destructor, they're likely related. 15675 if (VD->getInit() && VD->getInit()->containsErrors()) 15676 return; 15677 15678 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); 15679 if (ClassDecl->isInvalidDecl()) return; 15680 if (ClassDecl->hasIrrelevantDestructor()) return; 15681 if (ClassDecl->isDependentContext()) return; 15682 15683 if (VD->isNoDestroy(getASTContext())) 15684 return; 15685 15686 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 15687 15688 // If this is an array, we'll require the destructor during initialization, so 15689 // we can skip over this. We still want to emit exit-time destructor warnings 15690 // though. 15691 if (!VD->getType()->isArrayType()) { 15692 MarkFunctionReferenced(VD->getLocation(), Destructor); 15693 CheckDestructorAccess(VD->getLocation(), Destructor, 15694 PDiag(diag::err_access_dtor_var) 15695 << VD->getDeclName() << VD->getType()); 15696 DiagnoseUseOfDecl(Destructor, VD->getLocation()); 15697 } 15698 15699 if (Destructor->isTrivial()) return; 15700 15701 // If the destructor is constexpr, check whether the variable has constant 15702 // destruction now. 15703 if (Destructor->isConstexpr()) { 15704 bool HasConstantInit = false; 15705 if (VD->getInit() && !VD->getInit()->isValueDependent()) 15706 HasConstantInit = VD->evaluateValue(); 15707 SmallVector<PartialDiagnosticAt, 8> Notes; 15708 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() && 15709 HasConstantInit) { 15710 Diag(VD->getLocation(), 15711 diag::err_constexpr_var_requires_const_destruction) << VD; 15712 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 15713 Diag(Notes[I].first, Notes[I].second); 15714 } 15715 } 15716 15717 if (!VD->hasGlobalStorage()) return; 15718 15719 // Emit warning for non-trivial dtor in global scope (a real global, 15720 // class-static, function-static). 15721 Diag(VD->getLocation(), diag::warn_exit_time_destructor); 15722 15723 // TODO: this should be re-enabled for static locals by !CXAAtExit 15724 if (!VD->isStaticLocal()) 15725 Diag(VD->getLocation(), diag::warn_global_destructor); 15726 } 15727 15728 /// Given a constructor and the set of arguments provided for the 15729 /// constructor, convert the arguments and add any required default arguments 15730 /// to form a proper call to this constructor. 15731 /// 15732 /// \returns true if an error occurred, false otherwise. 15733 bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, 15734 QualType DeclInitType, MultiExprArg ArgsPtr, 15735 SourceLocation Loc, 15736 SmallVectorImpl<Expr *> &ConvertedArgs, 15737 bool AllowExplicit, 15738 bool IsListInitialization) { 15739 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. 15740 unsigned NumArgs = ArgsPtr.size(); 15741 Expr **Args = ArgsPtr.data(); 15742 15743 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>(); 15744 unsigned NumParams = Proto->getNumParams(); 15745 15746 // If too few arguments are available, we'll fill in the rest with defaults. 15747 if (NumArgs < NumParams) 15748 ConvertedArgs.reserve(NumParams); 15749 else 15750 ConvertedArgs.reserve(NumArgs); 15751 15752 VariadicCallType CallType = 15753 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 15754 SmallVector<Expr *, 8> AllArgs; 15755 bool Invalid = GatherArgumentsForCall( 15756 Loc, Constructor, Proto, 0, llvm::ArrayRef(Args, NumArgs), AllArgs, 15757 CallType, AllowExplicit, IsListInitialization); 15758 ConvertedArgs.append(AllArgs.begin(), AllArgs.end()); 15759 15760 DiagnoseSentinelCalls(Constructor, Loc, AllArgs); 15761 15762 CheckConstructorCall(Constructor, DeclInitType, 15763 llvm::ArrayRef(AllArgs.data(), AllArgs.size()), Proto, 15764 Loc); 15765 15766 return Invalid; 15767 } 15768 15769 static inline bool 15770 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, 15771 const FunctionDecl *FnDecl) { 15772 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); 15773 if (isa<NamespaceDecl>(DC)) { 15774 return SemaRef.Diag(FnDecl->getLocation(), 15775 diag::err_operator_new_delete_declared_in_namespace) 15776 << FnDecl->getDeclName(); 15777 } 15778 15779 if (isa<TranslationUnitDecl>(DC) && 15780 FnDecl->getStorageClass() == SC_Static) { 15781 return SemaRef.Diag(FnDecl->getLocation(), 15782 diag::err_operator_new_delete_declared_static) 15783 << FnDecl->getDeclName(); 15784 } 15785 15786 return false; 15787 } 15788 15789 static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef, 15790 const PointerType *PtrTy) { 15791 auto &Ctx = SemaRef.Context; 15792 Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers(); 15793 PtrQuals.removeAddressSpace(); 15794 return Ctx.getPointerType(Ctx.getCanonicalType(Ctx.getQualifiedType( 15795 PtrTy->getPointeeType().getUnqualifiedType(), PtrQuals))); 15796 } 15797 15798 static inline bool 15799 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, 15800 CanQualType ExpectedResultType, 15801 CanQualType ExpectedFirstParamType, 15802 unsigned DependentParamTypeDiag, 15803 unsigned InvalidParamTypeDiag) { 15804 QualType ResultType = 15805 FnDecl->getType()->castAs<FunctionType>()->getReturnType(); 15806 15807 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 15808 // The operator is valid on any address space for OpenCL. 15809 // Drop address space from actual and expected result types. 15810 if (const auto *PtrTy = ResultType->getAs<PointerType>()) 15811 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 15812 15813 if (auto ExpectedPtrTy = ExpectedResultType->getAs<PointerType>()) 15814 ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); 15815 } 15816 15817 // Check that the result type is what we expect. 15818 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) { 15819 // Reject even if the type is dependent; an operator delete function is 15820 // required to have a non-dependent result type. 15821 return SemaRef.Diag( 15822 FnDecl->getLocation(), 15823 ResultType->isDependentType() 15824 ? diag::err_operator_new_delete_dependent_result_type 15825 : diag::err_operator_new_delete_invalid_result_type) 15826 << FnDecl->getDeclName() << ExpectedResultType; 15827 } 15828 15829 // A function template must have at least 2 parameters. 15830 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) 15831 return SemaRef.Diag(FnDecl->getLocation(), 15832 diag::err_operator_new_delete_template_too_few_parameters) 15833 << FnDecl->getDeclName(); 15834 15835 // The function decl must have at least 1 parameter. 15836 if (FnDecl->getNumParams() == 0) 15837 return SemaRef.Diag(FnDecl->getLocation(), 15838 diag::err_operator_new_delete_too_few_parameters) 15839 << FnDecl->getDeclName(); 15840 15841 QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); 15842 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 15843 // The operator is valid on any address space for OpenCL. 15844 // Drop address space from actual and expected first parameter types. 15845 if (const auto *PtrTy = 15846 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) 15847 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 15848 15849 if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs<PointerType>()) 15850 ExpectedFirstParamType = 15851 RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); 15852 } 15853 15854 // Check that the first parameter type is what we expect. 15855 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != 15856 ExpectedFirstParamType) { 15857 // The first parameter type is not allowed to be dependent. As a tentative 15858 // DR resolution, we allow a dependent parameter type if it is the right 15859 // type anyway, to allow destroying operator delete in class templates. 15860 return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType() 15861 ? DependentParamTypeDiag 15862 : InvalidParamTypeDiag) 15863 << FnDecl->getDeclName() << ExpectedFirstParamType; 15864 } 15865 15866 return false; 15867 } 15868 15869 static bool 15870 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { 15871 // C++ [basic.stc.dynamic.allocation]p1: 15872 // A program is ill-formed if an allocation function is declared in a 15873 // namespace scope other than global scope or declared static in global 15874 // scope. 15875 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 15876 return true; 15877 15878 CanQualType SizeTy = 15879 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); 15880 15881 // C++ [basic.stc.dynamic.allocation]p1: 15882 // The return type shall be void*. The first parameter shall have type 15883 // std::size_t. 15884 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, 15885 SizeTy, 15886 diag::err_operator_new_dependent_param_type, 15887 diag::err_operator_new_param_type)) 15888 return true; 15889 15890 // C++ [basic.stc.dynamic.allocation]p1: 15891 // The first parameter shall not have an associated default argument. 15892 if (FnDecl->getParamDecl(0)->hasDefaultArg()) 15893 return SemaRef.Diag(FnDecl->getLocation(), 15894 diag::err_operator_new_default_arg) 15895 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); 15896 15897 return false; 15898 } 15899 15900 static bool 15901 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { 15902 // C++ [basic.stc.dynamic.deallocation]p1: 15903 // A program is ill-formed if deallocation functions are declared in a 15904 // namespace scope other than global scope or declared static in global 15905 // scope. 15906 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 15907 return true; 15908 15909 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl); 15910 15911 // C++ P0722: 15912 // Within a class C, the first parameter of a destroying operator delete 15913 // shall be of type C *. The first parameter of any other deallocation 15914 // function shall be of type void *. 15915 CanQualType ExpectedFirstParamType = 15916 MD && MD->isDestroyingOperatorDelete() 15917 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType( 15918 SemaRef.Context.getRecordType(MD->getParent()))) 15919 : SemaRef.Context.VoidPtrTy; 15920 15921 // C++ [basic.stc.dynamic.deallocation]p2: 15922 // Each deallocation function shall return void 15923 if (CheckOperatorNewDeleteTypes( 15924 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType, 15925 diag::err_operator_delete_dependent_param_type, 15926 diag::err_operator_delete_param_type)) 15927 return true; 15928 15929 // C++ P0722: 15930 // A destroying operator delete shall be a usual deallocation function. 15931 if (MD && !MD->getParent()->isDependentContext() && 15932 MD->isDestroyingOperatorDelete() && 15933 !SemaRef.isUsualDeallocationFunction(MD)) { 15934 SemaRef.Diag(MD->getLocation(), 15935 diag::err_destroying_operator_delete_not_usual); 15936 return true; 15937 } 15938 15939 return false; 15940 } 15941 15942 /// CheckOverloadedOperatorDeclaration - Check whether the declaration 15943 /// of this overloaded operator is well-formed. If so, returns false; 15944 /// otherwise, emits appropriate diagnostics and returns true. 15945 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { 15946 assert(FnDecl && FnDecl->isOverloadedOperator() && 15947 "Expected an overloaded operator declaration"); 15948 15949 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); 15950 15951 // C++ [over.oper]p5: 15952 // The allocation and deallocation functions, operator new, 15953 // operator new[], operator delete and operator delete[], are 15954 // described completely in 3.7.3. The attributes and restrictions 15955 // found in the rest of this subclause do not apply to them unless 15956 // explicitly stated in 3.7.3. 15957 if (Op == OO_Delete || Op == OO_Array_Delete) 15958 return CheckOperatorDeleteDeclaration(*this, FnDecl); 15959 15960 if (Op == OO_New || Op == OO_Array_New) 15961 return CheckOperatorNewDeclaration(*this, FnDecl); 15962 15963 // C++ [over.oper]p7: 15964 // An operator function shall either be a member function or 15965 // be a non-member function and have at least one parameter 15966 // whose type is a class, a reference to a class, an enumeration, 15967 // or a reference to an enumeration. 15968 // Note: Before C++23, a member function could not be static. The only member 15969 // function allowed to be static is the call operator function. 15970 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { 15971 if (MethodDecl->isStatic()) { 15972 if (Op == OO_Call || Op == OO_Subscript) 15973 Diag(FnDecl->getLocation(), 15974 (LangOpts.CPlusPlus2b 15975 ? diag::warn_cxx20_compat_operator_overload_static 15976 : diag::ext_operator_overload_static)) 15977 << FnDecl; 15978 else 15979 return Diag(FnDecl->getLocation(), diag::err_operator_overload_static) 15980 << FnDecl; 15981 } 15982 } else { 15983 bool ClassOrEnumParam = false; 15984 for (auto *Param : FnDecl->parameters()) { 15985 QualType ParamType = Param->getType().getNonReferenceType(); 15986 if (ParamType->isDependentType() || ParamType->isRecordType() || 15987 ParamType->isEnumeralType()) { 15988 ClassOrEnumParam = true; 15989 break; 15990 } 15991 } 15992 15993 if (!ClassOrEnumParam) 15994 return Diag(FnDecl->getLocation(), 15995 diag::err_operator_overload_needs_class_or_enum) 15996 << FnDecl->getDeclName(); 15997 } 15998 15999 // C++ [over.oper]p8: 16000 // An operator function cannot have default arguments (8.3.6), 16001 // except where explicitly stated below. 16002 // 16003 // Only the function-call operator (C++ [over.call]p1) and the subscript 16004 // operator (CWG2507) allow default arguments. 16005 if (Op != OO_Call) { 16006 ParmVarDecl *FirstDefaultedParam = nullptr; 16007 for (auto *Param : FnDecl->parameters()) { 16008 if (Param->hasDefaultArg()) { 16009 FirstDefaultedParam = Param; 16010 break; 16011 } 16012 } 16013 if (FirstDefaultedParam) { 16014 if (Op == OO_Subscript) { 16015 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus2b 16016 ? diag::ext_subscript_overload 16017 : diag::error_subscript_overload) 16018 << FnDecl->getDeclName() << 1 16019 << FirstDefaultedParam->getDefaultArgRange(); 16020 } else { 16021 return Diag(FirstDefaultedParam->getLocation(), 16022 diag::err_operator_overload_default_arg) 16023 << FnDecl->getDeclName() 16024 << FirstDefaultedParam->getDefaultArgRange(); 16025 } 16026 } 16027 } 16028 16029 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { 16030 { false, false, false } 16031 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 16032 , { Unary, Binary, MemberOnly } 16033 #include "clang/Basic/OperatorKinds.def" 16034 }; 16035 16036 bool CanBeUnaryOperator = OperatorUses[Op][0]; 16037 bool CanBeBinaryOperator = OperatorUses[Op][1]; 16038 bool MustBeMemberOperator = OperatorUses[Op][2]; 16039 16040 // C++ [over.oper]p8: 16041 // [...] Operator functions cannot have more or fewer parameters 16042 // than the number required for the corresponding operator, as 16043 // described in the rest of this subclause. 16044 unsigned NumParams = FnDecl->getNumParams() 16045 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); 16046 if (Op != OO_Call && Op != OO_Subscript && 16047 ((NumParams == 1 && !CanBeUnaryOperator) || 16048 (NumParams == 2 && !CanBeBinaryOperator) || (NumParams < 1) || 16049 (NumParams > 2))) { 16050 // We have the wrong number of parameters. 16051 unsigned ErrorKind; 16052 if (CanBeUnaryOperator && CanBeBinaryOperator) { 16053 ErrorKind = 2; // 2 -> unary or binary. 16054 } else if (CanBeUnaryOperator) { 16055 ErrorKind = 0; // 0 -> unary 16056 } else { 16057 assert(CanBeBinaryOperator && 16058 "All non-call overloaded operators are unary or binary!"); 16059 ErrorKind = 1; // 1 -> binary 16060 } 16061 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) 16062 << FnDecl->getDeclName() << NumParams << ErrorKind; 16063 } 16064 16065 if (Op == OO_Subscript && NumParams != 2) { 16066 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus2b 16067 ? diag::ext_subscript_overload 16068 : diag::error_subscript_overload) 16069 << FnDecl->getDeclName() << (NumParams == 1 ? 0 : 2); 16070 } 16071 16072 // Overloaded operators other than operator() and operator[] cannot be 16073 // variadic. 16074 if (Op != OO_Call && 16075 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) { 16076 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) 16077 << FnDecl->getDeclName(); 16078 } 16079 16080 // Some operators must be member functions. 16081 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { 16082 return Diag(FnDecl->getLocation(), 16083 diag::err_operator_overload_must_be_member) 16084 << FnDecl->getDeclName(); 16085 } 16086 16087 // C++ [over.inc]p1: 16088 // The user-defined function called operator++ implements the 16089 // prefix and postfix ++ operator. If this function is a member 16090 // function with no parameters, or a non-member function with one 16091 // parameter of class or enumeration type, it defines the prefix 16092 // increment operator ++ for objects of that type. If the function 16093 // is a member function with one parameter (which shall be of type 16094 // int) or a non-member function with two parameters (the second 16095 // of which shall be of type int), it defines the postfix 16096 // increment operator ++ for objects of that type. 16097 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { 16098 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); 16099 QualType ParamType = LastParam->getType(); 16100 16101 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && 16102 !ParamType->isDependentType()) 16103 return Diag(LastParam->getLocation(), 16104 diag::err_operator_overload_post_incdec_must_be_int) 16105 << LastParam->getType() << (Op == OO_MinusMinus); 16106 } 16107 16108 return false; 16109 } 16110 16111 static bool 16112 checkLiteralOperatorTemplateParameterList(Sema &SemaRef, 16113 FunctionTemplateDecl *TpDecl) { 16114 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters(); 16115 16116 // Must have one or two template parameters. 16117 if (TemplateParams->size() == 1) { 16118 NonTypeTemplateParmDecl *PmDecl = 16119 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0)); 16120 16121 // The template parameter must be a char parameter pack. 16122 if (PmDecl && PmDecl->isTemplateParameterPack() && 16123 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy)) 16124 return false; 16125 16126 // C++20 [over.literal]p5: 16127 // A string literal operator template is a literal operator template 16128 // whose template-parameter-list comprises a single non-type 16129 // template-parameter of class type. 16130 // 16131 // As a DR resolution, we also allow placeholders for deduced class 16132 // template specializations. 16133 if (SemaRef.getLangOpts().CPlusPlus20 && PmDecl && 16134 !PmDecl->isTemplateParameterPack() && 16135 (PmDecl->getType()->isRecordType() || 16136 PmDecl->getType()->getAs<DeducedTemplateSpecializationType>())) 16137 return false; 16138 } else if (TemplateParams->size() == 2) { 16139 TemplateTypeParmDecl *PmType = 16140 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0)); 16141 NonTypeTemplateParmDecl *PmArgs = 16142 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1)); 16143 16144 // The second template parameter must be a parameter pack with the 16145 // first template parameter as its type. 16146 if (PmType && PmArgs && !PmType->isTemplateParameterPack() && 16147 PmArgs->isTemplateParameterPack()) { 16148 const TemplateTypeParmType *TArgs = 16149 PmArgs->getType()->getAs<TemplateTypeParmType>(); 16150 if (TArgs && TArgs->getDepth() == PmType->getDepth() && 16151 TArgs->getIndex() == PmType->getIndex()) { 16152 if (!SemaRef.inTemplateInstantiation()) 16153 SemaRef.Diag(TpDecl->getLocation(), 16154 diag::ext_string_literal_operator_template); 16155 return false; 16156 } 16157 } 16158 } 16159 16160 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(), 16161 diag::err_literal_operator_template) 16162 << TpDecl->getTemplateParameters()->getSourceRange(); 16163 return true; 16164 } 16165 16166 /// CheckLiteralOperatorDeclaration - Check whether the declaration 16167 /// of this literal operator function is well-formed. If so, returns 16168 /// false; otherwise, emits appropriate diagnostics and returns true. 16169 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { 16170 if (isa<CXXMethodDecl>(FnDecl)) { 16171 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) 16172 << FnDecl->getDeclName(); 16173 return true; 16174 } 16175 16176 if (FnDecl->isExternC()) { 16177 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); 16178 if (const LinkageSpecDecl *LSD = 16179 FnDecl->getDeclContext()->getExternCContext()) 16180 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 16181 return true; 16182 } 16183 16184 // This might be the definition of a literal operator template. 16185 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); 16186 16187 // This might be a specialization of a literal operator template. 16188 if (!TpDecl) 16189 TpDecl = FnDecl->getPrimaryTemplate(); 16190 16191 // template <char...> type operator "" name() and 16192 // template <class T, T...> type operator "" name() are the only valid 16193 // template signatures, and the only valid signatures with no parameters. 16194 // 16195 // C++20 also allows template <SomeClass T> type operator "" name(). 16196 if (TpDecl) { 16197 if (FnDecl->param_size() != 0) { 16198 Diag(FnDecl->getLocation(), 16199 diag::err_literal_operator_template_with_params); 16200 return true; 16201 } 16202 16203 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl)) 16204 return true; 16205 16206 } else if (FnDecl->param_size() == 1) { 16207 const ParmVarDecl *Param = FnDecl->getParamDecl(0); 16208 16209 QualType ParamType = Param->getType().getUnqualifiedType(); 16210 16211 // Only unsigned long long int, long double, any character type, and const 16212 // char * are allowed as the only parameters. 16213 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) || 16214 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) || 16215 Context.hasSameType(ParamType, Context.CharTy) || 16216 Context.hasSameType(ParamType, Context.WideCharTy) || 16217 Context.hasSameType(ParamType, Context.Char8Ty) || 16218 Context.hasSameType(ParamType, Context.Char16Ty) || 16219 Context.hasSameType(ParamType, Context.Char32Ty)) { 16220 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) { 16221 QualType InnerType = Ptr->getPointeeType(); 16222 16223 // Pointer parameter must be a const char *. 16224 if (!(Context.hasSameType(InnerType.getUnqualifiedType(), 16225 Context.CharTy) && 16226 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) { 16227 Diag(Param->getSourceRange().getBegin(), 16228 diag::err_literal_operator_param) 16229 << ParamType << "'const char *'" << Param->getSourceRange(); 16230 return true; 16231 } 16232 16233 } else if (ParamType->isRealFloatingType()) { 16234 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 16235 << ParamType << Context.LongDoubleTy << Param->getSourceRange(); 16236 return true; 16237 16238 } else if (ParamType->isIntegerType()) { 16239 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 16240 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange(); 16241 return true; 16242 16243 } else { 16244 Diag(Param->getSourceRange().getBegin(), 16245 diag::err_literal_operator_invalid_param) 16246 << ParamType << Param->getSourceRange(); 16247 return true; 16248 } 16249 16250 } else if (FnDecl->param_size() == 2) { 16251 FunctionDecl::param_iterator Param = FnDecl->param_begin(); 16252 16253 // First, verify that the first parameter is correct. 16254 16255 QualType FirstParamType = (*Param)->getType().getUnqualifiedType(); 16256 16257 // Two parameter function must have a pointer to const as a 16258 // first parameter; let's strip those qualifiers. 16259 const PointerType *PT = FirstParamType->getAs<PointerType>(); 16260 16261 if (!PT) { 16262 Diag((*Param)->getSourceRange().getBegin(), 16263 diag::err_literal_operator_param) 16264 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16265 return true; 16266 } 16267 16268 QualType PointeeType = PT->getPointeeType(); 16269 // First parameter must be const 16270 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) { 16271 Diag((*Param)->getSourceRange().getBegin(), 16272 diag::err_literal_operator_param) 16273 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16274 return true; 16275 } 16276 16277 QualType InnerType = PointeeType.getUnqualifiedType(); 16278 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and 16279 // const char32_t* are allowed as the first parameter to a two-parameter 16280 // function 16281 if (!(Context.hasSameType(InnerType, Context.CharTy) || 16282 Context.hasSameType(InnerType, Context.WideCharTy) || 16283 Context.hasSameType(InnerType, Context.Char8Ty) || 16284 Context.hasSameType(InnerType, Context.Char16Ty) || 16285 Context.hasSameType(InnerType, Context.Char32Ty))) { 16286 Diag((*Param)->getSourceRange().getBegin(), 16287 diag::err_literal_operator_param) 16288 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16289 return true; 16290 } 16291 16292 // Move on to the second and final parameter. 16293 ++Param; 16294 16295 // The second parameter must be a std::size_t. 16296 QualType SecondParamType = (*Param)->getType().getUnqualifiedType(); 16297 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) { 16298 Diag((*Param)->getSourceRange().getBegin(), 16299 diag::err_literal_operator_param) 16300 << SecondParamType << Context.getSizeType() 16301 << (*Param)->getSourceRange(); 16302 return true; 16303 } 16304 } else { 16305 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count); 16306 return true; 16307 } 16308 16309 // Parameters are good. 16310 16311 // A parameter-declaration-clause containing a default argument is not 16312 // equivalent to any of the permitted forms. 16313 for (auto *Param : FnDecl->parameters()) { 16314 if (Param->hasDefaultArg()) { 16315 Diag(Param->getDefaultArgRange().getBegin(), 16316 diag::err_literal_operator_default_argument) 16317 << Param->getDefaultArgRange(); 16318 break; 16319 } 16320 } 16321 16322 StringRef LiteralName 16323 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName(); 16324 if (LiteralName[0] != '_' && 16325 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) { 16326 // C++11 [usrlit.suffix]p1: 16327 // Literal suffix identifiers that do not start with an underscore 16328 // are reserved for future standardization. 16329 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) 16330 << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName); 16331 } 16332 16333 return false; 16334 } 16335 16336 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ 16337 /// linkage specification, including the language and (if present) 16338 /// the '{'. ExternLoc is the location of the 'extern', Lang is the 16339 /// language string literal. LBraceLoc, if valid, provides the location of 16340 /// the '{' brace. Otherwise, this linkage specification does not 16341 /// have any braces. 16342 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, 16343 Expr *LangStr, 16344 SourceLocation LBraceLoc) { 16345 StringLiteral *Lit = cast<StringLiteral>(LangStr); 16346 if (!Lit->isOrdinary()) { 16347 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii) 16348 << LangStr->getSourceRange(); 16349 return nullptr; 16350 } 16351 16352 StringRef Lang = Lit->getString(); 16353 LinkageSpecDecl::LanguageIDs Language; 16354 if (Lang == "C") 16355 Language = LinkageSpecDecl::lang_c; 16356 else if (Lang == "C++") 16357 Language = LinkageSpecDecl::lang_cxx; 16358 else { 16359 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) 16360 << LangStr->getSourceRange(); 16361 return nullptr; 16362 } 16363 16364 // FIXME: Add all the various semantics of linkage specifications 16365 16366 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc, 16367 LangStr->getExprLoc(), Language, 16368 LBraceLoc.isValid()); 16369 16370 /// C++ [module.unit]p7.2.3 16371 /// - Otherwise, if the declaration 16372 /// - ... 16373 /// - ... 16374 /// - appears within a linkage-specification, 16375 /// it is attached to the global module. 16376 /// 16377 /// If the declaration is already in global module fragment, we don't 16378 /// need to attach it again. 16379 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview()) { 16380 Module *GlobalModule = 16381 PushGlobalModuleFragment(ExternLoc, /*IsImplicit=*/true); 16382 /// According to [module.reach]p3.2, 16383 /// The declaration in global module fragment is reachable if it is not 16384 /// discarded. And the discarded declaration should be deleted. So it 16385 /// doesn't matter mark the declaration in global module fragment as 16386 /// reachable here. 16387 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 16388 D->setLocalOwningModule(GlobalModule); 16389 } 16390 16391 CurContext->addDecl(D); 16392 PushDeclContext(S, D); 16393 return D; 16394 } 16395 16396 /// ActOnFinishLinkageSpecification - Complete the definition of 16397 /// the C++ linkage specification LinkageSpec. If RBraceLoc is 16398 /// valid, it's the position of the closing '}' brace in a linkage 16399 /// specification that uses braces. 16400 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, 16401 Decl *LinkageSpec, 16402 SourceLocation RBraceLoc) { 16403 if (RBraceLoc.isValid()) { 16404 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec); 16405 LSDecl->setRBraceLoc(RBraceLoc); 16406 } 16407 16408 // If the current module doesn't has Parent, it implies that the 16409 // LinkageSpec isn't in the module created by itself. So we don't 16410 // need to pop it. 16411 if (getLangOpts().CPlusPlusModules && getCurrentModule() && 16412 getCurrentModule()->isGlobalModule() && getCurrentModule()->Parent) 16413 PopGlobalModuleFragment(); 16414 16415 PopDeclContext(); 16416 return LinkageSpec; 16417 } 16418 16419 Decl *Sema::ActOnEmptyDeclaration(Scope *S, 16420 const ParsedAttributesView &AttrList, 16421 SourceLocation SemiLoc) { 16422 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc); 16423 // Attribute declarations appertain to empty declaration so we handle 16424 // them here. 16425 ProcessDeclAttributeList(S, ED, AttrList); 16426 16427 CurContext->addDecl(ED); 16428 return ED; 16429 } 16430 16431 /// Perform semantic analysis for the variable declaration that 16432 /// occurs within a C++ catch clause, returning the newly-created 16433 /// variable. 16434 VarDecl *Sema::BuildExceptionDeclaration(Scope *S, 16435 TypeSourceInfo *TInfo, 16436 SourceLocation StartLoc, 16437 SourceLocation Loc, 16438 IdentifierInfo *Name) { 16439 bool Invalid = false; 16440 QualType ExDeclType = TInfo->getType(); 16441 16442 // Arrays and functions decay. 16443 if (ExDeclType->isArrayType()) 16444 ExDeclType = Context.getArrayDecayedType(ExDeclType); 16445 else if (ExDeclType->isFunctionType()) 16446 ExDeclType = Context.getPointerType(ExDeclType); 16447 16448 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. 16449 // The exception-declaration shall not denote a pointer or reference to an 16450 // incomplete type, other than [cv] void*. 16451 // N2844 forbids rvalue references. 16452 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { 16453 Diag(Loc, diag::err_catch_rvalue_ref); 16454 Invalid = true; 16455 } 16456 16457 if (ExDeclType->isVariablyModifiedType()) { 16458 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType; 16459 Invalid = true; 16460 } 16461 16462 QualType BaseType = ExDeclType; 16463 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference 16464 unsigned DK = diag::err_catch_incomplete; 16465 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 16466 BaseType = Ptr->getPointeeType(); 16467 Mode = 1; 16468 DK = diag::err_catch_incomplete_ptr; 16469 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { 16470 // For the purpose of error recovery, we treat rvalue refs like lvalue refs. 16471 BaseType = Ref->getPointeeType(); 16472 Mode = 2; 16473 DK = diag::err_catch_incomplete_ref; 16474 } 16475 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && 16476 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) 16477 Invalid = true; 16478 16479 if (!Invalid && Mode != 1 && BaseType->isSizelessType()) { 16480 Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType; 16481 Invalid = true; 16482 } 16483 16484 if (!Invalid && !ExDeclType->isDependentType() && 16485 RequireNonAbstractType(Loc, ExDeclType, 16486 diag::err_abstract_type_in_decl, 16487 AbstractVariableType)) 16488 Invalid = true; 16489 16490 // Only the non-fragile NeXT runtime currently supports C++ catches 16491 // of ObjC types, and no runtime supports catching ObjC types by value. 16492 if (!Invalid && getLangOpts().ObjC) { 16493 QualType T = ExDeclType; 16494 if (const ReferenceType *RT = T->getAs<ReferenceType>()) 16495 T = RT->getPointeeType(); 16496 16497 if (T->isObjCObjectType()) { 16498 Diag(Loc, diag::err_objc_object_catch); 16499 Invalid = true; 16500 } else if (T->isObjCObjectPointerType()) { 16501 // FIXME: should this be a test for macosx-fragile specifically? 16502 if (getLangOpts().ObjCRuntime.isFragile()) 16503 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); 16504 } 16505 } 16506 16507 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, 16508 ExDeclType, TInfo, SC_None); 16509 ExDecl->setExceptionVariable(true); 16510 16511 // In ARC, infer 'retaining' for variables of retainable type. 16512 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl)) 16513 Invalid = true; 16514 16515 if (!Invalid && !ExDeclType->isDependentType()) { 16516 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { 16517 // Insulate this from anything else we might currently be parsing. 16518 EnterExpressionEvaluationContext scope( 16519 *this, ExpressionEvaluationContext::PotentiallyEvaluated); 16520 16521 // C++ [except.handle]p16: 16522 // The object declared in an exception-declaration or, if the 16523 // exception-declaration does not specify a name, a temporary (12.2) is 16524 // copy-initialized (8.5) from the exception object. [...] 16525 // The object is destroyed when the handler exits, after the destruction 16526 // of any automatic objects initialized within the handler. 16527 // 16528 // We just pretend to initialize the object with itself, then make sure 16529 // it can be destroyed later. 16530 QualType initType = Context.getExceptionObjectType(ExDeclType); 16531 16532 InitializedEntity entity = 16533 InitializedEntity::InitializeVariable(ExDecl); 16534 InitializationKind initKind = 16535 InitializationKind::CreateCopy(Loc, SourceLocation()); 16536 16537 Expr *opaqueValue = 16538 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); 16539 InitializationSequence sequence(*this, entity, initKind, opaqueValue); 16540 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue); 16541 if (result.isInvalid()) 16542 Invalid = true; 16543 else { 16544 // If the constructor used was non-trivial, set this as the 16545 // "initializer". 16546 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>(); 16547 if (!construct->getConstructor()->isTrivial()) { 16548 Expr *init = MaybeCreateExprWithCleanups(construct); 16549 ExDecl->setInit(init); 16550 } 16551 16552 // And make sure it's destructable. 16553 FinalizeVarWithDestructor(ExDecl, recordType); 16554 } 16555 } 16556 } 16557 16558 if (Invalid) 16559 ExDecl->setInvalidDecl(); 16560 16561 return ExDecl; 16562 } 16563 16564 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch 16565 /// handler. 16566 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { 16567 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16568 bool Invalid = D.isInvalidType(); 16569 16570 // Check for unexpanded parameter packs. 16571 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 16572 UPPC_ExceptionType)) { 16573 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 16574 D.getIdentifierLoc()); 16575 Invalid = true; 16576 } 16577 16578 IdentifierInfo *II = D.getIdentifier(); 16579 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), 16580 LookupOrdinaryName, 16581 ForVisibleRedeclaration)) { 16582 // The scope should be freshly made just for us. There is just no way 16583 // it contains any previous declaration, except for function parameters in 16584 // a function-try-block's catch statement. 16585 assert(!S->isDeclScope(PrevDecl)); 16586 if (isDeclInScope(PrevDecl, CurContext, S)) { 16587 Diag(D.getIdentifierLoc(), diag::err_redefinition) 16588 << D.getIdentifier(); 16589 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 16590 Invalid = true; 16591 } else if (PrevDecl->isTemplateParameter()) 16592 // Maybe we will complain about the shadowed template parameter. 16593 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 16594 } 16595 16596 if (D.getCXXScopeSpec().isSet() && !Invalid) { 16597 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) 16598 << D.getCXXScopeSpec().getRange(); 16599 Invalid = true; 16600 } 16601 16602 VarDecl *ExDecl = BuildExceptionDeclaration( 16603 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier()); 16604 if (Invalid) 16605 ExDecl->setInvalidDecl(); 16606 16607 // Add the exception declaration into this scope. 16608 if (II) 16609 PushOnScopeChains(ExDecl, S); 16610 else 16611 CurContext->addDecl(ExDecl); 16612 16613 ProcessDeclAttributes(S, ExDecl, D); 16614 return ExDecl; 16615 } 16616 16617 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, 16618 Expr *AssertExpr, 16619 Expr *AssertMessageExpr, 16620 SourceLocation RParenLoc) { 16621 StringLiteral *AssertMessage = 16622 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr; 16623 16624 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) 16625 return nullptr; 16626 16627 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, 16628 AssertMessage, RParenLoc, false); 16629 } 16630 16631 /// Convert \V to a string we can present to the user in a diagnostic 16632 /// \T is the type of the expression that has been evaluated into \V 16633 static bool ConvertAPValueToString(const APValue &V, QualType T, 16634 SmallVectorImpl<char> &Str) { 16635 if (!V.hasValue()) 16636 return false; 16637 16638 switch (V.getKind()) { 16639 case APValue::ValueKind::Int: 16640 if (T->isBooleanType()) { 16641 // Bools are reduced to ints during evaluation, but for 16642 // diagnostic purposes we want to print them as 16643 // true or false. 16644 int64_t BoolValue = V.getInt().getExtValue(); 16645 assert((BoolValue == 0 || BoolValue == 1) && 16646 "Bool type, but value is not 0 or 1"); 16647 llvm::raw_svector_ostream OS(Str); 16648 OS << (BoolValue ? "true" : "false"); 16649 } else if (T->isCharType()) { 16650 // Same is true for chars. 16651 Str.push_back('\''); 16652 Str.push_back(V.getInt().getExtValue()); 16653 Str.push_back('\''); 16654 } else 16655 V.getInt().toString(Str); 16656 16657 break; 16658 16659 case APValue::ValueKind::Float: 16660 V.getFloat().toString(Str); 16661 break; 16662 16663 case APValue::ValueKind::LValue: 16664 if (V.isNullPointer()) { 16665 llvm::raw_svector_ostream OS(Str); 16666 OS << "nullptr"; 16667 } else 16668 return false; 16669 break; 16670 16671 case APValue::ValueKind::ComplexFloat: { 16672 llvm::raw_svector_ostream OS(Str); 16673 OS << '('; 16674 V.getComplexFloatReal().toString(Str); 16675 OS << " + "; 16676 V.getComplexFloatImag().toString(Str); 16677 OS << "i)"; 16678 } break; 16679 16680 case APValue::ValueKind::ComplexInt: { 16681 llvm::raw_svector_ostream OS(Str); 16682 OS << '('; 16683 V.getComplexIntReal().toString(Str); 16684 OS << " + "; 16685 V.getComplexIntImag().toString(Str); 16686 OS << "i)"; 16687 } break; 16688 16689 default: 16690 return false; 16691 } 16692 16693 return true; 16694 } 16695 16696 /// Some Expression types are not useful to print notes about, 16697 /// e.g. literals and values that have already been expanded 16698 /// before such as int-valued template parameters. 16699 static bool UsefulToPrintExpr(const Expr *E) { 16700 E = E->IgnoreParenImpCasts(); 16701 // Literals are pretty easy for humans to understand. 16702 if (isa<IntegerLiteral, FloatingLiteral, CharacterLiteral, CXXBoolLiteralExpr, 16703 CXXNullPtrLiteralExpr, FixedPointLiteral, ImaginaryLiteral>(E)) 16704 return false; 16705 16706 // These have been substituted from template parameters 16707 // and appear as literals in the static assert error. 16708 if (isa<SubstNonTypeTemplateParmExpr>(E)) 16709 return false; 16710 16711 // -5 is also simple to understand. 16712 if (const auto *UnaryOp = dyn_cast<UnaryOperator>(E)) 16713 return UsefulToPrintExpr(UnaryOp->getSubExpr()); 16714 16715 // Ignore nested binary operators. This could be a FIXME for improvements 16716 // to the diagnostics in the future. 16717 if (isa<BinaryOperator>(E)) 16718 return false; 16719 16720 return true; 16721 } 16722 16723 /// Try to print more useful information about a failed static_assert 16724 /// with expression \E 16725 void Sema::DiagnoseStaticAssertDetails(const Expr *E) { 16726 if (const auto *Op = dyn_cast<BinaryOperator>(E)) { 16727 const Expr *LHS = Op->getLHS()->IgnoreParenImpCasts(); 16728 const Expr *RHS = Op->getRHS()->IgnoreParenImpCasts(); 16729 16730 // Ignore comparisons of boolean expressions with a boolean literal. 16731 if ((isa<CXXBoolLiteralExpr>(LHS) && RHS->getType()->isBooleanType()) || 16732 (isa<CXXBoolLiteralExpr>(RHS) && LHS->getType()->isBooleanType())) 16733 return; 16734 16735 // Don't print obvious expressions. 16736 if (!UsefulToPrintExpr(LHS) && !UsefulToPrintExpr(RHS)) 16737 return; 16738 16739 struct { 16740 const clang::Expr *Cond; 16741 Expr::EvalResult Result; 16742 SmallString<12> ValueString; 16743 bool Print; 16744 } DiagSide[2] = {{LHS, Expr::EvalResult(), {}, false}, 16745 {RHS, Expr::EvalResult(), {}, false}}; 16746 for (unsigned I = 0; I < 2; I++) { 16747 const Expr *Side = DiagSide[I].Cond; 16748 16749 Side->EvaluateAsRValue(DiagSide[I].Result, Context, true); 16750 16751 DiagSide[I].Print = ConvertAPValueToString( 16752 DiagSide[I].Result.Val, Side->getType(), DiagSide[I].ValueString); 16753 } 16754 if (DiagSide[0].Print && DiagSide[1].Print) { 16755 Diag(Op->getExprLoc(), diag::note_expr_evaluates_to) 16756 << DiagSide[0].ValueString << Op->getOpcodeStr() 16757 << DiagSide[1].ValueString << Op->getSourceRange(); 16758 } 16759 } 16760 } 16761 16762 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, 16763 Expr *AssertExpr, 16764 StringLiteral *AssertMessage, 16765 SourceLocation RParenLoc, 16766 bool Failed) { 16767 assert(AssertExpr != nullptr && "Expected non-null condition"); 16768 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && 16769 !Failed) { 16770 // In a static_assert-declaration, the constant-expression shall be a 16771 // constant expression that can be contextually converted to bool. 16772 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr); 16773 if (Converted.isInvalid()) 16774 Failed = true; 16775 16776 ExprResult FullAssertExpr = 16777 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc, 16778 /*DiscardedValue*/ false, 16779 /*IsConstexpr*/ true); 16780 if (FullAssertExpr.isInvalid()) 16781 Failed = true; 16782 else 16783 AssertExpr = FullAssertExpr.get(); 16784 16785 llvm::APSInt Cond; 16786 Expr *BaseExpr = AssertExpr; 16787 AllowFoldKind FoldKind = NoFold; 16788 16789 if (!getLangOpts().CPlusPlus) { 16790 // In C mode, allow folding as an extension for better compatibility with 16791 // C++ in terms of expressions like static_assert("test") or 16792 // static_assert(nullptr). 16793 FoldKind = AllowFold; 16794 } 16795 16796 if (!Failed && VerifyIntegerConstantExpression( 16797 BaseExpr, &Cond, 16798 diag::err_static_assert_expression_is_not_constant, 16799 FoldKind).isInvalid()) 16800 Failed = true; 16801 16802 if (!Failed && !Cond) { 16803 SmallString<256> MsgBuffer; 16804 llvm::raw_svector_ostream Msg(MsgBuffer); 16805 if (AssertMessage) { 16806 const auto *MsgStr = cast<StringLiteral>(AssertMessage); 16807 if (MsgStr->isOrdinary()) 16808 Msg << MsgStr->getString(); 16809 else 16810 MsgStr->printPretty(Msg, nullptr, getPrintingPolicy()); 16811 } 16812 16813 Expr *InnerCond = nullptr; 16814 std::string InnerCondDescription; 16815 std::tie(InnerCond, InnerCondDescription) = 16816 findFailedBooleanCondition(Converted.get()); 16817 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) { 16818 // Drill down into concept specialization expressions to see why they 16819 // weren't satisfied. 16820 Diag(StaticAssertLoc, diag::err_static_assert_failed) 16821 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); 16822 ConstraintSatisfaction Satisfaction; 16823 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction)) 16824 DiagnoseUnsatisfiedConstraint(Satisfaction); 16825 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond) 16826 && !isa<IntegerLiteral>(InnerCond)) { 16827 Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed) 16828 << InnerCondDescription << !AssertMessage 16829 << Msg.str() << InnerCond->getSourceRange(); 16830 DiagnoseStaticAssertDetails(InnerCond); 16831 } else { 16832 Diag(StaticAssertLoc, diag::err_static_assert_failed) 16833 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); 16834 } 16835 Failed = true; 16836 } 16837 } else { 16838 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc, 16839 /*DiscardedValue*/false, 16840 /*IsConstexpr*/true); 16841 if (FullAssertExpr.isInvalid()) 16842 Failed = true; 16843 else 16844 AssertExpr = FullAssertExpr.get(); 16845 } 16846 16847 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, 16848 AssertExpr, AssertMessage, RParenLoc, 16849 Failed); 16850 16851 CurContext->addDecl(Decl); 16852 return Decl; 16853 } 16854 16855 /// Perform semantic analysis of the given friend type declaration. 16856 /// 16857 /// \returns A friend declaration that. 16858 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart, 16859 SourceLocation FriendLoc, 16860 TypeSourceInfo *TSInfo) { 16861 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration"); 16862 16863 QualType T = TSInfo->getType(); 16864 SourceRange TypeRange = TSInfo->getTypeLoc().getSourceRange(); 16865 16866 // C++03 [class.friend]p2: 16867 // An elaborated-type-specifier shall be used in a friend declaration 16868 // for a class.* 16869 // 16870 // * The class-key of the elaborated-type-specifier is required. 16871 if (!CodeSynthesisContexts.empty()) { 16872 // Do not complain about the form of friend template types during any kind 16873 // of code synthesis. For template instantiation, we will have complained 16874 // when the template was defined. 16875 } else { 16876 if (!T->isElaboratedTypeSpecifier()) { 16877 // If we evaluated the type to a record type, suggest putting 16878 // a tag in front. 16879 if (const RecordType *RT = T->getAs<RecordType>()) { 16880 RecordDecl *RD = RT->getDecl(); 16881 16882 SmallString<16> InsertionText(" "); 16883 InsertionText += RD->getKindName(); 16884 16885 Diag(TypeRange.getBegin(), 16886 getLangOpts().CPlusPlus11 ? 16887 diag::warn_cxx98_compat_unelaborated_friend_type : 16888 diag::ext_unelaborated_friend_type) 16889 << (unsigned) RD->getTagKind() 16890 << T 16891 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc), 16892 InsertionText); 16893 } else { 16894 Diag(FriendLoc, 16895 getLangOpts().CPlusPlus11 ? 16896 diag::warn_cxx98_compat_nonclass_type_friend : 16897 diag::ext_nonclass_type_friend) 16898 << T 16899 << TypeRange; 16900 } 16901 } else if (T->getAs<EnumType>()) { 16902 Diag(FriendLoc, 16903 getLangOpts().CPlusPlus11 ? 16904 diag::warn_cxx98_compat_enum_friend : 16905 diag::ext_enum_friend) 16906 << T 16907 << TypeRange; 16908 } 16909 16910 // C++11 [class.friend]p3: 16911 // A friend declaration that does not declare a function shall have one 16912 // of the following forms: 16913 // friend elaborated-type-specifier ; 16914 // friend simple-type-specifier ; 16915 // friend typename-specifier ; 16916 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc) 16917 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T; 16918 } 16919 16920 // If the type specifier in a friend declaration designates a (possibly 16921 // cv-qualified) class type, that class is declared as a friend; otherwise, 16922 // the friend declaration is ignored. 16923 return FriendDecl::Create(Context, CurContext, 16924 TSInfo->getTypeLoc().getBeginLoc(), TSInfo, 16925 FriendLoc); 16926 } 16927 16928 /// Handle a friend tag declaration where the scope specifier was 16929 /// templated. 16930 DeclResult Sema::ActOnTemplatedFriendTag( 16931 Scope *S, SourceLocation FriendLoc, unsigned TagSpec, SourceLocation TagLoc, 16932 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, 16933 const ParsedAttributesView &Attr, MultiTemplateParamsArg TempParamLists) { 16934 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 16935 16936 bool IsMemberSpecialization = false; 16937 bool Invalid = false; 16938 16939 if (TemplateParameterList *TemplateParams = 16940 MatchTemplateParametersToScopeSpecifier( 16941 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true, 16942 IsMemberSpecialization, Invalid)) { 16943 if (TemplateParams->size() > 0) { 16944 // This is a declaration of a class template. 16945 if (Invalid) 16946 return true; 16947 16948 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name, 16949 NameLoc, Attr, TemplateParams, AS_public, 16950 /*ModulePrivateLoc=*/SourceLocation(), 16951 FriendLoc, TempParamLists.size() - 1, 16952 TempParamLists.data()).get(); 16953 } else { 16954 // The "template<>" header is extraneous. 16955 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 16956 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 16957 IsMemberSpecialization = true; 16958 } 16959 } 16960 16961 if (Invalid) return true; 16962 16963 bool isAllExplicitSpecializations = true; 16964 for (unsigned I = TempParamLists.size(); I-- > 0; ) { 16965 if (TempParamLists[I]->size()) { 16966 isAllExplicitSpecializations = false; 16967 break; 16968 } 16969 } 16970 16971 // FIXME: don't ignore attributes. 16972 16973 // If it's explicit specializations all the way down, just forget 16974 // about the template header and build an appropriate non-templated 16975 // friend. TODO: for source fidelity, remember the headers. 16976 if (isAllExplicitSpecializations) { 16977 if (SS.isEmpty()) { 16978 bool Owned = false; 16979 bool IsDependent = false; 16980 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc, Attr, 16981 AS_public, 16982 /*ModulePrivateLoc=*/SourceLocation(), 16983 MultiTemplateParamsArg(), Owned, IsDependent, 16984 /*ScopedEnumKWLoc=*/SourceLocation(), 16985 /*ScopedEnumUsesClassTag=*/false, 16986 /*UnderlyingType=*/TypeResult(), 16987 /*IsTypeSpecifier=*/false, 16988 /*IsTemplateParamOrArg=*/false, /*OOK=*/OOK_Outside); 16989 } 16990 16991 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 16992 ElaboratedTypeKeyword Keyword 16993 = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 16994 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, 16995 *Name, NameLoc); 16996 if (T.isNull()) 16997 return true; 16998 16999 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 17000 if (isa<DependentNameType>(T)) { 17001 DependentNameTypeLoc TL = 17002 TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 17003 TL.setElaboratedKeywordLoc(TagLoc); 17004 TL.setQualifierLoc(QualifierLoc); 17005 TL.setNameLoc(NameLoc); 17006 } else { 17007 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 17008 TL.setElaboratedKeywordLoc(TagLoc); 17009 TL.setQualifierLoc(QualifierLoc); 17010 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc); 17011 } 17012 17013 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 17014 TSI, FriendLoc, TempParamLists); 17015 Friend->setAccess(AS_public); 17016 CurContext->addDecl(Friend); 17017 return Friend; 17018 } 17019 17020 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?"); 17021 17022 17023 17024 // Handle the case of a templated-scope friend class. e.g. 17025 // template <class T> class A<T>::B; 17026 // FIXME: we don't support these right now. 17027 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) 17028 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext); 17029 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 17030 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); 17031 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 17032 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 17033 TL.setElaboratedKeywordLoc(TagLoc); 17034 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 17035 TL.setNameLoc(NameLoc); 17036 17037 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 17038 TSI, FriendLoc, TempParamLists); 17039 Friend->setAccess(AS_public); 17040 Friend->setUnsupportedFriend(true); 17041 CurContext->addDecl(Friend); 17042 return Friend; 17043 } 17044 17045 /// Handle a friend type declaration. This works in tandem with 17046 /// ActOnTag. 17047 /// 17048 /// Notes on friend class templates: 17049 /// 17050 /// We generally treat friend class declarations as if they were 17051 /// declaring a class. So, for example, the elaborated type specifier 17052 /// in a friend declaration is required to obey the restrictions of a 17053 /// class-head (i.e. no typedefs in the scope chain), template 17054 /// parameters are required to match up with simple template-ids, &c. 17055 /// However, unlike when declaring a template specialization, it's 17056 /// okay to refer to a template specialization without an empty 17057 /// template parameter declaration, e.g. 17058 /// friend class A<T>::B<unsigned>; 17059 /// We permit this as a special case; if there are any template 17060 /// parameters present at all, require proper matching, i.e. 17061 /// template <> template \<class T> friend class A<int>::B; 17062 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, 17063 MultiTemplateParamsArg TempParams) { 17064 SourceLocation Loc = DS.getBeginLoc(); 17065 17066 assert(DS.isFriendSpecified()); 17067 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 17068 17069 // C++ [class.friend]p3: 17070 // A friend declaration that does not declare a function shall have one of 17071 // the following forms: 17072 // friend elaborated-type-specifier ; 17073 // friend simple-type-specifier ; 17074 // friend typename-specifier ; 17075 // 17076 // Any declaration with a type qualifier does not have that form. (It's 17077 // legal to specify a qualified type as a friend, you just can't write the 17078 // keywords.) 17079 if (DS.getTypeQualifiers()) { 17080 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 17081 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const"; 17082 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 17083 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile"; 17084 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 17085 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict"; 17086 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 17087 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic"; 17088 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 17089 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned"; 17090 } 17091 17092 // Try to convert the decl specifier to a type. This works for 17093 // friend templates because ActOnTag never produces a ClassTemplateDecl 17094 // for a TUK_Friend. 17095 Declarator TheDeclarator(DS, ParsedAttributesView::none(), 17096 DeclaratorContext::Member); 17097 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); 17098 QualType T = TSI->getType(); 17099 if (TheDeclarator.isInvalidType()) 17100 return nullptr; 17101 17102 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) 17103 return nullptr; 17104 17105 // This is definitely an error in C++98. It's probably meant to 17106 // be forbidden in C++0x, too, but the specification is just 17107 // poorly written. 17108 // 17109 // The problem is with declarations like the following: 17110 // template <T> friend A<T>::foo; 17111 // where deciding whether a class C is a friend or not now hinges 17112 // on whether there exists an instantiation of A that causes 17113 // 'foo' to equal C. There are restrictions on class-heads 17114 // (which we declare (by fiat) elaborated friend declarations to 17115 // be) that makes this tractable. 17116 // 17117 // FIXME: handle "template <> friend class A<T>;", which 17118 // is possibly well-formed? Who even knows? 17119 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { 17120 Diag(Loc, diag::err_tagless_friend_type_template) 17121 << DS.getSourceRange(); 17122 return nullptr; 17123 } 17124 17125 // C++98 [class.friend]p1: A friend of a class is a function 17126 // or class that is not a member of the class . . . 17127 // This is fixed in DR77, which just barely didn't make the C++03 17128 // deadline. It's also a very silly restriction that seriously 17129 // affects inner classes and which nobody else seems to implement; 17130 // thus we never diagnose it, not even in -pedantic. 17131 // 17132 // But note that we could warn about it: it's always useless to 17133 // friend one of your own members (it's not, however, worthless to 17134 // friend a member of an arbitrary specialization of your template). 17135 17136 Decl *D; 17137 if (!TempParams.empty()) 17138 D = FriendTemplateDecl::Create(Context, CurContext, Loc, 17139 TempParams, 17140 TSI, 17141 DS.getFriendSpecLoc()); 17142 else 17143 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI); 17144 17145 if (!D) 17146 return nullptr; 17147 17148 D->setAccess(AS_public); 17149 CurContext->addDecl(D); 17150 17151 return D; 17152 } 17153 17154 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, 17155 MultiTemplateParamsArg TemplateParams) { 17156 const DeclSpec &DS = D.getDeclSpec(); 17157 17158 assert(DS.isFriendSpecified()); 17159 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 17160 17161 SourceLocation Loc = D.getIdentifierLoc(); 17162 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 17163 17164 // C++ [class.friend]p1 17165 // A friend of a class is a function or class.... 17166 // Note that this sees through typedefs, which is intended. 17167 // It *doesn't* see through dependent types, which is correct 17168 // according to [temp.arg.type]p3: 17169 // If a declaration acquires a function type through a 17170 // type dependent on a template-parameter and this causes 17171 // a declaration that does not use the syntactic form of a 17172 // function declarator to have a function type, the program 17173 // is ill-formed. 17174 if (!TInfo->getType()->isFunctionType()) { 17175 Diag(Loc, diag::err_unexpected_friend); 17176 17177 // It might be worthwhile to try to recover by creating an 17178 // appropriate declaration. 17179 return nullptr; 17180 } 17181 17182 // C++ [namespace.memdef]p3 17183 // - If a friend declaration in a non-local class first declares a 17184 // class or function, the friend class or function is a member 17185 // of the innermost enclosing namespace. 17186 // - The name of the friend is not found by simple name lookup 17187 // until a matching declaration is provided in that namespace 17188 // scope (either before or after the class declaration granting 17189 // friendship). 17190 // - If a friend function is called, its name may be found by the 17191 // name lookup that considers functions from namespaces and 17192 // classes associated with the types of the function arguments. 17193 // - When looking for a prior declaration of a class or a function 17194 // declared as a friend, scopes outside the innermost enclosing 17195 // namespace scope are not considered. 17196 17197 CXXScopeSpec &SS = D.getCXXScopeSpec(); 17198 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 17199 assert(NameInfo.getName()); 17200 17201 // Check for unexpanded parameter packs. 17202 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || 17203 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || 17204 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) 17205 return nullptr; 17206 17207 // The context we found the declaration in, or in which we should 17208 // create the declaration. 17209 DeclContext *DC; 17210 Scope *DCScope = S; 17211 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 17212 ForExternalRedeclaration); 17213 17214 // There are five cases here. 17215 // - There's no scope specifier and we're in a local class. Only look 17216 // for functions declared in the immediately-enclosing block scope. 17217 // We recover from invalid scope qualifiers as if they just weren't there. 17218 FunctionDecl *FunctionContainingLocalClass = nullptr; 17219 if ((SS.isInvalid() || !SS.isSet()) && 17220 (FunctionContainingLocalClass = 17221 cast<CXXRecordDecl>(CurContext)->isLocalClass())) { 17222 // C++11 [class.friend]p11: 17223 // If a friend declaration appears in a local class and the name 17224 // specified is an unqualified name, a prior declaration is 17225 // looked up without considering scopes that are outside the 17226 // innermost enclosing non-class scope. For a friend function 17227 // declaration, if there is no prior declaration, the program is 17228 // ill-formed. 17229 17230 // Find the innermost enclosing non-class scope. This is the block 17231 // scope containing the local class definition (or for a nested class, 17232 // the outer local class). 17233 DCScope = S->getFnParent(); 17234 17235 // Look up the function name in the scope. 17236 Previous.clear(LookupLocalFriendName); 17237 LookupName(Previous, S, /*AllowBuiltinCreation*/false); 17238 17239 if (!Previous.empty()) { 17240 // All possible previous declarations must have the same context: 17241 // either they were declared at block scope or they are members of 17242 // one of the enclosing local classes. 17243 DC = Previous.getRepresentativeDecl()->getDeclContext(); 17244 } else { 17245 // This is ill-formed, but provide the context that we would have 17246 // declared the function in, if we were permitted to, for error recovery. 17247 DC = FunctionContainingLocalClass; 17248 } 17249 adjustContextForLocalExternDecl(DC); 17250 17251 // C++ [class.friend]p6: 17252 // A function can be defined in a friend declaration of a class if and 17253 // only if the class is a non-local class (9.8), the function name is 17254 // unqualified, and the function has namespace scope. 17255 if (D.isFunctionDefinition()) { 17256 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); 17257 } 17258 17259 // - There's no scope specifier, in which case we just go to the 17260 // appropriate scope and look for a function or function template 17261 // there as appropriate. 17262 } else if (SS.isInvalid() || !SS.isSet()) { 17263 // C++11 [namespace.memdef]p3: 17264 // If the name in a friend declaration is neither qualified nor 17265 // a template-id and the declaration is a function or an 17266 // elaborated-type-specifier, the lookup to determine whether 17267 // the entity has been previously declared shall not consider 17268 // any scopes outside the innermost enclosing namespace. 17269 bool isTemplateId = 17270 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId; 17271 17272 // Find the appropriate context according to the above. 17273 DC = CurContext; 17274 17275 // Skip class contexts. If someone can cite chapter and verse 17276 // for this behavior, that would be nice --- it's what GCC and 17277 // EDG do, and it seems like a reasonable intent, but the spec 17278 // really only says that checks for unqualified existing 17279 // declarations should stop at the nearest enclosing namespace, 17280 // not that they should only consider the nearest enclosing 17281 // namespace. 17282 while (DC->isRecord()) 17283 DC = DC->getParent(); 17284 17285 DeclContext *LookupDC = DC->getNonTransparentContext(); 17286 while (true) { 17287 LookupQualifiedName(Previous, LookupDC); 17288 17289 if (!Previous.empty()) { 17290 DC = LookupDC; 17291 break; 17292 } 17293 17294 if (isTemplateId) { 17295 if (isa<TranslationUnitDecl>(LookupDC)) break; 17296 } else { 17297 if (LookupDC->isFileContext()) break; 17298 } 17299 LookupDC = LookupDC->getParent(); 17300 } 17301 17302 DCScope = getScopeForDeclContext(S, DC); 17303 17304 // - There's a non-dependent scope specifier, in which case we 17305 // compute it and do a previous lookup there for a function 17306 // or function template. 17307 } else if (!SS.getScopeRep()->isDependent()) { 17308 DC = computeDeclContext(SS); 17309 if (!DC) return nullptr; 17310 17311 if (RequireCompleteDeclContext(SS, DC)) return nullptr; 17312 17313 LookupQualifiedName(Previous, DC); 17314 17315 // C++ [class.friend]p1: A friend of a class is a function or 17316 // class that is not a member of the class . . . 17317 if (DC->Equals(CurContext)) 17318 Diag(DS.getFriendSpecLoc(), 17319 getLangOpts().CPlusPlus11 ? 17320 diag::warn_cxx98_compat_friend_is_member : 17321 diag::err_friend_is_member); 17322 17323 if (D.isFunctionDefinition()) { 17324 // C++ [class.friend]p6: 17325 // A function can be defined in a friend declaration of a class if and 17326 // only if the class is a non-local class (9.8), the function name is 17327 // unqualified, and the function has namespace scope. 17328 // 17329 // FIXME: We should only do this if the scope specifier names the 17330 // innermost enclosing namespace; otherwise the fixit changes the 17331 // meaning of the code. 17332 SemaDiagnosticBuilder DB 17333 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); 17334 17335 DB << SS.getScopeRep(); 17336 if (DC->isFileContext()) 17337 DB << FixItHint::CreateRemoval(SS.getRange()); 17338 SS.clear(); 17339 } 17340 17341 // - There's a scope specifier that does not match any template 17342 // parameter lists, in which case we use some arbitrary context, 17343 // create a method or method template, and wait for instantiation. 17344 // - There's a scope specifier that does match some template 17345 // parameter lists, which we don't handle right now. 17346 } else { 17347 if (D.isFunctionDefinition()) { 17348 // C++ [class.friend]p6: 17349 // A function can be defined in a friend declaration of a class if and 17350 // only if the class is a non-local class (9.8), the function name is 17351 // unqualified, and the function has namespace scope. 17352 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def) 17353 << SS.getScopeRep(); 17354 } 17355 17356 DC = CurContext; 17357 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?"); 17358 } 17359 17360 if (!DC->isRecord()) { 17361 int DiagArg = -1; 17362 switch (D.getName().getKind()) { 17363 case UnqualifiedIdKind::IK_ConstructorTemplateId: 17364 case UnqualifiedIdKind::IK_ConstructorName: 17365 DiagArg = 0; 17366 break; 17367 case UnqualifiedIdKind::IK_DestructorName: 17368 DiagArg = 1; 17369 break; 17370 case UnqualifiedIdKind::IK_ConversionFunctionId: 17371 DiagArg = 2; 17372 break; 17373 case UnqualifiedIdKind::IK_DeductionGuideName: 17374 DiagArg = 3; 17375 break; 17376 case UnqualifiedIdKind::IK_Identifier: 17377 case UnqualifiedIdKind::IK_ImplicitSelfParam: 17378 case UnqualifiedIdKind::IK_LiteralOperatorId: 17379 case UnqualifiedIdKind::IK_OperatorFunctionId: 17380 case UnqualifiedIdKind::IK_TemplateId: 17381 break; 17382 } 17383 // This implies that it has to be an operator or function. 17384 if (DiagArg >= 0) { 17385 Diag(Loc, diag::err_introducing_special_friend) << DiagArg; 17386 return nullptr; 17387 } 17388 } 17389 17390 // FIXME: This is an egregious hack to cope with cases where the scope stack 17391 // does not contain the declaration context, i.e., in an out-of-line 17392 // definition of a class. 17393 Scope FakeDCScope(S, Scope::DeclScope, Diags); 17394 if (!DCScope) { 17395 FakeDCScope.setEntity(DC); 17396 DCScope = &FakeDCScope; 17397 } 17398 17399 bool AddToScope = true; 17400 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous, 17401 TemplateParams, AddToScope); 17402 if (!ND) return nullptr; 17403 17404 assert(ND->getLexicalDeclContext() == CurContext); 17405 17406 // If we performed typo correction, we might have added a scope specifier 17407 // and changed the decl context. 17408 DC = ND->getDeclContext(); 17409 17410 // Add the function declaration to the appropriate lookup tables, 17411 // adjusting the redeclarations list as necessary. We don't 17412 // want to do this yet if the friending class is dependent. 17413 // 17414 // Also update the scope-based lookup if the target context's 17415 // lookup context is in lexical scope. 17416 if (!CurContext->isDependentContext()) { 17417 DC = DC->getRedeclContext(); 17418 DC->makeDeclVisibleInContext(ND); 17419 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 17420 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); 17421 } 17422 17423 FriendDecl *FrD = FriendDecl::Create(Context, CurContext, 17424 D.getIdentifierLoc(), ND, 17425 DS.getFriendSpecLoc()); 17426 FrD->setAccess(AS_public); 17427 CurContext->addDecl(FrD); 17428 17429 if (ND->isInvalidDecl()) { 17430 FrD->setInvalidDecl(); 17431 } else { 17432 if (DC->isRecord()) CheckFriendAccess(ND); 17433 17434 FunctionDecl *FD; 17435 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 17436 FD = FTD->getTemplatedDecl(); 17437 else 17438 FD = cast<FunctionDecl>(ND); 17439 17440 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a 17441 // default argument expression, that declaration shall be a definition 17442 // and shall be the only declaration of the function or function 17443 // template in the translation unit. 17444 if (functionDeclHasDefaultArgument(FD)) { 17445 // We can't look at FD->getPreviousDecl() because it may not have been set 17446 // if we're in a dependent context. If the function is known to be a 17447 // redeclaration, we will have narrowed Previous down to the right decl. 17448 if (D.isRedeclaration()) { 17449 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 17450 Diag(Previous.getRepresentativeDecl()->getLocation(), 17451 diag::note_previous_declaration); 17452 } else if (!D.isFunctionDefinition()) 17453 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); 17454 } 17455 17456 // Mark templated-scope function declarations as unsupported. 17457 if (FD->getNumTemplateParameterLists() && SS.isValid()) { 17458 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) 17459 << SS.getScopeRep() << SS.getRange() 17460 << cast<CXXRecordDecl>(CurContext); 17461 FrD->setUnsupportedFriend(true); 17462 } 17463 } 17464 17465 warnOnReservedIdentifier(ND); 17466 17467 return ND; 17468 } 17469 17470 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { 17471 AdjustDeclIfTemplate(Dcl); 17472 17473 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl); 17474 if (!Fn) { 17475 Diag(DelLoc, diag::err_deleted_non_function); 17476 return; 17477 } 17478 17479 // Deleted function does not have a body. 17480 Fn->setWillHaveBody(false); 17481 17482 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { 17483 // Don't consider the implicit declaration we generate for explicit 17484 // specializations. FIXME: Do not generate these implicit declarations. 17485 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || 17486 Prev->getPreviousDecl()) && 17487 !Prev->isDefined()) { 17488 Diag(DelLoc, diag::err_deleted_decl_not_first); 17489 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), 17490 Prev->isImplicit() ? diag::note_previous_implicit_declaration 17491 : diag::note_previous_declaration); 17492 // We can't recover from this; the declaration might have already 17493 // been used. 17494 Fn->setInvalidDecl(); 17495 return; 17496 } 17497 17498 // To maintain the invariant that functions are only deleted on their first 17499 // declaration, mark the implicitly-instantiated declaration of the 17500 // explicitly-specialized function as deleted instead of marking the 17501 // instantiated redeclaration. 17502 Fn = Fn->getCanonicalDecl(); 17503 } 17504 17505 // dllimport/dllexport cannot be deleted. 17506 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { 17507 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; 17508 Fn->setInvalidDecl(); 17509 } 17510 17511 // C++11 [basic.start.main]p3: 17512 // A program that defines main as deleted [...] is ill-formed. 17513 if (Fn->isMain()) 17514 Diag(DelLoc, diag::err_deleted_main); 17515 17516 // C++11 [dcl.fct.def.delete]p4: 17517 // A deleted function is implicitly inline. 17518 Fn->setImplicitlyInline(); 17519 Fn->setDeletedAsWritten(); 17520 } 17521 17522 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { 17523 if (!Dcl || Dcl->isInvalidDecl()) 17524 return; 17525 17526 auto *FD = dyn_cast<FunctionDecl>(Dcl); 17527 if (!FD) { 17528 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) { 17529 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) { 17530 Diag(DefaultLoc, diag::err_defaulted_comparison_template); 17531 return; 17532 } 17533 } 17534 17535 Diag(DefaultLoc, diag::err_default_special_members) 17536 << getLangOpts().CPlusPlus20; 17537 return; 17538 } 17539 17540 // Reject if this can't possibly be a defaultable function. 17541 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 17542 if (!DefKind && 17543 // A dependent function that doesn't locally look defaultable can 17544 // still instantiate to a defaultable function if it's a constructor 17545 // or assignment operator. 17546 (!FD->isDependentContext() || 17547 (!isa<CXXConstructorDecl>(FD) && 17548 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) { 17549 Diag(DefaultLoc, diag::err_default_special_members) 17550 << getLangOpts().CPlusPlus20; 17551 return; 17552 } 17553 17554 // Issue compatibility warning. We already warned if the operator is 17555 // 'operator<=>' when parsing the '<=>' token. 17556 if (DefKind.isComparison() && 17557 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) { 17558 Diag(DefaultLoc, getLangOpts().CPlusPlus20 17559 ? diag::warn_cxx17_compat_defaulted_comparison 17560 : diag::ext_defaulted_comparison); 17561 } 17562 17563 FD->setDefaulted(); 17564 FD->setExplicitlyDefaulted(); 17565 FD->setDefaultLoc(DefaultLoc); 17566 17567 // Defer checking functions that are defaulted in a dependent context. 17568 if (FD->isDependentContext()) 17569 return; 17570 17571 // Unset that we will have a body for this function. We might not, 17572 // if it turns out to be trivial, and we don't need this marking now 17573 // that we've marked it as defaulted. 17574 FD->setWillHaveBody(false); 17575 17576 if (DefKind.isComparison()) { 17577 // If this comparison's defaulting occurs within the definition of its 17578 // lexical class context, we have to do the checking when complete. 17579 if (auto const *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext())) 17580 if (!RD->isCompleteDefinition()) 17581 return; 17582 } 17583 17584 // If this member fn was defaulted on its first declaration, we will have 17585 // already performed the checking in CheckCompletedCXXClass. Such a 17586 // declaration doesn't trigger an implicit definition. 17587 if (isa<CXXMethodDecl>(FD)) { 17588 const FunctionDecl *Primary = FD; 17589 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 17590 // Ask the template instantiation pattern that actually had the 17591 // '= default' on it. 17592 Primary = Pattern; 17593 if (Primary->getCanonicalDecl()->isDefaulted()) 17594 return; 17595 } 17596 17597 if (DefKind.isComparison()) { 17598 if (CheckExplicitlyDefaultedComparison(nullptr, FD, DefKind.asComparison())) 17599 FD->setInvalidDecl(); 17600 else 17601 DefineDefaultedComparison(DefaultLoc, FD, DefKind.asComparison()); 17602 } else { 17603 auto *MD = cast<CXXMethodDecl>(FD); 17604 17605 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember(), 17606 DefaultLoc)) 17607 MD->setInvalidDecl(); 17608 else 17609 DefineDefaultedFunction(*this, MD, DefaultLoc); 17610 } 17611 } 17612 17613 static void SearchForReturnInStmt(Sema &Self, Stmt *S) { 17614 for (Stmt *SubStmt : S->children()) { 17615 if (!SubStmt) 17616 continue; 17617 if (isa<ReturnStmt>(SubStmt)) 17618 Self.Diag(SubStmt->getBeginLoc(), 17619 diag::err_return_in_constructor_handler); 17620 if (!isa<Expr>(SubStmt)) 17621 SearchForReturnInStmt(Self, SubStmt); 17622 } 17623 } 17624 17625 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { 17626 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { 17627 CXXCatchStmt *Handler = TryBlock->getHandler(I); 17628 SearchForReturnInStmt(*this, Handler); 17629 } 17630 } 17631 17632 void Sema::SetFunctionBodyKind(Decl *D, SourceLocation Loc, 17633 FnBodyKind BodyKind) { 17634 switch (BodyKind) { 17635 case FnBodyKind::Delete: 17636 SetDeclDeleted(D, Loc); 17637 break; 17638 case FnBodyKind::Default: 17639 SetDeclDefaulted(D, Loc); 17640 break; 17641 case FnBodyKind::Other: 17642 llvm_unreachable( 17643 "Parsed function body should be '= delete;' or '= default;'"); 17644 } 17645 } 17646 17647 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, 17648 const CXXMethodDecl *Old) { 17649 const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); 17650 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>(); 17651 17652 if (OldFT->hasExtParameterInfos()) { 17653 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I) 17654 // A parameter of the overriding method should be annotated with noescape 17655 // if the corresponding parameter of the overridden method is annotated. 17656 if (OldFT->getExtParameterInfo(I).isNoEscape() && 17657 !NewFT->getExtParameterInfo(I).isNoEscape()) { 17658 Diag(New->getParamDecl(I)->getLocation(), 17659 diag::warn_overriding_method_missing_noescape); 17660 Diag(Old->getParamDecl(I)->getLocation(), 17661 diag::note_overridden_marked_noescape); 17662 } 17663 } 17664 17665 // Virtual overrides must have the same code_seg. 17666 const auto *OldCSA = Old->getAttr<CodeSegAttr>(); 17667 const auto *NewCSA = New->getAttr<CodeSegAttr>(); 17668 if ((NewCSA || OldCSA) && 17669 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) { 17670 Diag(New->getLocation(), diag::err_mismatched_code_seg_override); 17671 Diag(Old->getLocation(), diag::note_previous_declaration); 17672 return true; 17673 } 17674 17675 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); 17676 17677 // If the calling conventions match, everything is fine 17678 if (NewCC == OldCC) 17679 return false; 17680 17681 // If the calling conventions mismatch because the new function is static, 17682 // suppress the calling convention mismatch error; the error about static 17683 // function override (err_static_overrides_virtual from 17684 // Sema::CheckFunctionDeclaration) is more clear. 17685 if (New->getStorageClass() == SC_Static) 17686 return false; 17687 17688 Diag(New->getLocation(), 17689 diag::err_conflicting_overriding_cc_attributes) 17690 << New->getDeclName() << New->getType() << Old->getType(); 17691 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 17692 return true; 17693 } 17694 17695 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, 17696 const CXXMethodDecl *Old) { 17697 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType(); 17698 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType(); 17699 17700 if (Context.hasSameType(NewTy, OldTy) || 17701 NewTy->isDependentType() || OldTy->isDependentType()) 17702 return false; 17703 17704 // Check if the return types are covariant 17705 QualType NewClassTy, OldClassTy; 17706 17707 /// Both types must be pointers or references to classes. 17708 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { 17709 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { 17710 NewClassTy = NewPT->getPointeeType(); 17711 OldClassTy = OldPT->getPointeeType(); 17712 } 17713 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { 17714 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { 17715 if (NewRT->getTypeClass() == OldRT->getTypeClass()) { 17716 NewClassTy = NewRT->getPointeeType(); 17717 OldClassTy = OldRT->getPointeeType(); 17718 } 17719 } 17720 } 17721 17722 // The return types aren't either both pointers or references to a class type. 17723 if (NewClassTy.isNull()) { 17724 Diag(New->getLocation(), 17725 diag::err_different_return_type_for_overriding_virtual_function) 17726 << New->getDeclName() << NewTy << OldTy 17727 << New->getReturnTypeSourceRange(); 17728 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17729 << Old->getReturnTypeSourceRange(); 17730 17731 return true; 17732 } 17733 17734 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { 17735 // C++14 [class.virtual]p8: 17736 // If the class type in the covariant return type of D::f differs from 17737 // that of B::f, the class type in the return type of D::f shall be 17738 // complete at the point of declaration of D::f or shall be the class 17739 // type D. 17740 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { 17741 if (!RT->isBeingDefined() && 17742 RequireCompleteType(New->getLocation(), NewClassTy, 17743 diag::err_covariant_return_incomplete, 17744 New->getDeclName())) 17745 return true; 17746 } 17747 17748 // Check if the new class derives from the old class. 17749 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) { 17750 Diag(New->getLocation(), diag::err_covariant_return_not_derived) 17751 << New->getDeclName() << NewTy << OldTy 17752 << New->getReturnTypeSourceRange(); 17753 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17754 << Old->getReturnTypeSourceRange(); 17755 return true; 17756 } 17757 17758 // Check if we the conversion from derived to base is valid. 17759 if (CheckDerivedToBaseConversion( 17760 NewClassTy, OldClassTy, 17761 diag::err_covariant_return_inaccessible_base, 17762 diag::err_covariant_return_ambiguous_derived_to_base_conv, 17763 New->getLocation(), New->getReturnTypeSourceRange(), 17764 New->getDeclName(), nullptr)) { 17765 // FIXME: this note won't trigger for delayed access control 17766 // diagnostics, and it's impossible to get an undelayed error 17767 // here from access control during the original parse because 17768 // the ParsingDeclSpec/ParsingDeclarator are still in scope. 17769 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17770 << Old->getReturnTypeSourceRange(); 17771 return true; 17772 } 17773 } 17774 17775 // The qualifiers of the return types must be the same. 17776 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { 17777 Diag(New->getLocation(), 17778 diag::err_covariant_return_type_different_qualifications) 17779 << New->getDeclName() << NewTy << OldTy 17780 << New->getReturnTypeSourceRange(); 17781 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17782 << Old->getReturnTypeSourceRange(); 17783 return true; 17784 } 17785 17786 17787 // The new class type must have the same or less qualifiers as the old type. 17788 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { 17789 Diag(New->getLocation(), 17790 diag::err_covariant_return_type_class_type_more_qualified) 17791 << New->getDeclName() << NewTy << OldTy 17792 << New->getReturnTypeSourceRange(); 17793 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17794 << Old->getReturnTypeSourceRange(); 17795 return true; 17796 } 17797 17798 return false; 17799 } 17800 17801 /// Mark the given method pure. 17802 /// 17803 /// \param Method the method to be marked pure. 17804 /// 17805 /// \param InitRange the source range that covers the "0" initializer. 17806 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { 17807 SourceLocation EndLoc = InitRange.getEnd(); 17808 if (EndLoc.isValid()) 17809 Method->setRangeEnd(EndLoc); 17810 17811 if (Method->isVirtual() || Method->getParent()->isDependentContext()) { 17812 Method->setPure(); 17813 return false; 17814 } 17815 17816 if (!Method->isInvalidDecl()) 17817 Diag(Method->getLocation(), diag::err_non_virtual_pure) 17818 << Method->getDeclName() << InitRange; 17819 return true; 17820 } 17821 17822 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) { 17823 if (D->getFriendObjectKind()) 17824 Diag(D->getLocation(), diag::err_pure_friend); 17825 else if (auto *M = dyn_cast<CXXMethodDecl>(D)) 17826 CheckPureMethod(M, ZeroLoc); 17827 else 17828 Diag(D->getLocation(), diag::err_illegal_initializer); 17829 } 17830 17831 /// Determine whether the given declaration is a global variable or 17832 /// static data member. 17833 static bool isNonlocalVariable(const Decl *D) { 17834 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D)) 17835 return Var->hasGlobalStorage(); 17836 17837 return false; 17838 } 17839 17840 /// Invoked when we are about to parse an initializer for the declaration 17841 /// 'Dcl'. 17842 /// 17843 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a 17844 /// static data member of class X, names should be looked up in the scope of 17845 /// class X. If the declaration had a scope specifier, a scope will have 17846 /// been created and passed in for this purpose. Otherwise, S will be null. 17847 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { 17848 // If there is no declaration, there was an error parsing it. 17849 if (!D || D->isInvalidDecl()) 17850 return; 17851 17852 // We will always have a nested name specifier here, but this declaration 17853 // might not be out of line if the specifier names the current namespace: 17854 // extern int n; 17855 // int ::n = 0; 17856 if (S && D->isOutOfLine()) 17857 EnterDeclaratorContext(S, D->getDeclContext()); 17858 17859 // If we are parsing the initializer for a static data member, push a 17860 // new expression evaluation context that is associated with this static 17861 // data member. 17862 if (isNonlocalVariable(D)) 17863 PushExpressionEvaluationContext( 17864 ExpressionEvaluationContext::PotentiallyEvaluated, D); 17865 } 17866 17867 /// Invoked after we are finished parsing an initializer for the declaration D. 17868 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { 17869 // If there is no declaration, there was an error parsing it. 17870 if (!D || D->isInvalidDecl()) 17871 return; 17872 17873 if (isNonlocalVariable(D)) 17874 PopExpressionEvaluationContext(); 17875 17876 if (S && D->isOutOfLine()) 17877 ExitDeclaratorContext(S); 17878 } 17879 17880 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a 17881 /// C++ if/switch/while/for statement. 17882 /// e.g: "if (int x = f()) {...}" 17883 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { 17884 // C++ 6.4p2: 17885 // The declarator shall not specify a function or an array. 17886 // The type-specifier-seq shall not contain typedef and shall not declare a 17887 // new class or enumeration. 17888 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 17889 "Parser allowed 'typedef' as storage class of condition decl."); 17890 17891 Decl *Dcl = ActOnDeclarator(S, D); 17892 if (!Dcl) 17893 return true; 17894 17895 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function. 17896 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) 17897 << D.getSourceRange(); 17898 return true; 17899 } 17900 17901 return Dcl; 17902 } 17903 17904 void Sema::LoadExternalVTableUses() { 17905 if (!ExternalSource) 17906 return; 17907 17908 SmallVector<ExternalVTableUse, 4> VTables; 17909 ExternalSource->ReadUsedVTables(VTables); 17910 SmallVector<VTableUse, 4> NewUses; 17911 for (unsigned I = 0, N = VTables.size(); I != N; ++I) { 17912 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos 17913 = VTablesUsed.find(VTables[I].Record); 17914 // Even if a definition wasn't required before, it may be required now. 17915 if (Pos != VTablesUsed.end()) { 17916 if (!Pos->second && VTables[I].DefinitionRequired) 17917 Pos->second = true; 17918 continue; 17919 } 17920 17921 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; 17922 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location)); 17923 } 17924 17925 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end()); 17926 } 17927 17928 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, 17929 bool DefinitionRequired) { 17930 // Ignore any vtable uses in unevaluated operands or for classes that do 17931 // not have a vtable. 17932 if (!Class->isDynamicClass() || Class->isDependentContext() || 17933 CurContext->isDependentContext() || isUnevaluatedContext()) 17934 return; 17935 // Do not mark as used if compiling for the device outside of the target 17936 // region. 17937 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsDevice && 17938 !isInOpenMPDeclareTargetContext() && 17939 !isInOpenMPTargetExecutionDirective()) { 17940 if (!DefinitionRequired) 17941 MarkVirtualMembersReferenced(Loc, Class); 17942 return; 17943 } 17944 17945 // Try to insert this class into the map. 17946 LoadExternalVTableUses(); 17947 Class = Class->getCanonicalDecl(); 17948 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> 17949 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); 17950 if (!Pos.second) { 17951 // If we already had an entry, check to see if we are promoting this vtable 17952 // to require a definition. If so, we need to reappend to the VTableUses 17953 // list, since we may have already processed the first entry. 17954 if (DefinitionRequired && !Pos.first->second) { 17955 Pos.first->second = true; 17956 } else { 17957 // Otherwise, we can early exit. 17958 return; 17959 } 17960 } else { 17961 // The Microsoft ABI requires that we perform the destructor body 17962 // checks (i.e. operator delete() lookup) when the vtable is marked used, as 17963 // the deleting destructor is emitted with the vtable, not with the 17964 // destructor definition as in the Itanium ABI. 17965 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 17966 CXXDestructorDecl *DD = Class->getDestructor(); 17967 if (DD && DD->isVirtual() && !DD->isDeleted()) { 17968 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) { 17969 // If this is an out-of-line declaration, marking it referenced will 17970 // not do anything. Manually call CheckDestructor to look up operator 17971 // delete(). 17972 ContextRAII SavedContext(*this, DD); 17973 CheckDestructor(DD); 17974 } else { 17975 MarkFunctionReferenced(Loc, Class->getDestructor()); 17976 } 17977 } 17978 } 17979 } 17980 17981 // Local classes need to have their virtual members marked 17982 // immediately. For all other classes, we mark their virtual members 17983 // at the end of the translation unit. 17984 if (Class->isLocalClass()) 17985 MarkVirtualMembersReferenced(Loc, Class); 17986 else 17987 VTableUses.push_back(std::make_pair(Class, Loc)); 17988 } 17989 17990 bool Sema::DefineUsedVTables() { 17991 LoadExternalVTableUses(); 17992 if (VTableUses.empty()) 17993 return false; 17994 17995 // Note: The VTableUses vector could grow as a result of marking 17996 // the members of a class as "used", so we check the size each 17997 // time through the loop and prefer indices (which are stable) to 17998 // iterators (which are not). 17999 bool DefinedAnything = false; 18000 for (unsigned I = 0; I != VTableUses.size(); ++I) { 18001 CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); 18002 if (!Class) 18003 continue; 18004 TemplateSpecializationKind ClassTSK = 18005 Class->getTemplateSpecializationKind(); 18006 18007 SourceLocation Loc = VTableUses[I].second; 18008 18009 bool DefineVTable = true; 18010 18011 // If this class has a key function, but that key function is 18012 // defined in another translation unit, we don't need to emit the 18013 // vtable even though we're using it. 18014 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class); 18015 if (KeyFunction && !KeyFunction->hasBody()) { 18016 // The key function is in another translation unit. 18017 DefineVTable = false; 18018 TemplateSpecializationKind TSK = 18019 KeyFunction->getTemplateSpecializationKind(); 18020 assert(TSK != TSK_ExplicitInstantiationDefinition && 18021 TSK != TSK_ImplicitInstantiation && 18022 "Instantiations don't have key functions"); 18023 (void)TSK; 18024 } else if (!KeyFunction) { 18025 // If we have a class with no key function that is the subject 18026 // of an explicit instantiation declaration, suppress the 18027 // vtable; it will live with the explicit instantiation 18028 // definition. 18029 bool IsExplicitInstantiationDeclaration = 18030 ClassTSK == TSK_ExplicitInstantiationDeclaration; 18031 for (auto *R : Class->redecls()) { 18032 TemplateSpecializationKind TSK 18033 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind(); 18034 if (TSK == TSK_ExplicitInstantiationDeclaration) 18035 IsExplicitInstantiationDeclaration = true; 18036 else if (TSK == TSK_ExplicitInstantiationDefinition) { 18037 IsExplicitInstantiationDeclaration = false; 18038 break; 18039 } 18040 } 18041 18042 if (IsExplicitInstantiationDeclaration) 18043 DefineVTable = false; 18044 } 18045 18046 // The exception specifications for all virtual members may be needed even 18047 // if we are not providing an authoritative form of the vtable in this TU. 18048 // We may choose to emit it available_externally anyway. 18049 if (!DefineVTable) { 18050 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class); 18051 continue; 18052 } 18053 18054 // Mark all of the virtual members of this class as referenced, so 18055 // that we can build a vtable. Then, tell the AST consumer that a 18056 // vtable for this class is required. 18057 DefinedAnything = true; 18058 MarkVirtualMembersReferenced(Loc, Class); 18059 CXXRecordDecl *Canonical = Class->getCanonicalDecl(); 18060 if (VTablesUsed[Canonical]) 18061 Consumer.HandleVTable(Class); 18062 18063 // Warn if we're emitting a weak vtable. The vtable will be weak if there is 18064 // no key function or the key function is inlined. Don't warn in C++ ABIs 18065 // that lack key functions, since the user won't be able to make one. 18066 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() && 18067 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation && 18068 ClassTSK != TSK_ExplicitInstantiationDefinition) { 18069 const FunctionDecl *KeyFunctionDef = nullptr; 18070 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) && 18071 KeyFunctionDef->isInlined())) 18072 Diag(Class->getLocation(), diag::warn_weak_vtable) << Class; 18073 } 18074 } 18075 VTableUses.clear(); 18076 18077 return DefinedAnything; 18078 } 18079 18080 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, 18081 const CXXRecordDecl *RD) { 18082 for (const auto *I : RD->methods()) 18083 if (I->isVirtual() && !I->isPure()) 18084 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>()); 18085 } 18086 18087 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, 18088 const CXXRecordDecl *RD, 18089 bool ConstexprOnly) { 18090 // Mark all functions which will appear in RD's vtable as used. 18091 CXXFinalOverriderMap FinalOverriders; 18092 RD->getFinalOverriders(FinalOverriders); 18093 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), 18094 E = FinalOverriders.end(); 18095 I != E; ++I) { 18096 for (OverridingMethods::const_iterator OI = I->second.begin(), 18097 OE = I->second.end(); 18098 OI != OE; ++OI) { 18099 assert(OI->second.size() > 0 && "no final overrider"); 18100 CXXMethodDecl *Overrider = OI->second.front().Method; 18101 18102 // C++ [basic.def.odr]p2: 18103 // [...] A virtual member function is used if it is not pure. [...] 18104 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr())) 18105 MarkFunctionReferenced(Loc, Overrider); 18106 } 18107 } 18108 18109 // Only classes that have virtual bases need a VTT. 18110 if (RD->getNumVBases() == 0) 18111 return; 18112 18113 for (const auto &I : RD->bases()) { 18114 const auto *Base = 18115 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 18116 if (Base->getNumVBases() == 0) 18117 continue; 18118 MarkVirtualMembersReferenced(Loc, Base); 18119 } 18120 } 18121 18122 /// SetIvarInitializers - This routine builds initialization ASTs for the 18123 /// Objective-C implementation whose ivars need be initialized. 18124 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { 18125 if (!getLangOpts().CPlusPlus) 18126 return; 18127 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { 18128 SmallVector<ObjCIvarDecl*, 8> ivars; 18129 CollectIvarsToConstructOrDestruct(OID, ivars); 18130 if (ivars.empty()) 18131 return; 18132 SmallVector<CXXCtorInitializer*, 32> AllToInit; 18133 for (unsigned i = 0; i < ivars.size(); i++) { 18134 FieldDecl *Field = ivars[i]; 18135 if (Field->isInvalidDecl()) 18136 continue; 18137 18138 CXXCtorInitializer *Member; 18139 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); 18140 InitializationKind InitKind = 18141 InitializationKind::CreateDefault(ObjCImplementation->getLocation()); 18142 18143 InitializationSequence InitSeq(*this, InitEntity, InitKind, std::nullopt); 18144 ExprResult MemberInit = 18145 InitSeq.Perform(*this, InitEntity, InitKind, std::nullopt); 18146 MemberInit = MaybeCreateExprWithCleanups(MemberInit); 18147 // Note, MemberInit could actually come back empty if no initialization 18148 // is required (e.g., because it would call a trivial default constructor) 18149 if (!MemberInit.get() || MemberInit.isInvalid()) 18150 continue; 18151 18152 Member = 18153 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(), 18154 SourceLocation(), 18155 MemberInit.getAs<Expr>(), 18156 SourceLocation()); 18157 AllToInit.push_back(Member); 18158 18159 // Be sure that the destructor is accessible and is marked as referenced. 18160 if (const RecordType *RecordTy = 18161 Context.getBaseElementType(Field->getType()) 18162 ->getAs<RecordType>()) { 18163 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); 18164 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 18165 MarkFunctionReferenced(Field->getLocation(), Destructor); 18166 CheckDestructorAccess(Field->getLocation(), Destructor, 18167 PDiag(diag::err_access_dtor_ivar) 18168 << Context.getBaseElementType(Field->getType())); 18169 } 18170 } 18171 } 18172 ObjCImplementation->setIvarInitializers(Context, 18173 AllToInit.data(), AllToInit.size()); 18174 } 18175 } 18176 18177 static 18178 void DelegatingCycleHelper(CXXConstructorDecl* Ctor, 18179 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid, 18180 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid, 18181 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current, 18182 Sema &S) { 18183 if (Ctor->isInvalidDecl()) 18184 return; 18185 18186 CXXConstructorDecl *Target = Ctor->getTargetConstructor(); 18187 18188 // Target may not be determinable yet, for instance if this is a dependent 18189 // call in an uninstantiated template. 18190 if (Target) { 18191 const FunctionDecl *FNTarget = nullptr; 18192 (void)Target->hasBody(FNTarget); 18193 Target = const_cast<CXXConstructorDecl*>( 18194 cast_or_null<CXXConstructorDecl>(FNTarget)); 18195 } 18196 18197 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), 18198 // Avoid dereferencing a null pointer here. 18199 *TCanonical = Target? Target->getCanonicalDecl() : nullptr; 18200 18201 if (!Current.insert(Canonical).second) 18202 return; 18203 18204 // We know that beyond here, we aren't chaining into a cycle. 18205 if (!Target || !Target->isDelegatingConstructor() || 18206 Target->isInvalidDecl() || Valid.count(TCanonical)) { 18207 Valid.insert(Current.begin(), Current.end()); 18208 Current.clear(); 18209 // We've hit a cycle. 18210 } else if (TCanonical == Canonical || Invalid.count(TCanonical) || 18211 Current.count(TCanonical)) { 18212 // If we haven't diagnosed this cycle yet, do so now. 18213 if (!Invalid.count(TCanonical)) { 18214 S.Diag((*Ctor->init_begin())->getSourceLocation(), 18215 diag::warn_delegating_ctor_cycle) 18216 << Ctor; 18217 18218 // Don't add a note for a function delegating directly to itself. 18219 if (TCanonical != Canonical) 18220 S.Diag(Target->getLocation(), diag::note_it_delegates_to); 18221 18222 CXXConstructorDecl *C = Target; 18223 while (C->getCanonicalDecl() != Canonical) { 18224 const FunctionDecl *FNTarget = nullptr; 18225 (void)C->getTargetConstructor()->hasBody(FNTarget); 18226 assert(FNTarget && "Ctor cycle through bodiless function"); 18227 18228 C = const_cast<CXXConstructorDecl*>( 18229 cast<CXXConstructorDecl>(FNTarget)); 18230 S.Diag(C->getLocation(), diag::note_which_delegates_to); 18231 } 18232 } 18233 18234 Invalid.insert(Current.begin(), Current.end()); 18235 Current.clear(); 18236 } else { 18237 DelegatingCycleHelper(Target, Valid, Invalid, Current, S); 18238 } 18239 } 18240 18241 18242 void Sema::CheckDelegatingCtorCycles() { 18243 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; 18244 18245 for (DelegatingCtorDeclsType::iterator 18246 I = DelegatingCtorDecls.begin(ExternalSource.get()), 18247 E = DelegatingCtorDecls.end(); 18248 I != E; ++I) 18249 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); 18250 18251 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) 18252 (*CI)->setInvalidDecl(); 18253 } 18254 18255 namespace { 18256 /// AST visitor that finds references to the 'this' expression. 18257 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> { 18258 Sema &S; 18259 18260 public: 18261 explicit FindCXXThisExpr(Sema &S) : S(S) { } 18262 18263 bool VisitCXXThisExpr(CXXThisExpr *E) { 18264 S.Diag(E->getLocation(), diag::err_this_static_member_func) 18265 << E->isImplicit(); 18266 return false; 18267 } 18268 }; 18269 } 18270 18271 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { 18272 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 18273 if (!TSInfo) 18274 return false; 18275 18276 TypeLoc TL = TSInfo->getTypeLoc(); 18277 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 18278 if (!ProtoTL) 18279 return false; 18280 18281 // C++11 [expr.prim.general]p3: 18282 // [The expression this] shall not appear before the optional 18283 // cv-qualifier-seq and it shall not appear within the declaration of a 18284 // static member function (although its type and value category are defined 18285 // within a static member function as they are within a non-static member 18286 // function). [ Note: this is because declaration matching does not occur 18287 // until the complete declarator is known. - end note ] 18288 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 18289 FindCXXThisExpr Finder(*this); 18290 18291 // If the return type came after the cv-qualifier-seq, check it now. 18292 if (Proto->hasTrailingReturn() && 18293 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) 18294 return true; 18295 18296 // Check the exception specification. 18297 if (checkThisInStaticMemberFunctionExceptionSpec(Method)) 18298 return true; 18299 18300 // Check the trailing requires clause 18301 if (Expr *E = Method->getTrailingRequiresClause()) 18302 if (!Finder.TraverseStmt(E)) 18303 return true; 18304 18305 return checkThisInStaticMemberFunctionAttributes(Method); 18306 } 18307 18308 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { 18309 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 18310 if (!TSInfo) 18311 return false; 18312 18313 TypeLoc TL = TSInfo->getTypeLoc(); 18314 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 18315 if (!ProtoTL) 18316 return false; 18317 18318 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 18319 FindCXXThisExpr Finder(*this); 18320 18321 switch (Proto->getExceptionSpecType()) { 18322 case EST_Unparsed: 18323 case EST_Uninstantiated: 18324 case EST_Unevaluated: 18325 case EST_BasicNoexcept: 18326 case EST_NoThrow: 18327 case EST_DynamicNone: 18328 case EST_MSAny: 18329 case EST_None: 18330 break; 18331 18332 case EST_DependentNoexcept: 18333 case EST_NoexceptFalse: 18334 case EST_NoexceptTrue: 18335 if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) 18336 return true; 18337 [[fallthrough]]; 18338 18339 case EST_Dynamic: 18340 for (const auto &E : Proto->exceptions()) { 18341 if (!Finder.TraverseType(E)) 18342 return true; 18343 } 18344 break; 18345 } 18346 18347 return false; 18348 } 18349 18350 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { 18351 FindCXXThisExpr Finder(*this); 18352 18353 // Check attributes. 18354 for (const auto *A : Method->attrs()) { 18355 // FIXME: This should be emitted by tblgen. 18356 Expr *Arg = nullptr; 18357 ArrayRef<Expr *> Args; 18358 if (const auto *G = dyn_cast<GuardedByAttr>(A)) 18359 Arg = G->getArg(); 18360 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A)) 18361 Arg = G->getArg(); 18362 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A)) 18363 Args = llvm::ArrayRef(AA->args_begin(), AA->args_size()); 18364 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A)) 18365 Args = llvm::ArrayRef(AB->args_begin(), AB->args_size()); 18366 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) { 18367 Arg = ETLF->getSuccessValue(); 18368 Args = llvm::ArrayRef(ETLF->args_begin(), ETLF->args_size()); 18369 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) { 18370 Arg = STLF->getSuccessValue(); 18371 Args = llvm::ArrayRef(STLF->args_begin(), STLF->args_size()); 18372 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A)) 18373 Arg = LR->getArg(); 18374 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A)) 18375 Args = llvm::ArrayRef(LE->args_begin(), LE->args_size()); 18376 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A)) 18377 Args = llvm::ArrayRef(RC->args_begin(), RC->args_size()); 18378 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A)) 18379 Args = llvm::ArrayRef(AC->args_begin(), AC->args_size()); 18380 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A)) 18381 Args = llvm::ArrayRef(AC->args_begin(), AC->args_size()); 18382 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A)) 18383 Args = llvm::ArrayRef(RC->args_begin(), RC->args_size()); 18384 18385 if (Arg && !Finder.TraverseStmt(Arg)) 18386 return true; 18387 18388 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 18389 if (!Finder.TraverseStmt(Args[I])) 18390 return true; 18391 } 18392 } 18393 18394 return false; 18395 } 18396 18397 void Sema::checkExceptionSpecification( 18398 bool IsTopLevel, ExceptionSpecificationType EST, 18399 ArrayRef<ParsedType> DynamicExceptions, 18400 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr, 18401 SmallVectorImpl<QualType> &Exceptions, 18402 FunctionProtoType::ExceptionSpecInfo &ESI) { 18403 Exceptions.clear(); 18404 ESI.Type = EST; 18405 if (EST == EST_Dynamic) { 18406 Exceptions.reserve(DynamicExceptions.size()); 18407 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { 18408 // FIXME: Preserve type source info. 18409 QualType ET = GetTypeFromParser(DynamicExceptions[ei]); 18410 18411 if (IsTopLevel) { 18412 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 18413 collectUnexpandedParameterPacks(ET, Unexpanded); 18414 if (!Unexpanded.empty()) { 18415 DiagnoseUnexpandedParameterPacks( 18416 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType, 18417 Unexpanded); 18418 continue; 18419 } 18420 } 18421 18422 // Check that the type is valid for an exception spec, and 18423 // drop it if not. 18424 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei])) 18425 Exceptions.push_back(ET); 18426 } 18427 ESI.Exceptions = Exceptions; 18428 return; 18429 } 18430 18431 if (isComputedNoexcept(EST)) { 18432 assert((NoexceptExpr->isTypeDependent() || 18433 NoexceptExpr->getType()->getCanonicalTypeUnqualified() == 18434 Context.BoolTy) && 18435 "Parser should have made sure that the expression is boolean"); 18436 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) { 18437 ESI.Type = EST_BasicNoexcept; 18438 return; 18439 } 18440 18441 ESI.NoexceptExpr = NoexceptExpr; 18442 return; 18443 } 18444 } 18445 18446 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD, 18447 ExceptionSpecificationType EST, 18448 SourceRange SpecificationRange, 18449 ArrayRef<ParsedType> DynamicExceptions, 18450 ArrayRef<SourceRange> DynamicExceptionRanges, 18451 Expr *NoexceptExpr) { 18452 if (!MethodD) 18453 return; 18454 18455 // Dig out the method we're referring to. 18456 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD)) 18457 MethodD = FunTmpl->getTemplatedDecl(); 18458 18459 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD); 18460 if (!Method) 18461 return; 18462 18463 // Check the exception specification. 18464 llvm::SmallVector<QualType, 4> Exceptions; 18465 FunctionProtoType::ExceptionSpecInfo ESI; 18466 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions, 18467 DynamicExceptionRanges, NoexceptExpr, Exceptions, 18468 ESI); 18469 18470 // Update the exception specification on the function type. 18471 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true); 18472 18473 if (Method->isStatic()) 18474 checkThisInStaticMemberFunctionExceptionSpec(Method); 18475 18476 if (Method->isVirtual()) { 18477 // Check overrides, which we previously had to delay. 18478 for (const CXXMethodDecl *O : Method->overridden_methods()) 18479 CheckOverridingFunctionExceptionSpec(Method, O); 18480 } 18481 } 18482 18483 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. 18484 /// 18485 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, 18486 SourceLocation DeclStart, Declarator &D, 18487 Expr *BitWidth, 18488 InClassInitStyle InitStyle, 18489 AccessSpecifier AS, 18490 const ParsedAttr &MSPropertyAttr) { 18491 IdentifierInfo *II = D.getIdentifier(); 18492 if (!II) { 18493 Diag(DeclStart, diag::err_anonymous_property); 18494 return nullptr; 18495 } 18496 SourceLocation Loc = D.getIdentifierLoc(); 18497 18498 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 18499 QualType T = TInfo->getType(); 18500 if (getLangOpts().CPlusPlus) { 18501 CheckExtraCXXDefaultArguments(D); 18502 18503 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 18504 UPPC_DataMemberType)) { 18505 D.setInvalidType(); 18506 T = Context.IntTy; 18507 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 18508 } 18509 } 18510 18511 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 18512 18513 if (D.getDeclSpec().isInlineSpecified()) 18514 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 18515 << getLangOpts().CPlusPlus17; 18516 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 18517 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 18518 diag::err_invalid_thread) 18519 << DeclSpec::getSpecifierName(TSCS); 18520 18521 // Check to see if this name was declared as a member previously 18522 NamedDecl *PrevDecl = nullptr; 18523 LookupResult Previous(*this, II, Loc, LookupMemberName, 18524 ForVisibleRedeclaration); 18525 LookupName(Previous, S); 18526 switch (Previous.getResultKind()) { 18527 case LookupResult::Found: 18528 case LookupResult::FoundUnresolvedValue: 18529 PrevDecl = Previous.getAsSingle<NamedDecl>(); 18530 break; 18531 18532 case LookupResult::FoundOverloaded: 18533 PrevDecl = Previous.getRepresentativeDecl(); 18534 break; 18535 18536 case LookupResult::NotFound: 18537 case LookupResult::NotFoundInCurrentInstantiation: 18538 case LookupResult::Ambiguous: 18539 break; 18540 } 18541 18542 if (PrevDecl && PrevDecl->isTemplateParameter()) { 18543 // Maybe we will complain about the shadowed template parameter. 18544 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 18545 // Just pretend that we didn't see the previous declaration. 18546 PrevDecl = nullptr; 18547 } 18548 18549 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 18550 PrevDecl = nullptr; 18551 18552 SourceLocation TSSL = D.getBeginLoc(); 18553 MSPropertyDecl *NewPD = 18554 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL, 18555 MSPropertyAttr.getPropertyDataGetter(), 18556 MSPropertyAttr.getPropertyDataSetter()); 18557 ProcessDeclAttributes(TUScope, NewPD, D); 18558 NewPD->setAccess(AS); 18559 18560 if (NewPD->isInvalidDecl()) 18561 Record->setInvalidDecl(); 18562 18563 if (D.getDeclSpec().isModulePrivateSpecified()) 18564 NewPD->setModulePrivate(); 18565 18566 if (NewPD->isInvalidDecl() && PrevDecl) { 18567 // Don't introduce NewFD into scope; there's already something 18568 // with the same name in the same scope. 18569 } else if (II) { 18570 PushOnScopeChains(NewPD, S); 18571 } else 18572 Record->addDecl(NewPD); 18573 18574 return NewPD; 18575 } 18576 18577 void Sema::ActOnStartFunctionDeclarationDeclarator( 18578 Declarator &Declarator, unsigned TemplateParameterDepth) { 18579 auto &Info = InventedParameterInfos.emplace_back(); 18580 TemplateParameterList *ExplicitParams = nullptr; 18581 ArrayRef<TemplateParameterList *> ExplicitLists = 18582 Declarator.getTemplateParameterLists(); 18583 if (!ExplicitLists.empty()) { 18584 bool IsMemberSpecialization, IsInvalid; 18585 ExplicitParams = MatchTemplateParametersToScopeSpecifier( 18586 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(), 18587 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr, 18588 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid, 18589 /*SuppressDiagnostic=*/true); 18590 } 18591 if (ExplicitParams) { 18592 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth(); 18593 llvm::append_range(Info.TemplateParams, *ExplicitParams); 18594 Info.NumExplicitTemplateParams = ExplicitParams->size(); 18595 } else { 18596 Info.AutoTemplateParameterDepth = TemplateParameterDepth; 18597 Info.NumExplicitTemplateParams = 0; 18598 } 18599 } 18600 18601 void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) { 18602 auto &FSI = InventedParameterInfos.back(); 18603 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) { 18604 if (FSI.NumExplicitTemplateParams != 0) { 18605 TemplateParameterList *ExplicitParams = 18606 Declarator.getTemplateParameterLists().back(); 18607 Declarator.setInventedTemplateParameterList( 18608 TemplateParameterList::Create( 18609 Context, ExplicitParams->getTemplateLoc(), 18610 ExplicitParams->getLAngleLoc(), FSI.TemplateParams, 18611 ExplicitParams->getRAngleLoc(), 18612 ExplicitParams->getRequiresClause())); 18613 } else { 18614 Declarator.setInventedTemplateParameterList( 18615 TemplateParameterList::Create( 18616 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams, 18617 SourceLocation(), /*RequiresClause=*/nullptr)); 18618 } 18619 } 18620 InventedParameterInfos.pop_back(); 18621 } 18622