1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTConsumer.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/ComparisonCategories.h" 20 #include "clang/AST/EvaluatedExprVisitor.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/AST/TypeLoc.h" 26 #include "clang/AST/TypeOrdering.h" 27 #include "clang/Basic/AttributeCommonInfo.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Lex/LiteralSupport.h" 31 #include "clang/Lex/Preprocessor.h" 32 #include "clang/Sema/CXXFieldCollector.h" 33 #include "clang/Sema/DeclSpec.h" 34 #include "clang/Sema/Initialization.h" 35 #include "clang/Sema/Lookup.h" 36 #include "clang/Sema/ParsedTemplate.h" 37 #include "clang/Sema/Scope.h" 38 #include "clang/Sema/ScopeInfo.h" 39 #include "clang/Sema/SemaInternal.h" 40 #include "clang/Sema/Template.h" 41 #include "llvm/ADT/STLExtras.h" 42 #include "llvm/ADT/SmallString.h" 43 #include "llvm/ADT/StringExtras.h" 44 #include <map> 45 #include <set> 46 47 using namespace clang; 48 49 //===----------------------------------------------------------------------===// 50 // CheckDefaultArgumentVisitor 51 //===----------------------------------------------------------------------===// 52 53 namespace { 54 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses 55 /// the default argument of a parameter to determine whether it 56 /// contains any ill-formed subexpressions. For example, this will 57 /// diagnose the use of local variables or parameters within the 58 /// default argument expression. 59 class CheckDefaultArgumentVisitor 60 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> { 61 Expr *DefaultArg; 62 Sema *S; 63 64 public: 65 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) 66 : DefaultArg(defarg), S(s) {} 67 68 bool VisitExpr(Expr *Node); 69 bool VisitDeclRefExpr(DeclRefExpr *DRE); 70 bool VisitCXXThisExpr(CXXThisExpr *ThisE); 71 bool VisitLambdaExpr(LambdaExpr *Lambda); 72 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE); 73 }; 74 75 /// VisitExpr - Visit all of the children of this expression. 76 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { 77 bool IsInvalid = false; 78 for (Stmt *SubStmt : Node->children()) 79 IsInvalid |= Visit(SubStmt); 80 return IsInvalid; 81 } 82 83 /// VisitDeclRefExpr - Visit a reference to a declaration, to 84 /// determine whether this declaration can be used in the default 85 /// argument expression. 86 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { 87 NamedDecl *Decl = DRE->getDecl(); 88 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) { 89 // C++ [dcl.fct.default]p9 90 // Default arguments are evaluated each time the function is 91 // called. The order of evaluation of function arguments is 92 // unspecified. Consequently, parameters of a function shall not 93 // be used in default argument expressions, even if they are not 94 // evaluated. Parameters of a function declared before a default 95 // argument expression are in scope and can hide namespace and 96 // class member names. 97 return S->Diag(DRE->getBeginLoc(), 98 diag::err_param_default_argument_references_param) 99 << Param->getDeclName() << DefaultArg->getSourceRange(); 100 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) { 101 // C++ [dcl.fct.default]p7 102 // Local variables shall not be used in default argument 103 // expressions. 104 if (VDecl->isLocalVarDecl()) 105 return S->Diag(DRE->getBeginLoc(), 106 diag::err_param_default_argument_references_local) 107 << VDecl->getDeclName() << DefaultArg->getSourceRange(); 108 } 109 110 return false; 111 } 112 113 /// VisitCXXThisExpr - Visit a C++ "this" expression. 114 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { 115 // C++ [dcl.fct.default]p8: 116 // The keyword this shall not be used in a default argument of a 117 // member function. 118 return S->Diag(ThisE->getBeginLoc(), 119 diag::err_param_default_argument_references_this) 120 << ThisE->getSourceRange(); 121 } 122 123 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) { 124 bool Invalid = false; 125 for (PseudoObjectExpr::semantics_iterator 126 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) { 127 Expr *E = *i; 128 129 // Look through bindings. 130 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 131 E = OVE->getSourceExpr(); 132 assert(E && "pseudo-object binding without source expression?"); 133 } 134 135 Invalid |= Visit(E); 136 } 137 return Invalid; 138 } 139 140 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) { 141 // C++11 [expr.lambda.prim]p13: 142 // A lambda-expression appearing in a default argument shall not 143 // implicitly or explicitly capture any entity. 144 if (Lambda->capture_begin() == Lambda->capture_end()) 145 return false; 146 147 return S->Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg); 148 } 149 } 150 151 void 152 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, 153 const CXXMethodDecl *Method) { 154 // If we have an MSAny spec already, don't bother. 155 if (!Method || ComputedEST == EST_MSAny) 156 return; 157 158 const FunctionProtoType *Proto 159 = Method->getType()->getAs<FunctionProtoType>(); 160 Proto = Self->ResolveExceptionSpec(CallLoc, Proto); 161 if (!Proto) 162 return; 163 164 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 165 166 // If we have a throw-all spec at this point, ignore the function. 167 if (ComputedEST == EST_None) 168 return; 169 170 if (EST == EST_None && Method->hasAttr<NoThrowAttr>()) 171 EST = EST_BasicNoexcept; 172 173 switch (EST) { 174 case EST_Unparsed: 175 case EST_Uninstantiated: 176 case EST_Unevaluated: 177 llvm_unreachable("should not see unresolved exception specs here"); 178 179 // If this function can throw any exceptions, make a note of that. 180 case EST_MSAny: 181 case EST_None: 182 // FIXME: Whichever we see last of MSAny and None determines our result. 183 // We should make a consistent, order-independent choice here. 184 ClearExceptions(); 185 ComputedEST = EST; 186 return; 187 case EST_NoexceptFalse: 188 ClearExceptions(); 189 ComputedEST = EST_None; 190 return; 191 // FIXME: If the call to this decl is using any of its default arguments, we 192 // need to search them for potentially-throwing calls. 193 // If this function has a basic noexcept, it doesn't affect the outcome. 194 case EST_BasicNoexcept: 195 case EST_NoexceptTrue: 196 case EST_NoThrow: 197 return; 198 // If we're still at noexcept(true) and there's a throw() callee, 199 // change to that specification. 200 case EST_DynamicNone: 201 if (ComputedEST == EST_BasicNoexcept) 202 ComputedEST = EST_DynamicNone; 203 return; 204 case EST_DependentNoexcept: 205 llvm_unreachable( 206 "should not generate implicit declarations for dependent cases"); 207 case EST_Dynamic: 208 break; 209 } 210 assert(EST == EST_Dynamic && "EST case not considered earlier."); 211 assert(ComputedEST != EST_None && 212 "Shouldn't collect exceptions when throw-all is guaranteed."); 213 ComputedEST = EST_Dynamic; 214 // Record the exceptions in this function's exception specification. 215 for (const auto &E : Proto->exceptions()) 216 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) 217 Exceptions.push_back(E); 218 } 219 220 void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) { 221 if (!S || ComputedEST == EST_MSAny) 222 return; 223 224 // FIXME: 225 // 226 // C++0x [except.spec]p14: 227 // [An] implicit exception-specification specifies the type-id T if and 228 // only if T is allowed by the exception-specification of a function directly 229 // invoked by f's implicit definition; f shall allow all exceptions if any 230 // function it directly invokes allows all exceptions, and f shall allow no 231 // exceptions if every function it directly invokes allows no exceptions. 232 // 233 // Note in particular that if an implicit exception-specification is generated 234 // for a function containing a throw-expression, that specification can still 235 // be noexcept(true). 236 // 237 // Note also that 'directly invoked' is not defined in the standard, and there 238 // is no indication that we should only consider potentially-evaluated calls. 239 // 240 // Ultimately we should implement the intent of the standard: the exception 241 // specification should be the set of exceptions which can be thrown by the 242 // implicit definition. For now, we assume that any non-nothrow expression can 243 // throw any exception. 244 245 if (Self->canThrow(S)) 246 ComputedEST = EST_None; 247 } 248 249 bool 250 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 251 SourceLocation EqualLoc) { 252 if (RequireCompleteType(Param->getLocation(), Param->getType(), 253 diag::err_typecheck_decl_incomplete_type)) { 254 Param->setInvalidDecl(); 255 return true; 256 } 257 258 // C++ [dcl.fct.default]p5 259 // A default argument expression is implicitly converted (clause 260 // 4) to the parameter type. The default argument expression has 261 // the same semantic constraints as the initializer expression in 262 // a declaration of a variable of the parameter type, using the 263 // copy-initialization semantics (8.5). 264 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 265 Param); 266 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), 267 EqualLoc); 268 InitializationSequence InitSeq(*this, Entity, Kind, Arg); 269 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg); 270 if (Result.isInvalid()) 271 return true; 272 Arg = Result.getAs<Expr>(); 273 274 CheckCompletedExpr(Arg, EqualLoc); 275 Arg = MaybeCreateExprWithCleanups(Arg); 276 277 // Okay: add the default argument to the parameter 278 Param->setDefaultArg(Arg); 279 280 // We have already instantiated this parameter; provide each of the 281 // instantiations with the uninstantiated default argument. 282 UnparsedDefaultArgInstantiationsMap::iterator InstPos 283 = UnparsedDefaultArgInstantiations.find(Param); 284 if (InstPos != UnparsedDefaultArgInstantiations.end()) { 285 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) 286 InstPos->second[I]->setUninstantiatedDefaultArg(Arg); 287 288 // We're done tracking this parameter's instantiations. 289 UnparsedDefaultArgInstantiations.erase(InstPos); 290 } 291 292 return false; 293 } 294 295 /// ActOnParamDefaultArgument - Check whether the default argument 296 /// provided for a function parameter is well-formed. If so, attach it 297 /// to the parameter declaration. 298 void 299 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, 300 Expr *DefaultArg) { 301 if (!param || !DefaultArg) 302 return; 303 304 ParmVarDecl *Param = cast<ParmVarDecl>(param); 305 UnparsedDefaultArgLocs.erase(Param); 306 307 // Default arguments are only permitted in C++ 308 if (!getLangOpts().CPlusPlus) { 309 Diag(EqualLoc, diag::err_param_default_argument) 310 << DefaultArg->getSourceRange(); 311 Param->setInvalidDecl(); 312 return; 313 } 314 315 // Check for unexpanded parameter packs. 316 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) { 317 Param->setInvalidDecl(); 318 return; 319 } 320 321 // C++11 [dcl.fct.default]p3 322 // A default argument expression [...] shall not be specified for a 323 // parameter pack. 324 if (Param->isParameterPack()) { 325 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack) 326 << DefaultArg->getSourceRange(); 327 return; 328 } 329 330 // Check that the default argument is well-formed 331 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this); 332 if (DefaultArgChecker.Visit(DefaultArg)) { 333 Param->setInvalidDecl(); 334 return; 335 } 336 337 SetParamDefaultArgument(Param, DefaultArg, EqualLoc); 338 } 339 340 /// ActOnParamUnparsedDefaultArgument - We've seen a default 341 /// argument for a function parameter, but we can't parse it yet 342 /// because we're inside a class definition. Note that this default 343 /// argument will be parsed later. 344 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, 345 SourceLocation EqualLoc, 346 SourceLocation ArgLoc) { 347 if (!param) 348 return; 349 350 ParmVarDecl *Param = cast<ParmVarDecl>(param); 351 Param->setUnparsedDefaultArg(); 352 UnparsedDefaultArgLocs[Param] = ArgLoc; 353 } 354 355 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of 356 /// the default argument for the parameter param failed. 357 void Sema::ActOnParamDefaultArgumentError(Decl *param, 358 SourceLocation EqualLoc) { 359 if (!param) 360 return; 361 362 ParmVarDecl *Param = cast<ParmVarDecl>(param); 363 Param->setInvalidDecl(); 364 UnparsedDefaultArgLocs.erase(Param); 365 Param->setDefaultArg(new(Context) 366 OpaqueValueExpr(EqualLoc, 367 Param->getType().getNonReferenceType(), 368 VK_RValue)); 369 } 370 371 /// CheckExtraCXXDefaultArguments - Check for any extra default 372 /// arguments in the declarator, which is not a function declaration 373 /// or definition and therefore is not permitted to have default 374 /// arguments. This routine should be invoked for every declarator 375 /// that is not a function declaration or definition. 376 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { 377 // C++ [dcl.fct.default]p3 378 // A default argument expression shall be specified only in the 379 // parameter-declaration-clause of a function declaration or in a 380 // template-parameter (14.1). It shall not be specified for a 381 // parameter pack. If it is specified in a 382 // parameter-declaration-clause, it shall not occur within a 383 // declarator or abstract-declarator of a parameter-declaration. 384 bool MightBeFunction = D.isFunctionDeclarationContext(); 385 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { 386 DeclaratorChunk &chunk = D.getTypeObject(i); 387 if (chunk.Kind == DeclaratorChunk::Function) { 388 if (MightBeFunction) { 389 // This is a function declaration. It can have default arguments, but 390 // keep looking in case its return type is a function type with default 391 // arguments. 392 MightBeFunction = false; 393 continue; 394 } 395 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; 396 ++argIdx) { 397 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param); 398 if (Param->hasUnparsedDefaultArg()) { 399 std::unique_ptr<CachedTokens> Toks = 400 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens); 401 SourceRange SR; 402 if (Toks->size() > 1) 403 SR = SourceRange((*Toks)[1].getLocation(), 404 Toks->back().getLocation()); 405 else 406 SR = UnparsedDefaultArgLocs[Param]; 407 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 408 << SR; 409 } else if (Param->getDefaultArg()) { 410 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 411 << Param->getDefaultArg()->getSourceRange(); 412 Param->setDefaultArg(nullptr); 413 } 414 } 415 } else if (chunk.Kind != DeclaratorChunk::Paren) { 416 MightBeFunction = false; 417 } 418 } 419 } 420 421 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { 422 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) { 423 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1); 424 if (!PVD->hasDefaultArg()) 425 return false; 426 if (!PVD->hasInheritedDefaultArg()) 427 return true; 428 } 429 return false; 430 } 431 432 /// MergeCXXFunctionDecl - Merge two declarations of the same C++ 433 /// function, once we already know that they have the same 434 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an 435 /// error, false otherwise. 436 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, 437 Scope *S) { 438 bool Invalid = false; 439 440 // The declaration context corresponding to the scope is the semantic 441 // parent, unless this is a local function declaration, in which case 442 // it is that surrounding function. 443 DeclContext *ScopeDC = New->isLocalExternDecl() 444 ? New->getLexicalDeclContext() 445 : New->getDeclContext(); 446 447 // Find the previous declaration for the purpose of default arguments. 448 FunctionDecl *PrevForDefaultArgs = Old; 449 for (/**/; PrevForDefaultArgs; 450 // Don't bother looking back past the latest decl if this is a local 451 // extern declaration; nothing else could work. 452 PrevForDefaultArgs = New->isLocalExternDecl() 453 ? nullptr 454 : PrevForDefaultArgs->getPreviousDecl()) { 455 // Ignore hidden declarations. 456 if (!LookupResult::isVisible(*this, PrevForDefaultArgs)) 457 continue; 458 459 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) && 460 !New->isCXXClassMember()) { 461 // Ignore default arguments of old decl if they are not in 462 // the same scope and this is not an out-of-line definition of 463 // a member function. 464 continue; 465 } 466 467 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) { 468 // If only one of these is a local function declaration, then they are 469 // declared in different scopes, even though isDeclInScope may think 470 // they're in the same scope. (If both are local, the scope check is 471 // sufficient, and if neither is local, then they are in the same scope.) 472 continue; 473 } 474 475 // We found the right previous declaration. 476 break; 477 } 478 479 // C++ [dcl.fct.default]p4: 480 // For non-template functions, default arguments can be added in 481 // later declarations of a function in the same 482 // scope. Declarations in different scopes have completely 483 // distinct sets of default arguments. That is, declarations in 484 // inner scopes do not acquire default arguments from 485 // declarations in outer scopes, and vice versa. In a given 486 // function declaration, all parameters subsequent to a 487 // parameter with a default argument shall have default 488 // arguments supplied in this or previous declarations. A 489 // default argument shall not be redefined by a later 490 // declaration (not even to the same value). 491 // 492 // C++ [dcl.fct.default]p6: 493 // Except for member functions of class templates, the default arguments 494 // in a member function definition that appears outside of the class 495 // definition are added to the set of default arguments provided by the 496 // member function declaration in the class definition. 497 for (unsigned p = 0, NumParams = PrevForDefaultArgs 498 ? PrevForDefaultArgs->getNumParams() 499 : 0; 500 p < NumParams; ++p) { 501 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p); 502 ParmVarDecl *NewParam = New->getParamDecl(p); 503 504 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; 505 bool NewParamHasDfl = NewParam->hasDefaultArg(); 506 507 if (OldParamHasDfl && NewParamHasDfl) { 508 unsigned DiagDefaultParamID = 509 diag::err_param_default_argument_redefinition; 510 511 // MSVC accepts that default parameters be redefined for member functions 512 // of template class. The new default parameter's value is ignored. 513 Invalid = true; 514 if (getLangOpts().MicrosoftExt) { 515 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New); 516 if (MD && MD->getParent()->getDescribedClassTemplate()) { 517 // Merge the old default argument into the new parameter. 518 NewParam->setHasInheritedDefaultArg(); 519 if (OldParam->hasUninstantiatedDefaultArg()) 520 NewParam->setUninstantiatedDefaultArg( 521 OldParam->getUninstantiatedDefaultArg()); 522 else 523 NewParam->setDefaultArg(OldParam->getInit()); 524 DiagDefaultParamID = diag::ext_param_default_argument_redefinition; 525 Invalid = false; 526 } 527 } 528 529 // FIXME: If we knew where the '=' was, we could easily provide a fix-it 530 // hint here. Alternatively, we could walk the type-source information 531 // for NewParam to find the last source location in the type... but it 532 // isn't worth the effort right now. This is the kind of test case that 533 // is hard to get right: 534 // int f(int); 535 // void g(int (*fp)(int) = f); 536 // void g(int (*fp)(int) = &f); 537 Diag(NewParam->getLocation(), DiagDefaultParamID) 538 << NewParam->getDefaultArgRange(); 539 540 // Look for the function declaration where the default argument was 541 // actually written, which may be a declaration prior to Old. 542 for (auto Older = PrevForDefaultArgs; 543 OldParam->hasInheritedDefaultArg(); /**/) { 544 Older = Older->getPreviousDecl(); 545 OldParam = Older->getParamDecl(p); 546 } 547 548 Diag(OldParam->getLocation(), diag::note_previous_definition) 549 << OldParam->getDefaultArgRange(); 550 } else if (OldParamHasDfl) { 551 // Merge the old default argument into the new parameter unless the new 552 // function is a friend declaration in a template class. In the latter 553 // case the default arguments will be inherited when the friend 554 // declaration will be instantiated. 555 if (New->getFriendObjectKind() == Decl::FOK_None || 556 !New->getLexicalDeclContext()->isDependentContext()) { 557 // It's important to use getInit() here; getDefaultArg() 558 // strips off any top-level ExprWithCleanups. 559 NewParam->setHasInheritedDefaultArg(); 560 if (OldParam->hasUnparsedDefaultArg()) 561 NewParam->setUnparsedDefaultArg(); 562 else if (OldParam->hasUninstantiatedDefaultArg()) 563 NewParam->setUninstantiatedDefaultArg( 564 OldParam->getUninstantiatedDefaultArg()); 565 else 566 NewParam->setDefaultArg(OldParam->getInit()); 567 } 568 } else if (NewParamHasDfl) { 569 if (New->getDescribedFunctionTemplate()) { 570 // Paragraph 4, quoted above, only applies to non-template functions. 571 Diag(NewParam->getLocation(), 572 diag::err_param_default_argument_template_redecl) 573 << NewParam->getDefaultArgRange(); 574 Diag(PrevForDefaultArgs->getLocation(), 575 diag::note_template_prev_declaration) 576 << false; 577 } else if (New->getTemplateSpecializationKind() 578 != TSK_ImplicitInstantiation && 579 New->getTemplateSpecializationKind() != TSK_Undeclared) { 580 // C++ [temp.expr.spec]p21: 581 // Default function arguments shall not be specified in a declaration 582 // or a definition for one of the following explicit specializations: 583 // - the explicit specialization of a function template; 584 // - the explicit specialization of a member function template; 585 // - the explicit specialization of a member function of a class 586 // template where the class template specialization to which the 587 // member function specialization belongs is implicitly 588 // instantiated. 589 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) 590 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) 591 << New->getDeclName() 592 << NewParam->getDefaultArgRange(); 593 } else if (New->getDeclContext()->isDependentContext()) { 594 // C++ [dcl.fct.default]p6 (DR217): 595 // Default arguments for a member function of a class template shall 596 // be specified on the initial declaration of the member function 597 // within the class template. 598 // 599 // Reading the tea leaves a bit in DR217 and its reference to DR205 600 // leads me to the conclusion that one cannot add default function 601 // arguments for an out-of-line definition of a member function of a 602 // dependent type. 603 int WhichKind = 2; 604 if (CXXRecordDecl *Record 605 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { 606 if (Record->getDescribedClassTemplate()) 607 WhichKind = 0; 608 else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) 609 WhichKind = 1; 610 else 611 WhichKind = 2; 612 } 613 614 Diag(NewParam->getLocation(), 615 diag::err_param_default_argument_member_template_redecl) 616 << WhichKind 617 << NewParam->getDefaultArgRange(); 618 } 619 } 620 } 621 622 // DR1344: If a default argument is added outside a class definition and that 623 // default argument makes the function a special member function, the program 624 // is ill-formed. This can only happen for constructors. 625 if (isa<CXXConstructorDecl>(New) && 626 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { 627 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)), 628 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old)); 629 if (NewSM != OldSM) { 630 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); 631 assert(NewParam->hasDefaultArg()); 632 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) 633 << NewParam->getDefaultArgRange() << NewSM; 634 Diag(Old->getLocation(), diag::note_previous_declaration); 635 } 636 } 637 638 const FunctionDecl *Def; 639 // C++11 [dcl.constexpr]p1: If any declaration of a function or function 640 // template has a constexpr specifier then all its declarations shall 641 // contain the constexpr specifier. 642 if (New->getConstexprKind() != Old->getConstexprKind()) { 643 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) 644 << New << New->getConstexprKind() << Old->getConstexprKind(); 645 Diag(Old->getLocation(), diag::note_previous_declaration); 646 Invalid = true; 647 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && 648 Old->isDefined(Def) && 649 // If a friend function is inlined but does not have 'inline' 650 // specifier, it is a definition. Do not report attribute conflict 651 // in this case, redefinition will be diagnosed later. 652 (New->isInlineSpecified() || 653 New->getFriendObjectKind() == Decl::FOK_None)) { 654 // C++11 [dcl.fcn.spec]p4: 655 // If the definition of a function appears in a translation unit before its 656 // first declaration as inline, the program is ill-formed. 657 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 658 Diag(Def->getLocation(), diag::note_previous_definition); 659 Invalid = true; 660 } 661 662 // C++17 [temp.deduct.guide]p3: 663 // Two deduction guide declarations in the same translation unit 664 // for the same class template shall not have equivalent 665 // parameter-declaration-clauses. 666 if (isa<CXXDeductionGuideDecl>(New) && 667 !New->isFunctionTemplateSpecialization()) { 668 Diag(New->getLocation(), diag::err_deduction_guide_redeclared); 669 Diag(Old->getLocation(), diag::note_previous_declaration); 670 } 671 672 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default 673 // argument expression, that declaration shall be a definition and shall be 674 // the only declaration of the function or function template in the 675 // translation unit. 676 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && 677 functionDeclHasDefaultArgument(Old)) { 678 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 679 Diag(Old->getLocation(), diag::note_previous_declaration); 680 Invalid = true; 681 } 682 683 return Invalid; 684 } 685 686 NamedDecl * 687 Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, 688 MultiTemplateParamsArg TemplateParamLists) { 689 assert(D.isDecompositionDeclarator()); 690 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); 691 692 // The syntax only allows a decomposition declarator as a simple-declaration, 693 // a for-range-declaration, or a condition in Clang, but we parse it in more 694 // cases than that. 695 if (!D.mayHaveDecompositionDeclarator()) { 696 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) 697 << Decomp.getSourceRange(); 698 return nullptr; 699 } 700 701 if (!TemplateParamLists.empty()) { 702 // FIXME: There's no rule against this, but there are also no rules that 703 // would actually make it usable, so we reject it for now. 704 Diag(TemplateParamLists.front()->getTemplateLoc(), 705 diag::err_decomp_decl_template); 706 return nullptr; 707 } 708 709 Diag(Decomp.getLSquareLoc(), 710 !getLangOpts().CPlusPlus17 711 ? diag::ext_decomp_decl 712 : D.getContext() == DeclaratorContext::ConditionContext 713 ? diag::ext_decomp_decl_cond 714 : diag::warn_cxx14_compat_decomp_decl) 715 << Decomp.getSourceRange(); 716 717 // The semantic context is always just the current context. 718 DeclContext *const DC = CurContext; 719 720 // C++17 [dcl.dcl]/8: 721 // The decl-specifier-seq shall contain only the type-specifier auto 722 // and cv-qualifiers. 723 // C++2a [dcl.dcl]/8: 724 // If decl-specifier-seq contains any decl-specifier other than static, 725 // thread_local, auto, or cv-qualifiers, the program is ill-formed. 726 auto &DS = D.getDeclSpec(); 727 { 728 SmallVector<StringRef, 8> BadSpecifiers; 729 SmallVector<SourceLocation, 8> BadSpecifierLocs; 730 SmallVector<StringRef, 8> CPlusPlus20Specifiers; 731 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; 732 if (auto SCS = DS.getStorageClassSpec()) { 733 if (SCS == DeclSpec::SCS_static) { 734 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS)); 735 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 736 } else { 737 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS)); 738 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 739 } 740 } 741 if (auto TSCS = DS.getThreadStorageClassSpec()) { 742 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS)); 743 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc()); 744 } 745 if (DS.hasConstexprSpecifier()) { 746 BadSpecifiers.push_back( 747 DeclSpec::getSpecifierName(DS.getConstexprSpecifier())); 748 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc()); 749 } 750 if (DS.isInlineSpecified()) { 751 BadSpecifiers.push_back("inline"); 752 BadSpecifierLocs.push_back(DS.getInlineSpecLoc()); 753 } 754 if (!BadSpecifiers.empty()) { 755 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); 756 Err << (int)BadSpecifiers.size() 757 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " "); 758 // Don't add FixItHints to remove the specifiers; we do still respect 759 // them when building the underlying variable. 760 for (auto Loc : BadSpecifierLocs) 761 Err << SourceRange(Loc, Loc); 762 } else if (!CPlusPlus20Specifiers.empty()) { 763 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(), 764 getLangOpts().CPlusPlus2a 765 ? diag::warn_cxx17_compat_decomp_decl_spec 766 : diag::ext_decomp_decl_spec); 767 Warn << (int)CPlusPlus20Specifiers.size() 768 << llvm::join(CPlusPlus20Specifiers.begin(), 769 CPlusPlus20Specifiers.end(), " "); 770 for (auto Loc : CPlusPlus20SpecifierLocs) 771 Warn << SourceRange(Loc, Loc); 772 } 773 // We can't recover from it being declared as a typedef. 774 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 775 return nullptr; 776 } 777 778 // C++2a [dcl.struct.bind]p1: 779 // A cv that includes volatile is deprecated 780 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && 781 getLangOpts().CPlusPlus2a) 782 Diag(DS.getVolatileSpecLoc(), 783 diag::warn_deprecated_volatile_structured_binding); 784 785 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 786 QualType R = TInfo->getType(); 787 788 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 789 UPPC_DeclarationType)) 790 D.setInvalidType(); 791 792 // The syntax only allows a single ref-qualifier prior to the decomposition 793 // declarator. No other declarator chunks are permitted. Also check the type 794 // specifier here. 795 if (DS.getTypeSpecType() != DeclSpec::TST_auto || 796 D.hasGroupingParens() || D.getNumTypeObjects() > 1 || 797 (D.getNumTypeObjects() == 1 && 798 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) { 799 Diag(Decomp.getLSquareLoc(), 800 (D.hasGroupingParens() || 801 (D.getNumTypeObjects() && 802 D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) 803 ? diag::err_decomp_decl_parens 804 : diag::err_decomp_decl_type) 805 << R; 806 807 // In most cases, there's no actual problem with an explicitly-specified 808 // type, but a function type won't work here, and ActOnVariableDeclarator 809 // shouldn't be called for such a type. 810 if (R->isFunctionType()) 811 D.setInvalidType(); 812 } 813 814 // Build the BindingDecls. 815 SmallVector<BindingDecl*, 8> Bindings; 816 817 // Build the BindingDecls. 818 for (auto &B : D.getDecompositionDeclarator().bindings()) { 819 // Check for name conflicts. 820 DeclarationNameInfo NameInfo(B.Name, B.NameLoc); 821 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 822 ForVisibleRedeclaration); 823 LookupName(Previous, S, 824 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit()); 825 826 // It's not permitted to shadow a template parameter name. 827 if (Previous.isSingleResult() && 828 Previous.getFoundDecl()->isTemplateParameter()) { 829 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 830 Previous.getFoundDecl()); 831 Previous.clear(); 832 } 833 834 bool ConsiderLinkage = DC->isFunctionOrMethod() && 835 DS.getStorageClassSpec() == DeclSpec::SCS_extern; 836 FilterLookupForScope(Previous, DC, S, ConsiderLinkage, 837 /*AllowInlineNamespace*/false); 838 if (!Previous.empty()) { 839 auto *Old = Previous.getRepresentativeDecl(); 840 Diag(B.NameLoc, diag::err_redefinition) << B.Name; 841 Diag(Old->getLocation(), diag::note_previous_definition); 842 } 843 844 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name); 845 PushOnScopeChains(BD, S, true); 846 Bindings.push_back(BD); 847 ParsingInitForAutoVars.insert(BD); 848 } 849 850 // There are no prior lookup results for the variable itself, because it 851 // is unnamed. 852 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, 853 Decomp.getLSquareLoc()); 854 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 855 ForVisibleRedeclaration); 856 857 // Build the variable that holds the non-decomposed object. 858 bool AddToScope = true; 859 NamedDecl *New = 860 ActOnVariableDeclarator(S, D, DC, TInfo, Previous, 861 MultiTemplateParamsArg(), AddToScope, Bindings); 862 if (AddToScope) { 863 S->AddDecl(New); 864 CurContext->addHiddenDecl(New); 865 } 866 867 if (isInOpenMPDeclareTargetContext()) 868 checkDeclIsAllowedInOpenMPTarget(nullptr, New); 869 870 return New; 871 } 872 873 static bool checkSimpleDecomposition( 874 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, 875 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType, 876 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { 877 if ((int64_t)Bindings.size() != NumElems) { 878 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 879 << DecompType << (unsigned)Bindings.size() << NumElems.toString(10) 880 << (NumElems < Bindings.size()); 881 return true; 882 } 883 884 unsigned I = 0; 885 for (auto *B : Bindings) { 886 SourceLocation Loc = B->getLocation(); 887 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 888 if (E.isInvalid()) 889 return true; 890 E = GetInit(Loc, E.get(), I++); 891 if (E.isInvalid()) 892 return true; 893 B->setBinding(ElemType, E.get()); 894 } 895 896 return false; 897 } 898 899 static bool checkArrayLikeDecomposition(Sema &S, 900 ArrayRef<BindingDecl *> Bindings, 901 ValueDecl *Src, QualType DecompType, 902 const llvm::APSInt &NumElems, 903 QualType ElemType) { 904 return checkSimpleDecomposition( 905 S, Bindings, Src, DecompType, NumElems, ElemType, 906 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 907 ExprResult E = S.ActOnIntegerConstant(Loc, I); 908 if (E.isInvalid()) 909 return ExprError(); 910 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc); 911 }); 912 } 913 914 static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 915 ValueDecl *Src, QualType DecompType, 916 const ConstantArrayType *CAT) { 917 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, 918 llvm::APSInt(CAT->getSize()), 919 CAT->getElementType()); 920 } 921 922 static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 923 ValueDecl *Src, QualType DecompType, 924 const VectorType *VT) { 925 return checkArrayLikeDecomposition( 926 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()), 927 S.Context.getQualifiedType(VT->getElementType(), 928 DecompType.getQualifiers())); 929 } 930 931 static bool checkComplexDecomposition(Sema &S, 932 ArrayRef<BindingDecl *> Bindings, 933 ValueDecl *Src, QualType DecompType, 934 const ComplexType *CT) { 935 return checkSimpleDecomposition( 936 S, Bindings, Src, DecompType, llvm::APSInt::get(2), 937 S.Context.getQualifiedType(CT->getElementType(), 938 DecompType.getQualifiers()), 939 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 940 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base); 941 }); 942 } 943 944 static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, 945 TemplateArgumentListInfo &Args) { 946 SmallString<128> SS; 947 llvm::raw_svector_ostream OS(SS); 948 bool First = true; 949 for (auto &Arg : Args.arguments()) { 950 if (!First) 951 OS << ", "; 952 Arg.getArgument().print(PrintingPolicy, OS); 953 First = false; 954 } 955 return OS.str(); 956 } 957 958 static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, 959 SourceLocation Loc, StringRef Trait, 960 TemplateArgumentListInfo &Args, 961 unsigned DiagID) { 962 auto DiagnoseMissing = [&] { 963 if (DiagID) 964 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(), 965 Args); 966 return true; 967 }; 968 969 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. 970 NamespaceDecl *Std = S.getStdNamespace(); 971 if (!Std) 972 return DiagnoseMissing(); 973 974 // Look up the trait itself, within namespace std. We can diagnose various 975 // problems with this lookup even if we've been asked to not diagnose a 976 // missing specialization, because this can only fail if the user has been 977 // declaring their own names in namespace std or we don't support the 978 // standard library implementation in use. 979 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait), 980 Loc, Sema::LookupOrdinaryName); 981 if (!S.LookupQualifiedName(Result, Std)) 982 return DiagnoseMissing(); 983 if (Result.isAmbiguous()) 984 return true; 985 986 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); 987 if (!TraitTD) { 988 Result.suppressDiagnostics(); 989 NamedDecl *Found = *Result.begin(); 990 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; 991 S.Diag(Found->getLocation(), diag::note_declared_at); 992 return true; 993 } 994 995 // Build the template-id. 996 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args); 997 if (TraitTy.isNull()) 998 return true; 999 if (!S.isCompleteType(Loc, TraitTy)) { 1000 if (DiagID) 1001 S.RequireCompleteType( 1002 Loc, TraitTy, DiagID, 1003 printTemplateArgs(S.Context.getPrintingPolicy(), Args)); 1004 return true; 1005 } 1006 1007 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); 1008 assert(RD && "specialization of class template is not a class?"); 1009 1010 // Look up the member of the trait type. 1011 S.LookupQualifiedName(TraitMemberLookup, RD); 1012 return TraitMemberLookup.isAmbiguous(); 1013 } 1014 1015 static TemplateArgumentLoc 1016 getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, 1017 uint64_t I) { 1018 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T); 1019 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc); 1020 } 1021 1022 static TemplateArgumentLoc 1023 getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { 1024 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc); 1025 } 1026 1027 namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } 1028 1029 static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, 1030 llvm::APSInt &Size) { 1031 EnterExpressionEvaluationContext ContextRAII( 1032 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1033 1034 DeclarationName Value = S.PP.getIdentifierInfo("value"); 1035 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); 1036 1037 // Form template argument list for tuple_size<T>. 1038 TemplateArgumentListInfo Args(Loc, Loc); 1039 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1040 1041 // If there's no tuple_size specialization or the lookup of 'value' is empty, 1042 // it's not tuple-like. 1043 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) || 1044 R.empty()) 1045 return IsTupleLike::NotTupleLike; 1046 1047 // If we get this far, we've committed to the tuple interpretation, but 1048 // we can still fail if there actually isn't a usable ::value. 1049 1050 struct ICEDiagnoser : Sema::VerifyICEDiagnoser { 1051 LookupResult &R; 1052 TemplateArgumentListInfo &Args; 1053 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) 1054 : R(R), Args(Args) {} 1055 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) { 1056 S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) 1057 << printTemplateArgs(S.Context.getPrintingPolicy(), Args); 1058 } 1059 } Diagnoser(R, Args); 1060 1061 ExprResult E = 1062 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false); 1063 if (E.isInvalid()) 1064 return IsTupleLike::Error; 1065 1066 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false); 1067 if (E.isInvalid()) 1068 return IsTupleLike::Error; 1069 1070 return IsTupleLike::TupleLike; 1071 } 1072 1073 /// \return std::tuple_element<I, T>::type. 1074 static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, 1075 unsigned I, QualType T) { 1076 // Form template argument list for tuple_element<I, T>. 1077 TemplateArgumentListInfo Args(Loc, Loc); 1078 Args.addArgument( 1079 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1080 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1081 1082 DeclarationName TypeDN = S.PP.getIdentifierInfo("type"); 1083 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); 1084 if (lookupStdTypeTraitMember( 1085 S, R, Loc, "tuple_element", Args, 1086 diag::err_decomp_decl_std_tuple_element_not_specialized)) 1087 return QualType(); 1088 1089 auto *TD = R.getAsSingle<TypeDecl>(); 1090 if (!TD) { 1091 R.suppressDiagnostics(); 1092 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) 1093 << printTemplateArgs(S.Context.getPrintingPolicy(), Args); 1094 if (!R.empty()) 1095 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); 1096 return QualType(); 1097 } 1098 1099 return S.Context.getTypeDeclType(TD); 1100 } 1101 1102 namespace { 1103 struct BindingDiagnosticTrap { 1104 Sema &S; 1105 DiagnosticErrorTrap Trap; 1106 BindingDecl *BD; 1107 1108 BindingDiagnosticTrap(Sema &S, BindingDecl *BD) 1109 : S(S), Trap(S.Diags), BD(BD) {} 1110 ~BindingDiagnosticTrap() { 1111 if (Trap.hasErrorOccurred()) 1112 S.Diag(BD->getLocation(), diag::note_in_binding_decl_init) << BD; 1113 } 1114 }; 1115 } 1116 1117 static bool checkTupleLikeDecomposition(Sema &S, 1118 ArrayRef<BindingDecl *> Bindings, 1119 VarDecl *Src, QualType DecompType, 1120 const llvm::APSInt &TupleSize) { 1121 if ((int64_t)Bindings.size() != TupleSize) { 1122 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1123 << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10) 1124 << (TupleSize < Bindings.size()); 1125 return true; 1126 } 1127 1128 if (Bindings.empty()) 1129 return false; 1130 1131 DeclarationName GetDN = S.PP.getIdentifierInfo("get"); 1132 1133 // [dcl.decomp]p3: 1134 // The unqualified-id get is looked up in the scope of E by class member 1135 // access lookup ... 1136 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); 1137 bool UseMemberGet = false; 1138 if (S.isCompleteType(Src->getLocation(), DecompType)) { 1139 if (auto *RD = DecompType->getAsCXXRecordDecl()) 1140 S.LookupQualifiedName(MemberGet, RD); 1141 if (MemberGet.isAmbiguous()) 1142 return true; 1143 // ... and if that finds at least one declaration that is a function 1144 // template whose first template parameter is a non-type parameter ... 1145 for (NamedDecl *D : MemberGet) { 1146 if (FunctionTemplateDecl *FTD = 1147 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { 1148 TemplateParameterList *TPL = FTD->getTemplateParameters(); 1149 if (TPL->size() != 0 && 1150 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { 1151 // ... the initializer is e.get<i>(). 1152 UseMemberGet = true; 1153 break; 1154 } 1155 } 1156 } 1157 } 1158 1159 unsigned I = 0; 1160 for (auto *B : Bindings) { 1161 BindingDiagnosticTrap Trap(S, B); 1162 SourceLocation Loc = B->getLocation(); 1163 1164 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1165 if (E.isInvalid()) 1166 return true; 1167 1168 // e is an lvalue if the type of the entity is an lvalue reference and 1169 // an xvalue otherwise 1170 if (!Src->getType()->isLValueReferenceType()) 1171 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp, 1172 E.get(), nullptr, VK_XValue); 1173 1174 TemplateArgumentListInfo Args(Loc, Loc); 1175 Args.addArgument( 1176 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1177 1178 if (UseMemberGet) { 1179 // if [lookup of member get] finds at least one declaration, the 1180 // initializer is e.get<i-1>(). 1181 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false, 1182 CXXScopeSpec(), SourceLocation(), nullptr, 1183 MemberGet, &Args, nullptr); 1184 if (E.isInvalid()) 1185 return true; 1186 1187 E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc); 1188 } else { 1189 // Otherwise, the initializer is get<i-1>(e), where get is looked up 1190 // in the associated namespaces. 1191 Expr *Get = UnresolvedLookupExpr::Create( 1192 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(), 1193 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args, 1194 UnresolvedSetIterator(), UnresolvedSetIterator()); 1195 1196 Expr *Arg = E.get(); 1197 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc); 1198 } 1199 if (E.isInvalid()) 1200 return true; 1201 Expr *Init = E.get(); 1202 1203 // Given the type T designated by std::tuple_element<i - 1, E>::type, 1204 QualType T = getTupleLikeElementType(S, Loc, I, DecompType); 1205 if (T.isNull()) 1206 return true; 1207 1208 // each vi is a variable of type "reference to T" initialized with the 1209 // initializer, where the reference is an lvalue reference if the 1210 // initializer is an lvalue and an rvalue reference otherwise 1211 QualType RefType = 1212 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName()); 1213 if (RefType.isNull()) 1214 return true; 1215 auto *RefVD = VarDecl::Create( 1216 S.Context, Src->getDeclContext(), Loc, Loc, 1217 B->getDeclName().getAsIdentifierInfo(), RefType, 1218 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass()); 1219 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); 1220 RefVD->setTSCSpec(Src->getTSCSpec()); 1221 RefVD->setImplicit(); 1222 if (Src->isInlineSpecified()) 1223 RefVD->setInlineSpecified(); 1224 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); 1225 1226 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD); 1227 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc); 1228 InitializationSequence Seq(S, Entity, Kind, Init); 1229 E = Seq.Perform(S, Entity, Kind, Init); 1230 if (E.isInvalid()) 1231 return true; 1232 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false); 1233 if (E.isInvalid()) 1234 return true; 1235 RefVD->setInit(E.get()); 1236 if (!E.get()->isValueDependent()) 1237 RefVD->checkInitIsICE(); 1238 1239 E = S.BuildDeclarationNameExpr(CXXScopeSpec(), 1240 DeclarationNameInfo(B->getDeclName(), Loc), 1241 RefVD); 1242 if (E.isInvalid()) 1243 return true; 1244 1245 B->setBinding(T, E.get()); 1246 I++; 1247 } 1248 1249 return false; 1250 } 1251 1252 /// Find the base class to decompose in a built-in decomposition of a class type. 1253 /// This base class search is, unfortunately, not quite like any other that we 1254 /// perform anywhere else in C++. 1255 static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, 1256 const CXXRecordDecl *RD, 1257 CXXCastPath &BasePath) { 1258 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, 1259 CXXBasePath &Path) { 1260 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); 1261 }; 1262 1263 const CXXRecordDecl *ClassWithFields = nullptr; 1264 AccessSpecifier AS = AS_public; 1265 if (RD->hasDirectFields()) 1266 // [dcl.decomp]p4: 1267 // Otherwise, all of E's non-static data members shall be public direct 1268 // members of E ... 1269 ClassWithFields = RD; 1270 else { 1271 // ... or of ... 1272 CXXBasePaths Paths; 1273 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); 1274 if (!RD->lookupInBases(BaseHasFields, Paths)) { 1275 // If no classes have fields, just decompose RD itself. (This will work 1276 // if and only if zero bindings were provided.) 1277 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); 1278 } 1279 1280 CXXBasePath *BestPath = nullptr; 1281 for (auto &P : Paths) { 1282 if (!BestPath) 1283 BestPath = &P; 1284 else if (!S.Context.hasSameType(P.back().Base->getType(), 1285 BestPath->back().Base->getType())) { 1286 // ... the same ... 1287 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1288 << false << RD << BestPath->back().Base->getType() 1289 << P.back().Base->getType(); 1290 return DeclAccessPair(); 1291 } else if (P.Access < BestPath->Access) { 1292 BestPath = &P; 1293 } 1294 } 1295 1296 // ... unambiguous ... 1297 QualType BaseType = BestPath->back().Base->getType(); 1298 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) { 1299 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) 1300 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); 1301 return DeclAccessPair(); 1302 } 1303 1304 // ... [accessible, implied by other rules] base class of E. 1305 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), 1306 *BestPath, diag::err_decomp_decl_inaccessible_base); 1307 AS = BestPath->Access; 1308 1309 ClassWithFields = BaseType->getAsCXXRecordDecl(); 1310 S.BuildBasePathArray(Paths, BasePath); 1311 } 1312 1313 // The above search did not check whether the selected class itself has base 1314 // classes with fields, so check that now. 1315 CXXBasePaths Paths; 1316 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) { 1317 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1318 << (ClassWithFields == RD) << RD << ClassWithFields 1319 << Paths.front().back().Base->getType(); 1320 return DeclAccessPair(); 1321 } 1322 1323 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); 1324 } 1325 1326 static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 1327 ValueDecl *Src, QualType DecompType, 1328 const CXXRecordDecl *OrigRD) { 1329 if (S.RequireCompleteType(Src->getLocation(), DecompType, 1330 diag::err_incomplete_type)) 1331 return true; 1332 1333 CXXCastPath BasePath; 1334 DeclAccessPair BasePair = 1335 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); 1336 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl()); 1337 if (!RD) 1338 return true; 1339 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD), 1340 DecompType.getQualifiers()); 1341 1342 auto DiagnoseBadNumberOfBindings = [&]() -> bool { 1343 unsigned NumFields = 1344 std::count_if(RD->field_begin(), RD->field_end(), 1345 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); }); 1346 assert(Bindings.size() != NumFields); 1347 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1348 << DecompType << (unsigned)Bindings.size() << NumFields 1349 << (NumFields < Bindings.size()); 1350 return true; 1351 }; 1352 1353 // all of E's non-static data members shall be [...] well-formed 1354 // when named as e.name in the context of the structured binding, 1355 // E shall not have an anonymous union member, ... 1356 unsigned I = 0; 1357 for (auto *FD : RD->fields()) { 1358 if (FD->isUnnamedBitfield()) 1359 continue; 1360 1361 if (FD->isAnonymousStructOrUnion()) { 1362 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member) 1363 << DecompType << FD->getType()->isUnionType(); 1364 S.Diag(FD->getLocation(), diag::note_declared_at); 1365 return true; 1366 } 1367 1368 // We have a real field to bind. 1369 if (I >= Bindings.size()) 1370 return DiagnoseBadNumberOfBindings(); 1371 auto *B = Bindings[I++]; 1372 SourceLocation Loc = B->getLocation(); 1373 1374 // The field must be accessible in the context of the structured binding. 1375 // We already checked that the base class is accessible. 1376 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the 1377 // const_cast here. 1378 S.CheckStructuredBindingMemberAccess( 1379 Loc, const_cast<CXXRecordDecl *>(OrigRD), 1380 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( 1381 BasePair.getAccess(), FD->getAccess()))); 1382 1383 // Initialize the binding to Src.FD. 1384 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1385 if (E.isInvalid()) 1386 return true; 1387 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, 1388 VK_LValue, &BasePath); 1389 if (E.isInvalid()) 1390 return true; 1391 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, 1392 CXXScopeSpec(), FD, 1393 DeclAccessPair::make(FD, FD->getAccess()), 1394 DeclarationNameInfo(FD->getDeclName(), Loc)); 1395 if (E.isInvalid()) 1396 return true; 1397 1398 // If the type of the member is T, the referenced type is cv T, where cv is 1399 // the cv-qualification of the decomposition expression. 1400 // 1401 // FIXME: We resolve a defect here: if the field is mutable, we do not add 1402 // 'const' to the type of the field. 1403 Qualifiers Q = DecompType.getQualifiers(); 1404 if (FD->isMutable()) 1405 Q.removeConst(); 1406 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); 1407 } 1408 1409 if (I != Bindings.size()) 1410 return DiagnoseBadNumberOfBindings(); 1411 1412 return false; 1413 } 1414 1415 void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { 1416 QualType DecompType = DD->getType(); 1417 1418 // If the type of the decomposition is dependent, then so is the type of 1419 // each binding. 1420 if (DecompType->isDependentType()) { 1421 for (auto *B : DD->bindings()) 1422 B->setType(Context.DependentTy); 1423 return; 1424 } 1425 1426 DecompType = DecompType.getNonReferenceType(); 1427 ArrayRef<BindingDecl*> Bindings = DD->bindings(); 1428 1429 // C++1z [dcl.decomp]/2: 1430 // If E is an array type [...] 1431 // As an extension, we also support decomposition of built-in complex and 1432 // vector types. 1433 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { 1434 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) 1435 DD->setInvalidDecl(); 1436 return; 1437 } 1438 if (auto *VT = DecompType->getAs<VectorType>()) { 1439 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) 1440 DD->setInvalidDecl(); 1441 return; 1442 } 1443 if (auto *CT = DecompType->getAs<ComplexType>()) { 1444 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) 1445 DD->setInvalidDecl(); 1446 return; 1447 } 1448 1449 // C++1z [dcl.decomp]/3: 1450 // if the expression std::tuple_size<E>::value is a well-formed integral 1451 // constant expression, [...] 1452 llvm::APSInt TupleSize(32); 1453 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { 1454 case IsTupleLike::Error: 1455 DD->setInvalidDecl(); 1456 return; 1457 1458 case IsTupleLike::TupleLike: 1459 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) 1460 DD->setInvalidDecl(); 1461 return; 1462 1463 case IsTupleLike::NotTupleLike: 1464 break; 1465 } 1466 1467 // C++1z [dcl.dcl]/8: 1468 // [E shall be of array or non-union class type] 1469 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); 1470 if (!RD || RD->isUnion()) { 1471 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) 1472 << DD << !RD << DecompType; 1473 DD->setInvalidDecl(); 1474 return; 1475 } 1476 1477 // C++1z [dcl.decomp]/4: 1478 // all of E's non-static data members shall be [...] direct members of 1479 // E or of the same unambiguous public base class of E, ... 1480 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) 1481 DD->setInvalidDecl(); 1482 } 1483 1484 /// Merge the exception specifications of two variable declarations. 1485 /// 1486 /// This is called when there's a redeclaration of a VarDecl. The function 1487 /// checks if the redeclaration might have an exception specification and 1488 /// validates compatibility and merges the specs if necessary. 1489 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { 1490 // Shortcut if exceptions are disabled. 1491 if (!getLangOpts().CXXExceptions) 1492 return; 1493 1494 assert(Context.hasSameType(New->getType(), Old->getType()) && 1495 "Should only be called if types are otherwise the same."); 1496 1497 QualType NewType = New->getType(); 1498 QualType OldType = Old->getType(); 1499 1500 // We're only interested in pointers and references to functions, as well 1501 // as pointers to member functions. 1502 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { 1503 NewType = R->getPointeeType(); 1504 OldType = OldType->castAs<ReferenceType>()->getPointeeType(); 1505 } else if (const PointerType *P = NewType->getAs<PointerType>()) { 1506 NewType = P->getPointeeType(); 1507 OldType = OldType->castAs<PointerType>()->getPointeeType(); 1508 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { 1509 NewType = M->getPointeeType(); 1510 OldType = OldType->castAs<MemberPointerType>()->getPointeeType(); 1511 } 1512 1513 if (!NewType->isFunctionProtoType()) 1514 return; 1515 1516 // There's lots of special cases for functions. For function pointers, system 1517 // libraries are hopefully not as broken so that we don't need these 1518 // workarounds. 1519 if (CheckEquivalentExceptionSpec( 1520 OldType->getAs<FunctionProtoType>(), Old->getLocation(), 1521 NewType->getAs<FunctionProtoType>(), New->getLocation())) { 1522 New->setInvalidDecl(); 1523 } 1524 } 1525 1526 /// CheckCXXDefaultArguments - Verify that the default arguments for a 1527 /// function declaration are well-formed according to C++ 1528 /// [dcl.fct.default]. 1529 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { 1530 unsigned NumParams = FD->getNumParams(); 1531 unsigned p; 1532 1533 // Find first parameter with a default argument 1534 for (p = 0; p < NumParams; ++p) { 1535 ParmVarDecl *Param = FD->getParamDecl(p); 1536 if (Param->hasDefaultArg()) 1537 break; 1538 } 1539 1540 // C++11 [dcl.fct.default]p4: 1541 // In a given function declaration, each parameter subsequent to a parameter 1542 // with a default argument shall have a default argument supplied in this or 1543 // a previous declaration or shall be a function parameter pack. A default 1544 // argument shall not be redefined by a later declaration (not even to the 1545 // same value). 1546 unsigned LastMissingDefaultArg = 0; 1547 for (; p < NumParams; ++p) { 1548 ParmVarDecl *Param = FD->getParamDecl(p); 1549 if (!Param->hasDefaultArg() && !Param->isParameterPack()) { 1550 if (Param->isInvalidDecl()) 1551 /* We already complained about this parameter. */; 1552 else if (Param->getIdentifier()) 1553 Diag(Param->getLocation(), 1554 diag::err_param_default_argument_missing_name) 1555 << Param->getIdentifier(); 1556 else 1557 Diag(Param->getLocation(), 1558 diag::err_param_default_argument_missing); 1559 1560 LastMissingDefaultArg = p; 1561 } 1562 } 1563 1564 if (LastMissingDefaultArg > 0) { 1565 // Some default arguments were missing. Clear out all of the 1566 // default arguments up to (and including) the last missing 1567 // default argument, so that we leave the function parameters 1568 // in a semantically valid state. 1569 for (p = 0; p <= LastMissingDefaultArg; ++p) { 1570 ParmVarDecl *Param = FD->getParamDecl(p); 1571 if (Param->hasDefaultArg()) { 1572 Param->setDefaultArg(nullptr); 1573 } 1574 } 1575 } 1576 } 1577 1578 /// Check that the given type is a literal type. Issue a diagnostic if not, 1579 /// if Kind is Diagnose. 1580 /// \return \c true if a problem has been found (and optionally diagnosed). 1581 template <typename... Ts> 1582 static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, 1583 SourceLocation Loc, QualType T, unsigned DiagID, 1584 Ts &&...DiagArgs) { 1585 if (T->isDependentType()) 1586 return false; 1587 1588 switch (Kind) { 1589 case Sema::CheckConstexprKind::Diagnose: 1590 return SemaRef.RequireLiteralType(Loc, T, DiagID, 1591 std::forward<Ts>(DiagArgs)...); 1592 1593 case Sema::CheckConstexprKind::CheckValid: 1594 return !T->isLiteralType(SemaRef.Context); 1595 } 1596 1597 llvm_unreachable("unknown CheckConstexprKind"); 1598 } 1599 1600 /// Determine whether a destructor cannot be constexpr due to 1601 static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, 1602 const CXXDestructorDecl *DD, 1603 Sema::CheckConstexprKind Kind) { 1604 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { 1605 const CXXRecordDecl *RD = 1606 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1607 if (!RD || RD->hasConstexprDestructor()) 1608 return true; 1609 1610 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1611 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) 1612 << DD->getConstexprKind() << !FD 1613 << (FD ? FD->getDeclName() : DeclarationName()) << T; 1614 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) 1615 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; 1616 } 1617 return false; 1618 }; 1619 1620 const CXXRecordDecl *RD = DD->getParent(); 1621 for (const CXXBaseSpecifier &B : RD->bases()) 1622 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) 1623 return false; 1624 for (const FieldDecl *FD : RD->fields()) 1625 if (!Check(FD->getLocation(), FD->getType(), FD)) 1626 return false; 1627 return true; 1628 } 1629 1630 /// Check whether a function's parameter types are all literal types. If so, 1631 /// return true. If not, produce a suitable diagnostic and return false. 1632 static bool CheckConstexprParameterTypes(Sema &SemaRef, 1633 const FunctionDecl *FD, 1634 Sema::CheckConstexprKind Kind) { 1635 unsigned ArgIndex = 0; 1636 const auto *FT = FD->getType()->castAs<FunctionProtoType>(); 1637 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), 1638 e = FT->param_type_end(); 1639 i != e; ++i, ++ArgIndex) { 1640 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); 1641 SourceLocation ParamLoc = PD->getLocation(); 1642 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, 1643 diag::err_constexpr_non_literal_param, ArgIndex + 1, 1644 PD->getSourceRange(), isa<CXXConstructorDecl>(FD), 1645 FD->isConsteval())) 1646 return false; 1647 } 1648 return true; 1649 } 1650 1651 /// Check whether a function's return type is a literal type. If so, return 1652 /// true. If not, produce a suitable diagnostic and return false. 1653 static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD, 1654 Sema::CheckConstexprKind Kind) { 1655 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(), 1656 diag::err_constexpr_non_literal_return, 1657 FD->isConsteval())) 1658 return false; 1659 return true; 1660 } 1661 1662 /// Get diagnostic %select index for tag kind for 1663 /// record diagnostic message. 1664 /// WARNING: Indexes apply to particular diagnostics only! 1665 /// 1666 /// \returns diagnostic %select index. 1667 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { 1668 switch (Tag) { 1669 case TTK_Struct: return 0; 1670 case TTK_Interface: return 1; 1671 case TTK_Class: return 2; 1672 default: llvm_unreachable("Invalid tag kind for record diagnostic!"); 1673 } 1674 } 1675 1676 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 1677 Stmt *Body, 1678 Sema::CheckConstexprKind Kind); 1679 1680 // Check whether a function declaration satisfies the requirements of a 1681 // constexpr function definition or a constexpr constructor definition. If so, 1682 // return true. If not, produce appropriate diagnostics (unless asked not to by 1683 // Kind) and return false. 1684 // 1685 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360. 1686 bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, 1687 CheckConstexprKind Kind) { 1688 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 1689 if (MD && MD->isInstance()) { 1690 // C++11 [dcl.constexpr]p4: 1691 // The definition of a constexpr constructor shall satisfy the following 1692 // constraints: 1693 // - the class shall not have any virtual base classes; 1694 // 1695 // FIXME: This only applies to constructors and destructors, not arbitrary 1696 // member functions. 1697 const CXXRecordDecl *RD = MD->getParent(); 1698 if (RD->getNumVBases()) { 1699 if (Kind == CheckConstexprKind::CheckValid) 1700 return false; 1701 1702 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) 1703 << isa<CXXConstructorDecl>(NewFD) 1704 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); 1705 for (const auto &I : RD->vbases()) 1706 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) 1707 << I.getSourceRange(); 1708 return false; 1709 } 1710 } 1711 1712 if (!isa<CXXConstructorDecl>(NewFD)) { 1713 // C++11 [dcl.constexpr]p3: 1714 // The definition of a constexpr function shall satisfy the following 1715 // constraints: 1716 // - it shall not be virtual; (removed in C++20) 1717 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); 1718 if (Method && Method->isVirtual()) { 1719 if (getLangOpts().CPlusPlus2a) { 1720 if (Kind == CheckConstexprKind::Diagnose) 1721 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); 1722 } else { 1723 if (Kind == CheckConstexprKind::CheckValid) 1724 return false; 1725 1726 Method = Method->getCanonicalDecl(); 1727 Diag(Method->getLocation(), diag::err_constexpr_virtual); 1728 1729 // If it's not obvious why this function is virtual, find an overridden 1730 // function which uses the 'virtual' keyword. 1731 const CXXMethodDecl *WrittenVirtual = Method; 1732 while (!WrittenVirtual->isVirtualAsWritten()) 1733 WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); 1734 if (WrittenVirtual != Method) 1735 Diag(WrittenVirtual->getLocation(), 1736 diag::note_overridden_virtual_function); 1737 return false; 1738 } 1739 } 1740 1741 // - its return type shall be a literal type; 1742 if (!CheckConstexprReturnType(*this, NewFD, Kind)) 1743 return false; 1744 } 1745 1746 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) { 1747 // A destructor can be constexpr only if the defaulted destructor could be; 1748 // we don't need to check the members and bases if we already know they all 1749 // have constexpr destructors. 1750 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) { 1751 if (Kind == CheckConstexprKind::CheckValid) 1752 return false; 1753 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind)) 1754 return false; 1755 } 1756 } 1757 1758 // - each of its parameter types shall be a literal type; 1759 if (!CheckConstexprParameterTypes(*this, NewFD, Kind)) 1760 return false; 1761 1762 Stmt *Body = NewFD->getBody(); 1763 assert(Body && 1764 "CheckConstexprFunctionDefinition called on function with no body"); 1765 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind); 1766 } 1767 1768 /// Check the given declaration statement is legal within a constexpr function 1769 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. 1770 /// 1771 /// \return true if the body is OK (maybe only as an extension), false if we 1772 /// have diagnosed a problem. 1773 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, 1774 DeclStmt *DS, SourceLocation &Cxx1yLoc, 1775 Sema::CheckConstexprKind Kind) { 1776 // C++11 [dcl.constexpr]p3 and p4: 1777 // The definition of a constexpr function(p3) or constructor(p4) [...] shall 1778 // contain only 1779 for (const auto *DclIt : DS->decls()) { 1780 switch (DclIt->getKind()) { 1781 case Decl::StaticAssert: 1782 case Decl::Using: 1783 case Decl::UsingShadow: 1784 case Decl::UsingDirective: 1785 case Decl::UnresolvedUsingTypename: 1786 case Decl::UnresolvedUsingValue: 1787 // - static_assert-declarations 1788 // - using-declarations, 1789 // - using-directives, 1790 continue; 1791 1792 case Decl::Typedef: 1793 case Decl::TypeAlias: { 1794 // - typedef declarations and alias-declarations that do not define 1795 // classes or enumerations, 1796 const auto *TN = cast<TypedefNameDecl>(DclIt); 1797 if (TN->getUnderlyingType()->isVariablyModifiedType()) { 1798 // Don't allow variably-modified types in constexpr functions. 1799 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1800 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); 1801 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) 1802 << TL.getSourceRange() << TL.getType() 1803 << isa<CXXConstructorDecl>(Dcl); 1804 } 1805 return false; 1806 } 1807 continue; 1808 } 1809 1810 case Decl::Enum: 1811 case Decl::CXXRecord: 1812 // C++1y allows types to be defined, not just declared. 1813 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) { 1814 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1815 SemaRef.Diag(DS->getBeginLoc(), 1816 SemaRef.getLangOpts().CPlusPlus14 1817 ? diag::warn_cxx11_compat_constexpr_type_definition 1818 : diag::ext_constexpr_type_definition) 1819 << isa<CXXConstructorDecl>(Dcl); 1820 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1821 return false; 1822 } 1823 } 1824 continue; 1825 1826 case Decl::EnumConstant: 1827 case Decl::IndirectField: 1828 case Decl::ParmVar: 1829 // These can only appear with other declarations which are banned in 1830 // C++11 and permitted in C++1y, so ignore them. 1831 continue; 1832 1833 case Decl::Var: 1834 case Decl::Decomposition: { 1835 // C++1y [dcl.constexpr]p3 allows anything except: 1836 // a definition of a variable of non-literal type or of static or 1837 // thread storage duration or [before C++2a] for which no 1838 // initialization is performed. 1839 const auto *VD = cast<VarDecl>(DclIt); 1840 if (VD->isThisDeclarationADefinition()) { 1841 if (VD->isStaticLocal()) { 1842 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1843 SemaRef.Diag(VD->getLocation(), 1844 diag::err_constexpr_local_var_static) 1845 << isa<CXXConstructorDecl>(Dcl) 1846 << (VD->getTLSKind() == VarDecl::TLS_Dynamic); 1847 } 1848 return false; 1849 } 1850 if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), 1851 diag::err_constexpr_local_var_non_literal_type, 1852 isa<CXXConstructorDecl>(Dcl))) 1853 return false; 1854 if (!VD->getType()->isDependentType() && 1855 !VD->hasInit() && !VD->isCXXForRangeDecl()) { 1856 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1857 SemaRef.Diag( 1858 VD->getLocation(), 1859 SemaRef.getLangOpts().CPlusPlus2a 1860 ? diag::warn_cxx17_compat_constexpr_local_var_no_init 1861 : diag::ext_constexpr_local_var_no_init) 1862 << isa<CXXConstructorDecl>(Dcl); 1863 } else if (!SemaRef.getLangOpts().CPlusPlus2a) { 1864 return false; 1865 } 1866 continue; 1867 } 1868 } 1869 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1870 SemaRef.Diag(VD->getLocation(), 1871 SemaRef.getLangOpts().CPlusPlus14 1872 ? diag::warn_cxx11_compat_constexpr_local_var 1873 : diag::ext_constexpr_local_var) 1874 << isa<CXXConstructorDecl>(Dcl); 1875 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1876 return false; 1877 } 1878 continue; 1879 } 1880 1881 case Decl::NamespaceAlias: 1882 case Decl::Function: 1883 // These are disallowed in C++11 and permitted in C++1y. Allow them 1884 // everywhere as an extension. 1885 if (!Cxx1yLoc.isValid()) 1886 Cxx1yLoc = DS->getBeginLoc(); 1887 continue; 1888 1889 default: 1890 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1891 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 1892 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 1893 } 1894 return false; 1895 } 1896 } 1897 1898 return true; 1899 } 1900 1901 /// Check that the given field is initialized within a constexpr constructor. 1902 /// 1903 /// \param Dcl The constexpr constructor being checked. 1904 /// \param Field The field being checked. This may be a member of an anonymous 1905 /// struct or union nested within the class being checked. 1906 /// \param Inits All declarations, including anonymous struct/union members and 1907 /// indirect members, for which any initialization was provided. 1908 /// \param Diagnosed Whether we've emitted the error message yet. Used to attach 1909 /// multiple notes for different members to the same error. 1910 /// \param Kind Whether we're diagnosing a constructor as written or determining 1911 /// whether the formal requirements are satisfied. 1912 /// \return \c false if we're checking for validity and the constructor does 1913 /// not satisfy the requirements on a constexpr constructor. 1914 static bool CheckConstexprCtorInitializer(Sema &SemaRef, 1915 const FunctionDecl *Dcl, 1916 FieldDecl *Field, 1917 llvm::SmallSet<Decl*, 16> &Inits, 1918 bool &Diagnosed, 1919 Sema::CheckConstexprKind Kind) { 1920 // In C++20 onwards, there's nothing to check for validity. 1921 if (Kind == Sema::CheckConstexprKind::CheckValid && 1922 SemaRef.getLangOpts().CPlusPlus2a) 1923 return true; 1924 1925 if (Field->isInvalidDecl()) 1926 return true; 1927 1928 if (Field->isUnnamedBitfield()) 1929 return true; 1930 1931 // Anonymous unions with no variant members and empty anonymous structs do not 1932 // need to be explicitly initialized. FIXME: Anonymous structs that contain no 1933 // indirect fields don't need initializing. 1934 if (Field->isAnonymousStructOrUnion() && 1935 (Field->getType()->isUnionType() 1936 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() 1937 : Field->getType()->getAsCXXRecordDecl()->isEmpty())) 1938 return true; 1939 1940 if (!Inits.count(Field)) { 1941 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1942 if (!Diagnosed) { 1943 SemaRef.Diag(Dcl->getLocation(), 1944 SemaRef.getLangOpts().CPlusPlus2a 1945 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init 1946 : diag::ext_constexpr_ctor_missing_init); 1947 Diagnosed = true; 1948 } 1949 SemaRef.Diag(Field->getLocation(), 1950 diag::note_constexpr_ctor_missing_init); 1951 } else if (!SemaRef.getLangOpts().CPlusPlus2a) { 1952 return false; 1953 } 1954 } else if (Field->isAnonymousStructOrUnion()) { 1955 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); 1956 for (auto *I : RD->fields()) 1957 // If an anonymous union contains an anonymous struct of which any member 1958 // is initialized, all members must be initialized. 1959 if (!RD->isUnion() || Inits.count(I)) 1960 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 1961 Kind)) 1962 return false; 1963 } 1964 return true; 1965 } 1966 1967 /// Check the provided statement is allowed in a constexpr function 1968 /// definition. 1969 static bool 1970 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, 1971 SmallVectorImpl<SourceLocation> &ReturnStmts, 1972 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, 1973 Sema::CheckConstexprKind Kind) { 1974 // - its function-body shall be [...] a compound-statement that contains only 1975 switch (S->getStmtClass()) { 1976 case Stmt::NullStmtClass: 1977 // - null statements, 1978 return true; 1979 1980 case Stmt::DeclStmtClass: 1981 // - static_assert-declarations 1982 // - using-declarations, 1983 // - using-directives, 1984 // - typedef declarations and alias-declarations that do not define 1985 // classes or enumerations, 1986 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind)) 1987 return false; 1988 return true; 1989 1990 case Stmt::ReturnStmtClass: 1991 // - and exactly one return statement; 1992 if (isa<CXXConstructorDecl>(Dcl)) { 1993 // C++1y allows return statements in constexpr constructors. 1994 if (!Cxx1yLoc.isValid()) 1995 Cxx1yLoc = S->getBeginLoc(); 1996 return true; 1997 } 1998 1999 ReturnStmts.push_back(S->getBeginLoc()); 2000 return true; 2001 2002 case Stmt::CompoundStmtClass: { 2003 // C++1y allows compound-statements. 2004 if (!Cxx1yLoc.isValid()) 2005 Cxx1yLoc = S->getBeginLoc(); 2006 2007 CompoundStmt *CompStmt = cast<CompoundStmt>(S); 2008 for (auto *BodyIt : CompStmt->body()) { 2009 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, 2010 Cxx1yLoc, Cxx2aLoc, Kind)) 2011 return false; 2012 } 2013 return true; 2014 } 2015 2016 case Stmt::AttributedStmtClass: 2017 if (!Cxx1yLoc.isValid()) 2018 Cxx1yLoc = S->getBeginLoc(); 2019 return true; 2020 2021 case Stmt::IfStmtClass: { 2022 // C++1y allows if-statements. 2023 if (!Cxx1yLoc.isValid()) 2024 Cxx1yLoc = S->getBeginLoc(); 2025 2026 IfStmt *If = cast<IfStmt>(S); 2027 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, 2028 Cxx1yLoc, Cxx2aLoc, Kind)) 2029 return false; 2030 if (If->getElse() && 2031 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, 2032 Cxx1yLoc, Cxx2aLoc, Kind)) 2033 return false; 2034 return true; 2035 } 2036 2037 case Stmt::WhileStmtClass: 2038 case Stmt::DoStmtClass: 2039 case Stmt::ForStmtClass: 2040 case Stmt::CXXForRangeStmtClass: 2041 case Stmt::ContinueStmtClass: 2042 // C++1y allows all of these. We don't allow them as extensions in C++11, 2043 // because they don't make sense without variable mutation. 2044 if (!SemaRef.getLangOpts().CPlusPlus14) 2045 break; 2046 if (!Cxx1yLoc.isValid()) 2047 Cxx1yLoc = S->getBeginLoc(); 2048 for (Stmt *SubStmt : S->children()) 2049 if (SubStmt && 2050 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2051 Cxx1yLoc, Cxx2aLoc, Kind)) 2052 return false; 2053 return true; 2054 2055 case Stmt::SwitchStmtClass: 2056 case Stmt::CaseStmtClass: 2057 case Stmt::DefaultStmtClass: 2058 case Stmt::BreakStmtClass: 2059 // C++1y allows switch-statements, and since they don't need variable 2060 // mutation, we can reasonably allow them in C++11 as an extension. 2061 if (!Cxx1yLoc.isValid()) 2062 Cxx1yLoc = S->getBeginLoc(); 2063 for (Stmt *SubStmt : S->children()) 2064 if (SubStmt && 2065 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2066 Cxx1yLoc, Cxx2aLoc, Kind)) 2067 return false; 2068 return true; 2069 2070 case Stmt::GCCAsmStmtClass: 2071 case Stmt::MSAsmStmtClass: 2072 // C++2a allows inline assembly statements. 2073 case Stmt::CXXTryStmtClass: 2074 if (Cxx2aLoc.isInvalid()) 2075 Cxx2aLoc = S->getBeginLoc(); 2076 for (Stmt *SubStmt : S->children()) { 2077 if (SubStmt && 2078 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2079 Cxx1yLoc, Cxx2aLoc, Kind)) 2080 return false; 2081 } 2082 return true; 2083 2084 case Stmt::CXXCatchStmtClass: 2085 // Do not bother checking the language mode (already covered by the 2086 // try block check). 2087 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, 2088 cast<CXXCatchStmt>(S)->getHandlerBlock(), 2089 ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind)) 2090 return false; 2091 return true; 2092 2093 default: 2094 if (!isa<Expr>(S)) 2095 break; 2096 2097 // C++1y allows expression-statements. 2098 if (!Cxx1yLoc.isValid()) 2099 Cxx1yLoc = S->getBeginLoc(); 2100 return true; 2101 } 2102 2103 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2104 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 2105 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2106 } 2107 return false; 2108 } 2109 2110 /// Check the body for the given constexpr function declaration only contains 2111 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. 2112 /// 2113 /// \return true if the body is OK, false if we have found or diagnosed a 2114 /// problem. 2115 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 2116 Stmt *Body, 2117 Sema::CheckConstexprKind Kind) { 2118 SmallVector<SourceLocation, 4> ReturnStmts; 2119 2120 if (isa<CXXTryStmt>(Body)) { 2121 // C++11 [dcl.constexpr]p3: 2122 // The definition of a constexpr function shall satisfy the following 2123 // constraints: [...] 2124 // - its function-body shall be = delete, = default, or a 2125 // compound-statement 2126 // 2127 // C++11 [dcl.constexpr]p4: 2128 // In the definition of a constexpr constructor, [...] 2129 // - its function-body shall not be a function-try-block; 2130 // 2131 // This restriction is lifted in C++2a, as long as inner statements also 2132 // apply the general constexpr rules. 2133 switch (Kind) { 2134 case Sema::CheckConstexprKind::CheckValid: 2135 if (!SemaRef.getLangOpts().CPlusPlus2a) 2136 return false; 2137 break; 2138 2139 case Sema::CheckConstexprKind::Diagnose: 2140 SemaRef.Diag(Body->getBeginLoc(), 2141 !SemaRef.getLangOpts().CPlusPlus2a 2142 ? diag::ext_constexpr_function_try_block_cxx2a 2143 : diag::warn_cxx17_compat_constexpr_function_try_block) 2144 << isa<CXXConstructorDecl>(Dcl); 2145 break; 2146 } 2147 } 2148 2149 // - its function-body shall be [...] a compound-statement that contains only 2150 // [... list of cases ...] 2151 // 2152 // Note that walking the children here is enough to properly check for 2153 // CompoundStmt and CXXTryStmt body. 2154 SourceLocation Cxx1yLoc, Cxx2aLoc; 2155 for (Stmt *SubStmt : Body->children()) { 2156 if (SubStmt && 2157 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2158 Cxx1yLoc, Cxx2aLoc, Kind)) 2159 return false; 2160 } 2161 2162 if (Kind == Sema::CheckConstexprKind::CheckValid) { 2163 // If this is only valid as an extension, report that we don't satisfy the 2164 // constraints of the current language. 2165 if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus2a) || 2166 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) 2167 return false; 2168 } else if (Cxx2aLoc.isValid()) { 2169 SemaRef.Diag(Cxx2aLoc, 2170 SemaRef.getLangOpts().CPlusPlus2a 2171 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt 2172 : diag::ext_constexpr_body_invalid_stmt_cxx2a) 2173 << isa<CXXConstructorDecl>(Dcl); 2174 } else if (Cxx1yLoc.isValid()) { 2175 SemaRef.Diag(Cxx1yLoc, 2176 SemaRef.getLangOpts().CPlusPlus14 2177 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt 2178 : diag::ext_constexpr_body_invalid_stmt) 2179 << isa<CXXConstructorDecl>(Dcl); 2180 } 2181 2182 if (const CXXConstructorDecl *Constructor 2183 = dyn_cast<CXXConstructorDecl>(Dcl)) { 2184 const CXXRecordDecl *RD = Constructor->getParent(); 2185 // DR1359: 2186 // - every non-variant non-static data member and base class sub-object 2187 // shall be initialized; 2188 // DR1460: 2189 // - if the class is a union having variant members, exactly one of them 2190 // shall be initialized; 2191 if (RD->isUnion()) { 2192 if (Constructor->getNumCtorInitializers() == 0 && 2193 RD->hasVariantMembers()) { 2194 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2195 SemaRef.Diag( 2196 Dcl->getLocation(), 2197 SemaRef.getLangOpts().CPlusPlus2a 2198 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init 2199 : diag::ext_constexpr_union_ctor_no_init); 2200 } else if (!SemaRef.getLangOpts().CPlusPlus2a) { 2201 return false; 2202 } 2203 } 2204 } else if (!Constructor->isDependentContext() && 2205 !Constructor->isDelegatingConstructor()) { 2206 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"); 2207 2208 // Skip detailed checking if we have enough initializers, and we would 2209 // allow at most one initializer per member. 2210 bool AnyAnonStructUnionMembers = false; 2211 unsigned Fields = 0; 2212 for (CXXRecordDecl::field_iterator I = RD->field_begin(), 2213 E = RD->field_end(); I != E; ++I, ++Fields) { 2214 if (I->isAnonymousStructOrUnion()) { 2215 AnyAnonStructUnionMembers = true; 2216 break; 2217 } 2218 } 2219 // DR1460: 2220 // - if the class is a union-like class, but is not a union, for each of 2221 // its anonymous union members having variant members, exactly one of 2222 // them shall be initialized; 2223 if (AnyAnonStructUnionMembers || 2224 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { 2225 // Check initialization of non-static data members. Base classes are 2226 // always initialized so do not need to be checked. Dependent bases 2227 // might not have initializers in the member initializer list. 2228 llvm::SmallSet<Decl*, 16> Inits; 2229 for (const auto *I: Constructor->inits()) { 2230 if (FieldDecl *FD = I->getMember()) 2231 Inits.insert(FD); 2232 else if (IndirectFieldDecl *ID = I->getIndirectMember()) 2233 Inits.insert(ID->chain_begin(), ID->chain_end()); 2234 } 2235 2236 bool Diagnosed = false; 2237 for (auto *I : RD->fields()) 2238 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2239 Kind)) 2240 return false; 2241 } 2242 } 2243 } else { 2244 if (ReturnStmts.empty()) { 2245 // C++1y doesn't require constexpr functions to contain a 'return' 2246 // statement. We still do, unless the return type might be void, because 2247 // otherwise if there's no return statement, the function cannot 2248 // be used in a core constant expression. 2249 bool OK = SemaRef.getLangOpts().CPlusPlus14 && 2250 (Dcl->getReturnType()->isVoidType() || 2251 Dcl->getReturnType()->isDependentType()); 2252 switch (Kind) { 2253 case Sema::CheckConstexprKind::Diagnose: 2254 SemaRef.Diag(Dcl->getLocation(), 2255 OK ? diag::warn_cxx11_compat_constexpr_body_no_return 2256 : diag::err_constexpr_body_no_return) 2257 << Dcl->isConsteval(); 2258 if (!OK) 2259 return false; 2260 break; 2261 2262 case Sema::CheckConstexprKind::CheckValid: 2263 // The formal requirements don't include this rule in C++14, even 2264 // though the "must be able to produce a constant expression" rules 2265 // still imply it in some cases. 2266 if (!SemaRef.getLangOpts().CPlusPlus14) 2267 return false; 2268 break; 2269 } 2270 } else if (ReturnStmts.size() > 1) { 2271 switch (Kind) { 2272 case Sema::CheckConstexprKind::Diagnose: 2273 SemaRef.Diag( 2274 ReturnStmts.back(), 2275 SemaRef.getLangOpts().CPlusPlus14 2276 ? diag::warn_cxx11_compat_constexpr_body_multiple_return 2277 : diag::ext_constexpr_body_multiple_return); 2278 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) 2279 SemaRef.Diag(ReturnStmts[I], 2280 diag::note_constexpr_body_previous_return); 2281 break; 2282 2283 case Sema::CheckConstexprKind::CheckValid: 2284 if (!SemaRef.getLangOpts().CPlusPlus14) 2285 return false; 2286 break; 2287 } 2288 } 2289 } 2290 2291 // C++11 [dcl.constexpr]p5: 2292 // if no function argument values exist such that the function invocation 2293 // substitution would produce a constant expression, the program is 2294 // ill-formed; no diagnostic required. 2295 // C++11 [dcl.constexpr]p3: 2296 // - every constructor call and implicit conversion used in initializing the 2297 // return value shall be one of those allowed in a constant expression. 2298 // C++11 [dcl.constexpr]p4: 2299 // - every constructor involved in initializing non-static data members and 2300 // base class sub-objects shall be a constexpr constructor. 2301 // 2302 // Note that this rule is distinct from the "requirements for a constexpr 2303 // function", so is not checked in CheckValid mode. 2304 SmallVector<PartialDiagnosticAt, 8> Diags; 2305 if (Kind == Sema::CheckConstexprKind::Diagnose && 2306 !Expr::isPotentialConstantExpr(Dcl, Diags)) { 2307 SemaRef.Diag(Dcl->getLocation(), 2308 diag::ext_constexpr_function_never_constant_expr) 2309 << isa<CXXConstructorDecl>(Dcl); 2310 for (size_t I = 0, N = Diags.size(); I != N; ++I) 2311 SemaRef.Diag(Diags[I].first, Diags[I].second); 2312 // Don't return false here: we allow this for compatibility in 2313 // system headers. 2314 } 2315 2316 return true; 2317 } 2318 2319 /// Get the class that is directly named by the current context. This is the 2320 /// class for which an unqualified-id in this scope could name a constructor 2321 /// or destructor. 2322 /// 2323 /// If the scope specifier denotes a class, this will be that class. 2324 /// If the scope specifier is empty, this will be the class whose 2325 /// member-specification we are currently within. Otherwise, there 2326 /// is no such class. 2327 CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { 2328 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2329 2330 if (SS && SS->isInvalid()) 2331 return nullptr; 2332 2333 if (SS && SS->isNotEmpty()) { 2334 DeclContext *DC = computeDeclContext(*SS, true); 2335 return dyn_cast_or_null<CXXRecordDecl>(DC); 2336 } 2337 2338 return dyn_cast_or_null<CXXRecordDecl>(CurContext); 2339 } 2340 2341 /// isCurrentClassName - Determine whether the identifier II is the 2342 /// name of the class type currently being defined. In the case of 2343 /// nested classes, this will only return true if II is the name of 2344 /// the innermost class. 2345 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, 2346 const CXXScopeSpec *SS) { 2347 CXXRecordDecl *CurDecl = getCurrentClass(S, SS); 2348 return CurDecl && &II == CurDecl->getIdentifier(); 2349 } 2350 2351 /// Determine whether the identifier II is a typo for the name of 2352 /// the class type currently being defined. If so, update it to the identifier 2353 /// that should have been used. 2354 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { 2355 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2356 2357 if (!getLangOpts().SpellChecking) 2358 return false; 2359 2360 CXXRecordDecl *CurDecl; 2361 if (SS && SS->isSet() && !SS->isInvalid()) { 2362 DeclContext *DC = computeDeclContext(*SS, true); 2363 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); 2364 } else 2365 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); 2366 2367 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && 2368 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) 2369 < II->getLength()) { 2370 II = CurDecl->getIdentifier(); 2371 return true; 2372 } 2373 2374 return false; 2375 } 2376 2377 /// Determine whether the given class is a base class of the given 2378 /// class, including looking at dependent bases. 2379 static bool findCircularInheritance(const CXXRecordDecl *Class, 2380 const CXXRecordDecl *Current) { 2381 SmallVector<const CXXRecordDecl*, 8> Queue; 2382 2383 Class = Class->getCanonicalDecl(); 2384 while (true) { 2385 for (const auto &I : Current->bases()) { 2386 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 2387 if (!Base) 2388 continue; 2389 2390 Base = Base->getDefinition(); 2391 if (!Base) 2392 continue; 2393 2394 if (Base->getCanonicalDecl() == Class) 2395 return true; 2396 2397 Queue.push_back(Base); 2398 } 2399 2400 if (Queue.empty()) 2401 return false; 2402 2403 Current = Queue.pop_back_val(); 2404 } 2405 2406 return false; 2407 } 2408 2409 /// Check the validity of a C++ base class specifier. 2410 /// 2411 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics 2412 /// and returns NULL otherwise. 2413 CXXBaseSpecifier * 2414 Sema::CheckBaseSpecifier(CXXRecordDecl *Class, 2415 SourceRange SpecifierRange, 2416 bool Virtual, AccessSpecifier Access, 2417 TypeSourceInfo *TInfo, 2418 SourceLocation EllipsisLoc) { 2419 QualType BaseType = TInfo->getType(); 2420 2421 // C++ [class.union]p1: 2422 // A union shall not have base classes. 2423 if (Class->isUnion()) { 2424 Diag(Class->getLocation(), diag::err_base_clause_on_union) 2425 << SpecifierRange; 2426 return nullptr; 2427 } 2428 2429 if (EllipsisLoc.isValid() && 2430 !TInfo->getType()->containsUnexpandedParameterPack()) { 2431 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 2432 << TInfo->getTypeLoc().getSourceRange(); 2433 EllipsisLoc = SourceLocation(); 2434 } 2435 2436 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); 2437 2438 if (BaseType->isDependentType()) { 2439 // Make sure that we don't have circular inheritance among our dependent 2440 // bases. For non-dependent bases, the check for completeness below handles 2441 // this. 2442 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) { 2443 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() || 2444 ((BaseDecl = BaseDecl->getDefinition()) && 2445 findCircularInheritance(Class, BaseDecl))) { 2446 Diag(BaseLoc, diag::err_circular_inheritance) 2447 << BaseType << Context.getTypeDeclType(Class); 2448 2449 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl()) 2450 Diag(BaseDecl->getLocation(), diag::note_previous_decl) 2451 << BaseType; 2452 2453 return nullptr; 2454 } 2455 } 2456 2457 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2458 Class->getTagKind() == TTK_Class, 2459 Access, TInfo, EllipsisLoc); 2460 } 2461 2462 // Base specifiers must be record types. 2463 if (!BaseType->isRecordType()) { 2464 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; 2465 return nullptr; 2466 } 2467 2468 // C++ [class.union]p1: 2469 // A union shall not be used as a base class. 2470 if (BaseType->isUnionType()) { 2471 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; 2472 return nullptr; 2473 } 2474 2475 // For the MS ABI, propagate DLL attributes to base class templates. 2476 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2477 if (Attr *ClassAttr = getDLLAttr(Class)) { 2478 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 2479 BaseType->getAsCXXRecordDecl())) { 2480 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate, 2481 BaseLoc); 2482 } 2483 } 2484 } 2485 2486 // C++ [class.derived]p2: 2487 // The class-name in a base-specifier shall not be an incompletely 2488 // defined class. 2489 if (RequireCompleteType(BaseLoc, BaseType, 2490 diag::err_incomplete_base_class, SpecifierRange)) { 2491 Class->setInvalidDecl(); 2492 return nullptr; 2493 } 2494 2495 // If the base class is polymorphic or isn't empty, the new one is/isn't, too. 2496 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl(); 2497 assert(BaseDecl && "Record type has no declaration"); 2498 BaseDecl = BaseDecl->getDefinition(); 2499 assert(BaseDecl && "Base type is not incomplete, but has no definition"); 2500 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); 2501 assert(CXXBaseDecl && "Base type is not a C++ type"); 2502 2503 // Microsoft docs say: 2504 // "If a base-class has a code_seg attribute, derived classes must have the 2505 // same attribute." 2506 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>(); 2507 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); 2508 if ((DerivedCSA || BaseCSA) && 2509 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) { 2510 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); 2511 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here) 2512 << CXXBaseDecl; 2513 return nullptr; 2514 } 2515 2516 // A class which contains a flexible array member is not suitable for use as a 2517 // base class: 2518 // - If the layout determines that a base comes before another base, 2519 // the flexible array member would index into the subsequent base. 2520 // - If the layout determines that base comes before the derived class, 2521 // the flexible array member would index into the derived class. 2522 if (CXXBaseDecl->hasFlexibleArrayMember()) { 2523 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) 2524 << CXXBaseDecl->getDeclName(); 2525 return nullptr; 2526 } 2527 2528 // C++ [class]p3: 2529 // If a class is marked final and it appears as a base-type-specifier in 2530 // base-clause, the program is ill-formed. 2531 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) { 2532 Diag(BaseLoc, diag::err_class_marked_final_used_as_base) 2533 << CXXBaseDecl->getDeclName() 2534 << FA->isSpelledAsSealed(); 2535 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at) 2536 << CXXBaseDecl->getDeclName() << FA->getRange(); 2537 return nullptr; 2538 } 2539 2540 if (BaseDecl->isInvalidDecl()) 2541 Class->setInvalidDecl(); 2542 2543 // Create the base specifier. 2544 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2545 Class->getTagKind() == TTK_Class, 2546 Access, TInfo, EllipsisLoc); 2547 } 2548 2549 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is 2550 /// one entry in the base class list of a class specifier, for 2551 /// example: 2552 /// class foo : public bar, virtual private baz { 2553 /// 'public bar' and 'virtual private baz' are each base-specifiers. 2554 BaseResult 2555 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, 2556 ParsedAttributes &Attributes, 2557 bool Virtual, AccessSpecifier Access, 2558 ParsedType basetype, SourceLocation BaseLoc, 2559 SourceLocation EllipsisLoc) { 2560 if (!classdecl) 2561 return true; 2562 2563 AdjustDeclIfTemplate(classdecl); 2564 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); 2565 if (!Class) 2566 return true; 2567 2568 // We haven't yet attached the base specifiers. 2569 Class->setIsParsingBaseSpecifiers(); 2570 2571 // We do not support any C++11 attributes on base-specifiers yet. 2572 // Diagnose any attributes we see. 2573 for (const ParsedAttr &AL : Attributes) { 2574 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) 2575 continue; 2576 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute 2577 ? (unsigned)diag::warn_unknown_attribute_ignored 2578 : (unsigned)diag::err_base_specifier_attribute) 2579 << AL; 2580 } 2581 2582 TypeSourceInfo *TInfo = nullptr; 2583 GetTypeFromParser(basetype, &TInfo); 2584 2585 if (EllipsisLoc.isInvalid() && 2586 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, 2587 UPPC_BaseType)) 2588 return true; 2589 2590 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, 2591 Virtual, Access, TInfo, 2592 EllipsisLoc)) 2593 return BaseSpec; 2594 else 2595 Class->setInvalidDecl(); 2596 2597 return true; 2598 } 2599 2600 /// Use small set to collect indirect bases. As this is only used 2601 /// locally, there's no need to abstract the small size parameter. 2602 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; 2603 2604 /// Recursively add the bases of Type. Don't add Type itself. 2605 static void 2606 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, 2607 const QualType &Type) 2608 { 2609 // Even though the incoming type is a base, it might not be 2610 // a class -- it could be a template parm, for instance. 2611 if (auto Rec = Type->getAs<RecordType>()) { 2612 auto Decl = Rec->getAsCXXRecordDecl(); 2613 2614 // Iterate over its bases. 2615 for (const auto &BaseSpec : Decl->bases()) { 2616 QualType Base = Context.getCanonicalType(BaseSpec.getType()) 2617 .getUnqualifiedType(); 2618 if (Set.insert(Base).second) 2619 // If we've not already seen it, recurse. 2620 NoteIndirectBases(Context, Set, Base); 2621 } 2622 } 2623 } 2624 2625 /// Performs the actual work of attaching the given base class 2626 /// specifiers to a C++ class. 2627 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, 2628 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2629 if (Bases.empty()) 2630 return false; 2631 2632 // Used to keep track of which base types we have already seen, so 2633 // that we can properly diagnose redundant direct base types. Note 2634 // that the key is always the unqualified canonical type of the base 2635 // class. 2636 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; 2637 2638 // Used to track indirect bases so we can see if a direct base is 2639 // ambiguous. 2640 IndirectBaseSet IndirectBaseTypes; 2641 2642 // Copy non-redundant base specifiers into permanent storage. 2643 unsigned NumGoodBases = 0; 2644 bool Invalid = false; 2645 for (unsigned idx = 0; idx < Bases.size(); ++idx) { 2646 QualType NewBaseType 2647 = Context.getCanonicalType(Bases[idx]->getType()); 2648 NewBaseType = NewBaseType.getLocalUnqualifiedType(); 2649 2650 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; 2651 if (KnownBase) { 2652 // C++ [class.mi]p3: 2653 // A class shall not be specified as a direct base class of a 2654 // derived class more than once. 2655 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) 2656 << KnownBase->getType() << Bases[idx]->getSourceRange(); 2657 2658 // Delete the duplicate base class specifier; we're going to 2659 // overwrite its pointer later. 2660 Context.Deallocate(Bases[idx]); 2661 2662 Invalid = true; 2663 } else { 2664 // Okay, add this new base class. 2665 KnownBase = Bases[idx]; 2666 Bases[NumGoodBases++] = Bases[idx]; 2667 2668 // Note this base's direct & indirect bases, if there could be ambiguity. 2669 if (Bases.size() > 1) 2670 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType); 2671 2672 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { 2673 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); 2674 if (Class->isInterface() && 2675 (!RD->isInterfaceLike() || 2676 KnownBase->getAccessSpecifier() != AS_public)) { 2677 // The Microsoft extension __interface does not permit bases that 2678 // are not themselves public interfaces. 2679 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) 2680 << getRecordDiagFromTagKind(RD->getTagKind()) << RD 2681 << RD->getSourceRange(); 2682 Invalid = true; 2683 } 2684 if (RD->hasAttr<WeakAttr>()) 2685 Class->addAttr(WeakAttr::CreateImplicit(Context)); 2686 } 2687 } 2688 } 2689 2690 // Attach the remaining base class specifiers to the derived class. 2691 Class->setBases(Bases.data(), NumGoodBases); 2692 2693 // Check that the only base classes that are duplicate are virtual. 2694 for (unsigned idx = 0; idx < NumGoodBases; ++idx) { 2695 // Check whether this direct base is inaccessible due to ambiguity. 2696 QualType BaseType = Bases[idx]->getType(); 2697 2698 // Skip all dependent types in templates being used as base specifiers. 2699 // Checks below assume that the base specifier is a CXXRecord. 2700 if (BaseType->isDependentType()) 2701 continue; 2702 2703 CanQualType CanonicalBase = Context.getCanonicalType(BaseType) 2704 .getUnqualifiedType(); 2705 2706 if (IndirectBaseTypes.count(CanonicalBase)) { 2707 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2708 /*DetectVirtual=*/true); 2709 bool found 2710 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); 2711 assert(found); 2712 (void)found; 2713 2714 if (Paths.isAmbiguous(CanonicalBase)) 2715 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) 2716 << BaseType << getAmbiguousPathsDisplayString(Paths) 2717 << Bases[idx]->getSourceRange(); 2718 else 2719 assert(Bases[idx]->isVirtual()); 2720 } 2721 2722 // Delete the base class specifier, since its data has been copied 2723 // into the CXXRecordDecl. 2724 Context.Deallocate(Bases[idx]); 2725 } 2726 2727 return Invalid; 2728 } 2729 2730 /// ActOnBaseSpecifiers - Attach the given base specifiers to the 2731 /// class, after checking whether there are any duplicate base 2732 /// classes. 2733 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, 2734 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2735 if (!ClassDecl || Bases.empty()) 2736 return; 2737 2738 AdjustDeclIfTemplate(ClassDecl); 2739 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases); 2740 } 2741 2742 /// Determine whether the type \p Derived is a C++ class that is 2743 /// derived from the type \p Base. 2744 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { 2745 if (!getLangOpts().CPlusPlus) 2746 return false; 2747 2748 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2749 if (!DerivedRD) 2750 return false; 2751 2752 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2753 if (!BaseRD) 2754 return false; 2755 2756 // If either the base or the derived type is invalid, don't try to 2757 // check whether one is derived from the other. 2758 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) 2759 return false; 2760 2761 // FIXME: In a modules build, do we need the entire path to be visible for us 2762 // to be able to use the inheritance relationship? 2763 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2764 return false; 2765 2766 return DerivedRD->isDerivedFrom(BaseRD); 2767 } 2768 2769 /// Determine whether the type \p Derived is a C++ class that is 2770 /// derived from the type \p Base. 2771 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, 2772 CXXBasePaths &Paths) { 2773 if (!getLangOpts().CPlusPlus) 2774 return false; 2775 2776 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2777 if (!DerivedRD) 2778 return false; 2779 2780 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2781 if (!BaseRD) 2782 return false; 2783 2784 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2785 return false; 2786 2787 return DerivedRD->isDerivedFrom(BaseRD, Paths); 2788 } 2789 2790 static void BuildBasePathArray(const CXXBasePath &Path, 2791 CXXCastPath &BasePathArray) { 2792 // We first go backward and check if we have a virtual base. 2793 // FIXME: It would be better if CXXBasePath had the base specifier for 2794 // the nearest virtual base. 2795 unsigned Start = 0; 2796 for (unsigned I = Path.size(); I != 0; --I) { 2797 if (Path[I - 1].Base->isVirtual()) { 2798 Start = I - 1; 2799 break; 2800 } 2801 } 2802 2803 // Now add all bases. 2804 for (unsigned I = Start, E = Path.size(); I != E; ++I) 2805 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); 2806 } 2807 2808 2809 void Sema::BuildBasePathArray(const CXXBasePaths &Paths, 2810 CXXCastPath &BasePathArray) { 2811 assert(BasePathArray.empty() && "Base path array must be empty!"); 2812 assert(Paths.isRecordingPaths() && "Must record paths!"); 2813 return ::BuildBasePathArray(Paths.front(), BasePathArray); 2814 } 2815 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base 2816 /// conversion (where Derived and Base are class types) is 2817 /// well-formed, meaning that the conversion is unambiguous (and 2818 /// that all of the base classes are accessible). Returns true 2819 /// and emits a diagnostic if the code is ill-formed, returns false 2820 /// otherwise. Loc is the location where this routine should point to 2821 /// if there is an error, and Range is the source range to highlight 2822 /// if there is an error. 2823 /// 2824 /// If either InaccessibleBaseID or AmbigiousBaseConvID are 0, then the 2825 /// diagnostic for the respective type of error will be suppressed, but the 2826 /// check for ill-formed code will still be performed. 2827 bool 2828 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 2829 unsigned InaccessibleBaseID, 2830 unsigned AmbigiousBaseConvID, 2831 SourceLocation Loc, SourceRange Range, 2832 DeclarationName Name, 2833 CXXCastPath *BasePath, 2834 bool IgnoreAccess) { 2835 // First, determine whether the path from Derived to Base is 2836 // ambiguous. This is slightly more expensive than checking whether 2837 // the Derived to Base conversion exists, because here we need to 2838 // explore multiple paths to determine if there is an ambiguity. 2839 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2840 /*DetectVirtual=*/false); 2841 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 2842 if (!DerivationOkay) 2843 return true; 2844 2845 const CXXBasePath *Path = nullptr; 2846 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) 2847 Path = &Paths.front(); 2848 2849 // For MSVC compatibility, check if Derived directly inherits from Base. Clang 2850 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the 2851 // user to access such bases. 2852 if (!Path && getLangOpts().MSVCCompat) { 2853 for (const CXXBasePath &PossiblePath : Paths) { 2854 if (PossiblePath.size() == 1) { 2855 Path = &PossiblePath; 2856 if (AmbigiousBaseConvID) 2857 Diag(Loc, diag::ext_ms_ambiguous_direct_base) 2858 << Base << Derived << Range; 2859 break; 2860 } 2861 } 2862 } 2863 2864 if (Path) { 2865 if (!IgnoreAccess) { 2866 // Check that the base class can be accessed. 2867 switch ( 2868 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) { 2869 case AR_inaccessible: 2870 return true; 2871 case AR_accessible: 2872 case AR_dependent: 2873 case AR_delayed: 2874 break; 2875 } 2876 } 2877 2878 // Build a base path if necessary. 2879 if (BasePath) 2880 ::BuildBasePathArray(*Path, *BasePath); 2881 return false; 2882 } 2883 2884 if (AmbigiousBaseConvID) { 2885 // We know that the derived-to-base conversion is ambiguous, and 2886 // we're going to produce a diagnostic. Perform the derived-to-base 2887 // search just one more time to compute all of the possible paths so 2888 // that we can print them out. This is more expensive than any of 2889 // the previous derived-to-base checks we've done, but at this point 2890 // performance isn't as much of an issue. 2891 Paths.clear(); 2892 Paths.setRecordingPaths(true); 2893 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 2894 assert(StillOkay && "Can only be used with a derived-to-base conversion"); 2895 (void)StillOkay; 2896 2897 // Build up a textual representation of the ambiguous paths, e.g., 2898 // D -> B -> A, that will be used to illustrate the ambiguous 2899 // conversions in the diagnostic. We only print one of the paths 2900 // to each base class subobject. 2901 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 2902 2903 Diag(Loc, AmbigiousBaseConvID) 2904 << Derived << Base << PathDisplayStr << Range << Name; 2905 } 2906 return true; 2907 } 2908 2909 bool 2910 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 2911 SourceLocation Loc, SourceRange Range, 2912 CXXCastPath *BasePath, 2913 bool IgnoreAccess) { 2914 return CheckDerivedToBaseConversion( 2915 Derived, Base, diag::err_upcast_to_inaccessible_base, 2916 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), 2917 BasePath, IgnoreAccess); 2918 } 2919 2920 2921 /// Builds a string representing ambiguous paths from a 2922 /// specific derived class to different subobjects of the same base 2923 /// class. 2924 /// 2925 /// This function builds a string that can be used in error messages 2926 /// to show the different paths that one can take through the 2927 /// inheritance hierarchy to go from the derived class to different 2928 /// subobjects of a base class. The result looks something like this: 2929 /// @code 2930 /// struct D -> struct B -> struct A 2931 /// struct D -> struct C -> struct A 2932 /// @endcode 2933 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { 2934 std::string PathDisplayStr; 2935 std::set<unsigned> DisplayedPaths; 2936 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 2937 Path != Paths.end(); ++Path) { 2938 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { 2939 // We haven't displayed a path to this particular base 2940 // class subobject yet. 2941 PathDisplayStr += "\n "; 2942 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); 2943 for (CXXBasePath::const_iterator Element = Path->begin(); 2944 Element != Path->end(); ++Element) 2945 PathDisplayStr += " -> " + Element->Base->getType().getAsString(); 2946 } 2947 } 2948 2949 return PathDisplayStr; 2950 } 2951 2952 //===----------------------------------------------------------------------===// 2953 // C++ class member Handling 2954 //===----------------------------------------------------------------------===// 2955 2956 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. 2957 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, 2958 SourceLocation ColonLoc, 2959 const ParsedAttributesView &Attrs) { 2960 assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); 2961 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, 2962 ASLoc, ColonLoc); 2963 CurContext->addHiddenDecl(ASDecl); 2964 return ProcessAccessDeclAttributeList(ASDecl, Attrs); 2965 } 2966 2967 /// CheckOverrideControl - Check C++11 override control semantics. 2968 void Sema::CheckOverrideControl(NamedDecl *D) { 2969 if (D->isInvalidDecl()) 2970 return; 2971 2972 // We only care about "override" and "final" declarations. 2973 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) 2974 return; 2975 2976 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 2977 2978 // We can't check dependent instance methods. 2979 if (MD && MD->isInstance() && 2980 (MD->getParent()->hasAnyDependentBases() || 2981 MD->getType()->isDependentType())) 2982 return; 2983 2984 if (MD && !MD->isVirtual()) { 2985 // If we have a non-virtual method, check if if hides a virtual method. 2986 // (In that case, it's most likely the method has the wrong type.) 2987 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 2988 FindHiddenVirtualMethods(MD, OverloadedMethods); 2989 2990 if (!OverloadedMethods.empty()) { 2991 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 2992 Diag(OA->getLocation(), 2993 diag::override_keyword_hides_virtual_member_function) 2994 << "override" << (OverloadedMethods.size() > 1); 2995 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 2996 Diag(FA->getLocation(), 2997 diag::override_keyword_hides_virtual_member_function) 2998 << (FA->isSpelledAsSealed() ? "sealed" : "final") 2999 << (OverloadedMethods.size() > 1); 3000 } 3001 NoteHiddenVirtualMethods(MD, OverloadedMethods); 3002 MD->setInvalidDecl(); 3003 return; 3004 } 3005 // Fall through into the general case diagnostic. 3006 // FIXME: We might want to attempt typo correction here. 3007 } 3008 3009 if (!MD || !MD->isVirtual()) { 3010 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3011 Diag(OA->getLocation(), 3012 diag::override_keyword_only_allowed_on_virtual_member_functions) 3013 << "override" << FixItHint::CreateRemoval(OA->getLocation()); 3014 D->dropAttr<OverrideAttr>(); 3015 } 3016 if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3017 Diag(FA->getLocation(), 3018 diag::override_keyword_only_allowed_on_virtual_member_functions) 3019 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3020 << FixItHint::CreateRemoval(FA->getLocation()); 3021 D->dropAttr<FinalAttr>(); 3022 } 3023 return; 3024 } 3025 3026 // C++11 [class.virtual]p5: 3027 // If a function is marked with the virt-specifier override and 3028 // does not override a member function of a base class, the program is 3029 // ill-formed. 3030 bool HasOverriddenMethods = MD->size_overridden_methods() != 0; 3031 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) 3032 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) 3033 << MD->getDeclName(); 3034 } 3035 3036 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) { 3037 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) 3038 return; 3039 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3040 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) 3041 return; 3042 3043 SourceLocation Loc = MD->getLocation(); 3044 SourceLocation SpellingLoc = Loc; 3045 if (getSourceManager().isMacroArgExpansion(Loc)) 3046 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); 3047 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); 3048 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) 3049 return; 3050 3051 if (MD->size_overridden_methods() > 0) { 3052 unsigned DiagID = isa<CXXDestructorDecl>(MD) 3053 ? diag::warn_destructor_marked_not_override_overriding 3054 : diag::warn_function_marked_not_override_overriding; 3055 Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 3056 const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); 3057 Diag(OMD->getLocation(), diag::note_overridden_virtual_function); 3058 } 3059 } 3060 3061 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member 3062 /// function overrides a virtual member function marked 'final', according to 3063 /// C++11 [class.virtual]p4. 3064 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, 3065 const CXXMethodDecl *Old) { 3066 FinalAttr *FA = Old->getAttr<FinalAttr>(); 3067 if (!FA) 3068 return false; 3069 3070 Diag(New->getLocation(), diag::err_final_function_overridden) 3071 << New->getDeclName() 3072 << FA->isSpelledAsSealed(); 3073 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 3074 return true; 3075 } 3076 3077 static bool InitializationHasSideEffects(const FieldDecl &FD) { 3078 const Type *T = FD.getType()->getBaseElementTypeUnsafe(); 3079 // FIXME: Destruction of ObjC lifetime types has side-effects. 3080 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3081 return !RD->isCompleteDefinition() || 3082 !RD->hasTrivialDefaultConstructor() || 3083 !RD->hasTrivialDestructor(); 3084 return false; 3085 } 3086 3087 static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) { 3088 ParsedAttributesView::const_iterator Itr = 3089 llvm::find_if(list, [](const ParsedAttr &AL) { 3090 return AL.isDeclspecPropertyAttribute(); 3091 }); 3092 if (Itr != list.end()) 3093 return &*Itr; 3094 return nullptr; 3095 } 3096 3097 // Check if there is a field shadowing. 3098 void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, 3099 DeclarationName FieldName, 3100 const CXXRecordDecl *RD, 3101 bool DeclIsField) { 3102 if (Diags.isIgnored(diag::warn_shadow_field, Loc)) 3103 return; 3104 3105 // To record a shadowed field in a base 3106 std::map<CXXRecordDecl*, NamedDecl*> Bases; 3107 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, 3108 CXXBasePath &Path) { 3109 const auto Base = Specifier->getType()->getAsCXXRecordDecl(); 3110 // Record an ambiguous path directly 3111 if (Bases.find(Base) != Bases.end()) 3112 return true; 3113 for (const auto Field : Base->lookup(FieldName)) { 3114 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && 3115 Field->getAccess() != AS_private) { 3116 assert(Field->getAccess() != AS_none); 3117 assert(Bases.find(Base) == Bases.end()); 3118 Bases[Base] = Field; 3119 return true; 3120 } 3121 } 3122 return false; 3123 }; 3124 3125 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3126 /*DetectVirtual=*/true); 3127 if (!RD->lookupInBases(FieldShadowed, Paths)) 3128 return; 3129 3130 for (const auto &P : Paths) { 3131 auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); 3132 auto It = Bases.find(Base); 3133 // Skip duplicated bases 3134 if (It == Bases.end()) 3135 continue; 3136 auto BaseField = It->second; 3137 assert(BaseField->getAccess() != AS_private); 3138 if (AS_none != 3139 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) { 3140 Diag(Loc, diag::warn_shadow_field) 3141 << FieldName << RD << Base << DeclIsField; 3142 Diag(BaseField->getLocation(), diag::note_shadow_field); 3143 Bases.erase(It); 3144 } 3145 } 3146 } 3147 3148 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member 3149 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the 3150 /// bitfield width if there is one, 'InitExpr' specifies the initializer if 3151 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is 3152 /// present (but parsing it has been deferred). 3153 NamedDecl * 3154 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, 3155 MultiTemplateParamsArg TemplateParameterLists, 3156 Expr *BW, const VirtSpecifiers &VS, 3157 InClassInitStyle InitStyle) { 3158 const DeclSpec &DS = D.getDeclSpec(); 3159 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 3160 DeclarationName Name = NameInfo.getName(); 3161 SourceLocation Loc = NameInfo.getLoc(); 3162 3163 // For anonymous bitfields, the location should point to the type. 3164 if (Loc.isInvalid()) 3165 Loc = D.getBeginLoc(); 3166 3167 Expr *BitWidth = static_cast<Expr*>(BW); 3168 3169 assert(isa<CXXRecordDecl>(CurContext)); 3170 assert(!DS.isFriendSpecified()); 3171 3172 bool isFunc = D.isDeclarationOfFunction(); 3173 const ParsedAttr *MSPropertyAttr = 3174 getMSPropertyAttr(D.getDeclSpec().getAttributes()); 3175 3176 if (cast<CXXRecordDecl>(CurContext)->isInterface()) { 3177 // The Microsoft extension __interface only permits public member functions 3178 // and prohibits constructors, destructors, operators, non-public member 3179 // functions, static methods and data members. 3180 unsigned InvalidDecl; 3181 bool ShowDeclName = true; 3182 if (!isFunc && 3183 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) 3184 InvalidDecl = 0; 3185 else if (!isFunc) 3186 InvalidDecl = 1; 3187 else if (AS != AS_public) 3188 InvalidDecl = 2; 3189 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) 3190 InvalidDecl = 3; 3191 else switch (Name.getNameKind()) { 3192 case DeclarationName::CXXConstructorName: 3193 InvalidDecl = 4; 3194 ShowDeclName = false; 3195 break; 3196 3197 case DeclarationName::CXXDestructorName: 3198 InvalidDecl = 5; 3199 ShowDeclName = false; 3200 break; 3201 3202 case DeclarationName::CXXOperatorName: 3203 case DeclarationName::CXXConversionFunctionName: 3204 InvalidDecl = 6; 3205 break; 3206 3207 default: 3208 InvalidDecl = 0; 3209 break; 3210 } 3211 3212 if (InvalidDecl) { 3213 if (ShowDeclName) 3214 Diag(Loc, diag::err_invalid_member_in_interface) 3215 << (InvalidDecl-1) << Name; 3216 else 3217 Diag(Loc, diag::err_invalid_member_in_interface) 3218 << (InvalidDecl-1) << ""; 3219 return nullptr; 3220 } 3221 } 3222 3223 // C++ 9.2p6: A member shall not be declared to have automatic storage 3224 // duration (auto, register) or with the extern storage-class-specifier. 3225 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class 3226 // data members and cannot be applied to names declared const or static, 3227 // and cannot be applied to reference members. 3228 switch (DS.getStorageClassSpec()) { 3229 case DeclSpec::SCS_unspecified: 3230 case DeclSpec::SCS_typedef: 3231 case DeclSpec::SCS_static: 3232 break; 3233 case DeclSpec::SCS_mutable: 3234 if (isFunc) { 3235 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); 3236 3237 // FIXME: It would be nicer if the keyword was ignored only for this 3238 // declarator. Otherwise we could get follow-up errors. 3239 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3240 } 3241 break; 3242 default: 3243 Diag(DS.getStorageClassSpecLoc(), 3244 diag::err_storageclass_invalid_for_member); 3245 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3246 break; 3247 } 3248 3249 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || 3250 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && 3251 !isFunc); 3252 3253 if (DS.hasConstexprSpecifier() && isInstField) { 3254 SemaDiagnosticBuilder B = 3255 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); 3256 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); 3257 if (InitStyle == ICIS_NoInit) { 3258 B << 0 << 0; 3259 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) 3260 B << FixItHint::CreateRemoval(ConstexprLoc); 3261 else { 3262 B << FixItHint::CreateReplacement(ConstexprLoc, "const"); 3263 D.getMutableDeclSpec().ClearConstexprSpec(); 3264 const char *PrevSpec; 3265 unsigned DiagID; 3266 bool Failed = D.getMutableDeclSpec().SetTypeQual( 3267 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); 3268 (void)Failed; 3269 assert(!Failed && "Making a constexpr member const shouldn't fail"); 3270 } 3271 } else { 3272 B << 1; 3273 const char *PrevSpec; 3274 unsigned DiagID; 3275 if (D.getMutableDeclSpec().SetStorageClassSpec( 3276 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, 3277 Context.getPrintingPolicy())) { 3278 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable && 3279 "This is the only DeclSpec that should fail to be applied"); 3280 B << 1; 3281 } else { 3282 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); 3283 isInstField = false; 3284 } 3285 } 3286 } 3287 3288 NamedDecl *Member; 3289 if (isInstField) { 3290 CXXScopeSpec &SS = D.getCXXScopeSpec(); 3291 3292 // Data members must have identifiers for names. 3293 if (!Name.isIdentifier()) { 3294 Diag(Loc, diag::err_bad_variable_name) 3295 << Name; 3296 return nullptr; 3297 } 3298 3299 IdentifierInfo *II = Name.getAsIdentifierInfo(); 3300 3301 // Member field could not be with "template" keyword. 3302 // So TemplateParameterLists should be empty in this case. 3303 if (TemplateParameterLists.size()) { 3304 TemplateParameterList* TemplateParams = TemplateParameterLists[0]; 3305 if (TemplateParams->size()) { 3306 // There is no such thing as a member field template. 3307 Diag(D.getIdentifierLoc(), diag::err_template_member) 3308 << II 3309 << SourceRange(TemplateParams->getTemplateLoc(), 3310 TemplateParams->getRAngleLoc()); 3311 } else { 3312 // There is an extraneous 'template<>' for this member. 3313 Diag(TemplateParams->getTemplateLoc(), 3314 diag::err_template_member_noparams) 3315 << II 3316 << SourceRange(TemplateParams->getTemplateLoc(), 3317 TemplateParams->getRAngleLoc()); 3318 } 3319 return nullptr; 3320 } 3321 3322 if (SS.isSet() && !SS.isInvalid()) { 3323 // The user provided a superfluous scope specifier inside a class 3324 // definition: 3325 // 3326 // class X { 3327 // int X::member; 3328 // }; 3329 if (DeclContext *DC = computeDeclContext(SS, false)) 3330 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(), 3331 D.getName().getKind() == 3332 UnqualifiedIdKind::IK_TemplateId); 3333 else 3334 Diag(D.getIdentifierLoc(), diag::err_member_qualification) 3335 << Name << SS.getRange(); 3336 3337 SS.clear(); 3338 } 3339 3340 if (MSPropertyAttr) { 3341 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3342 BitWidth, InitStyle, AS, *MSPropertyAttr); 3343 if (!Member) 3344 return nullptr; 3345 isInstField = false; 3346 } else { 3347 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3348 BitWidth, InitStyle, AS); 3349 if (!Member) 3350 return nullptr; 3351 } 3352 3353 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext)); 3354 } else { 3355 Member = HandleDeclarator(S, D, TemplateParameterLists); 3356 if (!Member) 3357 return nullptr; 3358 3359 // Non-instance-fields can't have a bitfield. 3360 if (BitWidth) { 3361 if (Member->isInvalidDecl()) { 3362 // don't emit another diagnostic. 3363 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) { 3364 // C++ 9.6p3: A bit-field shall not be a static member. 3365 // "static member 'A' cannot be a bit-field" 3366 Diag(Loc, diag::err_static_not_bitfield) 3367 << Name << BitWidth->getSourceRange(); 3368 } else if (isa<TypedefDecl>(Member)) { 3369 // "typedef member 'x' cannot be a bit-field" 3370 Diag(Loc, diag::err_typedef_not_bitfield) 3371 << Name << BitWidth->getSourceRange(); 3372 } else { 3373 // A function typedef ("typedef int f(); f a;"). 3374 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 3375 Diag(Loc, diag::err_not_integral_type_bitfield) 3376 << Name << cast<ValueDecl>(Member)->getType() 3377 << BitWidth->getSourceRange(); 3378 } 3379 3380 BitWidth = nullptr; 3381 Member->setInvalidDecl(); 3382 } 3383 3384 NamedDecl *NonTemplateMember = Member; 3385 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) 3386 NonTemplateMember = FunTmpl->getTemplatedDecl(); 3387 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member)) 3388 NonTemplateMember = VarTmpl->getTemplatedDecl(); 3389 3390 Member->setAccess(AS); 3391 3392 // If we have declared a member function template or static data member 3393 // template, set the access of the templated declaration as well. 3394 if (NonTemplateMember != Member) 3395 NonTemplateMember->setAccess(AS); 3396 3397 // C++ [temp.deduct.guide]p3: 3398 // A deduction guide [...] for a member class template [shall be 3399 // declared] with the same access [as the template]. 3400 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) { 3401 auto *TD = DG->getDeducedTemplate(); 3402 // Access specifiers are only meaningful if both the template and the 3403 // deduction guide are from the same scope. 3404 if (AS != TD->getAccess() && 3405 TD->getDeclContext()->getRedeclContext()->Equals( 3406 DG->getDeclContext()->getRedeclContext())) { 3407 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); 3408 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) 3409 << TD->getAccess(); 3410 const AccessSpecDecl *LastAccessSpec = nullptr; 3411 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { 3412 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) 3413 LastAccessSpec = AccessSpec; 3414 } 3415 assert(LastAccessSpec && "differing access with no access specifier"); 3416 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) 3417 << AS; 3418 } 3419 } 3420 } 3421 3422 if (VS.isOverrideSpecified()) 3423 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(), 3424 AttributeCommonInfo::AS_Keyword)); 3425 if (VS.isFinalSpecified()) 3426 Member->addAttr(FinalAttr::Create( 3427 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword, 3428 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed()))); 3429 3430 if (VS.getLastLocation().isValid()) { 3431 // Update the end location of a method that has a virt-specifiers. 3432 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) 3433 MD->setRangeEnd(VS.getLastLocation()); 3434 } 3435 3436 CheckOverrideControl(Member); 3437 3438 assert((Name || isInstField) && "No identifier for non-field ?"); 3439 3440 if (isInstField) { 3441 FieldDecl *FD = cast<FieldDecl>(Member); 3442 FieldCollector->Add(FD); 3443 3444 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) { 3445 // Remember all explicit private FieldDecls that have a name, no side 3446 // effects and are not part of a dependent type declaration. 3447 if (!FD->isImplicit() && FD->getDeclName() && 3448 FD->getAccess() == AS_private && 3449 !FD->hasAttr<UnusedAttr>() && 3450 !FD->getParent()->isDependentContext() && 3451 !InitializationHasSideEffects(*FD)) 3452 UnusedPrivateFields.insert(FD); 3453 } 3454 } 3455 3456 return Member; 3457 } 3458 3459 namespace { 3460 class UninitializedFieldVisitor 3461 : public EvaluatedExprVisitor<UninitializedFieldVisitor> { 3462 Sema &S; 3463 // List of Decls to generate a warning on. Also remove Decls that become 3464 // initialized. 3465 llvm::SmallPtrSetImpl<ValueDecl*> &Decls; 3466 // List of base classes of the record. Classes are removed after their 3467 // initializers. 3468 llvm::SmallPtrSetImpl<QualType> &BaseClasses; 3469 // Vector of decls to be removed from the Decl set prior to visiting the 3470 // nodes. These Decls may have been initialized in the prior initializer. 3471 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; 3472 // If non-null, add a note to the warning pointing back to the constructor. 3473 const CXXConstructorDecl *Constructor; 3474 // Variables to hold state when processing an initializer list. When 3475 // InitList is true, special case initialization of FieldDecls matching 3476 // InitListFieldDecl. 3477 bool InitList; 3478 FieldDecl *InitListFieldDecl; 3479 llvm::SmallVector<unsigned, 4> InitFieldIndex; 3480 3481 public: 3482 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; 3483 UninitializedFieldVisitor(Sema &S, 3484 llvm::SmallPtrSetImpl<ValueDecl*> &Decls, 3485 llvm::SmallPtrSetImpl<QualType> &BaseClasses) 3486 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), 3487 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} 3488 3489 // Returns true if the use of ME is not an uninitialized use. 3490 bool IsInitListMemberExprInitialized(MemberExpr *ME, 3491 bool CheckReferenceOnly) { 3492 llvm::SmallVector<FieldDecl*, 4> Fields; 3493 bool ReferenceField = false; 3494 while (ME) { 3495 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 3496 if (!FD) 3497 return false; 3498 Fields.push_back(FD); 3499 if (FD->getType()->isReferenceType()) 3500 ReferenceField = true; 3501 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts()); 3502 } 3503 3504 // Binding a reference to an uninitialized field is not an 3505 // uninitialized use. 3506 if (CheckReferenceOnly && !ReferenceField) 3507 return true; 3508 3509 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 3510 // Discard the first field since it is the field decl that is being 3511 // initialized. 3512 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) { 3513 UsedFieldIndex.push_back((*I)->getFieldIndex()); 3514 } 3515 3516 for (auto UsedIter = UsedFieldIndex.begin(), 3517 UsedEnd = UsedFieldIndex.end(), 3518 OrigIter = InitFieldIndex.begin(), 3519 OrigEnd = InitFieldIndex.end(); 3520 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 3521 if (*UsedIter < *OrigIter) 3522 return true; 3523 if (*UsedIter > *OrigIter) 3524 break; 3525 } 3526 3527 return false; 3528 } 3529 3530 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, 3531 bool AddressOf) { 3532 if (isa<EnumConstantDecl>(ME->getMemberDecl())) 3533 return; 3534 3535 // FieldME is the inner-most MemberExpr that is not an anonymous struct 3536 // or union. 3537 MemberExpr *FieldME = ME; 3538 3539 bool AllPODFields = FieldME->getType().isPODType(S.Context); 3540 3541 Expr *Base = ME; 3542 while (MemberExpr *SubME = 3543 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) { 3544 3545 if (isa<VarDecl>(SubME->getMemberDecl())) 3546 return; 3547 3548 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl())) 3549 if (!FD->isAnonymousStructOrUnion()) 3550 FieldME = SubME; 3551 3552 if (!FieldME->getType().isPODType(S.Context)) 3553 AllPODFields = false; 3554 3555 Base = SubME->getBase(); 3556 } 3557 3558 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) 3559 return; 3560 3561 if (AddressOf && AllPODFields) 3562 return; 3563 3564 ValueDecl* FoundVD = FieldME->getMemberDecl(); 3565 3566 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) { 3567 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { 3568 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); 3569 } 3570 3571 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { 3572 QualType T = BaseCast->getType(); 3573 if (T->isPointerType() && 3574 BaseClasses.count(T->getPointeeType())) { 3575 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) 3576 << T->getPointeeType() << FoundVD; 3577 } 3578 } 3579 } 3580 3581 if (!Decls.count(FoundVD)) 3582 return; 3583 3584 const bool IsReference = FoundVD->getType()->isReferenceType(); 3585 3586 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { 3587 // Special checking for initializer lists. 3588 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { 3589 return; 3590 } 3591 } else { 3592 // Prevent double warnings on use of unbounded references. 3593 if (CheckReferenceOnly && !IsReference) 3594 return; 3595 } 3596 3597 unsigned diag = IsReference 3598 ? diag::warn_reference_field_is_uninit 3599 : diag::warn_field_is_uninit; 3600 S.Diag(FieldME->getExprLoc(), diag) << FoundVD; 3601 if (Constructor) 3602 S.Diag(Constructor->getLocation(), 3603 diag::note_uninit_in_this_constructor) 3604 << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); 3605 3606 } 3607 3608 void HandleValue(Expr *E, bool AddressOf) { 3609 E = E->IgnoreParens(); 3610 3611 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 3612 HandleMemberExpr(ME, false /*CheckReferenceOnly*/, 3613 AddressOf /*AddressOf*/); 3614 return; 3615 } 3616 3617 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 3618 Visit(CO->getCond()); 3619 HandleValue(CO->getTrueExpr(), AddressOf); 3620 HandleValue(CO->getFalseExpr(), AddressOf); 3621 return; 3622 } 3623 3624 if (BinaryConditionalOperator *BCO = 3625 dyn_cast<BinaryConditionalOperator>(E)) { 3626 Visit(BCO->getCond()); 3627 HandleValue(BCO->getFalseExpr(), AddressOf); 3628 return; 3629 } 3630 3631 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 3632 HandleValue(OVE->getSourceExpr(), AddressOf); 3633 return; 3634 } 3635 3636 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3637 switch (BO->getOpcode()) { 3638 default: 3639 break; 3640 case(BO_PtrMemD): 3641 case(BO_PtrMemI): 3642 HandleValue(BO->getLHS(), AddressOf); 3643 Visit(BO->getRHS()); 3644 return; 3645 case(BO_Comma): 3646 Visit(BO->getLHS()); 3647 HandleValue(BO->getRHS(), AddressOf); 3648 return; 3649 } 3650 } 3651 3652 Visit(E); 3653 } 3654 3655 void CheckInitListExpr(InitListExpr *ILE) { 3656 InitFieldIndex.push_back(0); 3657 for (auto Child : ILE->children()) { 3658 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) { 3659 CheckInitListExpr(SubList); 3660 } else { 3661 Visit(Child); 3662 } 3663 ++InitFieldIndex.back(); 3664 } 3665 InitFieldIndex.pop_back(); 3666 } 3667 3668 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, 3669 FieldDecl *Field, const Type *BaseClass) { 3670 // Remove Decls that may have been initialized in the previous 3671 // initializer. 3672 for (ValueDecl* VD : DeclsToRemove) 3673 Decls.erase(VD); 3674 DeclsToRemove.clear(); 3675 3676 Constructor = FieldConstructor; 3677 InitListExpr *ILE = dyn_cast<InitListExpr>(E); 3678 3679 if (ILE && Field) { 3680 InitList = true; 3681 InitListFieldDecl = Field; 3682 InitFieldIndex.clear(); 3683 CheckInitListExpr(ILE); 3684 } else { 3685 InitList = false; 3686 Visit(E); 3687 } 3688 3689 if (Field) 3690 Decls.erase(Field); 3691 if (BaseClass) 3692 BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); 3693 } 3694 3695 void VisitMemberExpr(MemberExpr *ME) { 3696 // All uses of unbounded reference fields will warn. 3697 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); 3698 } 3699 3700 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 3701 if (E->getCastKind() == CK_LValueToRValue) { 3702 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3703 return; 3704 } 3705 3706 Inherited::VisitImplicitCastExpr(E); 3707 } 3708 3709 void VisitCXXConstructExpr(CXXConstructExpr *E) { 3710 if (E->getConstructor()->isCopyConstructor()) { 3711 Expr *ArgExpr = E->getArg(0); 3712 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 3713 if (ILE->getNumInits() == 1) 3714 ArgExpr = ILE->getInit(0); 3715 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 3716 if (ICE->getCastKind() == CK_NoOp) 3717 ArgExpr = ICE->getSubExpr(); 3718 HandleValue(ArgExpr, false /*AddressOf*/); 3719 return; 3720 } 3721 Inherited::VisitCXXConstructExpr(E); 3722 } 3723 3724 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3725 Expr *Callee = E->getCallee(); 3726 if (isa<MemberExpr>(Callee)) { 3727 HandleValue(Callee, false /*AddressOf*/); 3728 for (auto Arg : E->arguments()) 3729 Visit(Arg); 3730 return; 3731 } 3732 3733 Inherited::VisitCXXMemberCallExpr(E); 3734 } 3735 3736 void VisitCallExpr(CallExpr *E) { 3737 // Treat std::move as a use. 3738 if (E->isCallToStdMove()) { 3739 HandleValue(E->getArg(0), /*AddressOf=*/false); 3740 return; 3741 } 3742 3743 Inherited::VisitCallExpr(E); 3744 } 3745 3746 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 3747 Expr *Callee = E->getCallee(); 3748 3749 if (isa<UnresolvedLookupExpr>(Callee)) 3750 return Inherited::VisitCXXOperatorCallExpr(E); 3751 3752 Visit(Callee); 3753 for (auto Arg : E->arguments()) 3754 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); 3755 } 3756 3757 void VisitBinaryOperator(BinaryOperator *E) { 3758 // If a field assignment is detected, remove the field from the 3759 // uninitiailized field set. 3760 if (E->getOpcode() == BO_Assign) 3761 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS())) 3762 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3763 if (!FD->getType()->isReferenceType()) 3764 DeclsToRemove.push_back(FD); 3765 3766 if (E->isCompoundAssignmentOp()) { 3767 HandleValue(E->getLHS(), false /*AddressOf*/); 3768 Visit(E->getRHS()); 3769 return; 3770 } 3771 3772 Inherited::VisitBinaryOperator(E); 3773 } 3774 3775 void VisitUnaryOperator(UnaryOperator *E) { 3776 if (E->isIncrementDecrementOp()) { 3777 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3778 return; 3779 } 3780 if (E->getOpcode() == UO_AddrOf) { 3781 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) { 3782 HandleValue(ME->getBase(), true /*AddressOf*/); 3783 return; 3784 } 3785 } 3786 3787 Inherited::VisitUnaryOperator(E); 3788 } 3789 }; 3790 3791 // Diagnose value-uses of fields to initialize themselves, e.g. 3792 // foo(foo) 3793 // where foo is not also a parameter to the constructor. 3794 // Also diagnose across field uninitialized use such as 3795 // x(y), y(x) 3796 // TODO: implement -Wuninitialized and fold this into that framework. 3797 static void DiagnoseUninitializedFields( 3798 Sema &SemaRef, const CXXConstructorDecl *Constructor) { 3799 3800 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, 3801 Constructor->getLocation())) { 3802 return; 3803 } 3804 3805 if (Constructor->isInvalidDecl()) 3806 return; 3807 3808 const CXXRecordDecl *RD = Constructor->getParent(); 3809 3810 if (RD->isDependentContext()) 3811 return; 3812 3813 // Holds fields that are uninitialized. 3814 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; 3815 3816 // At the beginning, all fields are uninitialized. 3817 for (auto *I : RD->decls()) { 3818 if (auto *FD = dyn_cast<FieldDecl>(I)) { 3819 UninitializedFields.insert(FD); 3820 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { 3821 UninitializedFields.insert(IFD->getAnonField()); 3822 } 3823 } 3824 3825 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; 3826 for (auto I : RD->bases()) 3827 UninitializedBaseClasses.insert(I.getType().getCanonicalType()); 3828 3829 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3830 return; 3831 3832 UninitializedFieldVisitor UninitializedChecker(SemaRef, 3833 UninitializedFields, 3834 UninitializedBaseClasses); 3835 3836 for (const auto *FieldInit : Constructor->inits()) { 3837 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3838 break; 3839 3840 Expr *InitExpr = FieldInit->getInit(); 3841 if (!InitExpr) 3842 continue; 3843 3844 if (CXXDefaultInitExpr *Default = 3845 dyn_cast<CXXDefaultInitExpr>(InitExpr)) { 3846 InitExpr = Default->getExpr(); 3847 if (!InitExpr) 3848 continue; 3849 // In class initializers will point to the constructor. 3850 UninitializedChecker.CheckInitializer(InitExpr, Constructor, 3851 FieldInit->getAnyMember(), 3852 FieldInit->getBaseClass()); 3853 } else { 3854 UninitializedChecker.CheckInitializer(InitExpr, nullptr, 3855 FieldInit->getAnyMember(), 3856 FieldInit->getBaseClass()); 3857 } 3858 } 3859 } 3860 } // namespace 3861 3862 /// Enter a new C++ default initializer scope. After calling this, the 3863 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if 3864 /// parsing or instantiating the initializer failed. 3865 void Sema::ActOnStartCXXInClassMemberInitializer() { 3866 // Create a synthetic function scope to represent the call to the constructor 3867 // that notionally surrounds a use of this initializer. 3868 PushFunctionScope(); 3869 } 3870 3871 void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) { 3872 if (!D.isFunctionDeclarator()) 3873 return; 3874 auto &FTI = D.getFunctionTypeInfo(); 3875 if (!FTI.Params) 3876 return; 3877 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params, 3878 FTI.NumParams)) { 3879 auto *ParamDecl = cast<NamedDecl>(Param.Param); 3880 if (ParamDecl->getDeclName()) 3881 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false); 3882 } 3883 } 3884 3885 ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) { 3886 if (ConstraintExpr.isInvalid()) 3887 return ExprError(); 3888 return CorrectDelayedTyposInExpr(ConstraintExpr); 3889 } 3890 3891 /// This is invoked after parsing an in-class initializer for a 3892 /// non-static C++ class member, and after instantiating an in-class initializer 3893 /// in a class template. Such actions are deferred until the class is complete. 3894 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, 3895 SourceLocation InitLoc, 3896 Expr *InitExpr) { 3897 // Pop the notional constructor scope we created earlier. 3898 PopFunctionScopeInfo(nullptr, D); 3899 3900 FieldDecl *FD = dyn_cast<FieldDecl>(D); 3901 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && 3902 "must set init style when field is created"); 3903 3904 if (!InitExpr) { 3905 D->setInvalidDecl(); 3906 if (FD) 3907 FD->removeInClassInitializer(); 3908 return; 3909 } 3910 3911 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { 3912 FD->setInvalidDecl(); 3913 FD->removeInClassInitializer(); 3914 return; 3915 } 3916 3917 ExprResult Init = InitExpr; 3918 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) { 3919 InitializedEntity Entity = 3920 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD); 3921 InitializationKind Kind = 3922 FD->getInClassInitStyle() == ICIS_ListInit 3923 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), 3924 InitExpr->getBeginLoc(), 3925 InitExpr->getEndLoc()) 3926 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc); 3927 InitializationSequence Seq(*this, Entity, Kind, InitExpr); 3928 Init = Seq.Perform(*this, Entity, Kind, InitExpr); 3929 if (Init.isInvalid()) { 3930 FD->setInvalidDecl(); 3931 return; 3932 } 3933 } 3934 3935 // C++11 [class.base.init]p7: 3936 // The initialization of each base and member constitutes a 3937 // full-expression. 3938 Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false); 3939 if (Init.isInvalid()) { 3940 FD->setInvalidDecl(); 3941 return; 3942 } 3943 3944 InitExpr = Init.get(); 3945 3946 FD->setInClassInitializer(InitExpr); 3947 } 3948 3949 /// Find the direct and/or virtual base specifiers that 3950 /// correspond to the given base type, for use in base initialization 3951 /// within a constructor. 3952 static bool FindBaseInitializer(Sema &SemaRef, 3953 CXXRecordDecl *ClassDecl, 3954 QualType BaseType, 3955 const CXXBaseSpecifier *&DirectBaseSpec, 3956 const CXXBaseSpecifier *&VirtualBaseSpec) { 3957 // First, check for a direct base class. 3958 DirectBaseSpec = nullptr; 3959 for (const auto &Base : ClassDecl->bases()) { 3960 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { 3961 // We found a direct base of this type. That's what we're 3962 // initializing. 3963 DirectBaseSpec = &Base; 3964 break; 3965 } 3966 } 3967 3968 // Check for a virtual base class. 3969 // FIXME: We might be able to short-circuit this if we know in advance that 3970 // there are no virtual bases. 3971 VirtualBaseSpec = nullptr; 3972 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { 3973 // We haven't found a base yet; search the class hierarchy for a 3974 // virtual base class. 3975 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3976 /*DetectVirtual=*/false); 3977 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), 3978 SemaRef.Context.getTypeDeclType(ClassDecl), 3979 BaseType, Paths)) { 3980 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 3981 Path != Paths.end(); ++Path) { 3982 if (Path->back().Base->isVirtual()) { 3983 VirtualBaseSpec = Path->back().Base; 3984 break; 3985 } 3986 } 3987 } 3988 } 3989 3990 return DirectBaseSpec || VirtualBaseSpec; 3991 } 3992 3993 /// Handle a C++ member initializer using braced-init-list syntax. 3994 MemInitResult 3995 Sema::ActOnMemInitializer(Decl *ConstructorD, 3996 Scope *S, 3997 CXXScopeSpec &SS, 3998 IdentifierInfo *MemberOrBase, 3999 ParsedType TemplateTypeTy, 4000 const DeclSpec &DS, 4001 SourceLocation IdLoc, 4002 Expr *InitList, 4003 SourceLocation EllipsisLoc) { 4004 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4005 DS, IdLoc, InitList, 4006 EllipsisLoc); 4007 } 4008 4009 /// Handle a C++ member initializer using parentheses syntax. 4010 MemInitResult 4011 Sema::ActOnMemInitializer(Decl *ConstructorD, 4012 Scope *S, 4013 CXXScopeSpec &SS, 4014 IdentifierInfo *MemberOrBase, 4015 ParsedType TemplateTypeTy, 4016 const DeclSpec &DS, 4017 SourceLocation IdLoc, 4018 SourceLocation LParenLoc, 4019 ArrayRef<Expr *> Args, 4020 SourceLocation RParenLoc, 4021 SourceLocation EllipsisLoc) { 4022 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc); 4023 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4024 DS, IdLoc, List, EllipsisLoc); 4025 } 4026 4027 namespace { 4028 4029 // Callback to only accept typo corrections that can be a valid C++ member 4030 // intializer: either a non-static field member or a base class. 4031 class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { 4032 public: 4033 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) 4034 : ClassDecl(ClassDecl) {} 4035 4036 bool ValidateCandidate(const TypoCorrection &candidate) override { 4037 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 4038 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) 4039 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); 4040 return isa<TypeDecl>(ND); 4041 } 4042 return false; 4043 } 4044 4045 std::unique_ptr<CorrectionCandidateCallback> clone() override { 4046 return std::make_unique<MemInitializerValidatorCCC>(*this); 4047 } 4048 4049 private: 4050 CXXRecordDecl *ClassDecl; 4051 }; 4052 4053 } 4054 4055 ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, 4056 CXXScopeSpec &SS, 4057 ParsedType TemplateTypeTy, 4058 IdentifierInfo *MemberOrBase) { 4059 if (SS.getScopeRep() || TemplateTypeTy) 4060 return nullptr; 4061 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase); 4062 if (Result.empty()) 4063 return nullptr; 4064 ValueDecl *Member; 4065 if ((Member = dyn_cast<FieldDecl>(Result.front())) || 4066 (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) 4067 return Member; 4068 return nullptr; 4069 } 4070 4071 /// Handle a C++ member initializer. 4072 MemInitResult 4073 Sema::BuildMemInitializer(Decl *ConstructorD, 4074 Scope *S, 4075 CXXScopeSpec &SS, 4076 IdentifierInfo *MemberOrBase, 4077 ParsedType TemplateTypeTy, 4078 const DeclSpec &DS, 4079 SourceLocation IdLoc, 4080 Expr *Init, 4081 SourceLocation EllipsisLoc) { 4082 ExprResult Res = CorrectDelayedTyposInExpr(Init); 4083 if (!Res.isUsable()) 4084 return true; 4085 Init = Res.get(); 4086 4087 if (!ConstructorD) 4088 return true; 4089 4090 AdjustDeclIfTemplate(ConstructorD); 4091 4092 CXXConstructorDecl *Constructor 4093 = dyn_cast<CXXConstructorDecl>(ConstructorD); 4094 if (!Constructor) { 4095 // The user wrote a constructor initializer on a function that is 4096 // not a C++ constructor. Ignore the error for now, because we may 4097 // have more member initializers coming; we'll diagnose it just 4098 // once in ActOnMemInitializers. 4099 return true; 4100 } 4101 4102 CXXRecordDecl *ClassDecl = Constructor->getParent(); 4103 4104 // C++ [class.base.init]p2: 4105 // Names in a mem-initializer-id are looked up in the scope of the 4106 // constructor's class and, if not found in that scope, are looked 4107 // up in the scope containing the constructor's definition. 4108 // [Note: if the constructor's class contains a member with the 4109 // same name as a direct or virtual base class of the class, a 4110 // mem-initializer-id naming the member or base class and composed 4111 // of a single identifier refers to the class member. A 4112 // mem-initializer-id for the hidden base class may be specified 4113 // using a qualified name. ] 4114 4115 // Look for a member, first. 4116 if (ValueDecl *Member = tryLookupCtorInitMemberDecl( 4117 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { 4118 if (EllipsisLoc.isValid()) 4119 Diag(EllipsisLoc, diag::err_pack_expansion_member_init) 4120 << MemberOrBase 4121 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 4122 4123 return BuildMemberInitializer(Member, Init, IdLoc); 4124 } 4125 // It didn't name a member, so see if it names a class. 4126 QualType BaseType; 4127 TypeSourceInfo *TInfo = nullptr; 4128 4129 if (TemplateTypeTy) { 4130 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); 4131 if (BaseType.isNull()) 4132 return true; 4133 } else if (DS.getTypeSpecType() == TST_decltype) { 4134 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 4135 } else if (DS.getTypeSpecType() == TST_decltype_auto) { 4136 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 4137 return true; 4138 } else { 4139 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); 4140 LookupParsedName(R, S, &SS); 4141 4142 TypeDecl *TyD = R.getAsSingle<TypeDecl>(); 4143 if (!TyD) { 4144 if (R.isAmbiguous()) return true; 4145 4146 // We don't want access-control diagnostics here. 4147 R.suppressDiagnostics(); 4148 4149 if (SS.isSet() && isDependentScopeSpecifier(SS)) { 4150 bool NotUnknownSpecialization = false; 4151 DeclContext *DC = computeDeclContext(SS, false); 4152 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) 4153 NotUnknownSpecialization = !Record->hasAnyDependentBases(); 4154 4155 if (!NotUnknownSpecialization) { 4156 // When the scope specifier can refer to a member of an unknown 4157 // specialization, we take it as a type name. 4158 BaseType = CheckTypenameType(ETK_None, SourceLocation(), 4159 SS.getWithLocInContext(Context), 4160 *MemberOrBase, IdLoc); 4161 if (BaseType.isNull()) 4162 return true; 4163 4164 TInfo = Context.CreateTypeSourceInfo(BaseType); 4165 DependentNameTypeLoc TL = 4166 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); 4167 if (!TL.isNull()) { 4168 TL.setNameLoc(IdLoc); 4169 TL.setElaboratedKeywordLoc(SourceLocation()); 4170 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4171 } 4172 4173 R.clear(); 4174 R.setLookupName(MemberOrBase); 4175 } 4176 } 4177 4178 // If no results were found, try to correct typos. 4179 TypoCorrection Corr; 4180 MemInitializerValidatorCCC CCC(ClassDecl); 4181 if (R.empty() && BaseType.isNull() && 4182 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, 4183 CCC, CTK_ErrorRecovery, ClassDecl))) { 4184 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { 4185 // We have found a non-static data member with a similar 4186 // name to what was typed; complain and initialize that 4187 // member. 4188 diagnoseTypo(Corr, 4189 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4190 << MemberOrBase << true); 4191 return BuildMemberInitializer(Member, Init, IdLoc); 4192 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { 4193 const CXXBaseSpecifier *DirectBaseSpec; 4194 const CXXBaseSpecifier *VirtualBaseSpec; 4195 if (FindBaseInitializer(*this, ClassDecl, 4196 Context.getTypeDeclType(Type), 4197 DirectBaseSpec, VirtualBaseSpec)) { 4198 // We have found a direct or virtual base class with a 4199 // similar name to what was typed; complain and initialize 4200 // that base class. 4201 diagnoseTypo(Corr, 4202 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4203 << MemberOrBase << false, 4204 PDiag() /*Suppress note, we provide our own.*/); 4205 4206 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec 4207 : VirtualBaseSpec; 4208 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) 4209 << BaseSpec->getType() << BaseSpec->getSourceRange(); 4210 4211 TyD = Type; 4212 } 4213 } 4214 } 4215 4216 if (!TyD && BaseType.isNull()) { 4217 Diag(IdLoc, diag::err_mem_init_not_member_or_class) 4218 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); 4219 return true; 4220 } 4221 } 4222 4223 if (BaseType.isNull()) { 4224 BaseType = Context.getTypeDeclType(TyD); 4225 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); 4226 if (SS.isSet()) { 4227 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(), 4228 BaseType); 4229 TInfo = Context.CreateTypeSourceInfo(BaseType); 4230 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); 4231 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 4232 TL.setElaboratedKeywordLoc(SourceLocation()); 4233 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4234 } 4235 } 4236 } 4237 4238 if (!TInfo) 4239 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); 4240 4241 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); 4242 } 4243 4244 MemInitResult 4245 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, 4246 SourceLocation IdLoc) { 4247 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); 4248 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); 4249 assert((DirectMember || IndirectMember) && 4250 "Member must be a FieldDecl or IndirectFieldDecl"); 4251 4252 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4253 return true; 4254 4255 if (Member->isInvalidDecl()) 4256 return true; 4257 4258 MultiExprArg Args; 4259 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4260 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4261 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 4262 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 4263 } else { 4264 // Template instantiation doesn't reconstruct ParenListExprs for us. 4265 Args = Init; 4266 } 4267 4268 SourceRange InitRange = Init->getSourceRange(); 4269 4270 if (Member->getType()->isDependentType() || Init->isTypeDependent()) { 4271 // Can't check initialization for a member of dependent type or when 4272 // any of the arguments are type-dependent expressions. 4273 DiscardCleanupsInEvaluationContext(); 4274 } else { 4275 bool InitList = false; 4276 if (isa<InitListExpr>(Init)) { 4277 InitList = true; 4278 Args = Init; 4279 } 4280 4281 // Initialize the member. 4282 InitializedEntity MemberEntity = 4283 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) 4284 : InitializedEntity::InitializeMember(IndirectMember, 4285 nullptr); 4286 InitializationKind Kind = 4287 InitList ? InitializationKind::CreateDirectList( 4288 IdLoc, Init->getBeginLoc(), Init->getEndLoc()) 4289 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), 4290 InitRange.getEnd()); 4291 4292 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); 4293 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 4294 nullptr); 4295 if (MemberInit.isInvalid()) 4296 return true; 4297 4298 // C++11 [class.base.init]p7: 4299 // The initialization of each base and member constitutes a 4300 // full-expression. 4301 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(), 4302 /*DiscardedValue*/ false); 4303 if (MemberInit.isInvalid()) 4304 return true; 4305 4306 Init = MemberInit.get(); 4307 } 4308 4309 if (DirectMember) { 4310 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, 4311 InitRange.getBegin(), Init, 4312 InitRange.getEnd()); 4313 } else { 4314 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, 4315 InitRange.getBegin(), Init, 4316 InitRange.getEnd()); 4317 } 4318 } 4319 4320 MemInitResult 4321 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, 4322 CXXRecordDecl *ClassDecl) { 4323 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin(); 4324 if (!LangOpts.CPlusPlus11) 4325 return Diag(NameLoc, diag::err_delegating_ctor) 4326 << TInfo->getTypeLoc().getLocalSourceRange(); 4327 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); 4328 4329 bool InitList = true; 4330 MultiExprArg Args = Init; 4331 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4332 InitList = false; 4333 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4334 } 4335 4336 SourceRange InitRange = Init->getSourceRange(); 4337 // Initialize the object. 4338 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( 4339 QualType(ClassDecl->getTypeForDecl(), 0)); 4340 InitializationKind Kind = 4341 InitList ? InitializationKind::CreateDirectList( 4342 NameLoc, Init->getBeginLoc(), Init->getEndLoc()) 4343 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), 4344 InitRange.getEnd()); 4345 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); 4346 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, 4347 Args, nullptr); 4348 if (DelegationInit.isInvalid()) 4349 return true; 4350 4351 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && 4352 "Delegating constructor with no target?"); 4353 4354 // C++11 [class.base.init]p7: 4355 // The initialization of each base and member constitutes a 4356 // full-expression. 4357 DelegationInit = ActOnFinishFullExpr( 4358 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); 4359 if (DelegationInit.isInvalid()) 4360 return true; 4361 4362 // If we are in a dependent context, template instantiation will 4363 // perform this type-checking again. Just save the arguments that we 4364 // received in a ParenListExpr. 4365 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4366 // of the information that we have about the base 4367 // initializer. However, deconstructing the ASTs is a dicey process, 4368 // and this approach is far more likely to get the corner cases right. 4369 if (CurContext->isDependentContext()) 4370 DelegationInit = Init; 4371 4372 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), 4373 DelegationInit.getAs<Expr>(), 4374 InitRange.getEnd()); 4375 } 4376 4377 MemInitResult 4378 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, 4379 Expr *Init, CXXRecordDecl *ClassDecl, 4380 SourceLocation EllipsisLoc) { 4381 SourceLocation BaseLoc 4382 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); 4383 4384 if (!BaseType->isDependentType() && !BaseType->isRecordType()) 4385 return Diag(BaseLoc, diag::err_base_init_does_not_name_class) 4386 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4387 4388 // C++ [class.base.init]p2: 4389 // [...] Unless the mem-initializer-id names a nonstatic data 4390 // member of the constructor's class or a direct or virtual base 4391 // of that class, the mem-initializer is ill-formed. A 4392 // mem-initializer-list can initialize a base class using any 4393 // name that denotes that base class type. 4394 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent(); 4395 4396 SourceRange InitRange = Init->getSourceRange(); 4397 if (EllipsisLoc.isValid()) { 4398 // This is a pack expansion. 4399 if (!BaseType->containsUnexpandedParameterPack()) { 4400 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 4401 << SourceRange(BaseLoc, InitRange.getEnd()); 4402 4403 EllipsisLoc = SourceLocation(); 4404 } 4405 } else { 4406 // Check for any unexpanded parameter packs. 4407 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) 4408 return true; 4409 4410 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4411 return true; 4412 } 4413 4414 // Check for direct and virtual base classes. 4415 const CXXBaseSpecifier *DirectBaseSpec = nullptr; 4416 const CXXBaseSpecifier *VirtualBaseSpec = nullptr; 4417 if (!Dependent) { 4418 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), 4419 BaseType)) 4420 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); 4421 4422 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, 4423 VirtualBaseSpec); 4424 4425 // C++ [base.class.init]p2: 4426 // Unless the mem-initializer-id names a nonstatic data member of the 4427 // constructor's class or a direct or virtual base of that class, the 4428 // mem-initializer is ill-formed. 4429 if (!DirectBaseSpec && !VirtualBaseSpec) { 4430 // If the class has any dependent bases, then it's possible that 4431 // one of those types will resolve to the same type as 4432 // BaseType. Therefore, just treat this as a dependent base 4433 // class initialization. FIXME: Should we try to check the 4434 // initialization anyway? It seems odd. 4435 if (ClassDecl->hasAnyDependentBases()) 4436 Dependent = true; 4437 else 4438 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) 4439 << BaseType << Context.getTypeDeclType(ClassDecl) 4440 << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4441 } 4442 } 4443 4444 if (Dependent) { 4445 DiscardCleanupsInEvaluationContext(); 4446 4447 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4448 /*IsVirtual=*/false, 4449 InitRange.getBegin(), Init, 4450 InitRange.getEnd(), EllipsisLoc); 4451 } 4452 4453 // C++ [base.class.init]p2: 4454 // If a mem-initializer-id is ambiguous because it designates both 4455 // a direct non-virtual base class and an inherited virtual base 4456 // class, the mem-initializer is ill-formed. 4457 if (DirectBaseSpec && VirtualBaseSpec) 4458 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) 4459 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4460 4461 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; 4462 if (!BaseSpec) 4463 BaseSpec = VirtualBaseSpec; 4464 4465 // Initialize the base. 4466 bool InitList = true; 4467 MultiExprArg Args = Init; 4468 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4469 InitList = false; 4470 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4471 } 4472 4473 InitializedEntity BaseEntity = 4474 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); 4475 InitializationKind Kind = 4476 InitList ? InitializationKind::CreateDirectList(BaseLoc) 4477 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), 4478 InitRange.getEnd()); 4479 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); 4480 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); 4481 if (BaseInit.isInvalid()) 4482 return true; 4483 4484 // C++11 [class.base.init]p7: 4485 // The initialization of each base and member constitutes a 4486 // full-expression. 4487 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(), 4488 /*DiscardedValue*/ false); 4489 if (BaseInit.isInvalid()) 4490 return true; 4491 4492 // If we are in a dependent context, template instantiation will 4493 // perform this type-checking again. Just save the arguments that we 4494 // received in a ParenListExpr. 4495 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4496 // of the information that we have about the base 4497 // initializer. However, deconstructing the ASTs is a dicey process, 4498 // and this approach is far more likely to get the corner cases right. 4499 if (CurContext->isDependentContext()) 4500 BaseInit = Init; 4501 4502 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4503 BaseSpec->isVirtual(), 4504 InitRange.getBegin(), 4505 BaseInit.getAs<Expr>(), 4506 InitRange.getEnd(), EllipsisLoc); 4507 } 4508 4509 // Create a static_cast\<T&&>(expr). 4510 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) { 4511 if (T.isNull()) T = E->getType(); 4512 QualType TargetType = SemaRef.BuildReferenceType( 4513 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName()); 4514 SourceLocation ExprLoc = E->getBeginLoc(); 4515 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( 4516 TargetType, ExprLoc); 4517 4518 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 4519 SourceRange(ExprLoc, ExprLoc), 4520 E->getSourceRange()).get(); 4521 } 4522 4523 /// ImplicitInitializerKind - How an implicit base or member initializer should 4524 /// initialize its base or member. 4525 enum ImplicitInitializerKind { 4526 IIK_Default, 4527 IIK_Copy, 4528 IIK_Move, 4529 IIK_Inherit 4530 }; 4531 4532 static bool 4533 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4534 ImplicitInitializerKind ImplicitInitKind, 4535 CXXBaseSpecifier *BaseSpec, 4536 bool IsInheritedVirtualBase, 4537 CXXCtorInitializer *&CXXBaseInit) { 4538 InitializedEntity InitEntity 4539 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, 4540 IsInheritedVirtualBase); 4541 4542 ExprResult BaseInit; 4543 4544 switch (ImplicitInitKind) { 4545 case IIK_Inherit: 4546 case IIK_Default: { 4547 InitializationKind InitKind 4548 = InitializationKind::CreateDefault(Constructor->getLocation()); 4549 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); 4550 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None); 4551 break; 4552 } 4553 4554 case IIK_Move: 4555 case IIK_Copy: { 4556 bool Moving = ImplicitInitKind == IIK_Move; 4557 ParmVarDecl *Param = Constructor->getParamDecl(0); 4558 QualType ParamType = Param->getType().getNonReferenceType(); 4559 4560 Expr *CopyCtorArg = 4561 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4562 SourceLocation(), Param, false, 4563 Constructor->getLocation(), ParamType, 4564 VK_LValue, nullptr); 4565 4566 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); 4567 4568 // Cast to the base class to avoid ambiguities. 4569 QualType ArgTy = 4570 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), 4571 ParamType.getQualifiers()); 4572 4573 if (Moving) { 4574 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); 4575 } 4576 4577 CXXCastPath BasePath; 4578 BasePath.push_back(BaseSpec); 4579 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, 4580 CK_UncheckedDerivedToBase, 4581 Moving ? VK_XValue : VK_LValue, 4582 &BasePath).get(); 4583 4584 InitializationKind InitKind 4585 = InitializationKind::CreateDirect(Constructor->getLocation(), 4586 SourceLocation(), SourceLocation()); 4587 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); 4588 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); 4589 break; 4590 } 4591 } 4592 4593 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); 4594 if (BaseInit.isInvalid()) 4595 return true; 4596 4597 CXXBaseInit = 4598 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4599 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), 4600 SourceLocation()), 4601 BaseSpec->isVirtual(), 4602 SourceLocation(), 4603 BaseInit.getAs<Expr>(), 4604 SourceLocation(), 4605 SourceLocation()); 4606 4607 return false; 4608 } 4609 4610 static bool RefersToRValueRef(Expr *MemRef) { 4611 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); 4612 return Referenced->getType()->isRValueReferenceType(); 4613 } 4614 4615 static bool 4616 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4617 ImplicitInitializerKind ImplicitInitKind, 4618 FieldDecl *Field, IndirectFieldDecl *Indirect, 4619 CXXCtorInitializer *&CXXMemberInit) { 4620 if (Field->isInvalidDecl()) 4621 return true; 4622 4623 SourceLocation Loc = Constructor->getLocation(); 4624 4625 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { 4626 bool Moving = ImplicitInitKind == IIK_Move; 4627 ParmVarDecl *Param = Constructor->getParamDecl(0); 4628 QualType ParamType = Param->getType().getNonReferenceType(); 4629 4630 // Suppress copying zero-width bitfields. 4631 if (Field->isZeroLengthBitField(SemaRef.Context)) 4632 return false; 4633 4634 Expr *MemberExprBase = 4635 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4636 SourceLocation(), Param, false, 4637 Loc, ParamType, VK_LValue, nullptr); 4638 4639 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); 4640 4641 if (Moving) { 4642 MemberExprBase = CastForMoving(SemaRef, MemberExprBase); 4643 } 4644 4645 // Build a reference to this field within the parameter. 4646 CXXScopeSpec SS; 4647 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, 4648 Sema::LookupMemberName); 4649 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) 4650 : cast<ValueDecl>(Field), AS_public); 4651 MemberLookup.resolveKind(); 4652 ExprResult CtorArg 4653 = SemaRef.BuildMemberReferenceExpr(MemberExprBase, 4654 ParamType, Loc, 4655 /*IsArrow=*/false, 4656 SS, 4657 /*TemplateKWLoc=*/SourceLocation(), 4658 /*FirstQualifierInScope=*/nullptr, 4659 MemberLookup, 4660 /*TemplateArgs=*/nullptr, 4661 /*S*/nullptr); 4662 if (CtorArg.isInvalid()) 4663 return true; 4664 4665 // C++11 [class.copy]p15: 4666 // - if a member m has rvalue reference type T&&, it is direct-initialized 4667 // with static_cast<T&&>(x.m); 4668 if (RefersToRValueRef(CtorArg.get())) { 4669 CtorArg = CastForMoving(SemaRef, CtorArg.get()); 4670 } 4671 4672 InitializedEntity Entity = 4673 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4674 /*Implicit*/ true) 4675 : InitializedEntity::InitializeMember(Field, nullptr, 4676 /*Implicit*/ true); 4677 4678 // Direct-initialize to use the copy constructor. 4679 InitializationKind InitKind = 4680 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); 4681 4682 Expr *CtorArgE = CtorArg.getAs<Expr>(); 4683 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); 4684 ExprResult MemberInit = 4685 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1)); 4686 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4687 if (MemberInit.isInvalid()) 4688 return true; 4689 4690 if (Indirect) 4691 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4692 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4693 else 4694 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4695 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4696 return false; 4697 } 4698 4699 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && 4700 "Unhandled implicit init kind!"); 4701 4702 QualType FieldBaseElementType = 4703 SemaRef.Context.getBaseElementType(Field->getType()); 4704 4705 if (FieldBaseElementType->isRecordType()) { 4706 InitializedEntity InitEntity = 4707 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4708 /*Implicit*/ true) 4709 : InitializedEntity::InitializeMember(Field, nullptr, 4710 /*Implicit*/ true); 4711 InitializationKind InitKind = 4712 InitializationKind::CreateDefault(Loc); 4713 4714 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); 4715 ExprResult MemberInit = 4716 InitSeq.Perform(SemaRef, InitEntity, InitKind, None); 4717 4718 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4719 if (MemberInit.isInvalid()) 4720 return true; 4721 4722 if (Indirect) 4723 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4724 Indirect, Loc, 4725 Loc, 4726 MemberInit.get(), 4727 Loc); 4728 else 4729 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4730 Field, Loc, Loc, 4731 MemberInit.get(), 4732 Loc); 4733 return false; 4734 } 4735 4736 if (!Field->getParent()->isUnion()) { 4737 if (FieldBaseElementType->isReferenceType()) { 4738 SemaRef.Diag(Constructor->getLocation(), 4739 diag::err_uninitialized_member_in_ctor) 4740 << (int)Constructor->isImplicit() 4741 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4742 << 0 << Field->getDeclName(); 4743 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4744 return true; 4745 } 4746 4747 if (FieldBaseElementType.isConstQualified()) { 4748 SemaRef.Diag(Constructor->getLocation(), 4749 diag::err_uninitialized_member_in_ctor) 4750 << (int)Constructor->isImplicit() 4751 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4752 << 1 << Field->getDeclName(); 4753 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4754 return true; 4755 } 4756 } 4757 4758 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { 4759 // ARC and Weak: 4760 // Default-initialize Objective-C pointers to NULL. 4761 CXXMemberInit 4762 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, 4763 Loc, Loc, 4764 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), 4765 Loc); 4766 return false; 4767 } 4768 4769 // Nothing to initialize. 4770 CXXMemberInit = nullptr; 4771 return false; 4772 } 4773 4774 namespace { 4775 struct BaseAndFieldInfo { 4776 Sema &S; 4777 CXXConstructorDecl *Ctor; 4778 bool AnyErrorsInInits; 4779 ImplicitInitializerKind IIK; 4780 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; 4781 SmallVector<CXXCtorInitializer*, 8> AllToInit; 4782 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; 4783 4784 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) 4785 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { 4786 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); 4787 if (Ctor->getInheritedConstructor()) 4788 IIK = IIK_Inherit; 4789 else if (Generated && Ctor->isCopyConstructor()) 4790 IIK = IIK_Copy; 4791 else if (Generated && Ctor->isMoveConstructor()) 4792 IIK = IIK_Move; 4793 else 4794 IIK = IIK_Default; 4795 } 4796 4797 bool isImplicitCopyOrMove() const { 4798 switch (IIK) { 4799 case IIK_Copy: 4800 case IIK_Move: 4801 return true; 4802 4803 case IIK_Default: 4804 case IIK_Inherit: 4805 return false; 4806 } 4807 4808 llvm_unreachable("Invalid ImplicitInitializerKind!"); 4809 } 4810 4811 bool addFieldInitializer(CXXCtorInitializer *Init) { 4812 AllToInit.push_back(Init); 4813 4814 // Check whether this initializer makes the field "used". 4815 if (Init->getInit()->HasSideEffects(S.Context)) 4816 S.UnusedPrivateFields.remove(Init->getAnyMember()); 4817 4818 return false; 4819 } 4820 4821 bool isInactiveUnionMember(FieldDecl *Field) { 4822 RecordDecl *Record = Field->getParent(); 4823 if (!Record->isUnion()) 4824 return false; 4825 4826 if (FieldDecl *Active = 4827 ActiveUnionMember.lookup(Record->getCanonicalDecl())) 4828 return Active != Field->getCanonicalDecl(); 4829 4830 // In an implicit copy or move constructor, ignore any in-class initializer. 4831 if (isImplicitCopyOrMove()) 4832 return true; 4833 4834 // If there's no explicit initialization, the field is active only if it 4835 // has an in-class initializer... 4836 if (Field->hasInClassInitializer()) 4837 return false; 4838 // ... or it's an anonymous struct or union whose class has an in-class 4839 // initializer. 4840 if (!Field->isAnonymousStructOrUnion()) 4841 return true; 4842 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); 4843 return !FieldRD->hasInClassInitializer(); 4844 } 4845 4846 /// Determine whether the given field is, or is within, a union member 4847 /// that is inactive (because there was an initializer given for a different 4848 /// member of the union, or because the union was not initialized at all). 4849 bool isWithinInactiveUnionMember(FieldDecl *Field, 4850 IndirectFieldDecl *Indirect) { 4851 if (!Indirect) 4852 return isInactiveUnionMember(Field); 4853 4854 for (auto *C : Indirect->chain()) { 4855 FieldDecl *Field = dyn_cast<FieldDecl>(C); 4856 if (Field && isInactiveUnionMember(Field)) 4857 return true; 4858 } 4859 return false; 4860 } 4861 }; 4862 } 4863 4864 /// Determine whether the given type is an incomplete or zero-lenfgth 4865 /// array type. 4866 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { 4867 if (T->isIncompleteArrayType()) 4868 return true; 4869 4870 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { 4871 if (!ArrayT->getSize()) 4872 return true; 4873 4874 T = ArrayT->getElementType(); 4875 } 4876 4877 return false; 4878 } 4879 4880 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, 4881 FieldDecl *Field, 4882 IndirectFieldDecl *Indirect = nullptr) { 4883 if (Field->isInvalidDecl()) 4884 return false; 4885 4886 // Overwhelmingly common case: we have a direct initializer for this field. 4887 if (CXXCtorInitializer *Init = 4888 Info.AllBaseFields.lookup(Field->getCanonicalDecl())) 4889 return Info.addFieldInitializer(Init); 4890 4891 // C++11 [class.base.init]p8: 4892 // if the entity is a non-static data member that has a 4893 // brace-or-equal-initializer and either 4894 // -- the constructor's class is a union and no other variant member of that 4895 // union is designated by a mem-initializer-id or 4896 // -- the constructor's class is not a union, and, if the entity is a member 4897 // of an anonymous union, no other member of that union is designated by 4898 // a mem-initializer-id, 4899 // the entity is initialized as specified in [dcl.init]. 4900 // 4901 // We also apply the same rules to handle anonymous structs within anonymous 4902 // unions. 4903 if (Info.isWithinInactiveUnionMember(Field, Indirect)) 4904 return false; 4905 4906 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { 4907 ExprResult DIE = 4908 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); 4909 if (DIE.isInvalid()) 4910 return true; 4911 4912 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true); 4913 SemaRef.checkInitializerLifetime(Entity, DIE.get()); 4914 4915 CXXCtorInitializer *Init; 4916 if (Indirect) 4917 Init = new (SemaRef.Context) 4918 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), 4919 SourceLocation(), DIE.get(), SourceLocation()); 4920 else 4921 Init = new (SemaRef.Context) 4922 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), 4923 SourceLocation(), DIE.get(), SourceLocation()); 4924 return Info.addFieldInitializer(Init); 4925 } 4926 4927 // Don't initialize incomplete or zero-length arrays. 4928 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) 4929 return false; 4930 4931 // Don't try to build an implicit initializer if there were semantic 4932 // errors in any of the initializers (and therefore we might be 4933 // missing some that the user actually wrote). 4934 if (Info.AnyErrorsInInits) 4935 return false; 4936 4937 CXXCtorInitializer *Init = nullptr; 4938 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, 4939 Indirect, Init)) 4940 return true; 4941 4942 if (!Init) 4943 return false; 4944 4945 return Info.addFieldInitializer(Init); 4946 } 4947 4948 bool 4949 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, 4950 CXXCtorInitializer *Initializer) { 4951 assert(Initializer->isDelegatingInitializer()); 4952 Constructor->setNumCtorInitializers(1); 4953 CXXCtorInitializer **initializer = 4954 new (Context) CXXCtorInitializer*[1]; 4955 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); 4956 Constructor->setCtorInitializers(initializer); 4957 4958 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { 4959 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); 4960 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); 4961 } 4962 4963 DelegatingCtorDecls.push_back(Constructor); 4964 4965 DiagnoseUninitializedFields(*this, Constructor); 4966 4967 return false; 4968 } 4969 4970 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, 4971 ArrayRef<CXXCtorInitializer *> Initializers) { 4972 if (Constructor->isDependentContext()) { 4973 // Just store the initializers as written, they will be checked during 4974 // instantiation. 4975 if (!Initializers.empty()) { 4976 Constructor->setNumCtorInitializers(Initializers.size()); 4977 CXXCtorInitializer **baseOrMemberInitializers = 4978 new (Context) CXXCtorInitializer*[Initializers.size()]; 4979 memcpy(baseOrMemberInitializers, Initializers.data(), 4980 Initializers.size() * sizeof(CXXCtorInitializer*)); 4981 Constructor->setCtorInitializers(baseOrMemberInitializers); 4982 } 4983 4984 // Let template instantiation know whether we had errors. 4985 if (AnyErrors) 4986 Constructor->setInvalidDecl(); 4987 4988 return false; 4989 } 4990 4991 BaseAndFieldInfo Info(*this, Constructor, AnyErrors); 4992 4993 // We need to build the initializer AST according to order of construction 4994 // and not what user specified in the Initializers list. 4995 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); 4996 if (!ClassDecl) 4997 return true; 4998 4999 bool HadError = false; 5000 5001 for (unsigned i = 0; i < Initializers.size(); i++) { 5002 CXXCtorInitializer *Member = Initializers[i]; 5003 5004 if (Member->isBaseInitializer()) 5005 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; 5006 else { 5007 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; 5008 5009 if (IndirectFieldDecl *F = Member->getIndirectMember()) { 5010 for (auto *C : F->chain()) { 5011 FieldDecl *FD = dyn_cast<FieldDecl>(C); 5012 if (FD && FD->getParent()->isUnion()) 5013 Info.ActiveUnionMember.insert(std::make_pair( 5014 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5015 } 5016 } else if (FieldDecl *FD = Member->getMember()) { 5017 if (FD->getParent()->isUnion()) 5018 Info.ActiveUnionMember.insert(std::make_pair( 5019 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5020 } 5021 } 5022 } 5023 5024 // Keep track of the direct virtual bases. 5025 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; 5026 for (auto &I : ClassDecl->bases()) { 5027 if (I.isVirtual()) 5028 DirectVBases.insert(&I); 5029 } 5030 5031 // Push virtual bases before others. 5032 for (auto &VBase : ClassDecl->vbases()) { 5033 if (CXXCtorInitializer *Value 5034 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { 5035 // [class.base.init]p7, per DR257: 5036 // A mem-initializer where the mem-initializer-id names a virtual base 5037 // class is ignored during execution of a constructor of any class that 5038 // is not the most derived class. 5039 if (ClassDecl->isAbstract()) { 5040 // FIXME: Provide a fixit to remove the base specifier. This requires 5041 // tracking the location of the associated comma for a base specifier. 5042 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) 5043 << VBase.getType() << ClassDecl; 5044 DiagnoseAbstractType(ClassDecl); 5045 } 5046 5047 Info.AllToInit.push_back(Value); 5048 } else if (!AnyErrors && !ClassDecl->isAbstract()) { 5049 // [class.base.init]p8, per DR257: 5050 // If a given [...] base class is not named by a mem-initializer-id 5051 // [...] and the entity is not a virtual base class of an abstract 5052 // class, then [...] the entity is default-initialized. 5053 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); 5054 CXXCtorInitializer *CXXBaseInit; 5055 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5056 &VBase, IsInheritedVirtualBase, 5057 CXXBaseInit)) { 5058 HadError = true; 5059 continue; 5060 } 5061 5062 Info.AllToInit.push_back(CXXBaseInit); 5063 } 5064 } 5065 5066 // Non-virtual bases. 5067 for (auto &Base : ClassDecl->bases()) { 5068 // Virtuals are in the virtual base list and already constructed. 5069 if (Base.isVirtual()) 5070 continue; 5071 5072 if (CXXCtorInitializer *Value 5073 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { 5074 Info.AllToInit.push_back(Value); 5075 } else if (!AnyErrors) { 5076 CXXCtorInitializer *CXXBaseInit; 5077 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5078 &Base, /*IsInheritedVirtualBase=*/false, 5079 CXXBaseInit)) { 5080 HadError = true; 5081 continue; 5082 } 5083 5084 Info.AllToInit.push_back(CXXBaseInit); 5085 } 5086 } 5087 5088 // Fields. 5089 for (auto *Mem : ClassDecl->decls()) { 5090 if (auto *F = dyn_cast<FieldDecl>(Mem)) { 5091 // C++ [class.bit]p2: 5092 // A declaration for a bit-field that omits the identifier declares an 5093 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 5094 // initialized. 5095 if (F->isUnnamedBitfield()) 5096 continue; 5097 5098 // If we're not generating the implicit copy/move constructor, then we'll 5099 // handle anonymous struct/union fields based on their individual 5100 // indirect fields. 5101 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) 5102 continue; 5103 5104 if (CollectFieldInitializer(*this, Info, F)) 5105 HadError = true; 5106 continue; 5107 } 5108 5109 // Beyond this point, we only consider default initialization. 5110 if (Info.isImplicitCopyOrMove()) 5111 continue; 5112 5113 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { 5114 if (F->getType()->isIncompleteArrayType()) { 5115 assert(ClassDecl->hasFlexibleArrayMember() && 5116 "Incomplete array type is not valid"); 5117 continue; 5118 } 5119 5120 // Initialize each field of an anonymous struct individually. 5121 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) 5122 HadError = true; 5123 5124 continue; 5125 } 5126 } 5127 5128 unsigned NumInitializers = Info.AllToInit.size(); 5129 if (NumInitializers > 0) { 5130 Constructor->setNumCtorInitializers(NumInitializers); 5131 CXXCtorInitializer **baseOrMemberInitializers = 5132 new (Context) CXXCtorInitializer*[NumInitializers]; 5133 memcpy(baseOrMemberInitializers, Info.AllToInit.data(), 5134 NumInitializers * sizeof(CXXCtorInitializer*)); 5135 Constructor->setCtorInitializers(baseOrMemberInitializers); 5136 5137 // Constructors implicitly reference the base and member 5138 // destructors. 5139 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), 5140 Constructor->getParent()); 5141 } 5142 5143 return HadError; 5144 } 5145 5146 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { 5147 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { 5148 const RecordDecl *RD = RT->getDecl(); 5149 if (RD->isAnonymousStructOrUnion()) { 5150 for (auto *Field : RD->fields()) 5151 PopulateKeysForFields(Field, IdealInits); 5152 return; 5153 } 5154 } 5155 IdealInits.push_back(Field->getCanonicalDecl()); 5156 } 5157 5158 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { 5159 return Context.getCanonicalType(BaseType).getTypePtr(); 5160 } 5161 5162 static const void *GetKeyForMember(ASTContext &Context, 5163 CXXCtorInitializer *Member) { 5164 if (!Member->isAnyMemberInitializer()) 5165 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); 5166 5167 return Member->getAnyMember()->getCanonicalDecl(); 5168 } 5169 5170 static void DiagnoseBaseOrMemInitializerOrder( 5171 Sema &SemaRef, const CXXConstructorDecl *Constructor, 5172 ArrayRef<CXXCtorInitializer *> Inits) { 5173 if (Constructor->getDeclContext()->isDependentContext()) 5174 return; 5175 5176 // Don't check initializers order unless the warning is enabled at the 5177 // location of at least one initializer. 5178 bool ShouldCheckOrder = false; 5179 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5180 CXXCtorInitializer *Init = Inits[InitIndex]; 5181 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, 5182 Init->getSourceLocation())) { 5183 ShouldCheckOrder = true; 5184 break; 5185 } 5186 } 5187 if (!ShouldCheckOrder) 5188 return; 5189 5190 // Build the list of bases and members in the order that they'll 5191 // actually be initialized. The explicit initializers should be in 5192 // this same order but may be missing things. 5193 SmallVector<const void*, 32> IdealInitKeys; 5194 5195 const CXXRecordDecl *ClassDecl = Constructor->getParent(); 5196 5197 // 1. Virtual bases. 5198 for (const auto &VBase : ClassDecl->vbases()) 5199 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); 5200 5201 // 2. Non-virtual bases. 5202 for (const auto &Base : ClassDecl->bases()) { 5203 if (Base.isVirtual()) 5204 continue; 5205 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); 5206 } 5207 5208 // 3. Direct fields. 5209 for (auto *Field : ClassDecl->fields()) { 5210 if (Field->isUnnamedBitfield()) 5211 continue; 5212 5213 PopulateKeysForFields(Field, IdealInitKeys); 5214 } 5215 5216 unsigned NumIdealInits = IdealInitKeys.size(); 5217 unsigned IdealIndex = 0; 5218 5219 CXXCtorInitializer *PrevInit = nullptr; 5220 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5221 CXXCtorInitializer *Init = Inits[InitIndex]; 5222 const void *InitKey = GetKeyForMember(SemaRef.Context, Init); 5223 5224 // Scan forward to try to find this initializer in the idealized 5225 // initializers list. 5226 for (; IdealIndex != NumIdealInits; ++IdealIndex) 5227 if (InitKey == IdealInitKeys[IdealIndex]) 5228 break; 5229 5230 // If we didn't find this initializer, it must be because we 5231 // scanned past it on a previous iteration. That can only 5232 // happen if we're out of order; emit a warning. 5233 if (IdealIndex == NumIdealInits && PrevInit) { 5234 Sema::SemaDiagnosticBuilder D = 5235 SemaRef.Diag(PrevInit->getSourceLocation(), 5236 diag::warn_initializer_out_of_order); 5237 5238 if (PrevInit->isAnyMemberInitializer()) 5239 D << 0 << PrevInit->getAnyMember()->getDeclName(); 5240 else 5241 D << 1 << PrevInit->getTypeSourceInfo()->getType(); 5242 5243 if (Init->isAnyMemberInitializer()) 5244 D << 0 << Init->getAnyMember()->getDeclName(); 5245 else 5246 D << 1 << Init->getTypeSourceInfo()->getType(); 5247 5248 // Move back to the initializer's location in the ideal list. 5249 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) 5250 if (InitKey == IdealInitKeys[IdealIndex]) 5251 break; 5252 5253 assert(IdealIndex < NumIdealInits && 5254 "initializer not found in initializer list"); 5255 } 5256 5257 PrevInit = Init; 5258 } 5259 } 5260 5261 namespace { 5262 bool CheckRedundantInit(Sema &S, 5263 CXXCtorInitializer *Init, 5264 CXXCtorInitializer *&PrevInit) { 5265 if (!PrevInit) { 5266 PrevInit = Init; 5267 return false; 5268 } 5269 5270 if (FieldDecl *Field = Init->getAnyMember()) 5271 S.Diag(Init->getSourceLocation(), 5272 diag::err_multiple_mem_initialization) 5273 << Field->getDeclName() 5274 << Init->getSourceRange(); 5275 else { 5276 const Type *BaseClass = Init->getBaseClass(); 5277 assert(BaseClass && "neither field nor base"); 5278 S.Diag(Init->getSourceLocation(), 5279 diag::err_multiple_base_initialization) 5280 << QualType(BaseClass, 0) 5281 << Init->getSourceRange(); 5282 } 5283 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) 5284 << 0 << PrevInit->getSourceRange(); 5285 5286 return true; 5287 } 5288 5289 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; 5290 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; 5291 5292 bool CheckRedundantUnionInit(Sema &S, 5293 CXXCtorInitializer *Init, 5294 RedundantUnionMap &Unions) { 5295 FieldDecl *Field = Init->getAnyMember(); 5296 RecordDecl *Parent = Field->getParent(); 5297 NamedDecl *Child = Field; 5298 5299 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { 5300 if (Parent->isUnion()) { 5301 UnionEntry &En = Unions[Parent]; 5302 if (En.first && En.first != Child) { 5303 S.Diag(Init->getSourceLocation(), 5304 diag::err_multiple_mem_union_initialization) 5305 << Field->getDeclName() 5306 << Init->getSourceRange(); 5307 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) 5308 << 0 << En.second->getSourceRange(); 5309 return true; 5310 } 5311 if (!En.first) { 5312 En.first = Child; 5313 En.second = Init; 5314 } 5315 if (!Parent->isAnonymousStructOrUnion()) 5316 return false; 5317 } 5318 5319 Child = Parent; 5320 Parent = cast<RecordDecl>(Parent->getDeclContext()); 5321 } 5322 5323 return false; 5324 } 5325 } 5326 5327 /// ActOnMemInitializers - Handle the member initializers for a constructor. 5328 void Sema::ActOnMemInitializers(Decl *ConstructorDecl, 5329 SourceLocation ColonLoc, 5330 ArrayRef<CXXCtorInitializer*> MemInits, 5331 bool AnyErrors) { 5332 if (!ConstructorDecl) 5333 return; 5334 5335 AdjustDeclIfTemplate(ConstructorDecl); 5336 5337 CXXConstructorDecl *Constructor 5338 = dyn_cast<CXXConstructorDecl>(ConstructorDecl); 5339 5340 if (!Constructor) { 5341 Diag(ColonLoc, diag::err_only_constructors_take_base_inits); 5342 return; 5343 } 5344 5345 // Mapping for the duplicate initializers check. 5346 // For member initializers, this is keyed with a FieldDecl*. 5347 // For base initializers, this is keyed with a Type*. 5348 llvm::DenseMap<const void *, CXXCtorInitializer *> Members; 5349 5350 // Mapping for the inconsistent anonymous-union initializers check. 5351 RedundantUnionMap MemberUnions; 5352 5353 bool HadError = false; 5354 for (unsigned i = 0; i < MemInits.size(); i++) { 5355 CXXCtorInitializer *Init = MemInits[i]; 5356 5357 // Set the source order index. 5358 Init->setSourceOrder(i); 5359 5360 if (Init->isAnyMemberInitializer()) { 5361 const void *Key = GetKeyForMember(Context, Init); 5362 if (CheckRedundantInit(*this, Init, Members[Key]) || 5363 CheckRedundantUnionInit(*this, Init, MemberUnions)) 5364 HadError = true; 5365 } else if (Init->isBaseInitializer()) { 5366 const void *Key = GetKeyForMember(Context, Init); 5367 if (CheckRedundantInit(*this, Init, Members[Key])) 5368 HadError = true; 5369 } else { 5370 assert(Init->isDelegatingInitializer()); 5371 // This must be the only initializer 5372 if (MemInits.size() != 1) { 5373 Diag(Init->getSourceLocation(), 5374 diag::err_delegating_initializer_alone) 5375 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); 5376 // We will treat this as being the only initializer. 5377 } 5378 SetDelegatingInitializer(Constructor, MemInits[i]); 5379 // Return immediately as the initializer is set. 5380 return; 5381 } 5382 } 5383 5384 if (HadError) 5385 return; 5386 5387 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); 5388 5389 SetCtorInitializers(Constructor, AnyErrors, MemInits); 5390 5391 DiagnoseUninitializedFields(*this, Constructor); 5392 } 5393 5394 void 5395 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, 5396 CXXRecordDecl *ClassDecl) { 5397 // Ignore dependent contexts. Also ignore unions, since their members never 5398 // have destructors implicitly called. 5399 if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) 5400 return; 5401 5402 // FIXME: all the access-control diagnostics are positioned on the 5403 // field/base declaration. That's probably good; that said, the 5404 // user might reasonably want to know why the destructor is being 5405 // emitted, and we currently don't say. 5406 5407 // Non-static data members. 5408 for (auto *Field : ClassDecl->fields()) { 5409 if (Field->isInvalidDecl()) 5410 continue; 5411 5412 // Don't destroy incomplete or zero-length arrays. 5413 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) 5414 continue; 5415 5416 QualType FieldType = Context.getBaseElementType(Field->getType()); 5417 5418 const RecordType* RT = FieldType->getAs<RecordType>(); 5419 if (!RT) 5420 continue; 5421 5422 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5423 if (FieldClassDecl->isInvalidDecl()) 5424 continue; 5425 if (FieldClassDecl->hasIrrelevantDestructor()) 5426 continue; 5427 // The destructor for an implicit anonymous union member is never invoked. 5428 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 5429 continue; 5430 5431 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); 5432 assert(Dtor && "No dtor found for FieldClassDecl!"); 5433 CheckDestructorAccess(Field->getLocation(), Dtor, 5434 PDiag(diag::err_access_dtor_field) 5435 << Field->getDeclName() 5436 << FieldType); 5437 5438 MarkFunctionReferenced(Location, Dtor); 5439 DiagnoseUseOfDecl(Dtor, Location); 5440 } 5441 5442 // We only potentially invoke the destructors of potentially constructed 5443 // subobjects. 5444 bool VisitVirtualBases = !ClassDecl->isAbstract(); 5445 5446 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; 5447 5448 // Bases. 5449 for (const auto &Base : ClassDecl->bases()) { 5450 // Bases are always records in a well-formed non-dependent class. 5451 const RecordType *RT = Base.getType()->getAs<RecordType>(); 5452 5453 // Remember direct virtual bases. 5454 if (Base.isVirtual()) { 5455 if (!VisitVirtualBases) 5456 continue; 5457 DirectVirtualBases.insert(RT); 5458 } 5459 5460 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5461 // If our base class is invalid, we probably can't get its dtor anyway. 5462 if (BaseClassDecl->isInvalidDecl()) 5463 continue; 5464 if (BaseClassDecl->hasIrrelevantDestructor()) 5465 continue; 5466 5467 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5468 assert(Dtor && "No dtor found for BaseClassDecl!"); 5469 5470 // FIXME: caret should be on the start of the class name 5471 CheckDestructorAccess(Base.getBeginLoc(), Dtor, 5472 PDiag(diag::err_access_dtor_base) 5473 << Base.getType() << Base.getSourceRange(), 5474 Context.getTypeDeclType(ClassDecl)); 5475 5476 MarkFunctionReferenced(Location, Dtor); 5477 DiagnoseUseOfDecl(Dtor, Location); 5478 } 5479 5480 if (!VisitVirtualBases) 5481 return; 5482 5483 // Virtual bases. 5484 for (const auto &VBase : ClassDecl->vbases()) { 5485 // Bases are always records in a well-formed non-dependent class. 5486 const RecordType *RT = VBase.getType()->castAs<RecordType>(); 5487 5488 // Ignore direct virtual bases. 5489 if (DirectVirtualBases.count(RT)) 5490 continue; 5491 5492 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5493 // If our base class is invalid, we probably can't get its dtor anyway. 5494 if (BaseClassDecl->isInvalidDecl()) 5495 continue; 5496 if (BaseClassDecl->hasIrrelevantDestructor()) 5497 continue; 5498 5499 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5500 assert(Dtor && "No dtor found for BaseClassDecl!"); 5501 if (CheckDestructorAccess( 5502 ClassDecl->getLocation(), Dtor, 5503 PDiag(diag::err_access_dtor_vbase) 5504 << Context.getTypeDeclType(ClassDecl) << VBase.getType(), 5505 Context.getTypeDeclType(ClassDecl)) == 5506 AR_accessible) { 5507 CheckDerivedToBaseConversion( 5508 Context.getTypeDeclType(ClassDecl), VBase.getType(), 5509 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), 5510 SourceRange(), DeclarationName(), nullptr); 5511 } 5512 5513 MarkFunctionReferenced(Location, Dtor); 5514 DiagnoseUseOfDecl(Dtor, Location); 5515 } 5516 } 5517 5518 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { 5519 if (!CDtorDecl) 5520 return; 5521 5522 if (CXXConstructorDecl *Constructor 5523 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) { 5524 SetCtorInitializers(Constructor, /*AnyErrors=*/false); 5525 DiagnoseUninitializedFields(*this, Constructor); 5526 } 5527 } 5528 5529 bool Sema::isAbstractType(SourceLocation Loc, QualType T) { 5530 if (!getLangOpts().CPlusPlus) 5531 return false; 5532 5533 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); 5534 if (!RD) 5535 return false; 5536 5537 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a 5538 // class template specialization here, but doing so breaks a lot of code. 5539 5540 // We can't answer whether something is abstract until it has a 5541 // definition. If it's currently being defined, we'll walk back 5542 // over all the declarations when we have a full definition. 5543 const CXXRecordDecl *Def = RD->getDefinition(); 5544 if (!Def || Def->isBeingDefined()) 5545 return false; 5546 5547 return RD->isAbstract(); 5548 } 5549 5550 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 5551 TypeDiagnoser &Diagnoser) { 5552 if (!isAbstractType(Loc, T)) 5553 return false; 5554 5555 T = Context.getBaseElementType(T); 5556 Diagnoser.diagnose(*this, Loc, T); 5557 DiagnoseAbstractType(T->getAsCXXRecordDecl()); 5558 return true; 5559 } 5560 5561 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { 5562 // Check if we've already emitted the list of pure virtual functions 5563 // for this class. 5564 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) 5565 return; 5566 5567 // If the diagnostic is suppressed, don't emit the notes. We're only 5568 // going to emit them once, so try to attach them to a diagnostic we're 5569 // actually going to show. 5570 if (Diags.isLastDiagnosticIgnored()) 5571 return; 5572 5573 CXXFinalOverriderMap FinalOverriders; 5574 RD->getFinalOverriders(FinalOverriders); 5575 5576 // Keep a set of seen pure methods so we won't diagnose the same method 5577 // more than once. 5578 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; 5579 5580 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 5581 MEnd = FinalOverriders.end(); 5582 M != MEnd; 5583 ++M) { 5584 for (OverridingMethods::iterator SO = M->second.begin(), 5585 SOEnd = M->second.end(); 5586 SO != SOEnd; ++SO) { 5587 // C++ [class.abstract]p4: 5588 // A class is abstract if it contains or inherits at least one 5589 // pure virtual function for which the final overrider is pure 5590 // virtual. 5591 5592 // 5593 if (SO->second.size() != 1) 5594 continue; 5595 5596 if (!SO->second.front().Method->isPure()) 5597 continue; 5598 5599 if (!SeenPureMethods.insert(SO->second.front().Method).second) 5600 continue; 5601 5602 Diag(SO->second.front().Method->getLocation(), 5603 diag::note_pure_virtual_function) 5604 << SO->second.front().Method->getDeclName() << RD->getDeclName(); 5605 } 5606 } 5607 5608 if (!PureVirtualClassDiagSet) 5609 PureVirtualClassDiagSet.reset(new RecordDeclSetTy); 5610 PureVirtualClassDiagSet->insert(RD); 5611 } 5612 5613 namespace { 5614 struct AbstractUsageInfo { 5615 Sema &S; 5616 CXXRecordDecl *Record; 5617 CanQualType AbstractType; 5618 bool Invalid; 5619 5620 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) 5621 : S(S), Record(Record), 5622 AbstractType(S.Context.getCanonicalType( 5623 S.Context.getTypeDeclType(Record))), 5624 Invalid(false) {} 5625 5626 void DiagnoseAbstractType() { 5627 if (Invalid) return; 5628 S.DiagnoseAbstractType(Record); 5629 Invalid = true; 5630 } 5631 5632 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); 5633 }; 5634 5635 struct CheckAbstractUsage { 5636 AbstractUsageInfo &Info; 5637 const NamedDecl *Ctx; 5638 5639 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) 5640 : Info(Info), Ctx(Ctx) {} 5641 5642 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5643 switch (TL.getTypeLocClass()) { 5644 #define ABSTRACT_TYPELOC(CLASS, PARENT) 5645 #define TYPELOC(CLASS, PARENT) \ 5646 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; 5647 #include "clang/AST/TypeLocNodes.def" 5648 } 5649 } 5650 5651 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5652 Visit(TL.getReturnLoc(), Sema::AbstractReturnType); 5653 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { 5654 if (!TL.getParam(I)) 5655 continue; 5656 5657 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); 5658 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); 5659 } 5660 } 5661 5662 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5663 Visit(TL.getElementLoc(), Sema::AbstractArrayType); 5664 } 5665 5666 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5667 // Visit the type parameters from a permissive context. 5668 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { 5669 TemplateArgumentLoc TAL = TL.getArgLoc(I); 5670 if (TAL.getArgument().getKind() == TemplateArgument::Type) 5671 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) 5672 Visit(TSI->getTypeLoc(), Sema::AbstractNone); 5673 // TODO: other template argument types? 5674 } 5675 } 5676 5677 // Visit pointee types from a permissive context. 5678 #define CheckPolymorphic(Type) \ 5679 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ 5680 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ 5681 } 5682 CheckPolymorphic(PointerTypeLoc) 5683 CheckPolymorphic(ReferenceTypeLoc) 5684 CheckPolymorphic(MemberPointerTypeLoc) 5685 CheckPolymorphic(BlockPointerTypeLoc) 5686 CheckPolymorphic(AtomicTypeLoc) 5687 5688 /// Handle all the types we haven't given a more specific 5689 /// implementation for above. 5690 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5691 // Every other kind of type that we haven't called out already 5692 // that has an inner type is either (1) sugar or (2) contains that 5693 // inner type in some way as a subobject. 5694 if (TypeLoc Next = TL.getNextTypeLoc()) 5695 return Visit(Next, Sel); 5696 5697 // If there's no inner type and we're in a permissive context, 5698 // don't diagnose. 5699 if (Sel == Sema::AbstractNone) return; 5700 5701 // Check whether the type matches the abstract type. 5702 QualType T = TL.getType(); 5703 if (T->isArrayType()) { 5704 Sel = Sema::AbstractArrayType; 5705 T = Info.S.Context.getBaseElementType(T); 5706 } 5707 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); 5708 if (CT != Info.AbstractType) return; 5709 5710 // It matched; do some magic. 5711 if (Sel == Sema::AbstractArrayType) { 5712 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) 5713 << T << TL.getSourceRange(); 5714 } else { 5715 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) 5716 << Sel << T << TL.getSourceRange(); 5717 } 5718 Info.DiagnoseAbstractType(); 5719 } 5720 }; 5721 5722 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, 5723 Sema::AbstractDiagSelID Sel) { 5724 CheckAbstractUsage(*this, D).Visit(TL, Sel); 5725 } 5726 5727 } 5728 5729 /// Check for invalid uses of an abstract type in a method declaration. 5730 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5731 CXXMethodDecl *MD) { 5732 // No need to do the check on definitions, which require that 5733 // the return/param types be complete. 5734 if (MD->doesThisDeclarationHaveABody()) 5735 return; 5736 5737 // For safety's sake, just ignore it if we don't have type source 5738 // information. This should never happen for non-implicit methods, 5739 // but... 5740 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 5741 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); 5742 } 5743 5744 /// Check for invalid uses of an abstract type within a class definition. 5745 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5746 CXXRecordDecl *RD) { 5747 for (auto *D : RD->decls()) { 5748 if (D->isImplicit()) continue; 5749 5750 // Methods and method templates. 5751 if (isa<CXXMethodDecl>(D)) { 5752 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D)); 5753 } else if (isa<FunctionTemplateDecl>(D)) { 5754 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); 5755 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD)); 5756 5757 // Fields and static variables. 5758 } else if (isa<FieldDecl>(D)) { 5759 FieldDecl *FD = cast<FieldDecl>(D); 5760 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 5761 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); 5762 } else if (isa<VarDecl>(D)) { 5763 VarDecl *VD = cast<VarDecl>(D); 5764 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) 5765 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); 5766 5767 // Nested classes and class templates. 5768 } else if (isa<CXXRecordDecl>(D)) { 5769 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D)); 5770 } else if (isa<ClassTemplateDecl>(D)) { 5771 CheckAbstractClassUsage(Info, 5772 cast<ClassTemplateDecl>(D)->getTemplatedDecl()); 5773 } 5774 } 5775 } 5776 5777 static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { 5778 Attr *ClassAttr = getDLLAttr(Class); 5779 if (!ClassAttr) 5780 return; 5781 5782 assert(ClassAttr->getKind() == attr::DLLExport); 5783 5784 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 5785 5786 if (TSK == TSK_ExplicitInstantiationDeclaration) 5787 // Don't go any further if this is just an explicit instantiation 5788 // declaration. 5789 return; 5790 5791 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) 5792 S.MarkVTableUsed(Class->getLocation(), Class, true); 5793 5794 for (Decl *Member : Class->decls()) { 5795 // Defined static variables that are members of an exported base 5796 // class must be marked export too. 5797 auto *VD = dyn_cast<VarDecl>(Member); 5798 if (VD && Member->getAttr<DLLExportAttr>() && 5799 VD->getStorageClass() == SC_Static && 5800 TSK == TSK_ImplicitInstantiation) 5801 S.MarkVariableReferenced(VD->getLocation(), VD); 5802 5803 auto *MD = dyn_cast<CXXMethodDecl>(Member); 5804 if (!MD) 5805 continue; 5806 5807 if (Member->getAttr<DLLExportAttr>()) { 5808 if (MD->isUserProvided()) { 5809 // Instantiate non-default class member functions ... 5810 5811 // .. except for certain kinds of template specializations. 5812 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) 5813 continue; 5814 5815 S.MarkFunctionReferenced(Class->getLocation(), MD); 5816 5817 // The function will be passed to the consumer when its definition is 5818 // encountered. 5819 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() || 5820 MD->isCopyAssignmentOperator() || 5821 MD->isMoveAssignmentOperator()) { 5822 // Synthesize and instantiate non-trivial implicit methods, explicitly 5823 // defaulted methods, and the copy and move assignment operators. The 5824 // latter are exported even if they are trivial, because the address of 5825 // an operator can be taken and should compare equal across libraries. 5826 DiagnosticErrorTrap Trap(S.Diags); 5827 S.MarkFunctionReferenced(Class->getLocation(), MD); 5828 if (Trap.hasErrorOccurred()) { 5829 S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class) 5830 << Class << !S.getLangOpts().CPlusPlus11; 5831 break; 5832 } 5833 5834 // There is no later point when we will see the definition of this 5835 // function, so pass it to the consumer now. 5836 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 5837 } 5838 } 5839 } 5840 } 5841 5842 static void checkForMultipleExportedDefaultConstructors(Sema &S, 5843 CXXRecordDecl *Class) { 5844 // Only the MS ABI has default constructor closures, so we don't need to do 5845 // this semantic checking anywhere else. 5846 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) 5847 return; 5848 5849 CXXConstructorDecl *LastExportedDefaultCtor = nullptr; 5850 for (Decl *Member : Class->decls()) { 5851 // Look for exported default constructors. 5852 auto *CD = dyn_cast<CXXConstructorDecl>(Member); 5853 if (!CD || !CD->isDefaultConstructor()) 5854 continue; 5855 auto *Attr = CD->getAttr<DLLExportAttr>(); 5856 if (!Attr) 5857 continue; 5858 5859 // If the class is non-dependent, mark the default arguments as ODR-used so 5860 // that we can properly codegen the constructor closure. 5861 if (!Class->isDependentContext()) { 5862 for (ParmVarDecl *PD : CD->parameters()) { 5863 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); 5864 S.DiscardCleanupsInEvaluationContext(); 5865 } 5866 } 5867 5868 if (LastExportedDefaultCtor) { 5869 S.Diag(LastExportedDefaultCtor->getLocation(), 5870 diag::err_attribute_dll_ambiguous_default_ctor) 5871 << Class; 5872 S.Diag(CD->getLocation(), diag::note_entity_declared_at) 5873 << CD->getDeclName(); 5874 return; 5875 } 5876 LastExportedDefaultCtor = CD; 5877 } 5878 } 5879 5880 void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { 5881 // Mark any compiler-generated routines with the implicit code_seg attribute. 5882 for (auto *Method : Class->methods()) { 5883 if (Method->isUserProvided()) 5884 continue; 5885 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 5886 Method->addAttr(A); 5887 } 5888 } 5889 5890 /// Check class-level dllimport/dllexport attribute. 5891 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { 5892 Attr *ClassAttr = getDLLAttr(Class); 5893 5894 // MSVC inherits DLL attributes to partial class template specializations. 5895 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) { 5896 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { 5897 if (Attr *TemplateAttr = 5898 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { 5899 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext())); 5900 A->setInherited(true); 5901 ClassAttr = A; 5902 } 5903 } 5904 } 5905 5906 if (!ClassAttr) 5907 return; 5908 5909 if (!Class->isExternallyVisible()) { 5910 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) 5911 << Class << ClassAttr; 5912 return; 5913 } 5914 5915 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 5916 !ClassAttr->isInherited()) { 5917 // Diagnose dll attributes on members of class with dll attribute. 5918 for (Decl *Member : Class->decls()) { 5919 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) 5920 continue; 5921 InheritableAttr *MemberAttr = getDLLAttr(Member); 5922 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) 5923 continue; 5924 5925 Diag(MemberAttr->getLocation(), 5926 diag::err_attribute_dll_member_of_dll_class) 5927 << MemberAttr << ClassAttr; 5928 Diag(ClassAttr->getLocation(), diag::note_previous_attribute); 5929 Member->setInvalidDecl(); 5930 } 5931 } 5932 5933 if (Class->getDescribedClassTemplate()) 5934 // Don't inherit dll attribute until the template is instantiated. 5935 return; 5936 5937 // The class is either imported or exported. 5938 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; 5939 5940 // Check if this was a dllimport attribute propagated from a derived class to 5941 // a base class template specialization. We don't apply these attributes to 5942 // static data members. 5943 const bool PropagatedImport = 5944 !ClassExported && 5945 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate(); 5946 5947 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 5948 5949 // Ignore explicit dllexport on explicit class template instantiation 5950 // declarations, except in MinGW mode. 5951 if (ClassExported && !ClassAttr->isInherited() && 5952 TSK == TSK_ExplicitInstantiationDeclaration && 5953 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 5954 Class->dropAttr<DLLExportAttr>(); 5955 return; 5956 } 5957 5958 // Force declaration of implicit members so they can inherit the attribute. 5959 ForceDeclarationOfImplicitMembers(Class); 5960 5961 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't 5962 // seem to be true in practice? 5963 5964 for (Decl *Member : Class->decls()) { 5965 VarDecl *VD = dyn_cast<VarDecl>(Member); 5966 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); 5967 5968 // Only methods and static fields inherit the attributes. 5969 if (!VD && !MD) 5970 continue; 5971 5972 if (MD) { 5973 // Don't process deleted methods. 5974 if (MD->isDeleted()) 5975 continue; 5976 5977 if (MD->isInlined()) { 5978 // MinGW does not import or export inline methods. But do it for 5979 // template instantiations. 5980 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 5981 !Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment() && 5982 TSK != TSK_ExplicitInstantiationDeclaration && 5983 TSK != TSK_ExplicitInstantiationDefinition) 5984 continue; 5985 5986 // MSVC versions before 2015 don't export the move assignment operators 5987 // and move constructor, so don't attempt to import/export them if 5988 // we have a definition. 5989 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD); 5990 if ((MD->isMoveAssignmentOperator() || 5991 (Ctor && Ctor->isMoveConstructor())) && 5992 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) 5993 continue; 5994 5995 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign 5996 // operator is exported anyway. 5997 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 5998 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial()) 5999 continue; 6000 } 6001 } 6002 6003 // Don't apply dllimport attributes to static data members of class template 6004 // instantiations when the attribute is propagated from a derived class. 6005 if (VD && PropagatedImport) 6006 continue; 6007 6008 if (!cast<NamedDecl>(Member)->isExternallyVisible()) 6009 continue; 6010 6011 if (!getDLLAttr(Member)) { 6012 InheritableAttr *NewAttr = nullptr; 6013 6014 // Do not export/import inline function when -fno-dllexport-inlines is 6015 // passed. But add attribute for later local static var check. 6016 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && 6017 TSK != TSK_ExplicitInstantiationDeclaration && 6018 TSK != TSK_ExplicitInstantiationDefinition) { 6019 if (ClassExported) { 6020 NewAttr = ::new (getASTContext()) 6021 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr); 6022 } else { 6023 NewAttr = ::new (getASTContext()) 6024 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr); 6025 } 6026 } else { 6027 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6028 } 6029 6030 NewAttr->setInherited(true); 6031 Member->addAttr(NewAttr); 6032 6033 if (MD) { 6034 // Propagate DLLAttr to friend re-declarations of MD that have already 6035 // been constructed. 6036 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; 6037 FD = FD->getPreviousDecl()) { 6038 if (FD->getFriendObjectKind() == Decl::FOK_None) 6039 continue; 6040 assert(!getDLLAttr(FD) && 6041 "friend re-decl should not already have a DLLAttr"); 6042 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6043 NewAttr->setInherited(true); 6044 FD->addAttr(NewAttr); 6045 } 6046 } 6047 } 6048 } 6049 6050 if (ClassExported) 6051 DelayedDllExportClasses.push_back(Class); 6052 } 6053 6054 /// Perform propagation of DLL attributes from a derived class to a 6055 /// templated base class for MS compatibility. 6056 void Sema::propagateDLLAttrToBaseClassTemplate( 6057 CXXRecordDecl *Class, Attr *ClassAttr, 6058 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { 6059 if (getDLLAttr( 6060 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { 6061 // If the base class template has a DLL attribute, don't try to change it. 6062 return; 6063 } 6064 6065 auto TSK = BaseTemplateSpec->getSpecializationKind(); 6066 if (!getDLLAttr(BaseTemplateSpec) && 6067 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || 6068 TSK == TSK_ImplicitInstantiation)) { 6069 // The template hasn't been instantiated yet (or it has, but only as an 6070 // explicit instantiation declaration or implicit instantiation, which means 6071 // we haven't codegenned any members yet), so propagate the attribute. 6072 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6073 NewAttr->setInherited(true); 6074 BaseTemplateSpec->addAttr(NewAttr); 6075 6076 // If this was an import, mark that we propagated it from a derived class to 6077 // a base class template specialization. 6078 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr)) 6079 ImportAttr->setPropagatedToBaseTemplate(); 6080 6081 // If the template is already instantiated, checkDLLAttributeRedeclaration() 6082 // needs to be run again to work see the new attribute. Otherwise this will 6083 // get run whenever the template is instantiated. 6084 if (TSK != TSK_Undeclared) 6085 checkClassLevelDLLAttribute(BaseTemplateSpec); 6086 6087 return; 6088 } 6089 6090 if (getDLLAttr(BaseTemplateSpec)) { 6091 // The template has already been specialized or instantiated with an 6092 // attribute, explicitly or through propagation. We should not try to change 6093 // it. 6094 return; 6095 } 6096 6097 // The template was previously instantiated or explicitly specialized without 6098 // a dll attribute, It's too late for us to add an attribute, so warn that 6099 // this is unsupported. 6100 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) 6101 << BaseTemplateSpec->isExplicitSpecialization(); 6102 Diag(ClassAttr->getLocation(), diag::note_attribute); 6103 if (BaseTemplateSpec->isExplicitSpecialization()) { 6104 Diag(BaseTemplateSpec->getLocation(), 6105 diag::note_template_class_explicit_specialization_was_here) 6106 << BaseTemplateSpec; 6107 } else { 6108 Diag(BaseTemplateSpec->getPointOfInstantiation(), 6109 diag::note_template_class_instantiation_was_here) 6110 << BaseTemplateSpec; 6111 } 6112 } 6113 6114 /// Determine the kind of defaulting that would be done for a given function. 6115 /// 6116 /// If the function is both a default constructor and a copy / move constructor 6117 /// (due to having a default argument for the first parameter), this picks 6118 /// CXXDefaultConstructor. 6119 /// 6120 /// FIXME: Check that case is properly handled by all callers. 6121 Sema::DefaultedFunctionKind 6122 Sema::getDefaultedFunctionKind(const FunctionDecl *FD) { 6123 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 6124 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { 6125 if (Ctor->isDefaultConstructor()) 6126 return Sema::CXXDefaultConstructor; 6127 6128 if (Ctor->isCopyConstructor()) 6129 return Sema::CXXCopyConstructor; 6130 6131 if (Ctor->isMoveConstructor()) 6132 return Sema::CXXMoveConstructor; 6133 } 6134 6135 if (MD->isCopyAssignmentOperator()) 6136 return Sema::CXXCopyAssignment; 6137 6138 if (MD->isMoveAssignmentOperator()) 6139 return Sema::CXXMoveAssignment; 6140 6141 if (isa<CXXDestructorDecl>(FD)) 6142 return Sema::CXXDestructor; 6143 } 6144 6145 switch (FD->getDeclName().getCXXOverloadedOperator()) { 6146 case OO_EqualEqual: 6147 return DefaultedComparisonKind::Equal; 6148 6149 case OO_ExclaimEqual: 6150 return DefaultedComparisonKind::NotEqual; 6151 6152 case OO_Spaceship: 6153 // No point allowing this if <=> doesn't exist in the current language mode. 6154 if (!getLangOpts().CPlusPlus2a) 6155 break; 6156 return DefaultedComparisonKind::ThreeWay; 6157 6158 case OO_Less: 6159 case OO_LessEqual: 6160 case OO_Greater: 6161 case OO_GreaterEqual: 6162 // No point allowing this if <=> doesn't exist in the current language mode. 6163 if (!getLangOpts().CPlusPlus2a) 6164 break; 6165 return DefaultedComparisonKind::Relational; 6166 6167 default: 6168 break; 6169 } 6170 6171 // Not defaultable. 6172 return DefaultedFunctionKind(); 6173 } 6174 6175 static void DefineImplicitSpecialMember(Sema &S, CXXMethodDecl *MD, 6176 SourceLocation DefaultLoc) { 6177 switch (S.getSpecialMember(MD)) { 6178 case Sema::CXXDefaultConstructor: 6179 S.DefineImplicitDefaultConstructor(DefaultLoc, 6180 cast<CXXConstructorDecl>(MD)); 6181 break; 6182 case Sema::CXXCopyConstructor: 6183 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD)); 6184 break; 6185 case Sema::CXXCopyAssignment: 6186 S.DefineImplicitCopyAssignment(DefaultLoc, MD); 6187 break; 6188 case Sema::CXXDestructor: 6189 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD)); 6190 break; 6191 case Sema::CXXMoveConstructor: 6192 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD)); 6193 break; 6194 case Sema::CXXMoveAssignment: 6195 S.DefineImplicitMoveAssignment(DefaultLoc, MD); 6196 break; 6197 case Sema::CXXInvalid: 6198 llvm_unreachable("Invalid special member."); 6199 } 6200 } 6201 6202 /// Determine whether a type is permitted to be passed or returned in 6203 /// registers, per C++ [class.temporary]p3. 6204 static bool canPassInRegisters(Sema &S, CXXRecordDecl *D, 6205 TargetInfo::CallingConvKind CCK) { 6206 if (D->isDependentType() || D->isInvalidDecl()) 6207 return false; 6208 6209 // Clang <= 4 used the pre-C++11 rule, which ignores move operations. 6210 // The PS4 platform ABI follows the behavior of Clang 3.2. 6211 if (CCK == TargetInfo::CCK_ClangABI4OrPS4) 6212 return !D->hasNonTrivialDestructorForCall() && 6213 !D->hasNonTrivialCopyConstructorForCall(); 6214 6215 if (CCK == TargetInfo::CCK_MicrosoftWin64) { 6216 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false; 6217 bool DtorIsTrivialForCall = false; 6218 6219 // If a class has at least one non-deleted, trivial copy constructor, it 6220 // is passed according to the C ABI. Otherwise, it is passed indirectly. 6221 // 6222 // Note: This permits classes with non-trivial copy or move ctors to be 6223 // passed in registers, so long as they *also* have a trivial copy ctor, 6224 // which is non-conforming. 6225 if (D->needsImplicitCopyConstructor()) { 6226 if (!D->defaultedCopyConstructorIsDeleted()) { 6227 if (D->hasTrivialCopyConstructor()) 6228 CopyCtorIsTrivial = true; 6229 if (D->hasTrivialCopyConstructorForCall()) 6230 CopyCtorIsTrivialForCall = true; 6231 } 6232 } else { 6233 for (const CXXConstructorDecl *CD : D->ctors()) { 6234 if (CD->isCopyConstructor() && !CD->isDeleted()) { 6235 if (CD->isTrivial()) 6236 CopyCtorIsTrivial = true; 6237 if (CD->isTrivialForCall()) 6238 CopyCtorIsTrivialForCall = true; 6239 } 6240 } 6241 } 6242 6243 if (D->needsImplicitDestructor()) { 6244 if (!D->defaultedDestructorIsDeleted() && 6245 D->hasTrivialDestructorForCall()) 6246 DtorIsTrivialForCall = true; 6247 } else if (const auto *DD = D->getDestructor()) { 6248 if (!DD->isDeleted() && DD->isTrivialForCall()) 6249 DtorIsTrivialForCall = true; 6250 } 6251 6252 // If the copy ctor and dtor are both trivial-for-calls, pass direct. 6253 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall) 6254 return true; 6255 6256 // If a class has a destructor, we'd really like to pass it indirectly 6257 // because it allows us to elide copies. Unfortunately, MSVC makes that 6258 // impossible for small types, which it will pass in a single register or 6259 // stack slot. Most objects with dtors are large-ish, so handle that early. 6260 // We can't call out all large objects as being indirect because there are 6261 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate 6262 // how we pass large POD types. 6263 6264 // Note: This permits small classes with nontrivial destructors to be 6265 // passed in registers, which is non-conforming. 6266 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); 6267 uint64_t TypeSize = isAArch64 ? 128 : 64; 6268 6269 if (CopyCtorIsTrivial && 6270 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize) 6271 return true; 6272 return false; 6273 } 6274 6275 // Per C++ [class.temporary]p3, the relevant condition is: 6276 // each copy constructor, move constructor, and destructor of X is 6277 // either trivial or deleted, and X has at least one non-deleted copy 6278 // or move constructor 6279 bool HasNonDeletedCopyOrMove = false; 6280 6281 if (D->needsImplicitCopyConstructor() && 6282 !D->defaultedCopyConstructorIsDeleted()) { 6283 if (!D->hasTrivialCopyConstructorForCall()) 6284 return false; 6285 HasNonDeletedCopyOrMove = true; 6286 } 6287 6288 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() && 6289 !D->defaultedMoveConstructorIsDeleted()) { 6290 if (!D->hasTrivialMoveConstructorForCall()) 6291 return false; 6292 HasNonDeletedCopyOrMove = true; 6293 } 6294 6295 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() && 6296 !D->hasTrivialDestructorForCall()) 6297 return false; 6298 6299 for (const CXXMethodDecl *MD : D->methods()) { 6300 if (MD->isDeleted()) 6301 continue; 6302 6303 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6304 if (CD && CD->isCopyOrMoveConstructor()) 6305 HasNonDeletedCopyOrMove = true; 6306 else if (!isa<CXXDestructorDecl>(MD)) 6307 continue; 6308 6309 if (!MD->isTrivialForCall()) 6310 return false; 6311 } 6312 6313 return HasNonDeletedCopyOrMove; 6314 } 6315 6316 /// Perform semantic checks on a class definition that has been 6317 /// completing, introducing implicitly-declared members, checking for 6318 /// abstract types, etc. 6319 /// 6320 /// \param S The scope in which the class was parsed. Null if we didn't just 6321 /// parse a class definition. 6322 /// \param Record The completed class. 6323 void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) { 6324 if (!Record) 6325 return; 6326 6327 if (Record->isAbstract() && !Record->isInvalidDecl()) { 6328 AbstractUsageInfo Info(*this, Record); 6329 CheckAbstractClassUsage(Info, Record); 6330 } 6331 6332 // If this is not an aggregate type and has no user-declared constructor, 6333 // complain about any non-static data members of reference or const scalar 6334 // type, since they will never get initializers. 6335 if (!Record->isInvalidDecl() && !Record->isDependentType() && 6336 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && 6337 !Record->isLambda()) { 6338 bool Complained = false; 6339 for (const auto *F : Record->fields()) { 6340 if (F->hasInClassInitializer() || F->isUnnamedBitfield()) 6341 continue; 6342 6343 if (F->getType()->isReferenceType() || 6344 (F->getType().isConstQualified() && F->getType()->isScalarType())) { 6345 if (!Complained) { 6346 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) 6347 << Record->getTagKind() << Record; 6348 Complained = true; 6349 } 6350 6351 Diag(F->getLocation(), diag::note_refconst_member_not_initialized) 6352 << F->getType()->isReferenceType() 6353 << F->getDeclName(); 6354 } 6355 } 6356 } 6357 6358 if (Record->getIdentifier()) { 6359 // C++ [class.mem]p13: 6360 // If T is the name of a class, then each of the following shall have a 6361 // name different from T: 6362 // - every member of every anonymous union that is a member of class T. 6363 // 6364 // C++ [class.mem]p14: 6365 // In addition, if class T has a user-declared constructor (12.1), every 6366 // non-static data member of class T shall have a name different from T. 6367 DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); 6368 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; 6369 ++I) { 6370 NamedDecl *D = (*I)->getUnderlyingDecl(); 6371 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) && 6372 Record->hasUserDeclaredConstructor()) || 6373 isa<IndirectFieldDecl>(D)) { 6374 Diag((*I)->getLocation(), diag::err_member_name_of_class) 6375 << D->getDeclName(); 6376 break; 6377 } 6378 } 6379 } 6380 6381 // Warn if the class has virtual methods but non-virtual public destructor. 6382 if (Record->isPolymorphic() && !Record->isDependentType()) { 6383 CXXDestructorDecl *dtor = Record->getDestructor(); 6384 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && 6385 !Record->hasAttr<FinalAttr>()) 6386 Diag(dtor ? dtor->getLocation() : Record->getLocation(), 6387 diag::warn_non_virtual_dtor) << Context.getRecordType(Record); 6388 } 6389 6390 if (Record->isAbstract()) { 6391 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) { 6392 Diag(Record->getLocation(), diag::warn_abstract_final_class) 6393 << FA->isSpelledAsSealed(); 6394 DiagnoseAbstractType(Record); 6395 } 6396 } 6397 6398 // Warn if the class has a final destructor but is not itself marked final. 6399 if (!Record->hasAttr<FinalAttr>()) { 6400 if (const CXXDestructorDecl *dtor = Record->getDestructor()) { 6401 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) { 6402 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class) 6403 << FA->isSpelledAsSealed() 6404 << FixItHint::CreateInsertion( 6405 getLocForEndOfToken(Record->getLocation()), 6406 (FA->isSpelledAsSealed() ? " sealed" : " final")); 6407 Diag(Record->getLocation(), 6408 diag::note_final_dtor_non_final_class_silence) 6409 << Context.getRecordType(Record) << FA->isSpelledAsSealed(); 6410 } 6411 } 6412 } 6413 6414 // See if trivial_abi has to be dropped. 6415 if (Record->hasAttr<TrivialABIAttr>()) 6416 checkIllFormedTrivialABIStruct(*Record); 6417 6418 // Set HasTrivialSpecialMemberForCall if the record has attribute 6419 // "trivial_abi". 6420 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>(); 6421 6422 if (HasTrivialABI) 6423 Record->setHasTrivialSpecialMemberForCall(); 6424 6425 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=). 6426 // We check these last because they can depend on the properties of the 6427 // primary comparison functions (==, <=>). 6428 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons; 6429 6430 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) { 6431 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted()) 6432 return; 6433 6434 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 6435 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual || 6436 DFK.asComparison() == DefaultedComparisonKind::Relational) 6437 DefaultedSecondaryComparisons.push_back(FD); 6438 else 6439 CheckExplicitlyDefaultedFunction(S, FD); 6440 }; 6441 6442 auto CompleteMemberFunction = [&](CXXMethodDecl *M) { 6443 // Check whether the explicitly-defaulted members are valid. 6444 CheckForDefaultedFunction(M); 6445 6446 // Skip the rest of the checks for a member of a dependent class. 6447 if (Record->isDependentType()) 6448 return; 6449 6450 // For an explicitly defaulted or deleted special member, we defer 6451 // determining triviality until the class is complete. That time is now! 6452 CXXSpecialMember CSM = getSpecialMember(M); 6453 if (!M->isImplicit() && !M->isUserProvided()) { 6454 if (CSM != CXXInvalid) { 6455 M->setTrivial(SpecialMemberIsTrivial(M, CSM)); 6456 // Inform the class that we've finished declaring this member. 6457 Record->finishedDefaultedOrDeletedMember(M); 6458 M->setTrivialForCall( 6459 HasTrivialABI || 6460 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI)); 6461 Record->setTrivialForCallFlags(M); 6462 } 6463 } 6464 6465 // Set triviality for the purpose of calls if this is a user-provided 6466 // copy/move constructor or destructor. 6467 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor || 6468 CSM == CXXDestructor) && M->isUserProvided()) { 6469 M->setTrivialForCall(HasTrivialABI); 6470 Record->setTrivialForCallFlags(M); 6471 } 6472 6473 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() && 6474 M->hasAttr<DLLExportAttr>()) { 6475 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6476 M->isTrivial() && 6477 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor || 6478 CSM == CXXDestructor)) 6479 M->dropAttr<DLLExportAttr>(); 6480 6481 if (M->hasAttr<DLLExportAttr>()) { 6482 // Define after any fields with in-class initializers have been parsed. 6483 DelayedDllExportMemberFunctions.push_back(M); 6484 } 6485 } 6486 6487 // Define defaulted constexpr virtual functions that override a base class 6488 // function right away. 6489 // FIXME: We can defer doing this until the vtable is marked as used. 6490 if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods()) 6491 DefineImplicitSpecialMember(*this, M, M->getLocation()); 6492 }; 6493 6494 // Check the destructor before any other member function. We need to 6495 // determine whether it's trivial in order to determine whether the claas 6496 // type is a literal type, which is a prerequisite for determining whether 6497 // other special member functions are valid and whether they're implicitly 6498 // 'constexpr'. 6499 if (CXXDestructorDecl *Dtor = Record->getDestructor()) 6500 CompleteMemberFunction(Dtor); 6501 6502 bool HasMethodWithOverrideControl = false, 6503 HasOverridingMethodWithoutOverrideControl = false; 6504 for (auto *D : Record->decls()) { 6505 if (auto *M = dyn_cast<CXXMethodDecl>(D)) { 6506 // FIXME: We could do this check for dependent types with non-dependent 6507 // bases. 6508 if (!Record->isDependentType()) { 6509 // See if a method overloads virtual methods in a base 6510 // class without overriding any. 6511 if (!M->isStatic()) 6512 DiagnoseHiddenVirtualMethods(M); 6513 if (M->hasAttr<OverrideAttr>()) 6514 HasMethodWithOverrideControl = true; 6515 else if (M->size_overridden_methods() > 0) 6516 HasOverridingMethodWithoutOverrideControl = true; 6517 } 6518 6519 if (!isa<CXXDestructorDecl>(M)) 6520 CompleteMemberFunction(M); 6521 } else if (auto *F = dyn_cast<FriendDecl>(D)) { 6522 CheckForDefaultedFunction( 6523 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl())); 6524 } 6525 } 6526 6527 if (HasMethodWithOverrideControl && 6528 HasOverridingMethodWithoutOverrideControl) { 6529 // At least one method has the 'override' control declared. 6530 // Diagnose all other overridden methods which do not have 'override' 6531 // specified on them. 6532 for (auto *M : Record->methods()) 6533 DiagnoseAbsenceOfOverrideControl(M); 6534 } 6535 6536 // Check the defaulted secondary comparisons after any other member functions. 6537 for (FunctionDecl *FD : DefaultedSecondaryComparisons) 6538 CheckExplicitlyDefaultedFunction(S, FD); 6539 6540 // ms_struct is a request to use the same ABI rules as MSVC. Check 6541 // whether this class uses any C++ features that are implemented 6542 // completely differently in MSVC, and if so, emit a diagnostic. 6543 // That diagnostic defaults to an error, but we allow projects to 6544 // map it down to a warning (or ignore it). It's a fairly common 6545 // practice among users of the ms_struct pragma to mass-annotate 6546 // headers, sweeping up a bunch of types that the project doesn't 6547 // really rely on MSVC-compatible layout for. We must therefore 6548 // support "ms_struct except for C++ stuff" as a secondary ABI. 6549 if (Record->isMsStruct(Context) && 6550 (Record->isPolymorphic() || Record->getNumBases())) { 6551 Diag(Record->getLocation(), diag::warn_cxx_ms_struct); 6552 } 6553 6554 checkClassLevelDLLAttribute(Record); 6555 checkClassLevelCodeSegAttribute(Record); 6556 6557 bool ClangABICompat4 = 6558 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4; 6559 TargetInfo::CallingConvKind CCK = 6560 Context.getTargetInfo().getCallingConvKind(ClangABICompat4); 6561 bool CanPass = canPassInRegisters(*this, Record, CCK); 6562 6563 // Do not change ArgPassingRestrictions if it has already been set to 6564 // APK_CanNeverPassInRegs. 6565 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs) 6566 Record->setArgPassingRestrictions(CanPass 6567 ? RecordDecl::APK_CanPassInRegs 6568 : RecordDecl::APK_CannotPassInRegs); 6569 6570 // If canPassInRegisters returns true despite the record having a non-trivial 6571 // destructor, the record is destructed in the callee. This happens only when 6572 // the record or one of its subobjects has a field annotated with trivial_abi 6573 // or a field qualified with ObjC __strong/__weak. 6574 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee()) 6575 Record->setParamDestroyedInCallee(true); 6576 else if (Record->hasNonTrivialDestructor()) 6577 Record->setParamDestroyedInCallee(CanPass); 6578 6579 if (getLangOpts().ForceEmitVTables) { 6580 // If we want to emit all the vtables, we need to mark it as used. This 6581 // is especially required for cases like vtable assumption loads. 6582 MarkVTableUsed(Record->getInnerLocStart(), Record); 6583 } 6584 } 6585 6586 /// Look up the special member function that would be called by a special 6587 /// member function for a subobject of class type. 6588 /// 6589 /// \param Class The class type of the subobject. 6590 /// \param CSM The kind of special member function. 6591 /// \param FieldQuals If the subobject is a field, its cv-qualifiers. 6592 /// \param ConstRHS True if this is a copy operation with a const object 6593 /// on its RHS, that is, if the argument to the outer special member 6594 /// function is 'const' and this is not a field marked 'mutable'. 6595 static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember( 6596 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM, 6597 unsigned FieldQuals, bool ConstRHS) { 6598 unsigned LHSQuals = 0; 6599 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment) 6600 LHSQuals = FieldQuals; 6601 6602 unsigned RHSQuals = FieldQuals; 6603 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor) 6604 RHSQuals = 0; 6605 else if (ConstRHS) 6606 RHSQuals |= Qualifiers::Const; 6607 6608 return S.LookupSpecialMember(Class, CSM, 6609 RHSQuals & Qualifiers::Const, 6610 RHSQuals & Qualifiers::Volatile, 6611 false, 6612 LHSQuals & Qualifiers::Const, 6613 LHSQuals & Qualifiers::Volatile); 6614 } 6615 6616 class Sema::InheritedConstructorInfo { 6617 Sema &S; 6618 SourceLocation UseLoc; 6619 6620 /// A mapping from the base classes through which the constructor was 6621 /// inherited to the using shadow declaration in that base class (or a null 6622 /// pointer if the constructor was declared in that base class). 6623 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *> 6624 InheritedFromBases; 6625 6626 public: 6627 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc, 6628 ConstructorUsingShadowDecl *Shadow) 6629 : S(S), UseLoc(UseLoc) { 6630 bool DiagnosedMultipleConstructedBases = false; 6631 CXXRecordDecl *ConstructedBase = nullptr; 6632 UsingDecl *ConstructedBaseUsing = nullptr; 6633 6634 // Find the set of such base class subobjects and check that there's a 6635 // unique constructed subobject. 6636 for (auto *D : Shadow->redecls()) { 6637 auto *DShadow = cast<ConstructorUsingShadowDecl>(D); 6638 auto *DNominatedBase = DShadow->getNominatedBaseClass(); 6639 auto *DConstructedBase = DShadow->getConstructedBaseClass(); 6640 6641 InheritedFromBases.insert( 6642 std::make_pair(DNominatedBase->getCanonicalDecl(), 6643 DShadow->getNominatedBaseClassShadowDecl())); 6644 if (DShadow->constructsVirtualBase()) 6645 InheritedFromBases.insert( 6646 std::make_pair(DConstructedBase->getCanonicalDecl(), 6647 DShadow->getConstructedBaseClassShadowDecl())); 6648 else 6649 assert(DNominatedBase == DConstructedBase); 6650 6651 // [class.inhctor.init]p2: 6652 // If the constructor was inherited from multiple base class subobjects 6653 // of type B, the program is ill-formed. 6654 if (!ConstructedBase) { 6655 ConstructedBase = DConstructedBase; 6656 ConstructedBaseUsing = D->getUsingDecl(); 6657 } else if (ConstructedBase != DConstructedBase && 6658 !Shadow->isInvalidDecl()) { 6659 if (!DiagnosedMultipleConstructedBases) { 6660 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor) 6661 << Shadow->getTargetDecl(); 6662 S.Diag(ConstructedBaseUsing->getLocation(), 6663 diag::note_ambiguous_inherited_constructor_using) 6664 << ConstructedBase; 6665 DiagnosedMultipleConstructedBases = true; 6666 } 6667 S.Diag(D->getUsingDecl()->getLocation(), 6668 diag::note_ambiguous_inherited_constructor_using) 6669 << DConstructedBase; 6670 } 6671 } 6672 6673 if (DiagnosedMultipleConstructedBases) 6674 Shadow->setInvalidDecl(); 6675 } 6676 6677 /// Find the constructor to use for inherited construction of a base class, 6678 /// and whether that base class constructor inherits the constructor from a 6679 /// virtual base class (in which case it won't actually invoke it). 6680 std::pair<CXXConstructorDecl *, bool> 6681 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const { 6682 auto It = InheritedFromBases.find(Base->getCanonicalDecl()); 6683 if (It == InheritedFromBases.end()) 6684 return std::make_pair(nullptr, false); 6685 6686 // This is an intermediary class. 6687 if (It->second) 6688 return std::make_pair( 6689 S.findInheritingConstructor(UseLoc, Ctor, It->second), 6690 It->second->constructsVirtualBase()); 6691 6692 // This is the base class from which the constructor was inherited. 6693 return std::make_pair(Ctor, false); 6694 } 6695 }; 6696 6697 /// Is the special member function which would be selected to perform the 6698 /// specified operation on the specified class type a constexpr constructor? 6699 static bool 6700 specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl, 6701 Sema::CXXSpecialMember CSM, unsigned Quals, 6702 bool ConstRHS, 6703 CXXConstructorDecl *InheritedCtor = nullptr, 6704 Sema::InheritedConstructorInfo *Inherited = nullptr) { 6705 // If we're inheriting a constructor, see if we need to call it for this base 6706 // class. 6707 if (InheritedCtor) { 6708 assert(CSM == Sema::CXXDefaultConstructor); 6709 auto BaseCtor = 6710 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first; 6711 if (BaseCtor) 6712 return BaseCtor->isConstexpr(); 6713 } 6714 6715 if (CSM == Sema::CXXDefaultConstructor) 6716 return ClassDecl->hasConstexprDefaultConstructor(); 6717 if (CSM == Sema::CXXDestructor) 6718 return ClassDecl->hasConstexprDestructor(); 6719 6720 Sema::SpecialMemberOverloadResult SMOR = 6721 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS); 6722 if (!SMOR.getMethod()) 6723 // A constructor we wouldn't select can't be "involved in initializing" 6724 // anything. 6725 return true; 6726 return SMOR.getMethod()->isConstexpr(); 6727 } 6728 6729 /// Determine whether the specified special member function would be constexpr 6730 /// if it were implicitly defined. 6731 static bool defaultedSpecialMemberIsConstexpr( 6732 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM, 6733 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr, 6734 Sema::InheritedConstructorInfo *Inherited = nullptr) { 6735 if (!S.getLangOpts().CPlusPlus11) 6736 return false; 6737 6738 // C++11 [dcl.constexpr]p4: 6739 // In the definition of a constexpr constructor [...] 6740 bool Ctor = true; 6741 switch (CSM) { 6742 case Sema::CXXDefaultConstructor: 6743 if (Inherited) 6744 break; 6745 // Since default constructor lookup is essentially trivial (and cannot 6746 // involve, for instance, template instantiation), we compute whether a 6747 // defaulted default constructor is constexpr directly within CXXRecordDecl. 6748 // 6749 // This is important for performance; we need to know whether the default 6750 // constructor is constexpr to determine whether the type is a literal type. 6751 return ClassDecl->defaultedDefaultConstructorIsConstexpr(); 6752 6753 case Sema::CXXCopyConstructor: 6754 case Sema::CXXMoveConstructor: 6755 // For copy or move constructors, we need to perform overload resolution. 6756 break; 6757 6758 case Sema::CXXCopyAssignment: 6759 case Sema::CXXMoveAssignment: 6760 if (!S.getLangOpts().CPlusPlus14) 6761 return false; 6762 // In C++1y, we need to perform overload resolution. 6763 Ctor = false; 6764 break; 6765 6766 case Sema::CXXDestructor: 6767 return ClassDecl->defaultedDestructorIsConstexpr(); 6768 6769 case Sema::CXXInvalid: 6770 return false; 6771 } 6772 6773 // -- if the class is a non-empty union, or for each non-empty anonymous 6774 // union member of a non-union class, exactly one non-static data member 6775 // shall be initialized; [DR1359] 6776 // 6777 // If we squint, this is guaranteed, since exactly one non-static data member 6778 // will be initialized (if the constructor isn't deleted), we just don't know 6779 // which one. 6780 if (Ctor && ClassDecl->isUnion()) 6781 return CSM == Sema::CXXDefaultConstructor 6782 ? ClassDecl->hasInClassInitializer() || 6783 !ClassDecl->hasVariantMembers() 6784 : true; 6785 6786 // -- the class shall not have any virtual base classes; 6787 if (Ctor && ClassDecl->getNumVBases()) 6788 return false; 6789 6790 // C++1y [class.copy]p26: 6791 // -- [the class] is a literal type, and 6792 if (!Ctor && !ClassDecl->isLiteral()) 6793 return false; 6794 6795 // -- every constructor involved in initializing [...] base class 6796 // sub-objects shall be a constexpr constructor; 6797 // -- the assignment operator selected to copy/move each direct base 6798 // class is a constexpr function, and 6799 for (const auto &B : ClassDecl->bases()) { 6800 const RecordType *BaseType = B.getType()->getAs<RecordType>(); 6801 if (!BaseType) continue; 6802 6803 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 6804 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg, 6805 InheritedCtor, Inherited)) 6806 return false; 6807 } 6808 6809 // -- every constructor involved in initializing non-static data members 6810 // [...] shall be a constexpr constructor; 6811 // -- every non-static data member and base class sub-object shall be 6812 // initialized 6813 // -- for each non-static data member of X that is of class type (or array 6814 // thereof), the assignment operator selected to copy/move that member is 6815 // a constexpr function 6816 for (const auto *F : ClassDecl->fields()) { 6817 if (F->isInvalidDecl()) 6818 continue; 6819 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer()) 6820 continue; 6821 QualType BaseType = S.Context.getBaseElementType(F->getType()); 6822 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 6823 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 6824 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, 6825 BaseType.getCVRQualifiers(), 6826 ConstArg && !F->isMutable())) 6827 return false; 6828 } else if (CSM == Sema::CXXDefaultConstructor) { 6829 return false; 6830 } 6831 } 6832 6833 // All OK, it's constexpr! 6834 return true; 6835 } 6836 6837 namespace { 6838 /// RAII object to register a defaulted function as having its exception 6839 /// specification computed. 6840 struct ComputingExceptionSpec { 6841 Sema &S; 6842 6843 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc) 6844 : S(S) { 6845 Sema::CodeSynthesisContext Ctx; 6846 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation; 6847 Ctx.PointOfInstantiation = Loc; 6848 Ctx.Entity = FD; 6849 S.pushCodeSynthesisContext(Ctx); 6850 } 6851 ~ComputingExceptionSpec() { 6852 S.popCodeSynthesisContext(); 6853 } 6854 }; 6855 } 6856 6857 static Sema::ImplicitExceptionSpecification 6858 ComputeDefaultedSpecialMemberExceptionSpec( 6859 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 6860 Sema::InheritedConstructorInfo *ICI); 6861 6862 static Sema::ImplicitExceptionSpecification 6863 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 6864 FunctionDecl *FD, 6865 Sema::DefaultedComparisonKind DCK); 6866 6867 static Sema::ImplicitExceptionSpecification 6868 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) { 6869 auto DFK = S.getDefaultedFunctionKind(FD); 6870 if (DFK.isSpecialMember()) 6871 return ComputeDefaultedSpecialMemberExceptionSpec( 6872 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr); 6873 if (DFK.isComparison()) 6874 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD, 6875 DFK.asComparison()); 6876 6877 auto *CD = cast<CXXConstructorDecl>(FD); 6878 assert(CD->getInheritedConstructor() && 6879 "only defaulted functions and inherited constructors have implicit " 6880 "exception specs"); 6881 Sema::InheritedConstructorInfo ICI( 6882 S, Loc, CD->getInheritedConstructor().getShadowDecl()); 6883 return ComputeDefaultedSpecialMemberExceptionSpec( 6884 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI); 6885 } 6886 6887 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, 6888 CXXMethodDecl *MD) { 6889 FunctionProtoType::ExtProtoInfo EPI; 6890 6891 // Build an exception specification pointing back at this member. 6892 EPI.ExceptionSpec.Type = EST_Unevaluated; 6893 EPI.ExceptionSpec.SourceDecl = MD; 6894 6895 // Set the calling convention to the default for C++ instance methods. 6896 EPI.ExtInfo = EPI.ExtInfo.withCallingConv( 6897 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, 6898 /*IsCXXMethod=*/true)); 6899 return EPI; 6900 } 6901 6902 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) { 6903 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 6904 if (FPT->getExceptionSpecType() != EST_Unevaluated) 6905 return; 6906 6907 // Evaluate the exception specification. 6908 auto IES = computeImplicitExceptionSpec(*this, Loc, FD); 6909 auto ESI = IES.getExceptionSpec(); 6910 6911 // Update the type of the special member to use it. 6912 UpdateExceptionSpec(FD, ESI); 6913 } 6914 6915 void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) { 6916 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted"); 6917 6918 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 6919 if (!DefKind) { 6920 assert(FD->getDeclContext()->isDependentContext()); 6921 return; 6922 } 6923 6924 if (DefKind.isSpecialMember() 6925 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD), 6926 DefKind.asSpecialMember()) 6927 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison())) 6928 FD->setInvalidDecl(); 6929 } 6930 6931 bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, 6932 CXXSpecialMember CSM) { 6933 CXXRecordDecl *RD = MD->getParent(); 6934 6935 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid && 6936 "not an explicitly-defaulted special member"); 6937 6938 // Defer all checking for special members of a dependent type. 6939 if (RD->isDependentType()) 6940 return false; 6941 6942 // Whether this was the first-declared instance of the constructor. 6943 // This affects whether we implicitly add an exception spec and constexpr. 6944 bool First = MD == MD->getCanonicalDecl(); 6945 6946 bool HadError = false; 6947 6948 // C++11 [dcl.fct.def.default]p1: 6949 // A function that is explicitly defaulted shall 6950 // -- be a special member function [...] (checked elsewhere), 6951 // -- have the same type (except for ref-qualifiers, and except that a 6952 // copy operation can take a non-const reference) as an implicit 6953 // declaration, and 6954 // -- not have default arguments. 6955 // C++2a changes the second bullet to instead delete the function if it's 6956 // defaulted on its first declaration, unless it's "an assignment operator, 6957 // and its return type differs or its parameter type is not a reference". 6958 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus2a && First; 6959 bool ShouldDeleteForTypeMismatch = false; 6960 unsigned ExpectedParams = 1; 6961 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor) 6962 ExpectedParams = 0; 6963 if (MD->getNumParams() != ExpectedParams) { 6964 // This checks for default arguments: a copy or move constructor with a 6965 // default argument is classified as a default constructor, and assignment 6966 // operations and destructors can't have default arguments. 6967 Diag(MD->getLocation(), diag::err_defaulted_special_member_params) 6968 << CSM << MD->getSourceRange(); 6969 HadError = true; 6970 } else if (MD->isVariadic()) { 6971 if (DeleteOnTypeMismatch) 6972 ShouldDeleteForTypeMismatch = true; 6973 else { 6974 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) 6975 << CSM << MD->getSourceRange(); 6976 HadError = true; 6977 } 6978 } 6979 6980 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>(); 6981 6982 bool CanHaveConstParam = false; 6983 if (CSM == CXXCopyConstructor) 6984 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); 6985 else if (CSM == CXXCopyAssignment) 6986 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); 6987 6988 QualType ReturnType = Context.VoidTy; 6989 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) { 6990 // Check for return type matching. 6991 ReturnType = Type->getReturnType(); 6992 6993 QualType DeclType = Context.getTypeDeclType(RD); 6994 DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace()); 6995 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType); 6996 6997 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) { 6998 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) 6999 << (CSM == CXXMoveAssignment) << ExpectedReturnType; 7000 HadError = true; 7001 } 7002 7003 // A defaulted special member cannot have cv-qualifiers. 7004 if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) { 7005 if (DeleteOnTypeMismatch) 7006 ShouldDeleteForTypeMismatch = true; 7007 else { 7008 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) 7009 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14; 7010 HadError = true; 7011 } 7012 } 7013 } 7014 7015 // Check for parameter type matching. 7016 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType(); 7017 bool HasConstParam = false; 7018 if (ExpectedParams && ArgType->isReferenceType()) { 7019 // Argument must be reference to possibly-const T. 7020 QualType ReferentType = ArgType->getPointeeType(); 7021 HasConstParam = ReferentType.isConstQualified(); 7022 7023 if (ReferentType.isVolatileQualified()) { 7024 if (DeleteOnTypeMismatch) 7025 ShouldDeleteForTypeMismatch = true; 7026 else { 7027 Diag(MD->getLocation(), 7028 diag::err_defaulted_special_member_volatile_param) << CSM; 7029 HadError = true; 7030 } 7031 } 7032 7033 if (HasConstParam && !CanHaveConstParam) { 7034 if (DeleteOnTypeMismatch) 7035 ShouldDeleteForTypeMismatch = true; 7036 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) { 7037 Diag(MD->getLocation(), 7038 diag::err_defaulted_special_member_copy_const_param) 7039 << (CSM == CXXCopyAssignment); 7040 // FIXME: Explain why this special member can't be const. 7041 HadError = true; 7042 } else { 7043 Diag(MD->getLocation(), 7044 diag::err_defaulted_special_member_move_const_param) 7045 << (CSM == CXXMoveAssignment); 7046 HadError = true; 7047 } 7048 } 7049 } else if (ExpectedParams) { 7050 // A copy assignment operator can take its argument by value, but a 7051 // defaulted one cannot. 7052 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument"); 7053 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); 7054 HadError = true; 7055 } 7056 7057 // C++11 [dcl.fct.def.default]p2: 7058 // An explicitly-defaulted function may be declared constexpr only if it 7059 // would have been implicitly declared as constexpr, 7060 // Do not apply this rule to members of class templates, since core issue 1358 7061 // makes such functions always instantiate to constexpr functions. For 7062 // functions which cannot be constexpr (for non-constructors in C++11 and for 7063 // destructors in C++14 and C++17), this is checked elsewhere. 7064 // 7065 // FIXME: This should not apply if the member is deleted. 7066 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM, 7067 HasConstParam); 7068 if ((getLangOpts().CPlusPlus2a || 7069 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD) 7070 : isa<CXXConstructorDecl>(MD))) && 7071 MD->isConstexpr() && !Constexpr && 7072 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { 7073 Diag(MD->getBeginLoc(), MD->isConsteval() 7074 ? diag::err_incorrect_defaulted_consteval 7075 : diag::err_incorrect_defaulted_constexpr) 7076 << CSM; 7077 // FIXME: Explain why the special member can't be constexpr. 7078 HadError = true; 7079 } 7080 7081 if (First) { 7082 // C++2a [dcl.fct.def.default]p3: 7083 // If a function is explicitly defaulted on its first declaration, it is 7084 // implicitly considered to be constexpr if the implicit declaration 7085 // would be. 7086 MD->setConstexprKind(Constexpr ? CSK_constexpr : CSK_unspecified); 7087 7088 if (!Type->hasExceptionSpec()) { 7089 // C++2a [except.spec]p3: 7090 // If a declaration of a function does not have a noexcept-specifier 7091 // [and] is defaulted on its first declaration, [...] the exception 7092 // specification is as specified below 7093 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); 7094 EPI.ExceptionSpec.Type = EST_Unevaluated; 7095 EPI.ExceptionSpec.SourceDecl = MD; 7096 MD->setType(Context.getFunctionType(ReturnType, 7097 llvm::makeArrayRef(&ArgType, 7098 ExpectedParams), 7099 EPI)); 7100 } 7101 } 7102 7103 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) { 7104 if (First) { 7105 SetDeclDeleted(MD, MD->getLocation()); 7106 if (!inTemplateInstantiation() && !HadError) { 7107 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM; 7108 if (ShouldDeleteForTypeMismatch) { 7109 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM; 7110 } else { 7111 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 7112 } 7113 } 7114 if (ShouldDeleteForTypeMismatch && !HadError) { 7115 Diag(MD->getLocation(), 7116 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM; 7117 } 7118 } else { 7119 // C++11 [dcl.fct.def.default]p4: 7120 // [For a] user-provided explicitly-defaulted function [...] if such a 7121 // function is implicitly defined as deleted, the program is ill-formed. 7122 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM; 7123 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl"); 7124 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 7125 HadError = true; 7126 } 7127 } 7128 7129 return HadError; 7130 } 7131 7132 namespace { 7133 /// Helper class for building and checking a defaulted comparison. 7134 /// 7135 /// Defaulted functions are built in two phases: 7136 /// 7137 /// * First, the set of operations that the function will perform are 7138 /// identified, and some of them are checked. If any of the checked 7139 /// operations is invalid in certain ways, the comparison function is 7140 /// defined as deleted and no body is built. 7141 /// * Then, if the function is not defined as deleted, the body is built. 7142 /// 7143 /// This is accomplished by performing two visitation steps over the eventual 7144 /// body of the function. 7145 template<typename Derived, typename ResultList, typename Result, 7146 typename Subobject> 7147 class DefaultedComparisonVisitor { 7148 public: 7149 using DefaultedComparisonKind = Sema::DefaultedComparisonKind; 7150 7151 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7152 DefaultedComparisonKind DCK) 7153 : S(S), RD(RD), FD(FD), DCK(DCK) { 7154 if (auto *Info = FD->getDefaultedFunctionInfo()) { 7155 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an 7156 // UnresolvedSet to avoid this copy. 7157 Fns.assign(Info->getUnqualifiedLookups().begin(), 7158 Info->getUnqualifiedLookups().end()); 7159 } 7160 } 7161 7162 ResultList visit() { 7163 // The type of an lvalue naming a parameter of this function. 7164 QualType ParamLvalType = 7165 FD->getParamDecl(0)->getType().getNonReferenceType(); 7166 7167 ResultList Results; 7168 7169 switch (DCK) { 7170 case DefaultedComparisonKind::None: 7171 llvm_unreachable("not a defaulted comparison"); 7172 7173 case DefaultedComparisonKind::Equal: 7174 case DefaultedComparisonKind::ThreeWay: 7175 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers()); 7176 return Results; 7177 7178 case DefaultedComparisonKind::NotEqual: 7179 case DefaultedComparisonKind::Relational: 7180 Results.add(getDerived().visitExpandedSubobject( 7181 ParamLvalType, getDerived().getCompleteObject())); 7182 return Results; 7183 } 7184 llvm_unreachable(""); 7185 } 7186 7187 protected: 7188 Derived &getDerived() { return static_cast<Derived&>(*this); } 7189 7190 /// Visit the expanded list of subobjects of the given type, as specified in 7191 /// C++2a [class.compare.default]. 7192 /// 7193 /// \return \c true if the ResultList object said we're done, \c false if not. 7194 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record, 7195 Qualifiers Quals) { 7196 // C++2a [class.compare.default]p4: 7197 // The direct base class subobjects of C 7198 for (CXXBaseSpecifier &Base : Record->bases()) 7199 if (Results.add(getDerived().visitSubobject( 7200 S.Context.getQualifiedType(Base.getType(), Quals), 7201 getDerived().getBase(&Base)))) 7202 return true; 7203 7204 // followed by the non-static data members of C 7205 for (FieldDecl *Field : Record->fields()) { 7206 // Recursively expand anonymous structs. 7207 if (Field->isAnonymousStructOrUnion()) { 7208 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(), 7209 Quals)) 7210 return true; 7211 continue; 7212 } 7213 7214 // Figure out the type of an lvalue denoting this field. 7215 Qualifiers FieldQuals = Quals; 7216 if (Field->isMutable()) 7217 FieldQuals.removeConst(); 7218 QualType FieldType = 7219 S.Context.getQualifiedType(Field->getType(), FieldQuals); 7220 7221 if (Results.add(getDerived().visitSubobject( 7222 FieldType, getDerived().getField(Field)))) 7223 return true; 7224 } 7225 7226 // form a list of subobjects. 7227 return false; 7228 } 7229 7230 Result visitSubobject(QualType Type, Subobject Subobj) { 7231 // In that list, any subobject of array type is recursively expanded 7232 const ArrayType *AT = S.Context.getAsArrayType(Type); 7233 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT)) 7234 return getDerived().visitSubobjectArray(CAT->getElementType(), 7235 CAT->getSize(), Subobj); 7236 return getDerived().visitExpandedSubobject(Type, Subobj); 7237 } 7238 7239 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size, 7240 Subobject Subobj) { 7241 return getDerived().visitSubobject(Type, Subobj); 7242 } 7243 7244 protected: 7245 Sema &S; 7246 CXXRecordDecl *RD; 7247 FunctionDecl *FD; 7248 DefaultedComparisonKind DCK; 7249 UnresolvedSet<16> Fns; 7250 }; 7251 7252 /// Information about a defaulted comparison, as determined by 7253 /// DefaultedComparisonAnalyzer. 7254 struct DefaultedComparisonInfo { 7255 bool Deleted = false; 7256 bool Constexpr = true; 7257 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering; 7258 7259 static DefaultedComparisonInfo deleted() { 7260 DefaultedComparisonInfo Deleted; 7261 Deleted.Deleted = true; 7262 return Deleted; 7263 } 7264 7265 bool add(const DefaultedComparisonInfo &R) { 7266 Deleted |= R.Deleted; 7267 Constexpr &= R.Constexpr; 7268 Category = commonComparisonType(Category, R.Category); 7269 return Deleted; 7270 } 7271 }; 7272 7273 /// An element in the expanded list of subobjects of a defaulted comparison, as 7274 /// specified in C++2a [class.compare.default]p4. 7275 struct DefaultedComparisonSubobject { 7276 enum { CompleteObject, Member, Base } Kind; 7277 NamedDecl *Decl; 7278 SourceLocation Loc; 7279 }; 7280 7281 /// A visitor over the notional body of a defaulted comparison that determines 7282 /// whether that body would be deleted or constexpr. 7283 class DefaultedComparisonAnalyzer 7284 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer, 7285 DefaultedComparisonInfo, 7286 DefaultedComparisonInfo, 7287 DefaultedComparisonSubobject> { 7288 public: 7289 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr }; 7290 7291 private: 7292 DiagnosticKind Diagnose; 7293 7294 public: 7295 using Base = DefaultedComparisonVisitor; 7296 using Result = DefaultedComparisonInfo; 7297 using Subobject = DefaultedComparisonSubobject; 7298 7299 friend Base; 7300 7301 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7302 DefaultedComparisonKind DCK, 7303 DiagnosticKind Diagnose = NoDiagnostics) 7304 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {} 7305 7306 Result visit() { 7307 if ((DCK == DefaultedComparisonKind::Equal || 7308 DCK == DefaultedComparisonKind::ThreeWay) && 7309 RD->hasVariantMembers()) { 7310 // C++2a [class.compare.default]p2 [P2002R0]: 7311 // A defaulted comparison operator function for class C is defined as 7312 // deleted if [...] C has variant members. 7313 if (Diagnose == ExplainDeleted) { 7314 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union) 7315 << FD << RD->isUnion() << RD; 7316 } 7317 return Result::deleted(); 7318 } 7319 7320 return Base::visit(); 7321 } 7322 7323 private: 7324 Subobject getCompleteObject() { 7325 return Subobject{Subobject::CompleteObject, nullptr, FD->getLocation()}; 7326 } 7327 7328 Subobject getBase(CXXBaseSpecifier *Base) { 7329 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(), 7330 Base->getBaseTypeLoc()}; 7331 } 7332 7333 Subobject getField(FieldDecl *Field) { 7334 return Subobject{Subobject::Member, Field, Field->getLocation()}; 7335 } 7336 7337 Result visitExpandedSubobject(QualType Type, Subobject Subobj) { 7338 // C++2a [class.compare.default]p2 [P2002R0]: 7339 // A defaulted <=> or == operator function for class C is defined as 7340 // deleted if any non-static data member of C is of reference type 7341 if (Type->isReferenceType()) { 7342 if (Diagnose == ExplainDeleted) { 7343 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member) 7344 << FD << RD; 7345 } 7346 return Result::deleted(); 7347 } 7348 7349 // [...] Let xi be an lvalue denoting the ith element [...] 7350 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue); 7351 Expr *Args[] = {&Xi, &Xi}; 7352 7353 // All operators start by trying to apply that same operator recursively. 7354 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 7355 assert(OO != OO_None && "not an overloaded operator!"); 7356 return visitBinaryOperator(OO, Args, Subobj); 7357 } 7358 7359 Result 7360 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args, 7361 Subobject Subobj, 7362 OverloadCandidateSet *SpaceshipCandidates = nullptr) { 7363 // Note that there is no need to consider rewritten candidates here if 7364 // we've already found there is no viable 'operator<=>' candidate (and are 7365 // considering synthesizing a '<=>' from '==' and '<'). 7366 OverloadCandidateSet CandidateSet( 7367 FD->getLocation(), OverloadCandidateSet::CSK_Operator, 7368 OverloadCandidateSet::OperatorRewriteInfo( 7369 OO, /*AllowRewrittenCandidates=*/!SpaceshipCandidates)); 7370 7371 /// C++2a [class.compare.default]p1 [P2002R0]: 7372 /// [...] the defaulted function itself is never a candidate for overload 7373 /// resolution [...] 7374 CandidateSet.exclude(FD); 7375 7376 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args); 7377 7378 Result R; 7379 7380 OverloadCandidateSet::iterator Best; 7381 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) { 7382 case OR_Success: { 7383 // C++2a [class.compare.secondary]p2 [P2002R0]: 7384 // The operator function [...] is defined as deleted if [...] the 7385 // candidate selected by overload resolution is not a rewritten 7386 // candidate. 7387 if ((DCK == DefaultedComparisonKind::NotEqual || 7388 DCK == DefaultedComparisonKind::Relational) && 7389 !Best->RewriteKind) { 7390 if (Diagnose == ExplainDeleted) { 7391 S.Diag(Best->Function->getLocation(), 7392 diag::note_defaulted_comparison_not_rewritten_callee) 7393 << FD; 7394 } 7395 return Result::deleted(); 7396 } 7397 7398 // Throughout C++2a [class.compare]: if overload resolution does not 7399 // result in a usable function, the candidate function is defined as 7400 // deleted. This requires that we selected an accessible function. 7401 // 7402 // Note that this only considers the access of the function when named 7403 // within the type of the subobject, and not the access path for any 7404 // derived-to-base conversion. 7405 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl(); 7406 if (ArgClass && Best->FoundDecl.getDecl() && 7407 Best->FoundDecl.getDecl()->isCXXClassMember()) { 7408 QualType ObjectType = Subobj.Kind == Subobject::Member 7409 ? Args[0]->getType() 7410 : S.Context.getRecordType(RD); 7411 if (!S.isMemberAccessibleForDeletion( 7412 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc, 7413 Diagnose == ExplainDeleted 7414 ? S.PDiag(diag::note_defaulted_comparison_inaccessible) 7415 << FD << Subobj.Kind << Subobj.Decl 7416 : S.PDiag())) 7417 return Result::deleted(); 7418 } 7419 7420 // C++2a [class.compare.default]p3 [P2002R0]: 7421 // A defaulted comparison function is constexpr-compatible if [...] 7422 // no overlod resolution performed [...] results in a non-constexpr 7423 // function. 7424 if (FunctionDecl *BestFD = Best->Function) { 7425 assert(!BestFD->isDeleted() && "wrong overload resolution result"); 7426 // If it's not constexpr, explain why not. 7427 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) { 7428 if (Subobj.Kind != Subobject::CompleteObject) 7429 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr) 7430 << Subobj.Kind << Subobj.Decl; 7431 S.Diag(BestFD->getLocation(), 7432 diag::note_defaulted_comparison_not_constexpr_here); 7433 // Bail out after explaining; we don't want any more notes. 7434 return Result::deleted(); 7435 } 7436 R.Constexpr &= BestFD->isConstexpr(); 7437 } 7438 7439 if (OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType()) { 7440 if (auto *BestFD = Best->Function) { 7441 if (auto *Info = S.Context.CompCategories.lookupInfoForType( 7442 BestFD->getCallResultType())) { 7443 R.Category = Info->Kind; 7444 } else { 7445 if (Diagnose == ExplainDeleted) { 7446 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce) 7447 << Subobj.Kind << Subobj.Decl 7448 << BestFD->getCallResultType().withoutLocalFastQualifiers(); 7449 S.Diag(BestFD->getLocation(), 7450 diag::note_defaulted_comparison_cannot_deduce_callee) 7451 << Subobj.Kind << Subobj.Decl; 7452 } 7453 return Result::deleted(); 7454 } 7455 } else { 7456 Optional<ComparisonCategoryType> Cat = 7457 getComparisonCategoryForBuiltinCmp(Args[0]->getType()); 7458 assert(Cat && "no category for builtin comparison?"); 7459 R.Category = *Cat; 7460 } 7461 } 7462 7463 // Note that we might be rewriting to a different operator. That call is 7464 // not considered until we come to actually build the comparison function. 7465 break; 7466 } 7467 7468 case OR_Ambiguous: 7469 if (Diagnose == ExplainDeleted) { 7470 unsigned Kind = 0; 7471 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship) 7472 Kind = OO == OO_EqualEqual ? 1 : 2; 7473 CandidateSet.NoteCandidates( 7474 PartialDiagnosticAt( 7475 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous) 7476 << FD << Kind << Subobj.Kind << Subobj.Decl), 7477 S, OCD_AmbiguousCandidates, Args); 7478 } 7479 R = Result::deleted(); 7480 break; 7481 7482 case OR_Deleted: 7483 if (Diagnose == ExplainDeleted) { 7484 if ((DCK == DefaultedComparisonKind::NotEqual || 7485 DCK == DefaultedComparisonKind::Relational) && 7486 !Best->RewriteKind) { 7487 S.Diag(Best->Function->getLocation(), 7488 diag::note_defaulted_comparison_not_rewritten_callee) 7489 << FD; 7490 } else { 7491 S.Diag(Subobj.Loc, 7492 diag::note_defaulted_comparison_calls_deleted) 7493 << FD << Subobj.Kind << Subobj.Decl; 7494 S.NoteDeletedFunction(Best->Function); 7495 } 7496 } 7497 R = Result::deleted(); 7498 break; 7499 7500 case OR_No_Viable_Function: 7501 // If there's no usable candidate, we're done unless we can rewrite a 7502 // '<=>' in terms of '==' and '<'. 7503 if (OO == OO_Spaceship && 7504 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) { 7505 // For any kind of comparison category return type, we need a usable 7506 // '==' and a usable '<'. 7507 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj, 7508 &CandidateSet))) 7509 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet)); 7510 break; 7511 } 7512 7513 if (Diagnose == ExplainDeleted) { 7514 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function) 7515 << FD << Subobj.Kind << Subobj.Decl; 7516 7517 // For a three-way comparison, list both the candidates for the 7518 // original operator and the candidates for the synthesized operator. 7519 if (SpaceshipCandidates) { 7520 SpaceshipCandidates->NoteCandidates( 7521 S, Args, 7522 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates, 7523 Args, FD->getLocation())); 7524 S.Diag(Subobj.Loc, 7525 diag::note_defaulted_comparison_no_viable_function_synthesized) 7526 << (OO == OO_EqualEqual ? 0 : 1); 7527 } 7528 7529 CandidateSet.NoteCandidates( 7530 S, Args, 7531 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args, 7532 FD->getLocation())); 7533 } 7534 R = Result::deleted(); 7535 break; 7536 } 7537 7538 return R; 7539 } 7540 }; 7541 7542 /// A list of statements. 7543 struct StmtListResult { 7544 bool IsInvalid = false; 7545 llvm::SmallVector<Stmt*, 16> Stmts; 7546 7547 bool add(const StmtResult &S) { 7548 IsInvalid |= S.isInvalid(); 7549 if (IsInvalid) 7550 return true; 7551 Stmts.push_back(S.get()); 7552 return false; 7553 } 7554 }; 7555 7556 /// A visitor over the notional body of a defaulted comparison that synthesizes 7557 /// the actual body. 7558 class DefaultedComparisonSynthesizer 7559 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer, 7560 StmtListResult, StmtResult, 7561 std::pair<ExprResult, ExprResult>> { 7562 SourceLocation Loc; 7563 unsigned ArrayDepth = 0; 7564 7565 public: 7566 using Base = DefaultedComparisonVisitor; 7567 using ExprPair = std::pair<ExprResult, ExprResult>; 7568 7569 friend Base; 7570 7571 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7572 DefaultedComparisonKind DCK, 7573 SourceLocation BodyLoc) 7574 : Base(S, RD, FD, DCK), Loc(BodyLoc) {} 7575 7576 /// Build a suitable function body for this defaulted comparison operator. 7577 StmtResult build() { 7578 Sema::CompoundScopeRAII CompoundScope(S); 7579 7580 StmtListResult Stmts = visit(); 7581 if (Stmts.IsInvalid) 7582 return StmtError(); 7583 7584 ExprResult RetVal; 7585 switch (DCK) { 7586 case DefaultedComparisonKind::None: 7587 llvm_unreachable("not a defaulted comparison"); 7588 7589 case DefaultedComparisonKind::Equal: { 7590 // C++2a [class.eq]p3: 7591 // [...] compar[e] the corresponding elements [...] until the first 7592 // index i where xi == yi yields [...] false. If no such index exists, 7593 // V is true. Otherwise, V is false. 7594 // 7595 // Join the comparisons with '&&'s and return the result. Use a right 7596 // fold (traversing the conditions right-to-left), because that 7597 // short-circuits more naturally. 7598 auto OldStmts = std::move(Stmts.Stmts); 7599 Stmts.Stmts.clear(); 7600 ExprResult CmpSoFar; 7601 // Finish a particular comparison chain. 7602 auto FinishCmp = [&] { 7603 if (Expr *Prior = CmpSoFar.get()) { 7604 // Convert the last expression to 'return ...;' 7605 if (RetVal.isUnset() && Stmts.Stmts.empty()) 7606 RetVal = CmpSoFar; 7607 // Convert any prior comparison to 'if (!(...)) return false;' 7608 else if (Stmts.add(buildIfNotCondReturnFalse(Prior))) 7609 return true; 7610 CmpSoFar = ExprResult(); 7611 } 7612 return false; 7613 }; 7614 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) { 7615 Expr *E = dyn_cast<Expr>(EAsStmt); 7616 if (!E) { 7617 // Found an array comparison. 7618 if (FinishCmp() || Stmts.add(EAsStmt)) 7619 return StmtError(); 7620 continue; 7621 } 7622 7623 if (CmpSoFar.isUnset()) { 7624 CmpSoFar = E; 7625 continue; 7626 } 7627 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get()); 7628 if (CmpSoFar.isInvalid()) 7629 return StmtError(); 7630 } 7631 if (FinishCmp()) 7632 return StmtError(); 7633 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end()); 7634 // If no such index exists, V is true. 7635 if (RetVal.isUnset()) 7636 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true); 7637 break; 7638 } 7639 7640 case DefaultedComparisonKind::ThreeWay: { 7641 // Per C++2a [class.spaceship]p3, as a fallback add: 7642 // return static_cast<R>(std::strong_ordering::equal); 7643 QualType StrongOrdering = S.CheckComparisonCategoryType( 7644 ComparisonCategoryType::StrongOrdering, Loc, 7645 Sema::ComparisonCategoryUsage::DefaultedOperator); 7646 if (StrongOrdering.isNull()) 7647 return StmtError(); 7648 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering) 7649 .getValueInfo(ComparisonCategoryResult::Equal) 7650 ->VD; 7651 RetVal = getDecl(EqualVD); 7652 if (RetVal.isInvalid()) 7653 return StmtError(); 7654 RetVal = buildStaticCastToR(RetVal.get()); 7655 break; 7656 } 7657 7658 case DefaultedComparisonKind::NotEqual: 7659 case DefaultedComparisonKind::Relational: 7660 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val()); 7661 break; 7662 } 7663 7664 // Build the final return statement. 7665 if (RetVal.isInvalid()) 7666 return StmtError(); 7667 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get()); 7668 if (ReturnStmt.isInvalid()) 7669 return StmtError(); 7670 Stmts.Stmts.push_back(ReturnStmt.get()); 7671 7672 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false); 7673 } 7674 7675 private: 7676 ExprResult getDecl(ValueDecl *VD) { 7677 return S.BuildDeclarationNameExpr( 7678 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD); 7679 } 7680 7681 ExprResult getParam(unsigned I) { 7682 ParmVarDecl *PD = FD->getParamDecl(I); 7683 return getDecl(PD); 7684 } 7685 7686 ExprPair getCompleteObject() { 7687 unsigned Param = 0; 7688 ExprResult LHS; 7689 if (isa<CXXMethodDecl>(FD)) { 7690 // LHS is '*this'. 7691 LHS = S.ActOnCXXThis(Loc); 7692 if (!LHS.isInvalid()) 7693 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get()); 7694 } else { 7695 LHS = getParam(Param++); 7696 } 7697 ExprResult RHS = getParam(Param++); 7698 assert(Param == FD->getNumParams()); 7699 return {LHS, RHS}; 7700 } 7701 7702 ExprPair getBase(CXXBaseSpecifier *Base) { 7703 ExprPair Obj = getCompleteObject(); 7704 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 7705 return {ExprError(), ExprError()}; 7706 CXXCastPath Path = {Base}; 7707 return {S.ImpCastExprToType(Obj.first.get(), Base->getType(), 7708 CK_DerivedToBase, VK_LValue, &Path), 7709 S.ImpCastExprToType(Obj.second.get(), Base->getType(), 7710 CK_DerivedToBase, VK_LValue, &Path)}; 7711 } 7712 7713 ExprPair getField(FieldDecl *Field) { 7714 ExprPair Obj = getCompleteObject(); 7715 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 7716 return {ExprError(), ExprError()}; 7717 7718 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess()); 7719 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc); 7720 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc, 7721 CXXScopeSpec(), Field, Found, NameInfo), 7722 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc, 7723 CXXScopeSpec(), Field, Found, NameInfo)}; 7724 } 7725 7726 // FIXME: When expanding a subobject, register a note in the code synthesis 7727 // stack to say which subobject we're comparing. 7728 7729 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) { 7730 if (Cond.isInvalid()) 7731 return StmtError(); 7732 7733 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get()); 7734 if (NotCond.isInvalid()) 7735 return StmtError(); 7736 7737 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false); 7738 assert(!False.isInvalid() && "should never fail"); 7739 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get()); 7740 if (ReturnFalse.isInvalid()) 7741 return StmtError(); 7742 7743 return S.ActOnIfStmt(Loc, false, nullptr, 7744 S.ActOnCondition(nullptr, Loc, NotCond.get(), 7745 Sema::ConditionKind::Boolean), 7746 ReturnFalse.get(), SourceLocation(), nullptr); 7747 } 7748 7749 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size, 7750 ExprPair Subobj) { 7751 QualType SizeType = S.Context.getSizeType(); 7752 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType)); 7753 7754 // Build 'size_t i$n = 0'. 7755 IdentifierInfo *IterationVarName = nullptr; 7756 { 7757 SmallString<8> Str; 7758 llvm::raw_svector_ostream OS(Str); 7759 OS << "i" << ArrayDepth; 7760 IterationVarName = &S.Context.Idents.get(OS.str()); 7761 } 7762 VarDecl *IterationVar = VarDecl::Create( 7763 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType, 7764 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None); 7765 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 7766 IterationVar->setInit( 7767 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 7768 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc); 7769 7770 auto IterRef = [&] { 7771 ExprResult Ref = S.BuildDeclarationNameExpr( 7772 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc), 7773 IterationVar); 7774 assert(!Ref.isInvalid() && "can't reference our own variable?"); 7775 return Ref.get(); 7776 }; 7777 7778 // Build 'i$n != Size'. 7779 ExprResult Cond = S.CreateBuiltinBinOp( 7780 Loc, BO_NE, IterRef(), 7781 IntegerLiteral::Create(S.Context, Size, SizeType, Loc)); 7782 assert(!Cond.isInvalid() && "should never fail"); 7783 7784 // Build '++i$n'. 7785 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef()); 7786 assert(!Inc.isInvalid() && "should never fail"); 7787 7788 // Build 'a[i$n]' and 'b[i$n]'. 7789 auto Index = [&](ExprResult E) { 7790 if (E.isInvalid()) 7791 return ExprError(); 7792 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc); 7793 }; 7794 Subobj.first = Index(Subobj.first); 7795 Subobj.second = Index(Subobj.second); 7796 7797 // Compare the array elements. 7798 ++ArrayDepth; 7799 StmtResult Substmt = visitSubobject(Type, Subobj); 7800 --ArrayDepth; 7801 7802 if (Substmt.isInvalid()) 7803 return StmtError(); 7804 7805 // For the inner level of an 'operator==', build 'if (!cmp) return false;'. 7806 // For outer levels or for an 'operator<=>' we already have a suitable 7807 // statement that returns as necessary. 7808 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) { 7809 assert(DCK == DefaultedComparisonKind::Equal && 7810 "should have non-expression statement"); 7811 Substmt = buildIfNotCondReturnFalse(ElemCmp); 7812 if (Substmt.isInvalid()) 7813 return StmtError(); 7814 } 7815 7816 // Build 'for (...) ...' 7817 return S.ActOnForStmt(Loc, Loc, Init, 7818 S.ActOnCondition(nullptr, Loc, Cond.get(), 7819 Sema::ConditionKind::Boolean), 7820 S.MakeFullDiscardedValueExpr(Inc.get()), Loc, 7821 Substmt.get()); 7822 } 7823 7824 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) { 7825 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 7826 return StmtError(); 7827 7828 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 7829 ExprResult Op = S.CreateOverloadedBinOp( 7830 Loc, BinaryOperator::getOverloadedOpcode(OO), Fns, 7831 Obj.first.get(), Obj.second.get(), /*PerformADL=*/true, 7832 /*AllowRewrittenCandidates=*/true, FD); 7833 if (Op.isInvalid()) 7834 return StmtError(); 7835 7836 switch (DCK) { 7837 case DefaultedComparisonKind::None: 7838 llvm_unreachable("not a defaulted comparison"); 7839 7840 case DefaultedComparisonKind::Equal: 7841 // Per C++2a [class.eq]p2, each comparison is individually contextually 7842 // converted to bool. 7843 Op = S.PerformContextuallyConvertToBool(Op.get()); 7844 if (Op.isInvalid()) 7845 return StmtError(); 7846 return Op.get(); 7847 7848 case DefaultedComparisonKind::ThreeWay: { 7849 // Per C++2a [class.spaceship]p3, form: 7850 // if (R cmp = static_cast<R>(op); cmp != 0) 7851 // return cmp; 7852 QualType R = FD->getReturnType(); 7853 Op = buildStaticCastToR(Op.get()); 7854 if (Op.isInvalid()) 7855 return StmtError(); 7856 7857 // R cmp = ...; 7858 IdentifierInfo *Name = &S.Context.Idents.get("cmp"); 7859 VarDecl *VD = 7860 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R, 7861 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None); 7862 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false); 7863 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc); 7864 7865 // cmp != 0 7866 ExprResult VDRef = getDecl(VD); 7867 if (VDRef.isInvalid()) 7868 return StmtError(); 7869 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0); 7870 Expr *Zero = 7871 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc); 7872 ExprResult Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), 7873 Zero, true, true, FD); 7874 if (Comp.isInvalid()) 7875 return StmtError(); 7876 Sema::ConditionResult Cond = S.ActOnCondition( 7877 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean); 7878 if (Cond.isInvalid()) 7879 return StmtError(); 7880 7881 // return cmp; 7882 VDRef = getDecl(VD); 7883 if (VDRef.isInvalid()) 7884 return StmtError(); 7885 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get()); 7886 if (ReturnStmt.isInvalid()) 7887 return StmtError(); 7888 7889 // if (...) 7890 return S.ActOnIfStmt(Loc, /*IsConstexpr=*/false, InitStmt, Cond, 7891 ReturnStmt.get(), /*ElseLoc=*/SourceLocation(), 7892 /*Else=*/nullptr); 7893 } 7894 7895 case DefaultedComparisonKind::NotEqual: 7896 case DefaultedComparisonKind::Relational: 7897 // C++2a [class.compare.secondary]p2: 7898 // Otherwise, the operator function yields x @ y. 7899 return Op.get(); 7900 } 7901 llvm_unreachable(""); 7902 } 7903 7904 /// Build "static_cast<R>(E)". 7905 ExprResult buildStaticCastToR(Expr *E) { 7906 QualType R = FD->getReturnType(); 7907 assert(!R->isUndeducedType() && "type should have been deduced already"); 7908 7909 // Don't bother forming a no-op cast in the common case. 7910 if (E->isRValue() && S.Context.hasSameType(E->getType(), R)) 7911 return E; 7912 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast, 7913 S.Context.getTrivialTypeSourceInfo(R, Loc), E, 7914 SourceRange(Loc, Loc), SourceRange(Loc, Loc)); 7915 } 7916 }; 7917 } 7918 7919 /// Perform the unqualified lookups that might be needed to form a defaulted 7920 /// comparison function for the given operator. 7921 static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S, 7922 UnresolvedSetImpl &Operators, 7923 OverloadedOperatorKind Op) { 7924 auto Lookup = [&](OverloadedOperatorKind OO) { 7925 Self.LookupOverloadedOperatorName(OO, S, QualType(), QualType(), Operators); 7926 }; 7927 7928 // Every defaulted operator looks up itself. 7929 Lookup(Op); 7930 // ... and the rewritten form of itself, if any. 7931 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op)) 7932 Lookup(ExtraOp); 7933 7934 // For 'operator<=>', we also form a 'cmp != 0' expression, and might 7935 // synthesize a three-way comparison from '<' and '=='. In a dependent 7936 // context, we also need to look up '==' in case we implicitly declare a 7937 // defaulted 'operator=='. 7938 if (Op == OO_Spaceship) { 7939 Lookup(OO_ExclaimEqual); 7940 Lookup(OO_Less); 7941 Lookup(OO_EqualEqual); 7942 } 7943 } 7944 7945 bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD, 7946 DefaultedComparisonKind DCK) { 7947 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison"); 7948 7949 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()); 7950 assert(RD && "defaulted comparison is not defaulted in a class"); 7951 7952 // Perform any unqualified lookups we're going to need to default this 7953 // function. 7954 if (S) { 7955 UnresolvedSet<32> Operators; 7956 lookupOperatorsForDefaultedComparison(*this, S, Operators, 7957 FD->getOverloadedOperator()); 7958 FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create( 7959 Context, Operators.pairs())); 7960 } 7961 7962 // C++2a [class.compare.default]p1: 7963 // A defaulted comparison operator function for some class C shall be a 7964 // non-template function declared in the member-specification of C that is 7965 // -- a non-static const member of C having one parameter of type 7966 // const C&, or 7967 // -- a friend of C having two parameters of type const C& or two 7968 // parameters of type C. 7969 QualType ExpectedParmType1 = Context.getRecordType(RD); 7970 QualType ExpectedParmType2 = 7971 Context.getLValueReferenceType(ExpectedParmType1.withConst()); 7972 if (isa<CXXMethodDecl>(FD)) 7973 ExpectedParmType1 = ExpectedParmType2; 7974 for (const ParmVarDecl *Param : FD->parameters()) { 7975 if (!Param->getType()->isDependentType() && 7976 !Context.hasSameType(Param->getType(), ExpectedParmType1) && 7977 !Context.hasSameType(Param->getType(), ExpectedParmType2)) { 7978 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 7979 // corresponding defaulted 'operator<=>' already. 7980 if (!FD->isImplicit()) { 7981 Diag(FD->getLocation(), diag::err_defaulted_comparison_param) 7982 << (int)DCK << Param->getType() << ExpectedParmType1 7983 << !isa<CXXMethodDecl>(FD) 7984 << ExpectedParmType2 << Param->getSourceRange(); 7985 } 7986 return true; 7987 } 7988 } 7989 if (FD->getNumParams() == 2 && 7990 !Context.hasSameType(FD->getParamDecl(0)->getType(), 7991 FD->getParamDecl(1)->getType())) { 7992 if (!FD->isImplicit()) { 7993 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch) 7994 << (int)DCK 7995 << FD->getParamDecl(0)->getType() 7996 << FD->getParamDecl(0)->getSourceRange() 7997 << FD->getParamDecl(1)->getType() 7998 << FD->getParamDecl(1)->getSourceRange(); 7999 } 8000 return true; 8001 } 8002 8003 // ... non-static const member ... 8004 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 8005 assert(!MD->isStatic() && "comparison function cannot be a static member"); 8006 if (!MD->isConst()) { 8007 SourceLocation InsertLoc; 8008 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc()) 8009 InsertLoc = getLocForEndOfToken(Loc.getRParenLoc()); 8010 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8011 // corresponding defaulted 'operator<=>' already. 8012 if (!MD->isImplicit()) { 8013 Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const) 8014 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const"); 8015 } 8016 8017 // Add the 'const' to the type to recover. 8018 const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); 8019 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8020 EPI.TypeQuals.addConst(); 8021 MD->setType(Context.getFunctionType(FPT->getReturnType(), 8022 FPT->getParamTypes(), EPI)); 8023 } 8024 } else { 8025 // A non-member function declared in a class must be a friend. 8026 assert(FD->getFriendObjectKind() && "expected a friend declaration"); 8027 } 8028 8029 // C++2a [class.eq]p1, [class.rel]p1: 8030 // A [defaulted comparison other than <=>] shall have a declared return 8031 // type bool. 8032 if (DCK != DefaultedComparisonKind::ThreeWay && 8033 !FD->getDeclaredReturnType()->isDependentType() && 8034 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) { 8035 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool) 8036 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy 8037 << FD->getReturnTypeSourceRange(); 8038 return true; 8039 } 8040 // C++2a [class.spaceship]p2 [P2002R0]: 8041 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise, 8042 // R shall not contain a placeholder type. 8043 if (DCK == DefaultedComparisonKind::ThreeWay && 8044 FD->getDeclaredReturnType()->getContainedDeducedType() && 8045 !Context.hasSameType(FD->getDeclaredReturnType(), 8046 Context.getAutoDeductType())) { 8047 Diag(FD->getLocation(), 8048 diag::err_defaulted_comparison_deduced_return_type_not_auto) 8049 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy 8050 << FD->getReturnTypeSourceRange(); 8051 return true; 8052 } 8053 8054 // For a defaulted function in a dependent class, defer all remaining checks 8055 // until instantiation. 8056 if (RD->isDependentType()) 8057 return false; 8058 8059 // Determine whether the function should be defined as deleted. 8060 DefaultedComparisonInfo Info = 8061 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit(); 8062 8063 bool First = FD == FD->getCanonicalDecl(); 8064 8065 // If we want to delete the function, then do so; there's nothing else to 8066 // check in that case. 8067 if (Info.Deleted) { 8068 if (!First) { 8069 // C++11 [dcl.fct.def.default]p4: 8070 // [For a] user-provided explicitly-defaulted function [...] if such a 8071 // function is implicitly defined as deleted, the program is ill-formed. 8072 // 8073 // This is really just a consequence of the general rule that you can 8074 // only delete a function on its first declaration. 8075 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes) 8076 << FD->isImplicit() << (int)DCK; 8077 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8078 DefaultedComparisonAnalyzer::ExplainDeleted) 8079 .visit(); 8080 return true; 8081 } 8082 8083 SetDeclDeleted(FD, FD->getLocation()); 8084 if (!inTemplateInstantiation() && !FD->isImplicit()) { 8085 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted) 8086 << (int)DCK; 8087 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8088 DefaultedComparisonAnalyzer::ExplainDeleted) 8089 .visit(); 8090 } 8091 return false; 8092 } 8093 8094 // C++2a [class.spaceship]p2: 8095 // The return type is deduced as the common comparison type of R0, R1, ... 8096 if (DCK == DefaultedComparisonKind::ThreeWay && 8097 FD->getDeclaredReturnType()->isUndeducedAutoType()) { 8098 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin(); 8099 if (RetLoc.isInvalid()) 8100 RetLoc = FD->getBeginLoc(); 8101 // FIXME: Should we really care whether we have the complete type and the 8102 // 'enumerator' constants here? A forward declaration seems sufficient. 8103 QualType Cat = CheckComparisonCategoryType( 8104 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator); 8105 if (Cat.isNull()) 8106 return true; 8107 Context.adjustDeducedFunctionResultType( 8108 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat)); 8109 } 8110 8111 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8112 // An explicitly-defaulted function that is not defined as deleted may be 8113 // declared constexpr or consteval only if it is constexpr-compatible. 8114 // C++2a [class.compare.default]p3 [P2002R0]: 8115 // A defaulted comparison function is constexpr-compatible if it satisfies 8116 // the requirements for a constexpr function [...] 8117 // The only relevant requirements are that the parameter and return types are 8118 // literal types. The remaining conditions are checked by the analyzer. 8119 if (FD->isConstexpr()) { 8120 if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) && 8121 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) && 8122 !Info.Constexpr) { 8123 Diag(FD->getBeginLoc(), 8124 diag::err_incorrect_defaulted_comparison_constexpr) 8125 << FD->isImplicit() << (int)DCK << FD->isConsteval(); 8126 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8127 DefaultedComparisonAnalyzer::ExplainConstexpr) 8128 .visit(); 8129 } 8130 } 8131 8132 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8133 // If a constexpr-compatible function is explicitly defaulted on its first 8134 // declaration, it is implicitly considered to be constexpr. 8135 // FIXME: Only applying this to the first declaration seems problematic, as 8136 // simple reorderings can affect the meaning of the program. 8137 if (First && !FD->isConstexpr() && Info.Constexpr) 8138 FD->setConstexprKind(CSK_constexpr); 8139 8140 // C++2a [except.spec]p3: 8141 // If a declaration of a function does not have a noexcept-specifier 8142 // [and] is defaulted on its first declaration, [...] the exception 8143 // specification is as specified below 8144 if (FD->getExceptionSpecType() == EST_None) { 8145 auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 8146 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8147 EPI.ExceptionSpec.Type = EST_Unevaluated; 8148 EPI.ExceptionSpec.SourceDecl = FD; 8149 FD->setType(Context.getFunctionType(FPT->getReturnType(), 8150 FPT->getParamTypes(), EPI)); 8151 } 8152 8153 return false; 8154 } 8155 8156 void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD, 8157 FunctionDecl *Spaceship) { 8158 Sema::CodeSynthesisContext Ctx; 8159 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison; 8160 Ctx.PointOfInstantiation = Spaceship->getEndLoc(); 8161 Ctx.Entity = Spaceship; 8162 pushCodeSynthesisContext(Ctx); 8163 8164 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship)) 8165 EqualEqual->setImplicit(); 8166 8167 popCodeSynthesisContext(); 8168 } 8169 8170 void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD, 8171 DefaultedComparisonKind DCK) { 8172 assert(FD->isDefaulted() && !FD->isDeleted() && 8173 !FD->doesThisDeclarationHaveABody()); 8174 if (FD->willHaveBody() || FD->isInvalidDecl()) 8175 return; 8176 8177 SynthesizedFunctionScope Scope(*this, FD); 8178 8179 // Add a context note for diagnostics produced after this point. 8180 Scope.addContextNote(UseLoc); 8181 8182 { 8183 // Build and set up the function body. 8184 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent()); 8185 SourceLocation BodyLoc = 8186 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 8187 StmtResult Body = 8188 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build(); 8189 if (Body.isInvalid()) { 8190 FD->setInvalidDecl(); 8191 return; 8192 } 8193 FD->setBody(Body.get()); 8194 FD->markUsed(Context); 8195 } 8196 8197 // The exception specification is needed because we are defining the 8198 // function. Note that this will reuse the body we just built. 8199 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>()); 8200 8201 if (ASTMutationListener *L = getASTMutationListener()) 8202 L->CompletedImplicitDefinition(FD); 8203 } 8204 8205 static Sema::ImplicitExceptionSpecification 8206 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 8207 FunctionDecl *FD, 8208 Sema::DefaultedComparisonKind DCK) { 8209 ComputingExceptionSpec CES(S, FD, Loc); 8210 Sema::ImplicitExceptionSpecification ExceptSpec(S); 8211 8212 if (FD->isInvalidDecl()) 8213 return ExceptSpec; 8214 8215 // The common case is that we just defined the comparison function. In that 8216 // case, just look at whether the body can throw. 8217 if (FD->hasBody()) { 8218 ExceptSpec.CalledStmt(FD->getBody()); 8219 } else { 8220 // Otherwise, build a body so we can check it. This should ideally only 8221 // happen when we're not actually marking the function referenced. (This is 8222 // only really important for efficiency: we don't want to build and throw 8223 // away bodies for comparison functions more than we strictly need to.) 8224 8225 // Pretend to synthesize the function body in an unevaluated context. 8226 // Note that we can't actually just go ahead and define the function here: 8227 // we are not permitted to mark its callees as referenced. 8228 Sema::SynthesizedFunctionScope Scope(S, FD); 8229 EnterExpressionEvaluationContext Context( 8230 S, Sema::ExpressionEvaluationContext::Unevaluated); 8231 8232 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent()); 8233 SourceLocation BodyLoc = 8234 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 8235 StmtResult Body = 8236 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build(); 8237 if (!Body.isInvalid()) 8238 ExceptSpec.CalledStmt(Body.get()); 8239 8240 // FIXME: Can we hold onto this body and just transform it to potentially 8241 // evaluated when we're asked to define the function rather than rebuilding 8242 // it? Either that, or we should only build the bits of the body that we 8243 // need (the expressions, not the statements). 8244 } 8245 8246 return ExceptSpec; 8247 } 8248 8249 void Sema::CheckDelayedMemberExceptionSpecs() { 8250 decltype(DelayedOverridingExceptionSpecChecks) Overriding; 8251 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent; 8252 8253 std::swap(Overriding, DelayedOverridingExceptionSpecChecks); 8254 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks); 8255 8256 // Perform any deferred checking of exception specifications for virtual 8257 // destructors. 8258 for (auto &Check : Overriding) 8259 CheckOverridingFunctionExceptionSpec(Check.first, Check.second); 8260 8261 // Perform any deferred checking of exception specifications for befriended 8262 // special members. 8263 for (auto &Check : Equivalent) 8264 CheckEquivalentExceptionSpec(Check.second, Check.first); 8265 } 8266 8267 namespace { 8268 /// CRTP base class for visiting operations performed by a special member 8269 /// function (or inherited constructor). 8270 template<typename Derived> 8271 struct SpecialMemberVisitor { 8272 Sema &S; 8273 CXXMethodDecl *MD; 8274 Sema::CXXSpecialMember CSM; 8275 Sema::InheritedConstructorInfo *ICI; 8276 8277 // Properties of the special member, computed for convenience. 8278 bool IsConstructor = false, IsAssignment = false, ConstArg = false; 8279 8280 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 8281 Sema::InheritedConstructorInfo *ICI) 8282 : S(S), MD(MD), CSM(CSM), ICI(ICI) { 8283 switch (CSM) { 8284 case Sema::CXXDefaultConstructor: 8285 case Sema::CXXCopyConstructor: 8286 case Sema::CXXMoveConstructor: 8287 IsConstructor = true; 8288 break; 8289 case Sema::CXXCopyAssignment: 8290 case Sema::CXXMoveAssignment: 8291 IsAssignment = true; 8292 break; 8293 case Sema::CXXDestructor: 8294 break; 8295 case Sema::CXXInvalid: 8296 llvm_unreachable("invalid special member kind"); 8297 } 8298 8299 if (MD->getNumParams()) { 8300 if (const ReferenceType *RT = 8301 MD->getParamDecl(0)->getType()->getAs<ReferenceType>()) 8302 ConstArg = RT->getPointeeType().isConstQualified(); 8303 } 8304 } 8305 8306 Derived &getDerived() { return static_cast<Derived&>(*this); } 8307 8308 /// Is this a "move" special member? 8309 bool isMove() const { 8310 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment; 8311 } 8312 8313 /// Look up the corresponding special member in the given class. 8314 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class, 8315 unsigned Quals, bool IsMutable) { 8316 return lookupCallFromSpecialMember(S, Class, CSM, Quals, 8317 ConstArg && !IsMutable); 8318 } 8319 8320 /// Look up the constructor for the specified base class to see if it's 8321 /// overridden due to this being an inherited constructor. 8322 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) { 8323 if (!ICI) 8324 return {}; 8325 assert(CSM == Sema::CXXDefaultConstructor); 8326 auto *BaseCtor = 8327 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor(); 8328 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first) 8329 return MD; 8330 return {}; 8331 } 8332 8333 /// A base or member subobject. 8334 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject; 8335 8336 /// Get the location to use for a subobject in diagnostics. 8337 static SourceLocation getSubobjectLoc(Subobject Subobj) { 8338 // FIXME: For an indirect virtual base, the direct base leading to 8339 // the indirect virtual base would be a more useful choice. 8340 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>()) 8341 return B->getBaseTypeLoc(); 8342 else 8343 return Subobj.get<FieldDecl*>()->getLocation(); 8344 } 8345 8346 enum BasesToVisit { 8347 /// Visit all non-virtual (direct) bases. 8348 VisitNonVirtualBases, 8349 /// Visit all direct bases, virtual or not. 8350 VisitDirectBases, 8351 /// Visit all non-virtual bases, and all virtual bases if the class 8352 /// is not abstract. 8353 VisitPotentiallyConstructedBases, 8354 /// Visit all direct or virtual bases. 8355 VisitAllBases 8356 }; 8357 8358 // Visit the bases and members of the class. 8359 bool visit(BasesToVisit Bases) { 8360 CXXRecordDecl *RD = MD->getParent(); 8361 8362 if (Bases == VisitPotentiallyConstructedBases) 8363 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases; 8364 8365 for (auto &B : RD->bases()) 8366 if ((Bases == VisitDirectBases || !B.isVirtual()) && 8367 getDerived().visitBase(&B)) 8368 return true; 8369 8370 if (Bases == VisitAllBases) 8371 for (auto &B : RD->vbases()) 8372 if (getDerived().visitBase(&B)) 8373 return true; 8374 8375 for (auto *F : RD->fields()) 8376 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() && 8377 getDerived().visitField(F)) 8378 return true; 8379 8380 return false; 8381 } 8382 }; 8383 } 8384 8385 namespace { 8386 struct SpecialMemberDeletionInfo 8387 : SpecialMemberVisitor<SpecialMemberDeletionInfo> { 8388 bool Diagnose; 8389 8390 SourceLocation Loc; 8391 8392 bool AllFieldsAreConst; 8393 8394 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, 8395 Sema::CXXSpecialMember CSM, 8396 Sema::InheritedConstructorInfo *ICI, bool Diagnose) 8397 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose), 8398 Loc(MD->getLocation()), AllFieldsAreConst(true) {} 8399 8400 bool inUnion() const { return MD->getParent()->isUnion(); } 8401 8402 Sema::CXXSpecialMember getEffectiveCSM() { 8403 return ICI ? Sema::CXXInvalid : CSM; 8404 } 8405 8406 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType); 8407 8408 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); } 8409 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); } 8410 8411 bool shouldDeleteForBase(CXXBaseSpecifier *Base); 8412 bool shouldDeleteForField(FieldDecl *FD); 8413 bool shouldDeleteForAllConstMembers(); 8414 8415 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 8416 unsigned Quals); 8417 bool shouldDeleteForSubobjectCall(Subobject Subobj, 8418 Sema::SpecialMemberOverloadResult SMOR, 8419 bool IsDtorCallInCtor); 8420 8421 bool isAccessible(Subobject Subobj, CXXMethodDecl *D); 8422 }; 8423 } 8424 8425 /// Is the given special member inaccessible when used on the given 8426 /// sub-object. 8427 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, 8428 CXXMethodDecl *target) { 8429 /// If we're operating on a base class, the object type is the 8430 /// type of this special member. 8431 QualType objectTy; 8432 AccessSpecifier access = target->getAccess(); 8433 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) { 8434 objectTy = S.Context.getTypeDeclType(MD->getParent()); 8435 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access); 8436 8437 // If we're operating on a field, the object type is the type of the field. 8438 } else { 8439 objectTy = S.Context.getTypeDeclType(target->getParent()); 8440 } 8441 8442 return S.isMemberAccessibleForDeletion( 8443 target->getParent(), DeclAccessPair::make(target, access), objectTy); 8444 } 8445 8446 /// Check whether we should delete a special member due to the implicit 8447 /// definition containing a call to a special member of a subobject. 8448 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( 8449 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, 8450 bool IsDtorCallInCtor) { 8451 CXXMethodDecl *Decl = SMOR.getMethod(); 8452 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 8453 8454 int DiagKind = -1; 8455 8456 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) 8457 DiagKind = !Decl ? 0 : 1; 8458 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 8459 DiagKind = 2; 8460 else if (!isAccessible(Subobj, Decl)) 8461 DiagKind = 3; 8462 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && 8463 !Decl->isTrivial()) { 8464 // A member of a union must have a trivial corresponding special member. 8465 // As a weird special case, a destructor call from a union's constructor 8466 // must be accessible and non-deleted, but need not be trivial. Such a 8467 // destructor is never actually called, but is semantically checked as 8468 // if it were. 8469 DiagKind = 4; 8470 } 8471 8472 if (DiagKind == -1) 8473 return false; 8474 8475 if (Diagnose) { 8476 if (Field) { 8477 S.Diag(Field->getLocation(), 8478 diag::note_deleted_special_member_class_subobject) 8479 << getEffectiveCSM() << MD->getParent() << /*IsField*/true 8480 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false; 8481 } else { 8482 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>(); 8483 S.Diag(Base->getBeginLoc(), 8484 diag::note_deleted_special_member_class_subobject) 8485 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 8486 << Base->getType() << DiagKind << IsDtorCallInCtor 8487 << /*IsObjCPtr*/false; 8488 } 8489 8490 if (DiagKind == 1) 8491 S.NoteDeletedFunction(Decl); 8492 // FIXME: Explain inaccessibility if DiagKind == 3. 8493 } 8494 8495 return true; 8496 } 8497 8498 /// Check whether we should delete a special member function due to having a 8499 /// direct or virtual base class or non-static data member of class type M. 8500 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( 8501 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { 8502 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 8503 bool IsMutable = Field && Field->isMutable(); 8504 8505 // C++11 [class.ctor]p5: 8506 // -- any direct or virtual base class, or non-static data member with no 8507 // brace-or-equal-initializer, has class type M (or array thereof) and 8508 // either M has no default constructor or overload resolution as applied 8509 // to M's default constructor results in an ambiguity or in a function 8510 // that is deleted or inaccessible 8511 // C++11 [class.copy]p11, C++11 [class.copy]p23: 8512 // -- a direct or virtual base class B that cannot be copied/moved because 8513 // overload resolution, as applied to B's corresponding special member, 8514 // results in an ambiguity or a function that is deleted or inaccessible 8515 // from the defaulted special member 8516 // C++11 [class.dtor]p5: 8517 // -- any direct or virtual base class [...] has a type with a destructor 8518 // that is deleted or inaccessible 8519 if (!(CSM == Sema::CXXDefaultConstructor && 8520 Field && Field->hasInClassInitializer()) && 8521 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable), 8522 false)) 8523 return true; 8524 8525 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 8526 // -- any direct or virtual base class or non-static data member has a 8527 // type with a destructor that is deleted or inaccessible 8528 if (IsConstructor) { 8529 Sema::SpecialMemberOverloadResult SMOR = 8530 S.LookupSpecialMember(Class, Sema::CXXDestructor, 8531 false, false, false, false, false); 8532 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true)) 8533 return true; 8534 } 8535 8536 return false; 8537 } 8538 8539 bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember( 8540 FieldDecl *FD, QualType FieldType) { 8541 // The defaulted special functions are defined as deleted if this is a variant 8542 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak 8543 // type under ARC. 8544 if (!FieldType.hasNonTrivialObjCLifetime()) 8545 return false; 8546 8547 // Don't make the defaulted default constructor defined as deleted if the 8548 // member has an in-class initializer. 8549 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) 8550 return false; 8551 8552 if (Diagnose) { 8553 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent()); 8554 S.Diag(FD->getLocation(), 8555 diag::note_deleted_special_member_class_subobject) 8556 << getEffectiveCSM() << ParentClass << /*IsField*/true 8557 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true; 8558 } 8559 8560 return true; 8561 } 8562 8563 /// Check whether we should delete a special member function due to the class 8564 /// having a particular direct or virtual base class. 8565 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { 8566 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); 8567 // If program is correct, BaseClass cannot be null, but if it is, the error 8568 // must be reported elsewhere. 8569 if (!BaseClass) 8570 return false; 8571 // If we have an inheriting constructor, check whether we're calling an 8572 // inherited constructor instead of a default constructor. 8573 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 8574 if (auto *BaseCtor = SMOR.getMethod()) { 8575 // Note that we do not check access along this path; other than that, 8576 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false); 8577 // FIXME: Check that the base has a usable destructor! Sink this into 8578 // shouldDeleteForClassSubobject. 8579 if (BaseCtor->isDeleted() && Diagnose) { 8580 S.Diag(Base->getBeginLoc(), 8581 diag::note_deleted_special_member_class_subobject) 8582 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 8583 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false 8584 << /*IsObjCPtr*/false; 8585 S.NoteDeletedFunction(BaseCtor); 8586 } 8587 return BaseCtor->isDeleted(); 8588 } 8589 return shouldDeleteForClassSubobject(BaseClass, Base, 0); 8590 } 8591 8592 /// Check whether we should delete a special member function due to the class 8593 /// having a particular non-static data member. 8594 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { 8595 QualType FieldType = S.Context.getBaseElementType(FD->getType()); 8596 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); 8597 8598 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType)) 8599 return true; 8600 8601 if (CSM == Sema::CXXDefaultConstructor) { 8602 // For a default constructor, all references must be initialized in-class 8603 // and, if a union, it must have a non-const member. 8604 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { 8605 if (Diagnose) 8606 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 8607 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0; 8608 return true; 8609 } 8610 // C++11 [class.ctor]p5: any non-variant non-static data member of 8611 // const-qualified type (or array thereof) with no 8612 // brace-or-equal-initializer does not have a user-provided default 8613 // constructor. 8614 if (!inUnion() && FieldType.isConstQualified() && 8615 !FD->hasInClassInitializer() && 8616 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) { 8617 if (Diagnose) 8618 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 8619 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1; 8620 return true; 8621 } 8622 8623 if (inUnion() && !FieldType.isConstQualified()) 8624 AllFieldsAreConst = false; 8625 } else if (CSM == Sema::CXXCopyConstructor) { 8626 // For a copy constructor, data members must not be of rvalue reference 8627 // type. 8628 if (FieldType->isRValueReferenceType()) { 8629 if (Diagnose) 8630 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) 8631 << MD->getParent() << FD << FieldType; 8632 return true; 8633 } 8634 } else if (IsAssignment) { 8635 // For an assignment operator, data members must not be of reference type. 8636 if (FieldType->isReferenceType()) { 8637 if (Diagnose) 8638 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 8639 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0; 8640 return true; 8641 } 8642 if (!FieldRecord && FieldType.isConstQualified()) { 8643 // C++11 [class.copy]p23: 8644 // -- a non-static data member of const non-class type (or array thereof) 8645 if (Diagnose) 8646 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 8647 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1; 8648 return true; 8649 } 8650 } 8651 8652 if (FieldRecord) { 8653 // Some additional restrictions exist on the variant members. 8654 if (!inUnion() && FieldRecord->isUnion() && 8655 FieldRecord->isAnonymousStructOrUnion()) { 8656 bool AllVariantFieldsAreConst = true; 8657 8658 // FIXME: Handle anonymous unions declared within anonymous unions. 8659 for (auto *UI : FieldRecord->fields()) { 8660 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); 8661 8662 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType)) 8663 return true; 8664 8665 if (!UnionFieldType.isConstQualified()) 8666 AllVariantFieldsAreConst = false; 8667 8668 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); 8669 if (UnionFieldRecord && 8670 shouldDeleteForClassSubobject(UnionFieldRecord, UI, 8671 UnionFieldType.getCVRQualifiers())) 8672 return true; 8673 } 8674 8675 // At least one member in each anonymous union must be non-const 8676 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst && 8677 !FieldRecord->field_empty()) { 8678 if (Diagnose) 8679 S.Diag(FieldRecord->getLocation(), 8680 diag::note_deleted_default_ctor_all_const) 8681 << !!ICI << MD->getParent() << /*anonymous union*/1; 8682 return true; 8683 } 8684 8685 // Don't check the implicit member of the anonymous union type. 8686 // This is technically non-conformant, but sanity demands it. 8687 return false; 8688 } 8689 8690 if (shouldDeleteForClassSubobject(FieldRecord, FD, 8691 FieldType.getCVRQualifiers())) 8692 return true; 8693 } 8694 8695 return false; 8696 } 8697 8698 /// C++11 [class.ctor] p5: 8699 /// A defaulted default constructor for a class X is defined as deleted if 8700 /// X is a union and all of its variant members are of const-qualified type. 8701 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { 8702 // This is a silly definition, because it gives an empty union a deleted 8703 // default constructor. Don't do that. 8704 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) { 8705 bool AnyFields = false; 8706 for (auto *F : MD->getParent()->fields()) 8707 if ((AnyFields = !F->isUnnamedBitfield())) 8708 break; 8709 if (!AnyFields) 8710 return false; 8711 if (Diagnose) 8712 S.Diag(MD->getParent()->getLocation(), 8713 diag::note_deleted_default_ctor_all_const) 8714 << !!ICI << MD->getParent() << /*not anonymous union*/0; 8715 return true; 8716 } 8717 return false; 8718 } 8719 8720 /// Determine whether a defaulted special member function should be defined as 8721 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, 8722 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5. 8723 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, 8724 InheritedConstructorInfo *ICI, 8725 bool Diagnose) { 8726 if (MD->isInvalidDecl()) 8727 return false; 8728 CXXRecordDecl *RD = MD->getParent(); 8729 assert(!RD->isDependentType() && "do deletion after instantiation"); 8730 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl()) 8731 return false; 8732 8733 // C++11 [expr.lambda.prim]p19: 8734 // The closure type associated with a lambda-expression has a 8735 // deleted (8.4.3) default constructor and a deleted copy 8736 // assignment operator. 8737 // C++2a adds back these operators if the lambda has no lambda-capture. 8738 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() && 8739 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) { 8740 if (Diagnose) 8741 Diag(RD->getLocation(), diag::note_lambda_decl); 8742 return true; 8743 } 8744 8745 // For an anonymous struct or union, the copy and assignment special members 8746 // will never be used, so skip the check. For an anonymous union declared at 8747 // namespace scope, the constructor and destructor are used. 8748 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor && 8749 RD->isAnonymousStructOrUnion()) 8750 return false; 8751 8752 // C++11 [class.copy]p7, p18: 8753 // If the class definition declares a move constructor or move assignment 8754 // operator, an implicitly declared copy constructor or copy assignment 8755 // operator is defined as deleted. 8756 if (MD->isImplicit() && 8757 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) { 8758 CXXMethodDecl *UserDeclaredMove = nullptr; 8759 8760 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the 8761 // deletion of the corresponding copy operation, not both copy operations. 8762 // MSVC 2015 has adopted the standards conforming behavior. 8763 bool DeletesOnlyMatchingCopy = 8764 getLangOpts().MSVCCompat && 8765 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015); 8766 8767 if (RD->hasUserDeclaredMoveConstructor() && 8768 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) { 8769 if (!Diagnose) return true; 8770 8771 // Find any user-declared move constructor. 8772 for (auto *I : RD->ctors()) { 8773 if (I->isMoveConstructor()) { 8774 UserDeclaredMove = I; 8775 break; 8776 } 8777 } 8778 assert(UserDeclaredMove); 8779 } else if (RD->hasUserDeclaredMoveAssignment() && 8780 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) { 8781 if (!Diagnose) return true; 8782 8783 // Find any user-declared move assignment operator. 8784 for (auto *I : RD->methods()) { 8785 if (I->isMoveAssignmentOperator()) { 8786 UserDeclaredMove = I; 8787 break; 8788 } 8789 } 8790 assert(UserDeclaredMove); 8791 } 8792 8793 if (UserDeclaredMove) { 8794 Diag(UserDeclaredMove->getLocation(), 8795 diag::note_deleted_copy_user_declared_move) 8796 << (CSM == CXXCopyAssignment) << RD 8797 << UserDeclaredMove->isMoveAssignmentOperator(); 8798 return true; 8799 } 8800 } 8801 8802 // Do access control from the special member function 8803 ContextRAII MethodContext(*this, MD); 8804 8805 // C++11 [class.dtor]p5: 8806 // -- for a virtual destructor, lookup of the non-array deallocation function 8807 // results in an ambiguity or in a function that is deleted or inaccessible 8808 if (CSM == CXXDestructor && MD->isVirtual()) { 8809 FunctionDecl *OperatorDelete = nullptr; 8810 DeclarationName Name = 8811 Context.DeclarationNames.getCXXOperatorName(OO_Delete); 8812 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name, 8813 OperatorDelete, /*Diagnose*/false)) { 8814 if (Diagnose) 8815 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); 8816 return true; 8817 } 8818 } 8819 8820 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose); 8821 8822 // Per DR1611, do not consider virtual bases of constructors of abstract 8823 // classes, since we are not going to construct them. 8824 // Per DR1658, do not consider virtual bases of destructors of abstract 8825 // classes either. 8826 // Per DR2180, for assignment operators we only assign (and thus only 8827 // consider) direct bases. 8828 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases 8829 : SMI.VisitPotentiallyConstructedBases)) 8830 return true; 8831 8832 if (SMI.shouldDeleteForAllConstMembers()) 8833 return true; 8834 8835 if (getLangOpts().CUDA) { 8836 // We should delete the special member in CUDA mode if target inference 8837 // failed. 8838 // For inherited constructors (non-null ICI), CSM may be passed so that MD 8839 // is treated as certain special member, which may not reflect what special 8840 // member MD really is. However inferCUDATargetForImplicitSpecialMember 8841 // expects CSM to match MD, therefore recalculate CSM. 8842 assert(ICI || CSM == getSpecialMember(MD)); 8843 auto RealCSM = CSM; 8844 if (ICI) 8845 RealCSM = getSpecialMember(MD); 8846 8847 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD, 8848 SMI.ConstArg, Diagnose); 8849 } 8850 8851 return false; 8852 } 8853 8854 void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) { 8855 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 8856 assert(DFK && "not a defaultable function"); 8857 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted"); 8858 8859 if (DFK.isSpecialMember()) { 8860 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), 8861 nullptr, /*Diagnose=*/true); 8862 } else { 8863 DefaultedComparisonAnalyzer( 8864 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD, 8865 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted) 8866 .visit(); 8867 } 8868 } 8869 8870 /// Perform lookup for a special member of the specified kind, and determine 8871 /// whether it is trivial. If the triviality can be determined without the 8872 /// lookup, skip it. This is intended for use when determining whether a 8873 /// special member of a containing object is trivial, and thus does not ever 8874 /// perform overload resolution for default constructors. 8875 /// 8876 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the 8877 /// member that was most likely to be intended to be trivial, if any. 8878 /// 8879 /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to 8880 /// determine whether the special member is trivial. 8881 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, 8882 Sema::CXXSpecialMember CSM, unsigned Quals, 8883 bool ConstRHS, 8884 Sema::TrivialABIHandling TAH, 8885 CXXMethodDecl **Selected) { 8886 if (Selected) 8887 *Selected = nullptr; 8888 8889 switch (CSM) { 8890 case Sema::CXXInvalid: 8891 llvm_unreachable("not a special member"); 8892 8893 case Sema::CXXDefaultConstructor: 8894 // C++11 [class.ctor]p5: 8895 // A default constructor is trivial if: 8896 // - all the [direct subobjects] have trivial default constructors 8897 // 8898 // Note, no overload resolution is performed in this case. 8899 if (RD->hasTrivialDefaultConstructor()) 8900 return true; 8901 8902 if (Selected) { 8903 // If there's a default constructor which could have been trivial, dig it 8904 // out. Otherwise, if there's any user-provided default constructor, point 8905 // to that as an example of why there's not a trivial one. 8906 CXXConstructorDecl *DefCtor = nullptr; 8907 if (RD->needsImplicitDefaultConstructor()) 8908 S.DeclareImplicitDefaultConstructor(RD); 8909 for (auto *CI : RD->ctors()) { 8910 if (!CI->isDefaultConstructor()) 8911 continue; 8912 DefCtor = CI; 8913 if (!DefCtor->isUserProvided()) 8914 break; 8915 } 8916 8917 *Selected = DefCtor; 8918 } 8919 8920 return false; 8921 8922 case Sema::CXXDestructor: 8923 // C++11 [class.dtor]p5: 8924 // A destructor is trivial if: 8925 // - all the direct [subobjects] have trivial destructors 8926 if (RD->hasTrivialDestructor() || 8927 (TAH == Sema::TAH_ConsiderTrivialABI && 8928 RD->hasTrivialDestructorForCall())) 8929 return true; 8930 8931 if (Selected) { 8932 if (RD->needsImplicitDestructor()) 8933 S.DeclareImplicitDestructor(RD); 8934 *Selected = RD->getDestructor(); 8935 } 8936 8937 return false; 8938 8939 case Sema::CXXCopyConstructor: 8940 // C++11 [class.copy]p12: 8941 // A copy constructor is trivial if: 8942 // - the constructor selected to copy each direct [subobject] is trivial 8943 if (RD->hasTrivialCopyConstructor() || 8944 (TAH == Sema::TAH_ConsiderTrivialABI && 8945 RD->hasTrivialCopyConstructorForCall())) { 8946 if (Quals == Qualifiers::Const) 8947 // We must either select the trivial copy constructor or reach an 8948 // ambiguity; no need to actually perform overload resolution. 8949 return true; 8950 } else if (!Selected) { 8951 return false; 8952 } 8953 // In C++98, we are not supposed to perform overload resolution here, but we 8954 // treat that as a language defect, as suggested on cxx-abi-dev, to treat 8955 // cases like B as having a non-trivial copy constructor: 8956 // struct A { template<typename T> A(T&); }; 8957 // struct B { mutable A a; }; 8958 goto NeedOverloadResolution; 8959 8960 case Sema::CXXCopyAssignment: 8961 // C++11 [class.copy]p25: 8962 // A copy assignment operator is trivial if: 8963 // - the assignment operator selected to copy each direct [subobject] is 8964 // trivial 8965 if (RD->hasTrivialCopyAssignment()) { 8966 if (Quals == Qualifiers::Const) 8967 return true; 8968 } else if (!Selected) { 8969 return false; 8970 } 8971 // In C++98, we are not supposed to perform overload resolution here, but we 8972 // treat that as a language defect. 8973 goto NeedOverloadResolution; 8974 8975 case Sema::CXXMoveConstructor: 8976 case Sema::CXXMoveAssignment: 8977 NeedOverloadResolution: 8978 Sema::SpecialMemberOverloadResult SMOR = 8979 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS); 8980 8981 // The standard doesn't describe how to behave if the lookup is ambiguous. 8982 // We treat it as not making the member non-trivial, just like the standard 8983 // mandates for the default constructor. This should rarely matter, because 8984 // the member will also be deleted. 8985 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 8986 return true; 8987 8988 if (!SMOR.getMethod()) { 8989 assert(SMOR.getKind() == 8990 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted); 8991 return false; 8992 } 8993 8994 // We deliberately don't check if we found a deleted special member. We're 8995 // not supposed to! 8996 if (Selected) 8997 *Selected = SMOR.getMethod(); 8998 8999 if (TAH == Sema::TAH_ConsiderTrivialABI && 9000 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor)) 9001 return SMOR.getMethod()->isTrivialForCall(); 9002 return SMOR.getMethod()->isTrivial(); 9003 } 9004 9005 llvm_unreachable("unknown special method kind"); 9006 } 9007 9008 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { 9009 for (auto *CI : RD->ctors()) 9010 if (!CI->isImplicit()) 9011 return CI; 9012 9013 // Look for constructor templates. 9014 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter; 9015 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { 9016 if (CXXConstructorDecl *CD = 9017 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl())) 9018 return CD; 9019 } 9020 9021 return nullptr; 9022 } 9023 9024 /// The kind of subobject we are checking for triviality. The values of this 9025 /// enumeration are used in diagnostics. 9026 enum TrivialSubobjectKind { 9027 /// The subobject is a base class. 9028 TSK_BaseClass, 9029 /// The subobject is a non-static data member. 9030 TSK_Field, 9031 /// The object is actually the complete object. 9032 TSK_CompleteObject 9033 }; 9034 9035 /// Check whether the special member selected for a given type would be trivial. 9036 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, 9037 QualType SubType, bool ConstRHS, 9038 Sema::CXXSpecialMember CSM, 9039 TrivialSubobjectKind Kind, 9040 Sema::TrivialABIHandling TAH, bool Diagnose) { 9041 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); 9042 if (!SubRD) 9043 return true; 9044 9045 CXXMethodDecl *Selected; 9046 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(), 9047 ConstRHS, TAH, Diagnose ? &Selected : nullptr)) 9048 return true; 9049 9050 if (Diagnose) { 9051 if (ConstRHS) 9052 SubType.addConst(); 9053 9054 if (!Selected && CSM == Sema::CXXDefaultConstructor) { 9055 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) 9056 << Kind << SubType.getUnqualifiedType(); 9057 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) 9058 S.Diag(CD->getLocation(), diag::note_user_declared_ctor); 9059 } else if (!Selected) 9060 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) 9061 << Kind << SubType.getUnqualifiedType() << CSM << SubType; 9062 else if (Selected->isUserProvided()) { 9063 if (Kind == TSK_CompleteObject) 9064 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) 9065 << Kind << SubType.getUnqualifiedType() << CSM; 9066 else { 9067 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) 9068 << Kind << SubType.getUnqualifiedType() << CSM; 9069 S.Diag(Selected->getLocation(), diag::note_declared_at); 9070 } 9071 } else { 9072 if (Kind != TSK_CompleteObject) 9073 S.Diag(SubobjLoc, diag::note_nontrivial_subobject) 9074 << Kind << SubType.getUnqualifiedType() << CSM; 9075 9076 // Explain why the defaulted or deleted special member isn't trivial. 9077 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI, 9078 Diagnose); 9079 } 9080 } 9081 9082 return false; 9083 } 9084 9085 /// Check whether the members of a class type allow a special member to be 9086 /// trivial. 9087 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, 9088 Sema::CXXSpecialMember CSM, 9089 bool ConstArg, 9090 Sema::TrivialABIHandling TAH, 9091 bool Diagnose) { 9092 for (const auto *FI : RD->fields()) { 9093 if (FI->isInvalidDecl() || FI->isUnnamedBitfield()) 9094 continue; 9095 9096 QualType FieldType = S.Context.getBaseElementType(FI->getType()); 9097 9098 // Pretend anonymous struct or union members are members of this class. 9099 if (FI->isAnonymousStructOrUnion()) { 9100 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), 9101 CSM, ConstArg, TAH, Diagnose)) 9102 return false; 9103 continue; 9104 } 9105 9106 // C++11 [class.ctor]p5: 9107 // A default constructor is trivial if [...] 9108 // -- no non-static data member of its class has a 9109 // brace-or-equal-initializer 9110 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) { 9111 if (Diagnose) 9112 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI; 9113 return false; 9114 } 9115 9116 // Objective C ARC 4.3.5: 9117 // [...] nontrivally ownership-qualified types are [...] not trivially 9118 // default constructible, copy constructible, move constructible, copy 9119 // assignable, move assignable, or destructible [...] 9120 if (FieldType.hasNonTrivialObjCLifetime()) { 9121 if (Diagnose) 9122 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) 9123 << RD << FieldType.getObjCLifetime(); 9124 return false; 9125 } 9126 9127 bool ConstRHS = ConstArg && !FI->isMutable(); 9128 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, 9129 CSM, TSK_Field, TAH, Diagnose)) 9130 return false; 9131 } 9132 9133 return true; 9134 } 9135 9136 /// Diagnose why the specified class does not have a trivial special member of 9137 /// the given kind. 9138 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) { 9139 QualType Ty = Context.getRecordType(RD); 9140 9141 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment); 9142 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, 9143 TSK_CompleteObject, TAH_IgnoreTrivialABI, 9144 /*Diagnose*/true); 9145 } 9146 9147 /// Determine whether a defaulted or deleted special member function is trivial, 9148 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12, 9149 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5. 9150 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM, 9151 TrivialABIHandling TAH, bool Diagnose) { 9152 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough"); 9153 9154 CXXRecordDecl *RD = MD->getParent(); 9155 9156 bool ConstArg = false; 9157 9158 // C++11 [class.copy]p12, p25: [DR1593] 9159 // A [special member] is trivial if [...] its parameter-type-list is 9160 // equivalent to the parameter-type-list of an implicit declaration [...] 9161 switch (CSM) { 9162 case CXXDefaultConstructor: 9163 case CXXDestructor: 9164 // Trivial default constructors and destructors cannot have parameters. 9165 break; 9166 9167 case CXXCopyConstructor: 9168 case CXXCopyAssignment: { 9169 // Trivial copy operations always have const, non-volatile parameter types. 9170 ConstArg = true; 9171 const ParmVarDecl *Param0 = MD->getParamDecl(0); 9172 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>(); 9173 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) { 9174 if (Diagnose) 9175 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 9176 << Param0->getSourceRange() << Param0->getType() 9177 << Context.getLValueReferenceType( 9178 Context.getRecordType(RD).withConst()); 9179 return false; 9180 } 9181 break; 9182 } 9183 9184 case CXXMoveConstructor: 9185 case CXXMoveAssignment: { 9186 // Trivial move operations always have non-cv-qualified parameters. 9187 const ParmVarDecl *Param0 = MD->getParamDecl(0); 9188 const RValueReferenceType *RT = 9189 Param0->getType()->getAs<RValueReferenceType>(); 9190 if (!RT || RT->getPointeeType().getCVRQualifiers()) { 9191 if (Diagnose) 9192 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 9193 << Param0->getSourceRange() << Param0->getType() 9194 << Context.getRValueReferenceType(Context.getRecordType(RD)); 9195 return false; 9196 } 9197 break; 9198 } 9199 9200 case CXXInvalid: 9201 llvm_unreachable("not a special member"); 9202 } 9203 9204 if (MD->getMinRequiredArguments() < MD->getNumParams()) { 9205 if (Diagnose) 9206 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), 9207 diag::note_nontrivial_default_arg) 9208 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); 9209 return false; 9210 } 9211 if (MD->isVariadic()) { 9212 if (Diagnose) 9213 Diag(MD->getLocation(), diag::note_nontrivial_variadic); 9214 return false; 9215 } 9216 9217 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 9218 // A copy/move [constructor or assignment operator] is trivial if 9219 // -- the [member] selected to copy/move each direct base class subobject 9220 // is trivial 9221 // 9222 // C++11 [class.copy]p12, C++11 [class.copy]p25: 9223 // A [default constructor or destructor] is trivial if 9224 // -- all the direct base classes have trivial [default constructors or 9225 // destructors] 9226 for (const auto &BI : RD->bases()) 9227 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(), 9228 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose)) 9229 return false; 9230 9231 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 9232 // A copy/move [constructor or assignment operator] for a class X is 9233 // trivial if 9234 // -- for each non-static data member of X that is of class type (or array 9235 // thereof), the constructor selected to copy/move that member is 9236 // trivial 9237 // 9238 // C++11 [class.copy]p12, C++11 [class.copy]p25: 9239 // A [default constructor or destructor] is trivial if 9240 // -- for all of the non-static data members of its class that are of class 9241 // type (or array thereof), each such class has a trivial [default 9242 // constructor or destructor] 9243 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose)) 9244 return false; 9245 9246 // C++11 [class.dtor]p5: 9247 // A destructor is trivial if [...] 9248 // -- the destructor is not virtual 9249 if (CSM == CXXDestructor && MD->isVirtual()) { 9250 if (Diagnose) 9251 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; 9252 return false; 9253 } 9254 9255 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 9256 // A [special member] for class X is trivial if [...] 9257 // -- class X has no virtual functions and no virtual base classes 9258 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) { 9259 if (!Diagnose) 9260 return false; 9261 9262 if (RD->getNumVBases()) { 9263 // Check for virtual bases. We already know that the corresponding 9264 // member in all bases is trivial, so vbases must all be direct. 9265 CXXBaseSpecifier &BS = *RD->vbases_begin(); 9266 assert(BS.isVirtual()); 9267 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1; 9268 return false; 9269 } 9270 9271 // Must have a virtual method. 9272 for (const auto *MI : RD->methods()) { 9273 if (MI->isVirtual()) { 9274 SourceLocation MLoc = MI->getBeginLoc(); 9275 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; 9276 return false; 9277 } 9278 } 9279 9280 llvm_unreachable("dynamic class with no vbases and no virtual functions"); 9281 } 9282 9283 // Looks like it's trivial! 9284 return true; 9285 } 9286 9287 namespace { 9288 struct FindHiddenVirtualMethod { 9289 Sema *S; 9290 CXXMethodDecl *Method; 9291 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; 9292 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 9293 9294 private: 9295 /// Check whether any most overridden method from MD in Methods 9296 static bool CheckMostOverridenMethods( 9297 const CXXMethodDecl *MD, 9298 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) { 9299 if (MD->size_overridden_methods() == 0) 9300 return Methods.count(MD->getCanonicalDecl()); 9301 for (const CXXMethodDecl *O : MD->overridden_methods()) 9302 if (CheckMostOverridenMethods(O, Methods)) 9303 return true; 9304 return false; 9305 } 9306 9307 public: 9308 /// Member lookup function that determines whether a given C++ 9309 /// method overloads virtual methods in a base class without overriding any, 9310 /// to be used with CXXRecordDecl::lookupInBases(). 9311 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 9312 RecordDecl *BaseRecord = 9313 Specifier->getType()->castAs<RecordType>()->getDecl(); 9314 9315 DeclarationName Name = Method->getDeclName(); 9316 assert(Name.getNameKind() == DeclarationName::Identifier); 9317 9318 bool foundSameNameMethod = false; 9319 SmallVector<CXXMethodDecl *, 8> overloadedMethods; 9320 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty(); 9321 Path.Decls = Path.Decls.slice(1)) { 9322 NamedDecl *D = Path.Decls.front(); 9323 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 9324 MD = MD->getCanonicalDecl(); 9325 foundSameNameMethod = true; 9326 // Interested only in hidden virtual methods. 9327 if (!MD->isVirtual()) 9328 continue; 9329 // If the method we are checking overrides a method from its base 9330 // don't warn about the other overloaded methods. Clang deviates from 9331 // GCC by only diagnosing overloads of inherited virtual functions that 9332 // do not override any other virtual functions in the base. GCC's 9333 // -Woverloaded-virtual diagnoses any derived function hiding a virtual 9334 // function from a base class. These cases may be better served by a 9335 // warning (not specific to virtual functions) on call sites when the 9336 // call would select a different function from the base class, were it 9337 // visible. 9338 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. 9339 if (!S->IsOverload(Method, MD, false)) 9340 return true; 9341 // Collect the overload only if its hidden. 9342 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods)) 9343 overloadedMethods.push_back(MD); 9344 } 9345 } 9346 9347 if (foundSameNameMethod) 9348 OverloadedMethods.append(overloadedMethods.begin(), 9349 overloadedMethods.end()); 9350 return foundSameNameMethod; 9351 } 9352 }; 9353 } // end anonymous namespace 9354 9355 /// Add the most overriden methods from MD to Methods 9356 static void AddMostOverridenMethods(const CXXMethodDecl *MD, 9357 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { 9358 if (MD->size_overridden_methods() == 0) 9359 Methods.insert(MD->getCanonicalDecl()); 9360 else 9361 for (const CXXMethodDecl *O : MD->overridden_methods()) 9362 AddMostOverridenMethods(O, Methods); 9363 } 9364 9365 /// Check if a method overloads virtual methods in a base class without 9366 /// overriding any. 9367 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, 9368 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 9369 if (!MD->getDeclName().isIdentifier()) 9370 return; 9371 9372 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. 9373 /*bool RecordPaths=*/false, 9374 /*bool DetectVirtual=*/false); 9375 FindHiddenVirtualMethod FHVM; 9376 FHVM.Method = MD; 9377 FHVM.S = this; 9378 9379 // Keep the base methods that were overridden or introduced in the subclass 9380 // by 'using' in a set. A base method not in this set is hidden. 9381 CXXRecordDecl *DC = MD->getParent(); 9382 DeclContext::lookup_result R = DC->lookup(MD->getDeclName()); 9383 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { 9384 NamedDecl *ND = *I; 9385 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I)) 9386 ND = shad->getTargetDecl(); 9387 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 9388 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods); 9389 } 9390 9391 if (DC->lookupInBases(FHVM, Paths)) 9392 OverloadedMethods = FHVM.OverloadedMethods; 9393 } 9394 9395 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, 9396 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 9397 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { 9398 CXXMethodDecl *overloadedMD = OverloadedMethods[i]; 9399 PartialDiagnostic PD = PDiag( 9400 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; 9401 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType()); 9402 Diag(overloadedMD->getLocation(), PD); 9403 } 9404 } 9405 9406 /// Diagnose methods which overload virtual methods in a base class 9407 /// without overriding any. 9408 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { 9409 if (MD->isInvalidDecl()) 9410 return; 9411 9412 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) 9413 return; 9414 9415 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 9416 FindHiddenVirtualMethods(MD, OverloadedMethods); 9417 if (!OverloadedMethods.empty()) { 9418 Diag(MD->getLocation(), diag::warn_overloaded_virtual) 9419 << MD << (OverloadedMethods.size() > 1); 9420 9421 NoteHiddenVirtualMethods(MD, OverloadedMethods); 9422 } 9423 } 9424 9425 void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) { 9426 auto PrintDiagAndRemoveAttr = [&]() { 9427 // No diagnostics if this is a template instantiation. 9428 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) 9429 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 9430 diag::ext_cannot_use_trivial_abi) << &RD; 9431 RD.dropAttr<TrivialABIAttr>(); 9432 }; 9433 9434 // Ill-formed if the struct has virtual functions. 9435 if (RD.isPolymorphic()) { 9436 PrintDiagAndRemoveAttr(); 9437 return; 9438 } 9439 9440 for (const auto &B : RD.bases()) { 9441 // Ill-formed if the base class is non-trivial for the purpose of calls or a 9442 // virtual base. 9443 if ((!B.getType()->isDependentType() && 9444 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) || 9445 B.isVirtual()) { 9446 PrintDiagAndRemoveAttr(); 9447 return; 9448 } 9449 } 9450 9451 for (const auto *FD : RD.fields()) { 9452 // Ill-formed if the field is an ObjectiveC pointer or of a type that is 9453 // non-trivial for the purpose of calls. 9454 QualType FT = FD->getType(); 9455 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) { 9456 PrintDiagAndRemoveAttr(); 9457 return; 9458 } 9459 9460 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>()) 9461 if (!RT->isDependentType() && 9462 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) { 9463 PrintDiagAndRemoveAttr(); 9464 return; 9465 } 9466 } 9467 } 9468 9469 void Sema::ActOnFinishCXXMemberSpecification( 9470 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, 9471 SourceLocation RBrac, const ParsedAttributesView &AttrList) { 9472 if (!TagDecl) 9473 return; 9474 9475 AdjustDeclIfTemplate(TagDecl); 9476 9477 for (const ParsedAttr &AL : AttrList) { 9478 if (AL.getKind() != ParsedAttr::AT_Visibility) 9479 continue; 9480 AL.setInvalid(); 9481 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL; 9482 } 9483 9484 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef( 9485 // strict aliasing violation! 9486 reinterpret_cast<Decl**>(FieldCollector->getCurFields()), 9487 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList); 9488 9489 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl)); 9490 } 9491 9492 /// Find the equality comparison functions that should be implicitly declared 9493 /// in a given class definition, per C++2a [class.compare.default]p3. 9494 static void findImplicitlyDeclaredEqualityComparisons( 9495 ASTContext &Ctx, CXXRecordDecl *RD, 9496 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) { 9497 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual); 9498 if (!RD->lookup(EqEq).empty()) 9499 // Member operator== explicitly declared: no implicit operator==s. 9500 return; 9501 9502 // Traverse friends looking for an '==' or a '<=>'. 9503 for (FriendDecl *Friend : RD->friends()) { 9504 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl()); 9505 if (!FD) continue; 9506 9507 if (FD->getOverloadedOperator() == OO_EqualEqual) { 9508 // Friend operator== explicitly declared: no implicit operator==s. 9509 Spaceships.clear(); 9510 return; 9511 } 9512 9513 if (FD->getOverloadedOperator() == OO_Spaceship && 9514 FD->isExplicitlyDefaulted()) 9515 Spaceships.push_back(FD); 9516 } 9517 9518 // Look for members named 'operator<=>'. 9519 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship); 9520 for (NamedDecl *ND : RD->lookup(Cmp)) { 9521 // Note that we could find a non-function here (either a function template 9522 // or a using-declaration). Neither case results in an implicit 9523 // 'operator=='. 9524 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 9525 if (FD->isExplicitlyDefaulted()) 9526 Spaceships.push_back(FD); 9527 } 9528 } 9529 9530 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared 9531 /// special functions, such as the default constructor, copy 9532 /// constructor, or destructor, to the given C++ class (C++ 9533 /// [special]p1). This routine can only be executed just before the 9534 /// definition of the class is complete. 9535 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { 9536 if (ClassDecl->needsImplicitDefaultConstructor()) { 9537 ++getASTContext().NumImplicitDefaultConstructors; 9538 9539 if (ClassDecl->hasInheritedConstructor()) 9540 DeclareImplicitDefaultConstructor(ClassDecl); 9541 } 9542 9543 if (ClassDecl->needsImplicitCopyConstructor()) { 9544 ++getASTContext().NumImplicitCopyConstructors; 9545 9546 // If the properties or semantics of the copy constructor couldn't be 9547 // determined while the class was being declared, force a declaration 9548 // of it now. 9549 if (ClassDecl->needsOverloadResolutionForCopyConstructor() || 9550 ClassDecl->hasInheritedConstructor()) 9551 DeclareImplicitCopyConstructor(ClassDecl); 9552 // For the MS ABI we need to know whether the copy ctor is deleted. A 9553 // prerequisite for deleting the implicit copy ctor is that the class has a 9554 // move ctor or move assignment that is either user-declared or whose 9555 // semantics are inherited from a subobject. FIXME: We should provide a more 9556 // direct way for CodeGen to ask whether the constructor was deleted. 9557 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 9558 (ClassDecl->hasUserDeclaredMoveConstructor() || 9559 ClassDecl->needsOverloadResolutionForMoveConstructor() || 9560 ClassDecl->hasUserDeclaredMoveAssignment() || 9561 ClassDecl->needsOverloadResolutionForMoveAssignment())) 9562 DeclareImplicitCopyConstructor(ClassDecl); 9563 } 9564 9565 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) { 9566 ++getASTContext().NumImplicitMoveConstructors; 9567 9568 if (ClassDecl->needsOverloadResolutionForMoveConstructor() || 9569 ClassDecl->hasInheritedConstructor()) 9570 DeclareImplicitMoveConstructor(ClassDecl); 9571 } 9572 9573 if (ClassDecl->needsImplicitCopyAssignment()) { 9574 ++getASTContext().NumImplicitCopyAssignmentOperators; 9575 9576 // If we have a dynamic class, then the copy assignment operator may be 9577 // virtual, so we have to declare it immediately. This ensures that, e.g., 9578 // it shows up in the right place in the vtable and that we diagnose 9579 // problems with the implicit exception specification. 9580 if (ClassDecl->isDynamicClass() || 9581 ClassDecl->needsOverloadResolutionForCopyAssignment() || 9582 ClassDecl->hasInheritedAssignment()) 9583 DeclareImplicitCopyAssignment(ClassDecl); 9584 } 9585 9586 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { 9587 ++getASTContext().NumImplicitMoveAssignmentOperators; 9588 9589 // Likewise for the move assignment operator. 9590 if (ClassDecl->isDynamicClass() || 9591 ClassDecl->needsOverloadResolutionForMoveAssignment() || 9592 ClassDecl->hasInheritedAssignment()) 9593 DeclareImplicitMoveAssignment(ClassDecl); 9594 } 9595 9596 if (ClassDecl->needsImplicitDestructor()) { 9597 ++getASTContext().NumImplicitDestructors; 9598 9599 // If we have a dynamic class, then the destructor may be virtual, so we 9600 // have to declare the destructor immediately. This ensures that, e.g., it 9601 // shows up in the right place in the vtable and that we diagnose problems 9602 // with the implicit exception specification. 9603 if (ClassDecl->isDynamicClass() || 9604 ClassDecl->needsOverloadResolutionForDestructor()) 9605 DeclareImplicitDestructor(ClassDecl); 9606 } 9607 9608 // C++2a [class.compare.default]p3: 9609 // If the member-specification does not explicitly declare any member or 9610 // friend named operator==, an == operator function is declared implicitly 9611 // for each defaulted three-way comparison operator function defined in the 9612 // member-specification 9613 // FIXME: Consider doing this lazily. 9614 if (getLangOpts().CPlusPlus2a) { 9615 llvm::SmallVector<FunctionDecl*, 4> DefaultedSpaceships; 9616 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl, 9617 DefaultedSpaceships); 9618 for (auto *FD : DefaultedSpaceships) 9619 DeclareImplicitEqualityComparison(ClassDecl, FD); 9620 } 9621 } 9622 9623 unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) { 9624 if (!D) 9625 return 0; 9626 9627 // The order of template parameters is not important here. All names 9628 // get added to the same scope. 9629 SmallVector<TemplateParameterList *, 4> ParameterLists; 9630 9631 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) 9632 D = TD->getTemplatedDecl(); 9633 9634 if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) 9635 ParameterLists.push_back(PSD->getTemplateParameters()); 9636 9637 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) { 9638 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) 9639 ParameterLists.push_back(DD->getTemplateParameterList(i)); 9640 9641 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9642 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 9643 ParameterLists.push_back(FTD->getTemplateParameters()); 9644 } 9645 } 9646 9647 if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 9648 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) 9649 ParameterLists.push_back(TD->getTemplateParameterList(i)); 9650 9651 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) { 9652 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) 9653 ParameterLists.push_back(CTD->getTemplateParameters()); 9654 } 9655 } 9656 9657 unsigned Count = 0; 9658 for (TemplateParameterList *Params : ParameterLists) { 9659 if (Params->size() > 0) 9660 // Ignore explicit specializations; they don't contribute to the template 9661 // depth. 9662 ++Count; 9663 for (NamedDecl *Param : *Params) { 9664 if (Param->getDeclName()) { 9665 S->AddDecl(Param); 9666 IdResolver.AddDecl(Param); 9667 } 9668 } 9669 } 9670 9671 return Count; 9672 } 9673 9674 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 9675 if (!RecordD) return; 9676 AdjustDeclIfTemplate(RecordD); 9677 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); 9678 PushDeclContext(S, Record); 9679 } 9680 9681 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 9682 if (!RecordD) return; 9683 PopDeclContext(); 9684 } 9685 9686 /// This is used to implement the constant expression evaluation part of the 9687 /// attribute enable_if extension. There is nothing in standard C++ which would 9688 /// require reentering parameters. 9689 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { 9690 if (!Param) 9691 return; 9692 9693 S->AddDecl(Param); 9694 if (Param->getDeclName()) 9695 IdResolver.AddDecl(Param); 9696 } 9697 9698 /// ActOnStartDelayedCXXMethodDeclaration - We have completed 9699 /// parsing a top-level (non-nested) C++ class, and we are now 9700 /// parsing those parts of the given Method declaration that could 9701 /// not be parsed earlier (C++ [class.mem]p2), such as default 9702 /// arguments. This action should enter the scope of the given 9703 /// Method declaration as if we had just parsed the qualified method 9704 /// name. However, it should not bring the parameters into scope; 9705 /// that will be performed by ActOnDelayedCXXMethodParameter. 9706 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 9707 } 9708 9709 /// ActOnDelayedCXXMethodParameter - We've already started a delayed 9710 /// C++ method declaration. We're (re-)introducing the given 9711 /// function parameter into scope for use in parsing later parts of 9712 /// the method declaration. For example, we could see an 9713 /// ActOnParamDefaultArgument event for this parameter. 9714 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { 9715 if (!ParamD) 9716 return; 9717 9718 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); 9719 9720 // If this parameter has an unparsed default argument, clear it out 9721 // to make way for the parsed default argument. 9722 if (Param->hasUnparsedDefaultArg()) 9723 Param->setDefaultArg(nullptr); 9724 9725 S->AddDecl(Param); 9726 if (Param->getDeclName()) 9727 IdResolver.AddDecl(Param); 9728 } 9729 9730 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished 9731 /// processing the delayed method declaration for Method. The method 9732 /// declaration is now considered finished. There may be a separate 9733 /// ActOnStartOfFunctionDef action later (not necessarily 9734 /// immediately!) for this method, if it was also defined inside the 9735 /// class body. 9736 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 9737 if (!MethodD) 9738 return; 9739 9740 AdjustDeclIfTemplate(MethodD); 9741 9742 FunctionDecl *Method = cast<FunctionDecl>(MethodD); 9743 9744 // Now that we have our default arguments, check the constructor 9745 // again. It could produce additional diagnostics or affect whether 9746 // the class has implicitly-declared destructors, among other 9747 // things. 9748 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) 9749 CheckConstructor(Constructor); 9750 9751 // Check the default arguments, which we may have added. 9752 if (!Method->isInvalidDecl()) 9753 CheckCXXDefaultArguments(Method); 9754 } 9755 9756 // Emit the given diagnostic for each non-address-space qualifier. 9757 // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator. 9758 static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) { 9759 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 9760 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) { 9761 bool DiagOccured = false; 9762 FTI.MethodQualifiers->forEachQualifier( 9763 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName, 9764 SourceLocation SL) { 9765 // This diagnostic should be emitted on any qualifier except an addr 9766 // space qualifier. However, forEachQualifier currently doesn't visit 9767 // addr space qualifiers, so there's no way to write this condition 9768 // right now; we just diagnose on everything. 9769 S.Diag(SL, DiagID) << QualName << SourceRange(SL); 9770 DiagOccured = true; 9771 }); 9772 if (DiagOccured) 9773 D.setInvalidType(); 9774 } 9775 } 9776 9777 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check 9778 /// the well-formedness of the constructor declarator @p D with type @p 9779 /// R. If there are any errors in the declarator, this routine will 9780 /// emit diagnostics and set the invalid bit to true. In any case, the type 9781 /// will be updated to reflect a well-formed type for the constructor and 9782 /// returned. 9783 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, 9784 StorageClass &SC) { 9785 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 9786 9787 // C++ [class.ctor]p3: 9788 // A constructor shall not be virtual (10.3) or static (9.4). A 9789 // constructor can be invoked for a const, volatile or const 9790 // volatile object. A constructor shall not be declared const, 9791 // volatile, or const volatile (9.3.2). 9792 if (isVirtual) { 9793 if (!D.isInvalidType()) 9794 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 9795 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) 9796 << SourceRange(D.getIdentifierLoc()); 9797 D.setInvalidType(); 9798 } 9799 if (SC == SC_Static) { 9800 if (!D.isInvalidType()) 9801 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 9802 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 9803 << SourceRange(D.getIdentifierLoc()); 9804 D.setInvalidType(); 9805 SC = SC_None; 9806 } 9807 9808 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 9809 diagnoseIgnoredQualifiers( 9810 diag::err_constructor_return_type, TypeQuals, SourceLocation(), 9811 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), 9812 D.getDeclSpec().getRestrictSpecLoc(), 9813 D.getDeclSpec().getAtomicSpecLoc()); 9814 D.setInvalidType(); 9815 } 9816 9817 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor); 9818 9819 // C++0x [class.ctor]p4: 9820 // A constructor shall not be declared with a ref-qualifier. 9821 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 9822 if (FTI.hasRefQualifier()) { 9823 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) 9824 << FTI.RefQualifierIsLValueRef 9825 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 9826 D.setInvalidType(); 9827 } 9828 9829 // Rebuild the function type "R" without any type qualifiers (in 9830 // case any of the errors above fired) and with "void" as the 9831 // return type, since constructors don't have return types. 9832 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 9833 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) 9834 return R; 9835 9836 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 9837 EPI.TypeQuals = Qualifiers(); 9838 EPI.RefQualifier = RQ_None; 9839 9840 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI); 9841 } 9842 9843 /// CheckConstructor - Checks a fully-formed constructor for 9844 /// well-formedness, issuing any diagnostics required. Returns true if 9845 /// the constructor declarator is invalid. 9846 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { 9847 CXXRecordDecl *ClassDecl 9848 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); 9849 if (!ClassDecl) 9850 return Constructor->setInvalidDecl(); 9851 9852 // C++ [class.copy]p3: 9853 // A declaration of a constructor for a class X is ill-formed if 9854 // its first parameter is of type (optionally cv-qualified) X and 9855 // either there are no other parameters or else all other 9856 // parameters have default arguments. 9857 if (!Constructor->isInvalidDecl() && 9858 ((Constructor->getNumParams() == 1) || 9859 (Constructor->getNumParams() > 1 && 9860 Constructor->getParamDecl(1)->hasDefaultArg())) && 9861 Constructor->getTemplateSpecializationKind() 9862 != TSK_ImplicitInstantiation) { 9863 QualType ParamType = Constructor->getParamDecl(0)->getType(); 9864 QualType ClassTy = Context.getTagDeclType(ClassDecl); 9865 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { 9866 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); 9867 const char *ConstRef 9868 = Constructor->getParamDecl(0)->getIdentifier() ? "const &" 9869 : " const &"; 9870 Diag(ParamLoc, diag::err_constructor_byvalue_arg) 9871 << FixItHint::CreateInsertion(ParamLoc, ConstRef); 9872 9873 // FIXME: Rather that making the constructor invalid, we should endeavor 9874 // to fix the type. 9875 Constructor->setInvalidDecl(); 9876 } 9877 } 9878 } 9879 9880 /// CheckDestructor - Checks a fully-formed destructor definition for 9881 /// well-formedness, issuing any diagnostics required. Returns true 9882 /// on error. 9883 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { 9884 CXXRecordDecl *RD = Destructor->getParent(); 9885 9886 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { 9887 SourceLocation Loc; 9888 9889 if (!Destructor->isImplicit()) 9890 Loc = Destructor->getLocation(); 9891 else 9892 Loc = RD->getLocation(); 9893 9894 // If we have a virtual destructor, look up the deallocation function 9895 if (FunctionDecl *OperatorDelete = 9896 FindDeallocationFunctionForDestructor(Loc, RD)) { 9897 Expr *ThisArg = nullptr; 9898 9899 // If the notional 'delete this' expression requires a non-trivial 9900 // conversion from 'this' to the type of a destroying operator delete's 9901 // first parameter, perform that conversion now. 9902 if (OperatorDelete->isDestroyingOperatorDelete()) { 9903 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 9904 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) { 9905 // C++ [class.dtor]p13: 9906 // ... as if for the expression 'delete this' appearing in a 9907 // non-virtual destructor of the destructor's class. 9908 ContextRAII SwitchContext(*this, Destructor); 9909 ExprResult This = 9910 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation()); 9911 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?"); 9912 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing); 9913 if (This.isInvalid()) { 9914 // FIXME: Register this as a context note so that it comes out 9915 // in the right order. 9916 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here); 9917 return true; 9918 } 9919 ThisArg = This.get(); 9920 } 9921 } 9922 9923 DiagnoseUseOfDecl(OperatorDelete, Loc); 9924 MarkFunctionReferenced(Loc, OperatorDelete); 9925 Destructor->setOperatorDelete(OperatorDelete, ThisArg); 9926 } 9927 } 9928 9929 return false; 9930 } 9931 9932 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check 9933 /// the well-formednes of the destructor declarator @p D with type @p 9934 /// R. If there are any errors in the declarator, this routine will 9935 /// emit diagnostics and set the declarator to invalid. Even if this happens, 9936 /// will be updated to reflect a well-formed type for the destructor and 9937 /// returned. 9938 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, 9939 StorageClass& SC) { 9940 // C++ [class.dtor]p1: 9941 // [...] A typedef-name that names a class is a class-name 9942 // (7.1.3); however, a typedef-name that names a class shall not 9943 // be used as the identifier in the declarator for a destructor 9944 // declaration. 9945 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); 9946 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) 9947 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) 9948 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); 9949 else if (const TemplateSpecializationType *TST = 9950 DeclaratorType->getAs<TemplateSpecializationType>()) 9951 if (TST->isTypeAlias()) 9952 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) 9953 << DeclaratorType << 1; 9954 9955 // C++ [class.dtor]p2: 9956 // A destructor is used to destroy objects of its class type. A 9957 // destructor takes no parameters, and no return type can be 9958 // specified for it (not even void). The address of a destructor 9959 // shall not be taken. A destructor shall not be static. A 9960 // destructor can be invoked for a const, volatile or const 9961 // volatile object. A destructor shall not be declared const, 9962 // volatile or const volatile (9.3.2). 9963 if (SC == SC_Static) { 9964 if (!D.isInvalidType()) 9965 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) 9966 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 9967 << SourceRange(D.getIdentifierLoc()) 9968 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 9969 9970 SC = SC_None; 9971 } 9972 if (!D.isInvalidType()) { 9973 // Destructors don't have return types, but the parser will 9974 // happily parse something like: 9975 // 9976 // class X { 9977 // float ~X(); 9978 // }; 9979 // 9980 // The return type will be eliminated later. 9981 if (D.getDeclSpec().hasTypeSpecifier()) 9982 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) 9983 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 9984 << SourceRange(D.getIdentifierLoc()); 9985 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 9986 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, 9987 SourceLocation(), 9988 D.getDeclSpec().getConstSpecLoc(), 9989 D.getDeclSpec().getVolatileSpecLoc(), 9990 D.getDeclSpec().getRestrictSpecLoc(), 9991 D.getDeclSpec().getAtomicSpecLoc()); 9992 D.setInvalidType(); 9993 } 9994 } 9995 9996 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor); 9997 9998 // C++0x [class.dtor]p2: 9999 // A destructor shall not be declared with a ref-qualifier. 10000 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10001 if (FTI.hasRefQualifier()) { 10002 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) 10003 << FTI.RefQualifierIsLValueRef 10004 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10005 D.setInvalidType(); 10006 } 10007 10008 // Make sure we don't have any parameters. 10009 if (FTIHasNonVoidParameters(FTI)) { 10010 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); 10011 10012 // Delete the parameters. 10013 FTI.freeParams(); 10014 D.setInvalidType(); 10015 } 10016 10017 // Make sure the destructor isn't variadic. 10018 if (FTI.isVariadic) { 10019 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); 10020 D.setInvalidType(); 10021 } 10022 10023 // Rebuild the function type "R" without any type qualifiers or 10024 // parameters (in case any of the errors above fired) and with 10025 // "void" as the return type, since destructors don't have return 10026 // types. 10027 if (!D.isInvalidType()) 10028 return R; 10029 10030 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10031 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10032 EPI.Variadic = false; 10033 EPI.TypeQuals = Qualifiers(); 10034 EPI.RefQualifier = RQ_None; 10035 return Context.getFunctionType(Context.VoidTy, None, EPI); 10036 } 10037 10038 static void extendLeft(SourceRange &R, SourceRange Before) { 10039 if (Before.isInvalid()) 10040 return; 10041 R.setBegin(Before.getBegin()); 10042 if (R.getEnd().isInvalid()) 10043 R.setEnd(Before.getEnd()); 10044 } 10045 10046 static void extendRight(SourceRange &R, SourceRange After) { 10047 if (After.isInvalid()) 10048 return; 10049 if (R.getBegin().isInvalid()) 10050 R.setBegin(After.getBegin()); 10051 R.setEnd(After.getEnd()); 10052 } 10053 10054 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the 10055 /// well-formednes of the conversion function declarator @p D with 10056 /// type @p R. If there are any errors in the declarator, this routine 10057 /// will emit diagnostics and return true. Otherwise, it will return 10058 /// false. Either way, the type @p R will be updated to reflect a 10059 /// well-formed type for the conversion operator. 10060 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, 10061 StorageClass& SC) { 10062 // C++ [class.conv.fct]p1: 10063 // Neither parameter types nor return type can be specified. The 10064 // type of a conversion function (8.3.5) is "function taking no 10065 // parameter returning conversion-type-id." 10066 if (SC == SC_Static) { 10067 if (!D.isInvalidType()) 10068 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) 10069 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10070 << D.getName().getSourceRange(); 10071 D.setInvalidType(); 10072 SC = SC_None; 10073 } 10074 10075 TypeSourceInfo *ConvTSI = nullptr; 10076 QualType ConvType = 10077 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI); 10078 10079 const DeclSpec &DS = D.getDeclSpec(); 10080 if (DS.hasTypeSpecifier() && !D.isInvalidType()) { 10081 // Conversion functions don't have return types, but the parser will 10082 // happily parse something like: 10083 // 10084 // class X { 10085 // float operator bool(); 10086 // }; 10087 // 10088 // The return type will be changed later anyway. 10089 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) 10090 << SourceRange(DS.getTypeSpecTypeLoc()) 10091 << SourceRange(D.getIdentifierLoc()); 10092 D.setInvalidType(); 10093 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) { 10094 // It's also plausible that the user writes type qualifiers in the wrong 10095 // place, such as: 10096 // struct S { const operator int(); }; 10097 // FIXME: we could provide a fixit to move the qualifiers onto the 10098 // conversion type. 10099 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) 10100 << SourceRange(D.getIdentifierLoc()) << 0; 10101 D.setInvalidType(); 10102 } 10103 10104 const auto *Proto = R->castAs<FunctionProtoType>(); 10105 10106 // Make sure we don't have any parameters. 10107 if (Proto->getNumParams() > 0) { 10108 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); 10109 10110 // Delete the parameters. 10111 D.getFunctionTypeInfo().freeParams(); 10112 D.setInvalidType(); 10113 } else if (Proto->isVariadic()) { 10114 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); 10115 D.setInvalidType(); 10116 } 10117 10118 // Diagnose "&operator bool()" and other such nonsense. This 10119 // is actually a gcc extension which we don't support. 10120 if (Proto->getReturnType() != ConvType) { 10121 bool NeedsTypedef = false; 10122 SourceRange Before, After; 10123 10124 // Walk the chunks and extract information on them for our diagnostic. 10125 bool PastFunctionChunk = false; 10126 for (auto &Chunk : D.type_objects()) { 10127 switch (Chunk.Kind) { 10128 case DeclaratorChunk::Function: 10129 if (!PastFunctionChunk) { 10130 if (Chunk.Fun.HasTrailingReturnType) { 10131 TypeSourceInfo *TRT = nullptr; 10132 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT); 10133 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange()); 10134 } 10135 PastFunctionChunk = true; 10136 break; 10137 } 10138 LLVM_FALLTHROUGH; 10139 case DeclaratorChunk::Array: 10140 NeedsTypedef = true; 10141 extendRight(After, Chunk.getSourceRange()); 10142 break; 10143 10144 case DeclaratorChunk::Pointer: 10145 case DeclaratorChunk::BlockPointer: 10146 case DeclaratorChunk::Reference: 10147 case DeclaratorChunk::MemberPointer: 10148 case DeclaratorChunk::Pipe: 10149 extendLeft(Before, Chunk.getSourceRange()); 10150 break; 10151 10152 case DeclaratorChunk::Paren: 10153 extendLeft(Before, Chunk.Loc); 10154 extendRight(After, Chunk.EndLoc); 10155 break; 10156 } 10157 } 10158 10159 SourceLocation Loc = Before.isValid() ? Before.getBegin() : 10160 After.isValid() ? After.getBegin() : 10161 D.getIdentifierLoc(); 10162 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); 10163 DB << Before << After; 10164 10165 if (!NeedsTypedef) { 10166 DB << /*don't need a typedef*/0; 10167 10168 // If we can provide a correct fix-it hint, do so. 10169 if (After.isInvalid() && ConvTSI) { 10170 SourceLocation InsertLoc = 10171 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc()); 10172 DB << FixItHint::CreateInsertion(InsertLoc, " ") 10173 << FixItHint::CreateInsertionFromRange( 10174 InsertLoc, CharSourceRange::getTokenRange(Before)) 10175 << FixItHint::CreateRemoval(Before); 10176 } 10177 } else if (!Proto->getReturnType()->isDependentType()) { 10178 DB << /*typedef*/1 << Proto->getReturnType(); 10179 } else if (getLangOpts().CPlusPlus11) { 10180 DB << /*alias template*/2 << Proto->getReturnType(); 10181 } else { 10182 DB << /*might not be fixable*/3; 10183 } 10184 10185 // Recover by incorporating the other type chunks into the result type. 10186 // Note, this does *not* change the name of the function. This is compatible 10187 // with the GCC extension: 10188 // struct S { &operator int(); } s; 10189 // int &r = s.operator int(); // ok in GCC 10190 // S::operator int&() {} // error in GCC, function name is 'operator int'. 10191 ConvType = Proto->getReturnType(); 10192 } 10193 10194 // C++ [class.conv.fct]p4: 10195 // The conversion-type-id shall not represent a function type nor 10196 // an array type. 10197 if (ConvType->isArrayType()) { 10198 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); 10199 ConvType = Context.getPointerType(ConvType); 10200 D.setInvalidType(); 10201 } else if (ConvType->isFunctionType()) { 10202 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); 10203 ConvType = Context.getPointerType(ConvType); 10204 D.setInvalidType(); 10205 } 10206 10207 // Rebuild the function type "R" without any parameters (in case any 10208 // of the errors above fired) and with the conversion type as the 10209 // return type. 10210 if (D.isInvalidType()) 10211 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo()); 10212 10213 // C++0x explicit conversion operators. 10214 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus2a) 10215 Diag(DS.getExplicitSpecLoc(), 10216 getLangOpts().CPlusPlus11 10217 ? diag::warn_cxx98_compat_explicit_conversion_functions 10218 : diag::ext_explicit_conversion_functions) 10219 << SourceRange(DS.getExplicitSpecRange()); 10220 } 10221 10222 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete 10223 /// the declaration of the given C++ conversion function. This routine 10224 /// is responsible for recording the conversion function in the C++ 10225 /// class, if possible. 10226 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { 10227 assert(Conversion && "Expected to receive a conversion function declaration"); 10228 10229 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); 10230 10231 // Make sure we aren't redeclaring the conversion function. 10232 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); 10233 10234 // C++ [class.conv.fct]p1: 10235 // [...] A conversion function is never used to convert a 10236 // (possibly cv-qualified) object to the (possibly cv-qualified) 10237 // same object type (or a reference to it), to a (possibly 10238 // cv-qualified) base class of that type (or a reference to it), 10239 // or to (possibly cv-qualified) void. 10240 // FIXME: Suppress this warning if the conversion function ends up being a 10241 // virtual function that overrides a virtual function in a base class. 10242 QualType ClassType 10243 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 10244 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) 10245 ConvType = ConvTypeRef->getPointeeType(); 10246 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && 10247 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 10248 /* Suppress diagnostics for instantiations. */; 10249 else if (ConvType->isRecordType()) { 10250 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); 10251 if (ConvType == ClassType) 10252 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) 10253 << ClassType; 10254 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType)) 10255 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) 10256 << ClassType << ConvType; 10257 } else if (ConvType->isVoidType()) { 10258 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) 10259 << ClassType << ConvType; 10260 } 10261 10262 if (FunctionTemplateDecl *ConversionTemplate 10263 = Conversion->getDescribedFunctionTemplate()) 10264 return ConversionTemplate; 10265 10266 return Conversion; 10267 } 10268 10269 namespace { 10270 /// Utility class to accumulate and print a diagnostic listing the invalid 10271 /// specifier(s) on a declaration. 10272 struct BadSpecifierDiagnoser { 10273 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID) 10274 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {} 10275 ~BadSpecifierDiagnoser() { 10276 Diagnostic << Specifiers; 10277 } 10278 10279 template<typename T> void check(SourceLocation SpecLoc, T Spec) { 10280 return check(SpecLoc, DeclSpec::getSpecifierName(Spec)); 10281 } 10282 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) { 10283 return check(SpecLoc, 10284 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy())); 10285 } 10286 void check(SourceLocation SpecLoc, const char *Spec) { 10287 if (SpecLoc.isInvalid()) return; 10288 Diagnostic << SourceRange(SpecLoc, SpecLoc); 10289 if (!Specifiers.empty()) Specifiers += " "; 10290 Specifiers += Spec; 10291 } 10292 10293 Sema &S; 10294 Sema::SemaDiagnosticBuilder Diagnostic; 10295 std::string Specifiers; 10296 }; 10297 } 10298 10299 /// Check the validity of a declarator that we parsed for a deduction-guide. 10300 /// These aren't actually declarators in the grammar, so we need to check that 10301 /// the user didn't specify any pieces that are not part of the deduction-guide 10302 /// grammar. 10303 void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R, 10304 StorageClass &SC) { 10305 TemplateName GuidedTemplate = D.getName().TemplateName.get().get(); 10306 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl(); 10307 assert(GuidedTemplateDecl && "missing template decl for deduction guide"); 10308 10309 // C++ [temp.deduct.guide]p3: 10310 // A deduction-gide shall be declared in the same scope as the 10311 // corresponding class template. 10312 if (!CurContext->getRedeclContext()->Equals( 10313 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) { 10314 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope) 10315 << GuidedTemplateDecl; 10316 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here); 10317 } 10318 10319 auto &DS = D.getMutableDeclSpec(); 10320 // We leave 'friend' and 'virtual' to be rejected in the normal way. 10321 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() || 10322 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() || 10323 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) { 10324 BadSpecifierDiagnoser Diagnoser( 10325 *this, D.getIdentifierLoc(), 10326 diag::err_deduction_guide_invalid_specifier); 10327 10328 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec()); 10329 DS.ClearStorageClassSpecs(); 10330 SC = SC_None; 10331 10332 // 'explicit' is permitted. 10333 Diagnoser.check(DS.getInlineSpecLoc(), "inline"); 10334 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn"); 10335 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr"); 10336 DS.ClearConstexprSpec(); 10337 10338 Diagnoser.check(DS.getConstSpecLoc(), "const"); 10339 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict"); 10340 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile"); 10341 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic"); 10342 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned"); 10343 DS.ClearTypeQualifiers(); 10344 10345 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex()); 10346 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign()); 10347 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth()); 10348 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType()); 10349 DS.ClearTypeSpecType(); 10350 } 10351 10352 if (D.isInvalidType()) 10353 return; 10354 10355 // Check the declarator is simple enough. 10356 bool FoundFunction = false; 10357 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) { 10358 if (Chunk.Kind == DeclaratorChunk::Paren) 10359 continue; 10360 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) { 10361 Diag(D.getDeclSpec().getBeginLoc(), 10362 diag::err_deduction_guide_with_complex_decl) 10363 << D.getSourceRange(); 10364 break; 10365 } 10366 if (!Chunk.Fun.hasTrailingReturnType()) { 10367 Diag(D.getName().getBeginLoc(), 10368 diag::err_deduction_guide_no_trailing_return_type); 10369 break; 10370 } 10371 10372 // Check that the return type is written as a specialization of 10373 // the template specified as the deduction-guide's name. 10374 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType(); 10375 TypeSourceInfo *TSI = nullptr; 10376 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI); 10377 assert(TSI && "deduction guide has valid type but invalid return type?"); 10378 bool AcceptableReturnType = false; 10379 bool MightInstantiateToSpecialization = false; 10380 if (auto RetTST = 10381 TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) { 10382 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName(); 10383 bool TemplateMatches = 10384 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate); 10385 if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches) 10386 AcceptableReturnType = true; 10387 else { 10388 // This could still instantiate to the right type, unless we know it 10389 // names the wrong class template. 10390 auto *TD = SpecifiedName.getAsTemplateDecl(); 10391 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) && 10392 !TemplateMatches); 10393 } 10394 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) { 10395 MightInstantiateToSpecialization = true; 10396 } 10397 10398 if (!AcceptableReturnType) { 10399 Diag(TSI->getTypeLoc().getBeginLoc(), 10400 diag::err_deduction_guide_bad_trailing_return_type) 10401 << GuidedTemplate << TSI->getType() 10402 << MightInstantiateToSpecialization 10403 << TSI->getTypeLoc().getSourceRange(); 10404 } 10405 10406 // Keep going to check that we don't have any inner declarator pieces (we 10407 // could still have a function returning a pointer to a function). 10408 FoundFunction = true; 10409 } 10410 10411 if (D.isFunctionDefinition()) 10412 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function); 10413 } 10414 10415 //===----------------------------------------------------------------------===// 10416 // Namespace Handling 10417 //===----------------------------------------------------------------------===// 10418 10419 /// Diagnose a mismatch in 'inline' qualifiers when a namespace is 10420 /// reopened. 10421 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, 10422 SourceLocation Loc, 10423 IdentifierInfo *II, bool *IsInline, 10424 NamespaceDecl *PrevNS) { 10425 assert(*IsInline != PrevNS->isInline()); 10426 10427 // HACK: Work around a bug in libstdc++4.6's <atomic>, where 10428 // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as 10429 // inline namespaces, with the intention of bringing names into namespace std. 10430 // 10431 // We support this just well enough to get that case working; this is not 10432 // sufficient to support reopening namespaces as inline in general. 10433 if (*IsInline && II && II->getName().startswith("__atomic") && 10434 S.getSourceManager().isInSystemHeader(Loc)) { 10435 // Mark all prior declarations of the namespace as inline. 10436 for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS; 10437 NS = NS->getPreviousDecl()) 10438 NS->setInline(*IsInline); 10439 // Patch up the lookup table for the containing namespace. This isn't really 10440 // correct, but it's good enough for this particular case. 10441 for (auto *I : PrevNS->decls()) 10442 if (auto *ND = dyn_cast<NamedDecl>(I)) 10443 PrevNS->getParent()->makeDeclVisibleInContext(ND); 10444 return; 10445 } 10446 10447 if (PrevNS->isInline()) 10448 // The user probably just forgot the 'inline', so suggest that it 10449 // be added back. 10450 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) 10451 << FixItHint::CreateInsertion(KeywordLoc, "inline "); 10452 else 10453 S.Diag(Loc, diag::err_inline_namespace_mismatch); 10454 10455 S.Diag(PrevNS->getLocation(), diag::note_previous_definition); 10456 *IsInline = PrevNS->isInline(); 10457 } 10458 10459 /// ActOnStartNamespaceDef - This is called at the start of a namespace 10460 /// definition. 10461 Decl *Sema::ActOnStartNamespaceDef( 10462 Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc, 10463 SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace, 10464 const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) { 10465 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; 10466 // For anonymous namespace, take the location of the left brace. 10467 SourceLocation Loc = II ? IdentLoc : LBrace; 10468 bool IsInline = InlineLoc.isValid(); 10469 bool IsInvalid = false; 10470 bool IsStd = false; 10471 bool AddToKnown = false; 10472 Scope *DeclRegionScope = NamespcScope->getParent(); 10473 10474 NamespaceDecl *PrevNS = nullptr; 10475 if (II) { 10476 // C++ [namespace.def]p2: 10477 // The identifier in an original-namespace-definition shall not 10478 // have been previously defined in the declarative region in 10479 // which the original-namespace-definition appears. The 10480 // identifier in an original-namespace-definition is the name of 10481 // the namespace. Subsequently in that declarative region, it is 10482 // treated as an original-namespace-name. 10483 // 10484 // Since namespace names are unique in their scope, and we don't 10485 // look through using directives, just look for any ordinary names 10486 // as if by qualified name lookup. 10487 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, 10488 ForExternalRedeclaration); 10489 LookupQualifiedName(R, CurContext->getRedeclContext()); 10490 NamedDecl *PrevDecl = 10491 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr; 10492 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl); 10493 10494 if (PrevNS) { 10495 // This is an extended namespace definition. 10496 if (IsInline != PrevNS->isInline()) 10497 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II, 10498 &IsInline, PrevNS); 10499 } else if (PrevDecl) { 10500 // This is an invalid name redefinition. 10501 Diag(Loc, diag::err_redefinition_different_kind) 10502 << II; 10503 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 10504 IsInvalid = true; 10505 // Continue on to push Namespc as current DeclContext and return it. 10506 } else if (II->isStr("std") && 10507 CurContext->getRedeclContext()->isTranslationUnit()) { 10508 // This is the first "real" definition of the namespace "std", so update 10509 // our cache of the "std" namespace to point at this definition. 10510 PrevNS = getStdNamespace(); 10511 IsStd = true; 10512 AddToKnown = !IsInline; 10513 } else { 10514 // We've seen this namespace for the first time. 10515 AddToKnown = !IsInline; 10516 } 10517 } else { 10518 // Anonymous namespaces. 10519 10520 // Determine whether the parent already has an anonymous namespace. 10521 DeclContext *Parent = CurContext->getRedeclContext(); 10522 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 10523 PrevNS = TU->getAnonymousNamespace(); 10524 } else { 10525 NamespaceDecl *ND = cast<NamespaceDecl>(Parent); 10526 PrevNS = ND->getAnonymousNamespace(); 10527 } 10528 10529 if (PrevNS && IsInline != PrevNS->isInline()) 10530 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II, 10531 &IsInline, PrevNS); 10532 } 10533 10534 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline, 10535 StartLoc, Loc, II, PrevNS); 10536 if (IsInvalid) 10537 Namespc->setInvalidDecl(); 10538 10539 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); 10540 AddPragmaAttributes(DeclRegionScope, Namespc); 10541 10542 // FIXME: Should we be merging attributes? 10543 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) 10544 PushNamespaceVisibilityAttr(Attr, Loc); 10545 10546 if (IsStd) 10547 StdNamespace = Namespc; 10548 if (AddToKnown) 10549 KnownNamespaces[Namespc] = false; 10550 10551 if (II) { 10552 PushOnScopeChains(Namespc, DeclRegionScope); 10553 } else { 10554 // Link the anonymous namespace into its parent. 10555 DeclContext *Parent = CurContext->getRedeclContext(); 10556 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 10557 TU->setAnonymousNamespace(Namespc); 10558 } else { 10559 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc); 10560 } 10561 10562 CurContext->addDecl(Namespc); 10563 10564 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition 10565 // behaves as if it were replaced by 10566 // namespace unique { /* empty body */ } 10567 // using namespace unique; 10568 // namespace unique { namespace-body } 10569 // where all occurrences of 'unique' in a translation unit are 10570 // replaced by the same identifier and this identifier differs 10571 // from all other identifiers in the entire program. 10572 10573 // We just create the namespace with an empty name and then add an 10574 // implicit using declaration, just like the standard suggests. 10575 // 10576 // CodeGen enforces the "universally unique" aspect by giving all 10577 // declarations semantically contained within an anonymous 10578 // namespace internal linkage. 10579 10580 if (!PrevNS) { 10581 UD = UsingDirectiveDecl::Create(Context, Parent, 10582 /* 'using' */ LBrace, 10583 /* 'namespace' */ SourceLocation(), 10584 /* qualifier */ NestedNameSpecifierLoc(), 10585 /* identifier */ SourceLocation(), 10586 Namespc, 10587 /* Ancestor */ Parent); 10588 UD->setImplicit(); 10589 Parent->addDecl(UD); 10590 } 10591 } 10592 10593 ActOnDocumentableDecl(Namespc); 10594 10595 // Although we could have an invalid decl (i.e. the namespace name is a 10596 // redefinition), push it as current DeclContext and try to continue parsing. 10597 // FIXME: We should be able to push Namespc here, so that the each DeclContext 10598 // for the namespace has the declarations that showed up in that particular 10599 // namespace definition. 10600 PushDeclContext(NamespcScope, Namespc); 10601 return Namespc; 10602 } 10603 10604 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl 10605 /// is a namespace alias, returns the namespace it points to. 10606 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { 10607 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) 10608 return AD->getNamespace(); 10609 return dyn_cast_or_null<NamespaceDecl>(D); 10610 } 10611 10612 /// ActOnFinishNamespaceDef - This callback is called after a namespace is 10613 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. 10614 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { 10615 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); 10616 assert(Namespc && "Invalid parameter, expected NamespaceDecl"); 10617 Namespc->setRBraceLoc(RBrace); 10618 PopDeclContext(); 10619 if (Namespc->hasAttr<VisibilityAttr>()) 10620 PopPragmaVisibility(true, RBrace); 10621 // If this namespace contains an export-declaration, export it now. 10622 if (DeferredExportedNamespaces.erase(Namespc)) 10623 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 10624 } 10625 10626 CXXRecordDecl *Sema::getStdBadAlloc() const { 10627 return cast_or_null<CXXRecordDecl>( 10628 StdBadAlloc.get(Context.getExternalSource())); 10629 } 10630 10631 EnumDecl *Sema::getStdAlignValT() const { 10632 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource())); 10633 } 10634 10635 NamespaceDecl *Sema::getStdNamespace() const { 10636 return cast_or_null<NamespaceDecl>( 10637 StdNamespace.get(Context.getExternalSource())); 10638 } 10639 10640 NamespaceDecl *Sema::lookupStdExperimentalNamespace() { 10641 if (!StdExperimentalNamespaceCache) { 10642 if (auto Std = getStdNamespace()) { 10643 LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"), 10644 SourceLocation(), LookupNamespaceName); 10645 if (!LookupQualifiedName(Result, Std) || 10646 !(StdExperimentalNamespaceCache = 10647 Result.getAsSingle<NamespaceDecl>())) 10648 Result.suppressDiagnostics(); 10649 } 10650 } 10651 return StdExperimentalNamespaceCache; 10652 } 10653 10654 namespace { 10655 10656 enum UnsupportedSTLSelect { 10657 USS_InvalidMember, 10658 USS_MissingMember, 10659 USS_NonTrivial, 10660 USS_Other 10661 }; 10662 10663 struct InvalidSTLDiagnoser { 10664 Sema &S; 10665 SourceLocation Loc; 10666 QualType TyForDiags; 10667 10668 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "", 10669 const VarDecl *VD = nullptr) { 10670 { 10671 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported) 10672 << TyForDiags << ((int)Sel); 10673 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) { 10674 assert(!Name.empty()); 10675 D << Name; 10676 } 10677 } 10678 if (Sel == USS_InvalidMember) { 10679 S.Diag(VD->getLocation(), diag::note_var_declared_here) 10680 << VD << VD->getSourceRange(); 10681 } 10682 return QualType(); 10683 } 10684 }; 10685 } // namespace 10686 10687 QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind, 10688 SourceLocation Loc, 10689 ComparisonCategoryUsage Usage) { 10690 assert(getLangOpts().CPlusPlus && 10691 "Looking for comparison category type outside of C++."); 10692 10693 // Use an elaborated type for diagnostics which has a name containing the 10694 // prepended 'std' namespace but not any inline namespace names. 10695 auto TyForDiags = [&](ComparisonCategoryInfo *Info) { 10696 auto *NNS = 10697 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()); 10698 return Context.getElaboratedType(ETK_None, NNS, Info->getType()); 10699 }; 10700 10701 // Check if we've already successfully checked the comparison category type 10702 // before. If so, skip checking it again. 10703 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind); 10704 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) { 10705 // The only thing we need to check is that the type has a reachable 10706 // definition in the current context. 10707 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 10708 return QualType(); 10709 10710 return Info->getType(); 10711 } 10712 10713 // If lookup failed 10714 if (!Info) { 10715 std::string NameForDiags = "std::"; 10716 NameForDiags += ComparisonCategories::getCategoryString(Kind); 10717 Diag(Loc, diag::err_implied_comparison_category_type_not_found) 10718 << NameForDiags << (int)Usage; 10719 return QualType(); 10720 } 10721 10722 assert(Info->Kind == Kind); 10723 assert(Info->Record); 10724 10725 // Update the Record decl in case we encountered a forward declaration on our 10726 // first pass. FIXME: This is a bit of a hack. 10727 if (Info->Record->hasDefinition()) 10728 Info->Record = Info->Record->getDefinition(); 10729 10730 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 10731 return QualType(); 10732 10733 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)}; 10734 10735 if (!Info->Record->isTriviallyCopyable()) 10736 return UnsupportedSTLError(USS_NonTrivial); 10737 10738 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) { 10739 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl(); 10740 // Tolerate empty base classes. 10741 if (Base->isEmpty()) 10742 continue; 10743 // Reject STL implementations which have at least one non-empty base. 10744 return UnsupportedSTLError(); 10745 } 10746 10747 // Check that the STL has implemented the types using a single integer field. 10748 // This expectation allows better codegen for builtin operators. We require: 10749 // (1) The class has exactly one field. 10750 // (2) The field is an integral or enumeration type. 10751 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end(); 10752 if (std::distance(FIt, FEnd) != 1 || 10753 !FIt->getType()->isIntegralOrEnumerationType()) { 10754 return UnsupportedSTLError(); 10755 } 10756 10757 // Build each of the require values and store them in Info. 10758 for (ComparisonCategoryResult CCR : 10759 ComparisonCategories::getPossibleResultsForType(Kind)) { 10760 StringRef MemName = ComparisonCategories::getResultString(CCR); 10761 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR); 10762 10763 if (!ValInfo) 10764 return UnsupportedSTLError(USS_MissingMember, MemName); 10765 10766 VarDecl *VD = ValInfo->VD; 10767 assert(VD && "should not be null!"); 10768 10769 // Attempt to diagnose reasons why the STL definition of this type 10770 // might be foobar, including it failing to be a constant expression. 10771 // TODO Handle more ways the lookup or result can be invalid. 10772 if (!VD->isStaticDataMember() || !VD->isConstexpr() || !VD->hasInit() || 10773 !VD->checkInitIsICE()) 10774 return UnsupportedSTLError(USS_InvalidMember, MemName, VD); 10775 10776 // Attempt to evaluate the var decl as a constant expression and extract 10777 // the value of its first field as a ICE. If this fails, the STL 10778 // implementation is not supported. 10779 if (!ValInfo->hasValidIntValue()) 10780 return UnsupportedSTLError(); 10781 10782 MarkVariableReferenced(Loc, VD); 10783 } 10784 10785 // We've successfully built the required types and expressions. Update 10786 // the cache and return the newly cached value. 10787 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true; 10788 return Info->getType(); 10789 } 10790 10791 /// Retrieve the special "std" namespace, which may require us to 10792 /// implicitly define the namespace. 10793 NamespaceDecl *Sema::getOrCreateStdNamespace() { 10794 if (!StdNamespace) { 10795 // The "std" namespace has not yet been defined, so build one implicitly. 10796 StdNamespace = NamespaceDecl::Create(Context, 10797 Context.getTranslationUnitDecl(), 10798 /*Inline=*/false, 10799 SourceLocation(), SourceLocation(), 10800 &PP.getIdentifierTable().get("std"), 10801 /*PrevDecl=*/nullptr); 10802 getStdNamespace()->setImplicit(true); 10803 } 10804 10805 return getStdNamespace(); 10806 } 10807 10808 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { 10809 assert(getLangOpts().CPlusPlus && 10810 "Looking for std::initializer_list outside of C++."); 10811 10812 // We're looking for implicit instantiations of 10813 // template <typename E> class std::initializer_list. 10814 10815 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it. 10816 return false; 10817 10818 ClassTemplateDecl *Template = nullptr; 10819 const TemplateArgument *Arguments = nullptr; 10820 10821 if (const RecordType *RT = Ty->getAs<RecordType>()) { 10822 10823 ClassTemplateSpecializationDecl *Specialization = 10824 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 10825 if (!Specialization) 10826 return false; 10827 10828 Template = Specialization->getSpecializedTemplate(); 10829 Arguments = Specialization->getTemplateArgs().data(); 10830 } else if (const TemplateSpecializationType *TST = 10831 Ty->getAs<TemplateSpecializationType>()) { 10832 Template = dyn_cast_or_null<ClassTemplateDecl>( 10833 TST->getTemplateName().getAsTemplateDecl()); 10834 Arguments = TST->getArgs(); 10835 } 10836 if (!Template) 10837 return false; 10838 10839 if (!StdInitializerList) { 10840 // Haven't recognized std::initializer_list yet, maybe this is it. 10841 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); 10842 if (TemplateClass->getIdentifier() != 10843 &PP.getIdentifierTable().get("initializer_list") || 10844 !getStdNamespace()->InEnclosingNamespaceSetOf( 10845 TemplateClass->getDeclContext())) 10846 return false; 10847 // This is a template called std::initializer_list, but is it the right 10848 // template? 10849 TemplateParameterList *Params = Template->getTemplateParameters(); 10850 if (Params->getMinRequiredArguments() != 1) 10851 return false; 10852 if (!isa<TemplateTypeParmDecl>(Params->getParam(0))) 10853 return false; 10854 10855 // It's the right template. 10856 StdInitializerList = Template; 10857 } 10858 10859 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl()) 10860 return false; 10861 10862 // This is an instance of std::initializer_list. Find the argument type. 10863 if (Element) 10864 *Element = Arguments[0].getAsType(); 10865 return true; 10866 } 10867 10868 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){ 10869 NamespaceDecl *Std = S.getStdNamespace(); 10870 if (!Std) { 10871 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 10872 return nullptr; 10873 } 10874 10875 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"), 10876 Loc, Sema::LookupOrdinaryName); 10877 if (!S.LookupQualifiedName(Result, Std)) { 10878 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 10879 return nullptr; 10880 } 10881 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); 10882 if (!Template) { 10883 Result.suppressDiagnostics(); 10884 // We found something weird. Complain about the first thing we found. 10885 NamedDecl *Found = *Result.begin(); 10886 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list); 10887 return nullptr; 10888 } 10889 10890 // We found some template called std::initializer_list. Now verify that it's 10891 // correct. 10892 TemplateParameterList *Params = Template->getTemplateParameters(); 10893 if (Params->getMinRequiredArguments() != 1 || 10894 !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 10895 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list); 10896 return nullptr; 10897 } 10898 10899 return Template; 10900 } 10901 10902 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { 10903 if (!StdInitializerList) { 10904 StdInitializerList = LookupStdInitializerList(*this, Loc); 10905 if (!StdInitializerList) 10906 return QualType(); 10907 } 10908 10909 TemplateArgumentListInfo Args(Loc, Loc); 10910 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element), 10911 Context.getTrivialTypeSourceInfo(Element, 10912 Loc))); 10913 return Context.getCanonicalType( 10914 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args)); 10915 } 10916 10917 bool Sema::isInitListConstructor(const FunctionDecl *Ctor) { 10918 // C++ [dcl.init.list]p2: 10919 // A constructor is an initializer-list constructor if its first parameter 10920 // is of type std::initializer_list<E> or reference to possibly cv-qualified 10921 // std::initializer_list<E> for some type E, and either there are no other 10922 // parameters or else all other parameters have default arguments. 10923 if (Ctor->getNumParams() < 1 || 10924 (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg())) 10925 return false; 10926 10927 QualType ArgType = Ctor->getParamDecl(0)->getType(); 10928 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) 10929 ArgType = RT->getPointeeType().getUnqualifiedType(); 10930 10931 return isStdInitializerList(ArgType, nullptr); 10932 } 10933 10934 /// Determine whether a using statement is in a context where it will be 10935 /// apply in all contexts. 10936 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { 10937 switch (CurContext->getDeclKind()) { 10938 case Decl::TranslationUnit: 10939 return true; 10940 case Decl::LinkageSpec: 10941 return IsUsingDirectiveInToplevelContext(CurContext->getParent()); 10942 default: 10943 return false; 10944 } 10945 } 10946 10947 namespace { 10948 10949 // Callback to only accept typo corrections that are namespaces. 10950 class NamespaceValidatorCCC final : public CorrectionCandidateCallback { 10951 public: 10952 bool ValidateCandidate(const TypoCorrection &candidate) override { 10953 if (NamedDecl *ND = candidate.getCorrectionDecl()) 10954 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); 10955 return false; 10956 } 10957 10958 std::unique_ptr<CorrectionCandidateCallback> clone() override { 10959 return std::make_unique<NamespaceValidatorCCC>(*this); 10960 } 10961 }; 10962 10963 } 10964 10965 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, 10966 CXXScopeSpec &SS, 10967 SourceLocation IdentLoc, 10968 IdentifierInfo *Ident) { 10969 R.clear(); 10970 NamespaceValidatorCCC CCC{}; 10971 if (TypoCorrection Corrected = 10972 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC, 10973 Sema::CTK_ErrorRecovery)) { 10974 if (DeclContext *DC = S.computeDeclContext(SS, false)) { 10975 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts())); 10976 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 10977 Ident->getName().equals(CorrectedStr); 10978 S.diagnoseTypo(Corrected, 10979 S.PDiag(diag::err_using_directive_member_suggest) 10980 << Ident << DC << DroppedSpecifier << SS.getRange(), 10981 S.PDiag(diag::note_namespace_defined_here)); 10982 } else { 10983 S.diagnoseTypo(Corrected, 10984 S.PDiag(diag::err_using_directive_suggest) << Ident, 10985 S.PDiag(diag::note_namespace_defined_here)); 10986 } 10987 R.addDecl(Corrected.getFoundDecl()); 10988 return true; 10989 } 10990 return false; 10991 } 10992 10993 Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, 10994 SourceLocation NamespcLoc, CXXScopeSpec &SS, 10995 SourceLocation IdentLoc, 10996 IdentifierInfo *NamespcName, 10997 const ParsedAttributesView &AttrList) { 10998 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 10999 assert(NamespcName && "Invalid NamespcName."); 11000 assert(IdentLoc.isValid() && "Invalid NamespceName location."); 11001 11002 // This can only happen along a recovery path. 11003 while (S->isTemplateParamScope()) 11004 S = S->getParent(); 11005 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 11006 11007 UsingDirectiveDecl *UDir = nullptr; 11008 NestedNameSpecifier *Qualifier = nullptr; 11009 if (SS.isSet()) 11010 Qualifier = SS.getScopeRep(); 11011 11012 // Lookup namespace name. 11013 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); 11014 LookupParsedName(R, S, &SS); 11015 if (R.isAmbiguous()) 11016 return nullptr; 11017 11018 if (R.empty()) { 11019 R.clear(); 11020 // Allow "using namespace std;" or "using namespace ::std;" even if 11021 // "std" hasn't been defined yet, for GCC compatibility. 11022 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && 11023 NamespcName->isStr("std")) { 11024 Diag(IdentLoc, diag::ext_using_undefined_std); 11025 R.addDecl(getOrCreateStdNamespace()); 11026 R.resolveKind(); 11027 } 11028 // Otherwise, attempt typo correction. 11029 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); 11030 } 11031 11032 if (!R.empty()) { 11033 NamedDecl *Named = R.getRepresentativeDecl(); 11034 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>(); 11035 assert(NS && "expected namespace decl"); 11036 11037 // The use of a nested name specifier may trigger deprecation warnings. 11038 DiagnoseUseOfDecl(Named, IdentLoc); 11039 11040 // C++ [namespace.udir]p1: 11041 // A using-directive specifies that the names in the nominated 11042 // namespace can be used in the scope in which the 11043 // using-directive appears after the using-directive. During 11044 // unqualified name lookup (3.4.1), the names appear as if they 11045 // were declared in the nearest enclosing namespace which 11046 // contains both the using-directive and the nominated 11047 // namespace. [Note: in this context, "contains" means "contains 11048 // directly or indirectly". ] 11049 11050 // Find enclosing context containing both using-directive and 11051 // nominated namespace. 11052 DeclContext *CommonAncestor = NS; 11053 while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) 11054 CommonAncestor = CommonAncestor->getParent(); 11055 11056 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, 11057 SS.getWithLocInContext(Context), 11058 IdentLoc, Named, CommonAncestor); 11059 11060 if (IsUsingDirectiveInToplevelContext(CurContext) && 11061 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) { 11062 Diag(IdentLoc, diag::warn_using_directive_in_header); 11063 } 11064 11065 PushUsingDirective(S, UDir); 11066 } else { 11067 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 11068 } 11069 11070 if (UDir) 11071 ProcessDeclAttributeList(S, UDir, AttrList); 11072 11073 return UDir; 11074 } 11075 11076 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { 11077 // If the scope has an associated entity and the using directive is at 11078 // namespace or translation unit scope, add the UsingDirectiveDecl into 11079 // its lookup structure so qualified name lookup can find it. 11080 DeclContext *Ctx = S->getEntity(); 11081 if (Ctx && !Ctx->isFunctionOrMethod()) 11082 Ctx->addDecl(UDir); 11083 else 11084 // Otherwise, it is at block scope. The using-directives will affect lookup 11085 // only to the end of the scope. 11086 S->PushUsingDirective(UDir); 11087 } 11088 11089 Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, 11090 SourceLocation UsingLoc, 11091 SourceLocation TypenameLoc, CXXScopeSpec &SS, 11092 UnqualifiedId &Name, 11093 SourceLocation EllipsisLoc, 11094 const ParsedAttributesView &AttrList) { 11095 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 11096 11097 if (SS.isEmpty()) { 11098 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname); 11099 return nullptr; 11100 } 11101 11102 switch (Name.getKind()) { 11103 case UnqualifiedIdKind::IK_ImplicitSelfParam: 11104 case UnqualifiedIdKind::IK_Identifier: 11105 case UnqualifiedIdKind::IK_OperatorFunctionId: 11106 case UnqualifiedIdKind::IK_LiteralOperatorId: 11107 case UnqualifiedIdKind::IK_ConversionFunctionId: 11108 break; 11109 11110 case UnqualifiedIdKind::IK_ConstructorName: 11111 case UnqualifiedIdKind::IK_ConstructorTemplateId: 11112 // C++11 inheriting constructors. 11113 Diag(Name.getBeginLoc(), 11114 getLangOpts().CPlusPlus11 11115 ? diag::warn_cxx98_compat_using_decl_constructor 11116 : diag::err_using_decl_constructor) 11117 << SS.getRange(); 11118 11119 if (getLangOpts().CPlusPlus11) break; 11120 11121 return nullptr; 11122 11123 case UnqualifiedIdKind::IK_DestructorName: 11124 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange(); 11125 return nullptr; 11126 11127 case UnqualifiedIdKind::IK_TemplateId: 11128 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id) 11129 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); 11130 return nullptr; 11131 11132 case UnqualifiedIdKind::IK_DeductionGuideName: 11133 llvm_unreachable("cannot parse qualified deduction guide name"); 11134 } 11135 11136 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 11137 DeclarationName TargetName = TargetNameInfo.getName(); 11138 if (!TargetName) 11139 return nullptr; 11140 11141 // Warn about access declarations. 11142 if (UsingLoc.isInvalid()) { 11143 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 11144 ? diag::err_access_decl 11145 : diag::warn_access_decl_deprecated) 11146 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); 11147 } 11148 11149 if (EllipsisLoc.isInvalid()) { 11150 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || 11151 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) 11152 return nullptr; 11153 } else { 11154 if (!SS.getScopeRep()->containsUnexpandedParameterPack() && 11155 !TargetNameInfo.containsUnexpandedParameterPack()) { 11156 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 11157 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc()); 11158 EllipsisLoc = SourceLocation(); 11159 } 11160 } 11161 11162 NamedDecl *UD = 11163 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc, 11164 SS, TargetNameInfo, EllipsisLoc, AttrList, 11165 /*IsInstantiation*/false); 11166 if (UD) 11167 PushOnScopeChains(UD, S, /*AddToContext*/ false); 11168 11169 return UD; 11170 } 11171 11172 /// Determine whether a using declaration considers the given 11173 /// declarations as "equivalent", e.g., if they are redeclarations of 11174 /// the same entity or are both typedefs of the same type. 11175 static bool 11176 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { 11177 if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) 11178 return true; 11179 11180 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1)) 11181 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) 11182 return Context.hasSameType(TD1->getUnderlyingType(), 11183 TD2->getUnderlyingType()); 11184 11185 return false; 11186 } 11187 11188 11189 /// Determines whether to create a using shadow decl for a particular 11190 /// decl, given the set of decls existing prior to this using lookup. 11191 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig, 11192 const LookupResult &Previous, 11193 UsingShadowDecl *&PrevShadow) { 11194 // Diagnose finding a decl which is not from a base class of the 11195 // current class. We do this now because there are cases where this 11196 // function will silently decide not to build a shadow decl, which 11197 // will pre-empt further diagnostics. 11198 // 11199 // We don't need to do this in C++11 because we do the check once on 11200 // the qualifier. 11201 // 11202 // FIXME: diagnose the following if we care enough: 11203 // struct A { int foo; }; 11204 // struct B : A { using A::foo; }; 11205 // template <class T> struct C : A {}; 11206 // template <class T> struct D : C<T> { using B::foo; } // <--- 11207 // This is invalid (during instantiation) in C++03 because B::foo 11208 // resolves to the using decl in B, which is not a base class of D<T>. 11209 // We can't diagnose it immediately because C<T> is an unknown 11210 // specialization. The UsingShadowDecl in D<T> then points directly 11211 // to A::foo, which will look well-formed when we instantiate. 11212 // The right solution is to not collapse the shadow-decl chain. 11213 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) { 11214 DeclContext *OrigDC = Orig->getDeclContext(); 11215 11216 // Handle enums and anonymous structs. 11217 if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent(); 11218 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); 11219 while (OrigRec->isAnonymousStructOrUnion()) 11220 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); 11221 11222 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { 11223 if (OrigDC == CurContext) { 11224 Diag(Using->getLocation(), 11225 diag::err_using_decl_nested_name_specifier_is_current_class) 11226 << Using->getQualifierLoc().getSourceRange(); 11227 Diag(Orig->getLocation(), diag::note_using_decl_target); 11228 Using->setInvalidDecl(); 11229 return true; 11230 } 11231 11232 Diag(Using->getQualifierLoc().getBeginLoc(), 11233 diag::err_using_decl_nested_name_specifier_is_not_base_class) 11234 << Using->getQualifier() 11235 << cast<CXXRecordDecl>(CurContext) 11236 << Using->getQualifierLoc().getSourceRange(); 11237 Diag(Orig->getLocation(), diag::note_using_decl_target); 11238 Using->setInvalidDecl(); 11239 return true; 11240 } 11241 } 11242 11243 if (Previous.empty()) return false; 11244 11245 NamedDecl *Target = Orig; 11246 if (isa<UsingShadowDecl>(Target)) 11247 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 11248 11249 // If the target happens to be one of the previous declarations, we 11250 // don't have a conflict. 11251 // 11252 // FIXME: but we might be increasing its access, in which case we 11253 // should redeclare it. 11254 NamedDecl *NonTag = nullptr, *Tag = nullptr; 11255 bool FoundEquivalentDecl = false; 11256 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 11257 I != E; ++I) { 11258 NamedDecl *D = (*I)->getUnderlyingDecl(); 11259 // We can have UsingDecls in our Previous results because we use the same 11260 // LookupResult for checking whether the UsingDecl itself is a valid 11261 // redeclaration. 11262 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D)) 11263 continue; 11264 11265 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 11266 // C++ [class.mem]p19: 11267 // If T is the name of a class, then [every named member other than 11268 // a non-static data member] shall have a name different from T 11269 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) && 11270 !isa<IndirectFieldDecl>(Target) && 11271 !isa<UnresolvedUsingValueDecl>(Target) && 11272 DiagnoseClassNameShadow( 11273 CurContext, 11274 DeclarationNameInfo(Using->getDeclName(), Using->getLocation()))) 11275 return true; 11276 } 11277 11278 if (IsEquivalentForUsingDecl(Context, D, Target)) { 11279 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I)) 11280 PrevShadow = Shadow; 11281 FoundEquivalentDecl = true; 11282 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) { 11283 // We don't conflict with an existing using shadow decl of an equivalent 11284 // declaration, but we're not a redeclaration of it. 11285 FoundEquivalentDecl = true; 11286 } 11287 11288 if (isVisible(D)) 11289 (isa<TagDecl>(D) ? Tag : NonTag) = D; 11290 } 11291 11292 if (FoundEquivalentDecl) 11293 return false; 11294 11295 if (FunctionDecl *FD = Target->getAsFunction()) { 11296 NamedDecl *OldDecl = nullptr; 11297 switch (CheckOverload(nullptr, FD, Previous, OldDecl, 11298 /*IsForUsingDecl*/ true)) { 11299 case Ovl_Overload: 11300 return false; 11301 11302 case Ovl_NonFunction: 11303 Diag(Using->getLocation(), diag::err_using_decl_conflict); 11304 break; 11305 11306 // We found a decl with the exact signature. 11307 case Ovl_Match: 11308 // If we're in a record, we want to hide the target, so we 11309 // return true (without a diagnostic) to tell the caller not to 11310 // build a shadow decl. 11311 if (CurContext->isRecord()) 11312 return true; 11313 11314 // If we're not in a record, this is an error. 11315 Diag(Using->getLocation(), diag::err_using_decl_conflict); 11316 break; 11317 } 11318 11319 Diag(Target->getLocation(), diag::note_using_decl_target); 11320 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); 11321 Using->setInvalidDecl(); 11322 return true; 11323 } 11324 11325 // Target is not a function. 11326 11327 if (isa<TagDecl>(Target)) { 11328 // No conflict between a tag and a non-tag. 11329 if (!Tag) return false; 11330 11331 Diag(Using->getLocation(), diag::err_using_decl_conflict); 11332 Diag(Target->getLocation(), diag::note_using_decl_target); 11333 Diag(Tag->getLocation(), diag::note_using_decl_conflict); 11334 Using->setInvalidDecl(); 11335 return true; 11336 } 11337 11338 // No conflict between a tag and a non-tag. 11339 if (!NonTag) return false; 11340 11341 Diag(Using->getLocation(), diag::err_using_decl_conflict); 11342 Diag(Target->getLocation(), diag::note_using_decl_target); 11343 Diag(NonTag->getLocation(), diag::note_using_decl_conflict); 11344 Using->setInvalidDecl(); 11345 return true; 11346 } 11347 11348 /// Determine whether a direct base class is a virtual base class. 11349 static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) { 11350 if (!Derived->getNumVBases()) 11351 return false; 11352 for (auto &B : Derived->bases()) 11353 if (B.getType()->getAsCXXRecordDecl() == Base) 11354 return B.isVirtual(); 11355 llvm_unreachable("not a direct base class"); 11356 } 11357 11358 /// Builds a shadow declaration corresponding to a 'using' declaration. 11359 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, 11360 UsingDecl *UD, 11361 NamedDecl *Orig, 11362 UsingShadowDecl *PrevDecl) { 11363 // If we resolved to another shadow declaration, just coalesce them. 11364 NamedDecl *Target = Orig; 11365 if (isa<UsingShadowDecl>(Target)) { 11366 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 11367 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); 11368 } 11369 11370 NamedDecl *NonTemplateTarget = Target; 11371 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target)) 11372 NonTemplateTarget = TargetTD->getTemplatedDecl(); 11373 11374 UsingShadowDecl *Shadow; 11375 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) { 11376 bool IsVirtualBase = 11377 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext), 11378 UD->getQualifier()->getAsRecordDecl()); 11379 Shadow = ConstructorUsingShadowDecl::Create( 11380 Context, CurContext, UD->getLocation(), UD, Orig, IsVirtualBase); 11381 } else { 11382 Shadow = UsingShadowDecl::Create(Context, CurContext, UD->getLocation(), UD, 11383 Target); 11384 } 11385 UD->addShadowDecl(Shadow); 11386 11387 Shadow->setAccess(UD->getAccess()); 11388 if (Orig->isInvalidDecl() || UD->isInvalidDecl()) 11389 Shadow->setInvalidDecl(); 11390 11391 Shadow->setPreviousDecl(PrevDecl); 11392 11393 if (S) 11394 PushOnScopeChains(Shadow, S); 11395 else 11396 CurContext->addDecl(Shadow); 11397 11398 11399 return Shadow; 11400 } 11401 11402 /// Hides a using shadow declaration. This is required by the current 11403 /// using-decl implementation when a resolvable using declaration in a 11404 /// class is followed by a declaration which would hide or override 11405 /// one or more of the using decl's targets; for example: 11406 /// 11407 /// struct Base { void foo(int); }; 11408 /// struct Derived : Base { 11409 /// using Base::foo; 11410 /// void foo(int); 11411 /// }; 11412 /// 11413 /// The governing language is C++03 [namespace.udecl]p12: 11414 /// 11415 /// When a using-declaration brings names from a base class into a 11416 /// derived class scope, member functions in the derived class 11417 /// override and/or hide member functions with the same name and 11418 /// parameter types in a base class (rather than conflicting). 11419 /// 11420 /// There are two ways to implement this: 11421 /// (1) optimistically create shadow decls when they're not hidden 11422 /// by existing declarations, or 11423 /// (2) don't create any shadow decls (or at least don't make them 11424 /// visible) until we've fully parsed/instantiated the class. 11425 /// The problem with (1) is that we might have to retroactively remove 11426 /// a shadow decl, which requires several O(n) operations because the 11427 /// decl structures are (very reasonably) not designed for removal. 11428 /// (2) avoids this but is very fiddly and phase-dependent. 11429 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { 11430 if (Shadow->getDeclName().getNameKind() == 11431 DeclarationName::CXXConversionFunctionName) 11432 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); 11433 11434 // Remove it from the DeclContext... 11435 Shadow->getDeclContext()->removeDecl(Shadow); 11436 11437 // ...and the scope, if applicable... 11438 if (S) { 11439 S->RemoveDecl(Shadow); 11440 IdResolver.RemoveDecl(Shadow); 11441 } 11442 11443 // ...and the using decl. 11444 Shadow->getUsingDecl()->removeShadowDecl(Shadow); 11445 11446 // TODO: complain somehow if Shadow was used. It shouldn't 11447 // be possible for this to happen, because...? 11448 } 11449 11450 /// Find the base specifier for a base class with the given type. 11451 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, 11452 QualType DesiredBase, 11453 bool &AnyDependentBases) { 11454 // Check whether the named type is a direct base class. 11455 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified() 11456 .getUnqualifiedType(); 11457 for (auto &Base : Derived->bases()) { 11458 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); 11459 if (CanonicalDesiredBase == BaseType) 11460 return &Base; 11461 if (BaseType->isDependentType()) 11462 AnyDependentBases = true; 11463 } 11464 return nullptr; 11465 } 11466 11467 namespace { 11468 class UsingValidatorCCC final : public CorrectionCandidateCallback { 11469 public: 11470 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, 11471 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) 11472 : HasTypenameKeyword(HasTypenameKeyword), 11473 IsInstantiation(IsInstantiation), OldNNS(NNS), 11474 RequireMemberOf(RequireMemberOf) {} 11475 11476 bool ValidateCandidate(const TypoCorrection &Candidate) override { 11477 NamedDecl *ND = Candidate.getCorrectionDecl(); 11478 11479 // Keywords are not valid here. 11480 if (!ND || isa<NamespaceDecl>(ND)) 11481 return false; 11482 11483 // Completely unqualified names are invalid for a 'using' declaration. 11484 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) 11485 return false; 11486 11487 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would 11488 // reject. 11489 11490 if (RequireMemberOf) { 11491 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 11492 if (FoundRecord && FoundRecord->isInjectedClassName()) { 11493 // No-one ever wants a using-declaration to name an injected-class-name 11494 // of a base class, unless they're declaring an inheriting constructor. 11495 ASTContext &Ctx = ND->getASTContext(); 11496 if (!Ctx.getLangOpts().CPlusPlus11) 11497 return false; 11498 QualType FoundType = Ctx.getRecordType(FoundRecord); 11499 11500 // Check that the injected-class-name is named as a member of its own 11501 // type; we don't want to suggest 'using Derived::Base;', since that 11502 // means something else. 11503 NestedNameSpecifier *Specifier = 11504 Candidate.WillReplaceSpecifier() 11505 ? Candidate.getCorrectionSpecifier() 11506 : OldNNS; 11507 if (!Specifier->getAsType() || 11508 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType)) 11509 return false; 11510 11511 // Check that this inheriting constructor declaration actually names a 11512 // direct base class of the current class. 11513 bool AnyDependentBases = false; 11514 if (!findDirectBaseWithType(RequireMemberOf, 11515 Ctx.getRecordType(FoundRecord), 11516 AnyDependentBases) && 11517 !AnyDependentBases) 11518 return false; 11519 } else { 11520 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()); 11521 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD)) 11522 return false; 11523 11524 // FIXME: Check that the base class member is accessible? 11525 } 11526 } else { 11527 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 11528 if (FoundRecord && FoundRecord->isInjectedClassName()) 11529 return false; 11530 } 11531 11532 if (isa<TypeDecl>(ND)) 11533 return HasTypenameKeyword || !IsInstantiation; 11534 11535 return !HasTypenameKeyword; 11536 } 11537 11538 std::unique_ptr<CorrectionCandidateCallback> clone() override { 11539 return std::make_unique<UsingValidatorCCC>(*this); 11540 } 11541 11542 private: 11543 bool HasTypenameKeyword; 11544 bool IsInstantiation; 11545 NestedNameSpecifier *OldNNS; 11546 CXXRecordDecl *RequireMemberOf; 11547 }; 11548 } // end anonymous namespace 11549 11550 /// Builds a using declaration. 11551 /// 11552 /// \param IsInstantiation - Whether this call arises from an 11553 /// instantiation of an unresolved using declaration. We treat 11554 /// the lookup differently for these declarations. 11555 NamedDecl *Sema::BuildUsingDeclaration( 11556 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, 11557 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, 11558 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, 11559 const ParsedAttributesView &AttrList, bool IsInstantiation) { 11560 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 11561 SourceLocation IdentLoc = NameInfo.getLoc(); 11562 assert(IdentLoc.isValid() && "Invalid TargetName location."); 11563 11564 // FIXME: We ignore attributes for now. 11565 11566 // For an inheriting constructor declaration, the name of the using 11567 // declaration is the name of a constructor in this class, not in the 11568 // base class. 11569 DeclarationNameInfo UsingName = NameInfo; 11570 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) 11571 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext)) 11572 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 11573 Context.getCanonicalType(Context.getRecordType(RD)))); 11574 11575 // Do the redeclaration lookup in the current scope. 11576 LookupResult Previous(*this, UsingName, LookupUsingDeclName, 11577 ForVisibleRedeclaration); 11578 Previous.setHideTags(false); 11579 if (S) { 11580 LookupName(Previous, S); 11581 11582 // It is really dumb that we have to do this. 11583 LookupResult::Filter F = Previous.makeFilter(); 11584 while (F.hasNext()) { 11585 NamedDecl *D = F.next(); 11586 if (!isDeclInScope(D, CurContext, S)) 11587 F.erase(); 11588 // If we found a local extern declaration that's not ordinarily visible, 11589 // and this declaration is being added to a non-block scope, ignore it. 11590 // We're only checking for scope conflicts here, not also for violations 11591 // of the linkage rules. 11592 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && 11593 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) 11594 F.erase(); 11595 } 11596 F.done(); 11597 } else { 11598 assert(IsInstantiation && "no scope in non-instantiation"); 11599 if (CurContext->isRecord()) 11600 LookupQualifiedName(Previous, CurContext); 11601 else { 11602 // No redeclaration check is needed here; in non-member contexts we 11603 // diagnosed all possible conflicts with other using-declarations when 11604 // building the template: 11605 // 11606 // For a dependent non-type using declaration, the only valid case is 11607 // if we instantiate to a single enumerator. We check for conflicts 11608 // between shadow declarations we introduce, and we check in the template 11609 // definition for conflicts between a non-type using declaration and any 11610 // other declaration, which together covers all cases. 11611 // 11612 // A dependent typename using declaration will never successfully 11613 // instantiate, since it will always name a class member, so we reject 11614 // that in the template definition. 11615 } 11616 } 11617 11618 // Check for invalid redeclarations. 11619 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, 11620 SS, IdentLoc, Previous)) 11621 return nullptr; 11622 11623 // Check for bad qualifiers. 11624 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo, 11625 IdentLoc)) 11626 return nullptr; 11627 11628 DeclContext *LookupContext = computeDeclContext(SS); 11629 NamedDecl *D; 11630 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 11631 if (!LookupContext || EllipsisLoc.isValid()) { 11632 if (HasTypenameKeyword) { 11633 // FIXME: not all declaration name kinds are legal here 11634 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, 11635 UsingLoc, TypenameLoc, 11636 QualifierLoc, 11637 IdentLoc, NameInfo.getName(), 11638 EllipsisLoc); 11639 } else { 11640 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, 11641 QualifierLoc, NameInfo, EllipsisLoc); 11642 } 11643 D->setAccess(AS); 11644 CurContext->addDecl(D); 11645 return D; 11646 } 11647 11648 auto Build = [&](bool Invalid) { 11649 UsingDecl *UD = 11650 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, 11651 UsingName, HasTypenameKeyword); 11652 UD->setAccess(AS); 11653 CurContext->addDecl(UD); 11654 UD->setInvalidDecl(Invalid); 11655 return UD; 11656 }; 11657 auto BuildInvalid = [&]{ return Build(true); }; 11658 auto BuildValid = [&]{ return Build(false); }; 11659 11660 if (RequireCompleteDeclContext(SS, LookupContext)) 11661 return BuildInvalid(); 11662 11663 // Look up the target name. 11664 LookupResult R(*this, NameInfo, LookupOrdinaryName); 11665 11666 // Unlike most lookups, we don't always want to hide tag 11667 // declarations: tag names are visible through the using declaration 11668 // even if hidden by ordinary names, *except* in a dependent context 11669 // where it's important for the sanity of two-phase lookup. 11670 if (!IsInstantiation) 11671 R.setHideTags(false); 11672 11673 // For the purposes of this lookup, we have a base object type 11674 // equal to that of the current context. 11675 if (CurContext->isRecord()) { 11676 R.setBaseObjectType( 11677 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))); 11678 } 11679 11680 LookupQualifiedName(R, LookupContext); 11681 11682 // Try to correct typos if possible. If constructor name lookup finds no 11683 // results, that means the named class has no explicit constructors, and we 11684 // suppressed declaring implicit ones (probably because it's dependent or 11685 // invalid). 11686 if (R.empty() && 11687 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) { 11688 // HACK: Work around a bug in libstdc++'s detection of ::gets. Sometimes 11689 // it will believe that glibc provides a ::gets in cases where it does not, 11690 // and will try to pull it into namespace std with a using-declaration. 11691 // Just ignore the using-declaration in that case. 11692 auto *II = NameInfo.getName().getAsIdentifierInfo(); 11693 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") && 11694 CurContext->isStdNamespace() && 11695 isa<TranslationUnitDecl>(LookupContext) && 11696 getSourceManager().isInSystemHeader(UsingLoc)) 11697 return nullptr; 11698 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), 11699 dyn_cast<CXXRecordDecl>(CurContext)); 11700 if (TypoCorrection Corrected = 11701 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, 11702 CTK_ErrorRecovery)) { 11703 // We reject candidates where DroppedSpecifier == true, hence the 11704 // literal '0' below. 11705 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) 11706 << NameInfo.getName() << LookupContext << 0 11707 << SS.getRange()); 11708 11709 // If we picked a correction with no attached Decl we can't do anything 11710 // useful with it, bail out. 11711 NamedDecl *ND = Corrected.getCorrectionDecl(); 11712 if (!ND) 11713 return BuildInvalid(); 11714 11715 // If we corrected to an inheriting constructor, handle it as one. 11716 auto *RD = dyn_cast<CXXRecordDecl>(ND); 11717 if (RD && RD->isInjectedClassName()) { 11718 // The parent of the injected class name is the class itself. 11719 RD = cast<CXXRecordDecl>(RD->getParent()); 11720 11721 // Fix up the information we'll use to build the using declaration. 11722 if (Corrected.WillReplaceSpecifier()) { 11723 NestedNameSpecifierLocBuilder Builder; 11724 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 11725 QualifierLoc.getSourceRange()); 11726 QualifierLoc = Builder.getWithLocInContext(Context); 11727 } 11728 11729 // In this case, the name we introduce is the name of a derived class 11730 // constructor. 11731 auto *CurClass = cast<CXXRecordDecl>(CurContext); 11732 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 11733 Context.getCanonicalType(Context.getRecordType(CurClass)))); 11734 UsingName.setNamedTypeInfo(nullptr); 11735 for (auto *Ctor : LookupConstructors(RD)) 11736 R.addDecl(Ctor); 11737 R.resolveKind(); 11738 } else { 11739 // FIXME: Pick up all the declarations if we found an overloaded 11740 // function. 11741 UsingName.setName(ND->getDeclName()); 11742 R.addDecl(ND); 11743 } 11744 } else { 11745 Diag(IdentLoc, diag::err_no_member) 11746 << NameInfo.getName() << LookupContext << SS.getRange(); 11747 return BuildInvalid(); 11748 } 11749 } 11750 11751 if (R.isAmbiguous()) 11752 return BuildInvalid(); 11753 11754 if (HasTypenameKeyword) { 11755 // If we asked for a typename and got a non-type decl, error out. 11756 if (!R.getAsSingle<TypeDecl>()) { 11757 Diag(IdentLoc, diag::err_using_typename_non_type); 11758 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 11759 Diag((*I)->getUnderlyingDecl()->getLocation(), 11760 diag::note_using_decl_target); 11761 return BuildInvalid(); 11762 } 11763 } else { 11764 // If we asked for a non-typename and we got a type, error out, 11765 // but only if this is an instantiation of an unresolved using 11766 // decl. Otherwise just silently find the type name. 11767 if (IsInstantiation && R.getAsSingle<TypeDecl>()) { 11768 Diag(IdentLoc, diag::err_using_dependent_value_is_type); 11769 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); 11770 return BuildInvalid(); 11771 } 11772 } 11773 11774 // C++14 [namespace.udecl]p6: 11775 // A using-declaration shall not name a namespace. 11776 if (R.getAsSingle<NamespaceDecl>()) { 11777 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) 11778 << SS.getRange(); 11779 return BuildInvalid(); 11780 } 11781 11782 // C++14 [namespace.udecl]p7: 11783 // A using-declaration shall not name a scoped enumerator. 11784 if (auto *ED = R.getAsSingle<EnumConstantDecl>()) { 11785 if (cast<EnumDecl>(ED->getDeclContext())->isScoped()) { 11786 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_scoped_enum) 11787 << SS.getRange(); 11788 return BuildInvalid(); 11789 } 11790 } 11791 11792 UsingDecl *UD = BuildValid(); 11793 11794 // Some additional rules apply to inheriting constructors. 11795 if (UsingName.getName().getNameKind() == 11796 DeclarationName::CXXConstructorName) { 11797 // Suppress access diagnostics; the access check is instead performed at the 11798 // point of use for an inheriting constructor. 11799 R.suppressDiagnostics(); 11800 if (CheckInheritingConstructorUsingDecl(UD)) 11801 return UD; 11802 } 11803 11804 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 11805 UsingShadowDecl *PrevDecl = nullptr; 11806 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) 11807 BuildUsingShadowDecl(S, UD, *I, PrevDecl); 11808 } 11809 11810 return UD; 11811 } 11812 11813 NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom, 11814 ArrayRef<NamedDecl *> Expansions) { 11815 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || 11816 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || 11817 isa<UsingPackDecl>(InstantiatedFrom)); 11818 11819 auto *UPD = 11820 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions); 11821 UPD->setAccess(InstantiatedFrom->getAccess()); 11822 CurContext->addDecl(UPD); 11823 return UPD; 11824 } 11825 11826 /// Additional checks for a using declaration referring to a constructor name. 11827 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { 11828 assert(!UD->hasTypename() && "expecting a constructor name"); 11829 11830 const Type *SourceType = UD->getQualifier()->getAsType(); 11831 assert(SourceType && 11832 "Using decl naming constructor doesn't have type in scope spec."); 11833 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); 11834 11835 // Check whether the named type is a direct base class. 11836 bool AnyDependentBases = false; 11837 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0), 11838 AnyDependentBases); 11839 if (!Base && !AnyDependentBases) { 11840 Diag(UD->getUsingLoc(), 11841 diag::err_using_decl_constructor_not_in_direct_base) 11842 << UD->getNameInfo().getSourceRange() 11843 << QualType(SourceType, 0) << TargetClass; 11844 UD->setInvalidDecl(); 11845 return true; 11846 } 11847 11848 if (Base) 11849 Base->setInheritConstructors(); 11850 11851 return false; 11852 } 11853 11854 /// Checks that the given using declaration is not an invalid 11855 /// redeclaration. Note that this is checking only for the using decl 11856 /// itself, not for any ill-formedness among the UsingShadowDecls. 11857 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, 11858 bool HasTypenameKeyword, 11859 const CXXScopeSpec &SS, 11860 SourceLocation NameLoc, 11861 const LookupResult &Prev) { 11862 NestedNameSpecifier *Qual = SS.getScopeRep(); 11863 11864 // C++03 [namespace.udecl]p8: 11865 // C++0x [namespace.udecl]p10: 11866 // A using-declaration is a declaration and can therefore be used 11867 // repeatedly where (and only where) multiple declarations are 11868 // allowed. 11869 // 11870 // That's in non-member contexts. 11871 if (!CurContext->getRedeclContext()->isRecord()) { 11872 // A dependent qualifier outside a class can only ever resolve to an 11873 // enumeration type. Therefore it conflicts with any other non-type 11874 // declaration in the same scope. 11875 // FIXME: How should we check for dependent type-type conflicts at block 11876 // scope? 11877 if (Qual->isDependent() && !HasTypenameKeyword) { 11878 for (auto *D : Prev) { 11879 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) { 11880 bool OldCouldBeEnumerator = 11881 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D); 11882 Diag(NameLoc, 11883 OldCouldBeEnumerator ? diag::err_redefinition 11884 : diag::err_redefinition_different_kind) 11885 << Prev.getLookupName(); 11886 Diag(D->getLocation(), diag::note_previous_definition); 11887 return true; 11888 } 11889 } 11890 } 11891 return false; 11892 } 11893 11894 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { 11895 NamedDecl *D = *I; 11896 11897 bool DTypename; 11898 NestedNameSpecifier *DQual; 11899 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { 11900 DTypename = UD->hasTypename(); 11901 DQual = UD->getQualifier(); 11902 } else if (UnresolvedUsingValueDecl *UD 11903 = dyn_cast<UnresolvedUsingValueDecl>(D)) { 11904 DTypename = false; 11905 DQual = UD->getQualifier(); 11906 } else if (UnresolvedUsingTypenameDecl *UD 11907 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { 11908 DTypename = true; 11909 DQual = UD->getQualifier(); 11910 } else continue; 11911 11912 // using decls differ if one says 'typename' and the other doesn't. 11913 // FIXME: non-dependent using decls? 11914 if (HasTypenameKeyword != DTypename) continue; 11915 11916 // using decls differ if they name different scopes (but note that 11917 // template instantiation can cause this check to trigger when it 11918 // didn't before instantiation). 11919 if (Context.getCanonicalNestedNameSpecifier(Qual) != 11920 Context.getCanonicalNestedNameSpecifier(DQual)) 11921 continue; 11922 11923 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); 11924 Diag(D->getLocation(), diag::note_using_decl) << 1; 11925 return true; 11926 } 11927 11928 return false; 11929 } 11930 11931 11932 /// Checks that the given nested-name qualifier used in a using decl 11933 /// in the current context is appropriately related to the current 11934 /// scope. If an error is found, diagnoses it and returns true. 11935 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, 11936 bool HasTypename, 11937 const CXXScopeSpec &SS, 11938 const DeclarationNameInfo &NameInfo, 11939 SourceLocation NameLoc) { 11940 DeclContext *NamedContext = computeDeclContext(SS); 11941 11942 if (!CurContext->isRecord()) { 11943 // C++03 [namespace.udecl]p3: 11944 // C++0x [namespace.udecl]p8: 11945 // A using-declaration for a class member shall be a member-declaration. 11946 11947 // If we weren't able to compute a valid scope, it might validly be a 11948 // dependent class scope or a dependent enumeration unscoped scope. If 11949 // we have a 'typename' keyword, the scope must resolve to a class type. 11950 if ((HasTypename && !NamedContext) || 11951 (NamedContext && NamedContext->getRedeclContext()->isRecord())) { 11952 auto *RD = NamedContext 11953 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext()) 11954 : nullptr; 11955 if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD)) 11956 RD = nullptr; 11957 11958 Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member) 11959 << SS.getRange(); 11960 11961 // If we have a complete, non-dependent source type, try to suggest a 11962 // way to get the same effect. 11963 if (!RD) 11964 return true; 11965 11966 // Find what this using-declaration was referring to. 11967 LookupResult R(*this, NameInfo, LookupOrdinaryName); 11968 R.setHideTags(false); 11969 R.suppressDiagnostics(); 11970 LookupQualifiedName(R, RD); 11971 11972 if (R.getAsSingle<TypeDecl>()) { 11973 if (getLangOpts().CPlusPlus11) { 11974 // Convert 'using X::Y;' to 'using Y = X::Y;'. 11975 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) 11976 << 0 // alias declaration 11977 << FixItHint::CreateInsertion(SS.getBeginLoc(), 11978 NameInfo.getName().getAsString() + 11979 " = "); 11980 } else { 11981 // Convert 'using X::Y;' to 'typedef X::Y Y;'. 11982 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc()); 11983 Diag(InsertLoc, diag::note_using_decl_class_member_workaround) 11984 << 1 // typedef declaration 11985 << FixItHint::CreateReplacement(UsingLoc, "typedef") 11986 << FixItHint::CreateInsertion( 11987 InsertLoc, " " + NameInfo.getName().getAsString()); 11988 } 11989 } else if (R.getAsSingle<VarDecl>()) { 11990 // Don't provide a fixit outside C++11 mode; we don't want to suggest 11991 // repeating the type of the static data member here. 11992 FixItHint FixIt; 11993 if (getLangOpts().CPlusPlus11) { 11994 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 11995 FixIt = FixItHint::CreateReplacement( 11996 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = "); 11997 } 11998 11999 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 12000 << 2 // reference declaration 12001 << FixIt; 12002 } else if (R.getAsSingle<EnumConstantDecl>()) { 12003 // Don't provide a fixit outside C++11 mode; we don't want to suggest 12004 // repeating the type of the enumeration here, and we can't do so if 12005 // the type is anonymous. 12006 FixItHint FixIt; 12007 if (getLangOpts().CPlusPlus11) { 12008 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 12009 FixIt = FixItHint::CreateReplacement( 12010 UsingLoc, 12011 "constexpr auto " + NameInfo.getName().getAsString() + " = "); 12012 } 12013 12014 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 12015 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable 12016 << FixIt; 12017 } 12018 return true; 12019 } 12020 12021 // Otherwise, this might be valid. 12022 return false; 12023 } 12024 12025 // The current scope is a record. 12026 12027 // If the named context is dependent, we can't decide much. 12028 if (!NamedContext) { 12029 // FIXME: in C++0x, we can diagnose if we can prove that the 12030 // nested-name-specifier does not refer to a base class, which is 12031 // still possible in some cases. 12032 12033 // Otherwise we have to conservatively report that things might be 12034 // okay. 12035 return false; 12036 } 12037 12038 if (!NamedContext->isRecord()) { 12039 // Ideally this would point at the last name in the specifier, 12040 // but we don't have that level of source info. 12041 Diag(SS.getRange().getBegin(), 12042 diag::err_using_decl_nested_name_specifier_is_not_class) 12043 << SS.getScopeRep() << SS.getRange(); 12044 return true; 12045 } 12046 12047 if (!NamedContext->isDependentContext() && 12048 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) 12049 return true; 12050 12051 if (getLangOpts().CPlusPlus11) { 12052 // C++11 [namespace.udecl]p3: 12053 // In a using-declaration used as a member-declaration, the 12054 // nested-name-specifier shall name a base class of the class 12055 // being defined. 12056 12057 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( 12058 cast<CXXRecordDecl>(NamedContext))) { 12059 if (CurContext == NamedContext) { 12060 Diag(NameLoc, 12061 diag::err_using_decl_nested_name_specifier_is_current_class) 12062 << SS.getRange(); 12063 return true; 12064 } 12065 12066 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) { 12067 Diag(SS.getRange().getBegin(), 12068 diag::err_using_decl_nested_name_specifier_is_not_base_class) 12069 << SS.getScopeRep() 12070 << cast<CXXRecordDecl>(CurContext) 12071 << SS.getRange(); 12072 } 12073 return true; 12074 } 12075 12076 return false; 12077 } 12078 12079 // C++03 [namespace.udecl]p4: 12080 // A using-declaration used as a member-declaration shall refer 12081 // to a member of a base class of the class being defined [etc.]. 12082 12083 // Salient point: SS doesn't have to name a base class as long as 12084 // lookup only finds members from base classes. Therefore we can 12085 // diagnose here only if we can prove that that can't happen, 12086 // i.e. if the class hierarchies provably don't intersect. 12087 12088 // TODO: it would be nice if "definitely valid" results were cached 12089 // in the UsingDecl and UsingShadowDecl so that these checks didn't 12090 // need to be repeated. 12091 12092 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases; 12093 auto Collect = [&Bases](const CXXRecordDecl *Base) { 12094 Bases.insert(Base); 12095 return true; 12096 }; 12097 12098 // Collect all bases. Return false if we find a dependent base. 12099 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect)) 12100 return false; 12101 12102 // Returns true if the base is dependent or is one of the accumulated base 12103 // classes. 12104 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) { 12105 return !Bases.count(Base); 12106 }; 12107 12108 // Return false if the class has a dependent base or if it or one 12109 // of its bases is present in the base set of the current context. 12110 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) || 12111 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase)) 12112 return false; 12113 12114 Diag(SS.getRange().getBegin(), 12115 diag::err_using_decl_nested_name_specifier_is_not_base_class) 12116 << SS.getScopeRep() 12117 << cast<CXXRecordDecl>(CurContext) 12118 << SS.getRange(); 12119 12120 return true; 12121 } 12122 12123 Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS, 12124 MultiTemplateParamsArg TemplateParamLists, 12125 SourceLocation UsingLoc, UnqualifiedId &Name, 12126 const ParsedAttributesView &AttrList, 12127 TypeResult Type, Decl *DeclFromDeclSpec) { 12128 // Skip up to the relevant declaration scope. 12129 while (S->isTemplateParamScope()) 12130 S = S->getParent(); 12131 assert((S->getFlags() & Scope::DeclScope) && 12132 "got alias-declaration outside of declaration scope"); 12133 12134 if (Type.isInvalid()) 12135 return nullptr; 12136 12137 bool Invalid = false; 12138 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); 12139 TypeSourceInfo *TInfo = nullptr; 12140 GetTypeFromParser(Type.get(), &TInfo); 12141 12142 if (DiagnoseClassNameShadow(CurContext, NameInfo)) 12143 return nullptr; 12144 12145 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, 12146 UPPC_DeclarationType)) { 12147 Invalid = true; 12148 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 12149 TInfo->getTypeLoc().getBeginLoc()); 12150 } 12151 12152 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 12153 TemplateParamLists.size() 12154 ? forRedeclarationInCurContext() 12155 : ForVisibleRedeclaration); 12156 LookupName(Previous, S); 12157 12158 // Warn about shadowing the name of a template parameter. 12159 if (Previous.isSingleResult() && 12160 Previous.getFoundDecl()->isTemplateParameter()) { 12161 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); 12162 Previous.clear(); 12163 } 12164 12165 assert(Name.Kind == UnqualifiedIdKind::IK_Identifier && 12166 "name in alias declaration must be an identifier"); 12167 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, 12168 Name.StartLocation, 12169 Name.Identifier, TInfo); 12170 12171 NewTD->setAccess(AS); 12172 12173 if (Invalid) 12174 NewTD->setInvalidDecl(); 12175 12176 ProcessDeclAttributeList(S, NewTD, AttrList); 12177 AddPragmaAttributes(S, NewTD); 12178 12179 CheckTypedefForVariablyModifiedType(S, NewTD); 12180 Invalid |= NewTD->isInvalidDecl(); 12181 12182 bool Redeclaration = false; 12183 12184 NamedDecl *NewND; 12185 if (TemplateParamLists.size()) { 12186 TypeAliasTemplateDecl *OldDecl = nullptr; 12187 TemplateParameterList *OldTemplateParams = nullptr; 12188 12189 if (TemplateParamLists.size() != 1) { 12190 Diag(UsingLoc, diag::err_alias_template_extra_headers) 12191 << SourceRange(TemplateParamLists[1]->getTemplateLoc(), 12192 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); 12193 } 12194 TemplateParameterList *TemplateParams = TemplateParamLists[0]; 12195 12196 // Check that we can declare a template here. 12197 if (CheckTemplateDeclScope(S, TemplateParams)) 12198 return nullptr; 12199 12200 // Only consider previous declarations in the same scope. 12201 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, 12202 /*ExplicitInstantiationOrSpecialization*/false); 12203 if (!Previous.empty()) { 12204 Redeclaration = true; 12205 12206 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); 12207 if (!OldDecl && !Invalid) { 12208 Diag(UsingLoc, diag::err_redefinition_different_kind) 12209 << Name.Identifier; 12210 12211 NamedDecl *OldD = Previous.getRepresentativeDecl(); 12212 if (OldD->getLocation().isValid()) 12213 Diag(OldD->getLocation(), diag::note_previous_definition); 12214 12215 Invalid = true; 12216 } 12217 12218 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { 12219 if (TemplateParameterListsAreEqual(TemplateParams, 12220 OldDecl->getTemplateParameters(), 12221 /*Complain=*/true, 12222 TPL_TemplateMatch)) 12223 OldTemplateParams = 12224 OldDecl->getMostRecentDecl()->getTemplateParameters(); 12225 else 12226 Invalid = true; 12227 12228 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); 12229 if (!Invalid && 12230 !Context.hasSameType(OldTD->getUnderlyingType(), 12231 NewTD->getUnderlyingType())) { 12232 // FIXME: The C++0x standard does not clearly say this is ill-formed, 12233 // but we can't reasonably accept it. 12234 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) 12235 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); 12236 if (OldTD->getLocation().isValid()) 12237 Diag(OldTD->getLocation(), diag::note_previous_definition); 12238 Invalid = true; 12239 } 12240 } 12241 } 12242 12243 // Merge any previous default template arguments into our parameters, 12244 // and check the parameter list. 12245 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, 12246 TPC_TypeAliasTemplate)) 12247 return nullptr; 12248 12249 TypeAliasTemplateDecl *NewDecl = 12250 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, 12251 Name.Identifier, TemplateParams, 12252 NewTD); 12253 NewTD->setDescribedAliasTemplate(NewDecl); 12254 12255 NewDecl->setAccess(AS); 12256 12257 if (Invalid) 12258 NewDecl->setInvalidDecl(); 12259 else if (OldDecl) { 12260 NewDecl->setPreviousDecl(OldDecl); 12261 CheckRedeclarationModuleOwnership(NewDecl, OldDecl); 12262 } 12263 12264 NewND = NewDecl; 12265 } else { 12266 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) { 12267 setTagNameForLinkagePurposes(TD, NewTD); 12268 handleTagNumbering(TD, S); 12269 } 12270 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); 12271 NewND = NewTD; 12272 } 12273 12274 PushOnScopeChains(NewND, S); 12275 ActOnDocumentableDecl(NewND); 12276 return NewND; 12277 } 12278 12279 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, 12280 SourceLocation AliasLoc, 12281 IdentifierInfo *Alias, CXXScopeSpec &SS, 12282 SourceLocation IdentLoc, 12283 IdentifierInfo *Ident) { 12284 12285 // Lookup the namespace name. 12286 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); 12287 LookupParsedName(R, S, &SS); 12288 12289 if (R.isAmbiguous()) 12290 return nullptr; 12291 12292 if (R.empty()) { 12293 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { 12294 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 12295 return nullptr; 12296 } 12297 } 12298 assert(!R.isAmbiguous() && !R.empty()); 12299 NamedDecl *ND = R.getRepresentativeDecl(); 12300 12301 // Check if we have a previous declaration with the same name. 12302 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName, 12303 ForVisibleRedeclaration); 12304 LookupName(PrevR, S); 12305 12306 // Check we're not shadowing a template parameter. 12307 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) { 12308 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl()); 12309 PrevR.clear(); 12310 } 12311 12312 // Filter out any other lookup result from an enclosing scope. 12313 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false, 12314 /*AllowInlineNamespace*/false); 12315 12316 // Find the previous declaration and check that we can redeclare it. 12317 NamespaceAliasDecl *Prev = nullptr; 12318 if (PrevR.isSingleResult()) { 12319 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl(); 12320 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { 12321 // We already have an alias with the same name that points to the same 12322 // namespace; check that it matches. 12323 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) { 12324 Prev = AD; 12325 } else if (isVisible(PrevDecl)) { 12326 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) 12327 << Alias; 12328 Diag(AD->getLocation(), diag::note_previous_namespace_alias) 12329 << AD->getNamespace(); 12330 return nullptr; 12331 } 12332 } else if (isVisible(PrevDecl)) { 12333 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl()) 12334 ? diag::err_redefinition 12335 : diag::err_redefinition_different_kind; 12336 Diag(AliasLoc, DiagID) << Alias; 12337 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 12338 return nullptr; 12339 } 12340 } 12341 12342 // The use of a nested name specifier may trigger deprecation warnings. 12343 DiagnoseUseOfDecl(ND, IdentLoc); 12344 12345 NamespaceAliasDecl *AliasDecl = 12346 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, 12347 Alias, SS.getWithLocInContext(Context), 12348 IdentLoc, ND); 12349 if (Prev) 12350 AliasDecl->setPreviousDecl(Prev); 12351 12352 PushOnScopeChains(AliasDecl, S); 12353 return AliasDecl; 12354 } 12355 12356 namespace { 12357 struct SpecialMemberExceptionSpecInfo 12358 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> { 12359 SourceLocation Loc; 12360 Sema::ImplicitExceptionSpecification ExceptSpec; 12361 12362 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD, 12363 Sema::CXXSpecialMember CSM, 12364 Sema::InheritedConstructorInfo *ICI, 12365 SourceLocation Loc) 12366 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {} 12367 12368 bool visitBase(CXXBaseSpecifier *Base); 12369 bool visitField(FieldDecl *FD); 12370 12371 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 12372 unsigned Quals); 12373 12374 void visitSubobjectCall(Subobject Subobj, 12375 Sema::SpecialMemberOverloadResult SMOR); 12376 }; 12377 } 12378 12379 bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) { 12380 auto *RT = Base->getType()->getAs<RecordType>(); 12381 if (!RT) 12382 return false; 12383 12384 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl()); 12385 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 12386 if (auto *BaseCtor = SMOR.getMethod()) { 12387 visitSubobjectCall(Base, BaseCtor); 12388 return false; 12389 } 12390 12391 visitClassSubobject(BaseClass, Base, 0); 12392 return false; 12393 } 12394 12395 bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) { 12396 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) { 12397 Expr *E = FD->getInClassInitializer(); 12398 if (!E) 12399 // FIXME: It's a little wasteful to build and throw away a 12400 // CXXDefaultInitExpr here. 12401 // FIXME: We should have a single context note pointing at Loc, and 12402 // this location should be MD->getLocation() instead, since that's 12403 // the location where we actually use the default init expression. 12404 E = S.BuildCXXDefaultInitExpr(Loc, FD).get(); 12405 if (E) 12406 ExceptSpec.CalledExpr(E); 12407 } else if (auto *RT = S.Context.getBaseElementType(FD->getType()) 12408 ->getAs<RecordType>()) { 12409 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD, 12410 FD->getType().getCVRQualifiers()); 12411 } 12412 return false; 12413 } 12414 12415 void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class, 12416 Subobject Subobj, 12417 unsigned Quals) { 12418 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 12419 bool IsMutable = Field && Field->isMutable(); 12420 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable)); 12421 } 12422 12423 void SpecialMemberExceptionSpecInfo::visitSubobjectCall( 12424 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) { 12425 // Note, if lookup fails, it doesn't matter what exception specification we 12426 // choose because the special member will be deleted. 12427 if (CXXMethodDecl *MD = SMOR.getMethod()) 12428 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD); 12429 } 12430 12431 bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) { 12432 llvm::APSInt Result; 12433 ExprResult Converted = CheckConvertedConstantExpression( 12434 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool); 12435 ExplicitSpec.setExpr(Converted.get()); 12436 if (Converted.isUsable() && !Converted.get()->isValueDependent()) { 12437 ExplicitSpec.setKind(Result.getBoolValue() 12438 ? ExplicitSpecKind::ResolvedTrue 12439 : ExplicitSpecKind::ResolvedFalse); 12440 return true; 12441 } 12442 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved); 12443 return false; 12444 } 12445 12446 ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) { 12447 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved); 12448 if (!ExplicitExpr->isTypeDependent()) 12449 tryResolveExplicitSpecifier(ES); 12450 return ES; 12451 } 12452 12453 static Sema::ImplicitExceptionSpecification 12454 ComputeDefaultedSpecialMemberExceptionSpec( 12455 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 12456 Sema::InheritedConstructorInfo *ICI) { 12457 ComputingExceptionSpec CES(S, MD, Loc); 12458 12459 CXXRecordDecl *ClassDecl = MD->getParent(); 12460 12461 // C++ [except.spec]p14: 12462 // An implicitly declared special member function (Clause 12) shall have an 12463 // exception-specification. [...] 12464 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation()); 12465 if (ClassDecl->isInvalidDecl()) 12466 return Info.ExceptSpec; 12467 12468 // FIXME: If this diagnostic fires, we're probably missing a check for 12469 // attempting to resolve an exception specification before it's known 12470 // at a higher level. 12471 if (S.RequireCompleteType(MD->getLocation(), 12472 S.Context.getRecordType(ClassDecl), 12473 diag::err_exception_spec_incomplete_type)) 12474 return Info.ExceptSpec; 12475 12476 // C++1z [except.spec]p7: 12477 // [Look for exceptions thrown by] a constructor selected [...] to 12478 // initialize a potentially constructed subobject, 12479 // C++1z [except.spec]p8: 12480 // The exception specification for an implicitly-declared destructor, or a 12481 // destructor without a noexcept-specifier, is potentially-throwing if and 12482 // only if any of the destructors for any of its potentially constructed 12483 // subojects is potentially throwing. 12484 // FIXME: We respect the first rule but ignore the "potentially constructed" 12485 // in the second rule to resolve a core issue (no number yet) that would have 12486 // us reject: 12487 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; }; 12488 // struct B : A {}; 12489 // struct C : B { void f(); }; 12490 // ... due to giving B::~B() a non-throwing exception specification. 12491 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases 12492 : Info.VisitAllBases); 12493 12494 return Info.ExceptSpec; 12495 } 12496 12497 namespace { 12498 /// RAII object to register a special member as being currently declared. 12499 struct DeclaringSpecialMember { 12500 Sema &S; 12501 Sema::SpecialMemberDecl D; 12502 Sema::ContextRAII SavedContext; 12503 bool WasAlreadyBeingDeclared; 12504 12505 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM) 12506 : S(S), D(RD, CSM), SavedContext(S, RD) { 12507 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second; 12508 if (WasAlreadyBeingDeclared) 12509 // This almost never happens, but if it does, ensure that our cache 12510 // doesn't contain a stale result. 12511 S.SpecialMemberCache.clear(); 12512 else { 12513 // Register a note to be produced if we encounter an error while 12514 // declaring the special member. 12515 Sema::CodeSynthesisContext Ctx; 12516 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember; 12517 // FIXME: We don't have a location to use here. Using the class's 12518 // location maintains the fiction that we declare all special members 12519 // with the class, but (1) it's not clear that lying about that helps our 12520 // users understand what's going on, and (2) there may be outer contexts 12521 // on the stack (some of which are relevant) and printing them exposes 12522 // our lies. 12523 Ctx.PointOfInstantiation = RD->getLocation(); 12524 Ctx.Entity = RD; 12525 Ctx.SpecialMember = CSM; 12526 S.pushCodeSynthesisContext(Ctx); 12527 } 12528 } 12529 ~DeclaringSpecialMember() { 12530 if (!WasAlreadyBeingDeclared) { 12531 S.SpecialMembersBeingDeclared.erase(D); 12532 S.popCodeSynthesisContext(); 12533 } 12534 } 12535 12536 /// Are we already trying to declare this special member? 12537 bool isAlreadyBeingDeclared() const { 12538 return WasAlreadyBeingDeclared; 12539 } 12540 }; 12541 } 12542 12543 void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) { 12544 // Look up any existing declarations, but don't trigger declaration of all 12545 // implicit special members with this name. 12546 DeclarationName Name = FD->getDeclName(); 12547 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName, 12548 ForExternalRedeclaration); 12549 for (auto *D : FD->getParent()->lookup(Name)) 12550 if (auto *Acceptable = R.getAcceptableDecl(D)) 12551 R.addDecl(Acceptable); 12552 R.resolveKind(); 12553 R.suppressDiagnostics(); 12554 12555 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false); 12556 } 12557 12558 void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, 12559 QualType ResultTy, 12560 ArrayRef<QualType> Args) { 12561 // Build an exception specification pointing back at this constructor. 12562 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem); 12563 12564 LangAS AS = getDefaultCXXMethodAddrSpace(); 12565 if (AS != LangAS::Default) { 12566 EPI.TypeQuals.addAddressSpace(AS); 12567 } 12568 12569 auto QT = Context.getFunctionType(ResultTy, Args, EPI); 12570 SpecialMem->setType(QT); 12571 } 12572 12573 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( 12574 CXXRecordDecl *ClassDecl) { 12575 // C++ [class.ctor]p5: 12576 // A default constructor for a class X is a constructor of class X 12577 // that can be called without an argument. If there is no 12578 // user-declared constructor for class X, a default constructor is 12579 // implicitly declared. An implicitly-declared default constructor 12580 // is an inline public member of its class. 12581 assert(ClassDecl->needsImplicitDefaultConstructor() && 12582 "Should not build implicit default constructor!"); 12583 12584 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor); 12585 if (DSM.isAlreadyBeingDeclared()) 12586 return nullptr; 12587 12588 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 12589 CXXDefaultConstructor, 12590 false); 12591 12592 // Create the actual constructor declaration. 12593 CanQualType ClassType 12594 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 12595 SourceLocation ClassLoc = ClassDecl->getLocation(); 12596 DeclarationName Name 12597 = Context.DeclarationNames.getCXXConstructorName(ClassType); 12598 DeclarationNameInfo NameInfo(Name, ClassLoc); 12599 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( 12600 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(), 12601 /*TInfo=*/nullptr, ExplicitSpecifier(), 12602 /*isInline=*/true, /*isImplicitlyDeclared=*/true, 12603 Constexpr ? CSK_constexpr : CSK_unspecified); 12604 DefaultCon->setAccess(AS_public); 12605 DefaultCon->setDefaulted(); 12606 12607 if (getLangOpts().CUDA) { 12608 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor, 12609 DefaultCon, 12610 /* ConstRHS */ false, 12611 /* Diagnose */ false); 12612 } 12613 12614 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None); 12615 12616 // We don't need to use SpecialMemberIsTrivial here; triviality for default 12617 // constructors is easy to compute. 12618 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); 12619 12620 // Note that we have declared this constructor. 12621 ++getASTContext().NumImplicitDefaultConstructorsDeclared; 12622 12623 Scope *S = getScopeForContext(ClassDecl); 12624 CheckImplicitSpecialMemberDeclaration(S, DefaultCon); 12625 12626 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor)) 12627 SetDeclDeleted(DefaultCon, ClassLoc); 12628 12629 if (S) 12630 PushOnScopeChains(DefaultCon, S, false); 12631 ClassDecl->addDecl(DefaultCon); 12632 12633 return DefaultCon; 12634 } 12635 12636 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, 12637 CXXConstructorDecl *Constructor) { 12638 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 12639 !Constructor->doesThisDeclarationHaveABody() && 12640 !Constructor->isDeleted()) && 12641 "DefineImplicitDefaultConstructor - call it for implicit default ctor"); 12642 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 12643 return; 12644 12645 CXXRecordDecl *ClassDecl = Constructor->getParent(); 12646 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); 12647 12648 SynthesizedFunctionScope Scope(*this, Constructor); 12649 12650 // The exception specification is needed because we are defining the 12651 // function. 12652 ResolveExceptionSpec(CurrentLocation, 12653 Constructor->getType()->castAs<FunctionProtoType>()); 12654 MarkVTableUsed(CurrentLocation, ClassDecl); 12655 12656 // Add a context note for diagnostics produced after this point. 12657 Scope.addContextNote(CurrentLocation); 12658 12659 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) { 12660 Constructor->setInvalidDecl(); 12661 return; 12662 } 12663 12664 SourceLocation Loc = Constructor->getEndLoc().isValid() 12665 ? Constructor->getEndLoc() 12666 : Constructor->getLocation(); 12667 Constructor->setBody(new (Context) CompoundStmt(Loc)); 12668 Constructor->markUsed(Context); 12669 12670 if (ASTMutationListener *L = getASTMutationListener()) { 12671 L->CompletedImplicitDefinition(Constructor); 12672 } 12673 12674 DiagnoseUninitializedFields(*this, Constructor); 12675 } 12676 12677 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { 12678 // Perform any delayed checks on exception specifications. 12679 CheckDelayedMemberExceptionSpecs(); 12680 } 12681 12682 /// Find or create the fake constructor we synthesize to model constructing an 12683 /// object of a derived class via a constructor of a base class. 12684 CXXConstructorDecl * 12685 Sema::findInheritingConstructor(SourceLocation Loc, 12686 CXXConstructorDecl *BaseCtor, 12687 ConstructorUsingShadowDecl *Shadow) { 12688 CXXRecordDecl *Derived = Shadow->getParent(); 12689 SourceLocation UsingLoc = Shadow->getLocation(); 12690 12691 // FIXME: Add a new kind of DeclarationName for an inherited constructor. 12692 // For now we use the name of the base class constructor as a member of the 12693 // derived class to indicate a (fake) inherited constructor name. 12694 DeclarationName Name = BaseCtor->getDeclName(); 12695 12696 // Check to see if we already have a fake constructor for this inherited 12697 // constructor call. 12698 for (NamedDecl *Ctor : Derived->lookup(Name)) 12699 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor) 12700 ->getInheritedConstructor() 12701 .getConstructor(), 12702 BaseCtor)) 12703 return cast<CXXConstructorDecl>(Ctor); 12704 12705 DeclarationNameInfo NameInfo(Name, UsingLoc); 12706 TypeSourceInfo *TInfo = 12707 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc); 12708 FunctionProtoTypeLoc ProtoLoc = 12709 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>(); 12710 12711 // Check the inherited constructor is valid and find the list of base classes 12712 // from which it was inherited. 12713 InheritedConstructorInfo ICI(*this, Loc, Shadow); 12714 12715 bool Constexpr = 12716 BaseCtor->isConstexpr() && 12717 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor, 12718 false, BaseCtor, &ICI); 12719 12720 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( 12721 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo, 12722 BaseCtor->getExplicitSpecifier(), /*isInline=*/true, 12723 /*isImplicitlyDeclared=*/true, 12724 Constexpr ? BaseCtor->getConstexprKind() : CSK_unspecified, 12725 InheritedConstructor(Shadow, BaseCtor), 12726 BaseCtor->getTrailingRequiresClause()); 12727 if (Shadow->isInvalidDecl()) 12728 DerivedCtor->setInvalidDecl(); 12729 12730 // Build an unevaluated exception specification for this fake constructor. 12731 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>(); 12732 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 12733 EPI.ExceptionSpec.Type = EST_Unevaluated; 12734 EPI.ExceptionSpec.SourceDecl = DerivedCtor; 12735 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(), 12736 FPT->getParamTypes(), EPI)); 12737 12738 // Build the parameter declarations. 12739 SmallVector<ParmVarDecl *, 16> ParamDecls; 12740 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { 12741 TypeSourceInfo *TInfo = 12742 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc); 12743 ParmVarDecl *PD = ParmVarDecl::Create( 12744 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, 12745 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr); 12746 PD->setScopeInfo(0, I); 12747 PD->setImplicit(); 12748 // Ensure attributes are propagated onto parameters (this matters for 12749 // format, pass_object_size, ...). 12750 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I)); 12751 ParamDecls.push_back(PD); 12752 ProtoLoc.setParam(I, PD); 12753 } 12754 12755 // Set up the new constructor. 12756 assert(!BaseCtor->isDeleted() && "should not use deleted constructor"); 12757 DerivedCtor->setAccess(BaseCtor->getAccess()); 12758 DerivedCtor->setParams(ParamDecls); 12759 Derived->addDecl(DerivedCtor); 12760 12761 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI)) 12762 SetDeclDeleted(DerivedCtor, UsingLoc); 12763 12764 return DerivedCtor; 12765 } 12766 12767 void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) { 12768 InheritedConstructorInfo ICI(*this, Ctor->getLocation(), 12769 Ctor->getInheritedConstructor().getShadowDecl()); 12770 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI, 12771 /*Diagnose*/true); 12772 } 12773 12774 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, 12775 CXXConstructorDecl *Constructor) { 12776 CXXRecordDecl *ClassDecl = Constructor->getParent(); 12777 assert(Constructor->getInheritedConstructor() && 12778 !Constructor->doesThisDeclarationHaveABody() && 12779 !Constructor->isDeleted()); 12780 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 12781 return; 12782 12783 // Initializations are performed "as if by a defaulted default constructor", 12784 // so enter the appropriate scope. 12785 SynthesizedFunctionScope Scope(*this, Constructor); 12786 12787 // The exception specification is needed because we are defining the 12788 // function. 12789 ResolveExceptionSpec(CurrentLocation, 12790 Constructor->getType()->castAs<FunctionProtoType>()); 12791 MarkVTableUsed(CurrentLocation, ClassDecl); 12792 12793 // Add a context note for diagnostics produced after this point. 12794 Scope.addContextNote(CurrentLocation); 12795 12796 ConstructorUsingShadowDecl *Shadow = 12797 Constructor->getInheritedConstructor().getShadowDecl(); 12798 CXXConstructorDecl *InheritedCtor = 12799 Constructor->getInheritedConstructor().getConstructor(); 12800 12801 // [class.inhctor.init]p1: 12802 // initialization proceeds as if a defaulted default constructor is used to 12803 // initialize the D object and each base class subobject from which the 12804 // constructor was inherited 12805 12806 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow); 12807 CXXRecordDecl *RD = Shadow->getParent(); 12808 SourceLocation InitLoc = Shadow->getLocation(); 12809 12810 // Build explicit initializers for all base classes from which the 12811 // constructor was inherited. 12812 SmallVector<CXXCtorInitializer*, 8> Inits; 12813 for (bool VBase : {false, true}) { 12814 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) { 12815 if (B.isVirtual() != VBase) 12816 continue; 12817 12818 auto *BaseRD = B.getType()->getAsCXXRecordDecl(); 12819 if (!BaseRD) 12820 continue; 12821 12822 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor); 12823 if (!BaseCtor.first) 12824 continue; 12825 12826 MarkFunctionReferenced(CurrentLocation, BaseCtor.first); 12827 ExprResult Init = new (Context) CXXInheritedCtorInitExpr( 12828 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second); 12829 12830 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc); 12831 Inits.push_back(new (Context) CXXCtorInitializer( 12832 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc, 12833 SourceLocation())); 12834 } 12835 } 12836 12837 // We now proceed as if for a defaulted default constructor, with the relevant 12838 // initializers replaced. 12839 12840 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) { 12841 Constructor->setInvalidDecl(); 12842 return; 12843 } 12844 12845 Constructor->setBody(new (Context) CompoundStmt(InitLoc)); 12846 Constructor->markUsed(Context); 12847 12848 if (ASTMutationListener *L = getASTMutationListener()) { 12849 L->CompletedImplicitDefinition(Constructor); 12850 } 12851 12852 DiagnoseUninitializedFields(*this, Constructor); 12853 } 12854 12855 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { 12856 // C++ [class.dtor]p2: 12857 // If a class has no user-declared destructor, a destructor is 12858 // declared implicitly. An implicitly-declared destructor is an 12859 // inline public member of its class. 12860 assert(ClassDecl->needsImplicitDestructor()); 12861 12862 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor); 12863 if (DSM.isAlreadyBeingDeclared()) 12864 return nullptr; 12865 12866 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 12867 CXXDestructor, 12868 false); 12869 12870 // Create the actual destructor declaration. 12871 CanQualType ClassType 12872 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 12873 SourceLocation ClassLoc = ClassDecl->getLocation(); 12874 DeclarationName Name 12875 = Context.DeclarationNames.getCXXDestructorName(ClassType); 12876 DeclarationNameInfo NameInfo(Name, ClassLoc); 12877 CXXDestructorDecl *Destructor = 12878 CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, 12879 QualType(), nullptr, /*isInline=*/true, 12880 /*isImplicitlyDeclared=*/true, 12881 Constexpr ? CSK_constexpr : CSK_unspecified); 12882 Destructor->setAccess(AS_public); 12883 Destructor->setDefaulted(); 12884 12885 if (getLangOpts().CUDA) { 12886 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor, 12887 Destructor, 12888 /* ConstRHS */ false, 12889 /* Diagnose */ false); 12890 } 12891 12892 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None); 12893 12894 // We don't need to use SpecialMemberIsTrivial here; triviality for 12895 // destructors is easy to compute. 12896 Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); 12897 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() || 12898 ClassDecl->hasTrivialDestructorForCall()); 12899 12900 // Note that we have declared this destructor. 12901 ++getASTContext().NumImplicitDestructorsDeclared; 12902 12903 Scope *S = getScopeForContext(ClassDecl); 12904 CheckImplicitSpecialMemberDeclaration(S, Destructor); 12905 12906 // We can't check whether an implicit destructor is deleted before we complete 12907 // the definition of the class, because its validity depends on the alignment 12908 // of the class. We'll check this from ActOnFields once the class is complete. 12909 if (ClassDecl->isCompleteDefinition() && 12910 ShouldDeleteSpecialMember(Destructor, CXXDestructor)) 12911 SetDeclDeleted(Destructor, ClassLoc); 12912 12913 // Introduce this destructor into its scope. 12914 if (S) 12915 PushOnScopeChains(Destructor, S, false); 12916 ClassDecl->addDecl(Destructor); 12917 12918 return Destructor; 12919 } 12920 12921 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, 12922 CXXDestructorDecl *Destructor) { 12923 assert((Destructor->isDefaulted() && 12924 !Destructor->doesThisDeclarationHaveABody() && 12925 !Destructor->isDeleted()) && 12926 "DefineImplicitDestructor - call it for implicit default dtor"); 12927 if (Destructor->willHaveBody() || Destructor->isInvalidDecl()) 12928 return; 12929 12930 CXXRecordDecl *ClassDecl = Destructor->getParent(); 12931 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); 12932 12933 SynthesizedFunctionScope Scope(*this, Destructor); 12934 12935 // The exception specification is needed because we are defining the 12936 // function. 12937 ResolveExceptionSpec(CurrentLocation, 12938 Destructor->getType()->castAs<FunctionProtoType>()); 12939 MarkVTableUsed(CurrentLocation, ClassDecl); 12940 12941 // Add a context note for diagnostics produced after this point. 12942 Scope.addContextNote(CurrentLocation); 12943 12944 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 12945 Destructor->getParent()); 12946 12947 if (CheckDestructor(Destructor)) { 12948 Destructor->setInvalidDecl(); 12949 return; 12950 } 12951 12952 SourceLocation Loc = Destructor->getEndLoc().isValid() 12953 ? Destructor->getEndLoc() 12954 : Destructor->getLocation(); 12955 Destructor->setBody(new (Context) CompoundStmt(Loc)); 12956 Destructor->markUsed(Context); 12957 12958 if (ASTMutationListener *L = getASTMutationListener()) { 12959 L->CompletedImplicitDefinition(Destructor); 12960 } 12961 } 12962 12963 /// Perform any semantic analysis which needs to be delayed until all 12964 /// pending class member declarations have been parsed. 12965 void Sema::ActOnFinishCXXMemberDecls() { 12966 // If the context is an invalid C++ class, just suppress these checks. 12967 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) { 12968 if (Record->isInvalidDecl()) { 12969 DelayedOverridingExceptionSpecChecks.clear(); 12970 DelayedEquivalentExceptionSpecChecks.clear(); 12971 return; 12972 } 12973 checkForMultipleExportedDefaultConstructors(*this, Record); 12974 } 12975 } 12976 12977 void Sema::ActOnFinishCXXNonNestedClass() { 12978 referenceDLLExportedClassMethods(); 12979 12980 if (!DelayedDllExportMemberFunctions.empty()) { 12981 SmallVector<CXXMethodDecl*, 4> WorkList; 12982 std::swap(DelayedDllExportMemberFunctions, WorkList); 12983 for (CXXMethodDecl *M : WorkList) { 12984 DefineImplicitSpecialMember(*this, M, M->getLocation()); 12985 12986 // Pass the method to the consumer to get emitted. This is not necessary 12987 // for explicit instantiation definitions, as they will get emitted 12988 // anyway. 12989 if (M->getParent()->getTemplateSpecializationKind() != 12990 TSK_ExplicitInstantiationDefinition) 12991 ActOnFinishInlineFunctionDef(M); 12992 } 12993 } 12994 } 12995 12996 void Sema::referenceDLLExportedClassMethods() { 12997 if (!DelayedDllExportClasses.empty()) { 12998 // Calling ReferenceDllExportedMembers might cause the current function to 12999 // be called again, so use a local copy of DelayedDllExportClasses. 13000 SmallVector<CXXRecordDecl *, 4> WorkList; 13001 std::swap(DelayedDllExportClasses, WorkList); 13002 for (CXXRecordDecl *Class : WorkList) 13003 ReferenceDllExportedMembers(*this, Class); 13004 } 13005 } 13006 13007 void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) { 13008 assert(getLangOpts().CPlusPlus11 && 13009 "adjusting dtor exception specs was introduced in c++11"); 13010 13011 if (Destructor->isDependentContext()) 13012 return; 13013 13014 // C++11 [class.dtor]p3: 13015 // A declaration of a destructor that does not have an exception- 13016 // specification is implicitly considered to have the same exception- 13017 // specification as an implicit declaration. 13018 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>(); 13019 if (DtorType->hasExceptionSpec()) 13020 return; 13021 13022 // Replace the destructor's type, building off the existing one. Fortunately, 13023 // the only thing of interest in the destructor type is its extended info. 13024 // The return and arguments are fixed. 13025 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); 13026 EPI.ExceptionSpec.Type = EST_Unevaluated; 13027 EPI.ExceptionSpec.SourceDecl = Destructor; 13028 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI)); 13029 13030 // FIXME: If the destructor has a body that could throw, and the newly created 13031 // spec doesn't allow exceptions, we should emit a warning, because this 13032 // change in behavior can break conforming C++03 programs at runtime. 13033 // However, we don't have a body or an exception specification yet, so it 13034 // needs to be done somewhere else. 13035 } 13036 13037 namespace { 13038 /// An abstract base class for all helper classes used in building the 13039 // copy/move operators. These classes serve as factory functions and help us 13040 // avoid using the same Expr* in the AST twice. 13041 class ExprBuilder { 13042 ExprBuilder(const ExprBuilder&) = delete; 13043 ExprBuilder &operator=(const ExprBuilder&) = delete; 13044 13045 protected: 13046 static Expr *assertNotNull(Expr *E) { 13047 assert(E && "Expression construction must not fail."); 13048 return E; 13049 } 13050 13051 public: 13052 ExprBuilder() {} 13053 virtual ~ExprBuilder() {} 13054 13055 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; 13056 }; 13057 13058 class RefBuilder: public ExprBuilder { 13059 VarDecl *Var; 13060 QualType VarType; 13061 13062 public: 13063 Expr *build(Sema &S, SourceLocation Loc) const override { 13064 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc)); 13065 } 13066 13067 RefBuilder(VarDecl *Var, QualType VarType) 13068 : Var(Var), VarType(VarType) {} 13069 }; 13070 13071 class ThisBuilder: public ExprBuilder { 13072 public: 13073 Expr *build(Sema &S, SourceLocation Loc) const override { 13074 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>()); 13075 } 13076 }; 13077 13078 class CastBuilder: public ExprBuilder { 13079 const ExprBuilder &Builder; 13080 QualType Type; 13081 ExprValueKind Kind; 13082 const CXXCastPath &Path; 13083 13084 public: 13085 Expr *build(Sema &S, SourceLocation Loc) const override { 13086 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, 13087 CK_UncheckedDerivedToBase, Kind, 13088 &Path).get()); 13089 } 13090 13091 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, 13092 const CXXCastPath &Path) 13093 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} 13094 }; 13095 13096 class DerefBuilder: public ExprBuilder { 13097 const ExprBuilder &Builder; 13098 13099 public: 13100 Expr *build(Sema &S, SourceLocation Loc) const override { 13101 return assertNotNull( 13102 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get()); 13103 } 13104 13105 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13106 }; 13107 13108 class MemberBuilder: public ExprBuilder { 13109 const ExprBuilder &Builder; 13110 QualType Type; 13111 CXXScopeSpec SS; 13112 bool IsArrow; 13113 LookupResult &MemberLookup; 13114 13115 public: 13116 Expr *build(Sema &S, SourceLocation Loc) const override { 13117 return assertNotNull(S.BuildMemberReferenceExpr( 13118 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), 13119 nullptr, MemberLookup, nullptr, nullptr).get()); 13120 } 13121 13122 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, 13123 LookupResult &MemberLookup) 13124 : Builder(Builder), Type(Type), IsArrow(IsArrow), 13125 MemberLookup(MemberLookup) {} 13126 }; 13127 13128 class MoveCastBuilder: public ExprBuilder { 13129 const ExprBuilder &Builder; 13130 13131 public: 13132 Expr *build(Sema &S, SourceLocation Loc) const override { 13133 return assertNotNull(CastForMoving(S, Builder.build(S, Loc))); 13134 } 13135 13136 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13137 }; 13138 13139 class LvalueConvBuilder: public ExprBuilder { 13140 const ExprBuilder &Builder; 13141 13142 public: 13143 Expr *build(Sema &S, SourceLocation Loc) const override { 13144 return assertNotNull( 13145 S.DefaultLvalueConversion(Builder.build(S, Loc)).get()); 13146 } 13147 13148 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13149 }; 13150 13151 class SubscriptBuilder: public ExprBuilder { 13152 const ExprBuilder &Base; 13153 const ExprBuilder &Index; 13154 13155 public: 13156 Expr *build(Sema &S, SourceLocation Loc) const override { 13157 return assertNotNull(S.CreateBuiltinArraySubscriptExpr( 13158 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get()); 13159 } 13160 13161 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) 13162 : Base(Base), Index(Index) {} 13163 }; 13164 13165 } // end anonymous namespace 13166 13167 /// When generating a defaulted copy or move assignment operator, if a field 13168 /// should be copied with __builtin_memcpy rather than via explicit assignments, 13169 /// do so. This optimization only applies for arrays of scalars, and for arrays 13170 /// of class type where the selected copy/move-assignment operator is trivial. 13171 static StmtResult 13172 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, 13173 const ExprBuilder &ToB, const ExprBuilder &FromB) { 13174 // Compute the size of the memory buffer to be copied. 13175 QualType SizeType = S.Context.getSizeType(); 13176 llvm::APInt Size(S.Context.getTypeSize(SizeType), 13177 S.Context.getTypeSizeInChars(T).getQuantity()); 13178 13179 // Take the address of the field references for "from" and "to". We 13180 // directly construct UnaryOperators here because semantic analysis 13181 // does not permit us to take the address of an xvalue. 13182 Expr *From = FromB.build(S, Loc); 13183 From = new (S.Context) UnaryOperator(From, UO_AddrOf, 13184 S.Context.getPointerType(From->getType()), 13185 VK_RValue, OK_Ordinary, Loc, false); 13186 Expr *To = ToB.build(S, Loc); 13187 To = new (S.Context) UnaryOperator(To, UO_AddrOf, 13188 S.Context.getPointerType(To->getType()), 13189 VK_RValue, OK_Ordinary, Loc, false); 13190 13191 const Type *E = T->getBaseElementTypeUnsafe(); 13192 bool NeedsCollectableMemCpy = 13193 E->isRecordType() && 13194 E->castAs<RecordType>()->getDecl()->hasObjectMember(); 13195 13196 // Create a reference to the __builtin_objc_memmove_collectable function 13197 StringRef MemCpyName = NeedsCollectableMemCpy ? 13198 "__builtin_objc_memmove_collectable" : 13199 "__builtin_memcpy"; 13200 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc, 13201 Sema::LookupOrdinaryName); 13202 S.LookupName(R, S.TUScope, true); 13203 13204 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>(); 13205 if (!MemCpy) 13206 // Something went horribly wrong earlier, and we will have complained 13207 // about it. 13208 return StmtError(); 13209 13210 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, 13211 VK_RValue, Loc, nullptr); 13212 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail"); 13213 13214 Expr *CallArgs[] = { 13215 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc) 13216 }; 13217 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), 13218 Loc, CallArgs, Loc); 13219 13220 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); 13221 return Call.getAs<Stmt>(); 13222 } 13223 13224 /// Builds a statement that copies/moves the given entity from \p From to 13225 /// \c To. 13226 /// 13227 /// This routine is used to copy/move the members of a class with an 13228 /// implicitly-declared copy/move assignment operator. When the entities being 13229 /// copied are arrays, this routine builds for loops to copy them. 13230 /// 13231 /// \param S The Sema object used for type-checking. 13232 /// 13233 /// \param Loc The location where the implicit copy/move is being generated. 13234 /// 13235 /// \param T The type of the expressions being copied/moved. Both expressions 13236 /// must have this type. 13237 /// 13238 /// \param To The expression we are copying/moving to. 13239 /// 13240 /// \param From The expression we are copying/moving from. 13241 /// 13242 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. 13243 /// Otherwise, it's a non-static member subobject. 13244 /// 13245 /// \param Copying Whether we're copying or moving. 13246 /// 13247 /// \param Depth Internal parameter recording the depth of the recursion. 13248 /// 13249 /// \returns A statement or a loop that copies the expressions, or StmtResult(0) 13250 /// if a memcpy should be used instead. 13251 static StmtResult 13252 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, 13253 const ExprBuilder &To, const ExprBuilder &From, 13254 bool CopyingBaseSubobject, bool Copying, 13255 unsigned Depth = 0) { 13256 // C++11 [class.copy]p28: 13257 // Each subobject is assigned in the manner appropriate to its type: 13258 // 13259 // - if the subobject is of class type, as if by a call to operator= with 13260 // the subobject as the object expression and the corresponding 13261 // subobject of x as a single function argument (as if by explicit 13262 // qualification; that is, ignoring any possible virtual overriding 13263 // functions in more derived classes); 13264 // 13265 // C++03 [class.copy]p13: 13266 // - if the subobject is of class type, the copy assignment operator for 13267 // the class is used (as if by explicit qualification; that is, 13268 // ignoring any possible virtual overriding functions in more derived 13269 // classes); 13270 if (const RecordType *RecordTy = T->getAs<RecordType>()) { 13271 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 13272 13273 // Look for operator=. 13274 DeclarationName Name 13275 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); 13276 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); 13277 S.LookupQualifiedName(OpLookup, ClassDecl, false); 13278 13279 // Prior to C++11, filter out any result that isn't a copy/move-assignment 13280 // operator. 13281 if (!S.getLangOpts().CPlusPlus11) { 13282 LookupResult::Filter F = OpLookup.makeFilter(); 13283 while (F.hasNext()) { 13284 NamedDecl *D = F.next(); 13285 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 13286 if (Method->isCopyAssignmentOperator() || 13287 (!Copying && Method->isMoveAssignmentOperator())) 13288 continue; 13289 13290 F.erase(); 13291 } 13292 F.done(); 13293 } 13294 13295 // Suppress the protected check (C++ [class.protected]) for each of the 13296 // assignment operators we found. This strange dance is required when 13297 // we're assigning via a base classes's copy-assignment operator. To 13298 // ensure that we're getting the right base class subobject (without 13299 // ambiguities), we need to cast "this" to that subobject type; to 13300 // ensure that we don't go through the virtual call mechanism, we need 13301 // to qualify the operator= name with the base class (see below). However, 13302 // this means that if the base class has a protected copy assignment 13303 // operator, the protected member access check will fail. So, we 13304 // rewrite "protected" access to "public" access in this case, since we 13305 // know by construction that we're calling from a derived class. 13306 if (CopyingBaseSubobject) { 13307 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); 13308 L != LEnd; ++L) { 13309 if (L.getAccess() == AS_protected) 13310 L.setAccess(AS_public); 13311 } 13312 } 13313 13314 // Create the nested-name-specifier that will be used to qualify the 13315 // reference to operator=; this is required to suppress the virtual 13316 // call mechanism. 13317 CXXScopeSpec SS; 13318 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr()); 13319 SS.MakeTrivial(S.Context, 13320 NestedNameSpecifier::Create(S.Context, nullptr, false, 13321 CanonicalT), 13322 Loc); 13323 13324 // Create the reference to operator=. 13325 ExprResult OpEqualRef 13326 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false, 13327 SS, /*TemplateKWLoc=*/SourceLocation(), 13328 /*FirstQualifierInScope=*/nullptr, 13329 OpLookup, 13330 /*TemplateArgs=*/nullptr, /*S*/nullptr, 13331 /*SuppressQualifierCheck=*/true); 13332 if (OpEqualRef.isInvalid()) 13333 return StmtError(); 13334 13335 // Build the call to the assignment operator. 13336 13337 Expr *FromInst = From.build(S, Loc); 13338 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr, 13339 OpEqualRef.getAs<Expr>(), 13340 Loc, FromInst, Loc); 13341 if (Call.isInvalid()) 13342 return StmtError(); 13343 13344 // If we built a call to a trivial 'operator=' while copying an array, 13345 // bail out. We'll replace the whole shebang with a memcpy. 13346 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get()); 13347 if (CE && CE->getMethodDecl()->isTrivial() && Depth) 13348 return StmtResult((Stmt*)nullptr); 13349 13350 // Convert to an expression-statement, and clean up any produced 13351 // temporaries. 13352 return S.ActOnExprStmt(Call); 13353 } 13354 13355 // - if the subobject is of scalar type, the built-in assignment 13356 // operator is used. 13357 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); 13358 if (!ArrayTy) { 13359 ExprResult Assignment = S.CreateBuiltinBinOp( 13360 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc)); 13361 if (Assignment.isInvalid()) 13362 return StmtError(); 13363 return S.ActOnExprStmt(Assignment); 13364 } 13365 13366 // - if the subobject is an array, each element is assigned, in the 13367 // manner appropriate to the element type; 13368 13369 // Construct a loop over the array bounds, e.g., 13370 // 13371 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) 13372 // 13373 // that will copy each of the array elements. 13374 QualType SizeType = S.Context.getSizeType(); 13375 13376 // Create the iteration variable. 13377 IdentifierInfo *IterationVarName = nullptr; 13378 { 13379 SmallString<8> Str; 13380 llvm::raw_svector_ostream OS(Str); 13381 OS << "__i" << Depth; 13382 IterationVarName = &S.Context.Idents.get(OS.str()); 13383 } 13384 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, 13385 IterationVarName, SizeType, 13386 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), 13387 SC_None); 13388 13389 // Initialize the iteration variable to zero. 13390 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 13391 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 13392 13393 // Creates a reference to the iteration variable. 13394 RefBuilder IterationVarRef(IterationVar, SizeType); 13395 LvalueConvBuilder IterationVarRefRVal(IterationVarRef); 13396 13397 // Create the DeclStmt that holds the iteration variable. 13398 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); 13399 13400 // Subscript the "from" and "to" expressions with the iteration variable. 13401 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); 13402 MoveCastBuilder FromIndexMove(FromIndexCopy); 13403 const ExprBuilder *FromIndex; 13404 if (Copying) 13405 FromIndex = &FromIndexCopy; 13406 else 13407 FromIndex = &FromIndexMove; 13408 13409 SubscriptBuilder ToIndex(To, IterationVarRefRVal); 13410 13411 // Build the copy/move for an individual element of the array. 13412 StmtResult Copy = 13413 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), 13414 ToIndex, *FromIndex, CopyingBaseSubobject, 13415 Copying, Depth + 1); 13416 // Bail out if copying fails or if we determined that we should use memcpy. 13417 if (Copy.isInvalid() || !Copy.get()) 13418 return Copy; 13419 13420 // Create the comparison against the array bound. 13421 llvm::APInt Upper 13422 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); 13423 Expr *Comparison 13424 = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc), 13425 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), 13426 BO_NE, S.Context.BoolTy, 13427 VK_RValue, OK_Ordinary, Loc, FPOptions()); 13428 13429 // Create the pre-increment of the iteration variable. We can determine 13430 // whether the increment will overflow based on the value of the array 13431 // bound. 13432 Expr *Increment = new (S.Context) 13433 UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc, SizeType, 13434 VK_LValue, OK_Ordinary, Loc, Upper.isMaxValue()); 13435 13436 // Construct the loop that copies all elements of this array. 13437 return S.ActOnForStmt( 13438 Loc, Loc, InitStmt, 13439 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean), 13440 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get()); 13441 } 13442 13443 static StmtResult 13444 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, 13445 const ExprBuilder &To, const ExprBuilder &From, 13446 bool CopyingBaseSubobject, bool Copying) { 13447 // Maybe we should use a memcpy? 13448 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && 13449 T.isTriviallyCopyableType(S.Context)) 13450 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 13451 13452 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, 13453 CopyingBaseSubobject, 13454 Copying, 0)); 13455 13456 // If we ended up picking a trivial assignment operator for an array of a 13457 // non-trivially-copyable class type, just emit a memcpy. 13458 if (!Result.isInvalid() && !Result.get()) 13459 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 13460 13461 return Result; 13462 } 13463 13464 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { 13465 // Note: The following rules are largely analoguous to the copy 13466 // constructor rules. Note that virtual bases are not taken into account 13467 // for determining the argument type of the operator. Note also that 13468 // operators taking an object instead of a reference are allowed. 13469 assert(ClassDecl->needsImplicitCopyAssignment()); 13470 13471 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment); 13472 if (DSM.isAlreadyBeingDeclared()) 13473 return nullptr; 13474 13475 QualType ArgType = Context.getTypeDeclType(ClassDecl); 13476 LangAS AS = getDefaultCXXMethodAddrSpace(); 13477 if (AS != LangAS::Default) 13478 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 13479 QualType RetType = Context.getLValueReferenceType(ArgType); 13480 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); 13481 if (Const) 13482 ArgType = ArgType.withConst(); 13483 13484 ArgType = Context.getLValueReferenceType(ArgType); 13485 13486 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 13487 CXXCopyAssignment, 13488 Const); 13489 13490 // An implicitly-declared copy assignment operator is an inline public 13491 // member of its class. 13492 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 13493 SourceLocation ClassLoc = ClassDecl->getLocation(); 13494 DeclarationNameInfo NameInfo(Name, ClassLoc); 13495 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create( 13496 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 13497 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 13498 /*isInline=*/true, Constexpr ? CSK_constexpr : CSK_unspecified, 13499 SourceLocation()); 13500 CopyAssignment->setAccess(AS_public); 13501 CopyAssignment->setDefaulted(); 13502 CopyAssignment->setImplicit(); 13503 13504 if (getLangOpts().CUDA) { 13505 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment, 13506 CopyAssignment, 13507 /* ConstRHS */ Const, 13508 /* Diagnose */ false); 13509 } 13510 13511 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType); 13512 13513 // Add the parameter to the operator. 13514 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, 13515 ClassLoc, ClassLoc, 13516 /*Id=*/nullptr, ArgType, 13517 /*TInfo=*/nullptr, SC_None, 13518 nullptr); 13519 CopyAssignment->setParams(FromParam); 13520 13521 CopyAssignment->setTrivial( 13522 ClassDecl->needsOverloadResolutionForCopyAssignment() 13523 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment) 13524 : ClassDecl->hasTrivialCopyAssignment()); 13525 13526 // Note that we have added this copy-assignment operator. 13527 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared; 13528 13529 Scope *S = getScopeForContext(ClassDecl); 13530 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment); 13531 13532 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) 13533 SetDeclDeleted(CopyAssignment, ClassLoc); 13534 13535 if (S) 13536 PushOnScopeChains(CopyAssignment, S, false); 13537 ClassDecl->addDecl(CopyAssignment); 13538 13539 return CopyAssignment; 13540 } 13541 13542 /// Diagnose an implicit copy operation for a class which is odr-used, but 13543 /// which is deprecated because the class has a user-declared copy constructor, 13544 /// copy assignment operator, or destructor. 13545 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) { 13546 assert(CopyOp->isImplicit()); 13547 13548 CXXRecordDecl *RD = CopyOp->getParent(); 13549 CXXMethodDecl *UserDeclaredOperation = nullptr; 13550 13551 // In Microsoft mode, assignment operations don't affect constructors and 13552 // vice versa. 13553 if (RD->hasUserDeclaredDestructor()) { 13554 UserDeclaredOperation = RD->getDestructor(); 13555 } else if (!isa<CXXConstructorDecl>(CopyOp) && 13556 RD->hasUserDeclaredCopyConstructor() && 13557 !S.getLangOpts().MSVCCompat) { 13558 // Find any user-declared copy constructor. 13559 for (auto *I : RD->ctors()) { 13560 if (I->isCopyConstructor()) { 13561 UserDeclaredOperation = I; 13562 break; 13563 } 13564 } 13565 assert(UserDeclaredOperation); 13566 } else if (isa<CXXConstructorDecl>(CopyOp) && 13567 RD->hasUserDeclaredCopyAssignment() && 13568 !S.getLangOpts().MSVCCompat) { 13569 // Find any user-declared move assignment operator. 13570 for (auto *I : RD->methods()) { 13571 if (I->isCopyAssignmentOperator()) { 13572 UserDeclaredOperation = I; 13573 break; 13574 } 13575 } 13576 assert(UserDeclaredOperation); 13577 } 13578 13579 if (UserDeclaredOperation && UserDeclaredOperation->isUserProvided()) { 13580 S.Diag(UserDeclaredOperation->getLocation(), 13581 isa<CXXDestructorDecl>(UserDeclaredOperation) 13582 ? diag::warn_deprecated_copy_dtor_operation 13583 : diag::warn_deprecated_copy_operation) 13584 << RD << /*copy assignment*/ !isa<CXXConstructorDecl>(CopyOp); 13585 } 13586 } 13587 13588 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, 13589 CXXMethodDecl *CopyAssignOperator) { 13590 assert((CopyAssignOperator->isDefaulted() && 13591 CopyAssignOperator->isOverloadedOperator() && 13592 CopyAssignOperator->getOverloadedOperator() == OO_Equal && 13593 !CopyAssignOperator->doesThisDeclarationHaveABody() && 13594 !CopyAssignOperator->isDeleted()) && 13595 "DefineImplicitCopyAssignment called for wrong function"); 13596 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl()) 13597 return; 13598 13599 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); 13600 if (ClassDecl->isInvalidDecl()) { 13601 CopyAssignOperator->setInvalidDecl(); 13602 return; 13603 } 13604 13605 SynthesizedFunctionScope Scope(*this, CopyAssignOperator); 13606 13607 // The exception specification is needed because we are defining the 13608 // function. 13609 ResolveExceptionSpec(CurrentLocation, 13610 CopyAssignOperator->getType()->castAs<FunctionProtoType>()); 13611 13612 // Add a context note for diagnostics produced after this point. 13613 Scope.addContextNote(CurrentLocation); 13614 13615 // C++11 [class.copy]p18: 13616 // The [definition of an implicitly declared copy assignment operator] is 13617 // deprecated if the class has a user-declared copy constructor or a 13618 // user-declared destructor. 13619 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) 13620 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator); 13621 13622 // C++0x [class.copy]p30: 13623 // The implicitly-defined or explicitly-defaulted copy assignment operator 13624 // for a non-union class X performs memberwise copy assignment of its 13625 // subobjects. The direct base classes of X are assigned first, in the 13626 // order of their declaration in the base-specifier-list, and then the 13627 // immediate non-static data members of X are assigned, in the order in 13628 // which they were declared in the class definition. 13629 13630 // The statements that form the synthesized function body. 13631 SmallVector<Stmt*, 8> Statements; 13632 13633 // The parameter for the "other" object, which we are copying from. 13634 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); 13635 Qualifiers OtherQuals = Other->getType().getQualifiers(); 13636 QualType OtherRefType = Other->getType(); 13637 if (const LValueReferenceType *OtherRef 13638 = OtherRefType->getAs<LValueReferenceType>()) { 13639 OtherRefType = OtherRef->getPointeeType(); 13640 OtherQuals = OtherRefType.getQualifiers(); 13641 } 13642 13643 // Our location for everything implicitly-generated. 13644 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid() 13645 ? CopyAssignOperator->getEndLoc() 13646 : CopyAssignOperator->getLocation(); 13647 13648 // Builds a DeclRefExpr for the "other" object. 13649 RefBuilder OtherRef(Other, OtherRefType); 13650 13651 // Builds the "this" pointer. 13652 ThisBuilder This; 13653 13654 // Assign base classes. 13655 bool Invalid = false; 13656 for (auto &Base : ClassDecl->bases()) { 13657 // Form the assignment: 13658 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); 13659 QualType BaseType = Base.getType().getUnqualifiedType(); 13660 if (!BaseType->isRecordType()) { 13661 Invalid = true; 13662 continue; 13663 } 13664 13665 CXXCastPath BasePath; 13666 BasePath.push_back(&Base); 13667 13668 // Construct the "from" expression, which is an implicit cast to the 13669 // appropriately-qualified base type. 13670 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals), 13671 VK_LValue, BasePath); 13672 13673 // Dereference "this". 13674 DerefBuilder DerefThis(This); 13675 CastBuilder To(DerefThis, 13676 Context.getQualifiedType( 13677 BaseType, CopyAssignOperator->getMethodQualifiers()), 13678 VK_LValue, BasePath); 13679 13680 // Build the copy. 13681 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, 13682 To, From, 13683 /*CopyingBaseSubobject=*/true, 13684 /*Copying=*/true); 13685 if (Copy.isInvalid()) { 13686 CopyAssignOperator->setInvalidDecl(); 13687 return; 13688 } 13689 13690 // Success! Record the copy. 13691 Statements.push_back(Copy.getAs<Expr>()); 13692 } 13693 13694 // Assign non-static members. 13695 for (auto *Field : ClassDecl->fields()) { 13696 // FIXME: We should form some kind of AST representation for the implied 13697 // memcpy in a union copy operation. 13698 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 13699 continue; 13700 13701 if (Field->isInvalidDecl()) { 13702 Invalid = true; 13703 continue; 13704 } 13705 13706 // Check for members of reference type; we can't copy those. 13707 if (Field->getType()->isReferenceType()) { 13708 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 13709 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 13710 Diag(Field->getLocation(), diag::note_declared_at); 13711 Invalid = true; 13712 continue; 13713 } 13714 13715 // Check for members of const-qualified, non-class type. 13716 QualType BaseType = Context.getBaseElementType(Field->getType()); 13717 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 13718 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 13719 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 13720 Diag(Field->getLocation(), diag::note_declared_at); 13721 Invalid = true; 13722 continue; 13723 } 13724 13725 // Suppress assigning zero-width bitfields. 13726 if (Field->isZeroLengthBitField(Context)) 13727 continue; 13728 13729 QualType FieldType = Field->getType().getNonReferenceType(); 13730 if (FieldType->isIncompleteArrayType()) { 13731 assert(ClassDecl->hasFlexibleArrayMember() && 13732 "Incomplete array type is not valid"); 13733 continue; 13734 } 13735 13736 // Build references to the field in the object we're copying from and to. 13737 CXXScopeSpec SS; // Intentionally empty 13738 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 13739 LookupMemberName); 13740 MemberLookup.addDecl(Field); 13741 MemberLookup.resolveKind(); 13742 13743 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); 13744 13745 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup); 13746 13747 // Build the copy of this field. 13748 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, 13749 To, From, 13750 /*CopyingBaseSubobject=*/false, 13751 /*Copying=*/true); 13752 if (Copy.isInvalid()) { 13753 CopyAssignOperator->setInvalidDecl(); 13754 return; 13755 } 13756 13757 // Success! Record the copy. 13758 Statements.push_back(Copy.getAs<Stmt>()); 13759 } 13760 13761 if (!Invalid) { 13762 // Add a "return *this;" 13763 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 13764 13765 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 13766 if (Return.isInvalid()) 13767 Invalid = true; 13768 else 13769 Statements.push_back(Return.getAs<Stmt>()); 13770 } 13771 13772 if (Invalid) { 13773 CopyAssignOperator->setInvalidDecl(); 13774 return; 13775 } 13776 13777 StmtResult Body; 13778 { 13779 CompoundScopeRAII CompoundScope(*this); 13780 Body = ActOnCompoundStmt(Loc, Loc, Statements, 13781 /*isStmtExpr=*/false); 13782 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 13783 } 13784 CopyAssignOperator->setBody(Body.getAs<Stmt>()); 13785 CopyAssignOperator->markUsed(Context); 13786 13787 if (ASTMutationListener *L = getASTMutationListener()) { 13788 L->CompletedImplicitDefinition(CopyAssignOperator); 13789 } 13790 } 13791 13792 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { 13793 assert(ClassDecl->needsImplicitMoveAssignment()); 13794 13795 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment); 13796 if (DSM.isAlreadyBeingDeclared()) 13797 return nullptr; 13798 13799 // Note: The following rules are largely analoguous to the move 13800 // constructor rules. 13801 13802 QualType ArgType = Context.getTypeDeclType(ClassDecl); 13803 LangAS AS = getDefaultCXXMethodAddrSpace(); 13804 if (AS != LangAS::Default) 13805 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 13806 QualType RetType = Context.getLValueReferenceType(ArgType); 13807 ArgType = Context.getRValueReferenceType(ArgType); 13808 13809 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 13810 CXXMoveAssignment, 13811 false); 13812 13813 // An implicitly-declared move assignment operator is an inline public 13814 // member of its class. 13815 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 13816 SourceLocation ClassLoc = ClassDecl->getLocation(); 13817 DeclarationNameInfo NameInfo(Name, ClassLoc); 13818 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create( 13819 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 13820 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 13821 /*isInline=*/true, Constexpr ? CSK_constexpr : CSK_unspecified, 13822 SourceLocation()); 13823 MoveAssignment->setAccess(AS_public); 13824 MoveAssignment->setDefaulted(); 13825 MoveAssignment->setImplicit(); 13826 13827 if (getLangOpts().CUDA) { 13828 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment, 13829 MoveAssignment, 13830 /* ConstRHS */ false, 13831 /* Diagnose */ false); 13832 } 13833 13834 // Build an exception specification pointing back at this member. 13835 FunctionProtoType::ExtProtoInfo EPI = 13836 getImplicitMethodEPI(*this, MoveAssignment); 13837 MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI)); 13838 13839 // Add the parameter to the operator. 13840 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, 13841 ClassLoc, ClassLoc, 13842 /*Id=*/nullptr, ArgType, 13843 /*TInfo=*/nullptr, SC_None, 13844 nullptr); 13845 MoveAssignment->setParams(FromParam); 13846 13847 MoveAssignment->setTrivial( 13848 ClassDecl->needsOverloadResolutionForMoveAssignment() 13849 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment) 13850 : ClassDecl->hasTrivialMoveAssignment()); 13851 13852 // Note that we have added this copy-assignment operator. 13853 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared; 13854 13855 Scope *S = getScopeForContext(ClassDecl); 13856 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment); 13857 13858 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) { 13859 ClassDecl->setImplicitMoveAssignmentIsDeleted(); 13860 SetDeclDeleted(MoveAssignment, ClassLoc); 13861 } 13862 13863 if (S) 13864 PushOnScopeChains(MoveAssignment, S, false); 13865 ClassDecl->addDecl(MoveAssignment); 13866 13867 return MoveAssignment; 13868 } 13869 13870 /// Check if we're implicitly defining a move assignment operator for a class 13871 /// with virtual bases. Such a move assignment might move-assign the virtual 13872 /// base multiple times. 13873 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, 13874 SourceLocation CurrentLocation) { 13875 assert(!Class->isDependentContext() && "should not define dependent move"); 13876 13877 // Only a virtual base could get implicitly move-assigned multiple times. 13878 // Only a non-trivial move assignment can observe this. We only want to 13879 // diagnose if we implicitly define an assignment operator that assigns 13880 // two base classes, both of which move-assign the same virtual base. 13881 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || 13882 Class->getNumBases() < 2) 13883 return; 13884 13885 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist; 13886 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap; 13887 VBaseMap VBases; 13888 13889 for (auto &BI : Class->bases()) { 13890 Worklist.push_back(&BI); 13891 while (!Worklist.empty()) { 13892 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); 13893 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); 13894 13895 // If the base has no non-trivial move assignment operators, 13896 // we don't care about moves from it. 13897 if (!Base->hasNonTrivialMoveAssignment()) 13898 continue; 13899 13900 // If there's nothing virtual here, skip it. 13901 if (!BaseSpec->isVirtual() && !Base->getNumVBases()) 13902 continue; 13903 13904 // If we're not actually going to call a move assignment for this base, 13905 // or the selected move assignment is trivial, skip it. 13906 Sema::SpecialMemberOverloadResult SMOR = 13907 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment, 13908 /*ConstArg*/false, /*VolatileArg*/false, 13909 /*RValueThis*/true, /*ConstThis*/false, 13910 /*VolatileThis*/false); 13911 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() || 13912 !SMOR.getMethod()->isMoveAssignmentOperator()) 13913 continue; 13914 13915 if (BaseSpec->isVirtual()) { 13916 // We're going to move-assign this virtual base, and its move 13917 // assignment operator is not trivial. If this can happen for 13918 // multiple distinct direct bases of Class, diagnose it. (If it 13919 // only happens in one base, we'll diagnose it when synthesizing 13920 // that base class's move assignment operator.) 13921 CXXBaseSpecifier *&Existing = 13922 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI)) 13923 .first->second; 13924 if (Existing && Existing != &BI) { 13925 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) 13926 << Class << Base; 13927 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here) 13928 << (Base->getCanonicalDecl() == 13929 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 13930 << Base << Existing->getType() << Existing->getSourceRange(); 13931 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here) 13932 << (Base->getCanonicalDecl() == 13933 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 13934 << Base << BI.getType() << BaseSpec->getSourceRange(); 13935 13936 // Only diagnose each vbase once. 13937 Existing = nullptr; 13938 } 13939 } else { 13940 // Only walk over bases that have defaulted move assignment operators. 13941 // We assume that any user-provided move assignment operator handles 13942 // the multiple-moves-of-vbase case itself somehow. 13943 if (!SMOR.getMethod()->isDefaulted()) 13944 continue; 13945 13946 // We're going to move the base classes of Base. Add them to the list. 13947 for (auto &BI : Base->bases()) 13948 Worklist.push_back(&BI); 13949 } 13950 } 13951 } 13952 } 13953 13954 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, 13955 CXXMethodDecl *MoveAssignOperator) { 13956 assert((MoveAssignOperator->isDefaulted() && 13957 MoveAssignOperator->isOverloadedOperator() && 13958 MoveAssignOperator->getOverloadedOperator() == OO_Equal && 13959 !MoveAssignOperator->doesThisDeclarationHaveABody() && 13960 !MoveAssignOperator->isDeleted()) && 13961 "DefineImplicitMoveAssignment called for wrong function"); 13962 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl()) 13963 return; 13964 13965 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); 13966 if (ClassDecl->isInvalidDecl()) { 13967 MoveAssignOperator->setInvalidDecl(); 13968 return; 13969 } 13970 13971 // C++0x [class.copy]p28: 13972 // The implicitly-defined or move assignment operator for a non-union class 13973 // X performs memberwise move assignment of its subobjects. The direct base 13974 // classes of X are assigned first, in the order of their declaration in the 13975 // base-specifier-list, and then the immediate non-static data members of X 13976 // are assigned, in the order in which they were declared in the class 13977 // definition. 13978 13979 // Issue a warning if our implicit move assignment operator will move 13980 // from a virtual base more than once. 13981 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation); 13982 13983 SynthesizedFunctionScope Scope(*this, MoveAssignOperator); 13984 13985 // The exception specification is needed because we are defining the 13986 // function. 13987 ResolveExceptionSpec(CurrentLocation, 13988 MoveAssignOperator->getType()->castAs<FunctionProtoType>()); 13989 13990 // Add a context note for diagnostics produced after this point. 13991 Scope.addContextNote(CurrentLocation); 13992 13993 // The statements that form the synthesized function body. 13994 SmallVector<Stmt*, 8> Statements; 13995 13996 // The parameter for the "other" object, which we are move from. 13997 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0); 13998 QualType OtherRefType = 13999 Other->getType()->castAs<RValueReferenceType>()->getPointeeType(); 14000 14001 // Our location for everything implicitly-generated. 14002 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid() 14003 ? MoveAssignOperator->getEndLoc() 14004 : MoveAssignOperator->getLocation(); 14005 14006 // Builds a reference to the "other" object. 14007 RefBuilder OtherRef(Other, OtherRefType); 14008 // Cast to rvalue. 14009 MoveCastBuilder MoveOther(OtherRef); 14010 14011 // Builds the "this" pointer. 14012 ThisBuilder This; 14013 14014 // Assign base classes. 14015 bool Invalid = false; 14016 for (auto &Base : ClassDecl->bases()) { 14017 // C++11 [class.copy]p28: 14018 // It is unspecified whether subobjects representing virtual base classes 14019 // are assigned more than once by the implicitly-defined copy assignment 14020 // operator. 14021 // FIXME: Do not assign to a vbase that will be assigned by some other base 14022 // class. For a move-assignment, this can result in the vbase being moved 14023 // multiple times. 14024 14025 // Form the assignment: 14026 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); 14027 QualType BaseType = Base.getType().getUnqualifiedType(); 14028 if (!BaseType->isRecordType()) { 14029 Invalid = true; 14030 continue; 14031 } 14032 14033 CXXCastPath BasePath; 14034 BasePath.push_back(&Base); 14035 14036 // Construct the "from" expression, which is an implicit cast to the 14037 // appropriately-qualified base type. 14038 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); 14039 14040 // Dereference "this". 14041 DerefBuilder DerefThis(This); 14042 14043 // Implicitly cast "this" to the appropriately-qualified base type. 14044 CastBuilder To(DerefThis, 14045 Context.getQualifiedType( 14046 BaseType, MoveAssignOperator->getMethodQualifiers()), 14047 VK_LValue, BasePath); 14048 14049 // Build the move. 14050 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, 14051 To, From, 14052 /*CopyingBaseSubobject=*/true, 14053 /*Copying=*/false); 14054 if (Move.isInvalid()) { 14055 MoveAssignOperator->setInvalidDecl(); 14056 return; 14057 } 14058 14059 // Success! Record the move. 14060 Statements.push_back(Move.getAs<Expr>()); 14061 } 14062 14063 // Assign non-static members. 14064 for (auto *Field : ClassDecl->fields()) { 14065 // FIXME: We should form some kind of AST representation for the implied 14066 // memcpy in a union copy operation. 14067 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 14068 continue; 14069 14070 if (Field->isInvalidDecl()) { 14071 Invalid = true; 14072 continue; 14073 } 14074 14075 // Check for members of reference type; we can't move those. 14076 if (Field->getType()->isReferenceType()) { 14077 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14078 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 14079 Diag(Field->getLocation(), diag::note_declared_at); 14080 Invalid = true; 14081 continue; 14082 } 14083 14084 // Check for members of const-qualified, non-class type. 14085 QualType BaseType = Context.getBaseElementType(Field->getType()); 14086 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 14087 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14088 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 14089 Diag(Field->getLocation(), diag::note_declared_at); 14090 Invalid = true; 14091 continue; 14092 } 14093 14094 // Suppress assigning zero-width bitfields. 14095 if (Field->isZeroLengthBitField(Context)) 14096 continue; 14097 14098 QualType FieldType = Field->getType().getNonReferenceType(); 14099 if (FieldType->isIncompleteArrayType()) { 14100 assert(ClassDecl->hasFlexibleArrayMember() && 14101 "Incomplete array type is not valid"); 14102 continue; 14103 } 14104 14105 // Build references to the field in the object we're copying from and to. 14106 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 14107 LookupMemberName); 14108 MemberLookup.addDecl(Field); 14109 MemberLookup.resolveKind(); 14110 MemberBuilder From(MoveOther, OtherRefType, 14111 /*IsArrow=*/false, MemberLookup); 14112 MemberBuilder To(This, getCurrentThisType(), 14113 /*IsArrow=*/true, MemberLookup); 14114 14115 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue 14116 "Member reference with rvalue base must be rvalue except for reference " 14117 "members, which aren't allowed for move assignment."); 14118 14119 // Build the move of this field. 14120 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, 14121 To, From, 14122 /*CopyingBaseSubobject=*/false, 14123 /*Copying=*/false); 14124 if (Move.isInvalid()) { 14125 MoveAssignOperator->setInvalidDecl(); 14126 return; 14127 } 14128 14129 // Success! Record the copy. 14130 Statements.push_back(Move.getAs<Stmt>()); 14131 } 14132 14133 if (!Invalid) { 14134 // Add a "return *this;" 14135 ExprResult ThisObj = 14136 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 14137 14138 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 14139 if (Return.isInvalid()) 14140 Invalid = true; 14141 else 14142 Statements.push_back(Return.getAs<Stmt>()); 14143 } 14144 14145 if (Invalid) { 14146 MoveAssignOperator->setInvalidDecl(); 14147 return; 14148 } 14149 14150 StmtResult Body; 14151 { 14152 CompoundScopeRAII CompoundScope(*this); 14153 Body = ActOnCompoundStmt(Loc, Loc, Statements, 14154 /*isStmtExpr=*/false); 14155 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 14156 } 14157 MoveAssignOperator->setBody(Body.getAs<Stmt>()); 14158 MoveAssignOperator->markUsed(Context); 14159 14160 if (ASTMutationListener *L = getASTMutationListener()) { 14161 L->CompletedImplicitDefinition(MoveAssignOperator); 14162 } 14163 } 14164 14165 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( 14166 CXXRecordDecl *ClassDecl) { 14167 // C++ [class.copy]p4: 14168 // If the class definition does not explicitly declare a copy 14169 // constructor, one is declared implicitly. 14170 assert(ClassDecl->needsImplicitCopyConstructor()); 14171 14172 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor); 14173 if (DSM.isAlreadyBeingDeclared()) 14174 return nullptr; 14175 14176 QualType ClassType = Context.getTypeDeclType(ClassDecl); 14177 QualType ArgType = ClassType; 14178 bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); 14179 if (Const) 14180 ArgType = ArgType.withConst(); 14181 14182 LangAS AS = getDefaultCXXMethodAddrSpace(); 14183 if (AS != LangAS::Default) 14184 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14185 14186 ArgType = Context.getLValueReferenceType(ArgType); 14187 14188 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14189 CXXCopyConstructor, 14190 Const); 14191 14192 DeclarationName Name 14193 = Context.DeclarationNames.getCXXConstructorName( 14194 Context.getCanonicalType(ClassType)); 14195 SourceLocation ClassLoc = ClassDecl->getLocation(); 14196 DeclarationNameInfo NameInfo(Name, ClassLoc); 14197 14198 // An implicitly-declared copy constructor is an inline public 14199 // member of its class. 14200 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( 14201 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 14202 ExplicitSpecifier(), 14203 /*isInline=*/true, 14204 /*isImplicitlyDeclared=*/true, 14205 Constexpr ? CSK_constexpr : CSK_unspecified); 14206 CopyConstructor->setAccess(AS_public); 14207 CopyConstructor->setDefaulted(); 14208 14209 if (getLangOpts().CUDA) { 14210 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor, 14211 CopyConstructor, 14212 /* ConstRHS */ Const, 14213 /* Diagnose */ false); 14214 } 14215 14216 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType); 14217 14218 // Add the parameter to the constructor. 14219 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, 14220 ClassLoc, ClassLoc, 14221 /*IdentifierInfo=*/nullptr, 14222 ArgType, /*TInfo=*/nullptr, 14223 SC_None, nullptr); 14224 CopyConstructor->setParams(FromParam); 14225 14226 CopyConstructor->setTrivial( 14227 ClassDecl->needsOverloadResolutionForCopyConstructor() 14228 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor) 14229 : ClassDecl->hasTrivialCopyConstructor()); 14230 14231 CopyConstructor->setTrivialForCall( 14232 ClassDecl->hasAttr<TrivialABIAttr>() || 14233 (ClassDecl->needsOverloadResolutionForCopyConstructor() 14234 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor, 14235 TAH_ConsiderTrivialABI) 14236 : ClassDecl->hasTrivialCopyConstructorForCall())); 14237 14238 // Note that we have declared this constructor. 14239 ++getASTContext().NumImplicitCopyConstructorsDeclared; 14240 14241 Scope *S = getScopeForContext(ClassDecl); 14242 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor); 14243 14244 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) { 14245 ClassDecl->setImplicitCopyConstructorIsDeleted(); 14246 SetDeclDeleted(CopyConstructor, ClassLoc); 14247 } 14248 14249 if (S) 14250 PushOnScopeChains(CopyConstructor, S, false); 14251 ClassDecl->addDecl(CopyConstructor); 14252 14253 return CopyConstructor; 14254 } 14255 14256 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, 14257 CXXConstructorDecl *CopyConstructor) { 14258 assert((CopyConstructor->isDefaulted() && 14259 CopyConstructor->isCopyConstructor() && 14260 !CopyConstructor->doesThisDeclarationHaveABody() && 14261 !CopyConstructor->isDeleted()) && 14262 "DefineImplicitCopyConstructor - call it for implicit copy ctor"); 14263 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl()) 14264 return; 14265 14266 CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); 14267 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); 14268 14269 SynthesizedFunctionScope Scope(*this, CopyConstructor); 14270 14271 // The exception specification is needed because we are defining the 14272 // function. 14273 ResolveExceptionSpec(CurrentLocation, 14274 CopyConstructor->getType()->castAs<FunctionProtoType>()); 14275 MarkVTableUsed(CurrentLocation, ClassDecl); 14276 14277 // Add a context note for diagnostics produced after this point. 14278 Scope.addContextNote(CurrentLocation); 14279 14280 // C++11 [class.copy]p7: 14281 // The [definition of an implicitly declared copy constructor] is 14282 // deprecated if the class has a user-declared copy assignment operator 14283 // or a user-declared destructor. 14284 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) 14285 diagnoseDeprecatedCopyOperation(*this, CopyConstructor); 14286 14287 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) { 14288 CopyConstructor->setInvalidDecl(); 14289 } else { 14290 SourceLocation Loc = CopyConstructor->getEndLoc().isValid() 14291 ? CopyConstructor->getEndLoc() 14292 : CopyConstructor->getLocation(); 14293 Sema::CompoundScopeRAII CompoundScope(*this); 14294 CopyConstructor->setBody( 14295 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>()); 14296 CopyConstructor->markUsed(Context); 14297 } 14298 14299 if (ASTMutationListener *L = getASTMutationListener()) { 14300 L->CompletedImplicitDefinition(CopyConstructor); 14301 } 14302 } 14303 14304 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( 14305 CXXRecordDecl *ClassDecl) { 14306 assert(ClassDecl->needsImplicitMoveConstructor()); 14307 14308 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor); 14309 if (DSM.isAlreadyBeingDeclared()) 14310 return nullptr; 14311 14312 QualType ClassType = Context.getTypeDeclType(ClassDecl); 14313 14314 QualType ArgType = ClassType; 14315 LangAS AS = getDefaultCXXMethodAddrSpace(); 14316 if (AS != LangAS::Default) 14317 ArgType = Context.getAddrSpaceQualType(ClassType, AS); 14318 ArgType = Context.getRValueReferenceType(ArgType); 14319 14320 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14321 CXXMoveConstructor, 14322 false); 14323 14324 DeclarationName Name 14325 = Context.DeclarationNames.getCXXConstructorName( 14326 Context.getCanonicalType(ClassType)); 14327 SourceLocation ClassLoc = ClassDecl->getLocation(); 14328 DeclarationNameInfo NameInfo(Name, ClassLoc); 14329 14330 // C++11 [class.copy]p11: 14331 // An implicitly-declared copy/move constructor is an inline public 14332 // member of its class. 14333 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( 14334 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 14335 ExplicitSpecifier(), 14336 /*isInline=*/true, 14337 /*isImplicitlyDeclared=*/true, 14338 Constexpr ? CSK_constexpr : CSK_unspecified); 14339 MoveConstructor->setAccess(AS_public); 14340 MoveConstructor->setDefaulted(); 14341 14342 if (getLangOpts().CUDA) { 14343 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor, 14344 MoveConstructor, 14345 /* ConstRHS */ false, 14346 /* Diagnose */ false); 14347 } 14348 14349 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType); 14350 14351 // Add the parameter to the constructor. 14352 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, 14353 ClassLoc, ClassLoc, 14354 /*IdentifierInfo=*/nullptr, 14355 ArgType, /*TInfo=*/nullptr, 14356 SC_None, nullptr); 14357 MoveConstructor->setParams(FromParam); 14358 14359 MoveConstructor->setTrivial( 14360 ClassDecl->needsOverloadResolutionForMoveConstructor() 14361 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor) 14362 : ClassDecl->hasTrivialMoveConstructor()); 14363 14364 MoveConstructor->setTrivialForCall( 14365 ClassDecl->hasAttr<TrivialABIAttr>() || 14366 (ClassDecl->needsOverloadResolutionForMoveConstructor() 14367 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor, 14368 TAH_ConsiderTrivialABI) 14369 : ClassDecl->hasTrivialMoveConstructorForCall())); 14370 14371 // Note that we have declared this constructor. 14372 ++getASTContext().NumImplicitMoveConstructorsDeclared; 14373 14374 Scope *S = getScopeForContext(ClassDecl); 14375 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor); 14376 14377 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) { 14378 ClassDecl->setImplicitMoveConstructorIsDeleted(); 14379 SetDeclDeleted(MoveConstructor, ClassLoc); 14380 } 14381 14382 if (S) 14383 PushOnScopeChains(MoveConstructor, S, false); 14384 ClassDecl->addDecl(MoveConstructor); 14385 14386 return MoveConstructor; 14387 } 14388 14389 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, 14390 CXXConstructorDecl *MoveConstructor) { 14391 assert((MoveConstructor->isDefaulted() && 14392 MoveConstructor->isMoveConstructor() && 14393 !MoveConstructor->doesThisDeclarationHaveABody() && 14394 !MoveConstructor->isDeleted()) && 14395 "DefineImplicitMoveConstructor - call it for implicit move ctor"); 14396 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl()) 14397 return; 14398 14399 CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); 14400 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"); 14401 14402 SynthesizedFunctionScope Scope(*this, MoveConstructor); 14403 14404 // The exception specification is needed because we are defining the 14405 // function. 14406 ResolveExceptionSpec(CurrentLocation, 14407 MoveConstructor->getType()->castAs<FunctionProtoType>()); 14408 MarkVTableUsed(CurrentLocation, ClassDecl); 14409 14410 // Add a context note for diagnostics produced after this point. 14411 Scope.addContextNote(CurrentLocation); 14412 14413 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) { 14414 MoveConstructor->setInvalidDecl(); 14415 } else { 14416 SourceLocation Loc = MoveConstructor->getEndLoc().isValid() 14417 ? MoveConstructor->getEndLoc() 14418 : MoveConstructor->getLocation(); 14419 Sema::CompoundScopeRAII CompoundScope(*this); 14420 MoveConstructor->setBody(ActOnCompoundStmt( 14421 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>()); 14422 MoveConstructor->markUsed(Context); 14423 } 14424 14425 if (ASTMutationListener *L = getASTMutationListener()) { 14426 L->CompletedImplicitDefinition(MoveConstructor); 14427 } 14428 } 14429 14430 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { 14431 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD); 14432 } 14433 14434 void Sema::DefineImplicitLambdaToFunctionPointerConversion( 14435 SourceLocation CurrentLocation, 14436 CXXConversionDecl *Conv) { 14437 SynthesizedFunctionScope Scope(*this, Conv); 14438 assert(!Conv->getReturnType()->isUndeducedType()); 14439 14440 CXXRecordDecl *Lambda = Conv->getParent(); 14441 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 14442 FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker(); 14443 14444 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) { 14445 CallOp = InstantiateFunctionDeclaration( 14446 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 14447 if (!CallOp) 14448 return; 14449 14450 Invoker = InstantiateFunctionDeclaration( 14451 Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 14452 if (!Invoker) 14453 return; 14454 } 14455 14456 if (CallOp->isInvalidDecl()) 14457 return; 14458 14459 // Mark the call operator referenced (and add to pending instantiations 14460 // if necessary). 14461 // For both the conversion and static-invoker template specializations 14462 // we construct their body's in this function, so no need to add them 14463 // to the PendingInstantiations. 14464 MarkFunctionReferenced(CurrentLocation, CallOp); 14465 14466 // Fill in the __invoke function with a dummy implementation. IR generation 14467 // will fill in the actual details. Update its type in case it contained 14468 // an 'auto'. 14469 Invoker->markUsed(Context); 14470 Invoker->setReferenced(); 14471 Invoker->setType(Conv->getReturnType()->getPointeeType()); 14472 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); 14473 14474 // Construct the body of the conversion function { return __invoke; }. 14475 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), 14476 VK_LValue, Conv->getLocation()); 14477 assert(FunctionRef && "Can't refer to __invoke function?"); 14478 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get(); 14479 Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(), 14480 Conv->getLocation())); 14481 Conv->markUsed(Context); 14482 Conv->setReferenced(); 14483 14484 if (ASTMutationListener *L = getASTMutationListener()) { 14485 L->CompletedImplicitDefinition(Conv); 14486 L->CompletedImplicitDefinition(Invoker); 14487 } 14488 } 14489 14490 14491 14492 void Sema::DefineImplicitLambdaToBlockPointerConversion( 14493 SourceLocation CurrentLocation, 14494 CXXConversionDecl *Conv) 14495 { 14496 assert(!Conv->getParent()->isGenericLambda()); 14497 14498 SynthesizedFunctionScope Scope(*this, Conv); 14499 14500 // Copy-initialize the lambda object as needed to capture it. 14501 Expr *This = ActOnCXXThis(CurrentLocation).get(); 14502 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get(); 14503 14504 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, 14505 Conv->getLocation(), 14506 Conv, DerefThis); 14507 14508 // If we're not under ARC, make sure we still get the _Block_copy/autorelease 14509 // behavior. Note that only the general conversion function does this 14510 // (since it's unusable otherwise); in the case where we inline the 14511 // block literal, it has block literal lifetime semantics. 14512 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) 14513 BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(), 14514 CK_CopyAndAutoreleaseBlockObject, 14515 BuildBlock.get(), nullptr, VK_RValue); 14516 14517 if (BuildBlock.isInvalid()) { 14518 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 14519 Conv->setInvalidDecl(); 14520 return; 14521 } 14522 14523 // Create the return statement that returns the block from the conversion 14524 // function. 14525 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get()); 14526 if (Return.isInvalid()) { 14527 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 14528 Conv->setInvalidDecl(); 14529 return; 14530 } 14531 14532 // Set the body of the conversion function. 14533 Stmt *ReturnS = Return.get(); 14534 Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(), 14535 Conv->getLocation())); 14536 Conv->markUsed(Context); 14537 14538 // We're done; notify the mutation listener, if any. 14539 if (ASTMutationListener *L = getASTMutationListener()) { 14540 L->CompletedImplicitDefinition(Conv); 14541 } 14542 } 14543 14544 /// Determine whether the given list arguments contains exactly one 14545 /// "real" (non-default) argument. 14546 static bool hasOneRealArgument(MultiExprArg Args) { 14547 switch (Args.size()) { 14548 case 0: 14549 return false; 14550 14551 default: 14552 if (!Args[1]->isDefaultArgument()) 14553 return false; 14554 14555 LLVM_FALLTHROUGH; 14556 case 1: 14557 return !Args[0]->isDefaultArgument(); 14558 } 14559 14560 return false; 14561 } 14562 14563 ExprResult 14564 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 14565 NamedDecl *FoundDecl, 14566 CXXConstructorDecl *Constructor, 14567 MultiExprArg ExprArgs, 14568 bool HadMultipleCandidates, 14569 bool IsListInitialization, 14570 bool IsStdInitListInitialization, 14571 bool RequiresZeroInit, 14572 unsigned ConstructKind, 14573 SourceRange ParenRange) { 14574 bool Elidable = false; 14575 14576 // C++0x [class.copy]p34: 14577 // When certain criteria are met, an implementation is allowed to 14578 // omit the copy/move construction of a class object, even if the 14579 // copy/move constructor and/or destructor for the object have 14580 // side effects. [...] 14581 // - when a temporary class object that has not been bound to a 14582 // reference (12.2) would be copied/moved to a class object 14583 // with the same cv-unqualified type, the copy/move operation 14584 // can be omitted by constructing the temporary object 14585 // directly into the target of the omitted copy/move 14586 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor && 14587 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) { 14588 Expr *SubExpr = ExprArgs[0]; 14589 Elidable = SubExpr->isTemporaryObject( 14590 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext())); 14591 } 14592 14593 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, 14594 FoundDecl, Constructor, 14595 Elidable, ExprArgs, HadMultipleCandidates, 14596 IsListInitialization, 14597 IsStdInitListInitialization, RequiresZeroInit, 14598 ConstructKind, ParenRange); 14599 } 14600 14601 ExprResult 14602 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 14603 NamedDecl *FoundDecl, 14604 CXXConstructorDecl *Constructor, 14605 bool Elidable, 14606 MultiExprArg ExprArgs, 14607 bool HadMultipleCandidates, 14608 bool IsListInitialization, 14609 bool IsStdInitListInitialization, 14610 bool RequiresZeroInit, 14611 unsigned ConstructKind, 14612 SourceRange ParenRange) { 14613 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) { 14614 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow); 14615 if (DiagnoseUseOfDecl(Constructor, ConstructLoc)) 14616 return ExprError(); 14617 } 14618 14619 return BuildCXXConstructExpr( 14620 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs, 14621 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, 14622 RequiresZeroInit, ConstructKind, ParenRange); 14623 } 14624 14625 /// BuildCXXConstructExpr - Creates a complete call to a constructor, 14626 /// including handling of its default argument expressions. 14627 ExprResult 14628 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 14629 CXXConstructorDecl *Constructor, 14630 bool Elidable, 14631 MultiExprArg ExprArgs, 14632 bool HadMultipleCandidates, 14633 bool IsListInitialization, 14634 bool IsStdInitListInitialization, 14635 bool RequiresZeroInit, 14636 unsigned ConstructKind, 14637 SourceRange ParenRange) { 14638 assert(declaresSameEntity( 14639 Constructor->getParent(), 14640 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && 14641 "given constructor for wrong type"); 14642 MarkFunctionReferenced(ConstructLoc, Constructor); 14643 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor)) 14644 return ExprError(); 14645 14646 return CXXConstructExpr::Create( 14647 Context, DeclInitType, ConstructLoc, Constructor, Elidable, 14648 ExprArgs, HadMultipleCandidates, IsListInitialization, 14649 IsStdInitListInitialization, RequiresZeroInit, 14650 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind), 14651 ParenRange); 14652 } 14653 14654 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) { 14655 assert(Field->hasInClassInitializer()); 14656 14657 // If we already have the in-class initializer nothing needs to be done. 14658 if (Field->getInClassInitializer()) 14659 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); 14660 14661 // If we might have already tried and failed to instantiate, don't try again. 14662 if (Field->isInvalidDecl()) 14663 return ExprError(); 14664 14665 // Maybe we haven't instantiated the in-class initializer. Go check the 14666 // pattern FieldDecl to see if it has one. 14667 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent()); 14668 14669 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) { 14670 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern(); 14671 DeclContext::lookup_result Lookup = 14672 ClassPattern->lookup(Field->getDeclName()); 14673 14674 // Lookup can return at most two results: the pattern for the field, or the 14675 // injected class name of the parent record. No other member can have the 14676 // same name as the field. 14677 // In modules mode, lookup can return multiple results (coming from 14678 // different modules). 14679 assert((getLangOpts().Modules || (!Lookup.empty() && Lookup.size() <= 2)) && 14680 "more than two lookup results for field name"); 14681 FieldDecl *Pattern = dyn_cast<FieldDecl>(Lookup[0]); 14682 if (!Pattern) { 14683 assert(isa<CXXRecordDecl>(Lookup[0]) && 14684 "cannot have other non-field member with same name"); 14685 for (auto L : Lookup) 14686 if (isa<FieldDecl>(L)) { 14687 Pattern = cast<FieldDecl>(L); 14688 break; 14689 } 14690 assert(Pattern && "We must have set the Pattern!"); 14691 } 14692 14693 if (!Pattern->hasInClassInitializer() || 14694 InstantiateInClassInitializer(Loc, Field, Pattern, 14695 getTemplateInstantiationArgs(Field))) { 14696 // Don't diagnose this again. 14697 Field->setInvalidDecl(); 14698 return ExprError(); 14699 } 14700 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); 14701 } 14702 14703 // DR1351: 14704 // If the brace-or-equal-initializer of a non-static data member 14705 // invokes a defaulted default constructor of its class or of an 14706 // enclosing class in a potentially evaluated subexpression, the 14707 // program is ill-formed. 14708 // 14709 // This resolution is unworkable: the exception specification of the 14710 // default constructor can be needed in an unevaluated context, in 14711 // particular, in the operand of a noexcept-expression, and we can be 14712 // unable to compute an exception specification for an enclosed class. 14713 // 14714 // Any attempt to resolve the exception specification of a defaulted default 14715 // constructor before the initializer is lexically complete will ultimately 14716 // come here at which point we can diagnose it. 14717 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext(); 14718 Diag(Loc, diag::err_in_class_initializer_not_yet_parsed) 14719 << OutermostClass << Field; 14720 Diag(Field->getEndLoc(), diag::note_in_class_initializer_not_yet_parsed); 14721 // Recover by marking the field invalid, unless we're in a SFINAE context. 14722 if (!isSFINAEContext()) 14723 Field->setInvalidDecl(); 14724 return ExprError(); 14725 } 14726 14727 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { 14728 if (VD->isInvalidDecl()) return; 14729 14730 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); 14731 if (ClassDecl->isInvalidDecl()) return; 14732 if (ClassDecl->hasIrrelevantDestructor()) return; 14733 if (ClassDecl->isDependentContext()) return; 14734 14735 if (VD->isNoDestroy(getASTContext())) 14736 return; 14737 14738 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 14739 14740 // If this is an array, we'll require the destructor during initialization, so 14741 // we can skip over this. We still want to emit exit-time destructor warnings 14742 // though. 14743 if (!VD->getType()->isArrayType()) { 14744 MarkFunctionReferenced(VD->getLocation(), Destructor); 14745 CheckDestructorAccess(VD->getLocation(), Destructor, 14746 PDiag(diag::err_access_dtor_var) 14747 << VD->getDeclName() << VD->getType()); 14748 DiagnoseUseOfDecl(Destructor, VD->getLocation()); 14749 } 14750 14751 if (Destructor->isTrivial()) return; 14752 14753 // If the destructor is constexpr, check whether the variable has constant 14754 // destruction now. 14755 if (Destructor->isConstexpr() && VD->getInit() && 14756 !VD->getInit()->isValueDependent() && VD->evaluateValue()) { 14757 SmallVector<PartialDiagnosticAt, 8> Notes; 14758 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr()) { 14759 Diag(VD->getLocation(), 14760 diag::err_constexpr_var_requires_const_destruction) << VD; 14761 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 14762 Diag(Notes[I].first, Notes[I].second); 14763 } 14764 } 14765 14766 if (!VD->hasGlobalStorage()) return; 14767 14768 // Emit warning for non-trivial dtor in global scope (a real global, 14769 // class-static, function-static). 14770 Diag(VD->getLocation(), diag::warn_exit_time_destructor); 14771 14772 // TODO: this should be re-enabled for static locals by !CXAAtExit 14773 if (!VD->isStaticLocal()) 14774 Diag(VD->getLocation(), diag::warn_global_destructor); 14775 } 14776 14777 /// Given a constructor and the set of arguments provided for the 14778 /// constructor, convert the arguments and add any required default arguments 14779 /// to form a proper call to this constructor. 14780 /// 14781 /// \returns true if an error occurred, false otherwise. 14782 bool 14783 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, 14784 MultiExprArg ArgsPtr, 14785 SourceLocation Loc, 14786 SmallVectorImpl<Expr*> &ConvertedArgs, 14787 bool AllowExplicit, 14788 bool IsListInitialization) { 14789 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. 14790 unsigned NumArgs = ArgsPtr.size(); 14791 Expr **Args = ArgsPtr.data(); 14792 14793 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>(); 14794 unsigned NumParams = Proto->getNumParams(); 14795 14796 // If too few arguments are available, we'll fill in the rest with defaults. 14797 if (NumArgs < NumParams) 14798 ConvertedArgs.reserve(NumParams); 14799 else 14800 ConvertedArgs.reserve(NumArgs); 14801 14802 VariadicCallType CallType = 14803 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 14804 SmallVector<Expr *, 8> AllArgs; 14805 bool Invalid = GatherArgumentsForCall(Loc, Constructor, 14806 Proto, 0, 14807 llvm::makeArrayRef(Args, NumArgs), 14808 AllArgs, 14809 CallType, AllowExplicit, 14810 IsListInitialization); 14811 ConvertedArgs.append(AllArgs.begin(), AllArgs.end()); 14812 14813 DiagnoseSentinelCalls(Constructor, Loc, AllArgs); 14814 14815 CheckConstructorCall(Constructor, 14816 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()), 14817 Proto, Loc); 14818 14819 return Invalid; 14820 } 14821 14822 static inline bool 14823 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, 14824 const FunctionDecl *FnDecl) { 14825 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); 14826 if (isa<NamespaceDecl>(DC)) { 14827 return SemaRef.Diag(FnDecl->getLocation(), 14828 diag::err_operator_new_delete_declared_in_namespace) 14829 << FnDecl->getDeclName(); 14830 } 14831 14832 if (isa<TranslationUnitDecl>(DC) && 14833 FnDecl->getStorageClass() == SC_Static) { 14834 return SemaRef.Diag(FnDecl->getLocation(), 14835 diag::err_operator_new_delete_declared_static) 14836 << FnDecl->getDeclName(); 14837 } 14838 14839 return false; 14840 } 14841 14842 static QualType 14843 RemoveAddressSpaceFromPtr(Sema &SemaRef, const PointerType *PtrTy) { 14844 QualType QTy = PtrTy->getPointeeType(); 14845 QTy = SemaRef.Context.removeAddrSpaceQualType(QTy); 14846 return SemaRef.Context.getPointerType(QTy); 14847 } 14848 14849 static inline bool 14850 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, 14851 CanQualType ExpectedResultType, 14852 CanQualType ExpectedFirstParamType, 14853 unsigned DependentParamTypeDiag, 14854 unsigned InvalidParamTypeDiag) { 14855 QualType ResultType = 14856 FnDecl->getType()->castAs<FunctionType>()->getReturnType(); 14857 14858 // Check that the result type is not dependent. 14859 if (ResultType->isDependentType()) 14860 return SemaRef.Diag(FnDecl->getLocation(), 14861 diag::err_operator_new_delete_dependent_result_type) 14862 << FnDecl->getDeclName() << ExpectedResultType; 14863 14864 // The operator is valid on any address space for OpenCL. 14865 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 14866 if (auto *PtrTy = ResultType->getAs<PointerType>()) { 14867 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 14868 } 14869 } 14870 14871 // Check that the result type is what we expect. 14872 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) 14873 return SemaRef.Diag(FnDecl->getLocation(), 14874 diag::err_operator_new_delete_invalid_result_type) 14875 << FnDecl->getDeclName() << ExpectedResultType; 14876 14877 // A function template must have at least 2 parameters. 14878 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) 14879 return SemaRef.Diag(FnDecl->getLocation(), 14880 diag::err_operator_new_delete_template_too_few_parameters) 14881 << FnDecl->getDeclName(); 14882 14883 // The function decl must have at least 1 parameter. 14884 if (FnDecl->getNumParams() == 0) 14885 return SemaRef.Diag(FnDecl->getLocation(), 14886 diag::err_operator_new_delete_too_few_parameters) 14887 << FnDecl->getDeclName(); 14888 14889 // Check the first parameter type is not dependent. 14890 QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); 14891 if (FirstParamType->isDependentType()) 14892 return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag) 14893 << FnDecl->getDeclName() << ExpectedFirstParamType; 14894 14895 // Check that the first parameter type is what we expect. 14896 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 14897 // The operator is valid on any address space for OpenCL. 14898 if (auto *PtrTy = 14899 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) { 14900 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 14901 } 14902 } 14903 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != 14904 ExpectedFirstParamType) 14905 return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag) 14906 << FnDecl->getDeclName() << ExpectedFirstParamType; 14907 14908 return false; 14909 } 14910 14911 static bool 14912 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { 14913 // C++ [basic.stc.dynamic.allocation]p1: 14914 // A program is ill-formed if an allocation function is declared in a 14915 // namespace scope other than global scope or declared static in global 14916 // scope. 14917 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 14918 return true; 14919 14920 CanQualType SizeTy = 14921 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); 14922 14923 // C++ [basic.stc.dynamic.allocation]p1: 14924 // The return type shall be void*. The first parameter shall have type 14925 // std::size_t. 14926 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, 14927 SizeTy, 14928 diag::err_operator_new_dependent_param_type, 14929 diag::err_operator_new_param_type)) 14930 return true; 14931 14932 // C++ [basic.stc.dynamic.allocation]p1: 14933 // The first parameter shall not have an associated default argument. 14934 if (FnDecl->getParamDecl(0)->hasDefaultArg()) 14935 return SemaRef.Diag(FnDecl->getLocation(), 14936 diag::err_operator_new_default_arg) 14937 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); 14938 14939 return false; 14940 } 14941 14942 static bool 14943 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { 14944 // C++ [basic.stc.dynamic.deallocation]p1: 14945 // A program is ill-formed if deallocation functions are declared in a 14946 // namespace scope other than global scope or declared static in global 14947 // scope. 14948 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 14949 return true; 14950 14951 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl); 14952 14953 // C++ P0722: 14954 // Within a class C, the first parameter of a destroying operator delete 14955 // shall be of type C *. The first parameter of any other deallocation 14956 // function shall be of type void *. 14957 CanQualType ExpectedFirstParamType = 14958 MD && MD->isDestroyingOperatorDelete() 14959 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType( 14960 SemaRef.Context.getRecordType(MD->getParent()))) 14961 : SemaRef.Context.VoidPtrTy; 14962 14963 // C++ [basic.stc.dynamic.deallocation]p2: 14964 // Each deallocation function shall return void 14965 if (CheckOperatorNewDeleteTypes( 14966 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType, 14967 diag::err_operator_delete_dependent_param_type, 14968 diag::err_operator_delete_param_type)) 14969 return true; 14970 14971 // C++ P0722: 14972 // A destroying operator delete shall be a usual deallocation function. 14973 if (MD && !MD->getParent()->isDependentContext() && 14974 MD->isDestroyingOperatorDelete() && 14975 !SemaRef.isUsualDeallocationFunction(MD)) { 14976 SemaRef.Diag(MD->getLocation(), 14977 diag::err_destroying_operator_delete_not_usual); 14978 return true; 14979 } 14980 14981 return false; 14982 } 14983 14984 /// CheckOverloadedOperatorDeclaration - Check whether the declaration 14985 /// of this overloaded operator is well-formed. If so, returns false; 14986 /// otherwise, emits appropriate diagnostics and returns true. 14987 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { 14988 assert(FnDecl && FnDecl->isOverloadedOperator() && 14989 "Expected an overloaded operator declaration"); 14990 14991 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); 14992 14993 // C++ [over.oper]p5: 14994 // The allocation and deallocation functions, operator new, 14995 // operator new[], operator delete and operator delete[], are 14996 // described completely in 3.7.3. The attributes and restrictions 14997 // found in the rest of this subclause do not apply to them unless 14998 // explicitly stated in 3.7.3. 14999 if (Op == OO_Delete || Op == OO_Array_Delete) 15000 return CheckOperatorDeleteDeclaration(*this, FnDecl); 15001 15002 if (Op == OO_New || Op == OO_Array_New) 15003 return CheckOperatorNewDeclaration(*this, FnDecl); 15004 15005 // C++ [over.oper]p6: 15006 // An operator function shall either be a non-static member 15007 // function or be a non-member function and have at least one 15008 // parameter whose type is a class, a reference to a class, an 15009 // enumeration, or a reference to an enumeration. 15010 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { 15011 if (MethodDecl->isStatic()) 15012 return Diag(FnDecl->getLocation(), 15013 diag::err_operator_overload_static) << FnDecl->getDeclName(); 15014 } else { 15015 bool ClassOrEnumParam = false; 15016 for (auto Param : FnDecl->parameters()) { 15017 QualType ParamType = Param->getType().getNonReferenceType(); 15018 if (ParamType->isDependentType() || ParamType->isRecordType() || 15019 ParamType->isEnumeralType()) { 15020 ClassOrEnumParam = true; 15021 break; 15022 } 15023 } 15024 15025 if (!ClassOrEnumParam) 15026 return Diag(FnDecl->getLocation(), 15027 diag::err_operator_overload_needs_class_or_enum) 15028 << FnDecl->getDeclName(); 15029 } 15030 15031 // C++ [over.oper]p8: 15032 // An operator function cannot have default arguments (8.3.6), 15033 // except where explicitly stated below. 15034 // 15035 // Only the function-call operator allows default arguments 15036 // (C++ [over.call]p1). 15037 if (Op != OO_Call) { 15038 for (auto Param : FnDecl->parameters()) { 15039 if (Param->hasDefaultArg()) 15040 return Diag(Param->getLocation(), 15041 diag::err_operator_overload_default_arg) 15042 << FnDecl->getDeclName() << Param->getDefaultArgRange(); 15043 } 15044 } 15045 15046 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { 15047 { false, false, false } 15048 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 15049 , { Unary, Binary, MemberOnly } 15050 #include "clang/Basic/OperatorKinds.def" 15051 }; 15052 15053 bool CanBeUnaryOperator = OperatorUses[Op][0]; 15054 bool CanBeBinaryOperator = OperatorUses[Op][1]; 15055 bool MustBeMemberOperator = OperatorUses[Op][2]; 15056 15057 // C++ [over.oper]p8: 15058 // [...] Operator functions cannot have more or fewer parameters 15059 // than the number required for the corresponding operator, as 15060 // described in the rest of this subclause. 15061 unsigned NumParams = FnDecl->getNumParams() 15062 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); 15063 if (Op != OO_Call && 15064 ((NumParams == 1 && !CanBeUnaryOperator) || 15065 (NumParams == 2 && !CanBeBinaryOperator) || 15066 (NumParams < 1) || (NumParams > 2))) { 15067 // We have the wrong number of parameters. 15068 unsigned ErrorKind; 15069 if (CanBeUnaryOperator && CanBeBinaryOperator) { 15070 ErrorKind = 2; // 2 -> unary or binary. 15071 } else if (CanBeUnaryOperator) { 15072 ErrorKind = 0; // 0 -> unary 15073 } else { 15074 assert(CanBeBinaryOperator && 15075 "All non-call overloaded operators are unary or binary!"); 15076 ErrorKind = 1; // 1 -> binary 15077 } 15078 15079 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) 15080 << FnDecl->getDeclName() << NumParams << ErrorKind; 15081 } 15082 15083 // Overloaded operators other than operator() cannot be variadic. 15084 if (Op != OO_Call && 15085 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) { 15086 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) 15087 << FnDecl->getDeclName(); 15088 } 15089 15090 // Some operators must be non-static member functions. 15091 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { 15092 return Diag(FnDecl->getLocation(), 15093 diag::err_operator_overload_must_be_member) 15094 << FnDecl->getDeclName(); 15095 } 15096 15097 // C++ [over.inc]p1: 15098 // The user-defined function called operator++ implements the 15099 // prefix and postfix ++ operator. If this function is a member 15100 // function with no parameters, or a non-member function with one 15101 // parameter of class or enumeration type, it defines the prefix 15102 // increment operator ++ for objects of that type. If the function 15103 // is a member function with one parameter (which shall be of type 15104 // int) or a non-member function with two parameters (the second 15105 // of which shall be of type int), it defines the postfix 15106 // increment operator ++ for objects of that type. 15107 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { 15108 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); 15109 QualType ParamType = LastParam->getType(); 15110 15111 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && 15112 !ParamType->isDependentType()) 15113 return Diag(LastParam->getLocation(), 15114 diag::err_operator_overload_post_incdec_must_be_int) 15115 << LastParam->getType() << (Op == OO_MinusMinus); 15116 } 15117 15118 return false; 15119 } 15120 15121 static bool 15122 checkLiteralOperatorTemplateParameterList(Sema &SemaRef, 15123 FunctionTemplateDecl *TpDecl) { 15124 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters(); 15125 15126 // Must have one or two template parameters. 15127 if (TemplateParams->size() == 1) { 15128 NonTypeTemplateParmDecl *PmDecl = 15129 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0)); 15130 15131 // The template parameter must be a char parameter pack. 15132 if (PmDecl && PmDecl->isTemplateParameterPack() && 15133 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy)) 15134 return false; 15135 15136 } else if (TemplateParams->size() == 2) { 15137 TemplateTypeParmDecl *PmType = 15138 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0)); 15139 NonTypeTemplateParmDecl *PmArgs = 15140 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1)); 15141 15142 // The second template parameter must be a parameter pack with the 15143 // first template parameter as its type. 15144 if (PmType && PmArgs && !PmType->isTemplateParameterPack() && 15145 PmArgs->isTemplateParameterPack()) { 15146 const TemplateTypeParmType *TArgs = 15147 PmArgs->getType()->getAs<TemplateTypeParmType>(); 15148 if (TArgs && TArgs->getDepth() == PmType->getDepth() && 15149 TArgs->getIndex() == PmType->getIndex()) { 15150 if (!SemaRef.inTemplateInstantiation()) 15151 SemaRef.Diag(TpDecl->getLocation(), 15152 diag::ext_string_literal_operator_template); 15153 return false; 15154 } 15155 } 15156 } 15157 15158 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(), 15159 diag::err_literal_operator_template) 15160 << TpDecl->getTemplateParameters()->getSourceRange(); 15161 return true; 15162 } 15163 15164 /// CheckLiteralOperatorDeclaration - Check whether the declaration 15165 /// of this literal operator function is well-formed. If so, returns 15166 /// false; otherwise, emits appropriate diagnostics and returns true. 15167 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { 15168 if (isa<CXXMethodDecl>(FnDecl)) { 15169 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) 15170 << FnDecl->getDeclName(); 15171 return true; 15172 } 15173 15174 if (FnDecl->isExternC()) { 15175 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); 15176 if (const LinkageSpecDecl *LSD = 15177 FnDecl->getDeclContext()->getExternCContext()) 15178 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 15179 return true; 15180 } 15181 15182 // This might be the definition of a literal operator template. 15183 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); 15184 15185 // This might be a specialization of a literal operator template. 15186 if (!TpDecl) 15187 TpDecl = FnDecl->getPrimaryTemplate(); 15188 15189 // template <char...> type operator "" name() and 15190 // template <class T, T...> type operator "" name() are the only valid 15191 // template signatures, and the only valid signatures with no parameters. 15192 if (TpDecl) { 15193 if (FnDecl->param_size() != 0) { 15194 Diag(FnDecl->getLocation(), 15195 diag::err_literal_operator_template_with_params); 15196 return true; 15197 } 15198 15199 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl)) 15200 return true; 15201 15202 } else if (FnDecl->param_size() == 1) { 15203 const ParmVarDecl *Param = FnDecl->getParamDecl(0); 15204 15205 QualType ParamType = Param->getType().getUnqualifiedType(); 15206 15207 // Only unsigned long long int, long double, any character type, and const 15208 // char * are allowed as the only parameters. 15209 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) || 15210 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) || 15211 Context.hasSameType(ParamType, Context.CharTy) || 15212 Context.hasSameType(ParamType, Context.WideCharTy) || 15213 Context.hasSameType(ParamType, Context.Char8Ty) || 15214 Context.hasSameType(ParamType, Context.Char16Ty) || 15215 Context.hasSameType(ParamType, Context.Char32Ty)) { 15216 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) { 15217 QualType InnerType = Ptr->getPointeeType(); 15218 15219 // Pointer parameter must be a const char *. 15220 if (!(Context.hasSameType(InnerType.getUnqualifiedType(), 15221 Context.CharTy) && 15222 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) { 15223 Diag(Param->getSourceRange().getBegin(), 15224 diag::err_literal_operator_param) 15225 << ParamType << "'const char *'" << Param->getSourceRange(); 15226 return true; 15227 } 15228 15229 } else if (ParamType->isRealFloatingType()) { 15230 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 15231 << ParamType << Context.LongDoubleTy << Param->getSourceRange(); 15232 return true; 15233 15234 } else if (ParamType->isIntegerType()) { 15235 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 15236 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange(); 15237 return true; 15238 15239 } else { 15240 Diag(Param->getSourceRange().getBegin(), 15241 diag::err_literal_operator_invalid_param) 15242 << ParamType << Param->getSourceRange(); 15243 return true; 15244 } 15245 15246 } else if (FnDecl->param_size() == 2) { 15247 FunctionDecl::param_iterator Param = FnDecl->param_begin(); 15248 15249 // First, verify that the first parameter is correct. 15250 15251 QualType FirstParamType = (*Param)->getType().getUnqualifiedType(); 15252 15253 // Two parameter function must have a pointer to const as a 15254 // first parameter; let's strip those qualifiers. 15255 const PointerType *PT = FirstParamType->getAs<PointerType>(); 15256 15257 if (!PT) { 15258 Diag((*Param)->getSourceRange().getBegin(), 15259 diag::err_literal_operator_param) 15260 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 15261 return true; 15262 } 15263 15264 QualType PointeeType = PT->getPointeeType(); 15265 // First parameter must be const 15266 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) { 15267 Diag((*Param)->getSourceRange().getBegin(), 15268 diag::err_literal_operator_param) 15269 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 15270 return true; 15271 } 15272 15273 QualType InnerType = PointeeType.getUnqualifiedType(); 15274 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and 15275 // const char32_t* are allowed as the first parameter to a two-parameter 15276 // function 15277 if (!(Context.hasSameType(InnerType, Context.CharTy) || 15278 Context.hasSameType(InnerType, Context.WideCharTy) || 15279 Context.hasSameType(InnerType, Context.Char8Ty) || 15280 Context.hasSameType(InnerType, Context.Char16Ty) || 15281 Context.hasSameType(InnerType, Context.Char32Ty))) { 15282 Diag((*Param)->getSourceRange().getBegin(), 15283 diag::err_literal_operator_param) 15284 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 15285 return true; 15286 } 15287 15288 // Move on to the second and final parameter. 15289 ++Param; 15290 15291 // The second parameter must be a std::size_t. 15292 QualType SecondParamType = (*Param)->getType().getUnqualifiedType(); 15293 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) { 15294 Diag((*Param)->getSourceRange().getBegin(), 15295 diag::err_literal_operator_param) 15296 << SecondParamType << Context.getSizeType() 15297 << (*Param)->getSourceRange(); 15298 return true; 15299 } 15300 } else { 15301 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count); 15302 return true; 15303 } 15304 15305 // Parameters are good. 15306 15307 // A parameter-declaration-clause containing a default argument is not 15308 // equivalent to any of the permitted forms. 15309 for (auto Param : FnDecl->parameters()) { 15310 if (Param->hasDefaultArg()) { 15311 Diag(Param->getDefaultArgRange().getBegin(), 15312 diag::err_literal_operator_default_argument) 15313 << Param->getDefaultArgRange(); 15314 break; 15315 } 15316 } 15317 15318 StringRef LiteralName 15319 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName(); 15320 if (LiteralName[0] != '_' && 15321 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) { 15322 // C++11 [usrlit.suffix]p1: 15323 // Literal suffix identifiers that do not start with an underscore 15324 // are reserved for future standardization. 15325 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) 15326 << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName); 15327 } 15328 15329 return false; 15330 } 15331 15332 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ 15333 /// linkage specification, including the language and (if present) 15334 /// the '{'. ExternLoc is the location of the 'extern', Lang is the 15335 /// language string literal. LBraceLoc, if valid, provides the location of 15336 /// the '{' brace. Otherwise, this linkage specification does not 15337 /// have any braces. 15338 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, 15339 Expr *LangStr, 15340 SourceLocation LBraceLoc) { 15341 StringLiteral *Lit = cast<StringLiteral>(LangStr); 15342 if (!Lit->isAscii()) { 15343 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii) 15344 << LangStr->getSourceRange(); 15345 return nullptr; 15346 } 15347 15348 StringRef Lang = Lit->getString(); 15349 LinkageSpecDecl::LanguageIDs Language; 15350 if (Lang == "C") 15351 Language = LinkageSpecDecl::lang_c; 15352 else if (Lang == "C++") 15353 Language = LinkageSpecDecl::lang_cxx; 15354 else { 15355 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) 15356 << LangStr->getSourceRange(); 15357 return nullptr; 15358 } 15359 15360 // FIXME: Add all the various semantics of linkage specifications 15361 15362 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc, 15363 LangStr->getExprLoc(), Language, 15364 LBraceLoc.isValid()); 15365 CurContext->addDecl(D); 15366 PushDeclContext(S, D); 15367 return D; 15368 } 15369 15370 /// ActOnFinishLinkageSpecification - Complete the definition of 15371 /// the C++ linkage specification LinkageSpec. If RBraceLoc is 15372 /// valid, it's the position of the closing '}' brace in a linkage 15373 /// specification that uses braces. 15374 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, 15375 Decl *LinkageSpec, 15376 SourceLocation RBraceLoc) { 15377 if (RBraceLoc.isValid()) { 15378 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec); 15379 LSDecl->setRBraceLoc(RBraceLoc); 15380 } 15381 PopDeclContext(); 15382 return LinkageSpec; 15383 } 15384 15385 Decl *Sema::ActOnEmptyDeclaration(Scope *S, 15386 const ParsedAttributesView &AttrList, 15387 SourceLocation SemiLoc) { 15388 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc); 15389 // Attribute declarations appertain to empty declaration so we handle 15390 // them here. 15391 ProcessDeclAttributeList(S, ED, AttrList); 15392 15393 CurContext->addDecl(ED); 15394 return ED; 15395 } 15396 15397 /// Perform semantic analysis for the variable declaration that 15398 /// occurs within a C++ catch clause, returning the newly-created 15399 /// variable. 15400 VarDecl *Sema::BuildExceptionDeclaration(Scope *S, 15401 TypeSourceInfo *TInfo, 15402 SourceLocation StartLoc, 15403 SourceLocation Loc, 15404 IdentifierInfo *Name) { 15405 bool Invalid = false; 15406 QualType ExDeclType = TInfo->getType(); 15407 15408 // Arrays and functions decay. 15409 if (ExDeclType->isArrayType()) 15410 ExDeclType = Context.getArrayDecayedType(ExDeclType); 15411 else if (ExDeclType->isFunctionType()) 15412 ExDeclType = Context.getPointerType(ExDeclType); 15413 15414 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. 15415 // The exception-declaration shall not denote a pointer or reference to an 15416 // incomplete type, other than [cv] void*. 15417 // N2844 forbids rvalue references. 15418 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { 15419 Diag(Loc, diag::err_catch_rvalue_ref); 15420 Invalid = true; 15421 } 15422 15423 if (ExDeclType->isVariablyModifiedType()) { 15424 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType; 15425 Invalid = true; 15426 } 15427 15428 QualType BaseType = ExDeclType; 15429 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference 15430 unsigned DK = diag::err_catch_incomplete; 15431 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 15432 BaseType = Ptr->getPointeeType(); 15433 Mode = 1; 15434 DK = diag::err_catch_incomplete_ptr; 15435 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { 15436 // For the purpose of error recovery, we treat rvalue refs like lvalue refs. 15437 BaseType = Ref->getPointeeType(); 15438 Mode = 2; 15439 DK = diag::err_catch_incomplete_ref; 15440 } 15441 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && 15442 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) 15443 Invalid = true; 15444 15445 if (!Invalid && !ExDeclType->isDependentType() && 15446 RequireNonAbstractType(Loc, ExDeclType, 15447 diag::err_abstract_type_in_decl, 15448 AbstractVariableType)) 15449 Invalid = true; 15450 15451 // Only the non-fragile NeXT runtime currently supports C++ catches 15452 // of ObjC types, and no runtime supports catching ObjC types by value. 15453 if (!Invalid && getLangOpts().ObjC) { 15454 QualType T = ExDeclType; 15455 if (const ReferenceType *RT = T->getAs<ReferenceType>()) 15456 T = RT->getPointeeType(); 15457 15458 if (T->isObjCObjectType()) { 15459 Diag(Loc, diag::err_objc_object_catch); 15460 Invalid = true; 15461 } else if (T->isObjCObjectPointerType()) { 15462 // FIXME: should this be a test for macosx-fragile specifically? 15463 if (getLangOpts().ObjCRuntime.isFragile()) 15464 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); 15465 } 15466 } 15467 15468 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, 15469 ExDeclType, TInfo, SC_None); 15470 ExDecl->setExceptionVariable(true); 15471 15472 // In ARC, infer 'retaining' for variables of retainable type. 15473 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl)) 15474 Invalid = true; 15475 15476 if (!Invalid && !ExDeclType->isDependentType()) { 15477 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { 15478 // Insulate this from anything else we might currently be parsing. 15479 EnterExpressionEvaluationContext scope( 15480 *this, ExpressionEvaluationContext::PotentiallyEvaluated); 15481 15482 // C++ [except.handle]p16: 15483 // The object declared in an exception-declaration or, if the 15484 // exception-declaration does not specify a name, a temporary (12.2) is 15485 // copy-initialized (8.5) from the exception object. [...] 15486 // The object is destroyed when the handler exits, after the destruction 15487 // of any automatic objects initialized within the handler. 15488 // 15489 // We just pretend to initialize the object with itself, then make sure 15490 // it can be destroyed later. 15491 QualType initType = Context.getExceptionObjectType(ExDeclType); 15492 15493 InitializedEntity entity = 15494 InitializedEntity::InitializeVariable(ExDecl); 15495 InitializationKind initKind = 15496 InitializationKind::CreateCopy(Loc, SourceLocation()); 15497 15498 Expr *opaqueValue = 15499 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); 15500 InitializationSequence sequence(*this, entity, initKind, opaqueValue); 15501 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue); 15502 if (result.isInvalid()) 15503 Invalid = true; 15504 else { 15505 // If the constructor used was non-trivial, set this as the 15506 // "initializer". 15507 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>(); 15508 if (!construct->getConstructor()->isTrivial()) { 15509 Expr *init = MaybeCreateExprWithCleanups(construct); 15510 ExDecl->setInit(init); 15511 } 15512 15513 // And make sure it's destructable. 15514 FinalizeVarWithDestructor(ExDecl, recordType); 15515 } 15516 } 15517 } 15518 15519 if (Invalid) 15520 ExDecl->setInvalidDecl(); 15521 15522 return ExDecl; 15523 } 15524 15525 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch 15526 /// handler. 15527 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { 15528 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 15529 bool Invalid = D.isInvalidType(); 15530 15531 // Check for unexpanded parameter packs. 15532 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 15533 UPPC_ExceptionType)) { 15534 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 15535 D.getIdentifierLoc()); 15536 Invalid = true; 15537 } 15538 15539 IdentifierInfo *II = D.getIdentifier(); 15540 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), 15541 LookupOrdinaryName, 15542 ForVisibleRedeclaration)) { 15543 // The scope should be freshly made just for us. There is just no way 15544 // it contains any previous declaration, except for function parameters in 15545 // a function-try-block's catch statement. 15546 assert(!S->isDeclScope(PrevDecl)); 15547 if (isDeclInScope(PrevDecl, CurContext, S)) { 15548 Diag(D.getIdentifierLoc(), diag::err_redefinition) 15549 << D.getIdentifier(); 15550 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 15551 Invalid = true; 15552 } else if (PrevDecl->isTemplateParameter()) 15553 // Maybe we will complain about the shadowed template parameter. 15554 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 15555 } 15556 15557 if (D.getCXXScopeSpec().isSet() && !Invalid) { 15558 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) 15559 << D.getCXXScopeSpec().getRange(); 15560 Invalid = true; 15561 } 15562 15563 VarDecl *ExDecl = BuildExceptionDeclaration( 15564 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier()); 15565 if (Invalid) 15566 ExDecl->setInvalidDecl(); 15567 15568 // Add the exception declaration into this scope. 15569 if (II) 15570 PushOnScopeChains(ExDecl, S); 15571 else 15572 CurContext->addDecl(ExDecl); 15573 15574 ProcessDeclAttributes(S, ExDecl, D); 15575 return ExDecl; 15576 } 15577 15578 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, 15579 Expr *AssertExpr, 15580 Expr *AssertMessageExpr, 15581 SourceLocation RParenLoc) { 15582 StringLiteral *AssertMessage = 15583 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr; 15584 15585 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) 15586 return nullptr; 15587 15588 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, 15589 AssertMessage, RParenLoc, false); 15590 } 15591 15592 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, 15593 Expr *AssertExpr, 15594 StringLiteral *AssertMessage, 15595 SourceLocation RParenLoc, 15596 bool Failed) { 15597 assert(AssertExpr != nullptr && "Expected non-null condition"); 15598 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && 15599 !Failed) { 15600 // In a static_assert-declaration, the constant-expression shall be a 15601 // constant expression that can be contextually converted to bool. 15602 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr); 15603 if (Converted.isInvalid()) 15604 Failed = true; 15605 15606 ExprResult FullAssertExpr = 15607 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc, 15608 /*DiscardedValue*/ false, 15609 /*IsConstexpr*/ true); 15610 if (FullAssertExpr.isInvalid()) 15611 Failed = true; 15612 else 15613 AssertExpr = FullAssertExpr.get(); 15614 15615 llvm::APSInt Cond; 15616 if (!Failed && VerifyIntegerConstantExpression(AssertExpr, &Cond, 15617 diag::err_static_assert_expression_is_not_constant, 15618 /*AllowFold=*/false).isInvalid()) 15619 Failed = true; 15620 15621 if (!Failed && !Cond) { 15622 SmallString<256> MsgBuffer; 15623 llvm::raw_svector_ostream Msg(MsgBuffer); 15624 if (AssertMessage) 15625 AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy()); 15626 15627 Expr *InnerCond = nullptr; 15628 std::string InnerCondDescription; 15629 std::tie(InnerCond, InnerCondDescription) = 15630 findFailedBooleanCondition(Converted.get()); 15631 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) { 15632 // Drill down into concept specialization expressions to see why they 15633 // weren't satisfied. 15634 Diag(StaticAssertLoc, diag::err_static_assert_failed) 15635 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); 15636 ConstraintSatisfaction Satisfaction; 15637 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction)) 15638 DiagnoseUnsatisfiedConstraint(Satisfaction); 15639 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond) 15640 && !isa<IntegerLiteral>(InnerCond)) { 15641 Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed) 15642 << InnerCondDescription << !AssertMessage 15643 << Msg.str() << InnerCond->getSourceRange(); 15644 } else { 15645 Diag(StaticAssertLoc, diag::err_static_assert_failed) 15646 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); 15647 } 15648 Failed = true; 15649 } 15650 } else { 15651 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc, 15652 /*DiscardedValue*/false, 15653 /*IsConstexpr*/true); 15654 if (FullAssertExpr.isInvalid()) 15655 Failed = true; 15656 else 15657 AssertExpr = FullAssertExpr.get(); 15658 } 15659 15660 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, 15661 AssertExpr, AssertMessage, RParenLoc, 15662 Failed); 15663 15664 CurContext->addDecl(Decl); 15665 return Decl; 15666 } 15667 15668 /// Perform semantic analysis of the given friend type declaration. 15669 /// 15670 /// \returns A friend declaration that. 15671 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart, 15672 SourceLocation FriendLoc, 15673 TypeSourceInfo *TSInfo) { 15674 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration"); 15675 15676 QualType T = TSInfo->getType(); 15677 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange(); 15678 15679 // C++03 [class.friend]p2: 15680 // An elaborated-type-specifier shall be used in a friend declaration 15681 // for a class.* 15682 // 15683 // * The class-key of the elaborated-type-specifier is required. 15684 if (!CodeSynthesisContexts.empty()) { 15685 // Do not complain about the form of friend template types during any kind 15686 // of code synthesis. For template instantiation, we will have complained 15687 // when the template was defined. 15688 } else { 15689 if (!T->isElaboratedTypeSpecifier()) { 15690 // If we evaluated the type to a record type, suggest putting 15691 // a tag in front. 15692 if (const RecordType *RT = T->getAs<RecordType>()) { 15693 RecordDecl *RD = RT->getDecl(); 15694 15695 SmallString<16> InsertionText(" "); 15696 InsertionText += RD->getKindName(); 15697 15698 Diag(TypeRange.getBegin(), 15699 getLangOpts().CPlusPlus11 ? 15700 diag::warn_cxx98_compat_unelaborated_friend_type : 15701 diag::ext_unelaborated_friend_type) 15702 << (unsigned) RD->getTagKind() 15703 << T 15704 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc), 15705 InsertionText); 15706 } else { 15707 Diag(FriendLoc, 15708 getLangOpts().CPlusPlus11 ? 15709 diag::warn_cxx98_compat_nonclass_type_friend : 15710 diag::ext_nonclass_type_friend) 15711 << T 15712 << TypeRange; 15713 } 15714 } else if (T->getAs<EnumType>()) { 15715 Diag(FriendLoc, 15716 getLangOpts().CPlusPlus11 ? 15717 diag::warn_cxx98_compat_enum_friend : 15718 diag::ext_enum_friend) 15719 << T 15720 << TypeRange; 15721 } 15722 15723 // C++11 [class.friend]p3: 15724 // A friend declaration that does not declare a function shall have one 15725 // of the following forms: 15726 // friend elaborated-type-specifier ; 15727 // friend simple-type-specifier ; 15728 // friend typename-specifier ; 15729 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc) 15730 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T; 15731 } 15732 15733 // If the type specifier in a friend declaration designates a (possibly 15734 // cv-qualified) class type, that class is declared as a friend; otherwise, 15735 // the friend declaration is ignored. 15736 return FriendDecl::Create(Context, CurContext, 15737 TSInfo->getTypeLoc().getBeginLoc(), TSInfo, 15738 FriendLoc); 15739 } 15740 15741 /// Handle a friend tag declaration where the scope specifier was 15742 /// templated. 15743 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, 15744 unsigned TagSpec, SourceLocation TagLoc, 15745 CXXScopeSpec &SS, IdentifierInfo *Name, 15746 SourceLocation NameLoc, 15747 const ParsedAttributesView &Attr, 15748 MultiTemplateParamsArg TempParamLists) { 15749 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 15750 15751 bool IsMemberSpecialization = false; 15752 bool Invalid = false; 15753 15754 if (TemplateParameterList *TemplateParams = 15755 MatchTemplateParametersToScopeSpecifier( 15756 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true, 15757 IsMemberSpecialization, Invalid)) { 15758 if (TemplateParams->size() > 0) { 15759 // This is a declaration of a class template. 15760 if (Invalid) 15761 return nullptr; 15762 15763 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name, 15764 NameLoc, Attr, TemplateParams, AS_public, 15765 /*ModulePrivateLoc=*/SourceLocation(), 15766 FriendLoc, TempParamLists.size() - 1, 15767 TempParamLists.data()).get(); 15768 } else { 15769 // The "template<>" header is extraneous. 15770 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 15771 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 15772 IsMemberSpecialization = true; 15773 } 15774 } 15775 15776 if (Invalid) return nullptr; 15777 15778 bool isAllExplicitSpecializations = true; 15779 for (unsigned I = TempParamLists.size(); I-- > 0; ) { 15780 if (TempParamLists[I]->size()) { 15781 isAllExplicitSpecializations = false; 15782 break; 15783 } 15784 } 15785 15786 // FIXME: don't ignore attributes. 15787 15788 // If it's explicit specializations all the way down, just forget 15789 // about the template header and build an appropriate non-templated 15790 // friend. TODO: for source fidelity, remember the headers. 15791 if (isAllExplicitSpecializations) { 15792 if (SS.isEmpty()) { 15793 bool Owned = false; 15794 bool IsDependent = false; 15795 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc, 15796 Attr, AS_public, 15797 /*ModulePrivateLoc=*/SourceLocation(), 15798 MultiTemplateParamsArg(), Owned, IsDependent, 15799 /*ScopedEnumKWLoc=*/SourceLocation(), 15800 /*ScopedEnumUsesClassTag=*/false, 15801 /*UnderlyingType=*/TypeResult(), 15802 /*IsTypeSpecifier=*/false, 15803 /*IsTemplateParamOrArg=*/false); 15804 } 15805 15806 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 15807 ElaboratedTypeKeyword Keyword 15808 = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 15809 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, 15810 *Name, NameLoc); 15811 if (T.isNull()) 15812 return nullptr; 15813 15814 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 15815 if (isa<DependentNameType>(T)) { 15816 DependentNameTypeLoc TL = 15817 TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 15818 TL.setElaboratedKeywordLoc(TagLoc); 15819 TL.setQualifierLoc(QualifierLoc); 15820 TL.setNameLoc(NameLoc); 15821 } else { 15822 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 15823 TL.setElaboratedKeywordLoc(TagLoc); 15824 TL.setQualifierLoc(QualifierLoc); 15825 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc); 15826 } 15827 15828 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 15829 TSI, FriendLoc, TempParamLists); 15830 Friend->setAccess(AS_public); 15831 CurContext->addDecl(Friend); 15832 return Friend; 15833 } 15834 15835 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?"); 15836 15837 15838 15839 // Handle the case of a templated-scope friend class. e.g. 15840 // template <class T> class A<T>::B; 15841 // FIXME: we don't support these right now. 15842 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) 15843 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext); 15844 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 15845 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); 15846 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 15847 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 15848 TL.setElaboratedKeywordLoc(TagLoc); 15849 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 15850 TL.setNameLoc(NameLoc); 15851 15852 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 15853 TSI, FriendLoc, TempParamLists); 15854 Friend->setAccess(AS_public); 15855 Friend->setUnsupportedFriend(true); 15856 CurContext->addDecl(Friend); 15857 return Friend; 15858 } 15859 15860 /// Handle a friend type declaration. This works in tandem with 15861 /// ActOnTag. 15862 /// 15863 /// Notes on friend class templates: 15864 /// 15865 /// We generally treat friend class declarations as if they were 15866 /// declaring a class. So, for example, the elaborated type specifier 15867 /// in a friend declaration is required to obey the restrictions of a 15868 /// class-head (i.e. no typedefs in the scope chain), template 15869 /// parameters are required to match up with simple template-ids, &c. 15870 /// However, unlike when declaring a template specialization, it's 15871 /// okay to refer to a template specialization without an empty 15872 /// template parameter declaration, e.g. 15873 /// friend class A<T>::B<unsigned>; 15874 /// We permit this as a special case; if there are any template 15875 /// parameters present at all, require proper matching, i.e. 15876 /// template <> template \<class T> friend class A<int>::B; 15877 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, 15878 MultiTemplateParamsArg TempParams) { 15879 SourceLocation Loc = DS.getBeginLoc(); 15880 15881 assert(DS.isFriendSpecified()); 15882 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 15883 15884 // C++ [class.friend]p3: 15885 // A friend declaration that does not declare a function shall have one of 15886 // the following forms: 15887 // friend elaborated-type-specifier ; 15888 // friend simple-type-specifier ; 15889 // friend typename-specifier ; 15890 // 15891 // Any declaration with a type qualifier does not have that form. (It's 15892 // legal to specify a qualified type as a friend, you just can't write the 15893 // keywords.) 15894 if (DS.getTypeQualifiers()) { 15895 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 15896 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const"; 15897 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 15898 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile"; 15899 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 15900 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict"; 15901 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 15902 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic"; 15903 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 15904 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned"; 15905 } 15906 15907 // Try to convert the decl specifier to a type. This works for 15908 // friend templates because ActOnTag never produces a ClassTemplateDecl 15909 // for a TUK_Friend. 15910 Declarator TheDeclarator(DS, DeclaratorContext::MemberContext); 15911 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); 15912 QualType T = TSI->getType(); 15913 if (TheDeclarator.isInvalidType()) 15914 return nullptr; 15915 15916 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) 15917 return nullptr; 15918 15919 // This is definitely an error in C++98. It's probably meant to 15920 // be forbidden in C++0x, too, but the specification is just 15921 // poorly written. 15922 // 15923 // The problem is with declarations like the following: 15924 // template <T> friend A<T>::foo; 15925 // where deciding whether a class C is a friend or not now hinges 15926 // on whether there exists an instantiation of A that causes 15927 // 'foo' to equal C. There are restrictions on class-heads 15928 // (which we declare (by fiat) elaborated friend declarations to 15929 // be) that makes this tractable. 15930 // 15931 // FIXME: handle "template <> friend class A<T>;", which 15932 // is possibly well-formed? Who even knows? 15933 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { 15934 Diag(Loc, diag::err_tagless_friend_type_template) 15935 << DS.getSourceRange(); 15936 return nullptr; 15937 } 15938 15939 // C++98 [class.friend]p1: A friend of a class is a function 15940 // or class that is not a member of the class . . . 15941 // This is fixed in DR77, which just barely didn't make the C++03 15942 // deadline. It's also a very silly restriction that seriously 15943 // affects inner classes and which nobody else seems to implement; 15944 // thus we never diagnose it, not even in -pedantic. 15945 // 15946 // But note that we could warn about it: it's always useless to 15947 // friend one of your own members (it's not, however, worthless to 15948 // friend a member of an arbitrary specialization of your template). 15949 15950 Decl *D; 15951 if (!TempParams.empty()) 15952 D = FriendTemplateDecl::Create(Context, CurContext, Loc, 15953 TempParams, 15954 TSI, 15955 DS.getFriendSpecLoc()); 15956 else 15957 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI); 15958 15959 if (!D) 15960 return nullptr; 15961 15962 D->setAccess(AS_public); 15963 CurContext->addDecl(D); 15964 15965 return D; 15966 } 15967 15968 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, 15969 MultiTemplateParamsArg TemplateParams) { 15970 const DeclSpec &DS = D.getDeclSpec(); 15971 15972 assert(DS.isFriendSpecified()); 15973 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 15974 15975 SourceLocation Loc = D.getIdentifierLoc(); 15976 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 15977 15978 // C++ [class.friend]p1 15979 // A friend of a class is a function or class.... 15980 // Note that this sees through typedefs, which is intended. 15981 // It *doesn't* see through dependent types, which is correct 15982 // according to [temp.arg.type]p3: 15983 // If a declaration acquires a function type through a 15984 // type dependent on a template-parameter and this causes 15985 // a declaration that does not use the syntactic form of a 15986 // function declarator to have a function type, the program 15987 // is ill-formed. 15988 if (!TInfo->getType()->isFunctionType()) { 15989 Diag(Loc, diag::err_unexpected_friend); 15990 15991 // It might be worthwhile to try to recover by creating an 15992 // appropriate declaration. 15993 return nullptr; 15994 } 15995 15996 // C++ [namespace.memdef]p3 15997 // - If a friend declaration in a non-local class first declares a 15998 // class or function, the friend class or function is a member 15999 // of the innermost enclosing namespace. 16000 // - The name of the friend is not found by simple name lookup 16001 // until a matching declaration is provided in that namespace 16002 // scope (either before or after the class declaration granting 16003 // friendship). 16004 // - If a friend function is called, its name may be found by the 16005 // name lookup that considers functions from namespaces and 16006 // classes associated with the types of the function arguments. 16007 // - When looking for a prior declaration of a class or a function 16008 // declared as a friend, scopes outside the innermost enclosing 16009 // namespace scope are not considered. 16010 16011 CXXScopeSpec &SS = D.getCXXScopeSpec(); 16012 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 16013 assert(NameInfo.getName()); 16014 16015 // Check for unexpanded parameter packs. 16016 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || 16017 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || 16018 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) 16019 return nullptr; 16020 16021 // The context we found the declaration in, or in which we should 16022 // create the declaration. 16023 DeclContext *DC; 16024 Scope *DCScope = S; 16025 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 16026 ForExternalRedeclaration); 16027 16028 // There are five cases here. 16029 // - There's no scope specifier and we're in a local class. Only look 16030 // for functions declared in the immediately-enclosing block scope. 16031 // We recover from invalid scope qualifiers as if they just weren't there. 16032 FunctionDecl *FunctionContainingLocalClass = nullptr; 16033 if ((SS.isInvalid() || !SS.isSet()) && 16034 (FunctionContainingLocalClass = 16035 cast<CXXRecordDecl>(CurContext)->isLocalClass())) { 16036 // C++11 [class.friend]p11: 16037 // If a friend declaration appears in a local class and the name 16038 // specified is an unqualified name, a prior declaration is 16039 // looked up without considering scopes that are outside the 16040 // innermost enclosing non-class scope. For a friend function 16041 // declaration, if there is no prior declaration, the program is 16042 // ill-formed. 16043 16044 // Find the innermost enclosing non-class scope. This is the block 16045 // scope containing the local class definition (or for a nested class, 16046 // the outer local class). 16047 DCScope = S->getFnParent(); 16048 16049 // Look up the function name in the scope. 16050 Previous.clear(LookupLocalFriendName); 16051 LookupName(Previous, S, /*AllowBuiltinCreation*/false); 16052 16053 if (!Previous.empty()) { 16054 // All possible previous declarations must have the same context: 16055 // either they were declared at block scope or they are members of 16056 // one of the enclosing local classes. 16057 DC = Previous.getRepresentativeDecl()->getDeclContext(); 16058 } else { 16059 // This is ill-formed, but provide the context that we would have 16060 // declared the function in, if we were permitted to, for error recovery. 16061 DC = FunctionContainingLocalClass; 16062 } 16063 adjustContextForLocalExternDecl(DC); 16064 16065 // C++ [class.friend]p6: 16066 // A function can be defined in a friend declaration of a class if and 16067 // only if the class is a non-local class (9.8), the function name is 16068 // unqualified, and the function has namespace scope. 16069 if (D.isFunctionDefinition()) { 16070 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); 16071 } 16072 16073 // - There's no scope specifier, in which case we just go to the 16074 // appropriate scope and look for a function or function template 16075 // there as appropriate. 16076 } else if (SS.isInvalid() || !SS.isSet()) { 16077 // C++11 [namespace.memdef]p3: 16078 // If the name in a friend declaration is neither qualified nor 16079 // a template-id and the declaration is a function or an 16080 // elaborated-type-specifier, the lookup to determine whether 16081 // the entity has been previously declared shall not consider 16082 // any scopes outside the innermost enclosing namespace. 16083 bool isTemplateId = 16084 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId; 16085 16086 // Find the appropriate context according to the above. 16087 DC = CurContext; 16088 16089 // Skip class contexts. If someone can cite chapter and verse 16090 // for this behavior, that would be nice --- it's what GCC and 16091 // EDG do, and it seems like a reasonable intent, but the spec 16092 // really only says that checks for unqualified existing 16093 // declarations should stop at the nearest enclosing namespace, 16094 // not that they should only consider the nearest enclosing 16095 // namespace. 16096 while (DC->isRecord()) 16097 DC = DC->getParent(); 16098 16099 DeclContext *LookupDC = DC; 16100 while (LookupDC->isTransparentContext()) 16101 LookupDC = LookupDC->getParent(); 16102 16103 while (true) { 16104 LookupQualifiedName(Previous, LookupDC); 16105 16106 if (!Previous.empty()) { 16107 DC = LookupDC; 16108 break; 16109 } 16110 16111 if (isTemplateId) { 16112 if (isa<TranslationUnitDecl>(LookupDC)) break; 16113 } else { 16114 if (LookupDC->isFileContext()) break; 16115 } 16116 LookupDC = LookupDC->getParent(); 16117 } 16118 16119 DCScope = getScopeForDeclContext(S, DC); 16120 16121 // - There's a non-dependent scope specifier, in which case we 16122 // compute it and do a previous lookup there for a function 16123 // or function template. 16124 } else if (!SS.getScopeRep()->isDependent()) { 16125 DC = computeDeclContext(SS); 16126 if (!DC) return nullptr; 16127 16128 if (RequireCompleteDeclContext(SS, DC)) return nullptr; 16129 16130 LookupQualifiedName(Previous, DC); 16131 16132 // C++ [class.friend]p1: A friend of a class is a function or 16133 // class that is not a member of the class . . . 16134 if (DC->Equals(CurContext)) 16135 Diag(DS.getFriendSpecLoc(), 16136 getLangOpts().CPlusPlus11 ? 16137 diag::warn_cxx98_compat_friend_is_member : 16138 diag::err_friend_is_member); 16139 16140 if (D.isFunctionDefinition()) { 16141 // C++ [class.friend]p6: 16142 // A function can be defined in a friend declaration of a class if and 16143 // only if the class is a non-local class (9.8), the function name is 16144 // unqualified, and the function has namespace scope. 16145 // 16146 // FIXME: We should only do this if the scope specifier names the 16147 // innermost enclosing namespace; otherwise the fixit changes the 16148 // meaning of the code. 16149 SemaDiagnosticBuilder DB 16150 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); 16151 16152 DB << SS.getScopeRep(); 16153 if (DC->isFileContext()) 16154 DB << FixItHint::CreateRemoval(SS.getRange()); 16155 SS.clear(); 16156 } 16157 16158 // - There's a scope specifier that does not match any template 16159 // parameter lists, in which case we use some arbitrary context, 16160 // create a method or method template, and wait for instantiation. 16161 // - There's a scope specifier that does match some template 16162 // parameter lists, which we don't handle right now. 16163 } else { 16164 if (D.isFunctionDefinition()) { 16165 // C++ [class.friend]p6: 16166 // A function can be defined in a friend declaration of a class if and 16167 // only if the class is a non-local class (9.8), the function name is 16168 // unqualified, and the function has namespace scope. 16169 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def) 16170 << SS.getScopeRep(); 16171 } 16172 16173 DC = CurContext; 16174 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?"); 16175 } 16176 16177 if (!DC->isRecord()) { 16178 int DiagArg = -1; 16179 switch (D.getName().getKind()) { 16180 case UnqualifiedIdKind::IK_ConstructorTemplateId: 16181 case UnqualifiedIdKind::IK_ConstructorName: 16182 DiagArg = 0; 16183 break; 16184 case UnqualifiedIdKind::IK_DestructorName: 16185 DiagArg = 1; 16186 break; 16187 case UnqualifiedIdKind::IK_ConversionFunctionId: 16188 DiagArg = 2; 16189 break; 16190 case UnqualifiedIdKind::IK_DeductionGuideName: 16191 DiagArg = 3; 16192 break; 16193 case UnqualifiedIdKind::IK_Identifier: 16194 case UnqualifiedIdKind::IK_ImplicitSelfParam: 16195 case UnqualifiedIdKind::IK_LiteralOperatorId: 16196 case UnqualifiedIdKind::IK_OperatorFunctionId: 16197 case UnqualifiedIdKind::IK_TemplateId: 16198 break; 16199 } 16200 // This implies that it has to be an operator or function. 16201 if (DiagArg >= 0) { 16202 Diag(Loc, diag::err_introducing_special_friend) << DiagArg; 16203 return nullptr; 16204 } 16205 } 16206 16207 // FIXME: This is an egregious hack to cope with cases where the scope stack 16208 // does not contain the declaration context, i.e., in an out-of-line 16209 // definition of a class. 16210 Scope FakeDCScope(S, Scope::DeclScope, Diags); 16211 if (!DCScope) { 16212 FakeDCScope.setEntity(DC); 16213 DCScope = &FakeDCScope; 16214 } 16215 16216 bool AddToScope = true; 16217 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous, 16218 TemplateParams, AddToScope); 16219 if (!ND) return nullptr; 16220 16221 assert(ND->getLexicalDeclContext() == CurContext); 16222 16223 // If we performed typo correction, we might have added a scope specifier 16224 // and changed the decl context. 16225 DC = ND->getDeclContext(); 16226 16227 // Add the function declaration to the appropriate lookup tables, 16228 // adjusting the redeclarations list as necessary. We don't 16229 // want to do this yet if the friending class is dependent. 16230 // 16231 // Also update the scope-based lookup if the target context's 16232 // lookup context is in lexical scope. 16233 if (!CurContext->isDependentContext()) { 16234 DC = DC->getRedeclContext(); 16235 DC->makeDeclVisibleInContext(ND); 16236 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 16237 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); 16238 } 16239 16240 FriendDecl *FrD = FriendDecl::Create(Context, CurContext, 16241 D.getIdentifierLoc(), ND, 16242 DS.getFriendSpecLoc()); 16243 FrD->setAccess(AS_public); 16244 CurContext->addDecl(FrD); 16245 16246 if (ND->isInvalidDecl()) { 16247 FrD->setInvalidDecl(); 16248 } else { 16249 if (DC->isRecord()) CheckFriendAccess(ND); 16250 16251 FunctionDecl *FD; 16252 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 16253 FD = FTD->getTemplatedDecl(); 16254 else 16255 FD = cast<FunctionDecl>(ND); 16256 16257 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a 16258 // default argument expression, that declaration shall be a definition 16259 // and shall be the only declaration of the function or function 16260 // template in the translation unit. 16261 if (functionDeclHasDefaultArgument(FD)) { 16262 // We can't look at FD->getPreviousDecl() because it may not have been set 16263 // if we're in a dependent context. If the function is known to be a 16264 // redeclaration, we will have narrowed Previous down to the right decl. 16265 if (D.isRedeclaration()) { 16266 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 16267 Diag(Previous.getRepresentativeDecl()->getLocation(), 16268 diag::note_previous_declaration); 16269 } else if (!D.isFunctionDefinition()) 16270 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); 16271 } 16272 16273 // Mark templated-scope function declarations as unsupported. 16274 if (FD->getNumTemplateParameterLists() && SS.isValid()) { 16275 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) 16276 << SS.getScopeRep() << SS.getRange() 16277 << cast<CXXRecordDecl>(CurContext); 16278 FrD->setUnsupportedFriend(true); 16279 } 16280 } 16281 16282 return ND; 16283 } 16284 16285 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { 16286 AdjustDeclIfTemplate(Dcl); 16287 16288 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl); 16289 if (!Fn) { 16290 Diag(DelLoc, diag::err_deleted_non_function); 16291 return; 16292 } 16293 16294 // Deleted function does not have a body. 16295 Fn->setWillHaveBody(false); 16296 16297 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { 16298 // Don't consider the implicit declaration we generate for explicit 16299 // specializations. FIXME: Do not generate these implicit declarations. 16300 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || 16301 Prev->getPreviousDecl()) && 16302 !Prev->isDefined()) { 16303 Diag(DelLoc, diag::err_deleted_decl_not_first); 16304 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), 16305 Prev->isImplicit() ? diag::note_previous_implicit_declaration 16306 : diag::note_previous_declaration); 16307 } 16308 // If the declaration wasn't the first, we delete the function anyway for 16309 // recovery. 16310 Fn = Fn->getCanonicalDecl(); 16311 } 16312 16313 // dllimport/dllexport cannot be deleted. 16314 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { 16315 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; 16316 Fn->setInvalidDecl(); 16317 } 16318 16319 if (Fn->isDeleted()) 16320 return; 16321 16322 // C++11 [basic.start.main]p3: 16323 // A program that defines main as deleted [...] is ill-formed. 16324 if (Fn->isMain()) 16325 Diag(DelLoc, diag::err_deleted_main); 16326 16327 // C++11 [dcl.fct.def.delete]p4: 16328 // A deleted function is implicitly inline. 16329 Fn->setImplicitlyInline(); 16330 Fn->setDeletedAsWritten(); 16331 16332 // See if we're deleting a function which is already known to override a 16333 // non-deleted virtual function. 16334 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) { 16335 bool IssuedDiagnostic = false; 16336 for (const CXXMethodDecl *O : MD->overridden_methods()) { 16337 if (!(*MD->begin_overridden_methods())->isDeleted()) { 16338 if (!IssuedDiagnostic) { 16339 Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName(); 16340 IssuedDiagnostic = true; 16341 } 16342 Diag(O->getLocation(), diag::note_overridden_virtual_function); 16343 } 16344 } 16345 // If this function was implicitly deleted because it was defaulted, 16346 // explain why it was deleted. 16347 if (IssuedDiagnostic && MD->isDefaulted()) 16348 DiagnoseDeletedDefaultedFunction(MD); 16349 } 16350 } 16351 16352 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { 16353 if (!Dcl || Dcl->isInvalidDecl()) 16354 return; 16355 16356 auto *FD = dyn_cast<FunctionDecl>(Dcl); 16357 if (!FD) { 16358 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) { 16359 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) { 16360 Diag(DefaultLoc, diag::err_defaulted_comparison_template); 16361 return; 16362 } 16363 } 16364 16365 Diag(DefaultLoc, diag::err_default_special_members) 16366 << getLangOpts().CPlusPlus2a; 16367 return; 16368 } 16369 16370 // Reject if this can't possibly be a defaultable function. 16371 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 16372 if (!DefKind && 16373 // A dependent function that doesn't locally look defaultable can 16374 // still instantiate to a defaultable function if it's a constructor 16375 // or assignment operator. 16376 (!FD->isDependentContext() || 16377 (!isa<CXXConstructorDecl>(FD) && 16378 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) { 16379 Diag(DefaultLoc, diag::err_default_special_members) 16380 << getLangOpts().CPlusPlus2a; 16381 return; 16382 } 16383 16384 if (DefKind.isComparison() && 16385 !isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 16386 Diag(FD->getLocation(), diag::err_defaulted_comparison_out_of_class) 16387 << (int)DefKind.asComparison(); 16388 return; 16389 } 16390 16391 // Issue compatibility warning. We already warned if the operator is 16392 // 'operator<=>' when parsing the '<=>' token. 16393 if (DefKind.isComparison() && 16394 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) { 16395 Diag(DefaultLoc, getLangOpts().CPlusPlus2a 16396 ? diag::warn_cxx17_compat_defaulted_comparison 16397 : diag::ext_defaulted_comparison); 16398 } 16399 16400 FD->setDefaulted(); 16401 FD->setExplicitlyDefaulted(); 16402 16403 // Defer checking functions that are defaulted in a dependent context. 16404 if (FD->isDependentContext()) 16405 return; 16406 16407 // Unset that we will have a body for this function. We might not, 16408 // if it turns out to be trivial, and we don't need this marking now 16409 // that we've marked it as defaulted. 16410 FD->setWillHaveBody(false); 16411 16412 // If this definition appears within the record, do the checking when 16413 // the record is complete. This is always the case for a defaulted 16414 // comparison. 16415 if (DefKind.isComparison()) 16416 return; 16417 auto *MD = cast<CXXMethodDecl>(FD); 16418 16419 const FunctionDecl *Primary = FD; 16420 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 16421 // Ask the template instantiation pattern that actually had the 16422 // '= default' on it. 16423 Primary = Pattern; 16424 16425 // If the method was defaulted on its first declaration, we will have 16426 // already performed the checking in CheckCompletedCXXClass. Such a 16427 // declaration doesn't trigger an implicit definition. 16428 if (Primary->getCanonicalDecl()->isDefaulted()) 16429 return; 16430 16431 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember())) 16432 MD->setInvalidDecl(); 16433 else 16434 DefineImplicitSpecialMember(*this, MD, DefaultLoc); 16435 } 16436 16437 static void SearchForReturnInStmt(Sema &Self, Stmt *S) { 16438 for (Stmt *SubStmt : S->children()) { 16439 if (!SubStmt) 16440 continue; 16441 if (isa<ReturnStmt>(SubStmt)) 16442 Self.Diag(SubStmt->getBeginLoc(), 16443 diag::err_return_in_constructor_handler); 16444 if (!isa<Expr>(SubStmt)) 16445 SearchForReturnInStmt(Self, SubStmt); 16446 } 16447 } 16448 16449 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { 16450 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { 16451 CXXCatchStmt *Handler = TryBlock->getHandler(I); 16452 SearchForReturnInStmt(*this, Handler); 16453 } 16454 } 16455 16456 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, 16457 const CXXMethodDecl *Old) { 16458 const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); 16459 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>(); 16460 16461 if (OldFT->hasExtParameterInfos()) { 16462 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I) 16463 // A parameter of the overriding method should be annotated with noescape 16464 // if the corresponding parameter of the overridden method is annotated. 16465 if (OldFT->getExtParameterInfo(I).isNoEscape() && 16466 !NewFT->getExtParameterInfo(I).isNoEscape()) { 16467 Diag(New->getParamDecl(I)->getLocation(), 16468 diag::warn_overriding_method_missing_noescape); 16469 Diag(Old->getParamDecl(I)->getLocation(), 16470 diag::note_overridden_marked_noescape); 16471 } 16472 } 16473 16474 // Virtual overrides must have the same code_seg. 16475 const auto *OldCSA = Old->getAttr<CodeSegAttr>(); 16476 const auto *NewCSA = New->getAttr<CodeSegAttr>(); 16477 if ((NewCSA || OldCSA) && 16478 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) { 16479 Diag(New->getLocation(), diag::err_mismatched_code_seg_override); 16480 Diag(Old->getLocation(), diag::note_previous_declaration); 16481 return true; 16482 } 16483 16484 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); 16485 16486 // If the calling conventions match, everything is fine 16487 if (NewCC == OldCC) 16488 return false; 16489 16490 // If the calling conventions mismatch because the new function is static, 16491 // suppress the calling convention mismatch error; the error about static 16492 // function override (err_static_overrides_virtual from 16493 // Sema::CheckFunctionDeclaration) is more clear. 16494 if (New->getStorageClass() == SC_Static) 16495 return false; 16496 16497 Diag(New->getLocation(), 16498 diag::err_conflicting_overriding_cc_attributes) 16499 << New->getDeclName() << New->getType() << Old->getType(); 16500 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 16501 return true; 16502 } 16503 16504 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, 16505 const CXXMethodDecl *Old) { 16506 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType(); 16507 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType(); 16508 16509 if (Context.hasSameType(NewTy, OldTy) || 16510 NewTy->isDependentType() || OldTy->isDependentType()) 16511 return false; 16512 16513 // Check if the return types are covariant 16514 QualType NewClassTy, OldClassTy; 16515 16516 /// Both types must be pointers or references to classes. 16517 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { 16518 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { 16519 NewClassTy = NewPT->getPointeeType(); 16520 OldClassTy = OldPT->getPointeeType(); 16521 } 16522 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { 16523 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { 16524 if (NewRT->getTypeClass() == OldRT->getTypeClass()) { 16525 NewClassTy = NewRT->getPointeeType(); 16526 OldClassTy = OldRT->getPointeeType(); 16527 } 16528 } 16529 } 16530 16531 // The return types aren't either both pointers or references to a class type. 16532 if (NewClassTy.isNull()) { 16533 Diag(New->getLocation(), 16534 diag::err_different_return_type_for_overriding_virtual_function) 16535 << New->getDeclName() << NewTy << OldTy 16536 << New->getReturnTypeSourceRange(); 16537 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 16538 << Old->getReturnTypeSourceRange(); 16539 16540 return true; 16541 } 16542 16543 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { 16544 // C++14 [class.virtual]p8: 16545 // If the class type in the covariant return type of D::f differs from 16546 // that of B::f, the class type in the return type of D::f shall be 16547 // complete at the point of declaration of D::f or shall be the class 16548 // type D. 16549 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { 16550 if (!RT->isBeingDefined() && 16551 RequireCompleteType(New->getLocation(), NewClassTy, 16552 diag::err_covariant_return_incomplete, 16553 New->getDeclName())) 16554 return true; 16555 } 16556 16557 // Check if the new class derives from the old class. 16558 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) { 16559 Diag(New->getLocation(), diag::err_covariant_return_not_derived) 16560 << New->getDeclName() << NewTy << OldTy 16561 << New->getReturnTypeSourceRange(); 16562 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 16563 << Old->getReturnTypeSourceRange(); 16564 return true; 16565 } 16566 16567 // Check if we the conversion from derived to base is valid. 16568 if (CheckDerivedToBaseConversion( 16569 NewClassTy, OldClassTy, 16570 diag::err_covariant_return_inaccessible_base, 16571 diag::err_covariant_return_ambiguous_derived_to_base_conv, 16572 New->getLocation(), New->getReturnTypeSourceRange(), 16573 New->getDeclName(), nullptr)) { 16574 // FIXME: this note won't trigger for delayed access control 16575 // diagnostics, and it's impossible to get an undelayed error 16576 // here from access control during the original parse because 16577 // the ParsingDeclSpec/ParsingDeclarator are still in scope. 16578 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 16579 << Old->getReturnTypeSourceRange(); 16580 return true; 16581 } 16582 } 16583 16584 // The qualifiers of the return types must be the same. 16585 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { 16586 Diag(New->getLocation(), 16587 diag::err_covariant_return_type_different_qualifications) 16588 << New->getDeclName() << NewTy << OldTy 16589 << New->getReturnTypeSourceRange(); 16590 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 16591 << Old->getReturnTypeSourceRange(); 16592 return true; 16593 } 16594 16595 16596 // The new class type must have the same or less qualifiers as the old type. 16597 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { 16598 Diag(New->getLocation(), 16599 diag::err_covariant_return_type_class_type_more_qualified) 16600 << New->getDeclName() << NewTy << OldTy 16601 << New->getReturnTypeSourceRange(); 16602 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 16603 << Old->getReturnTypeSourceRange(); 16604 return true; 16605 } 16606 16607 return false; 16608 } 16609 16610 /// Mark the given method pure. 16611 /// 16612 /// \param Method the method to be marked pure. 16613 /// 16614 /// \param InitRange the source range that covers the "0" initializer. 16615 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { 16616 SourceLocation EndLoc = InitRange.getEnd(); 16617 if (EndLoc.isValid()) 16618 Method->setRangeEnd(EndLoc); 16619 16620 if (Method->isVirtual() || Method->getParent()->isDependentContext()) { 16621 Method->setPure(); 16622 return false; 16623 } 16624 16625 if (!Method->isInvalidDecl()) 16626 Diag(Method->getLocation(), diag::err_non_virtual_pure) 16627 << Method->getDeclName() << InitRange; 16628 return true; 16629 } 16630 16631 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) { 16632 if (D->getFriendObjectKind()) 16633 Diag(D->getLocation(), diag::err_pure_friend); 16634 else if (auto *M = dyn_cast<CXXMethodDecl>(D)) 16635 CheckPureMethod(M, ZeroLoc); 16636 else 16637 Diag(D->getLocation(), diag::err_illegal_initializer); 16638 } 16639 16640 /// Determine whether the given declaration is a global variable or 16641 /// static data member. 16642 static bool isNonlocalVariable(const Decl *D) { 16643 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D)) 16644 return Var->hasGlobalStorage(); 16645 16646 return false; 16647 } 16648 16649 /// Invoked when we are about to parse an initializer for the declaration 16650 /// 'Dcl'. 16651 /// 16652 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a 16653 /// static data member of class X, names should be looked up in the scope of 16654 /// class X. If the declaration had a scope specifier, a scope will have 16655 /// been created and passed in for this purpose. Otherwise, S will be null. 16656 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { 16657 // If there is no declaration, there was an error parsing it. 16658 if (!D || D->isInvalidDecl()) 16659 return; 16660 16661 // We will always have a nested name specifier here, but this declaration 16662 // might not be out of line if the specifier names the current namespace: 16663 // extern int n; 16664 // int ::n = 0; 16665 if (S && D->isOutOfLine()) 16666 EnterDeclaratorContext(S, D->getDeclContext()); 16667 16668 // If we are parsing the initializer for a static data member, push a 16669 // new expression evaluation context that is associated with this static 16670 // data member. 16671 if (isNonlocalVariable(D)) 16672 PushExpressionEvaluationContext( 16673 ExpressionEvaluationContext::PotentiallyEvaluated, D); 16674 } 16675 16676 /// Invoked after we are finished parsing an initializer for the declaration D. 16677 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { 16678 // If there is no declaration, there was an error parsing it. 16679 if (!D || D->isInvalidDecl()) 16680 return; 16681 16682 if (isNonlocalVariable(D)) 16683 PopExpressionEvaluationContext(); 16684 16685 if (S && D->isOutOfLine()) 16686 ExitDeclaratorContext(S); 16687 } 16688 16689 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a 16690 /// C++ if/switch/while/for statement. 16691 /// e.g: "if (int x = f()) {...}" 16692 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { 16693 // C++ 6.4p2: 16694 // The declarator shall not specify a function or an array. 16695 // The type-specifier-seq shall not contain typedef and shall not declare a 16696 // new class or enumeration. 16697 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 16698 "Parser allowed 'typedef' as storage class of condition decl."); 16699 16700 Decl *Dcl = ActOnDeclarator(S, D); 16701 if (!Dcl) 16702 return true; 16703 16704 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function. 16705 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) 16706 << D.getSourceRange(); 16707 return true; 16708 } 16709 16710 return Dcl; 16711 } 16712 16713 void Sema::LoadExternalVTableUses() { 16714 if (!ExternalSource) 16715 return; 16716 16717 SmallVector<ExternalVTableUse, 4> VTables; 16718 ExternalSource->ReadUsedVTables(VTables); 16719 SmallVector<VTableUse, 4> NewUses; 16720 for (unsigned I = 0, N = VTables.size(); I != N; ++I) { 16721 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos 16722 = VTablesUsed.find(VTables[I].Record); 16723 // Even if a definition wasn't required before, it may be required now. 16724 if (Pos != VTablesUsed.end()) { 16725 if (!Pos->second && VTables[I].DefinitionRequired) 16726 Pos->second = true; 16727 continue; 16728 } 16729 16730 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; 16731 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location)); 16732 } 16733 16734 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end()); 16735 } 16736 16737 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, 16738 bool DefinitionRequired) { 16739 // Ignore any vtable uses in unevaluated operands or for classes that do 16740 // not have a vtable. 16741 if (!Class->isDynamicClass() || Class->isDependentContext() || 16742 CurContext->isDependentContext() || isUnevaluatedContext()) 16743 return; 16744 // Do not mark as used if compiling for the device outside of the target 16745 // region. 16746 if (LangOpts.OpenMP && LangOpts.OpenMPIsDevice && 16747 !isInOpenMPDeclareTargetContext() && 16748 !isInOpenMPTargetExecutionDirective()) { 16749 if (!DefinitionRequired) 16750 MarkVirtualMembersReferenced(Loc, Class); 16751 return; 16752 } 16753 16754 // Try to insert this class into the map. 16755 LoadExternalVTableUses(); 16756 Class = Class->getCanonicalDecl(); 16757 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> 16758 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); 16759 if (!Pos.second) { 16760 // If we already had an entry, check to see if we are promoting this vtable 16761 // to require a definition. If so, we need to reappend to the VTableUses 16762 // list, since we may have already processed the first entry. 16763 if (DefinitionRequired && !Pos.first->second) { 16764 Pos.first->second = true; 16765 } else { 16766 // Otherwise, we can early exit. 16767 return; 16768 } 16769 } else { 16770 // The Microsoft ABI requires that we perform the destructor body 16771 // checks (i.e. operator delete() lookup) when the vtable is marked used, as 16772 // the deleting destructor is emitted with the vtable, not with the 16773 // destructor definition as in the Itanium ABI. 16774 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 16775 CXXDestructorDecl *DD = Class->getDestructor(); 16776 if (DD && DD->isVirtual() && !DD->isDeleted()) { 16777 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) { 16778 // If this is an out-of-line declaration, marking it referenced will 16779 // not do anything. Manually call CheckDestructor to look up operator 16780 // delete(). 16781 ContextRAII SavedContext(*this, DD); 16782 CheckDestructor(DD); 16783 } else { 16784 MarkFunctionReferenced(Loc, Class->getDestructor()); 16785 } 16786 } 16787 } 16788 } 16789 16790 // Local classes need to have their virtual members marked 16791 // immediately. For all other classes, we mark their virtual members 16792 // at the end of the translation unit. 16793 if (Class->isLocalClass()) 16794 MarkVirtualMembersReferenced(Loc, Class); 16795 else 16796 VTableUses.push_back(std::make_pair(Class, Loc)); 16797 } 16798 16799 bool Sema::DefineUsedVTables() { 16800 LoadExternalVTableUses(); 16801 if (VTableUses.empty()) 16802 return false; 16803 16804 // Note: The VTableUses vector could grow as a result of marking 16805 // the members of a class as "used", so we check the size each 16806 // time through the loop and prefer indices (which are stable) to 16807 // iterators (which are not). 16808 bool DefinedAnything = false; 16809 for (unsigned I = 0; I != VTableUses.size(); ++I) { 16810 CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); 16811 if (!Class) 16812 continue; 16813 TemplateSpecializationKind ClassTSK = 16814 Class->getTemplateSpecializationKind(); 16815 16816 SourceLocation Loc = VTableUses[I].second; 16817 16818 bool DefineVTable = true; 16819 16820 // If this class has a key function, but that key function is 16821 // defined in another translation unit, we don't need to emit the 16822 // vtable even though we're using it. 16823 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class); 16824 if (KeyFunction && !KeyFunction->hasBody()) { 16825 // The key function is in another translation unit. 16826 DefineVTable = false; 16827 TemplateSpecializationKind TSK = 16828 KeyFunction->getTemplateSpecializationKind(); 16829 assert(TSK != TSK_ExplicitInstantiationDefinition && 16830 TSK != TSK_ImplicitInstantiation && 16831 "Instantiations don't have key functions"); 16832 (void)TSK; 16833 } else if (!KeyFunction) { 16834 // If we have a class with no key function that is the subject 16835 // of an explicit instantiation declaration, suppress the 16836 // vtable; it will live with the explicit instantiation 16837 // definition. 16838 bool IsExplicitInstantiationDeclaration = 16839 ClassTSK == TSK_ExplicitInstantiationDeclaration; 16840 for (auto R : Class->redecls()) { 16841 TemplateSpecializationKind TSK 16842 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind(); 16843 if (TSK == TSK_ExplicitInstantiationDeclaration) 16844 IsExplicitInstantiationDeclaration = true; 16845 else if (TSK == TSK_ExplicitInstantiationDefinition) { 16846 IsExplicitInstantiationDeclaration = false; 16847 break; 16848 } 16849 } 16850 16851 if (IsExplicitInstantiationDeclaration) 16852 DefineVTable = false; 16853 } 16854 16855 // The exception specifications for all virtual members may be needed even 16856 // if we are not providing an authoritative form of the vtable in this TU. 16857 // We may choose to emit it available_externally anyway. 16858 if (!DefineVTable) { 16859 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class); 16860 continue; 16861 } 16862 16863 // Mark all of the virtual members of this class as referenced, so 16864 // that we can build a vtable. Then, tell the AST consumer that a 16865 // vtable for this class is required. 16866 DefinedAnything = true; 16867 MarkVirtualMembersReferenced(Loc, Class); 16868 CXXRecordDecl *Canonical = Class->getCanonicalDecl(); 16869 if (VTablesUsed[Canonical]) 16870 Consumer.HandleVTable(Class); 16871 16872 // Warn if we're emitting a weak vtable. The vtable will be weak if there is 16873 // no key function or the key function is inlined. Don't warn in C++ ABIs 16874 // that lack key functions, since the user won't be able to make one. 16875 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() && 16876 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) { 16877 const FunctionDecl *KeyFunctionDef = nullptr; 16878 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) && 16879 KeyFunctionDef->isInlined())) { 16880 Diag(Class->getLocation(), 16881 ClassTSK == TSK_ExplicitInstantiationDefinition 16882 ? diag::warn_weak_template_vtable 16883 : diag::warn_weak_vtable) 16884 << Class; 16885 } 16886 } 16887 } 16888 VTableUses.clear(); 16889 16890 return DefinedAnything; 16891 } 16892 16893 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, 16894 const CXXRecordDecl *RD) { 16895 for (const auto *I : RD->methods()) 16896 if (I->isVirtual() && !I->isPure()) 16897 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>()); 16898 } 16899 16900 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, 16901 const CXXRecordDecl *RD, 16902 bool ConstexprOnly) { 16903 // Mark all functions which will appear in RD's vtable as used. 16904 CXXFinalOverriderMap FinalOverriders; 16905 RD->getFinalOverriders(FinalOverriders); 16906 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), 16907 E = FinalOverriders.end(); 16908 I != E; ++I) { 16909 for (OverridingMethods::const_iterator OI = I->second.begin(), 16910 OE = I->second.end(); 16911 OI != OE; ++OI) { 16912 assert(OI->second.size() > 0 && "no final overrider"); 16913 CXXMethodDecl *Overrider = OI->second.front().Method; 16914 16915 // C++ [basic.def.odr]p2: 16916 // [...] A virtual member function is used if it is not pure. [...] 16917 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr())) 16918 MarkFunctionReferenced(Loc, Overrider); 16919 } 16920 } 16921 16922 // Only classes that have virtual bases need a VTT. 16923 if (RD->getNumVBases() == 0) 16924 return; 16925 16926 for (const auto &I : RD->bases()) { 16927 const auto *Base = 16928 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 16929 if (Base->getNumVBases() == 0) 16930 continue; 16931 MarkVirtualMembersReferenced(Loc, Base); 16932 } 16933 } 16934 16935 /// SetIvarInitializers - This routine builds initialization ASTs for the 16936 /// Objective-C implementation whose ivars need be initialized. 16937 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { 16938 if (!getLangOpts().CPlusPlus) 16939 return; 16940 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { 16941 SmallVector<ObjCIvarDecl*, 8> ivars; 16942 CollectIvarsToConstructOrDestruct(OID, ivars); 16943 if (ivars.empty()) 16944 return; 16945 SmallVector<CXXCtorInitializer*, 32> AllToInit; 16946 for (unsigned i = 0; i < ivars.size(); i++) { 16947 FieldDecl *Field = ivars[i]; 16948 if (Field->isInvalidDecl()) 16949 continue; 16950 16951 CXXCtorInitializer *Member; 16952 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); 16953 InitializationKind InitKind = 16954 InitializationKind::CreateDefault(ObjCImplementation->getLocation()); 16955 16956 InitializationSequence InitSeq(*this, InitEntity, InitKind, None); 16957 ExprResult MemberInit = 16958 InitSeq.Perform(*this, InitEntity, InitKind, None); 16959 MemberInit = MaybeCreateExprWithCleanups(MemberInit); 16960 // Note, MemberInit could actually come back empty if no initialization 16961 // is required (e.g., because it would call a trivial default constructor) 16962 if (!MemberInit.get() || MemberInit.isInvalid()) 16963 continue; 16964 16965 Member = 16966 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(), 16967 SourceLocation(), 16968 MemberInit.getAs<Expr>(), 16969 SourceLocation()); 16970 AllToInit.push_back(Member); 16971 16972 // Be sure that the destructor is accessible and is marked as referenced. 16973 if (const RecordType *RecordTy = 16974 Context.getBaseElementType(Field->getType()) 16975 ->getAs<RecordType>()) { 16976 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); 16977 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 16978 MarkFunctionReferenced(Field->getLocation(), Destructor); 16979 CheckDestructorAccess(Field->getLocation(), Destructor, 16980 PDiag(diag::err_access_dtor_ivar) 16981 << Context.getBaseElementType(Field->getType())); 16982 } 16983 } 16984 } 16985 ObjCImplementation->setIvarInitializers(Context, 16986 AllToInit.data(), AllToInit.size()); 16987 } 16988 } 16989 16990 static 16991 void DelegatingCycleHelper(CXXConstructorDecl* Ctor, 16992 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid, 16993 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid, 16994 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current, 16995 Sema &S) { 16996 if (Ctor->isInvalidDecl()) 16997 return; 16998 16999 CXXConstructorDecl *Target = Ctor->getTargetConstructor(); 17000 17001 // Target may not be determinable yet, for instance if this is a dependent 17002 // call in an uninstantiated template. 17003 if (Target) { 17004 const FunctionDecl *FNTarget = nullptr; 17005 (void)Target->hasBody(FNTarget); 17006 Target = const_cast<CXXConstructorDecl*>( 17007 cast_or_null<CXXConstructorDecl>(FNTarget)); 17008 } 17009 17010 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), 17011 // Avoid dereferencing a null pointer here. 17012 *TCanonical = Target? Target->getCanonicalDecl() : nullptr; 17013 17014 if (!Current.insert(Canonical).second) 17015 return; 17016 17017 // We know that beyond here, we aren't chaining into a cycle. 17018 if (!Target || !Target->isDelegatingConstructor() || 17019 Target->isInvalidDecl() || Valid.count(TCanonical)) { 17020 Valid.insert(Current.begin(), Current.end()); 17021 Current.clear(); 17022 // We've hit a cycle. 17023 } else if (TCanonical == Canonical || Invalid.count(TCanonical) || 17024 Current.count(TCanonical)) { 17025 // If we haven't diagnosed this cycle yet, do so now. 17026 if (!Invalid.count(TCanonical)) { 17027 S.Diag((*Ctor->init_begin())->getSourceLocation(), 17028 diag::warn_delegating_ctor_cycle) 17029 << Ctor; 17030 17031 // Don't add a note for a function delegating directly to itself. 17032 if (TCanonical != Canonical) 17033 S.Diag(Target->getLocation(), diag::note_it_delegates_to); 17034 17035 CXXConstructorDecl *C = Target; 17036 while (C->getCanonicalDecl() != Canonical) { 17037 const FunctionDecl *FNTarget = nullptr; 17038 (void)C->getTargetConstructor()->hasBody(FNTarget); 17039 assert(FNTarget && "Ctor cycle through bodiless function"); 17040 17041 C = const_cast<CXXConstructorDecl*>( 17042 cast<CXXConstructorDecl>(FNTarget)); 17043 S.Diag(C->getLocation(), diag::note_which_delegates_to); 17044 } 17045 } 17046 17047 Invalid.insert(Current.begin(), Current.end()); 17048 Current.clear(); 17049 } else { 17050 DelegatingCycleHelper(Target, Valid, Invalid, Current, S); 17051 } 17052 } 17053 17054 17055 void Sema::CheckDelegatingCtorCycles() { 17056 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; 17057 17058 for (DelegatingCtorDeclsType::iterator 17059 I = DelegatingCtorDecls.begin(ExternalSource), 17060 E = DelegatingCtorDecls.end(); 17061 I != E; ++I) 17062 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); 17063 17064 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) 17065 (*CI)->setInvalidDecl(); 17066 } 17067 17068 namespace { 17069 /// AST visitor that finds references to the 'this' expression. 17070 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> { 17071 Sema &S; 17072 17073 public: 17074 explicit FindCXXThisExpr(Sema &S) : S(S) { } 17075 17076 bool VisitCXXThisExpr(CXXThisExpr *E) { 17077 S.Diag(E->getLocation(), diag::err_this_static_member_func) 17078 << E->isImplicit(); 17079 return false; 17080 } 17081 }; 17082 } 17083 17084 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { 17085 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 17086 if (!TSInfo) 17087 return false; 17088 17089 TypeLoc TL = TSInfo->getTypeLoc(); 17090 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 17091 if (!ProtoTL) 17092 return false; 17093 17094 // C++11 [expr.prim.general]p3: 17095 // [The expression this] shall not appear before the optional 17096 // cv-qualifier-seq and it shall not appear within the declaration of a 17097 // static member function (although its type and value category are defined 17098 // within a static member function as they are within a non-static member 17099 // function). [ Note: this is because declaration matching does not occur 17100 // until the complete declarator is known. - end note ] 17101 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 17102 FindCXXThisExpr Finder(*this); 17103 17104 // If the return type came after the cv-qualifier-seq, check it now. 17105 if (Proto->hasTrailingReturn() && 17106 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) 17107 return true; 17108 17109 // Check the exception specification. 17110 if (checkThisInStaticMemberFunctionExceptionSpec(Method)) 17111 return true; 17112 17113 // Check the trailing requires clause 17114 if (Expr *E = Method->getTrailingRequiresClause()) 17115 if (!Finder.TraverseStmt(E)) 17116 return true; 17117 17118 return checkThisInStaticMemberFunctionAttributes(Method); 17119 } 17120 17121 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { 17122 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 17123 if (!TSInfo) 17124 return false; 17125 17126 TypeLoc TL = TSInfo->getTypeLoc(); 17127 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 17128 if (!ProtoTL) 17129 return false; 17130 17131 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 17132 FindCXXThisExpr Finder(*this); 17133 17134 switch (Proto->getExceptionSpecType()) { 17135 case EST_Unparsed: 17136 case EST_Uninstantiated: 17137 case EST_Unevaluated: 17138 case EST_BasicNoexcept: 17139 case EST_NoThrow: 17140 case EST_DynamicNone: 17141 case EST_MSAny: 17142 case EST_None: 17143 break; 17144 17145 case EST_DependentNoexcept: 17146 case EST_NoexceptFalse: 17147 case EST_NoexceptTrue: 17148 if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) 17149 return true; 17150 LLVM_FALLTHROUGH; 17151 17152 case EST_Dynamic: 17153 for (const auto &E : Proto->exceptions()) { 17154 if (!Finder.TraverseType(E)) 17155 return true; 17156 } 17157 break; 17158 } 17159 17160 return false; 17161 } 17162 17163 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { 17164 FindCXXThisExpr Finder(*this); 17165 17166 // Check attributes. 17167 for (const auto *A : Method->attrs()) { 17168 // FIXME: This should be emitted by tblgen. 17169 Expr *Arg = nullptr; 17170 ArrayRef<Expr *> Args; 17171 if (const auto *G = dyn_cast<GuardedByAttr>(A)) 17172 Arg = G->getArg(); 17173 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A)) 17174 Arg = G->getArg(); 17175 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A)) 17176 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size()); 17177 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A)) 17178 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size()); 17179 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) { 17180 Arg = ETLF->getSuccessValue(); 17181 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size()); 17182 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) { 17183 Arg = STLF->getSuccessValue(); 17184 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size()); 17185 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A)) 17186 Arg = LR->getArg(); 17187 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A)) 17188 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size()); 17189 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A)) 17190 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); 17191 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A)) 17192 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); 17193 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A)) 17194 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); 17195 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A)) 17196 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); 17197 17198 if (Arg && !Finder.TraverseStmt(Arg)) 17199 return true; 17200 17201 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 17202 if (!Finder.TraverseStmt(Args[I])) 17203 return true; 17204 } 17205 } 17206 17207 return false; 17208 } 17209 17210 void Sema::checkExceptionSpecification( 17211 bool IsTopLevel, ExceptionSpecificationType EST, 17212 ArrayRef<ParsedType> DynamicExceptions, 17213 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr, 17214 SmallVectorImpl<QualType> &Exceptions, 17215 FunctionProtoType::ExceptionSpecInfo &ESI) { 17216 Exceptions.clear(); 17217 ESI.Type = EST; 17218 if (EST == EST_Dynamic) { 17219 Exceptions.reserve(DynamicExceptions.size()); 17220 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { 17221 // FIXME: Preserve type source info. 17222 QualType ET = GetTypeFromParser(DynamicExceptions[ei]); 17223 17224 if (IsTopLevel) { 17225 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 17226 collectUnexpandedParameterPacks(ET, Unexpanded); 17227 if (!Unexpanded.empty()) { 17228 DiagnoseUnexpandedParameterPacks( 17229 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType, 17230 Unexpanded); 17231 continue; 17232 } 17233 } 17234 17235 // Check that the type is valid for an exception spec, and 17236 // drop it if not. 17237 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei])) 17238 Exceptions.push_back(ET); 17239 } 17240 ESI.Exceptions = Exceptions; 17241 return; 17242 } 17243 17244 if (isComputedNoexcept(EST)) { 17245 assert((NoexceptExpr->isTypeDependent() || 17246 NoexceptExpr->getType()->getCanonicalTypeUnqualified() == 17247 Context.BoolTy) && 17248 "Parser should have made sure that the expression is boolean"); 17249 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) { 17250 ESI.Type = EST_BasicNoexcept; 17251 return; 17252 } 17253 17254 ESI.NoexceptExpr = NoexceptExpr; 17255 return; 17256 } 17257 } 17258 17259 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD, 17260 ExceptionSpecificationType EST, 17261 SourceRange SpecificationRange, 17262 ArrayRef<ParsedType> DynamicExceptions, 17263 ArrayRef<SourceRange> DynamicExceptionRanges, 17264 Expr *NoexceptExpr) { 17265 if (!MethodD) 17266 return; 17267 17268 // Dig out the method we're referring to. 17269 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD)) 17270 MethodD = FunTmpl->getTemplatedDecl(); 17271 17272 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD); 17273 if (!Method) 17274 return; 17275 17276 // Check the exception specification. 17277 llvm::SmallVector<QualType, 4> Exceptions; 17278 FunctionProtoType::ExceptionSpecInfo ESI; 17279 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions, 17280 DynamicExceptionRanges, NoexceptExpr, Exceptions, 17281 ESI); 17282 17283 // Update the exception specification on the function type. 17284 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true); 17285 17286 if (Method->isStatic()) 17287 checkThisInStaticMemberFunctionExceptionSpec(Method); 17288 17289 if (Method->isVirtual()) { 17290 // Check overrides, which we previously had to delay. 17291 for (const CXXMethodDecl *O : Method->overridden_methods()) 17292 CheckOverridingFunctionExceptionSpec(Method, O); 17293 } 17294 } 17295 17296 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. 17297 /// 17298 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, 17299 SourceLocation DeclStart, Declarator &D, 17300 Expr *BitWidth, 17301 InClassInitStyle InitStyle, 17302 AccessSpecifier AS, 17303 const ParsedAttr &MSPropertyAttr) { 17304 IdentifierInfo *II = D.getIdentifier(); 17305 if (!II) { 17306 Diag(DeclStart, diag::err_anonymous_property); 17307 return nullptr; 17308 } 17309 SourceLocation Loc = D.getIdentifierLoc(); 17310 17311 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 17312 QualType T = TInfo->getType(); 17313 if (getLangOpts().CPlusPlus) { 17314 CheckExtraCXXDefaultArguments(D); 17315 17316 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 17317 UPPC_DataMemberType)) { 17318 D.setInvalidType(); 17319 T = Context.IntTy; 17320 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 17321 } 17322 } 17323 17324 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 17325 17326 if (D.getDeclSpec().isInlineSpecified()) 17327 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 17328 << getLangOpts().CPlusPlus17; 17329 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 17330 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 17331 diag::err_invalid_thread) 17332 << DeclSpec::getSpecifierName(TSCS); 17333 17334 // Check to see if this name was declared as a member previously 17335 NamedDecl *PrevDecl = nullptr; 17336 LookupResult Previous(*this, II, Loc, LookupMemberName, 17337 ForVisibleRedeclaration); 17338 LookupName(Previous, S); 17339 switch (Previous.getResultKind()) { 17340 case LookupResult::Found: 17341 case LookupResult::FoundUnresolvedValue: 17342 PrevDecl = Previous.getAsSingle<NamedDecl>(); 17343 break; 17344 17345 case LookupResult::FoundOverloaded: 17346 PrevDecl = Previous.getRepresentativeDecl(); 17347 break; 17348 17349 case LookupResult::NotFound: 17350 case LookupResult::NotFoundInCurrentInstantiation: 17351 case LookupResult::Ambiguous: 17352 break; 17353 } 17354 17355 if (PrevDecl && PrevDecl->isTemplateParameter()) { 17356 // Maybe we will complain about the shadowed template parameter. 17357 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 17358 // Just pretend that we didn't see the previous declaration. 17359 PrevDecl = nullptr; 17360 } 17361 17362 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 17363 PrevDecl = nullptr; 17364 17365 SourceLocation TSSL = D.getBeginLoc(); 17366 MSPropertyDecl *NewPD = 17367 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL, 17368 MSPropertyAttr.getPropertyDataGetter(), 17369 MSPropertyAttr.getPropertyDataSetter()); 17370 ProcessDeclAttributes(TUScope, NewPD, D); 17371 NewPD->setAccess(AS); 17372 17373 if (NewPD->isInvalidDecl()) 17374 Record->setInvalidDecl(); 17375 17376 if (D.getDeclSpec().isModulePrivateSpecified()) 17377 NewPD->setModulePrivate(); 17378 17379 if (NewPD->isInvalidDecl() && PrevDecl) { 17380 // Don't introduce NewFD into scope; there's already something 17381 // with the same name in the same scope. 17382 } else if (II) { 17383 PushOnScopeChains(NewPD, S); 17384 } else 17385 Record->addDecl(NewPD); 17386 17387 return NewPD; 17388 } 17389 17390 void Sema::ActOnStartFunctionDeclarationDeclarator( 17391 Declarator &Declarator, unsigned TemplateParameterDepth) { 17392 auto &Info = InventedParameterInfos.emplace_back(); 17393 TemplateParameterList *ExplicitParams = nullptr; 17394 ArrayRef<TemplateParameterList *> ExplicitLists = 17395 Declarator.getTemplateParameterLists(); 17396 if (!ExplicitLists.empty()) { 17397 bool IsMemberSpecialization, IsInvalid; 17398 ExplicitParams = MatchTemplateParametersToScopeSpecifier( 17399 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(), 17400 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr, 17401 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid, 17402 /*SuppressDiagnostic=*/true); 17403 } 17404 if (ExplicitParams) { 17405 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth(); 17406 for (NamedDecl *Param : *ExplicitParams) 17407 Info.TemplateParams.push_back(Param); 17408 Info.NumExplicitTemplateParams = ExplicitParams->size(); 17409 } else { 17410 Info.AutoTemplateParameterDepth = TemplateParameterDepth; 17411 Info.NumExplicitTemplateParams = 0; 17412 } 17413 } 17414 17415 void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) { 17416 auto &FSI = InventedParameterInfos.back(); 17417 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) { 17418 if (FSI.NumExplicitTemplateParams != 0) { 17419 TemplateParameterList *ExplicitParams = 17420 Declarator.getTemplateParameterLists().back(); 17421 Declarator.setInventedTemplateParameterList( 17422 TemplateParameterList::Create( 17423 Context, ExplicitParams->getTemplateLoc(), 17424 ExplicitParams->getLAngleLoc(), FSI.TemplateParams, 17425 ExplicitParams->getRAngleLoc(), 17426 ExplicitParams->getRequiresClause())); 17427 } else { 17428 Declarator.setInventedTemplateParameterList( 17429 TemplateParameterList::Create( 17430 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams, 17431 SourceLocation(), /*RequiresClause=*/nullptr)); 17432 } 17433 } 17434 InventedParameterInfos.pop_back(); 17435 } 17436