1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTConsumer.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/ComparisonCategories.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/RecursiveASTVisitor.h" 26 #include "clang/AST/StmtVisitor.h" 27 #include "clang/AST/TypeLoc.h" 28 #include "clang/AST/TypeOrdering.h" 29 #include "clang/Basic/AttributeCommonInfo.h" 30 #include "clang/Basic/PartialDiagnostic.h" 31 #include "clang/Basic/Specifiers.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/Lex/LiteralSupport.h" 34 #include "clang/Lex/Preprocessor.h" 35 #include "clang/Sema/CXXFieldCollector.h" 36 #include "clang/Sema/DeclSpec.h" 37 #include "clang/Sema/EnterExpressionEvaluationContext.h" 38 #include "clang/Sema/Initialization.h" 39 #include "clang/Sema/Lookup.h" 40 #include "clang/Sema/ParsedTemplate.h" 41 #include "clang/Sema/Scope.h" 42 #include "clang/Sema/ScopeInfo.h" 43 #include "clang/Sema/SemaInternal.h" 44 #include "clang/Sema/Template.h" 45 #include "llvm/ADT/STLExtras.h" 46 #include "llvm/ADT/ScopeExit.h" 47 #include "llvm/ADT/SmallString.h" 48 #include "llvm/ADT/StringExtras.h" 49 #include "llvm/Support/SaveAndRestore.h" 50 #include <map> 51 #include <optional> 52 #include <set> 53 54 using namespace clang; 55 56 //===----------------------------------------------------------------------===// 57 // CheckDefaultArgumentVisitor 58 //===----------------------------------------------------------------------===// 59 60 namespace { 61 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses 62 /// the default argument of a parameter to determine whether it 63 /// contains any ill-formed subexpressions. For example, this will 64 /// diagnose the use of local variables or parameters within the 65 /// default argument expression. 66 class CheckDefaultArgumentVisitor 67 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> { 68 Sema &S; 69 const Expr *DefaultArg; 70 71 public: 72 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg) 73 : S(S), DefaultArg(DefaultArg) {} 74 75 bool VisitExpr(const Expr *Node); 76 bool VisitDeclRefExpr(const DeclRefExpr *DRE); 77 bool VisitCXXThisExpr(const CXXThisExpr *ThisE); 78 bool VisitLambdaExpr(const LambdaExpr *Lambda); 79 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE); 80 }; 81 82 /// VisitExpr - Visit all of the children of this expression. 83 bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) { 84 bool IsInvalid = false; 85 for (const Stmt *SubStmt : Node->children()) 86 IsInvalid |= Visit(SubStmt); 87 return IsInvalid; 88 } 89 90 /// VisitDeclRefExpr - Visit a reference to a declaration, to 91 /// determine whether this declaration can be used in the default 92 /// argument expression. 93 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) { 94 const ValueDecl *Decl = dyn_cast<ValueDecl>(DRE->getDecl()); 95 96 if (!isa<VarDecl, BindingDecl>(Decl)) 97 return false; 98 99 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) { 100 // C++ [dcl.fct.default]p9: 101 // [...] parameters of a function shall not be used in default 102 // argument expressions, even if they are not evaluated. [...] 103 // 104 // C++17 [dcl.fct.default]p9 (by CWG 2082): 105 // [...] A parameter shall not appear as a potentially-evaluated 106 // expression in a default argument. [...] 107 // 108 if (DRE->isNonOdrUse() != NOUR_Unevaluated) 109 return S.Diag(DRE->getBeginLoc(), 110 diag::err_param_default_argument_references_param) 111 << Param->getDeclName() << DefaultArg->getSourceRange(); 112 } else if (auto *VD = Decl->getPotentiallyDecomposedVarDecl()) { 113 // C++ [dcl.fct.default]p7: 114 // Local variables shall not be used in default argument 115 // expressions. 116 // 117 // C++17 [dcl.fct.default]p7 (by CWG 2082): 118 // A local variable shall not appear as a potentially-evaluated 119 // expression in a default argument. 120 // 121 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346): 122 // Note: A local variable cannot be odr-used (6.3) in a default 123 // argument. 124 // 125 if (VD->isLocalVarDecl() && !DRE->isNonOdrUse()) 126 return S.Diag(DRE->getBeginLoc(), 127 diag::err_param_default_argument_references_local) 128 << Decl << DefaultArg->getSourceRange(); 129 } 130 return false; 131 } 132 133 /// VisitCXXThisExpr - Visit a C++ "this" expression. 134 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) { 135 // C++ [dcl.fct.default]p8: 136 // The keyword this shall not be used in a default argument of a 137 // member function. 138 return S.Diag(ThisE->getBeginLoc(), 139 diag::err_param_default_argument_references_this) 140 << ThisE->getSourceRange(); 141 } 142 143 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr( 144 const PseudoObjectExpr *POE) { 145 bool Invalid = false; 146 for (const Expr *E : POE->semantics()) { 147 // Look through bindings. 148 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) { 149 E = OVE->getSourceExpr(); 150 assert(E && "pseudo-object binding without source expression?"); 151 } 152 153 Invalid |= Visit(E); 154 } 155 return Invalid; 156 } 157 158 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) { 159 // [expr.prim.lambda.capture]p9 160 // a lambda-expression appearing in a default argument cannot implicitly or 161 // explicitly capture any local entity. Such a lambda-expression can still 162 // have an init-capture if any full-expression in its initializer satisfies 163 // the constraints of an expression appearing in a default argument. 164 bool Invalid = false; 165 for (const LambdaCapture &LC : Lambda->captures()) { 166 if (!Lambda->isInitCapture(&LC)) 167 return S.Diag(LC.getLocation(), diag::err_lambda_capture_default_arg); 168 // Init captures are always VarDecl. 169 auto *D = cast<VarDecl>(LC.getCapturedVar()); 170 Invalid |= Visit(D->getInit()); 171 } 172 return Invalid; 173 } 174 } // namespace 175 176 void 177 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, 178 const CXXMethodDecl *Method) { 179 // If we have an MSAny spec already, don't bother. 180 if (!Method || ComputedEST == EST_MSAny) 181 return; 182 183 const FunctionProtoType *Proto 184 = Method->getType()->getAs<FunctionProtoType>(); 185 Proto = Self->ResolveExceptionSpec(CallLoc, Proto); 186 if (!Proto) 187 return; 188 189 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 190 191 // If we have a throw-all spec at this point, ignore the function. 192 if (ComputedEST == EST_None) 193 return; 194 195 if (EST == EST_None && Method->hasAttr<NoThrowAttr>()) 196 EST = EST_BasicNoexcept; 197 198 switch (EST) { 199 case EST_Unparsed: 200 case EST_Uninstantiated: 201 case EST_Unevaluated: 202 llvm_unreachable("should not see unresolved exception specs here"); 203 204 // If this function can throw any exceptions, make a note of that. 205 case EST_MSAny: 206 case EST_None: 207 // FIXME: Whichever we see last of MSAny and None determines our result. 208 // We should make a consistent, order-independent choice here. 209 ClearExceptions(); 210 ComputedEST = EST; 211 return; 212 case EST_NoexceptFalse: 213 ClearExceptions(); 214 ComputedEST = EST_None; 215 return; 216 // FIXME: If the call to this decl is using any of its default arguments, we 217 // need to search them for potentially-throwing calls. 218 // If this function has a basic noexcept, it doesn't affect the outcome. 219 case EST_BasicNoexcept: 220 case EST_NoexceptTrue: 221 case EST_NoThrow: 222 return; 223 // If we're still at noexcept(true) and there's a throw() callee, 224 // change to that specification. 225 case EST_DynamicNone: 226 if (ComputedEST == EST_BasicNoexcept) 227 ComputedEST = EST_DynamicNone; 228 return; 229 case EST_DependentNoexcept: 230 llvm_unreachable( 231 "should not generate implicit declarations for dependent cases"); 232 case EST_Dynamic: 233 break; 234 } 235 assert(EST == EST_Dynamic && "EST case not considered earlier."); 236 assert(ComputedEST != EST_None && 237 "Shouldn't collect exceptions when throw-all is guaranteed."); 238 ComputedEST = EST_Dynamic; 239 // Record the exceptions in this function's exception specification. 240 for (const auto &E : Proto->exceptions()) 241 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) 242 Exceptions.push_back(E); 243 } 244 245 void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) { 246 if (!S || ComputedEST == EST_MSAny) 247 return; 248 249 // FIXME: 250 // 251 // C++0x [except.spec]p14: 252 // [An] implicit exception-specification specifies the type-id T if and 253 // only if T is allowed by the exception-specification of a function directly 254 // invoked by f's implicit definition; f shall allow all exceptions if any 255 // function it directly invokes allows all exceptions, and f shall allow no 256 // exceptions if every function it directly invokes allows no exceptions. 257 // 258 // Note in particular that if an implicit exception-specification is generated 259 // for a function containing a throw-expression, that specification can still 260 // be noexcept(true). 261 // 262 // Note also that 'directly invoked' is not defined in the standard, and there 263 // is no indication that we should only consider potentially-evaluated calls. 264 // 265 // Ultimately we should implement the intent of the standard: the exception 266 // specification should be the set of exceptions which can be thrown by the 267 // implicit definition. For now, we assume that any non-nothrow expression can 268 // throw any exception. 269 270 if (Self->canThrow(S)) 271 ComputedEST = EST_None; 272 } 273 274 ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 275 SourceLocation EqualLoc) { 276 if (RequireCompleteType(Param->getLocation(), Param->getType(), 277 diag::err_typecheck_decl_incomplete_type)) 278 return true; 279 280 // C++ [dcl.fct.default]p5 281 // A default argument expression is implicitly converted (clause 282 // 4) to the parameter type. The default argument expression has 283 // the same semantic constraints as the initializer expression in 284 // a declaration of a variable of the parameter type, using the 285 // copy-initialization semantics (8.5). 286 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 287 Param); 288 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), 289 EqualLoc); 290 InitializationSequence InitSeq(*this, Entity, Kind, Arg); 291 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg); 292 if (Result.isInvalid()) 293 return true; 294 Arg = Result.getAs<Expr>(); 295 296 CheckCompletedExpr(Arg, EqualLoc); 297 Arg = MaybeCreateExprWithCleanups(Arg); 298 299 return Arg; 300 } 301 302 void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 303 SourceLocation EqualLoc) { 304 // Add the default argument to the parameter 305 Param->setDefaultArg(Arg); 306 307 // We have already instantiated this parameter; provide each of the 308 // instantiations with the uninstantiated default argument. 309 UnparsedDefaultArgInstantiationsMap::iterator InstPos 310 = UnparsedDefaultArgInstantiations.find(Param); 311 if (InstPos != UnparsedDefaultArgInstantiations.end()) { 312 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) 313 InstPos->second[I]->setUninstantiatedDefaultArg(Arg); 314 315 // We're done tracking this parameter's instantiations. 316 UnparsedDefaultArgInstantiations.erase(InstPos); 317 } 318 } 319 320 /// ActOnParamDefaultArgument - Check whether the default argument 321 /// provided for a function parameter is well-formed. If so, attach it 322 /// to the parameter declaration. 323 void 324 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, 325 Expr *DefaultArg) { 326 if (!param || !DefaultArg) 327 return; 328 329 ParmVarDecl *Param = cast<ParmVarDecl>(param); 330 UnparsedDefaultArgLocs.erase(Param); 331 332 auto Fail = [&] { 333 Param->setInvalidDecl(); 334 Param->setDefaultArg(new (Context) OpaqueValueExpr( 335 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue)); 336 }; 337 338 // Default arguments are only permitted in C++ 339 if (!getLangOpts().CPlusPlus) { 340 Diag(EqualLoc, diag::err_param_default_argument) 341 << DefaultArg->getSourceRange(); 342 return Fail(); 343 } 344 345 // Check for unexpanded parameter packs. 346 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) { 347 return Fail(); 348 } 349 350 // C++11 [dcl.fct.default]p3 351 // A default argument expression [...] shall not be specified for a 352 // parameter pack. 353 if (Param->isParameterPack()) { 354 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack) 355 << DefaultArg->getSourceRange(); 356 // Recover by discarding the default argument. 357 Param->setDefaultArg(nullptr); 358 return; 359 } 360 361 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc); 362 if (Result.isInvalid()) 363 return Fail(); 364 365 DefaultArg = Result.getAs<Expr>(); 366 367 // Check that the default argument is well-formed 368 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg); 369 if (DefaultArgChecker.Visit(DefaultArg)) 370 return Fail(); 371 372 SetParamDefaultArgument(Param, DefaultArg, EqualLoc); 373 } 374 375 /// ActOnParamUnparsedDefaultArgument - We've seen a default 376 /// argument for a function parameter, but we can't parse it yet 377 /// because we're inside a class definition. Note that this default 378 /// argument will be parsed later. 379 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, 380 SourceLocation EqualLoc, 381 SourceLocation ArgLoc) { 382 if (!param) 383 return; 384 385 ParmVarDecl *Param = cast<ParmVarDecl>(param); 386 Param->setUnparsedDefaultArg(); 387 UnparsedDefaultArgLocs[Param] = ArgLoc; 388 } 389 390 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of 391 /// the default argument for the parameter param failed. 392 void Sema::ActOnParamDefaultArgumentError(Decl *param, 393 SourceLocation EqualLoc) { 394 if (!param) 395 return; 396 397 ParmVarDecl *Param = cast<ParmVarDecl>(param); 398 Param->setInvalidDecl(); 399 UnparsedDefaultArgLocs.erase(Param); 400 Param->setDefaultArg(new (Context) OpaqueValueExpr( 401 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue)); 402 } 403 404 /// CheckExtraCXXDefaultArguments - Check for any extra default 405 /// arguments in the declarator, which is not a function declaration 406 /// or definition and therefore is not permitted to have default 407 /// arguments. This routine should be invoked for every declarator 408 /// that is not a function declaration or definition. 409 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { 410 // C++ [dcl.fct.default]p3 411 // A default argument expression shall be specified only in the 412 // parameter-declaration-clause of a function declaration or in a 413 // template-parameter (14.1). It shall not be specified for a 414 // parameter pack. If it is specified in a 415 // parameter-declaration-clause, it shall not occur within a 416 // declarator or abstract-declarator of a parameter-declaration. 417 bool MightBeFunction = D.isFunctionDeclarationContext(); 418 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { 419 DeclaratorChunk &chunk = D.getTypeObject(i); 420 if (chunk.Kind == DeclaratorChunk::Function) { 421 if (MightBeFunction) { 422 // This is a function declaration. It can have default arguments, but 423 // keep looking in case its return type is a function type with default 424 // arguments. 425 MightBeFunction = false; 426 continue; 427 } 428 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; 429 ++argIdx) { 430 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param); 431 if (Param->hasUnparsedDefaultArg()) { 432 std::unique_ptr<CachedTokens> Toks = 433 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens); 434 SourceRange SR; 435 if (Toks->size() > 1) 436 SR = SourceRange((*Toks)[1].getLocation(), 437 Toks->back().getLocation()); 438 else 439 SR = UnparsedDefaultArgLocs[Param]; 440 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 441 << SR; 442 } else if (Param->getDefaultArg()) { 443 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 444 << Param->getDefaultArg()->getSourceRange(); 445 Param->setDefaultArg(nullptr); 446 } 447 } 448 } else if (chunk.Kind != DeclaratorChunk::Paren) { 449 MightBeFunction = false; 450 } 451 } 452 } 453 454 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { 455 return llvm::any_of(FD->parameters(), [](ParmVarDecl *P) { 456 return P->hasDefaultArg() && !P->hasInheritedDefaultArg(); 457 }); 458 } 459 460 /// MergeCXXFunctionDecl - Merge two declarations of the same C++ 461 /// function, once we already know that they have the same 462 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an 463 /// error, false otherwise. 464 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, 465 Scope *S) { 466 bool Invalid = false; 467 468 // The declaration context corresponding to the scope is the semantic 469 // parent, unless this is a local function declaration, in which case 470 // it is that surrounding function. 471 DeclContext *ScopeDC = New->isLocalExternDecl() 472 ? New->getLexicalDeclContext() 473 : New->getDeclContext(); 474 475 // Find the previous declaration for the purpose of default arguments. 476 FunctionDecl *PrevForDefaultArgs = Old; 477 for (/**/; PrevForDefaultArgs; 478 // Don't bother looking back past the latest decl if this is a local 479 // extern declaration; nothing else could work. 480 PrevForDefaultArgs = New->isLocalExternDecl() 481 ? nullptr 482 : PrevForDefaultArgs->getPreviousDecl()) { 483 // Ignore hidden declarations. 484 if (!LookupResult::isVisible(*this, PrevForDefaultArgs)) 485 continue; 486 487 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) && 488 !New->isCXXClassMember()) { 489 // Ignore default arguments of old decl if they are not in 490 // the same scope and this is not an out-of-line definition of 491 // a member function. 492 continue; 493 } 494 495 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) { 496 // If only one of these is a local function declaration, then they are 497 // declared in different scopes, even though isDeclInScope may think 498 // they're in the same scope. (If both are local, the scope check is 499 // sufficient, and if neither is local, then they are in the same scope.) 500 continue; 501 } 502 503 // We found the right previous declaration. 504 break; 505 } 506 507 // C++ [dcl.fct.default]p4: 508 // For non-template functions, default arguments can be added in 509 // later declarations of a function in the same 510 // scope. Declarations in different scopes have completely 511 // distinct sets of default arguments. That is, declarations in 512 // inner scopes do not acquire default arguments from 513 // declarations in outer scopes, and vice versa. In a given 514 // function declaration, all parameters subsequent to a 515 // parameter with a default argument shall have default 516 // arguments supplied in this or previous declarations. A 517 // default argument shall not be redefined by a later 518 // declaration (not even to the same value). 519 // 520 // C++ [dcl.fct.default]p6: 521 // Except for member functions of class templates, the default arguments 522 // in a member function definition that appears outside of the class 523 // definition are added to the set of default arguments provided by the 524 // member function declaration in the class definition. 525 for (unsigned p = 0, NumParams = PrevForDefaultArgs 526 ? PrevForDefaultArgs->getNumParams() 527 : 0; 528 p < NumParams; ++p) { 529 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p); 530 ParmVarDecl *NewParam = New->getParamDecl(p); 531 532 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; 533 bool NewParamHasDfl = NewParam->hasDefaultArg(); 534 535 if (OldParamHasDfl && NewParamHasDfl) { 536 unsigned DiagDefaultParamID = 537 diag::err_param_default_argument_redefinition; 538 539 // MSVC accepts that default parameters be redefined for member functions 540 // of template class. The new default parameter's value is ignored. 541 Invalid = true; 542 if (getLangOpts().MicrosoftExt) { 543 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New); 544 if (MD && MD->getParent()->getDescribedClassTemplate()) { 545 // Merge the old default argument into the new parameter. 546 NewParam->setHasInheritedDefaultArg(); 547 if (OldParam->hasUninstantiatedDefaultArg()) 548 NewParam->setUninstantiatedDefaultArg( 549 OldParam->getUninstantiatedDefaultArg()); 550 else 551 NewParam->setDefaultArg(OldParam->getInit()); 552 DiagDefaultParamID = diag::ext_param_default_argument_redefinition; 553 Invalid = false; 554 } 555 } 556 557 // FIXME: If we knew where the '=' was, we could easily provide a fix-it 558 // hint here. Alternatively, we could walk the type-source information 559 // for NewParam to find the last source location in the type... but it 560 // isn't worth the effort right now. This is the kind of test case that 561 // is hard to get right: 562 // int f(int); 563 // void g(int (*fp)(int) = f); 564 // void g(int (*fp)(int) = &f); 565 Diag(NewParam->getLocation(), DiagDefaultParamID) 566 << NewParam->getDefaultArgRange(); 567 568 // Look for the function declaration where the default argument was 569 // actually written, which may be a declaration prior to Old. 570 for (auto Older = PrevForDefaultArgs; 571 OldParam->hasInheritedDefaultArg(); /**/) { 572 Older = Older->getPreviousDecl(); 573 OldParam = Older->getParamDecl(p); 574 } 575 576 Diag(OldParam->getLocation(), diag::note_previous_definition) 577 << OldParam->getDefaultArgRange(); 578 } else if (OldParamHasDfl) { 579 // Merge the old default argument into the new parameter unless the new 580 // function is a friend declaration in a template class. In the latter 581 // case the default arguments will be inherited when the friend 582 // declaration will be instantiated. 583 if (New->getFriendObjectKind() == Decl::FOK_None || 584 !New->getLexicalDeclContext()->isDependentContext()) { 585 // It's important to use getInit() here; getDefaultArg() 586 // strips off any top-level ExprWithCleanups. 587 NewParam->setHasInheritedDefaultArg(); 588 if (OldParam->hasUnparsedDefaultArg()) 589 NewParam->setUnparsedDefaultArg(); 590 else if (OldParam->hasUninstantiatedDefaultArg()) 591 NewParam->setUninstantiatedDefaultArg( 592 OldParam->getUninstantiatedDefaultArg()); 593 else 594 NewParam->setDefaultArg(OldParam->getInit()); 595 } 596 } else if (NewParamHasDfl) { 597 if (New->getDescribedFunctionTemplate()) { 598 // Paragraph 4, quoted above, only applies to non-template functions. 599 Diag(NewParam->getLocation(), 600 diag::err_param_default_argument_template_redecl) 601 << NewParam->getDefaultArgRange(); 602 Diag(PrevForDefaultArgs->getLocation(), 603 diag::note_template_prev_declaration) 604 << false; 605 } else if (New->getTemplateSpecializationKind() 606 != TSK_ImplicitInstantiation && 607 New->getTemplateSpecializationKind() != TSK_Undeclared) { 608 // C++ [temp.expr.spec]p21: 609 // Default function arguments shall not be specified in a declaration 610 // or a definition for one of the following explicit specializations: 611 // - the explicit specialization of a function template; 612 // - the explicit specialization of a member function template; 613 // - the explicit specialization of a member function of a class 614 // template where the class template specialization to which the 615 // member function specialization belongs is implicitly 616 // instantiated. 617 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) 618 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) 619 << New->getDeclName() 620 << NewParam->getDefaultArgRange(); 621 } else if (New->getDeclContext()->isDependentContext()) { 622 // C++ [dcl.fct.default]p6 (DR217): 623 // Default arguments for a member function of a class template shall 624 // be specified on the initial declaration of the member function 625 // within the class template. 626 // 627 // Reading the tea leaves a bit in DR217 and its reference to DR205 628 // leads me to the conclusion that one cannot add default function 629 // arguments for an out-of-line definition of a member function of a 630 // dependent type. 631 int WhichKind = 2; 632 if (CXXRecordDecl *Record 633 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { 634 if (Record->getDescribedClassTemplate()) 635 WhichKind = 0; 636 else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) 637 WhichKind = 1; 638 else 639 WhichKind = 2; 640 } 641 642 Diag(NewParam->getLocation(), 643 diag::err_param_default_argument_member_template_redecl) 644 << WhichKind 645 << NewParam->getDefaultArgRange(); 646 } 647 } 648 } 649 650 // DR1344: If a default argument is added outside a class definition and that 651 // default argument makes the function a special member function, the program 652 // is ill-formed. This can only happen for constructors. 653 if (isa<CXXConstructorDecl>(New) && 654 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { 655 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)), 656 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old)); 657 if (NewSM != OldSM) { 658 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); 659 assert(NewParam->hasDefaultArg()); 660 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) 661 << NewParam->getDefaultArgRange() << NewSM; 662 Diag(Old->getLocation(), diag::note_previous_declaration); 663 } 664 } 665 666 const FunctionDecl *Def; 667 // C++11 [dcl.constexpr]p1: If any declaration of a function or function 668 // template has a constexpr specifier then all its declarations shall 669 // contain the constexpr specifier. 670 if (New->getConstexprKind() != Old->getConstexprKind()) { 671 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) 672 << New << static_cast<int>(New->getConstexprKind()) 673 << static_cast<int>(Old->getConstexprKind()); 674 Diag(Old->getLocation(), diag::note_previous_declaration); 675 Invalid = true; 676 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && 677 Old->isDefined(Def) && 678 // If a friend function is inlined but does not have 'inline' 679 // specifier, it is a definition. Do not report attribute conflict 680 // in this case, redefinition will be diagnosed later. 681 (New->isInlineSpecified() || 682 New->getFriendObjectKind() == Decl::FOK_None)) { 683 // C++11 [dcl.fcn.spec]p4: 684 // If the definition of a function appears in a translation unit before its 685 // first declaration as inline, the program is ill-formed. 686 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 687 Diag(Def->getLocation(), diag::note_previous_definition); 688 Invalid = true; 689 } 690 691 // C++17 [temp.deduct.guide]p3: 692 // Two deduction guide declarations in the same translation unit 693 // for the same class template shall not have equivalent 694 // parameter-declaration-clauses. 695 if (isa<CXXDeductionGuideDecl>(New) && 696 !New->isFunctionTemplateSpecialization() && isVisible(Old)) { 697 Diag(New->getLocation(), diag::err_deduction_guide_redeclared); 698 Diag(Old->getLocation(), diag::note_previous_declaration); 699 } 700 701 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default 702 // argument expression, that declaration shall be a definition and shall be 703 // the only declaration of the function or function template in the 704 // translation unit. 705 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && 706 functionDeclHasDefaultArgument(Old)) { 707 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 708 Diag(Old->getLocation(), diag::note_previous_declaration); 709 Invalid = true; 710 } 711 712 // C++11 [temp.friend]p4 (DR329): 713 // When a function is defined in a friend function declaration in a class 714 // template, the function is instantiated when the function is odr-used. 715 // The same restrictions on multiple declarations and definitions that 716 // apply to non-template function declarations and definitions also apply 717 // to these implicit definitions. 718 const FunctionDecl *OldDefinition = nullptr; 719 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() && 720 Old->isDefined(OldDefinition, true)) 721 CheckForFunctionRedefinition(New, OldDefinition); 722 723 return Invalid; 724 } 725 726 NamedDecl * 727 Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, 728 MultiTemplateParamsArg TemplateParamLists) { 729 assert(D.isDecompositionDeclarator()); 730 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); 731 732 // The syntax only allows a decomposition declarator as a simple-declaration, 733 // a for-range-declaration, or a condition in Clang, but we parse it in more 734 // cases than that. 735 if (!D.mayHaveDecompositionDeclarator()) { 736 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) 737 << Decomp.getSourceRange(); 738 return nullptr; 739 } 740 741 if (!TemplateParamLists.empty()) { 742 // FIXME: There's no rule against this, but there are also no rules that 743 // would actually make it usable, so we reject it for now. 744 Diag(TemplateParamLists.front()->getTemplateLoc(), 745 diag::err_decomp_decl_template); 746 return nullptr; 747 } 748 749 Diag(Decomp.getLSquareLoc(), 750 !getLangOpts().CPlusPlus17 751 ? diag::ext_decomp_decl 752 : D.getContext() == DeclaratorContext::Condition 753 ? diag::ext_decomp_decl_cond 754 : diag::warn_cxx14_compat_decomp_decl) 755 << Decomp.getSourceRange(); 756 757 // The semantic context is always just the current context. 758 DeclContext *const DC = CurContext; 759 760 // C++17 [dcl.dcl]/8: 761 // The decl-specifier-seq shall contain only the type-specifier auto 762 // and cv-qualifiers. 763 // C++20 [dcl.dcl]/8: 764 // If decl-specifier-seq contains any decl-specifier other than static, 765 // thread_local, auto, or cv-qualifiers, the program is ill-formed. 766 // C++23 [dcl.pre]/6: 767 // Each decl-specifier in the decl-specifier-seq shall be static, 768 // thread_local, auto (9.2.9.6 [dcl.spec.auto]), or a cv-qualifier. 769 auto &DS = D.getDeclSpec(); 770 { 771 // Note: While constrained-auto needs to be checked, we do so separately so 772 // we can emit a better diagnostic. 773 SmallVector<StringRef, 8> BadSpecifiers; 774 SmallVector<SourceLocation, 8> BadSpecifierLocs; 775 SmallVector<StringRef, 8> CPlusPlus20Specifiers; 776 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; 777 if (auto SCS = DS.getStorageClassSpec()) { 778 if (SCS == DeclSpec::SCS_static) { 779 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS)); 780 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 781 } else { 782 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS)); 783 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 784 } 785 } 786 if (auto TSCS = DS.getThreadStorageClassSpec()) { 787 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS)); 788 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc()); 789 } 790 if (DS.hasConstexprSpecifier()) { 791 BadSpecifiers.push_back( 792 DeclSpec::getSpecifierName(DS.getConstexprSpecifier())); 793 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc()); 794 } 795 if (DS.isInlineSpecified()) { 796 BadSpecifiers.push_back("inline"); 797 BadSpecifierLocs.push_back(DS.getInlineSpecLoc()); 798 } 799 800 if (!BadSpecifiers.empty()) { 801 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); 802 Err << (int)BadSpecifiers.size() 803 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " "); 804 // Don't add FixItHints to remove the specifiers; we do still respect 805 // them when building the underlying variable. 806 for (auto Loc : BadSpecifierLocs) 807 Err << SourceRange(Loc, Loc); 808 } else if (!CPlusPlus20Specifiers.empty()) { 809 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(), 810 getLangOpts().CPlusPlus20 811 ? diag::warn_cxx17_compat_decomp_decl_spec 812 : diag::ext_decomp_decl_spec); 813 Warn << (int)CPlusPlus20Specifiers.size() 814 << llvm::join(CPlusPlus20Specifiers.begin(), 815 CPlusPlus20Specifiers.end(), " "); 816 for (auto Loc : CPlusPlus20SpecifierLocs) 817 Warn << SourceRange(Loc, Loc); 818 } 819 // We can't recover from it being declared as a typedef. 820 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 821 return nullptr; 822 } 823 824 // C++2a [dcl.struct.bind]p1: 825 // A cv that includes volatile is deprecated 826 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && 827 getLangOpts().CPlusPlus20) 828 Diag(DS.getVolatileSpecLoc(), 829 diag::warn_deprecated_volatile_structured_binding); 830 831 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 832 QualType R = TInfo->getType(); 833 834 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 835 UPPC_DeclarationType)) 836 D.setInvalidType(); 837 838 // The syntax only allows a single ref-qualifier prior to the decomposition 839 // declarator. No other declarator chunks are permitted. Also check the type 840 // specifier here. 841 if (DS.getTypeSpecType() != DeclSpec::TST_auto || 842 D.hasGroupingParens() || D.getNumTypeObjects() > 1 || 843 (D.getNumTypeObjects() == 1 && 844 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) { 845 Diag(Decomp.getLSquareLoc(), 846 (D.hasGroupingParens() || 847 (D.getNumTypeObjects() && 848 D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) 849 ? diag::err_decomp_decl_parens 850 : diag::err_decomp_decl_type) 851 << R; 852 853 // In most cases, there's no actual problem with an explicitly-specified 854 // type, but a function type won't work here, and ActOnVariableDeclarator 855 // shouldn't be called for such a type. 856 if (R->isFunctionType()) 857 D.setInvalidType(); 858 } 859 860 // Constrained auto is prohibited by [decl.pre]p6, so check that here. 861 if (DS.isConstrainedAuto()) { 862 TemplateIdAnnotation *TemplRep = DS.getRepAsTemplateId(); 863 assert(TemplRep->Kind == TNK_Concept_template && 864 "No other template kind should be possible for a constrained auto"); 865 866 SourceRange TemplRange{TemplRep->TemplateNameLoc, 867 TemplRep->RAngleLoc.isValid() 868 ? TemplRep->RAngleLoc 869 : TemplRep->TemplateNameLoc}; 870 Diag(TemplRep->TemplateNameLoc, diag::err_decomp_decl_constraint) 871 << TemplRange << FixItHint::CreateRemoval(TemplRange); 872 } 873 874 // Build the BindingDecls. 875 SmallVector<BindingDecl*, 8> Bindings; 876 877 // Build the BindingDecls. 878 for (auto &B : D.getDecompositionDeclarator().bindings()) { 879 // Check for name conflicts. 880 DeclarationNameInfo NameInfo(B.Name, B.NameLoc); 881 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 882 ForVisibleRedeclaration); 883 LookupName(Previous, S, 884 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit()); 885 886 // It's not permitted to shadow a template parameter name. 887 if (Previous.isSingleResult() && 888 Previous.getFoundDecl()->isTemplateParameter()) { 889 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 890 Previous.getFoundDecl()); 891 Previous.clear(); 892 } 893 894 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name); 895 896 // Find the shadowed declaration before filtering for scope. 897 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() 898 ? getShadowedDeclaration(BD, Previous) 899 : nullptr; 900 901 bool ConsiderLinkage = DC->isFunctionOrMethod() && 902 DS.getStorageClassSpec() == DeclSpec::SCS_extern; 903 FilterLookupForScope(Previous, DC, S, ConsiderLinkage, 904 /*AllowInlineNamespace*/false); 905 906 if (!Previous.empty()) { 907 auto *Old = Previous.getRepresentativeDecl(); 908 Diag(B.NameLoc, diag::err_redefinition) << B.Name; 909 Diag(Old->getLocation(), diag::note_previous_definition); 910 } else if (ShadowedDecl && !D.isRedeclaration()) { 911 CheckShadow(BD, ShadowedDecl, Previous); 912 } 913 PushOnScopeChains(BD, S, true); 914 Bindings.push_back(BD); 915 ParsingInitForAutoVars.insert(BD); 916 } 917 918 // There are no prior lookup results for the variable itself, because it 919 // is unnamed. 920 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, 921 Decomp.getLSquareLoc()); 922 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 923 ForVisibleRedeclaration); 924 925 // Build the variable that holds the non-decomposed object. 926 bool AddToScope = true; 927 NamedDecl *New = 928 ActOnVariableDeclarator(S, D, DC, TInfo, Previous, 929 MultiTemplateParamsArg(), AddToScope, Bindings); 930 if (AddToScope) { 931 S->AddDecl(New); 932 CurContext->addHiddenDecl(New); 933 } 934 935 if (isInOpenMPDeclareTargetContext()) 936 checkDeclIsAllowedInOpenMPTarget(nullptr, New); 937 938 return New; 939 } 940 941 static bool checkSimpleDecomposition( 942 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, 943 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType, 944 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { 945 if ((int64_t)Bindings.size() != NumElems) { 946 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 947 << DecompType << (unsigned)Bindings.size() 948 << (unsigned)NumElems.getLimitedValue(UINT_MAX) 949 << toString(NumElems, 10) << (NumElems < Bindings.size()); 950 return true; 951 } 952 953 unsigned I = 0; 954 for (auto *B : Bindings) { 955 SourceLocation Loc = B->getLocation(); 956 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 957 if (E.isInvalid()) 958 return true; 959 E = GetInit(Loc, E.get(), I++); 960 if (E.isInvalid()) 961 return true; 962 B->setBinding(ElemType, E.get()); 963 } 964 965 return false; 966 } 967 968 static bool checkArrayLikeDecomposition(Sema &S, 969 ArrayRef<BindingDecl *> Bindings, 970 ValueDecl *Src, QualType DecompType, 971 const llvm::APSInt &NumElems, 972 QualType ElemType) { 973 return checkSimpleDecomposition( 974 S, Bindings, Src, DecompType, NumElems, ElemType, 975 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 976 ExprResult E = S.ActOnIntegerConstant(Loc, I); 977 if (E.isInvalid()) 978 return ExprError(); 979 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc); 980 }); 981 } 982 983 static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 984 ValueDecl *Src, QualType DecompType, 985 const ConstantArrayType *CAT) { 986 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, 987 llvm::APSInt(CAT->getSize()), 988 CAT->getElementType()); 989 } 990 991 static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 992 ValueDecl *Src, QualType DecompType, 993 const VectorType *VT) { 994 return checkArrayLikeDecomposition( 995 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()), 996 S.Context.getQualifiedType(VT->getElementType(), 997 DecompType.getQualifiers())); 998 } 999 1000 static bool checkComplexDecomposition(Sema &S, 1001 ArrayRef<BindingDecl *> Bindings, 1002 ValueDecl *Src, QualType DecompType, 1003 const ComplexType *CT) { 1004 return checkSimpleDecomposition( 1005 S, Bindings, Src, DecompType, llvm::APSInt::get(2), 1006 S.Context.getQualifiedType(CT->getElementType(), 1007 DecompType.getQualifiers()), 1008 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 1009 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base); 1010 }); 1011 } 1012 1013 static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, 1014 TemplateArgumentListInfo &Args, 1015 const TemplateParameterList *Params) { 1016 SmallString<128> SS; 1017 llvm::raw_svector_ostream OS(SS); 1018 bool First = true; 1019 unsigned I = 0; 1020 for (auto &Arg : Args.arguments()) { 1021 if (!First) 1022 OS << ", "; 1023 Arg.getArgument().print(PrintingPolicy, OS, 1024 TemplateParameterList::shouldIncludeTypeForArgument( 1025 PrintingPolicy, Params, I)); 1026 First = false; 1027 I++; 1028 } 1029 return std::string(OS.str()); 1030 } 1031 1032 static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, 1033 SourceLocation Loc, StringRef Trait, 1034 TemplateArgumentListInfo &Args, 1035 unsigned DiagID) { 1036 auto DiagnoseMissing = [&] { 1037 if (DiagID) 1038 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(), 1039 Args, /*Params*/ nullptr); 1040 return true; 1041 }; 1042 1043 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. 1044 NamespaceDecl *Std = S.getStdNamespace(); 1045 if (!Std) 1046 return DiagnoseMissing(); 1047 1048 // Look up the trait itself, within namespace std. We can diagnose various 1049 // problems with this lookup even if we've been asked to not diagnose a 1050 // missing specialization, because this can only fail if the user has been 1051 // declaring their own names in namespace std or we don't support the 1052 // standard library implementation in use. 1053 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait), 1054 Loc, Sema::LookupOrdinaryName); 1055 if (!S.LookupQualifiedName(Result, Std)) 1056 return DiagnoseMissing(); 1057 if (Result.isAmbiguous()) 1058 return true; 1059 1060 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); 1061 if (!TraitTD) { 1062 Result.suppressDiagnostics(); 1063 NamedDecl *Found = *Result.begin(); 1064 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; 1065 S.Diag(Found->getLocation(), diag::note_declared_at); 1066 return true; 1067 } 1068 1069 // Build the template-id. 1070 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args); 1071 if (TraitTy.isNull()) 1072 return true; 1073 if (!S.isCompleteType(Loc, TraitTy)) { 1074 if (DiagID) 1075 S.RequireCompleteType( 1076 Loc, TraitTy, DiagID, 1077 printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1078 TraitTD->getTemplateParameters())); 1079 return true; 1080 } 1081 1082 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); 1083 assert(RD && "specialization of class template is not a class?"); 1084 1085 // Look up the member of the trait type. 1086 S.LookupQualifiedName(TraitMemberLookup, RD); 1087 return TraitMemberLookup.isAmbiguous(); 1088 } 1089 1090 static TemplateArgumentLoc 1091 getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, 1092 uint64_t I) { 1093 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T); 1094 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc); 1095 } 1096 1097 static TemplateArgumentLoc 1098 getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { 1099 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc); 1100 } 1101 1102 namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } 1103 1104 static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, 1105 llvm::APSInt &Size) { 1106 EnterExpressionEvaluationContext ContextRAII( 1107 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1108 1109 DeclarationName Value = S.PP.getIdentifierInfo("value"); 1110 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); 1111 1112 // Form template argument list for tuple_size<T>. 1113 TemplateArgumentListInfo Args(Loc, Loc); 1114 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1115 1116 // If there's no tuple_size specialization or the lookup of 'value' is empty, 1117 // it's not tuple-like. 1118 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) || 1119 R.empty()) 1120 return IsTupleLike::NotTupleLike; 1121 1122 // If we get this far, we've committed to the tuple interpretation, but 1123 // we can still fail if there actually isn't a usable ::value. 1124 1125 struct ICEDiagnoser : Sema::VerifyICEDiagnoser { 1126 LookupResult &R; 1127 TemplateArgumentListInfo &Args; 1128 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) 1129 : R(R), Args(Args) {} 1130 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, 1131 SourceLocation Loc) override { 1132 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) 1133 << printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1134 /*Params*/ nullptr); 1135 } 1136 } Diagnoser(R, Args); 1137 1138 ExprResult E = 1139 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false); 1140 if (E.isInvalid()) 1141 return IsTupleLike::Error; 1142 1143 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser); 1144 if (E.isInvalid()) 1145 return IsTupleLike::Error; 1146 1147 return IsTupleLike::TupleLike; 1148 } 1149 1150 /// \return std::tuple_element<I, T>::type. 1151 static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, 1152 unsigned I, QualType T) { 1153 // Form template argument list for tuple_element<I, T>. 1154 TemplateArgumentListInfo Args(Loc, Loc); 1155 Args.addArgument( 1156 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1157 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1158 1159 DeclarationName TypeDN = S.PP.getIdentifierInfo("type"); 1160 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); 1161 if (lookupStdTypeTraitMember( 1162 S, R, Loc, "tuple_element", Args, 1163 diag::err_decomp_decl_std_tuple_element_not_specialized)) 1164 return QualType(); 1165 1166 auto *TD = R.getAsSingle<TypeDecl>(); 1167 if (!TD) { 1168 R.suppressDiagnostics(); 1169 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) 1170 << printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1171 /*Params*/ nullptr); 1172 if (!R.empty()) 1173 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); 1174 return QualType(); 1175 } 1176 1177 return S.Context.getTypeDeclType(TD); 1178 } 1179 1180 namespace { 1181 struct InitializingBinding { 1182 Sema &S; 1183 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) { 1184 Sema::CodeSynthesisContext Ctx; 1185 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding; 1186 Ctx.PointOfInstantiation = BD->getLocation(); 1187 Ctx.Entity = BD; 1188 S.pushCodeSynthesisContext(Ctx); 1189 } 1190 ~InitializingBinding() { 1191 S.popCodeSynthesisContext(); 1192 } 1193 }; 1194 } 1195 1196 static bool checkTupleLikeDecomposition(Sema &S, 1197 ArrayRef<BindingDecl *> Bindings, 1198 VarDecl *Src, QualType DecompType, 1199 const llvm::APSInt &TupleSize) { 1200 if ((int64_t)Bindings.size() != TupleSize) { 1201 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1202 << DecompType << (unsigned)Bindings.size() 1203 << (unsigned)TupleSize.getLimitedValue(UINT_MAX) 1204 << toString(TupleSize, 10) << (TupleSize < Bindings.size()); 1205 return true; 1206 } 1207 1208 if (Bindings.empty()) 1209 return false; 1210 1211 DeclarationName GetDN = S.PP.getIdentifierInfo("get"); 1212 1213 // [dcl.decomp]p3: 1214 // The unqualified-id get is looked up in the scope of E by class member 1215 // access lookup ... 1216 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); 1217 bool UseMemberGet = false; 1218 if (S.isCompleteType(Src->getLocation(), DecompType)) { 1219 if (auto *RD = DecompType->getAsCXXRecordDecl()) 1220 S.LookupQualifiedName(MemberGet, RD); 1221 if (MemberGet.isAmbiguous()) 1222 return true; 1223 // ... and if that finds at least one declaration that is a function 1224 // template whose first template parameter is a non-type parameter ... 1225 for (NamedDecl *D : MemberGet) { 1226 if (FunctionTemplateDecl *FTD = 1227 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { 1228 TemplateParameterList *TPL = FTD->getTemplateParameters(); 1229 if (TPL->size() != 0 && 1230 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { 1231 // ... the initializer is e.get<i>(). 1232 UseMemberGet = true; 1233 break; 1234 } 1235 } 1236 } 1237 } 1238 1239 unsigned I = 0; 1240 for (auto *B : Bindings) { 1241 InitializingBinding InitContext(S, B); 1242 SourceLocation Loc = B->getLocation(); 1243 1244 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1245 if (E.isInvalid()) 1246 return true; 1247 1248 // e is an lvalue if the type of the entity is an lvalue reference and 1249 // an xvalue otherwise 1250 if (!Src->getType()->isLValueReferenceType()) 1251 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp, 1252 E.get(), nullptr, VK_XValue, 1253 FPOptionsOverride()); 1254 1255 TemplateArgumentListInfo Args(Loc, Loc); 1256 Args.addArgument( 1257 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1258 1259 if (UseMemberGet) { 1260 // if [lookup of member get] finds at least one declaration, the 1261 // initializer is e.get<i-1>(). 1262 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false, 1263 CXXScopeSpec(), SourceLocation(), nullptr, 1264 MemberGet, &Args, nullptr); 1265 if (E.isInvalid()) 1266 return true; 1267 1268 E = S.BuildCallExpr(nullptr, E.get(), Loc, std::nullopt, Loc); 1269 } else { 1270 // Otherwise, the initializer is get<i-1>(e), where get is looked up 1271 // in the associated namespaces. 1272 Expr *Get = UnresolvedLookupExpr::Create( 1273 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(), 1274 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args, 1275 UnresolvedSetIterator(), UnresolvedSetIterator()); 1276 1277 Expr *Arg = E.get(); 1278 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc); 1279 } 1280 if (E.isInvalid()) 1281 return true; 1282 Expr *Init = E.get(); 1283 1284 // Given the type T designated by std::tuple_element<i - 1, E>::type, 1285 QualType T = getTupleLikeElementType(S, Loc, I, DecompType); 1286 if (T.isNull()) 1287 return true; 1288 1289 // each vi is a variable of type "reference to T" initialized with the 1290 // initializer, where the reference is an lvalue reference if the 1291 // initializer is an lvalue and an rvalue reference otherwise 1292 QualType RefType = 1293 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName()); 1294 if (RefType.isNull()) 1295 return true; 1296 auto *RefVD = VarDecl::Create( 1297 S.Context, Src->getDeclContext(), Loc, Loc, 1298 B->getDeclName().getAsIdentifierInfo(), RefType, 1299 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass()); 1300 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); 1301 RefVD->setTSCSpec(Src->getTSCSpec()); 1302 RefVD->setImplicit(); 1303 if (Src->isInlineSpecified()) 1304 RefVD->setInlineSpecified(); 1305 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); 1306 1307 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD); 1308 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc); 1309 InitializationSequence Seq(S, Entity, Kind, Init); 1310 E = Seq.Perform(S, Entity, Kind, Init); 1311 if (E.isInvalid()) 1312 return true; 1313 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false); 1314 if (E.isInvalid()) 1315 return true; 1316 RefVD->setInit(E.get()); 1317 S.CheckCompleteVariableDeclaration(RefVD); 1318 1319 E = S.BuildDeclarationNameExpr(CXXScopeSpec(), 1320 DeclarationNameInfo(B->getDeclName(), Loc), 1321 RefVD); 1322 if (E.isInvalid()) 1323 return true; 1324 1325 B->setBinding(T, E.get()); 1326 I++; 1327 } 1328 1329 return false; 1330 } 1331 1332 /// Find the base class to decompose in a built-in decomposition of a class type. 1333 /// This base class search is, unfortunately, not quite like any other that we 1334 /// perform anywhere else in C++. 1335 static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, 1336 const CXXRecordDecl *RD, 1337 CXXCastPath &BasePath) { 1338 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, 1339 CXXBasePath &Path) { 1340 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); 1341 }; 1342 1343 const CXXRecordDecl *ClassWithFields = nullptr; 1344 AccessSpecifier AS = AS_public; 1345 if (RD->hasDirectFields()) 1346 // [dcl.decomp]p4: 1347 // Otherwise, all of E's non-static data members shall be public direct 1348 // members of E ... 1349 ClassWithFields = RD; 1350 else { 1351 // ... or of ... 1352 CXXBasePaths Paths; 1353 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); 1354 if (!RD->lookupInBases(BaseHasFields, Paths)) { 1355 // If no classes have fields, just decompose RD itself. (This will work 1356 // if and only if zero bindings were provided.) 1357 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); 1358 } 1359 1360 CXXBasePath *BestPath = nullptr; 1361 for (auto &P : Paths) { 1362 if (!BestPath) 1363 BestPath = &P; 1364 else if (!S.Context.hasSameType(P.back().Base->getType(), 1365 BestPath->back().Base->getType())) { 1366 // ... the same ... 1367 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1368 << false << RD << BestPath->back().Base->getType() 1369 << P.back().Base->getType(); 1370 return DeclAccessPair(); 1371 } else if (P.Access < BestPath->Access) { 1372 BestPath = &P; 1373 } 1374 } 1375 1376 // ... unambiguous ... 1377 QualType BaseType = BestPath->back().Base->getType(); 1378 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) { 1379 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) 1380 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); 1381 return DeclAccessPair(); 1382 } 1383 1384 // ... [accessible, implied by other rules] base class of E. 1385 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), 1386 *BestPath, diag::err_decomp_decl_inaccessible_base); 1387 AS = BestPath->Access; 1388 1389 ClassWithFields = BaseType->getAsCXXRecordDecl(); 1390 S.BuildBasePathArray(Paths, BasePath); 1391 } 1392 1393 // The above search did not check whether the selected class itself has base 1394 // classes with fields, so check that now. 1395 CXXBasePaths Paths; 1396 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) { 1397 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1398 << (ClassWithFields == RD) << RD << ClassWithFields 1399 << Paths.front().back().Base->getType(); 1400 return DeclAccessPair(); 1401 } 1402 1403 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); 1404 } 1405 1406 static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 1407 ValueDecl *Src, QualType DecompType, 1408 const CXXRecordDecl *OrigRD) { 1409 if (S.RequireCompleteType(Src->getLocation(), DecompType, 1410 diag::err_incomplete_type)) 1411 return true; 1412 1413 CXXCastPath BasePath; 1414 DeclAccessPair BasePair = 1415 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); 1416 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl()); 1417 if (!RD) 1418 return true; 1419 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD), 1420 DecompType.getQualifiers()); 1421 1422 auto DiagnoseBadNumberOfBindings = [&]() -> bool { 1423 unsigned NumFields = llvm::count_if( 1424 RD->fields(), [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); }); 1425 assert(Bindings.size() != NumFields); 1426 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1427 << DecompType << (unsigned)Bindings.size() << NumFields << NumFields 1428 << (NumFields < Bindings.size()); 1429 return true; 1430 }; 1431 1432 // all of E's non-static data members shall be [...] well-formed 1433 // when named as e.name in the context of the structured binding, 1434 // E shall not have an anonymous union member, ... 1435 unsigned I = 0; 1436 for (auto *FD : RD->fields()) { 1437 if (FD->isUnnamedBitfield()) 1438 continue; 1439 1440 // All the non-static data members are required to be nameable, so they 1441 // must all have names. 1442 if (!FD->getDeclName()) { 1443 if (RD->isLambda()) { 1444 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda); 1445 S.Diag(RD->getLocation(), diag::note_lambda_decl); 1446 return true; 1447 } 1448 1449 if (FD->isAnonymousStructOrUnion()) { 1450 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member) 1451 << DecompType << FD->getType()->isUnionType(); 1452 S.Diag(FD->getLocation(), diag::note_declared_at); 1453 return true; 1454 } 1455 1456 // FIXME: Are there any other ways we could have an anonymous member? 1457 } 1458 1459 // We have a real field to bind. 1460 if (I >= Bindings.size()) 1461 return DiagnoseBadNumberOfBindings(); 1462 auto *B = Bindings[I++]; 1463 SourceLocation Loc = B->getLocation(); 1464 1465 // The field must be accessible in the context of the structured binding. 1466 // We already checked that the base class is accessible. 1467 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the 1468 // const_cast here. 1469 S.CheckStructuredBindingMemberAccess( 1470 Loc, const_cast<CXXRecordDecl *>(OrigRD), 1471 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( 1472 BasePair.getAccess(), FD->getAccess()))); 1473 1474 // Initialize the binding to Src.FD. 1475 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1476 if (E.isInvalid()) 1477 return true; 1478 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, 1479 VK_LValue, &BasePath); 1480 if (E.isInvalid()) 1481 return true; 1482 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, 1483 CXXScopeSpec(), FD, 1484 DeclAccessPair::make(FD, FD->getAccess()), 1485 DeclarationNameInfo(FD->getDeclName(), Loc)); 1486 if (E.isInvalid()) 1487 return true; 1488 1489 // If the type of the member is T, the referenced type is cv T, where cv is 1490 // the cv-qualification of the decomposition expression. 1491 // 1492 // FIXME: We resolve a defect here: if the field is mutable, we do not add 1493 // 'const' to the type of the field. 1494 Qualifiers Q = DecompType.getQualifiers(); 1495 if (FD->isMutable()) 1496 Q.removeConst(); 1497 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); 1498 } 1499 1500 if (I != Bindings.size()) 1501 return DiagnoseBadNumberOfBindings(); 1502 1503 return false; 1504 } 1505 1506 void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { 1507 QualType DecompType = DD->getType(); 1508 1509 // If the type of the decomposition is dependent, then so is the type of 1510 // each binding. 1511 if (DecompType->isDependentType()) { 1512 for (auto *B : DD->bindings()) 1513 B->setType(Context.DependentTy); 1514 return; 1515 } 1516 1517 DecompType = DecompType.getNonReferenceType(); 1518 ArrayRef<BindingDecl*> Bindings = DD->bindings(); 1519 1520 // C++1z [dcl.decomp]/2: 1521 // If E is an array type [...] 1522 // As an extension, we also support decomposition of built-in complex and 1523 // vector types. 1524 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { 1525 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) 1526 DD->setInvalidDecl(); 1527 return; 1528 } 1529 if (auto *VT = DecompType->getAs<VectorType>()) { 1530 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) 1531 DD->setInvalidDecl(); 1532 return; 1533 } 1534 if (auto *CT = DecompType->getAs<ComplexType>()) { 1535 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) 1536 DD->setInvalidDecl(); 1537 return; 1538 } 1539 1540 // C++1z [dcl.decomp]/3: 1541 // if the expression std::tuple_size<E>::value is a well-formed integral 1542 // constant expression, [...] 1543 llvm::APSInt TupleSize(32); 1544 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { 1545 case IsTupleLike::Error: 1546 DD->setInvalidDecl(); 1547 return; 1548 1549 case IsTupleLike::TupleLike: 1550 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) 1551 DD->setInvalidDecl(); 1552 return; 1553 1554 case IsTupleLike::NotTupleLike: 1555 break; 1556 } 1557 1558 // C++1z [dcl.dcl]/8: 1559 // [E shall be of array or non-union class type] 1560 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); 1561 if (!RD || RD->isUnion()) { 1562 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) 1563 << DD << !RD << DecompType; 1564 DD->setInvalidDecl(); 1565 return; 1566 } 1567 1568 // C++1z [dcl.decomp]/4: 1569 // all of E's non-static data members shall be [...] direct members of 1570 // E or of the same unambiguous public base class of E, ... 1571 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) 1572 DD->setInvalidDecl(); 1573 } 1574 1575 /// Merge the exception specifications of two variable declarations. 1576 /// 1577 /// This is called when there's a redeclaration of a VarDecl. The function 1578 /// checks if the redeclaration might have an exception specification and 1579 /// validates compatibility and merges the specs if necessary. 1580 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { 1581 // Shortcut if exceptions are disabled. 1582 if (!getLangOpts().CXXExceptions) 1583 return; 1584 1585 assert(Context.hasSameType(New->getType(), Old->getType()) && 1586 "Should only be called if types are otherwise the same."); 1587 1588 QualType NewType = New->getType(); 1589 QualType OldType = Old->getType(); 1590 1591 // We're only interested in pointers and references to functions, as well 1592 // as pointers to member functions. 1593 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { 1594 NewType = R->getPointeeType(); 1595 OldType = OldType->castAs<ReferenceType>()->getPointeeType(); 1596 } else if (const PointerType *P = NewType->getAs<PointerType>()) { 1597 NewType = P->getPointeeType(); 1598 OldType = OldType->castAs<PointerType>()->getPointeeType(); 1599 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { 1600 NewType = M->getPointeeType(); 1601 OldType = OldType->castAs<MemberPointerType>()->getPointeeType(); 1602 } 1603 1604 if (!NewType->isFunctionProtoType()) 1605 return; 1606 1607 // There's lots of special cases for functions. For function pointers, system 1608 // libraries are hopefully not as broken so that we don't need these 1609 // workarounds. 1610 if (CheckEquivalentExceptionSpec( 1611 OldType->getAs<FunctionProtoType>(), Old->getLocation(), 1612 NewType->getAs<FunctionProtoType>(), New->getLocation())) { 1613 New->setInvalidDecl(); 1614 } 1615 } 1616 1617 /// CheckCXXDefaultArguments - Verify that the default arguments for a 1618 /// function declaration are well-formed according to C++ 1619 /// [dcl.fct.default]. 1620 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { 1621 unsigned NumParams = FD->getNumParams(); 1622 unsigned ParamIdx = 0; 1623 1624 // This checking doesn't make sense for explicit specializations; their 1625 // default arguments are determined by the declaration we're specializing, 1626 // not by FD. 1627 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 1628 return; 1629 if (auto *FTD = FD->getDescribedFunctionTemplate()) 1630 if (FTD->isMemberSpecialization()) 1631 return; 1632 1633 // Find first parameter with a default argument 1634 for (; ParamIdx < NumParams; ++ParamIdx) { 1635 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1636 if (Param->hasDefaultArg()) 1637 break; 1638 } 1639 1640 // C++20 [dcl.fct.default]p4: 1641 // In a given function declaration, each parameter subsequent to a parameter 1642 // with a default argument shall have a default argument supplied in this or 1643 // a previous declaration, unless the parameter was expanded from a 1644 // parameter pack, or shall be a function parameter pack. 1645 for (; ParamIdx < NumParams; ++ParamIdx) { 1646 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1647 if (!Param->hasDefaultArg() && !Param->isParameterPack() && 1648 !(CurrentInstantiationScope && 1649 CurrentInstantiationScope->isLocalPackExpansion(Param))) { 1650 if (Param->isInvalidDecl()) 1651 /* We already complained about this parameter. */; 1652 else if (Param->getIdentifier()) 1653 Diag(Param->getLocation(), 1654 diag::err_param_default_argument_missing_name) 1655 << Param->getIdentifier(); 1656 else 1657 Diag(Param->getLocation(), 1658 diag::err_param_default_argument_missing); 1659 } 1660 } 1661 } 1662 1663 /// Check that the given type is a literal type. Issue a diagnostic if not, 1664 /// if Kind is Diagnose. 1665 /// \return \c true if a problem has been found (and optionally diagnosed). 1666 template <typename... Ts> 1667 static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, 1668 SourceLocation Loc, QualType T, unsigned DiagID, 1669 Ts &&...DiagArgs) { 1670 if (T->isDependentType()) 1671 return false; 1672 1673 switch (Kind) { 1674 case Sema::CheckConstexprKind::Diagnose: 1675 return SemaRef.RequireLiteralType(Loc, T, DiagID, 1676 std::forward<Ts>(DiagArgs)...); 1677 1678 case Sema::CheckConstexprKind::CheckValid: 1679 return !T->isLiteralType(SemaRef.Context); 1680 } 1681 1682 llvm_unreachable("unknown CheckConstexprKind"); 1683 } 1684 1685 /// Determine whether a destructor cannot be constexpr due to 1686 static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, 1687 const CXXDestructorDecl *DD, 1688 Sema::CheckConstexprKind Kind) { 1689 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { 1690 const CXXRecordDecl *RD = 1691 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1692 if (!RD || RD->hasConstexprDestructor()) 1693 return true; 1694 1695 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1696 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) 1697 << static_cast<int>(DD->getConstexprKind()) << !FD 1698 << (FD ? FD->getDeclName() : DeclarationName()) << T; 1699 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) 1700 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; 1701 } 1702 return false; 1703 }; 1704 1705 const CXXRecordDecl *RD = DD->getParent(); 1706 for (const CXXBaseSpecifier &B : RD->bases()) 1707 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) 1708 return false; 1709 for (const FieldDecl *FD : RD->fields()) 1710 if (!Check(FD->getLocation(), FD->getType(), FD)) 1711 return false; 1712 return true; 1713 } 1714 1715 /// Check whether a function's parameter types are all literal types. If so, 1716 /// return true. If not, produce a suitable diagnostic and return false. 1717 static bool CheckConstexprParameterTypes(Sema &SemaRef, 1718 const FunctionDecl *FD, 1719 Sema::CheckConstexprKind Kind) { 1720 unsigned ArgIndex = 0; 1721 const auto *FT = FD->getType()->castAs<FunctionProtoType>(); 1722 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), 1723 e = FT->param_type_end(); 1724 i != e; ++i, ++ArgIndex) { 1725 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); 1726 assert(PD && "null in a parameter list"); 1727 SourceLocation ParamLoc = PD->getLocation(); 1728 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, 1729 diag::err_constexpr_non_literal_param, ArgIndex + 1, 1730 PD->getSourceRange(), isa<CXXConstructorDecl>(FD), 1731 FD->isConsteval())) 1732 return false; 1733 } 1734 return true; 1735 } 1736 1737 /// Check whether a function's return type is a literal type. If so, return 1738 /// true. If not, produce a suitable diagnostic and return false. 1739 static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD, 1740 Sema::CheckConstexprKind Kind) { 1741 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(), 1742 diag::err_constexpr_non_literal_return, 1743 FD->isConsteval())) 1744 return false; 1745 return true; 1746 } 1747 1748 /// Get diagnostic %select index for tag kind for 1749 /// record diagnostic message. 1750 /// WARNING: Indexes apply to particular diagnostics only! 1751 /// 1752 /// \returns diagnostic %select index. 1753 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { 1754 switch (Tag) { 1755 case TTK_Struct: return 0; 1756 case TTK_Interface: return 1; 1757 case TTK_Class: return 2; 1758 default: llvm_unreachable("Invalid tag kind for record diagnostic!"); 1759 } 1760 } 1761 1762 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 1763 Stmt *Body, 1764 Sema::CheckConstexprKind Kind); 1765 1766 // Check whether a function declaration satisfies the requirements of a 1767 // constexpr function definition or a constexpr constructor definition. If so, 1768 // return true. If not, produce appropriate diagnostics (unless asked not to by 1769 // Kind) and return false. 1770 // 1771 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360. 1772 bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, 1773 CheckConstexprKind Kind) { 1774 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 1775 if (MD && MD->isInstance()) { 1776 // C++11 [dcl.constexpr]p4: 1777 // The definition of a constexpr constructor shall satisfy the following 1778 // constraints: 1779 // - the class shall not have any virtual base classes; 1780 // 1781 // FIXME: This only applies to constructors and destructors, not arbitrary 1782 // member functions. 1783 const CXXRecordDecl *RD = MD->getParent(); 1784 if (RD->getNumVBases()) { 1785 if (Kind == CheckConstexprKind::CheckValid) 1786 return false; 1787 1788 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) 1789 << isa<CXXConstructorDecl>(NewFD) 1790 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); 1791 for (const auto &I : RD->vbases()) 1792 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) 1793 << I.getSourceRange(); 1794 return false; 1795 } 1796 } 1797 1798 if (!isa<CXXConstructorDecl>(NewFD)) { 1799 // C++11 [dcl.constexpr]p3: 1800 // The definition of a constexpr function shall satisfy the following 1801 // constraints: 1802 // - it shall not be virtual; (removed in C++20) 1803 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); 1804 if (Method && Method->isVirtual()) { 1805 if (getLangOpts().CPlusPlus20) { 1806 if (Kind == CheckConstexprKind::Diagnose) 1807 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); 1808 } else { 1809 if (Kind == CheckConstexprKind::CheckValid) 1810 return false; 1811 1812 Method = Method->getCanonicalDecl(); 1813 Diag(Method->getLocation(), diag::err_constexpr_virtual); 1814 1815 // If it's not obvious why this function is virtual, find an overridden 1816 // function which uses the 'virtual' keyword. 1817 const CXXMethodDecl *WrittenVirtual = Method; 1818 while (!WrittenVirtual->isVirtualAsWritten()) 1819 WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); 1820 if (WrittenVirtual != Method) 1821 Diag(WrittenVirtual->getLocation(), 1822 diag::note_overridden_virtual_function); 1823 return false; 1824 } 1825 } 1826 1827 // - its return type shall be a literal type; 1828 if (!CheckConstexprReturnType(*this, NewFD, Kind)) 1829 return false; 1830 } 1831 1832 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) { 1833 // A destructor can be constexpr only if the defaulted destructor could be; 1834 // we don't need to check the members and bases if we already know they all 1835 // have constexpr destructors. 1836 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) { 1837 if (Kind == CheckConstexprKind::CheckValid) 1838 return false; 1839 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind)) 1840 return false; 1841 } 1842 } 1843 1844 // - each of its parameter types shall be a literal type; 1845 if (!CheckConstexprParameterTypes(*this, NewFD, Kind)) 1846 return false; 1847 1848 Stmt *Body = NewFD->getBody(); 1849 assert(Body && 1850 "CheckConstexprFunctionDefinition called on function with no body"); 1851 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind); 1852 } 1853 1854 /// Check the given declaration statement is legal within a constexpr function 1855 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. 1856 /// 1857 /// \return true if the body is OK (maybe only as an extension), false if we 1858 /// have diagnosed a problem. 1859 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, 1860 DeclStmt *DS, SourceLocation &Cxx1yLoc, 1861 Sema::CheckConstexprKind Kind) { 1862 // C++11 [dcl.constexpr]p3 and p4: 1863 // The definition of a constexpr function(p3) or constructor(p4) [...] shall 1864 // contain only 1865 for (const auto *DclIt : DS->decls()) { 1866 switch (DclIt->getKind()) { 1867 case Decl::StaticAssert: 1868 case Decl::Using: 1869 case Decl::UsingShadow: 1870 case Decl::UsingDirective: 1871 case Decl::UnresolvedUsingTypename: 1872 case Decl::UnresolvedUsingValue: 1873 case Decl::UsingEnum: 1874 // - static_assert-declarations 1875 // - using-declarations, 1876 // - using-directives, 1877 // - using-enum-declaration 1878 continue; 1879 1880 case Decl::Typedef: 1881 case Decl::TypeAlias: { 1882 // - typedef declarations and alias-declarations that do not define 1883 // classes or enumerations, 1884 const auto *TN = cast<TypedefNameDecl>(DclIt); 1885 if (TN->getUnderlyingType()->isVariablyModifiedType()) { 1886 // Don't allow variably-modified types in constexpr functions. 1887 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1888 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); 1889 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) 1890 << TL.getSourceRange() << TL.getType() 1891 << isa<CXXConstructorDecl>(Dcl); 1892 } 1893 return false; 1894 } 1895 continue; 1896 } 1897 1898 case Decl::Enum: 1899 case Decl::CXXRecord: 1900 // C++1y allows types to be defined, not just declared. 1901 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) { 1902 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1903 SemaRef.Diag(DS->getBeginLoc(), 1904 SemaRef.getLangOpts().CPlusPlus14 1905 ? diag::warn_cxx11_compat_constexpr_type_definition 1906 : diag::ext_constexpr_type_definition) 1907 << isa<CXXConstructorDecl>(Dcl); 1908 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1909 return false; 1910 } 1911 } 1912 continue; 1913 1914 case Decl::EnumConstant: 1915 case Decl::IndirectField: 1916 case Decl::ParmVar: 1917 // These can only appear with other declarations which are banned in 1918 // C++11 and permitted in C++1y, so ignore them. 1919 continue; 1920 1921 case Decl::Var: 1922 case Decl::Decomposition: { 1923 // C++1y [dcl.constexpr]p3 allows anything except: 1924 // a definition of a variable of non-literal type or of static or 1925 // thread storage duration or [before C++2a] for which no 1926 // initialization is performed. 1927 const auto *VD = cast<VarDecl>(DclIt); 1928 if (VD->isThisDeclarationADefinition()) { 1929 if (VD->isStaticLocal()) { 1930 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1931 SemaRef.Diag(VD->getLocation(), 1932 SemaRef.getLangOpts().CPlusPlus23 1933 ? diag::warn_cxx20_compat_constexpr_var 1934 : diag::ext_constexpr_static_var) 1935 << isa<CXXConstructorDecl>(Dcl) 1936 << (VD->getTLSKind() == VarDecl::TLS_Dynamic); 1937 } else if (!SemaRef.getLangOpts().CPlusPlus23) { 1938 return false; 1939 } 1940 } 1941 if (SemaRef.LangOpts.CPlusPlus23) { 1942 CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), 1943 diag::warn_cxx20_compat_constexpr_var, 1944 isa<CXXConstructorDecl>(Dcl), 1945 /*variable of non-literal type*/ 2); 1946 } else if (CheckLiteralType( 1947 SemaRef, Kind, VD->getLocation(), VD->getType(), 1948 diag::err_constexpr_local_var_non_literal_type, 1949 isa<CXXConstructorDecl>(Dcl))) { 1950 return false; 1951 } 1952 if (!VD->getType()->isDependentType() && 1953 !VD->hasInit() && !VD->isCXXForRangeDecl()) { 1954 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1955 SemaRef.Diag( 1956 VD->getLocation(), 1957 SemaRef.getLangOpts().CPlusPlus20 1958 ? diag::warn_cxx17_compat_constexpr_local_var_no_init 1959 : diag::ext_constexpr_local_var_no_init) 1960 << isa<CXXConstructorDecl>(Dcl); 1961 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 1962 return false; 1963 } 1964 continue; 1965 } 1966 } 1967 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1968 SemaRef.Diag(VD->getLocation(), 1969 SemaRef.getLangOpts().CPlusPlus14 1970 ? diag::warn_cxx11_compat_constexpr_local_var 1971 : diag::ext_constexpr_local_var) 1972 << isa<CXXConstructorDecl>(Dcl); 1973 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1974 return false; 1975 } 1976 continue; 1977 } 1978 1979 case Decl::NamespaceAlias: 1980 case Decl::Function: 1981 // These are disallowed in C++11 and permitted in C++1y. Allow them 1982 // everywhere as an extension. 1983 if (!Cxx1yLoc.isValid()) 1984 Cxx1yLoc = DS->getBeginLoc(); 1985 continue; 1986 1987 default: 1988 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1989 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 1990 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 1991 } 1992 return false; 1993 } 1994 } 1995 1996 return true; 1997 } 1998 1999 /// Check that the given field is initialized within a constexpr constructor. 2000 /// 2001 /// \param Dcl The constexpr constructor being checked. 2002 /// \param Field The field being checked. This may be a member of an anonymous 2003 /// struct or union nested within the class being checked. 2004 /// \param Inits All declarations, including anonymous struct/union members and 2005 /// indirect members, for which any initialization was provided. 2006 /// \param Diagnosed Whether we've emitted the error message yet. Used to attach 2007 /// multiple notes for different members to the same error. 2008 /// \param Kind Whether we're diagnosing a constructor as written or determining 2009 /// whether the formal requirements are satisfied. 2010 /// \return \c false if we're checking for validity and the constructor does 2011 /// not satisfy the requirements on a constexpr constructor. 2012 static bool CheckConstexprCtorInitializer(Sema &SemaRef, 2013 const FunctionDecl *Dcl, 2014 FieldDecl *Field, 2015 llvm::SmallSet<Decl*, 16> &Inits, 2016 bool &Diagnosed, 2017 Sema::CheckConstexprKind Kind) { 2018 // In C++20 onwards, there's nothing to check for validity. 2019 if (Kind == Sema::CheckConstexprKind::CheckValid && 2020 SemaRef.getLangOpts().CPlusPlus20) 2021 return true; 2022 2023 if (Field->isInvalidDecl()) 2024 return true; 2025 2026 if (Field->isUnnamedBitfield()) 2027 return true; 2028 2029 // Anonymous unions with no variant members and empty anonymous structs do not 2030 // need to be explicitly initialized. FIXME: Anonymous structs that contain no 2031 // indirect fields don't need initializing. 2032 if (Field->isAnonymousStructOrUnion() && 2033 (Field->getType()->isUnionType() 2034 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() 2035 : Field->getType()->getAsCXXRecordDecl()->isEmpty())) 2036 return true; 2037 2038 if (!Inits.count(Field)) { 2039 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2040 if (!Diagnosed) { 2041 SemaRef.Diag(Dcl->getLocation(), 2042 SemaRef.getLangOpts().CPlusPlus20 2043 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init 2044 : diag::ext_constexpr_ctor_missing_init); 2045 Diagnosed = true; 2046 } 2047 SemaRef.Diag(Field->getLocation(), 2048 diag::note_constexpr_ctor_missing_init); 2049 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2050 return false; 2051 } 2052 } else if (Field->isAnonymousStructOrUnion()) { 2053 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); 2054 for (auto *I : RD->fields()) 2055 // If an anonymous union contains an anonymous struct of which any member 2056 // is initialized, all members must be initialized. 2057 if (!RD->isUnion() || Inits.count(I)) 2058 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2059 Kind)) 2060 return false; 2061 } 2062 return true; 2063 } 2064 2065 /// Check the provided statement is allowed in a constexpr function 2066 /// definition. 2067 static bool 2068 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, 2069 SmallVectorImpl<SourceLocation> &ReturnStmts, 2070 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, 2071 SourceLocation &Cxx2bLoc, 2072 Sema::CheckConstexprKind Kind) { 2073 // - its function-body shall be [...] a compound-statement that contains only 2074 switch (S->getStmtClass()) { 2075 case Stmt::NullStmtClass: 2076 // - null statements, 2077 return true; 2078 2079 case Stmt::DeclStmtClass: 2080 // - static_assert-declarations 2081 // - using-declarations, 2082 // - using-directives, 2083 // - typedef declarations and alias-declarations that do not define 2084 // classes or enumerations, 2085 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind)) 2086 return false; 2087 return true; 2088 2089 case Stmt::ReturnStmtClass: 2090 // - and exactly one return statement; 2091 if (isa<CXXConstructorDecl>(Dcl)) { 2092 // C++1y allows return statements in constexpr constructors. 2093 if (!Cxx1yLoc.isValid()) 2094 Cxx1yLoc = S->getBeginLoc(); 2095 return true; 2096 } 2097 2098 ReturnStmts.push_back(S->getBeginLoc()); 2099 return true; 2100 2101 case Stmt::AttributedStmtClass: 2102 // Attributes on a statement don't affect its formal kind and hence don't 2103 // affect its validity in a constexpr function. 2104 return CheckConstexprFunctionStmt( 2105 SemaRef, Dcl, cast<AttributedStmt>(S)->getSubStmt(), ReturnStmts, 2106 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind); 2107 2108 case Stmt::CompoundStmtClass: { 2109 // C++1y allows compound-statements. 2110 if (!Cxx1yLoc.isValid()) 2111 Cxx1yLoc = S->getBeginLoc(); 2112 2113 CompoundStmt *CompStmt = cast<CompoundStmt>(S); 2114 for (auto *BodyIt : CompStmt->body()) { 2115 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, 2116 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2117 return false; 2118 } 2119 return true; 2120 } 2121 2122 case Stmt::IfStmtClass: { 2123 // C++1y allows if-statements. 2124 if (!Cxx1yLoc.isValid()) 2125 Cxx1yLoc = S->getBeginLoc(); 2126 2127 IfStmt *If = cast<IfStmt>(S); 2128 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, 2129 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2130 return false; 2131 if (If->getElse() && 2132 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, 2133 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2134 return false; 2135 return true; 2136 } 2137 2138 case Stmt::WhileStmtClass: 2139 case Stmt::DoStmtClass: 2140 case Stmt::ForStmtClass: 2141 case Stmt::CXXForRangeStmtClass: 2142 case Stmt::ContinueStmtClass: 2143 // C++1y allows all of these. We don't allow them as extensions in C++11, 2144 // because they don't make sense without variable mutation. 2145 if (!SemaRef.getLangOpts().CPlusPlus14) 2146 break; 2147 if (!Cxx1yLoc.isValid()) 2148 Cxx1yLoc = S->getBeginLoc(); 2149 for (Stmt *SubStmt : S->children()) { 2150 if (SubStmt && 2151 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2152 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2153 return false; 2154 } 2155 return true; 2156 2157 case Stmt::SwitchStmtClass: 2158 case Stmt::CaseStmtClass: 2159 case Stmt::DefaultStmtClass: 2160 case Stmt::BreakStmtClass: 2161 // C++1y allows switch-statements, and since they don't need variable 2162 // mutation, we can reasonably allow them in C++11 as an extension. 2163 if (!Cxx1yLoc.isValid()) 2164 Cxx1yLoc = S->getBeginLoc(); 2165 for (Stmt *SubStmt : S->children()) { 2166 if (SubStmt && 2167 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2168 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2169 return false; 2170 } 2171 return true; 2172 2173 case Stmt::LabelStmtClass: 2174 case Stmt::GotoStmtClass: 2175 if (Cxx2bLoc.isInvalid()) 2176 Cxx2bLoc = S->getBeginLoc(); 2177 for (Stmt *SubStmt : S->children()) { 2178 if (SubStmt && 2179 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2180 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2181 return false; 2182 } 2183 return true; 2184 2185 case Stmt::GCCAsmStmtClass: 2186 case Stmt::MSAsmStmtClass: 2187 // C++2a allows inline assembly statements. 2188 case Stmt::CXXTryStmtClass: 2189 if (Cxx2aLoc.isInvalid()) 2190 Cxx2aLoc = S->getBeginLoc(); 2191 for (Stmt *SubStmt : S->children()) { 2192 if (SubStmt && 2193 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2194 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2195 return false; 2196 } 2197 return true; 2198 2199 case Stmt::CXXCatchStmtClass: 2200 // Do not bother checking the language mode (already covered by the 2201 // try block check). 2202 if (!CheckConstexprFunctionStmt( 2203 SemaRef, Dcl, cast<CXXCatchStmt>(S)->getHandlerBlock(), ReturnStmts, 2204 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2205 return false; 2206 return true; 2207 2208 default: 2209 if (!isa<Expr>(S)) 2210 break; 2211 2212 // C++1y allows expression-statements. 2213 if (!Cxx1yLoc.isValid()) 2214 Cxx1yLoc = S->getBeginLoc(); 2215 return true; 2216 } 2217 2218 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2219 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 2220 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2221 } 2222 return false; 2223 } 2224 2225 /// Check the body for the given constexpr function declaration only contains 2226 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. 2227 /// 2228 /// \return true if the body is OK, false if we have found or diagnosed a 2229 /// problem. 2230 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 2231 Stmt *Body, 2232 Sema::CheckConstexprKind Kind) { 2233 SmallVector<SourceLocation, 4> ReturnStmts; 2234 2235 if (isa<CXXTryStmt>(Body)) { 2236 // C++11 [dcl.constexpr]p3: 2237 // The definition of a constexpr function shall satisfy the following 2238 // constraints: [...] 2239 // - its function-body shall be = delete, = default, or a 2240 // compound-statement 2241 // 2242 // C++11 [dcl.constexpr]p4: 2243 // In the definition of a constexpr constructor, [...] 2244 // - its function-body shall not be a function-try-block; 2245 // 2246 // This restriction is lifted in C++2a, as long as inner statements also 2247 // apply the general constexpr rules. 2248 switch (Kind) { 2249 case Sema::CheckConstexprKind::CheckValid: 2250 if (!SemaRef.getLangOpts().CPlusPlus20) 2251 return false; 2252 break; 2253 2254 case Sema::CheckConstexprKind::Diagnose: 2255 SemaRef.Diag(Body->getBeginLoc(), 2256 !SemaRef.getLangOpts().CPlusPlus20 2257 ? diag::ext_constexpr_function_try_block_cxx20 2258 : diag::warn_cxx17_compat_constexpr_function_try_block) 2259 << isa<CXXConstructorDecl>(Dcl); 2260 break; 2261 } 2262 } 2263 2264 // - its function-body shall be [...] a compound-statement that contains only 2265 // [... list of cases ...] 2266 // 2267 // Note that walking the children here is enough to properly check for 2268 // CompoundStmt and CXXTryStmt body. 2269 SourceLocation Cxx1yLoc, Cxx2aLoc, Cxx2bLoc; 2270 for (Stmt *SubStmt : Body->children()) { 2271 if (SubStmt && 2272 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2273 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2274 return false; 2275 } 2276 2277 if (Kind == Sema::CheckConstexprKind::CheckValid) { 2278 // If this is only valid as an extension, report that we don't satisfy the 2279 // constraints of the current language. 2280 if ((Cxx2bLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus23) || 2281 (Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) || 2282 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) 2283 return false; 2284 } else if (Cxx2bLoc.isValid()) { 2285 SemaRef.Diag(Cxx2bLoc, 2286 SemaRef.getLangOpts().CPlusPlus23 2287 ? diag::warn_cxx20_compat_constexpr_body_invalid_stmt 2288 : diag::ext_constexpr_body_invalid_stmt_cxx23) 2289 << isa<CXXConstructorDecl>(Dcl); 2290 } else if (Cxx2aLoc.isValid()) { 2291 SemaRef.Diag(Cxx2aLoc, 2292 SemaRef.getLangOpts().CPlusPlus20 2293 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt 2294 : diag::ext_constexpr_body_invalid_stmt_cxx20) 2295 << isa<CXXConstructorDecl>(Dcl); 2296 } else if (Cxx1yLoc.isValid()) { 2297 SemaRef.Diag(Cxx1yLoc, 2298 SemaRef.getLangOpts().CPlusPlus14 2299 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt 2300 : diag::ext_constexpr_body_invalid_stmt) 2301 << isa<CXXConstructorDecl>(Dcl); 2302 } 2303 2304 if (const CXXConstructorDecl *Constructor 2305 = dyn_cast<CXXConstructorDecl>(Dcl)) { 2306 const CXXRecordDecl *RD = Constructor->getParent(); 2307 // DR1359: 2308 // - every non-variant non-static data member and base class sub-object 2309 // shall be initialized; 2310 // DR1460: 2311 // - if the class is a union having variant members, exactly one of them 2312 // shall be initialized; 2313 if (RD->isUnion()) { 2314 if (Constructor->getNumCtorInitializers() == 0 && 2315 RD->hasVariantMembers()) { 2316 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2317 SemaRef.Diag( 2318 Dcl->getLocation(), 2319 SemaRef.getLangOpts().CPlusPlus20 2320 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init 2321 : diag::ext_constexpr_union_ctor_no_init); 2322 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2323 return false; 2324 } 2325 } 2326 } else if (!Constructor->isDependentContext() && 2327 !Constructor->isDelegatingConstructor()) { 2328 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"); 2329 2330 // Skip detailed checking if we have enough initializers, and we would 2331 // allow at most one initializer per member. 2332 bool AnyAnonStructUnionMembers = false; 2333 unsigned Fields = 0; 2334 for (CXXRecordDecl::field_iterator I = RD->field_begin(), 2335 E = RD->field_end(); I != E; ++I, ++Fields) { 2336 if (I->isAnonymousStructOrUnion()) { 2337 AnyAnonStructUnionMembers = true; 2338 break; 2339 } 2340 } 2341 // DR1460: 2342 // - if the class is a union-like class, but is not a union, for each of 2343 // its anonymous union members having variant members, exactly one of 2344 // them shall be initialized; 2345 if (AnyAnonStructUnionMembers || 2346 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { 2347 // Check initialization of non-static data members. Base classes are 2348 // always initialized so do not need to be checked. Dependent bases 2349 // might not have initializers in the member initializer list. 2350 llvm::SmallSet<Decl*, 16> Inits; 2351 for (const auto *I: Constructor->inits()) { 2352 if (FieldDecl *FD = I->getMember()) 2353 Inits.insert(FD); 2354 else if (IndirectFieldDecl *ID = I->getIndirectMember()) 2355 Inits.insert(ID->chain_begin(), ID->chain_end()); 2356 } 2357 2358 bool Diagnosed = false; 2359 for (auto *I : RD->fields()) 2360 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2361 Kind)) 2362 return false; 2363 } 2364 } 2365 } else { 2366 if (ReturnStmts.empty()) { 2367 // C++1y doesn't require constexpr functions to contain a 'return' 2368 // statement. We still do, unless the return type might be void, because 2369 // otherwise if there's no return statement, the function cannot 2370 // be used in a core constant expression. 2371 bool OK = SemaRef.getLangOpts().CPlusPlus14 && 2372 (Dcl->getReturnType()->isVoidType() || 2373 Dcl->getReturnType()->isDependentType()); 2374 switch (Kind) { 2375 case Sema::CheckConstexprKind::Diagnose: 2376 SemaRef.Diag(Dcl->getLocation(), 2377 OK ? diag::warn_cxx11_compat_constexpr_body_no_return 2378 : diag::err_constexpr_body_no_return) 2379 << Dcl->isConsteval(); 2380 if (!OK) 2381 return false; 2382 break; 2383 2384 case Sema::CheckConstexprKind::CheckValid: 2385 // The formal requirements don't include this rule in C++14, even 2386 // though the "must be able to produce a constant expression" rules 2387 // still imply it in some cases. 2388 if (!SemaRef.getLangOpts().CPlusPlus14) 2389 return false; 2390 break; 2391 } 2392 } else if (ReturnStmts.size() > 1) { 2393 switch (Kind) { 2394 case Sema::CheckConstexprKind::Diagnose: 2395 SemaRef.Diag( 2396 ReturnStmts.back(), 2397 SemaRef.getLangOpts().CPlusPlus14 2398 ? diag::warn_cxx11_compat_constexpr_body_multiple_return 2399 : diag::ext_constexpr_body_multiple_return); 2400 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) 2401 SemaRef.Diag(ReturnStmts[I], 2402 diag::note_constexpr_body_previous_return); 2403 break; 2404 2405 case Sema::CheckConstexprKind::CheckValid: 2406 if (!SemaRef.getLangOpts().CPlusPlus14) 2407 return false; 2408 break; 2409 } 2410 } 2411 } 2412 2413 // C++11 [dcl.constexpr]p5: 2414 // if no function argument values exist such that the function invocation 2415 // substitution would produce a constant expression, the program is 2416 // ill-formed; no diagnostic required. 2417 // C++11 [dcl.constexpr]p3: 2418 // - every constructor call and implicit conversion used in initializing the 2419 // return value shall be one of those allowed in a constant expression. 2420 // C++11 [dcl.constexpr]p4: 2421 // - every constructor involved in initializing non-static data members and 2422 // base class sub-objects shall be a constexpr constructor. 2423 // 2424 // Note that this rule is distinct from the "requirements for a constexpr 2425 // function", so is not checked in CheckValid mode. 2426 SmallVector<PartialDiagnosticAt, 8> Diags; 2427 if (Kind == Sema::CheckConstexprKind::Diagnose && 2428 !Expr::isPotentialConstantExpr(Dcl, Diags)) { 2429 SemaRef.Diag(Dcl->getLocation(), 2430 diag::ext_constexpr_function_never_constant_expr) 2431 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2432 for (size_t I = 0, N = Diags.size(); I != N; ++I) 2433 SemaRef.Diag(Diags[I].first, Diags[I].second); 2434 // Don't return false here: we allow this for compatibility in 2435 // system headers. 2436 } 2437 2438 return true; 2439 } 2440 2441 bool Sema::CheckImmediateEscalatingFunctionDefinition( 2442 FunctionDecl *FD, const sema::FunctionScopeInfo *FSI) { 2443 if (!getLangOpts().CPlusPlus20 || !FD->isImmediateEscalating()) 2444 return true; 2445 FD->setBodyContainsImmediateEscalatingExpressions( 2446 FSI->FoundImmediateEscalatingExpression); 2447 if (FSI->FoundImmediateEscalatingExpression) { 2448 auto it = UndefinedButUsed.find(FD->getCanonicalDecl()); 2449 if (it != UndefinedButUsed.end()) { 2450 Diag(it->second, diag::err_immediate_function_used_before_definition) 2451 << it->first; 2452 Diag(FD->getLocation(), diag::note_defined_here) << FD; 2453 if (FD->isImmediateFunction() && !FD->isConsteval()) 2454 DiagnoseImmediateEscalatingReason(FD); 2455 return false; 2456 } 2457 } 2458 return true; 2459 } 2460 2461 void Sema::DiagnoseImmediateEscalatingReason(FunctionDecl *FD) { 2462 assert(FD->isImmediateEscalating() && !FD->isConsteval() && 2463 "expected an immediate function"); 2464 assert(FD->hasBody() && "expected the function to have a body"); 2465 struct ImmediateEscalatingExpressionsVisitor 2466 : public RecursiveASTVisitor<ImmediateEscalatingExpressionsVisitor> { 2467 2468 using Base = RecursiveASTVisitor<ImmediateEscalatingExpressionsVisitor>; 2469 Sema &SemaRef; 2470 2471 const FunctionDecl *ImmediateFn; 2472 bool ImmediateFnIsConstructor; 2473 CXXConstructorDecl *CurrentConstructor = nullptr; 2474 CXXCtorInitializer *CurrentInit = nullptr; 2475 2476 ImmediateEscalatingExpressionsVisitor(Sema &SemaRef, FunctionDecl *FD) 2477 : SemaRef(SemaRef), ImmediateFn(FD), 2478 ImmediateFnIsConstructor(isa<CXXConstructorDecl>(FD)) {} 2479 2480 bool shouldVisitImplicitCode() const { return true; } 2481 bool shouldVisitLambdaBody() const { return false; } 2482 2483 void Diag(const Expr *E, const FunctionDecl *Fn, bool IsCall) { 2484 SourceLocation Loc = E->getBeginLoc(); 2485 SourceRange Range = E->getSourceRange(); 2486 if (CurrentConstructor && CurrentInit) { 2487 Loc = CurrentConstructor->getLocation(); 2488 Range = CurrentInit->isWritten() ? CurrentInit->getSourceRange() 2489 : SourceRange(); 2490 } 2491 SemaRef.Diag(Loc, diag::note_immediate_function_reason) 2492 << ImmediateFn << Fn << Fn->isConsteval() << IsCall 2493 << isa<CXXConstructorDecl>(Fn) << ImmediateFnIsConstructor 2494 << (CurrentInit != nullptr) 2495 << (CurrentInit && !CurrentInit->isWritten()) 2496 << (CurrentInit ? CurrentInit->getAnyMember() : nullptr) << Range; 2497 } 2498 bool TraverseCallExpr(CallExpr *E) { 2499 if (const auto *DR = 2500 dyn_cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()); 2501 DR && DR->isImmediateEscalating()) { 2502 Diag(E, E->getDirectCallee(), /*IsCall=*/true); 2503 return false; 2504 } 2505 2506 for (Expr *A : E->arguments()) 2507 if (!getDerived().TraverseStmt(A)) 2508 return false; 2509 2510 return true; 2511 } 2512 2513 bool VisitDeclRefExpr(DeclRefExpr *E) { 2514 if (const auto *ReferencedFn = dyn_cast<FunctionDecl>(E->getDecl()); 2515 ReferencedFn && E->isImmediateEscalating()) { 2516 Diag(E, ReferencedFn, /*IsCall=*/false); 2517 return false; 2518 } 2519 2520 return true; 2521 } 2522 2523 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2524 CXXConstructorDecl *D = E->getConstructor(); 2525 if (E->isImmediateEscalating()) { 2526 Diag(E, D, /*IsCall=*/true); 2527 return false; 2528 } 2529 return true; 2530 } 2531 2532 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) { 2533 llvm::SaveAndRestore RAII(CurrentInit, Init); 2534 return Base::TraverseConstructorInitializer(Init); 2535 } 2536 2537 bool TraverseCXXConstructorDecl(CXXConstructorDecl *Ctr) { 2538 llvm::SaveAndRestore RAII(CurrentConstructor, Ctr); 2539 return Base::TraverseCXXConstructorDecl(Ctr); 2540 } 2541 2542 bool TraverseType(QualType T) { return true; } 2543 bool VisitBlockExpr(BlockExpr *T) { return true; } 2544 2545 } Visitor(*this, FD); 2546 Visitor.TraverseDecl(FD); 2547 } 2548 2549 /// Get the class that is directly named by the current context. This is the 2550 /// class for which an unqualified-id in this scope could name a constructor 2551 /// or destructor. 2552 /// 2553 /// If the scope specifier denotes a class, this will be that class. 2554 /// If the scope specifier is empty, this will be the class whose 2555 /// member-specification we are currently within. Otherwise, there 2556 /// is no such class. 2557 CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { 2558 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2559 2560 if (SS && SS->isInvalid()) 2561 return nullptr; 2562 2563 if (SS && SS->isNotEmpty()) { 2564 DeclContext *DC = computeDeclContext(*SS, true); 2565 return dyn_cast_or_null<CXXRecordDecl>(DC); 2566 } 2567 2568 return dyn_cast_or_null<CXXRecordDecl>(CurContext); 2569 } 2570 2571 /// isCurrentClassName - Determine whether the identifier II is the 2572 /// name of the class type currently being defined. In the case of 2573 /// nested classes, this will only return true if II is the name of 2574 /// the innermost class. 2575 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, 2576 const CXXScopeSpec *SS) { 2577 CXXRecordDecl *CurDecl = getCurrentClass(S, SS); 2578 return CurDecl && &II == CurDecl->getIdentifier(); 2579 } 2580 2581 /// Determine whether the identifier II is a typo for the name of 2582 /// the class type currently being defined. If so, update it to the identifier 2583 /// that should have been used. 2584 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { 2585 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2586 2587 if (!getLangOpts().SpellChecking) 2588 return false; 2589 2590 CXXRecordDecl *CurDecl; 2591 if (SS && SS->isSet() && !SS->isInvalid()) { 2592 DeclContext *DC = computeDeclContext(*SS, true); 2593 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); 2594 } else 2595 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); 2596 2597 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && 2598 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) 2599 < II->getLength()) { 2600 II = CurDecl->getIdentifier(); 2601 return true; 2602 } 2603 2604 return false; 2605 } 2606 2607 /// Determine whether the given class is a base class of the given 2608 /// class, including looking at dependent bases. 2609 static bool findCircularInheritance(const CXXRecordDecl *Class, 2610 const CXXRecordDecl *Current) { 2611 SmallVector<const CXXRecordDecl*, 8> Queue; 2612 2613 Class = Class->getCanonicalDecl(); 2614 while (true) { 2615 for (const auto &I : Current->bases()) { 2616 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 2617 if (!Base) 2618 continue; 2619 2620 Base = Base->getDefinition(); 2621 if (!Base) 2622 continue; 2623 2624 if (Base->getCanonicalDecl() == Class) 2625 return true; 2626 2627 Queue.push_back(Base); 2628 } 2629 2630 if (Queue.empty()) 2631 return false; 2632 2633 Current = Queue.pop_back_val(); 2634 } 2635 2636 return false; 2637 } 2638 2639 /// Check the validity of a C++ base class specifier. 2640 /// 2641 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics 2642 /// and returns NULL otherwise. 2643 CXXBaseSpecifier * 2644 Sema::CheckBaseSpecifier(CXXRecordDecl *Class, 2645 SourceRange SpecifierRange, 2646 bool Virtual, AccessSpecifier Access, 2647 TypeSourceInfo *TInfo, 2648 SourceLocation EllipsisLoc) { 2649 // In HLSL, unspecified class access is public rather than private. 2650 if (getLangOpts().HLSL && Class->getTagKind() == TTK_Class && 2651 Access == AS_none) 2652 Access = AS_public; 2653 2654 QualType BaseType = TInfo->getType(); 2655 if (BaseType->containsErrors()) { 2656 // Already emitted a diagnostic when parsing the error type. 2657 return nullptr; 2658 } 2659 // C++ [class.union]p1: 2660 // A union shall not have base classes. 2661 if (Class->isUnion()) { 2662 Diag(Class->getLocation(), diag::err_base_clause_on_union) 2663 << SpecifierRange; 2664 return nullptr; 2665 } 2666 2667 if (EllipsisLoc.isValid() && 2668 !TInfo->getType()->containsUnexpandedParameterPack()) { 2669 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 2670 << TInfo->getTypeLoc().getSourceRange(); 2671 EllipsisLoc = SourceLocation(); 2672 } 2673 2674 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); 2675 2676 if (BaseType->isDependentType()) { 2677 // Make sure that we don't have circular inheritance among our dependent 2678 // bases. For non-dependent bases, the check for completeness below handles 2679 // this. 2680 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) { 2681 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() || 2682 ((BaseDecl = BaseDecl->getDefinition()) && 2683 findCircularInheritance(Class, BaseDecl))) { 2684 Diag(BaseLoc, diag::err_circular_inheritance) 2685 << BaseType << Context.getTypeDeclType(Class); 2686 2687 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl()) 2688 Diag(BaseDecl->getLocation(), diag::note_previous_decl) 2689 << BaseType; 2690 2691 return nullptr; 2692 } 2693 } 2694 2695 // Make sure that we don't make an ill-formed AST where the type of the 2696 // Class is non-dependent and its attached base class specifier is an 2697 // dependent type, which violates invariants in many clang code paths (e.g. 2698 // constexpr evaluator). If this case happens (in errory-recovery mode), we 2699 // explicitly mark the Class decl invalid. The diagnostic was already 2700 // emitted. 2701 if (!Class->getTypeForDecl()->isDependentType()) 2702 Class->setInvalidDecl(); 2703 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2704 Class->getTagKind() == TTK_Class, 2705 Access, TInfo, EllipsisLoc); 2706 } 2707 2708 // Base specifiers must be record types. 2709 if (!BaseType->isRecordType()) { 2710 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; 2711 return nullptr; 2712 } 2713 2714 // C++ [class.union]p1: 2715 // A union shall not be used as a base class. 2716 if (BaseType->isUnionType()) { 2717 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; 2718 return nullptr; 2719 } 2720 2721 // For the MS ABI, propagate DLL attributes to base class templates. 2722 if (Context.getTargetInfo().getCXXABI().isMicrosoft() || 2723 Context.getTargetInfo().getTriple().isPS()) { 2724 if (Attr *ClassAttr = getDLLAttr(Class)) { 2725 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 2726 BaseType->getAsCXXRecordDecl())) { 2727 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate, 2728 BaseLoc); 2729 } 2730 } 2731 } 2732 2733 // C++ [class.derived]p2: 2734 // The class-name in a base-specifier shall not be an incompletely 2735 // defined class. 2736 if (RequireCompleteType(BaseLoc, BaseType, 2737 diag::err_incomplete_base_class, SpecifierRange)) { 2738 Class->setInvalidDecl(); 2739 return nullptr; 2740 } 2741 2742 // If the base class is polymorphic or isn't empty, the new one is/isn't, too. 2743 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl(); 2744 assert(BaseDecl && "Record type has no declaration"); 2745 BaseDecl = BaseDecl->getDefinition(); 2746 assert(BaseDecl && "Base type is not incomplete, but has no definition"); 2747 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); 2748 assert(CXXBaseDecl && "Base type is not a C++ type"); 2749 2750 // Microsoft docs say: 2751 // "If a base-class has a code_seg attribute, derived classes must have the 2752 // same attribute." 2753 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>(); 2754 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); 2755 if ((DerivedCSA || BaseCSA) && 2756 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) { 2757 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); 2758 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here) 2759 << CXXBaseDecl; 2760 return nullptr; 2761 } 2762 2763 // A class which contains a flexible array member is not suitable for use as a 2764 // base class: 2765 // - If the layout determines that a base comes before another base, 2766 // the flexible array member would index into the subsequent base. 2767 // - If the layout determines that base comes before the derived class, 2768 // the flexible array member would index into the derived class. 2769 if (CXXBaseDecl->hasFlexibleArrayMember()) { 2770 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) 2771 << CXXBaseDecl->getDeclName(); 2772 return nullptr; 2773 } 2774 2775 // C++ [class]p3: 2776 // If a class is marked final and it appears as a base-type-specifier in 2777 // base-clause, the program is ill-formed. 2778 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) { 2779 Diag(BaseLoc, diag::err_class_marked_final_used_as_base) 2780 << CXXBaseDecl->getDeclName() 2781 << FA->isSpelledAsSealed(); 2782 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at) 2783 << CXXBaseDecl->getDeclName() << FA->getRange(); 2784 return nullptr; 2785 } 2786 2787 if (BaseDecl->isInvalidDecl()) 2788 Class->setInvalidDecl(); 2789 2790 // Create the base specifier. 2791 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2792 Class->getTagKind() == TTK_Class, 2793 Access, TInfo, EllipsisLoc); 2794 } 2795 2796 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is 2797 /// one entry in the base class list of a class specifier, for 2798 /// example: 2799 /// class foo : public bar, virtual private baz { 2800 /// 'public bar' and 'virtual private baz' are each base-specifiers. 2801 BaseResult Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, 2802 const ParsedAttributesView &Attributes, 2803 bool Virtual, AccessSpecifier Access, 2804 ParsedType basetype, SourceLocation BaseLoc, 2805 SourceLocation EllipsisLoc) { 2806 if (!classdecl) 2807 return true; 2808 2809 AdjustDeclIfTemplate(classdecl); 2810 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); 2811 if (!Class) 2812 return true; 2813 2814 // We haven't yet attached the base specifiers. 2815 Class->setIsParsingBaseSpecifiers(); 2816 2817 // We do not support any C++11 attributes on base-specifiers yet. 2818 // Diagnose any attributes we see. 2819 for (const ParsedAttr &AL : Attributes) { 2820 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) 2821 continue; 2822 if (AL.getKind() == ParsedAttr::UnknownAttribute) 2823 Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) 2824 << AL << AL.getRange(); 2825 else 2826 Diag(AL.getLoc(), diag::err_base_specifier_attribute) 2827 << AL << AL.isRegularKeywordAttribute() << AL.getRange(); 2828 } 2829 2830 TypeSourceInfo *TInfo = nullptr; 2831 GetTypeFromParser(basetype, &TInfo); 2832 2833 if (EllipsisLoc.isInvalid() && 2834 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, 2835 UPPC_BaseType)) 2836 return true; 2837 2838 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, 2839 Virtual, Access, TInfo, 2840 EllipsisLoc)) 2841 return BaseSpec; 2842 else 2843 Class->setInvalidDecl(); 2844 2845 return true; 2846 } 2847 2848 /// Use small set to collect indirect bases. As this is only used 2849 /// locally, there's no need to abstract the small size parameter. 2850 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; 2851 2852 /// Recursively add the bases of Type. Don't add Type itself. 2853 static void 2854 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, 2855 const QualType &Type) 2856 { 2857 // Even though the incoming type is a base, it might not be 2858 // a class -- it could be a template parm, for instance. 2859 if (auto Rec = Type->getAs<RecordType>()) { 2860 auto Decl = Rec->getAsCXXRecordDecl(); 2861 2862 // Iterate over its bases. 2863 for (const auto &BaseSpec : Decl->bases()) { 2864 QualType Base = Context.getCanonicalType(BaseSpec.getType()) 2865 .getUnqualifiedType(); 2866 if (Set.insert(Base).second) 2867 // If we've not already seen it, recurse. 2868 NoteIndirectBases(Context, Set, Base); 2869 } 2870 } 2871 } 2872 2873 /// Performs the actual work of attaching the given base class 2874 /// specifiers to a C++ class. 2875 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, 2876 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2877 if (Bases.empty()) 2878 return false; 2879 2880 // Used to keep track of which base types we have already seen, so 2881 // that we can properly diagnose redundant direct base types. Note 2882 // that the key is always the unqualified canonical type of the base 2883 // class. 2884 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; 2885 2886 // Used to track indirect bases so we can see if a direct base is 2887 // ambiguous. 2888 IndirectBaseSet IndirectBaseTypes; 2889 2890 // Copy non-redundant base specifiers into permanent storage. 2891 unsigned NumGoodBases = 0; 2892 bool Invalid = false; 2893 for (unsigned idx = 0; idx < Bases.size(); ++idx) { 2894 QualType NewBaseType 2895 = Context.getCanonicalType(Bases[idx]->getType()); 2896 NewBaseType = NewBaseType.getLocalUnqualifiedType(); 2897 2898 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; 2899 if (KnownBase) { 2900 // C++ [class.mi]p3: 2901 // A class shall not be specified as a direct base class of a 2902 // derived class more than once. 2903 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) 2904 << KnownBase->getType() << Bases[idx]->getSourceRange(); 2905 2906 // Delete the duplicate base class specifier; we're going to 2907 // overwrite its pointer later. 2908 Context.Deallocate(Bases[idx]); 2909 2910 Invalid = true; 2911 } else { 2912 // Okay, add this new base class. 2913 KnownBase = Bases[idx]; 2914 Bases[NumGoodBases++] = Bases[idx]; 2915 2916 if (NewBaseType->isDependentType()) 2917 continue; 2918 // Note this base's direct & indirect bases, if there could be ambiguity. 2919 if (Bases.size() > 1) 2920 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType); 2921 2922 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { 2923 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); 2924 if (Class->isInterface() && 2925 (!RD->isInterfaceLike() || 2926 KnownBase->getAccessSpecifier() != AS_public)) { 2927 // The Microsoft extension __interface does not permit bases that 2928 // are not themselves public interfaces. 2929 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) 2930 << getRecordDiagFromTagKind(RD->getTagKind()) << RD 2931 << RD->getSourceRange(); 2932 Invalid = true; 2933 } 2934 if (RD->hasAttr<WeakAttr>()) 2935 Class->addAttr(WeakAttr::CreateImplicit(Context)); 2936 } 2937 } 2938 } 2939 2940 // Attach the remaining base class specifiers to the derived class. 2941 Class->setBases(Bases.data(), NumGoodBases); 2942 2943 // Check that the only base classes that are duplicate are virtual. 2944 for (unsigned idx = 0; idx < NumGoodBases; ++idx) { 2945 // Check whether this direct base is inaccessible due to ambiguity. 2946 QualType BaseType = Bases[idx]->getType(); 2947 2948 // Skip all dependent types in templates being used as base specifiers. 2949 // Checks below assume that the base specifier is a CXXRecord. 2950 if (BaseType->isDependentType()) 2951 continue; 2952 2953 CanQualType CanonicalBase = Context.getCanonicalType(BaseType) 2954 .getUnqualifiedType(); 2955 2956 if (IndirectBaseTypes.count(CanonicalBase)) { 2957 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2958 /*DetectVirtual=*/true); 2959 bool found 2960 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); 2961 assert(found); 2962 (void)found; 2963 2964 if (Paths.isAmbiguous(CanonicalBase)) 2965 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) 2966 << BaseType << getAmbiguousPathsDisplayString(Paths) 2967 << Bases[idx]->getSourceRange(); 2968 else 2969 assert(Bases[idx]->isVirtual()); 2970 } 2971 2972 // Delete the base class specifier, since its data has been copied 2973 // into the CXXRecordDecl. 2974 Context.Deallocate(Bases[idx]); 2975 } 2976 2977 return Invalid; 2978 } 2979 2980 /// ActOnBaseSpecifiers - Attach the given base specifiers to the 2981 /// class, after checking whether there are any duplicate base 2982 /// classes. 2983 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, 2984 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2985 if (!ClassDecl || Bases.empty()) 2986 return; 2987 2988 AdjustDeclIfTemplate(ClassDecl); 2989 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases); 2990 } 2991 2992 /// Determine whether the type \p Derived is a C++ class that is 2993 /// derived from the type \p Base. 2994 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { 2995 if (!getLangOpts().CPlusPlus) 2996 return false; 2997 2998 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2999 if (!DerivedRD) 3000 return false; 3001 3002 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 3003 if (!BaseRD) 3004 return false; 3005 3006 // If either the base or the derived type is invalid, don't try to 3007 // check whether one is derived from the other. 3008 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) 3009 return false; 3010 3011 // FIXME: In a modules build, do we need the entire path to be visible for us 3012 // to be able to use the inheritance relationship? 3013 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 3014 return false; 3015 3016 return DerivedRD->isDerivedFrom(BaseRD); 3017 } 3018 3019 /// Determine whether the type \p Derived is a C++ class that is 3020 /// derived from the type \p Base. 3021 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, 3022 CXXBasePaths &Paths) { 3023 if (!getLangOpts().CPlusPlus) 3024 return false; 3025 3026 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 3027 if (!DerivedRD) 3028 return false; 3029 3030 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 3031 if (!BaseRD) 3032 return false; 3033 3034 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 3035 return false; 3036 3037 return DerivedRD->isDerivedFrom(BaseRD, Paths); 3038 } 3039 3040 static void BuildBasePathArray(const CXXBasePath &Path, 3041 CXXCastPath &BasePathArray) { 3042 // We first go backward and check if we have a virtual base. 3043 // FIXME: It would be better if CXXBasePath had the base specifier for 3044 // the nearest virtual base. 3045 unsigned Start = 0; 3046 for (unsigned I = Path.size(); I != 0; --I) { 3047 if (Path[I - 1].Base->isVirtual()) { 3048 Start = I - 1; 3049 break; 3050 } 3051 } 3052 3053 // Now add all bases. 3054 for (unsigned I = Start, E = Path.size(); I != E; ++I) 3055 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); 3056 } 3057 3058 3059 void Sema::BuildBasePathArray(const CXXBasePaths &Paths, 3060 CXXCastPath &BasePathArray) { 3061 assert(BasePathArray.empty() && "Base path array must be empty!"); 3062 assert(Paths.isRecordingPaths() && "Must record paths!"); 3063 return ::BuildBasePathArray(Paths.front(), BasePathArray); 3064 } 3065 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base 3066 /// conversion (where Derived and Base are class types) is 3067 /// well-formed, meaning that the conversion is unambiguous (and 3068 /// that all of the base classes are accessible). Returns true 3069 /// and emits a diagnostic if the code is ill-formed, returns false 3070 /// otherwise. Loc is the location where this routine should point to 3071 /// if there is an error, and Range is the source range to highlight 3072 /// if there is an error. 3073 /// 3074 /// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the 3075 /// diagnostic for the respective type of error will be suppressed, but the 3076 /// check for ill-formed code will still be performed. 3077 bool 3078 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 3079 unsigned InaccessibleBaseID, 3080 unsigned AmbiguousBaseConvID, 3081 SourceLocation Loc, SourceRange Range, 3082 DeclarationName Name, 3083 CXXCastPath *BasePath, 3084 bool IgnoreAccess) { 3085 // First, determine whether the path from Derived to Base is 3086 // ambiguous. This is slightly more expensive than checking whether 3087 // the Derived to Base conversion exists, because here we need to 3088 // explore multiple paths to determine if there is an ambiguity. 3089 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3090 /*DetectVirtual=*/false); 3091 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 3092 if (!DerivationOkay) 3093 return true; 3094 3095 const CXXBasePath *Path = nullptr; 3096 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) 3097 Path = &Paths.front(); 3098 3099 // For MSVC compatibility, check if Derived directly inherits from Base. Clang 3100 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the 3101 // user to access such bases. 3102 if (!Path && getLangOpts().MSVCCompat) { 3103 for (const CXXBasePath &PossiblePath : Paths) { 3104 if (PossiblePath.size() == 1) { 3105 Path = &PossiblePath; 3106 if (AmbiguousBaseConvID) 3107 Diag(Loc, diag::ext_ms_ambiguous_direct_base) 3108 << Base << Derived << Range; 3109 break; 3110 } 3111 } 3112 } 3113 3114 if (Path) { 3115 if (!IgnoreAccess) { 3116 // Check that the base class can be accessed. 3117 switch ( 3118 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) { 3119 case AR_inaccessible: 3120 return true; 3121 case AR_accessible: 3122 case AR_dependent: 3123 case AR_delayed: 3124 break; 3125 } 3126 } 3127 3128 // Build a base path if necessary. 3129 if (BasePath) 3130 ::BuildBasePathArray(*Path, *BasePath); 3131 return false; 3132 } 3133 3134 if (AmbiguousBaseConvID) { 3135 // We know that the derived-to-base conversion is ambiguous, and 3136 // we're going to produce a diagnostic. Perform the derived-to-base 3137 // search just one more time to compute all of the possible paths so 3138 // that we can print them out. This is more expensive than any of 3139 // the previous derived-to-base checks we've done, but at this point 3140 // performance isn't as much of an issue. 3141 Paths.clear(); 3142 Paths.setRecordingPaths(true); 3143 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 3144 assert(StillOkay && "Can only be used with a derived-to-base conversion"); 3145 (void)StillOkay; 3146 3147 // Build up a textual representation of the ambiguous paths, e.g., 3148 // D -> B -> A, that will be used to illustrate the ambiguous 3149 // conversions in the diagnostic. We only print one of the paths 3150 // to each base class subobject. 3151 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 3152 3153 Diag(Loc, AmbiguousBaseConvID) 3154 << Derived << Base << PathDisplayStr << Range << Name; 3155 } 3156 return true; 3157 } 3158 3159 bool 3160 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 3161 SourceLocation Loc, SourceRange Range, 3162 CXXCastPath *BasePath, 3163 bool IgnoreAccess) { 3164 return CheckDerivedToBaseConversion( 3165 Derived, Base, diag::err_upcast_to_inaccessible_base, 3166 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), 3167 BasePath, IgnoreAccess); 3168 } 3169 3170 3171 /// Builds a string representing ambiguous paths from a 3172 /// specific derived class to different subobjects of the same base 3173 /// class. 3174 /// 3175 /// This function builds a string that can be used in error messages 3176 /// to show the different paths that one can take through the 3177 /// inheritance hierarchy to go from the derived class to different 3178 /// subobjects of a base class. The result looks something like this: 3179 /// @code 3180 /// struct D -> struct B -> struct A 3181 /// struct D -> struct C -> struct A 3182 /// @endcode 3183 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { 3184 std::string PathDisplayStr; 3185 std::set<unsigned> DisplayedPaths; 3186 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 3187 Path != Paths.end(); ++Path) { 3188 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { 3189 // We haven't displayed a path to this particular base 3190 // class subobject yet. 3191 PathDisplayStr += "\n "; 3192 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); 3193 for (CXXBasePath::const_iterator Element = Path->begin(); 3194 Element != Path->end(); ++Element) 3195 PathDisplayStr += " -> " + Element->Base->getType().getAsString(); 3196 } 3197 } 3198 3199 return PathDisplayStr; 3200 } 3201 3202 //===----------------------------------------------------------------------===// 3203 // C++ class member Handling 3204 //===----------------------------------------------------------------------===// 3205 3206 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. 3207 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, 3208 SourceLocation ColonLoc, 3209 const ParsedAttributesView &Attrs) { 3210 assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); 3211 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, 3212 ASLoc, ColonLoc); 3213 CurContext->addHiddenDecl(ASDecl); 3214 return ProcessAccessDeclAttributeList(ASDecl, Attrs); 3215 } 3216 3217 /// CheckOverrideControl - Check C++11 override control semantics. 3218 void Sema::CheckOverrideControl(NamedDecl *D) { 3219 if (D->isInvalidDecl()) 3220 return; 3221 3222 // We only care about "override" and "final" declarations. 3223 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) 3224 return; 3225 3226 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3227 3228 // We can't check dependent instance methods. 3229 if (MD && MD->isInstance() && 3230 (MD->getParent()->hasAnyDependentBases() || 3231 MD->getType()->isDependentType())) 3232 return; 3233 3234 if (MD && !MD->isVirtual()) { 3235 // If we have a non-virtual method, check if it hides a virtual method. 3236 // (In that case, it's most likely the method has the wrong type.) 3237 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 3238 FindHiddenVirtualMethods(MD, OverloadedMethods); 3239 3240 if (!OverloadedMethods.empty()) { 3241 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3242 Diag(OA->getLocation(), 3243 diag::override_keyword_hides_virtual_member_function) 3244 << "override" << (OverloadedMethods.size() > 1); 3245 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3246 Diag(FA->getLocation(), 3247 diag::override_keyword_hides_virtual_member_function) 3248 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3249 << (OverloadedMethods.size() > 1); 3250 } 3251 NoteHiddenVirtualMethods(MD, OverloadedMethods); 3252 MD->setInvalidDecl(); 3253 return; 3254 } 3255 // Fall through into the general case diagnostic. 3256 // FIXME: We might want to attempt typo correction here. 3257 } 3258 3259 if (!MD || !MD->isVirtual()) { 3260 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3261 Diag(OA->getLocation(), 3262 diag::override_keyword_only_allowed_on_virtual_member_functions) 3263 << "override" << FixItHint::CreateRemoval(OA->getLocation()); 3264 D->dropAttr<OverrideAttr>(); 3265 } 3266 if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3267 Diag(FA->getLocation(), 3268 diag::override_keyword_only_allowed_on_virtual_member_functions) 3269 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3270 << FixItHint::CreateRemoval(FA->getLocation()); 3271 D->dropAttr<FinalAttr>(); 3272 } 3273 return; 3274 } 3275 3276 // C++11 [class.virtual]p5: 3277 // If a function is marked with the virt-specifier override and 3278 // does not override a member function of a base class, the program is 3279 // ill-formed. 3280 bool HasOverriddenMethods = MD->size_overridden_methods() != 0; 3281 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) 3282 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) 3283 << MD->getDeclName(); 3284 } 3285 3286 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) { 3287 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) 3288 return; 3289 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3290 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) 3291 return; 3292 3293 SourceLocation Loc = MD->getLocation(); 3294 SourceLocation SpellingLoc = Loc; 3295 if (getSourceManager().isMacroArgExpansion(Loc)) 3296 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); 3297 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); 3298 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) 3299 return; 3300 3301 if (MD->size_overridden_methods() > 0) { 3302 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) { 3303 unsigned DiagID = 3304 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation()) 3305 ? DiagInconsistent 3306 : DiagSuggest; 3307 Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 3308 const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); 3309 Diag(OMD->getLocation(), diag::note_overridden_virtual_function); 3310 }; 3311 if (isa<CXXDestructorDecl>(MD)) 3312 EmitDiag( 3313 diag::warn_inconsistent_destructor_marked_not_override_overriding, 3314 diag::warn_suggest_destructor_marked_not_override_overriding); 3315 else 3316 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding, 3317 diag::warn_suggest_function_marked_not_override_overriding); 3318 } 3319 } 3320 3321 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member 3322 /// function overrides a virtual member function marked 'final', according to 3323 /// C++11 [class.virtual]p4. 3324 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, 3325 const CXXMethodDecl *Old) { 3326 FinalAttr *FA = Old->getAttr<FinalAttr>(); 3327 if (!FA) 3328 return false; 3329 3330 Diag(New->getLocation(), diag::err_final_function_overridden) 3331 << New->getDeclName() 3332 << FA->isSpelledAsSealed(); 3333 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 3334 return true; 3335 } 3336 3337 static bool InitializationHasSideEffects(const FieldDecl &FD) { 3338 const Type *T = FD.getType()->getBaseElementTypeUnsafe(); 3339 // FIXME: Destruction of ObjC lifetime types has side-effects. 3340 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3341 return !RD->isCompleteDefinition() || 3342 !RD->hasTrivialDefaultConstructor() || 3343 !RD->hasTrivialDestructor(); 3344 return false; 3345 } 3346 3347 // Check if there is a field shadowing. 3348 void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, 3349 DeclarationName FieldName, 3350 const CXXRecordDecl *RD, 3351 bool DeclIsField) { 3352 if (Diags.isIgnored(diag::warn_shadow_field, Loc)) 3353 return; 3354 3355 // To record a shadowed field in a base 3356 std::map<CXXRecordDecl*, NamedDecl*> Bases; 3357 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, 3358 CXXBasePath &Path) { 3359 const auto Base = Specifier->getType()->getAsCXXRecordDecl(); 3360 // Record an ambiguous path directly 3361 if (Bases.find(Base) != Bases.end()) 3362 return true; 3363 for (const auto Field : Base->lookup(FieldName)) { 3364 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && 3365 Field->getAccess() != AS_private) { 3366 assert(Field->getAccess() != AS_none); 3367 assert(Bases.find(Base) == Bases.end()); 3368 Bases[Base] = Field; 3369 return true; 3370 } 3371 } 3372 return false; 3373 }; 3374 3375 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3376 /*DetectVirtual=*/true); 3377 if (!RD->lookupInBases(FieldShadowed, Paths)) 3378 return; 3379 3380 for (const auto &P : Paths) { 3381 auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); 3382 auto It = Bases.find(Base); 3383 // Skip duplicated bases 3384 if (It == Bases.end()) 3385 continue; 3386 auto BaseField = It->second; 3387 assert(BaseField->getAccess() != AS_private); 3388 if (AS_none != 3389 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) { 3390 Diag(Loc, diag::warn_shadow_field) 3391 << FieldName << RD << Base << DeclIsField; 3392 Diag(BaseField->getLocation(), diag::note_shadow_field); 3393 Bases.erase(It); 3394 } 3395 } 3396 } 3397 3398 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member 3399 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the 3400 /// bitfield width if there is one, 'InitExpr' specifies the initializer if 3401 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is 3402 /// present (but parsing it has been deferred). 3403 NamedDecl * 3404 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, 3405 MultiTemplateParamsArg TemplateParameterLists, 3406 Expr *BW, const VirtSpecifiers &VS, 3407 InClassInitStyle InitStyle) { 3408 const DeclSpec &DS = D.getDeclSpec(); 3409 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 3410 DeclarationName Name = NameInfo.getName(); 3411 SourceLocation Loc = NameInfo.getLoc(); 3412 3413 // For anonymous bitfields, the location should point to the type. 3414 if (Loc.isInvalid()) 3415 Loc = D.getBeginLoc(); 3416 3417 Expr *BitWidth = static_cast<Expr*>(BW); 3418 3419 assert(isa<CXXRecordDecl>(CurContext)); 3420 assert(!DS.isFriendSpecified()); 3421 3422 bool isFunc = D.isDeclarationOfFunction(); 3423 const ParsedAttr *MSPropertyAttr = 3424 D.getDeclSpec().getAttributes().getMSPropertyAttr(); 3425 3426 if (cast<CXXRecordDecl>(CurContext)->isInterface()) { 3427 // The Microsoft extension __interface only permits public member functions 3428 // and prohibits constructors, destructors, operators, non-public member 3429 // functions, static methods and data members. 3430 unsigned InvalidDecl; 3431 bool ShowDeclName = true; 3432 if (!isFunc && 3433 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) 3434 InvalidDecl = 0; 3435 else if (!isFunc) 3436 InvalidDecl = 1; 3437 else if (AS != AS_public) 3438 InvalidDecl = 2; 3439 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) 3440 InvalidDecl = 3; 3441 else switch (Name.getNameKind()) { 3442 case DeclarationName::CXXConstructorName: 3443 InvalidDecl = 4; 3444 ShowDeclName = false; 3445 break; 3446 3447 case DeclarationName::CXXDestructorName: 3448 InvalidDecl = 5; 3449 ShowDeclName = false; 3450 break; 3451 3452 case DeclarationName::CXXOperatorName: 3453 case DeclarationName::CXXConversionFunctionName: 3454 InvalidDecl = 6; 3455 break; 3456 3457 default: 3458 InvalidDecl = 0; 3459 break; 3460 } 3461 3462 if (InvalidDecl) { 3463 if (ShowDeclName) 3464 Diag(Loc, diag::err_invalid_member_in_interface) 3465 << (InvalidDecl-1) << Name; 3466 else 3467 Diag(Loc, diag::err_invalid_member_in_interface) 3468 << (InvalidDecl-1) << ""; 3469 return nullptr; 3470 } 3471 } 3472 3473 // C++ 9.2p6: A member shall not be declared to have automatic storage 3474 // duration (auto, register) or with the extern storage-class-specifier. 3475 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class 3476 // data members and cannot be applied to names declared const or static, 3477 // and cannot be applied to reference members. 3478 switch (DS.getStorageClassSpec()) { 3479 case DeclSpec::SCS_unspecified: 3480 case DeclSpec::SCS_typedef: 3481 case DeclSpec::SCS_static: 3482 break; 3483 case DeclSpec::SCS_mutable: 3484 if (isFunc) { 3485 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); 3486 3487 // FIXME: It would be nicer if the keyword was ignored only for this 3488 // declarator. Otherwise we could get follow-up errors. 3489 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3490 } 3491 break; 3492 default: 3493 Diag(DS.getStorageClassSpecLoc(), 3494 diag::err_storageclass_invalid_for_member); 3495 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3496 break; 3497 } 3498 3499 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || 3500 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && 3501 !isFunc); 3502 3503 if (DS.hasConstexprSpecifier() && isInstField) { 3504 SemaDiagnosticBuilder B = 3505 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); 3506 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); 3507 if (InitStyle == ICIS_NoInit) { 3508 B << 0 << 0; 3509 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) 3510 B << FixItHint::CreateRemoval(ConstexprLoc); 3511 else { 3512 B << FixItHint::CreateReplacement(ConstexprLoc, "const"); 3513 D.getMutableDeclSpec().ClearConstexprSpec(); 3514 const char *PrevSpec; 3515 unsigned DiagID; 3516 bool Failed = D.getMutableDeclSpec().SetTypeQual( 3517 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); 3518 (void)Failed; 3519 assert(!Failed && "Making a constexpr member const shouldn't fail"); 3520 } 3521 } else { 3522 B << 1; 3523 const char *PrevSpec; 3524 unsigned DiagID; 3525 if (D.getMutableDeclSpec().SetStorageClassSpec( 3526 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, 3527 Context.getPrintingPolicy())) { 3528 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable && 3529 "This is the only DeclSpec that should fail to be applied"); 3530 B << 1; 3531 } else { 3532 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); 3533 isInstField = false; 3534 } 3535 } 3536 } 3537 3538 NamedDecl *Member; 3539 if (isInstField) { 3540 CXXScopeSpec &SS = D.getCXXScopeSpec(); 3541 3542 // Data members must have identifiers for names. 3543 if (!Name.isIdentifier()) { 3544 Diag(Loc, diag::err_bad_variable_name) 3545 << Name; 3546 return nullptr; 3547 } 3548 3549 IdentifierInfo *II = Name.getAsIdentifierInfo(); 3550 3551 // Member field could not be with "template" keyword. 3552 // So TemplateParameterLists should be empty in this case. 3553 if (TemplateParameterLists.size()) { 3554 TemplateParameterList* TemplateParams = TemplateParameterLists[0]; 3555 if (TemplateParams->size()) { 3556 // There is no such thing as a member field template. 3557 Diag(D.getIdentifierLoc(), diag::err_template_member) 3558 << II 3559 << SourceRange(TemplateParams->getTemplateLoc(), 3560 TemplateParams->getRAngleLoc()); 3561 } else { 3562 // There is an extraneous 'template<>' for this member. 3563 Diag(TemplateParams->getTemplateLoc(), 3564 diag::err_template_member_noparams) 3565 << II 3566 << SourceRange(TemplateParams->getTemplateLoc(), 3567 TemplateParams->getRAngleLoc()); 3568 } 3569 return nullptr; 3570 } 3571 3572 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 3573 Diag(D.getIdentifierLoc(), diag::err_member_with_template_arguments) 3574 << II 3575 << SourceRange(D.getName().TemplateId->LAngleLoc, 3576 D.getName().TemplateId->RAngleLoc) 3577 << D.getName().TemplateId->LAngleLoc; 3578 D.SetIdentifier(II, Loc); 3579 } 3580 3581 if (SS.isSet() && !SS.isInvalid()) { 3582 // The user provided a superfluous scope specifier inside a class 3583 // definition: 3584 // 3585 // class X { 3586 // int X::member; 3587 // }; 3588 if (DeclContext *DC = computeDeclContext(SS, false)) 3589 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(), 3590 D.getName().getKind() == 3591 UnqualifiedIdKind::IK_TemplateId); 3592 else 3593 Diag(D.getIdentifierLoc(), diag::err_member_qualification) 3594 << Name << SS.getRange(); 3595 3596 SS.clear(); 3597 } 3598 3599 if (MSPropertyAttr) { 3600 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3601 BitWidth, InitStyle, AS, *MSPropertyAttr); 3602 if (!Member) 3603 return nullptr; 3604 isInstField = false; 3605 } else { 3606 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3607 BitWidth, InitStyle, AS); 3608 if (!Member) 3609 return nullptr; 3610 } 3611 3612 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext)); 3613 } else { 3614 Member = HandleDeclarator(S, D, TemplateParameterLists); 3615 if (!Member) 3616 return nullptr; 3617 3618 // Non-instance-fields can't have a bitfield. 3619 if (BitWidth) { 3620 if (Member->isInvalidDecl()) { 3621 // don't emit another diagnostic. 3622 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) { 3623 // C++ 9.6p3: A bit-field shall not be a static member. 3624 // "static member 'A' cannot be a bit-field" 3625 Diag(Loc, diag::err_static_not_bitfield) 3626 << Name << BitWidth->getSourceRange(); 3627 } else if (isa<TypedefDecl>(Member)) { 3628 // "typedef member 'x' cannot be a bit-field" 3629 Diag(Loc, diag::err_typedef_not_bitfield) 3630 << Name << BitWidth->getSourceRange(); 3631 } else { 3632 // A function typedef ("typedef int f(); f a;"). 3633 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 3634 Diag(Loc, diag::err_not_integral_type_bitfield) 3635 << Name << cast<ValueDecl>(Member)->getType() 3636 << BitWidth->getSourceRange(); 3637 } 3638 3639 BitWidth = nullptr; 3640 Member->setInvalidDecl(); 3641 } 3642 3643 NamedDecl *NonTemplateMember = Member; 3644 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) 3645 NonTemplateMember = FunTmpl->getTemplatedDecl(); 3646 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member)) 3647 NonTemplateMember = VarTmpl->getTemplatedDecl(); 3648 3649 Member->setAccess(AS); 3650 3651 // If we have declared a member function template or static data member 3652 // template, set the access of the templated declaration as well. 3653 if (NonTemplateMember != Member) 3654 NonTemplateMember->setAccess(AS); 3655 3656 // C++ [temp.deduct.guide]p3: 3657 // A deduction guide [...] for a member class template [shall be 3658 // declared] with the same access [as the template]. 3659 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) { 3660 auto *TD = DG->getDeducedTemplate(); 3661 // Access specifiers are only meaningful if both the template and the 3662 // deduction guide are from the same scope. 3663 if (AS != TD->getAccess() && 3664 TD->getDeclContext()->getRedeclContext()->Equals( 3665 DG->getDeclContext()->getRedeclContext())) { 3666 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); 3667 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) 3668 << TD->getAccess(); 3669 const AccessSpecDecl *LastAccessSpec = nullptr; 3670 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { 3671 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) 3672 LastAccessSpec = AccessSpec; 3673 } 3674 assert(LastAccessSpec && "differing access with no access specifier"); 3675 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) 3676 << AS; 3677 } 3678 } 3679 } 3680 3681 if (VS.isOverrideSpecified()) 3682 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc())); 3683 if (VS.isFinalSpecified()) 3684 Member->addAttr(FinalAttr::Create(Context, VS.getFinalLoc(), 3685 VS.isFinalSpelledSealed() 3686 ? FinalAttr::Keyword_sealed 3687 : FinalAttr::Keyword_final)); 3688 3689 if (VS.getLastLocation().isValid()) { 3690 // Update the end location of a method that has a virt-specifiers. 3691 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) 3692 MD->setRangeEnd(VS.getLastLocation()); 3693 } 3694 3695 CheckOverrideControl(Member); 3696 3697 assert((Name || isInstField) && "No identifier for non-field ?"); 3698 3699 if (isInstField) { 3700 FieldDecl *FD = cast<FieldDecl>(Member); 3701 FieldCollector->Add(FD); 3702 3703 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) { 3704 // Remember all explicit private FieldDecls that have a name, no side 3705 // effects and are not part of a dependent type declaration. 3706 if (!FD->isImplicit() && FD->getDeclName() && 3707 FD->getAccess() == AS_private && 3708 !FD->hasAttr<UnusedAttr>() && 3709 !FD->getParent()->isDependentContext() && 3710 !InitializationHasSideEffects(*FD)) 3711 UnusedPrivateFields.insert(FD); 3712 } 3713 } 3714 3715 return Member; 3716 } 3717 3718 namespace { 3719 class UninitializedFieldVisitor 3720 : public EvaluatedExprVisitor<UninitializedFieldVisitor> { 3721 Sema &S; 3722 // List of Decls to generate a warning on. Also remove Decls that become 3723 // initialized. 3724 llvm::SmallPtrSetImpl<ValueDecl*> &Decls; 3725 // List of base classes of the record. Classes are removed after their 3726 // initializers. 3727 llvm::SmallPtrSetImpl<QualType> &BaseClasses; 3728 // Vector of decls to be removed from the Decl set prior to visiting the 3729 // nodes. These Decls may have been initialized in the prior initializer. 3730 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; 3731 // If non-null, add a note to the warning pointing back to the constructor. 3732 const CXXConstructorDecl *Constructor; 3733 // Variables to hold state when processing an initializer list. When 3734 // InitList is true, special case initialization of FieldDecls matching 3735 // InitListFieldDecl. 3736 bool InitList; 3737 FieldDecl *InitListFieldDecl; 3738 llvm::SmallVector<unsigned, 4> InitFieldIndex; 3739 3740 public: 3741 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; 3742 UninitializedFieldVisitor(Sema &S, 3743 llvm::SmallPtrSetImpl<ValueDecl*> &Decls, 3744 llvm::SmallPtrSetImpl<QualType> &BaseClasses) 3745 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), 3746 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} 3747 3748 // Returns true if the use of ME is not an uninitialized use. 3749 bool IsInitListMemberExprInitialized(MemberExpr *ME, 3750 bool CheckReferenceOnly) { 3751 llvm::SmallVector<FieldDecl*, 4> Fields; 3752 bool ReferenceField = false; 3753 while (ME) { 3754 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 3755 if (!FD) 3756 return false; 3757 Fields.push_back(FD); 3758 if (FD->getType()->isReferenceType()) 3759 ReferenceField = true; 3760 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts()); 3761 } 3762 3763 // Binding a reference to an uninitialized field is not an 3764 // uninitialized use. 3765 if (CheckReferenceOnly && !ReferenceField) 3766 return true; 3767 3768 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 3769 // Discard the first field since it is the field decl that is being 3770 // initialized. 3771 for (const FieldDecl *FD : llvm::drop_begin(llvm::reverse(Fields))) 3772 UsedFieldIndex.push_back(FD->getFieldIndex()); 3773 3774 for (auto UsedIter = UsedFieldIndex.begin(), 3775 UsedEnd = UsedFieldIndex.end(), 3776 OrigIter = InitFieldIndex.begin(), 3777 OrigEnd = InitFieldIndex.end(); 3778 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 3779 if (*UsedIter < *OrigIter) 3780 return true; 3781 if (*UsedIter > *OrigIter) 3782 break; 3783 } 3784 3785 return false; 3786 } 3787 3788 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, 3789 bool AddressOf) { 3790 if (isa<EnumConstantDecl>(ME->getMemberDecl())) 3791 return; 3792 3793 // FieldME is the inner-most MemberExpr that is not an anonymous struct 3794 // or union. 3795 MemberExpr *FieldME = ME; 3796 3797 bool AllPODFields = FieldME->getType().isPODType(S.Context); 3798 3799 Expr *Base = ME; 3800 while (MemberExpr *SubME = 3801 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) { 3802 3803 if (isa<VarDecl>(SubME->getMemberDecl())) 3804 return; 3805 3806 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl())) 3807 if (!FD->isAnonymousStructOrUnion()) 3808 FieldME = SubME; 3809 3810 if (!FieldME->getType().isPODType(S.Context)) 3811 AllPODFields = false; 3812 3813 Base = SubME->getBase(); 3814 } 3815 3816 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) { 3817 Visit(Base); 3818 return; 3819 } 3820 3821 if (AddressOf && AllPODFields) 3822 return; 3823 3824 ValueDecl* FoundVD = FieldME->getMemberDecl(); 3825 3826 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) { 3827 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { 3828 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); 3829 } 3830 3831 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { 3832 QualType T = BaseCast->getType(); 3833 if (T->isPointerType() && 3834 BaseClasses.count(T->getPointeeType())) { 3835 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) 3836 << T->getPointeeType() << FoundVD; 3837 } 3838 } 3839 } 3840 3841 if (!Decls.count(FoundVD)) 3842 return; 3843 3844 const bool IsReference = FoundVD->getType()->isReferenceType(); 3845 3846 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { 3847 // Special checking for initializer lists. 3848 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { 3849 return; 3850 } 3851 } else { 3852 // Prevent double warnings on use of unbounded references. 3853 if (CheckReferenceOnly && !IsReference) 3854 return; 3855 } 3856 3857 unsigned diag = IsReference 3858 ? diag::warn_reference_field_is_uninit 3859 : diag::warn_field_is_uninit; 3860 S.Diag(FieldME->getExprLoc(), diag) << FoundVD; 3861 if (Constructor) 3862 S.Diag(Constructor->getLocation(), 3863 diag::note_uninit_in_this_constructor) 3864 << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); 3865 3866 } 3867 3868 void HandleValue(Expr *E, bool AddressOf) { 3869 E = E->IgnoreParens(); 3870 3871 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 3872 HandleMemberExpr(ME, false /*CheckReferenceOnly*/, 3873 AddressOf /*AddressOf*/); 3874 return; 3875 } 3876 3877 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 3878 Visit(CO->getCond()); 3879 HandleValue(CO->getTrueExpr(), AddressOf); 3880 HandleValue(CO->getFalseExpr(), AddressOf); 3881 return; 3882 } 3883 3884 if (BinaryConditionalOperator *BCO = 3885 dyn_cast<BinaryConditionalOperator>(E)) { 3886 Visit(BCO->getCond()); 3887 HandleValue(BCO->getFalseExpr(), AddressOf); 3888 return; 3889 } 3890 3891 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 3892 HandleValue(OVE->getSourceExpr(), AddressOf); 3893 return; 3894 } 3895 3896 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3897 switch (BO->getOpcode()) { 3898 default: 3899 break; 3900 case(BO_PtrMemD): 3901 case(BO_PtrMemI): 3902 HandleValue(BO->getLHS(), AddressOf); 3903 Visit(BO->getRHS()); 3904 return; 3905 case(BO_Comma): 3906 Visit(BO->getLHS()); 3907 HandleValue(BO->getRHS(), AddressOf); 3908 return; 3909 } 3910 } 3911 3912 Visit(E); 3913 } 3914 3915 void CheckInitListExpr(InitListExpr *ILE) { 3916 InitFieldIndex.push_back(0); 3917 for (auto *Child : ILE->children()) { 3918 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) { 3919 CheckInitListExpr(SubList); 3920 } else { 3921 Visit(Child); 3922 } 3923 ++InitFieldIndex.back(); 3924 } 3925 InitFieldIndex.pop_back(); 3926 } 3927 3928 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, 3929 FieldDecl *Field, const Type *BaseClass) { 3930 // Remove Decls that may have been initialized in the previous 3931 // initializer. 3932 for (ValueDecl* VD : DeclsToRemove) 3933 Decls.erase(VD); 3934 DeclsToRemove.clear(); 3935 3936 Constructor = FieldConstructor; 3937 InitListExpr *ILE = dyn_cast<InitListExpr>(E); 3938 3939 if (ILE && Field) { 3940 InitList = true; 3941 InitListFieldDecl = Field; 3942 InitFieldIndex.clear(); 3943 CheckInitListExpr(ILE); 3944 } else { 3945 InitList = false; 3946 Visit(E); 3947 } 3948 3949 if (Field) 3950 Decls.erase(Field); 3951 if (BaseClass) 3952 BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); 3953 } 3954 3955 void VisitMemberExpr(MemberExpr *ME) { 3956 // All uses of unbounded reference fields will warn. 3957 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); 3958 } 3959 3960 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 3961 if (E->getCastKind() == CK_LValueToRValue) { 3962 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3963 return; 3964 } 3965 3966 Inherited::VisitImplicitCastExpr(E); 3967 } 3968 3969 void VisitCXXConstructExpr(CXXConstructExpr *E) { 3970 if (E->getConstructor()->isCopyConstructor()) { 3971 Expr *ArgExpr = E->getArg(0); 3972 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 3973 if (ILE->getNumInits() == 1) 3974 ArgExpr = ILE->getInit(0); 3975 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 3976 if (ICE->getCastKind() == CK_NoOp) 3977 ArgExpr = ICE->getSubExpr(); 3978 HandleValue(ArgExpr, false /*AddressOf*/); 3979 return; 3980 } 3981 Inherited::VisitCXXConstructExpr(E); 3982 } 3983 3984 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3985 Expr *Callee = E->getCallee(); 3986 if (isa<MemberExpr>(Callee)) { 3987 HandleValue(Callee, false /*AddressOf*/); 3988 for (auto *Arg : E->arguments()) 3989 Visit(Arg); 3990 return; 3991 } 3992 3993 Inherited::VisitCXXMemberCallExpr(E); 3994 } 3995 3996 void VisitCallExpr(CallExpr *E) { 3997 // Treat std::move as a use. 3998 if (E->isCallToStdMove()) { 3999 HandleValue(E->getArg(0), /*AddressOf=*/false); 4000 return; 4001 } 4002 4003 Inherited::VisitCallExpr(E); 4004 } 4005 4006 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 4007 Expr *Callee = E->getCallee(); 4008 4009 if (isa<UnresolvedLookupExpr>(Callee)) 4010 return Inherited::VisitCXXOperatorCallExpr(E); 4011 4012 Visit(Callee); 4013 for (auto *Arg : E->arguments()) 4014 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); 4015 } 4016 4017 void VisitBinaryOperator(BinaryOperator *E) { 4018 // If a field assignment is detected, remove the field from the 4019 // uninitiailized field set. 4020 if (E->getOpcode() == BO_Assign) 4021 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS())) 4022 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) 4023 if (!FD->getType()->isReferenceType()) 4024 DeclsToRemove.push_back(FD); 4025 4026 if (E->isCompoundAssignmentOp()) { 4027 HandleValue(E->getLHS(), false /*AddressOf*/); 4028 Visit(E->getRHS()); 4029 return; 4030 } 4031 4032 Inherited::VisitBinaryOperator(E); 4033 } 4034 4035 void VisitUnaryOperator(UnaryOperator *E) { 4036 if (E->isIncrementDecrementOp()) { 4037 HandleValue(E->getSubExpr(), false /*AddressOf*/); 4038 return; 4039 } 4040 if (E->getOpcode() == UO_AddrOf) { 4041 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) { 4042 HandleValue(ME->getBase(), true /*AddressOf*/); 4043 return; 4044 } 4045 } 4046 4047 Inherited::VisitUnaryOperator(E); 4048 } 4049 }; 4050 4051 // Diagnose value-uses of fields to initialize themselves, e.g. 4052 // foo(foo) 4053 // where foo is not also a parameter to the constructor. 4054 // Also diagnose across field uninitialized use such as 4055 // x(y), y(x) 4056 // TODO: implement -Wuninitialized and fold this into that framework. 4057 static void DiagnoseUninitializedFields( 4058 Sema &SemaRef, const CXXConstructorDecl *Constructor) { 4059 4060 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, 4061 Constructor->getLocation())) { 4062 return; 4063 } 4064 4065 if (Constructor->isInvalidDecl()) 4066 return; 4067 4068 const CXXRecordDecl *RD = Constructor->getParent(); 4069 4070 if (RD->isDependentContext()) 4071 return; 4072 4073 // Holds fields that are uninitialized. 4074 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; 4075 4076 // At the beginning, all fields are uninitialized. 4077 for (auto *I : RD->decls()) { 4078 if (auto *FD = dyn_cast<FieldDecl>(I)) { 4079 UninitializedFields.insert(FD); 4080 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { 4081 UninitializedFields.insert(IFD->getAnonField()); 4082 } 4083 } 4084 4085 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; 4086 for (const auto &I : RD->bases()) 4087 UninitializedBaseClasses.insert(I.getType().getCanonicalType()); 4088 4089 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 4090 return; 4091 4092 UninitializedFieldVisitor UninitializedChecker(SemaRef, 4093 UninitializedFields, 4094 UninitializedBaseClasses); 4095 4096 for (const auto *FieldInit : Constructor->inits()) { 4097 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 4098 break; 4099 4100 Expr *InitExpr = FieldInit->getInit(); 4101 if (!InitExpr) 4102 continue; 4103 4104 if (CXXDefaultInitExpr *Default = 4105 dyn_cast<CXXDefaultInitExpr>(InitExpr)) { 4106 InitExpr = Default->getExpr(); 4107 if (!InitExpr) 4108 continue; 4109 // In class initializers will point to the constructor. 4110 UninitializedChecker.CheckInitializer(InitExpr, Constructor, 4111 FieldInit->getAnyMember(), 4112 FieldInit->getBaseClass()); 4113 } else { 4114 UninitializedChecker.CheckInitializer(InitExpr, nullptr, 4115 FieldInit->getAnyMember(), 4116 FieldInit->getBaseClass()); 4117 } 4118 } 4119 } 4120 } // namespace 4121 4122 /// Enter a new C++ default initializer scope. After calling this, the 4123 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if 4124 /// parsing or instantiating the initializer failed. 4125 void Sema::ActOnStartCXXInClassMemberInitializer() { 4126 // Create a synthetic function scope to represent the call to the constructor 4127 // that notionally surrounds a use of this initializer. 4128 PushFunctionScope(); 4129 } 4130 4131 void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) { 4132 if (!D.isFunctionDeclarator()) 4133 return; 4134 auto &FTI = D.getFunctionTypeInfo(); 4135 if (!FTI.Params) 4136 return; 4137 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params, 4138 FTI.NumParams)) { 4139 auto *ParamDecl = cast<NamedDecl>(Param.Param); 4140 if (ParamDecl->getDeclName()) 4141 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false); 4142 } 4143 } 4144 4145 ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) { 4146 return ActOnRequiresClause(ConstraintExpr); 4147 } 4148 4149 ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) { 4150 if (ConstraintExpr.isInvalid()) 4151 return ExprError(); 4152 4153 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr); 4154 if (ConstraintExpr.isInvalid()) 4155 return ExprError(); 4156 4157 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(), 4158 UPPC_RequiresClause)) 4159 return ExprError(); 4160 4161 return ConstraintExpr; 4162 } 4163 4164 ExprResult Sema::ConvertMemberDefaultInitExpression(FieldDecl *FD, 4165 Expr *InitExpr, 4166 SourceLocation InitLoc) { 4167 InitializedEntity Entity = 4168 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD); 4169 InitializationKind Kind = 4170 FD->getInClassInitStyle() == ICIS_ListInit 4171 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), 4172 InitExpr->getBeginLoc(), 4173 InitExpr->getEndLoc()) 4174 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc); 4175 InitializationSequence Seq(*this, Entity, Kind, InitExpr); 4176 return Seq.Perform(*this, Entity, Kind, InitExpr); 4177 } 4178 4179 /// This is invoked after parsing an in-class initializer for a 4180 /// non-static C++ class member, and after instantiating an in-class initializer 4181 /// in a class template. Such actions are deferred until the class is complete. 4182 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, 4183 SourceLocation InitLoc, 4184 Expr *InitExpr) { 4185 // Pop the notional constructor scope we created earlier. 4186 PopFunctionScopeInfo(nullptr, D); 4187 4188 FieldDecl *FD = dyn_cast<FieldDecl>(D); 4189 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && 4190 "must set init style when field is created"); 4191 4192 if (!InitExpr) { 4193 D->setInvalidDecl(); 4194 if (FD) 4195 FD->removeInClassInitializer(); 4196 return; 4197 } 4198 4199 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { 4200 FD->setInvalidDecl(); 4201 FD->removeInClassInitializer(); 4202 return; 4203 } 4204 4205 ExprResult Init = CorrectDelayedTyposInExpr(InitExpr, /*InitDecl=*/nullptr, 4206 /*RecoverUncorrectedTypos=*/true); 4207 assert(Init.isUsable() && "Init should at least have a RecoveryExpr"); 4208 if (!FD->getType()->isDependentType() && !Init.get()->isTypeDependent()) { 4209 Init = ConvertMemberDefaultInitExpression(FD, Init.get(), InitLoc); 4210 // C++11 [class.base.init]p7: 4211 // The initialization of each base and member constitutes a 4212 // full-expression. 4213 if (!Init.isInvalid()) 4214 Init = ActOnFinishFullExpr(Init.get(), /*DiscarededValue=*/false); 4215 if (Init.isInvalid()) { 4216 FD->setInvalidDecl(); 4217 return; 4218 } 4219 } 4220 4221 FD->setInClassInitializer(Init.get()); 4222 } 4223 4224 /// Find the direct and/or virtual base specifiers that 4225 /// correspond to the given base type, for use in base initialization 4226 /// within a constructor. 4227 static bool FindBaseInitializer(Sema &SemaRef, 4228 CXXRecordDecl *ClassDecl, 4229 QualType BaseType, 4230 const CXXBaseSpecifier *&DirectBaseSpec, 4231 const CXXBaseSpecifier *&VirtualBaseSpec) { 4232 // First, check for a direct base class. 4233 DirectBaseSpec = nullptr; 4234 for (const auto &Base : ClassDecl->bases()) { 4235 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { 4236 // We found a direct base of this type. That's what we're 4237 // initializing. 4238 DirectBaseSpec = &Base; 4239 break; 4240 } 4241 } 4242 4243 // Check for a virtual base class. 4244 // FIXME: We might be able to short-circuit this if we know in advance that 4245 // there are no virtual bases. 4246 VirtualBaseSpec = nullptr; 4247 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { 4248 // We haven't found a base yet; search the class hierarchy for a 4249 // virtual base class. 4250 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 4251 /*DetectVirtual=*/false); 4252 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), 4253 SemaRef.Context.getTypeDeclType(ClassDecl), 4254 BaseType, Paths)) { 4255 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 4256 Path != Paths.end(); ++Path) { 4257 if (Path->back().Base->isVirtual()) { 4258 VirtualBaseSpec = Path->back().Base; 4259 break; 4260 } 4261 } 4262 } 4263 } 4264 4265 return DirectBaseSpec || VirtualBaseSpec; 4266 } 4267 4268 /// Handle a C++ member initializer using braced-init-list syntax. 4269 MemInitResult 4270 Sema::ActOnMemInitializer(Decl *ConstructorD, 4271 Scope *S, 4272 CXXScopeSpec &SS, 4273 IdentifierInfo *MemberOrBase, 4274 ParsedType TemplateTypeTy, 4275 const DeclSpec &DS, 4276 SourceLocation IdLoc, 4277 Expr *InitList, 4278 SourceLocation EllipsisLoc) { 4279 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4280 DS, IdLoc, InitList, 4281 EllipsisLoc); 4282 } 4283 4284 /// Handle a C++ member initializer using parentheses syntax. 4285 MemInitResult 4286 Sema::ActOnMemInitializer(Decl *ConstructorD, 4287 Scope *S, 4288 CXXScopeSpec &SS, 4289 IdentifierInfo *MemberOrBase, 4290 ParsedType TemplateTypeTy, 4291 const DeclSpec &DS, 4292 SourceLocation IdLoc, 4293 SourceLocation LParenLoc, 4294 ArrayRef<Expr *> Args, 4295 SourceLocation RParenLoc, 4296 SourceLocation EllipsisLoc) { 4297 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc); 4298 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4299 DS, IdLoc, List, EllipsisLoc); 4300 } 4301 4302 namespace { 4303 4304 // Callback to only accept typo corrections that can be a valid C++ member 4305 // initializer: either a non-static field member or a base class. 4306 class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { 4307 public: 4308 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) 4309 : ClassDecl(ClassDecl) {} 4310 4311 bool ValidateCandidate(const TypoCorrection &candidate) override { 4312 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 4313 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) 4314 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); 4315 return isa<TypeDecl>(ND); 4316 } 4317 return false; 4318 } 4319 4320 std::unique_ptr<CorrectionCandidateCallback> clone() override { 4321 return std::make_unique<MemInitializerValidatorCCC>(*this); 4322 } 4323 4324 private: 4325 CXXRecordDecl *ClassDecl; 4326 }; 4327 4328 } 4329 4330 ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, 4331 CXXScopeSpec &SS, 4332 ParsedType TemplateTypeTy, 4333 IdentifierInfo *MemberOrBase) { 4334 if (SS.getScopeRep() || TemplateTypeTy) 4335 return nullptr; 4336 for (auto *D : ClassDecl->lookup(MemberOrBase)) 4337 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) 4338 return cast<ValueDecl>(D); 4339 return nullptr; 4340 } 4341 4342 /// Handle a C++ member initializer. 4343 MemInitResult 4344 Sema::BuildMemInitializer(Decl *ConstructorD, 4345 Scope *S, 4346 CXXScopeSpec &SS, 4347 IdentifierInfo *MemberOrBase, 4348 ParsedType TemplateTypeTy, 4349 const DeclSpec &DS, 4350 SourceLocation IdLoc, 4351 Expr *Init, 4352 SourceLocation EllipsisLoc) { 4353 ExprResult Res = CorrectDelayedTyposInExpr(Init, /*InitDecl=*/nullptr, 4354 /*RecoverUncorrectedTypos=*/true); 4355 if (!Res.isUsable()) 4356 return true; 4357 Init = Res.get(); 4358 4359 if (!ConstructorD) 4360 return true; 4361 4362 AdjustDeclIfTemplate(ConstructorD); 4363 4364 CXXConstructorDecl *Constructor 4365 = dyn_cast<CXXConstructorDecl>(ConstructorD); 4366 if (!Constructor) { 4367 // The user wrote a constructor initializer on a function that is 4368 // not a C++ constructor. Ignore the error for now, because we may 4369 // have more member initializers coming; we'll diagnose it just 4370 // once in ActOnMemInitializers. 4371 return true; 4372 } 4373 4374 CXXRecordDecl *ClassDecl = Constructor->getParent(); 4375 4376 // C++ [class.base.init]p2: 4377 // Names in a mem-initializer-id are looked up in the scope of the 4378 // constructor's class and, if not found in that scope, are looked 4379 // up in the scope containing the constructor's definition. 4380 // [Note: if the constructor's class contains a member with the 4381 // same name as a direct or virtual base class of the class, a 4382 // mem-initializer-id naming the member or base class and composed 4383 // of a single identifier refers to the class member. A 4384 // mem-initializer-id for the hidden base class may be specified 4385 // using a qualified name. ] 4386 4387 // Look for a member, first. 4388 if (ValueDecl *Member = tryLookupCtorInitMemberDecl( 4389 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { 4390 if (EllipsisLoc.isValid()) 4391 Diag(EllipsisLoc, diag::err_pack_expansion_member_init) 4392 << MemberOrBase 4393 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 4394 4395 return BuildMemberInitializer(Member, Init, IdLoc); 4396 } 4397 // It didn't name a member, so see if it names a class. 4398 QualType BaseType; 4399 TypeSourceInfo *TInfo = nullptr; 4400 4401 if (TemplateTypeTy) { 4402 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); 4403 if (BaseType.isNull()) 4404 return true; 4405 } else if (DS.getTypeSpecType() == TST_decltype) { 4406 BaseType = BuildDecltypeType(DS.getRepAsExpr()); 4407 } else if (DS.getTypeSpecType() == TST_decltype_auto) { 4408 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 4409 return true; 4410 } else { 4411 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); 4412 LookupParsedName(R, S, &SS); 4413 4414 TypeDecl *TyD = R.getAsSingle<TypeDecl>(); 4415 if (!TyD) { 4416 if (R.isAmbiguous()) return true; 4417 4418 // We don't want access-control diagnostics here. 4419 R.suppressDiagnostics(); 4420 4421 if (SS.isSet() && isDependentScopeSpecifier(SS)) { 4422 bool NotUnknownSpecialization = false; 4423 DeclContext *DC = computeDeclContext(SS, false); 4424 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) 4425 NotUnknownSpecialization = !Record->hasAnyDependentBases(); 4426 4427 if (!NotUnknownSpecialization) { 4428 // When the scope specifier can refer to a member of an unknown 4429 // specialization, we take it as a type name. 4430 BaseType = CheckTypenameType(ETK_None, SourceLocation(), 4431 SS.getWithLocInContext(Context), 4432 *MemberOrBase, IdLoc); 4433 if (BaseType.isNull()) 4434 return true; 4435 4436 TInfo = Context.CreateTypeSourceInfo(BaseType); 4437 DependentNameTypeLoc TL = 4438 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); 4439 if (!TL.isNull()) { 4440 TL.setNameLoc(IdLoc); 4441 TL.setElaboratedKeywordLoc(SourceLocation()); 4442 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4443 } 4444 4445 R.clear(); 4446 R.setLookupName(MemberOrBase); 4447 } 4448 } 4449 4450 if (getLangOpts().MSVCCompat && !getLangOpts().CPlusPlus20) { 4451 if (auto UnqualifiedBase = R.getAsSingle<ClassTemplateDecl>()) { 4452 auto *TempSpec = cast<TemplateSpecializationType>( 4453 UnqualifiedBase->getInjectedClassNameSpecialization()); 4454 TemplateName TN = TempSpec->getTemplateName(); 4455 for (auto const &Base : ClassDecl->bases()) { 4456 auto BaseTemplate = 4457 Base.getType()->getAs<TemplateSpecializationType>(); 4458 if (BaseTemplate && Context.hasSameTemplateName( 4459 BaseTemplate->getTemplateName(), TN)) { 4460 Diag(IdLoc, diag::ext_unqualified_base_class) 4461 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 4462 BaseType = Base.getType(); 4463 break; 4464 } 4465 } 4466 } 4467 } 4468 4469 // If no results were found, try to correct typos. 4470 TypoCorrection Corr; 4471 MemInitializerValidatorCCC CCC(ClassDecl); 4472 if (R.empty() && BaseType.isNull() && 4473 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, 4474 CCC, CTK_ErrorRecovery, ClassDecl))) { 4475 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { 4476 // We have found a non-static data member with a similar 4477 // name to what was typed; complain and initialize that 4478 // member. 4479 diagnoseTypo(Corr, 4480 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4481 << MemberOrBase << true); 4482 return BuildMemberInitializer(Member, Init, IdLoc); 4483 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { 4484 const CXXBaseSpecifier *DirectBaseSpec; 4485 const CXXBaseSpecifier *VirtualBaseSpec; 4486 if (FindBaseInitializer(*this, ClassDecl, 4487 Context.getTypeDeclType(Type), 4488 DirectBaseSpec, VirtualBaseSpec)) { 4489 // We have found a direct or virtual base class with a 4490 // similar name to what was typed; complain and initialize 4491 // that base class. 4492 diagnoseTypo(Corr, 4493 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4494 << MemberOrBase << false, 4495 PDiag() /*Suppress note, we provide our own.*/); 4496 4497 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec 4498 : VirtualBaseSpec; 4499 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) 4500 << BaseSpec->getType() << BaseSpec->getSourceRange(); 4501 4502 TyD = Type; 4503 } 4504 } 4505 } 4506 4507 if (!TyD && BaseType.isNull()) { 4508 Diag(IdLoc, diag::err_mem_init_not_member_or_class) 4509 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); 4510 return true; 4511 } 4512 } 4513 4514 if (BaseType.isNull()) { 4515 BaseType = getElaboratedType(ETK_None, SS, Context.getTypeDeclType(TyD)); 4516 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); 4517 TInfo = Context.CreateTypeSourceInfo(BaseType); 4518 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); 4519 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 4520 TL.setElaboratedKeywordLoc(SourceLocation()); 4521 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4522 } 4523 } 4524 4525 if (!TInfo) 4526 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); 4527 4528 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); 4529 } 4530 4531 MemInitResult 4532 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, 4533 SourceLocation IdLoc) { 4534 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); 4535 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); 4536 assert((DirectMember || IndirectMember) && 4537 "Member must be a FieldDecl or IndirectFieldDecl"); 4538 4539 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4540 return true; 4541 4542 if (Member->isInvalidDecl()) 4543 return true; 4544 4545 MultiExprArg Args; 4546 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4547 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4548 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 4549 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 4550 } else { 4551 // Template instantiation doesn't reconstruct ParenListExprs for us. 4552 Args = Init; 4553 } 4554 4555 SourceRange InitRange = Init->getSourceRange(); 4556 4557 if (Member->getType()->isDependentType() || Init->isTypeDependent()) { 4558 // Can't check initialization for a member of dependent type or when 4559 // any of the arguments are type-dependent expressions. 4560 DiscardCleanupsInEvaluationContext(); 4561 } else { 4562 bool InitList = false; 4563 if (isa<InitListExpr>(Init)) { 4564 InitList = true; 4565 Args = Init; 4566 } 4567 4568 // Initialize the member. 4569 InitializedEntity MemberEntity = 4570 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) 4571 : InitializedEntity::InitializeMember(IndirectMember, 4572 nullptr); 4573 InitializationKind Kind = 4574 InitList ? InitializationKind::CreateDirectList( 4575 IdLoc, Init->getBeginLoc(), Init->getEndLoc()) 4576 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), 4577 InitRange.getEnd()); 4578 4579 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); 4580 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 4581 nullptr); 4582 if (!MemberInit.isInvalid()) { 4583 // C++11 [class.base.init]p7: 4584 // The initialization of each base and member constitutes a 4585 // full-expression. 4586 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(), 4587 /*DiscardedValue*/ false); 4588 } 4589 4590 if (MemberInit.isInvalid()) { 4591 // Args were sensible expressions but we couldn't initialize the member 4592 // from them. Preserve them in a RecoveryExpr instead. 4593 Init = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args, 4594 Member->getType()) 4595 .get(); 4596 if (!Init) 4597 return true; 4598 } else { 4599 Init = MemberInit.get(); 4600 } 4601 } 4602 4603 if (DirectMember) { 4604 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, 4605 InitRange.getBegin(), Init, 4606 InitRange.getEnd()); 4607 } else { 4608 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, 4609 InitRange.getBegin(), Init, 4610 InitRange.getEnd()); 4611 } 4612 } 4613 4614 MemInitResult 4615 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, 4616 CXXRecordDecl *ClassDecl) { 4617 SourceLocation NameLoc = TInfo->getTypeLoc().getSourceRange().getBegin(); 4618 if (!LangOpts.CPlusPlus11) 4619 return Diag(NameLoc, diag::err_delegating_ctor) 4620 << TInfo->getTypeLoc().getSourceRange(); 4621 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); 4622 4623 bool InitList = true; 4624 MultiExprArg Args = Init; 4625 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4626 InitList = false; 4627 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4628 } 4629 4630 SourceRange InitRange = Init->getSourceRange(); 4631 // Initialize the object. 4632 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( 4633 QualType(ClassDecl->getTypeForDecl(), 0)); 4634 InitializationKind Kind = 4635 InitList ? InitializationKind::CreateDirectList( 4636 NameLoc, Init->getBeginLoc(), Init->getEndLoc()) 4637 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), 4638 InitRange.getEnd()); 4639 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); 4640 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, 4641 Args, nullptr); 4642 if (!DelegationInit.isInvalid()) { 4643 assert((DelegationInit.get()->containsErrors() || 4644 cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && 4645 "Delegating constructor with no target?"); 4646 4647 // C++11 [class.base.init]p7: 4648 // The initialization of each base and member constitutes a 4649 // full-expression. 4650 DelegationInit = ActOnFinishFullExpr( 4651 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); 4652 } 4653 4654 if (DelegationInit.isInvalid()) { 4655 DelegationInit = 4656 CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args, 4657 QualType(ClassDecl->getTypeForDecl(), 0)); 4658 if (DelegationInit.isInvalid()) 4659 return true; 4660 } else { 4661 // If we are in a dependent context, template instantiation will 4662 // perform this type-checking again. Just save the arguments that we 4663 // received in a ParenListExpr. 4664 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4665 // of the information that we have about the base 4666 // initializer. However, deconstructing the ASTs is a dicey process, 4667 // and this approach is far more likely to get the corner cases right. 4668 if (CurContext->isDependentContext()) 4669 DelegationInit = Init; 4670 } 4671 4672 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), 4673 DelegationInit.getAs<Expr>(), 4674 InitRange.getEnd()); 4675 } 4676 4677 MemInitResult 4678 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, 4679 Expr *Init, CXXRecordDecl *ClassDecl, 4680 SourceLocation EllipsisLoc) { 4681 SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getBeginLoc(); 4682 4683 if (!BaseType->isDependentType() && !BaseType->isRecordType()) 4684 return Diag(BaseLoc, diag::err_base_init_does_not_name_class) 4685 << BaseType << BaseTInfo->getTypeLoc().getSourceRange(); 4686 4687 // C++ [class.base.init]p2: 4688 // [...] Unless the mem-initializer-id names a nonstatic data 4689 // member of the constructor's class or a direct or virtual base 4690 // of that class, the mem-initializer is ill-formed. A 4691 // mem-initializer-list can initialize a base class using any 4692 // name that denotes that base class type. 4693 4694 // We can store the initializers in "as-written" form and delay analysis until 4695 // instantiation if the constructor is dependent. But not for dependent 4696 // (broken) code in a non-template! SetCtorInitializers does not expect this. 4697 bool Dependent = CurContext->isDependentContext() && 4698 (BaseType->isDependentType() || Init->isTypeDependent()); 4699 4700 SourceRange InitRange = Init->getSourceRange(); 4701 if (EllipsisLoc.isValid()) { 4702 // This is a pack expansion. 4703 if (!BaseType->containsUnexpandedParameterPack()) { 4704 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 4705 << SourceRange(BaseLoc, InitRange.getEnd()); 4706 4707 EllipsisLoc = SourceLocation(); 4708 } 4709 } else { 4710 // Check for any unexpanded parameter packs. 4711 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) 4712 return true; 4713 4714 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4715 return true; 4716 } 4717 4718 // Check for direct and virtual base classes. 4719 const CXXBaseSpecifier *DirectBaseSpec = nullptr; 4720 const CXXBaseSpecifier *VirtualBaseSpec = nullptr; 4721 if (!Dependent) { 4722 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), 4723 BaseType)) 4724 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); 4725 4726 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, 4727 VirtualBaseSpec); 4728 4729 // C++ [base.class.init]p2: 4730 // Unless the mem-initializer-id names a nonstatic data member of the 4731 // constructor's class or a direct or virtual base of that class, the 4732 // mem-initializer is ill-formed. 4733 if (!DirectBaseSpec && !VirtualBaseSpec) { 4734 // If the class has any dependent bases, then it's possible that 4735 // one of those types will resolve to the same type as 4736 // BaseType. Therefore, just treat this as a dependent base 4737 // class initialization. FIXME: Should we try to check the 4738 // initialization anyway? It seems odd. 4739 if (ClassDecl->hasAnyDependentBases()) 4740 Dependent = true; 4741 else 4742 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) 4743 << BaseType << Context.getTypeDeclType(ClassDecl) 4744 << BaseTInfo->getTypeLoc().getSourceRange(); 4745 } 4746 } 4747 4748 if (Dependent) { 4749 DiscardCleanupsInEvaluationContext(); 4750 4751 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4752 /*IsVirtual=*/false, 4753 InitRange.getBegin(), Init, 4754 InitRange.getEnd(), EllipsisLoc); 4755 } 4756 4757 // C++ [base.class.init]p2: 4758 // If a mem-initializer-id is ambiguous because it designates both 4759 // a direct non-virtual base class and an inherited virtual base 4760 // class, the mem-initializer is ill-formed. 4761 if (DirectBaseSpec && VirtualBaseSpec) 4762 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) 4763 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4764 4765 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; 4766 if (!BaseSpec) 4767 BaseSpec = VirtualBaseSpec; 4768 4769 // Initialize the base. 4770 bool InitList = true; 4771 MultiExprArg Args = Init; 4772 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4773 InitList = false; 4774 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4775 } 4776 4777 InitializedEntity BaseEntity = 4778 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); 4779 InitializationKind Kind = 4780 InitList ? InitializationKind::CreateDirectList(BaseLoc) 4781 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), 4782 InitRange.getEnd()); 4783 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); 4784 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); 4785 if (!BaseInit.isInvalid()) { 4786 // C++11 [class.base.init]p7: 4787 // The initialization of each base and member constitutes a 4788 // full-expression. 4789 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(), 4790 /*DiscardedValue*/ false); 4791 } 4792 4793 if (BaseInit.isInvalid()) { 4794 BaseInit = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), 4795 Args, BaseType); 4796 if (BaseInit.isInvalid()) 4797 return true; 4798 } else { 4799 // If we are in a dependent context, template instantiation will 4800 // perform this type-checking again. Just save the arguments that we 4801 // received in a ParenListExpr. 4802 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4803 // of the information that we have about the base 4804 // initializer. However, deconstructing the ASTs is a dicey process, 4805 // and this approach is far more likely to get the corner cases right. 4806 if (CurContext->isDependentContext()) 4807 BaseInit = Init; 4808 } 4809 4810 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4811 BaseSpec->isVirtual(), 4812 InitRange.getBegin(), 4813 BaseInit.getAs<Expr>(), 4814 InitRange.getEnd(), EllipsisLoc); 4815 } 4816 4817 // Create a static_cast\<T&&>(expr). 4818 static Expr *CastForMoving(Sema &SemaRef, Expr *E) { 4819 QualType TargetType = 4820 SemaRef.BuildReferenceType(E->getType(), /*SpelledAsLValue*/ false, 4821 SourceLocation(), DeclarationName()); 4822 SourceLocation ExprLoc = E->getBeginLoc(); 4823 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( 4824 TargetType, ExprLoc); 4825 4826 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 4827 SourceRange(ExprLoc, ExprLoc), 4828 E->getSourceRange()).get(); 4829 } 4830 4831 /// ImplicitInitializerKind - How an implicit base or member initializer should 4832 /// initialize its base or member. 4833 enum ImplicitInitializerKind { 4834 IIK_Default, 4835 IIK_Copy, 4836 IIK_Move, 4837 IIK_Inherit 4838 }; 4839 4840 static bool 4841 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4842 ImplicitInitializerKind ImplicitInitKind, 4843 CXXBaseSpecifier *BaseSpec, 4844 bool IsInheritedVirtualBase, 4845 CXXCtorInitializer *&CXXBaseInit) { 4846 InitializedEntity InitEntity 4847 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, 4848 IsInheritedVirtualBase); 4849 4850 ExprResult BaseInit; 4851 4852 switch (ImplicitInitKind) { 4853 case IIK_Inherit: 4854 case IIK_Default: { 4855 InitializationKind InitKind 4856 = InitializationKind::CreateDefault(Constructor->getLocation()); 4857 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, std::nullopt); 4858 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, std::nullopt); 4859 break; 4860 } 4861 4862 case IIK_Move: 4863 case IIK_Copy: { 4864 bool Moving = ImplicitInitKind == IIK_Move; 4865 ParmVarDecl *Param = Constructor->getParamDecl(0); 4866 QualType ParamType = Param->getType().getNonReferenceType(); 4867 4868 Expr *CopyCtorArg = 4869 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4870 SourceLocation(), Param, false, 4871 Constructor->getLocation(), ParamType, 4872 VK_LValue, nullptr); 4873 4874 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); 4875 4876 // Cast to the base class to avoid ambiguities. 4877 QualType ArgTy = 4878 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), 4879 ParamType.getQualifiers()); 4880 4881 if (Moving) { 4882 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); 4883 } 4884 4885 CXXCastPath BasePath; 4886 BasePath.push_back(BaseSpec); 4887 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, 4888 CK_UncheckedDerivedToBase, 4889 Moving ? VK_XValue : VK_LValue, 4890 &BasePath).get(); 4891 4892 InitializationKind InitKind 4893 = InitializationKind::CreateDirect(Constructor->getLocation(), 4894 SourceLocation(), SourceLocation()); 4895 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); 4896 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); 4897 break; 4898 } 4899 } 4900 4901 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); 4902 if (BaseInit.isInvalid()) 4903 return true; 4904 4905 CXXBaseInit = 4906 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4907 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), 4908 SourceLocation()), 4909 BaseSpec->isVirtual(), 4910 SourceLocation(), 4911 BaseInit.getAs<Expr>(), 4912 SourceLocation(), 4913 SourceLocation()); 4914 4915 return false; 4916 } 4917 4918 static bool RefersToRValueRef(Expr *MemRef) { 4919 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); 4920 return Referenced->getType()->isRValueReferenceType(); 4921 } 4922 4923 static bool 4924 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4925 ImplicitInitializerKind ImplicitInitKind, 4926 FieldDecl *Field, IndirectFieldDecl *Indirect, 4927 CXXCtorInitializer *&CXXMemberInit) { 4928 if (Field->isInvalidDecl()) 4929 return true; 4930 4931 SourceLocation Loc = Constructor->getLocation(); 4932 4933 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { 4934 bool Moving = ImplicitInitKind == IIK_Move; 4935 ParmVarDecl *Param = Constructor->getParamDecl(0); 4936 QualType ParamType = Param->getType().getNonReferenceType(); 4937 4938 // Suppress copying zero-width bitfields. 4939 if (Field->isZeroLengthBitField(SemaRef.Context)) 4940 return false; 4941 4942 Expr *MemberExprBase = 4943 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4944 SourceLocation(), Param, false, 4945 Loc, ParamType, VK_LValue, nullptr); 4946 4947 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); 4948 4949 if (Moving) { 4950 MemberExprBase = CastForMoving(SemaRef, MemberExprBase); 4951 } 4952 4953 // Build a reference to this field within the parameter. 4954 CXXScopeSpec SS; 4955 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, 4956 Sema::LookupMemberName); 4957 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) 4958 : cast<ValueDecl>(Field), AS_public); 4959 MemberLookup.resolveKind(); 4960 ExprResult CtorArg 4961 = SemaRef.BuildMemberReferenceExpr(MemberExprBase, 4962 ParamType, Loc, 4963 /*IsArrow=*/false, 4964 SS, 4965 /*TemplateKWLoc=*/SourceLocation(), 4966 /*FirstQualifierInScope=*/nullptr, 4967 MemberLookup, 4968 /*TemplateArgs=*/nullptr, 4969 /*S*/nullptr); 4970 if (CtorArg.isInvalid()) 4971 return true; 4972 4973 // C++11 [class.copy]p15: 4974 // - if a member m has rvalue reference type T&&, it is direct-initialized 4975 // with static_cast<T&&>(x.m); 4976 if (RefersToRValueRef(CtorArg.get())) { 4977 CtorArg = CastForMoving(SemaRef, CtorArg.get()); 4978 } 4979 4980 InitializedEntity Entity = 4981 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4982 /*Implicit*/ true) 4983 : InitializedEntity::InitializeMember(Field, nullptr, 4984 /*Implicit*/ true); 4985 4986 // Direct-initialize to use the copy constructor. 4987 InitializationKind InitKind = 4988 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); 4989 4990 Expr *CtorArgE = CtorArg.getAs<Expr>(); 4991 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); 4992 ExprResult MemberInit = 4993 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1)); 4994 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4995 if (MemberInit.isInvalid()) 4996 return true; 4997 4998 if (Indirect) 4999 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 5000 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 5001 else 5002 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 5003 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 5004 return false; 5005 } 5006 5007 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && 5008 "Unhandled implicit init kind!"); 5009 5010 QualType FieldBaseElementType = 5011 SemaRef.Context.getBaseElementType(Field->getType()); 5012 5013 if (FieldBaseElementType->isRecordType()) { 5014 InitializedEntity InitEntity = 5015 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 5016 /*Implicit*/ true) 5017 : InitializedEntity::InitializeMember(Field, nullptr, 5018 /*Implicit*/ true); 5019 InitializationKind InitKind = 5020 InitializationKind::CreateDefault(Loc); 5021 5022 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, std::nullopt); 5023 ExprResult MemberInit = 5024 InitSeq.Perform(SemaRef, InitEntity, InitKind, std::nullopt); 5025 5026 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 5027 if (MemberInit.isInvalid()) 5028 return true; 5029 5030 if (Indirect) 5031 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 5032 Indirect, Loc, 5033 Loc, 5034 MemberInit.get(), 5035 Loc); 5036 else 5037 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 5038 Field, Loc, Loc, 5039 MemberInit.get(), 5040 Loc); 5041 return false; 5042 } 5043 5044 if (!Field->getParent()->isUnion()) { 5045 if (FieldBaseElementType->isReferenceType()) { 5046 SemaRef.Diag(Constructor->getLocation(), 5047 diag::err_uninitialized_member_in_ctor) 5048 << (int)Constructor->isImplicit() 5049 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 5050 << 0 << Field->getDeclName(); 5051 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 5052 return true; 5053 } 5054 5055 if (FieldBaseElementType.isConstQualified()) { 5056 SemaRef.Diag(Constructor->getLocation(), 5057 diag::err_uninitialized_member_in_ctor) 5058 << (int)Constructor->isImplicit() 5059 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 5060 << 1 << Field->getDeclName(); 5061 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 5062 return true; 5063 } 5064 } 5065 5066 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { 5067 // ARC and Weak: 5068 // Default-initialize Objective-C pointers to NULL. 5069 CXXMemberInit 5070 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, 5071 Loc, Loc, 5072 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), 5073 Loc); 5074 return false; 5075 } 5076 5077 // Nothing to initialize. 5078 CXXMemberInit = nullptr; 5079 return false; 5080 } 5081 5082 namespace { 5083 struct BaseAndFieldInfo { 5084 Sema &S; 5085 CXXConstructorDecl *Ctor; 5086 bool AnyErrorsInInits; 5087 ImplicitInitializerKind IIK; 5088 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; 5089 SmallVector<CXXCtorInitializer*, 8> AllToInit; 5090 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; 5091 5092 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) 5093 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { 5094 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); 5095 if (Ctor->getInheritedConstructor()) 5096 IIK = IIK_Inherit; 5097 else if (Generated && Ctor->isCopyConstructor()) 5098 IIK = IIK_Copy; 5099 else if (Generated && Ctor->isMoveConstructor()) 5100 IIK = IIK_Move; 5101 else 5102 IIK = IIK_Default; 5103 } 5104 5105 bool isImplicitCopyOrMove() const { 5106 switch (IIK) { 5107 case IIK_Copy: 5108 case IIK_Move: 5109 return true; 5110 5111 case IIK_Default: 5112 case IIK_Inherit: 5113 return false; 5114 } 5115 5116 llvm_unreachable("Invalid ImplicitInitializerKind!"); 5117 } 5118 5119 bool addFieldInitializer(CXXCtorInitializer *Init) { 5120 AllToInit.push_back(Init); 5121 5122 // Check whether this initializer makes the field "used". 5123 if (Init->getInit()->HasSideEffects(S.Context)) 5124 S.UnusedPrivateFields.remove(Init->getAnyMember()); 5125 5126 return false; 5127 } 5128 5129 bool isInactiveUnionMember(FieldDecl *Field) { 5130 RecordDecl *Record = Field->getParent(); 5131 if (!Record->isUnion()) 5132 return false; 5133 5134 if (FieldDecl *Active = 5135 ActiveUnionMember.lookup(Record->getCanonicalDecl())) 5136 return Active != Field->getCanonicalDecl(); 5137 5138 // In an implicit copy or move constructor, ignore any in-class initializer. 5139 if (isImplicitCopyOrMove()) 5140 return true; 5141 5142 // If there's no explicit initialization, the field is active only if it 5143 // has an in-class initializer... 5144 if (Field->hasInClassInitializer()) 5145 return false; 5146 // ... or it's an anonymous struct or union whose class has an in-class 5147 // initializer. 5148 if (!Field->isAnonymousStructOrUnion()) 5149 return true; 5150 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); 5151 return !FieldRD->hasInClassInitializer(); 5152 } 5153 5154 /// Determine whether the given field is, or is within, a union member 5155 /// that is inactive (because there was an initializer given for a different 5156 /// member of the union, or because the union was not initialized at all). 5157 bool isWithinInactiveUnionMember(FieldDecl *Field, 5158 IndirectFieldDecl *Indirect) { 5159 if (!Indirect) 5160 return isInactiveUnionMember(Field); 5161 5162 for (auto *C : Indirect->chain()) { 5163 FieldDecl *Field = dyn_cast<FieldDecl>(C); 5164 if (Field && isInactiveUnionMember(Field)) 5165 return true; 5166 } 5167 return false; 5168 } 5169 }; 5170 } 5171 5172 /// Determine whether the given type is an incomplete or zero-lenfgth 5173 /// array type. 5174 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { 5175 if (T->isIncompleteArrayType()) 5176 return true; 5177 5178 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { 5179 if (!ArrayT->getSize()) 5180 return true; 5181 5182 T = ArrayT->getElementType(); 5183 } 5184 5185 return false; 5186 } 5187 5188 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, 5189 FieldDecl *Field, 5190 IndirectFieldDecl *Indirect = nullptr) { 5191 if (Field->isInvalidDecl()) 5192 return false; 5193 5194 // Overwhelmingly common case: we have a direct initializer for this field. 5195 if (CXXCtorInitializer *Init = 5196 Info.AllBaseFields.lookup(Field->getCanonicalDecl())) 5197 return Info.addFieldInitializer(Init); 5198 5199 // C++11 [class.base.init]p8: 5200 // if the entity is a non-static data member that has a 5201 // brace-or-equal-initializer and either 5202 // -- the constructor's class is a union and no other variant member of that 5203 // union is designated by a mem-initializer-id or 5204 // -- the constructor's class is not a union, and, if the entity is a member 5205 // of an anonymous union, no other member of that union is designated by 5206 // a mem-initializer-id, 5207 // the entity is initialized as specified in [dcl.init]. 5208 // 5209 // We also apply the same rules to handle anonymous structs within anonymous 5210 // unions. 5211 if (Info.isWithinInactiveUnionMember(Field, Indirect)) 5212 return false; 5213 5214 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { 5215 ExprResult DIE = 5216 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); 5217 if (DIE.isInvalid()) 5218 return true; 5219 5220 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true); 5221 SemaRef.checkInitializerLifetime(Entity, DIE.get()); 5222 5223 CXXCtorInitializer *Init; 5224 if (Indirect) 5225 Init = new (SemaRef.Context) 5226 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), 5227 SourceLocation(), DIE.get(), SourceLocation()); 5228 else 5229 Init = new (SemaRef.Context) 5230 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), 5231 SourceLocation(), DIE.get(), SourceLocation()); 5232 return Info.addFieldInitializer(Init); 5233 } 5234 5235 // Don't initialize incomplete or zero-length arrays. 5236 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) 5237 return false; 5238 5239 // Don't try to build an implicit initializer if there were semantic 5240 // errors in any of the initializers (and therefore we might be 5241 // missing some that the user actually wrote). 5242 if (Info.AnyErrorsInInits) 5243 return false; 5244 5245 CXXCtorInitializer *Init = nullptr; 5246 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, 5247 Indirect, Init)) 5248 return true; 5249 5250 if (!Init) 5251 return false; 5252 5253 return Info.addFieldInitializer(Init); 5254 } 5255 5256 bool 5257 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, 5258 CXXCtorInitializer *Initializer) { 5259 assert(Initializer->isDelegatingInitializer()); 5260 Constructor->setNumCtorInitializers(1); 5261 CXXCtorInitializer **initializer = 5262 new (Context) CXXCtorInitializer*[1]; 5263 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); 5264 Constructor->setCtorInitializers(initializer); 5265 5266 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { 5267 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); 5268 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); 5269 } 5270 5271 DelegatingCtorDecls.push_back(Constructor); 5272 5273 DiagnoseUninitializedFields(*this, Constructor); 5274 5275 return false; 5276 } 5277 5278 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, 5279 ArrayRef<CXXCtorInitializer *> Initializers) { 5280 if (Constructor->isDependentContext()) { 5281 // Just store the initializers as written, they will be checked during 5282 // instantiation. 5283 if (!Initializers.empty()) { 5284 Constructor->setNumCtorInitializers(Initializers.size()); 5285 CXXCtorInitializer **baseOrMemberInitializers = 5286 new (Context) CXXCtorInitializer*[Initializers.size()]; 5287 memcpy(baseOrMemberInitializers, Initializers.data(), 5288 Initializers.size() * sizeof(CXXCtorInitializer*)); 5289 Constructor->setCtorInitializers(baseOrMemberInitializers); 5290 } 5291 5292 // Let template instantiation know whether we had errors. 5293 if (AnyErrors) 5294 Constructor->setInvalidDecl(); 5295 5296 return false; 5297 } 5298 5299 BaseAndFieldInfo Info(*this, Constructor, AnyErrors); 5300 5301 // We need to build the initializer AST according to order of construction 5302 // and not what user specified in the Initializers list. 5303 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); 5304 if (!ClassDecl) 5305 return true; 5306 5307 bool HadError = false; 5308 5309 for (unsigned i = 0; i < Initializers.size(); i++) { 5310 CXXCtorInitializer *Member = Initializers[i]; 5311 5312 if (Member->isBaseInitializer()) 5313 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; 5314 else { 5315 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; 5316 5317 if (IndirectFieldDecl *F = Member->getIndirectMember()) { 5318 for (auto *C : F->chain()) { 5319 FieldDecl *FD = dyn_cast<FieldDecl>(C); 5320 if (FD && FD->getParent()->isUnion()) 5321 Info.ActiveUnionMember.insert(std::make_pair( 5322 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5323 } 5324 } else if (FieldDecl *FD = Member->getMember()) { 5325 if (FD->getParent()->isUnion()) 5326 Info.ActiveUnionMember.insert(std::make_pair( 5327 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5328 } 5329 } 5330 } 5331 5332 // Keep track of the direct virtual bases. 5333 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; 5334 for (auto &I : ClassDecl->bases()) { 5335 if (I.isVirtual()) 5336 DirectVBases.insert(&I); 5337 } 5338 5339 // Push virtual bases before others. 5340 for (auto &VBase : ClassDecl->vbases()) { 5341 if (CXXCtorInitializer *Value 5342 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { 5343 // [class.base.init]p7, per DR257: 5344 // A mem-initializer where the mem-initializer-id names a virtual base 5345 // class is ignored during execution of a constructor of any class that 5346 // is not the most derived class. 5347 if (ClassDecl->isAbstract()) { 5348 // FIXME: Provide a fixit to remove the base specifier. This requires 5349 // tracking the location of the associated comma for a base specifier. 5350 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) 5351 << VBase.getType() << ClassDecl; 5352 DiagnoseAbstractType(ClassDecl); 5353 } 5354 5355 Info.AllToInit.push_back(Value); 5356 } else if (!AnyErrors && !ClassDecl->isAbstract()) { 5357 // [class.base.init]p8, per DR257: 5358 // If a given [...] base class is not named by a mem-initializer-id 5359 // [...] and the entity is not a virtual base class of an abstract 5360 // class, then [...] the entity is default-initialized. 5361 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); 5362 CXXCtorInitializer *CXXBaseInit; 5363 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5364 &VBase, IsInheritedVirtualBase, 5365 CXXBaseInit)) { 5366 HadError = true; 5367 continue; 5368 } 5369 5370 Info.AllToInit.push_back(CXXBaseInit); 5371 } 5372 } 5373 5374 // Non-virtual bases. 5375 for (auto &Base : ClassDecl->bases()) { 5376 // Virtuals are in the virtual base list and already constructed. 5377 if (Base.isVirtual()) 5378 continue; 5379 5380 if (CXXCtorInitializer *Value 5381 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { 5382 Info.AllToInit.push_back(Value); 5383 } else if (!AnyErrors) { 5384 CXXCtorInitializer *CXXBaseInit; 5385 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5386 &Base, /*IsInheritedVirtualBase=*/false, 5387 CXXBaseInit)) { 5388 HadError = true; 5389 continue; 5390 } 5391 5392 Info.AllToInit.push_back(CXXBaseInit); 5393 } 5394 } 5395 5396 // Fields. 5397 for (auto *Mem : ClassDecl->decls()) { 5398 if (auto *F = dyn_cast<FieldDecl>(Mem)) { 5399 // C++ [class.bit]p2: 5400 // A declaration for a bit-field that omits the identifier declares an 5401 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 5402 // initialized. 5403 if (F->isUnnamedBitfield()) 5404 continue; 5405 5406 // If we're not generating the implicit copy/move constructor, then we'll 5407 // handle anonymous struct/union fields based on their individual 5408 // indirect fields. 5409 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) 5410 continue; 5411 5412 if (CollectFieldInitializer(*this, Info, F)) 5413 HadError = true; 5414 continue; 5415 } 5416 5417 // Beyond this point, we only consider default initialization. 5418 if (Info.isImplicitCopyOrMove()) 5419 continue; 5420 5421 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { 5422 if (F->getType()->isIncompleteArrayType()) { 5423 assert(ClassDecl->hasFlexibleArrayMember() && 5424 "Incomplete array type is not valid"); 5425 continue; 5426 } 5427 5428 // Initialize each field of an anonymous struct individually. 5429 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) 5430 HadError = true; 5431 5432 continue; 5433 } 5434 } 5435 5436 unsigned NumInitializers = Info.AllToInit.size(); 5437 if (NumInitializers > 0) { 5438 Constructor->setNumCtorInitializers(NumInitializers); 5439 CXXCtorInitializer **baseOrMemberInitializers = 5440 new (Context) CXXCtorInitializer*[NumInitializers]; 5441 memcpy(baseOrMemberInitializers, Info.AllToInit.data(), 5442 NumInitializers * sizeof(CXXCtorInitializer*)); 5443 Constructor->setCtorInitializers(baseOrMemberInitializers); 5444 5445 // Constructors implicitly reference the base and member 5446 // destructors. 5447 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), 5448 Constructor->getParent()); 5449 } 5450 5451 return HadError; 5452 } 5453 5454 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { 5455 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { 5456 const RecordDecl *RD = RT->getDecl(); 5457 if (RD->isAnonymousStructOrUnion()) { 5458 for (auto *Field : RD->fields()) 5459 PopulateKeysForFields(Field, IdealInits); 5460 return; 5461 } 5462 } 5463 IdealInits.push_back(Field->getCanonicalDecl()); 5464 } 5465 5466 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { 5467 return Context.getCanonicalType(BaseType).getTypePtr(); 5468 } 5469 5470 static const void *GetKeyForMember(ASTContext &Context, 5471 CXXCtorInitializer *Member) { 5472 if (!Member->isAnyMemberInitializer()) 5473 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); 5474 5475 return Member->getAnyMember()->getCanonicalDecl(); 5476 } 5477 5478 static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag, 5479 const CXXCtorInitializer *Previous, 5480 const CXXCtorInitializer *Current) { 5481 if (Previous->isAnyMemberInitializer()) 5482 Diag << 0 << Previous->getAnyMember(); 5483 else 5484 Diag << 1 << Previous->getTypeSourceInfo()->getType(); 5485 5486 if (Current->isAnyMemberInitializer()) 5487 Diag << 0 << Current->getAnyMember(); 5488 else 5489 Diag << 1 << Current->getTypeSourceInfo()->getType(); 5490 } 5491 5492 static void DiagnoseBaseOrMemInitializerOrder( 5493 Sema &SemaRef, const CXXConstructorDecl *Constructor, 5494 ArrayRef<CXXCtorInitializer *> Inits) { 5495 if (Constructor->getDeclContext()->isDependentContext()) 5496 return; 5497 5498 // Don't check initializers order unless the warning is enabled at the 5499 // location of at least one initializer. 5500 bool ShouldCheckOrder = false; 5501 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5502 CXXCtorInitializer *Init = Inits[InitIndex]; 5503 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, 5504 Init->getSourceLocation())) { 5505 ShouldCheckOrder = true; 5506 break; 5507 } 5508 } 5509 if (!ShouldCheckOrder) 5510 return; 5511 5512 // Build the list of bases and members in the order that they'll 5513 // actually be initialized. The explicit initializers should be in 5514 // this same order but may be missing things. 5515 SmallVector<const void*, 32> IdealInitKeys; 5516 5517 const CXXRecordDecl *ClassDecl = Constructor->getParent(); 5518 5519 // 1. Virtual bases. 5520 for (const auto &VBase : ClassDecl->vbases()) 5521 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); 5522 5523 // 2. Non-virtual bases. 5524 for (const auto &Base : ClassDecl->bases()) { 5525 if (Base.isVirtual()) 5526 continue; 5527 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); 5528 } 5529 5530 // 3. Direct fields. 5531 for (auto *Field : ClassDecl->fields()) { 5532 if (Field->isUnnamedBitfield()) 5533 continue; 5534 5535 PopulateKeysForFields(Field, IdealInitKeys); 5536 } 5537 5538 unsigned NumIdealInits = IdealInitKeys.size(); 5539 unsigned IdealIndex = 0; 5540 5541 // Track initializers that are in an incorrect order for either a warning or 5542 // note if multiple ones occur. 5543 SmallVector<unsigned> WarnIndexes; 5544 // Correlates the index of an initializer in the init-list to the index of 5545 // the field/base in the class. 5546 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder; 5547 5548 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5549 const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]); 5550 5551 // Scan forward to try to find this initializer in the idealized 5552 // initializers list. 5553 for (; IdealIndex != NumIdealInits; ++IdealIndex) 5554 if (InitKey == IdealInitKeys[IdealIndex]) 5555 break; 5556 5557 // If we didn't find this initializer, it must be because we 5558 // scanned past it on a previous iteration. That can only 5559 // happen if we're out of order; emit a warning. 5560 if (IdealIndex == NumIdealInits && InitIndex) { 5561 WarnIndexes.push_back(InitIndex); 5562 5563 // Move back to the initializer's location in the ideal list. 5564 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) 5565 if (InitKey == IdealInitKeys[IdealIndex]) 5566 break; 5567 5568 assert(IdealIndex < NumIdealInits && 5569 "initializer not found in initializer list"); 5570 } 5571 CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex); 5572 } 5573 5574 if (WarnIndexes.empty()) 5575 return; 5576 5577 // Sort based on the ideal order, first in the pair. 5578 llvm::sort(CorrelatedInitOrder, llvm::less_first()); 5579 5580 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to 5581 // emit the diagnostic before we can try adding notes. 5582 { 5583 Sema::SemaDiagnosticBuilder D = SemaRef.Diag( 5584 Inits[WarnIndexes.front() - 1]->getSourceLocation(), 5585 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order 5586 : diag::warn_some_initializers_out_of_order); 5587 5588 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) { 5589 if (CorrelatedInitOrder[I].second == I) 5590 continue; 5591 // Ideally we would be using InsertFromRange here, but clang doesn't 5592 // appear to handle InsertFromRange correctly when the source range is 5593 // modified by another fix-it. 5594 D << FixItHint::CreateReplacement( 5595 Inits[I]->getSourceRange(), 5596 Lexer::getSourceText( 5597 CharSourceRange::getTokenRange( 5598 Inits[CorrelatedInitOrder[I].second]->getSourceRange()), 5599 SemaRef.getSourceManager(), SemaRef.getLangOpts())); 5600 } 5601 5602 // If there is only 1 item out of order, the warning expects the name and 5603 // type of each being added to it. 5604 if (WarnIndexes.size() == 1) { 5605 AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1], 5606 Inits[WarnIndexes.front()]); 5607 return; 5608 } 5609 } 5610 // More than 1 item to warn, create notes letting the user know which ones 5611 // are bad. 5612 for (unsigned WarnIndex : WarnIndexes) { 5613 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1]; 5614 auto D = SemaRef.Diag(PrevInit->getSourceLocation(), 5615 diag::note_initializer_out_of_order); 5616 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]); 5617 D << PrevInit->getSourceRange(); 5618 } 5619 } 5620 5621 namespace { 5622 bool CheckRedundantInit(Sema &S, 5623 CXXCtorInitializer *Init, 5624 CXXCtorInitializer *&PrevInit) { 5625 if (!PrevInit) { 5626 PrevInit = Init; 5627 return false; 5628 } 5629 5630 if (FieldDecl *Field = Init->getAnyMember()) 5631 S.Diag(Init->getSourceLocation(), 5632 diag::err_multiple_mem_initialization) 5633 << Field->getDeclName() 5634 << Init->getSourceRange(); 5635 else { 5636 const Type *BaseClass = Init->getBaseClass(); 5637 assert(BaseClass && "neither field nor base"); 5638 S.Diag(Init->getSourceLocation(), 5639 diag::err_multiple_base_initialization) 5640 << QualType(BaseClass, 0) 5641 << Init->getSourceRange(); 5642 } 5643 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) 5644 << 0 << PrevInit->getSourceRange(); 5645 5646 return true; 5647 } 5648 5649 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; 5650 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; 5651 5652 bool CheckRedundantUnionInit(Sema &S, 5653 CXXCtorInitializer *Init, 5654 RedundantUnionMap &Unions) { 5655 FieldDecl *Field = Init->getAnyMember(); 5656 RecordDecl *Parent = Field->getParent(); 5657 NamedDecl *Child = Field; 5658 5659 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { 5660 if (Parent->isUnion()) { 5661 UnionEntry &En = Unions[Parent]; 5662 if (En.first && En.first != Child) { 5663 S.Diag(Init->getSourceLocation(), 5664 diag::err_multiple_mem_union_initialization) 5665 << Field->getDeclName() 5666 << Init->getSourceRange(); 5667 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) 5668 << 0 << En.second->getSourceRange(); 5669 return true; 5670 } 5671 if (!En.first) { 5672 En.first = Child; 5673 En.second = Init; 5674 } 5675 if (!Parent->isAnonymousStructOrUnion()) 5676 return false; 5677 } 5678 5679 Child = Parent; 5680 Parent = cast<RecordDecl>(Parent->getDeclContext()); 5681 } 5682 5683 return false; 5684 } 5685 } // namespace 5686 5687 /// ActOnMemInitializers - Handle the member initializers for a constructor. 5688 void Sema::ActOnMemInitializers(Decl *ConstructorDecl, 5689 SourceLocation ColonLoc, 5690 ArrayRef<CXXCtorInitializer*> MemInits, 5691 bool AnyErrors) { 5692 if (!ConstructorDecl) 5693 return; 5694 5695 AdjustDeclIfTemplate(ConstructorDecl); 5696 5697 CXXConstructorDecl *Constructor 5698 = dyn_cast<CXXConstructorDecl>(ConstructorDecl); 5699 5700 if (!Constructor) { 5701 Diag(ColonLoc, diag::err_only_constructors_take_base_inits); 5702 return; 5703 } 5704 5705 // Mapping for the duplicate initializers check. 5706 // For member initializers, this is keyed with a FieldDecl*. 5707 // For base initializers, this is keyed with a Type*. 5708 llvm::DenseMap<const void *, CXXCtorInitializer *> Members; 5709 5710 // Mapping for the inconsistent anonymous-union initializers check. 5711 RedundantUnionMap MemberUnions; 5712 5713 bool HadError = false; 5714 for (unsigned i = 0; i < MemInits.size(); i++) { 5715 CXXCtorInitializer *Init = MemInits[i]; 5716 5717 // Set the source order index. 5718 Init->setSourceOrder(i); 5719 5720 if (Init->isAnyMemberInitializer()) { 5721 const void *Key = GetKeyForMember(Context, Init); 5722 if (CheckRedundantInit(*this, Init, Members[Key]) || 5723 CheckRedundantUnionInit(*this, Init, MemberUnions)) 5724 HadError = true; 5725 } else if (Init->isBaseInitializer()) { 5726 const void *Key = GetKeyForMember(Context, Init); 5727 if (CheckRedundantInit(*this, Init, Members[Key])) 5728 HadError = true; 5729 } else { 5730 assert(Init->isDelegatingInitializer()); 5731 // This must be the only initializer 5732 if (MemInits.size() != 1) { 5733 Diag(Init->getSourceLocation(), 5734 diag::err_delegating_initializer_alone) 5735 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); 5736 // We will treat this as being the only initializer. 5737 } 5738 SetDelegatingInitializer(Constructor, MemInits[i]); 5739 // Return immediately as the initializer is set. 5740 return; 5741 } 5742 } 5743 5744 if (HadError) 5745 return; 5746 5747 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); 5748 5749 SetCtorInitializers(Constructor, AnyErrors, MemInits); 5750 5751 DiagnoseUninitializedFields(*this, Constructor); 5752 } 5753 5754 void 5755 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, 5756 CXXRecordDecl *ClassDecl) { 5757 // Ignore dependent contexts. Also ignore unions, since their members never 5758 // have destructors implicitly called. 5759 if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) 5760 return; 5761 5762 // FIXME: all the access-control diagnostics are positioned on the 5763 // field/base declaration. That's probably good; that said, the 5764 // user might reasonably want to know why the destructor is being 5765 // emitted, and we currently don't say. 5766 5767 // Non-static data members. 5768 for (auto *Field : ClassDecl->fields()) { 5769 if (Field->isInvalidDecl()) 5770 continue; 5771 5772 // Don't destroy incomplete or zero-length arrays. 5773 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) 5774 continue; 5775 5776 QualType FieldType = Context.getBaseElementType(Field->getType()); 5777 5778 const RecordType* RT = FieldType->getAs<RecordType>(); 5779 if (!RT) 5780 continue; 5781 5782 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5783 if (FieldClassDecl->isInvalidDecl()) 5784 continue; 5785 if (FieldClassDecl->hasIrrelevantDestructor()) 5786 continue; 5787 // The destructor for an implicit anonymous union member is never invoked. 5788 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 5789 continue; 5790 5791 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); 5792 // Dtor might still be missing, e.g because it's invalid. 5793 if (!Dtor) 5794 continue; 5795 CheckDestructorAccess(Field->getLocation(), Dtor, 5796 PDiag(diag::err_access_dtor_field) 5797 << Field->getDeclName() 5798 << FieldType); 5799 5800 MarkFunctionReferenced(Location, Dtor); 5801 DiagnoseUseOfDecl(Dtor, Location); 5802 } 5803 5804 // We only potentially invoke the destructors of potentially constructed 5805 // subobjects. 5806 bool VisitVirtualBases = !ClassDecl->isAbstract(); 5807 5808 // If the destructor exists and has already been marked used in the MS ABI, 5809 // then virtual base destructors have already been checked and marked used. 5810 // Skip checking them again to avoid duplicate diagnostics. 5811 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5812 CXXDestructorDecl *Dtor = ClassDecl->getDestructor(); 5813 if (Dtor && Dtor->isUsed()) 5814 VisitVirtualBases = false; 5815 } 5816 5817 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; 5818 5819 // Bases. 5820 for (const auto &Base : ClassDecl->bases()) { 5821 const RecordType *RT = Base.getType()->getAs<RecordType>(); 5822 if (!RT) 5823 continue; 5824 5825 // Remember direct virtual bases. 5826 if (Base.isVirtual()) { 5827 if (!VisitVirtualBases) 5828 continue; 5829 DirectVirtualBases.insert(RT); 5830 } 5831 5832 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5833 // If our base class is invalid, we probably can't get its dtor anyway. 5834 if (BaseClassDecl->isInvalidDecl()) 5835 continue; 5836 if (BaseClassDecl->hasIrrelevantDestructor()) 5837 continue; 5838 5839 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5840 // Dtor might still be missing, e.g because it's invalid. 5841 if (!Dtor) 5842 continue; 5843 5844 // FIXME: caret should be on the start of the class name 5845 CheckDestructorAccess(Base.getBeginLoc(), Dtor, 5846 PDiag(diag::err_access_dtor_base) 5847 << Base.getType() << Base.getSourceRange(), 5848 Context.getTypeDeclType(ClassDecl)); 5849 5850 MarkFunctionReferenced(Location, Dtor); 5851 DiagnoseUseOfDecl(Dtor, Location); 5852 } 5853 5854 if (VisitVirtualBases) 5855 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl, 5856 &DirectVirtualBases); 5857 } 5858 5859 void Sema::MarkVirtualBaseDestructorsReferenced( 5860 SourceLocation Location, CXXRecordDecl *ClassDecl, 5861 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) { 5862 // Virtual bases. 5863 for (const auto &VBase : ClassDecl->vbases()) { 5864 // Bases are always records in a well-formed non-dependent class. 5865 const RecordType *RT = VBase.getType()->castAs<RecordType>(); 5866 5867 // Ignore already visited direct virtual bases. 5868 if (DirectVirtualBases && DirectVirtualBases->count(RT)) 5869 continue; 5870 5871 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5872 // If our base class is invalid, we probably can't get its dtor anyway. 5873 if (BaseClassDecl->isInvalidDecl()) 5874 continue; 5875 if (BaseClassDecl->hasIrrelevantDestructor()) 5876 continue; 5877 5878 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5879 // Dtor might still be missing, e.g because it's invalid. 5880 if (!Dtor) 5881 continue; 5882 if (CheckDestructorAccess( 5883 ClassDecl->getLocation(), Dtor, 5884 PDiag(diag::err_access_dtor_vbase) 5885 << Context.getTypeDeclType(ClassDecl) << VBase.getType(), 5886 Context.getTypeDeclType(ClassDecl)) == 5887 AR_accessible) { 5888 CheckDerivedToBaseConversion( 5889 Context.getTypeDeclType(ClassDecl), VBase.getType(), 5890 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), 5891 SourceRange(), DeclarationName(), nullptr); 5892 } 5893 5894 MarkFunctionReferenced(Location, Dtor); 5895 DiagnoseUseOfDecl(Dtor, Location); 5896 } 5897 } 5898 5899 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { 5900 if (!CDtorDecl) 5901 return; 5902 5903 if (CXXConstructorDecl *Constructor 5904 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) { 5905 SetCtorInitializers(Constructor, /*AnyErrors=*/false); 5906 DiagnoseUninitializedFields(*this, Constructor); 5907 } 5908 } 5909 5910 bool Sema::isAbstractType(SourceLocation Loc, QualType T) { 5911 if (!getLangOpts().CPlusPlus) 5912 return false; 5913 5914 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); 5915 if (!RD) 5916 return false; 5917 5918 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a 5919 // class template specialization here, but doing so breaks a lot of code. 5920 5921 // We can't answer whether something is abstract until it has a 5922 // definition. If it's currently being defined, we'll walk back 5923 // over all the declarations when we have a full definition. 5924 const CXXRecordDecl *Def = RD->getDefinition(); 5925 if (!Def || Def->isBeingDefined()) 5926 return false; 5927 5928 return RD->isAbstract(); 5929 } 5930 5931 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 5932 TypeDiagnoser &Diagnoser) { 5933 if (!isAbstractType(Loc, T)) 5934 return false; 5935 5936 T = Context.getBaseElementType(T); 5937 Diagnoser.diagnose(*this, Loc, T); 5938 DiagnoseAbstractType(T->getAsCXXRecordDecl()); 5939 return true; 5940 } 5941 5942 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { 5943 // Check if we've already emitted the list of pure virtual functions 5944 // for this class. 5945 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) 5946 return; 5947 5948 // If the diagnostic is suppressed, don't emit the notes. We're only 5949 // going to emit them once, so try to attach them to a diagnostic we're 5950 // actually going to show. 5951 if (Diags.isLastDiagnosticIgnored()) 5952 return; 5953 5954 CXXFinalOverriderMap FinalOverriders; 5955 RD->getFinalOverriders(FinalOverriders); 5956 5957 // Keep a set of seen pure methods so we won't diagnose the same method 5958 // more than once. 5959 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; 5960 5961 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 5962 MEnd = FinalOverriders.end(); 5963 M != MEnd; 5964 ++M) { 5965 for (OverridingMethods::iterator SO = M->second.begin(), 5966 SOEnd = M->second.end(); 5967 SO != SOEnd; ++SO) { 5968 // C++ [class.abstract]p4: 5969 // A class is abstract if it contains or inherits at least one 5970 // pure virtual function for which the final overrider is pure 5971 // virtual. 5972 5973 // 5974 if (SO->second.size() != 1) 5975 continue; 5976 5977 if (!SO->second.front().Method->isPure()) 5978 continue; 5979 5980 if (!SeenPureMethods.insert(SO->second.front().Method).second) 5981 continue; 5982 5983 Diag(SO->second.front().Method->getLocation(), 5984 diag::note_pure_virtual_function) 5985 << SO->second.front().Method->getDeclName() << RD->getDeclName(); 5986 } 5987 } 5988 5989 if (!PureVirtualClassDiagSet) 5990 PureVirtualClassDiagSet.reset(new RecordDeclSetTy); 5991 PureVirtualClassDiagSet->insert(RD); 5992 } 5993 5994 namespace { 5995 struct AbstractUsageInfo { 5996 Sema &S; 5997 CXXRecordDecl *Record; 5998 CanQualType AbstractType; 5999 bool Invalid; 6000 6001 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) 6002 : S(S), Record(Record), 6003 AbstractType(S.Context.getCanonicalType( 6004 S.Context.getTypeDeclType(Record))), 6005 Invalid(false) {} 6006 6007 void DiagnoseAbstractType() { 6008 if (Invalid) return; 6009 S.DiagnoseAbstractType(Record); 6010 Invalid = true; 6011 } 6012 6013 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); 6014 }; 6015 6016 struct CheckAbstractUsage { 6017 AbstractUsageInfo &Info; 6018 const NamedDecl *Ctx; 6019 6020 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) 6021 : Info(Info), Ctx(Ctx) {} 6022 6023 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 6024 switch (TL.getTypeLocClass()) { 6025 #define ABSTRACT_TYPELOC(CLASS, PARENT) 6026 #define TYPELOC(CLASS, PARENT) \ 6027 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; 6028 #include "clang/AST/TypeLocNodes.def" 6029 } 6030 } 6031 6032 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { 6033 Visit(TL.getReturnLoc(), Sema::AbstractReturnType); 6034 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { 6035 if (!TL.getParam(I)) 6036 continue; 6037 6038 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); 6039 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); 6040 } 6041 } 6042 6043 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { 6044 Visit(TL.getElementLoc(), Sema::AbstractArrayType); 6045 } 6046 6047 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { 6048 // Visit the type parameters from a permissive context. 6049 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { 6050 TemplateArgumentLoc TAL = TL.getArgLoc(I); 6051 if (TAL.getArgument().getKind() == TemplateArgument::Type) 6052 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) 6053 Visit(TSI->getTypeLoc(), Sema::AbstractNone); 6054 // TODO: other template argument types? 6055 } 6056 } 6057 6058 // Visit pointee types from a permissive context. 6059 #define CheckPolymorphic(Type) \ 6060 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ 6061 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ 6062 } 6063 CheckPolymorphic(PointerTypeLoc) 6064 CheckPolymorphic(ReferenceTypeLoc) 6065 CheckPolymorphic(MemberPointerTypeLoc) 6066 CheckPolymorphic(BlockPointerTypeLoc) 6067 CheckPolymorphic(AtomicTypeLoc) 6068 6069 /// Handle all the types we haven't given a more specific 6070 /// implementation for above. 6071 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 6072 // Every other kind of type that we haven't called out already 6073 // that has an inner type is either (1) sugar or (2) contains that 6074 // inner type in some way as a subobject. 6075 if (TypeLoc Next = TL.getNextTypeLoc()) 6076 return Visit(Next, Sel); 6077 6078 // If there's no inner type and we're in a permissive context, 6079 // don't diagnose. 6080 if (Sel == Sema::AbstractNone) return; 6081 6082 // Check whether the type matches the abstract type. 6083 QualType T = TL.getType(); 6084 if (T->isArrayType()) { 6085 Sel = Sema::AbstractArrayType; 6086 T = Info.S.Context.getBaseElementType(T); 6087 } 6088 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); 6089 if (CT != Info.AbstractType) return; 6090 6091 // It matched; do some magic. 6092 // FIXME: These should be at most warnings. See P0929R2, CWG1640, CWG1646. 6093 if (Sel == Sema::AbstractArrayType) { 6094 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) 6095 << T << TL.getSourceRange(); 6096 } else { 6097 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) 6098 << Sel << T << TL.getSourceRange(); 6099 } 6100 Info.DiagnoseAbstractType(); 6101 } 6102 }; 6103 6104 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, 6105 Sema::AbstractDiagSelID Sel) { 6106 CheckAbstractUsage(*this, D).Visit(TL, Sel); 6107 } 6108 6109 } 6110 6111 /// Check for invalid uses of an abstract type in a function declaration. 6112 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 6113 FunctionDecl *FD) { 6114 // Only definitions are required to refer to complete and 6115 // non-abstract types. 6116 if (!FD->doesThisDeclarationHaveABody()) 6117 return; 6118 6119 // For safety's sake, just ignore it if we don't have type source 6120 // information. This should never happen for non-implicit methods, 6121 // but... 6122 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 6123 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractNone); 6124 } 6125 6126 /// Check for invalid uses of an abstract type in a variable0 declaration. 6127 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 6128 VarDecl *VD) { 6129 // No need to do the check on definitions, which require that 6130 // the type is complete. 6131 if (VD->isThisDeclarationADefinition()) 6132 return; 6133 6134 Info.CheckType(VD, VD->getTypeSourceInfo()->getTypeLoc(), 6135 Sema::AbstractVariableType); 6136 } 6137 6138 /// Check for invalid uses of an abstract type within a class definition. 6139 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 6140 CXXRecordDecl *RD) { 6141 for (auto *D : RD->decls()) { 6142 if (D->isImplicit()) continue; 6143 6144 // Step through friends to the befriended declaration. 6145 if (auto *FD = dyn_cast<FriendDecl>(D)) { 6146 D = FD->getFriendDecl(); 6147 if (!D) continue; 6148 } 6149 6150 // Functions and function templates. 6151 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 6152 CheckAbstractClassUsage(Info, FD); 6153 } else if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D)) { 6154 CheckAbstractClassUsage(Info, FTD->getTemplatedDecl()); 6155 6156 // Fields and static variables. 6157 } else if (auto *FD = dyn_cast<FieldDecl>(D)) { 6158 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 6159 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); 6160 } else if (auto *VD = dyn_cast<VarDecl>(D)) { 6161 CheckAbstractClassUsage(Info, VD); 6162 } else if (auto *VTD = dyn_cast<VarTemplateDecl>(D)) { 6163 CheckAbstractClassUsage(Info, VTD->getTemplatedDecl()); 6164 6165 // Nested classes and class templates. 6166 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 6167 CheckAbstractClassUsage(Info, RD); 6168 } else if (auto *CTD = dyn_cast<ClassTemplateDecl>(D)) { 6169 CheckAbstractClassUsage(Info, CTD->getTemplatedDecl()); 6170 } 6171 } 6172 } 6173 6174 static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { 6175 Attr *ClassAttr = getDLLAttr(Class); 6176 if (!ClassAttr) 6177 return; 6178 6179 assert(ClassAttr->getKind() == attr::DLLExport); 6180 6181 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 6182 6183 if (TSK == TSK_ExplicitInstantiationDeclaration) 6184 // Don't go any further if this is just an explicit instantiation 6185 // declaration. 6186 return; 6187 6188 // Add a context note to explain how we got to any diagnostics produced below. 6189 struct MarkingClassDllexported { 6190 Sema &S; 6191 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class, 6192 SourceLocation AttrLoc) 6193 : S(S) { 6194 Sema::CodeSynthesisContext Ctx; 6195 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported; 6196 Ctx.PointOfInstantiation = AttrLoc; 6197 Ctx.Entity = Class; 6198 S.pushCodeSynthesisContext(Ctx); 6199 } 6200 ~MarkingClassDllexported() { 6201 S.popCodeSynthesisContext(); 6202 } 6203 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation()); 6204 6205 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) 6206 S.MarkVTableUsed(Class->getLocation(), Class, true); 6207 6208 for (Decl *Member : Class->decls()) { 6209 // Skip members that were not marked exported. 6210 if (!Member->hasAttr<DLLExportAttr>()) 6211 continue; 6212 6213 // Defined static variables that are members of an exported base 6214 // class must be marked export too. 6215 auto *VD = dyn_cast<VarDecl>(Member); 6216 if (VD && VD->getStorageClass() == SC_Static && 6217 TSK == TSK_ImplicitInstantiation) 6218 S.MarkVariableReferenced(VD->getLocation(), VD); 6219 6220 auto *MD = dyn_cast<CXXMethodDecl>(Member); 6221 if (!MD) 6222 continue; 6223 6224 if (MD->isUserProvided()) { 6225 // Instantiate non-default class member functions ... 6226 6227 // .. except for certain kinds of template specializations. 6228 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) 6229 continue; 6230 6231 // If this is an MS ABI dllexport default constructor, instantiate any 6232 // default arguments. 6233 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 6234 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6235 if (CD && CD->isDefaultConstructor() && TSK == TSK_Undeclared) { 6236 S.InstantiateDefaultCtorDefaultArgs(CD); 6237 } 6238 } 6239 6240 S.MarkFunctionReferenced(Class->getLocation(), MD); 6241 6242 // The function will be passed to the consumer when its definition is 6243 // encountered. 6244 } else if (MD->isExplicitlyDefaulted()) { 6245 // Synthesize and instantiate explicitly defaulted methods. 6246 S.MarkFunctionReferenced(Class->getLocation(), MD); 6247 6248 if (TSK != TSK_ExplicitInstantiationDefinition) { 6249 // Except for explicit instantiation defs, we will not see the 6250 // definition again later, so pass it to the consumer now. 6251 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 6252 } 6253 } else if (!MD->isTrivial() || 6254 MD->isCopyAssignmentOperator() || 6255 MD->isMoveAssignmentOperator()) { 6256 // Synthesize and instantiate non-trivial implicit methods, and the copy 6257 // and move assignment operators. The latter are exported even if they 6258 // are trivial, because the address of an operator can be taken and 6259 // should compare equal across libraries. 6260 S.MarkFunctionReferenced(Class->getLocation(), MD); 6261 6262 // There is no later point when we will see the definition of this 6263 // function, so pass it to the consumer now. 6264 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 6265 } 6266 } 6267 } 6268 6269 static void checkForMultipleExportedDefaultConstructors(Sema &S, 6270 CXXRecordDecl *Class) { 6271 // Only the MS ABI has default constructor closures, so we don't need to do 6272 // this semantic checking anywhere else. 6273 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) 6274 return; 6275 6276 CXXConstructorDecl *LastExportedDefaultCtor = nullptr; 6277 for (Decl *Member : Class->decls()) { 6278 // Look for exported default constructors. 6279 auto *CD = dyn_cast<CXXConstructorDecl>(Member); 6280 if (!CD || !CD->isDefaultConstructor()) 6281 continue; 6282 auto *Attr = CD->getAttr<DLLExportAttr>(); 6283 if (!Attr) 6284 continue; 6285 6286 // If the class is non-dependent, mark the default arguments as ODR-used so 6287 // that we can properly codegen the constructor closure. 6288 if (!Class->isDependentContext()) { 6289 for (ParmVarDecl *PD : CD->parameters()) { 6290 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); 6291 S.DiscardCleanupsInEvaluationContext(); 6292 } 6293 } 6294 6295 if (LastExportedDefaultCtor) { 6296 S.Diag(LastExportedDefaultCtor->getLocation(), 6297 diag::err_attribute_dll_ambiguous_default_ctor) 6298 << Class; 6299 S.Diag(CD->getLocation(), diag::note_entity_declared_at) 6300 << CD->getDeclName(); 6301 return; 6302 } 6303 LastExportedDefaultCtor = CD; 6304 } 6305 } 6306 6307 static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S, 6308 CXXRecordDecl *Class) { 6309 bool ErrorReported = false; 6310 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6311 ClassTemplateDecl *TD) { 6312 if (ErrorReported) 6313 return; 6314 S.Diag(TD->getLocation(), 6315 diag::err_cuda_device_builtin_surftex_cls_template) 6316 << /*surface*/ 0 << TD; 6317 ErrorReported = true; 6318 }; 6319 6320 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6321 if (!TD) { 6322 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6323 if (!SD) { 6324 S.Diag(Class->getLocation(), 6325 diag::err_cuda_device_builtin_surftex_ref_decl) 6326 << /*surface*/ 0 << Class; 6327 S.Diag(Class->getLocation(), 6328 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6329 << Class; 6330 return; 6331 } 6332 TD = SD->getSpecializedTemplate(); 6333 } 6334 6335 TemplateParameterList *Params = TD->getTemplateParameters(); 6336 unsigned N = Params->size(); 6337 6338 if (N != 2) { 6339 reportIllegalClassTemplate(S, TD); 6340 S.Diag(TD->getLocation(), 6341 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6342 << TD << 2; 6343 } 6344 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6345 reportIllegalClassTemplate(S, TD); 6346 S.Diag(TD->getLocation(), 6347 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6348 << TD << /*1st*/ 0 << /*type*/ 0; 6349 } 6350 if (N > 1) { 6351 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6352 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6353 reportIllegalClassTemplate(S, TD); 6354 S.Diag(TD->getLocation(), 6355 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6356 << TD << /*2nd*/ 1 << /*integer*/ 1; 6357 } 6358 } 6359 } 6360 6361 static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S, 6362 CXXRecordDecl *Class) { 6363 bool ErrorReported = false; 6364 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6365 ClassTemplateDecl *TD) { 6366 if (ErrorReported) 6367 return; 6368 S.Diag(TD->getLocation(), 6369 diag::err_cuda_device_builtin_surftex_cls_template) 6370 << /*texture*/ 1 << TD; 6371 ErrorReported = true; 6372 }; 6373 6374 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6375 if (!TD) { 6376 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6377 if (!SD) { 6378 S.Diag(Class->getLocation(), 6379 diag::err_cuda_device_builtin_surftex_ref_decl) 6380 << /*texture*/ 1 << Class; 6381 S.Diag(Class->getLocation(), 6382 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6383 << Class; 6384 return; 6385 } 6386 TD = SD->getSpecializedTemplate(); 6387 } 6388 6389 TemplateParameterList *Params = TD->getTemplateParameters(); 6390 unsigned N = Params->size(); 6391 6392 if (N != 3) { 6393 reportIllegalClassTemplate(S, TD); 6394 S.Diag(TD->getLocation(), 6395 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6396 << TD << 3; 6397 } 6398 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6399 reportIllegalClassTemplate(S, TD); 6400 S.Diag(TD->getLocation(), 6401 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6402 << TD << /*1st*/ 0 << /*type*/ 0; 6403 } 6404 if (N > 1) { 6405 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6406 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6407 reportIllegalClassTemplate(S, TD); 6408 S.Diag(TD->getLocation(), 6409 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6410 << TD << /*2nd*/ 1 << /*integer*/ 1; 6411 } 6412 } 6413 if (N > 2) { 6414 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2)); 6415 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6416 reportIllegalClassTemplate(S, TD); 6417 S.Diag(TD->getLocation(), 6418 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6419 << TD << /*3rd*/ 2 << /*integer*/ 1; 6420 } 6421 } 6422 } 6423 6424 void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { 6425 // Mark any compiler-generated routines with the implicit code_seg attribute. 6426 for (auto *Method : Class->methods()) { 6427 if (Method->isUserProvided()) 6428 continue; 6429 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 6430 Method->addAttr(A); 6431 } 6432 } 6433 6434 /// Check class-level dllimport/dllexport attribute. 6435 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { 6436 Attr *ClassAttr = getDLLAttr(Class); 6437 6438 // MSVC inherits DLL attributes to partial class template specializations. 6439 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) { 6440 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { 6441 if (Attr *TemplateAttr = 6442 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { 6443 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext())); 6444 A->setInherited(true); 6445 ClassAttr = A; 6446 } 6447 } 6448 } 6449 6450 if (!ClassAttr) 6451 return; 6452 6453 // MSVC allows imported or exported template classes that have UniqueExternal 6454 // linkage. This occurs when the template class has been instantiated with 6455 // a template parameter which itself has internal linkage. 6456 // We drop the attribute to avoid exporting or importing any members. 6457 if ((Context.getTargetInfo().getCXXABI().isMicrosoft() || 6458 Context.getTargetInfo().getTriple().isPS()) && 6459 (!Class->isExternallyVisible() && Class->hasExternalFormalLinkage())) { 6460 Class->dropAttr<DLLExportAttr>(); 6461 Class->dropAttr<DLLImportAttr>(); 6462 return; 6463 } 6464 6465 if (!Class->isExternallyVisible()) { 6466 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) 6467 << Class << ClassAttr; 6468 return; 6469 } 6470 6471 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6472 !ClassAttr->isInherited()) { 6473 // Diagnose dll attributes on members of class with dll attribute. 6474 for (Decl *Member : Class->decls()) { 6475 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) 6476 continue; 6477 InheritableAttr *MemberAttr = getDLLAttr(Member); 6478 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) 6479 continue; 6480 6481 Diag(MemberAttr->getLocation(), 6482 diag::err_attribute_dll_member_of_dll_class) 6483 << MemberAttr << ClassAttr; 6484 Diag(ClassAttr->getLocation(), diag::note_previous_attribute); 6485 Member->setInvalidDecl(); 6486 } 6487 } 6488 6489 if (Class->getDescribedClassTemplate()) 6490 // Don't inherit dll attribute until the template is instantiated. 6491 return; 6492 6493 // The class is either imported or exported. 6494 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; 6495 6496 // Check if this was a dllimport attribute propagated from a derived class to 6497 // a base class template specialization. We don't apply these attributes to 6498 // static data members. 6499 const bool PropagatedImport = 6500 !ClassExported && 6501 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate(); 6502 6503 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 6504 6505 // Ignore explicit dllexport on explicit class template instantiation 6506 // declarations, except in MinGW mode. 6507 if (ClassExported && !ClassAttr->isInherited() && 6508 TSK == TSK_ExplicitInstantiationDeclaration && 6509 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 6510 Class->dropAttr<DLLExportAttr>(); 6511 return; 6512 } 6513 6514 // Force declaration of implicit members so they can inherit the attribute. 6515 ForceDeclarationOfImplicitMembers(Class); 6516 6517 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't 6518 // seem to be true in practice? 6519 6520 for (Decl *Member : Class->decls()) { 6521 VarDecl *VD = dyn_cast<VarDecl>(Member); 6522 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); 6523 6524 // Only methods and static fields inherit the attributes. 6525 if (!VD && !MD) 6526 continue; 6527 6528 if (MD) { 6529 // Don't process deleted methods. 6530 if (MD->isDeleted()) 6531 continue; 6532 6533 if (MD->isInlined()) { 6534 // MinGW does not import or export inline methods. But do it for 6535 // template instantiations. 6536 if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6537 TSK != TSK_ExplicitInstantiationDeclaration && 6538 TSK != TSK_ExplicitInstantiationDefinition) 6539 continue; 6540 6541 // MSVC versions before 2015 don't export the move assignment operators 6542 // and move constructor, so don't attempt to import/export them if 6543 // we have a definition. 6544 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD); 6545 if ((MD->isMoveAssignmentOperator() || 6546 (Ctor && Ctor->isMoveConstructor())) && 6547 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) 6548 continue; 6549 6550 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign 6551 // operator is exported anyway. 6552 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6553 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial()) 6554 continue; 6555 } 6556 } 6557 6558 // Don't apply dllimport attributes to static data members of class template 6559 // instantiations when the attribute is propagated from a derived class. 6560 if (VD && PropagatedImport) 6561 continue; 6562 6563 if (!cast<NamedDecl>(Member)->isExternallyVisible()) 6564 continue; 6565 6566 if (!getDLLAttr(Member)) { 6567 InheritableAttr *NewAttr = nullptr; 6568 6569 // Do not export/import inline function when -fno-dllexport-inlines is 6570 // passed. But add attribute for later local static var check. 6571 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && 6572 TSK != TSK_ExplicitInstantiationDeclaration && 6573 TSK != TSK_ExplicitInstantiationDefinition) { 6574 if (ClassExported) { 6575 NewAttr = ::new (getASTContext()) 6576 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr); 6577 } else { 6578 NewAttr = ::new (getASTContext()) 6579 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr); 6580 } 6581 } else { 6582 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6583 } 6584 6585 NewAttr->setInherited(true); 6586 Member->addAttr(NewAttr); 6587 6588 if (MD) { 6589 // Propagate DLLAttr to friend re-declarations of MD that have already 6590 // been constructed. 6591 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; 6592 FD = FD->getPreviousDecl()) { 6593 if (FD->getFriendObjectKind() == Decl::FOK_None) 6594 continue; 6595 assert(!getDLLAttr(FD) && 6596 "friend re-decl should not already have a DLLAttr"); 6597 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6598 NewAttr->setInherited(true); 6599 FD->addAttr(NewAttr); 6600 } 6601 } 6602 } 6603 } 6604 6605 if (ClassExported) 6606 DelayedDllExportClasses.push_back(Class); 6607 } 6608 6609 /// Perform propagation of DLL attributes from a derived class to a 6610 /// templated base class for MS compatibility. 6611 void Sema::propagateDLLAttrToBaseClassTemplate( 6612 CXXRecordDecl *Class, Attr *ClassAttr, 6613 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { 6614 if (getDLLAttr( 6615 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { 6616 // If the base class template has a DLL attribute, don't try to change it. 6617 return; 6618 } 6619 6620 auto TSK = BaseTemplateSpec->getSpecializationKind(); 6621 if (!getDLLAttr(BaseTemplateSpec) && 6622 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || 6623 TSK == TSK_ImplicitInstantiation)) { 6624 // The template hasn't been instantiated yet (or it has, but only as an 6625 // explicit instantiation declaration or implicit instantiation, which means 6626 // we haven't codegenned any members yet), so propagate the attribute. 6627 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6628 NewAttr->setInherited(true); 6629 BaseTemplateSpec->addAttr(NewAttr); 6630 6631 // If this was an import, mark that we propagated it from a derived class to 6632 // a base class template specialization. 6633 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr)) 6634 ImportAttr->setPropagatedToBaseTemplate(); 6635 6636 // If the template is already instantiated, checkDLLAttributeRedeclaration() 6637 // needs to be run again to work see the new attribute. Otherwise this will 6638 // get run whenever the template is instantiated. 6639 if (TSK != TSK_Undeclared) 6640 checkClassLevelDLLAttribute(BaseTemplateSpec); 6641 6642 return; 6643 } 6644 6645 if (getDLLAttr(BaseTemplateSpec)) { 6646 // The template has already been specialized or instantiated with an 6647 // attribute, explicitly or through propagation. We should not try to change 6648 // it. 6649 return; 6650 } 6651 6652 // The template was previously instantiated or explicitly specialized without 6653 // a dll attribute, It's too late for us to add an attribute, so warn that 6654 // this is unsupported. 6655 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) 6656 << BaseTemplateSpec->isExplicitSpecialization(); 6657 Diag(ClassAttr->getLocation(), diag::note_attribute); 6658 if (BaseTemplateSpec->isExplicitSpecialization()) { 6659 Diag(BaseTemplateSpec->getLocation(), 6660 diag::note_template_class_explicit_specialization_was_here) 6661 << BaseTemplateSpec; 6662 } else { 6663 Diag(BaseTemplateSpec->getPointOfInstantiation(), 6664 diag::note_template_class_instantiation_was_here) 6665 << BaseTemplateSpec; 6666 } 6667 } 6668 6669 /// Determine the kind of defaulting that would be done for a given function. 6670 /// 6671 /// If the function is both a default constructor and a copy / move constructor 6672 /// (due to having a default argument for the first parameter), this picks 6673 /// CXXDefaultConstructor. 6674 /// 6675 /// FIXME: Check that case is properly handled by all callers. 6676 Sema::DefaultedFunctionKind 6677 Sema::getDefaultedFunctionKind(const FunctionDecl *FD) { 6678 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 6679 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { 6680 if (Ctor->isDefaultConstructor()) 6681 return Sema::CXXDefaultConstructor; 6682 6683 if (Ctor->isCopyConstructor()) 6684 return Sema::CXXCopyConstructor; 6685 6686 if (Ctor->isMoveConstructor()) 6687 return Sema::CXXMoveConstructor; 6688 } 6689 6690 if (MD->isCopyAssignmentOperator()) 6691 return Sema::CXXCopyAssignment; 6692 6693 if (MD->isMoveAssignmentOperator()) 6694 return Sema::CXXMoveAssignment; 6695 6696 if (isa<CXXDestructorDecl>(FD)) 6697 return Sema::CXXDestructor; 6698 } 6699 6700 switch (FD->getDeclName().getCXXOverloadedOperator()) { 6701 case OO_EqualEqual: 6702 return DefaultedComparisonKind::Equal; 6703 6704 case OO_ExclaimEqual: 6705 return DefaultedComparisonKind::NotEqual; 6706 6707 case OO_Spaceship: 6708 // No point allowing this if <=> doesn't exist in the current language mode. 6709 if (!getLangOpts().CPlusPlus20) 6710 break; 6711 return DefaultedComparisonKind::ThreeWay; 6712 6713 case OO_Less: 6714 case OO_LessEqual: 6715 case OO_Greater: 6716 case OO_GreaterEqual: 6717 // No point allowing this if <=> doesn't exist in the current language mode. 6718 if (!getLangOpts().CPlusPlus20) 6719 break; 6720 return DefaultedComparisonKind::Relational; 6721 6722 default: 6723 break; 6724 } 6725 6726 // Not defaultable. 6727 return DefaultedFunctionKind(); 6728 } 6729 6730 static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD, 6731 SourceLocation DefaultLoc) { 6732 Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD); 6733 if (DFK.isComparison()) 6734 return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison()); 6735 6736 switch (DFK.asSpecialMember()) { 6737 case Sema::CXXDefaultConstructor: 6738 S.DefineImplicitDefaultConstructor(DefaultLoc, 6739 cast<CXXConstructorDecl>(FD)); 6740 break; 6741 case Sema::CXXCopyConstructor: 6742 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6743 break; 6744 case Sema::CXXCopyAssignment: 6745 S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6746 break; 6747 case Sema::CXXDestructor: 6748 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD)); 6749 break; 6750 case Sema::CXXMoveConstructor: 6751 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6752 break; 6753 case Sema::CXXMoveAssignment: 6754 S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6755 break; 6756 case Sema::CXXInvalid: 6757 llvm_unreachable("Invalid special member."); 6758 } 6759 } 6760 6761 /// Determine whether a type is permitted to be passed or returned in 6762 /// registers, per C++ [class.temporary]p3. 6763 static bool canPassInRegisters(Sema &S, CXXRecordDecl *D, 6764 TargetInfo::CallingConvKind CCK) { 6765 if (D->isDependentType() || D->isInvalidDecl()) 6766 return false; 6767 6768 // Clang <= 4 used the pre-C++11 rule, which ignores move operations. 6769 // The PS4 platform ABI follows the behavior of Clang 3.2. 6770 if (CCK == TargetInfo::CCK_ClangABI4OrPS4) 6771 return !D->hasNonTrivialDestructorForCall() && 6772 !D->hasNonTrivialCopyConstructorForCall(); 6773 6774 if (CCK == TargetInfo::CCK_MicrosoftWin64) { 6775 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false; 6776 bool DtorIsTrivialForCall = false; 6777 6778 // If a class has at least one eligible, trivial copy constructor, it 6779 // is passed according to the C ABI. Otherwise, it is passed indirectly. 6780 // 6781 // Note: This permits classes with non-trivial copy or move ctors to be 6782 // passed in registers, so long as they *also* have a trivial copy ctor, 6783 // which is non-conforming. 6784 if (D->needsImplicitCopyConstructor()) { 6785 if (!D->defaultedCopyConstructorIsDeleted()) { 6786 if (D->hasTrivialCopyConstructor()) 6787 CopyCtorIsTrivial = true; 6788 if (D->hasTrivialCopyConstructorForCall()) 6789 CopyCtorIsTrivialForCall = true; 6790 } 6791 } else { 6792 for (const CXXConstructorDecl *CD : D->ctors()) { 6793 if (CD->isCopyConstructor() && !CD->isDeleted() && 6794 !CD->isIneligibleOrNotSelected()) { 6795 if (CD->isTrivial()) 6796 CopyCtorIsTrivial = true; 6797 if (CD->isTrivialForCall()) 6798 CopyCtorIsTrivialForCall = true; 6799 } 6800 } 6801 } 6802 6803 if (D->needsImplicitDestructor()) { 6804 if (!D->defaultedDestructorIsDeleted() && 6805 D->hasTrivialDestructorForCall()) 6806 DtorIsTrivialForCall = true; 6807 } else if (const auto *DD = D->getDestructor()) { 6808 if (!DD->isDeleted() && DD->isTrivialForCall()) 6809 DtorIsTrivialForCall = true; 6810 } 6811 6812 // If the copy ctor and dtor are both trivial-for-calls, pass direct. 6813 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall) 6814 return true; 6815 6816 // If a class has a destructor, we'd really like to pass it indirectly 6817 // because it allows us to elide copies. Unfortunately, MSVC makes that 6818 // impossible for small types, which it will pass in a single register or 6819 // stack slot. Most objects with dtors are large-ish, so handle that early. 6820 // We can't call out all large objects as being indirect because there are 6821 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate 6822 // how we pass large POD types. 6823 6824 // Note: This permits small classes with nontrivial destructors to be 6825 // passed in registers, which is non-conforming. 6826 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); 6827 uint64_t TypeSize = isAArch64 ? 128 : 64; 6828 6829 if (CopyCtorIsTrivial && 6830 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize) 6831 return true; 6832 return false; 6833 } 6834 6835 // Per C++ [class.temporary]p3, the relevant condition is: 6836 // each copy constructor, move constructor, and destructor of X is 6837 // either trivial or deleted, and X has at least one non-deleted copy 6838 // or move constructor 6839 bool HasNonDeletedCopyOrMove = false; 6840 6841 if (D->needsImplicitCopyConstructor() && 6842 !D->defaultedCopyConstructorIsDeleted()) { 6843 if (!D->hasTrivialCopyConstructorForCall()) 6844 return false; 6845 HasNonDeletedCopyOrMove = true; 6846 } 6847 6848 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() && 6849 !D->defaultedMoveConstructorIsDeleted()) { 6850 if (!D->hasTrivialMoveConstructorForCall()) 6851 return false; 6852 HasNonDeletedCopyOrMove = true; 6853 } 6854 6855 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() && 6856 !D->hasTrivialDestructorForCall()) 6857 return false; 6858 6859 for (const CXXMethodDecl *MD : D->methods()) { 6860 if (MD->isDeleted() || MD->isIneligibleOrNotSelected()) 6861 continue; 6862 6863 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6864 if (CD && CD->isCopyOrMoveConstructor()) 6865 HasNonDeletedCopyOrMove = true; 6866 else if (!isa<CXXDestructorDecl>(MD)) 6867 continue; 6868 6869 if (!MD->isTrivialForCall()) 6870 return false; 6871 } 6872 6873 return HasNonDeletedCopyOrMove; 6874 } 6875 6876 /// Report an error regarding overriding, along with any relevant 6877 /// overridden methods. 6878 /// 6879 /// \param DiagID the primary error to report. 6880 /// \param MD the overriding method. 6881 static bool 6882 ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD, 6883 llvm::function_ref<bool(const CXXMethodDecl *)> Report) { 6884 bool IssuedDiagnostic = false; 6885 for (const CXXMethodDecl *O : MD->overridden_methods()) { 6886 if (Report(O)) { 6887 if (!IssuedDiagnostic) { 6888 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 6889 IssuedDiagnostic = true; 6890 } 6891 S.Diag(O->getLocation(), diag::note_overridden_virtual_function); 6892 } 6893 } 6894 return IssuedDiagnostic; 6895 } 6896 6897 /// Perform semantic checks on a class definition that has been 6898 /// completing, introducing implicitly-declared members, checking for 6899 /// abstract types, etc. 6900 /// 6901 /// \param S The scope in which the class was parsed. Null if we didn't just 6902 /// parse a class definition. 6903 /// \param Record The completed class. 6904 void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) { 6905 if (!Record) 6906 return; 6907 6908 if (Record->isAbstract() && !Record->isInvalidDecl()) { 6909 AbstractUsageInfo Info(*this, Record); 6910 CheckAbstractClassUsage(Info, Record); 6911 } 6912 6913 // If this is not an aggregate type and has no user-declared constructor, 6914 // complain about any non-static data members of reference or const scalar 6915 // type, since they will never get initializers. 6916 if (!Record->isInvalidDecl() && !Record->isDependentType() && 6917 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && 6918 !Record->isLambda()) { 6919 bool Complained = false; 6920 for (const auto *F : Record->fields()) { 6921 if (F->hasInClassInitializer() || F->isUnnamedBitfield()) 6922 continue; 6923 6924 if (F->getType()->isReferenceType() || 6925 (F->getType().isConstQualified() && F->getType()->isScalarType())) { 6926 if (!Complained) { 6927 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) 6928 << Record->getTagKind() << Record; 6929 Complained = true; 6930 } 6931 6932 Diag(F->getLocation(), diag::note_refconst_member_not_initialized) 6933 << F->getType()->isReferenceType() 6934 << F->getDeclName(); 6935 } 6936 } 6937 } 6938 6939 if (Record->getIdentifier()) { 6940 // C++ [class.mem]p13: 6941 // If T is the name of a class, then each of the following shall have a 6942 // name different from T: 6943 // - every member of every anonymous union that is a member of class T. 6944 // 6945 // C++ [class.mem]p14: 6946 // In addition, if class T has a user-declared constructor (12.1), every 6947 // non-static data member of class T shall have a name different from T. 6948 DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); 6949 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; 6950 ++I) { 6951 NamedDecl *D = (*I)->getUnderlyingDecl(); 6952 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) && 6953 Record->hasUserDeclaredConstructor()) || 6954 isa<IndirectFieldDecl>(D)) { 6955 Diag((*I)->getLocation(), diag::err_member_name_of_class) 6956 << D->getDeclName(); 6957 break; 6958 } 6959 } 6960 } 6961 6962 // Warn if the class has virtual methods but non-virtual public destructor. 6963 if (Record->isPolymorphic() && !Record->isDependentType()) { 6964 CXXDestructorDecl *dtor = Record->getDestructor(); 6965 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && 6966 !Record->hasAttr<FinalAttr>()) 6967 Diag(dtor ? dtor->getLocation() : Record->getLocation(), 6968 diag::warn_non_virtual_dtor) << Context.getRecordType(Record); 6969 } 6970 6971 if (Record->isAbstract()) { 6972 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) { 6973 Diag(Record->getLocation(), diag::warn_abstract_final_class) 6974 << FA->isSpelledAsSealed(); 6975 DiagnoseAbstractType(Record); 6976 } 6977 } 6978 6979 // Warn if the class has a final destructor but is not itself marked final. 6980 if (!Record->hasAttr<FinalAttr>()) { 6981 if (const CXXDestructorDecl *dtor = Record->getDestructor()) { 6982 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) { 6983 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class) 6984 << FA->isSpelledAsSealed() 6985 << FixItHint::CreateInsertion( 6986 getLocForEndOfToken(Record->getLocation()), 6987 (FA->isSpelledAsSealed() ? " sealed" : " final")); 6988 Diag(Record->getLocation(), 6989 diag::note_final_dtor_non_final_class_silence) 6990 << Context.getRecordType(Record) << FA->isSpelledAsSealed(); 6991 } 6992 } 6993 } 6994 6995 // See if trivial_abi has to be dropped. 6996 if (Record->hasAttr<TrivialABIAttr>()) 6997 checkIllFormedTrivialABIStruct(*Record); 6998 6999 // Set HasTrivialSpecialMemberForCall if the record has attribute 7000 // "trivial_abi". 7001 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>(); 7002 7003 if (HasTrivialABI) 7004 Record->setHasTrivialSpecialMemberForCall(); 7005 7006 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=). 7007 // We check these last because they can depend on the properties of the 7008 // primary comparison functions (==, <=>). 7009 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons; 7010 7011 // Perform checks that can't be done until we know all the properties of a 7012 // member function (whether it's defaulted, deleted, virtual, overriding, 7013 // ...). 7014 auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) { 7015 // A static function cannot override anything. 7016 if (MD->getStorageClass() == SC_Static) { 7017 if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD, 7018 [](const CXXMethodDecl *) { return true; })) 7019 return; 7020 } 7021 7022 // A deleted function cannot override a non-deleted function and vice 7023 // versa. 7024 if (ReportOverrides(*this, 7025 MD->isDeleted() ? diag::err_deleted_override 7026 : diag::err_non_deleted_override, 7027 MD, [&](const CXXMethodDecl *V) { 7028 return MD->isDeleted() != V->isDeleted(); 7029 })) { 7030 if (MD->isDefaulted() && MD->isDeleted()) 7031 // Explain why this defaulted function was deleted. 7032 DiagnoseDeletedDefaultedFunction(MD); 7033 return; 7034 } 7035 7036 // A consteval function cannot override a non-consteval function and vice 7037 // versa. 7038 if (ReportOverrides(*this, 7039 MD->isConsteval() ? diag::err_consteval_override 7040 : diag::err_non_consteval_override, 7041 MD, [&](const CXXMethodDecl *V) { 7042 return MD->isConsteval() != V->isConsteval(); 7043 })) { 7044 if (MD->isDefaulted() && MD->isDeleted()) 7045 // Explain why this defaulted function was deleted. 7046 DiagnoseDeletedDefaultedFunction(MD); 7047 return; 7048 } 7049 }; 7050 7051 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool { 7052 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted()) 7053 return false; 7054 7055 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 7056 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual || 7057 DFK.asComparison() == DefaultedComparisonKind::Relational) { 7058 DefaultedSecondaryComparisons.push_back(FD); 7059 return true; 7060 } 7061 7062 CheckExplicitlyDefaultedFunction(S, FD); 7063 return false; 7064 }; 7065 7066 auto CompleteMemberFunction = [&](CXXMethodDecl *M) { 7067 // Check whether the explicitly-defaulted members are valid. 7068 bool Incomplete = CheckForDefaultedFunction(M); 7069 7070 // Skip the rest of the checks for a member of a dependent class. 7071 if (Record->isDependentType()) 7072 return; 7073 7074 // For an explicitly defaulted or deleted special member, we defer 7075 // determining triviality until the class is complete. That time is now! 7076 CXXSpecialMember CSM = getSpecialMember(M); 7077 if (!M->isImplicit() && !M->isUserProvided()) { 7078 if (CSM != CXXInvalid) { 7079 M->setTrivial(SpecialMemberIsTrivial(M, CSM)); 7080 // Inform the class that we've finished declaring this member. 7081 Record->finishedDefaultedOrDeletedMember(M); 7082 M->setTrivialForCall( 7083 HasTrivialABI || 7084 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI)); 7085 Record->setTrivialForCallFlags(M); 7086 } 7087 } 7088 7089 // Set triviality for the purpose of calls if this is a user-provided 7090 // copy/move constructor or destructor. 7091 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor || 7092 CSM == CXXDestructor) && M->isUserProvided()) { 7093 M->setTrivialForCall(HasTrivialABI); 7094 Record->setTrivialForCallFlags(M); 7095 } 7096 7097 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() && 7098 M->hasAttr<DLLExportAttr>()) { 7099 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 7100 M->isTrivial() && 7101 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor || 7102 CSM == CXXDestructor)) 7103 M->dropAttr<DLLExportAttr>(); 7104 7105 if (M->hasAttr<DLLExportAttr>()) { 7106 // Define after any fields with in-class initializers have been parsed. 7107 DelayedDllExportMemberFunctions.push_back(M); 7108 } 7109 } 7110 7111 // Define defaulted constexpr virtual functions that override a base class 7112 // function right away. 7113 // FIXME: We can defer doing this until the vtable is marked as used. 7114 if (CSM != CXXInvalid && !M->isDeleted() && M->isDefaulted() && 7115 M->isConstexpr() && M->size_overridden_methods()) 7116 DefineDefaultedFunction(*this, M, M->getLocation()); 7117 7118 if (!Incomplete) 7119 CheckCompletedMemberFunction(M); 7120 }; 7121 7122 // Check the destructor before any other member function. We need to 7123 // determine whether it's trivial in order to determine whether the claas 7124 // type is a literal type, which is a prerequisite for determining whether 7125 // other special member functions are valid and whether they're implicitly 7126 // 'constexpr'. 7127 if (CXXDestructorDecl *Dtor = Record->getDestructor()) 7128 CompleteMemberFunction(Dtor); 7129 7130 bool HasMethodWithOverrideControl = false, 7131 HasOverridingMethodWithoutOverrideControl = false; 7132 for (auto *D : Record->decls()) { 7133 if (auto *M = dyn_cast<CXXMethodDecl>(D)) { 7134 // FIXME: We could do this check for dependent types with non-dependent 7135 // bases. 7136 if (!Record->isDependentType()) { 7137 // See if a method overloads virtual methods in a base 7138 // class without overriding any. 7139 if (!M->isStatic()) 7140 DiagnoseHiddenVirtualMethods(M); 7141 if (M->hasAttr<OverrideAttr>()) 7142 HasMethodWithOverrideControl = true; 7143 else if (M->size_overridden_methods() > 0) 7144 HasOverridingMethodWithoutOverrideControl = true; 7145 } 7146 7147 if (!isa<CXXDestructorDecl>(M)) 7148 CompleteMemberFunction(M); 7149 } else if (auto *F = dyn_cast<FriendDecl>(D)) { 7150 CheckForDefaultedFunction( 7151 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl())); 7152 } 7153 } 7154 7155 if (HasOverridingMethodWithoutOverrideControl) { 7156 bool HasInconsistentOverrideControl = HasMethodWithOverrideControl; 7157 for (auto *M : Record->methods()) 7158 DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl); 7159 } 7160 7161 // Check the defaulted secondary comparisons after any other member functions. 7162 for (FunctionDecl *FD : DefaultedSecondaryComparisons) { 7163 CheckExplicitlyDefaultedFunction(S, FD); 7164 7165 // If this is a member function, we deferred checking it until now. 7166 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) 7167 CheckCompletedMemberFunction(MD); 7168 } 7169 7170 // ms_struct is a request to use the same ABI rules as MSVC. Check 7171 // whether this class uses any C++ features that are implemented 7172 // completely differently in MSVC, and if so, emit a diagnostic. 7173 // That diagnostic defaults to an error, but we allow projects to 7174 // map it down to a warning (or ignore it). It's a fairly common 7175 // practice among users of the ms_struct pragma to mass-annotate 7176 // headers, sweeping up a bunch of types that the project doesn't 7177 // really rely on MSVC-compatible layout for. We must therefore 7178 // support "ms_struct except for C++ stuff" as a secondary ABI. 7179 // Don't emit this diagnostic if the feature was enabled as a 7180 // language option (as opposed to via a pragma or attribute), as 7181 // the option -mms-bitfields otherwise essentially makes it impossible 7182 // to build C++ code, unless this diagnostic is turned off. 7183 if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields && 7184 (Record->isPolymorphic() || Record->getNumBases())) { 7185 Diag(Record->getLocation(), diag::warn_cxx_ms_struct); 7186 } 7187 7188 checkClassLevelDLLAttribute(Record); 7189 checkClassLevelCodeSegAttribute(Record); 7190 7191 bool ClangABICompat4 = 7192 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4; 7193 TargetInfo::CallingConvKind CCK = 7194 Context.getTargetInfo().getCallingConvKind(ClangABICompat4); 7195 bool CanPass = canPassInRegisters(*this, Record, CCK); 7196 7197 // Do not change ArgPassingRestrictions if it has already been set to 7198 // APK_CanNeverPassInRegs. 7199 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs) 7200 Record->setArgPassingRestrictions(CanPass 7201 ? RecordDecl::APK_CanPassInRegs 7202 : RecordDecl::APK_CannotPassInRegs); 7203 7204 // If canPassInRegisters returns true despite the record having a non-trivial 7205 // destructor, the record is destructed in the callee. This happens only when 7206 // the record or one of its subobjects has a field annotated with trivial_abi 7207 // or a field qualified with ObjC __strong/__weak. 7208 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee()) 7209 Record->setParamDestroyedInCallee(true); 7210 else if (Record->hasNonTrivialDestructor()) 7211 Record->setParamDestroyedInCallee(CanPass); 7212 7213 if (getLangOpts().ForceEmitVTables) { 7214 // If we want to emit all the vtables, we need to mark it as used. This 7215 // is especially required for cases like vtable assumption loads. 7216 MarkVTableUsed(Record->getInnerLocStart(), Record); 7217 } 7218 7219 if (getLangOpts().CUDA) { 7220 if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) 7221 checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record); 7222 else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>()) 7223 checkCUDADeviceBuiltinTextureClassTemplate(*this, Record); 7224 } 7225 } 7226 7227 /// Look up the special member function that would be called by a special 7228 /// member function for a subobject of class type. 7229 /// 7230 /// \param Class The class type of the subobject. 7231 /// \param CSM The kind of special member function. 7232 /// \param FieldQuals If the subobject is a field, its cv-qualifiers. 7233 /// \param ConstRHS True if this is a copy operation with a const object 7234 /// on its RHS, that is, if the argument to the outer special member 7235 /// function is 'const' and this is not a field marked 'mutable'. 7236 static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember( 7237 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM, 7238 unsigned FieldQuals, bool ConstRHS) { 7239 unsigned LHSQuals = 0; 7240 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment) 7241 LHSQuals = FieldQuals; 7242 7243 unsigned RHSQuals = FieldQuals; 7244 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor) 7245 RHSQuals = 0; 7246 else if (ConstRHS) 7247 RHSQuals |= Qualifiers::Const; 7248 7249 return S.LookupSpecialMember(Class, CSM, 7250 RHSQuals & Qualifiers::Const, 7251 RHSQuals & Qualifiers::Volatile, 7252 false, 7253 LHSQuals & Qualifiers::Const, 7254 LHSQuals & Qualifiers::Volatile); 7255 } 7256 7257 class Sema::InheritedConstructorInfo { 7258 Sema &S; 7259 SourceLocation UseLoc; 7260 7261 /// A mapping from the base classes through which the constructor was 7262 /// inherited to the using shadow declaration in that base class (or a null 7263 /// pointer if the constructor was declared in that base class). 7264 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *> 7265 InheritedFromBases; 7266 7267 public: 7268 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc, 7269 ConstructorUsingShadowDecl *Shadow) 7270 : S(S), UseLoc(UseLoc) { 7271 bool DiagnosedMultipleConstructedBases = false; 7272 CXXRecordDecl *ConstructedBase = nullptr; 7273 BaseUsingDecl *ConstructedBaseIntroducer = nullptr; 7274 7275 // Find the set of such base class subobjects and check that there's a 7276 // unique constructed subobject. 7277 for (auto *D : Shadow->redecls()) { 7278 auto *DShadow = cast<ConstructorUsingShadowDecl>(D); 7279 auto *DNominatedBase = DShadow->getNominatedBaseClass(); 7280 auto *DConstructedBase = DShadow->getConstructedBaseClass(); 7281 7282 InheritedFromBases.insert( 7283 std::make_pair(DNominatedBase->getCanonicalDecl(), 7284 DShadow->getNominatedBaseClassShadowDecl())); 7285 if (DShadow->constructsVirtualBase()) 7286 InheritedFromBases.insert( 7287 std::make_pair(DConstructedBase->getCanonicalDecl(), 7288 DShadow->getConstructedBaseClassShadowDecl())); 7289 else 7290 assert(DNominatedBase == DConstructedBase); 7291 7292 // [class.inhctor.init]p2: 7293 // If the constructor was inherited from multiple base class subobjects 7294 // of type B, the program is ill-formed. 7295 if (!ConstructedBase) { 7296 ConstructedBase = DConstructedBase; 7297 ConstructedBaseIntroducer = D->getIntroducer(); 7298 } else if (ConstructedBase != DConstructedBase && 7299 !Shadow->isInvalidDecl()) { 7300 if (!DiagnosedMultipleConstructedBases) { 7301 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor) 7302 << Shadow->getTargetDecl(); 7303 S.Diag(ConstructedBaseIntroducer->getLocation(), 7304 diag::note_ambiguous_inherited_constructor_using) 7305 << ConstructedBase; 7306 DiagnosedMultipleConstructedBases = true; 7307 } 7308 S.Diag(D->getIntroducer()->getLocation(), 7309 diag::note_ambiguous_inherited_constructor_using) 7310 << DConstructedBase; 7311 } 7312 } 7313 7314 if (DiagnosedMultipleConstructedBases) 7315 Shadow->setInvalidDecl(); 7316 } 7317 7318 /// Find the constructor to use for inherited construction of a base class, 7319 /// and whether that base class constructor inherits the constructor from a 7320 /// virtual base class (in which case it won't actually invoke it). 7321 std::pair<CXXConstructorDecl *, bool> 7322 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const { 7323 auto It = InheritedFromBases.find(Base->getCanonicalDecl()); 7324 if (It == InheritedFromBases.end()) 7325 return std::make_pair(nullptr, false); 7326 7327 // This is an intermediary class. 7328 if (It->second) 7329 return std::make_pair( 7330 S.findInheritingConstructor(UseLoc, Ctor, It->second), 7331 It->second->constructsVirtualBase()); 7332 7333 // This is the base class from which the constructor was inherited. 7334 return std::make_pair(Ctor, false); 7335 } 7336 }; 7337 7338 /// Is the special member function which would be selected to perform the 7339 /// specified operation on the specified class type a constexpr constructor? 7340 static bool 7341 specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl, 7342 Sema::CXXSpecialMember CSM, unsigned Quals, 7343 bool ConstRHS, 7344 CXXConstructorDecl *InheritedCtor = nullptr, 7345 Sema::InheritedConstructorInfo *Inherited = nullptr) { 7346 // Suppress duplicate constraint checking here, in case a constraint check 7347 // caused us to decide to do this. Any truely recursive checks will get 7348 // caught during these checks anyway. 7349 Sema::SatisfactionStackResetRAII SSRAII{S}; 7350 7351 // If we're inheriting a constructor, see if we need to call it for this base 7352 // class. 7353 if (InheritedCtor) { 7354 assert(CSM == Sema::CXXDefaultConstructor); 7355 auto BaseCtor = 7356 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first; 7357 if (BaseCtor) 7358 return BaseCtor->isConstexpr(); 7359 } 7360 7361 if (CSM == Sema::CXXDefaultConstructor) 7362 return ClassDecl->hasConstexprDefaultConstructor(); 7363 if (CSM == Sema::CXXDestructor) 7364 return ClassDecl->hasConstexprDestructor(); 7365 7366 Sema::SpecialMemberOverloadResult SMOR = 7367 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS); 7368 if (!SMOR.getMethod()) 7369 // A constructor we wouldn't select can't be "involved in initializing" 7370 // anything. 7371 return true; 7372 return SMOR.getMethod()->isConstexpr(); 7373 } 7374 7375 /// Determine whether the specified special member function would be constexpr 7376 /// if it were implicitly defined. 7377 static bool defaultedSpecialMemberIsConstexpr( 7378 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM, 7379 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr, 7380 Sema::InheritedConstructorInfo *Inherited = nullptr) { 7381 if (!S.getLangOpts().CPlusPlus11) 7382 return false; 7383 7384 // C++11 [dcl.constexpr]p4: 7385 // In the definition of a constexpr constructor [...] 7386 bool Ctor = true; 7387 switch (CSM) { 7388 case Sema::CXXDefaultConstructor: 7389 if (Inherited) 7390 break; 7391 // Since default constructor lookup is essentially trivial (and cannot 7392 // involve, for instance, template instantiation), we compute whether a 7393 // defaulted default constructor is constexpr directly within CXXRecordDecl. 7394 // 7395 // This is important for performance; we need to know whether the default 7396 // constructor is constexpr to determine whether the type is a literal type. 7397 return ClassDecl->defaultedDefaultConstructorIsConstexpr(); 7398 7399 case Sema::CXXCopyConstructor: 7400 case Sema::CXXMoveConstructor: 7401 // For copy or move constructors, we need to perform overload resolution. 7402 break; 7403 7404 case Sema::CXXCopyAssignment: 7405 case Sema::CXXMoveAssignment: 7406 if (!S.getLangOpts().CPlusPlus14) 7407 return false; 7408 // In C++1y, we need to perform overload resolution. 7409 Ctor = false; 7410 break; 7411 7412 case Sema::CXXDestructor: 7413 return ClassDecl->defaultedDestructorIsConstexpr(); 7414 7415 case Sema::CXXInvalid: 7416 return false; 7417 } 7418 7419 // -- if the class is a non-empty union, or for each non-empty anonymous 7420 // union member of a non-union class, exactly one non-static data member 7421 // shall be initialized; [DR1359] 7422 // 7423 // If we squint, this is guaranteed, since exactly one non-static data member 7424 // will be initialized (if the constructor isn't deleted), we just don't know 7425 // which one. 7426 if (Ctor && ClassDecl->isUnion()) 7427 return CSM == Sema::CXXDefaultConstructor 7428 ? ClassDecl->hasInClassInitializer() || 7429 !ClassDecl->hasVariantMembers() 7430 : true; 7431 7432 // -- the class shall not have any virtual base classes; 7433 if (Ctor && ClassDecl->getNumVBases()) 7434 return false; 7435 7436 // C++1y [class.copy]p26: 7437 // -- [the class] is a literal type, and 7438 if (!Ctor && !ClassDecl->isLiteral()) 7439 return false; 7440 7441 // -- every constructor involved in initializing [...] base class 7442 // sub-objects shall be a constexpr constructor; 7443 // -- the assignment operator selected to copy/move each direct base 7444 // class is a constexpr function, and 7445 for (const auto &B : ClassDecl->bases()) { 7446 const RecordType *BaseType = B.getType()->getAs<RecordType>(); 7447 if (!BaseType) 7448 continue; 7449 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 7450 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg, 7451 InheritedCtor, Inherited)) 7452 return false; 7453 } 7454 7455 // -- every constructor involved in initializing non-static data members 7456 // [...] shall be a constexpr constructor; 7457 // -- every non-static data member and base class sub-object shall be 7458 // initialized 7459 // -- for each non-static data member of X that is of class type (or array 7460 // thereof), the assignment operator selected to copy/move that member is 7461 // a constexpr function 7462 for (const auto *F : ClassDecl->fields()) { 7463 if (F->isInvalidDecl()) 7464 continue; 7465 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer()) 7466 continue; 7467 QualType BaseType = S.Context.getBaseElementType(F->getType()); 7468 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 7469 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 7470 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, 7471 BaseType.getCVRQualifiers(), 7472 ConstArg && !F->isMutable())) 7473 return false; 7474 } else if (CSM == Sema::CXXDefaultConstructor) { 7475 return false; 7476 } 7477 } 7478 7479 // All OK, it's constexpr! 7480 return true; 7481 } 7482 7483 namespace { 7484 /// RAII object to register a defaulted function as having its exception 7485 /// specification computed. 7486 struct ComputingExceptionSpec { 7487 Sema &S; 7488 7489 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc) 7490 : S(S) { 7491 Sema::CodeSynthesisContext Ctx; 7492 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation; 7493 Ctx.PointOfInstantiation = Loc; 7494 Ctx.Entity = FD; 7495 S.pushCodeSynthesisContext(Ctx); 7496 } 7497 ~ComputingExceptionSpec() { 7498 S.popCodeSynthesisContext(); 7499 } 7500 }; 7501 } 7502 7503 static Sema::ImplicitExceptionSpecification 7504 ComputeDefaultedSpecialMemberExceptionSpec( 7505 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 7506 Sema::InheritedConstructorInfo *ICI); 7507 7508 static Sema::ImplicitExceptionSpecification 7509 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 7510 FunctionDecl *FD, 7511 Sema::DefaultedComparisonKind DCK); 7512 7513 static Sema::ImplicitExceptionSpecification 7514 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) { 7515 auto DFK = S.getDefaultedFunctionKind(FD); 7516 if (DFK.isSpecialMember()) 7517 return ComputeDefaultedSpecialMemberExceptionSpec( 7518 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr); 7519 if (DFK.isComparison()) 7520 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD, 7521 DFK.asComparison()); 7522 7523 auto *CD = cast<CXXConstructorDecl>(FD); 7524 assert(CD->getInheritedConstructor() && 7525 "only defaulted functions and inherited constructors have implicit " 7526 "exception specs"); 7527 Sema::InheritedConstructorInfo ICI( 7528 S, Loc, CD->getInheritedConstructor().getShadowDecl()); 7529 return ComputeDefaultedSpecialMemberExceptionSpec( 7530 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI); 7531 } 7532 7533 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, 7534 CXXMethodDecl *MD) { 7535 FunctionProtoType::ExtProtoInfo EPI; 7536 7537 // Build an exception specification pointing back at this member. 7538 EPI.ExceptionSpec.Type = EST_Unevaluated; 7539 EPI.ExceptionSpec.SourceDecl = MD; 7540 7541 // Set the calling convention to the default for C++ instance methods. 7542 EPI.ExtInfo = EPI.ExtInfo.withCallingConv( 7543 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, 7544 /*IsCXXMethod=*/true)); 7545 return EPI; 7546 } 7547 7548 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) { 7549 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 7550 if (FPT->getExceptionSpecType() != EST_Unevaluated) 7551 return; 7552 7553 // Evaluate the exception specification. 7554 auto IES = computeImplicitExceptionSpec(*this, Loc, FD); 7555 auto ESI = IES.getExceptionSpec(); 7556 7557 // Update the type of the special member to use it. 7558 UpdateExceptionSpec(FD, ESI); 7559 } 7560 7561 void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) { 7562 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted"); 7563 7564 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 7565 if (!DefKind) { 7566 assert(FD->getDeclContext()->isDependentContext()); 7567 return; 7568 } 7569 7570 if (DefKind.isComparison()) 7571 UnusedPrivateFields.clear(); 7572 7573 if (DefKind.isSpecialMember() 7574 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD), 7575 DefKind.asSpecialMember(), 7576 FD->getDefaultLoc()) 7577 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison())) 7578 FD->setInvalidDecl(); 7579 } 7580 7581 bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, 7582 CXXSpecialMember CSM, 7583 SourceLocation DefaultLoc) { 7584 CXXRecordDecl *RD = MD->getParent(); 7585 7586 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid && 7587 "not an explicitly-defaulted special member"); 7588 7589 // Defer all checking for special members of a dependent type. 7590 if (RD->isDependentType()) 7591 return false; 7592 7593 // Whether this was the first-declared instance of the constructor. 7594 // This affects whether we implicitly add an exception spec and constexpr. 7595 bool First = MD == MD->getCanonicalDecl(); 7596 7597 bool HadError = false; 7598 7599 // C++11 [dcl.fct.def.default]p1: 7600 // A function that is explicitly defaulted shall 7601 // -- be a special member function [...] (checked elsewhere), 7602 // -- have the same type (except for ref-qualifiers, and except that a 7603 // copy operation can take a non-const reference) as an implicit 7604 // declaration, and 7605 // -- not have default arguments. 7606 // C++2a changes the second bullet to instead delete the function if it's 7607 // defaulted on its first declaration, unless it's "an assignment operator, 7608 // and its return type differs or its parameter type is not a reference". 7609 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First; 7610 bool ShouldDeleteForTypeMismatch = false; 7611 unsigned ExpectedParams = 1; 7612 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor) 7613 ExpectedParams = 0; 7614 if (MD->getNumParams() != ExpectedParams) { 7615 // This checks for default arguments: a copy or move constructor with a 7616 // default argument is classified as a default constructor, and assignment 7617 // operations and destructors can't have default arguments. 7618 Diag(MD->getLocation(), diag::err_defaulted_special_member_params) 7619 << CSM << MD->getSourceRange(); 7620 HadError = true; 7621 } else if (MD->isVariadic()) { 7622 if (DeleteOnTypeMismatch) 7623 ShouldDeleteForTypeMismatch = true; 7624 else { 7625 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) 7626 << CSM << MD->getSourceRange(); 7627 HadError = true; 7628 } 7629 } 7630 7631 const FunctionProtoType *Type = MD->getType()->castAs<FunctionProtoType>(); 7632 7633 bool CanHaveConstParam = false; 7634 if (CSM == CXXCopyConstructor) 7635 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); 7636 else if (CSM == CXXCopyAssignment) 7637 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); 7638 7639 QualType ReturnType = Context.VoidTy; 7640 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) { 7641 // Check for return type matching. 7642 ReturnType = Type->getReturnType(); 7643 7644 QualType DeclType = Context.getTypeDeclType(RD); 7645 DeclType = Context.getElaboratedType(ETK_None, nullptr, DeclType, nullptr); 7646 DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace()); 7647 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType); 7648 7649 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) { 7650 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) 7651 << (CSM == CXXMoveAssignment) << ExpectedReturnType; 7652 HadError = true; 7653 } 7654 7655 // A defaulted special member cannot have cv-qualifiers. 7656 if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) { 7657 if (DeleteOnTypeMismatch) 7658 ShouldDeleteForTypeMismatch = true; 7659 else { 7660 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) 7661 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14; 7662 HadError = true; 7663 } 7664 } 7665 } 7666 7667 // Check for parameter type matching. 7668 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType(); 7669 bool HasConstParam = false; 7670 if (ExpectedParams && ArgType->isReferenceType()) { 7671 // Argument must be reference to possibly-const T. 7672 QualType ReferentType = ArgType->getPointeeType(); 7673 HasConstParam = ReferentType.isConstQualified(); 7674 7675 if (ReferentType.isVolatileQualified()) { 7676 if (DeleteOnTypeMismatch) 7677 ShouldDeleteForTypeMismatch = true; 7678 else { 7679 Diag(MD->getLocation(), 7680 diag::err_defaulted_special_member_volatile_param) << CSM; 7681 HadError = true; 7682 } 7683 } 7684 7685 if (HasConstParam && !CanHaveConstParam) { 7686 if (DeleteOnTypeMismatch) 7687 ShouldDeleteForTypeMismatch = true; 7688 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) { 7689 Diag(MD->getLocation(), 7690 diag::err_defaulted_special_member_copy_const_param) 7691 << (CSM == CXXCopyAssignment); 7692 // FIXME: Explain why this special member can't be const. 7693 HadError = true; 7694 } else { 7695 Diag(MD->getLocation(), 7696 diag::err_defaulted_special_member_move_const_param) 7697 << (CSM == CXXMoveAssignment); 7698 HadError = true; 7699 } 7700 } 7701 } else if (ExpectedParams) { 7702 // A copy assignment operator can take its argument by value, but a 7703 // defaulted one cannot. 7704 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument"); 7705 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); 7706 HadError = true; 7707 } 7708 7709 // C++11 [dcl.fct.def.default]p2: 7710 // An explicitly-defaulted function may be declared constexpr only if it 7711 // would have been implicitly declared as constexpr, 7712 // Do not apply this rule to members of class templates, since core issue 1358 7713 // makes such functions always instantiate to constexpr functions. For 7714 // functions which cannot be constexpr (for non-constructors in C++11 and for 7715 // destructors in C++14 and C++17), this is checked elsewhere. 7716 // 7717 // FIXME: This should not apply if the member is deleted. 7718 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM, 7719 HasConstParam); 7720 7721 // C++14 [dcl.constexpr]p6 (CWG DR647/CWG DR1358): 7722 // If the instantiated template specialization of a constexpr function 7723 // template or member function of a class template would fail to satisfy 7724 // the requirements for a constexpr function or constexpr constructor, that 7725 // specialization is still a constexpr function or constexpr constructor, 7726 // even though a call to such a function cannot appear in a constant 7727 // expression. 7728 if (MD->isTemplateInstantiation() && MD->isConstexpr()) 7729 Constexpr = true; 7730 7731 if ((getLangOpts().CPlusPlus20 || 7732 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD) 7733 : isa<CXXConstructorDecl>(MD))) && 7734 MD->isConstexpr() && !Constexpr && 7735 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { 7736 Diag(MD->getBeginLoc(), MD->isConsteval() 7737 ? diag::err_incorrect_defaulted_consteval 7738 : diag::err_incorrect_defaulted_constexpr) 7739 << CSM; 7740 // FIXME: Explain why the special member can't be constexpr. 7741 HadError = true; 7742 } 7743 7744 if (First) { 7745 // C++2a [dcl.fct.def.default]p3: 7746 // If a function is explicitly defaulted on its first declaration, it is 7747 // implicitly considered to be constexpr if the implicit declaration 7748 // would be. 7749 MD->setConstexprKind(Constexpr ? (MD->isConsteval() 7750 ? ConstexprSpecKind::Consteval 7751 : ConstexprSpecKind::Constexpr) 7752 : ConstexprSpecKind::Unspecified); 7753 7754 if (!Type->hasExceptionSpec()) { 7755 // C++2a [except.spec]p3: 7756 // If a declaration of a function does not have a noexcept-specifier 7757 // [and] is defaulted on its first declaration, [...] the exception 7758 // specification is as specified below 7759 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); 7760 EPI.ExceptionSpec.Type = EST_Unevaluated; 7761 EPI.ExceptionSpec.SourceDecl = MD; 7762 MD->setType(Context.getFunctionType( 7763 ReturnType, llvm::ArrayRef(&ArgType, ExpectedParams), EPI)); 7764 } 7765 } 7766 7767 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) { 7768 if (First) { 7769 SetDeclDeleted(MD, MD->getLocation()); 7770 if (!inTemplateInstantiation() && !HadError) { 7771 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM; 7772 if (ShouldDeleteForTypeMismatch) { 7773 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM; 7774 } else if (ShouldDeleteSpecialMember(MD, CSM, nullptr, 7775 /*Diagnose*/ true) && 7776 DefaultLoc.isValid()) { 7777 Diag(DefaultLoc, diag::note_replace_equals_default_to_delete) 7778 << FixItHint::CreateReplacement(DefaultLoc, "delete"); 7779 } 7780 } 7781 if (ShouldDeleteForTypeMismatch && !HadError) { 7782 Diag(MD->getLocation(), 7783 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM; 7784 } 7785 } else { 7786 // C++11 [dcl.fct.def.default]p4: 7787 // [For a] user-provided explicitly-defaulted function [...] if such a 7788 // function is implicitly defined as deleted, the program is ill-formed. 7789 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM; 7790 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl"); 7791 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 7792 HadError = true; 7793 } 7794 } 7795 7796 return HadError; 7797 } 7798 7799 namespace { 7800 /// Helper class for building and checking a defaulted comparison. 7801 /// 7802 /// Defaulted functions are built in two phases: 7803 /// 7804 /// * First, the set of operations that the function will perform are 7805 /// identified, and some of them are checked. If any of the checked 7806 /// operations is invalid in certain ways, the comparison function is 7807 /// defined as deleted and no body is built. 7808 /// * Then, if the function is not defined as deleted, the body is built. 7809 /// 7810 /// This is accomplished by performing two visitation steps over the eventual 7811 /// body of the function. 7812 template<typename Derived, typename ResultList, typename Result, 7813 typename Subobject> 7814 class DefaultedComparisonVisitor { 7815 public: 7816 using DefaultedComparisonKind = Sema::DefaultedComparisonKind; 7817 7818 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7819 DefaultedComparisonKind DCK) 7820 : S(S), RD(RD), FD(FD), DCK(DCK) { 7821 if (auto *Info = FD->getDefaultedFunctionInfo()) { 7822 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an 7823 // UnresolvedSet to avoid this copy. 7824 Fns.assign(Info->getUnqualifiedLookups().begin(), 7825 Info->getUnqualifiedLookups().end()); 7826 } 7827 } 7828 7829 ResultList visit() { 7830 // The type of an lvalue naming a parameter of this function. 7831 QualType ParamLvalType = 7832 FD->getParamDecl(0)->getType().getNonReferenceType(); 7833 7834 ResultList Results; 7835 7836 switch (DCK) { 7837 case DefaultedComparisonKind::None: 7838 llvm_unreachable("not a defaulted comparison"); 7839 7840 case DefaultedComparisonKind::Equal: 7841 case DefaultedComparisonKind::ThreeWay: 7842 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers()); 7843 return Results; 7844 7845 case DefaultedComparisonKind::NotEqual: 7846 case DefaultedComparisonKind::Relational: 7847 Results.add(getDerived().visitExpandedSubobject( 7848 ParamLvalType, getDerived().getCompleteObject())); 7849 return Results; 7850 } 7851 llvm_unreachable(""); 7852 } 7853 7854 protected: 7855 Derived &getDerived() { return static_cast<Derived&>(*this); } 7856 7857 /// Visit the expanded list of subobjects of the given type, as specified in 7858 /// C++2a [class.compare.default]. 7859 /// 7860 /// \return \c true if the ResultList object said we're done, \c false if not. 7861 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record, 7862 Qualifiers Quals) { 7863 // C++2a [class.compare.default]p4: 7864 // The direct base class subobjects of C 7865 for (CXXBaseSpecifier &Base : Record->bases()) 7866 if (Results.add(getDerived().visitSubobject( 7867 S.Context.getQualifiedType(Base.getType(), Quals), 7868 getDerived().getBase(&Base)))) 7869 return true; 7870 7871 // followed by the non-static data members of C 7872 for (FieldDecl *Field : Record->fields()) { 7873 // C++23 [class.bit]p2: 7874 // Unnamed bit-fields are not members ... 7875 if (Field->isUnnamedBitfield()) 7876 continue; 7877 // Recursively expand anonymous structs. 7878 if (Field->isAnonymousStructOrUnion()) { 7879 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(), 7880 Quals)) 7881 return true; 7882 continue; 7883 } 7884 7885 // Figure out the type of an lvalue denoting this field. 7886 Qualifiers FieldQuals = Quals; 7887 if (Field->isMutable()) 7888 FieldQuals.removeConst(); 7889 QualType FieldType = 7890 S.Context.getQualifiedType(Field->getType(), FieldQuals); 7891 7892 if (Results.add(getDerived().visitSubobject( 7893 FieldType, getDerived().getField(Field)))) 7894 return true; 7895 } 7896 7897 // form a list of subobjects. 7898 return false; 7899 } 7900 7901 Result visitSubobject(QualType Type, Subobject Subobj) { 7902 // In that list, any subobject of array type is recursively expanded 7903 const ArrayType *AT = S.Context.getAsArrayType(Type); 7904 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT)) 7905 return getDerived().visitSubobjectArray(CAT->getElementType(), 7906 CAT->getSize(), Subobj); 7907 return getDerived().visitExpandedSubobject(Type, Subobj); 7908 } 7909 7910 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size, 7911 Subobject Subobj) { 7912 return getDerived().visitSubobject(Type, Subobj); 7913 } 7914 7915 protected: 7916 Sema &S; 7917 CXXRecordDecl *RD; 7918 FunctionDecl *FD; 7919 DefaultedComparisonKind DCK; 7920 UnresolvedSet<16> Fns; 7921 }; 7922 7923 /// Information about a defaulted comparison, as determined by 7924 /// DefaultedComparisonAnalyzer. 7925 struct DefaultedComparisonInfo { 7926 bool Deleted = false; 7927 bool Constexpr = true; 7928 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering; 7929 7930 static DefaultedComparisonInfo deleted() { 7931 DefaultedComparisonInfo Deleted; 7932 Deleted.Deleted = true; 7933 return Deleted; 7934 } 7935 7936 bool add(const DefaultedComparisonInfo &R) { 7937 Deleted |= R.Deleted; 7938 Constexpr &= R.Constexpr; 7939 Category = commonComparisonType(Category, R.Category); 7940 return Deleted; 7941 } 7942 }; 7943 7944 /// An element in the expanded list of subobjects of a defaulted comparison, as 7945 /// specified in C++2a [class.compare.default]p4. 7946 struct DefaultedComparisonSubobject { 7947 enum { CompleteObject, Member, Base } Kind; 7948 NamedDecl *Decl; 7949 SourceLocation Loc; 7950 }; 7951 7952 /// A visitor over the notional body of a defaulted comparison that determines 7953 /// whether that body would be deleted or constexpr. 7954 class DefaultedComparisonAnalyzer 7955 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer, 7956 DefaultedComparisonInfo, 7957 DefaultedComparisonInfo, 7958 DefaultedComparisonSubobject> { 7959 public: 7960 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr }; 7961 7962 private: 7963 DiagnosticKind Diagnose; 7964 7965 public: 7966 using Base = DefaultedComparisonVisitor; 7967 using Result = DefaultedComparisonInfo; 7968 using Subobject = DefaultedComparisonSubobject; 7969 7970 friend Base; 7971 7972 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7973 DefaultedComparisonKind DCK, 7974 DiagnosticKind Diagnose = NoDiagnostics) 7975 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {} 7976 7977 Result visit() { 7978 if ((DCK == DefaultedComparisonKind::Equal || 7979 DCK == DefaultedComparisonKind::ThreeWay) && 7980 RD->hasVariantMembers()) { 7981 // C++2a [class.compare.default]p2 [P2002R0]: 7982 // A defaulted comparison operator function for class C is defined as 7983 // deleted if [...] C has variant members. 7984 if (Diagnose == ExplainDeleted) { 7985 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union) 7986 << FD << RD->isUnion() << RD; 7987 } 7988 return Result::deleted(); 7989 } 7990 7991 return Base::visit(); 7992 } 7993 7994 private: 7995 Subobject getCompleteObject() { 7996 return Subobject{Subobject::CompleteObject, RD, FD->getLocation()}; 7997 } 7998 7999 Subobject getBase(CXXBaseSpecifier *Base) { 8000 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(), 8001 Base->getBaseTypeLoc()}; 8002 } 8003 8004 Subobject getField(FieldDecl *Field) { 8005 return Subobject{Subobject::Member, Field, Field->getLocation()}; 8006 } 8007 8008 Result visitExpandedSubobject(QualType Type, Subobject Subobj) { 8009 // C++2a [class.compare.default]p2 [P2002R0]: 8010 // A defaulted <=> or == operator function for class C is defined as 8011 // deleted if any non-static data member of C is of reference type 8012 if (Type->isReferenceType()) { 8013 if (Diagnose == ExplainDeleted) { 8014 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member) 8015 << FD << RD; 8016 } 8017 return Result::deleted(); 8018 } 8019 8020 // [...] Let xi be an lvalue denoting the ith element [...] 8021 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue); 8022 Expr *Args[] = {&Xi, &Xi}; 8023 8024 // All operators start by trying to apply that same operator recursively. 8025 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 8026 assert(OO != OO_None && "not an overloaded operator!"); 8027 return visitBinaryOperator(OO, Args, Subobj); 8028 } 8029 8030 Result 8031 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args, 8032 Subobject Subobj, 8033 OverloadCandidateSet *SpaceshipCandidates = nullptr) { 8034 // Note that there is no need to consider rewritten candidates here if 8035 // we've already found there is no viable 'operator<=>' candidate (and are 8036 // considering synthesizing a '<=>' from '==' and '<'). 8037 OverloadCandidateSet CandidateSet( 8038 FD->getLocation(), OverloadCandidateSet::CSK_Operator, 8039 OverloadCandidateSet::OperatorRewriteInfo( 8040 OO, FD->getLocation(), 8041 /*AllowRewrittenCandidates=*/!SpaceshipCandidates)); 8042 8043 /// C++2a [class.compare.default]p1 [P2002R0]: 8044 /// [...] the defaulted function itself is never a candidate for overload 8045 /// resolution [...] 8046 CandidateSet.exclude(FD); 8047 8048 if (Args[0]->getType()->isOverloadableType()) 8049 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args); 8050 else 8051 // FIXME: We determine whether this is a valid expression by checking to 8052 // see if there's a viable builtin operator candidate for it. That isn't 8053 // really what the rules ask us to do, but should give the right results. 8054 S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet); 8055 8056 Result R; 8057 8058 OverloadCandidateSet::iterator Best; 8059 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) { 8060 case OR_Success: { 8061 // C++2a [class.compare.secondary]p2 [P2002R0]: 8062 // The operator function [...] is defined as deleted if [...] the 8063 // candidate selected by overload resolution is not a rewritten 8064 // candidate. 8065 if ((DCK == DefaultedComparisonKind::NotEqual || 8066 DCK == DefaultedComparisonKind::Relational) && 8067 !Best->RewriteKind) { 8068 if (Diagnose == ExplainDeleted) { 8069 if (Best->Function) { 8070 S.Diag(Best->Function->getLocation(), 8071 diag::note_defaulted_comparison_not_rewritten_callee) 8072 << FD; 8073 } else { 8074 assert(Best->Conversions.size() == 2 && 8075 Best->Conversions[0].isUserDefined() && 8076 "non-user-defined conversion from class to built-in " 8077 "comparison"); 8078 S.Diag(Best->Conversions[0] 8079 .UserDefined.FoundConversionFunction.getDecl() 8080 ->getLocation(), 8081 diag::note_defaulted_comparison_not_rewritten_conversion) 8082 << FD; 8083 } 8084 } 8085 return Result::deleted(); 8086 } 8087 8088 // Throughout C++2a [class.compare]: if overload resolution does not 8089 // result in a usable function, the candidate function is defined as 8090 // deleted. This requires that we selected an accessible function. 8091 // 8092 // Note that this only considers the access of the function when named 8093 // within the type of the subobject, and not the access path for any 8094 // derived-to-base conversion. 8095 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl(); 8096 if (ArgClass && Best->FoundDecl.getDecl() && 8097 Best->FoundDecl.getDecl()->isCXXClassMember()) { 8098 QualType ObjectType = Subobj.Kind == Subobject::Member 8099 ? Args[0]->getType() 8100 : S.Context.getRecordType(RD); 8101 if (!S.isMemberAccessibleForDeletion( 8102 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc, 8103 Diagnose == ExplainDeleted 8104 ? S.PDiag(diag::note_defaulted_comparison_inaccessible) 8105 << FD << Subobj.Kind << Subobj.Decl 8106 : S.PDiag())) 8107 return Result::deleted(); 8108 } 8109 8110 bool NeedsDeducing = 8111 OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType(); 8112 8113 if (FunctionDecl *BestFD = Best->Function) { 8114 // C++2a [class.compare.default]p3 [P2002R0]: 8115 // A defaulted comparison function is constexpr-compatible if 8116 // [...] no overlod resolution performed [...] results in a 8117 // non-constexpr function. 8118 assert(!BestFD->isDeleted() && "wrong overload resolution result"); 8119 // If it's not constexpr, explain why not. 8120 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) { 8121 if (Subobj.Kind != Subobject::CompleteObject) 8122 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr) 8123 << Subobj.Kind << Subobj.Decl; 8124 S.Diag(BestFD->getLocation(), 8125 diag::note_defaulted_comparison_not_constexpr_here); 8126 // Bail out after explaining; we don't want any more notes. 8127 return Result::deleted(); 8128 } 8129 R.Constexpr &= BestFD->isConstexpr(); 8130 8131 if (NeedsDeducing) { 8132 // If any callee has an undeduced return type, deduce it now. 8133 // FIXME: It's not clear how a failure here should be handled. For 8134 // now, we produce an eager diagnostic, because that is forward 8135 // compatible with most (all?) other reasonable options. 8136 if (BestFD->getReturnType()->isUndeducedType() && 8137 S.DeduceReturnType(BestFD, FD->getLocation(), 8138 /*Diagnose=*/false)) { 8139 // Don't produce a duplicate error when asked to explain why the 8140 // comparison is deleted: we diagnosed that when initially checking 8141 // the defaulted operator. 8142 if (Diagnose == NoDiagnostics) { 8143 S.Diag( 8144 FD->getLocation(), 8145 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto) 8146 << Subobj.Kind << Subobj.Decl; 8147 S.Diag( 8148 Subobj.Loc, 8149 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto) 8150 << Subobj.Kind << Subobj.Decl; 8151 S.Diag(BestFD->getLocation(), 8152 diag::note_defaulted_comparison_cannot_deduce_callee) 8153 << Subobj.Kind << Subobj.Decl; 8154 } 8155 return Result::deleted(); 8156 } 8157 auto *Info = S.Context.CompCategories.lookupInfoForType( 8158 BestFD->getCallResultType()); 8159 if (!Info) { 8160 if (Diagnose == ExplainDeleted) { 8161 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce) 8162 << Subobj.Kind << Subobj.Decl 8163 << BestFD->getCallResultType().withoutLocalFastQualifiers(); 8164 S.Diag(BestFD->getLocation(), 8165 diag::note_defaulted_comparison_cannot_deduce_callee) 8166 << Subobj.Kind << Subobj.Decl; 8167 } 8168 return Result::deleted(); 8169 } 8170 R.Category = Info->Kind; 8171 } 8172 } else { 8173 QualType T = Best->BuiltinParamTypes[0]; 8174 assert(T == Best->BuiltinParamTypes[1] && 8175 "builtin comparison for different types?"); 8176 assert(Best->BuiltinParamTypes[2].isNull() && 8177 "invalid builtin comparison"); 8178 8179 if (NeedsDeducing) { 8180 std::optional<ComparisonCategoryType> Cat = 8181 getComparisonCategoryForBuiltinCmp(T); 8182 assert(Cat && "no category for builtin comparison?"); 8183 R.Category = *Cat; 8184 } 8185 } 8186 8187 // Note that we might be rewriting to a different operator. That call is 8188 // not considered until we come to actually build the comparison function. 8189 break; 8190 } 8191 8192 case OR_Ambiguous: 8193 if (Diagnose == ExplainDeleted) { 8194 unsigned Kind = 0; 8195 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship) 8196 Kind = OO == OO_EqualEqual ? 1 : 2; 8197 CandidateSet.NoteCandidates( 8198 PartialDiagnosticAt( 8199 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous) 8200 << FD << Kind << Subobj.Kind << Subobj.Decl), 8201 S, OCD_AmbiguousCandidates, Args); 8202 } 8203 R = Result::deleted(); 8204 break; 8205 8206 case OR_Deleted: 8207 if (Diagnose == ExplainDeleted) { 8208 if ((DCK == DefaultedComparisonKind::NotEqual || 8209 DCK == DefaultedComparisonKind::Relational) && 8210 !Best->RewriteKind) { 8211 S.Diag(Best->Function->getLocation(), 8212 diag::note_defaulted_comparison_not_rewritten_callee) 8213 << FD; 8214 } else { 8215 S.Diag(Subobj.Loc, 8216 diag::note_defaulted_comparison_calls_deleted) 8217 << FD << Subobj.Kind << Subobj.Decl; 8218 S.NoteDeletedFunction(Best->Function); 8219 } 8220 } 8221 R = Result::deleted(); 8222 break; 8223 8224 case OR_No_Viable_Function: 8225 // If there's no usable candidate, we're done unless we can rewrite a 8226 // '<=>' in terms of '==' and '<'. 8227 if (OO == OO_Spaceship && 8228 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) { 8229 // For any kind of comparison category return type, we need a usable 8230 // '==' and a usable '<'. 8231 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj, 8232 &CandidateSet))) 8233 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet)); 8234 break; 8235 } 8236 8237 if (Diagnose == ExplainDeleted) { 8238 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function) 8239 << FD << (OO == OO_EqualEqual || OO == OO_ExclaimEqual) 8240 << Subobj.Kind << Subobj.Decl; 8241 8242 // For a three-way comparison, list both the candidates for the 8243 // original operator and the candidates for the synthesized operator. 8244 if (SpaceshipCandidates) { 8245 SpaceshipCandidates->NoteCandidates( 8246 S, Args, 8247 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates, 8248 Args, FD->getLocation())); 8249 S.Diag(Subobj.Loc, 8250 diag::note_defaulted_comparison_no_viable_function_synthesized) 8251 << (OO == OO_EqualEqual ? 0 : 1); 8252 } 8253 8254 CandidateSet.NoteCandidates( 8255 S, Args, 8256 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args, 8257 FD->getLocation())); 8258 } 8259 R = Result::deleted(); 8260 break; 8261 } 8262 8263 return R; 8264 } 8265 }; 8266 8267 /// A list of statements. 8268 struct StmtListResult { 8269 bool IsInvalid = false; 8270 llvm::SmallVector<Stmt*, 16> Stmts; 8271 8272 bool add(const StmtResult &S) { 8273 IsInvalid |= S.isInvalid(); 8274 if (IsInvalid) 8275 return true; 8276 Stmts.push_back(S.get()); 8277 return false; 8278 } 8279 }; 8280 8281 /// A visitor over the notional body of a defaulted comparison that synthesizes 8282 /// the actual body. 8283 class DefaultedComparisonSynthesizer 8284 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer, 8285 StmtListResult, StmtResult, 8286 std::pair<ExprResult, ExprResult>> { 8287 SourceLocation Loc; 8288 unsigned ArrayDepth = 0; 8289 8290 public: 8291 using Base = DefaultedComparisonVisitor; 8292 using ExprPair = std::pair<ExprResult, ExprResult>; 8293 8294 friend Base; 8295 8296 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 8297 DefaultedComparisonKind DCK, 8298 SourceLocation BodyLoc) 8299 : Base(S, RD, FD, DCK), Loc(BodyLoc) {} 8300 8301 /// Build a suitable function body for this defaulted comparison operator. 8302 StmtResult build() { 8303 Sema::CompoundScopeRAII CompoundScope(S); 8304 8305 StmtListResult Stmts = visit(); 8306 if (Stmts.IsInvalid) 8307 return StmtError(); 8308 8309 ExprResult RetVal; 8310 switch (DCK) { 8311 case DefaultedComparisonKind::None: 8312 llvm_unreachable("not a defaulted comparison"); 8313 8314 case DefaultedComparisonKind::Equal: { 8315 // C++2a [class.eq]p3: 8316 // [...] compar[e] the corresponding elements [...] until the first 8317 // index i where xi == yi yields [...] false. If no such index exists, 8318 // V is true. Otherwise, V is false. 8319 // 8320 // Join the comparisons with '&&'s and return the result. Use a right 8321 // fold (traversing the conditions right-to-left), because that 8322 // short-circuits more naturally. 8323 auto OldStmts = std::move(Stmts.Stmts); 8324 Stmts.Stmts.clear(); 8325 ExprResult CmpSoFar; 8326 // Finish a particular comparison chain. 8327 auto FinishCmp = [&] { 8328 if (Expr *Prior = CmpSoFar.get()) { 8329 // Convert the last expression to 'return ...;' 8330 if (RetVal.isUnset() && Stmts.Stmts.empty()) 8331 RetVal = CmpSoFar; 8332 // Convert any prior comparison to 'if (!(...)) return false;' 8333 else if (Stmts.add(buildIfNotCondReturnFalse(Prior))) 8334 return true; 8335 CmpSoFar = ExprResult(); 8336 } 8337 return false; 8338 }; 8339 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) { 8340 Expr *E = dyn_cast<Expr>(EAsStmt); 8341 if (!E) { 8342 // Found an array comparison. 8343 if (FinishCmp() || Stmts.add(EAsStmt)) 8344 return StmtError(); 8345 continue; 8346 } 8347 8348 if (CmpSoFar.isUnset()) { 8349 CmpSoFar = E; 8350 continue; 8351 } 8352 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get()); 8353 if (CmpSoFar.isInvalid()) 8354 return StmtError(); 8355 } 8356 if (FinishCmp()) 8357 return StmtError(); 8358 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end()); 8359 // If no such index exists, V is true. 8360 if (RetVal.isUnset()) 8361 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true); 8362 break; 8363 } 8364 8365 case DefaultedComparisonKind::ThreeWay: { 8366 // Per C++2a [class.spaceship]p3, as a fallback add: 8367 // return static_cast<R>(std::strong_ordering::equal); 8368 QualType StrongOrdering = S.CheckComparisonCategoryType( 8369 ComparisonCategoryType::StrongOrdering, Loc, 8370 Sema::ComparisonCategoryUsage::DefaultedOperator); 8371 if (StrongOrdering.isNull()) 8372 return StmtError(); 8373 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering) 8374 .getValueInfo(ComparisonCategoryResult::Equal) 8375 ->VD; 8376 RetVal = getDecl(EqualVD); 8377 if (RetVal.isInvalid()) 8378 return StmtError(); 8379 RetVal = buildStaticCastToR(RetVal.get()); 8380 break; 8381 } 8382 8383 case DefaultedComparisonKind::NotEqual: 8384 case DefaultedComparisonKind::Relational: 8385 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val()); 8386 break; 8387 } 8388 8389 // Build the final return statement. 8390 if (RetVal.isInvalid()) 8391 return StmtError(); 8392 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get()); 8393 if (ReturnStmt.isInvalid()) 8394 return StmtError(); 8395 Stmts.Stmts.push_back(ReturnStmt.get()); 8396 8397 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false); 8398 } 8399 8400 private: 8401 ExprResult getDecl(ValueDecl *VD) { 8402 return S.BuildDeclarationNameExpr( 8403 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD); 8404 } 8405 8406 ExprResult getParam(unsigned I) { 8407 ParmVarDecl *PD = FD->getParamDecl(I); 8408 return getDecl(PD); 8409 } 8410 8411 ExprPair getCompleteObject() { 8412 unsigned Param = 0; 8413 ExprResult LHS; 8414 if (isa<CXXMethodDecl>(FD)) { 8415 // LHS is '*this'. 8416 LHS = S.ActOnCXXThis(Loc); 8417 if (!LHS.isInvalid()) 8418 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get()); 8419 } else { 8420 LHS = getParam(Param++); 8421 } 8422 ExprResult RHS = getParam(Param++); 8423 assert(Param == FD->getNumParams()); 8424 return {LHS, RHS}; 8425 } 8426 8427 ExprPair getBase(CXXBaseSpecifier *Base) { 8428 ExprPair Obj = getCompleteObject(); 8429 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8430 return {ExprError(), ExprError()}; 8431 CXXCastPath Path = {Base}; 8432 return {S.ImpCastExprToType(Obj.first.get(), Base->getType(), 8433 CK_DerivedToBase, VK_LValue, &Path), 8434 S.ImpCastExprToType(Obj.second.get(), Base->getType(), 8435 CK_DerivedToBase, VK_LValue, &Path)}; 8436 } 8437 8438 ExprPair getField(FieldDecl *Field) { 8439 ExprPair Obj = getCompleteObject(); 8440 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8441 return {ExprError(), ExprError()}; 8442 8443 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess()); 8444 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc); 8445 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc, 8446 CXXScopeSpec(), Field, Found, NameInfo), 8447 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc, 8448 CXXScopeSpec(), Field, Found, NameInfo)}; 8449 } 8450 8451 // FIXME: When expanding a subobject, register a note in the code synthesis 8452 // stack to say which subobject we're comparing. 8453 8454 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) { 8455 if (Cond.isInvalid()) 8456 return StmtError(); 8457 8458 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get()); 8459 if (NotCond.isInvalid()) 8460 return StmtError(); 8461 8462 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false); 8463 assert(!False.isInvalid() && "should never fail"); 8464 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get()); 8465 if (ReturnFalse.isInvalid()) 8466 return StmtError(); 8467 8468 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, nullptr, 8469 S.ActOnCondition(nullptr, Loc, NotCond.get(), 8470 Sema::ConditionKind::Boolean), 8471 Loc, ReturnFalse.get(), SourceLocation(), nullptr); 8472 } 8473 8474 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size, 8475 ExprPair Subobj) { 8476 QualType SizeType = S.Context.getSizeType(); 8477 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType)); 8478 8479 // Build 'size_t i$n = 0'. 8480 IdentifierInfo *IterationVarName = nullptr; 8481 { 8482 SmallString<8> Str; 8483 llvm::raw_svector_ostream OS(Str); 8484 OS << "i" << ArrayDepth; 8485 IterationVarName = &S.Context.Idents.get(OS.str()); 8486 } 8487 VarDecl *IterationVar = VarDecl::Create( 8488 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType, 8489 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None); 8490 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 8491 IterationVar->setInit( 8492 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 8493 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc); 8494 8495 auto IterRef = [&] { 8496 ExprResult Ref = S.BuildDeclarationNameExpr( 8497 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc), 8498 IterationVar); 8499 assert(!Ref.isInvalid() && "can't reference our own variable?"); 8500 return Ref.get(); 8501 }; 8502 8503 // Build 'i$n != Size'. 8504 ExprResult Cond = S.CreateBuiltinBinOp( 8505 Loc, BO_NE, IterRef(), 8506 IntegerLiteral::Create(S.Context, Size, SizeType, Loc)); 8507 assert(!Cond.isInvalid() && "should never fail"); 8508 8509 // Build '++i$n'. 8510 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef()); 8511 assert(!Inc.isInvalid() && "should never fail"); 8512 8513 // Build 'a[i$n]' and 'b[i$n]'. 8514 auto Index = [&](ExprResult E) { 8515 if (E.isInvalid()) 8516 return ExprError(); 8517 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc); 8518 }; 8519 Subobj.first = Index(Subobj.first); 8520 Subobj.second = Index(Subobj.second); 8521 8522 // Compare the array elements. 8523 ++ArrayDepth; 8524 StmtResult Substmt = visitSubobject(Type, Subobj); 8525 --ArrayDepth; 8526 8527 if (Substmt.isInvalid()) 8528 return StmtError(); 8529 8530 // For the inner level of an 'operator==', build 'if (!cmp) return false;'. 8531 // For outer levels or for an 'operator<=>' we already have a suitable 8532 // statement that returns as necessary. 8533 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) { 8534 assert(DCK == DefaultedComparisonKind::Equal && 8535 "should have non-expression statement"); 8536 Substmt = buildIfNotCondReturnFalse(ElemCmp); 8537 if (Substmt.isInvalid()) 8538 return StmtError(); 8539 } 8540 8541 // Build 'for (...) ...' 8542 return S.ActOnForStmt(Loc, Loc, Init, 8543 S.ActOnCondition(nullptr, Loc, Cond.get(), 8544 Sema::ConditionKind::Boolean), 8545 S.MakeFullDiscardedValueExpr(Inc.get()), Loc, 8546 Substmt.get()); 8547 } 8548 8549 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) { 8550 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8551 return StmtError(); 8552 8553 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 8554 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO); 8555 ExprResult Op; 8556 if (Type->isOverloadableType()) 8557 Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(), 8558 Obj.second.get(), /*PerformADL=*/true, 8559 /*AllowRewrittenCandidates=*/true, FD); 8560 else 8561 Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get()); 8562 if (Op.isInvalid()) 8563 return StmtError(); 8564 8565 switch (DCK) { 8566 case DefaultedComparisonKind::None: 8567 llvm_unreachable("not a defaulted comparison"); 8568 8569 case DefaultedComparisonKind::Equal: 8570 // Per C++2a [class.eq]p2, each comparison is individually contextually 8571 // converted to bool. 8572 Op = S.PerformContextuallyConvertToBool(Op.get()); 8573 if (Op.isInvalid()) 8574 return StmtError(); 8575 return Op.get(); 8576 8577 case DefaultedComparisonKind::ThreeWay: { 8578 // Per C++2a [class.spaceship]p3, form: 8579 // if (R cmp = static_cast<R>(op); cmp != 0) 8580 // return cmp; 8581 QualType R = FD->getReturnType(); 8582 Op = buildStaticCastToR(Op.get()); 8583 if (Op.isInvalid()) 8584 return StmtError(); 8585 8586 // R cmp = ...; 8587 IdentifierInfo *Name = &S.Context.Idents.get("cmp"); 8588 VarDecl *VD = 8589 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R, 8590 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None); 8591 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false); 8592 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc); 8593 8594 // cmp != 0 8595 ExprResult VDRef = getDecl(VD); 8596 if (VDRef.isInvalid()) 8597 return StmtError(); 8598 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0); 8599 Expr *Zero = 8600 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc); 8601 ExprResult Comp; 8602 if (VDRef.get()->getType()->isOverloadableType()) 8603 Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true, 8604 true, FD); 8605 else 8606 Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero); 8607 if (Comp.isInvalid()) 8608 return StmtError(); 8609 Sema::ConditionResult Cond = S.ActOnCondition( 8610 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean); 8611 if (Cond.isInvalid()) 8612 return StmtError(); 8613 8614 // return cmp; 8615 VDRef = getDecl(VD); 8616 if (VDRef.isInvalid()) 8617 return StmtError(); 8618 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get()); 8619 if (ReturnStmt.isInvalid()) 8620 return StmtError(); 8621 8622 // if (...) 8623 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, InitStmt, Cond, 8624 Loc, ReturnStmt.get(), 8625 /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr); 8626 } 8627 8628 case DefaultedComparisonKind::NotEqual: 8629 case DefaultedComparisonKind::Relational: 8630 // C++2a [class.compare.secondary]p2: 8631 // Otherwise, the operator function yields x @ y. 8632 return Op.get(); 8633 } 8634 llvm_unreachable(""); 8635 } 8636 8637 /// Build "static_cast<R>(E)". 8638 ExprResult buildStaticCastToR(Expr *E) { 8639 QualType R = FD->getReturnType(); 8640 assert(!R->isUndeducedType() && "type should have been deduced already"); 8641 8642 // Don't bother forming a no-op cast in the common case. 8643 if (E->isPRValue() && S.Context.hasSameType(E->getType(), R)) 8644 return E; 8645 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast, 8646 S.Context.getTrivialTypeSourceInfo(R, Loc), E, 8647 SourceRange(Loc, Loc), SourceRange(Loc, Loc)); 8648 } 8649 }; 8650 } 8651 8652 /// Perform the unqualified lookups that might be needed to form a defaulted 8653 /// comparison function for the given operator. 8654 static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S, 8655 UnresolvedSetImpl &Operators, 8656 OverloadedOperatorKind Op) { 8657 auto Lookup = [&](OverloadedOperatorKind OO) { 8658 Self.LookupOverloadedOperatorName(OO, S, Operators); 8659 }; 8660 8661 // Every defaulted operator looks up itself. 8662 Lookup(Op); 8663 // ... and the rewritten form of itself, if any. 8664 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op)) 8665 Lookup(ExtraOp); 8666 8667 // For 'operator<=>', we also form a 'cmp != 0' expression, and might 8668 // synthesize a three-way comparison from '<' and '=='. In a dependent 8669 // context, we also need to look up '==' in case we implicitly declare a 8670 // defaulted 'operator=='. 8671 if (Op == OO_Spaceship) { 8672 Lookup(OO_ExclaimEqual); 8673 Lookup(OO_Less); 8674 Lookup(OO_EqualEqual); 8675 } 8676 } 8677 8678 bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD, 8679 DefaultedComparisonKind DCK) { 8680 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison"); 8681 8682 // Perform any unqualified lookups we're going to need to default this 8683 // function. 8684 if (S) { 8685 UnresolvedSet<32> Operators; 8686 lookupOperatorsForDefaultedComparison(*this, S, Operators, 8687 FD->getOverloadedOperator()); 8688 FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create( 8689 Context, Operators.pairs())); 8690 } 8691 8692 // C++2a [class.compare.default]p1: 8693 // A defaulted comparison operator function for some class C shall be a 8694 // non-template function declared in the member-specification of C that is 8695 // -- a non-static const non-volatile member of C having one parameter of 8696 // type const C& and either no ref-qualifier or the ref-qualifier &, or 8697 // -- a friend of C having two parameters of type const C& or two 8698 // parameters of type C. 8699 8700 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()); 8701 bool IsMethod = isa<CXXMethodDecl>(FD); 8702 if (IsMethod) { 8703 auto *MD = cast<CXXMethodDecl>(FD); 8704 assert(!MD->isStatic() && "comparison function cannot be a static member"); 8705 8706 if (MD->getRefQualifier() == RQ_RValue) { 8707 Diag(MD->getLocation(), diag::err_ref_qualifier_comparison_operator); 8708 8709 // Remove the ref qualifier to recover. 8710 const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); 8711 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8712 EPI.RefQualifier = RQ_None; 8713 MD->setType(Context.getFunctionType(FPT->getReturnType(), 8714 FPT->getParamTypes(), EPI)); 8715 } 8716 8717 // If we're out-of-class, this is the class we're comparing. 8718 if (!RD) 8719 RD = MD->getParent(); 8720 8721 if (!MD->isConst()) { 8722 SourceLocation InsertLoc; 8723 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc()) 8724 InsertLoc = getLocForEndOfToken(Loc.getRParenLoc()); 8725 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8726 // corresponding defaulted 'operator<=>' already. 8727 if (!MD->isImplicit()) { 8728 Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const) 8729 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const"); 8730 } 8731 8732 // Add the 'const' to the type to recover. 8733 const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); 8734 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8735 EPI.TypeQuals.addConst(); 8736 MD->setType(Context.getFunctionType(FPT->getReturnType(), 8737 FPT->getParamTypes(), EPI)); 8738 } 8739 8740 if (MD->isVolatile()) { 8741 Diag(MD->getLocation(), diag::err_volatile_comparison_operator); 8742 8743 // Remove the 'volatile' from the type to recover. 8744 const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); 8745 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8746 EPI.TypeQuals.removeVolatile(); 8747 MD->setType(Context.getFunctionType(FPT->getReturnType(), 8748 FPT->getParamTypes(), EPI)); 8749 } 8750 } 8751 8752 if (FD->getNumParams() != (IsMethod ? 1 : 2)) { 8753 // Let's not worry about using a variadic template pack here -- who would do 8754 // such a thing? 8755 Diag(FD->getLocation(), diag::err_defaulted_comparison_num_args) 8756 << int(IsMethod) << int(DCK); 8757 return true; 8758 } 8759 8760 const ParmVarDecl *KnownParm = nullptr; 8761 for (const ParmVarDecl *Param : FD->parameters()) { 8762 QualType ParmTy = Param->getType(); 8763 8764 if (!KnownParm) { 8765 auto CTy = ParmTy; 8766 // Is it `T const &`? 8767 bool Ok = !IsMethod; 8768 QualType ExpectedTy; 8769 if (RD) 8770 ExpectedTy = Context.getRecordType(RD); 8771 if (auto *Ref = CTy->getAs<ReferenceType>()) { 8772 CTy = Ref->getPointeeType(); 8773 if (RD) 8774 ExpectedTy.addConst(); 8775 Ok = true; 8776 } 8777 8778 // Is T a class? 8779 if (!Ok) { 8780 } else if (RD) { 8781 if (!RD->isDependentType() && !Context.hasSameType(CTy, ExpectedTy)) 8782 Ok = false; 8783 } else if (auto *CRD = CTy->getAsRecordDecl()) { 8784 RD = cast<CXXRecordDecl>(CRD); 8785 } else { 8786 Ok = false; 8787 } 8788 8789 if (Ok) { 8790 KnownParm = Param; 8791 } else { 8792 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8793 // corresponding defaulted 'operator<=>' already. 8794 if (!FD->isImplicit()) { 8795 if (RD) { 8796 QualType PlainTy = Context.getRecordType(RD); 8797 QualType RefTy = 8798 Context.getLValueReferenceType(PlainTy.withConst()); 8799 Diag(FD->getLocation(), diag::err_defaulted_comparison_param) 8800 << int(DCK) << ParmTy << RefTy << int(!IsMethod) << PlainTy 8801 << Param->getSourceRange(); 8802 } else { 8803 assert(!IsMethod && "should know expected type for method"); 8804 Diag(FD->getLocation(), 8805 diag::err_defaulted_comparison_param_unknown) 8806 << int(DCK) << ParmTy << Param->getSourceRange(); 8807 } 8808 } 8809 return true; 8810 } 8811 } else if (!Context.hasSameType(KnownParm->getType(), ParmTy)) { 8812 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch) 8813 << int(DCK) << KnownParm->getType() << KnownParm->getSourceRange() 8814 << ParmTy << Param->getSourceRange(); 8815 return true; 8816 } 8817 } 8818 8819 assert(RD && "must have determined class"); 8820 if (IsMethod) { 8821 } else if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 8822 // In-class, must be a friend decl. 8823 assert(FD->getFriendObjectKind() && "expected a friend declaration"); 8824 } else { 8825 // Out of class, require the defaulted comparison to be a friend (of a 8826 // complete type). 8827 if (RequireCompleteType(FD->getLocation(), Context.getRecordType(RD), 8828 diag::err_defaulted_comparison_not_friend, int(DCK), 8829 int(1))) 8830 return true; 8831 8832 if (llvm::none_of(RD->friends(), [&](const FriendDecl *F) { 8833 return FD->getCanonicalDecl() == 8834 F->getFriendDecl()->getCanonicalDecl(); 8835 })) { 8836 Diag(FD->getLocation(), diag::err_defaulted_comparison_not_friend) 8837 << int(DCK) << int(0) << RD; 8838 Diag(RD->getCanonicalDecl()->getLocation(), diag::note_declared_at); 8839 return true; 8840 } 8841 } 8842 8843 // C++2a [class.eq]p1, [class.rel]p1: 8844 // A [defaulted comparison other than <=>] shall have a declared return 8845 // type bool. 8846 if (DCK != DefaultedComparisonKind::ThreeWay && 8847 !FD->getDeclaredReturnType()->isDependentType() && 8848 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) { 8849 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool) 8850 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy 8851 << FD->getReturnTypeSourceRange(); 8852 return true; 8853 } 8854 // C++2a [class.spaceship]p2 [P2002R0]: 8855 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise, 8856 // R shall not contain a placeholder type. 8857 if (QualType RT = FD->getDeclaredReturnType(); 8858 DCK == DefaultedComparisonKind::ThreeWay && 8859 RT->getContainedDeducedType() && 8860 (!Context.hasSameType(RT, Context.getAutoDeductType()) || 8861 RT->getContainedAutoType()->isConstrained())) { 8862 Diag(FD->getLocation(), 8863 diag::err_defaulted_comparison_deduced_return_type_not_auto) 8864 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy 8865 << FD->getReturnTypeSourceRange(); 8866 return true; 8867 } 8868 8869 // For a defaulted function in a dependent class, defer all remaining checks 8870 // until instantiation. 8871 if (RD->isDependentType()) 8872 return false; 8873 8874 // Determine whether the function should be defined as deleted. 8875 DefaultedComparisonInfo Info = 8876 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit(); 8877 8878 bool First = FD == FD->getCanonicalDecl(); 8879 8880 if (!First) { 8881 if (Info.Deleted) { 8882 // C++11 [dcl.fct.def.default]p4: 8883 // [For a] user-provided explicitly-defaulted function [...] if such a 8884 // function is implicitly defined as deleted, the program is ill-formed. 8885 // 8886 // This is really just a consequence of the general rule that you can 8887 // only delete a function on its first declaration. 8888 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes) 8889 << FD->isImplicit() << (int)DCK; 8890 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8891 DefaultedComparisonAnalyzer::ExplainDeleted) 8892 .visit(); 8893 return true; 8894 } 8895 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 8896 // C++20 [class.compare.default]p1: 8897 // [...] A definition of a comparison operator as defaulted that appears 8898 // in a class shall be the first declaration of that function. 8899 Diag(FD->getLocation(), diag::err_non_first_default_compare_in_class) 8900 << (int)DCK; 8901 Diag(FD->getCanonicalDecl()->getLocation(), 8902 diag::note_previous_declaration); 8903 return true; 8904 } 8905 } 8906 8907 // If we want to delete the function, then do so; there's nothing else to 8908 // check in that case. 8909 if (Info.Deleted) { 8910 SetDeclDeleted(FD, FD->getLocation()); 8911 if (!inTemplateInstantiation() && !FD->isImplicit()) { 8912 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted) 8913 << (int)DCK; 8914 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8915 DefaultedComparisonAnalyzer::ExplainDeleted) 8916 .visit(); 8917 if (FD->getDefaultLoc().isValid()) 8918 Diag(FD->getDefaultLoc(), diag::note_replace_equals_default_to_delete) 8919 << FixItHint::CreateReplacement(FD->getDefaultLoc(), "delete"); 8920 } 8921 return false; 8922 } 8923 8924 // C++2a [class.spaceship]p2: 8925 // The return type is deduced as the common comparison type of R0, R1, ... 8926 if (DCK == DefaultedComparisonKind::ThreeWay && 8927 FD->getDeclaredReturnType()->isUndeducedAutoType()) { 8928 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin(); 8929 if (RetLoc.isInvalid()) 8930 RetLoc = FD->getBeginLoc(); 8931 // FIXME: Should we really care whether we have the complete type and the 8932 // 'enumerator' constants here? A forward declaration seems sufficient. 8933 QualType Cat = CheckComparisonCategoryType( 8934 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator); 8935 if (Cat.isNull()) 8936 return true; 8937 Context.adjustDeducedFunctionResultType( 8938 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat)); 8939 } 8940 8941 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8942 // An explicitly-defaulted function that is not defined as deleted may be 8943 // declared constexpr or consteval only if it is constexpr-compatible. 8944 // C++2a [class.compare.default]p3 [P2002R0]: 8945 // A defaulted comparison function is constexpr-compatible if it satisfies 8946 // the requirements for a constexpr function [...] 8947 // The only relevant requirements are that the parameter and return types are 8948 // literal types. The remaining conditions are checked by the analyzer. 8949 // 8950 // We support P2448R2 in language modes earlier than C++23 as an extension. 8951 // The concept of constexpr-compatible was removed. 8952 // C++23 [dcl.fct.def.default]p3 [P2448R2] 8953 // A function explicitly defaulted on its first declaration is implicitly 8954 // inline, and is implicitly constexpr if it is constexpr-suitable. 8955 // C++23 [dcl.constexpr]p3 8956 // A function is constexpr-suitable if 8957 // - it is not a coroutine, and 8958 // - if the function is a constructor or destructor, its class does not 8959 // have any virtual base classes. 8960 if (FD->isConstexpr()) { 8961 if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) && 8962 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) && 8963 !Info.Constexpr) { 8964 Diag(FD->getBeginLoc(), 8965 getLangOpts().CPlusPlus23 8966 ? diag::warn_cxx23_compat_defaulted_comparison_constexpr_mismatch 8967 : diag::ext_defaulted_comparison_constexpr_mismatch) 8968 << FD->isImplicit() << (int)DCK << FD->isConsteval(); 8969 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8970 DefaultedComparisonAnalyzer::ExplainConstexpr) 8971 .visit(); 8972 } 8973 } 8974 8975 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8976 // If a constexpr-compatible function is explicitly defaulted on its first 8977 // declaration, it is implicitly considered to be constexpr. 8978 // FIXME: Only applying this to the first declaration seems problematic, as 8979 // simple reorderings can affect the meaning of the program. 8980 if (First && !FD->isConstexpr() && Info.Constexpr) 8981 FD->setConstexprKind(ConstexprSpecKind::Constexpr); 8982 8983 // C++2a [except.spec]p3: 8984 // If a declaration of a function does not have a noexcept-specifier 8985 // [and] is defaulted on its first declaration, [...] the exception 8986 // specification is as specified below 8987 if (FD->getExceptionSpecType() == EST_None) { 8988 auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 8989 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8990 EPI.ExceptionSpec.Type = EST_Unevaluated; 8991 EPI.ExceptionSpec.SourceDecl = FD; 8992 FD->setType(Context.getFunctionType(FPT->getReturnType(), 8993 FPT->getParamTypes(), EPI)); 8994 } 8995 8996 return false; 8997 } 8998 8999 void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD, 9000 FunctionDecl *Spaceship) { 9001 Sema::CodeSynthesisContext Ctx; 9002 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison; 9003 Ctx.PointOfInstantiation = Spaceship->getEndLoc(); 9004 Ctx.Entity = Spaceship; 9005 pushCodeSynthesisContext(Ctx); 9006 9007 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship)) 9008 EqualEqual->setImplicit(); 9009 9010 popCodeSynthesisContext(); 9011 } 9012 9013 void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD, 9014 DefaultedComparisonKind DCK) { 9015 assert(FD->isDefaulted() && !FD->isDeleted() && 9016 !FD->doesThisDeclarationHaveABody()); 9017 if (FD->willHaveBody() || FD->isInvalidDecl()) 9018 return; 9019 9020 SynthesizedFunctionScope Scope(*this, FD); 9021 9022 // Add a context note for diagnostics produced after this point. 9023 Scope.addContextNote(UseLoc); 9024 9025 { 9026 // Build and set up the function body. 9027 // The first parameter has type maybe-ref-to maybe-const T, use that to get 9028 // the type of the class being compared. 9029 auto PT = FD->getParamDecl(0)->getType(); 9030 CXXRecordDecl *RD = PT.getNonReferenceType()->getAsCXXRecordDecl(); 9031 SourceLocation BodyLoc = 9032 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 9033 StmtResult Body = 9034 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build(); 9035 if (Body.isInvalid()) { 9036 FD->setInvalidDecl(); 9037 return; 9038 } 9039 FD->setBody(Body.get()); 9040 FD->markUsed(Context); 9041 } 9042 9043 // The exception specification is needed because we are defining the 9044 // function. Note that this will reuse the body we just built. 9045 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>()); 9046 9047 if (ASTMutationListener *L = getASTMutationListener()) 9048 L->CompletedImplicitDefinition(FD); 9049 } 9050 9051 static Sema::ImplicitExceptionSpecification 9052 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 9053 FunctionDecl *FD, 9054 Sema::DefaultedComparisonKind DCK) { 9055 ComputingExceptionSpec CES(S, FD, Loc); 9056 Sema::ImplicitExceptionSpecification ExceptSpec(S); 9057 9058 if (FD->isInvalidDecl()) 9059 return ExceptSpec; 9060 9061 // The common case is that we just defined the comparison function. In that 9062 // case, just look at whether the body can throw. 9063 if (FD->hasBody()) { 9064 ExceptSpec.CalledStmt(FD->getBody()); 9065 } else { 9066 // Otherwise, build a body so we can check it. This should ideally only 9067 // happen when we're not actually marking the function referenced. (This is 9068 // only really important for efficiency: we don't want to build and throw 9069 // away bodies for comparison functions more than we strictly need to.) 9070 9071 // Pretend to synthesize the function body in an unevaluated context. 9072 // Note that we can't actually just go ahead and define the function here: 9073 // we are not permitted to mark its callees as referenced. 9074 Sema::SynthesizedFunctionScope Scope(S, FD); 9075 EnterExpressionEvaluationContext Context( 9076 S, Sema::ExpressionEvaluationContext::Unevaluated); 9077 9078 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent()); 9079 SourceLocation BodyLoc = 9080 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 9081 StmtResult Body = 9082 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build(); 9083 if (!Body.isInvalid()) 9084 ExceptSpec.CalledStmt(Body.get()); 9085 9086 // FIXME: Can we hold onto this body and just transform it to potentially 9087 // evaluated when we're asked to define the function rather than rebuilding 9088 // it? Either that, or we should only build the bits of the body that we 9089 // need (the expressions, not the statements). 9090 } 9091 9092 return ExceptSpec; 9093 } 9094 9095 void Sema::CheckDelayedMemberExceptionSpecs() { 9096 decltype(DelayedOverridingExceptionSpecChecks) Overriding; 9097 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent; 9098 9099 std::swap(Overriding, DelayedOverridingExceptionSpecChecks); 9100 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks); 9101 9102 // Perform any deferred checking of exception specifications for virtual 9103 // destructors. 9104 for (auto &Check : Overriding) 9105 CheckOverridingFunctionExceptionSpec(Check.first, Check.second); 9106 9107 // Perform any deferred checking of exception specifications for befriended 9108 // special members. 9109 for (auto &Check : Equivalent) 9110 CheckEquivalentExceptionSpec(Check.second, Check.first); 9111 } 9112 9113 namespace { 9114 /// CRTP base class for visiting operations performed by a special member 9115 /// function (or inherited constructor). 9116 template<typename Derived> 9117 struct SpecialMemberVisitor { 9118 Sema &S; 9119 CXXMethodDecl *MD; 9120 Sema::CXXSpecialMember CSM; 9121 Sema::InheritedConstructorInfo *ICI; 9122 9123 // Properties of the special member, computed for convenience. 9124 bool IsConstructor = false, IsAssignment = false, ConstArg = false; 9125 9126 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 9127 Sema::InheritedConstructorInfo *ICI) 9128 : S(S), MD(MD), CSM(CSM), ICI(ICI) { 9129 switch (CSM) { 9130 case Sema::CXXDefaultConstructor: 9131 case Sema::CXXCopyConstructor: 9132 case Sema::CXXMoveConstructor: 9133 IsConstructor = true; 9134 break; 9135 case Sema::CXXCopyAssignment: 9136 case Sema::CXXMoveAssignment: 9137 IsAssignment = true; 9138 break; 9139 case Sema::CXXDestructor: 9140 break; 9141 case Sema::CXXInvalid: 9142 llvm_unreachable("invalid special member kind"); 9143 } 9144 9145 if (MD->getNumParams()) { 9146 if (const ReferenceType *RT = 9147 MD->getParamDecl(0)->getType()->getAs<ReferenceType>()) 9148 ConstArg = RT->getPointeeType().isConstQualified(); 9149 } 9150 } 9151 9152 Derived &getDerived() { return static_cast<Derived&>(*this); } 9153 9154 /// Is this a "move" special member? 9155 bool isMove() const { 9156 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment; 9157 } 9158 9159 /// Look up the corresponding special member in the given class. 9160 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class, 9161 unsigned Quals, bool IsMutable) { 9162 return lookupCallFromSpecialMember(S, Class, CSM, Quals, 9163 ConstArg && !IsMutable); 9164 } 9165 9166 /// Look up the constructor for the specified base class to see if it's 9167 /// overridden due to this being an inherited constructor. 9168 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) { 9169 if (!ICI) 9170 return {}; 9171 assert(CSM == Sema::CXXDefaultConstructor); 9172 auto *BaseCtor = 9173 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor(); 9174 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first) 9175 return MD; 9176 return {}; 9177 } 9178 9179 /// A base or member subobject. 9180 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject; 9181 9182 /// Get the location to use for a subobject in diagnostics. 9183 static SourceLocation getSubobjectLoc(Subobject Subobj) { 9184 // FIXME: For an indirect virtual base, the direct base leading to 9185 // the indirect virtual base would be a more useful choice. 9186 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>()) 9187 return B->getBaseTypeLoc(); 9188 else 9189 return Subobj.get<FieldDecl*>()->getLocation(); 9190 } 9191 9192 enum BasesToVisit { 9193 /// Visit all non-virtual (direct) bases. 9194 VisitNonVirtualBases, 9195 /// Visit all direct bases, virtual or not. 9196 VisitDirectBases, 9197 /// Visit all non-virtual bases, and all virtual bases if the class 9198 /// is not abstract. 9199 VisitPotentiallyConstructedBases, 9200 /// Visit all direct or virtual bases. 9201 VisitAllBases 9202 }; 9203 9204 // Visit the bases and members of the class. 9205 bool visit(BasesToVisit Bases) { 9206 CXXRecordDecl *RD = MD->getParent(); 9207 9208 if (Bases == VisitPotentiallyConstructedBases) 9209 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases; 9210 9211 for (auto &B : RD->bases()) 9212 if ((Bases == VisitDirectBases || !B.isVirtual()) && 9213 getDerived().visitBase(&B)) 9214 return true; 9215 9216 if (Bases == VisitAllBases) 9217 for (auto &B : RD->vbases()) 9218 if (getDerived().visitBase(&B)) 9219 return true; 9220 9221 for (auto *F : RD->fields()) 9222 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() && 9223 getDerived().visitField(F)) 9224 return true; 9225 9226 return false; 9227 } 9228 }; 9229 } 9230 9231 namespace { 9232 struct SpecialMemberDeletionInfo 9233 : SpecialMemberVisitor<SpecialMemberDeletionInfo> { 9234 bool Diagnose; 9235 9236 SourceLocation Loc; 9237 9238 bool AllFieldsAreConst; 9239 9240 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, 9241 Sema::CXXSpecialMember CSM, 9242 Sema::InheritedConstructorInfo *ICI, bool Diagnose) 9243 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose), 9244 Loc(MD->getLocation()), AllFieldsAreConst(true) {} 9245 9246 bool inUnion() const { return MD->getParent()->isUnion(); } 9247 9248 Sema::CXXSpecialMember getEffectiveCSM() { 9249 return ICI ? Sema::CXXInvalid : CSM; 9250 } 9251 9252 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType); 9253 9254 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); } 9255 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); } 9256 9257 bool shouldDeleteForBase(CXXBaseSpecifier *Base); 9258 bool shouldDeleteForField(FieldDecl *FD); 9259 bool shouldDeleteForAllConstMembers(); 9260 9261 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 9262 unsigned Quals); 9263 bool shouldDeleteForSubobjectCall(Subobject Subobj, 9264 Sema::SpecialMemberOverloadResult SMOR, 9265 bool IsDtorCallInCtor); 9266 9267 bool isAccessible(Subobject Subobj, CXXMethodDecl *D); 9268 }; 9269 } 9270 9271 /// Is the given special member inaccessible when used on the given 9272 /// sub-object. 9273 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, 9274 CXXMethodDecl *target) { 9275 /// If we're operating on a base class, the object type is the 9276 /// type of this special member. 9277 QualType objectTy; 9278 AccessSpecifier access = target->getAccess(); 9279 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) { 9280 objectTy = S.Context.getTypeDeclType(MD->getParent()); 9281 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access); 9282 9283 // If we're operating on a field, the object type is the type of the field. 9284 } else { 9285 objectTy = S.Context.getTypeDeclType(target->getParent()); 9286 } 9287 9288 return S.isMemberAccessibleForDeletion( 9289 target->getParent(), DeclAccessPair::make(target, access), objectTy); 9290 } 9291 9292 /// Check whether we should delete a special member due to the implicit 9293 /// definition containing a call to a special member of a subobject. 9294 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( 9295 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, 9296 bool IsDtorCallInCtor) { 9297 CXXMethodDecl *Decl = SMOR.getMethod(); 9298 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 9299 9300 int DiagKind = -1; 9301 9302 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) 9303 DiagKind = !Decl ? 0 : 1; 9304 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 9305 DiagKind = 2; 9306 else if (!isAccessible(Subobj, Decl)) 9307 DiagKind = 3; 9308 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && 9309 !Decl->isTrivial()) { 9310 // A member of a union must have a trivial corresponding special member. 9311 // As a weird special case, a destructor call from a union's constructor 9312 // must be accessible and non-deleted, but need not be trivial. Such a 9313 // destructor is never actually called, but is semantically checked as 9314 // if it were. 9315 if (CSM == Sema::CXXDefaultConstructor) { 9316 // [class.default.ctor]p2: 9317 // A defaulted default constructor for class X is defined as deleted if 9318 // - X is a union that has a variant member with a non-trivial default 9319 // constructor and no variant member of X has a default member 9320 // initializer 9321 const auto *RD = cast<CXXRecordDecl>(Field->getParent()); 9322 if (!RD->hasInClassInitializer()) 9323 DiagKind = 4; 9324 } else { 9325 DiagKind = 4; 9326 } 9327 } 9328 9329 if (DiagKind == -1) 9330 return false; 9331 9332 if (Diagnose) { 9333 if (Field) { 9334 S.Diag(Field->getLocation(), 9335 diag::note_deleted_special_member_class_subobject) 9336 << getEffectiveCSM() << MD->getParent() << /*IsField*/true 9337 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false; 9338 } else { 9339 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>(); 9340 S.Diag(Base->getBeginLoc(), 9341 diag::note_deleted_special_member_class_subobject) 9342 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 9343 << Base->getType() << DiagKind << IsDtorCallInCtor 9344 << /*IsObjCPtr*/false; 9345 } 9346 9347 if (DiagKind == 1) 9348 S.NoteDeletedFunction(Decl); 9349 // FIXME: Explain inaccessibility if DiagKind == 3. 9350 } 9351 9352 return true; 9353 } 9354 9355 /// Check whether we should delete a special member function due to having a 9356 /// direct or virtual base class or non-static data member of class type M. 9357 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( 9358 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { 9359 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 9360 bool IsMutable = Field && Field->isMutable(); 9361 9362 // C++11 [class.ctor]p5: 9363 // -- any direct or virtual base class, or non-static data member with no 9364 // brace-or-equal-initializer, has class type M (or array thereof) and 9365 // either M has no default constructor or overload resolution as applied 9366 // to M's default constructor results in an ambiguity or in a function 9367 // that is deleted or inaccessible 9368 // C++11 [class.copy]p11, C++11 [class.copy]p23: 9369 // -- a direct or virtual base class B that cannot be copied/moved because 9370 // overload resolution, as applied to B's corresponding special member, 9371 // results in an ambiguity or a function that is deleted or inaccessible 9372 // from the defaulted special member 9373 // C++11 [class.dtor]p5: 9374 // -- any direct or virtual base class [...] has a type with a destructor 9375 // that is deleted or inaccessible 9376 if (!(CSM == Sema::CXXDefaultConstructor && 9377 Field && Field->hasInClassInitializer()) && 9378 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable), 9379 false)) 9380 return true; 9381 9382 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 9383 // -- any direct or virtual base class or non-static data member has a 9384 // type with a destructor that is deleted or inaccessible 9385 if (IsConstructor) { 9386 Sema::SpecialMemberOverloadResult SMOR = 9387 S.LookupSpecialMember(Class, Sema::CXXDestructor, 9388 false, false, false, false, false); 9389 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true)) 9390 return true; 9391 } 9392 9393 return false; 9394 } 9395 9396 bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember( 9397 FieldDecl *FD, QualType FieldType) { 9398 // The defaulted special functions are defined as deleted if this is a variant 9399 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak 9400 // type under ARC. 9401 if (!FieldType.hasNonTrivialObjCLifetime()) 9402 return false; 9403 9404 // Don't make the defaulted default constructor defined as deleted if the 9405 // member has an in-class initializer. 9406 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) 9407 return false; 9408 9409 if (Diagnose) { 9410 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent()); 9411 S.Diag(FD->getLocation(), 9412 diag::note_deleted_special_member_class_subobject) 9413 << getEffectiveCSM() << ParentClass << /*IsField*/true 9414 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true; 9415 } 9416 9417 return true; 9418 } 9419 9420 /// Check whether we should delete a special member function due to the class 9421 /// having a particular direct or virtual base class. 9422 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { 9423 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); 9424 // If program is correct, BaseClass cannot be null, but if it is, the error 9425 // must be reported elsewhere. 9426 if (!BaseClass) 9427 return false; 9428 // If we have an inheriting constructor, check whether we're calling an 9429 // inherited constructor instead of a default constructor. 9430 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 9431 if (auto *BaseCtor = SMOR.getMethod()) { 9432 // Note that we do not check access along this path; other than that, 9433 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false); 9434 // FIXME: Check that the base has a usable destructor! Sink this into 9435 // shouldDeleteForClassSubobject. 9436 if (BaseCtor->isDeleted() && Diagnose) { 9437 S.Diag(Base->getBeginLoc(), 9438 diag::note_deleted_special_member_class_subobject) 9439 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 9440 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false 9441 << /*IsObjCPtr*/false; 9442 S.NoteDeletedFunction(BaseCtor); 9443 } 9444 return BaseCtor->isDeleted(); 9445 } 9446 return shouldDeleteForClassSubobject(BaseClass, Base, 0); 9447 } 9448 9449 /// Check whether we should delete a special member function due to the class 9450 /// having a particular non-static data member. 9451 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { 9452 QualType FieldType = S.Context.getBaseElementType(FD->getType()); 9453 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); 9454 9455 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType)) 9456 return true; 9457 9458 if (CSM == Sema::CXXDefaultConstructor) { 9459 // For a default constructor, all references must be initialized in-class 9460 // and, if a union, it must have a non-const member. 9461 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { 9462 if (Diagnose) 9463 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 9464 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0; 9465 return true; 9466 } 9467 // C++11 [class.ctor]p5 (modified by DR2394): any non-variant non-static 9468 // data member of const-qualified type (or array thereof) with no 9469 // brace-or-equal-initializer is not const-default-constructible. 9470 if (!inUnion() && FieldType.isConstQualified() && 9471 !FD->hasInClassInitializer() && 9472 (!FieldRecord || !FieldRecord->allowConstDefaultInit())) { 9473 if (Diagnose) 9474 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 9475 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1; 9476 return true; 9477 } 9478 9479 if (inUnion() && !FieldType.isConstQualified()) 9480 AllFieldsAreConst = false; 9481 } else if (CSM == Sema::CXXCopyConstructor) { 9482 // For a copy constructor, data members must not be of rvalue reference 9483 // type. 9484 if (FieldType->isRValueReferenceType()) { 9485 if (Diagnose) 9486 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) 9487 << MD->getParent() << FD << FieldType; 9488 return true; 9489 } 9490 } else if (IsAssignment) { 9491 // For an assignment operator, data members must not be of reference type. 9492 if (FieldType->isReferenceType()) { 9493 if (Diagnose) 9494 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 9495 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0; 9496 return true; 9497 } 9498 if (!FieldRecord && FieldType.isConstQualified()) { 9499 // C++11 [class.copy]p23: 9500 // -- a non-static data member of const non-class type (or array thereof) 9501 if (Diagnose) 9502 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 9503 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1; 9504 return true; 9505 } 9506 } 9507 9508 if (FieldRecord) { 9509 // Some additional restrictions exist on the variant members. 9510 if (!inUnion() && FieldRecord->isUnion() && 9511 FieldRecord->isAnonymousStructOrUnion()) { 9512 bool AllVariantFieldsAreConst = true; 9513 9514 // FIXME: Handle anonymous unions declared within anonymous unions. 9515 for (auto *UI : FieldRecord->fields()) { 9516 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); 9517 9518 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType)) 9519 return true; 9520 9521 if (!UnionFieldType.isConstQualified()) 9522 AllVariantFieldsAreConst = false; 9523 9524 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); 9525 if (UnionFieldRecord && 9526 shouldDeleteForClassSubobject(UnionFieldRecord, UI, 9527 UnionFieldType.getCVRQualifiers())) 9528 return true; 9529 } 9530 9531 // At least one member in each anonymous union must be non-const 9532 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst && 9533 !FieldRecord->field_empty()) { 9534 if (Diagnose) 9535 S.Diag(FieldRecord->getLocation(), 9536 diag::note_deleted_default_ctor_all_const) 9537 << !!ICI << MD->getParent() << /*anonymous union*/1; 9538 return true; 9539 } 9540 9541 // Don't check the implicit member of the anonymous union type. 9542 // This is technically non-conformant but supported, and we have a 9543 // diagnostic for this elsewhere. 9544 return false; 9545 } 9546 9547 if (shouldDeleteForClassSubobject(FieldRecord, FD, 9548 FieldType.getCVRQualifiers())) 9549 return true; 9550 } 9551 9552 return false; 9553 } 9554 9555 /// C++11 [class.ctor] p5: 9556 /// A defaulted default constructor for a class X is defined as deleted if 9557 /// X is a union and all of its variant members are of const-qualified type. 9558 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { 9559 // This is a silly definition, because it gives an empty union a deleted 9560 // default constructor. Don't do that. 9561 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) { 9562 bool AnyFields = false; 9563 for (auto *F : MD->getParent()->fields()) 9564 if ((AnyFields = !F->isUnnamedBitfield())) 9565 break; 9566 if (!AnyFields) 9567 return false; 9568 if (Diagnose) 9569 S.Diag(MD->getParent()->getLocation(), 9570 diag::note_deleted_default_ctor_all_const) 9571 << !!ICI << MD->getParent() << /*not anonymous union*/0; 9572 return true; 9573 } 9574 return false; 9575 } 9576 9577 /// Determine whether a defaulted special member function should be defined as 9578 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, 9579 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5. 9580 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, 9581 InheritedConstructorInfo *ICI, 9582 bool Diagnose) { 9583 if (MD->isInvalidDecl()) 9584 return false; 9585 CXXRecordDecl *RD = MD->getParent(); 9586 assert(!RD->isDependentType() && "do deletion after instantiation"); 9587 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl()) 9588 return false; 9589 9590 // C++11 [expr.lambda.prim]p19: 9591 // The closure type associated with a lambda-expression has a 9592 // deleted (8.4.3) default constructor and a deleted copy 9593 // assignment operator. 9594 // C++2a adds back these operators if the lambda has no lambda-capture. 9595 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() && 9596 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) { 9597 if (Diagnose) 9598 Diag(RD->getLocation(), diag::note_lambda_decl); 9599 return true; 9600 } 9601 9602 // For an anonymous struct or union, the copy and assignment special members 9603 // will never be used, so skip the check. For an anonymous union declared at 9604 // namespace scope, the constructor and destructor are used. 9605 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor && 9606 RD->isAnonymousStructOrUnion()) 9607 return false; 9608 9609 // C++11 [class.copy]p7, p18: 9610 // If the class definition declares a move constructor or move assignment 9611 // operator, an implicitly declared copy constructor or copy assignment 9612 // operator is defined as deleted. 9613 if (MD->isImplicit() && 9614 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) { 9615 CXXMethodDecl *UserDeclaredMove = nullptr; 9616 9617 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the 9618 // deletion of the corresponding copy operation, not both copy operations. 9619 // MSVC 2015 has adopted the standards conforming behavior. 9620 bool DeletesOnlyMatchingCopy = 9621 getLangOpts().MSVCCompat && 9622 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015); 9623 9624 if (RD->hasUserDeclaredMoveConstructor() && 9625 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) { 9626 if (!Diagnose) return true; 9627 9628 // Find any user-declared move constructor. 9629 for (auto *I : RD->ctors()) { 9630 if (I->isMoveConstructor()) { 9631 UserDeclaredMove = I; 9632 break; 9633 } 9634 } 9635 assert(UserDeclaredMove); 9636 } else if (RD->hasUserDeclaredMoveAssignment() && 9637 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) { 9638 if (!Diagnose) return true; 9639 9640 // Find any user-declared move assignment operator. 9641 for (auto *I : RD->methods()) { 9642 if (I->isMoveAssignmentOperator()) { 9643 UserDeclaredMove = I; 9644 break; 9645 } 9646 } 9647 assert(UserDeclaredMove); 9648 } 9649 9650 if (UserDeclaredMove) { 9651 Diag(UserDeclaredMove->getLocation(), 9652 diag::note_deleted_copy_user_declared_move) 9653 << (CSM == CXXCopyAssignment) << RD 9654 << UserDeclaredMove->isMoveAssignmentOperator(); 9655 return true; 9656 } 9657 } 9658 9659 // Do access control from the special member function 9660 ContextRAII MethodContext(*this, MD); 9661 9662 // C++11 [class.dtor]p5: 9663 // -- for a virtual destructor, lookup of the non-array deallocation function 9664 // results in an ambiguity or in a function that is deleted or inaccessible 9665 if (CSM == CXXDestructor && MD->isVirtual()) { 9666 FunctionDecl *OperatorDelete = nullptr; 9667 DeclarationName Name = 9668 Context.DeclarationNames.getCXXOperatorName(OO_Delete); 9669 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name, 9670 OperatorDelete, /*Diagnose*/false)) { 9671 if (Diagnose) 9672 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); 9673 return true; 9674 } 9675 } 9676 9677 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose); 9678 9679 // Per DR1611, do not consider virtual bases of constructors of abstract 9680 // classes, since we are not going to construct them. 9681 // Per DR1658, do not consider virtual bases of destructors of abstract 9682 // classes either. 9683 // Per DR2180, for assignment operators we only assign (and thus only 9684 // consider) direct bases. 9685 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases 9686 : SMI.VisitPotentiallyConstructedBases)) 9687 return true; 9688 9689 if (SMI.shouldDeleteForAllConstMembers()) 9690 return true; 9691 9692 if (getLangOpts().CUDA) { 9693 // We should delete the special member in CUDA mode if target inference 9694 // failed. 9695 // For inherited constructors (non-null ICI), CSM may be passed so that MD 9696 // is treated as certain special member, which may not reflect what special 9697 // member MD really is. However inferCUDATargetForImplicitSpecialMember 9698 // expects CSM to match MD, therefore recalculate CSM. 9699 assert(ICI || CSM == getSpecialMember(MD)); 9700 auto RealCSM = CSM; 9701 if (ICI) 9702 RealCSM = getSpecialMember(MD); 9703 9704 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD, 9705 SMI.ConstArg, Diagnose); 9706 } 9707 9708 return false; 9709 } 9710 9711 void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) { 9712 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 9713 assert(DFK && "not a defaultable function"); 9714 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted"); 9715 9716 if (DFK.isSpecialMember()) { 9717 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), 9718 nullptr, /*Diagnose=*/true); 9719 } else { 9720 DefaultedComparisonAnalyzer( 9721 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD, 9722 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted) 9723 .visit(); 9724 } 9725 } 9726 9727 /// Perform lookup for a special member of the specified kind, and determine 9728 /// whether it is trivial. If the triviality can be determined without the 9729 /// lookup, skip it. This is intended for use when determining whether a 9730 /// special member of a containing object is trivial, and thus does not ever 9731 /// perform overload resolution for default constructors. 9732 /// 9733 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the 9734 /// member that was most likely to be intended to be trivial, if any. 9735 /// 9736 /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to 9737 /// determine whether the special member is trivial. 9738 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, 9739 Sema::CXXSpecialMember CSM, unsigned Quals, 9740 bool ConstRHS, 9741 Sema::TrivialABIHandling TAH, 9742 CXXMethodDecl **Selected) { 9743 if (Selected) 9744 *Selected = nullptr; 9745 9746 switch (CSM) { 9747 case Sema::CXXInvalid: 9748 llvm_unreachable("not a special member"); 9749 9750 case Sema::CXXDefaultConstructor: 9751 // C++11 [class.ctor]p5: 9752 // A default constructor is trivial if: 9753 // - all the [direct subobjects] have trivial default constructors 9754 // 9755 // Note, no overload resolution is performed in this case. 9756 if (RD->hasTrivialDefaultConstructor()) 9757 return true; 9758 9759 if (Selected) { 9760 // If there's a default constructor which could have been trivial, dig it 9761 // out. Otherwise, if there's any user-provided default constructor, point 9762 // to that as an example of why there's not a trivial one. 9763 CXXConstructorDecl *DefCtor = nullptr; 9764 if (RD->needsImplicitDefaultConstructor()) 9765 S.DeclareImplicitDefaultConstructor(RD); 9766 for (auto *CI : RD->ctors()) { 9767 if (!CI->isDefaultConstructor()) 9768 continue; 9769 DefCtor = CI; 9770 if (!DefCtor->isUserProvided()) 9771 break; 9772 } 9773 9774 *Selected = DefCtor; 9775 } 9776 9777 return false; 9778 9779 case Sema::CXXDestructor: 9780 // C++11 [class.dtor]p5: 9781 // A destructor is trivial if: 9782 // - all the direct [subobjects] have trivial destructors 9783 if (RD->hasTrivialDestructor() || 9784 (TAH == Sema::TAH_ConsiderTrivialABI && 9785 RD->hasTrivialDestructorForCall())) 9786 return true; 9787 9788 if (Selected) { 9789 if (RD->needsImplicitDestructor()) 9790 S.DeclareImplicitDestructor(RD); 9791 *Selected = RD->getDestructor(); 9792 } 9793 9794 return false; 9795 9796 case Sema::CXXCopyConstructor: 9797 // C++11 [class.copy]p12: 9798 // A copy constructor is trivial if: 9799 // - the constructor selected to copy each direct [subobject] is trivial 9800 if (RD->hasTrivialCopyConstructor() || 9801 (TAH == Sema::TAH_ConsiderTrivialABI && 9802 RD->hasTrivialCopyConstructorForCall())) { 9803 if (Quals == Qualifiers::Const) 9804 // We must either select the trivial copy constructor or reach an 9805 // ambiguity; no need to actually perform overload resolution. 9806 return true; 9807 } else if (!Selected) { 9808 return false; 9809 } 9810 // In C++98, we are not supposed to perform overload resolution here, but we 9811 // treat that as a language defect, as suggested on cxx-abi-dev, to treat 9812 // cases like B as having a non-trivial copy constructor: 9813 // struct A { template<typename T> A(T&); }; 9814 // struct B { mutable A a; }; 9815 goto NeedOverloadResolution; 9816 9817 case Sema::CXXCopyAssignment: 9818 // C++11 [class.copy]p25: 9819 // A copy assignment operator is trivial if: 9820 // - the assignment operator selected to copy each direct [subobject] is 9821 // trivial 9822 if (RD->hasTrivialCopyAssignment()) { 9823 if (Quals == Qualifiers::Const) 9824 return true; 9825 } else if (!Selected) { 9826 return false; 9827 } 9828 // In C++98, we are not supposed to perform overload resolution here, but we 9829 // treat that as a language defect. 9830 goto NeedOverloadResolution; 9831 9832 case Sema::CXXMoveConstructor: 9833 case Sema::CXXMoveAssignment: 9834 NeedOverloadResolution: 9835 Sema::SpecialMemberOverloadResult SMOR = 9836 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS); 9837 9838 // The standard doesn't describe how to behave if the lookup is ambiguous. 9839 // We treat it as not making the member non-trivial, just like the standard 9840 // mandates for the default constructor. This should rarely matter, because 9841 // the member will also be deleted. 9842 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 9843 return true; 9844 9845 if (!SMOR.getMethod()) { 9846 assert(SMOR.getKind() == 9847 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted); 9848 return false; 9849 } 9850 9851 // We deliberately don't check if we found a deleted special member. We're 9852 // not supposed to! 9853 if (Selected) 9854 *Selected = SMOR.getMethod(); 9855 9856 if (TAH == Sema::TAH_ConsiderTrivialABI && 9857 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor)) 9858 return SMOR.getMethod()->isTrivialForCall(); 9859 return SMOR.getMethod()->isTrivial(); 9860 } 9861 9862 llvm_unreachable("unknown special method kind"); 9863 } 9864 9865 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { 9866 for (auto *CI : RD->ctors()) 9867 if (!CI->isImplicit()) 9868 return CI; 9869 9870 // Look for constructor templates. 9871 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter; 9872 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { 9873 if (CXXConstructorDecl *CD = 9874 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl())) 9875 return CD; 9876 } 9877 9878 return nullptr; 9879 } 9880 9881 /// The kind of subobject we are checking for triviality. The values of this 9882 /// enumeration are used in diagnostics. 9883 enum TrivialSubobjectKind { 9884 /// The subobject is a base class. 9885 TSK_BaseClass, 9886 /// The subobject is a non-static data member. 9887 TSK_Field, 9888 /// The object is actually the complete object. 9889 TSK_CompleteObject 9890 }; 9891 9892 /// Check whether the special member selected for a given type would be trivial. 9893 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, 9894 QualType SubType, bool ConstRHS, 9895 Sema::CXXSpecialMember CSM, 9896 TrivialSubobjectKind Kind, 9897 Sema::TrivialABIHandling TAH, bool Diagnose) { 9898 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); 9899 if (!SubRD) 9900 return true; 9901 9902 CXXMethodDecl *Selected; 9903 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(), 9904 ConstRHS, TAH, Diagnose ? &Selected : nullptr)) 9905 return true; 9906 9907 if (Diagnose) { 9908 if (ConstRHS) 9909 SubType.addConst(); 9910 9911 if (!Selected && CSM == Sema::CXXDefaultConstructor) { 9912 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) 9913 << Kind << SubType.getUnqualifiedType(); 9914 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) 9915 S.Diag(CD->getLocation(), diag::note_user_declared_ctor); 9916 } else if (!Selected) 9917 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) 9918 << Kind << SubType.getUnqualifiedType() << CSM << SubType; 9919 else if (Selected->isUserProvided()) { 9920 if (Kind == TSK_CompleteObject) 9921 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) 9922 << Kind << SubType.getUnqualifiedType() << CSM; 9923 else { 9924 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) 9925 << Kind << SubType.getUnqualifiedType() << CSM; 9926 S.Diag(Selected->getLocation(), diag::note_declared_at); 9927 } 9928 } else { 9929 if (Kind != TSK_CompleteObject) 9930 S.Diag(SubobjLoc, diag::note_nontrivial_subobject) 9931 << Kind << SubType.getUnqualifiedType() << CSM; 9932 9933 // Explain why the defaulted or deleted special member isn't trivial. 9934 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI, 9935 Diagnose); 9936 } 9937 } 9938 9939 return false; 9940 } 9941 9942 /// Check whether the members of a class type allow a special member to be 9943 /// trivial. 9944 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, 9945 Sema::CXXSpecialMember CSM, 9946 bool ConstArg, 9947 Sema::TrivialABIHandling TAH, 9948 bool Diagnose) { 9949 for (const auto *FI : RD->fields()) { 9950 if (FI->isInvalidDecl() || FI->isUnnamedBitfield()) 9951 continue; 9952 9953 QualType FieldType = S.Context.getBaseElementType(FI->getType()); 9954 9955 // Pretend anonymous struct or union members are members of this class. 9956 if (FI->isAnonymousStructOrUnion()) { 9957 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), 9958 CSM, ConstArg, TAH, Diagnose)) 9959 return false; 9960 continue; 9961 } 9962 9963 // C++11 [class.ctor]p5: 9964 // A default constructor is trivial if [...] 9965 // -- no non-static data member of its class has a 9966 // brace-or-equal-initializer 9967 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) { 9968 if (Diagnose) 9969 S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init) 9970 << FI; 9971 return false; 9972 } 9973 9974 // Objective C ARC 4.3.5: 9975 // [...] nontrivally ownership-qualified types are [...] not trivially 9976 // default constructible, copy constructible, move constructible, copy 9977 // assignable, move assignable, or destructible [...] 9978 if (FieldType.hasNonTrivialObjCLifetime()) { 9979 if (Diagnose) 9980 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) 9981 << RD << FieldType.getObjCLifetime(); 9982 return false; 9983 } 9984 9985 bool ConstRHS = ConstArg && !FI->isMutable(); 9986 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, 9987 CSM, TSK_Field, TAH, Diagnose)) 9988 return false; 9989 } 9990 9991 return true; 9992 } 9993 9994 /// Diagnose why the specified class does not have a trivial special member of 9995 /// the given kind. 9996 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) { 9997 QualType Ty = Context.getRecordType(RD); 9998 9999 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment); 10000 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, 10001 TSK_CompleteObject, TAH_IgnoreTrivialABI, 10002 /*Diagnose*/true); 10003 } 10004 10005 /// Determine whether a defaulted or deleted special member function is trivial, 10006 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12, 10007 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5. 10008 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM, 10009 TrivialABIHandling TAH, bool Diagnose) { 10010 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough"); 10011 10012 CXXRecordDecl *RD = MD->getParent(); 10013 10014 bool ConstArg = false; 10015 10016 // C++11 [class.copy]p12, p25: [DR1593] 10017 // A [special member] is trivial if [...] its parameter-type-list is 10018 // equivalent to the parameter-type-list of an implicit declaration [...] 10019 switch (CSM) { 10020 case CXXDefaultConstructor: 10021 case CXXDestructor: 10022 // Trivial default constructors and destructors cannot have parameters. 10023 break; 10024 10025 case CXXCopyConstructor: 10026 case CXXCopyAssignment: { 10027 const ParmVarDecl *Param0 = MD->getParamDecl(0); 10028 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>(); 10029 10030 // When ClangABICompat14 is true, CXX copy constructors will only be trivial 10031 // if they are not user-provided and their parameter-type-list is equivalent 10032 // to the parameter-type-list of an implicit declaration. This maintains the 10033 // behavior before dr2171 was implemented. 10034 // 10035 // Otherwise, if ClangABICompat14 is false, All copy constructors can be 10036 // trivial, if they are not user-provided, regardless of the qualifiers on 10037 // the reference type. 10038 const bool ClangABICompat14 = Context.getLangOpts().getClangABICompat() <= 10039 LangOptions::ClangABI::Ver14; 10040 if (!RT || 10041 ((RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) && 10042 ClangABICompat14)) { 10043 if (Diagnose) 10044 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 10045 << Param0->getSourceRange() << Param0->getType() 10046 << Context.getLValueReferenceType( 10047 Context.getRecordType(RD).withConst()); 10048 return false; 10049 } 10050 10051 ConstArg = RT->getPointeeType().isConstQualified(); 10052 break; 10053 } 10054 10055 case CXXMoveConstructor: 10056 case CXXMoveAssignment: { 10057 // Trivial move operations always have non-cv-qualified parameters. 10058 const ParmVarDecl *Param0 = MD->getParamDecl(0); 10059 const RValueReferenceType *RT = 10060 Param0->getType()->getAs<RValueReferenceType>(); 10061 if (!RT || RT->getPointeeType().getCVRQualifiers()) { 10062 if (Diagnose) 10063 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 10064 << Param0->getSourceRange() << Param0->getType() 10065 << Context.getRValueReferenceType(Context.getRecordType(RD)); 10066 return false; 10067 } 10068 break; 10069 } 10070 10071 case CXXInvalid: 10072 llvm_unreachable("not a special member"); 10073 } 10074 10075 if (MD->getMinRequiredArguments() < MD->getNumParams()) { 10076 if (Diagnose) 10077 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), 10078 diag::note_nontrivial_default_arg) 10079 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); 10080 return false; 10081 } 10082 if (MD->isVariadic()) { 10083 if (Diagnose) 10084 Diag(MD->getLocation(), diag::note_nontrivial_variadic); 10085 return false; 10086 } 10087 10088 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 10089 // A copy/move [constructor or assignment operator] is trivial if 10090 // -- the [member] selected to copy/move each direct base class subobject 10091 // is trivial 10092 // 10093 // C++11 [class.copy]p12, C++11 [class.copy]p25: 10094 // A [default constructor or destructor] is trivial if 10095 // -- all the direct base classes have trivial [default constructors or 10096 // destructors] 10097 for (const auto &BI : RD->bases()) 10098 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(), 10099 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose)) 10100 return false; 10101 10102 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 10103 // A copy/move [constructor or assignment operator] for a class X is 10104 // trivial if 10105 // -- for each non-static data member of X that is of class type (or array 10106 // thereof), the constructor selected to copy/move that member is 10107 // trivial 10108 // 10109 // C++11 [class.copy]p12, C++11 [class.copy]p25: 10110 // A [default constructor or destructor] is trivial if 10111 // -- for all of the non-static data members of its class that are of class 10112 // type (or array thereof), each such class has a trivial [default 10113 // constructor or destructor] 10114 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose)) 10115 return false; 10116 10117 // C++11 [class.dtor]p5: 10118 // A destructor is trivial if [...] 10119 // -- the destructor is not virtual 10120 if (CSM == CXXDestructor && MD->isVirtual()) { 10121 if (Diagnose) 10122 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; 10123 return false; 10124 } 10125 10126 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 10127 // A [special member] for class X is trivial if [...] 10128 // -- class X has no virtual functions and no virtual base classes 10129 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) { 10130 if (!Diagnose) 10131 return false; 10132 10133 if (RD->getNumVBases()) { 10134 // Check for virtual bases. We already know that the corresponding 10135 // member in all bases is trivial, so vbases must all be direct. 10136 CXXBaseSpecifier &BS = *RD->vbases_begin(); 10137 assert(BS.isVirtual()); 10138 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1; 10139 return false; 10140 } 10141 10142 // Must have a virtual method. 10143 for (const auto *MI : RD->methods()) { 10144 if (MI->isVirtual()) { 10145 SourceLocation MLoc = MI->getBeginLoc(); 10146 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; 10147 return false; 10148 } 10149 } 10150 10151 llvm_unreachable("dynamic class with no vbases and no virtual functions"); 10152 } 10153 10154 // Looks like it's trivial! 10155 return true; 10156 } 10157 10158 namespace { 10159 struct FindHiddenVirtualMethod { 10160 Sema *S; 10161 CXXMethodDecl *Method; 10162 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; 10163 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 10164 10165 private: 10166 /// Check whether any most overridden method from MD in Methods 10167 static bool CheckMostOverridenMethods( 10168 const CXXMethodDecl *MD, 10169 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) { 10170 if (MD->size_overridden_methods() == 0) 10171 return Methods.count(MD->getCanonicalDecl()); 10172 for (const CXXMethodDecl *O : MD->overridden_methods()) 10173 if (CheckMostOverridenMethods(O, Methods)) 10174 return true; 10175 return false; 10176 } 10177 10178 public: 10179 /// Member lookup function that determines whether a given C++ 10180 /// method overloads virtual methods in a base class without overriding any, 10181 /// to be used with CXXRecordDecl::lookupInBases(). 10182 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 10183 RecordDecl *BaseRecord = 10184 Specifier->getType()->castAs<RecordType>()->getDecl(); 10185 10186 DeclarationName Name = Method->getDeclName(); 10187 assert(Name.getNameKind() == DeclarationName::Identifier); 10188 10189 bool foundSameNameMethod = false; 10190 SmallVector<CXXMethodDecl *, 8> overloadedMethods; 10191 for (Path.Decls = BaseRecord->lookup(Name).begin(); 10192 Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) { 10193 NamedDecl *D = *Path.Decls; 10194 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 10195 MD = MD->getCanonicalDecl(); 10196 foundSameNameMethod = true; 10197 // Interested only in hidden virtual methods. 10198 if (!MD->isVirtual()) 10199 continue; 10200 // If the method we are checking overrides a method from its base 10201 // don't warn about the other overloaded methods. Clang deviates from 10202 // GCC by only diagnosing overloads of inherited virtual functions that 10203 // do not override any other virtual functions in the base. GCC's 10204 // -Woverloaded-virtual diagnoses any derived function hiding a virtual 10205 // function from a base class. These cases may be better served by a 10206 // warning (not specific to virtual functions) on call sites when the 10207 // call would select a different function from the base class, were it 10208 // visible. 10209 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. 10210 if (!S->IsOverload(Method, MD, false)) 10211 return true; 10212 // Collect the overload only if its hidden. 10213 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods)) 10214 overloadedMethods.push_back(MD); 10215 } 10216 } 10217 10218 if (foundSameNameMethod) 10219 OverloadedMethods.append(overloadedMethods.begin(), 10220 overloadedMethods.end()); 10221 return foundSameNameMethod; 10222 } 10223 }; 10224 } // end anonymous namespace 10225 10226 /// Add the most overridden methods from MD to Methods 10227 static void AddMostOverridenMethods(const CXXMethodDecl *MD, 10228 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { 10229 if (MD->size_overridden_methods() == 0) 10230 Methods.insert(MD->getCanonicalDecl()); 10231 else 10232 for (const CXXMethodDecl *O : MD->overridden_methods()) 10233 AddMostOverridenMethods(O, Methods); 10234 } 10235 10236 /// Check if a method overloads virtual methods in a base class without 10237 /// overriding any. 10238 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, 10239 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 10240 if (!MD->getDeclName().isIdentifier()) 10241 return; 10242 10243 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. 10244 /*bool RecordPaths=*/false, 10245 /*bool DetectVirtual=*/false); 10246 FindHiddenVirtualMethod FHVM; 10247 FHVM.Method = MD; 10248 FHVM.S = this; 10249 10250 // Keep the base methods that were overridden or introduced in the subclass 10251 // by 'using' in a set. A base method not in this set is hidden. 10252 CXXRecordDecl *DC = MD->getParent(); 10253 DeclContext::lookup_result R = DC->lookup(MD->getDeclName()); 10254 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { 10255 NamedDecl *ND = *I; 10256 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I)) 10257 ND = shad->getTargetDecl(); 10258 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 10259 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods); 10260 } 10261 10262 if (DC->lookupInBases(FHVM, Paths)) 10263 OverloadedMethods = FHVM.OverloadedMethods; 10264 } 10265 10266 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, 10267 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 10268 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { 10269 CXXMethodDecl *overloadedMD = OverloadedMethods[i]; 10270 PartialDiagnostic PD = PDiag( 10271 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; 10272 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType()); 10273 Diag(overloadedMD->getLocation(), PD); 10274 } 10275 } 10276 10277 /// Diagnose methods which overload virtual methods in a base class 10278 /// without overriding any. 10279 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { 10280 if (MD->isInvalidDecl()) 10281 return; 10282 10283 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) 10284 return; 10285 10286 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 10287 FindHiddenVirtualMethods(MD, OverloadedMethods); 10288 if (!OverloadedMethods.empty()) { 10289 Diag(MD->getLocation(), diag::warn_overloaded_virtual) 10290 << MD << (OverloadedMethods.size() > 1); 10291 10292 NoteHiddenVirtualMethods(MD, OverloadedMethods); 10293 } 10294 } 10295 10296 void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) { 10297 auto PrintDiagAndRemoveAttr = [&](unsigned N) { 10298 // No diagnostics if this is a template instantiation. 10299 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) { 10300 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 10301 diag::ext_cannot_use_trivial_abi) << &RD; 10302 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 10303 diag::note_cannot_use_trivial_abi_reason) << &RD << N; 10304 } 10305 RD.dropAttr<TrivialABIAttr>(); 10306 }; 10307 10308 // Ill-formed if the copy and move constructors are deleted. 10309 auto HasNonDeletedCopyOrMoveConstructor = [&]() { 10310 // If the type is dependent, then assume it might have 10311 // implicit copy or move ctor because we won't know yet at this point. 10312 if (RD.isDependentType()) 10313 return true; 10314 if (RD.needsImplicitCopyConstructor() && 10315 !RD.defaultedCopyConstructorIsDeleted()) 10316 return true; 10317 if (RD.needsImplicitMoveConstructor() && 10318 !RD.defaultedMoveConstructorIsDeleted()) 10319 return true; 10320 for (const CXXConstructorDecl *CD : RD.ctors()) 10321 if (CD->isCopyOrMoveConstructor() && !CD->isDeleted()) 10322 return true; 10323 return false; 10324 }; 10325 10326 if (!HasNonDeletedCopyOrMoveConstructor()) { 10327 PrintDiagAndRemoveAttr(0); 10328 return; 10329 } 10330 10331 // Ill-formed if the struct has virtual functions. 10332 if (RD.isPolymorphic()) { 10333 PrintDiagAndRemoveAttr(1); 10334 return; 10335 } 10336 10337 for (const auto &B : RD.bases()) { 10338 // Ill-formed if the base class is non-trivial for the purpose of calls or a 10339 // virtual base. 10340 if (!B.getType()->isDependentType() && 10341 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) { 10342 PrintDiagAndRemoveAttr(2); 10343 return; 10344 } 10345 10346 if (B.isVirtual()) { 10347 PrintDiagAndRemoveAttr(3); 10348 return; 10349 } 10350 } 10351 10352 for (const auto *FD : RD.fields()) { 10353 // Ill-formed if the field is an ObjectiveC pointer or of a type that is 10354 // non-trivial for the purpose of calls. 10355 QualType FT = FD->getType(); 10356 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) { 10357 PrintDiagAndRemoveAttr(4); 10358 return; 10359 } 10360 10361 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>()) 10362 if (!RT->isDependentType() && 10363 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) { 10364 PrintDiagAndRemoveAttr(5); 10365 return; 10366 } 10367 } 10368 } 10369 10370 void Sema::ActOnFinishCXXMemberSpecification( 10371 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, 10372 SourceLocation RBrac, const ParsedAttributesView &AttrList) { 10373 if (!TagDecl) 10374 return; 10375 10376 AdjustDeclIfTemplate(TagDecl); 10377 10378 for (const ParsedAttr &AL : AttrList) { 10379 if (AL.getKind() != ParsedAttr::AT_Visibility) 10380 continue; 10381 AL.setInvalid(); 10382 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL; 10383 } 10384 10385 ActOnFields(S, RLoc, TagDecl, 10386 llvm::ArrayRef( 10387 // strict aliasing violation! 10388 reinterpret_cast<Decl **>(FieldCollector->getCurFields()), 10389 FieldCollector->getCurNumFields()), 10390 LBrac, RBrac, AttrList); 10391 10392 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl)); 10393 } 10394 10395 /// Find the equality comparison functions that should be implicitly declared 10396 /// in a given class definition, per C++2a [class.compare.default]p3. 10397 static void findImplicitlyDeclaredEqualityComparisons( 10398 ASTContext &Ctx, CXXRecordDecl *RD, 10399 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) { 10400 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual); 10401 if (!RD->lookup(EqEq).empty()) 10402 // Member operator== explicitly declared: no implicit operator==s. 10403 return; 10404 10405 // Traverse friends looking for an '==' or a '<=>'. 10406 for (FriendDecl *Friend : RD->friends()) { 10407 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl()); 10408 if (!FD) continue; 10409 10410 if (FD->getOverloadedOperator() == OO_EqualEqual) { 10411 // Friend operator== explicitly declared: no implicit operator==s. 10412 Spaceships.clear(); 10413 return; 10414 } 10415 10416 if (FD->getOverloadedOperator() == OO_Spaceship && 10417 FD->isExplicitlyDefaulted()) 10418 Spaceships.push_back(FD); 10419 } 10420 10421 // Look for members named 'operator<=>'. 10422 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship); 10423 for (NamedDecl *ND : RD->lookup(Cmp)) { 10424 // Note that we could find a non-function here (either a function template 10425 // or a using-declaration). Neither case results in an implicit 10426 // 'operator=='. 10427 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 10428 if (FD->isExplicitlyDefaulted()) 10429 Spaceships.push_back(FD); 10430 } 10431 } 10432 10433 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared 10434 /// special functions, such as the default constructor, copy 10435 /// constructor, or destructor, to the given C++ class (C++ 10436 /// [special]p1). This routine can only be executed just before the 10437 /// definition of the class is complete. 10438 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { 10439 // Don't add implicit special members to templated classes. 10440 // FIXME: This means unqualified lookups for 'operator=' within a class 10441 // template don't work properly. 10442 if (!ClassDecl->isDependentType()) { 10443 if (ClassDecl->needsImplicitDefaultConstructor()) { 10444 ++getASTContext().NumImplicitDefaultConstructors; 10445 10446 if (ClassDecl->hasInheritedConstructor()) 10447 DeclareImplicitDefaultConstructor(ClassDecl); 10448 } 10449 10450 if (ClassDecl->needsImplicitCopyConstructor()) { 10451 ++getASTContext().NumImplicitCopyConstructors; 10452 10453 // If the properties or semantics of the copy constructor couldn't be 10454 // determined while the class was being declared, force a declaration 10455 // of it now. 10456 if (ClassDecl->needsOverloadResolutionForCopyConstructor() || 10457 ClassDecl->hasInheritedConstructor()) 10458 DeclareImplicitCopyConstructor(ClassDecl); 10459 // For the MS ABI we need to know whether the copy ctor is deleted. A 10460 // prerequisite for deleting the implicit copy ctor is that the class has 10461 // a move ctor or move assignment that is either user-declared or whose 10462 // semantics are inherited from a subobject. FIXME: We should provide a 10463 // more direct way for CodeGen to ask whether the constructor was deleted. 10464 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 10465 (ClassDecl->hasUserDeclaredMoveConstructor() || 10466 ClassDecl->needsOverloadResolutionForMoveConstructor() || 10467 ClassDecl->hasUserDeclaredMoveAssignment() || 10468 ClassDecl->needsOverloadResolutionForMoveAssignment())) 10469 DeclareImplicitCopyConstructor(ClassDecl); 10470 } 10471 10472 if (getLangOpts().CPlusPlus11 && 10473 ClassDecl->needsImplicitMoveConstructor()) { 10474 ++getASTContext().NumImplicitMoveConstructors; 10475 10476 if (ClassDecl->needsOverloadResolutionForMoveConstructor() || 10477 ClassDecl->hasInheritedConstructor()) 10478 DeclareImplicitMoveConstructor(ClassDecl); 10479 } 10480 10481 if (ClassDecl->needsImplicitCopyAssignment()) { 10482 ++getASTContext().NumImplicitCopyAssignmentOperators; 10483 10484 // If we have a dynamic class, then the copy assignment operator may be 10485 // virtual, so we have to declare it immediately. This ensures that, e.g., 10486 // it shows up in the right place in the vtable and that we diagnose 10487 // problems with the implicit exception specification. 10488 if (ClassDecl->isDynamicClass() || 10489 ClassDecl->needsOverloadResolutionForCopyAssignment() || 10490 ClassDecl->hasInheritedAssignment()) 10491 DeclareImplicitCopyAssignment(ClassDecl); 10492 } 10493 10494 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { 10495 ++getASTContext().NumImplicitMoveAssignmentOperators; 10496 10497 // Likewise for the move assignment operator. 10498 if (ClassDecl->isDynamicClass() || 10499 ClassDecl->needsOverloadResolutionForMoveAssignment() || 10500 ClassDecl->hasInheritedAssignment()) 10501 DeclareImplicitMoveAssignment(ClassDecl); 10502 } 10503 10504 if (ClassDecl->needsImplicitDestructor()) { 10505 ++getASTContext().NumImplicitDestructors; 10506 10507 // If we have a dynamic class, then the destructor may be virtual, so we 10508 // have to declare the destructor immediately. This ensures that, e.g., it 10509 // shows up in the right place in the vtable and that we diagnose problems 10510 // with the implicit exception specification. 10511 if (ClassDecl->isDynamicClass() || 10512 ClassDecl->needsOverloadResolutionForDestructor()) 10513 DeclareImplicitDestructor(ClassDecl); 10514 } 10515 } 10516 10517 // C++2a [class.compare.default]p3: 10518 // If the member-specification does not explicitly declare any member or 10519 // friend named operator==, an == operator function is declared implicitly 10520 // for each defaulted three-way comparison operator function defined in 10521 // the member-specification 10522 // FIXME: Consider doing this lazily. 10523 // We do this during the initial parse for a class template, not during 10524 // instantiation, so that we can handle unqualified lookups for 'operator==' 10525 // when parsing the template. 10526 if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) { 10527 llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships; 10528 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl, 10529 DefaultedSpaceships); 10530 for (auto *FD : DefaultedSpaceships) 10531 DeclareImplicitEqualityComparison(ClassDecl, FD); 10532 } 10533 } 10534 10535 unsigned 10536 Sema::ActOnReenterTemplateScope(Decl *D, 10537 llvm::function_ref<Scope *()> EnterScope) { 10538 if (!D) 10539 return 0; 10540 AdjustDeclIfTemplate(D); 10541 10542 // In order to get name lookup right, reenter template scopes in order from 10543 // outermost to innermost. 10544 SmallVector<TemplateParameterList *, 4> ParameterLists; 10545 DeclContext *LookupDC = dyn_cast<DeclContext>(D); 10546 10547 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) { 10548 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) 10549 ParameterLists.push_back(DD->getTemplateParameterList(i)); 10550 10551 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10552 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 10553 ParameterLists.push_back(FTD->getTemplateParameters()); 10554 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) { 10555 LookupDC = VD->getDeclContext(); 10556 10557 if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate()) 10558 ParameterLists.push_back(VTD->getTemplateParameters()); 10559 else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D)) 10560 ParameterLists.push_back(PSD->getTemplateParameters()); 10561 } 10562 } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 10563 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) 10564 ParameterLists.push_back(TD->getTemplateParameterList(i)); 10565 10566 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) { 10567 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) 10568 ParameterLists.push_back(CTD->getTemplateParameters()); 10569 else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) 10570 ParameterLists.push_back(PSD->getTemplateParameters()); 10571 } 10572 } 10573 // FIXME: Alias declarations and concepts. 10574 10575 unsigned Count = 0; 10576 Scope *InnermostTemplateScope = nullptr; 10577 for (TemplateParameterList *Params : ParameterLists) { 10578 // Ignore explicit specializations; they don't contribute to the template 10579 // depth. 10580 if (Params->size() == 0) 10581 continue; 10582 10583 InnermostTemplateScope = EnterScope(); 10584 for (NamedDecl *Param : *Params) { 10585 if (Param->getDeclName()) { 10586 InnermostTemplateScope->AddDecl(Param); 10587 IdResolver.AddDecl(Param); 10588 } 10589 } 10590 ++Count; 10591 } 10592 10593 // Associate the new template scopes with the corresponding entities. 10594 if (InnermostTemplateScope) { 10595 assert(LookupDC && "no enclosing DeclContext for template lookup"); 10596 EnterTemplatedContext(InnermostTemplateScope, LookupDC); 10597 } 10598 10599 return Count; 10600 } 10601 10602 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10603 if (!RecordD) return; 10604 AdjustDeclIfTemplate(RecordD); 10605 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); 10606 PushDeclContext(S, Record); 10607 } 10608 10609 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10610 if (!RecordD) return; 10611 PopDeclContext(); 10612 } 10613 10614 /// This is used to implement the constant expression evaluation part of the 10615 /// attribute enable_if extension. There is nothing in standard C++ which would 10616 /// require reentering parameters. 10617 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { 10618 if (!Param) 10619 return; 10620 10621 S->AddDecl(Param); 10622 if (Param->getDeclName()) 10623 IdResolver.AddDecl(Param); 10624 } 10625 10626 /// ActOnStartDelayedCXXMethodDeclaration - We have completed 10627 /// parsing a top-level (non-nested) C++ class, and we are now 10628 /// parsing those parts of the given Method declaration that could 10629 /// not be parsed earlier (C++ [class.mem]p2), such as default 10630 /// arguments. This action should enter the scope of the given 10631 /// Method declaration as if we had just parsed the qualified method 10632 /// name. However, it should not bring the parameters into scope; 10633 /// that will be performed by ActOnDelayedCXXMethodParameter. 10634 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10635 } 10636 10637 /// ActOnDelayedCXXMethodParameter - We've already started a delayed 10638 /// C++ method declaration. We're (re-)introducing the given 10639 /// function parameter into scope for use in parsing later parts of 10640 /// the method declaration. For example, we could see an 10641 /// ActOnParamDefaultArgument event for this parameter. 10642 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { 10643 if (!ParamD) 10644 return; 10645 10646 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); 10647 10648 S->AddDecl(Param); 10649 if (Param->getDeclName()) 10650 IdResolver.AddDecl(Param); 10651 } 10652 10653 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished 10654 /// processing the delayed method declaration for Method. The method 10655 /// declaration is now considered finished. There may be a separate 10656 /// ActOnStartOfFunctionDef action later (not necessarily 10657 /// immediately!) for this method, if it was also defined inside the 10658 /// class body. 10659 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10660 if (!MethodD) 10661 return; 10662 10663 AdjustDeclIfTemplate(MethodD); 10664 10665 FunctionDecl *Method = cast<FunctionDecl>(MethodD); 10666 10667 // Now that we have our default arguments, check the constructor 10668 // again. It could produce additional diagnostics or affect whether 10669 // the class has implicitly-declared destructors, among other 10670 // things. 10671 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) 10672 CheckConstructor(Constructor); 10673 10674 // Check the default arguments, which we may have added. 10675 if (!Method->isInvalidDecl()) 10676 CheckCXXDefaultArguments(Method); 10677 } 10678 10679 // Emit the given diagnostic for each non-address-space qualifier. 10680 // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator. 10681 static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) { 10682 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10683 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) { 10684 bool DiagOccured = false; 10685 FTI.MethodQualifiers->forEachQualifier( 10686 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName, 10687 SourceLocation SL) { 10688 // This diagnostic should be emitted on any qualifier except an addr 10689 // space qualifier. However, forEachQualifier currently doesn't visit 10690 // addr space qualifiers, so there's no way to write this condition 10691 // right now; we just diagnose on everything. 10692 S.Diag(SL, DiagID) << QualName << SourceRange(SL); 10693 DiagOccured = true; 10694 }); 10695 if (DiagOccured) 10696 D.setInvalidType(); 10697 } 10698 } 10699 10700 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check 10701 /// the well-formedness of the constructor declarator @p D with type @p 10702 /// R. If there are any errors in the declarator, this routine will 10703 /// emit diagnostics and set the invalid bit to true. In any case, the type 10704 /// will be updated to reflect a well-formed type for the constructor and 10705 /// returned. 10706 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, 10707 StorageClass &SC) { 10708 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 10709 10710 // C++ [class.ctor]p3: 10711 // A constructor shall not be virtual (10.3) or static (9.4). A 10712 // constructor can be invoked for a const, volatile or const 10713 // volatile object. A constructor shall not be declared const, 10714 // volatile, or const volatile (9.3.2). 10715 if (isVirtual) { 10716 if (!D.isInvalidType()) 10717 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10718 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) 10719 << SourceRange(D.getIdentifierLoc()); 10720 D.setInvalidType(); 10721 } 10722 if (SC == SC_Static) { 10723 if (!D.isInvalidType()) 10724 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10725 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10726 << SourceRange(D.getIdentifierLoc()); 10727 D.setInvalidType(); 10728 SC = SC_None; 10729 } 10730 10731 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10732 diagnoseIgnoredQualifiers( 10733 diag::err_constructor_return_type, TypeQuals, SourceLocation(), 10734 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), 10735 D.getDeclSpec().getRestrictSpecLoc(), 10736 D.getDeclSpec().getAtomicSpecLoc()); 10737 D.setInvalidType(); 10738 } 10739 10740 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor); 10741 10742 // C++0x [class.ctor]p4: 10743 // A constructor shall not be declared with a ref-qualifier. 10744 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10745 if (FTI.hasRefQualifier()) { 10746 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) 10747 << FTI.RefQualifierIsLValueRef 10748 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10749 D.setInvalidType(); 10750 } 10751 10752 // Rebuild the function type "R" without any type qualifiers (in 10753 // case any of the errors above fired) and with "void" as the 10754 // return type, since constructors don't have return types. 10755 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10756 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) 10757 return R; 10758 10759 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10760 EPI.TypeQuals = Qualifiers(); 10761 EPI.RefQualifier = RQ_None; 10762 10763 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI); 10764 } 10765 10766 /// CheckConstructor - Checks a fully-formed constructor for 10767 /// well-formedness, issuing any diagnostics required. Returns true if 10768 /// the constructor declarator is invalid. 10769 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { 10770 CXXRecordDecl *ClassDecl 10771 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); 10772 if (!ClassDecl) 10773 return Constructor->setInvalidDecl(); 10774 10775 // C++ [class.copy]p3: 10776 // A declaration of a constructor for a class X is ill-formed if 10777 // its first parameter is of type (optionally cv-qualified) X and 10778 // either there are no other parameters or else all other 10779 // parameters have default arguments. 10780 if (!Constructor->isInvalidDecl() && 10781 Constructor->hasOneParamOrDefaultArgs() && 10782 Constructor->getTemplateSpecializationKind() != 10783 TSK_ImplicitInstantiation) { 10784 QualType ParamType = Constructor->getParamDecl(0)->getType(); 10785 QualType ClassTy = Context.getTagDeclType(ClassDecl); 10786 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { 10787 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); 10788 const char *ConstRef 10789 = Constructor->getParamDecl(0)->getIdentifier() ? "const &" 10790 : " const &"; 10791 Diag(ParamLoc, diag::err_constructor_byvalue_arg) 10792 << FixItHint::CreateInsertion(ParamLoc, ConstRef); 10793 10794 // FIXME: Rather that making the constructor invalid, we should endeavor 10795 // to fix the type. 10796 Constructor->setInvalidDecl(); 10797 } 10798 } 10799 } 10800 10801 /// CheckDestructor - Checks a fully-formed destructor definition for 10802 /// well-formedness, issuing any diagnostics required. Returns true 10803 /// on error. 10804 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { 10805 CXXRecordDecl *RD = Destructor->getParent(); 10806 10807 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { 10808 SourceLocation Loc; 10809 10810 if (!Destructor->isImplicit()) 10811 Loc = Destructor->getLocation(); 10812 else 10813 Loc = RD->getLocation(); 10814 10815 // If we have a virtual destructor, look up the deallocation function 10816 if (FunctionDecl *OperatorDelete = 10817 FindDeallocationFunctionForDestructor(Loc, RD)) { 10818 Expr *ThisArg = nullptr; 10819 10820 // If the notional 'delete this' expression requires a non-trivial 10821 // conversion from 'this' to the type of a destroying operator delete's 10822 // first parameter, perform that conversion now. 10823 if (OperatorDelete->isDestroyingOperatorDelete()) { 10824 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 10825 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) { 10826 // C++ [class.dtor]p13: 10827 // ... as if for the expression 'delete this' appearing in a 10828 // non-virtual destructor of the destructor's class. 10829 ContextRAII SwitchContext(*this, Destructor); 10830 ExprResult This = 10831 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation()); 10832 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?"); 10833 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing); 10834 if (This.isInvalid()) { 10835 // FIXME: Register this as a context note so that it comes out 10836 // in the right order. 10837 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here); 10838 return true; 10839 } 10840 ThisArg = This.get(); 10841 } 10842 } 10843 10844 DiagnoseUseOfDecl(OperatorDelete, Loc); 10845 MarkFunctionReferenced(Loc, OperatorDelete); 10846 Destructor->setOperatorDelete(OperatorDelete, ThisArg); 10847 } 10848 } 10849 10850 return false; 10851 } 10852 10853 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check 10854 /// the well-formednes of the destructor declarator @p D with type @p 10855 /// R. If there are any errors in the declarator, this routine will 10856 /// emit diagnostics and set the declarator to invalid. Even if this happens, 10857 /// will be updated to reflect a well-formed type for the destructor and 10858 /// returned. 10859 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, 10860 StorageClass& SC) { 10861 // C++ [class.dtor]p1: 10862 // [...] A typedef-name that names a class is a class-name 10863 // (7.1.3); however, a typedef-name that names a class shall not 10864 // be used as the identifier in the declarator for a destructor 10865 // declaration. 10866 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); 10867 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) 10868 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10869 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); 10870 else if (const TemplateSpecializationType *TST = 10871 DeclaratorType->getAs<TemplateSpecializationType>()) 10872 if (TST->isTypeAlias()) 10873 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10874 << DeclaratorType << 1; 10875 10876 // C++ [class.dtor]p2: 10877 // A destructor is used to destroy objects of its class type. A 10878 // destructor takes no parameters, and no return type can be 10879 // specified for it (not even void). The address of a destructor 10880 // shall not be taken. A destructor shall not be static. A 10881 // destructor can be invoked for a const, volatile or const 10882 // volatile object. A destructor shall not be declared const, 10883 // volatile or const volatile (9.3.2). 10884 if (SC == SC_Static) { 10885 if (!D.isInvalidType()) 10886 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) 10887 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10888 << SourceRange(D.getIdentifierLoc()) 10889 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 10890 10891 SC = SC_None; 10892 } 10893 if (!D.isInvalidType()) { 10894 // Destructors don't have return types, but the parser will 10895 // happily parse something like: 10896 // 10897 // class X { 10898 // float ~X(); 10899 // }; 10900 // 10901 // The return type will be eliminated later. 10902 if (D.getDeclSpec().hasTypeSpecifier()) 10903 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) 10904 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 10905 << SourceRange(D.getIdentifierLoc()); 10906 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10907 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, 10908 SourceLocation(), 10909 D.getDeclSpec().getConstSpecLoc(), 10910 D.getDeclSpec().getVolatileSpecLoc(), 10911 D.getDeclSpec().getRestrictSpecLoc(), 10912 D.getDeclSpec().getAtomicSpecLoc()); 10913 D.setInvalidType(); 10914 } 10915 } 10916 10917 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor); 10918 10919 // C++0x [class.dtor]p2: 10920 // A destructor shall not be declared with a ref-qualifier. 10921 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10922 if (FTI.hasRefQualifier()) { 10923 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) 10924 << FTI.RefQualifierIsLValueRef 10925 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10926 D.setInvalidType(); 10927 } 10928 10929 // Make sure we don't have any parameters. 10930 if (FTIHasNonVoidParameters(FTI)) { 10931 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); 10932 10933 // Delete the parameters. 10934 FTI.freeParams(); 10935 D.setInvalidType(); 10936 } 10937 10938 // Make sure the destructor isn't variadic. 10939 if (FTI.isVariadic) { 10940 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); 10941 D.setInvalidType(); 10942 } 10943 10944 // Rebuild the function type "R" without any type qualifiers or 10945 // parameters (in case any of the errors above fired) and with 10946 // "void" as the return type, since destructors don't have return 10947 // types. 10948 if (!D.isInvalidType()) 10949 return R; 10950 10951 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10952 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10953 EPI.Variadic = false; 10954 EPI.TypeQuals = Qualifiers(); 10955 EPI.RefQualifier = RQ_None; 10956 return Context.getFunctionType(Context.VoidTy, std::nullopt, EPI); 10957 } 10958 10959 static void extendLeft(SourceRange &R, SourceRange Before) { 10960 if (Before.isInvalid()) 10961 return; 10962 R.setBegin(Before.getBegin()); 10963 if (R.getEnd().isInvalid()) 10964 R.setEnd(Before.getEnd()); 10965 } 10966 10967 static void extendRight(SourceRange &R, SourceRange After) { 10968 if (After.isInvalid()) 10969 return; 10970 if (R.getBegin().isInvalid()) 10971 R.setBegin(After.getBegin()); 10972 R.setEnd(After.getEnd()); 10973 } 10974 10975 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the 10976 /// well-formednes of the conversion function declarator @p D with 10977 /// type @p R. If there are any errors in the declarator, this routine 10978 /// will emit diagnostics and return true. Otherwise, it will return 10979 /// false. Either way, the type @p R will be updated to reflect a 10980 /// well-formed type for the conversion operator. 10981 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, 10982 StorageClass& SC) { 10983 // C++ [class.conv.fct]p1: 10984 // Neither parameter types nor return type can be specified. The 10985 // type of a conversion function (8.3.5) is "function taking no 10986 // parameter returning conversion-type-id." 10987 if (SC == SC_Static) { 10988 if (!D.isInvalidType()) 10989 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) 10990 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10991 << D.getName().getSourceRange(); 10992 D.setInvalidType(); 10993 SC = SC_None; 10994 } 10995 10996 TypeSourceInfo *ConvTSI = nullptr; 10997 QualType ConvType = 10998 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI); 10999 11000 const DeclSpec &DS = D.getDeclSpec(); 11001 if (DS.hasTypeSpecifier() && !D.isInvalidType()) { 11002 // Conversion functions don't have return types, but the parser will 11003 // happily parse something like: 11004 // 11005 // class X { 11006 // float operator bool(); 11007 // }; 11008 // 11009 // The return type will be changed later anyway. 11010 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) 11011 << SourceRange(DS.getTypeSpecTypeLoc()) 11012 << SourceRange(D.getIdentifierLoc()); 11013 D.setInvalidType(); 11014 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) { 11015 // It's also plausible that the user writes type qualifiers in the wrong 11016 // place, such as: 11017 // struct S { const operator int(); }; 11018 // FIXME: we could provide a fixit to move the qualifiers onto the 11019 // conversion type. 11020 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) 11021 << SourceRange(D.getIdentifierLoc()) << 0; 11022 D.setInvalidType(); 11023 } 11024 11025 const auto *Proto = R->castAs<FunctionProtoType>(); 11026 11027 // Make sure we don't have any parameters. 11028 if (Proto->getNumParams() > 0) { 11029 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); 11030 11031 // Delete the parameters. 11032 D.getFunctionTypeInfo().freeParams(); 11033 D.setInvalidType(); 11034 } else if (Proto->isVariadic()) { 11035 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); 11036 D.setInvalidType(); 11037 } 11038 11039 // Diagnose "&operator bool()" and other such nonsense. This 11040 // is actually a gcc extension which we don't support. 11041 if (Proto->getReturnType() != ConvType) { 11042 bool NeedsTypedef = false; 11043 SourceRange Before, After; 11044 11045 // Walk the chunks and extract information on them for our diagnostic. 11046 bool PastFunctionChunk = false; 11047 for (auto &Chunk : D.type_objects()) { 11048 switch (Chunk.Kind) { 11049 case DeclaratorChunk::Function: 11050 if (!PastFunctionChunk) { 11051 if (Chunk.Fun.HasTrailingReturnType) { 11052 TypeSourceInfo *TRT = nullptr; 11053 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT); 11054 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange()); 11055 } 11056 PastFunctionChunk = true; 11057 break; 11058 } 11059 [[fallthrough]]; 11060 case DeclaratorChunk::Array: 11061 NeedsTypedef = true; 11062 extendRight(After, Chunk.getSourceRange()); 11063 break; 11064 11065 case DeclaratorChunk::Pointer: 11066 case DeclaratorChunk::BlockPointer: 11067 case DeclaratorChunk::Reference: 11068 case DeclaratorChunk::MemberPointer: 11069 case DeclaratorChunk::Pipe: 11070 extendLeft(Before, Chunk.getSourceRange()); 11071 break; 11072 11073 case DeclaratorChunk::Paren: 11074 extendLeft(Before, Chunk.Loc); 11075 extendRight(After, Chunk.EndLoc); 11076 break; 11077 } 11078 } 11079 11080 SourceLocation Loc = Before.isValid() ? Before.getBegin() : 11081 After.isValid() ? After.getBegin() : 11082 D.getIdentifierLoc(); 11083 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); 11084 DB << Before << After; 11085 11086 if (!NeedsTypedef) { 11087 DB << /*don't need a typedef*/0; 11088 11089 // If we can provide a correct fix-it hint, do so. 11090 if (After.isInvalid() && ConvTSI) { 11091 SourceLocation InsertLoc = 11092 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc()); 11093 DB << FixItHint::CreateInsertion(InsertLoc, " ") 11094 << FixItHint::CreateInsertionFromRange( 11095 InsertLoc, CharSourceRange::getTokenRange(Before)) 11096 << FixItHint::CreateRemoval(Before); 11097 } 11098 } else if (!Proto->getReturnType()->isDependentType()) { 11099 DB << /*typedef*/1 << Proto->getReturnType(); 11100 } else if (getLangOpts().CPlusPlus11) { 11101 DB << /*alias template*/2 << Proto->getReturnType(); 11102 } else { 11103 DB << /*might not be fixable*/3; 11104 } 11105 11106 // Recover by incorporating the other type chunks into the result type. 11107 // Note, this does *not* change the name of the function. This is compatible 11108 // with the GCC extension: 11109 // struct S { &operator int(); } s; 11110 // int &r = s.operator int(); // ok in GCC 11111 // S::operator int&() {} // error in GCC, function name is 'operator int'. 11112 ConvType = Proto->getReturnType(); 11113 } 11114 11115 // C++ [class.conv.fct]p4: 11116 // The conversion-type-id shall not represent a function type nor 11117 // an array type. 11118 if (ConvType->isArrayType()) { 11119 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); 11120 ConvType = Context.getPointerType(ConvType); 11121 D.setInvalidType(); 11122 } else if (ConvType->isFunctionType()) { 11123 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); 11124 ConvType = Context.getPointerType(ConvType); 11125 D.setInvalidType(); 11126 } 11127 11128 // Rebuild the function type "R" without any parameters (in case any 11129 // of the errors above fired) and with the conversion type as the 11130 // return type. 11131 if (D.isInvalidType()) 11132 R = Context.getFunctionType(ConvType, std::nullopt, 11133 Proto->getExtProtoInfo()); 11134 11135 // C++0x explicit conversion operators. 11136 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20) 11137 Diag(DS.getExplicitSpecLoc(), 11138 getLangOpts().CPlusPlus11 11139 ? diag::warn_cxx98_compat_explicit_conversion_functions 11140 : diag::ext_explicit_conversion_functions) 11141 << SourceRange(DS.getExplicitSpecRange()); 11142 } 11143 11144 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete 11145 /// the declaration of the given C++ conversion function. This routine 11146 /// is responsible for recording the conversion function in the C++ 11147 /// class, if possible. 11148 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { 11149 assert(Conversion && "Expected to receive a conversion function declaration"); 11150 11151 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); 11152 11153 // Make sure we aren't redeclaring the conversion function. 11154 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); 11155 // C++ [class.conv.fct]p1: 11156 // [...] A conversion function is never used to convert a 11157 // (possibly cv-qualified) object to the (possibly cv-qualified) 11158 // same object type (or a reference to it), to a (possibly 11159 // cv-qualified) base class of that type (or a reference to it), 11160 // or to (possibly cv-qualified) void. 11161 QualType ClassType 11162 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 11163 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) 11164 ConvType = ConvTypeRef->getPointeeType(); 11165 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && 11166 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 11167 /* Suppress diagnostics for instantiations. */; 11168 else if (Conversion->size_overridden_methods() != 0) 11169 /* Suppress diagnostics for overriding virtual function in a base class. */; 11170 else if (ConvType->isRecordType()) { 11171 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); 11172 if (ConvType == ClassType) 11173 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) 11174 << ClassType; 11175 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType)) 11176 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) 11177 << ClassType << ConvType; 11178 } else if (ConvType->isVoidType()) { 11179 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) 11180 << ClassType << ConvType; 11181 } 11182 11183 if (FunctionTemplateDecl *ConversionTemplate 11184 = Conversion->getDescribedFunctionTemplate()) 11185 return ConversionTemplate; 11186 11187 return Conversion; 11188 } 11189 11190 namespace { 11191 /// Utility class to accumulate and print a diagnostic listing the invalid 11192 /// specifier(s) on a declaration. 11193 struct BadSpecifierDiagnoser { 11194 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID) 11195 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {} 11196 ~BadSpecifierDiagnoser() { 11197 Diagnostic << Specifiers; 11198 } 11199 11200 template<typename T> void check(SourceLocation SpecLoc, T Spec) { 11201 return check(SpecLoc, DeclSpec::getSpecifierName(Spec)); 11202 } 11203 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) { 11204 return check(SpecLoc, 11205 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy())); 11206 } 11207 void check(SourceLocation SpecLoc, const char *Spec) { 11208 if (SpecLoc.isInvalid()) return; 11209 Diagnostic << SourceRange(SpecLoc, SpecLoc); 11210 if (!Specifiers.empty()) Specifiers += " "; 11211 Specifiers += Spec; 11212 } 11213 11214 Sema &S; 11215 Sema::SemaDiagnosticBuilder Diagnostic; 11216 std::string Specifiers; 11217 }; 11218 } 11219 11220 /// Check the validity of a declarator that we parsed for a deduction-guide. 11221 /// These aren't actually declarators in the grammar, so we need to check that 11222 /// the user didn't specify any pieces that are not part of the deduction-guide 11223 /// grammar. Return true on invalid deduction-guide. 11224 bool Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R, 11225 StorageClass &SC) { 11226 TemplateName GuidedTemplate = D.getName().TemplateName.get().get(); 11227 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl(); 11228 assert(GuidedTemplateDecl && "missing template decl for deduction guide"); 11229 11230 // C++ [temp.deduct.guide]p3: 11231 // A deduction-gide shall be declared in the same scope as the 11232 // corresponding class template. 11233 if (!CurContext->getRedeclContext()->Equals( 11234 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) { 11235 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope) 11236 << GuidedTemplateDecl; 11237 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here); 11238 } 11239 11240 auto &DS = D.getMutableDeclSpec(); 11241 // We leave 'friend' and 'virtual' to be rejected in the normal way. 11242 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() || 11243 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() || 11244 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) { 11245 BadSpecifierDiagnoser Diagnoser( 11246 *this, D.getIdentifierLoc(), 11247 diag::err_deduction_guide_invalid_specifier); 11248 11249 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec()); 11250 DS.ClearStorageClassSpecs(); 11251 SC = SC_None; 11252 11253 // 'explicit' is permitted. 11254 Diagnoser.check(DS.getInlineSpecLoc(), "inline"); 11255 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn"); 11256 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr"); 11257 DS.ClearConstexprSpec(); 11258 11259 Diagnoser.check(DS.getConstSpecLoc(), "const"); 11260 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict"); 11261 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile"); 11262 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic"); 11263 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned"); 11264 DS.ClearTypeQualifiers(); 11265 11266 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex()); 11267 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign()); 11268 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth()); 11269 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType()); 11270 DS.ClearTypeSpecType(); 11271 } 11272 11273 if (D.isInvalidType()) 11274 return true; 11275 11276 // Check the declarator is simple enough. 11277 bool FoundFunction = false; 11278 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) { 11279 if (Chunk.Kind == DeclaratorChunk::Paren) 11280 continue; 11281 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) { 11282 Diag(D.getDeclSpec().getBeginLoc(), 11283 diag::err_deduction_guide_with_complex_decl) 11284 << D.getSourceRange(); 11285 break; 11286 } 11287 if (!Chunk.Fun.hasTrailingReturnType()) 11288 return Diag(D.getName().getBeginLoc(), 11289 diag::err_deduction_guide_no_trailing_return_type); 11290 11291 // Check that the return type is written as a specialization of 11292 // the template specified as the deduction-guide's name. 11293 // The template name may not be qualified. [temp.deduct.guide] 11294 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType(); 11295 TypeSourceInfo *TSI = nullptr; 11296 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI); 11297 assert(TSI && "deduction guide has valid type but invalid return type?"); 11298 bool AcceptableReturnType = false; 11299 bool MightInstantiateToSpecialization = false; 11300 if (auto RetTST = 11301 TSI->getTypeLoc().getAsAdjusted<TemplateSpecializationTypeLoc>()) { 11302 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName(); 11303 bool TemplateMatches = 11304 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate); 11305 auto TKind = SpecifiedName.getKind(); 11306 // A Using TemplateName can't actually be valid (either it's qualified, or 11307 // we're in the wrong scope). But we have diagnosed these problems 11308 // already. 11309 bool SimplyWritten = TKind == TemplateName::Template || 11310 TKind == TemplateName::UsingTemplate; 11311 if (SimplyWritten && TemplateMatches) 11312 AcceptableReturnType = true; 11313 else { 11314 // This could still instantiate to the right type, unless we know it 11315 // names the wrong class template. 11316 auto *TD = SpecifiedName.getAsTemplateDecl(); 11317 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) && 11318 !TemplateMatches); 11319 } 11320 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) { 11321 MightInstantiateToSpecialization = true; 11322 } 11323 11324 if (!AcceptableReturnType) 11325 return Diag(TSI->getTypeLoc().getBeginLoc(), 11326 diag::err_deduction_guide_bad_trailing_return_type) 11327 << GuidedTemplate << TSI->getType() 11328 << MightInstantiateToSpecialization 11329 << TSI->getTypeLoc().getSourceRange(); 11330 11331 // Keep going to check that we don't have any inner declarator pieces (we 11332 // could still have a function returning a pointer to a function). 11333 FoundFunction = true; 11334 } 11335 11336 if (D.isFunctionDefinition()) 11337 // we can still create a valid deduction guide here. 11338 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function); 11339 return false; 11340 } 11341 11342 //===----------------------------------------------------------------------===// 11343 // Namespace Handling 11344 //===----------------------------------------------------------------------===// 11345 11346 /// Diagnose a mismatch in 'inline' qualifiers when a namespace is 11347 /// reopened. 11348 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, 11349 SourceLocation Loc, 11350 IdentifierInfo *II, bool *IsInline, 11351 NamespaceDecl *PrevNS) { 11352 assert(*IsInline != PrevNS->isInline()); 11353 11354 // 'inline' must appear on the original definition, but not necessarily 11355 // on all extension definitions, so the note should point to the first 11356 // definition to avoid confusion. 11357 PrevNS = PrevNS->getFirstDecl(); 11358 11359 if (PrevNS->isInline()) 11360 // The user probably just forgot the 'inline', so suggest that it 11361 // be added back. 11362 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) 11363 << FixItHint::CreateInsertion(KeywordLoc, "inline "); 11364 else 11365 S.Diag(Loc, diag::err_inline_namespace_mismatch); 11366 11367 S.Diag(PrevNS->getLocation(), diag::note_previous_definition); 11368 *IsInline = PrevNS->isInline(); 11369 } 11370 11371 /// ActOnStartNamespaceDef - This is called at the start of a namespace 11372 /// definition. 11373 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope, 11374 SourceLocation InlineLoc, 11375 SourceLocation NamespaceLoc, 11376 SourceLocation IdentLoc, IdentifierInfo *II, 11377 SourceLocation LBrace, 11378 const ParsedAttributesView &AttrList, 11379 UsingDirectiveDecl *&UD, bool IsNested) { 11380 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; 11381 // For anonymous namespace, take the location of the left brace. 11382 SourceLocation Loc = II ? IdentLoc : LBrace; 11383 bool IsInline = InlineLoc.isValid(); 11384 bool IsInvalid = false; 11385 bool IsStd = false; 11386 bool AddToKnown = false; 11387 Scope *DeclRegionScope = NamespcScope->getParent(); 11388 11389 NamespaceDecl *PrevNS = nullptr; 11390 if (II) { 11391 // C++ [namespace.std]p7: 11392 // A translation unit shall not declare namespace std to be an inline 11393 // namespace (9.8.2). 11394 // 11395 // Precondition: the std namespace is in the file scope and is declared to 11396 // be inline 11397 auto DiagnoseInlineStdNS = [&]() { 11398 assert(IsInline && II->isStr("std") && 11399 CurContext->getRedeclContext()->isTranslationUnit() && 11400 "Precondition of DiagnoseInlineStdNS not met"); 11401 Diag(InlineLoc, diag::err_inline_namespace_std) 11402 << SourceRange(InlineLoc, InlineLoc.getLocWithOffset(6)); 11403 IsInline = false; 11404 }; 11405 // C++ [namespace.def]p2: 11406 // The identifier in an original-namespace-definition shall not 11407 // have been previously defined in the declarative region in 11408 // which the original-namespace-definition appears. The 11409 // identifier in an original-namespace-definition is the name of 11410 // the namespace. Subsequently in that declarative region, it is 11411 // treated as an original-namespace-name. 11412 // 11413 // Since namespace names are unique in their scope, and we don't 11414 // look through using directives, just look for any ordinary names 11415 // as if by qualified name lookup. 11416 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, 11417 ForExternalRedeclaration); 11418 LookupQualifiedName(R, CurContext->getRedeclContext()); 11419 NamedDecl *PrevDecl = 11420 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr; 11421 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl); 11422 11423 if (PrevNS) { 11424 // This is an extended namespace definition. 11425 if (IsInline && II->isStr("std") && 11426 CurContext->getRedeclContext()->isTranslationUnit()) 11427 DiagnoseInlineStdNS(); 11428 else if (IsInline != PrevNS->isInline()) 11429 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II, 11430 &IsInline, PrevNS); 11431 } else if (PrevDecl) { 11432 // This is an invalid name redefinition. 11433 Diag(Loc, diag::err_redefinition_different_kind) 11434 << II; 11435 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 11436 IsInvalid = true; 11437 // Continue on to push Namespc as current DeclContext and return it. 11438 } else if (II->isStr("std") && 11439 CurContext->getRedeclContext()->isTranslationUnit()) { 11440 if (IsInline) 11441 DiagnoseInlineStdNS(); 11442 // This is the first "real" definition of the namespace "std", so update 11443 // our cache of the "std" namespace to point at this definition. 11444 PrevNS = getStdNamespace(); 11445 IsStd = true; 11446 AddToKnown = !IsInline; 11447 } else { 11448 // We've seen this namespace for the first time. 11449 AddToKnown = !IsInline; 11450 } 11451 } else { 11452 // Anonymous namespaces. 11453 11454 // Determine whether the parent already has an anonymous namespace. 11455 DeclContext *Parent = CurContext->getRedeclContext(); 11456 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 11457 PrevNS = TU->getAnonymousNamespace(); 11458 } else { 11459 NamespaceDecl *ND = cast<NamespaceDecl>(Parent); 11460 PrevNS = ND->getAnonymousNamespace(); 11461 } 11462 11463 if (PrevNS && IsInline != PrevNS->isInline()) 11464 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II, 11465 &IsInline, PrevNS); 11466 } 11467 11468 NamespaceDecl *Namespc = NamespaceDecl::Create( 11469 Context, CurContext, IsInline, StartLoc, Loc, II, PrevNS, IsNested); 11470 if (IsInvalid) 11471 Namespc->setInvalidDecl(); 11472 11473 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); 11474 AddPragmaAttributes(DeclRegionScope, Namespc); 11475 11476 // FIXME: Should we be merging attributes? 11477 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) 11478 PushNamespaceVisibilityAttr(Attr, Loc); 11479 11480 if (IsStd) 11481 StdNamespace = Namespc; 11482 if (AddToKnown) 11483 KnownNamespaces[Namespc] = false; 11484 11485 if (II) { 11486 PushOnScopeChains(Namespc, DeclRegionScope); 11487 } else { 11488 // Link the anonymous namespace into its parent. 11489 DeclContext *Parent = CurContext->getRedeclContext(); 11490 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 11491 TU->setAnonymousNamespace(Namespc); 11492 } else { 11493 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc); 11494 } 11495 11496 CurContext->addDecl(Namespc); 11497 11498 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition 11499 // behaves as if it were replaced by 11500 // namespace unique { /* empty body */ } 11501 // using namespace unique; 11502 // namespace unique { namespace-body } 11503 // where all occurrences of 'unique' in a translation unit are 11504 // replaced by the same identifier and this identifier differs 11505 // from all other identifiers in the entire program. 11506 11507 // We just create the namespace with an empty name and then add an 11508 // implicit using declaration, just like the standard suggests. 11509 // 11510 // CodeGen enforces the "universally unique" aspect by giving all 11511 // declarations semantically contained within an anonymous 11512 // namespace internal linkage. 11513 11514 if (!PrevNS) { 11515 UD = UsingDirectiveDecl::Create(Context, Parent, 11516 /* 'using' */ LBrace, 11517 /* 'namespace' */ SourceLocation(), 11518 /* qualifier */ NestedNameSpecifierLoc(), 11519 /* identifier */ SourceLocation(), 11520 Namespc, 11521 /* Ancestor */ Parent); 11522 UD->setImplicit(); 11523 Parent->addDecl(UD); 11524 } 11525 } 11526 11527 ActOnDocumentableDecl(Namespc); 11528 11529 // Although we could have an invalid decl (i.e. the namespace name is a 11530 // redefinition), push it as current DeclContext and try to continue parsing. 11531 // FIXME: We should be able to push Namespc here, so that the each DeclContext 11532 // for the namespace has the declarations that showed up in that particular 11533 // namespace definition. 11534 PushDeclContext(NamespcScope, Namespc); 11535 return Namespc; 11536 } 11537 11538 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl 11539 /// is a namespace alias, returns the namespace it points to. 11540 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { 11541 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) 11542 return AD->getNamespace(); 11543 return dyn_cast_or_null<NamespaceDecl>(D); 11544 } 11545 11546 /// ActOnFinishNamespaceDef - This callback is called after a namespace is 11547 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. 11548 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { 11549 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); 11550 assert(Namespc && "Invalid parameter, expected NamespaceDecl"); 11551 Namespc->setRBraceLoc(RBrace); 11552 PopDeclContext(); 11553 if (Namespc->hasAttr<VisibilityAttr>()) 11554 PopPragmaVisibility(true, RBrace); 11555 // If this namespace contains an export-declaration, export it now. 11556 if (DeferredExportedNamespaces.erase(Namespc)) 11557 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 11558 } 11559 11560 CXXRecordDecl *Sema::getStdBadAlloc() const { 11561 return cast_or_null<CXXRecordDecl>( 11562 StdBadAlloc.get(Context.getExternalSource())); 11563 } 11564 11565 EnumDecl *Sema::getStdAlignValT() const { 11566 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource())); 11567 } 11568 11569 NamespaceDecl *Sema::getStdNamespace() const { 11570 return cast_or_null<NamespaceDecl>( 11571 StdNamespace.get(Context.getExternalSource())); 11572 } 11573 namespace { 11574 11575 enum UnsupportedSTLSelect { 11576 USS_InvalidMember, 11577 USS_MissingMember, 11578 USS_NonTrivial, 11579 USS_Other 11580 }; 11581 11582 struct InvalidSTLDiagnoser { 11583 Sema &S; 11584 SourceLocation Loc; 11585 QualType TyForDiags; 11586 11587 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "", 11588 const VarDecl *VD = nullptr) { 11589 { 11590 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported) 11591 << TyForDiags << ((int)Sel); 11592 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) { 11593 assert(!Name.empty()); 11594 D << Name; 11595 } 11596 } 11597 if (Sel == USS_InvalidMember) { 11598 S.Diag(VD->getLocation(), diag::note_var_declared_here) 11599 << VD << VD->getSourceRange(); 11600 } 11601 return QualType(); 11602 } 11603 }; 11604 } // namespace 11605 11606 QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind, 11607 SourceLocation Loc, 11608 ComparisonCategoryUsage Usage) { 11609 assert(getLangOpts().CPlusPlus && 11610 "Looking for comparison category type outside of C++."); 11611 11612 // Use an elaborated type for diagnostics which has a name containing the 11613 // prepended 'std' namespace but not any inline namespace names. 11614 auto TyForDiags = [&](ComparisonCategoryInfo *Info) { 11615 auto *NNS = 11616 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()); 11617 return Context.getElaboratedType(ETK_None, NNS, Info->getType()); 11618 }; 11619 11620 // Check if we've already successfully checked the comparison category type 11621 // before. If so, skip checking it again. 11622 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind); 11623 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) { 11624 // The only thing we need to check is that the type has a reachable 11625 // definition in the current context. 11626 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11627 return QualType(); 11628 11629 return Info->getType(); 11630 } 11631 11632 // If lookup failed 11633 if (!Info) { 11634 std::string NameForDiags = "std::"; 11635 NameForDiags += ComparisonCategories::getCategoryString(Kind); 11636 Diag(Loc, diag::err_implied_comparison_category_type_not_found) 11637 << NameForDiags << (int)Usage; 11638 return QualType(); 11639 } 11640 11641 assert(Info->Kind == Kind); 11642 assert(Info->Record); 11643 11644 // Update the Record decl in case we encountered a forward declaration on our 11645 // first pass. FIXME: This is a bit of a hack. 11646 if (Info->Record->hasDefinition()) 11647 Info->Record = Info->Record->getDefinition(); 11648 11649 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11650 return QualType(); 11651 11652 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)}; 11653 11654 if (!Info->Record->isTriviallyCopyable()) 11655 return UnsupportedSTLError(USS_NonTrivial); 11656 11657 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) { 11658 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl(); 11659 // Tolerate empty base classes. 11660 if (Base->isEmpty()) 11661 continue; 11662 // Reject STL implementations which have at least one non-empty base. 11663 return UnsupportedSTLError(); 11664 } 11665 11666 // Check that the STL has implemented the types using a single integer field. 11667 // This expectation allows better codegen for builtin operators. We require: 11668 // (1) The class has exactly one field. 11669 // (2) The field is an integral or enumeration type. 11670 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end(); 11671 if (std::distance(FIt, FEnd) != 1 || 11672 !FIt->getType()->isIntegralOrEnumerationType()) { 11673 return UnsupportedSTLError(); 11674 } 11675 11676 // Build each of the require values and store them in Info. 11677 for (ComparisonCategoryResult CCR : 11678 ComparisonCategories::getPossibleResultsForType(Kind)) { 11679 StringRef MemName = ComparisonCategories::getResultString(CCR); 11680 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR); 11681 11682 if (!ValInfo) 11683 return UnsupportedSTLError(USS_MissingMember, MemName); 11684 11685 VarDecl *VD = ValInfo->VD; 11686 assert(VD && "should not be null!"); 11687 11688 // Attempt to diagnose reasons why the STL definition of this type 11689 // might be foobar, including it failing to be a constant expression. 11690 // TODO Handle more ways the lookup or result can be invalid. 11691 if (!VD->isStaticDataMember() || 11692 !VD->isUsableInConstantExpressions(Context)) 11693 return UnsupportedSTLError(USS_InvalidMember, MemName, VD); 11694 11695 // Attempt to evaluate the var decl as a constant expression and extract 11696 // the value of its first field as a ICE. If this fails, the STL 11697 // implementation is not supported. 11698 if (!ValInfo->hasValidIntValue()) 11699 return UnsupportedSTLError(); 11700 11701 MarkVariableReferenced(Loc, VD); 11702 } 11703 11704 // We've successfully built the required types and expressions. Update 11705 // the cache and return the newly cached value. 11706 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true; 11707 return Info->getType(); 11708 } 11709 11710 /// Retrieve the special "std" namespace, which may require us to 11711 /// implicitly define the namespace. 11712 NamespaceDecl *Sema::getOrCreateStdNamespace() { 11713 if (!StdNamespace) { 11714 // The "std" namespace has not yet been defined, so build one implicitly. 11715 StdNamespace = NamespaceDecl::Create( 11716 Context, Context.getTranslationUnitDecl(), 11717 /*Inline=*/false, SourceLocation(), SourceLocation(), 11718 &PP.getIdentifierTable().get("std"), 11719 /*PrevDecl=*/nullptr, /*Nested=*/false); 11720 getStdNamespace()->setImplicit(true); 11721 // We want the created NamespaceDecl to be available for redeclaration 11722 // lookups, but not for regular name lookups. 11723 Context.getTranslationUnitDecl()->addDecl(getStdNamespace()); 11724 getStdNamespace()->clearIdentifierNamespace(); 11725 } 11726 11727 return getStdNamespace(); 11728 } 11729 11730 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { 11731 assert(getLangOpts().CPlusPlus && 11732 "Looking for std::initializer_list outside of C++."); 11733 11734 // We're looking for implicit instantiations of 11735 // template <typename E> class std::initializer_list. 11736 11737 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it. 11738 return false; 11739 11740 ClassTemplateDecl *Template = nullptr; 11741 const TemplateArgument *Arguments = nullptr; 11742 11743 if (const RecordType *RT = Ty->getAs<RecordType>()) { 11744 11745 ClassTemplateSpecializationDecl *Specialization = 11746 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 11747 if (!Specialization) 11748 return false; 11749 11750 Template = Specialization->getSpecializedTemplate(); 11751 Arguments = Specialization->getTemplateArgs().data(); 11752 } else if (const TemplateSpecializationType *TST = 11753 Ty->getAs<TemplateSpecializationType>()) { 11754 Template = dyn_cast_or_null<ClassTemplateDecl>( 11755 TST->getTemplateName().getAsTemplateDecl()); 11756 Arguments = TST->template_arguments().begin(); 11757 } 11758 if (!Template) 11759 return false; 11760 11761 if (!StdInitializerList) { 11762 // Haven't recognized std::initializer_list yet, maybe this is it. 11763 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); 11764 if (TemplateClass->getIdentifier() != 11765 &PP.getIdentifierTable().get("initializer_list") || 11766 !getStdNamespace()->InEnclosingNamespaceSetOf( 11767 TemplateClass->getDeclContext())) 11768 return false; 11769 // This is a template called std::initializer_list, but is it the right 11770 // template? 11771 TemplateParameterList *Params = Template->getTemplateParameters(); 11772 if (Params->getMinRequiredArguments() != 1) 11773 return false; 11774 if (!isa<TemplateTypeParmDecl>(Params->getParam(0))) 11775 return false; 11776 11777 // It's the right template. 11778 StdInitializerList = Template; 11779 } 11780 11781 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl()) 11782 return false; 11783 11784 // This is an instance of std::initializer_list. Find the argument type. 11785 if (Element) 11786 *Element = Arguments[0].getAsType(); 11787 return true; 11788 } 11789 11790 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){ 11791 NamespaceDecl *Std = S.getStdNamespace(); 11792 if (!Std) { 11793 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 11794 return nullptr; 11795 } 11796 11797 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"), 11798 Loc, Sema::LookupOrdinaryName); 11799 if (!S.LookupQualifiedName(Result, Std)) { 11800 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 11801 return nullptr; 11802 } 11803 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); 11804 if (!Template) { 11805 Result.suppressDiagnostics(); 11806 // We found something weird. Complain about the first thing we found. 11807 NamedDecl *Found = *Result.begin(); 11808 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list); 11809 return nullptr; 11810 } 11811 11812 // We found some template called std::initializer_list. Now verify that it's 11813 // correct. 11814 TemplateParameterList *Params = Template->getTemplateParameters(); 11815 if (Params->getMinRequiredArguments() != 1 || 11816 !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 11817 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list); 11818 return nullptr; 11819 } 11820 11821 return Template; 11822 } 11823 11824 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { 11825 if (!StdInitializerList) { 11826 StdInitializerList = LookupStdInitializerList(*this, Loc); 11827 if (!StdInitializerList) 11828 return QualType(); 11829 } 11830 11831 TemplateArgumentListInfo Args(Loc, Loc); 11832 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element), 11833 Context.getTrivialTypeSourceInfo(Element, 11834 Loc))); 11835 return Context.getElaboratedType( 11836 ElaboratedTypeKeyword::ETK_None, 11837 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()), 11838 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args)); 11839 } 11840 11841 bool Sema::isInitListConstructor(const FunctionDecl *Ctor) { 11842 // C++ [dcl.init.list]p2: 11843 // A constructor is an initializer-list constructor if its first parameter 11844 // is of type std::initializer_list<E> or reference to possibly cv-qualified 11845 // std::initializer_list<E> for some type E, and either there are no other 11846 // parameters or else all other parameters have default arguments. 11847 if (!Ctor->hasOneParamOrDefaultArgs()) 11848 return false; 11849 11850 QualType ArgType = Ctor->getParamDecl(0)->getType(); 11851 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) 11852 ArgType = RT->getPointeeType().getUnqualifiedType(); 11853 11854 return isStdInitializerList(ArgType, nullptr); 11855 } 11856 11857 /// Determine whether a using statement is in a context where it will be 11858 /// apply in all contexts. 11859 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { 11860 switch (CurContext->getDeclKind()) { 11861 case Decl::TranslationUnit: 11862 return true; 11863 case Decl::LinkageSpec: 11864 return IsUsingDirectiveInToplevelContext(CurContext->getParent()); 11865 default: 11866 return false; 11867 } 11868 } 11869 11870 namespace { 11871 11872 // Callback to only accept typo corrections that are namespaces. 11873 class NamespaceValidatorCCC final : public CorrectionCandidateCallback { 11874 public: 11875 bool ValidateCandidate(const TypoCorrection &candidate) override { 11876 if (NamedDecl *ND = candidate.getCorrectionDecl()) 11877 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); 11878 return false; 11879 } 11880 11881 std::unique_ptr<CorrectionCandidateCallback> clone() override { 11882 return std::make_unique<NamespaceValidatorCCC>(*this); 11883 } 11884 }; 11885 11886 } 11887 11888 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, 11889 CXXScopeSpec &SS, 11890 SourceLocation IdentLoc, 11891 IdentifierInfo *Ident) { 11892 R.clear(); 11893 NamespaceValidatorCCC CCC{}; 11894 if (TypoCorrection Corrected = 11895 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC, 11896 Sema::CTK_ErrorRecovery)) { 11897 if (DeclContext *DC = S.computeDeclContext(SS, false)) { 11898 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts())); 11899 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 11900 Ident->getName().equals(CorrectedStr); 11901 S.diagnoseTypo(Corrected, 11902 S.PDiag(diag::err_using_directive_member_suggest) 11903 << Ident << DC << DroppedSpecifier << SS.getRange(), 11904 S.PDiag(diag::note_namespace_defined_here)); 11905 } else { 11906 S.diagnoseTypo(Corrected, 11907 S.PDiag(diag::err_using_directive_suggest) << Ident, 11908 S.PDiag(diag::note_namespace_defined_here)); 11909 } 11910 R.addDecl(Corrected.getFoundDecl()); 11911 return true; 11912 } 11913 return false; 11914 } 11915 11916 Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, 11917 SourceLocation NamespcLoc, CXXScopeSpec &SS, 11918 SourceLocation IdentLoc, 11919 IdentifierInfo *NamespcName, 11920 const ParsedAttributesView &AttrList) { 11921 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 11922 assert(NamespcName && "Invalid NamespcName."); 11923 assert(IdentLoc.isValid() && "Invalid NamespceName location."); 11924 11925 // This can only happen along a recovery path. 11926 while (S->isTemplateParamScope()) 11927 S = S->getParent(); 11928 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 11929 11930 UsingDirectiveDecl *UDir = nullptr; 11931 NestedNameSpecifier *Qualifier = nullptr; 11932 if (SS.isSet()) 11933 Qualifier = SS.getScopeRep(); 11934 11935 // Lookup namespace name. 11936 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); 11937 LookupParsedName(R, S, &SS); 11938 if (R.isAmbiguous()) 11939 return nullptr; 11940 11941 if (R.empty()) { 11942 R.clear(); 11943 // Allow "using namespace std;" or "using namespace ::std;" even if 11944 // "std" hasn't been defined yet, for GCC compatibility. 11945 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && 11946 NamespcName->isStr("std")) { 11947 Diag(IdentLoc, diag::ext_using_undefined_std); 11948 R.addDecl(getOrCreateStdNamespace()); 11949 R.resolveKind(); 11950 } 11951 // Otherwise, attempt typo correction. 11952 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); 11953 } 11954 11955 if (!R.empty()) { 11956 NamedDecl *Named = R.getRepresentativeDecl(); 11957 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>(); 11958 assert(NS && "expected namespace decl"); 11959 11960 // The use of a nested name specifier may trigger deprecation warnings. 11961 DiagnoseUseOfDecl(Named, IdentLoc); 11962 11963 // C++ [namespace.udir]p1: 11964 // A using-directive specifies that the names in the nominated 11965 // namespace can be used in the scope in which the 11966 // using-directive appears after the using-directive. During 11967 // unqualified name lookup (3.4.1), the names appear as if they 11968 // were declared in the nearest enclosing namespace which 11969 // contains both the using-directive and the nominated 11970 // namespace. [Note: in this context, "contains" means "contains 11971 // directly or indirectly". ] 11972 11973 // Find enclosing context containing both using-directive and 11974 // nominated namespace. 11975 DeclContext *CommonAncestor = NS; 11976 while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) 11977 CommonAncestor = CommonAncestor->getParent(); 11978 11979 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, 11980 SS.getWithLocInContext(Context), 11981 IdentLoc, Named, CommonAncestor); 11982 11983 if (IsUsingDirectiveInToplevelContext(CurContext) && 11984 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) { 11985 Diag(IdentLoc, diag::warn_using_directive_in_header); 11986 } 11987 11988 PushUsingDirective(S, UDir); 11989 } else { 11990 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 11991 } 11992 11993 if (UDir) 11994 ProcessDeclAttributeList(S, UDir, AttrList); 11995 11996 return UDir; 11997 } 11998 11999 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { 12000 // If the scope has an associated entity and the using directive is at 12001 // namespace or translation unit scope, add the UsingDirectiveDecl into 12002 // its lookup structure so qualified name lookup can find it. 12003 DeclContext *Ctx = S->getEntity(); 12004 if (Ctx && !Ctx->isFunctionOrMethod()) 12005 Ctx->addDecl(UDir); 12006 else 12007 // Otherwise, it is at block scope. The using-directives will affect lookup 12008 // only to the end of the scope. 12009 S->PushUsingDirective(UDir); 12010 } 12011 12012 Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, 12013 SourceLocation UsingLoc, 12014 SourceLocation TypenameLoc, CXXScopeSpec &SS, 12015 UnqualifiedId &Name, 12016 SourceLocation EllipsisLoc, 12017 const ParsedAttributesView &AttrList) { 12018 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 12019 12020 if (SS.isEmpty()) { 12021 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname); 12022 return nullptr; 12023 } 12024 12025 switch (Name.getKind()) { 12026 case UnqualifiedIdKind::IK_ImplicitSelfParam: 12027 case UnqualifiedIdKind::IK_Identifier: 12028 case UnqualifiedIdKind::IK_OperatorFunctionId: 12029 case UnqualifiedIdKind::IK_LiteralOperatorId: 12030 case UnqualifiedIdKind::IK_ConversionFunctionId: 12031 break; 12032 12033 case UnqualifiedIdKind::IK_ConstructorName: 12034 case UnqualifiedIdKind::IK_ConstructorTemplateId: 12035 // C++11 inheriting constructors. 12036 Diag(Name.getBeginLoc(), 12037 getLangOpts().CPlusPlus11 12038 ? diag::warn_cxx98_compat_using_decl_constructor 12039 : diag::err_using_decl_constructor) 12040 << SS.getRange(); 12041 12042 if (getLangOpts().CPlusPlus11) break; 12043 12044 return nullptr; 12045 12046 case UnqualifiedIdKind::IK_DestructorName: 12047 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange(); 12048 return nullptr; 12049 12050 case UnqualifiedIdKind::IK_TemplateId: 12051 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id) 12052 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); 12053 return nullptr; 12054 12055 case UnqualifiedIdKind::IK_DeductionGuideName: 12056 llvm_unreachable("cannot parse qualified deduction guide name"); 12057 } 12058 12059 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 12060 DeclarationName TargetName = TargetNameInfo.getName(); 12061 if (!TargetName) 12062 return nullptr; 12063 12064 // Warn about access declarations. 12065 if (UsingLoc.isInvalid()) { 12066 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 12067 ? diag::err_access_decl 12068 : diag::warn_access_decl_deprecated) 12069 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); 12070 } 12071 12072 if (EllipsisLoc.isInvalid()) { 12073 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || 12074 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) 12075 return nullptr; 12076 } else { 12077 if (!SS.getScopeRep()->containsUnexpandedParameterPack() && 12078 !TargetNameInfo.containsUnexpandedParameterPack()) { 12079 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 12080 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc()); 12081 EllipsisLoc = SourceLocation(); 12082 } 12083 } 12084 12085 NamedDecl *UD = 12086 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc, 12087 SS, TargetNameInfo, EllipsisLoc, AttrList, 12088 /*IsInstantiation*/ false, 12089 AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists)); 12090 if (UD) 12091 PushOnScopeChains(UD, S, /*AddToContext*/ false); 12092 12093 return UD; 12094 } 12095 12096 Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS, 12097 SourceLocation UsingLoc, 12098 SourceLocation EnumLoc, 12099 SourceLocation IdentLoc, 12100 IdentifierInfo &II, CXXScopeSpec *SS) { 12101 assert(!SS->isInvalid() && "ScopeSpec is invalid"); 12102 TypeSourceInfo *TSI = nullptr; 12103 QualType EnumTy = GetTypeFromParser( 12104 getTypeName(II, IdentLoc, S, SS, /*isClassName=*/false, 12105 /*HasTrailingDot=*/false, 12106 /*ObjectType=*/nullptr, /*IsCtorOrDtorName=*/false, 12107 /*WantNontrivialTypeSourceInfo=*/true), 12108 &TSI); 12109 if (EnumTy.isNull()) { 12110 Diag(IdentLoc, SS && isDependentScopeSpecifier(*SS) 12111 ? diag::err_using_enum_is_dependent 12112 : diag::err_unknown_typename) 12113 << II.getName() 12114 << SourceRange(SS ? SS->getBeginLoc() : IdentLoc, IdentLoc); 12115 return nullptr; 12116 } 12117 12118 auto *Enum = dyn_cast_if_present<EnumDecl>(EnumTy->getAsTagDecl()); 12119 if (!Enum) { 12120 Diag(IdentLoc, diag::err_using_enum_not_enum) << EnumTy; 12121 return nullptr; 12122 } 12123 12124 if (auto *Def = Enum->getDefinition()) 12125 Enum = Def; 12126 12127 if (TSI == nullptr) 12128 TSI = Context.getTrivialTypeSourceInfo(EnumTy, IdentLoc); 12129 12130 auto *UD = 12131 BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc, IdentLoc, TSI, Enum); 12132 12133 if (UD) 12134 PushOnScopeChains(UD, S, /*AddToContext*/ false); 12135 12136 return UD; 12137 } 12138 12139 /// Determine whether a using declaration considers the given 12140 /// declarations as "equivalent", e.g., if they are redeclarations of 12141 /// the same entity or are both typedefs of the same type. 12142 static bool 12143 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { 12144 if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) 12145 return true; 12146 12147 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1)) 12148 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) 12149 return Context.hasSameType(TD1->getUnderlyingType(), 12150 TD2->getUnderlyingType()); 12151 12152 // Two using_if_exists using-declarations are equivalent if both are 12153 // unresolved. 12154 if (isa<UnresolvedUsingIfExistsDecl>(D1) && 12155 isa<UnresolvedUsingIfExistsDecl>(D2)) 12156 return true; 12157 12158 return false; 12159 } 12160 12161 12162 /// Determines whether to create a using shadow decl for a particular 12163 /// decl, given the set of decls existing prior to this using lookup. 12164 bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig, 12165 const LookupResult &Previous, 12166 UsingShadowDecl *&PrevShadow) { 12167 // Diagnose finding a decl which is not from a base class of the 12168 // current class. We do this now because there are cases where this 12169 // function will silently decide not to build a shadow decl, which 12170 // will pre-empt further diagnostics. 12171 // 12172 // We don't need to do this in C++11 because we do the check once on 12173 // the qualifier. 12174 // 12175 // FIXME: diagnose the following if we care enough: 12176 // struct A { int foo; }; 12177 // struct B : A { using A::foo; }; 12178 // template <class T> struct C : A {}; 12179 // template <class T> struct D : C<T> { using B::foo; } // <--- 12180 // This is invalid (during instantiation) in C++03 because B::foo 12181 // resolves to the using decl in B, which is not a base class of D<T>. 12182 // We can't diagnose it immediately because C<T> is an unknown 12183 // specialization. The UsingShadowDecl in D<T> then points directly 12184 // to A::foo, which will look well-formed when we instantiate. 12185 // The right solution is to not collapse the shadow-decl chain. 12186 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) 12187 if (auto *Using = dyn_cast<UsingDecl>(BUD)) { 12188 DeclContext *OrigDC = Orig->getDeclContext(); 12189 12190 // Handle enums and anonymous structs. 12191 if (isa<EnumDecl>(OrigDC)) 12192 OrigDC = OrigDC->getParent(); 12193 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); 12194 while (OrigRec->isAnonymousStructOrUnion()) 12195 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); 12196 12197 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { 12198 if (OrigDC == CurContext) { 12199 Diag(Using->getLocation(), 12200 diag::err_using_decl_nested_name_specifier_is_current_class) 12201 << Using->getQualifierLoc().getSourceRange(); 12202 Diag(Orig->getLocation(), diag::note_using_decl_target); 12203 Using->setInvalidDecl(); 12204 return true; 12205 } 12206 12207 Diag(Using->getQualifierLoc().getBeginLoc(), 12208 diag::err_using_decl_nested_name_specifier_is_not_base_class) 12209 << Using->getQualifier() << cast<CXXRecordDecl>(CurContext) 12210 << Using->getQualifierLoc().getSourceRange(); 12211 Diag(Orig->getLocation(), diag::note_using_decl_target); 12212 Using->setInvalidDecl(); 12213 return true; 12214 } 12215 } 12216 12217 if (Previous.empty()) return false; 12218 12219 NamedDecl *Target = Orig; 12220 if (isa<UsingShadowDecl>(Target)) 12221 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 12222 12223 // If the target happens to be one of the previous declarations, we 12224 // don't have a conflict. 12225 // 12226 // FIXME: but we might be increasing its access, in which case we 12227 // should redeclare it. 12228 NamedDecl *NonTag = nullptr, *Tag = nullptr; 12229 bool FoundEquivalentDecl = false; 12230 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 12231 I != E; ++I) { 12232 NamedDecl *D = (*I)->getUnderlyingDecl(); 12233 // We can have UsingDecls in our Previous results because we use the same 12234 // LookupResult for checking whether the UsingDecl itself is a valid 12235 // redeclaration. 12236 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D) || isa<UsingEnumDecl>(D)) 12237 continue; 12238 12239 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 12240 // C++ [class.mem]p19: 12241 // If T is the name of a class, then [every named member other than 12242 // a non-static data member] shall have a name different from T 12243 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) && 12244 !isa<IndirectFieldDecl>(Target) && 12245 !isa<UnresolvedUsingValueDecl>(Target) && 12246 DiagnoseClassNameShadow( 12247 CurContext, 12248 DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation()))) 12249 return true; 12250 } 12251 12252 if (IsEquivalentForUsingDecl(Context, D, Target)) { 12253 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I)) 12254 PrevShadow = Shadow; 12255 FoundEquivalentDecl = true; 12256 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) { 12257 // We don't conflict with an existing using shadow decl of an equivalent 12258 // declaration, but we're not a redeclaration of it. 12259 FoundEquivalentDecl = true; 12260 } 12261 12262 if (isVisible(D)) 12263 (isa<TagDecl>(D) ? Tag : NonTag) = D; 12264 } 12265 12266 if (FoundEquivalentDecl) 12267 return false; 12268 12269 // Always emit a diagnostic for a mismatch between an unresolved 12270 // using_if_exists and a resolved using declaration in either direction. 12271 if (isa<UnresolvedUsingIfExistsDecl>(Target) != 12272 (isa_and_nonnull<UnresolvedUsingIfExistsDecl>(NonTag))) { 12273 if (!NonTag && !Tag) 12274 return false; 12275 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12276 Diag(Target->getLocation(), diag::note_using_decl_target); 12277 Diag((NonTag ? NonTag : Tag)->getLocation(), 12278 diag::note_using_decl_conflict); 12279 BUD->setInvalidDecl(); 12280 return true; 12281 } 12282 12283 if (FunctionDecl *FD = Target->getAsFunction()) { 12284 NamedDecl *OldDecl = nullptr; 12285 switch (CheckOverload(nullptr, FD, Previous, OldDecl, 12286 /*IsForUsingDecl*/ true)) { 12287 case Ovl_Overload: 12288 return false; 12289 12290 case Ovl_NonFunction: 12291 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12292 break; 12293 12294 // We found a decl with the exact signature. 12295 case Ovl_Match: 12296 // If we're in a record, we want to hide the target, so we 12297 // return true (without a diagnostic) to tell the caller not to 12298 // build a shadow decl. 12299 if (CurContext->isRecord()) 12300 return true; 12301 12302 // If we're not in a record, this is an error. 12303 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12304 break; 12305 } 12306 12307 Diag(Target->getLocation(), diag::note_using_decl_target); 12308 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); 12309 BUD->setInvalidDecl(); 12310 return true; 12311 } 12312 12313 // Target is not a function. 12314 12315 if (isa<TagDecl>(Target)) { 12316 // No conflict between a tag and a non-tag. 12317 if (!Tag) return false; 12318 12319 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12320 Diag(Target->getLocation(), diag::note_using_decl_target); 12321 Diag(Tag->getLocation(), diag::note_using_decl_conflict); 12322 BUD->setInvalidDecl(); 12323 return true; 12324 } 12325 12326 // No conflict between a tag and a non-tag. 12327 if (!NonTag) return false; 12328 12329 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12330 Diag(Target->getLocation(), diag::note_using_decl_target); 12331 Diag(NonTag->getLocation(), diag::note_using_decl_conflict); 12332 BUD->setInvalidDecl(); 12333 return true; 12334 } 12335 12336 /// Determine whether a direct base class is a virtual base class. 12337 static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) { 12338 if (!Derived->getNumVBases()) 12339 return false; 12340 for (auto &B : Derived->bases()) 12341 if (B.getType()->getAsCXXRecordDecl() == Base) 12342 return B.isVirtual(); 12343 llvm_unreachable("not a direct base class"); 12344 } 12345 12346 /// Builds a shadow declaration corresponding to a 'using' declaration. 12347 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD, 12348 NamedDecl *Orig, 12349 UsingShadowDecl *PrevDecl) { 12350 // If we resolved to another shadow declaration, just coalesce them. 12351 NamedDecl *Target = Orig; 12352 if (isa<UsingShadowDecl>(Target)) { 12353 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 12354 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); 12355 } 12356 12357 NamedDecl *NonTemplateTarget = Target; 12358 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target)) 12359 NonTemplateTarget = TargetTD->getTemplatedDecl(); 12360 12361 UsingShadowDecl *Shadow; 12362 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) { 12363 UsingDecl *Using = cast<UsingDecl>(BUD); 12364 bool IsVirtualBase = 12365 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext), 12366 Using->getQualifier()->getAsRecordDecl()); 12367 Shadow = ConstructorUsingShadowDecl::Create( 12368 Context, CurContext, Using->getLocation(), Using, Orig, IsVirtualBase); 12369 } else { 12370 Shadow = UsingShadowDecl::Create(Context, CurContext, BUD->getLocation(), 12371 Target->getDeclName(), BUD, Target); 12372 } 12373 BUD->addShadowDecl(Shadow); 12374 12375 Shadow->setAccess(BUD->getAccess()); 12376 if (Orig->isInvalidDecl() || BUD->isInvalidDecl()) 12377 Shadow->setInvalidDecl(); 12378 12379 Shadow->setPreviousDecl(PrevDecl); 12380 12381 if (S) 12382 PushOnScopeChains(Shadow, S); 12383 else 12384 CurContext->addDecl(Shadow); 12385 12386 12387 return Shadow; 12388 } 12389 12390 /// Hides a using shadow declaration. This is required by the current 12391 /// using-decl implementation when a resolvable using declaration in a 12392 /// class is followed by a declaration which would hide or override 12393 /// one or more of the using decl's targets; for example: 12394 /// 12395 /// struct Base { void foo(int); }; 12396 /// struct Derived : Base { 12397 /// using Base::foo; 12398 /// void foo(int); 12399 /// }; 12400 /// 12401 /// The governing language is C++03 [namespace.udecl]p12: 12402 /// 12403 /// When a using-declaration brings names from a base class into a 12404 /// derived class scope, member functions in the derived class 12405 /// override and/or hide member functions with the same name and 12406 /// parameter types in a base class (rather than conflicting). 12407 /// 12408 /// There are two ways to implement this: 12409 /// (1) optimistically create shadow decls when they're not hidden 12410 /// by existing declarations, or 12411 /// (2) don't create any shadow decls (or at least don't make them 12412 /// visible) until we've fully parsed/instantiated the class. 12413 /// The problem with (1) is that we might have to retroactively remove 12414 /// a shadow decl, which requires several O(n) operations because the 12415 /// decl structures are (very reasonably) not designed for removal. 12416 /// (2) avoids this but is very fiddly and phase-dependent. 12417 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { 12418 if (Shadow->getDeclName().getNameKind() == 12419 DeclarationName::CXXConversionFunctionName) 12420 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); 12421 12422 // Remove it from the DeclContext... 12423 Shadow->getDeclContext()->removeDecl(Shadow); 12424 12425 // ...and the scope, if applicable... 12426 if (S) { 12427 S->RemoveDecl(Shadow); 12428 IdResolver.RemoveDecl(Shadow); 12429 } 12430 12431 // ...and the using decl. 12432 Shadow->getIntroducer()->removeShadowDecl(Shadow); 12433 12434 // TODO: complain somehow if Shadow was used. It shouldn't 12435 // be possible for this to happen, because...? 12436 } 12437 12438 /// Find the base specifier for a base class with the given type. 12439 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, 12440 QualType DesiredBase, 12441 bool &AnyDependentBases) { 12442 // Check whether the named type is a direct base class. 12443 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified() 12444 .getUnqualifiedType(); 12445 for (auto &Base : Derived->bases()) { 12446 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); 12447 if (CanonicalDesiredBase == BaseType) 12448 return &Base; 12449 if (BaseType->isDependentType()) 12450 AnyDependentBases = true; 12451 } 12452 return nullptr; 12453 } 12454 12455 namespace { 12456 class UsingValidatorCCC final : public CorrectionCandidateCallback { 12457 public: 12458 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, 12459 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) 12460 : HasTypenameKeyword(HasTypenameKeyword), 12461 IsInstantiation(IsInstantiation), OldNNS(NNS), 12462 RequireMemberOf(RequireMemberOf) {} 12463 12464 bool ValidateCandidate(const TypoCorrection &Candidate) override { 12465 NamedDecl *ND = Candidate.getCorrectionDecl(); 12466 12467 // Keywords are not valid here. 12468 if (!ND || isa<NamespaceDecl>(ND)) 12469 return false; 12470 12471 // Completely unqualified names are invalid for a 'using' declaration. 12472 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) 12473 return false; 12474 12475 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would 12476 // reject. 12477 12478 if (RequireMemberOf) { 12479 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 12480 if (FoundRecord && FoundRecord->isInjectedClassName()) { 12481 // No-one ever wants a using-declaration to name an injected-class-name 12482 // of a base class, unless they're declaring an inheriting constructor. 12483 ASTContext &Ctx = ND->getASTContext(); 12484 if (!Ctx.getLangOpts().CPlusPlus11) 12485 return false; 12486 QualType FoundType = Ctx.getRecordType(FoundRecord); 12487 12488 // Check that the injected-class-name is named as a member of its own 12489 // type; we don't want to suggest 'using Derived::Base;', since that 12490 // means something else. 12491 NestedNameSpecifier *Specifier = 12492 Candidate.WillReplaceSpecifier() 12493 ? Candidate.getCorrectionSpecifier() 12494 : OldNNS; 12495 if (!Specifier->getAsType() || 12496 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType)) 12497 return false; 12498 12499 // Check that this inheriting constructor declaration actually names a 12500 // direct base class of the current class. 12501 bool AnyDependentBases = false; 12502 if (!findDirectBaseWithType(RequireMemberOf, 12503 Ctx.getRecordType(FoundRecord), 12504 AnyDependentBases) && 12505 !AnyDependentBases) 12506 return false; 12507 } else { 12508 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()); 12509 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD)) 12510 return false; 12511 12512 // FIXME: Check that the base class member is accessible? 12513 } 12514 } else { 12515 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 12516 if (FoundRecord && FoundRecord->isInjectedClassName()) 12517 return false; 12518 } 12519 12520 if (isa<TypeDecl>(ND)) 12521 return HasTypenameKeyword || !IsInstantiation; 12522 12523 return !HasTypenameKeyword; 12524 } 12525 12526 std::unique_ptr<CorrectionCandidateCallback> clone() override { 12527 return std::make_unique<UsingValidatorCCC>(*this); 12528 } 12529 12530 private: 12531 bool HasTypenameKeyword; 12532 bool IsInstantiation; 12533 NestedNameSpecifier *OldNNS; 12534 CXXRecordDecl *RequireMemberOf; 12535 }; 12536 } // end anonymous namespace 12537 12538 /// Remove decls we can't actually see from a lookup being used to declare 12539 /// shadow using decls. 12540 /// 12541 /// \param S - The scope of the potential shadow decl 12542 /// \param Previous - The lookup of a potential shadow decl's name. 12543 void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) { 12544 // It is really dumb that we have to do this. 12545 LookupResult::Filter F = Previous.makeFilter(); 12546 while (F.hasNext()) { 12547 NamedDecl *D = F.next(); 12548 if (!isDeclInScope(D, CurContext, S)) 12549 F.erase(); 12550 // If we found a local extern declaration that's not ordinarily visible, 12551 // and this declaration is being added to a non-block scope, ignore it. 12552 // We're only checking for scope conflicts here, not also for violations 12553 // of the linkage rules. 12554 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && 12555 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) 12556 F.erase(); 12557 } 12558 F.done(); 12559 } 12560 12561 /// Builds a using declaration. 12562 /// 12563 /// \param IsInstantiation - Whether this call arises from an 12564 /// instantiation of an unresolved using declaration. We treat 12565 /// the lookup differently for these declarations. 12566 NamedDecl *Sema::BuildUsingDeclaration( 12567 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, 12568 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, 12569 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, 12570 const ParsedAttributesView &AttrList, bool IsInstantiation, 12571 bool IsUsingIfExists) { 12572 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 12573 SourceLocation IdentLoc = NameInfo.getLoc(); 12574 assert(IdentLoc.isValid() && "Invalid TargetName location."); 12575 12576 // FIXME: We ignore attributes for now. 12577 12578 // For an inheriting constructor declaration, the name of the using 12579 // declaration is the name of a constructor in this class, not in the 12580 // base class. 12581 DeclarationNameInfo UsingName = NameInfo; 12582 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) 12583 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext)) 12584 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12585 Context.getCanonicalType(Context.getRecordType(RD)))); 12586 12587 // Do the redeclaration lookup in the current scope. 12588 LookupResult Previous(*this, UsingName, LookupUsingDeclName, 12589 ForVisibleRedeclaration); 12590 Previous.setHideTags(false); 12591 if (S) { 12592 LookupName(Previous, S); 12593 12594 FilterUsingLookup(S, Previous); 12595 } else { 12596 assert(IsInstantiation && "no scope in non-instantiation"); 12597 if (CurContext->isRecord()) 12598 LookupQualifiedName(Previous, CurContext); 12599 else { 12600 // No redeclaration check is needed here; in non-member contexts we 12601 // diagnosed all possible conflicts with other using-declarations when 12602 // building the template: 12603 // 12604 // For a dependent non-type using declaration, the only valid case is 12605 // if we instantiate to a single enumerator. We check for conflicts 12606 // between shadow declarations we introduce, and we check in the template 12607 // definition for conflicts between a non-type using declaration and any 12608 // other declaration, which together covers all cases. 12609 // 12610 // A dependent typename using declaration will never successfully 12611 // instantiate, since it will always name a class member, so we reject 12612 // that in the template definition. 12613 } 12614 } 12615 12616 // Check for invalid redeclarations. 12617 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, 12618 SS, IdentLoc, Previous)) 12619 return nullptr; 12620 12621 // 'using_if_exists' doesn't make sense on an inherited constructor. 12622 if (IsUsingIfExists && UsingName.getName().getNameKind() == 12623 DeclarationName::CXXConstructorName) { 12624 Diag(UsingLoc, diag::err_using_if_exists_on_ctor); 12625 return nullptr; 12626 } 12627 12628 DeclContext *LookupContext = computeDeclContext(SS); 12629 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 12630 if (!LookupContext || EllipsisLoc.isValid()) { 12631 NamedDecl *D; 12632 // Dependent scope, or an unexpanded pack 12633 if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, 12634 SS, NameInfo, IdentLoc)) 12635 return nullptr; 12636 12637 if (HasTypenameKeyword) { 12638 // FIXME: not all declaration name kinds are legal here 12639 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, 12640 UsingLoc, TypenameLoc, 12641 QualifierLoc, 12642 IdentLoc, NameInfo.getName(), 12643 EllipsisLoc); 12644 } else { 12645 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, 12646 QualifierLoc, NameInfo, EllipsisLoc); 12647 } 12648 D->setAccess(AS); 12649 CurContext->addDecl(D); 12650 ProcessDeclAttributeList(S, D, AttrList); 12651 return D; 12652 } 12653 12654 auto Build = [&](bool Invalid) { 12655 UsingDecl *UD = 12656 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, 12657 UsingName, HasTypenameKeyword); 12658 UD->setAccess(AS); 12659 CurContext->addDecl(UD); 12660 ProcessDeclAttributeList(S, UD, AttrList); 12661 UD->setInvalidDecl(Invalid); 12662 return UD; 12663 }; 12664 auto BuildInvalid = [&]{ return Build(true); }; 12665 auto BuildValid = [&]{ return Build(false); }; 12666 12667 if (RequireCompleteDeclContext(SS, LookupContext)) 12668 return BuildInvalid(); 12669 12670 // Look up the target name. 12671 LookupResult R(*this, NameInfo, LookupOrdinaryName); 12672 12673 // Unlike most lookups, we don't always want to hide tag 12674 // declarations: tag names are visible through the using declaration 12675 // even if hidden by ordinary names, *except* in a dependent context 12676 // where they may be used by two-phase lookup. 12677 if (!IsInstantiation) 12678 R.setHideTags(false); 12679 12680 // For the purposes of this lookup, we have a base object type 12681 // equal to that of the current context. 12682 if (CurContext->isRecord()) { 12683 R.setBaseObjectType( 12684 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))); 12685 } 12686 12687 LookupQualifiedName(R, LookupContext); 12688 12689 // Validate the context, now we have a lookup 12690 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo, 12691 IdentLoc, &R)) 12692 return nullptr; 12693 12694 if (R.empty() && IsUsingIfExists) 12695 R.addDecl(UnresolvedUsingIfExistsDecl::Create(Context, CurContext, UsingLoc, 12696 UsingName.getName()), 12697 AS_public); 12698 12699 // Try to correct typos if possible. If constructor name lookup finds no 12700 // results, that means the named class has no explicit constructors, and we 12701 // suppressed declaring implicit ones (probably because it's dependent or 12702 // invalid). 12703 if (R.empty() && 12704 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) { 12705 // HACK 2017-01-08: Work around an issue with libstdc++'s detection of 12706 // ::gets. Sometimes it believes that glibc provides a ::gets in cases where 12707 // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later. 12708 auto *II = NameInfo.getName().getAsIdentifierInfo(); 12709 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") && 12710 CurContext->isStdNamespace() && 12711 isa<TranslationUnitDecl>(LookupContext) && 12712 getSourceManager().isInSystemHeader(UsingLoc)) 12713 return nullptr; 12714 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), 12715 dyn_cast<CXXRecordDecl>(CurContext)); 12716 if (TypoCorrection Corrected = 12717 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, 12718 CTK_ErrorRecovery)) { 12719 // We reject candidates where DroppedSpecifier == true, hence the 12720 // literal '0' below. 12721 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) 12722 << NameInfo.getName() << LookupContext << 0 12723 << SS.getRange()); 12724 12725 // If we picked a correction with no attached Decl we can't do anything 12726 // useful with it, bail out. 12727 NamedDecl *ND = Corrected.getCorrectionDecl(); 12728 if (!ND) 12729 return BuildInvalid(); 12730 12731 // If we corrected to an inheriting constructor, handle it as one. 12732 auto *RD = dyn_cast<CXXRecordDecl>(ND); 12733 if (RD && RD->isInjectedClassName()) { 12734 // The parent of the injected class name is the class itself. 12735 RD = cast<CXXRecordDecl>(RD->getParent()); 12736 12737 // Fix up the information we'll use to build the using declaration. 12738 if (Corrected.WillReplaceSpecifier()) { 12739 NestedNameSpecifierLocBuilder Builder; 12740 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 12741 QualifierLoc.getSourceRange()); 12742 QualifierLoc = Builder.getWithLocInContext(Context); 12743 } 12744 12745 // In this case, the name we introduce is the name of a derived class 12746 // constructor. 12747 auto *CurClass = cast<CXXRecordDecl>(CurContext); 12748 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12749 Context.getCanonicalType(Context.getRecordType(CurClass)))); 12750 UsingName.setNamedTypeInfo(nullptr); 12751 for (auto *Ctor : LookupConstructors(RD)) 12752 R.addDecl(Ctor); 12753 R.resolveKind(); 12754 } else { 12755 // FIXME: Pick up all the declarations if we found an overloaded 12756 // function. 12757 UsingName.setName(ND->getDeclName()); 12758 R.addDecl(ND); 12759 } 12760 } else { 12761 Diag(IdentLoc, diag::err_no_member) 12762 << NameInfo.getName() << LookupContext << SS.getRange(); 12763 return BuildInvalid(); 12764 } 12765 } 12766 12767 if (R.isAmbiguous()) 12768 return BuildInvalid(); 12769 12770 if (HasTypenameKeyword) { 12771 // If we asked for a typename and got a non-type decl, error out. 12772 if (!R.getAsSingle<TypeDecl>() && 12773 !R.getAsSingle<UnresolvedUsingIfExistsDecl>()) { 12774 Diag(IdentLoc, diag::err_using_typename_non_type); 12775 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 12776 Diag((*I)->getUnderlyingDecl()->getLocation(), 12777 diag::note_using_decl_target); 12778 return BuildInvalid(); 12779 } 12780 } else { 12781 // If we asked for a non-typename and we got a type, error out, 12782 // but only if this is an instantiation of an unresolved using 12783 // decl. Otherwise just silently find the type name. 12784 if (IsInstantiation && R.getAsSingle<TypeDecl>()) { 12785 Diag(IdentLoc, diag::err_using_dependent_value_is_type); 12786 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); 12787 return BuildInvalid(); 12788 } 12789 } 12790 12791 // C++14 [namespace.udecl]p6: 12792 // A using-declaration shall not name a namespace. 12793 if (R.getAsSingle<NamespaceDecl>()) { 12794 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) 12795 << SS.getRange(); 12796 return BuildInvalid(); 12797 } 12798 12799 UsingDecl *UD = BuildValid(); 12800 12801 // Some additional rules apply to inheriting constructors. 12802 if (UsingName.getName().getNameKind() == 12803 DeclarationName::CXXConstructorName) { 12804 // Suppress access diagnostics; the access check is instead performed at the 12805 // point of use for an inheriting constructor. 12806 R.suppressDiagnostics(); 12807 if (CheckInheritingConstructorUsingDecl(UD)) 12808 return UD; 12809 } 12810 12811 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 12812 UsingShadowDecl *PrevDecl = nullptr; 12813 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) 12814 BuildUsingShadowDecl(S, UD, *I, PrevDecl); 12815 } 12816 12817 return UD; 12818 } 12819 12820 NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS, 12821 SourceLocation UsingLoc, 12822 SourceLocation EnumLoc, 12823 SourceLocation NameLoc, 12824 TypeSourceInfo *EnumType, 12825 EnumDecl *ED) { 12826 bool Invalid = false; 12827 12828 if (CurContext->getRedeclContext()->isRecord()) { 12829 /// In class scope, check if this is a duplicate, for better a diagnostic. 12830 DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc); 12831 LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName, 12832 ForVisibleRedeclaration); 12833 12834 LookupName(Previous, S); 12835 12836 for (NamedDecl *D : Previous) 12837 if (UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) 12838 if (UED->getEnumDecl() == ED) { 12839 Diag(UsingLoc, diag::err_using_enum_decl_redeclaration) 12840 << SourceRange(EnumLoc, NameLoc); 12841 Diag(D->getLocation(), diag::note_using_enum_decl) << 1; 12842 Invalid = true; 12843 break; 12844 } 12845 } 12846 12847 if (RequireCompleteEnumDecl(ED, NameLoc)) 12848 Invalid = true; 12849 12850 UsingEnumDecl *UD = UsingEnumDecl::Create(Context, CurContext, UsingLoc, 12851 EnumLoc, NameLoc, EnumType); 12852 UD->setAccess(AS); 12853 CurContext->addDecl(UD); 12854 12855 if (Invalid) { 12856 UD->setInvalidDecl(); 12857 return UD; 12858 } 12859 12860 // Create the shadow decls for each enumerator 12861 for (EnumConstantDecl *EC : ED->enumerators()) { 12862 UsingShadowDecl *PrevDecl = nullptr; 12863 DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation()); 12864 LookupResult Previous(*this, DNI, LookupOrdinaryName, 12865 ForVisibleRedeclaration); 12866 LookupName(Previous, S); 12867 FilterUsingLookup(S, Previous); 12868 12869 if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl)) 12870 BuildUsingShadowDecl(S, UD, EC, PrevDecl); 12871 } 12872 12873 return UD; 12874 } 12875 12876 NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom, 12877 ArrayRef<NamedDecl *> Expansions) { 12878 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || 12879 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || 12880 isa<UsingPackDecl>(InstantiatedFrom)); 12881 12882 auto *UPD = 12883 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions); 12884 UPD->setAccess(InstantiatedFrom->getAccess()); 12885 CurContext->addDecl(UPD); 12886 return UPD; 12887 } 12888 12889 /// Additional checks for a using declaration referring to a constructor name. 12890 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { 12891 assert(!UD->hasTypename() && "expecting a constructor name"); 12892 12893 const Type *SourceType = UD->getQualifier()->getAsType(); 12894 assert(SourceType && 12895 "Using decl naming constructor doesn't have type in scope spec."); 12896 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); 12897 12898 // Check whether the named type is a direct base class. 12899 bool AnyDependentBases = false; 12900 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0), 12901 AnyDependentBases); 12902 if (!Base && !AnyDependentBases) { 12903 Diag(UD->getUsingLoc(), 12904 diag::err_using_decl_constructor_not_in_direct_base) 12905 << UD->getNameInfo().getSourceRange() 12906 << QualType(SourceType, 0) << TargetClass; 12907 UD->setInvalidDecl(); 12908 return true; 12909 } 12910 12911 if (Base) 12912 Base->setInheritConstructors(); 12913 12914 return false; 12915 } 12916 12917 /// Checks that the given using declaration is not an invalid 12918 /// redeclaration. Note that this is checking only for the using decl 12919 /// itself, not for any ill-formedness among the UsingShadowDecls. 12920 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, 12921 bool HasTypenameKeyword, 12922 const CXXScopeSpec &SS, 12923 SourceLocation NameLoc, 12924 const LookupResult &Prev) { 12925 NestedNameSpecifier *Qual = SS.getScopeRep(); 12926 12927 // C++03 [namespace.udecl]p8: 12928 // C++0x [namespace.udecl]p10: 12929 // A using-declaration is a declaration and can therefore be used 12930 // repeatedly where (and only where) multiple declarations are 12931 // allowed. 12932 // 12933 // That's in non-member contexts. 12934 if (!CurContext->getRedeclContext()->isRecord()) { 12935 // A dependent qualifier outside a class can only ever resolve to an 12936 // enumeration type. Therefore it conflicts with any other non-type 12937 // declaration in the same scope. 12938 // FIXME: How should we check for dependent type-type conflicts at block 12939 // scope? 12940 if (Qual->isDependent() && !HasTypenameKeyword) { 12941 for (auto *D : Prev) { 12942 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) { 12943 bool OldCouldBeEnumerator = 12944 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D); 12945 Diag(NameLoc, 12946 OldCouldBeEnumerator ? diag::err_redefinition 12947 : diag::err_redefinition_different_kind) 12948 << Prev.getLookupName(); 12949 Diag(D->getLocation(), diag::note_previous_definition); 12950 return true; 12951 } 12952 } 12953 } 12954 return false; 12955 } 12956 12957 const NestedNameSpecifier *CNNS = 12958 Context.getCanonicalNestedNameSpecifier(Qual); 12959 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { 12960 NamedDecl *D = *I; 12961 12962 bool DTypename; 12963 NestedNameSpecifier *DQual; 12964 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { 12965 DTypename = UD->hasTypename(); 12966 DQual = UD->getQualifier(); 12967 } else if (UnresolvedUsingValueDecl *UD 12968 = dyn_cast<UnresolvedUsingValueDecl>(D)) { 12969 DTypename = false; 12970 DQual = UD->getQualifier(); 12971 } else if (UnresolvedUsingTypenameDecl *UD 12972 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { 12973 DTypename = true; 12974 DQual = UD->getQualifier(); 12975 } else continue; 12976 12977 // using decls differ if one says 'typename' and the other doesn't. 12978 // FIXME: non-dependent using decls? 12979 if (HasTypenameKeyword != DTypename) continue; 12980 12981 // using decls differ if they name different scopes (but note that 12982 // template instantiation can cause this check to trigger when it 12983 // didn't before instantiation). 12984 if (CNNS != Context.getCanonicalNestedNameSpecifier(DQual)) 12985 continue; 12986 12987 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); 12988 Diag(D->getLocation(), diag::note_using_decl) << 1; 12989 return true; 12990 } 12991 12992 return false; 12993 } 12994 12995 /// Checks that the given nested-name qualifier used in a using decl 12996 /// in the current context is appropriately related to the current 12997 /// scope. If an error is found, diagnoses it and returns true. 12998 /// R is nullptr, if the caller has not (yet) done a lookup, otherwise it's the 12999 /// result of that lookup. UD is likewise nullptr, except when we have an 13000 /// already-populated UsingDecl whose shadow decls contain the same information 13001 /// (i.e. we're instantiating a UsingDecl with non-dependent scope). 13002 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename, 13003 const CXXScopeSpec &SS, 13004 const DeclarationNameInfo &NameInfo, 13005 SourceLocation NameLoc, 13006 const LookupResult *R, const UsingDecl *UD) { 13007 DeclContext *NamedContext = computeDeclContext(SS); 13008 assert(bool(NamedContext) == (R || UD) && !(R && UD) && 13009 "resolvable context must have exactly one set of decls"); 13010 13011 // C++ 20 permits using an enumerator that does not have a class-hierarchy 13012 // relationship. 13013 bool Cxx20Enumerator = false; 13014 if (NamedContext) { 13015 EnumConstantDecl *EC = nullptr; 13016 if (R) 13017 EC = R->getAsSingle<EnumConstantDecl>(); 13018 else if (UD && UD->shadow_size() == 1) 13019 EC = dyn_cast<EnumConstantDecl>(UD->shadow_begin()->getTargetDecl()); 13020 if (EC) 13021 Cxx20Enumerator = getLangOpts().CPlusPlus20; 13022 13023 if (auto *ED = dyn_cast<EnumDecl>(NamedContext)) { 13024 // C++14 [namespace.udecl]p7: 13025 // A using-declaration shall not name a scoped enumerator. 13026 // C++20 p1099 permits enumerators. 13027 if (EC && R && ED->isScoped()) 13028 Diag(SS.getBeginLoc(), 13029 getLangOpts().CPlusPlus20 13030 ? diag::warn_cxx17_compat_using_decl_scoped_enumerator 13031 : diag::ext_using_decl_scoped_enumerator) 13032 << SS.getRange(); 13033 13034 // We want to consider the scope of the enumerator 13035 NamedContext = ED->getDeclContext(); 13036 } 13037 } 13038 13039 if (!CurContext->isRecord()) { 13040 // C++03 [namespace.udecl]p3: 13041 // C++0x [namespace.udecl]p8: 13042 // A using-declaration for a class member shall be a member-declaration. 13043 // C++20 [namespace.udecl]p7 13044 // ... other than an enumerator ... 13045 13046 // If we weren't able to compute a valid scope, it might validly be a 13047 // dependent class or enumeration scope. If we have a 'typename' keyword, 13048 // the scope must resolve to a class type. 13049 if (NamedContext ? !NamedContext->getRedeclContext()->isRecord() 13050 : !HasTypename) 13051 return false; // OK 13052 13053 Diag(NameLoc, 13054 Cxx20Enumerator 13055 ? diag::warn_cxx17_compat_using_decl_class_member_enumerator 13056 : diag::err_using_decl_can_not_refer_to_class_member) 13057 << SS.getRange(); 13058 13059 if (Cxx20Enumerator) 13060 return false; // OK 13061 13062 auto *RD = NamedContext 13063 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext()) 13064 : nullptr; 13065 if (RD && !RequireCompleteDeclContext(const_cast<CXXScopeSpec &>(SS), RD)) { 13066 // See if there's a helpful fixit 13067 13068 if (!R) { 13069 // We will have already diagnosed the problem on the template 13070 // definition, Maybe we should do so again? 13071 } else if (R->getAsSingle<TypeDecl>()) { 13072 if (getLangOpts().CPlusPlus11) { 13073 // Convert 'using X::Y;' to 'using Y = X::Y;'. 13074 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) 13075 << 0 // alias declaration 13076 << FixItHint::CreateInsertion(SS.getBeginLoc(), 13077 NameInfo.getName().getAsString() + 13078 " = "); 13079 } else { 13080 // Convert 'using X::Y;' to 'typedef X::Y Y;'. 13081 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc()); 13082 Diag(InsertLoc, diag::note_using_decl_class_member_workaround) 13083 << 1 // typedef declaration 13084 << FixItHint::CreateReplacement(UsingLoc, "typedef") 13085 << FixItHint::CreateInsertion( 13086 InsertLoc, " " + NameInfo.getName().getAsString()); 13087 } 13088 } else if (R->getAsSingle<VarDecl>()) { 13089 // Don't provide a fixit outside C++11 mode; we don't want to suggest 13090 // repeating the type of the static data member here. 13091 FixItHint FixIt; 13092 if (getLangOpts().CPlusPlus11) { 13093 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 13094 FixIt = FixItHint::CreateReplacement( 13095 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = "); 13096 } 13097 13098 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 13099 << 2 // reference declaration 13100 << FixIt; 13101 } else if (R->getAsSingle<EnumConstantDecl>()) { 13102 // Don't provide a fixit outside C++11 mode; we don't want to suggest 13103 // repeating the type of the enumeration here, and we can't do so if 13104 // the type is anonymous. 13105 FixItHint FixIt; 13106 if (getLangOpts().CPlusPlus11) { 13107 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 13108 FixIt = FixItHint::CreateReplacement( 13109 UsingLoc, 13110 "constexpr auto " + NameInfo.getName().getAsString() + " = "); 13111 } 13112 13113 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 13114 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable 13115 << FixIt; 13116 } 13117 } 13118 13119 return true; // Fail 13120 } 13121 13122 // If the named context is dependent, we can't decide much. 13123 if (!NamedContext) { 13124 // FIXME: in C++0x, we can diagnose if we can prove that the 13125 // nested-name-specifier does not refer to a base class, which is 13126 // still possible in some cases. 13127 13128 // Otherwise we have to conservatively report that things might be 13129 // okay. 13130 return false; 13131 } 13132 13133 // The current scope is a record. 13134 if (!NamedContext->isRecord()) { 13135 // Ideally this would point at the last name in the specifier, 13136 // but we don't have that level of source info. 13137 Diag(SS.getBeginLoc(), 13138 Cxx20Enumerator 13139 ? diag::warn_cxx17_compat_using_decl_non_member_enumerator 13140 : diag::err_using_decl_nested_name_specifier_is_not_class) 13141 << SS.getScopeRep() << SS.getRange(); 13142 13143 if (Cxx20Enumerator) 13144 return false; // OK 13145 13146 return true; 13147 } 13148 13149 if (!NamedContext->isDependentContext() && 13150 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) 13151 return true; 13152 13153 if (getLangOpts().CPlusPlus11) { 13154 // C++11 [namespace.udecl]p3: 13155 // In a using-declaration used as a member-declaration, the 13156 // nested-name-specifier shall name a base class of the class 13157 // being defined. 13158 13159 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( 13160 cast<CXXRecordDecl>(NamedContext))) { 13161 13162 if (Cxx20Enumerator) { 13163 Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator) 13164 << SS.getRange(); 13165 return false; 13166 } 13167 13168 if (CurContext == NamedContext) { 13169 Diag(SS.getBeginLoc(), 13170 diag::err_using_decl_nested_name_specifier_is_current_class) 13171 << SS.getRange(); 13172 return !getLangOpts().CPlusPlus20; 13173 } 13174 13175 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) { 13176 Diag(SS.getBeginLoc(), 13177 diag::err_using_decl_nested_name_specifier_is_not_base_class) 13178 << SS.getScopeRep() << cast<CXXRecordDecl>(CurContext) 13179 << SS.getRange(); 13180 } 13181 return true; 13182 } 13183 13184 return false; 13185 } 13186 13187 // C++03 [namespace.udecl]p4: 13188 // A using-declaration used as a member-declaration shall refer 13189 // to a member of a base class of the class being defined [etc.]. 13190 13191 // Salient point: SS doesn't have to name a base class as long as 13192 // lookup only finds members from base classes. Therefore we can 13193 // diagnose here only if we can prove that can't happen, 13194 // i.e. if the class hierarchies provably don't intersect. 13195 13196 // TODO: it would be nice if "definitely valid" results were cached 13197 // in the UsingDecl and UsingShadowDecl so that these checks didn't 13198 // need to be repeated. 13199 13200 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases; 13201 auto Collect = [&Bases](const CXXRecordDecl *Base) { 13202 Bases.insert(Base); 13203 return true; 13204 }; 13205 13206 // Collect all bases. Return false if we find a dependent base. 13207 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect)) 13208 return false; 13209 13210 // Returns true if the base is dependent or is one of the accumulated base 13211 // classes. 13212 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) { 13213 return !Bases.count(Base); 13214 }; 13215 13216 // Return false if the class has a dependent base or if it or one 13217 // of its bases is present in the base set of the current context. 13218 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) || 13219 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase)) 13220 return false; 13221 13222 Diag(SS.getRange().getBegin(), 13223 diag::err_using_decl_nested_name_specifier_is_not_base_class) 13224 << SS.getScopeRep() 13225 << cast<CXXRecordDecl>(CurContext) 13226 << SS.getRange(); 13227 13228 return true; 13229 } 13230 13231 Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS, 13232 MultiTemplateParamsArg TemplateParamLists, 13233 SourceLocation UsingLoc, UnqualifiedId &Name, 13234 const ParsedAttributesView &AttrList, 13235 TypeResult Type, Decl *DeclFromDeclSpec) { 13236 // Skip up to the relevant declaration scope. 13237 while (S->isTemplateParamScope()) 13238 S = S->getParent(); 13239 assert((S->getFlags() & Scope::DeclScope) && 13240 "got alias-declaration outside of declaration scope"); 13241 13242 if (Type.isInvalid()) 13243 return nullptr; 13244 13245 bool Invalid = false; 13246 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); 13247 TypeSourceInfo *TInfo = nullptr; 13248 GetTypeFromParser(Type.get(), &TInfo); 13249 13250 if (DiagnoseClassNameShadow(CurContext, NameInfo)) 13251 return nullptr; 13252 13253 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, 13254 UPPC_DeclarationType)) { 13255 Invalid = true; 13256 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 13257 TInfo->getTypeLoc().getBeginLoc()); 13258 } 13259 13260 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 13261 TemplateParamLists.size() 13262 ? forRedeclarationInCurContext() 13263 : ForVisibleRedeclaration); 13264 LookupName(Previous, S); 13265 13266 // Warn about shadowing the name of a template parameter. 13267 if (Previous.isSingleResult() && 13268 Previous.getFoundDecl()->isTemplateParameter()) { 13269 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); 13270 Previous.clear(); 13271 } 13272 13273 assert(Name.getKind() == UnqualifiedIdKind::IK_Identifier && 13274 "name in alias declaration must be an identifier"); 13275 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, 13276 Name.StartLocation, 13277 Name.Identifier, TInfo); 13278 13279 NewTD->setAccess(AS); 13280 13281 if (Invalid) 13282 NewTD->setInvalidDecl(); 13283 13284 ProcessDeclAttributeList(S, NewTD, AttrList); 13285 AddPragmaAttributes(S, NewTD); 13286 13287 CheckTypedefForVariablyModifiedType(S, NewTD); 13288 Invalid |= NewTD->isInvalidDecl(); 13289 13290 bool Redeclaration = false; 13291 13292 NamedDecl *NewND; 13293 if (TemplateParamLists.size()) { 13294 TypeAliasTemplateDecl *OldDecl = nullptr; 13295 TemplateParameterList *OldTemplateParams = nullptr; 13296 13297 if (TemplateParamLists.size() != 1) { 13298 Diag(UsingLoc, diag::err_alias_template_extra_headers) 13299 << SourceRange(TemplateParamLists[1]->getTemplateLoc(), 13300 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); 13301 } 13302 TemplateParameterList *TemplateParams = TemplateParamLists[0]; 13303 13304 // Check that we can declare a template here. 13305 if (CheckTemplateDeclScope(S, TemplateParams)) 13306 return nullptr; 13307 13308 // Only consider previous declarations in the same scope. 13309 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, 13310 /*ExplicitInstantiationOrSpecialization*/false); 13311 if (!Previous.empty()) { 13312 Redeclaration = true; 13313 13314 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); 13315 if (!OldDecl && !Invalid) { 13316 Diag(UsingLoc, diag::err_redefinition_different_kind) 13317 << Name.Identifier; 13318 13319 NamedDecl *OldD = Previous.getRepresentativeDecl(); 13320 if (OldD->getLocation().isValid()) 13321 Diag(OldD->getLocation(), diag::note_previous_definition); 13322 13323 Invalid = true; 13324 } 13325 13326 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { 13327 if (TemplateParameterListsAreEqual(TemplateParams, 13328 OldDecl->getTemplateParameters(), 13329 /*Complain=*/true, 13330 TPL_TemplateMatch)) 13331 OldTemplateParams = 13332 OldDecl->getMostRecentDecl()->getTemplateParameters(); 13333 else 13334 Invalid = true; 13335 13336 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); 13337 if (!Invalid && 13338 !Context.hasSameType(OldTD->getUnderlyingType(), 13339 NewTD->getUnderlyingType())) { 13340 // FIXME: The C++0x standard does not clearly say this is ill-formed, 13341 // but we can't reasonably accept it. 13342 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) 13343 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); 13344 if (OldTD->getLocation().isValid()) 13345 Diag(OldTD->getLocation(), diag::note_previous_definition); 13346 Invalid = true; 13347 } 13348 } 13349 } 13350 13351 // Merge any previous default template arguments into our parameters, 13352 // and check the parameter list. 13353 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, 13354 TPC_TypeAliasTemplate)) 13355 return nullptr; 13356 13357 TypeAliasTemplateDecl *NewDecl = 13358 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, 13359 Name.Identifier, TemplateParams, 13360 NewTD); 13361 NewTD->setDescribedAliasTemplate(NewDecl); 13362 13363 NewDecl->setAccess(AS); 13364 13365 if (Invalid) 13366 NewDecl->setInvalidDecl(); 13367 else if (OldDecl) { 13368 NewDecl->setPreviousDecl(OldDecl); 13369 CheckRedeclarationInModule(NewDecl, OldDecl); 13370 } 13371 13372 NewND = NewDecl; 13373 } else { 13374 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) { 13375 setTagNameForLinkagePurposes(TD, NewTD); 13376 handleTagNumbering(TD, S); 13377 } 13378 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); 13379 NewND = NewTD; 13380 } 13381 13382 PushOnScopeChains(NewND, S); 13383 ActOnDocumentableDecl(NewND); 13384 return NewND; 13385 } 13386 13387 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, 13388 SourceLocation AliasLoc, 13389 IdentifierInfo *Alias, CXXScopeSpec &SS, 13390 SourceLocation IdentLoc, 13391 IdentifierInfo *Ident) { 13392 13393 // Lookup the namespace name. 13394 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); 13395 LookupParsedName(R, S, &SS); 13396 13397 if (R.isAmbiguous()) 13398 return nullptr; 13399 13400 if (R.empty()) { 13401 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { 13402 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 13403 return nullptr; 13404 } 13405 } 13406 assert(!R.isAmbiguous() && !R.empty()); 13407 NamedDecl *ND = R.getRepresentativeDecl(); 13408 13409 // Check if we have a previous declaration with the same name. 13410 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName, 13411 ForVisibleRedeclaration); 13412 LookupName(PrevR, S); 13413 13414 // Check we're not shadowing a template parameter. 13415 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) { 13416 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl()); 13417 PrevR.clear(); 13418 } 13419 13420 // Filter out any other lookup result from an enclosing scope. 13421 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false, 13422 /*AllowInlineNamespace*/false); 13423 13424 // Find the previous declaration and check that we can redeclare it. 13425 NamespaceAliasDecl *Prev = nullptr; 13426 if (PrevR.isSingleResult()) { 13427 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl(); 13428 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { 13429 // We already have an alias with the same name that points to the same 13430 // namespace; check that it matches. 13431 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) { 13432 Prev = AD; 13433 } else if (isVisible(PrevDecl)) { 13434 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) 13435 << Alias; 13436 Diag(AD->getLocation(), diag::note_previous_namespace_alias) 13437 << AD->getNamespace(); 13438 return nullptr; 13439 } 13440 } else if (isVisible(PrevDecl)) { 13441 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl()) 13442 ? diag::err_redefinition 13443 : diag::err_redefinition_different_kind; 13444 Diag(AliasLoc, DiagID) << Alias; 13445 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 13446 return nullptr; 13447 } 13448 } 13449 13450 // The use of a nested name specifier may trigger deprecation warnings. 13451 DiagnoseUseOfDecl(ND, IdentLoc); 13452 13453 NamespaceAliasDecl *AliasDecl = 13454 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, 13455 Alias, SS.getWithLocInContext(Context), 13456 IdentLoc, ND); 13457 if (Prev) 13458 AliasDecl->setPreviousDecl(Prev); 13459 13460 PushOnScopeChains(AliasDecl, S); 13461 return AliasDecl; 13462 } 13463 13464 namespace { 13465 struct SpecialMemberExceptionSpecInfo 13466 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> { 13467 SourceLocation Loc; 13468 Sema::ImplicitExceptionSpecification ExceptSpec; 13469 13470 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD, 13471 Sema::CXXSpecialMember CSM, 13472 Sema::InheritedConstructorInfo *ICI, 13473 SourceLocation Loc) 13474 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {} 13475 13476 bool visitBase(CXXBaseSpecifier *Base); 13477 bool visitField(FieldDecl *FD); 13478 13479 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 13480 unsigned Quals); 13481 13482 void visitSubobjectCall(Subobject Subobj, 13483 Sema::SpecialMemberOverloadResult SMOR); 13484 }; 13485 } 13486 13487 bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) { 13488 auto *RT = Base->getType()->getAs<RecordType>(); 13489 if (!RT) 13490 return false; 13491 13492 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl()); 13493 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 13494 if (auto *BaseCtor = SMOR.getMethod()) { 13495 visitSubobjectCall(Base, BaseCtor); 13496 return false; 13497 } 13498 13499 visitClassSubobject(BaseClass, Base, 0); 13500 return false; 13501 } 13502 13503 bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) { 13504 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) { 13505 Expr *E = FD->getInClassInitializer(); 13506 if (!E) 13507 // FIXME: It's a little wasteful to build and throw away a 13508 // CXXDefaultInitExpr here. 13509 // FIXME: We should have a single context note pointing at Loc, and 13510 // this location should be MD->getLocation() instead, since that's 13511 // the location where we actually use the default init expression. 13512 E = S.BuildCXXDefaultInitExpr(Loc, FD).get(); 13513 if (E) 13514 ExceptSpec.CalledExpr(E); 13515 } else if (auto *RT = S.Context.getBaseElementType(FD->getType()) 13516 ->getAs<RecordType>()) { 13517 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD, 13518 FD->getType().getCVRQualifiers()); 13519 } 13520 return false; 13521 } 13522 13523 void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class, 13524 Subobject Subobj, 13525 unsigned Quals) { 13526 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 13527 bool IsMutable = Field && Field->isMutable(); 13528 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable)); 13529 } 13530 13531 void SpecialMemberExceptionSpecInfo::visitSubobjectCall( 13532 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) { 13533 // Note, if lookup fails, it doesn't matter what exception specification we 13534 // choose because the special member will be deleted. 13535 if (CXXMethodDecl *MD = SMOR.getMethod()) 13536 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD); 13537 } 13538 13539 bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) { 13540 llvm::APSInt Result; 13541 ExprResult Converted = CheckConvertedConstantExpression( 13542 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool); 13543 ExplicitSpec.setExpr(Converted.get()); 13544 if (Converted.isUsable() && !Converted.get()->isValueDependent()) { 13545 ExplicitSpec.setKind(Result.getBoolValue() 13546 ? ExplicitSpecKind::ResolvedTrue 13547 : ExplicitSpecKind::ResolvedFalse); 13548 return true; 13549 } 13550 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved); 13551 return false; 13552 } 13553 13554 ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) { 13555 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved); 13556 if (!ExplicitExpr->isTypeDependent()) 13557 tryResolveExplicitSpecifier(ES); 13558 return ES; 13559 } 13560 13561 static Sema::ImplicitExceptionSpecification 13562 ComputeDefaultedSpecialMemberExceptionSpec( 13563 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 13564 Sema::InheritedConstructorInfo *ICI) { 13565 ComputingExceptionSpec CES(S, MD, Loc); 13566 13567 CXXRecordDecl *ClassDecl = MD->getParent(); 13568 13569 // C++ [except.spec]p14: 13570 // An implicitly declared special member function (Clause 12) shall have an 13571 // exception-specification. [...] 13572 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation()); 13573 if (ClassDecl->isInvalidDecl()) 13574 return Info.ExceptSpec; 13575 13576 // FIXME: If this diagnostic fires, we're probably missing a check for 13577 // attempting to resolve an exception specification before it's known 13578 // at a higher level. 13579 if (S.RequireCompleteType(MD->getLocation(), 13580 S.Context.getRecordType(ClassDecl), 13581 diag::err_exception_spec_incomplete_type)) 13582 return Info.ExceptSpec; 13583 13584 // C++1z [except.spec]p7: 13585 // [Look for exceptions thrown by] a constructor selected [...] to 13586 // initialize a potentially constructed subobject, 13587 // C++1z [except.spec]p8: 13588 // The exception specification for an implicitly-declared destructor, or a 13589 // destructor without a noexcept-specifier, is potentially-throwing if and 13590 // only if any of the destructors for any of its potentially constructed 13591 // subojects is potentially throwing. 13592 // FIXME: We respect the first rule but ignore the "potentially constructed" 13593 // in the second rule to resolve a core issue (no number yet) that would have 13594 // us reject: 13595 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; }; 13596 // struct B : A {}; 13597 // struct C : B { void f(); }; 13598 // ... due to giving B::~B() a non-throwing exception specification. 13599 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases 13600 : Info.VisitAllBases); 13601 13602 return Info.ExceptSpec; 13603 } 13604 13605 namespace { 13606 /// RAII object to register a special member as being currently declared. 13607 struct DeclaringSpecialMember { 13608 Sema &S; 13609 Sema::SpecialMemberDecl D; 13610 Sema::ContextRAII SavedContext; 13611 bool WasAlreadyBeingDeclared; 13612 13613 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM) 13614 : S(S), D(RD, CSM), SavedContext(S, RD) { 13615 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second; 13616 if (WasAlreadyBeingDeclared) 13617 // This almost never happens, but if it does, ensure that our cache 13618 // doesn't contain a stale result. 13619 S.SpecialMemberCache.clear(); 13620 else { 13621 // Register a note to be produced if we encounter an error while 13622 // declaring the special member. 13623 Sema::CodeSynthesisContext Ctx; 13624 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember; 13625 // FIXME: We don't have a location to use here. Using the class's 13626 // location maintains the fiction that we declare all special members 13627 // with the class, but (1) it's not clear that lying about that helps our 13628 // users understand what's going on, and (2) there may be outer contexts 13629 // on the stack (some of which are relevant) and printing them exposes 13630 // our lies. 13631 Ctx.PointOfInstantiation = RD->getLocation(); 13632 Ctx.Entity = RD; 13633 Ctx.SpecialMember = CSM; 13634 S.pushCodeSynthesisContext(Ctx); 13635 } 13636 } 13637 ~DeclaringSpecialMember() { 13638 if (!WasAlreadyBeingDeclared) { 13639 S.SpecialMembersBeingDeclared.erase(D); 13640 S.popCodeSynthesisContext(); 13641 } 13642 } 13643 13644 /// Are we already trying to declare this special member? 13645 bool isAlreadyBeingDeclared() const { 13646 return WasAlreadyBeingDeclared; 13647 } 13648 }; 13649 } 13650 13651 void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) { 13652 // Look up any existing declarations, but don't trigger declaration of all 13653 // implicit special members with this name. 13654 DeclarationName Name = FD->getDeclName(); 13655 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName, 13656 ForExternalRedeclaration); 13657 for (auto *D : FD->getParent()->lookup(Name)) 13658 if (auto *Acceptable = R.getAcceptableDecl(D)) 13659 R.addDecl(Acceptable); 13660 R.resolveKind(); 13661 R.suppressDiagnostics(); 13662 13663 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/ false, 13664 FD->isThisDeclarationADefinition()); 13665 } 13666 13667 void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, 13668 QualType ResultTy, 13669 ArrayRef<QualType> Args) { 13670 // Build an exception specification pointing back at this constructor. 13671 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem); 13672 13673 LangAS AS = getDefaultCXXMethodAddrSpace(); 13674 if (AS != LangAS::Default) { 13675 EPI.TypeQuals.addAddressSpace(AS); 13676 } 13677 13678 auto QT = Context.getFunctionType(ResultTy, Args, EPI); 13679 SpecialMem->setType(QT); 13680 13681 // During template instantiation of implicit special member functions we need 13682 // a reliable TypeSourceInfo for the function prototype in order to allow 13683 // functions to be substituted. 13684 if (inTemplateInstantiation() && 13685 cast<CXXRecordDecl>(SpecialMem->getParent())->isLambda()) { 13686 TypeSourceInfo *TSI = 13687 Context.getTrivialTypeSourceInfo(SpecialMem->getType()); 13688 SpecialMem->setTypeSourceInfo(TSI); 13689 } 13690 } 13691 13692 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( 13693 CXXRecordDecl *ClassDecl) { 13694 // C++ [class.ctor]p5: 13695 // A default constructor for a class X is a constructor of class X 13696 // that can be called without an argument. If there is no 13697 // user-declared constructor for class X, a default constructor is 13698 // implicitly declared. An implicitly-declared default constructor 13699 // is an inline public member of its class. 13700 assert(ClassDecl->needsImplicitDefaultConstructor() && 13701 "Should not build implicit default constructor!"); 13702 13703 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor); 13704 if (DSM.isAlreadyBeingDeclared()) 13705 return nullptr; 13706 13707 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 13708 CXXDefaultConstructor, 13709 false); 13710 13711 // Create the actual constructor declaration. 13712 CanQualType ClassType 13713 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 13714 SourceLocation ClassLoc = ClassDecl->getLocation(); 13715 DeclarationName Name 13716 = Context.DeclarationNames.getCXXConstructorName(ClassType); 13717 DeclarationNameInfo NameInfo(Name, ClassLoc); 13718 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( 13719 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(), 13720 /*TInfo=*/nullptr, ExplicitSpecifier(), 13721 getCurFPFeatures().isFPConstrained(), 13722 /*isInline=*/true, /*isImplicitlyDeclared=*/true, 13723 Constexpr ? ConstexprSpecKind::Constexpr 13724 : ConstexprSpecKind::Unspecified); 13725 DefaultCon->setAccess(AS_public); 13726 DefaultCon->setDefaulted(); 13727 13728 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, std::nullopt); 13729 13730 if (getLangOpts().CUDA) 13731 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor, 13732 DefaultCon, 13733 /* ConstRHS */ false, 13734 /* Diagnose */ false); 13735 13736 // We don't need to use SpecialMemberIsTrivial here; triviality for default 13737 // constructors is easy to compute. 13738 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); 13739 13740 // Note that we have declared this constructor. 13741 ++getASTContext().NumImplicitDefaultConstructorsDeclared; 13742 13743 Scope *S = getScopeForContext(ClassDecl); 13744 CheckImplicitSpecialMemberDeclaration(S, DefaultCon); 13745 13746 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor)) 13747 SetDeclDeleted(DefaultCon, ClassLoc); 13748 13749 if (S) 13750 PushOnScopeChains(DefaultCon, S, false); 13751 ClassDecl->addDecl(DefaultCon); 13752 13753 return DefaultCon; 13754 } 13755 13756 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, 13757 CXXConstructorDecl *Constructor) { 13758 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 13759 !Constructor->doesThisDeclarationHaveABody() && 13760 !Constructor->isDeleted()) && 13761 "DefineImplicitDefaultConstructor - call it for implicit default ctor"); 13762 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 13763 return; 13764 13765 CXXRecordDecl *ClassDecl = Constructor->getParent(); 13766 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); 13767 13768 SynthesizedFunctionScope Scope(*this, Constructor); 13769 13770 // The exception specification is needed because we are defining the 13771 // function. 13772 ResolveExceptionSpec(CurrentLocation, 13773 Constructor->getType()->castAs<FunctionProtoType>()); 13774 MarkVTableUsed(CurrentLocation, ClassDecl); 13775 13776 // Add a context note for diagnostics produced after this point. 13777 Scope.addContextNote(CurrentLocation); 13778 13779 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) { 13780 Constructor->setInvalidDecl(); 13781 return; 13782 } 13783 13784 SourceLocation Loc = Constructor->getEndLoc().isValid() 13785 ? Constructor->getEndLoc() 13786 : Constructor->getLocation(); 13787 Constructor->setBody(new (Context) CompoundStmt(Loc)); 13788 Constructor->markUsed(Context); 13789 13790 if (ASTMutationListener *L = getASTMutationListener()) { 13791 L->CompletedImplicitDefinition(Constructor); 13792 } 13793 13794 DiagnoseUninitializedFields(*this, Constructor); 13795 } 13796 13797 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { 13798 // Perform any delayed checks on exception specifications. 13799 CheckDelayedMemberExceptionSpecs(); 13800 } 13801 13802 /// Find or create the fake constructor we synthesize to model constructing an 13803 /// object of a derived class via a constructor of a base class. 13804 CXXConstructorDecl * 13805 Sema::findInheritingConstructor(SourceLocation Loc, 13806 CXXConstructorDecl *BaseCtor, 13807 ConstructorUsingShadowDecl *Shadow) { 13808 CXXRecordDecl *Derived = Shadow->getParent(); 13809 SourceLocation UsingLoc = Shadow->getLocation(); 13810 13811 // FIXME: Add a new kind of DeclarationName for an inherited constructor. 13812 // For now we use the name of the base class constructor as a member of the 13813 // derived class to indicate a (fake) inherited constructor name. 13814 DeclarationName Name = BaseCtor->getDeclName(); 13815 13816 // Check to see if we already have a fake constructor for this inherited 13817 // constructor call. 13818 for (NamedDecl *Ctor : Derived->lookup(Name)) 13819 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor) 13820 ->getInheritedConstructor() 13821 .getConstructor(), 13822 BaseCtor)) 13823 return cast<CXXConstructorDecl>(Ctor); 13824 13825 DeclarationNameInfo NameInfo(Name, UsingLoc); 13826 TypeSourceInfo *TInfo = 13827 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc); 13828 FunctionProtoTypeLoc ProtoLoc = 13829 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>(); 13830 13831 // Check the inherited constructor is valid and find the list of base classes 13832 // from which it was inherited. 13833 InheritedConstructorInfo ICI(*this, Loc, Shadow); 13834 13835 bool Constexpr = 13836 BaseCtor->isConstexpr() && 13837 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor, 13838 false, BaseCtor, &ICI); 13839 13840 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( 13841 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo, 13842 BaseCtor->getExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 13843 /*isInline=*/true, 13844 /*isImplicitlyDeclared=*/true, 13845 Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified, 13846 InheritedConstructor(Shadow, BaseCtor), 13847 BaseCtor->getTrailingRequiresClause()); 13848 if (Shadow->isInvalidDecl()) 13849 DerivedCtor->setInvalidDecl(); 13850 13851 // Build an unevaluated exception specification for this fake constructor. 13852 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>(); 13853 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 13854 EPI.ExceptionSpec.Type = EST_Unevaluated; 13855 EPI.ExceptionSpec.SourceDecl = DerivedCtor; 13856 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(), 13857 FPT->getParamTypes(), EPI)); 13858 13859 // Build the parameter declarations. 13860 SmallVector<ParmVarDecl *, 16> ParamDecls; 13861 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { 13862 TypeSourceInfo *TInfo = 13863 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc); 13864 ParmVarDecl *PD = ParmVarDecl::Create( 13865 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, 13866 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr); 13867 PD->setScopeInfo(0, I); 13868 PD->setImplicit(); 13869 // Ensure attributes are propagated onto parameters (this matters for 13870 // format, pass_object_size, ...). 13871 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I)); 13872 ParamDecls.push_back(PD); 13873 ProtoLoc.setParam(I, PD); 13874 } 13875 13876 // Set up the new constructor. 13877 assert(!BaseCtor->isDeleted() && "should not use deleted constructor"); 13878 DerivedCtor->setAccess(BaseCtor->getAccess()); 13879 DerivedCtor->setParams(ParamDecls); 13880 Derived->addDecl(DerivedCtor); 13881 13882 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI)) 13883 SetDeclDeleted(DerivedCtor, UsingLoc); 13884 13885 return DerivedCtor; 13886 } 13887 13888 void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) { 13889 InheritedConstructorInfo ICI(*this, Ctor->getLocation(), 13890 Ctor->getInheritedConstructor().getShadowDecl()); 13891 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI, 13892 /*Diagnose*/true); 13893 } 13894 13895 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, 13896 CXXConstructorDecl *Constructor) { 13897 CXXRecordDecl *ClassDecl = Constructor->getParent(); 13898 assert(Constructor->getInheritedConstructor() && 13899 !Constructor->doesThisDeclarationHaveABody() && 13900 !Constructor->isDeleted()); 13901 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 13902 return; 13903 13904 // Initializations are performed "as if by a defaulted default constructor", 13905 // so enter the appropriate scope. 13906 SynthesizedFunctionScope Scope(*this, Constructor); 13907 13908 // The exception specification is needed because we are defining the 13909 // function. 13910 ResolveExceptionSpec(CurrentLocation, 13911 Constructor->getType()->castAs<FunctionProtoType>()); 13912 MarkVTableUsed(CurrentLocation, ClassDecl); 13913 13914 // Add a context note for diagnostics produced after this point. 13915 Scope.addContextNote(CurrentLocation); 13916 13917 ConstructorUsingShadowDecl *Shadow = 13918 Constructor->getInheritedConstructor().getShadowDecl(); 13919 CXXConstructorDecl *InheritedCtor = 13920 Constructor->getInheritedConstructor().getConstructor(); 13921 13922 // [class.inhctor.init]p1: 13923 // initialization proceeds as if a defaulted default constructor is used to 13924 // initialize the D object and each base class subobject from which the 13925 // constructor was inherited 13926 13927 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow); 13928 CXXRecordDecl *RD = Shadow->getParent(); 13929 SourceLocation InitLoc = Shadow->getLocation(); 13930 13931 // Build explicit initializers for all base classes from which the 13932 // constructor was inherited. 13933 SmallVector<CXXCtorInitializer*, 8> Inits; 13934 for (bool VBase : {false, true}) { 13935 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) { 13936 if (B.isVirtual() != VBase) 13937 continue; 13938 13939 auto *BaseRD = B.getType()->getAsCXXRecordDecl(); 13940 if (!BaseRD) 13941 continue; 13942 13943 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor); 13944 if (!BaseCtor.first) 13945 continue; 13946 13947 MarkFunctionReferenced(CurrentLocation, BaseCtor.first); 13948 ExprResult Init = new (Context) CXXInheritedCtorInitExpr( 13949 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second); 13950 13951 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc); 13952 Inits.push_back(new (Context) CXXCtorInitializer( 13953 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc, 13954 SourceLocation())); 13955 } 13956 } 13957 13958 // We now proceed as if for a defaulted default constructor, with the relevant 13959 // initializers replaced. 13960 13961 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) { 13962 Constructor->setInvalidDecl(); 13963 return; 13964 } 13965 13966 Constructor->setBody(new (Context) CompoundStmt(InitLoc)); 13967 Constructor->markUsed(Context); 13968 13969 if (ASTMutationListener *L = getASTMutationListener()) { 13970 L->CompletedImplicitDefinition(Constructor); 13971 } 13972 13973 DiagnoseUninitializedFields(*this, Constructor); 13974 } 13975 13976 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { 13977 // C++ [class.dtor]p2: 13978 // If a class has no user-declared destructor, a destructor is 13979 // declared implicitly. An implicitly-declared destructor is an 13980 // inline public member of its class. 13981 assert(ClassDecl->needsImplicitDestructor()); 13982 13983 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor); 13984 if (DSM.isAlreadyBeingDeclared()) 13985 return nullptr; 13986 13987 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 13988 CXXDestructor, 13989 false); 13990 13991 // Create the actual destructor declaration. 13992 CanQualType ClassType 13993 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 13994 SourceLocation ClassLoc = ClassDecl->getLocation(); 13995 DeclarationName Name 13996 = Context.DeclarationNames.getCXXDestructorName(ClassType); 13997 DeclarationNameInfo NameInfo(Name, ClassLoc); 13998 CXXDestructorDecl *Destructor = CXXDestructorDecl::Create( 13999 Context, ClassDecl, ClassLoc, NameInfo, QualType(), nullptr, 14000 getCurFPFeatures().isFPConstrained(), 14001 /*isInline=*/true, 14002 /*isImplicitlyDeclared=*/true, 14003 Constexpr ? ConstexprSpecKind::Constexpr 14004 : ConstexprSpecKind::Unspecified); 14005 Destructor->setAccess(AS_public); 14006 Destructor->setDefaulted(); 14007 14008 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, std::nullopt); 14009 14010 if (getLangOpts().CUDA) 14011 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor, 14012 Destructor, 14013 /* ConstRHS */ false, 14014 /* Diagnose */ false); 14015 14016 // We don't need to use SpecialMemberIsTrivial here; triviality for 14017 // destructors is easy to compute. 14018 Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); 14019 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() || 14020 ClassDecl->hasTrivialDestructorForCall()); 14021 14022 // Note that we have declared this destructor. 14023 ++getASTContext().NumImplicitDestructorsDeclared; 14024 14025 Scope *S = getScopeForContext(ClassDecl); 14026 CheckImplicitSpecialMemberDeclaration(S, Destructor); 14027 14028 // We can't check whether an implicit destructor is deleted before we complete 14029 // the definition of the class, because its validity depends on the alignment 14030 // of the class. We'll check this from ActOnFields once the class is complete. 14031 if (ClassDecl->isCompleteDefinition() && 14032 ShouldDeleteSpecialMember(Destructor, CXXDestructor)) 14033 SetDeclDeleted(Destructor, ClassLoc); 14034 14035 // Introduce this destructor into its scope. 14036 if (S) 14037 PushOnScopeChains(Destructor, S, false); 14038 ClassDecl->addDecl(Destructor); 14039 14040 return Destructor; 14041 } 14042 14043 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, 14044 CXXDestructorDecl *Destructor) { 14045 assert((Destructor->isDefaulted() && 14046 !Destructor->doesThisDeclarationHaveABody() && 14047 !Destructor->isDeleted()) && 14048 "DefineImplicitDestructor - call it for implicit default dtor"); 14049 if (Destructor->willHaveBody() || Destructor->isInvalidDecl()) 14050 return; 14051 14052 CXXRecordDecl *ClassDecl = Destructor->getParent(); 14053 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); 14054 14055 SynthesizedFunctionScope Scope(*this, Destructor); 14056 14057 // The exception specification is needed because we are defining the 14058 // function. 14059 ResolveExceptionSpec(CurrentLocation, 14060 Destructor->getType()->castAs<FunctionProtoType>()); 14061 MarkVTableUsed(CurrentLocation, ClassDecl); 14062 14063 // Add a context note for diagnostics produced after this point. 14064 Scope.addContextNote(CurrentLocation); 14065 14066 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 14067 Destructor->getParent()); 14068 14069 if (CheckDestructor(Destructor)) { 14070 Destructor->setInvalidDecl(); 14071 return; 14072 } 14073 14074 SourceLocation Loc = Destructor->getEndLoc().isValid() 14075 ? Destructor->getEndLoc() 14076 : Destructor->getLocation(); 14077 Destructor->setBody(new (Context) CompoundStmt(Loc)); 14078 Destructor->markUsed(Context); 14079 14080 if (ASTMutationListener *L = getASTMutationListener()) { 14081 L->CompletedImplicitDefinition(Destructor); 14082 } 14083 } 14084 14085 void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation, 14086 CXXDestructorDecl *Destructor) { 14087 if (Destructor->isInvalidDecl()) 14088 return; 14089 14090 CXXRecordDecl *ClassDecl = Destructor->getParent(); 14091 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() && 14092 "implicit complete dtors unneeded outside MS ABI"); 14093 assert(ClassDecl->getNumVBases() > 0 && 14094 "complete dtor only exists for classes with vbases"); 14095 14096 SynthesizedFunctionScope Scope(*this, Destructor); 14097 14098 // Add a context note for diagnostics produced after this point. 14099 Scope.addContextNote(CurrentLocation); 14100 14101 MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl); 14102 } 14103 14104 /// Perform any semantic analysis which needs to be delayed until all 14105 /// pending class member declarations have been parsed. 14106 void Sema::ActOnFinishCXXMemberDecls() { 14107 // If the context is an invalid C++ class, just suppress these checks. 14108 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) { 14109 if (Record->isInvalidDecl()) { 14110 DelayedOverridingExceptionSpecChecks.clear(); 14111 DelayedEquivalentExceptionSpecChecks.clear(); 14112 return; 14113 } 14114 checkForMultipleExportedDefaultConstructors(*this, Record); 14115 } 14116 } 14117 14118 void Sema::ActOnFinishCXXNonNestedClass() { 14119 referenceDLLExportedClassMethods(); 14120 14121 if (!DelayedDllExportMemberFunctions.empty()) { 14122 SmallVector<CXXMethodDecl*, 4> WorkList; 14123 std::swap(DelayedDllExportMemberFunctions, WorkList); 14124 for (CXXMethodDecl *M : WorkList) { 14125 DefineDefaultedFunction(*this, M, M->getLocation()); 14126 14127 // Pass the method to the consumer to get emitted. This is not necessary 14128 // for explicit instantiation definitions, as they will get emitted 14129 // anyway. 14130 if (M->getParent()->getTemplateSpecializationKind() != 14131 TSK_ExplicitInstantiationDefinition) 14132 ActOnFinishInlineFunctionDef(M); 14133 } 14134 } 14135 } 14136 14137 void Sema::referenceDLLExportedClassMethods() { 14138 if (!DelayedDllExportClasses.empty()) { 14139 // Calling ReferenceDllExportedMembers might cause the current function to 14140 // be called again, so use a local copy of DelayedDllExportClasses. 14141 SmallVector<CXXRecordDecl *, 4> WorkList; 14142 std::swap(DelayedDllExportClasses, WorkList); 14143 for (CXXRecordDecl *Class : WorkList) 14144 ReferenceDllExportedMembers(*this, Class); 14145 } 14146 } 14147 14148 void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) { 14149 assert(getLangOpts().CPlusPlus11 && 14150 "adjusting dtor exception specs was introduced in c++11"); 14151 14152 if (Destructor->isDependentContext()) 14153 return; 14154 14155 // C++11 [class.dtor]p3: 14156 // A declaration of a destructor that does not have an exception- 14157 // specification is implicitly considered to have the same exception- 14158 // specification as an implicit declaration. 14159 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>(); 14160 if (DtorType->hasExceptionSpec()) 14161 return; 14162 14163 // Replace the destructor's type, building off the existing one. Fortunately, 14164 // the only thing of interest in the destructor type is its extended info. 14165 // The return and arguments are fixed. 14166 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); 14167 EPI.ExceptionSpec.Type = EST_Unevaluated; 14168 EPI.ExceptionSpec.SourceDecl = Destructor; 14169 Destructor->setType( 14170 Context.getFunctionType(Context.VoidTy, std::nullopt, EPI)); 14171 14172 // FIXME: If the destructor has a body that could throw, and the newly created 14173 // spec doesn't allow exceptions, we should emit a warning, because this 14174 // change in behavior can break conforming C++03 programs at runtime. 14175 // However, we don't have a body or an exception specification yet, so it 14176 // needs to be done somewhere else. 14177 } 14178 14179 namespace { 14180 /// An abstract base class for all helper classes used in building the 14181 // copy/move operators. These classes serve as factory functions and help us 14182 // avoid using the same Expr* in the AST twice. 14183 class ExprBuilder { 14184 ExprBuilder(const ExprBuilder&) = delete; 14185 ExprBuilder &operator=(const ExprBuilder&) = delete; 14186 14187 protected: 14188 static Expr *assertNotNull(Expr *E) { 14189 assert(E && "Expression construction must not fail."); 14190 return E; 14191 } 14192 14193 public: 14194 ExprBuilder() {} 14195 virtual ~ExprBuilder() {} 14196 14197 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; 14198 }; 14199 14200 class RefBuilder: public ExprBuilder { 14201 VarDecl *Var; 14202 QualType VarType; 14203 14204 public: 14205 Expr *build(Sema &S, SourceLocation Loc) const override { 14206 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc)); 14207 } 14208 14209 RefBuilder(VarDecl *Var, QualType VarType) 14210 : Var(Var), VarType(VarType) {} 14211 }; 14212 14213 class ThisBuilder: public ExprBuilder { 14214 public: 14215 Expr *build(Sema &S, SourceLocation Loc) const override { 14216 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>()); 14217 } 14218 }; 14219 14220 class CastBuilder: public ExprBuilder { 14221 const ExprBuilder &Builder; 14222 QualType Type; 14223 ExprValueKind Kind; 14224 const CXXCastPath &Path; 14225 14226 public: 14227 Expr *build(Sema &S, SourceLocation Loc) const override { 14228 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, 14229 CK_UncheckedDerivedToBase, Kind, 14230 &Path).get()); 14231 } 14232 14233 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, 14234 const CXXCastPath &Path) 14235 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} 14236 }; 14237 14238 class DerefBuilder: public ExprBuilder { 14239 const ExprBuilder &Builder; 14240 14241 public: 14242 Expr *build(Sema &S, SourceLocation Loc) const override { 14243 return assertNotNull( 14244 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get()); 14245 } 14246 14247 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 14248 }; 14249 14250 class MemberBuilder: public ExprBuilder { 14251 const ExprBuilder &Builder; 14252 QualType Type; 14253 CXXScopeSpec SS; 14254 bool IsArrow; 14255 LookupResult &MemberLookup; 14256 14257 public: 14258 Expr *build(Sema &S, SourceLocation Loc) const override { 14259 return assertNotNull(S.BuildMemberReferenceExpr( 14260 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), 14261 nullptr, MemberLookup, nullptr, nullptr).get()); 14262 } 14263 14264 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, 14265 LookupResult &MemberLookup) 14266 : Builder(Builder), Type(Type), IsArrow(IsArrow), 14267 MemberLookup(MemberLookup) {} 14268 }; 14269 14270 class MoveCastBuilder: public ExprBuilder { 14271 const ExprBuilder &Builder; 14272 14273 public: 14274 Expr *build(Sema &S, SourceLocation Loc) const override { 14275 return assertNotNull(CastForMoving(S, Builder.build(S, Loc))); 14276 } 14277 14278 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 14279 }; 14280 14281 class LvalueConvBuilder: public ExprBuilder { 14282 const ExprBuilder &Builder; 14283 14284 public: 14285 Expr *build(Sema &S, SourceLocation Loc) const override { 14286 return assertNotNull( 14287 S.DefaultLvalueConversion(Builder.build(S, Loc)).get()); 14288 } 14289 14290 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 14291 }; 14292 14293 class SubscriptBuilder: public ExprBuilder { 14294 const ExprBuilder &Base; 14295 const ExprBuilder &Index; 14296 14297 public: 14298 Expr *build(Sema &S, SourceLocation Loc) const override { 14299 return assertNotNull(S.CreateBuiltinArraySubscriptExpr( 14300 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get()); 14301 } 14302 14303 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) 14304 : Base(Base), Index(Index) {} 14305 }; 14306 14307 } // end anonymous namespace 14308 14309 /// When generating a defaulted copy or move assignment operator, if a field 14310 /// should be copied with __builtin_memcpy rather than via explicit assignments, 14311 /// do so. This optimization only applies for arrays of scalars, and for arrays 14312 /// of class type where the selected copy/move-assignment operator is trivial. 14313 static StmtResult 14314 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, 14315 const ExprBuilder &ToB, const ExprBuilder &FromB) { 14316 // Compute the size of the memory buffer to be copied. 14317 QualType SizeType = S.Context.getSizeType(); 14318 llvm::APInt Size(S.Context.getTypeSize(SizeType), 14319 S.Context.getTypeSizeInChars(T).getQuantity()); 14320 14321 // Take the address of the field references for "from" and "to". We 14322 // directly construct UnaryOperators here because semantic analysis 14323 // does not permit us to take the address of an xvalue. 14324 Expr *From = FromB.build(S, Loc); 14325 From = UnaryOperator::Create( 14326 S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()), 14327 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 14328 Expr *To = ToB.build(S, Loc); 14329 To = UnaryOperator::Create( 14330 S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()), 14331 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 14332 14333 const Type *E = T->getBaseElementTypeUnsafe(); 14334 bool NeedsCollectableMemCpy = 14335 E->isRecordType() && 14336 E->castAs<RecordType>()->getDecl()->hasObjectMember(); 14337 14338 // Create a reference to the __builtin_objc_memmove_collectable function 14339 StringRef MemCpyName = NeedsCollectableMemCpy ? 14340 "__builtin_objc_memmove_collectable" : 14341 "__builtin_memcpy"; 14342 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc, 14343 Sema::LookupOrdinaryName); 14344 S.LookupName(R, S.TUScope, true); 14345 14346 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>(); 14347 if (!MemCpy) 14348 // Something went horribly wrong earlier, and we will have complained 14349 // about it. 14350 return StmtError(); 14351 14352 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, 14353 VK_PRValue, Loc, nullptr); 14354 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail"); 14355 14356 Expr *CallArgs[] = { 14357 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc) 14358 }; 14359 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), 14360 Loc, CallArgs, Loc); 14361 14362 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); 14363 return Call.getAs<Stmt>(); 14364 } 14365 14366 /// Builds a statement that copies/moves the given entity from \p From to 14367 /// \c To. 14368 /// 14369 /// This routine is used to copy/move the members of a class with an 14370 /// implicitly-declared copy/move assignment operator. When the entities being 14371 /// copied are arrays, this routine builds for loops to copy them. 14372 /// 14373 /// \param S The Sema object used for type-checking. 14374 /// 14375 /// \param Loc The location where the implicit copy/move is being generated. 14376 /// 14377 /// \param T The type of the expressions being copied/moved. Both expressions 14378 /// must have this type. 14379 /// 14380 /// \param To The expression we are copying/moving to. 14381 /// 14382 /// \param From The expression we are copying/moving from. 14383 /// 14384 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. 14385 /// Otherwise, it's a non-static member subobject. 14386 /// 14387 /// \param Copying Whether we're copying or moving. 14388 /// 14389 /// \param Depth Internal parameter recording the depth of the recursion. 14390 /// 14391 /// \returns A statement or a loop that copies the expressions, or StmtResult(0) 14392 /// if a memcpy should be used instead. 14393 static StmtResult 14394 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, 14395 const ExprBuilder &To, const ExprBuilder &From, 14396 bool CopyingBaseSubobject, bool Copying, 14397 unsigned Depth = 0) { 14398 // C++11 [class.copy]p28: 14399 // Each subobject is assigned in the manner appropriate to its type: 14400 // 14401 // - if the subobject is of class type, as if by a call to operator= with 14402 // the subobject as the object expression and the corresponding 14403 // subobject of x as a single function argument (as if by explicit 14404 // qualification; that is, ignoring any possible virtual overriding 14405 // functions in more derived classes); 14406 // 14407 // C++03 [class.copy]p13: 14408 // - if the subobject is of class type, the copy assignment operator for 14409 // the class is used (as if by explicit qualification; that is, 14410 // ignoring any possible virtual overriding functions in more derived 14411 // classes); 14412 if (const RecordType *RecordTy = T->getAs<RecordType>()) { 14413 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 14414 14415 // Look for operator=. 14416 DeclarationName Name 14417 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14418 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); 14419 S.LookupQualifiedName(OpLookup, ClassDecl, false); 14420 14421 // Prior to C++11, filter out any result that isn't a copy/move-assignment 14422 // operator. 14423 if (!S.getLangOpts().CPlusPlus11) { 14424 LookupResult::Filter F = OpLookup.makeFilter(); 14425 while (F.hasNext()) { 14426 NamedDecl *D = F.next(); 14427 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 14428 if (Method->isCopyAssignmentOperator() || 14429 (!Copying && Method->isMoveAssignmentOperator())) 14430 continue; 14431 14432 F.erase(); 14433 } 14434 F.done(); 14435 } 14436 14437 // Suppress the protected check (C++ [class.protected]) for each of the 14438 // assignment operators we found. This strange dance is required when 14439 // we're assigning via a base classes's copy-assignment operator. To 14440 // ensure that we're getting the right base class subobject (without 14441 // ambiguities), we need to cast "this" to that subobject type; to 14442 // ensure that we don't go through the virtual call mechanism, we need 14443 // to qualify the operator= name with the base class (see below). However, 14444 // this means that if the base class has a protected copy assignment 14445 // operator, the protected member access check will fail. So, we 14446 // rewrite "protected" access to "public" access in this case, since we 14447 // know by construction that we're calling from a derived class. 14448 if (CopyingBaseSubobject) { 14449 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); 14450 L != LEnd; ++L) { 14451 if (L.getAccess() == AS_protected) 14452 L.setAccess(AS_public); 14453 } 14454 } 14455 14456 // Create the nested-name-specifier that will be used to qualify the 14457 // reference to operator=; this is required to suppress the virtual 14458 // call mechanism. 14459 CXXScopeSpec SS; 14460 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr()); 14461 SS.MakeTrivial(S.Context, 14462 NestedNameSpecifier::Create(S.Context, nullptr, false, 14463 CanonicalT), 14464 Loc); 14465 14466 // Create the reference to operator=. 14467 ExprResult OpEqualRef 14468 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false, 14469 SS, /*TemplateKWLoc=*/SourceLocation(), 14470 /*FirstQualifierInScope=*/nullptr, 14471 OpLookup, 14472 /*TemplateArgs=*/nullptr, /*S*/nullptr, 14473 /*SuppressQualifierCheck=*/true); 14474 if (OpEqualRef.isInvalid()) 14475 return StmtError(); 14476 14477 // Build the call to the assignment operator. 14478 14479 Expr *FromInst = From.build(S, Loc); 14480 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr, 14481 OpEqualRef.getAs<Expr>(), 14482 Loc, FromInst, Loc); 14483 if (Call.isInvalid()) 14484 return StmtError(); 14485 14486 // If we built a call to a trivial 'operator=' while copying an array, 14487 // bail out. We'll replace the whole shebang with a memcpy. 14488 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get()); 14489 if (CE && CE->getMethodDecl()->isTrivial() && Depth) 14490 return StmtResult((Stmt*)nullptr); 14491 14492 // Convert to an expression-statement, and clean up any produced 14493 // temporaries. 14494 return S.ActOnExprStmt(Call); 14495 } 14496 14497 // - if the subobject is of scalar type, the built-in assignment 14498 // operator is used. 14499 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); 14500 if (!ArrayTy) { 14501 ExprResult Assignment = S.CreateBuiltinBinOp( 14502 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc)); 14503 if (Assignment.isInvalid()) 14504 return StmtError(); 14505 return S.ActOnExprStmt(Assignment); 14506 } 14507 14508 // - if the subobject is an array, each element is assigned, in the 14509 // manner appropriate to the element type; 14510 14511 // Construct a loop over the array bounds, e.g., 14512 // 14513 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) 14514 // 14515 // that will copy each of the array elements. 14516 QualType SizeType = S.Context.getSizeType(); 14517 14518 // Create the iteration variable. 14519 IdentifierInfo *IterationVarName = nullptr; 14520 { 14521 SmallString<8> Str; 14522 llvm::raw_svector_ostream OS(Str); 14523 OS << "__i" << Depth; 14524 IterationVarName = &S.Context.Idents.get(OS.str()); 14525 } 14526 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, 14527 IterationVarName, SizeType, 14528 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), 14529 SC_None); 14530 14531 // Initialize the iteration variable to zero. 14532 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 14533 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 14534 14535 // Creates a reference to the iteration variable. 14536 RefBuilder IterationVarRef(IterationVar, SizeType); 14537 LvalueConvBuilder IterationVarRefRVal(IterationVarRef); 14538 14539 // Create the DeclStmt that holds the iteration variable. 14540 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); 14541 14542 // Subscript the "from" and "to" expressions with the iteration variable. 14543 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); 14544 MoveCastBuilder FromIndexMove(FromIndexCopy); 14545 const ExprBuilder *FromIndex; 14546 if (Copying) 14547 FromIndex = &FromIndexCopy; 14548 else 14549 FromIndex = &FromIndexMove; 14550 14551 SubscriptBuilder ToIndex(To, IterationVarRefRVal); 14552 14553 // Build the copy/move for an individual element of the array. 14554 StmtResult Copy = 14555 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), 14556 ToIndex, *FromIndex, CopyingBaseSubobject, 14557 Copying, Depth + 1); 14558 // Bail out if copying fails or if we determined that we should use memcpy. 14559 if (Copy.isInvalid() || !Copy.get()) 14560 return Copy; 14561 14562 // Create the comparison against the array bound. 14563 llvm::APInt Upper 14564 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); 14565 Expr *Comparison = BinaryOperator::Create( 14566 S.Context, IterationVarRefRVal.build(S, Loc), 14567 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE, 14568 S.Context.BoolTy, VK_PRValue, OK_Ordinary, Loc, 14569 S.CurFPFeatureOverrides()); 14570 14571 // Create the pre-increment of the iteration variable. We can determine 14572 // whether the increment will overflow based on the value of the array 14573 // bound. 14574 Expr *Increment = UnaryOperator::Create( 14575 S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue, 14576 OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides()); 14577 14578 // Construct the loop that copies all elements of this array. 14579 return S.ActOnForStmt( 14580 Loc, Loc, InitStmt, 14581 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean), 14582 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get()); 14583 } 14584 14585 static StmtResult 14586 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, 14587 const ExprBuilder &To, const ExprBuilder &From, 14588 bool CopyingBaseSubobject, bool Copying) { 14589 // Maybe we should use a memcpy? 14590 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && 14591 T.isTriviallyCopyableType(S.Context)) 14592 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 14593 14594 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, 14595 CopyingBaseSubobject, 14596 Copying, 0)); 14597 14598 // If we ended up picking a trivial assignment operator for an array of a 14599 // non-trivially-copyable class type, just emit a memcpy. 14600 if (!Result.isInvalid() && !Result.get()) 14601 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 14602 14603 return Result; 14604 } 14605 14606 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { 14607 // Note: The following rules are largely analoguous to the copy 14608 // constructor rules. Note that virtual bases are not taken into account 14609 // for determining the argument type of the operator. Note also that 14610 // operators taking an object instead of a reference are allowed. 14611 assert(ClassDecl->needsImplicitCopyAssignment()); 14612 14613 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment); 14614 if (DSM.isAlreadyBeingDeclared()) 14615 return nullptr; 14616 14617 QualType ArgType = Context.getTypeDeclType(ClassDecl); 14618 ArgType = Context.getElaboratedType(ETK_None, nullptr, ArgType, nullptr); 14619 LangAS AS = getDefaultCXXMethodAddrSpace(); 14620 if (AS != LangAS::Default) 14621 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14622 QualType RetType = Context.getLValueReferenceType(ArgType); 14623 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); 14624 if (Const) 14625 ArgType = ArgType.withConst(); 14626 14627 ArgType = Context.getLValueReferenceType(ArgType); 14628 14629 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14630 CXXCopyAssignment, 14631 Const); 14632 14633 // An implicitly-declared copy assignment operator is an inline public 14634 // member of its class. 14635 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14636 SourceLocation ClassLoc = ClassDecl->getLocation(); 14637 DeclarationNameInfo NameInfo(Name, ClassLoc); 14638 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create( 14639 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 14640 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 14641 getCurFPFeatures().isFPConstrained(), 14642 /*isInline=*/true, 14643 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, 14644 SourceLocation()); 14645 CopyAssignment->setAccess(AS_public); 14646 CopyAssignment->setDefaulted(); 14647 CopyAssignment->setImplicit(); 14648 14649 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType); 14650 14651 if (getLangOpts().CUDA) 14652 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment, 14653 CopyAssignment, 14654 /* ConstRHS */ Const, 14655 /* Diagnose */ false); 14656 14657 // Add the parameter to the operator. 14658 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, 14659 ClassLoc, ClassLoc, 14660 /*Id=*/nullptr, ArgType, 14661 /*TInfo=*/nullptr, SC_None, 14662 nullptr); 14663 CopyAssignment->setParams(FromParam); 14664 14665 CopyAssignment->setTrivial( 14666 ClassDecl->needsOverloadResolutionForCopyAssignment() 14667 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment) 14668 : ClassDecl->hasTrivialCopyAssignment()); 14669 14670 // Note that we have added this copy-assignment operator. 14671 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared; 14672 14673 Scope *S = getScopeForContext(ClassDecl); 14674 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment); 14675 14676 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) { 14677 ClassDecl->setImplicitCopyAssignmentIsDeleted(); 14678 SetDeclDeleted(CopyAssignment, ClassLoc); 14679 } 14680 14681 if (S) 14682 PushOnScopeChains(CopyAssignment, S, false); 14683 ClassDecl->addDecl(CopyAssignment); 14684 14685 return CopyAssignment; 14686 } 14687 14688 /// Diagnose an implicit copy operation for a class which is odr-used, but 14689 /// which is deprecated because the class has a user-declared copy constructor, 14690 /// copy assignment operator, or destructor. 14691 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) { 14692 assert(CopyOp->isImplicit()); 14693 14694 CXXRecordDecl *RD = CopyOp->getParent(); 14695 CXXMethodDecl *UserDeclaredOperation = nullptr; 14696 14697 if (RD->hasUserDeclaredDestructor()) { 14698 UserDeclaredOperation = RD->getDestructor(); 14699 } else if (!isa<CXXConstructorDecl>(CopyOp) && 14700 RD->hasUserDeclaredCopyConstructor()) { 14701 // Find any user-declared copy constructor. 14702 for (auto *I : RD->ctors()) { 14703 if (I->isCopyConstructor()) { 14704 UserDeclaredOperation = I; 14705 break; 14706 } 14707 } 14708 assert(UserDeclaredOperation); 14709 } else if (isa<CXXConstructorDecl>(CopyOp) && 14710 RD->hasUserDeclaredCopyAssignment()) { 14711 // Find any user-declared move assignment operator. 14712 for (auto *I : RD->methods()) { 14713 if (I->isCopyAssignmentOperator()) { 14714 UserDeclaredOperation = I; 14715 break; 14716 } 14717 } 14718 assert(UserDeclaredOperation); 14719 } 14720 14721 if (UserDeclaredOperation) { 14722 bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided(); 14723 bool UDOIsDestructor = isa<CXXDestructorDecl>(UserDeclaredOperation); 14724 bool IsCopyAssignment = !isa<CXXConstructorDecl>(CopyOp); 14725 unsigned DiagID = 14726 (UDOIsUserProvided && UDOIsDestructor) 14727 ? diag::warn_deprecated_copy_with_user_provided_dtor 14728 : (UDOIsUserProvided && !UDOIsDestructor) 14729 ? diag::warn_deprecated_copy_with_user_provided_copy 14730 : (!UDOIsUserProvided && UDOIsDestructor) 14731 ? diag::warn_deprecated_copy_with_dtor 14732 : diag::warn_deprecated_copy; 14733 S.Diag(UserDeclaredOperation->getLocation(), DiagID) 14734 << RD << IsCopyAssignment; 14735 } 14736 } 14737 14738 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, 14739 CXXMethodDecl *CopyAssignOperator) { 14740 assert((CopyAssignOperator->isDefaulted() && 14741 CopyAssignOperator->isOverloadedOperator() && 14742 CopyAssignOperator->getOverloadedOperator() == OO_Equal && 14743 !CopyAssignOperator->doesThisDeclarationHaveABody() && 14744 !CopyAssignOperator->isDeleted()) && 14745 "DefineImplicitCopyAssignment called for wrong function"); 14746 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl()) 14747 return; 14748 14749 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); 14750 if (ClassDecl->isInvalidDecl()) { 14751 CopyAssignOperator->setInvalidDecl(); 14752 return; 14753 } 14754 14755 SynthesizedFunctionScope Scope(*this, CopyAssignOperator); 14756 14757 // The exception specification is needed because we are defining the 14758 // function. 14759 ResolveExceptionSpec(CurrentLocation, 14760 CopyAssignOperator->getType()->castAs<FunctionProtoType>()); 14761 14762 // Add a context note for diagnostics produced after this point. 14763 Scope.addContextNote(CurrentLocation); 14764 14765 // C++11 [class.copy]p18: 14766 // The [definition of an implicitly declared copy assignment operator] is 14767 // deprecated if the class has a user-declared copy constructor or a 14768 // user-declared destructor. 14769 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) 14770 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator); 14771 14772 // C++0x [class.copy]p30: 14773 // The implicitly-defined or explicitly-defaulted copy assignment operator 14774 // for a non-union class X performs memberwise copy assignment of its 14775 // subobjects. The direct base classes of X are assigned first, in the 14776 // order of their declaration in the base-specifier-list, and then the 14777 // immediate non-static data members of X are assigned, in the order in 14778 // which they were declared in the class definition. 14779 14780 // The statements that form the synthesized function body. 14781 SmallVector<Stmt*, 8> Statements; 14782 14783 // The parameter for the "other" object, which we are copying from. 14784 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); 14785 Qualifiers OtherQuals = Other->getType().getQualifiers(); 14786 QualType OtherRefType = Other->getType(); 14787 if (const LValueReferenceType *OtherRef 14788 = OtherRefType->getAs<LValueReferenceType>()) { 14789 OtherRefType = OtherRef->getPointeeType(); 14790 OtherQuals = OtherRefType.getQualifiers(); 14791 } 14792 14793 // Our location for everything implicitly-generated. 14794 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid() 14795 ? CopyAssignOperator->getEndLoc() 14796 : CopyAssignOperator->getLocation(); 14797 14798 // Builds a DeclRefExpr for the "other" object. 14799 RefBuilder OtherRef(Other, OtherRefType); 14800 14801 // Builds the "this" pointer. 14802 ThisBuilder This; 14803 14804 // Assign base classes. 14805 bool Invalid = false; 14806 for (auto &Base : ClassDecl->bases()) { 14807 // Form the assignment: 14808 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); 14809 QualType BaseType = Base.getType().getUnqualifiedType(); 14810 if (!BaseType->isRecordType()) { 14811 Invalid = true; 14812 continue; 14813 } 14814 14815 CXXCastPath BasePath; 14816 BasePath.push_back(&Base); 14817 14818 // Construct the "from" expression, which is an implicit cast to the 14819 // appropriately-qualified base type. 14820 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals), 14821 VK_LValue, BasePath); 14822 14823 // Dereference "this". 14824 DerefBuilder DerefThis(This); 14825 CastBuilder To(DerefThis, 14826 Context.getQualifiedType( 14827 BaseType, CopyAssignOperator->getMethodQualifiers()), 14828 VK_LValue, BasePath); 14829 14830 // Build the copy. 14831 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, 14832 To, From, 14833 /*CopyingBaseSubobject=*/true, 14834 /*Copying=*/true); 14835 if (Copy.isInvalid()) { 14836 CopyAssignOperator->setInvalidDecl(); 14837 return; 14838 } 14839 14840 // Success! Record the copy. 14841 Statements.push_back(Copy.getAs<Expr>()); 14842 } 14843 14844 // Assign non-static members. 14845 for (auto *Field : ClassDecl->fields()) { 14846 // FIXME: We should form some kind of AST representation for the implied 14847 // memcpy in a union copy operation. 14848 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 14849 continue; 14850 14851 if (Field->isInvalidDecl()) { 14852 Invalid = true; 14853 continue; 14854 } 14855 14856 // Check for members of reference type; we can't copy those. 14857 if (Field->getType()->isReferenceType()) { 14858 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14859 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 14860 Diag(Field->getLocation(), diag::note_declared_at); 14861 Invalid = true; 14862 continue; 14863 } 14864 14865 // Check for members of const-qualified, non-class type. 14866 QualType BaseType = Context.getBaseElementType(Field->getType()); 14867 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 14868 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14869 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 14870 Diag(Field->getLocation(), diag::note_declared_at); 14871 Invalid = true; 14872 continue; 14873 } 14874 14875 // Suppress assigning zero-width bitfields. 14876 if (Field->isZeroLengthBitField(Context)) 14877 continue; 14878 14879 QualType FieldType = Field->getType().getNonReferenceType(); 14880 if (FieldType->isIncompleteArrayType()) { 14881 assert(ClassDecl->hasFlexibleArrayMember() && 14882 "Incomplete array type is not valid"); 14883 continue; 14884 } 14885 14886 // Build references to the field in the object we're copying from and to. 14887 CXXScopeSpec SS; // Intentionally empty 14888 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 14889 LookupMemberName); 14890 MemberLookup.addDecl(Field); 14891 MemberLookup.resolveKind(); 14892 14893 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); 14894 14895 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/!LangOpts.HLSL, 14896 MemberLookup); 14897 14898 // Build the copy of this field. 14899 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, 14900 To, From, 14901 /*CopyingBaseSubobject=*/false, 14902 /*Copying=*/true); 14903 if (Copy.isInvalid()) { 14904 CopyAssignOperator->setInvalidDecl(); 14905 return; 14906 } 14907 14908 // Success! Record the copy. 14909 Statements.push_back(Copy.getAs<Stmt>()); 14910 } 14911 14912 if (!Invalid) { 14913 // Add a "return *this;" 14914 Expr *ThisExpr = nullptr; 14915 if (!LangOpts.HLSL) { 14916 ExprResult ThisObj = 14917 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 14918 ThisExpr = ThisObj.get(); 14919 } else { 14920 ThisExpr = This.build(*this, Loc); 14921 } 14922 14923 StmtResult Return = BuildReturnStmt(Loc, ThisExpr); 14924 if (Return.isInvalid()) 14925 Invalid = true; 14926 else 14927 Statements.push_back(Return.getAs<Stmt>()); 14928 } 14929 14930 if (Invalid) { 14931 CopyAssignOperator->setInvalidDecl(); 14932 return; 14933 } 14934 14935 StmtResult Body; 14936 { 14937 CompoundScopeRAII CompoundScope(*this); 14938 Body = ActOnCompoundStmt(Loc, Loc, Statements, 14939 /*isStmtExpr=*/false); 14940 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 14941 } 14942 CopyAssignOperator->setBody(Body.getAs<Stmt>()); 14943 CopyAssignOperator->markUsed(Context); 14944 14945 if (ASTMutationListener *L = getASTMutationListener()) { 14946 L->CompletedImplicitDefinition(CopyAssignOperator); 14947 } 14948 } 14949 14950 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { 14951 assert(ClassDecl->needsImplicitMoveAssignment()); 14952 14953 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment); 14954 if (DSM.isAlreadyBeingDeclared()) 14955 return nullptr; 14956 14957 // Note: The following rules are largely analoguous to the move 14958 // constructor rules. 14959 14960 QualType ArgType = Context.getTypeDeclType(ClassDecl); 14961 ArgType = Context.getElaboratedType(ETK_None, nullptr, ArgType, nullptr); 14962 LangAS AS = getDefaultCXXMethodAddrSpace(); 14963 if (AS != LangAS::Default) 14964 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14965 QualType RetType = Context.getLValueReferenceType(ArgType); 14966 ArgType = Context.getRValueReferenceType(ArgType); 14967 14968 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14969 CXXMoveAssignment, 14970 false); 14971 14972 // An implicitly-declared move assignment operator is an inline public 14973 // member of its class. 14974 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14975 SourceLocation ClassLoc = ClassDecl->getLocation(); 14976 DeclarationNameInfo NameInfo(Name, ClassLoc); 14977 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create( 14978 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 14979 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 14980 getCurFPFeatures().isFPConstrained(), 14981 /*isInline=*/true, 14982 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, 14983 SourceLocation()); 14984 MoveAssignment->setAccess(AS_public); 14985 MoveAssignment->setDefaulted(); 14986 MoveAssignment->setImplicit(); 14987 14988 setupImplicitSpecialMemberType(MoveAssignment, RetType, ArgType); 14989 14990 if (getLangOpts().CUDA) 14991 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment, 14992 MoveAssignment, 14993 /* ConstRHS */ false, 14994 /* Diagnose */ false); 14995 14996 // Add the parameter to the operator. 14997 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, 14998 ClassLoc, ClassLoc, 14999 /*Id=*/nullptr, ArgType, 15000 /*TInfo=*/nullptr, SC_None, 15001 nullptr); 15002 MoveAssignment->setParams(FromParam); 15003 15004 MoveAssignment->setTrivial( 15005 ClassDecl->needsOverloadResolutionForMoveAssignment() 15006 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment) 15007 : ClassDecl->hasTrivialMoveAssignment()); 15008 15009 // Note that we have added this copy-assignment operator. 15010 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared; 15011 15012 Scope *S = getScopeForContext(ClassDecl); 15013 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment); 15014 15015 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) { 15016 ClassDecl->setImplicitMoveAssignmentIsDeleted(); 15017 SetDeclDeleted(MoveAssignment, ClassLoc); 15018 } 15019 15020 if (S) 15021 PushOnScopeChains(MoveAssignment, S, false); 15022 ClassDecl->addDecl(MoveAssignment); 15023 15024 return MoveAssignment; 15025 } 15026 15027 /// Check if we're implicitly defining a move assignment operator for a class 15028 /// with virtual bases. Such a move assignment might move-assign the virtual 15029 /// base multiple times. 15030 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, 15031 SourceLocation CurrentLocation) { 15032 assert(!Class->isDependentContext() && "should not define dependent move"); 15033 15034 // Only a virtual base could get implicitly move-assigned multiple times. 15035 // Only a non-trivial move assignment can observe this. We only want to 15036 // diagnose if we implicitly define an assignment operator that assigns 15037 // two base classes, both of which move-assign the same virtual base. 15038 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || 15039 Class->getNumBases() < 2) 15040 return; 15041 15042 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist; 15043 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap; 15044 VBaseMap VBases; 15045 15046 for (auto &BI : Class->bases()) { 15047 Worklist.push_back(&BI); 15048 while (!Worklist.empty()) { 15049 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); 15050 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); 15051 15052 // If the base has no non-trivial move assignment operators, 15053 // we don't care about moves from it. 15054 if (!Base->hasNonTrivialMoveAssignment()) 15055 continue; 15056 15057 // If there's nothing virtual here, skip it. 15058 if (!BaseSpec->isVirtual() && !Base->getNumVBases()) 15059 continue; 15060 15061 // If we're not actually going to call a move assignment for this base, 15062 // or the selected move assignment is trivial, skip it. 15063 Sema::SpecialMemberOverloadResult SMOR = 15064 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment, 15065 /*ConstArg*/false, /*VolatileArg*/false, 15066 /*RValueThis*/true, /*ConstThis*/false, 15067 /*VolatileThis*/false); 15068 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() || 15069 !SMOR.getMethod()->isMoveAssignmentOperator()) 15070 continue; 15071 15072 if (BaseSpec->isVirtual()) { 15073 // We're going to move-assign this virtual base, and its move 15074 // assignment operator is not trivial. If this can happen for 15075 // multiple distinct direct bases of Class, diagnose it. (If it 15076 // only happens in one base, we'll diagnose it when synthesizing 15077 // that base class's move assignment operator.) 15078 CXXBaseSpecifier *&Existing = 15079 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI)) 15080 .first->second; 15081 if (Existing && Existing != &BI) { 15082 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) 15083 << Class << Base; 15084 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here) 15085 << (Base->getCanonicalDecl() == 15086 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 15087 << Base << Existing->getType() << Existing->getSourceRange(); 15088 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here) 15089 << (Base->getCanonicalDecl() == 15090 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 15091 << Base << BI.getType() << BaseSpec->getSourceRange(); 15092 15093 // Only diagnose each vbase once. 15094 Existing = nullptr; 15095 } 15096 } else { 15097 // Only walk over bases that have defaulted move assignment operators. 15098 // We assume that any user-provided move assignment operator handles 15099 // the multiple-moves-of-vbase case itself somehow. 15100 if (!SMOR.getMethod()->isDefaulted()) 15101 continue; 15102 15103 // We're going to move the base classes of Base. Add them to the list. 15104 llvm::append_range(Worklist, llvm::make_pointer_range(Base->bases())); 15105 } 15106 } 15107 } 15108 } 15109 15110 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, 15111 CXXMethodDecl *MoveAssignOperator) { 15112 assert((MoveAssignOperator->isDefaulted() && 15113 MoveAssignOperator->isOverloadedOperator() && 15114 MoveAssignOperator->getOverloadedOperator() == OO_Equal && 15115 !MoveAssignOperator->doesThisDeclarationHaveABody() && 15116 !MoveAssignOperator->isDeleted()) && 15117 "DefineImplicitMoveAssignment called for wrong function"); 15118 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl()) 15119 return; 15120 15121 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); 15122 if (ClassDecl->isInvalidDecl()) { 15123 MoveAssignOperator->setInvalidDecl(); 15124 return; 15125 } 15126 15127 // C++0x [class.copy]p28: 15128 // The implicitly-defined or move assignment operator for a non-union class 15129 // X performs memberwise move assignment of its subobjects. The direct base 15130 // classes of X are assigned first, in the order of their declaration in the 15131 // base-specifier-list, and then the immediate non-static data members of X 15132 // are assigned, in the order in which they were declared in the class 15133 // definition. 15134 15135 // Issue a warning if our implicit move assignment operator will move 15136 // from a virtual base more than once. 15137 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation); 15138 15139 SynthesizedFunctionScope Scope(*this, MoveAssignOperator); 15140 15141 // The exception specification is needed because we are defining the 15142 // function. 15143 ResolveExceptionSpec(CurrentLocation, 15144 MoveAssignOperator->getType()->castAs<FunctionProtoType>()); 15145 15146 // Add a context note for diagnostics produced after this point. 15147 Scope.addContextNote(CurrentLocation); 15148 15149 // The statements that form the synthesized function body. 15150 SmallVector<Stmt*, 8> Statements; 15151 15152 // The parameter for the "other" object, which we are move from. 15153 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0); 15154 QualType OtherRefType = 15155 Other->getType()->castAs<RValueReferenceType>()->getPointeeType(); 15156 15157 // Our location for everything implicitly-generated. 15158 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid() 15159 ? MoveAssignOperator->getEndLoc() 15160 : MoveAssignOperator->getLocation(); 15161 15162 // Builds a reference to the "other" object. 15163 RefBuilder OtherRef(Other, OtherRefType); 15164 // Cast to rvalue. 15165 MoveCastBuilder MoveOther(OtherRef); 15166 15167 // Builds the "this" pointer. 15168 ThisBuilder This; 15169 15170 // Assign base classes. 15171 bool Invalid = false; 15172 for (auto &Base : ClassDecl->bases()) { 15173 // C++11 [class.copy]p28: 15174 // It is unspecified whether subobjects representing virtual base classes 15175 // are assigned more than once by the implicitly-defined copy assignment 15176 // operator. 15177 // FIXME: Do not assign to a vbase that will be assigned by some other base 15178 // class. For a move-assignment, this can result in the vbase being moved 15179 // multiple times. 15180 15181 // Form the assignment: 15182 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); 15183 QualType BaseType = Base.getType().getUnqualifiedType(); 15184 if (!BaseType->isRecordType()) { 15185 Invalid = true; 15186 continue; 15187 } 15188 15189 CXXCastPath BasePath; 15190 BasePath.push_back(&Base); 15191 15192 // Construct the "from" expression, which is an implicit cast to the 15193 // appropriately-qualified base type. 15194 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); 15195 15196 // Dereference "this". 15197 DerefBuilder DerefThis(This); 15198 15199 // Implicitly cast "this" to the appropriately-qualified base type. 15200 CastBuilder To(DerefThis, 15201 Context.getQualifiedType( 15202 BaseType, MoveAssignOperator->getMethodQualifiers()), 15203 VK_LValue, BasePath); 15204 15205 // Build the move. 15206 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, 15207 To, From, 15208 /*CopyingBaseSubobject=*/true, 15209 /*Copying=*/false); 15210 if (Move.isInvalid()) { 15211 MoveAssignOperator->setInvalidDecl(); 15212 return; 15213 } 15214 15215 // Success! Record the move. 15216 Statements.push_back(Move.getAs<Expr>()); 15217 } 15218 15219 // Assign non-static members. 15220 for (auto *Field : ClassDecl->fields()) { 15221 // FIXME: We should form some kind of AST representation for the implied 15222 // memcpy in a union copy operation. 15223 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 15224 continue; 15225 15226 if (Field->isInvalidDecl()) { 15227 Invalid = true; 15228 continue; 15229 } 15230 15231 // Check for members of reference type; we can't move those. 15232 if (Field->getType()->isReferenceType()) { 15233 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 15234 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 15235 Diag(Field->getLocation(), diag::note_declared_at); 15236 Invalid = true; 15237 continue; 15238 } 15239 15240 // Check for members of const-qualified, non-class type. 15241 QualType BaseType = Context.getBaseElementType(Field->getType()); 15242 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 15243 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 15244 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 15245 Diag(Field->getLocation(), diag::note_declared_at); 15246 Invalid = true; 15247 continue; 15248 } 15249 15250 // Suppress assigning zero-width bitfields. 15251 if (Field->isZeroLengthBitField(Context)) 15252 continue; 15253 15254 QualType FieldType = Field->getType().getNonReferenceType(); 15255 if (FieldType->isIncompleteArrayType()) { 15256 assert(ClassDecl->hasFlexibleArrayMember() && 15257 "Incomplete array type is not valid"); 15258 continue; 15259 } 15260 15261 // Build references to the field in the object we're copying from and to. 15262 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 15263 LookupMemberName); 15264 MemberLookup.addDecl(Field); 15265 MemberLookup.resolveKind(); 15266 MemberBuilder From(MoveOther, OtherRefType, 15267 /*IsArrow=*/false, MemberLookup); 15268 MemberBuilder To(This, getCurrentThisType(), 15269 /*IsArrow=*/true, MemberLookup); 15270 15271 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue 15272 "Member reference with rvalue base must be rvalue except for reference " 15273 "members, which aren't allowed for move assignment."); 15274 15275 // Build the move of this field. 15276 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, 15277 To, From, 15278 /*CopyingBaseSubobject=*/false, 15279 /*Copying=*/false); 15280 if (Move.isInvalid()) { 15281 MoveAssignOperator->setInvalidDecl(); 15282 return; 15283 } 15284 15285 // Success! Record the copy. 15286 Statements.push_back(Move.getAs<Stmt>()); 15287 } 15288 15289 if (!Invalid) { 15290 // Add a "return *this;" 15291 ExprResult ThisObj = 15292 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 15293 15294 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 15295 if (Return.isInvalid()) 15296 Invalid = true; 15297 else 15298 Statements.push_back(Return.getAs<Stmt>()); 15299 } 15300 15301 if (Invalid) { 15302 MoveAssignOperator->setInvalidDecl(); 15303 return; 15304 } 15305 15306 StmtResult Body; 15307 { 15308 CompoundScopeRAII CompoundScope(*this); 15309 Body = ActOnCompoundStmt(Loc, Loc, Statements, 15310 /*isStmtExpr=*/false); 15311 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 15312 } 15313 MoveAssignOperator->setBody(Body.getAs<Stmt>()); 15314 MoveAssignOperator->markUsed(Context); 15315 15316 if (ASTMutationListener *L = getASTMutationListener()) { 15317 L->CompletedImplicitDefinition(MoveAssignOperator); 15318 } 15319 } 15320 15321 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( 15322 CXXRecordDecl *ClassDecl) { 15323 // C++ [class.copy]p4: 15324 // If the class definition does not explicitly declare a copy 15325 // constructor, one is declared implicitly. 15326 assert(ClassDecl->needsImplicitCopyConstructor()); 15327 15328 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor); 15329 if (DSM.isAlreadyBeingDeclared()) 15330 return nullptr; 15331 15332 QualType ClassType = Context.getTypeDeclType(ClassDecl); 15333 QualType ArgType = ClassType; 15334 ArgType = Context.getElaboratedType(ETK_None, nullptr, ArgType, nullptr); 15335 bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); 15336 if (Const) 15337 ArgType = ArgType.withConst(); 15338 15339 LangAS AS = getDefaultCXXMethodAddrSpace(); 15340 if (AS != LangAS::Default) 15341 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 15342 15343 ArgType = Context.getLValueReferenceType(ArgType); 15344 15345 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 15346 CXXCopyConstructor, 15347 Const); 15348 15349 DeclarationName Name 15350 = Context.DeclarationNames.getCXXConstructorName( 15351 Context.getCanonicalType(ClassType)); 15352 SourceLocation ClassLoc = ClassDecl->getLocation(); 15353 DeclarationNameInfo NameInfo(Name, ClassLoc); 15354 15355 // An implicitly-declared copy constructor is an inline public 15356 // member of its class. 15357 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( 15358 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 15359 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 15360 /*isInline=*/true, 15361 /*isImplicitlyDeclared=*/true, 15362 Constexpr ? ConstexprSpecKind::Constexpr 15363 : ConstexprSpecKind::Unspecified); 15364 CopyConstructor->setAccess(AS_public); 15365 CopyConstructor->setDefaulted(); 15366 15367 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType); 15368 15369 if (getLangOpts().CUDA) 15370 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor, 15371 CopyConstructor, 15372 /* ConstRHS */ Const, 15373 /* Diagnose */ false); 15374 15375 // During template instantiation of special member functions we need a 15376 // reliable TypeSourceInfo for the parameter types in order to allow functions 15377 // to be substituted. 15378 TypeSourceInfo *TSI = nullptr; 15379 if (inTemplateInstantiation() && ClassDecl->isLambda()) 15380 TSI = Context.getTrivialTypeSourceInfo(ArgType); 15381 15382 // Add the parameter to the constructor. 15383 ParmVarDecl *FromParam = 15384 ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc, 15385 /*IdentifierInfo=*/nullptr, ArgType, 15386 /*TInfo=*/TSI, SC_None, nullptr); 15387 CopyConstructor->setParams(FromParam); 15388 15389 CopyConstructor->setTrivial( 15390 ClassDecl->needsOverloadResolutionForCopyConstructor() 15391 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor) 15392 : ClassDecl->hasTrivialCopyConstructor()); 15393 15394 CopyConstructor->setTrivialForCall( 15395 ClassDecl->hasAttr<TrivialABIAttr>() || 15396 (ClassDecl->needsOverloadResolutionForCopyConstructor() 15397 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor, 15398 TAH_ConsiderTrivialABI) 15399 : ClassDecl->hasTrivialCopyConstructorForCall())); 15400 15401 // Note that we have declared this constructor. 15402 ++getASTContext().NumImplicitCopyConstructorsDeclared; 15403 15404 Scope *S = getScopeForContext(ClassDecl); 15405 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor); 15406 15407 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) { 15408 ClassDecl->setImplicitCopyConstructorIsDeleted(); 15409 SetDeclDeleted(CopyConstructor, ClassLoc); 15410 } 15411 15412 if (S) 15413 PushOnScopeChains(CopyConstructor, S, false); 15414 ClassDecl->addDecl(CopyConstructor); 15415 15416 return CopyConstructor; 15417 } 15418 15419 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, 15420 CXXConstructorDecl *CopyConstructor) { 15421 assert((CopyConstructor->isDefaulted() && 15422 CopyConstructor->isCopyConstructor() && 15423 !CopyConstructor->doesThisDeclarationHaveABody() && 15424 !CopyConstructor->isDeleted()) && 15425 "DefineImplicitCopyConstructor - call it for implicit copy ctor"); 15426 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl()) 15427 return; 15428 15429 CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); 15430 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); 15431 15432 SynthesizedFunctionScope Scope(*this, CopyConstructor); 15433 15434 // The exception specification is needed because we are defining the 15435 // function. 15436 ResolveExceptionSpec(CurrentLocation, 15437 CopyConstructor->getType()->castAs<FunctionProtoType>()); 15438 MarkVTableUsed(CurrentLocation, ClassDecl); 15439 15440 // Add a context note for diagnostics produced after this point. 15441 Scope.addContextNote(CurrentLocation); 15442 15443 // C++11 [class.copy]p7: 15444 // The [definition of an implicitly declared copy constructor] is 15445 // deprecated if the class has a user-declared copy assignment operator 15446 // or a user-declared destructor. 15447 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) 15448 diagnoseDeprecatedCopyOperation(*this, CopyConstructor); 15449 15450 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) { 15451 CopyConstructor->setInvalidDecl(); 15452 } else { 15453 SourceLocation Loc = CopyConstructor->getEndLoc().isValid() 15454 ? CopyConstructor->getEndLoc() 15455 : CopyConstructor->getLocation(); 15456 Sema::CompoundScopeRAII CompoundScope(*this); 15457 CopyConstructor->setBody( 15458 ActOnCompoundStmt(Loc, Loc, std::nullopt, /*isStmtExpr=*/false) 15459 .getAs<Stmt>()); 15460 CopyConstructor->markUsed(Context); 15461 } 15462 15463 if (ASTMutationListener *L = getASTMutationListener()) { 15464 L->CompletedImplicitDefinition(CopyConstructor); 15465 } 15466 } 15467 15468 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( 15469 CXXRecordDecl *ClassDecl) { 15470 assert(ClassDecl->needsImplicitMoveConstructor()); 15471 15472 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor); 15473 if (DSM.isAlreadyBeingDeclared()) 15474 return nullptr; 15475 15476 QualType ClassType = Context.getTypeDeclType(ClassDecl); 15477 15478 QualType ArgType = ClassType; 15479 ArgType = Context.getElaboratedType(ETK_None, nullptr, ArgType, nullptr); 15480 LangAS AS = getDefaultCXXMethodAddrSpace(); 15481 if (AS != LangAS::Default) 15482 ArgType = Context.getAddrSpaceQualType(ClassType, AS); 15483 ArgType = Context.getRValueReferenceType(ArgType); 15484 15485 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 15486 CXXMoveConstructor, 15487 false); 15488 15489 DeclarationName Name 15490 = Context.DeclarationNames.getCXXConstructorName( 15491 Context.getCanonicalType(ClassType)); 15492 SourceLocation ClassLoc = ClassDecl->getLocation(); 15493 DeclarationNameInfo NameInfo(Name, ClassLoc); 15494 15495 // C++11 [class.copy]p11: 15496 // An implicitly-declared copy/move constructor is an inline public 15497 // member of its class. 15498 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( 15499 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 15500 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 15501 /*isInline=*/true, 15502 /*isImplicitlyDeclared=*/true, 15503 Constexpr ? ConstexprSpecKind::Constexpr 15504 : ConstexprSpecKind::Unspecified); 15505 MoveConstructor->setAccess(AS_public); 15506 MoveConstructor->setDefaulted(); 15507 15508 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType); 15509 15510 if (getLangOpts().CUDA) 15511 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor, 15512 MoveConstructor, 15513 /* ConstRHS */ false, 15514 /* Diagnose */ false); 15515 15516 // Add the parameter to the constructor. 15517 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, 15518 ClassLoc, ClassLoc, 15519 /*IdentifierInfo=*/nullptr, 15520 ArgType, /*TInfo=*/nullptr, 15521 SC_None, nullptr); 15522 MoveConstructor->setParams(FromParam); 15523 15524 MoveConstructor->setTrivial( 15525 ClassDecl->needsOverloadResolutionForMoveConstructor() 15526 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor) 15527 : ClassDecl->hasTrivialMoveConstructor()); 15528 15529 MoveConstructor->setTrivialForCall( 15530 ClassDecl->hasAttr<TrivialABIAttr>() || 15531 (ClassDecl->needsOverloadResolutionForMoveConstructor() 15532 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor, 15533 TAH_ConsiderTrivialABI) 15534 : ClassDecl->hasTrivialMoveConstructorForCall())); 15535 15536 // Note that we have declared this constructor. 15537 ++getASTContext().NumImplicitMoveConstructorsDeclared; 15538 15539 Scope *S = getScopeForContext(ClassDecl); 15540 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor); 15541 15542 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) { 15543 ClassDecl->setImplicitMoveConstructorIsDeleted(); 15544 SetDeclDeleted(MoveConstructor, ClassLoc); 15545 } 15546 15547 if (S) 15548 PushOnScopeChains(MoveConstructor, S, false); 15549 ClassDecl->addDecl(MoveConstructor); 15550 15551 return MoveConstructor; 15552 } 15553 15554 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, 15555 CXXConstructorDecl *MoveConstructor) { 15556 assert((MoveConstructor->isDefaulted() && 15557 MoveConstructor->isMoveConstructor() && 15558 !MoveConstructor->doesThisDeclarationHaveABody() && 15559 !MoveConstructor->isDeleted()) && 15560 "DefineImplicitMoveConstructor - call it for implicit move ctor"); 15561 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl()) 15562 return; 15563 15564 CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); 15565 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"); 15566 15567 SynthesizedFunctionScope Scope(*this, MoveConstructor); 15568 15569 // The exception specification is needed because we are defining the 15570 // function. 15571 ResolveExceptionSpec(CurrentLocation, 15572 MoveConstructor->getType()->castAs<FunctionProtoType>()); 15573 MarkVTableUsed(CurrentLocation, ClassDecl); 15574 15575 // Add a context note for diagnostics produced after this point. 15576 Scope.addContextNote(CurrentLocation); 15577 15578 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) { 15579 MoveConstructor->setInvalidDecl(); 15580 } else { 15581 SourceLocation Loc = MoveConstructor->getEndLoc().isValid() 15582 ? MoveConstructor->getEndLoc() 15583 : MoveConstructor->getLocation(); 15584 Sema::CompoundScopeRAII CompoundScope(*this); 15585 MoveConstructor->setBody( 15586 ActOnCompoundStmt(Loc, Loc, std::nullopt, /*isStmtExpr=*/false) 15587 .getAs<Stmt>()); 15588 MoveConstructor->markUsed(Context); 15589 } 15590 15591 if (ASTMutationListener *L = getASTMutationListener()) { 15592 L->CompletedImplicitDefinition(MoveConstructor); 15593 } 15594 } 15595 15596 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { 15597 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD); 15598 } 15599 15600 void Sema::DefineImplicitLambdaToFunctionPointerConversion( 15601 SourceLocation CurrentLocation, 15602 CXXConversionDecl *Conv) { 15603 SynthesizedFunctionScope Scope(*this, Conv); 15604 assert(!Conv->getReturnType()->isUndeducedType()); 15605 15606 QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType(); 15607 CallingConv CC = 15608 ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv(); 15609 15610 CXXRecordDecl *Lambda = Conv->getParent(); 15611 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 15612 FunctionDecl *Invoker = 15613 CallOp->isStatic() ? CallOp : Lambda->getLambdaStaticInvoker(CC); 15614 15615 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) { 15616 CallOp = InstantiateFunctionDeclaration( 15617 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 15618 if (!CallOp) 15619 return; 15620 15621 if (CallOp != Invoker) { 15622 Invoker = InstantiateFunctionDeclaration( 15623 Invoker->getDescribedFunctionTemplate(), TemplateArgs, 15624 CurrentLocation); 15625 if (!Invoker) 15626 return; 15627 } 15628 } 15629 15630 if (CallOp->isInvalidDecl()) 15631 return; 15632 15633 // Mark the call operator referenced (and add to pending instantiations 15634 // if necessary). 15635 // For both the conversion and static-invoker template specializations 15636 // we construct their body's in this function, so no need to add them 15637 // to the PendingInstantiations. 15638 MarkFunctionReferenced(CurrentLocation, CallOp); 15639 15640 if (Invoker != CallOp) { 15641 // Fill in the __invoke function with a dummy implementation. IR generation 15642 // will fill in the actual details. Update its type in case it contained 15643 // an 'auto'. 15644 Invoker->markUsed(Context); 15645 Invoker->setReferenced(); 15646 Invoker->setType(Conv->getReturnType()->getPointeeType()); 15647 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); 15648 } 15649 15650 // Construct the body of the conversion function { return __invoke; }. 15651 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), VK_LValue, 15652 Conv->getLocation()); 15653 assert(FunctionRef && "Can't refer to __invoke function?"); 15654 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get(); 15655 Conv->setBody(CompoundStmt::Create(Context, Return, FPOptionsOverride(), 15656 Conv->getLocation(), Conv->getLocation())); 15657 Conv->markUsed(Context); 15658 Conv->setReferenced(); 15659 15660 if (ASTMutationListener *L = getASTMutationListener()) { 15661 L->CompletedImplicitDefinition(Conv); 15662 if (Invoker != CallOp) 15663 L->CompletedImplicitDefinition(Invoker); 15664 } 15665 } 15666 15667 void Sema::DefineImplicitLambdaToBlockPointerConversion( 15668 SourceLocation CurrentLocation, CXXConversionDecl *Conv) { 15669 assert(!Conv->getParent()->isGenericLambda()); 15670 15671 SynthesizedFunctionScope Scope(*this, Conv); 15672 15673 // Copy-initialize the lambda object as needed to capture it. 15674 Expr *This = ActOnCXXThis(CurrentLocation).get(); 15675 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get(); 15676 15677 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, 15678 Conv->getLocation(), 15679 Conv, DerefThis); 15680 15681 // If we're not under ARC, make sure we still get the _Block_copy/autorelease 15682 // behavior. Note that only the general conversion function does this 15683 // (since it's unusable otherwise); in the case where we inline the 15684 // block literal, it has block literal lifetime semantics. 15685 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) 15686 BuildBlock = ImplicitCastExpr::Create( 15687 Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject, 15688 BuildBlock.get(), nullptr, VK_PRValue, FPOptionsOverride()); 15689 15690 if (BuildBlock.isInvalid()) { 15691 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 15692 Conv->setInvalidDecl(); 15693 return; 15694 } 15695 15696 // Create the return statement that returns the block from the conversion 15697 // function. 15698 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get()); 15699 if (Return.isInvalid()) { 15700 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 15701 Conv->setInvalidDecl(); 15702 return; 15703 } 15704 15705 // Set the body of the conversion function. 15706 Stmt *ReturnS = Return.get(); 15707 Conv->setBody(CompoundStmt::Create(Context, ReturnS, FPOptionsOverride(), 15708 Conv->getLocation(), Conv->getLocation())); 15709 Conv->markUsed(Context); 15710 15711 // We're done; notify the mutation listener, if any. 15712 if (ASTMutationListener *L = getASTMutationListener()) { 15713 L->CompletedImplicitDefinition(Conv); 15714 } 15715 } 15716 15717 /// Determine whether the given list arguments contains exactly one 15718 /// "real" (non-default) argument. 15719 static bool hasOneRealArgument(MultiExprArg Args) { 15720 switch (Args.size()) { 15721 case 0: 15722 return false; 15723 15724 default: 15725 if (!Args[1]->isDefaultArgument()) 15726 return false; 15727 15728 [[fallthrough]]; 15729 case 1: 15730 return !Args[0]->isDefaultArgument(); 15731 } 15732 15733 return false; 15734 } 15735 15736 ExprResult 15737 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15738 NamedDecl *FoundDecl, 15739 CXXConstructorDecl *Constructor, 15740 MultiExprArg ExprArgs, 15741 bool HadMultipleCandidates, 15742 bool IsListInitialization, 15743 bool IsStdInitListInitialization, 15744 bool RequiresZeroInit, 15745 unsigned ConstructKind, 15746 SourceRange ParenRange) { 15747 bool Elidable = false; 15748 15749 // C++0x [class.copy]p34: 15750 // When certain criteria are met, an implementation is allowed to 15751 // omit the copy/move construction of a class object, even if the 15752 // copy/move constructor and/or destructor for the object have 15753 // side effects. [...] 15754 // - when a temporary class object that has not been bound to a 15755 // reference (12.2) would be copied/moved to a class object 15756 // with the same cv-unqualified type, the copy/move operation 15757 // can be omitted by constructing the temporary object 15758 // directly into the target of the omitted copy/move 15759 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor && 15760 // FIXME: Converting constructors should also be accepted. 15761 // But to fix this, the logic that digs down into a CXXConstructExpr 15762 // to find the source object needs to handle it. 15763 // Right now it assumes the source object is passed directly as the 15764 // first argument. 15765 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) { 15766 Expr *SubExpr = ExprArgs[0]; 15767 // FIXME: Per above, this is also incorrect if we want to accept 15768 // converting constructors, as isTemporaryObject will 15769 // reject temporaries with different type from the 15770 // CXXRecord itself. 15771 Elidable = SubExpr->isTemporaryObject( 15772 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext())); 15773 } 15774 15775 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, 15776 FoundDecl, Constructor, 15777 Elidable, ExprArgs, HadMultipleCandidates, 15778 IsListInitialization, 15779 IsStdInitListInitialization, RequiresZeroInit, 15780 ConstructKind, ParenRange); 15781 } 15782 15783 ExprResult 15784 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15785 NamedDecl *FoundDecl, 15786 CXXConstructorDecl *Constructor, 15787 bool Elidable, 15788 MultiExprArg ExprArgs, 15789 bool HadMultipleCandidates, 15790 bool IsListInitialization, 15791 bool IsStdInitListInitialization, 15792 bool RequiresZeroInit, 15793 unsigned ConstructKind, 15794 SourceRange ParenRange) { 15795 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) { 15796 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow); 15797 // The only way to get here is if we did overlaod resolution to find the 15798 // shadow decl, so we don't need to worry about re-checking the trailing 15799 // requires clause. 15800 if (DiagnoseUseOfOverloadedDecl(Constructor, ConstructLoc)) 15801 return ExprError(); 15802 } 15803 15804 return BuildCXXConstructExpr( 15805 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs, 15806 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, 15807 RequiresZeroInit, ConstructKind, ParenRange); 15808 } 15809 15810 /// BuildCXXConstructExpr - Creates a complete call to a constructor, 15811 /// including handling of its default argument expressions. 15812 ExprResult 15813 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15814 CXXConstructorDecl *Constructor, 15815 bool Elidable, 15816 MultiExprArg ExprArgs, 15817 bool HadMultipleCandidates, 15818 bool IsListInitialization, 15819 bool IsStdInitListInitialization, 15820 bool RequiresZeroInit, 15821 unsigned ConstructKind, 15822 SourceRange ParenRange) { 15823 assert(declaresSameEntity( 15824 Constructor->getParent(), 15825 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && 15826 "given constructor for wrong type"); 15827 MarkFunctionReferenced(ConstructLoc, Constructor); 15828 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor)) 15829 return ExprError(); 15830 15831 return CheckForImmediateInvocation( 15832 CXXConstructExpr::Create( 15833 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs, 15834 HadMultipleCandidates, IsListInitialization, 15835 IsStdInitListInitialization, RequiresZeroInit, 15836 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind), 15837 ParenRange), 15838 Constructor); 15839 } 15840 15841 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { 15842 if (VD->isInvalidDecl()) return; 15843 // If initializing the variable failed, don't also diagnose problems with 15844 // the destructor, they're likely related. 15845 if (VD->getInit() && VD->getInit()->containsErrors()) 15846 return; 15847 15848 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); 15849 if (ClassDecl->isInvalidDecl()) return; 15850 if (ClassDecl->hasIrrelevantDestructor()) return; 15851 if (ClassDecl->isDependentContext()) return; 15852 15853 if (VD->isNoDestroy(getASTContext())) 15854 return; 15855 15856 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 15857 // The result of `LookupDestructor` might be nullptr if the destructor is 15858 // invalid, in which case it is marked as `IneligibleOrNotSelected` and 15859 // will not be selected by `CXXRecordDecl::getDestructor()`. 15860 if (!Destructor) 15861 return; 15862 // If this is an array, we'll require the destructor during initialization, so 15863 // we can skip over this. We still want to emit exit-time destructor warnings 15864 // though. 15865 if (!VD->getType()->isArrayType()) { 15866 MarkFunctionReferenced(VD->getLocation(), Destructor); 15867 CheckDestructorAccess(VD->getLocation(), Destructor, 15868 PDiag(diag::err_access_dtor_var) 15869 << VD->getDeclName() << VD->getType()); 15870 DiagnoseUseOfDecl(Destructor, VD->getLocation()); 15871 } 15872 15873 if (Destructor->isTrivial()) return; 15874 15875 // If the destructor is constexpr, check whether the variable has constant 15876 // destruction now. 15877 if (Destructor->isConstexpr()) { 15878 bool HasConstantInit = false; 15879 if (VD->getInit() && !VD->getInit()->isValueDependent()) 15880 HasConstantInit = VD->evaluateValue(); 15881 SmallVector<PartialDiagnosticAt, 8> Notes; 15882 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() && 15883 HasConstantInit) { 15884 Diag(VD->getLocation(), 15885 diag::err_constexpr_var_requires_const_destruction) << VD; 15886 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 15887 Diag(Notes[I].first, Notes[I].second); 15888 } 15889 } 15890 15891 if (!VD->hasGlobalStorage() || !VD->needsDestruction(Context)) 15892 return; 15893 15894 // Emit warning for non-trivial dtor in global scope (a real global, 15895 // class-static, function-static). 15896 Diag(VD->getLocation(), diag::warn_exit_time_destructor); 15897 15898 // TODO: this should be re-enabled for static locals by !CXAAtExit 15899 if (!VD->isStaticLocal()) 15900 Diag(VD->getLocation(), diag::warn_global_destructor); 15901 } 15902 15903 /// Given a constructor and the set of arguments provided for the 15904 /// constructor, convert the arguments and add any required default arguments 15905 /// to form a proper call to this constructor. 15906 /// 15907 /// \returns true if an error occurred, false otherwise. 15908 bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, 15909 QualType DeclInitType, MultiExprArg ArgsPtr, 15910 SourceLocation Loc, 15911 SmallVectorImpl<Expr *> &ConvertedArgs, 15912 bool AllowExplicit, 15913 bool IsListInitialization) { 15914 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. 15915 unsigned NumArgs = ArgsPtr.size(); 15916 Expr **Args = ArgsPtr.data(); 15917 15918 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>(); 15919 unsigned NumParams = Proto->getNumParams(); 15920 15921 // If too few arguments are available, we'll fill in the rest with defaults. 15922 if (NumArgs < NumParams) 15923 ConvertedArgs.reserve(NumParams); 15924 else 15925 ConvertedArgs.reserve(NumArgs); 15926 15927 VariadicCallType CallType = 15928 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 15929 SmallVector<Expr *, 8> AllArgs; 15930 bool Invalid = GatherArgumentsForCall( 15931 Loc, Constructor, Proto, 0, llvm::ArrayRef(Args, NumArgs), AllArgs, 15932 CallType, AllowExplicit, IsListInitialization); 15933 ConvertedArgs.append(AllArgs.begin(), AllArgs.end()); 15934 15935 DiagnoseSentinelCalls(Constructor, Loc, AllArgs); 15936 15937 CheckConstructorCall(Constructor, DeclInitType, 15938 llvm::ArrayRef(AllArgs.data(), AllArgs.size()), Proto, 15939 Loc); 15940 15941 return Invalid; 15942 } 15943 15944 static inline bool 15945 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, 15946 const FunctionDecl *FnDecl) { 15947 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); 15948 if (isa<NamespaceDecl>(DC)) { 15949 return SemaRef.Diag(FnDecl->getLocation(), 15950 diag::err_operator_new_delete_declared_in_namespace) 15951 << FnDecl->getDeclName(); 15952 } 15953 15954 if (isa<TranslationUnitDecl>(DC) && 15955 FnDecl->getStorageClass() == SC_Static) { 15956 return SemaRef.Diag(FnDecl->getLocation(), 15957 diag::err_operator_new_delete_declared_static) 15958 << FnDecl->getDeclName(); 15959 } 15960 15961 return false; 15962 } 15963 15964 static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef, 15965 const PointerType *PtrTy) { 15966 auto &Ctx = SemaRef.Context; 15967 Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers(); 15968 PtrQuals.removeAddressSpace(); 15969 return Ctx.getPointerType(Ctx.getCanonicalType(Ctx.getQualifiedType( 15970 PtrTy->getPointeeType().getUnqualifiedType(), PtrQuals))); 15971 } 15972 15973 static inline bool 15974 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, 15975 CanQualType ExpectedResultType, 15976 CanQualType ExpectedFirstParamType, 15977 unsigned DependentParamTypeDiag, 15978 unsigned InvalidParamTypeDiag) { 15979 QualType ResultType = 15980 FnDecl->getType()->castAs<FunctionType>()->getReturnType(); 15981 15982 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 15983 // The operator is valid on any address space for OpenCL. 15984 // Drop address space from actual and expected result types. 15985 if (const auto *PtrTy = ResultType->getAs<PointerType>()) 15986 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 15987 15988 if (auto ExpectedPtrTy = ExpectedResultType->getAs<PointerType>()) 15989 ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); 15990 } 15991 15992 // Check that the result type is what we expect. 15993 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) { 15994 // Reject even if the type is dependent; an operator delete function is 15995 // required to have a non-dependent result type. 15996 return SemaRef.Diag( 15997 FnDecl->getLocation(), 15998 ResultType->isDependentType() 15999 ? diag::err_operator_new_delete_dependent_result_type 16000 : diag::err_operator_new_delete_invalid_result_type) 16001 << FnDecl->getDeclName() << ExpectedResultType; 16002 } 16003 16004 // A function template must have at least 2 parameters. 16005 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) 16006 return SemaRef.Diag(FnDecl->getLocation(), 16007 diag::err_operator_new_delete_template_too_few_parameters) 16008 << FnDecl->getDeclName(); 16009 16010 // The function decl must have at least 1 parameter. 16011 if (FnDecl->getNumParams() == 0) 16012 return SemaRef.Diag(FnDecl->getLocation(), 16013 diag::err_operator_new_delete_too_few_parameters) 16014 << FnDecl->getDeclName(); 16015 16016 QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); 16017 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 16018 // The operator is valid on any address space for OpenCL. 16019 // Drop address space from actual and expected first parameter types. 16020 if (const auto *PtrTy = 16021 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) 16022 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 16023 16024 if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs<PointerType>()) 16025 ExpectedFirstParamType = 16026 RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); 16027 } 16028 16029 // Check that the first parameter type is what we expect. 16030 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != 16031 ExpectedFirstParamType) { 16032 // The first parameter type is not allowed to be dependent. As a tentative 16033 // DR resolution, we allow a dependent parameter type if it is the right 16034 // type anyway, to allow destroying operator delete in class templates. 16035 return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType() 16036 ? DependentParamTypeDiag 16037 : InvalidParamTypeDiag) 16038 << FnDecl->getDeclName() << ExpectedFirstParamType; 16039 } 16040 16041 return false; 16042 } 16043 16044 static bool 16045 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { 16046 // C++ [basic.stc.dynamic.allocation]p1: 16047 // A program is ill-formed if an allocation function is declared in a 16048 // namespace scope other than global scope or declared static in global 16049 // scope. 16050 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 16051 return true; 16052 16053 CanQualType SizeTy = 16054 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); 16055 16056 // C++ [basic.stc.dynamic.allocation]p1: 16057 // The return type shall be void*. The first parameter shall have type 16058 // std::size_t. 16059 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, 16060 SizeTy, 16061 diag::err_operator_new_dependent_param_type, 16062 diag::err_operator_new_param_type)) 16063 return true; 16064 16065 // C++ [basic.stc.dynamic.allocation]p1: 16066 // The first parameter shall not have an associated default argument. 16067 if (FnDecl->getParamDecl(0)->hasDefaultArg()) 16068 return SemaRef.Diag(FnDecl->getLocation(), 16069 diag::err_operator_new_default_arg) 16070 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); 16071 16072 return false; 16073 } 16074 16075 static bool 16076 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { 16077 // C++ [basic.stc.dynamic.deallocation]p1: 16078 // A program is ill-formed if deallocation functions are declared in a 16079 // namespace scope other than global scope or declared static in global 16080 // scope. 16081 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 16082 return true; 16083 16084 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl); 16085 16086 // C++ P0722: 16087 // Within a class C, the first parameter of a destroying operator delete 16088 // shall be of type C *. The first parameter of any other deallocation 16089 // function shall be of type void *. 16090 CanQualType ExpectedFirstParamType = 16091 MD && MD->isDestroyingOperatorDelete() 16092 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType( 16093 SemaRef.Context.getRecordType(MD->getParent()))) 16094 : SemaRef.Context.VoidPtrTy; 16095 16096 // C++ [basic.stc.dynamic.deallocation]p2: 16097 // Each deallocation function shall return void 16098 if (CheckOperatorNewDeleteTypes( 16099 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType, 16100 diag::err_operator_delete_dependent_param_type, 16101 diag::err_operator_delete_param_type)) 16102 return true; 16103 16104 // C++ P0722: 16105 // A destroying operator delete shall be a usual deallocation function. 16106 if (MD && !MD->getParent()->isDependentContext() && 16107 MD->isDestroyingOperatorDelete() && 16108 !SemaRef.isUsualDeallocationFunction(MD)) { 16109 SemaRef.Diag(MD->getLocation(), 16110 diag::err_destroying_operator_delete_not_usual); 16111 return true; 16112 } 16113 16114 return false; 16115 } 16116 16117 /// CheckOverloadedOperatorDeclaration - Check whether the declaration 16118 /// of this overloaded operator is well-formed. If so, returns false; 16119 /// otherwise, emits appropriate diagnostics and returns true. 16120 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { 16121 assert(FnDecl && FnDecl->isOverloadedOperator() && 16122 "Expected an overloaded operator declaration"); 16123 16124 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); 16125 16126 // C++ [over.oper]p5: 16127 // The allocation and deallocation functions, operator new, 16128 // operator new[], operator delete and operator delete[], are 16129 // described completely in 3.7.3. The attributes and restrictions 16130 // found in the rest of this subclause do not apply to them unless 16131 // explicitly stated in 3.7.3. 16132 if (Op == OO_Delete || Op == OO_Array_Delete) 16133 return CheckOperatorDeleteDeclaration(*this, FnDecl); 16134 16135 if (Op == OO_New || Op == OO_Array_New) 16136 return CheckOperatorNewDeclaration(*this, FnDecl); 16137 16138 // C++ [over.oper]p7: 16139 // An operator function shall either be a member function or 16140 // be a non-member function and have at least one parameter 16141 // whose type is a class, a reference to a class, an enumeration, 16142 // or a reference to an enumeration. 16143 // Note: Before C++23, a member function could not be static. The only member 16144 // function allowed to be static is the call operator function. 16145 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { 16146 if (MethodDecl->isStatic()) { 16147 if (Op == OO_Call || Op == OO_Subscript) 16148 Diag(FnDecl->getLocation(), 16149 (LangOpts.CPlusPlus23 16150 ? diag::warn_cxx20_compat_operator_overload_static 16151 : diag::ext_operator_overload_static)) 16152 << FnDecl; 16153 else 16154 return Diag(FnDecl->getLocation(), diag::err_operator_overload_static) 16155 << FnDecl; 16156 } 16157 } else { 16158 bool ClassOrEnumParam = false; 16159 for (auto *Param : FnDecl->parameters()) { 16160 QualType ParamType = Param->getType().getNonReferenceType(); 16161 if (ParamType->isDependentType() || ParamType->isRecordType() || 16162 ParamType->isEnumeralType()) { 16163 ClassOrEnumParam = true; 16164 break; 16165 } 16166 } 16167 16168 if (!ClassOrEnumParam) 16169 return Diag(FnDecl->getLocation(), 16170 diag::err_operator_overload_needs_class_or_enum) 16171 << FnDecl->getDeclName(); 16172 } 16173 16174 // C++ [over.oper]p8: 16175 // An operator function cannot have default arguments (8.3.6), 16176 // except where explicitly stated below. 16177 // 16178 // Only the function-call operator (C++ [over.call]p1) and the subscript 16179 // operator (CWG2507) allow default arguments. 16180 if (Op != OO_Call) { 16181 ParmVarDecl *FirstDefaultedParam = nullptr; 16182 for (auto *Param : FnDecl->parameters()) { 16183 if (Param->hasDefaultArg()) { 16184 FirstDefaultedParam = Param; 16185 break; 16186 } 16187 } 16188 if (FirstDefaultedParam) { 16189 if (Op == OO_Subscript) { 16190 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23 16191 ? diag::ext_subscript_overload 16192 : diag::error_subscript_overload) 16193 << FnDecl->getDeclName() << 1 16194 << FirstDefaultedParam->getDefaultArgRange(); 16195 } else { 16196 return Diag(FirstDefaultedParam->getLocation(), 16197 diag::err_operator_overload_default_arg) 16198 << FnDecl->getDeclName() 16199 << FirstDefaultedParam->getDefaultArgRange(); 16200 } 16201 } 16202 } 16203 16204 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { 16205 { false, false, false } 16206 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 16207 , { Unary, Binary, MemberOnly } 16208 #include "clang/Basic/OperatorKinds.def" 16209 }; 16210 16211 bool CanBeUnaryOperator = OperatorUses[Op][0]; 16212 bool CanBeBinaryOperator = OperatorUses[Op][1]; 16213 bool MustBeMemberOperator = OperatorUses[Op][2]; 16214 16215 // C++ [over.oper]p8: 16216 // [...] Operator functions cannot have more or fewer parameters 16217 // than the number required for the corresponding operator, as 16218 // described in the rest of this subclause. 16219 unsigned NumParams = FnDecl->getNumParams() 16220 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); 16221 if (Op != OO_Call && Op != OO_Subscript && 16222 ((NumParams == 1 && !CanBeUnaryOperator) || 16223 (NumParams == 2 && !CanBeBinaryOperator) || (NumParams < 1) || 16224 (NumParams > 2))) { 16225 // We have the wrong number of parameters. 16226 unsigned ErrorKind; 16227 if (CanBeUnaryOperator && CanBeBinaryOperator) { 16228 ErrorKind = 2; // 2 -> unary or binary. 16229 } else if (CanBeUnaryOperator) { 16230 ErrorKind = 0; // 0 -> unary 16231 } else { 16232 assert(CanBeBinaryOperator && 16233 "All non-call overloaded operators are unary or binary!"); 16234 ErrorKind = 1; // 1 -> binary 16235 } 16236 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) 16237 << FnDecl->getDeclName() << NumParams << ErrorKind; 16238 } 16239 16240 if (Op == OO_Subscript && NumParams != 2) { 16241 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23 16242 ? diag::ext_subscript_overload 16243 : diag::error_subscript_overload) 16244 << FnDecl->getDeclName() << (NumParams == 1 ? 0 : 2); 16245 } 16246 16247 // Overloaded operators other than operator() and operator[] cannot be 16248 // variadic. 16249 if (Op != OO_Call && 16250 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) { 16251 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) 16252 << FnDecl->getDeclName(); 16253 } 16254 16255 // Some operators must be member functions. 16256 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { 16257 return Diag(FnDecl->getLocation(), 16258 diag::err_operator_overload_must_be_member) 16259 << FnDecl->getDeclName(); 16260 } 16261 16262 // C++ [over.inc]p1: 16263 // The user-defined function called operator++ implements the 16264 // prefix and postfix ++ operator. If this function is a member 16265 // function with no parameters, or a non-member function with one 16266 // parameter of class or enumeration type, it defines the prefix 16267 // increment operator ++ for objects of that type. If the function 16268 // is a member function with one parameter (which shall be of type 16269 // int) or a non-member function with two parameters (the second 16270 // of which shall be of type int), it defines the postfix 16271 // increment operator ++ for objects of that type. 16272 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { 16273 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); 16274 QualType ParamType = LastParam->getType(); 16275 16276 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && 16277 !ParamType->isDependentType()) 16278 return Diag(LastParam->getLocation(), 16279 diag::err_operator_overload_post_incdec_must_be_int) 16280 << LastParam->getType() << (Op == OO_MinusMinus); 16281 } 16282 16283 return false; 16284 } 16285 16286 static bool 16287 checkLiteralOperatorTemplateParameterList(Sema &SemaRef, 16288 FunctionTemplateDecl *TpDecl) { 16289 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters(); 16290 16291 // Must have one or two template parameters. 16292 if (TemplateParams->size() == 1) { 16293 NonTypeTemplateParmDecl *PmDecl = 16294 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0)); 16295 16296 // The template parameter must be a char parameter pack. 16297 if (PmDecl && PmDecl->isTemplateParameterPack() && 16298 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy)) 16299 return false; 16300 16301 // C++20 [over.literal]p5: 16302 // A string literal operator template is a literal operator template 16303 // whose template-parameter-list comprises a single non-type 16304 // template-parameter of class type. 16305 // 16306 // As a DR resolution, we also allow placeholders for deduced class 16307 // template specializations. 16308 if (SemaRef.getLangOpts().CPlusPlus20 && PmDecl && 16309 !PmDecl->isTemplateParameterPack() && 16310 (PmDecl->getType()->isRecordType() || 16311 PmDecl->getType()->getAs<DeducedTemplateSpecializationType>())) 16312 return false; 16313 } else if (TemplateParams->size() == 2) { 16314 TemplateTypeParmDecl *PmType = 16315 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0)); 16316 NonTypeTemplateParmDecl *PmArgs = 16317 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1)); 16318 16319 // The second template parameter must be a parameter pack with the 16320 // first template parameter as its type. 16321 if (PmType && PmArgs && !PmType->isTemplateParameterPack() && 16322 PmArgs->isTemplateParameterPack()) { 16323 const TemplateTypeParmType *TArgs = 16324 PmArgs->getType()->getAs<TemplateTypeParmType>(); 16325 if (TArgs && TArgs->getDepth() == PmType->getDepth() && 16326 TArgs->getIndex() == PmType->getIndex()) { 16327 if (!SemaRef.inTemplateInstantiation()) 16328 SemaRef.Diag(TpDecl->getLocation(), 16329 diag::ext_string_literal_operator_template); 16330 return false; 16331 } 16332 } 16333 } 16334 16335 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(), 16336 diag::err_literal_operator_template) 16337 << TpDecl->getTemplateParameters()->getSourceRange(); 16338 return true; 16339 } 16340 16341 /// CheckLiteralOperatorDeclaration - Check whether the declaration 16342 /// of this literal operator function is well-formed. If so, returns 16343 /// false; otherwise, emits appropriate diagnostics and returns true. 16344 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { 16345 if (isa<CXXMethodDecl>(FnDecl)) { 16346 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) 16347 << FnDecl->getDeclName(); 16348 return true; 16349 } 16350 16351 if (FnDecl->isExternC()) { 16352 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); 16353 if (const LinkageSpecDecl *LSD = 16354 FnDecl->getDeclContext()->getExternCContext()) 16355 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 16356 return true; 16357 } 16358 16359 // This might be the definition of a literal operator template. 16360 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); 16361 16362 // This might be a specialization of a literal operator template. 16363 if (!TpDecl) 16364 TpDecl = FnDecl->getPrimaryTemplate(); 16365 16366 // template <char...> type operator "" name() and 16367 // template <class T, T...> type operator "" name() are the only valid 16368 // template signatures, and the only valid signatures with no parameters. 16369 // 16370 // C++20 also allows template <SomeClass T> type operator "" name(). 16371 if (TpDecl) { 16372 if (FnDecl->param_size() != 0) { 16373 Diag(FnDecl->getLocation(), 16374 diag::err_literal_operator_template_with_params); 16375 return true; 16376 } 16377 16378 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl)) 16379 return true; 16380 16381 } else if (FnDecl->param_size() == 1) { 16382 const ParmVarDecl *Param = FnDecl->getParamDecl(0); 16383 16384 QualType ParamType = Param->getType().getUnqualifiedType(); 16385 16386 // Only unsigned long long int, long double, any character type, and const 16387 // char * are allowed as the only parameters. 16388 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) || 16389 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) || 16390 Context.hasSameType(ParamType, Context.CharTy) || 16391 Context.hasSameType(ParamType, Context.WideCharTy) || 16392 Context.hasSameType(ParamType, Context.Char8Ty) || 16393 Context.hasSameType(ParamType, Context.Char16Ty) || 16394 Context.hasSameType(ParamType, Context.Char32Ty)) { 16395 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) { 16396 QualType InnerType = Ptr->getPointeeType(); 16397 16398 // Pointer parameter must be a const char *. 16399 if (!(Context.hasSameType(InnerType.getUnqualifiedType(), 16400 Context.CharTy) && 16401 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) { 16402 Diag(Param->getSourceRange().getBegin(), 16403 diag::err_literal_operator_param) 16404 << ParamType << "'const char *'" << Param->getSourceRange(); 16405 return true; 16406 } 16407 16408 } else if (ParamType->isRealFloatingType()) { 16409 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 16410 << ParamType << Context.LongDoubleTy << Param->getSourceRange(); 16411 return true; 16412 16413 } else if (ParamType->isIntegerType()) { 16414 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 16415 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange(); 16416 return true; 16417 16418 } else { 16419 Diag(Param->getSourceRange().getBegin(), 16420 diag::err_literal_operator_invalid_param) 16421 << ParamType << Param->getSourceRange(); 16422 return true; 16423 } 16424 16425 } else if (FnDecl->param_size() == 2) { 16426 FunctionDecl::param_iterator Param = FnDecl->param_begin(); 16427 16428 // First, verify that the first parameter is correct. 16429 16430 QualType FirstParamType = (*Param)->getType().getUnqualifiedType(); 16431 16432 // Two parameter function must have a pointer to const as a 16433 // first parameter; let's strip those qualifiers. 16434 const PointerType *PT = FirstParamType->getAs<PointerType>(); 16435 16436 if (!PT) { 16437 Diag((*Param)->getSourceRange().getBegin(), 16438 diag::err_literal_operator_param) 16439 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16440 return true; 16441 } 16442 16443 QualType PointeeType = PT->getPointeeType(); 16444 // First parameter must be const 16445 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) { 16446 Diag((*Param)->getSourceRange().getBegin(), 16447 diag::err_literal_operator_param) 16448 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16449 return true; 16450 } 16451 16452 QualType InnerType = PointeeType.getUnqualifiedType(); 16453 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and 16454 // const char32_t* are allowed as the first parameter to a two-parameter 16455 // function 16456 if (!(Context.hasSameType(InnerType, Context.CharTy) || 16457 Context.hasSameType(InnerType, Context.WideCharTy) || 16458 Context.hasSameType(InnerType, Context.Char8Ty) || 16459 Context.hasSameType(InnerType, Context.Char16Ty) || 16460 Context.hasSameType(InnerType, Context.Char32Ty))) { 16461 Diag((*Param)->getSourceRange().getBegin(), 16462 diag::err_literal_operator_param) 16463 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16464 return true; 16465 } 16466 16467 // Move on to the second and final parameter. 16468 ++Param; 16469 16470 // The second parameter must be a std::size_t. 16471 QualType SecondParamType = (*Param)->getType().getUnqualifiedType(); 16472 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) { 16473 Diag((*Param)->getSourceRange().getBegin(), 16474 diag::err_literal_operator_param) 16475 << SecondParamType << Context.getSizeType() 16476 << (*Param)->getSourceRange(); 16477 return true; 16478 } 16479 } else { 16480 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count); 16481 return true; 16482 } 16483 16484 // Parameters are good. 16485 16486 // A parameter-declaration-clause containing a default argument is not 16487 // equivalent to any of the permitted forms. 16488 for (auto *Param : FnDecl->parameters()) { 16489 if (Param->hasDefaultArg()) { 16490 Diag(Param->getDefaultArgRange().getBegin(), 16491 diag::err_literal_operator_default_argument) 16492 << Param->getDefaultArgRange(); 16493 break; 16494 } 16495 } 16496 16497 const IdentifierInfo *II = FnDecl->getDeclName().getCXXLiteralIdentifier(); 16498 ReservedLiteralSuffixIdStatus Status = II->isReservedLiteralSuffixId(); 16499 if (Status != ReservedLiteralSuffixIdStatus::NotReserved && 16500 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) { 16501 // C++23 [usrlit.suffix]p1: 16502 // Literal suffix identifiers that do not start with an underscore are 16503 // reserved for future standardization. Literal suffix identifiers that 16504 // contain a double underscore __ are reserved for use by C++ 16505 // implementations. 16506 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) 16507 << static_cast<int>(Status) 16508 << StringLiteralParser::isValidUDSuffix(getLangOpts(), II->getName()); 16509 } 16510 16511 return false; 16512 } 16513 16514 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ 16515 /// linkage specification, including the language and (if present) 16516 /// the '{'. ExternLoc is the location of the 'extern', Lang is the 16517 /// language string literal. LBraceLoc, if valid, provides the location of 16518 /// the '{' brace. Otherwise, this linkage specification does not 16519 /// have any braces. 16520 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, 16521 Expr *LangStr, 16522 SourceLocation LBraceLoc) { 16523 StringLiteral *Lit = cast<StringLiteral>(LangStr); 16524 assert(Lit->isUnevaluated() && "Unexpected string literal kind"); 16525 16526 StringRef Lang = Lit->getString(); 16527 LinkageSpecDecl::LanguageIDs Language; 16528 if (Lang == "C") 16529 Language = LinkageSpecDecl::lang_c; 16530 else if (Lang == "C++") 16531 Language = LinkageSpecDecl::lang_cxx; 16532 else { 16533 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) 16534 << LangStr->getSourceRange(); 16535 return nullptr; 16536 } 16537 16538 // FIXME: Add all the various semantics of linkage specifications 16539 16540 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc, 16541 LangStr->getExprLoc(), Language, 16542 LBraceLoc.isValid()); 16543 16544 /// C++ [module.unit]p7.2.3 16545 /// - Otherwise, if the declaration 16546 /// - ... 16547 /// - ... 16548 /// - appears within a linkage-specification, 16549 /// it is attached to the global module. 16550 /// 16551 /// If the declaration is already in global module fragment, we don't 16552 /// need to attach it again. 16553 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview()) { 16554 Module *GlobalModule = PushImplicitGlobalModuleFragment( 16555 ExternLoc, /*IsExported=*/D->isInExportDeclContext()); 16556 D->setLocalOwningModule(GlobalModule); 16557 } 16558 16559 CurContext->addDecl(D); 16560 PushDeclContext(S, D); 16561 return D; 16562 } 16563 16564 /// ActOnFinishLinkageSpecification - Complete the definition of 16565 /// the C++ linkage specification LinkageSpec. If RBraceLoc is 16566 /// valid, it's the position of the closing '}' brace in a linkage 16567 /// specification that uses braces. 16568 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, 16569 Decl *LinkageSpec, 16570 SourceLocation RBraceLoc) { 16571 if (RBraceLoc.isValid()) { 16572 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec); 16573 LSDecl->setRBraceLoc(RBraceLoc); 16574 } 16575 16576 // If the current module doesn't has Parent, it implies that the 16577 // LinkageSpec isn't in the module created by itself. So we don't 16578 // need to pop it. 16579 if (getLangOpts().CPlusPlusModules && getCurrentModule() && 16580 getCurrentModule()->isImplicitGlobalModule() && 16581 getCurrentModule()->Parent) 16582 PopImplicitGlobalModuleFragment(); 16583 16584 PopDeclContext(); 16585 return LinkageSpec; 16586 } 16587 16588 Decl *Sema::ActOnEmptyDeclaration(Scope *S, 16589 const ParsedAttributesView &AttrList, 16590 SourceLocation SemiLoc) { 16591 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc); 16592 // Attribute declarations appertain to empty declaration so we handle 16593 // them here. 16594 ProcessDeclAttributeList(S, ED, AttrList); 16595 16596 CurContext->addDecl(ED); 16597 return ED; 16598 } 16599 16600 /// Perform semantic analysis for the variable declaration that 16601 /// occurs within a C++ catch clause, returning the newly-created 16602 /// variable. 16603 VarDecl *Sema::BuildExceptionDeclaration(Scope *S, 16604 TypeSourceInfo *TInfo, 16605 SourceLocation StartLoc, 16606 SourceLocation Loc, 16607 IdentifierInfo *Name) { 16608 bool Invalid = false; 16609 QualType ExDeclType = TInfo->getType(); 16610 16611 // Arrays and functions decay. 16612 if (ExDeclType->isArrayType()) 16613 ExDeclType = Context.getArrayDecayedType(ExDeclType); 16614 else if (ExDeclType->isFunctionType()) 16615 ExDeclType = Context.getPointerType(ExDeclType); 16616 16617 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. 16618 // The exception-declaration shall not denote a pointer or reference to an 16619 // incomplete type, other than [cv] void*. 16620 // N2844 forbids rvalue references. 16621 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { 16622 Diag(Loc, diag::err_catch_rvalue_ref); 16623 Invalid = true; 16624 } 16625 16626 if (ExDeclType->isVariablyModifiedType()) { 16627 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType; 16628 Invalid = true; 16629 } 16630 16631 QualType BaseType = ExDeclType; 16632 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference 16633 unsigned DK = diag::err_catch_incomplete; 16634 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 16635 BaseType = Ptr->getPointeeType(); 16636 Mode = 1; 16637 DK = diag::err_catch_incomplete_ptr; 16638 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { 16639 // For the purpose of error recovery, we treat rvalue refs like lvalue refs. 16640 BaseType = Ref->getPointeeType(); 16641 Mode = 2; 16642 DK = diag::err_catch_incomplete_ref; 16643 } 16644 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && 16645 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) 16646 Invalid = true; 16647 16648 if (!Invalid && BaseType.isWebAssemblyReferenceType()) { 16649 Diag(Loc, diag::err_wasm_reftype_tc) << 1; 16650 Invalid = true; 16651 } 16652 16653 if (!Invalid && Mode != 1 && BaseType->isSizelessType()) { 16654 Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType; 16655 Invalid = true; 16656 } 16657 16658 if (!Invalid && !ExDeclType->isDependentType() && 16659 RequireNonAbstractType(Loc, ExDeclType, 16660 diag::err_abstract_type_in_decl, 16661 AbstractVariableType)) 16662 Invalid = true; 16663 16664 // Only the non-fragile NeXT runtime currently supports C++ catches 16665 // of ObjC types, and no runtime supports catching ObjC types by value. 16666 if (!Invalid && getLangOpts().ObjC) { 16667 QualType T = ExDeclType; 16668 if (const ReferenceType *RT = T->getAs<ReferenceType>()) 16669 T = RT->getPointeeType(); 16670 16671 if (T->isObjCObjectType()) { 16672 Diag(Loc, diag::err_objc_object_catch); 16673 Invalid = true; 16674 } else if (T->isObjCObjectPointerType()) { 16675 // FIXME: should this be a test for macosx-fragile specifically? 16676 if (getLangOpts().ObjCRuntime.isFragile()) 16677 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); 16678 } 16679 } 16680 16681 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, 16682 ExDeclType, TInfo, SC_None); 16683 ExDecl->setExceptionVariable(true); 16684 16685 // In ARC, infer 'retaining' for variables of retainable type. 16686 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl)) 16687 Invalid = true; 16688 16689 if (!Invalid && !ExDeclType->isDependentType()) { 16690 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { 16691 // Insulate this from anything else we might currently be parsing. 16692 EnterExpressionEvaluationContext scope( 16693 *this, ExpressionEvaluationContext::PotentiallyEvaluated); 16694 16695 // C++ [except.handle]p16: 16696 // The object declared in an exception-declaration or, if the 16697 // exception-declaration does not specify a name, a temporary (12.2) is 16698 // copy-initialized (8.5) from the exception object. [...] 16699 // The object is destroyed when the handler exits, after the destruction 16700 // of any automatic objects initialized within the handler. 16701 // 16702 // We just pretend to initialize the object with itself, then make sure 16703 // it can be destroyed later. 16704 QualType initType = Context.getExceptionObjectType(ExDeclType); 16705 16706 InitializedEntity entity = 16707 InitializedEntity::InitializeVariable(ExDecl); 16708 InitializationKind initKind = 16709 InitializationKind::CreateCopy(Loc, SourceLocation()); 16710 16711 Expr *opaqueValue = 16712 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); 16713 InitializationSequence sequence(*this, entity, initKind, opaqueValue); 16714 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue); 16715 if (result.isInvalid()) 16716 Invalid = true; 16717 else { 16718 // If the constructor used was non-trivial, set this as the 16719 // "initializer". 16720 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>(); 16721 if (!construct->getConstructor()->isTrivial()) { 16722 Expr *init = MaybeCreateExprWithCleanups(construct); 16723 ExDecl->setInit(init); 16724 } 16725 16726 // And make sure it's destructable. 16727 FinalizeVarWithDestructor(ExDecl, recordType); 16728 } 16729 } 16730 } 16731 16732 if (Invalid) 16733 ExDecl->setInvalidDecl(); 16734 16735 return ExDecl; 16736 } 16737 16738 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch 16739 /// handler. 16740 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { 16741 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16742 bool Invalid = D.isInvalidType(); 16743 16744 // Check for unexpanded parameter packs. 16745 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 16746 UPPC_ExceptionType)) { 16747 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 16748 D.getIdentifierLoc()); 16749 Invalid = true; 16750 } 16751 16752 IdentifierInfo *II = D.getIdentifier(); 16753 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), 16754 LookupOrdinaryName, 16755 ForVisibleRedeclaration)) { 16756 // The scope should be freshly made just for us. There is just no way 16757 // it contains any previous declaration, except for function parameters in 16758 // a function-try-block's catch statement. 16759 assert(!S->isDeclScope(PrevDecl)); 16760 if (isDeclInScope(PrevDecl, CurContext, S)) { 16761 Diag(D.getIdentifierLoc(), diag::err_redefinition) 16762 << D.getIdentifier(); 16763 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 16764 Invalid = true; 16765 } else if (PrevDecl->isTemplateParameter()) 16766 // Maybe we will complain about the shadowed template parameter. 16767 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 16768 } 16769 16770 if (D.getCXXScopeSpec().isSet() && !Invalid) { 16771 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) 16772 << D.getCXXScopeSpec().getRange(); 16773 Invalid = true; 16774 } 16775 16776 VarDecl *ExDecl = BuildExceptionDeclaration( 16777 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier()); 16778 if (Invalid) 16779 ExDecl->setInvalidDecl(); 16780 16781 // Add the exception declaration into this scope. 16782 if (II) 16783 PushOnScopeChains(ExDecl, S); 16784 else 16785 CurContext->addDecl(ExDecl); 16786 16787 ProcessDeclAttributes(S, ExDecl, D); 16788 return ExDecl; 16789 } 16790 16791 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, 16792 Expr *AssertExpr, 16793 Expr *AssertMessageExpr, 16794 SourceLocation RParenLoc) { 16795 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) 16796 return nullptr; 16797 16798 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, 16799 AssertMessageExpr, RParenLoc, false); 16800 } 16801 16802 /// Convert \V to a string we can present to the user in a diagnostic 16803 /// \T is the type of the expression that has been evaluated into \V 16804 static bool ConvertAPValueToString(const APValue &V, QualType T, 16805 SmallVectorImpl<char> &Str) { 16806 if (!V.hasValue()) 16807 return false; 16808 16809 switch (V.getKind()) { 16810 case APValue::ValueKind::Int: 16811 if (T->isBooleanType()) { 16812 // Bools are reduced to ints during evaluation, but for 16813 // diagnostic purposes we want to print them as 16814 // true or false. 16815 int64_t BoolValue = V.getInt().getExtValue(); 16816 assert((BoolValue == 0 || BoolValue == 1) && 16817 "Bool type, but value is not 0 or 1"); 16818 llvm::raw_svector_ostream OS(Str); 16819 OS << (BoolValue ? "true" : "false"); 16820 } else if (T->isCharType()) { 16821 // Same is true for chars. 16822 Str.push_back('\''); 16823 Str.push_back(V.getInt().getExtValue()); 16824 Str.push_back('\''); 16825 } else 16826 V.getInt().toString(Str); 16827 16828 break; 16829 16830 case APValue::ValueKind::Float: 16831 V.getFloat().toString(Str); 16832 break; 16833 16834 case APValue::ValueKind::LValue: 16835 if (V.isNullPointer()) { 16836 llvm::raw_svector_ostream OS(Str); 16837 OS << "nullptr"; 16838 } else 16839 return false; 16840 break; 16841 16842 case APValue::ValueKind::ComplexFloat: { 16843 llvm::raw_svector_ostream OS(Str); 16844 OS << '('; 16845 V.getComplexFloatReal().toString(Str); 16846 OS << " + "; 16847 V.getComplexFloatImag().toString(Str); 16848 OS << "i)"; 16849 } break; 16850 16851 case APValue::ValueKind::ComplexInt: { 16852 llvm::raw_svector_ostream OS(Str); 16853 OS << '('; 16854 V.getComplexIntReal().toString(Str); 16855 OS << " + "; 16856 V.getComplexIntImag().toString(Str); 16857 OS << "i)"; 16858 } break; 16859 16860 default: 16861 return false; 16862 } 16863 16864 return true; 16865 } 16866 16867 /// Some Expression types are not useful to print notes about, 16868 /// e.g. literals and values that have already been expanded 16869 /// before such as int-valued template parameters. 16870 static bool UsefulToPrintExpr(const Expr *E) { 16871 E = E->IgnoreParenImpCasts(); 16872 // Literals are pretty easy for humans to understand. 16873 if (isa<IntegerLiteral, FloatingLiteral, CharacterLiteral, CXXBoolLiteralExpr, 16874 CXXNullPtrLiteralExpr, FixedPointLiteral, ImaginaryLiteral>(E)) 16875 return false; 16876 16877 // These have been substituted from template parameters 16878 // and appear as literals in the static assert error. 16879 if (isa<SubstNonTypeTemplateParmExpr>(E)) 16880 return false; 16881 16882 // -5 is also simple to understand. 16883 if (const auto *UnaryOp = dyn_cast<UnaryOperator>(E)) 16884 return UsefulToPrintExpr(UnaryOp->getSubExpr()); 16885 16886 // Ignore nested binary operators. This could be a FIXME for improvements 16887 // to the diagnostics in the future. 16888 if (isa<BinaryOperator>(E)) 16889 return false; 16890 16891 return true; 16892 } 16893 16894 /// Try to print more useful information about a failed static_assert 16895 /// with expression \E 16896 void Sema::DiagnoseStaticAssertDetails(const Expr *E) { 16897 if (const auto *Op = dyn_cast<BinaryOperator>(E); 16898 Op && Op->getOpcode() != BO_LOr) { 16899 const Expr *LHS = Op->getLHS()->IgnoreParenImpCasts(); 16900 const Expr *RHS = Op->getRHS()->IgnoreParenImpCasts(); 16901 16902 // Ignore comparisons of boolean expressions with a boolean literal. 16903 if ((isa<CXXBoolLiteralExpr>(LHS) && RHS->getType()->isBooleanType()) || 16904 (isa<CXXBoolLiteralExpr>(RHS) && LHS->getType()->isBooleanType())) 16905 return; 16906 16907 // Don't print obvious expressions. 16908 if (!UsefulToPrintExpr(LHS) && !UsefulToPrintExpr(RHS)) 16909 return; 16910 16911 struct { 16912 const clang::Expr *Cond; 16913 Expr::EvalResult Result; 16914 SmallString<12> ValueString; 16915 bool Print; 16916 } DiagSide[2] = {{LHS, Expr::EvalResult(), {}, false}, 16917 {RHS, Expr::EvalResult(), {}, false}}; 16918 for (unsigned I = 0; I < 2; I++) { 16919 const Expr *Side = DiagSide[I].Cond; 16920 16921 Side->EvaluateAsRValue(DiagSide[I].Result, Context, true); 16922 16923 DiagSide[I].Print = ConvertAPValueToString( 16924 DiagSide[I].Result.Val, Side->getType(), DiagSide[I].ValueString); 16925 } 16926 if (DiagSide[0].Print && DiagSide[1].Print) { 16927 Diag(Op->getExprLoc(), diag::note_expr_evaluates_to) 16928 << DiagSide[0].ValueString << Op->getOpcodeStr() 16929 << DiagSide[1].ValueString << Op->getSourceRange(); 16930 } 16931 } 16932 } 16933 16934 bool Sema::EvaluateStaticAssertMessageAsString(Expr *Message, 16935 std::string &Result, 16936 ASTContext &Ctx, 16937 bool ErrorOnInvalidMessage) { 16938 assert(Message); 16939 assert(!Message->isTypeDependent() && !Message->isValueDependent() && 16940 "can't evaluate a dependant static assert message"); 16941 16942 if (const auto *SL = dyn_cast<StringLiteral>(Message)) { 16943 assert(SL->isUnevaluated() && "expected an unevaluated string"); 16944 Result.assign(SL->getString().begin(), SL->getString().end()); 16945 return true; 16946 } 16947 16948 SourceLocation Loc = Message->getBeginLoc(); 16949 QualType T = Message->getType().getNonReferenceType(); 16950 auto *RD = T->getAsCXXRecordDecl(); 16951 if (!RD) { 16952 Diag(Loc, diag::err_static_assert_invalid_message); 16953 return false; 16954 } 16955 16956 auto FindMember = [&](StringRef Member, bool &Empty, 16957 bool Diag = false) -> std::optional<LookupResult> { 16958 QualType ObjectType = Message->getType(); 16959 Expr::Classification ObjectClassification = 16960 Message->Classify(getASTContext()); 16961 16962 DeclarationName DN = PP.getIdentifierInfo(Member); 16963 LookupResult MemberLookup(*this, DN, Loc, Sema::LookupMemberName); 16964 LookupQualifiedName(MemberLookup, RD); 16965 Empty = MemberLookup.empty(); 16966 OverloadCandidateSet Candidates(MemberLookup.getNameLoc(), 16967 OverloadCandidateSet::CSK_Normal); 16968 for (NamedDecl *D : MemberLookup) { 16969 AddMethodCandidate(DeclAccessPair::make(D, D->getAccess()), ObjectType, 16970 ObjectClassification, /*Args=*/{}, Candidates); 16971 } 16972 OverloadCandidateSet::iterator Best; 16973 switch (Candidates.BestViableFunction(*this, Loc, Best)) { 16974 case OR_Success: 16975 return std::move(MemberLookup); 16976 default: 16977 if (Diag) 16978 Candidates.NoteCandidates( 16979 PartialDiagnosticAt( 16980 Loc, PDiag(diag::err_static_assert_invalid_mem_fn_ret_ty) 16981 << (Member == "data")), 16982 *this, OCD_AllCandidates, /*Args=*/{}); 16983 } 16984 return std::nullopt; 16985 }; 16986 16987 bool SizeNotFound, DataNotFound; 16988 std::optional<LookupResult> SizeMember = FindMember("size", SizeNotFound); 16989 std::optional<LookupResult> DataMember = FindMember("data", DataNotFound); 16990 if (SizeNotFound || DataNotFound) { 16991 Diag(Loc, diag::err_static_assert_missing_member_function) 16992 << ((SizeNotFound && DataNotFound) ? 2 16993 : SizeNotFound ? 0 16994 : 1); 16995 return false; 16996 } 16997 16998 if (!SizeMember || !DataMember) { 16999 if (!SizeMember) 17000 FindMember("size", SizeNotFound, /*Diag=*/true); 17001 if (!DataMember) 17002 FindMember("data", DataNotFound, /*Diag=*/true); 17003 return false; 17004 } 17005 17006 auto BuildExpr = [&](LookupResult &LR) { 17007 ExprResult Res = BuildMemberReferenceExpr( 17008 Message, Message->getType(), Message->getBeginLoc(), false, 17009 CXXScopeSpec(), SourceLocation(), nullptr, LR, nullptr, nullptr); 17010 if (Res.isInvalid()) 17011 return ExprError(); 17012 Res = BuildCallExpr(nullptr, Res.get(), Loc, std::nullopt, Loc, nullptr, 17013 false, true); 17014 if (Res.isInvalid()) 17015 return ExprError(); 17016 if (Res.get()->isTypeDependent() || Res.get()->isValueDependent()) 17017 return ExprError(); 17018 return TemporaryMaterializationConversion(Res.get()); 17019 }; 17020 17021 ExprResult SizeE = BuildExpr(*SizeMember); 17022 ExprResult DataE = BuildExpr(*DataMember); 17023 17024 QualType SizeT = Context.getSizeType(); 17025 QualType ConstCharPtr = 17026 Context.getPointerType(Context.getConstType(Context.CharTy)); 17027 17028 ExprResult EvaluatedSize = 17029 SizeE.isInvalid() ? ExprError() 17030 : BuildConvertedConstantExpression( 17031 SizeE.get(), SizeT, CCEK_StaticAssertMessageSize); 17032 if (EvaluatedSize.isInvalid()) { 17033 Diag(Loc, diag::err_static_assert_invalid_mem_fn_ret_ty) << /*size*/ 0; 17034 return false; 17035 } 17036 17037 ExprResult EvaluatedData = 17038 DataE.isInvalid() 17039 ? ExprError() 17040 : BuildConvertedConstantExpression(DataE.get(), ConstCharPtr, 17041 CCEK_StaticAssertMessageData); 17042 if (EvaluatedData.isInvalid()) { 17043 Diag(Loc, diag::err_static_assert_invalid_mem_fn_ret_ty) << /*data*/ 1; 17044 return false; 17045 } 17046 17047 if (!ErrorOnInvalidMessage && 17048 Diags.isIgnored(diag::warn_static_assert_message_constexpr, Loc)) 17049 return true; 17050 17051 Expr::EvalResult Status; 17052 SmallVector<PartialDiagnosticAt, 8> Notes; 17053 Status.Diag = &Notes; 17054 if (!Message->EvaluateCharRangeAsString(Result, EvaluatedSize.get(), 17055 EvaluatedData.get(), Ctx, Status) || 17056 !Notes.empty()) { 17057 Diag(Message->getBeginLoc(), 17058 ErrorOnInvalidMessage ? diag::err_static_assert_message_constexpr 17059 : diag::warn_static_assert_message_constexpr); 17060 for (const auto &Note : Notes) 17061 Diag(Note.first, Note.second); 17062 return !ErrorOnInvalidMessage; 17063 } 17064 return true; 17065 } 17066 17067 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, 17068 Expr *AssertExpr, Expr *AssertMessage, 17069 SourceLocation RParenLoc, 17070 bool Failed) { 17071 assert(AssertExpr != nullptr && "Expected non-null condition"); 17072 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && 17073 (!AssertMessage || (!AssertMessage->isTypeDependent() && 17074 !AssertMessage->isValueDependent())) && 17075 !Failed) { 17076 // In a static_assert-declaration, the constant-expression shall be a 17077 // constant expression that can be contextually converted to bool. 17078 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr); 17079 if (Converted.isInvalid()) 17080 Failed = true; 17081 17082 ExprResult FullAssertExpr = 17083 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc, 17084 /*DiscardedValue*/ false, 17085 /*IsConstexpr*/ true); 17086 if (FullAssertExpr.isInvalid()) 17087 Failed = true; 17088 else 17089 AssertExpr = FullAssertExpr.get(); 17090 17091 llvm::APSInt Cond; 17092 Expr *BaseExpr = AssertExpr; 17093 AllowFoldKind FoldKind = NoFold; 17094 17095 if (!getLangOpts().CPlusPlus) { 17096 // In C mode, allow folding as an extension for better compatibility with 17097 // C++ in terms of expressions like static_assert("test") or 17098 // static_assert(nullptr). 17099 FoldKind = AllowFold; 17100 } 17101 17102 if (!Failed && VerifyIntegerConstantExpression( 17103 BaseExpr, &Cond, 17104 diag::err_static_assert_expression_is_not_constant, 17105 FoldKind).isInvalid()) 17106 Failed = true; 17107 17108 // If the static_assert passes, only verify that 17109 // the message is grammatically valid without evaluating it. 17110 if (!Failed && AssertMessage && Cond.getBoolValue()) { 17111 std::string Str; 17112 EvaluateStaticAssertMessageAsString(AssertMessage, Str, Context, 17113 /*ErrorOnInvalidMessage=*/false); 17114 } 17115 17116 // CWG2518 17117 // [dcl.pre]/p10 If [...] the expression is evaluated in the context of a 17118 // template definition, the declaration has no effect. 17119 bool InTemplateDefinition = 17120 getLangOpts().CPlusPlus && CurContext->isDependentContext(); 17121 17122 if (!Failed && !Cond && !InTemplateDefinition) { 17123 SmallString<256> MsgBuffer; 17124 llvm::raw_svector_ostream Msg(MsgBuffer); 17125 bool HasMessage = AssertMessage; 17126 if (AssertMessage) { 17127 std::string Str; 17128 HasMessage = 17129 EvaluateStaticAssertMessageAsString( 17130 AssertMessage, Str, Context, /*ErrorOnInvalidMessage=*/true) || 17131 !Str.empty(); 17132 Msg << Str; 17133 } 17134 Expr *InnerCond = nullptr; 17135 std::string InnerCondDescription; 17136 std::tie(InnerCond, InnerCondDescription) = 17137 findFailedBooleanCondition(Converted.get()); 17138 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) { 17139 // Drill down into concept specialization expressions to see why they 17140 // weren't satisfied. 17141 Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed) 17142 << !HasMessage << Msg.str() << AssertExpr->getSourceRange(); 17143 ConstraintSatisfaction Satisfaction; 17144 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction)) 17145 DiagnoseUnsatisfiedConstraint(Satisfaction); 17146 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond) 17147 && !isa<IntegerLiteral>(InnerCond)) { 17148 Diag(InnerCond->getBeginLoc(), 17149 diag::err_static_assert_requirement_failed) 17150 << InnerCondDescription << !HasMessage << Msg.str() 17151 << InnerCond->getSourceRange(); 17152 DiagnoseStaticAssertDetails(InnerCond); 17153 } else { 17154 Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed) 17155 << !HasMessage << Msg.str() << AssertExpr->getSourceRange(); 17156 PrintContextStack(); 17157 } 17158 Failed = true; 17159 } 17160 } else { 17161 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc, 17162 /*DiscardedValue*/false, 17163 /*IsConstexpr*/true); 17164 if (FullAssertExpr.isInvalid()) 17165 Failed = true; 17166 else 17167 AssertExpr = FullAssertExpr.get(); 17168 } 17169 17170 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, 17171 AssertExpr, AssertMessage, RParenLoc, 17172 Failed); 17173 17174 CurContext->addDecl(Decl); 17175 return Decl; 17176 } 17177 17178 /// Perform semantic analysis of the given friend type declaration. 17179 /// 17180 /// \returns A friend declaration that. 17181 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart, 17182 SourceLocation FriendLoc, 17183 TypeSourceInfo *TSInfo) { 17184 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration"); 17185 17186 QualType T = TSInfo->getType(); 17187 SourceRange TypeRange = TSInfo->getTypeLoc().getSourceRange(); 17188 17189 // C++03 [class.friend]p2: 17190 // An elaborated-type-specifier shall be used in a friend declaration 17191 // for a class.* 17192 // 17193 // * The class-key of the elaborated-type-specifier is required. 17194 if (!CodeSynthesisContexts.empty()) { 17195 // Do not complain about the form of friend template types during any kind 17196 // of code synthesis. For template instantiation, we will have complained 17197 // when the template was defined. 17198 } else { 17199 if (!T->isElaboratedTypeSpecifier()) { 17200 // If we evaluated the type to a record type, suggest putting 17201 // a tag in front. 17202 if (const RecordType *RT = T->getAs<RecordType>()) { 17203 RecordDecl *RD = RT->getDecl(); 17204 17205 SmallString<16> InsertionText(" "); 17206 InsertionText += RD->getKindName(); 17207 17208 Diag(TypeRange.getBegin(), 17209 getLangOpts().CPlusPlus11 ? 17210 diag::warn_cxx98_compat_unelaborated_friend_type : 17211 diag::ext_unelaborated_friend_type) 17212 << (unsigned) RD->getTagKind() 17213 << T 17214 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc), 17215 InsertionText); 17216 } else { 17217 Diag(FriendLoc, 17218 getLangOpts().CPlusPlus11 ? 17219 diag::warn_cxx98_compat_nonclass_type_friend : 17220 diag::ext_nonclass_type_friend) 17221 << T 17222 << TypeRange; 17223 } 17224 } else if (T->getAs<EnumType>()) { 17225 Diag(FriendLoc, 17226 getLangOpts().CPlusPlus11 ? 17227 diag::warn_cxx98_compat_enum_friend : 17228 diag::ext_enum_friend) 17229 << T 17230 << TypeRange; 17231 } 17232 17233 // C++11 [class.friend]p3: 17234 // A friend declaration that does not declare a function shall have one 17235 // of the following forms: 17236 // friend elaborated-type-specifier ; 17237 // friend simple-type-specifier ; 17238 // friend typename-specifier ; 17239 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc) 17240 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T; 17241 } 17242 17243 // If the type specifier in a friend declaration designates a (possibly 17244 // cv-qualified) class type, that class is declared as a friend; otherwise, 17245 // the friend declaration is ignored. 17246 return FriendDecl::Create(Context, CurContext, 17247 TSInfo->getTypeLoc().getBeginLoc(), TSInfo, 17248 FriendLoc); 17249 } 17250 17251 /// Handle a friend tag declaration where the scope specifier was 17252 /// templated. 17253 DeclResult Sema::ActOnTemplatedFriendTag( 17254 Scope *S, SourceLocation FriendLoc, unsigned TagSpec, SourceLocation TagLoc, 17255 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, 17256 const ParsedAttributesView &Attr, MultiTemplateParamsArg TempParamLists) { 17257 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 17258 17259 bool IsMemberSpecialization = false; 17260 bool Invalid = false; 17261 17262 if (TemplateParameterList *TemplateParams = 17263 MatchTemplateParametersToScopeSpecifier( 17264 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true, 17265 IsMemberSpecialization, Invalid)) { 17266 if (TemplateParams->size() > 0) { 17267 // This is a declaration of a class template. 17268 if (Invalid) 17269 return true; 17270 17271 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name, 17272 NameLoc, Attr, TemplateParams, AS_public, 17273 /*ModulePrivateLoc=*/SourceLocation(), 17274 FriendLoc, TempParamLists.size() - 1, 17275 TempParamLists.data()).get(); 17276 } else { 17277 // The "template<>" header is extraneous. 17278 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 17279 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 17280 IsMemberSpecialization = true; 17281 } 17282 } 17283 17284 if (Invalid) return true; 17285 17286 bool isAllExplicitSpecializations = true; 17287 for (unsigned I = TempParamLists.size(); I-- > 0; ) { 17288 if (TempParamLists[I]->size()) { 17289 isAllExplicitSpecializations = false; 17290 break; 17291 } 17292 } 17293 17294 // FIXME: don't ignore attributes. 17295 17296 // If it's explicit specializations all the way down, just forget 17297 // about the template header and build an appropriate non-templated 17298 // friend. TODO: for source fidelity, remember the headers. 17299 if (isAllExplicitSpecializations) { 17300 if (SS.isEmpty()) { 17301 bool Owned = false; 17302 bool IsDependent = false; 17303 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc, Attr, 17304 AS_public, 17305 /*ModulePrivateLoc=*/SourceLocation(), 17306 MultiTemplateParamsArg(), Owned, IsDependent, 17307 /*ScopedEnumKWLoc=*/SourceLocation(), 17308 /*ScopedEnumUsesClassTag=*/false, 17309 /*UnderlyingType=*/TypeResult(), 17310 /*IsTypeSpecifier=*/false, 17311 /*IsTemplateParamOrArg=*/false, /*OOK=*/OOK_Outside); 17312 } 17313 17314 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 17315 ElaboratedTypeKeyword Keyword 17316 = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 17317 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, 17318 *Name, NameLoc); 17319 if (T.isNull()) 17320 return true; 17321 17322 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 17323 if (isa<DependentNameType>(T)) { 17324 DependentNameTypeLoc TL = 17325 TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 17326 TL.setElaboratedKeywordLoc(TagLoc); 17327 TL.setQualifierLoc(QualifierLoc); 17328 TL.setNameLoc(NameLoc); 17329 } else { 17330 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 17331 TL.setElaboratedKeywordLoc(TagLoc); 17332 TL.setQualifierLoc(QualifierLoc); 17333 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc); 17334 } 17335 17336 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 17337 TSI, FriendLoc, TempParamLists); 17338 Friend->setAccess(AS_public); 17339 CurContext->addDecl(Friend); 17340 return Friend; 17341 } 17342 17343 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?"); 17344 17345 17346 17347 // Handle the case of a templated-scope friend class. e.g. 17348 // template <class T> class A<T>::B; 17349 // FIXME: we don't support these right now. 17350 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) 17351 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext); 17352 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 17353 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); 17354 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 17355 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 17356 TL.setElaboratedKeywordLoc(TagLoc); 17357 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 17358 TL.setNameLoc(NameLoc); 17359 17360 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 17361 TSI, FriendLoc, TempParamLists); 17362 Friend->setAccess(AS_public); 17363 Friend->setUnsupportedFriend(true); 17364 CurContext->addDecl(Friend); 17365 return Friend; 17366 } 17367 17368 /// Handle a friend type declaration. This works in tandem with 17369 /// ActOnTag. 17370 /// 17371 /// Notes on friend class templates: 17372 /// 17373 /// We generally treat friend class declarations as if they were 17374 /// declaring a class. So, for example, the elaborated type specifier 17375 /// in a friend declaration is required to obey the restrictions of a 17376 /// class-head (i.e. no typedefs in the scope chain), template 17377 /// parameters are required to match up with simple template-ids, &c. 17378 /// However, unlike when declaring a template specialization, it's 17379 /// okay to refer to a template specialization without an empty 17380 /// template parameter declaration, e.g. 17381 /// friend class A<T>::B<unsigned>; 17382 /// We permit this as a special case; if there are any template 17383 /// parameters present at all, require proper matching, i.e. 17384 /// template <> template \<class T> friend class A<int>::B; 17385 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, 17386 MultiTemplateParamsArg TempParams) { 17387 SourceLocation Loc = DS.getBeginLoc(); 17388 17389 assert(DS.isFriendSpecified()); 17390 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 17391 17392 // C++ [class.friend]p3: 17393 // A friend declaration that does not declare a function shall have one of 17394 // the following forms: 17395 // friend elaborated-type-specifier ; 17396 // friend simple-type-specifier ; 17397 // friend typename-specifier ; 17398 // 17399 // Any declaration with a type qualifier does not have that form. (It's 17400 // legal to specify a qualified type as a friend, you just can't write the 17401 // keywords.) 17402 if (DS.getTypeQualifiers()) { 17403 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 17404 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const"; 17405 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 17406 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile"; 17407 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 17408 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict"; 17409 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 17410 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic"; 17411 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 17412 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned"; 17413 } 17414 17415 // Try to convert the decl specifier to a type. This works for 17416 // friend templates because ActOnTag never produces a ClassTemplateDecl 17417 // for a TUK_Friend. 17418 Declarator TheDeclarator(DS, ParsedAttributesView::none(), 17419 DeclaratorContext::Member); 17420 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); 17421 QualType T = TSI->getType(); 17422 if (TheDeclarator.isInvalidType()) 17423 return nullptr; 17424 17425 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) 17426 return nullptr; 17427 17428 // This is definitely an error in C++98. It's probably meant to 17429 // be forbidden in C++0x, too, but the specification is just 17430 // poorly written. 17431 // 17432 // The problem is with declarations like the following: 17433 // template <T> friend A<T>::foo; 17434 // where deciding whether a class C is a friend or not now hinges 17435 // on whether there exists an instantiation of A that causes 17436 // 'foo' to equal C. There are restrictions on class-heads 17437 // (which we declare (by fiat) elaborated friend declarations to 17438 // be) that makes this tractable. 17439 // 17440 // FIXME: handle "template <> friend class A<T>;", which 17441 // is possibly well-formed? Who even knows? 17442 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { 17443 Diag(Loc, diag::err_tagless_friend_type_template) 17444 << DS.getSourceRange(); 17445 return nullptr; 17446 } 17447 17448 // C++98 [class.friend]p1: A friend of a class is a function 17449 // or class that is not a member of the class . . . 17450 // This is fixed in DR77, which just barely didn't make the C++03 17451 // deadline. It's also a very silly restriction that seriously 17452 // affects inner classes and which nobody else seems to implement; 17453 // thus we never diagnose it, not even in -pedantic. 17454 // 17455 // But note that we could warn about it: it's always useless to 17456 // friend one of your own members (it's not, however, worthless to 17457 // friend a member of an arbitrary specialization of your template). 17458 17459 Decl *D; 17460 if (!TempParams.empty()) 17461 D = FriendTemplateDecl::Create(Context, CurContext, Loc, 17462 TempParams, 17463 TSI, 17464 DS.getFriendSpecLoc()); 17465 else 17466 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI); 17467 17468 if (!D) 17469 return nullptr; 17470 17471 D->setAccess(AS_public); 17472 CurContext->addDecl(D); 17473 17474 return D; 17475 } 17476 17477 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, 17478 MultiTemplateParamsArg TemplateParams) { 17479 const DeclSpec &DS = D.getDeclSpec(); 17480 17481 assert(DS.isFriendSpecified()); 17482 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 17483 17484 SourceLocation Loc = D.getIdentifierLoc(); 17485 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 17486 17487 // C++ [class.friend]p1 17488 // A friend of a class is a function or class.... 17489 // Note that this sees through typedefs, which is intended. 17490 // It *doesn't* see through dependent types, which is correct 17491 // according to [temp.arg.type]p3: 17492 // If a declaration acquires a function type through a 17493 // type dependent on a template-parameter and this causes 17494 // a declaration that does not use the syntactic form of a 17495 // function declarator to have a function type, the program 17496 // is ill-formed. 17497 if (!TInfo->getType()->isFunctionType()) { 17498 Diag(Loc, diag::err_unexpected_friend); 17499 17500 // It might be worthwhile to try to recover by creating an 17501 // appropriate declaration. 17502 return nullptr; 17503 } 17504 17505 // C++ [namespace.memdef]p3 17506 // - If a friend declaration in a non-local class first declares a 17507 // class or function, the friend class or function is a member 17508 // of the innermost enclosing namespace. 17509 // - The name of the friend is not found by simple name lookup 17510 // until a matching declaration is provided in that namespace 17511 // scope (either before or after the class declaration granting 17512 // friendship). 17513 // - If a friend function is called, its name may be found by the 17514 // name lookup that considers functions from namespaces and 17515 // classes associated with the types of the function arguments. 17516 // - When looking for a prior declaration of a class or a function 17517 // declared as a friend, scopes outside the innermost enclosing 17518 // namespace scope are not considered. 17519 17520 CXXScopeSpec &SS = D.getCXXScopeSpec(); 17521 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 17522 assert(NameInfo.getName()); 17523 17524 // Check for unexpanded parameter packs. 17525 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || 17526 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || 17527 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) 17528 return nullptr; 17529 17530 // The context we found the declaration in, or in which we should 17531 // create the declaration. 17532 DeclContext *DC; 17533 Scope *DCScope = S; 17534 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 17535 ForExternalRedeclaration); 17536 17537 // There are five cases here. 17538 // - There's no scope specifier and we're in a local class. Only look 17539 // for functions declared in the immediately-enclosing block scope. 17540 // We recover from invalid scope qualifiers as if they just weren't there. 17541 FunctionDecl *FunctionContainingLocalClass = nullptr; 17542 if ((SS.isInvalid() || !SS.isSet()) && 17543 (FunctionContainingLocalClass = 17544 cast<CXXRecordDecl>(CurContext)->isLocalClass())) { 17545 // C++11 [class.friend]p11: 17546 // If a friend declaration appears in a local class and the name 17547 // specified is an unqualified name, a prior declaration is 17548 // looked up without considering scopes that are outside the 17549 // innermost enclosing non-class scope. For a friend function 17550 // declaration, if there is no prior declaration, the program is 17551 // ill-formed. 17552 17553 // Find the innermost enclosing non-class scope. This is the block 17554 // scope containing the local class definition (or for a nested class, 17555 // the outer local class). 17556 DCScope = S->getFnParent(); 17557 17558 // Look up the function name in the scope. 17559 Previous.clear(LookupLocalFriendName); 17560 LookupName(Previous, S, /*AllowBuiltinCreation*/false); 17561 17562 if (!Previous.empty()) { 17563 // All possible previous declarations must have the same context: 17564 // either they were declared at block scope or they are members of 17565 // one of the enclosing local classes. 17566 DC = Previous.getRepresentativeDecl()->getDeclContext(); 17567 } else { 17568 // This is ill-formed, but provide the context that we would have 17569 // declared the function in, if we were permitted to, for error recovery. 17570 DC = FunctionContainingLocalClass; 17571 } 17572 adjustContextForLocalExternDecl(DC); 17573 17574 // C++ [class.friend]p6: 17575 // A function can be defined in a friend declaration of a class if and 17576 // only if the class is a non-local class (9.8), the function name is 17577 // unqualified, and the function has namespace scope. 17578 if (D.isFunctionDefinition()) { 17579 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); 17580 } 17581 17582 // - There's no scope specifier, in which case we just go to the 17583 // appropriate scope and look for a function or function template 17584 // there as appropriate. 17585 } else if (SS.isInvalid() || !SS.isSet()) { 17586 // C++11 [namespace.memdef]p3: 17587 // If the name in a friend declaration is neither qualified nor 17588 // a template-id and the declaration is a function or an 17589 // elaborated-type-specifier, the lookup to determine whether 17590 // the entity has been previously declared shall not consider 17591 // any scopes outside the innermost enclosing namespace. 17592 bool isTemplateId = 17593 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId; 17594 17595 // Find the appropriate context according to the above. 17596 DC = CurContext; 17597 17598 // Skip class contexts. If someone can cite chapter and verse 17599 // for this behavior, that would be nice --- it's what GCC and 17600 // EDG do, and it seems like a reasonable intent, but the spec 17601 // really only says that checks for unqualified existing 17602 // declarations should stop at the nearest enclosing namespace, 17603 // not that they should only consider the nearest enclosing 17604 // namespace. 17605 while (DC->isRecord()) 17606 DC = DC->getParent(); 17607 17608 DeclContext *LookupDC = DC->getNonTransparentContext(); 17609 while (true) { 17610 LookupQualifiedName(Previous, LookupDC); 17611 17612 if (!Previous.empty()) { 17613 DC = LookupDC; 17614 break; 17615 } 17616 17617 if (isTemplateId) { 17618 if (isa<TranslationUnitDecl>(LookupDC)) break; 17619 } else { 17620 if (LookupDC->isFileContext()) break; 17621 } 17622 LookupDC = LookupDC->getParent(); 17623 } 17624 17625 DCScope = getScopeForDeclContext(S, DC); 17626 17627 // - There's a non-dependent scope specifier, in which case we 17628 // compute it and do a previous lookup there for a function 17629 // or function template. 17630 } else if (!SS.getScopeRep()->isDependent()) { 17631 DC = computeDeclContext(SS); 17632 if (!DC) return nullptr; 17633 17634 if (RequireCompleteDeclContext(SS, DC)) return nullptr; 17635 17636 LookupQualifiedName(Previous, DC); 17637 17638 // C++ [class.friend]p1: A friend of a class is a function or 17639 // class that is not a member of the class . . . 17640 if (DC->Equals(CurContext)) 17641 Diag(DS.getFriendSpecLoc(), 17642 getLangOpts().CPlusPlus11 ? 17643 diag::warn_cxx98_compat_friend_is_member : 17644 diag::err_friend_is_member); 17645 17646 if (D.isFunctionDefinition()) { 17647 // C++ [class.friend]p6: 17648 // A function can be defined in a friend declaration of a class if and 17649 // only if the class is a non-local class (9.8), the function name is 17650 // unqualified, and the function has namespace scope. 17651 // 17652 // FIXME: We should only do this if the scope specifier names the 17653 // innermost enclosing namespace; otherwise the fixit changes the 17654 // meaning of the code. 17655 SemaDiagnosticBuilder DB 17656 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); 17657 17658 DB << SS.getScopeRep(); 17659 if (DC->isFileContext()) 17660 DB << FixItHint::CreateRemoval(SS.getRange()); 17661 SS.clear(); 17662 } 17663 17664 // - There's a scope specifier that does not match any template 17665 // parameter lists, in which case we use some arbitrary context, 17666 // create a method or method template, and wait for instantiation. 17667 // - There's a scope specifier that does match some template 17668 // parameter lists, which we don't handle right now. 17669 } else { 17670 if (D.isFunctionDefinition()) { 17671 // C++ [class.friend]p6: 17672 // A function can be defined in a friend declaration of a class if and 17673 // only if the class is a non-local class (9.8), the function name is 17674 // unqualified, and the function has namespace scope. 17675 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def) 17676 << SS.getScopeRep(); 17677 } 17678 17679 DC = CurContext; 17680 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?"); 17681 } 17682 17683 if (!DC->isRecord()) { 17684 int DiagArg = -1; 17685 switch (D.getName().getKind()) { 17686 case UnqualifiedIdKind::IK_ConstructorTemplateId: 17687 case UnqualifiedIdKind::IK_ConstructorName: 17688 DiagArg = 0; 17689 break; 17690 case UnqualifiedIdKind::IK_DestructorName: 17691 DiagArg = 1; 17692 break; 17693 case UnqualifiedIdKind::IK_ConversionFunctionId: 17694 DiagArg = 2; 17695 break; 17696 case UnqualifiedIdKind::IK_DeductionGuideName: 17697 DiagArg = 3; 17698 break; 17699 case UnqualifiedIdKind::IK_Identifier: 17700 case UnqualifiedIdKind::IK_ImplicitSelfParam: 17701 case UnqualifiedIdKind::IK_LiteralOperatorId: 17702 case UnqualifiedIdKind::IK_OperatorFunctionId: 17703 case UnqualifiedIdKind::IK_TemplateId: 17704 break; 17705 } 17706 // This implies that it has to be an operator or function. 17707 if (DiagArg >= 0) { 17708 Diag(Loc, diag::err_introducing_special_friend) << DiagArg; 17709 return nullptr; 17710 } 17711 } 17712 17713 // FIXME: This is an egregious hack to cope with cases where the scope stack 17714 // does not contain the declaration context, i.e., in an out-of-line 17715 // definition of a class. 17716 Scope FakeDCScope(S, Scope::DeclScope, Diags); 17717 if (!DCScope) { 17718 FakeDCScope.setEntity(DC); 17719 DCScope = &FakeDCScope; 17720 } 17721 17722 bool AddToScope = true; 17723 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous, 17724 TemplateParams, AddToScope); 17725 if (!ND) return nullptr; 17726 17727 assert(ND->getLexicalDeclContext() == CurContext); 17728 17729 // If we performed typo correction, we might have added a scope specifier 17730 // and changed the decl context. 17731 DC = ND->getDeclContext(); 17732 17733 // Add the function declaration to the appropriate lookup tables, 17734 // adjusting the redeclarations list as necessary. We don't 17735 // want to do this yet if the friending class is dependent. 17736 // 17737 // Also update the scope-based lookup if the target context's 17738 // lookup context is in lexical scope. 17739 if (!CurContext->isDependentContext()) { 17740 DC = DC->getRedeclContext(); 17741 DC->makeDeclVisibleInContext(ND); 17742 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 17743 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); 17744 } 17745 17746 FriendDecl *FrD = FriendDecl::Create(Context, CurContext, 17747 D.getIdentifierLoc(), ND, 17748 DS.getFriendSpecLoc()); 17749 FrD->setAccess(AS_public); 17750 CurContext->addDecl(FrD); 17751 17752 if (ND->isInvalidDecl()) { 17753 FrD->setInvalidDecl(); 17754 } else { 17755 if (DC->isRecord()) CheckFriendAccess(ND); 17756 17757 FunctionDecl *FD; 17758 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 17759 FD = FTD->getTemplatedDecl(); 17760 else 17761 FD = cast<FunctionDecl>(ND); 17762 17763 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a 17764 // default argument expression, that declaration shall be a definition 17765 // and shall be the only declaration of the function or function 17766 // template in the translation unit. 17767 if (functionDeclHasDefaultArgument(FD)) { 17768 // We can't look at FD->getPreviousDecl() because it may not have been set 17769 // if we're in a dependent context. If the function is known to be a 17770 // redeclaration, we will have narrowed Previous down to the right decl. 17771 if (D.isRedeclaration()) { 17772 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 17773 Diag(Previous.getRepresentativeDecl()->getLocation(), 17774 diag::note_previous_declaration); 17775 } else if (!D.isFunctionDefinition()) 17776 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); 17777 } 17778 17779 // Mark templated-scope function declarations as unsupported. 17780 if (FD->getNumTemplateParameterLists() && SS.isValid()) { 17781 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) 17782 << SS.getScopeRep() << SS.getRange() 17783 << cast<CXXRecordDecl>(CurContext); 17784 FrD->setUnsupportedFriend(true); 17785 } 17786 } 17787 17788 warnOnReservedIdentifier(ND); 17789 17790 return ND; 17791 } 17792 17793 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { 17794 AdjustDeclIfTemplate(Dcl); 17795 17796 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl); 17797 if (!Fn) { 17798 Diag(DelLoc, diag::err_deleted_non_function); 17799 return; 17800 } 17801 17802 // Deleted function does not have a body. 17803 Fn->setWillHaveBody(false); 17804 17805 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { 17806 // Don't consider the implicit declaration we generate for explicit 17807 // specializations. FIXME: Do not generate these implicit declarations. 17808 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || 17809 Prev->getPreviousDecl()) && 17810 !Prev->isDefined()) { 17811 Diag(DelLoc, diag::err_deleted_decl_not_first); 17812 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), 17813 Prev->isImplicit() ? diag::note_previous_implicit_declaration 17814 : diag::note_previous_declaration); 17815 // We can't recover from this; the declaration might have already 17816 // been used. 17817 Fn->setInvalidDecl(); 17818 return; 17819 } 17820 17821 // To maintain the invariant that functions are only deleted on their first 17822 // declaration, mark the implicitly-instantiated declaration of the 17823 // explicitly-specialized function as deleted instead of marking the 17824 // instantiated redeclaration. 17825 Fn = Fn->getCanonicalDecl(); 17826 } 17827 17828 // dllimport/dllexport cannot be deleted. 17829 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { 17830 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; 17831 Fn->setInvalidDecl(); 17832 } 17833 17834 // C++11 [basic.start.main]p3: 17835 // A program that defines main as deleted [...] is ill-formed. 17836 if (Fn->isMain()) 17837 Diag(DelLoc, diag::err_deleted_main); 17838 17839 // C++11 [dcl.fct.def.delete]p4: 17840 // A deleted function is implicitly inline. 17841 Fn->setImplicitlyInline(); 17842 Fn->setDeletedAsWritten(); 17843 } 17844 17845 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { 17846 if (!Dcl || Dcl->isInvalidDecl()) 17847 return; 17848 17849 auto *FD = dyn_cast<FunctionDecl>(Dcl); 17850 if (!FD) { 17851 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) { 17852 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) { 17853 Diag(DefaultLoc, diag::err_defaulted_comparison_template); 17854 return; 17855 } 17856 } 17857 17858 Diag(DefaultLoc, diag::err_default_special_members) 17859 << getLangOpts().CPlusPlus20; 17860 return; 17861 } 17862 17863 // Reject if this can't possibly be a defaultable function. 17864 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 17865 if (!DefKind && 17866 // A dependent function that doesn't locally look defaultable can 17867 // still instantiate to a defaultable function if it's a constructor 17868 // or assignment operator. 17869 (!FD->isDependentContext() || 17870 (!isa<CXXConstructorDecl>(FD) && 17871 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) { 17872 Diag(DefaultLoc, diag::err_default_special_members) 17873 << getLangOpts().CPlusPlus20; 17874 return; 17875 } 17876 17877 // Issue compatibility warning. We already warned if the operator is 17878 // 'operator<=>' when parsing the '<=>' token. 17879 if (DefKind.isComparison() && 17880 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) { 17881 Diag(DefaultLoc, getLangOpts().CPlusPlus20 17882 ? diag::warn_cxx17_compat_defaulted_comparison 17883 : diag::ext_defaulted_comparison); 17884 } 17885 17886 FD->setDefaulted(); 17887 FD->setExplicitlyDefaulted(); 17888 FD->setDefaultLoc(DefaultLoc); 17889 17890 // Defer checking functions that are defaulted in a dependent context. 17891 if (FD->isDependentContext()) 17892 return; 17893 17894 // Unset that we will have a body for this function. We might not, 17895 // if it turns out to be trivial, and we don't need this marking now 17896 // that we've marked it as defaulted. 17897 FD->setWillHaveBody(false); 17898 17899 if (DefKind.isComparison()) { 17900 // If this comparison's defaulting occurs within the definition of its 17901 // lexical class context, we have to do the checking when complete. 17902 if (auto const *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext())) 17903 if (!RD->isCompleteDefinition()) 17904 return; 17905 } 17906 17907 // If this member fn was defaulted on its first declaration, we will have 17908 // already performed the checking in CheckCompletedCXXClass. Such a 17909 // declaration doesn't trigger an implicit definition. 17910 if (isa<CXXMethodDecl>(FD)) { 17911 const FunctionDecl *Primary = FD; 17912 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 17913 // Ask the template instantiation pattern that actually had the 17914 // '= default' on it. 17915 Primary = Pattern; 17916 if (Primary->getCanonicalDecl()->isDefaulted()) 17917 return; 17918 } 17919 17920 if (DefKind.isComparison()) { 17921 if (CheckExplicitlyDefaultedComparison(nullptr, FD, DefKind.asComparison())) 17922 FD->setInvalidDecl(); 17923 else 17924 DefineDefaultedComparison(DefaultLoc, FD, DefKind.asComparison()); 17925 } else { 17926 auto *MD = cast<CXXMethodDecl>(FD); 17927 17928 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember(), 17929 DefaultLoc)) 17930 MD->setInvalidDecl(); 17931 else 17932 DefineDefaultedFunction(*this, MD, DefaultLoc); 17933 } 17934 } 17935 17936 static void SearchForReturnInStmt(Sema &Self, Stmt *S) { 17937 for (Stmt *SubStmt : S->children()) { 17938 if (!SubStmt) 17939 continue; 17940 if (isa<ReturnStmt>(SubStmt)) 17941 Self.Diag(SubStmt->getBeginLoc(), 17942 diag::err_return_in_constructor_handler); 17943 if (!isa<Expr>(SubStmt)) 17944 SearchForReturnInStmt(Self, SubStmt); 17945 } 17946 } 17947 17948 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { 17949 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { 17950 CXXCatchStmt *Handler = TryBlock->getHandler(I); 17951 SearchForReturnInStmt(*this, Handler); 17952 } 17953 } 17954 17955 void Sema::SetFunctionBodyKind(Decl *D, SourceLocation Loc, 17956 FnBodyKind BodyKind) { 17957 switch (BodyKind) { 17958 case FnBodyKind::Delete: 17959 SetDeclDeleted(D, Loc); 17960 break; 17961 case FnBodyKind::Default: 17962 SetDeclDefaulted(D, Loc); 17963 break; 17964 case FnBodyKind::Other: 17965 llvm_unreachable( 17966 "Parsed function body should be '= delete;' or '= default;'"); 17967 } 17968 } 17969 17970 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, 17971 const CXXMethodDecl *Old) { 17972 const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); 17973 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>(); 17974 17975 if (OldFT->hasExtParameterInfos()) { 17976 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I) 17977 // A parameter of the overriding method should be annotated with noescape 17978 // if the corresponding parameter of the overridden method is annotated. 17979 if (OldFT->getExtParameterInfo(I).isNoEscape() && 17980 !NewFT->getExtParameterInfo(I).isNoEscape()) { 17981 Diag(New->getParamDecl(I)->getLocation(), 17982 diag::warn_overriding_method_missing_noescape); 17983 Diag(Old->getParamDecl(I)->getLocation(), 17984 diag::note_overridden_marked_noescape); 17985 } 17986 } 17987 17988 // Virtual overrides must have the same code_seg. 17989 const auto *OldCSA = Old->getAttr<CodeSegAttr>(); 17990 const auto *NewCSA = New->getAttr<CodeSegAttr>(); 17991 if ((NewCSA || OldCSA) && 17992 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) { 17993 Diag(New->getLocation(), diag::err_mismatched_code_seg_override); 17994 Diag(Old->getLocation(), diag::note_previous_declaration); 17995 return true; 17996 } 17997 17998 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); 17999 18000 // If the calling conventions match, everything is fine 18001 if (NewCC == OldCC) 18002 return false; 18003 18004 // If the calling conventions mismatch because the new function is static, 18005 // suppress the calling convention mismatch error; the error about static 18006 // function override (err_static_overrides_virtual from 18007 // Sema::CheckFunctionDeclaration) is more clear. 18008 if (New->getStorageClass() == SC_Static) 18009 return false; 18010 18011 Diag(New->getLocation(), 18012 diag::err_conflicting_overriding_cc_attributes) 18013 << New->getDeclName() << New->getType() << Old->getType(); 18014 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 18015 return true; 18016 } 18017 18018 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, 18019 const CXXMethodDecl *Old) { 18020 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType(); 18021 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType(); 18022 18023 if (Context.hasSameType(NewTy, OldTy) || 18024 NewTy->isDependentType() || OldTy->isDependentType()) 18025 return false; 18026 18027 // Check if the return types are covariant 18028 QualType NewClassTy, OldClassTy; 18029 18030 /// Both types must be pointers or references to classes. 18031 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { 18032 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { 18033 NewClassTy = NewPT->getPointeeType(); 18034 OldClassTy = OldPT->getPointeeType(); 18035 } 18036 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { 18037 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { 18038 if (NewRT->getTypeClass() == OldRT->getTypeClass()) { 18039 NewClassTy = NewRT->getPointeeType(); 18040 OldClassTy = OldRT->getPointeeType(); 18041 } 18042 } 18043 } 18044 18045 // The return types aren't either both pointers or references to a class type. 18046 if (NewClassTy.isNull()) { 18047 Diag(New->getLocation(), 18048 diag::err_different_return_type_for_overriding_virtual_function) 18049 << New->getDeclName() << NewTy << OldTy 18050 << New->getReturnTypeSourceRange(); 18051 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18052 << Old->getReturnTypeSourceRange(); 18053 18054 return true; 18055 } 18056 18057 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { 18058 // C++14 [class.virtual]p8: 18059 // If the class type in the covariant return type of D::f differs from 18060 // that of B::f, the class type in the return type of D::f shall be 18061 // complete at the point of declaration of D::f or shall be the class 18062 // type D. 18063 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { 18064 if (!RT->isBeingDefined() && 18065 RequireCompleteType(New->getLocation(), NewClassTy, 18066 diag::err_covariant_return_incomplete, 18067 New->getDeclName())) 18068 return true; 18069 } 18070 18071 // Check if the new class derives from the old class. 18072 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) { 18073 Diag(New->getLocation(), diag::err_covariant_return_not_derived) 18074 << New->getDeclName() << NewTy << OldTy 18075 << New->getReturnTypeSourceRange(); 18076 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18077 << Old->getReturnTypeSourceRange(); 18078 return true; 18079 } 18080 18081 // Check if we the conversion from derived to base is valid. 18082 if (CheckDerivedToBaseConversion( 18083 NewClassTy, OldClassTy, 18084 diag::err_covariant_return_inaccessible_base, 18085 diag::err_covariant_return_ambiguous_derived_to_base_conv, 18086 New->getLocation(), New->getReturnTypeSourceRange(), 18087 New->getDeclName(), nullptr)) { 18088 // FIXME: this note won't trigger for delayed access control 18089 // diagnostics, and it's impossible to get an undelayed error 18090 // here from access control during the original parse because 18091 // the ParsingDeclSpec/ParsingDeclarator are still in scope. 18092 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18093 << Old->getReturnTypeSourceRange(); 18094 return true; 18095 } 18096 } 18097 18098 // The qualifiers of the return types must be the same. 18099 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { 18100 Diag(New->getLocation(), 18101 diag::err_covariant_return_type_different_qualifications) 18102 << New->getDeclName() << NewTy << OldTy 18103 << New->getReturnTypeSourceRange(); 18104 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18105 << Old->getReturnTypeSourceRange(); 18106 return true; 18107 } 18108 18109 18110 // The new class type must have the same or less qualifiers as the old type. 18111 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { 18112 Diag(New->getLocation(), 18113 diag::err_covariant_return_type_class_type_more_qualified) 18114 << New->getDeclName() << NewTy << OldTy 18115 << New->getReturnTypeSourceRange(); 18116 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18117 << Old->getReturnTypeSourceRange(); 18118 return true; 18119 } 18120 18121 return false; 18122 } 18123 18124 /// Mark the given method pure. 18125 /// 18126 /// \param Method the method to be marked pure. 18127 /// 18128 /// \param InitRange the source range that covers the "0" initializer. 18129 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { 18130 SourceLocation EndLoc = InitRange.getEnd(); 18131 if (EndLoc.isValid()) 18132 Method->setRangeEnd(EndLoc); 18133 18134 if (Method->isVirtual() || Method->getParent()->isDependentContext()) { 18135 Method->setPure(); 18136 return false; 18137 } 18138 18139 if (!Method->isInvalidDecl()) 18140 Diag(Method->getLocation(), diag::err_non_virtual_pure) 18141 << Method->getDeclName() << InitRange; 18142 return true; 18143 } 18144 18145 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) { 18146 if (D->getFriendObjectKind()) 18147 Diag(D->getLocation(), diag::err_pure_friend); 18148 else if (auto *M = dyn_cast<CXXMethodDecl>(D)) 18149 CheckPureMethod(M, ZeroLoc); 18150 else 18151 Diag(D->getLocation(), diag::err_illegal_initializer); 18152 } 18153 18154 /// Determine whether the given declaration is a global variable or 18155 /// static data member. 18156 static bool isNonlocalVariable(const Decl *D) { 18157 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D)) 18158 return Var->hasGlobalStorage(); 18159 18160 return false; 18161 } 18162 18163 /// Invoked when we are about to parse an initializer for the declaration 18164 /// 'Dcl'. 18165 /// 18166 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a 18167 /// static data member of class X, names should be looked up in the scope of 18168 /// class X. If the declaration had a scope specifier, a scope will have 18169 /// been created and passed in for this purpose. Otherwise, S will be null. 18170 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { 18171 // If there is no declaration, there was an error parsing it. 18172 if (!D || D->isInvalidDecl()) 18173 return; 18174 18175 // We will always have a nested name specifier here, but this declaration 18176 // might not be out of line if the specifier names the current namespace: 18177 // extern int n; 18178 // int ::n = 0; 18179 if (S && D->isOutOfLine()) 18180 EnterDeclaratorContext(S, D->getDeclContext()); 18181 18182 // If we are parsing the initializer for a static data member, push a 18183 // new expression evaluation context that is associated with this static 18184 // data member. 18185 if (isNonlocalVariable(D)) 18186 PushExpressionEvaluationContext( 18187 ExpressionEvaluationContext::PotentiallyEvaluated, D); 18188 } 18189 18190 /// Invoked after we are finished parsing an initializer for the declaration D. 18191 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { 18192 // If there is no declaration, there was an error parsing it. 18193 if (!D || D->isInvalidDecl()) 18194 return; 18195 18196 if (isNonlocalVariable(D)) 18197 PopExpressionEvaluationContext(); 18198 18199 if (S && D->isOutOfLine()) 18200 ExitDeclaratorContext(S); 18201 } 18202 18203 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a 18204 /// C++ if/switch/while/for statement. 18205 /// e.g: "if (int x = f()) {...}" 18206 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { 18207 // C++ 6.4p2: 18208 // The declarator shall not specify a function or an array. 18209 // The type-specifier-seq shall not contain typedef and shall not declare a 18210 // new class or enumeration. 18211 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 18212 "Parser allowed 'typedef' as storage class of condition decl."); 18213 18214 Decl *Dcl = ActOnDeclarator(S, D); 18215 if (!Dcl) 18216 return true; 18217 18218 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function. 18219 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) 18220 << D.getSourceRange(); 18221 return true; 18222 } 18223 18224 return Dcl; 18225 } 18226 18227 void Sema::LoadExternalVTableUses() { 18228 if (!ExternalSource) 18229 return; 18230 18231 SmallVector<ExternalVTableUse, 4> VTables; 18232 ExternalSource->ReadUsedVTables(VTables); 18233 SmallVector<VTableUse, 4> NewUses; 18234 for (unsigned I = 0, N = VTables.size(); I != N; ++I) { 18235 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos 18236 = VTablesUsed.find(VTables[I].Record); 18237 // Even if a definition wasn't required before, it may be required now. 18238 if (Pos != VTablesUsed.end()) { 18239 if (!Pos->second && VTables[I].DefinitionRequired) 18240 Pos->second = true; 18241 continue; 18242 } 18243 18244 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; 18245 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location)); 18246 } 18247 18248 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end()); 18249 } 18250 18251 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, 18252 bool DefinitionRequired) { 18253 // Ignore any vtable uses in unevaluated operands or for classes that do 18254 // not have a vtable. 18255 if (!Class->isDynamicClass() || Class->isDependentContext() || 18256 CurContext->isDependentContext() || isUnevaluatedContext()) 18257 return; 18258 // Do not mark as used if compiling for the device outside of the target 18259 // region. 18260 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice && 18261 !isInOpenMPDeclareTargetContext() && 18262 !isInOpenMPTargetExecutionDirective()) { 18263 if (!DefinitionRequired) 18264 MarkVirtualMembersReferenced(Loc, Class); 18265 return; 18266 } 18267 18268 // Try to insert this class into the map. 18269 LoadExternalVTableUses(); 18270 Class = Class->getCanonicalDecl(); 18271 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> 18272 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); 18273 if (!Pos.second) { 18274 // If we already had an entry, check to see if we are promoting this vtable 18275 // to require a definition. If so, we need to reappend to the VTableUses 18276 // list, since we may have already processed the first entry. 18277 if (DefinitionRequired && !Pos.first->second) { 18278 Pos.first->second = true; 18279 } else { 18280 // Otherwise, we can early exit. 18281 return; 18282 } 18283 } else { 18284 // The Microsoft ABI requires that we perform the destructor body 18285 // checks (i.e. operator delete() lookup) when the vtable is marked used, as 18286 // the deleting destructor is emitted with the vtable, not with the 18287 // destructor definition as in the Itanium ABI. 18288 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 18289 CXXDestructorDecl *DD = Class->getDestructor(); 18290 if (DD && DD->isVirtual() && !DD->isDeleted()) { 18291 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) { 18292 // If this is an out-of-line declaration, marking it referenced will 18293 // not do anything. Manually call CheckDestructor to look up operator 18294 // delete(). 18295 ContextRAII SavedContext(*this, DD); 18296 CheckDestructor(DD); 18297 } else { 18298 MarkFunctionReferenced(Loc, Class->getDestructor()); 18299 } 18300 } 18301 } 18302 } 18303 18304 // Local classes need to have their virtual members marked 18305 // immediately. For all other classes, we mark their virtual members 18306 // at the end of the translation unit. 18307 if (Class->isLocalClass()) 18308 MarkVirtualMembersReferenced(Loc, Class->getDefinition()); 18309 else 18310 VTableUses.push_back(std::make_pair(Class, Loc)); 18311 } 18312 18313 bool Sema::DefineUsedVTables() { 18314 LoadExternalVTableUses(); 18315 if (VTableUses.empty()) 18316 return false; 18317 18318 // Note: The VTableUses vector could grow as a result of marking 18319 // the members of a class as "used", so we check the size each 18320 // time through the loop and prefer indices (which are stable) to 18321 // iterators (which are not). 18322 bool DefinedAnything = false; 18323 for (unsigned I = 0; I != VTableUses.size(); ++I) { 18324 CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); 18325 if (!Class) 18326 continue; 18327 TemplateSpecializationKind ClassTSK = 18328 Class->getTemplateSpecializationKind(); 18329 18330 SourceLocation Loc = VTableUses[I].second; 18331 18332 bool DefineVTable = true; 18333 18334 // If this class has a key function, but that key function is 18335 // defined in another translation unit, we don't need to emit the 18336 // vtable even though we're using it. 18337 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class); 18338 if (KeyFunction && !KeyFunction->hasBody()) { 18339 // The key function is in another translation unit. 18340 DefineVTable = false; 18341 TemplateSpecializationKind TSK = 18342 KeyFunction->getTemplateSpecializationKind(); 18343 assert(TSK != TSK_ExplicitInstantiationDefinition && 18344 TSK != TSK_ImplicitInstantiation && 18345 "Instantiations don't have key functions"); 18346 (void)TSK; 18347 } else if (!KeyFunction) { 18348 // If we have a class with no key function that is the subject 18349 // of an explicit instantiation declaration, suppress the 18350 // vtable; it will live with the explicit instantiation 18351 // definition. 18352 bool IsExplicitInstantiationDeclaration = 18353 ClassTSK == TSK_ExplicitInstantiationDeclaration; 18354 for (auto *R : Class->redecls()) { 18355 TemplateSpecializationKind TSK 18356 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind(); 18357 if (TSK == TSK_ExplicitInstantiationDeclaration) 18358 IsExplicitInstantiationDeclaration = true; 18359 else if (TSK == TSK_ExplicitInstantiationDefinition) { 18360 IsExplicitInstantiationDeclaration = false; 18361 break; 18362 } 18363 } 18364 18365 if (IsExplicitInstantiationDeclaration) 18366 DefineVTable = false; 18367 } 18368 18369 // The exception specifications for all virtual members may be needed even 18370 // if we are not providing an authoritative form of the vtable in this TU. 18371 // We may choose to emit it available_externally anyway. 18372 if (!DefineVTable) { 18373 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class); 18374 continue; 18375 } 18376 18377 // Mark all of the virtual members of this class as referenced, so 18378 // that we can build a vtable. Then, tell the AST consumer that a 18379 // vtable for this class is required. 18380 DefinedAnything = true; 18381 MarkVirtualMembersReferenced(Loc, Class); 18382 CXXRecordDecl *Canonical = Class->getCanonicalDecl(); 18383 if (VTablesUsed[Canonical]) 18384 Consumer.HandleVTable(Class); 18385 18386 // Warn if we're emitting a weak vtable. The vtable will be weak if there is 18387 // no key function or the key function is inlined. Don't warn in C++ ABIs 18388 // that lack key functions, since the user won't be able to make one. 18389 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() && 18390 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation && 18391 ClassTSK != TSK_ExplicitInstantiationDefinition) { 18392 const FunctionDecl *KeyFunctionDef = nullptr; 18393 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) && 18394 KeyFunctionDef->isInlined())) 18395 Diag(Class->getLocation(), diag::warn_weak_vtable) << Class; 18396 } 18397 } 18398 VTableUses.clear(); 18399 18400 return DefinedAnything; 18401 } 18402 18403 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, 18404 const CXXRecordDecl *RD) { 18405 for (const auto *I : RD->methods()) 18406 if (I->isVirtual() && !I->isPure()) 18407 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>()); 18408 } 18409 18410 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, 18411 const CXXRecordDecl *RD, 18412 bool ConstexprOnly) { 18413 // Mark all functions which will appear in RD's vtable as used. 18414 CXXFinalOverriderMap FinalOverriders; 18415 RD->getFinalOverriders(FinalOverriders); 18416 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), 18417 E = FinalOverriders.end(); 18418 I != E; ++I) { 18419 for (OverridingMethods::const_iterator OI = I->second.begin(), 18420 OE = I->second.end(); 18421 OI != OE; ++OI) { 18422 assert(OI->second.size() > 0 && "no final overrider"); 18423 CXXMethodDecl *Overrider = OI->second.front().Method; 18424 18425 // C++ [basic.def.odr]p2: 18426 // [...] A virtual member function is used if it is not pure. [...] 18427 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr())) 18428 MarkFunctionReferenced(Loc, Overrider); 18429 } 18430 } 18431 18432 // Only classes that have virtual bases need a VTT. 18433 if (RD->getNumVBases() == 0) 18434 return; 18435 18436 for (const auto &I : RD->bases()) { 18437 const auto *Base = 18438 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 18439 if (Base->getNumVBases() == 0) 18440 continue; 18441 MarkVirtualMembersReferenced(Loc, Base); 18442 } 18443 } 18444 18445 /// SetIvarInitializers - This routine builds initialization ASTs for the 18446 /// Objective-C implementation whose ivars need be initialized. 18447 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { 18448 if (!getLangOpts().CPlusPlus) 18449 return; 18450 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { 18451 SmallVector<ObjCIvarDecl*, 8> ivars; 18452 CollectIvarsToConstructOrDestruct(OID, ivars); 18453 if (ivars.empty()) 18454 return; 18455 SmallVector<CXXCtorInitializer*, 32> AllToInit; 18456 for (unsigned i = 0; i < ivars.size(); i++) { 18457 FieldDecl *Field = ivars[i]; 18458 if (Field->isInvalidDecl()) 18459 continue; 18460 18461 CXXCtorInitializer *Member; 18462 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); 18463 InitializationKind InitKind = 18464 InitializationKind::CreateDefault(ObjCImplementation->getLocation()); 18465 18466 InitializationSequence InitSeq(*this, InitEntity, InitKind, std::nullopt); 18467 ExprResult MemberInit = 18468 InitSeq.Perform(*this, InitEntity, InitKind, std::nullopt); 18469 MemberInit = MaybeCreateExprWithCleanups(MemberInit); 18470 // Note, MemberInit could actually come back empty if no initialization 18471 // is required (e.g., because it would call a trivial default constructor) 18472 if (!MemberInit.get() || MemberInit.isInvalid()) 18473 continue; 18474 18475 Member = 18476 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(), 18477 SourceLocation(), 18478 MemberInit.getAs<Expr>(), 18479 SourceLocation()); 18480 AllToInit.push_back(Member); 18481 18482 // Be sure that the destructor is accessible and is marked as referenced. 18483 if (const RecordType *RecordTy = 18484 Context.getBaseElementType(Field->getType()) 18485 ->getAs<RecordType>()) { 18486 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); 18487 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 18488 MarkFunctionReferenced(Field->getLocation(), Destructor); 18489 CheckDestructorAccess(Field->getLocation(), Destructor, 18490 PDiag(diag::err_access_dtor_ivar) 18491 << Context.getBaseElementType(Field->getType())); 18492 } 18493 } 18494 } 18495 ObjCImplementation->setIvarInitializers(Context, 18496 AllToInit.data(), AllToInit.size()); 18497 } 18498 } 18499 18500 static 18501 void DelegatingCycleHelper(CXXConstructorDecl* Ctor, 18502 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid, 18503 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid, 18504 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current, 18505 Sema &S) { 18506 if (Ctor->isInvalidDecl()) 18507 return; 18508 18509 CXXConstructorDecl *Target = Ctor->getTargetConstructor(); 18510 18511 // Target may not be determinable yet, for instance if this is a dependent 18512 // call in an uninstantiated template. 18513 if (Target) { 18514 const FunctionDecl *FNTarget = nullptr; 18515 (void)Target->hasBody(FNTarget); 18516 Target = const_cast<CXXConstructorDecl*>( 18517 cast_or_null<CXXConstructorDecl>(FNTarget)); 18518 } 18519 18520 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), 18521 // Avoid dereferencing a null pointer here. 18522 *TCanonical = Target? Target->getCanonicalDecl() : nullptr; 18523 18524 if (!Current.insert(Canonical).second) 18525 return; 18526 18527 // We know that beyond here, we aren't chaining into a cycle. 18528 if (!Target || !Target->isDelegatingConstructor() || 18529 Target->isInvalidDecl() || Valid.count(TCanonical)) { 18530 Valid.insert(Current.begin(), Current.end()); 18531 Current.clear(); 18532 // We've hit a cycle. 18533 } else if (TCanonical == Canonical || Invalid.count(TCanonical) || 18534 Current.count(TCanonical)) { 18535 // If we haven't diagnosed this cycle yet, do so now. 18536 if (!Invalid.count(TCanonical)) { 18537 S.Diag((*Ctor->init_begin())->getSourceLocation(), 18538 diag::warn_delegating_ctor_cycle) 18539 << Ctor; 18540 18541 // Don't add a note for a function delegating directly to itself. 18542 if (TCanonical != Canonical) 18543 S.Diag(Target->getLocation(), diag::note_it_delegates_to); 18544 18545 CXXConstructorDecl *C = Target; 18546 while (C->getCanonicalDecl() != Canonical) { 18547 const FunctionDecl *FNTarget = nullptr; 18548 (void)C->getTargetConstructor()->hasBody(FNTarget); 18549 assert(FNTarget && "Ctor cycle through bodiless function"); 18550 18551 C = const_cast<CXXConstructorDecl*>( 18552 cast<CXXConstructorDecl>(FNTarget)); 18553 S.Diag(C->getLocation(), diag::note_which_delegates_to); 18554 } 18555 } 18556 18557 Invalid.insert(Current.begin(), Current.end()); 18558 Current.clear(); 18559 } else { 18560 DelegatingCycleHelper(Target, Valid, Invalid, Current, S); 18561 } 18562 } 18563 18564 18565 void Sema::CheckDelegatingCtorCycles() { 18566 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; 18567 18568 for (DelegatingCtorDeclsType::iterator 18569 I = DelegatingCtorDecls.begin(ExternalSource.get()), 18570 E = DelegatingCtorDecls.end(); 18571 I != E; ++I) 18572 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); 18573 18574 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) 18575 (*CI)->setInvalidDecl(); 18576 } 18577 18578 namespace { 18579 /// AST visitor that finds references to the 'this' expression. 18580 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> { 18581 Sema &S; 18582 18583 public: 18584 explicit FindCXXThisExpr(Sema &S) : S(S) { } 18585 18586 bool VisitCXXThisExpr(CXXThisExpr *E) { 18587 S.Diag(E->getLocation(), diag::err_this_static_member_func) 18588 << E->isImplicit(); 18589 return false; 18590 } 18591 }; 18592 } 18593 18594 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { 18595 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 18596 if (!TSInfo) 18597 return false; 18598 18599 TypeLoc TL = TSInfo->getTypeLoc(); 18600 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 18601 if (!ProtoTL) 18602 return false; 18603 18604 // C++11 [expr.prim.general]p3: 18605 // [The expression this] shall not appear before the optional 18606 // cv-qualifier-seq and it shall not appear within the declaration of a 18607 // static member function (although its type and value category are defined 18608 // within a static member function as they are within a non-static member 18609 // function). [ Note: this is because declaration matching does not occur 18610 // until the complete declarator is known. - end note ] 18611 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 18612 FindCXXThisExpr Finder(*this); 18613 18614 // If the return type came after the cv-qualifier-seq, check it now. 18615 if (Proto->hasTrailingReturn() && 18616 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) 18617 return true; 18618 18619 // Check the exception specification. 18620 if (checkThisInStaticMemberFunctionExceptionSpec(Method)) 18621 return true; 18622 18623 // Check the trailing requires clause 18624 if (Expr *E = Method->getTrailingRequiresClause()) 18625 if (!Finder.TraverseStmt(E)) 18626 return true; 18627 18628 return checkThisInStaticMemberFunctionAttributes(Method); 18629 } 18630 18631 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { 18632 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 18633 if (!TSInfo) 18634 return false; 18635 18636 TypeLoc TL = TSInfo->getTypeLoc(); 18637 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 18638 if (!ProtoTL) 18639 return false; 18640 18641 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 18642 FindCXXThisExpr Finder(*this); 18643 18644 switch (Proto->getExceptionSpecType()) { 18645 case EST_Unparsed: 18646 case EST_Uninstantiated: 18647 case EST_Unevaluated: 18648 case EST_BasicNoexcept: 18649 case EST_NoThrow: 18650 case EST_DynamicNone: 18651 case EST_MSAny: 18652 case EST_None: 18653 break; 18654 18655 case EST_DependentNoexcept: 18656 case EST_NoexceptFalse: 18657 case EST_NoexceptTrue: 18658 if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) 18659 return true; 18660 [[fallthrough]]; 18661 18662 case EST_Dynamic: 18663 for (const auto &E : Proto->exceptions()) { 18664 if (!Finder.TraverseType(E)) 18665 return true; 18666 } 18667 break; 18668 } 18669 18670 return false; 18671 } 18672 18673 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { 18674 FindCXXThisExpr Finder(*this); 18675 18676 // Check attributes. 18677 for (const auto *A : Method->attrs()) { 18678 // FIXME: This should be emitted by tblgen. 18679 Expr *Arg = nullptr; 18680 ArrayRef<Expr *> Args; 18681 if (const auto *G = dyn_cast<GuardedByAttr>(A)) 18682 Arg = G->getArg(); 18683 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A)) 18684 Arg = G->getArg(); 18685 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A)) 18686 Args = llvm::ArrayRef(AA->args_begin(), AA->args_size()); 18687 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A)) 18688 Args = llvm::ArrayRef(AB->args_begin(), AB->args_size()); 18689 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) { 18690 Arg = ETLF->getSuccessValue(); 18691 Args = llvm::ArrayRef(ETLF->args_begin(), ETLF->args_size()); 18692 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) { 18693 Arg = STLF->getSuccessValue(); 18694 Args = llvm::ArrayRef(STLF->args_begin(), STLF->args_size()); 18695 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A)) 18696 Arg = LR->getArg(); 18697 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A)) 18698 Args = llvm::ArrayRef(LE->args_begin(), LE->args_size()); 18699 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A)) 18700 Args = llvm::ArrayRef(RC->args_begin(), RC->args_size()); 18701 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A)) 18702 Args = llvm::ArrayRef(AC->args_begin(), AC->args_size()); 18703 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A)) 18704 Args = llvm::ArrayRef(AC->args_begin(), AC->args_size()); 18705 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A)) 18706 Args = llvm::ArrayRef(RC->args_begin(), RC->args_size()); 18707 18708 if (Arg && !Finder.TraverseStmt(Arg)) 18709 return true; 18710 18711 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 18712 if (!Finder.TraverseStmt(Args[I])) 18713 return true; 18714 } 18715 } 18716 18717 return false; 18718 } 18719 18720 void Sema::checkExceptionSpecification( 18721 bool IsTopLevel, ExceptionSpecificationType EST, 18722 ArrayRef<ParsedType> DynamicExceptions, 18723 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr, 18724 SmallVectorImpl<QualType> &Exceptions, 18725 FunctionProtoType::ExceptionSpecInfo &ESI) { 18726 Exceptions.clear(); 18727 ESI.Type = EST; 18728 if (EST == EST_Dynamic) { 18729 Exceptions.reserve(DynamicExceptions.size()); 18730 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { 18731 // FIXME: Preserve type source info. 18732 QualType ET = GetTypeFromParser(DynamicExceptions[ei]); 18733 18734 if (IsTopLevel) { 18735 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 18736 collectUnexpandedParameterPacks(ET, Unexpanded); 18737 if (!Unexpanded.empty()) { 18738 DiagnoseUnexpandedParameterPacks( 18739 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType, 18740 Unexpanded); 18741 continue; 18742 } 18743 } 18744 18745 // Check that the type is valid for an exception spec, and 18746 // drop it if not. 18747 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei])) 18748 Exceptions.push_back(ET); 18749 } 18750 ESI.Exceptions = Exceptions; 18751 return; 18752 } 18753 18754 if (isComputedNoexcept(EST)) { 18755 assert((NoexceptExpr->isTypeDependent() || 18756 NoexceptExpr->getType()->getCanonicalTypeUnqualified() == 18757 Context.BoolTy) && 18758 "Parser should have made sure that the expression is boolean"); 18759 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) { 18760 ESI.Type = EST_BasicNoexcept; 18761 return; 18762 } 18763 18764 ESI.NoexceptExpr = NoexceptExpr; 18765 return; 18766 } 18767 } 18768 18769 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD, 18770 ExceptionSpecificationType EST, 18771 SourceRange SpecificationRange, 18772 ArrayRef<ParsedType> DynamicExceptions, 18773 ArrayRef<SourceRange> DynamicExceptionRanges, 18774 Expr *NoexceptExpr) { 18775 if (!MethodD) 18776 return; 18777 18778 // Dig out the method we're referring to. 18779 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD)) 18780 MethodD = FunTmpl->getTemplatedDecl(); 18781 18782 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD); 18783 if (!Method) 18784 return; 18785 18786 // Check the exception specification. 18787 llvm::SmallVector<QualType, 4> Exceptions; 18788 FunctionProtoType::ExceptionSpecInfo ESI; 18789 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions, 18790 DynamicExceptionRanges, NoexceptExpr, Exceptions, 18791 ESI); 18792 18793 // Update the exception specification on the function type. 18794 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true); 18795 18796 if (Method->isStatic()) 18797 checkThisInStaticMemberFunctionExceptionSpec(Method); 18798 18799 if (Method->isVirtual()) { 18800 // Check overrides, which we previously had to delay. 18801 for (const CXXMethodDecl *O : Method->overridden_methods()) 18802 CheckOverridingFunctionExceptionSpec(Method, O); 18803 } 18804 } 18805 18806 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. 18807 /// 18808 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, 18809 SourceLocation DeclStart, Declarator &D, 18810 Expr *BitWidth, 18811 InClassInitStyle InitStyle, 18812 AccessSpecifier AS, 18813 const ParsedAttr &MSPropertyAttr) { 18814 IdentifierInfo *II = D.getIdentifier(); 18815 if (!II) { 18816 Diag(DeclStart, diag::err_anonymous_property); 18817 return nullptr; 18818 } 18819 SourceLocation Loc = D.getIdentifierLoc(); 18820 18821 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 18822 QualType T = TInfo->getType(); 18823 if (getLangOpts().CPlusPlus) { 18824 CheckExtraCXXDefaultArguments(D); 18825 18826 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 18827 UPPC_DataMemberType)) { 18828 D.setInvalidType(); 18829 T = Context.IntTy; 18830 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 18831 } 18832 } 18833 18834 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 18835 18836 if (D.getDeclSpec().isInlineSpecified()) 18837 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 18838 << getLangOpts().CPlusPlus17; 18839 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 18840 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 18841 diag::err_invalid_thread) 18842 << DeclSpec::getSpecifierName(TSCS); 18843 18844 // Check to see if this name was declared as a member previously 18845 NamedDecl *PrevDecl = nullptr; 18846 LookupResult Previous(*this, II, Loc, LookupMemberName, 18847 ForVisibleRedeclaration); 18848 LookupName(Previous, S); 18849 switch (Previous.getResultKind()) { 18850 case LookupResult::Found: 18851 case LookupResult::FoundUnresolvedValue: 18852 PrevDecl = Previous.getAsSingle<NamedDecl>(); 18853 break; 18854 18855 case LookupResult::FoundOverloaded: 18856 PrevDecl = Previous.getRepresentativeDecl(); 18857 break; 18858 18859 case LookupResult::NotFound: 18860 case LookupResult::NotFoundInCurrentInstantiation: 18861 case LookupResult::Ambiguous: 18862 break; 18863 } 18864 18865 if (PrevDecl && PrevDecl->isTemplateParameter()) { 18866 // Maybe we will complain about the shadowed template parameter. 18867 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 18868 // Just pretend that we didn't see the previous declaration. 18869 PrevDecl = nullptr; 18870 } 18871 18872 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 18873 PrevDecl = nullptr; 18874 18875 SourceLocation TSSL = D.getBeginLoc(); 18876 MSPropertyDecl *NewPD = 18877 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL, 18878 MSPropertyAttr.getPropertyDataGetter(), 18879 MSPropertyAttr.getPropertyDataSetter()); 18880 ProcessDeclAttributes(TUScope, NewPD, D); 18881 NewPD->setAccess(AS); 18882 18883 if (NewPD->isInvalidDecl()) 18884 Record->setInvalidDecl(); 18885 18886 if (D.getDeclSpec().isModulePrivateSpecified()) 18887 NewPD->setModulePrivate(); 18888 18889 if (NewPD->isInvalidDecl() && PrevDecl) { 18890 // Don't introduce NewFD into scope; there's already something 18891 // with the same name in the same scope. 18892 } else if (II) { 18893 PushOnScopeChains(NewPD, S); 18894 } else 18895 Record->addDecl(NewPD); 18896 18897 return NewPD; 18898 } 18899 18900 void Sema::ActOnStartFunctionDeclarationDeclarator( 18901 Declarator &Declarator, unsigned TemplateParameterDepth) { 18902 auto &Info = InventedParameterInfos.emplace_back(); 18903 TemplateParameterList *ExplicitParams = nullptr; 18904 ArrayRef<TemplateParameterList *> ExplicitLists = 18905 Declarator.getTemplateParameterLists(); 18906 if (!ExplicitLists.empty()) { 18907 bool IsMemberSpecialization, IsInvalid; 18908 ExplicitParams = MatchTemplateParametersToScopeSpecifier( 18909 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(), 18910 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr, 18911 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid, 18912 /*SuppressDiagnostic=*/true); 18913 } 18914 if (ExplicitParams) { 18915 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth(); 18916 llvm::append_range(Info.TemplateParams, *ExplicitParams); 18917 Info.NumExplicitTemplateParams = ExplicitParams->size(); 18918 } else { 18919 Info.AutoTemplateParameterDepth = TemplateParameterDepth; 18920 Info.NumExplicitTemplateParams = 0; 18921 } 18922 } 18923 18924 void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) { 18925 auto &FSI = InventedParameterInfos.back(); 18926 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) { 18927 if (FSI.NumExplicitTemplateParams != 0) { 18928 TemplateParameterList *ExplicitParams = 18929 Declarator.getTemplateParameterLists().back(); 18930 Declarator.setInventedTemplateParameterList( 18931 TemplateParameterList::Create( 18932 Context, ExplicitParams->getTemplateLoc(), 18933 ExplicitParams->getLAngleLoc(), FSI.TemplateParams, 18934 ExplicitParams->getRAngleLoc(), 18935 ExplicitParams->getRequiresClause())); 18936 } else { 18937 Declarator.setInventedTemplateParameterList( 18938 TemplateParameterList::Create( 18939 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams, 18940 SourceLocation(), /*RequiresClause=*/nullptr)); 18941 } 18942 } 18943 InventedParameterInfos.pop_back(); 18944 } 18945