xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaDeclAttr.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements decl-related attribute processing.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTMutationListener.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/Basic/CharInfo.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/DelayedDiagnostic.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/Support/MathExtras.h"
39 
40 using namespace clang;
41 using namespace sema;
42 
43 namespace AttributeLangSupport {
44   enum LANG {
45     C,
46     Cpp,
47     ObjC
48   };
49 } // end namespace AttributeLangSupport
50 
51 //===----------------------------------------------------------------------===//
52 //  Helper functions
53 //===----------------------------------------------------------------------===//
54 
55 /// isFunctionOrMethod - Return true if the given decl has function
56 /// type (function or function-typed variable) or an Objective-C
57 /// method.
58 static bool isFunctionOrMethod(const Decl *D) {
59   return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
60 }
61 
62 /// Return true if the given decl has function type (function or
63 /// function-typed variable) or an Objective-C method or a block.
64 static bool isFunctionOrMethodOrBlock(const Decl *D) {
65   return isFunctionOrMethod(D) || isa<BlockDecl>(D);
66 }
67 
68 /// Return true if the given decl has a declarator that should have
69 /// been processed by Sema::GetTypeForDeclarator.
70 static bool hasDeclarator(const Decl *D) {
71   // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
72   return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
73          isa<ObjCPropertyDecl>(D);
74 }
75 
76 /// hasFunctionProto - Return true if the given decl has a argument
77 /// information. This decl should have already passed
78 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
79 static bool hasFunctionProto(const Decl *D) {
80   if (const FunctionType *FnTy = D->getFunctionType())
81     return isa<FunctionProtoType>(FnTy);
82   return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
83 }
84 
85 /// getFunctionOrMethodNumParams - Return number of function or method
86 /// parameters. It is an error to call this on a K&R function (use
87 /// hasFunctionProto first).
88 static unsigned getFunctionOrMethodNumParams(const Decl *D) {
89   if (const FunctionType *FnTy = D->getFunctionType())
90     return cast<FunctionProtoType>(FnTy)->getNumParams();
91   if (const auto *BD = dyn_cast<BlockDecl>(D))
92     return BD->getNumParams();
93   return cast<ObjCMethodDecl>(D)->param_size();
94 }
95 
96 static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D,
97                                                    unsigned Idx) {
98   if (const auto *FD = dyn_cast<FunctionDecl>(D))
99     return FD->getParamDecl(Idx);
100   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
101     return MD->getParamDecl(Idx);
102   if (const auto *BD = dyn_cast<BlockDecl>(D))
103     return BD->getParamDecl(Idx);
104   return nullptr;
105 }
106 
107 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
108   if (const FunctionType *FnTy = D->getFunctionType())
109     return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
110   if (const auto *BD = dyn_cast<BlockDecl>(D))
111     return BD->getParamDecl(Idx)->getType();
112 
113   return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
114 }
115 
116 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
117   if (auto *PVD = getFunctionOrMethodParam(D, Idx))
118     return PVD->getSourceRange();
119   return SourceRange();
120 }
121 
122 static QualType getFunctionOrMethodResultType(const Decl *D) {
123   if (const FunctionType *FnTy = D->getFunctionType())
124     return FnTy->getReturnType();
125   return cast<ObjCMethodDecl>(D)->getReturnType();
126 }
127 
128 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
129   if (const auto *FD = dyn_cast<FunctionDecl>(D))
130     return FD->getReturnTypeSourceRange();
131   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
132     return MD->getReturnTypeSourceRange();
133   return SourceRange();
134 }
135 
136 static bool isFunctionOrMethodVariadic(const Decl *D) {
137   if (const FunctionType *FnTy = D->getFunctionType())
138     return cast<FunctionProtoType>(FnTy)->isVariadic();
139   if (const auto *BD = dyn_cast<BlockDecl>(D))
140     return BD->isVariadic();
141   return cast<ObjCMethodDecl>(D)->isVariadic();
142 }
143 
144 static bool isInstanceMethod(const Decl *D) {
145   if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D))
146     return MethodDecl->isInstance();
147   return false;
148 }
149 
150 static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
151   const auto *PT = T->getAs<ObjCObjectPointerType>();
152   if (!PT)
153     return false;
154 
155   ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
156   if (!Cls)
157     return false;
158 
159   IdentifierInfo* ClsName = Cls->getIdentifier();
160 
161   // FIXME: Should we walk the chain of classes?
162   return ClsName == &Ctx.Idents.get("NSString") ||
163          ClsName == &Ctx.Idents.get("NSMutableString");
164 }
165 
166 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
167   const auto *PT = T->getAs<PointerType>();
168   if (!PT)
169     return false;
170 
171   const auto *RT = PT->getPointeeType()->getAs<RecordType>();
172   if (!RT)
173     return false;
174 
175   const RecordDecl *RD = RT->getDecl();
176   if (RD->getTagKind() != TTK_Struct)
177     return false;
178 
179   return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
180 }
181 
182 static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
183   // FIXME: Include the type in the argument list.
184   return AL.getNumArgs() + AL.hasParsedType();
185 }
186 
187 template <typename Compare>
188 static bool checkAttributeNumArgsImpl(Sema &S, const ParsedAttr &AL,
189                                       unsigned Num, unsigned Diag,
190                                       Compare Comp) {
191   if (Comp(getNumAttributeArgs(AL), Num)) {
192     S.Diag(AL.getLoc(), Diag) << AL << Num;
193     return false;
194   }
195 
196   return true;
197 }
198 
199 /// Check if the attribute has exactly as many args as Num. May
200 /// output an error.
201 static bool checkAttributeNumArgs(Sema &S, const ParsedAttr &AL, unsigned Num) {
202   return checkAttributeNumArgsImpl(S, AL, Num,
203                                    diag::err_attribute_wrong_number_arguments,
204                                    std::not_equal_to<unsigned>());
205 }
206 
207 /// Check if the attribute has at least as many args as Num. May
208 /// output an error.
209 static bool checkAttributeAtLeastNumArgs(Sema &S, const ParsedAttr &AL,
210                                          unsigned Num) {
211   return checkAttributeNumArgsImpl(S, AL, Num,
212                                    diag::err_attribute_too_few_arguments,
213                                    std::less<unsigned>());
214 }
215 
216 /// Check if the attribute has at most as many args as Num. May
217 /// output an error.
218 static bool checkAttributeAtMostNumArgs(Sema &S, const ParsedAttr &AL,
219                                         unsigned Num) {
220   return checkAttributeNumArgsImpl(S, AL, Num,
221                                    diag::err_attribute_too_many_arguments,
222                                    std::greater<unsigned>());
223 }
224 
225 /// A helper function to provide Attribute Location for the Attr types
226 /// AND the ParsedAttr.
227 template <typename AttrInfo>
228 static typename std::enable_if<std::is_base_of<Attr, AttrInfo>::value,
229                                SourceLocation>::type
230 getAttrLoc(const AttrInfo &AL) {
231   return AL.getLocation();
232 }
233 static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); }
234 
235 /// If Expr is a valid integer constant, get the value of the integer
236 /// expression and return success or failure. May output an error.
237 ///
238 /// Negative argument is implicitly converted to unsigned, unless
239 /// \p StrictlyUnsigned is true.
240 template <typename AttrInfo>
241 static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr,
242                                 uint32_t &Val, unsigned Idx = UINT_MAX,
243                                 bool StrictlyUnsigned = false) {
244   llvm::APSInt I(32);
245   if (Expr->isTypeDependent() || Expr->isValueDependent() ||
246       !Expr->isIntegerConstantExpr(I, S.Context)) {
247     if (Idx != UINT_MAX)
248       S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
249           << &AI << Idx << AANT_ArgumentIntegerConstant
250           << Expr->getSourceRange();
251     else
252       S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
253           << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange();
254     return false;
255   }
256 
257   if (!I.isIntN(32)) {
258     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
259         << I.toString(10, false) << 32 << /* Unsigned */ 1;
260     return false;
261   }
262 
263   if (StrictlyUnsigned && I.isSigned() && I.isNegative()) {
264     S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer)
265         << &AI << /*non-negative*/ 1;
266     return false;
267   }
268 
269   Val = (uint32_t)I.getZExtValue();
270   return true;
271 }
272 
273 /// Wrapper around checkUInt32Argument, with an extra check to be sure
274 /// that the result will fit into a regular (signed) int. All args have the same
275 /// purpose as they do in checkUInt32Argument.
276 template <typename AttrInfo>
277 static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
278                                      int &Val, unsigned Idx = UINT_MAX) {
279   uint32_t UVal;
280   if (!checkUInt32Argument(S, AI, Expr, UVal, Idx))
281     return false;
282 
283   if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
284     llvm::APSInt I(32); // for toString
285     I = UVal;
286     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
287         << I.toString(10, false) << 32 << /* Unsigned */ 0;
288     return false;
289   }
290 
291   Val = UVal;
292   return true;
293 }
294 
295 /// Diagnose mutually exclusive attributes when present on a given
296 /// declaration. Returns true if diagnosed.
297 template <typename AttrTy>
298 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) {
299   if (const auto *A = D->getAttr<AttrTy>()) {
300     S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A;
301     S.Diag(A->getLocation(), diag::note_conflicting_attribute);
302     return true;
303   }
304   return false;
305 }
306 
307 template <typename AttrTy>
308 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) {
309   if (const auto *A = D->getAttr<AttrTy>()) {
310     S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL
311                                                                       << A;
312     S.Diag(A->getLocation(), diag::note_conflicting_attribute);
313     return true;
314   }
315   return false;
316 }
317 
318 /// Check if IdxExpr is a valid parameter index for a function or
319 /// instance method D.  May output an error.
320 ///
321 /// \returns true if IdxExpr is a valid index.
322 template <typename AttrInfo>
323 static bool checkFunctionOrMethodParameterIndex(
324     Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum,
325     const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) {
326   assert(isFunctionOrMethodOrBlock(D));
327 
328   // In C++ the implicit 'this' function parameter also counts.
329   // Parameters are counted from one.
330   bool HP = hasFunctionProto(D);
331   bool HasImplicitThisParam = isInstanceMethod(D);
332   bool IV = HP && isFunctionOrMethodVariadic(D);
333   unsigned NumParams =
334       (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
335 
336   llvm::APSInt IdxInt;
337   if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
338       !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
339     S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
340         << &AI << AttrArgNum << AANT_ArgumentIntegerConstant
341         << IdxExpr->getSourceRange();
342     return false;
343   }
344 
345   unsigned IdxSource = IdxInt.getLimitedValue(UINT_MAX);
346   if (IdxSource < 1 || (!IV && IdxSource > NumParams)) {
347     S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
348         << &AI << AttrArgNum << IdxExpr->getSourceRange();
349     return false;
350   }
351   if (HasImplicitThisParam && !CanIndexImplicitThis) {
352     if (IdxSource == 1) {
353       S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument)
354           << &AI << IdxExpr->getSourceRange();
355       return false;
356     }
357   }
358 
359   Idx = ParamIdx(IdxSource, D);
360   return true;
361 }
362 
363 /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
364 /// If not emit an error and return false. If the argument is an identifier it
365 /// will emit an error with a fixit hint and treat it as if it was a string
366 /// literal.
367 bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
368                                           StringRef &Str,
369                                           SourceLocation *ArgLocation) {
370   // Look for identifiers. If we have one emit a hint to fix it to a literal.
371   if (AL.isArgIdent(ArgNum)) {
372     IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
373     Diag(Loc->Loc, diag::err_attribute_argument_type)
374         << AL << AANT_ArgumentString
375         << FixItHint::CreateInsertion(Loc->Loc, "\"")
376         << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
377     Str = Loc->Ident->getName();
378     if (ArgLocation)
379       *ArgLocation = Loc->Loc;
380     return true;
381   }
382 
383   // Now check for an actual string literal.
384   Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
385   const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
386   if (ArgLocation)
387     *ArgLocation = ArgExpr->getBeginLoc();
388 
389   if (!Literal || !Literal->isAscii()) {
390     Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type)
391         << AL << AANT_ArgumentString;
392     return false;
393   }
394 
395   Str = Literal->getString();
396   return true;
397 }
398 
399 /// Applies the given attribute to the Decl without performing any
400 /// additional semantic checking.
401 template <typename AttrType>
402 static void handleSimpleAttribute(Sema &S, Decl *D,
403                                   const AttributeCommonInfo &CI) {
404   D->addAttr(::new (S.Context) AttrType(S.Context, CI));
405 }
406 
407 template <typename... DiagnosticArgs>
408 static const Sema::SemaDiagnosticBuilder&
409 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) {
410   return Bldr;
411 }
412 
413 template <typename T, typename... DiagnosticArgs>
414 static const Sema::SemaDiagnosticBuilder&
415 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg,
416                   DiagnosticArgs &&... ExtraArgs) {
417   return appendDiagnostics(Bldr << std::forward<T>(ExtraArg),
418                            std::forward<DiagnosticArgs>(ExtraArgs)...);
419 }
420 
421 /// Add an attribute {@code AttrType} to declaration {@code D}, provided that
422 /// {@code PassesCheck} is true.
423 /// Otherwise, emit diagnostic {@code DiagID}, passing in all parameters
424 /// specified in {@code ExtraArgs}.
425 template <typename AttrType, typename... DiagnosticArgs>
426 static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D,
427                                             const AttributeCommonInfo &CI,
428                                             bool PassesCheck, unsigned DiagID,
429                                             DiagnosticArgs &&... ExtraArgs) {
430   if (!PassesCheck) {
431     Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID);
432     appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...);
433     return;
434   }
435   handleSimpleAttribute<AttrType>(S, D, CI);
436 }
437 
438 template <typename AttrType>
439 static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
440                                                 const ParsedAttr &AL) {
441   handleSimpleAttribute<AttrType>(S, D, AL);
442 }
443 
444 /// Applies the given attribute to the Decl so long as the Decl doesn't
445 /// already have one of the given incompatible attributes.
446 template <typename AttrType, typename IncompatibleAttrType,
447           typename... IncompatibleAttrTypes>
448 static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
449                                                 const ParsedAttr &AL) {
450   if (checkAttrMutualExclusion<IncompatibleAttrType>(S, D, AL))
451     return;
452   handleSimpleAttributeWithExclusions<AttrType, IncompatibleAttrTypes...>(S, D,
453                                                                           AL);
454 }
455 
456 /// Check if the passed-in expression is of type int or bool.
457 static bool isIntOrBool(Expr *Exp) {
458   QualType QT = Exp->getType();
459   return QT->isBooleanType() || QT->isIntegerType();
460 }
461 
462 
463 // Check to see if the type is a smart pointer of some kind.  We assume
464 // it's a smart pointer if it defines both operator-> and operator*.
465 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
466   auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record,
467                                           OverloadedOperatorKind Op) {
468     DeclContextLookupResult Result =
469         Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op));
470     return !Result.empty();
471   };
472 
473   const RecordDecl *Record = RT->getDecl();
474   bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star);
475   bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow);
476   if (foundStarOperator && foundArrowOperator)
477     return true;
478 
479   const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record);
480   if (!CXXRecord)
481     return false;
482 
483   for (auto BaseSpecifier : CXXRecord->bases()) {
484     if (!foundStarOperator)
485       foundStarOperator = IsOverloadedOperatorPresent(
486           BaseSpecifier.getType()->getAsRecordDecl(), OO_Star);
487     if (!foundArrowOperator)
488       foundArrowOperator = IsOverloadedOperatorPresent(
489           BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow);
490   }
491 
492   if (foundStarOperator && foundArrowOperator)
493     return true;
494 
495   return false;
496 }
497 
498 /// Check if passed in Decl is a pointer type.
499 /// Note that this function may produce an error message.
500 /// \return true if the Decl is a pointer type; false otherwise
501 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
502                                        const ParsedAttr &AL) {
503   const auto *VD = cast<ValueDecl>(D);
504   QualType QT = VD->getType();
505   if (QT->isAnyPointerType())
506     return true;
507 
508   if (const auto *RT = QT->getAs<RecordType>()) {
509     // If it's an incomplete type, it could be a smart pointer; skip it.
510     // (We don't want to force template instantiation if we can avoid it,
511     // since that would alter the order in which templates are instantiated.)
512     if (RT->isIncompleteType())
513       return true;
514 
515     if (threadSafetyCheckIsSmartPointer(S, RT))
516       return true;
517   }
518 
519   S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT;
520   return false;
521 }
522 
523 /// Checks that the passed in QualType either is of RecordType or points
524 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
525 static const RecordType *getRecordType(QualType QT) {
526   if (const auto *RT = QT->getAs<RecordType>())
527     return RT;
528 
529   // Now check if we point to record type.
530   if (const auto *PT = QT->getAs<PointerType>())
531     return PT->getPointeeType()->getAs<RecordType>();
532 
533   return nullptr;
534 }
535 
536 template <typename AttrType>
537 static bool checkRecordDeclForAttr(const RecordDecl *RD) {
538   // Check if the record itself has the attribute.
539   if (RD->hasAttr<AttrType>())
540     return true;
541 
542   // Else check if any base classes have the attribute.
543   if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
544     CXXBasePaths BPaths(false, false);
545     if (CRD->lookupInBases(
546             [](const CXXBaseSpecifier *BS, CXXBasePath &) {
547               const auto &Ty = *BS->getType();
548               // If it's type-dependent, we assume it could have the attribute.
549               if (Ty.isDependentType())
550                 return true;
551               return Ty.castAs<RecordType>()->getDecl()->hasAttr<AttrType>();
552             },
553             BPaths, true))
554       return true;
555   }
556   return false;
557 }
558 
559 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
560   const RecordType *RT = getRecordType(Ty);
561 
562   if (!RT)
563     return false;
564 
565   // Don't check for the capability if the class hasn't been defined yet.
566   if (RT->isIncompleteType())
567     return true;
568 
569   // Allow smart pointers to be used as capability objects.
570   // FIXME -- Check the type that the smart pointer points to.
571   if (threadSafetyCheckIsSmartPointer(S, RT))
572     return true;
573 
574   return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl());
575 }
576 
577 static bool checkTypedefTypeForCapability(QualType Ty) {
578   const auto *TD = Ty->getAs<TypedefType>();
579   if (!TD)
580     return false;
581 
582   TypedefNameDecl *TN = TD->getDecl();
583   if (!TN)
584     return false;
585 
586   return TN->hasAttr<CapabilityAttr>();
587 }
588 
589 static bool typeHasCapability(Sema &S, QualType Ty) {
590   if (checkTypedefTypeForCapability(Ty))
591     return true;
592 
593   if (checkRecordTypeForCapability(S, Ty))
594     return true;
595 
596   return false;
597 }
598 
599 static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
600   // Capability expressions are simple expressions involving the boolean logic
601   // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
602   // a DeclRefExpr is found, its type should be checked to determine whether it
603   // is a capability or not.
604 
605   if (const auto *E = dyn_cast<CastExpr>(Ex))
606     return isCapabilityExpr(S, E->getSubExpr());
607   else if (const auto *E = dyn_cast<ParenExpr>(Ex))
608     return isCapabilityExpr(S, E->getSubExpr());
609   else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
610     if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
611         E->getOpcode() == UO_Deref)
612       return isCapabilityExpr(S, E->getSubExpr());
613     return false;
614   } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
615     if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
616       return isCapabilityExpr(S, E->getLHS()) &&
617              isCapabilityExpr(S, E->getRHS());
618     return false;
619   }
620 
621   return typeHasCapability(S, Ex->getType());
622 }
623 
624 /// Checks that all attribute arguments, starting from Sidx, resolve to
625 /// a capability object.
626 /// \param Sidx The attribute argument index to start checking with.
627 /// \param ParamIdxOk Whether an argument can be indexing into a function
628 /// parameter list.
629 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
630                                            const ParsedAttr &AL,
631                                            SmallVectorImpl<Expr *> &Args,
632                                            unsigned Sidx = 0,
633                                            bool ParamIdxOk = false) {
634   if (Sidx == AL.getNumArgs()) {
635     // If we don't have any capability arguments, the attribute implicitly
636     // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're
637     // a non-static method, and that the class is a (scoped) capability.
638     const auto *MD = dyn_cast<const CXXMethodDecl>(D);
639     if (MD && !MD->isStatic()) {
640       const CXXRecordDecl *RD = MD->getParent();
641       // FIXME -- need to check this again on template instantiation
642       if (!checkRecordDeclForAttr<CapabilityAttr>(RD) &&
643           !checkRecordDeclForAttr<ScopedLockableAttr>(RD))
644         S.Diag(AL.getLoc(),
645                diag::warn_thread_attribute_not_on_capability_member)
646             << AL << MD->getParent();
647     } else {
648       S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member)
649           << AL;
650     }
651   }
652 
653   for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
654     Expr *ArgExp = AL.getArgAsExpr(Idx);
655 
656     if (ArgExp->isTypeDependent()) {
657       // FIXME -- need to check this again on template instantiation
658       Args.push_back(ArgExp);
659       continue;
660     }
661 
662     if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
663       if (StrLit->getLength() == 0 ||
664           (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
665         // Pass empty strings to the analyzer without warnings.
666         // Treat "*" as the universal lock.
667         Args.push_back(ArgExp);
668         continue;
669       }
670 
671       // We allow constant strings to be used as a placeholder for expressions
672       // that are not valid C++ syntax, but warn that they are ignored.
673       S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL;
674       Args.push_back(ArgExp);
675       continue;
676     }
677 
678     QualType ArgTy = ArgExp->getType();
679 
680     // A pointer to member expression of the form  &MyClass::mu is treated
681     // specially -- we need to look at the type of the member.
682     if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
683       if (UOp->getOpcode() == UO_AddrOf)
684         if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
685           if (DRE->getDecl()->isCXXInstanceMember())
686             ArgTy = DRE->getDecl()->getType();
687 
688     // First see if we can just cast to record type, or pointer to record type.
689     const RecordType *RT = getRecordType(ArgTy);
690 
691     // Now check if we index into a record type function param.
692     if(!RT && ParamIdxOk) {
693       const auto *FD = dyn_cast<FunctionDecl>(D);
694       const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
695       if(FD && IL) {
696         unsigned int NumParams = FD->getNumParams();
697         llvm::APInt ArgValue = IL->getValue();
698         uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
699         uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
700         if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
701           S.Diag(AL.getLoc(),
702                  diag::err_attribute_argument_out_of_bounds_extra_info)
703               << AL << Idx + 1 << NumParams;
704           continue;
705         }
706         ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
707       }
708     }
709 
710     // If the type does not have a capability, see if the components of the
711     // expression have capabilities. This allows for writing C code where the
712     // capability may be on the type, and the expression is a capability
713     // boolean logic expression. Eg) requires_capability(A || B && !C)
714     if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
715       S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
716           << AL << ArgTy;
717 
718     Args.push_back(ArgExp);
719   }
720 }
721 
722 //===----------------------------------------------------------------------===//
723 // Attribute Implementations
724 //===----------------------------------------------------------------------===//
725 
726 static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
727   if (!threadSafetyCheckIsPointer(S, D, AL))
728     return;
729 
730   D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL));
731 }
732 
733 static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
734                                      Expr *&Arg) {
735   SmallVector<Expr *, 1> Args;
736   // check that all arguments are lockable objects
737   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
738   unsigned Size = Args.size();
739   if (Size != 1)
740     return false;
741 
742   Arg = Args[0];
743 
744   return true;
745 }
746 
747 static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
748   Expr *Arg = nullptr;
749   if (!checkGuardedByAttrCommon(S, D, AL, Arg))
750     return;
751 
752   D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg));
753 }
754 
755 static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
756   Expr *Arg = nullptr;
757   if (!checkGuardedByAttrCommon(S, D, AL, Arg))
758     return;
759 
760   if (!threadSafetyCheckIsPointer(S, D, AL))
761     return;
762 
763   D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg));
764 }
765 
766 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
767                                         SmallVectorImpl<Expr *> &Args) {
768   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
769     return false;
770 
771   // Check that this attribute only applies to lockable types.
772   QualType QT = cast<ValueDecl>(D)->getType();
773   if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
774     S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL;
775     return false;
776   }
777 
778   // Check that all arguments are lockable objects.
779   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
780   if (Args.empty())
781     return false;
782 
783   return true;
784 }
785 
786 static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
787   SmallVector<Expr *, 1> Args;
788   if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
789     return;
790 
791   Expr **StartArg = &Args[0];
792   D->addAttr(::new (S.Context)
793                  AcquiredAfterAttr(S.Context, AL, StartArg, Args.size()));
794 }
795 
796 static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
797   SmallVector<Expr *, 1> Args;
798   if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
799     return;
800 
801   Expr **StartArg = &Args[0];
802   D->addAttr(::new (S.Context)
803                  AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size()));
804 }
805 
806 static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
807                                    SmallVectorImpl<Expr *> &Args) {
808   // zero or more arguments ok
809   // check that all arguments are lockable objects
810   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
811 
812   return true;
813 }
814 
815 static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
816   SmallVector<Expr *, 1> Args;
817   if (!checkLockFunAttrCommon(S, D, AL, Args))
818     return;
819 
820   unsigned Size = Args.size();
821   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
822   D->addAttr(::new (S.Context)
823                  AssertSharedLockAttr(S.Context, AL, StartArg, Size));
824 }
825 
826 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
827                                           const ParsedAttr &AL) {
828   SmallVector<Expr *, 1> Args;
829   if (!checkLockFunAttrCommon(S, D, AL, Args))
830     return;
831 
832   unsigned Size = Args.size();
833   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
834   D->addAttr(::new (S.Context)
835                  AssertExclusiveLockAttr(S.Context, AL, StartArg, Size));
836 }
837 
838 /// Checks to be sure that the given parameter number is in bounds, and
839 /// is an integral type. Will emit appropriate diagnostics if this returns
840 /// false.
841 ///
842 /// AttrArgNo is used to actually retrieve the argument, so it's base-0.
843 template <typename AttrInfo>
844 static bool checkParamIsIntegerType(Sema &S, const FunctionDecl *FD,
845                                     const AttrInfo &AI, unsigned AttrArgNo) {
846   assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
847   Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
848   ParamIdx Idx;
849   if (!checkFunctionOrMethodParameterIndex(S, FD, AI, AttrArgNo + 1, AttrArg,
850                                            Idx))
851     return false;
852 
853   const ParmVarDecl *Param = FD->getParamDecl(Idx.getASTIndex());
854   if (!Param->getType()->isIntegerType() && !Param->getType()->isCharType()) {
855     SourceLocation SrcLoc = AttrArg->getBeginLoc();
856     S.Diag(SrcLoc, diag::err_attribute_integers_only)
857         << AI << Param->getSourceRange();
858     return false;
859   }
860   return true;
861 }
862 
863 static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
864   if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
865       !checkAttributeAtMostNumArgs(S, AL, 2))
866     return;
867 
868   const auto *FD = cast<FunctionDecl>(D);
869   if (!FD->getReturnType()->isPointerType()) {
870     S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL;
871     return;
872   }
873 
874   const Expr *SizeExpr = AL.getArgAsExpr(0);
875   int SizeArgNoVal;
876   // Parameter indices are 1-indexed, hence Index=1
877   if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1))
878     return;
879   if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/0))
880     return;
881   ParamIdx SizeArgNo(SizeArgNoVal, D);
882 
883   ParamIdx NumberArgNo;
884   if (AL.getNumArgs() == 2) {
885     const Expr *NumberExpr = AL.getArgAsExpr(1);
886     int Val;
887     // Parameter indices are 1-based, hence Index=2
888     if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2))
889       return;
890     if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/1))
891       return;
892     NumberArgNo = ParamIdx(Val, D);
893   }
894 
895   D->addAttr(::new (S.Context)
896                  AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo));
897 }
898 
899 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
900                                       SmallVectorImpl<Expr *> &Args) {
901   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
902     return false;
903 
904   if (!isIntOrBool(AL.getArgAsExpr(0))) {
905     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
906         << AL << 1 << AANT_ArgumentIntOrBool;
907     return false;
908   }
909 
910   // check that all arguments are lockable objects
911   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
912 
913   return true;
914 }
915 
916 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
917                                             const ParsedAttr &AL) {
918   SmallVector<Expr*, 2> Args;
919   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
920     return;
921 
922   D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(
923       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
924 }
925 
926 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
927                                                const ParsedAttr &AL) {
928   SmallVector<Expr*, 2> Args;
929   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
930     return;
931 
932   D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
933       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
934 }
935 
936 static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
937   // check that the argument is lockable object
938   SmallVector<Expr*, 1> Args;
939   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
940   unsigned Size = Args.size();
941   if (Size == 0)
942     return;
943 
944   D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0]));
945 }
946 
947 static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
948   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
949     return;
950 
951   // check that all arguments are lockable objects
952   SmallVector<Expr*, 1> Args;
953   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
954   unsigned Size = Args.size();
955   if (Size == 0)
956     return;
957   Expr **StartArg = &Args[0];
958 
959   D->addAttr(::new (S.Context)
960                  LocksExcludedAttr(S.Context, AL, StartArg, Size));
961 }
962 
963 static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
964                                        Expr *&Cond, StringRef &Msg) {
965   Cond = AL.getArgAsExpr(0);
966   if (!Cond->isTypeDependent()) {
967     ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
968     if (Converted.isInvalid())
969       return false;
970     Cond = Converted.get();
971   }
972 
973   if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
974     return false;
975 
976   if (Msg.empty())
977     Msg = "<no message provided>";
978 
979   SmallVector<PartialDiagnosticAt, 8> Diags;
980   if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
981       !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
982                                                 Diags)) {
983     S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL;
984     for (const PartialDiagnosticAt &PDiag : Diags)
985       S.Diag(PDiag.first, PDiag.second);
986     return false;
987   }
988   return true;
989 }
990 
991 static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
992   S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
993 
994   Expr *Cond;
995   StringRef Msg;
996   if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
997     D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg));
998 }
999 
1000 namespace {
1001 /// Determines if a given Expr references any of the given function's
1002 /// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
1003 class ArgumentDependenceChecker
1004     : public RecursiveASTVisitor<ArgumentDependenceChecker> {
1005 #ifndef NDEBUG
1006   const CXXRecordDecl *ClassType;
1007 #endif
1008   llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
1009   bool Result;
1010 
1011 public:
1012   ArgumentDependenceChecker(const FunctionDecl *FD) {
1013 #ifndef NDEBUG
1014     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1015       ClassType = MD->getParent();
1016     else
1017       ClassType = nullptr;
1018 #endif
1019     Parms.insert(FD->param_begin(), FD->param_end());
1020   }
1021 
1022   bool referencesArgs(Expr *E) {
1023     Result = false;
1024     TraverseStmt(E);
1025     return Result;
1026   }
1027 
1028   bool VisitCXXThisExpr(CXXThisExpr *E) {
1029     assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
1030            "`this` doesn't refer to the enclosing class?");
1031     Result = true;
1032     return false;
1033   }
1034 
1035   bool VisitDeclRefExpr(DeclRefExpr *DRE) {
1036     if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
1037       if (Parms.count(PVD)) {
1038         Result = true;
1039         return false;
1040       }
1041     return true;
1042   }
1043 };
1044 }
1045 
1046 static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1047   S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
1048 
1049   Expr *Cond;
1050   StringRef Msg;
1051   if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
1052     return;
1053 
1054   StringRef DiagTypeStr;
1055   if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr))
1056     return;
1057 
1058   DiagnoseIfAttr::DiagnosticType DiagType;
1059   if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) {
1060     S.Diag(AL.getArgAsExpr(2)->getBeginLoc(),
1061            diag::err_diagnose_if_invalid_diagnostic_type);
1062     return;
1063   }
1064 
1065   bool ArgDependent = false;
1066   if (const auto *FD = dyn_cast<FunctionDecl>(D))
1067     ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
1068   D->addAttr(::new (S.Context) DiagnoseIfAttr(
1069       S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D)));
1070 }
1071 
1072 static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1073   static constexpr const StringRef kWildcard = "*";
1074 
1075   llvm::SmallVector<StringRef, 16> Names;
1076   bool HasWildcard = false;
1077 
1078   const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) {
1079     if (Name == kWildcard)
1080       HasWildcard = true;
1081     Names.push_back(Name);
1082   };
1083 
1084   // Add previously defined attributes.
1085   if (const auto *NBA = D->getAttr<NoBuiltinAttr>())
1086     for (StringRef BuiltinName : NBA->builtinNames())
1087       AddBuiltinName(BuiltinName);
1088 
1089   // Add current attributes.
1090   if (AL.getNumArgs() == 0)
1091     AddBuiltinName(kWildcard);
1092   else
1093     for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
1094       StringRef BuiltinName;
1095       SourceLocation LiteralLoc;
1096       if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc))
1097         return;
1098 
1099       if (Builtin::Context::isBuiltinFunc(BuiltinName))
1100         AddBuiltinName(BuiltinName);
1101       else
1102         S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name)
1103             << BuiltinName << AL.getAttrName()->getName();
1104     }
1105 
1106   // Repeating the same attribute is fine.
1107   llvm::sort(Names);
1108   Names.erase(std::unique(Names.begin(), Names.end()), Names.end());
1109 
1110   // Empty no_builtin must be on its own.
1111   if (HasWildcard && Names.size() > 1)
1112     S.Diag(D->getLocation(),
1113            diag::err_attribute_no_builtin_wildcard_or_builtin_name)
1114         << AL.getAttrName()->getName();
1115 
1116   if (D->hasAttr<NoBuiltinAttr>())
1117     D->dropAttr<NoBuiltinAttr>();
1118   D->addAttr(::new (S.Context)
1119                  NoBuiltinAttr(S.Context, AL, Names.data(), Names.size()));
1120 }
1121 
1122 static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1123   if (D->hasAttr<PassObjectSizeAttr>()) {
1124     S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL;
1125     return;
1126   }
1127 
1128   Expr *E = AL.getArgAsExpr(0);
1129   uint32_t Type;
1130   if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1))
1131     return;
1132 
1133   // pass_object_size's argument is passed in as the second argument of
1134   // __builtin_object_size. So, it has the same constraints as that second
1135   // argument; namely, it must be in the range [0, 3].
1136   if (Type > 3) {
1137     S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range)
1138         << AL << 0 << 3 << E->getSourceRange();
1139     return;
1140   }
1141 
1142   // pass_object_size is only supported on constant pointer parameters; as a
1143   // kindness to users, we allow the parameter to be non-const for declarations.
1144   // At this point, we have no clue if `D` belongs to a function declaration or
1145   // definition, so we defer the constness check until later.
1146   if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
1147     S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1;
1148     return;
1149   }
1150 
1151   D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type));
1152 }
1153 
1154 static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1155   ConsumableAttr::ConsumedState DefaultState;
1156 
1157   if (AL.isArgIdent(0)) {
1158     IdentifierLoc *IL = AL.getArgAsIdent(0);
1159     if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1160                                                    DefaultState)) {
1161       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1162                                                                << IL->Ident;
1163       return;
1164     }
1165   } else {
1166     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1167         << AL << AANT_ArgumentIdentifier;
1168     return;
1169   }
1170 
1171   D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState));
1172 }
1173 
1174 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
1175                                     const ParsedAttr &AL) {
1176   QualType ThisType = MD->getThisType()->getPointeeType();
1177 
1178   if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
1179     if (!RD->hasAttr<ConsumableAttr>()) {
1180       S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) <<
1181         RD->getNameAsString();
1182 
1183       return false;
1184     }
1185   }
1186 
1187   return true;
1188 }
1189 
1190 static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1191   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
1192     return;
1193 
1194   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1195     return;
1196 
1197   SmallVector<CallableWhenAttr::ConsumedState, 3> States;
1198   for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
1199     CallableWhenAttr::ConsumedState CallableState;
1200 
1201     StringRef StateString;
1202     SourceLocation Loc;
1203     if (AL.isArgIdent(ArgIndex)) {
1204       IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
1205       StateString = Ident->Ident->getName();
1206       Loc = Ident->Loc;
1207     } else {
1208       if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
1209         return;
1210     }
1211 
1212     if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
1213                                                      CallableState)) {
1214       S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString;
1215       return;
1216     }
1217 
1218     States.push_back(CallableState);
1219   }
1220 
1221   D->addAttr(::new (S.Context)
1222                  CallableWhenAttr(S.Context, AL, States.data(), States.size()));
1223 }
1224 
1225 static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1226   ParamTypestateAttr::ConsumedState ParamState;
1227 
1228   if (AL.isArgIdent(0)) {
1229     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1230     StringRef StateString = Ident->Ident->getName();
1231 
1232     if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
1233                                                        ParamState)) {
1234       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1235           << AL << StateString;
1236       return;
1237     }
1238   } else {
1239     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1240         << AL << AANT_ArgumentIdentifier;
1241     return;
1242   }
1243 
1244   // FIXME: This check is currently being done in the analysis.  It can be
1245   //        enabled here only after the parser propagates attributes at
1246   //        template specialization definition, not declaration.
1247   //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
1248   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1249   //
1250   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1251   //    S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1252   //      ReturnType.getAsString();
1253   //    return;
1254   //}
1255 
1256   D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState));
1257 }
1258 
1259 static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1260   ReturnTypestateAttr::ConsumedState ReturnState;
1261 
1262   if (AL.isArgIdent(0)) {
1263     IdentifierLoc *IL = AL.getArgAsIdent(0);
1264     if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1265                                                         ReturnState)) {
1266       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1267                                                                << IL->Ident;
1268       return;
1269     }
1270   } else {
1271     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1272         << AL << AANT_ArgumentIdentifier;
1273     return;
1274   }
1275 
1276   // FIXME: This check is currently being done in the analysis.  It can be
1277   //        enabled here only after the parser propagates attributes at
1278   //        template specialization definition, not declaration.
1279   //QualType ReturnType;
1280   //
1281   //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
1282   //  ReturnType = Param->getType();
1283   //
1284   //} else if (const CXXConstructorDecl *Constructor =
1285   //             dyn_cast<CXXConstructorDecl>(D)) {
1286   //  ReturnType = Constructor->getThisType()->getPointeeType();
1287   //
1288   //} else {
1289   //
1290   //  ReturnType = cast<FunctionDecl>(D)->getCallResultType();
1291   //}
1292   //
1293   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1294   //
1295   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1296   //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1297   //      ReturnType.getAsString();
1298   //    return;
1299   //}
1300 
1301   D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState));
1302 }
1303 
1304 static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1305   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1306     return;
1307 
1308   SetTypestateAttr::ConsumedState NewState;
1309   if (AL.isArgIdent(0)) {
1310     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1311     StringRef Param = Ident->Ident->getName();
1312     if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
1313       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1314                                                                   << Param;
1315       return;
1316     }
1317   } else {
1318     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1319         << AL << AANT_ArgumentIdentifier;
1320     return;
1321   }
1322 
1323   D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState));
1324 }
1325 
1326 static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1327   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1328     return;
1329 
1330   TestTypestateAttr::ConsumedState TestState;
1331   if (AL.isArgIdent(0)) {
1332     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1333     StringRef Param = Ident->Ident->getName();
1334     if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1335       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1336                                                                   << Param;
1337       return;
1338     }
1339   } else {
1340     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1341         << AL << AANT_ArgumentIdentifier;
1342     return;
1343   }
1344 
1345   D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState));
1346 }
1347 
1348 static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1349   // Remember this typedef decl, we will need it later for diagnostics.
1350   S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
1351 }
1352 
1353 static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1354   if (auto *TD = dyn_cast<TagDecl>(D))
1355     TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1356   else if (auto *FD = dyn_cast<FieldDecl>(D)) {
1357     bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
1358                                 !FD->getType()->isIncompleteType() &&
1359                                 FD->isBitField() &&
1360                                 S.Context.getTypeAlign(FD->getType()) <= 8);
1361 
1362     if (S.getASTContext().getTargetInfo().getTriple().isPS4()) {
1363       if (BitfieldByteAligned)
1364         // The PS4 target needs to maintain ABI backwards compatibility.
1365         S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1366             << AL << FD->getType();
1367       else
1368         FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1369     } else {
1370       // Report warning about changed offset in the newer compiler versions.
1371       if (BitfieldByteAligned)
1372         S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
1373 
1374       FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1375     }
1376 
1377   } else
1378     S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
1379 }
1380 
1381 static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) {
1382   // The IBOutlet/IBOutletCollection attributes only apply to instance
1383   // variables or properties of Objective-C classes.  The outlet must also
1384   // have an object reference type.
1385   if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) {
1386     if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1387       S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1388           << AL << VD->getType() << 0;
1389       return false;
1390     }
1391   }
1392   else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1393     if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1394       S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1395           << AL << PD->getType() << 1;
1396       return false;
1397     }
1398   }
1399   else {
1400     S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL;
1401     return false;
1402   }
1403 
1404   return true;
1405 }
1406 
1407 static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) {
1408   if (!checkIBOutletCommon(S, D, AL))
1409     return;
1410 
1411   D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL));
1412 }
1413 
1414 static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) {
1415 
1416   // The iboutletcollection attribute can have zero or one arguments.
1417   if (AL.getNumArgs() > 1) {
1418     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1419     return;
1420   }
1421 
1422   if (!checkIBOutletCommon(S, D, AL))
1423     return;
1424 
1425   ParsedType PT;
1426 
1427   if (AL.hasParsedType())
1428     PT = AL.getTypeArg();
1429   else {
1430     PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(),
1431                        S.getScopeForContext(D->getDeclContext()->getParent()));
1432     if (!PT) {
1433       S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
1434       return;
1435     }
1436   }
1437 
1438   TypeSourceInfo *QTLoc = nullptr;
1439   QualType QT = S.GetTypeFromParser(PT, &QTLoc);
1440   if (!QTLoc)
1441     QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc());
1442 
1443   // Diagnose use of non-object type in iboutletcollection attribute.
1444   // FIXME. Gnu attribute extension ignores use of builtin types in
1445   // attributes. So, __attribute__((iboutletcollection(char))) will be
1446   // treated as __attribute__((iboutletcollection())).
1447   if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1448     S.Diag(AL.getLoc(),
1449            QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
1450                                : diag::err_iboutletcollection_type) << QT;
1451     return;
1452   }
1453 
1454   D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc));
1455 }
1456 
1457 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
1458   if (RefOkay) {
1459     if (T->isReferenceType())
1460       return true;
1461   } else {
1462     T = T.getNonReferenceType();
1463   }
1464 
1465   // The nonnull attribute, and other similar attributes, can be applied to a
1466   // transparent union that contains a pointer type.
1467   if (const RecordType *UT = T->getAsUnionType()) {
1468     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1469       RecordDecl *UD = UT->getDecl();
1470       for (const auto *I : UD->fields()) {
1471         QualType QT = I->getType();
1472         if (QT->isAnyPointerType() || QT->isBlockPointerType())
1473           return true;
1474       }
1475     }
1476   }
1477 
1478   return T->isAnyPointerType() || T->isBlockPointerType();
1479 }
1480 
1481 static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
1482                                 SourceRange AttrParmRange,
1483                                 SourceRange TypeRange,
1484                                 bool isReturnValue = false) {
1485   if (!S.isValidPointerAttrType(T)) {
1486     if (isReturnValue)
1487       S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1488           << AL << AttrParmRange << TypeRange;
1489     else
1490       S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1491           << AL << AttrParmRange << TypeRange << 0;
1492     return false;
1493   }
1494   return true;
1495 }
1496 
1497 static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1498   SmallVector<ParamIdx, 8> NonNullArgs;
1499   for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
1500     Expr *Ex = AL.getArgAsExpr(I);
1501     ParamIdx Idx;
1502     if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx))
1503       return;
1504 
1505     // Is the function argument a pointer type?
1506     if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) &&
1507         !attrNonNullArgCheck(
1508             S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL,
1509             Ex->getSourceRange(),
1510             getFunctionOrMethodParamRange(D, Idx.getASTIndex())))
1511       continue;
1512 
1513     NonNullArgs.push_back(Idx);
1514   }
1515 
1516   // If no arguments were specified to __attribute__((nonnull)) then all pointer
1517   // arguments have a nonnull attribute; warn if there aren't any. Skip this
1518   // check if the attribute came from a macro expansion or a template
1519   // instantiation.
1520   if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
1521       !S.inTemplateInstantiation()) {
1522     bool AnyPointers = isFunctionOrMethodVariadic(D);
1523     for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1524          I != E && !AnyPointers; ++I) {
1525       QualType T = getFunctionOrMethodParamType(D, I);
1526       if (T->isDependentType() || S.isValidPointerAttrType(T))
1527         AnyPointers = true;
1528     }
1529 
1530     if (!AnyPointers)
1531       S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1532   }
1533 
1534   ParamIdx *Start = NonNullArgs.data();
1535   unsigned Size = NonNullArgs.size();
1536   llvm::array_pod_sort(Start, Start + Size);
1537   D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size));
1538 }
1539 
1540 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
1541                                        const ParsedAttr &AL) {
1542   if (AL.getNumArgs() > 0) {
1543     if (D->getFunctionType()) {
1544       handleNonNullAttr(S, D, AL);
1545     } else {
1546       S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1547         << D->getSourceRange();
1548     }
1549     return;
1550   }
1551 
1552   // Is the argument a pointer type?
1553   if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
1554                            D->getSourceRange()))
1555     return;
1556 
1557   D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0));
1558 }
1559 
1560 static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1561   QualType ResultType = getFunctionOrMethodResultType(D);
1562   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1563   if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
1564                            /* isReturnValue */ true))
1565     return;
1566 
1567   D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL));
1568 }
1569 
1570 static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1571   if (D->isInvalidDecl())
1572     return;
1573 
1574   // noescape only applies to pointer types.
1575   QualType T = cast<ParmVarDecl>(D)->getType();
1576   if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
1577     S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1578         << AL << AL.getRange() << 0;
1579     return;
1580   }
1581 
1582   D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL));
1583 }
1584 
1585 static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1586   Expr *E = AL.getArgAsExpr(0),
1587        *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
1588   S.AddAssumeAlignedAttr(D, AL, E, OE);
1589 }
1590 
1591 static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1592   S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0));
1593 }
1594 
1595 void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
1596                                 Expr *OE) {
1597   QualType ResultType = getFunctionOrMethodResultType(D);
1598   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1599 
1600   AssumeAlignedAttr TmpAttr(Context, CI, E, OE);
1601   SourceLocation AttrLoc = TmpAttr.getLocation();
1602 
1603   if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1604     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1605         << &TmpAttr << TmpAttr.getRange() << SR;
1606     return;
1607   }
1608 
1609   if (!E->isValueDependent()) {
1610     llvm::APSInt I(64);
1611     if (!E->isIntegerConstantExpr(I, Context)) {
1612       if (OE)
1613         Diag(AttrLoc, diag::err_attribute_argument_n_type)
1614           << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
1615           << E->getSourceRange();
1616       else
1617         Diag(AttrLoc, diag::err_attribute_argument_type)
1618           << &TmpAttr << AANT_ArgumentIntegerConstant
1619           << E->getSourceRange();
1620       return;
1621     }
1622 
1623     if (!I.isPowerOf2()) {
1624       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1625         << E->getSourceRange();
1626       return;
1627     }
1628   }
1629 
1630   if (OE) {
1631     if (!OE->isValueDependent()) {
1632       llvm::APSInt I(64);
1633       if (!OE->isIntegerConstantExpr(I, Context)) {
1634         Diag(AttrLoc, diag::err_attribute_argument_n_type)
1635           << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
1636           << OE->getSourceRange();
1637         return;
1638       }
1639     }
1640   }
1641 
1642   D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE));
1643 }
1644 
1645 void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
1646                              Expr *ParamExpr) {
1647   QualType ResultType = getFunctionOrMethodResultType(D);
1648 
1649   AllocAlignAttr TmpAttr(Context, CI, ParamIdx());
1650   SourceLocation AttrLoc = CI.getLoc();
1651 
1652   if (!ResultType->isDependentType() &&
1653       !isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1654     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1655         << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D);
1656     return;
1657   }
1658 
1659   ParamIdx Idx;
1660   const auto *FuncDecl = cast<FunctionDecl>(D);
1661   if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr,
1662                                            /*AttrArgNum=*/1, ParamExpr, Idx))
1663     return;
1664 
1665   QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1666   if (!Ty->isDependentType() && !Ty->isIntegralType(Context)) {
1667     Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only)
1668         << &TmpAttr
1669         << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
1670     return;
1671   }
1672 
1673   D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx));
1674 }
1675 
1676 /// Normalize the attribute, __foo__ becomes foo.
1677 /// Returns true if normalization was applied.
1678 static bool normalizeName(StringRef &AttrName) {
1679   if (AttrName.size() > 4 && AttrName.startswith("__") &&
1680       AttrName.endswith("__")) {
1681     AttrName = AttrName.drop_front(2).drop_back(2);
1682     return true;
1683   }
1684   return false;
1685 }
1686 
1687 static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1688   // This attribute must be applied to a function declaration. The first
1689   // argument to the attribute must be an identifier, the name of the resource,
1690   // for example: malloc. The following arguments must be argument indexes, the
1691   // arguments must be of integer type for Returns, otherwise of pointer type.
1692   // The difference between Holds and Takes is that a pointer may still be used
1693   // after being held. free() should be __attribute((ownership_takes)), whereas
1694   // a list append function may well be __attribute((ownership_holds)).
1695 
1696   if (!AL.isArgIdent(0)) {
1697     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1698         << AL << 1 << AANT_ArgumentIdentifier;
1699     return;
1700   }
1701 
1702   // Figure out our Kind.
1703   OwnershipAttr::OwnershipKind K =
1704       OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind();
1705 
1706   // Check arguments.
1707   switch (K) {
1708   case OwnershipAttr::Takes:
1709   case OwnershipAttr::Holds:
1710     if (AL.getNumArgs() < 2) {
1711       S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2;
1712       return;
1713     }
1714     break;
1715   case OwnershipAttr::Returns:
1716     if (AL.getNumArgs() > 2) {
1717       S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
1718       return;
1719     }
1720     break;
1721   }
1722 
1723   IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
1724 
1725   StringRef ModuleName = Module->getName();
1726   if (normalizeName(ModuleName)) {
1727     Module = &S.PP.getIdentifierTable().get(ModuleName);
1728   }
1729 
1730   SmallVector<ParamIdx, 8> OwnershipArgs;
1731   for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1732     Expr *Ex = AL.getArgAsExpr(i);
1733     ParamIdx Idx;
1734     if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
1735       return;
1736 
1737     // Is the function argument a pointer type?
1738     QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1739     int Err = -1;  // No error
1740     switch (K) {
1741       case OwnershipAttr::Takes:
1742       case OwnershipAttr::Holds:
1743         if (!T->isAnyPointerType() && !T->isBlockPointerType())
1744           Err = 0;
1745         break;
1746       case OwnershipAttr::Returns:
1747         if (!T->isIntegerType())
1748           Err = 1;
1749         break;
1750     }
1751     if (-1 != Err) {
1752       S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err
1753                                                     << Ex->getSourceRange();
1754       return;
1755     }
1756 
1757     // Check we don't have a conflict with another ownership attribute.
1758     for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1759       // Cannot have two ownership attributes of different kinds for the same
1760       // index.
1761       if (I->getOwnKind() != K && I->args_end() !=
1762           std::find(I->args_begin(), I->args_end(), Idx)) {
1763         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I;
1764         return;
1765       } else if (K == OwnershipAttr::Returns &&
1766                  I->getOwnKind() == OwnershipAttr::Returns) {
1767         // A returns attribute conflicts with any other returns attribute using
1768         // a different index.
1769         if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) {
1770           S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1771               << I->args_begin()->getSourceIndex();
1772           if (I->args_size())
1773             S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1774                 << Idx.getSourceIndex() << Ex->getSourceRange();
1775           return;
1776         }
1777       }
1778     }
1779     OwnershipArgs.push_back(Idx);
1780   }
1781 
1782   ParamIdx *Start = OwnershipArgs.data();
1783   unsigned Size = OwnershipArgs.size();
1784   llvm::array_pod_sort(Start, Start + Size);
1785   D->addAttr(::new (S.Context)
1786                  OwnershipAttr(S.Context, AL, Module, Start, Size));
1787 }
1788 
1789 static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1790   // Check the attribute arguments.
1791   if (AL.getNumArgs() > 1) {
1792     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1793     return;
1794   }
1795 
1796   // gcc rejects
1797   // class c {
1798   //   static int a __attribute__((weakref ("v2")));
1799   //   static int b() __attribute__((weakref ("f3")));
1800   // };
1801   // and ignores the attributes of
1802   // void f(void) {
1803   //   static int a __attribute__((weakref ("v2")));
1804   // }
1805   // we reject them
1806   const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1807   if (!Ctx->isFileContext()) {
1808     S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
1809         << cast<NamedDecl>(D);
1810     return;
1811   }
1812 
1813   // The GCC manual says
1814   //
1815   // At present, a declaration to which `weakref' is attached can only
1816   // be `static'.
1817   //
1818   // It also says
1819   //
1820   // Without a TARGET,
1821   // given as an argument to `weakref' or to `alias', `weakref' is
1822   // equivalent to `weak'.
1823   //
1824   // gcc 4.4.1 will accept
1825   // int a7 __attribute__((weakref));
1826   // as
1827   // int a7 __attribute__((weak));
1828   // This looks like a bug in gcc. We reject that for now. We should revisit
1829   // it if this behaviour is actually used.
1830 
1831   // GCC rejects
1832   // static ((alias ("y"), weakref)).
1833   // Should we? How to check that weakref is before or after alias?
1834 
1835   // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1836   // of transforming it into an AliasAttr.  The WeakRefAttr never uses the
1837   // StringRef parameter it was given anyway.
1838   StringRef Str;
1839   if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
1840     // GCC will accept anything as the argument of weakref. Should we
1841     // check for an existing decl?
1842     D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1843 
1844   D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL));
1845 }
1846 
1847 static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1848   StringRef Str;
1849   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1850     return;
1851 
1852   // Aliases should be on declarations, not definitions.
1853   const auto *FD = cast<FunctionDecl>(D);
1854   if (FD->isThisDeclarationADefinition()) {
1855     S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
1856     return;
1857   }
1858 
1859   D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str));
1860 }
1861 
1862 static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1863   StringRef Str;
1864   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1865     return;
1866 
1867   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1868     S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
1869     return;
1870   }
1871   if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
1872     S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
1873   }
1874 
1875   // Aliases should be on declarations, not definitions.
1876   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1877     if (FD->isThisDeclarationADefinition()) {
1878       S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
1879       return;
1880     }
1881   } else {
1882     const auto *VD = cast<VarDecl>(D);
1883     if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
1884       S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
1885       return;
1886     }
1887   }
1888 
1889   // Mark target used to prevent unneeded-internal-declaration warnings.
1890   if (!S.LangOpts.CPlusPlus) {
1891     // FIXME: demangle Str for C++, as the attribute refers to the mangled
1892     // linkage name, not the pre-mangled identifier.
1893     const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc());
1894     LookupResult LR(S, target, Sema::LookupOrdinaryName);
1895     if (S.LookupQualifiedName(LR, S.getCurLexicalContext()))
1896       for (NamedDecl *ND : LR)
1897         ND->markUsed(S.Context);
1898   }
1899 
1900   D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1901 }
1902 
1903 static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1904   StringRef Model;
1905   SourceLocation LiteralLoc;
1906   // Check that it is a string.
1907   if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
1908     return;
1909 
1910   // Check that the value.
1911   if (Model != "global-dynamic" && Model != "local-dynamic"
1912       && Model != "initial-exec" && Model != "local-exec") {
1913     S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
1914     return;
1915   }
1916 
1917   D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model));
1918 }
1919 
1920 static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1921   QualType ResultType = getFunctionOrMethodResultType(D);
1922   if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
1923     D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL));
1924     return;
1925   }
1926 
1927   S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1928       << AL << getFunctionOrMethodResultSourceRange(D);
1929 }
1930 
1931 static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1932   FunctionDecl *FD = cast<FunctionDecl>(D);
1933 
1934   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
1935     if (MD->getParent()->isLambda()) {
1936       S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL;
1937       return;
1938     }
1939   }
1940 
1941   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
1942     return;
1943 
1944   SmallVector<IdentifierInfo *, 8> CPUs;
1945   for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
1946     if (!AL.isArgIdent(ArgNo)) {
1947       S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1948           << AL << AANT_ArgumentIdentifier;
1949       return;
1950     }
1951 
1952     IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
1953     StringRef CPUName = CPUArg->Ident->getName().trim();
1954 
1955     if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) {
1956       S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value)
1957           << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
1958       return;
1959     }
1960 
1961     const TargetInfo &Target = S.Context.getTargetInfo();
1962     if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
1963           return Target.CPUSpecificManglingCharacter(CPUName) ==
1964                  Target.CPUSpecificManglingCharacter(Cur->getName());
1965         })) {
1966       S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
1967       return;
1968     }
1969     CPUs.push_back(CPUArg->Ident);
1970   }
1971 
1972   FD->setIsMultiVersion(true);
1973   if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
1974     D->addAttr(::new (S.Context)
1975                    CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size()));
1976   else
1977     D->addAttr(::new (S.Context)
1978                    CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size()));
1979 }
1980 
1981 static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1982   if (S.LangOpts.CPlusPlus) {
1983     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
1984         << AL << AttributeLangSupport::Cpp;
1985     return;
1986   }
1987 
1988   if (CommonAttr *CA = S.mergeCommonAttr(D, AL))
1989     D->addAttr(CA);
1990 }
1991 
1992 static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1993   if (checkAttrMutualExclusion<DisableTailCallsAttr>(S, D, AL))
1994     return;
1995 
1996   if (AL.isDeclspecAttribute()) {
1997     const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
1998     const auto &Arch = Triple.getArch();
1999     if (Arch != llvm::Triple::x86 &&
2000         (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
2001       S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
2002           << AL << Triple.getArchName();
2003       return;
2004     }
2005   }
2006 
2007   D->addAttr(::new (S.Context) NakedAttr(S.Context, AL));
2008 }
2009 
2010 static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2011   if (hasDeclarator(D)) return;
2012 
2013   if (!isa<ObjCMethodDecl>(D)) {
2014     S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
2015         << Attrs << ExpectedFunctionOrMethod;
2016     return;
2017   }
2018 
2019   D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs));
2020 }
2021 
2022 static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2023   if (!S.getLangOpts().CFProtectionBranch)
2024     S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
2025   else
2026     handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs);
2027 }
2028 
2029 bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) {
2030   if (!checkAttributeNumArgs(*this, Attrs, 0)) {
2031     Attrs.setInvalid();
2032     return true;
2033   }
2034 
2035   return false;
2036 }
2037 
2038 bool Sema::CheckAttrTarget(const ParsedAttr &AL) {
2039   // Check whether the attribute is valid on the current target.
2040   if (!AL.existsInTarget(Context.getTargetInfo())) {
2041     Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL;
2042     AL.setInvalid();
2043     return true;
2044   }
2045 
2046   return false;
2047 }
2048 
2049 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2050 
2051   // The checking path for 'noreturn' and 'analyzer_noreturn' are different
2052   // because 'analyzer_noreturn' does not impact the type.
2053   if (!isFunctionOrMethodOrBlock(D)) {
2054     ValueDecl *VD = dyn_cast<ValueDecl>(D);
2055     if (!VD || (!VD->getType()->isBlockPointerType() &&
2056                 !VD->getType()->isFunctionPointerType())) {
2057       S.Diag(AL.getLoc(), AL.isCXX11Attribute()
2058                               ? diag::err_attribute_wrong_decl_type
2059                               : diag::warn_attribute_wrong_decl_type)
2060           << AL << ExpectedFunctionMethodOrBlock;
2061       return;
2062     }
2063   }
2064 
2065   D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL));
2066 }
2067 
2068 // PS3 PPU-specific.
2069 static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2070   /*
2071     Returning a Vector Class in Registers
2072 
2073     According to the PPU ABI specifications, a class with a single member of
2074     vector type is returned in memory when used as the return value of a
2075     function.
2076     This results in inefficient code when implementing vector classes. To return
2077     the value in a single vector register, add the vecreturn attribute to the
2078     class definition. This attribute is also applicable to struct types.
2079 
2080     Example:
2081 
2082     struct Vector
2083     {
2084       __vector float xyzw;
2085     } __attribute__((vecreturn));
2086 
2087     Vector Add(Vector lhs, Vector rhs)
2088     {
2089       Vector result;
2090       result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
2091       return result; // This will be returned in a register
2092     }
2093   */
2094   if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
2095     S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
2096     return;
2097   }
2098 
2099   const auto *R = cast<RecordDecl>(D);
2100   int count = 0;
2101 
2102   if (!isa<CXXRecordDecl>(R)) {
2103     S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2104     return;
2105   }
2106 
2107   if (!cast<CXXRecordDecl>(R)->isPOD()) {
2108     S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
2109     return;
2110   }
2111 
2112   for (const auto *I : R->fields()) {
2113     if ((count == 1) || !I->getType()->isVectorType()) {
2114       S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2115       return;
2116     }
2117     count++;
2118   }
2119 
2120   D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL));
2121 }
2122 
2123 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
2124                                  const ParsedAttr &AL) {
2125   if (isa<ParmVarDecl>(D)) {
2126     // [[carries_dependency]] can only be applied to a parameter if it is a
2127     // parameter of a function declaration or lambda.
2128     if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
2129       S.Diag(AL.getLoc(),
2130              diag::err_carries_dependency_param_not_function_decl);
2131       return;
2132     }
2133   }
2134 
2135   D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL));
2136 }
2137 
2138 static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2139   bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
2140 
2141   // If this is spelled as the standard C++17 attribute, but not in C++17, warn
2142   // about using it as an extension.
2143   if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
2144     S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2145 
2146   D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL));
2147 }
2148 
2149 static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2150   uint32_t priority = ConstructorAttr::DefaultPriority;
2151   if (AL.getNumArgs() &&
2152       !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2153     return;
2154 
2155   D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority));
2156 }
2157 
2158 static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2159   uint32_t priority = DestructorAttr::DefaultPriority;
2160   if (AL.getNumArgs() &&
2161       !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2162     return;
2163 
2164   D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority));
2165 }
2166 
2167 template <typename AttrTy>
2168 static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
2169   // Handle the case where the attribute has a text message.
2170   StringRef Str;
2171   if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
2172     return;
2173 
2174   D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str));
2175 }
2176 
2177 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
2178                                           const ParsedAttr &AL) {
2179   if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
2180     S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition)
2181         << AL << AL.getRange();
2182     return;
2183   }
2184 
2185   D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL));
2186 }
2187 
2188 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
2189                                   IdentifierInfo *Platform,
2190                                   VersionTuple Introduced,
2191                                   VersionTuple Deprecated,
2192                                   VersionTuple Obsoleted) {
2193   StringRef PlatformName
2194     = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2195   if (PlatformName.empty())
2196     PlatformName = Platform->getName();
2197 
2198   // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
2199   // of these steps are needed).
2200   if (!Introduced.empty() && !Deprecated.empty() &&
2201       !(Introduced <= Deprecated)) {
2202     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2203       << 1 << PlatformName << Deprecated.getAsString()
2204       << 0 << Introduced.getAsString();
2205     return true;
2206   }
2207 
2208   if (!Introduced.empty() && !Obsoleted.empty() &&
2209       !(Introduced <= Obsoleted)) {
2210     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2211       << 2 << PlatformName << Obsoleted.getAsString()
2212       << 0 << Introduced.getAsString();
2213     return true;
2214   }
2215 
2216   if (!Deprecated.empty() && !Obsoleted.empty() &&
2217       !(Deprecated <= Obsoleted)) {
2218     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2219       << 2 << PlatformName << Obsoleted.getAsString()
2220       << 1 << Deprecated.getAsString();
2221     return true;
2222   }
2223 
2224   return false;
2225 }
2226 
2227 /// Check whether the two versions match.
2228 ///
2229 /// If either version tuple is empty, then they are assumed to match. If
2230 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
2231 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
2232                           bool BeforeIsOkay) {
2233   if (X.empty() || Y.empty())
2234     return true;
2235 
2236   if (X == Y)
2237     return true;
2238 
2239   if (BeforeIsOkay && X < Y)
2240     return true;
2241 
2242   return false;
2243 }
2244 
2245 AvailabilityAttr *Sema::mergeAvailabilityAttr(
2246     NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
2247     bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
2248     VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
2249     bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
2250     int Priority) {
2251   VersionTuple MergedIntroduced = Introduced;
2252   VersionTuple MergedDeprecated = Deprecated;
2253   VersionTuple MergedObsoleted = Obsoleted;
2254   bool FoundAny = false;
2255   bool OverrideOrImpl = false;
2256   switch (AMK) {
2257   case AMK_None:
2258   case AMK_Redeclaration:
2259     OverrideOrImpl = false;
2260     break;
2261 
2262   case AMK_Override:
2263   case AMK_ProtocolImplementation:
2264     OverrideOrImpl = true;
2265     break;
2266   }
2267 
2268   if (D->hasAttrs()) {
2269     AttrVec &Attrs = D->getAttrs();
2270     for (unsigned i = 0, e = Attrs.size(); i != e;) {
2271       const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2272       if (!OldAA) {
2273         ++i;
2274         continue;
2275       }
2276 
2277       IdentifierInfo *OldPlatform = OldAA->getPlatform();
2278       if (OldPlatform != Platform) {
2279         ++i;
2280         continue;
2281       }
2282 
2283       // If there is an existing availability attribute for this platform that
2284       // has a lower priority use the existing one and discard the new
2285       // attribute.
2286       if (OldAA->getPriority() < Priority)
2287         return nullptr;
2288 
2289       // If there is an existing attribute for this platform that has a higher
2290       // priority than the new attribute then erase the old one and continue
2291       // processing the attributes.
2292       if (OldAA->getPriority() > Priority) {
2293         Attrs.erase(Attrs.begin() + i);
2294         --e;
2295         continue;
2296       }
2297 
2298       FoundAny = true;
2299       VersionTuple OldIntroduced = OldAA->getIntroduced();
2300       VersionTuple OldDeprecated = OldAA->getDeprecated();
2301       VersionTuple OldObsoleted = OldAA->getObsoleted();
2302       bool OldIsUnavailable = OldAA->getUnavailable();
2303 
2304       if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
2305           !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
2306           !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
2307           !(OldIsUnavailable == IsUnavailable ||
2308             (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
2309         if (OverrideOrImpl) {
2310           int Which = -1;
2311           VersionTuple FirstVersion;
2312           VersionTuple SecondVersion;
2313           if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
2314             Which = 0;
2315             FirstVersion = OldIntroduced;
2316             SecondVersion = Introduced;
2317           } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
2318             Which = 1;
2319             FirstVersion = Deprecated;
2320             SecondVersion = OldDeprecated;
2321           } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
2322             Which = 2;
2323             FirstVersion = Obsoleted;
2324             SecondVersion = OldObsoleted;
2325           }
2326 
2327           if (Which == -1) {
2328             Diag(OldAA->getLocation(),
2329                  diag::warn_mismatched_availability_override_unavail)
2330               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2331               << (AMK == AMK_Override);
2332           } else {
2333             Diag(OldAA->getLocation(),
2334                  diag::warn_mismatched_availability_override)
2335               << Which
2336               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2337               << FirstVersion.getAsString() << SecondVersion.getAsString()
2338               << (AMK == AMK_Override);
2339           }
2340           if (AMK == AMK_Override)
2341             Diag(CI.getLoc(), diag::note_overridden_method);
2342           else
2343             Diag(CI.getLoc(), diag::note_protocol_method);
2344         } else {
2345           Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2346           Diag(CI.getLoc(), diag::note_previous_attribute);
2347         }
2348 
2349         Attrs.erase(Attrs.begin() + i);
2350         --e;
2351         continue;
2352       }
2353 
2354       VersionTuple MergedIntroduced2 = MergedIntroduced;
2355       VersionTuple MergedDeprecated2 = MergedDeprecated;
2356       VersionTuple MergedObsoleted2 = MergedObsoleted;
2357 
2358       if (MergedIntroduced2.empty())
2359         MergedIntroduced2 = OldIntroduced;
2360       if (MergedDeprecated2.empty())
2361         MergedDeprecated2 = OldDeprecated;
2362       if (MergedObsoleted2.empty())
2363         MergedObsoleted2 = OldObsoleted;
2364 
2365       if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2366                                 MergedIntroduced2, MergedDeprecated2,
2367                                 MergedObsoleted2)) {
2368         Attrs.erase(Attrs.begin() + i);
2369         --e;
2370         continue;
2371       }
2372 
2373       MergedIntroduced = MergedIntroduced2;
2374       MergedDeprecated = MergedDeprecated2;
2375       MergedObsoleted = MergedObsoleted2;
2376       ++i;
2377     }
2378   }
2379 
2380   if (FoundAny &&
2381       MergedIntroduced == Introduced &&
2382       MergedDeprecated == Deprecated &&
2383       MergedObsoleted == Obsoleted)
2384     return nullptr;
2385 
2386   // Only create a new attribute if !OverrideOrImpl, but we want to do
2387   // the checking.
2388   if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced,
2389                              MergedDeprecated, MergedObsoleted) &&
2390       !OverrideOrImpl) {
2391     auto *Avail = ::new (Context) AvailabilityAttr(
2392         Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable,
2393         Message, IsStrict, Replacement, Priority);
2394     Avail->setImplicit(Implicit);
2395     return Avail;
2396   }
2397   return nullptr;
2398 }
2399 
2400 static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2401   if (!checkAttributeNumArgs(S, AL, 1))
2402     return;
2403   IdentifierLoc *Platform = AL.getArgAsIdent(0);
2404 
2405   IdentifierInfo *II = Platform->Ident;
2406   if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
2407     S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
2408       << Platform->Ident;
2409 
2410   auto *ND = dyn_cast<NamedDecl>(D);
2411   if (!ND) // We warned about this already, so just return.
2412     return;
2413 
2414   AvailabilityChange Introduced = AL.getAvailabilityIntroduced();
2415   AvailabilityChange Deprecated = AL.getAvailabilityDeprecated();
2416   AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted();
2417   bool IsUnavailable = AL.getUnavailableLoc().isValid();
2418   bool IsStrict = AL.getStrictLoc().isValid();
2419   StringRef Str;
2420   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr()))
2421     Str = SE->getString();
2422   StringRef Replacement;
2423   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr()))
2424     Replacement = SE->getString();
2425 
2426   if (II->isStr("swift")) {
2427     if (Introduced.isValid() || Obsoleted.isValid() ||
2428         (!IsUnavailable && !Deprecated.isValid())) {
2429       S.Diag(AL.getLoc(),
2430              diag::warn_availability_swift_unavailable_deprecated_only);
2431       return;
2432     }
2433   }
2434 
2435   int PriorityModifier = AL.isPragmaClangAttribute()
2436                              ? Sema::AP_PragmaClangAttribute
2437                              : Sema::AP_Explicit;
2438   AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2439       ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version,
2440       Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement,
2441       Sema::AMK_None, PriorityModifier);
2442   if (NewAttr)
2443     D->addAttr(NewAttr);
2444 
2445   // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
2446   // matches before the start of the watchOS platform.
2447   if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
2448     IdentifierInfo *NewII = nullptr;
2449     if (II->getName() == "ios")
2450       NewII = &S.Context.Idents.get("watchos");
2451     else if (II->getName() == "ios_app_extension")
2452       NewII = &S.Context.Idents.get("watchos_app_extension");
2453 
2454     if (NewII) {
2455         auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple {
2456           if (Version.empty())
2457             return Version;
2458           auto Major = Version.getMajor();
2459           auto NewMajor = Major >= 9 ? Major - 7 : 0;
2460           if (NewMajor >= 2) {
2461             if (Version.getMinor().hasValue()) {
2462               if (Version.getSubminor().hasValue())
2463                 return VersionTuple(NewMajor, Version.getMinor().getValue(),
2464                                     Version.getSubminor().getValue());
2465               else
2466                 return VersionTuple(NewMajor, Version.getMinor().getValue());
2467             }
2468             return VersionTuple(NewMajor);
2469           }
2470 
2471           return VersionTuple(2, 0);
2472         };
2473 
2474         auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
2475         auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
2476         auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
2477 
2478         AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2479             ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2480             NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2481             Sema::AMK_None,
2482             PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2483         if (NewAttr)
2484           D->addAttr(NewAttr);
2485       }
2486   } else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
2487     // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
2488     // matches before the start of the tvOS platform.
2489     IdentifierInfo *NewII = nullptr;
2490     if (II->getName() == "ios")
2491       NewII = &S.Context.Idents.get("tvos");
2492     else if (II->getName() == "ios_app_extension")
2493       NewII = &S.Context.Idents.get("tvos_app_extension");
2494 
2495     if (NewII) {
2496       AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2497           ND, AL, NewII, true /*Implicit*/, Introduced.Version,
2498           Deprecated.Version, Obsoleted.Version, IsUnavailable, Str, IsStrict,
2499           Replacement, Sema::AMK_None,
2500           PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2501       if (NewAttr)
2502         D->addAttr(NewAttr);
2503       }
2504   }
2505 }
2506 
2507 static void handleExternalSourceSymbolAttr(Sema &S, Decl *D,
2508                                            const ParsedAttr &AL) {
2509   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
2510     return;
2511   assert(checkAttributeAtMostNumArgs(S, AL, 3) &&
2512          "Invalid number of arguments in an external_source_symbol attribute");
2513 
2514   StringRef Language;
2515   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0)))
2516     Language = SE->getString();
2517   StringRef DefinedIn;
2518   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1)))
2519     DefinedIn = SE->getString();
2520   bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
2521 
2522   D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
2523       S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration));
2524 }
2525 
2526 template <class T>
2527 static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI,
2528                               typename T::VisibilityType value) {
2529   T *existingAttr = D->getAttr<T>();
2530   if (existingAttr) {
2531     typename T::VisibilityType existingValue = existingAttr->getVisibility();
2532     if (existingValue == value)
2533       return nullptr;
2534     S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2535     S.Diag(CI.getLoc(), diag::note_previous_attribute);
2536     D->dropAttr<T>();
2537   }
2538   return ::new (S.Context) T(S.Context, CI, value);
2539 }
2540 
2541 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D,
2542                                           const AttributeCommonInfo &CI,
2543                                           VisibilityAttr::VisibilityType Vis) {
2544   return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis);
2545 }
2546 
2547 TypeVisibilityAttr *
2548 Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
2549                               TypeVisibilityAttr::VisibilityType Vis) {
2550   return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis);
2551 }
2552 
2553 static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL,
2554                                  bool isTypeVisibility) {
2555   // Visibility attributes don't mean anything on a typedef.
2556   if (isa<TypedefNameDecl>(D)) {
2557     S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL;
2558     return;
2559   }
2560 
2561   // 'type_visibility' can only go on a type or namespace.
2562   if (isTypeVisibility &&
2563       !(isa<TagDecl>(D) ||
2564         isa<ObjCInterfaceDecl>(D) ||
2565         isa<NamespaceDecl>(D))) {
2566     S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2567         << AL << ExpectedTypeOrNamespace;
2568     return;
2569   }
2570 
2571   // Check that the argument is a string literal.
2572   StringRef TypeStr;
2573   SourceLocation LiteralLoc;
2574   if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
2575     return;
2576 
2577   VisibilityAttr::VisibilityType type;
2578   if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2579     S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL
2580                                                                 << TypeStr;
2581     return;
2582   }
2583 
2584   // Complain about attempts to use protected visibility on targets
2585   // (like Darwin) that don't support it.
2586   if (type == VisibilityAttr::Protected &&
2587       !S.Context.getTargetInfo().hasProtectedVisibility()) {
2588     S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
2589     type = VisibilityAttr::Default;
2590   }
2591 
2592   Attr *newAttr;
2593   if (isTypeVisibility) {
2594     newAttr = S.mergeTypeVisibilityAttr(
2595         D, AL, (TypeVisibilityAttr::VisibilityType)type);
2596   } else {
2597     newAttr = S.mergeVisibilityAttr(D, AL, type);
2598   }
2599   if (newAttr)
2600     D->addAttr(newAttr);
2601 }
2602 
2603 static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2604   // objc_direct cannot be set on methods declared in the context of a protocol
2605   if (isa<ObjCProtocolDecl>(D->getDeclContext())) {
2606     S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false;
2607     return;
2608   }
2609 
2610   if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2611     handleSimpleAttribute<ObjCDirectAttr>(S, D, AL);
2612   } else {
2613     S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2614   }
2615 }
2616 
2617 static void handleObjCDirectMembersAttr(Sema &S, Decl *D,
2618                                         const ParsedAttr &AL) {
2619   if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2620     handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
2621   } else {
2622     S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2623   }
2624 }
2625 
2626 static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2627   const auto *M = cast<ObjCMethodDecl>(D);
2628   if (!AL.isArgIdent(0)) {
2629     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2630         << AL << 1 << AANT_ArgumentIdentifier;
2631     return;
2632   }
2633 
2634   IdentifierLoc *IL = AL.getArgAsIdent(0);
2635   ObjCMethodFamilyAttr::FamilyKind F;
2636   if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
2637     S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident;
2638     return;
2639   }
2640 
2641   if (F == ObjCMethodFamilyAttr::OMF_init &&
2642       !M->getReturnType()->isObjCObjectPointerType()) {
2643     S.Diag(M->getLocation(), diag::err_init_method_bad_return_type)
2644         << M->getReturnType();
2645     // Ignore the attribute.
2646     return;
2647   }
2648 
2649   D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F));
2650 }
2651 
2652 static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) {
2653   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2654     QualType T = TD->getUnderlyingType();
2655     if (!T->isCARCBridgableType()) {
2656       S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2657       return;
2658     }
2659   }
2660   else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
2661     QualType T = PD->getType();
2662     if (!T->isCARCBridgableType()) {
2663       S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
2664       return;
2665     }
2666   }
2667   else {
2668     // It is okay to include this attribute on properties, e.g.:
2669     //
2670     //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2671     //
2672     // In this case it follows tradition and suppresses an error in the above
2673     // case.
2674     S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
2675   }
2676   D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL));
2677 }
2678 
2679 static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) {
2680   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2681     QualType T = TD->getUnderlyingType();
2682     if (!T->isObjCObjectPointerType()) {
2683       S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
2684       return;
2685     }
2686   } else {
2687     S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
2688     return;
2689   }
2690   D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL));
2691 }
2692 
2693 static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2694   if (!AL.isArgIdent(0)) {
2695     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2696         << AL << 1 << AANT_ArgumentIdentifier;
2697     return;
2698   }
2699 
2700   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
2701   BlocksAttr::BlockType type;
2702   if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
2703     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
2704     return;
2705   }
2706 
2707   D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type));
2708 }
2709 
2710 static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2711   unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
2712   if (AL.getNumArgs() > 0) {
2713     Expr *E = AL.getArgAsExpr(0);
2714     llvm::APSInt Idx(32);
2715     if (E->isTypeDependent() || E->isValueDependent() ||
2716         !E->isIntegerConstantExpr(Idx, S.Context)) {
2717       S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2718           << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2719       return;
2720     }
2721 
2722     if (Idx.isSigned() && Idx.isNegative()) {
2723       S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2724         << E->getSourceRange();
2725       return;
2726     }
2727 
2728     sentinel = Idx.getZExtValue();
2729   }
2730 
2731   unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
2732   if (AL.getNumArgs() > 1) {
2733     Expr *E = AL.getArgAsExpr(1);
2734     llvm::APSInt Idx(32);
2735     if (E->isTypeDependent() || E->isValueDependent() ||
2736         !E->isIntegerConstantExpr(Idx, S.Context)) {
2737       S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2738           << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2739       return;
2740     }
2741     nullPos = Idx.getZExtValue();
2742 
2743     if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
2744       // FIXME: This error message could be improved, it would be nice
2745       // to say what the bounds actually are.
2746       S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2747         << E->getSourceRange();
2748       return;
2749     }
2750   }
2751 
2752   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2753     const FunctionType *FT = FD->getType()->castAs<FunctionType>();
2754     if (isa<FunctionNoProtoType>(FT)) {
2755       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
2756       return;
2757     }
2758 
2759     if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2760       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2761       return;
2762     }
2763   } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
2764     if (!MD->isVariadic()) {
2765       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2766       return;
2767     }
2768   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
2769     if (!BD->isVariadic()) {
2770       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
2771       return;
2772     }
2773   } else if (const auto *V = dyn_cast<VarDecl>(D)) {
2774     QualType Ty = V->getType();
2775     if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
2776       const FunctionType *FT = Ty->isFunctionPointerType()
2777        ? D->getFunctionType()
2778        : Ty->castAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
2779       if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2780         int m = Ty->isFunctionPointerType() ? 0 : 1;
2781         S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
2782         return;
2783       }
2784     } else {
2785       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2786           << AL << ExpectedFunctionMethodOrBlock;
2787       return;
2788     }
2789   } else {
2790     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2791         << AL << ExpectedFunctionMethodOrBlock;
2792     return;
2793   }
2794   D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos));
2795 }
2796 
2797 static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) {
2798   if (D->getFunctionType() &&
2799       D->getFunctionType()->getReturnType()->isVoidType() &&
2800       !isa<CXXConstructorDecl>(D)) {
2801     S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0;
2802     return;
2803   }
2804   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
2805     if (MD->getReturnType()->isVoidType()) {
2806       S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1;
2807       return;
2808     }
2809 
2810   StringRef Str;
2811   if ((AL.isCXX11Attribute() || AL.isC2xAttribute()) && !AL.getScopeName()) {
2812     // If this is spelled as the standard C++17 attribute, but not in C++17,
2813     // warn about using it as an extension. If there are attribute arguments,
2814     // then claim it's a C++2a extension instead.
2815     // FIXME: If WG14 does not seem likely to adopt the same feature, add an
2816     // extension warning for C2x mode.
2817     const LangOptions &LO = S.getLangOpts();
2818     if (AL.getNumArgs() == 1) {
2819       if (LO.CPlusPlus && !LO.CPlusPlus2a)
2820         S.Diag(AL.getLoc(), diag::ext_cxx2a_attr) << AL;
2821 
2822       // Since this this is spelled [[nodiscard]], get the optional string
2823       // literal. If in C++ mode, but not in C++2a mode, diagnose as an
2824       // extension.
2825       // FIXME: C2x should support this feature as well, even as an extension.
2826       if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
2827         return;
2828     } else if (LO.CPlusPlus && !LO.CPlusPlus17)
2829       S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2830   }
2831 
2832   D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str));
2833 }
2834 
2835 static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2836   // weak_import only applies to variable & function declarations.
2837   bool isDef = false;
2838   if (!D->canBeWeakImported(isDef)) {
2839     if (isDef)
2840       S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
2841         << "weak_import";
2842     else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
2843              (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
2844               (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
2845       // Nothing to warn about here.
2846     } else
2847       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2848           << AL << ExpectedVariableOrFunction;
2849 
2850     return;
2851   }
2852 
2853   D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL));
2854 }
2855 
2856 // Handles reqd_work_group_size and work_group_size_hint.
2857 template <typename WorkGroupAttr>
2858 static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
2859   uint32_t WGSize[3];
2860   for (unsigned i = 0; i < 3; ++i) {
2861     const Expr *E = AL.getArgAsExpr(i);
2862     if (!checkUInt32Argument(S, AL, E, WGSize[i], i,
2863                              /*StrictlyUnsigned=*/true))
2864       return;
2865     if (WGSize[i] == 0) {
2866       S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
2867           << AL << E->getSourceRange();
2868       return;
2869     }
2870   }
2871 
2872   WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
2873   if (Existing && !(Existing->getXDim() == WGSize[0] &&
2874                     Existing->getYDim() == WGSize[1] &&
2875                     Existing->getZDim() == WGSize[2]))
2876     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
2877 
2878   D->addAttr(::new (S.Context)
2879                  WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2]));
2880 }
2881 
2882 // Handles intel_reqd_sub_group_size.
2883 static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
2884   uint32_t SGSize;
2885   const Expr *E = AL.getArgAsExpr(0);
2886   if (!checkUInt32Argument(S, AL, E, SGSize))
2887     return;
2888   if (SGSize == 0) {
2889     S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
2890         << AL << E->getSourceRange();
2891     return;
2892   }
2893 
2894   OpenCLIntelReqdSubGroupSizeAttr *Existing =
2895       D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>();
2896   if (Existing && Existing->getSubGroupSize() != SGSize)
2897     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
2898 
2899   D->addAttr(::new (S.Context)
2900                  OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize));
2901 }
2902 
2903 static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) {
2904   if (!AL.hasParsedType()) {
2905     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
2906     return;
2907   }
2908 
2909   TypeSourceInfo *ParmTSI = nullptr;
2910   QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
2911   assert(ParmTSI && "no type source info for attribute argument");
2912 
2913   if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
2914       (ParmType->isBooleanType() ||
2915        !ParmType->isIntegralType(S.getASTContext()))) {
2916     S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL;
2917     return;
2918   }
2919 
2920   if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
2921     if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
2922       S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
2923       return;
2924     }
2925   }
2926 
2927   D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI));
2928 }
2929 
2930 SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
2931                                     StringRef Name) {
2932   // Explicit or partial specializations do not inherit
2933   // the section attribute from the primary template.
2934   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2935     if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate &&
2936         FD->isFunctionTemplateSpecialization())
2937       return nullptr;
2938   }
2939   if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
2940     if (ExistingAttr->getName() == Name)
2941       return nullptr;
2942     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
2943          << 1 /*section*/;
2944     Diag(CI.getLoc(), diag::note_previous_attribute);
2945     return nullptr;
2946   }
2947   return ::new (Context) SectionAttr(Context, CI, Name);
2948 }
2949 
2950 bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
2951   std::string Error = Context.getTargetInfo().isValidSectionSpecifier(SecName);
2952   if (!Error.empty()) {
2953     Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error
2954          << 1 /*'section'*/;
2955     return false;
2956   }
2957   return true;
2958 }
2959 
2960 static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2961   // Make sure that there is a string literal as the sections's single
2962   // argument.
2963   StringRef Str;
2964   SourceLocation LiteralLoc;
2965   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
2966     return;
2967 
2968   if (!S.checkSectionName(LiteralLoc, Str))
2969     return;
2970 
2971   // If the target wants to validate the section specifier, make it happen.
2972   std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str);
2973   if (!Error.empty()) {
2974     S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
2975     << Error;
2976     return;
2977   }
2978 
2979   SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str);
2980   if (NewAttr)
2981     D->addAttr(NewAttr);
2982 }
2983 
2984 // This is used for `__declspec(code_seg("segname"))` on a decl.
2985 // `#pragma code_seg("segname")` uses checkSectionName() instead.
2986 static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc,
2987                              StringRef CodeSegName) {
2988   std::string Error =
2989       S.Context.getTargetInfo().isValidSectionSpecifier(CodeSegName);
2990   if (!Error.empty()) {
2991     S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
2992         << Error << 0 /*'code-seg'*/;
2993     return false;
2994   }
2995 
2996   return true;
2997 }
2998 
2999 CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3000                                     StringRef Name) {
3001   // Explicit or partial specializations do not inherit
3002   // the code_seg attribute from the primary template.
3003   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3004     if (FD->isFunctionTemplateSpecialization())
3005       return nullptr;
3006   }
3007   if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3008     if (ExistingAttr->getName() == Name)
3009       return nullptr;
3010     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3011          << 0 /*codeseg*/;
3012     Diag(CI.getLoc(), diag::note_previous_attribute);
3013     return nullptr;
3014   }
3015   return ::new (Context) CodeSegAttr(Context, CI, Name);
3016 }
3017 
3018 static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3019   StringRef Str;
3020   SourceLocation LiteralLoc;
3021   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3022     return;
3023   if (!checkCodeSegName(S, LiteralLoc, Str))
3024     return;
3025   if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3026     if (!ExistingAttr->isImplicit()) {
3027       S.Diag(AL.getLoc(),
3028              ExistingAttr->getName() == Str
3029              ? diag::warn_duplicate_codeseg_attribute
3030              : diag::err_conflicting_codeseg_attribute);
3031       return;
3032     }
3033     D->dropAttr<CodeSegAttr>();
3034   }
3035   if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str))
3036     D->addAttr(CSA);
3037 }
3038 
3039 // Check for things we'd like to warn about. Multiversioning issues are
3040 // handled later in the process, once we know how many exist.
3041 bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
3042   enum FirstParam { Unsupported, Duplicate };
3043   enum SecondParam { None, Architecture };
3044   for (auto Str : {"tune=", "fpmath="})
3045     if (AttrStr.find(Str) != StringRef::npos)
3046       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3047              << Unsupported << None << Str;
3048 
3049   ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr);
3050 
3051   if (!ParsedAttrs.Architecture.empty() &&
3052       !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture))
3053     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3054            << Unsupported << Architecture << ParsedAttrs.Architecture;
3055 
3056   if (ParsedAttrs.DuplicateArchitecture)
3057     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3058            << Duplicate << None << "arch=";
3059 
3060   for (const auto &Feature : ParsedAttrs.Features) {
3061     auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
3062     if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
3063       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3064              << Unsupported << None << CurFeature;
3065   }
3066 
3067   TargetInfo::BranchProtectionInfo BPI;
3068   StringRef Error;
3069   if (!ParsedAttrs.BranchProtection.empty() &&
3070       !Context.getTargetInfo().validateBranchProtection(
3071           ParsedAttrs.BranchProtection, BPI, Error)) {
3072     if (Error.empty())
3073       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3074              << Unsupported << None << "branch-protection";
3075     else
3076       return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec)
3077              << Error;
3078   }
3079 
3080   return false;
3081 }
3082 
3083 static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3084   StringRef Str;
3085   SourceLocation LiteralLoc;
3086   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3087       S.checkTargetAttr(LiteralLoc, Str))
3088     return;
3089 
3090   TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str);
3091   D->addAttr(NewAttr);
3092 }
3093 
3094 static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3095   Expr *E = AL.getArgAsExpr(0);
3096   uint32_t VecWidth;
3097   if (!checkUInt32Argument(S, AL, E, VecWidth)) {
3098     AL.setInvalid();
3099     return;
3100   }
3101 
3102   MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>();
3103   if (Existing && Existing->getVectorWidth() != VecWidth) {
3104     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3105     return;
3106   }
3107 
3108   D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth));
3109 }
3110 
3111 static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3112   Expr *E = AL.getArgAsExpr(0);
3113   SourceLocation Loc = E->getExprLoc();
3114   FunctionDecl *FD = nullptr;
3115   DeclarationNameInfo NI;
3116 
3117   // gcc only allows for simple identifiers. Since we support more than gcc, we
3118   // will warn the user.
3119   if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3120     if (DRE->hasQualifier())
3121       S.Diag(Loc, diag::warn_cleanup_ext);
3122     FD = dyn_cast<FunctionDecl>(DRE->getDecl());
3123     NI = DRE->getNameInfo();
3124     if (!FD) {
3125       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
3126         << NI.getName();
3127       return;
3128     }
3129   } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
3130     if (ULE->hasExplicitTemplateArgs())
3131       S.Diag(Loc, diag::warn_cleanup_ext);
3132     FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
3133     NI = ULE->getNameInfo();
3134     if (!FD) {
3135       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
3136         << NI.getName();
3137       if (ULE->getType() == S.Context.OverloadTy)
3138         S.NoteAllOverloadCandidates(ULE);
3139       return;
3140     }
3141   } else {
3142     S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
3143     return;
3144   }
3145 
3146   if (FD->getNumParams() != 1) {
3147     S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
3148       << NI.getName();
3149     return;
3150   }
3151 
3152   // We're currently more strict than GCC about what function types we accept.
3153   // If this ever proves to be a problem it should be easy to fix.
3154   QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType());
3155   QualType ParamTy = FD->getParamDecl(0)->getType();
3156   if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
3157                                    ParamTy, Ty) != Sema::Compatible) {
3158     S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
3159       << NI.getName() << ParamTy << Ty;
3160     return;
3161   }
3162 
3163   D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD));
3164 }
3165 
3166 static void handleEnumExtensibilityAttr(Sema &S, Decl *D,
3167                                         const ParsedAttr &AL) {
3168   if (!AL.isArgIdent(0)) {
3169     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3170         << AL << 0 << AANT_ArgumentIdentifier;
3171     return;
3172   }
3173 
3174   EnumExtensibilityAttr::Kind ExtensibilityKind;
3175   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3176   if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
3177                                                ExtensibilityKind)) {
3178     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
3179     return;
3180   }
3181 
3182   D->addAttr(::new (S.Context)
3183                  EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind));
3184 }
3185 
3186 /// Handle __attribute__((format_arg((idx)))) attribute based on
3187 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3188 static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3189   Expr *IdxExpr = AL.getArgAsExpr(0);
3190   ParamIdx Idx;
3191   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx))
3192     return;
3193 
3194   // Make sure the format string is really a string.
3195   QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
3196 
3197   bool NotNSStringTy = !isNSStringType(Ty, S.Context);
3198   if (NotNSStringTy &&
3199       !isCFStringType(Ty, S.Context) &&
3200       (!Ty->isPointerType() ||
3201        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3202     S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3203         << "a string type" << IdxExpr->getSourceRange()
3204         << getFunctionOrMethodParamRange(D, 0);
3205     return;
3206   }
3207   Ty = getFunctionOrMethodResultType(D);
3208   if (!isNSStringType(Ty, S.Context) &&
3209       !isCFStringType(Ty, S.Context) &&
3210       (!Ty->isPointerType() ||
3211        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3212     S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
3213         << (NotNSStringTy ? "string type" : "NSString")
3214         << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3215     return;
3216   }
3217 
3218   D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx));
3219 }
3220 
3221 enum FormatAttrKind {
3222   CFStringFormat,
3223   NSStringFormat,
3224   StrftimeFormat,
3225   SupportedFormat,
3226   IgnoredFormat,
3227   InvalidFormat
3228 };
3229 
3230 /// getFormatAttrKind - Map from format attribute names to supported format
3231 /// types.
3232 static FormatAttrKind getFormatAttrKind(StringRef Format) {
3233   return llvm::StringSwitch<FormatAttrKind>(Format)
3234       // Check for formats that get handled specially.
3235       .Case("NSString", NSStringFormat)
3236       .Case("CFString", CFStringFormat)
3237       .Case("strftime", StrftimeFormat)
3238 
3239       // Otherwise, check for supported formats.
3240       .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
3241       .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
3242       .Case("kprintf", SupportedFormat)         // OpenBSD.
3243       .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
3244       .Case("os_trace", SupportedFormat)
3245       .Case("os_log", SupportedFormat)
3246 
3247       .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
3248       .Default(InvalidFormat);
3249 }
3250 
3251 /// Handle __attribute__((init_priority(priority))) attributes based on
3252 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
3253 static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3254   if (!S.getLangOpts().CPlusPlus) {
3255     S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
3256     return;
3257   }
3258 
3259   if (S.getCurFunctionOrMethodDecl()) {
3260     S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3261     AL.setInvalid();
3262     return;
3263   }
3264   QualType T = cast<VarDecl>(D)->getType();
3265   if (S.Context.getAsArrayType(T))
3266     T = S.Context.getBaseElementType(T);
3267   if (!T->getAs<RecordType>()) {
3268     S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3269     AL.setInvalid();
3270     return;
3271   }
3272 
3273   Expr *E = AL.getArgAsExpr(0);
3274   uint32_t prioritynum;
3275   if (!checkUInt32Argument(S, AL, E, prioritynum)) {
3276     AL.setInvalid();
3277     return;
3278   }
3279 
3280   if (prioritynum < 101 || prioritynum > 65535) {
3281     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
3282         << E->getSourceRange() << AL << 101 << 65535;
3283     AL.setInvalid();
3284     return;
3285   }
3286   D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum));
3287 }
3288 
3289 FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3290                                   IdentifierInfo *Format, int FormatIdx,
3291                                   int FirstArg) {
3292   // Check whether we already have an equivalent format attribute.
3293   for (auto *F : D->specific_attrs<FormatAttr>()) {
3294     if (F->getType() == Format &&
3295         F->getFormatIdx() == FormatIdx &&
3296         F->getFirstArg() == FirstArg) {
3297       // If we don't have a valid location for this attribute, adopt the
3298       // location.
3299       if (F->getLocation().isInvalid())
3300         F->setRange(CI.getRange());
3301       return nullptr;
3302     }
3303   }
3304 
3305   return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg);
3306 }
3307 
3308 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
3309 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3310 static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3311   if (!AL.isArgIdent(0)) {
3312     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3313         << AL << 1 << AANT_ArgumentIdentifier;
3314     return;
3315   }
3316 
3317   // In C++ the implicit 'this' function parameter also counts, and they are
3318   // counted from one.
3319   bool HasImplicitThisParam = isInstanceMethod(D);
3320   unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
3321 
3322   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3323   StringRef Format = II->getName();
3324 
3325   if (normalizeName(Format)) {
3326     // If we've modified the string name, we need a new identifier for it.
3327     II = &S.Context.Idents.get(Format);
3328   }
3329 
3330   // Check for supported formats.
3331   FormatAttrKind Kind = getFormatAttrKind(Format);
3332 
3333   if (Kind == IgnoredFormat)
3334     return;
3335 
3336   if (Kind == InvalidFormat) {
3337     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
3338         << AL << II->getName();
3339     return;
3340   }
3341 
3342   // checks for the 2nd argument
3343   Expr *IdxExpr = AL.getArgAsExpr(1);
3344   uint32_t Idx;
3345   if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2))
3346     return;
3347 
3348   if (Idx < 1 || Idx > NumArgs) {
3349     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3350         << AL << 2 << IdxExpr->getSourceRange();
3351     return;
3352   }
3353 
3354   // FIXME: Do we need to bounds check?
3355   unsigned ArgIdx = Idx - 1;
3356 
3357   if (HasImplicitThisParam) {
3358     if (ArgIdx == 0) {
3359       S.Diag(AL.getLoc(),
3360              diag::err_format_attribute_implicit_this_format_string)
3361         << IdxExpr->getSourceRange();
3362       return;
3363     }
3364     ArgIdx--;
3365   }
3366 
3367   // make sure the format string is really a string
3368   QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
3369 
3370   if (Kind == CFStringFormat) {
3371     if (!isCFStringType(Ty, S.Context)) {
3372       S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3373         << "a CFString" << IdxExpr->getSourceRange()
3374         << getFunctionOrMethodParamRange(D, ArgIdx);
3375       return;
3376     }
3377   } else if (Kind == NSStringFormat) {
3378     // FIXME: do we need to check if the type is NSString*?  What are the
3379     // semantics?
3380     if (!isNSStringType(Ty, S.Context)) {
3381       S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3382         << "an NSString" << IdxExpr->getSourceRange()
3383         << getFunctionOrMethodParamRange(D, ArgIdx);
3384       return;
3385     }
3386   } else if (!Ty->isPointerType() ||
3387              !Ty->castAs<PointerType>()->getPointeeType()->isCharType()) {
3388     S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3389       << "a string type" << IdxExpr->getSourceRange()
3390       << getFunctionOrMethodParamRange(D, ArgIdx);
3391     return;
3392   }
3393 
3394   // check the 3rd argument
3395   Expr *FirstArgExpr = AL.getArgAsExpr(2);
3396   uint32_t FirstArg;
3397   if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3))
3398     return;
3399 
3400   // check if the function is variadic if the 3rd argument non-zero
3401   if (FirstArg != 0) {
3402     if (isFunctionOrMethodVariadic(D)) {
3403       ++NumArgs; // +1 for ...
3404     } else {
3405       S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
3406       return;
3407     }
3408   }
3409 
3410   // strftime requires FirstArg to be 0 because it doesn't read from any
3411   // variable the input is just the current time + the format string.
3412   if (Kind == StrftimeFormat) {
3413     if (FirstArg != 0) {
3414       S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
3415         << FirstArgExpr->getSourceRange();
3416       return;
3417     }
3418   // if 0 it disables parameter checking (to use with e.g. va_list)
3419   } else if (FirstArg != 0 && FirstArg != NumArgs) {
3420     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3421         << AL << 3 << FirstArgExpr->getSourceRange();
3422     return;
3423   }
3424 
3425   FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg);
3426   if (NewAttr)
3427     D->addAttr(NewAttr);
3428 }
3429 
3430 /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
3431 static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3432   // The index that identifies the callback callee is mandatory.
3433   if (AL.getNumArgs() == 0) {
3434     S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee)
3435         << AL.getRange();
3436     return;
3437   }
3438 
3439   bool HasImplicitThisParam = isInstanceMethod(D);
3440   int32_t NumArgs = getFunctionOrMethodNumParams(D);
3441 
3442   FunctionDecl *FD = D->getAsFunction();
3443   assert(FD && "Expected a function declaration!");
3444 
3445   llvm::StringMap<int> NameIdxMapping;
3446   NameIdxMapping["__"] = -1;
3447 
3448   NameIdxMapping["this"] = 0;
3449 
3450   int Idx = 1;
3451   for (const ParmVarDecl *PVD : FD->parameters())
3452     NameIdxMapping[PVD->getName()] = Idx++;
3453 
3454   auto UnknownName = NameIdxMapping.end();
3455 
3456   SmallVector<int, 8> EncodingIndices;
3457   for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) {
3458     SourceRange SR;
3459     int32_t ArgIdx;
3460 
3461     if (AL.isArgIdent(I)) {
3462       IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
3463       auto It = NameIdxMapping.find(IdLoc->Ident->getName());
3464       if (It == UnknownName) {
3465         S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown)
3466             << IdLoc->Ident << IdLoc->Loc;
3467         return;
3468       }
3469 
3470       SR = SourceRange(IdLoc->Loc);
3471       ArgIdx = It->second;
3472     } else if (AL.isArgExpr(I)) {
3473       Expr *IdxExpr = AL.getArgAsExpr(I);
3474 
3475       // If the expression is not parseable as an int32_t we have a problem.
3476       if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1,
3477                                false)) {
3478         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3479             << AL << (I + 1) << IdxExpr->getSourceRange();
3480         return;
3481       }
3482 
3483       // Check oob, excluding the special values, 0 and -1.
3484       if (ArgIdx < -1 || ArgIdx > NumArgs) {
3485         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3486             << AL << (I + 1) << IdxExpr->getSourceRange();
3487         return;
3488       }
3489 
3490       SR = IdxExpr->getSourceRange();
3491     } else {
3492       llvm_unreachable("Unexpected ParsedAttr argument type!");
3493     }
3494 
3495     if (ArgIdx == 0 && !HasImplicitThisParam) {
3496       S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available)
3497           << (I + 1) << SR;
3498       return;
3499     }
3500 
3501     // Adjust for the case we do not have an implicit "this" parameter. In this
3502     // case we decrease all positive values by 1 to get LLVM argument indices.
3503     if (!HasImplicitThisParam && ArgIdx > 0)
3504       ArgIdx -= 1;
3505 
3506     EncodingIndices.push_back(ArgIdx);
3507   }
3508 
3509   int CalleeIdx = EncodingIndices.front();
3510   // Check if the callee index is proper, thus not "this" and not "unknown".
3511   // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam"
3512   // is false and positive if "HasImplicitThisParam" is true.
3513   if (CalleeIdx < (int)HasImplicitThisParam) {
3514     S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee)
3515         << AL.getRange();
3516     return;
3517   }
3518 
3519   // Get the callee type, note the index adjustment as the AST doesn't contain
3520   // the this type (which the callee cannot reference anyway!).
3521   const Type *CalleeType =
3522       getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam)
3523           .getTypePtr();
3524   if (!CalleeType || !CalleeType->isFunctionPointerType()) {
3525     S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
3526         << AL.getRange();
3527     return;
3528   }
3529 
3530   const Type *CalleeFnType =
3531       CalleeType->getPointeeType()->getUnqualifiedDesugaredType();
3532 
3533   // TODO: Check the type of the callee arguments.
3534 
3535   const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType);
3536   if (!CalleeFnProtoType) {
3537     S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
3538         << AL.getRange();
3539     return;
3540   }
3541 
3542   if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) {
3543     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
3544         << AL << (unsigned)(EncodingIndices.size() - 1);
3545     return;
3546   }
3547 
3548   if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) {
3549     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
3550         << AL << (unsigned)(EncodingIndices.size() - 1);
3551     return;
3552   }
3553 
3554   if (CalleeFnProtoType->isVariadic()) {
3555     S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange();
3556     return;
3557   }
3558 
3559   // Do not allow multiple callback attributes.
3560   if (D->hasAttr<CallbackAttr>()) {
3561     S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange();
3562     return;
3563   }
3564 
3565   D->addAttr(::new (S.Context) CallbackAttr(
3566       S.Context, AL, EncodingIndices.data(), EncodingIndices.size()));
3567 }
3568 
3569 static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3570   // Try to find the underlying union declaration.
3571   RecordDecl *RD = nullptr;
3572   const auto *TD = dyn_cast<TypedefNameDecl>(D);
3573   if (TD && TD->getUnderlyingType()->isUnionType())
3574     RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
3575   else
3576     RD = dyn_cast<RecordDecl>(D);
3577 
3578   if (!RD || !RD->isUnion()) {
3579     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL
3580                                                               << ExpectedUnion;
3581     return;
3582   }
3583 
3584   if (!RD->isCompleteDefinition()) {
3585     if (!RD->isBeingDefined())
3586       S.Diag(AL.getLoc(),
3587              diag::warn_transparent_union_attribute_not_definition);
3588     return;
3589   }
3590 
3591   RecordDecl::field_iterator Field = RD->field_begin(),
3592                           FieldEnd = RD->field_end();
3593   if (Field == FieldEnd) {
3594     S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
3595     return;
3596   }
3597 
3598   FieldDecl *FirstField = *Field;
3599   QualType FirstType = FirstField->getType();
3600   if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
3601     S.Diag(FirstField->getLocation(),
3602            diag::warn_transparent_union_attribute_floating)
3603       << FirstType->isVectorType() << FirstType;
3604     return;
3605   }
3606 
3607   if (FirstType->isIncompleteType())
3608     return;
3609   uint64_t FirstSize = S.Context.getTypeSize(FirstType);
3610   uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
3611   for (; Field != FieldEnd; ++Field) {
3612     QualType FieldType = Field->getType();
3613     if (FieldType->isIncompleteType())
3614       return;
3615     // FIXME: this isn't fully correct; we also need to test whether the
3616     // members of the union would all have the same calling convention as the
3617     // first member of the union. Checking just the size and alignment isn't
3618     // sufficient (consider structs passed on the stack instead of in registers
3619     // as an example).
3620     if (S.Context.getTypeSize(FieldType) != FirstSize ||
3621         S.Context.getTypeAlign(FieldType) > FirstAlign) {
3622       // Warn if we drop the attribute.
3623       bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
3624       unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
3625                                  : S.Context.getTypeAlign(FieldType);
3626       S.Diag(Field->getLocation(),
3627           diag::warn_transparent_union_attribute_field_size_align)
3628         << isSize << Field->getDeclName() << FieldBits;
3629       unsigned FirstBits = isSize? FirstSize : FirstAlign;
3630       S.Diag(FirstField->getLocation(),
3631              diag::note_transparent_union_first_field_size_align)
3632         << isSize << FirstBits;
3633       return;
3634     }
3635   }
3636 
3637   RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL));
3638 }
3639 
3640 static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3641   // Make sure that there is a string literal as the annotation's single
3642   // argument.
3643   StringRef Str;
3644   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
3645     return;
3646 
3647   // Don't duplicate annotations that are already set.
3648   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
3649     if (I->getAnnotation() == Str)
3650       return;
3651   }
3652 
3653   D->addAttr(::new (S.Context) AnnotateAttr(S.Context, AL, Str));
3654 }
3655 
3656 static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3657   S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0));
3658 }
3659 
3660 void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) {
3661   AlignValueAttr TmpAttr(Context, CI, E);
3662   SourceLocation AttrLoc = CI.getLoc();
3663 
3664   QualType T;
3665   if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
3666     T = TD->getUnderlyingType();
3667   else if (const auto *VD = dyn_cast<ValueDecl>(D))
3668     T = VD->getType();
3669   else
3670     llvm_unreachable("Unknown decl type for align_value");
3671 
3672   if (!T->isDependentType() && !T->isAnyPointerType() &&
3673       !T->isReferenceType() && !T->isMemberPointerType()) {
3674     Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
3675       << &TmpAttr /*TmpAttr.getName()*/ << T << D->getSourceRange();
3676     return;
3677   }
3678 
3679   if (!E->isValueDependent()) {
3680     llvm::APSInt Alignment;
3681     ExprResult ICE
3682       = VerifyIntegerConstantExpression(E, &Alignment,
3683           diag::err_align_value_attribute_argument_not_int,
3684             /*AllowFold*/ false);
3685     if (ICE.isInvalid())
3686       return;
3687 
3688     if (!Alignment.isPowerOf2()) {
3689       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
3690         << E->getSourceRange();
3691       return;
3692     }
3693 
3694     D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get()));
3695     return;
3696   }
3697 
3698   // Save dependent expressions in the AST to be instantiated.
3699   D->addAttr(::new (Context) AlignValueAttr(Context, CI, E));
3700 }
3701 
3702 static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3703   // check the attribute arguments.
3704   if (AL.getNumArgs() > 1) {
3705     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
3706     return;
3707   }
3708 
3709   if (AL.getNumArgs() == 0) {
3710     D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr));
3711     return;
3712   }
3713 
3714   Expr *E = AL.getArgAsExpr(0);
3715   if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
3716     S.Diag(AL.getEllipsisLoc(),
3717            diag::err_pack_expansion_without_parameter_packs);
3718     return;
3719   }
3720 
3721   if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
3722     return;
3723 
3724   S.AddAlignedAttr(D, AL, E, AL.isPackExpansion());
3725 }
3726 
3727 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
3728                           bool IsPackExpansion) {
3729   AlignedAttr TmpAttr(Context, CI, true, E);
3730   SourceLocation AttrLoc = CI.getLoc();
3731 
3732   // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
3733   if (TmpAttr.isAlignas()) {
3734     // C++11 [dcl.align]p1:
3735     //   An alignment-specifier may be applied to a variable or to a class
3736     //   data member, but it shall not be applied to a bit-field, a function
3737     //   parameter, the formal parameter of a catch clause, or a variable
3738     //   declared with the register storage class specifier. An
3739     //   alignment-specifier may also be applied to the declaration of a class
3740     //   or enumeration type.
3741     // C11 6.7.5/2:
3742     //   An alignment attribute shall not be specified in a declaration of
3743     //   a typedef, or a bit-field, or a function, or a parameter, or an
3744     //   object declared with the register storage-class specifier.
3745     int DiagKind = -1;
3746     if (isa<ParmVarDecl>(D)) {
3747       DiagKind = 0;
3748     } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
3749       if (VD->getStorageClass() == SC_Register)
3750         DiagKind = 1;
3751       if (VD->isExceptionVariable())
3752         DiagKind = 2;
3753     } else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
3754       if (FD->isBitField())
3755         DiagKind = 3;
3756     } else if (!isa<TagDecl>(D)) {
3757       Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
3758         << (TmpAttr.isC11() ? ExpectedVariableOrField
3759                             : ExpectedVariableFieldOrTag);
3760       return;
3761     }
3762     if (DiagKind != -1) {
3763       Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
3764         << &TmpAttr << DiagKind;
3765       return;
3766     }
3767   }
3768 
3769   if (E->isValueDependent()) {
3770     // We can't support a dependent alignment on a non-dependent type,
3771     // because we have no way to model that a type is "alignment-dependent"
3772     // but not dependent in any other way.
3773     if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
3774       if (!TND->getUnderlyingType()->isDependentType()) {
3775         Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
3776             << E->getSourceRange();
3777         return;
3778       }
3779     }
3780 
3781     // Save dependent expressions in the AST to be instantiated.
3782     AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E);
3783     AA->setPackExpansion(IsPackExpansion);
3784     D->addAttr(AA);
3785     return;
3786   }
3787 
3788   // FIXME: Cache the number on the AL object?
3789   llvm::APSInt Alignment;
3790   ExprResult ICE
3791     = VerifyIntegerConstantExpression(E, &Alignment,
3792         diag::err_aligned_attribute_argument_not_int,
3793         /*AllowFold*/ false);
3794   if (ICE.isInvalid())
3795     return;
3796 
3797   uint64_t AlignVal = Alignment.getZExtValue();
3798 
3799   // C++11 [dcl.align]p2:
3800   //   -- if the constant expression evaluates to zero, the alignment
3801   //      specifier shall have no effect
3802   // C11 6.7.5p6:
3803   //   An alignment specification of zero has no effect.
3804   if (!(TmpAttr.isAlignas() && !Alignment)) {
3805     if (!llvm::isPowerOf2_64(AlignVal)) {
3806       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
3807         << E->getSourceRange();
3808       return;
3809     }
3810   }
3811 
3812   // Alignment calculations can wrap around if it's greater than 2**28.
3813   unsigned MaxValidAlignment =
3814       Context.getTargetInfo().getTriple().isOSBinFormatCOFF() ? 8192
3815                                                               : 268435456;
3816   if (AlignVal > MaxValidAlignment) {
3817     Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaxValidAlignment
3818                                                          << E->getSourceRange();
3819     return;
3820   }
3821 
3822   if (Context.getTargetInfo().isTLSSupported()) {
3823     unsigned MaxTLSAlign =
3824         Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
3825             .getQuantity();
3826     const auto *VD = dyn_cast<VarDecl>(D);
3827     if (MaxTLSAlign && AlignVal > MaxTLSAlign && VD &&
3828         VD->getTLSKind() != VarDecl::TLS_None) {
3829       Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
3830           << (unsigned)AlignVal << VD << MaxTLSAlign;
3831       return;
3832     }
3833   }
3834 
3835   AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get());
3836   AA->setPackExpansion(IsPackExpansion);
3837   D->addAttr(AA);
3838 }
3839 
3840 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI,
3841                           TypeSourceInfo *TS, bool IsPackExpansion) {
3842   // FIXME: Cache the number on the AL object if non-dependent?
3843   // FIXME: Perform checking of type validity
3844   AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
3845   AA->setPackExpansion(IsPackExpansion);
3846   D->addAttr(AA);
3847 }
3848 
3849 void Sema::CheckAlignasUnderalignment(Decl *D) {
3850   assert(D->hasAttrs() && "no attributes on decl");
3851 
3852   QualType UnderlyingTy, DiagTy;
3853   if (const auto *VD = dyn_cast<ValueDecl>(D)) {
3854     UnderlyingTy = DiagTy = VD->getType();
3855   } else {
3856     UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
3857     if (const auto *ED = dyn_cast<EnumDecl>(D))
3858       UnderlyingTy = ED->getIntegerType();
3859   }
3860   if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
3861     return;
3862 
3863   // C++11 [dcl.align]p5, C11 6.7.5/4:
3864   //   The combined effect of all alignment attributes in a declaration shall
3865   //   not specify an alignment that is less strict than the alignment that
3866   //   would otherwise be required for the entity being declared.
3867   AlignedAttr *AlignasAttr = nullptr;
3868   unsigned Align = 0;
3869   for (auto *I : D->specific_attrs<AlignedAttr>()) {
3870     if (I->isAlignmentDependent())
3871       return;
3872     if (I->isAlignas())
3873       AlignasAttr = I;
3874     Align = std::max(Align, I->getAlignment(Context));
3875   }
3876 
3877   if (AlignasAttr && Align) {
3878     CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
3879     CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
3880     if (NaturalAlign > RequestedAlign)
3881       Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
3882         << DiagTy << (unsigned)NaturalAlign.getQuantity();
3883   }
3884 }
3885 
3886 bool Sema::checkMSInheritanceAttrOnDefinition(
3887     CXXRecordDecl *RD, SourceRange Range, bool BestCase,
3888     MSInheritanceModel ExplicitModel) {
3889   assert(RD->hasDefinition() && "RD has no definition!");
3890 
3891   // We may not have seen base specifiers or any virtual methods yet.  We will
3892   // have to wait until the record is defined to catch any mismatches.
3893   if (!RD->getDefinition()->isCompleteDefinition())
3894     return false;
3895 
3896   // The unspecified model never matches what a definition could need.
3897   if (ExplicitModel == MSInheritanceModel::Unspecified)
3898     return false;
3899 
3900   if (BestCase) {
3901     if (RD->calculateInheritanceModel() == ExplicitModel)
3902       return false;
3903   } else {
3904     if (RD->calculateInheritanceModel() <= ExplicitModel)
3905       return false;
3906   }
3907 
3908   Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
3909       << 0 /*definition*/;
3910   Diag(RD->getDefinition()->getLocation(), diag::note_defined_here)
3911       << RD->getNameAsString();
3912   return true;
3913 }
3914 
3915 /// parseModeAttrArg - Parses attribute mode string and returns parsed type
3916 /// attribute.
3917 static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
3918                              bool &IntegerMode, bool &ComplexMode) {
3919   IntegerMode = true;
3920   ComplexMode = false;
3921   switch (Str.size()) {
3922   case 2:
3923     switch (Str[0]) {
3924     case 'Q':
3925       DestWidth = 8;
3926       break;
3927     case 'H':
3928       DestWidth = 16;
3929       break;
3930     case 'S':
3931       DestWidth = 32;
3932       break;
3933     case 'D':
3934       DestWidth = 64;
3935       break;
3936     case 'X':
3937       DestWidth = 96;
3938       break;
3939     case 'T':
3940       DestWidth = 128;
3941       break;
3942     }
3943     if (Str[1] == 'F') {
3944       IntegerMode = false;
3945     } else if (Str[1] == 'C') {
3946       IntegerMode = false;
3947       ComplexMode = true;
3948     } else if (Str[1] != 'I') {
3949       DestWidth = 0;
3950     }
3951     break;
3952   case 4:
3953     // FIXME: glibc uses 'word' to define register_t; this is narrower than a
3954     // pointer on PIC16 and other embedded platforms.
3955     if (Str == "word")
3956       DestWidth = S.Context.getTargetInfo().getRegisterWidth();
3957     else if (Str == "byte")
3958       DestWidth = S.Context.getTargetInfo().getCharWidth();
3959     break;
3960   case 7:
3961     if (Str == "pointer")
3962       DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
3963     break;
3964   case 11:
3965     if (Str == "unwind_word")
3966       DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
3967     break;
3968   }
3969 }
3970 
3971 /// handleModeAttr - This attribute modifies the width of a decl with primitive
3972 /// type.
3973 ///
3974 /// Despite what would be logical, the mode attribute is a decl attribute, not a
3975 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
3976 /// HImode, not an intermediate pointer.
3977 static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3978   // This attribute isn't documented, but glibc uses it.  It changes
3979   // the width of an int or unsigned int to the specified size.
3980   if (!AL.isArgIdent(0)) {
3981     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
3982         << AL << AANT_ArgumentIdentifier;
3983     return;
3984   }
3985 
3986   IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident;
3987 
3988   S.AddModeAttr(D, AL, Name);
3989 }
3990 
3991 void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI,
3992                        IdentifierInfo *Name, bool InInstantiation) {
3993   StringRef Str = Name->getName();
3994   normalizeName(Str);
3995   SourceLocation AttrLoc = CI.getLoc();
3996 
3997   unsigned DestWidth = 0;
3998   bool IntegerMode = true;
3999   bool ComplexMode = false;
4000   llvm::APInt VectorSize(64, 0);
4001   if (Str.size() >= 4 && Str[0] == 'V') {
4002     // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
4003     size_t StrSize = Str.size();
4004     size_t VectorStringLength = 0;
4005     while ((VectorStringLength + 1) < StrSize &&
4006            isdigit(Str[VectorStringLength + 1]))
4007       ++VectorStringLength;
4008     if (VectorStringLength &&
4009         !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
4010         VectorSize.isPowerOf2()) {
4011       parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
4012                        IntegerMode, ComplexMode);
4013       // Avoid duplicate warning from template instantiation.
4014       if (!InInstantiation)
4015         Diag(AttrLoc, diag::warn_vector_mode_deprecated);
4016     } else {
4017       VectorSize = 0;
4018     }
4019   }
4020 
4021   if (!VectorSize)
4022     parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode);
4023 
4024   // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
4025   // and friends, at least with glibc.
4026   // FIXME: Make sure floating-point mappings are accurate
4027   // FIXME: Support XF and TF types
4028   if (!DestWidth) {
4029     Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
4030     return;
4031   }
4032 
4033   QualType OldTy;
4034   if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4035     OldTy = TD->getUnderlyingType();
4036   else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4037     // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
4038     // Try to get type from enum declaration, default to int.
4039     OldTy = ED->getIntegerType();
4040     if (OldTy.isNull())
4041       OldTy = Context.IntTy;
4042   } else
4043     OldTy = cast<ValueDecl>(D)->getType();
4044 
4045   if (OldTy->isDependentType()) {
4046     D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4047     return;
4048   }
4049 
4050   // Base type can also be a vector type (see PR17453).
4051   // Distinguish between base type and base element type.
4052   QualType OldElemTy = OldTy;
4053   if (const auto *VT = OldTy->getAs<VectorType>())
4054     OldElemTy = VT->getElementType();
4055 
4056   // GCC allows 'mode' attribute on enumeration types (even incomplete), except
4057   // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
4058   // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
4059   if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) &&
4060       VectorSize.getBoolValue()) {
4061     Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange();
4062     return;
4063   }
4064   bool IntegralOrAnyEnumType =
4065       OldElemTy->isIntegralOrEnumerationType() || OldElemTy->getAs<EnumType>();
4066 
4067   if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
4068       !IntegralOrAnyEnumType)
4069     Diag(AttrLoc, diag::err_mode_not_primitive);
4070   else if (IntegerMode) {
4071     if (!IntegralOrAnyEnumType)
4072       Diag(AttrLoc, diag::err_mode_wrong_type);
4073   } else if (ComplexMode) {
4074     if (!OldElemTy->isComplexType())
4075       Diag(AttrLoc, diag::err_mode_wrong_type);
4076   } else {
4077     if (!OldElemTy->isFloatingType())
4078       Diag(AttrLoc, diag::err_mode_wrong_type);
4079   }
4080 
4081   QualType NewElemTy;
4082 
4083   if (IntegerMode)
4084     NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
4085                                               OldElemTy->isSignedIntegerType());
4086   else
4087     NewElemTy = Context.getRealTypeForBitwidth(DestWidth);
4088 
4089   if (NewElemTy.isNull()) {
4090     Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
4091     return;
4092   }
4093 
4094   if (ComplexMode) {
4095     NewElemTy = Context.getComplexType(NewElemTy);
4096   }
4097 
4098   QualType NewTy = NewElemTy;
4099   if (VectorSize.getBoolValue()) {
4100     NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
4101                                   VectorType::GenericVector);
4102   } else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
4103     // Complex machine mode does not support base vector types.
4104     if (ComplexMode) {
4105       Diag(AttrLoc, diag::err_complex_mode_vector_type);
4106       return;
4107     }
4108     unsigned NumElements = Context.getTypeSize(OldElemTy) *
4109                            OldVT->getNumElements() /
4110                            Context.getTypeSize(NewElemTy);
4111     NewTy =
4112         Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
4113   }
4114 
4115   if (NewTy.isNull()) {
4116     Diag(AttrLoc, diag::err_mode_wrong_type);
4117     return;
4118   }
4119 
4120   // Install the new type.
4121   if (auto *TD = dyn_cast<TypedefNameDecl>(D))
4122     TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
4123   else if (auto *ED = dyn_cast<EnumDecl>(D))
4124     ED->setIntegerType(NewTy);
4125   else
4126     cast<ValueDecl>(D)->setType(NewTy);
4127 
4128   D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4129 }
4130 
4131 static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4132   D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL));
4133 }
4134 
4135 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D,
4136                                               const AttributeCommonInfo &CI,
4137                                               const IdentifierInfo *Ident) {
4138   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4139     Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident;
4140     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4141     return nullptr;
4142   }
4143 
4144   if (D->hasAttr<AlwaysInlineAttr>())
4145     return nullptr;
4146 
4147   return ::new (Context) AlwaysInlineAttr(Context, CI);
4148 }
4149 
4150 CommonAttr *Sema::mergeCommonAttr(Decl *D, const ParsedAttr &AL) {
4151   if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL))
4152     return nullptr;
4153 
4154   return ::new (Context) CommonAttr(Context, AL);
4155 }
4156 
4157 CommonAttr *Sema::mergeCommonAttr(Decl *D, const CommonAttr &AL) {
4158   if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL))
4159     return nullptr;
4160 
4161   return ::new (Context) CommonAttr(Context, AL);
4162 }
4163 
4164 InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D,
4165                                                     const ParsedAttr &AL) {
4166   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4167     // Attribute applies to Var but not any subclass of it (like ParmVar,
4168     // ImplicitParm or VarTemplateSpecialization).
4169     if (VD->getKind() != Decl::Var) {
4170       Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4171           << AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4172                                             : ExpectedVariableOrFunction);
4173       return nullptr;
4174     }
4175     // Attribute does not apply to non-static local variables.
4176     if (VD->hasLocalStorage()) {
4177       Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4178       return nullptr;
4179     }
4180   }
4181 
4182   if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL))
4183     return nullptr;
4184 
4185   return ::new (Context) InternalLinkageAttr(Context, AL);
4186 }
4187 InternalLinkageAttr *
4188 Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) {
4189   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4190     // Attribute applies to Var but not any subclass of it (like ParmVar,
4191     // ImplicitParm or VarTemplateSpecialization).
4192     if (VD->getKind() != Decl::Var) {
4193       Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type)
4194           << &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4195                                              : ExpectedVariableOrFunction);
4196       return nullptr;
4197     }
4198     // Attribute does not apply to non-static local variables.
4199     if (VD->hasLocalStorage()) {
4200       Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4201       return nullptr;
4202     }
4203   }
4204 
4205   if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL))
4206     return nullptr;
4207 
4208   return ::new (Context) InternalLinkageAttr(Context, AL);
4209 }
4210 
4211 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) {
4212   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4213     Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'";
4214     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4215     return nullptr;
4216   }
4217 
4218   if (D->hasAttr<MinSizeAttr>())
4219     return nullptr;
4220 
4221   return ::new (Context) MinSizeAttr(Context, CI);
4222 }
4223 
4224 NoSpeculativeLoadHardeningAttr *Sema::mergeNoSpeculativeLoadHardeningAttr(
4225     Decl *D, const NoSpeculativeLoadHardeningAttr &AL) {
4226   if (checkAttrMutualExclusion<SpeculativeLoadHardeningAttr>(*this, D, AL))
4227     return nullptr;
4228 
4229   return ::new (Context) NoSpeculativeLoadHardeningAttr(Context, AL);
4230 }
4231 
4232 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D,
4233                                               const AttributeCommonInfo &CI) {
4234   if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
4235     Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
4236     Diag(CI.getLoc(), diag::note_conflicting_attribute);
4237     D->dropAttr<AlwaysInlineAttr>();
4238   }
4239   if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
4240     Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
4241     Diag(CI.getLoc(), diag::note_conflicting_attribute);
4242     D->dropAttr<MinSizeAttr>();
4243   }
4244 
4245   if (D->hasAttr<OptimizeNoneAttr>())
4246     return nullptr;
4247 
4248   return ::new (Context) OptimizeNoneAttr(Context, CI);
4249 }
4250 
4251 SpeculativeLoadHardeningAttr *Sema::mergeSpeculativeLoadHardeningAttr(
4252     Decl *D, const SpeculativeLoadHardeningAttr &AL) {
4253   if (checkAttrMutualExclusion<NoSpeculativeLoadHardeningAttr>(*this, D, AL))
4254     return nullptr;
4255 
4256   return ::new (Context) SpeculativeLoadHardeningAttr(Context, AL);
4257 }
4258 
4259 static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4260   if (checkAttrMutualExclusion<NotTailCalledAttr>(S, D, AL))
4261     return;
4262 
4263   if (AlwaysInlineAttr *Inline =
4264           S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName()))
4265     D->addAttr(Inline);
4266 }
4267 
4268 static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4269   if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL))
4270     D->addAttr(MinSize);
4271 }
4272 
4273 static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4274   if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL))
4275     D->addAttr(Optnone);
4276 }
4277 
4278 static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4279   if (checkAttrMutualExclusion<CUDASharedAttr>(S, D, AL))
4280     return;
4281   const auto *VD = cast<VarDecl>(D);
4282   if (!VD->hasGlobalStorage()) {
4283     S.Diag(AL.getLoc(), diag::err_cuda_nonglobal_constant);
4284     return;
4285   }
4286   D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL));
4287 }
4288 
4289 static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4290   if (checkAttrMutualExclusion<CUDAConstantAttr>(S, D, AL))
4291     return;
4292   const auto *VD = cast<VarDecl>(D);
4293   // extern __shared__ is only allowed on arrays with no length (e.g.
4294   // "int x[]").
4295   if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() &&
4296       !isa<IncompleteArrayType>(VD->getType())) {
4297     S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
4298     return;
4299   }
4300   if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
4301       S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
4302           << S.CurrentCUDATarget())
4303     return;
4304   D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL));
4305 }
4306 
4307 static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4308   if (checkAttrMutualExclusion<CUDADeviceAttr>(S, D, AL) ||
4309       checkAttrMutualExclusion<CUDAHostAttr>(S, D, AL)) {
4310     return;
4311   }
4312   const auto *FD = cast<FunctionDecl>(D);
4313   if (!FD->getReturnType()->isVoidType() &&
4314       !FD->getReturnType()->getAs<AutoType>() &&
4315       !FD->getReturnType()->isInstantiationDependentType()) {
4316     SourceRange RTRange = FD->getReturnTypeSourceRange();
4317     S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
4318         << FD->getType()
4319         << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
4320                               : FixItHint());
4321     return;
4322   }
4323   if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
4324     if (Method->isInstance()) {
4325       S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method)
4326           << Method;
4327       return;
4328     }
4329     S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method;
4330   }
4331   // Only warn for "inline" when compiling for host, to cut down on noise.
4332   if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
4333     S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD;
4334 
4335   D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL));
4336 }
4337 
4338 static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4339   const auto *Fn = cast<FunctionDecl>(D);
4340   if (!Fn->isInlineSpecified()) {
4341     S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
4342     return;
4343   }
4344 
4345   if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern)
4346     S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern);
4347 
4348   D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL));
4349 }
4350 
4351 static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4352   if (hasDeclarator(D)) return;
4353 
4354   // Diagnostic is emitted elsewhere: here we store the (valid) AL
4355   // in the Decl node for syntactic reasoning, e.g., pretty-printing.
4356   CallingConv CC;
4357   if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr))
4358     return;
4359 
4360   if (!isa<ObjCMethodDecl>(D)) {
4361     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4362         << AL << ExpectedFunctionOrMethod;
4363     return;
4364   }
4365 
4366   switch (AL.getKind()) {
4367   case ParsedAttr::AT_FastCall:
4368     D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL));
4369     return;
4370   case ParsedAttr::AT_StdCall:
4371     D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL));
4372     return;
4373   case ParsedAttr::AT_ThisCall:
4374     D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL));
4375     return;
4376   case ParsedAttr::AT_CDecl:
4377     D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL));
4378     return;
4379   case ParsedAttr::AT_Pascal:
4380     D->addAttr(::new (S.Context) PascalAttr(S.Context, AL));
4381     return;
4382   case ParsedAttr::AT_SwiftCall:
4383     D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL));
4384     return;
4385   case ParsedAttr::AT_VectorCall:
4386     D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL));
4387     return;
4388   case ParsedAttr::AT_MSABI:
4389     D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL));
4390     return;
4391   case ParsedAttr::AT_SysVABI:
4392     D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL));
4393     return;
4394   case ParsedAttr::AT_RegCall:
4395     D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL));
4396     return;
4397   case ParsedAttr::AT_Pcs: {
4398     PcsAttr::PCSType PCS;
4399     switch (CC) {
4400     case CC_AAPCS:
4401       PCS = PcsAttr::AAPCS;
4402       break;
4403     case CC_AAPCS_VFP:
4404       PCS = PcsAttr::AAPCS_VFP;
4405       break;
4406     default:
4407       llvm_unreachable("unexpected calling convention in pcs attribute");
4408     }
4409 
4410     D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS));
4411     return;
4412   }
4413   case ParsedAttr::AT_AArch64VectorPcs:
4414     D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL));
4415     return;
4416   case ParsedAttr::AT_IntelOclBicc:
4417     D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL));
4418     return;
4419   case ParsedAttr::AT_PreserveMost:
4420     D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL));
4421     return;
4422   case ParsedAttr::AT_PreserveAll:
4423     D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL));
4424     return;
4425   default:
4426     llvm_unreachable("unexpected attribute kind");
4427   }
4428 }
4429 
4430 static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4431   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
4432     return;
4433 
4434   std::vector<StringRef> DiagnosticIdentifiers;
4435   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
4436     StringRef RuleName;
4437 
4438     if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
4439       return;
4440 
4441     // FIXME: Warn if the rule name is unknown. This is tricky because only
4442     // clang-tidy knows about available rules.
4443     DiagnosticIdentifiers.push_back(RuleName);
4444   }
4445   D->addAttr(::new (S.Context)
4446                  SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(),
4447                               DiagnosticIdentifiers.size()));
4448 }
4449 
4450 static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4451   TypeSourceInfo *DerefTypeLoc = nullptr;
4452   QualType ParmType;
4453   if (AL.hasParsedType()) {
4454     ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc);
4455 
4456     unsigned SelectIdx = ~0U;
4457     if (ParmType->isReferenceType())
4458       SelectIdx = 0;
4459     else if (ParmType->isArrayType())
4460       SelectIdx = 1;
4461 
4462     if (SelectIdx != ~0U) {
4463       S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument)
4464           << SelectIdx << AL;
4465       return;
4466     }
4467   }
4468 
4469   // To check if earlier decl attributes do not conflict the newly parsed ones
4470   // we always add (and check) the attribute to the cannonical decl.
4471   D = D->getCanonicalDecl();
4472   if (AL.getKind() == ParsedAttr::AT_Owner) {
4473     if (checkAttrMutualExclusion<PointerAttr>(S, D, AL))
4474       return;
4475     if (const auto *OAttr = D->getAttr<OwnerAttr>()) {
4476       const Type *ExistingDerefType = OAttr->getDerefTypeLoc()
4477                                           ? OAttr->getDerefType().getTypePtr()
4478                                           : nullptr;
4479       if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
4480         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
4481             << AL << OAttr;
4482         S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute);
4483       }
4484       return;
4485     }
4486     for (Decl *Redecl : D->redecls()) {
4487       Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc));
4488     }
4489   } else {
4490     if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL))
4491       return;
4492     if (const auto *PAttr = D->getAttr<PointerAttr>()) {
4493       const Type *ExistingDerefType = PAttr->getDerefTypeLoc()
4494                                           ? PAttr->getDerefType().getTypePtr()
4495                                           : nullptr;
4496       if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
4497         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
4498             << AL << PAttr;
4499         S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute);
4500       }
4501       return;
4502     }
4503     for (Decl *Redecl : D->redecls()) {
4504       Redecl->addAttr(::new (S.Context)
4505                           PointerAttr(S.Context, AL, DerefTypeLoc));
4506     }
4507   }
4508 }
4509 
4510 bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC,
4511                                 const FunctionDecl *FD) {
4512   if (Attrs.isInvalid())
4513     return true;
4514 
4515   if (Attrs.hasProcessingCache()) {
4516     CC = (CallingConv) Attrs.getProcessingCache();
4517     return false;
4518   }
4519 
4520   unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0;
4521   if (!checkAttributeNumArgs(*this, Attrs, ReqArgs)) {
4522     Attrs.setInvalid();
4523     return true;
4524   }
4525 
4526   // TODO: diagnose uses of these conventions on the wrong target.
4527   switch (Attrs.getKind()) {
4528   case ParsedAttr::AT_CDecl:
4529     CC = CC_C;
4530     break;
4531   case ParsedAttr::AT_FastCall:
4532     CC = CC_X86FastCall;
4533     break;
4534   case ParsedAttr::AT_StdCall:
4535     CC = CC_X86StdCall;
4536     break;
4537   case ParsedAttr::AT_ThisCall:
4538     CC = CC_X86ThisCall;
4539     break;
4540   case ParsedAttr::AT_Pascal:
4541     CC = CC_X86Pascal;
4542     break;
4543   case ParsedAttr::AT_SwiftCall:
4544     CC = CC_Swift;
4545     break;
4546   case ParsedAttr::AT_VectorCall:
4547     CC = CC_X86VectorCall;
4548     break;
4549   case ParsedAttr::AT_AArch64VectorPcs:
4550     CC = CC_AArch64VectorCall;
4551     break;
4552   case ParsedAttr::AT_RegCall:
4553     CC = CC_X86RegCall;
4554     break;
4555   case ParsedAttr::AT_MSABI:
4556     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
4557                                                              CC_Win64;
4558     break;
4559   case ParsedAttr::AT_SysVABI:
4560     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
4561                                                              CC_C;
4562     break;
4563   case ParsedAttr::AT_Pcs: {
4564     StringRef StrRef;
4565     if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
4566       Attrs.setInvalid();
4567       return true;
4568     }
4569     if (StrRef == "aapcs") {
4570       CC = CC_AAPCS;
4571       break;
4572     } else if (StrRef == "aapcs-vfp") {
4573       CC = CC_AAPCS_VFP;
4574       break;
4575     }
4576 
4577     Attrs.setInvalid();
4578     Diag(Attrs.getLoc(), diag::err_invalid_pcs);
4579     return true;
4580   }
4581   case ParsedAttr::AT_IntelOclBicc:
4582     CC = CC_IntelOclBicc;
4583     break;
4584   case ParsedAttr::AT_PreserveMost:
4585     CC = CC_PreserveMost;
4586     break;
4587   case ParsedAttr::AT_PreserveAll:
4588     CC = CC_PreserveAll;
4589     break;
4590   default: llvm_unreachable("unexpected attribute kind");
4591   }
4592 
4593   TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK;
4594   const TargetInfo &TI = Context.getTargetInfo();
4595   // CUDA functions may have host and/or device attributes which indicate
4596   // their targeted execution environment, therefore the calling convention
4597   // of functions in CUDA should be checked against the target deduced based
4598   // on their host/device attributes.
4599   if (LangOpts.CUDA) {
4600     auto *Aux = Context.getAuxTargetInfo();
4601     auto CudaTarget = IdentifyCUDATarget(FD);
4602     bool CheckHost = false, CheckDevice = false;
4603     switch (CudaTarget) {
4604     case CFT_HostDevice:
4605       CheckHost = true;
4606       CheckDevice = true;
4607       break;
4608     case CFT_Host:
4609       CheckHost = true;
4610       break;
4611     case CFT_Device:
4612     case CFT_Global:
4613       CheckDevice = true;
4614       break;
4615     case CFT_InvalidTarget:
4616       llvm_unreachable("unexpected cuda target");
4617     }
4618     auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI;
4619     auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux;
4620     if (CheckHost && HostTI)
4621       A = HostTI->checkCallingConvention(CC);
4622     if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI)
4623       A = DeviceTI->checkCallingConvention(CC);
4624   } else {
4625     A = TI.checkCallingConvention(CC);
4626   }
4627 
4628   switch (A) {
4629   case TargetInfo::CCCR_OK:
4630     break;
4631 
4632   case TargetInfo::CCCR_Ignore:
4633     // Treat an ignored convention as if it was an explicit C calling convention
4634     // attribute. For example, __stdcall on Win x64 functions as __cdecl, so
4635     // that command line flags that change the default convention to
4636     // __vectorcall don't affect declarations marked __stdcall.
4637     CC = CC_C;
4638     break;
4639 
4640   case TargetInfo::CCCR_Error:
4641     Diag(Attrs.getLoc(), diag::error_cconv_unsupported)
4642         << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
4643     break;
4644 
4645   case TargetInfo::CCCR_Warning: {
4646     Diag(Attrs.getLoc(), diag::warn_cconv_unsupported)
4647         << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
4648 
4649     // This convention is not valid for the target. Use the default function or
4650     // method calling convention.
4651     bool IsCXXMethod = false, IsVariadic = false;
4652     if (FD) {
4653       IsCXXMethod = FD->isCXXInstanceMember();
4654       IsVariadic = FD->isVariadic();
4655     }
4656     CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
4657     break;
4658   }
4659   }
4660 
4661   Attrs.setProcessingCache((unsigned) CC);
4662   return false;
4663 }
4664 
4665 /// Pointer-like types in the default address space.
4666 static bool isValidSwiftContextType(QualType Ty) {
4667   if (!Ty->hasPointerRepresentation())
4668     return Ty->isDependentType();
4669   return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
4670 }
4671 
4672 /// Pointers and references in the default address space.
4673 static bool isValidSwiftIndirectResultType(QualType Ty) {
4674   if (const auto *PtrType = Ty->getAs<PointerType>()) {
4675     Ty = PtrType->getPointeeType();
4676   } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
4677     Ty = RefType->getPointeeType();
4678   } else {
4679     return Ty->isDependentType();
4680   }
4681   return Ty.getAddressSpace() == LangAS::Default;
4682 }
4683 
4684 /// Pointers and references to pointers in the default address space.
4685 static bool isValidSwiftErrorResultType(QualType Ty) {
4686   if (const auto *PtrType = Ty->getAs<PointerType>()) {
4687     Ty = PtrType->getPointeeType();
4688   } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
4689     Ty = RefType->getPointeeType();
4690   } else {
4691     return Ty->isDependentType();
4692   }
4693   if (!Ty.getQualifiers().empty())
4694     return false;
4695   return isValidSwiftContextType(Ty);
4696 }
4697 
4698 void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
4699                                ParameterABI abi) {
4700 
4701   QualType type = cast<ParmVarDecl>(D)->getType();
4702 
4703   if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
4704     if (existingAttr->getABI() != abi) {
4705       Diag(CI.getLoc(), diag::err_attributes_are_not_compatible)
4706           << getParameterABISpelling(abi) << existingAttr;
4707       Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
4708       return;
4709     }
4710   }
4711 
4712   switch (abi) {
4713   case ParameterABI::Ordinary:
4714     llvm_unreachable("explicit attribute for ordinary parameter ABI?");
4715 
4716   case ParameterABI::SwiftContext:
4717     if (!isValidSwiftContextType(type)) {
4718       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
4719           << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
4720     }
4721     D->addAttr(::new (Context) SwiftContextAttr(Context, CI));
4722     return;
4723 
4724   case ParameterABI::SwiftErrorResult:
4725     if (!isValidSwiftErrorResultType(type)) {
4726       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
4727           << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type;
4728     }
4729     D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI));
4730     return;
4731 
4732   case ParameterABI::SwiftIndirectResult:
4733     if (!isValidSwiftIndirectResultType(type)) {
4734       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
4735           << getParameterABISpelling(abi) << /*pointer*/ 0 << type;
4736     }
4737     D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI));
4738     return;
4739   }
4740   llvm_unreachable("bad parameter ABI attribute");
4741 }
4742 
4743 /// Checks a regparm attribute, returning true if it is ill-formed and
4744 /// otherwise setting numParams to the appropriate value.
4745 bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) {
4746   if (AL.isInvalid())
4747     return true;
4748 
4749   if (!checkAttributeNumArgs(*this, AL, 1)) {
4750     AL.setInvalid();
4751     return true;
4752   }
4753 
4754   uint32_t NP;
4755   Expr *NumParamsExpr = AL.getArgAsExpr(0);
4756   if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) {
4757     AL.setInvalid();
4758     return true;
4759   }
4760 
4761   if (Context.getTargetInfo().getRegParmMax() == 0) {
4762     Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
4763       << NumParamsExpr->getSourceRange();
4764     AL.setInvalid();
4765     return true;
4766   }
4767 
4768   numParams = NP;
4769   if (numParams > Context.getTargetInfo().getRegParmMax()) {
4770     Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
4771       << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
4772     AL.setInvalid();
4773     return true;
4774   }
4775 
4776   return false;
4777 }
4778 
4779 // Checks whether an argument of launch_bounds attribute is
4780 // acceptable, performs implicit conversion to Rvalue, and returns
4781 // non-nullptr Expr result on success. Otherwise, it returns nullptr
4782 // and may output an error.
4783 static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E,
4784                                      const CUDALaunchBoundsAttr &AL,
4785                                      const unsigned Idx) {
4786   if (S.DiagnoseUnexpandedParameterPack(E))
4787     return nullptr;
4788 
4789   // Accept template arguments for now as they depend on something else.
4790   // We'll get to check them when they eventually get instantiated.
4791   if (E->isValueDependent())
4792     return E;
4793 
4794   llvm::APSInt I(64);
4795   if (!E->isIntegerConstantExpr(I, S.Context)) {
4796     S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
4797         << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
4798     return nullptr;
4799   }
4800   // Make sure we can fit it in 32 bits.
4801   if (!I.isIntN(32)) {
4802     S.Diag(E->getExprLoc(), diag::err_ice_too_large) << I.toString(10, false)
4803                                                      << 32 << /* Unsigned */ 1;
4804     return nullptr;
4805   }
4806   if (I < 0)
4807     S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
4808         << &AL << Idx << E->getSourceRange();
4809 
4810   // We may need to perform implicit conversion of the argument.
4811   InitializedEntity Entity = InitializedEntity::InitializeParameter(
4812       S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
4813   ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
4814   assert(!ValArg.isInvalid() &&
4815          "Unexpected PerformCopyInitialization() failure.");
4816 
4817   return ValArg.getAs<Expr>();
4818 }
4819 
4820 void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
4821                                Expr *MaxThreads, Expr *MinBlocks) {
4822   CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks);
4823   MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
4824   if (MaxThreads == nullptr)
4825     return;
4826 
4827   if (MinBlocks) {
4828     MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
4829     if (MinBlocks == nullptr)
4830       return;
4831   }
4832 
4833   D->addAttr(::new (Context)
4834                  CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks));
4835 }
4836 
4837 static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4838   if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
4839       !checkAttributeAtMostNumArgs(S, AL, 2))
4840     return;
4841 
4842   S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0),
4843                         AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr);
4844 }
4845 
4846 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
4847                                           const ParsedAttr &AL) {
4848   if (!AL.isArgIdent(0)) {
4849     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
4850         << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier;
4851     return;
4852   }
4853 
4854   ParamIdx ArgumentIdx;
4855   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1),
4856                                            ArgumentIdx))
4857     return;
4858 
4859   ParamIdx TypeTagIdx;
4860   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2),
4861                                            TypeTagIdx))
4862     return;
4863 
4864   bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag";
4865   if (IsPointer) {
4866     // Ensure that buffer has a pointer type.
4867     unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
4868     if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
4869         !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
4870       S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0;
4871   }
4872 
4873   D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
4874       S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx,
4875       IsPointer));
4876 }
4877 
4878 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
4879                                          const ParsedAttr &AL) {
4880   if (!AL.isArgIdent(0)) {
4881     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
4882         << AL << 1 << AANT_ArgumentIdentifier;
4883     return;
4884   }
4885 
4886   if (!checkAttributeNumArgs(S, AL, 1))
4887     return;
4888 
4889   if (!isa<VarDecl>(D)) {
4890     S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
4891         << AL << ExpectedVariable;
4892     return;
4893   }
4894 
4895   IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident;
4896   TypeSourceInfo *MatchingCTypeLoc = nullptr;
4897   S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
4898   assert(MatchingCTypeLoc && "no type source info for attribute argument");
4899 
4900   D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(
4901       S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(),
4902       AL.getMustBeNull()));
4903 }
4904 
4905 static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4906   ParamIdx ArgCount;
4907 
4908   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0),
4909                                            ArgCount,
4910                                            true /* CanIndexImplicitThis */))
4911     return;
4912 
4913   // ArgCount isn't a parameter index [0;n), it's a count [1;n]
4914   D->addAttr(::new (S.Context)
4915                  XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex()));
4916 }
4917 
4918 static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D,
4919                                              const ParsedAttr &AL) {
4920   uint32_t Count = 0, Offset = 0;
4921   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true))
4922     return;
4923   if (AL.getNumArgs() == 2) {
4924     Expr *Arg = AL.getArgAsExpr(1);
4925     if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true))
4926       return;
4927     if (Count < Offset) {
4928       S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range)
4929           << &AL << 0 << Count << Arg->getBeginLoc();
4930       return;
4931     }
4932   }
4933   D->addAttr(::new (S.Context)
4934                  PatchableFunctionEntryAttr(S.Context, AL, Count, Offset));
4935 }
4936 
4937 static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) {
4938   if (AliasName.startswith("__arm_"))
4939     AliasName = AliasName.substr(6);
4940   switch (BuiltinID) {
4941 #include "clang/Basic/arm_mve_builtin_aliases.inc"
4942   default:
4943     return false;
4944   }
4945 }
4946 
4947 static void handleArmMveAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4948   if (!AL.isArgIdent(0)) {
4949     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
4950         << AL << 1 << AANT_ArgumentIdentifier;
4951     return;
4952   }
4953 
4954   IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
4955   unsigned BuiltinID = Ident->getBuiltinID();
4956 
4957   if (!ArmMveAliasValid(BuiltinID,
4958                         cast<FunctionDecl>(D)->getIdentifier()->getName())) {
4959     S.Diag(AL.getLoc(), diag::err_attribute_arm_mve_alias);
4960     return;
4961   }
4962 
4963   D->addAttr(::new (S.Context) ArmMveAliasAttr(S.Context, AL, Ident));
4964 }
4965 
4966 //===----------------------------------------------------------------------===//
4967 // Checker-specific attribute handlers.
4968 //===----------------------------------------------------------------------===//
4969 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) {
4970   return QT->isDependentType() || QT->isObjCRetainableType();
4971 }
4972 
4973 static bool isValidSubjectOfNSAttribute(QualType QT) {
4974   return QT->isDependentType() || QT->isObjCObjectPointerType() ||
4975          QT->isObjCNSObjectType();
4976 }
4977 
4978 static bool isValidSubjectOfCFAttribute(QualType QT) {
4979   return QT->isDependentType() || QT->isPointerType() ||
4980          isValidSubjectOfNSAttribute(QT);
4981 }
4982 
4983 static bool isValidSubjectOfOSAttribute(QualType QT) {
4984   if (QT->isDependentType())
4985     return true;
4986   QualType PT = QT->getPointeeType();
4987   return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr;
4988 }
4989 
4990 void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
4991                             RetainOwnershipKind K,
4992                             bool IsTemplateInstantiation) {
4993   ValueDecl *VD = cast<ValueDecl>(D);
4994   switch (K) {
4995   case RetainOwnershipKind::OS:
4996     handleSimpleAttributeOrDiagnose<OSConsumedAttr>(
4997         *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()),
4998         diag::warn_ns_attribute_wrong_parameter_type,
4999         /*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1);
5000     return;
5001   case RetainOwnershipKind::NS:
5002     handleSimpleAttributeOrDiagnose<NSConsumedAttr>(
5003         *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()),
5004 
5005         // These attributes are normally just advisory, but in ARC, ns_consumed
5006         // is significant.  Allow non-dependent code to contain inappropriate
5007         // attributes even in ARC, but require template instantiations to be
5008         // set up correctly.
5009         ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount)
5010              ? diag::err_ns_attribute_wrong_parameter_type
5011              : diag::warn_ns_attribute_wrong_parameter_type),
5012         /*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0);
5013     return;
5014   case RetainOwnershipKind::CF:
5015     handleSimpleAttributeOrDiagnose<CFConsumedAttr>(
5016         *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()),
5017         diag::warn_ns_attribute_wrong_parameter_type,
5018         /*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1);
5019     return;
5020   }
5021 }
5022 
5023 static Sema::RetainOwnershipKind
5024 parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) {
5025   switch (AL.getKind()) {
5026   case ParsedAttr::AT_CFConsumed:
5027   case ParsedAttr::AT_CFReturnsRetained:
5028   case ParsedAttr::AT_CFReturnsNotRetained:
5029     return Sema::RetainOwnershipKind::CF;
5030   case ParsedAttr::AT_OSConsumesThis:
5031   case ParsedAttr::AT_OSConsumed:
5032   case ParsedAttr::AT_OSReturnsRetained:
5033   case ParsedAttr::AT_OSReturnsNotRetained:
5034   case ParsedAttr::AT_OSReturnsRetainedOnZero:
5035   case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
5036     return Sema::RetainOwnershipKind::OS;
5037   case ParsedAttr::AT_NSConsumesSelf:
5038   case ParsedAttr::AT_NSConsumed:
5039   case ParsedAttr::AT_NSReturnsRetained:
5040   case ParsedAttr::AT_NSReturnsNotRetained:
5041   case ParsedAttr::AT_NSReturnsAutoreleased:
5042     return Sema::RetainOwnershipKind::NS;
5043   default:
5044     llvm_unreachable("Wrong argument supplied");
5045   }
5046 }
5047 
5048 bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) {
5049   if (isValidSubjectOfNSReturnsRetainedAttribute(QT))
5050     return false;
5051 
5052   Diag(Loc, diag::warn_ns_attribute_wrong_return_type)
5053       << "'ns_returns_retained'" << 0 << 0;
5054   return true;
5055 }
5056 
5057 /// \return whether the parameter is a pointer to OSObject pointer.
5058 static bool isValidOSObjectOutParameter(const Decl *D) {
5059   const auto *PVD = dyn_cast<ParmVarDecl>(D);
5060   if (!PVD)
5061     return false;
5062   QualType QT = PVD->getType();
5063   QualType PT = QT->getPointeeType();
5064   return !PT.isNull() && isValidSubjectOfOSAttribute(PT);
5065 }
5066 
5067 static void handleXReturnsXRetainedAttr(Sema &S, Decl *D,
5068                                         const ParsedAttr &AL) {
5069   QualType ReturnType;
5070   Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL);
5071 
5072   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
5073     ReturnType = MD->getReturnType();
5074   } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
5075              (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) {
5076     return; // ignore: was handled as a type attribute
5077   } else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
5078     ReturnType = PD->getType();
5079   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
5080     ReturnType = FD->getReturnType();
5081   } else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) {
5082     // Attributes on parameters are used for out-parameters,
5083     // passed as pointers-to-pointers.
5084     unsigned DiagID = K == Sema::RetainOwnershipKind::CF
5085             ? /*pointer-to-CF-pointer*/2
5086             : /*pointer-to-OSObject-pointer*/3;
5087     ReturnType = Param->getType()->getPointeeType();
5088     if (ReturnType.isNull()) {
5089       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5090           << AL << DiagID << AL.getRange();
5091       return;
5092     }
5093   } else if (AL.isUsedAsTypeAttr()) {
5094     return;
5095   } else {
5096     AttributeDeclKind ExpectedDeclKind;
5097     switch (AL.getKind()) {
5098     default: llvm_unreachable("invalid ownership attribute");
5099     case ParsedAttr::AT_NSReturnsRetained:
5100     case ParsedAttr::AT_NSReturnsAutoreleased:
5101     case ParsedAttr::AT_NSReturnsNotRetained:
5102       ExpectedDeclKind = ExpectedFunctionOrMethod;
5103       break;
5104 
5105     case ParsedAttr::AT_OSReturnsRetained:
5106     case ParsedAttr::AT_OSReturnsNotRetained:
5107     case ParsedAttr::AT_CFReturnsRetained:
5108     case ParsedAttr::AT_CFReturnsNotRetained:
5109       ExpectedDeclKind = ExpectedFunctionMethodOrParameter;
5110       break;
5111     }
5112     S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type)
5113         << AL.getRange() << AL << ExpectedDeclKind;
5114     return;
5115   }
5116 
5117   bool TypeOK;
5118   bool Cf;
5119   unsigned ParmDiagID = 2; // Pointer-to-CF-pointer
5120   switch (AL.getKind()) {
5121   default: llvm_unreachable("invalid ownership attribute");
5122   case ParsedAttr::AT_NSReturnsRetained:
5123     TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType);
5124     Cf = false;
5125     break;
5126 
5127   case ParsedAttr::AT_NSReturnsAutoreleased:
5128   case ParsedAttr::AT_NSReturnsNotRetained:
5129     TypeOK = isValidSubjectOfNSAttribute(ReturnType);
5130     Cf = false;
5131     break;
5132 
5133   case ParsedAttr::AT_CFReturnsRetained:
5134   case ParsedAttr::AT_CFReturnsNotRetained:
5135     TypeOK = isValidSubjectOfCFAttribute(ReturnType);
5136     Cf = true;
5137     break;
5138 
5139   case ParsedAttr::AT_OSReturnsRetained:
5140   case ParsedAttr::AT_OSReturnsNotRetained:
5141     TypeOK = isValidSubjectOfOSAttribute(ReturnType);
5142     Cf = true;
5143     ParmDiagID = 3; // Pointer-to-OSObject-pointer
5144     break;
5145   }
5146 
5147   if (!TypeOK) {
5148     if (AL.isUsedAsTypeAttr())
5149       return;
5150 
5151     if (isa<ParmVarDecl>(D)) {
5152       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5153           << AL << ParmDiagID << AL.getRange();
5154     } else {
5155       // Needs to be kept in sync with warn_ns_attribute_wrong_return_type.
5156       enum : unsigned {
5157         Function,
5158         Method,
5159         Property
5160       } SubjectKind = Function;
5161       if (isa<ObjCMethodDecl>(D))
5162         SubjectKind = Method;
5163       else if (isa<ObjCPropertyDecl>(D))
5164         SubjectKind = Property;
5165       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
5166           << AL << SubjectKind << Cf << AL.getRange();
5167     }
5168     return;
5169   }
5170 
5171   switch (AL.getKind()) {
5172     default:
5173       llvm_unreachable("invalid ownership attribute");
5174     case ParsedAttr::AT_NSReturnsAutoreleased:
5175       handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL);
5176       return;
5177     case ParsedAttr::AT_CFReturnsNotRetained:
5178       handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL);
5179       return;
5180     case ParsedAttr::AT_NSReturnsNotRetained:
5181       handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL);
5182       return;
5183     case ParsedAttr::AT_CFReturnsRetained:
5184       handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL);
5185       return;
5186     case ParsedAttr::AT_NSReturnsRetained:
5187       handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL);
5188       return;
5189     case ParsedAttr::AT_OSReturnsRetained:
5190       handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL);
5191       return;
5192     case ParsedAttr::AT_OSReturnsNotRetained:
5193       handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL);
5194       return;
5195   };
5196 }
5197 
5198 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
5199                                               const ParsedAttr &Attrs) {
5200   const int EP_ObjCMethod = 1;
5201   const int EP_ObjCProperty = 2;
5202 
5203   SourceLocation loc = Attrs.getLoc();
5204   QualType resultType;
5205   if (isa<ObjCMethodDecl>(D))
5206     resultType = cast<ObjCMethodDecl>(D)->getReturnType();
5207   else
5208     resultType = cast<ObjCPropertyDecl>(D)->getType();
5209 
5210   if (!resultType->isReferenceType() &&
5211       (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
5212     S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
5213         << SourceRange(loc) << Attrs
5214         << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
5215         << /*non-retainable pointer*/ 2;
5216 
5217     // Drop the attribute.
5218     return;
5219   }
5220 
5221   D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs));
5222 }
5223 
5224 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
5225                                         const ParsedAttr &Attrs) {
5226   const auto *Method = cast<ObjCMethodDecl>(D);
5227 
5228   const DeclContext *DC = Method->getDeclContext();
5229   if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
5230     S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
5231                                                                       << 0;
5232     S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
5233     return;
5234   }
5235   if (Method->getMethodFamily() == OMF_dealloc) {
5236     S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
5237                                                                       << 1;
5238     return;
5239   }
5240 
5241   D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs));
5242 }
5243 
5244 static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5245   IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
5246 
5247   if (!Parm) {
5248     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5249     return;
5250   }
5251 
5252   // Typedefs only allow objc_bridge(id) and have some additional checking.
5253   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
5254     if (!Parm->Ident->isStr("id")) {
5255       S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL;
5256       return;
5257     }
5258 
5259     // Only allow 'cv void *'.
5260     QualType T = TD->getUnderlyingType();
5261     if (!T->isVoidPointerType()) {
5262       S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
5263       return;
5264     }
5265   }
5266 
5267   D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident));
5268 }
5269 
5270 static void handleObjCBridgeMutableAttr(Sema &S, Decl *D,
5271                                         const ParsedAttr &AL) {
5272   IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
5273 
5274   if (!Parm) {
5275     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5276     return;
5277   }
5278 
5279   D->addAttr(::new (S.Context)
5280                  ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident));
5281 }
5282 
5283 static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D,
5284                                         const ParsedAttr &AL) {
5285   IdentifierInfo *RelatedClass =
5286       AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr;
5287   if (!RelatedClass) {
5288     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5289     return;
5290   }
5291   IdentifierInfo *ClassMethod =
5292     AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr;
5293   IdentifierInfo *InstanceMethod =
5294     AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr;
5295   D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr(
5296       S.Context, AL, RelatedClass, ClassMethod, InstanceMethod));
5297 }
5298 
5299 static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
5300                                             const ParsedAttr &AL) {
5301   DeclContext *Ctx = D->getDeclContext();
5302 
5303   // This attribute can only be applied to methods in interfaces or class
5304   // extensions.
5305   if (!isa<ObjCInterfaceDecl>(Ctx) &&
5306       !(isa<ObjCCategoryDecl>(Ctx) &&
5307         cast<ObjCCategoryDecl>(Ctx)->IsClassExtension())) {
5308     S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
5309     return;
5310   }
5311 
5312   ObjCInterfaceDecl *IFace;
5313   if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Ctx))
5314     IFace = CatDecl->getClassInterface();
5315   else
5316     IFace = cast<ObjCInterfaceDecl>(Ctx);
5317 
5318   if (!IFace)
5319     return;
5320 
5321   IFace->setHasDesignatedInitializers();
5322   D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL));
5323 }
5324 
5325 static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) {
5326   StringRef MetaDataName;
5327   if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName))
5328     return;
5329   D->addAttr(::new (S.Context)
5330                  ObjCRuntimeNameAttr(S.Context, AL, MetaDataName));
5331 }
5332 
5333 // When a user wants to use objc_boxable with a union or struct
5334 // but they don't have access to the declaration (legacy/third-party code)
5335 // then they can 'enable' this feature with a typedef:
5336 // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct;
5337 static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) {
5338   bool notify = false;
5339 
5340   auto *RD = dyn_cast<RecordDecl>(D);
5341   if (RD && RD->getDefinition()) {
5342     RD = RD->getDefinition();
5343     notify = true;
5344   }
5345 
5346   if (RD) {
5347     ObjCBoxableAttr *BoxableAttr =
5348         ::new (S.Context) ObjCBoxableAttr(S.Context, AL);
5349     RD->addAttr(BoxableAttr);
5350     if (notify) {
5351       // we need to notify ASTReader/ASTWriter about
5352       // modification of existing declaration
5353       if (ASTMutationListener *L = S.getASTMutationListener())
5354         L->AddedAttributeToRecord(BoxableAttr, RD);
5355     }
5356   }
5357 }
5358 
5359 static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5360   if (hasDeclarator(D)) return;
5361 
5362   S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type)
5363       << AL.getRange() << AL << ExpectedVariable;
5364 }
5365 
5366 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
5367                                           const ParsedAttr &AL) {
5368   const auto *VD = cast<ValueDecl>(D);
5369   QualType QT = VD->getType();
5370 
5371   if (!QT->isDependentType() &&
5372       !QT->isObjCLifetimeType()) {
5373     S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type)
5374       << QT;
5375     return;
5376   }
5377 
5378   Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime();
5379 
5380   // If we have no lifetime yet, check the lifetime we're presumably
5381   // going to infer.
5382   if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType())
5383     Lifetime = QT->getObjCARCImplicitLifetime();
5384 
5385   switch (Lifetime) {
5386   case Qualifiers::OCL_None:
5387     assert(QT->isDependentType() &&
5388            "didn't infer lifetime for non-dependent type?");
5389     break;
5390 
5391   case Qualifiers::OCL_Weak:   // meaningful
5392   case Qualifiers::OCL_Strong: // meaningful
5393     break;
5394 
5395   case Qualifiers::OCL_ExplicitNone:
5396   case Qualifiers::OCL_Autoreleasing:
5397     S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
5398         << (Lifetime == Qualifiers::OCL_Autoreleasing);
5399     break;
5400   }
5401 
5402   D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL));
5403 }
5404 
5405 //===----------------------------------------------------------------------===//
5406 // Microsoft specific attribute handlers.
5407 //===----------------------------------------------------------------------===//
5408 
5409 UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
5410                               StringRef Uuid) {
5411   if (const auto *UA = D->getAttr<UuidAttr>()) {
5412     if (UA->getGuid().equals_lower(Uuid))
5413       return nullptr;
5414     if (!UA->getGuid().empty()) {
5415       Diag(UA->getLocation(), diag::err_mismatched_uuid);
5416       Diag(CI.getLoc(), diag::note_previous_uuid);
5417       D->dropAttr<UuidAttr>();
5418     }
5419   }
5420 
5421   return ::new (Context) UuidAttr(Context, CI, Uuid);
5422 }
5423 
5424 static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5425   if (!S.LangOpts.CPlusPlus) {
5426     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
5427         << AL << AttributeLangSupport::C;
5428     return;
5429   }
5430 
5431   StringRef StrRef;
5432   SourceLocation LiteralLoc;
5433   if (!S.checkStringLiteralArgumentAttr(AL, 0, StrRef, &LiteralLoc))
5434     return;
5435 
5436   // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
5437   // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
5438   if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
5439     StrRef = StrRef.drop_front().drop_back();
5440 
5441   // Validate GUID length.
5442   if (StrRef.size() != 36) {
5443     S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5444     return;
5445   }
5446 
5447   for (unsigned i = 0; i < 36; ++i) {
5448     if (i == 8 || i == 13 || i == 18 || i == 23) {
5449       if (StrRef[i] != '-') {
5450         S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5451         return;
5452       }
5453     } else if (!isHexDigit(StrRef[i])) {
5454       S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5455       return;
5456     }
5457   }
5458 
5459   // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
5460   // the only thing in the [] list, the [] too), and add an insertion of
5461   // __declspec(uuid(...)).  But sadly, neither the SourceLocs of the commas
5462   // separating attributes nor of the [ and the ] are in the AST.
5463   // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
5464   // on cfe-dev.
5465   if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
5466     S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
5467 
5468   UuidAttr *UA = S.mergeUuidAttr(D, AL, StrRef);
5469   if (UA)
5470     D->addAttr(UA);
5471 }
5472 
5473 static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5474   if (!S.LangOpts.CPlusPlus) {
5475     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
5476         << AL << AttributeLangSupport::C;
5477     return;
5478   }
5479   MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
5480       D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling());
5481   if (IA) {
5482     D->addAttr(IA);
5483     S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
5484   }
5485 }
5486 
5487 static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5488   const auto *VD = cast<VarDecl>(D);
5489   if (!S.Context.getTargetInfo().isTLSSupported()) {
5490     S.Diag(AL.getLoc(), diag::err_thread_unsupported);
5491     return;
5492   }
5493   if (VD->getTSCSpec() != TSCS_unspecified) {
5494     S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
5495     return;
5496   }
5497   if (VD->hasLocalStorage()) {
5498     S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
5499     return;
5500   }
5501   D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL));
5502 }
5503 
5504 static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5505   SmallVector<StringRef, 4> Tags;
5506   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
5507     StringRef Tag;
5508     if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
5509       return;
5510     Tags.push_back(Tag);
5511   }
5512 
5513   if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
5514     if (!NS->isInline()) {
5515       S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
5516       return;
5517     }
5518     if (NS->isAnonymousNamespace()) {
5519       S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
5520       return;
5521     }
5522     if (AL.getNumArgs() == 0)
5523       Tags.push_back(NS->getName());
5524   } else if (!checkAttributeAtLeastNumArgs(S, AL, 1))
5525     return;
5526 
5527   // Store tags sorted and without duplicates.
5528   llvm::sort(Tags);
5529   Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end());
5530 
5531   D->addAttr(::new (S.Context)
5532                  AbiTagAttr(S.Context, AL, Tags.data(), Tags.size()));
5533 }
5534 
5535 static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5536   // Check the attribute arguments.
5537   if (AL.getNumArgs() > 1) {
5538     S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
5539     return;
5540   }
5541 
5542   StringRef Str;
5543   SourceLocation ArgLoc;
5544 
5545   if (AL.getNumArgs() == 0)
5546     Str = "";
5547   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5548     return;
5549 
5550   ARMInterruptAttr::InterruptType Kind;
5551   if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
5552     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
5553                                                                  << ArgLoc;
5554     return;
5555   }
5556 
5557   D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind));
5558 }
5559 
5560 static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5561   // MSP430 'interrupt' attribute is applied to
5562   // a function with no parameters and void return type.
5563   if (!isFunctionOrMethod(D)) {
5564     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5565         << "'interrupt'" << ExpectedFunctionOrMethod;
5566     return;
5567   }
5568 
5569   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
5570     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
5571         << /*MSP430*/ 1 << 0;
5572     return;
5573   }
5574 
5575   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
5576     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
5577         << /*MSP430*/ 1 << 1;
5578     return;
5579   }
5580 
5581   // The attribute takes one integer argument.
5582   if (!checkAttributeNumArgs(S, AL, 1))
5583     return;
5584 
5585   if (!AL.isArgExpr(0)) {
5586     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
5587         << AL << AANT_ArgumentIntegerConstant;
5588     return;
5589   }
5590 
5591   Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
5592   llvm::APSInt NumParams(32);
5593   if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) {
5594     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
5595         << AL << AANT_ArgumentIntegerConstant
5596         << NumParamsExpr->getSourceRange();
5597     return;
5598   }
5599   // The argument should be in range 0..63.
5600   unsigned Num = NumParams.getLimitedValue(255);
5601   if (Num > 63) {
5602     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
5603         << AL << (int)NumParams.getSExtValue()
5604         << NumParamsExpr->getSourceRange();
5605     return;
5606   }
5607 
5608   D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num));
5609   D->addAttr(UsedAttr::CreateImplicit(S.Context));
5610 }
5611 
5612 static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5613   // Only one optional argument permitted.
5614   if (AL.getNumArgs() > 1) {
5615     S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
5616     return;
5617   }
5618 
5619   StringRef Str;
5620   SourceLocation ArgLoc;
5621 
5622   if (AL.getNumArgs() == 0)
5623     Str = "";
5624   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5625     return;
5626 
5627   // Semantic checks for a function with the 'interrupt' attribute for MIPS:
5628   // a) Must be a function.
5629   // b) Must have no parameters.
5630   // c) Must have the 'void' return type.
5631   // d) Cannot have the 'mips16' attribute, as that instruction set
5632   //    lacks the 'eret' instruction.
5633   // e) The attribute itself must either have no argument or one of the
5634   //    valid interrupt types, see [MipsInterruptDocs].
5635 
5636   if (!isFunctionOrMethod(D)) {
5637     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5638         << "'interrupt'" << ExpectedFunctionOrMethod;
5639     return;
5640   }
5641 
5642   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
5643     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
5644         << /*MIPS*/ 0 << 0;
5645     return;
5646   }
5647 
5648   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
5649     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
5650         << /*MIPS*/ 0 << 1;
5651     return;
5652   }
5653 
5654   if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL))
5655     return;
5656 
5657   MipsInterruptAttr::InterruptType Kind;
5658   if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
5659     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
5660         << AL << "'" + std::string(Str) + "'";
5661     return;
5662   }
5663 
5664   D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind));
5665 }
5666 
5667 static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5668   // Semantic checks for a function with the 'interrupt' attribute.
5669   // a) Must be a function.
5670   // b) Must have the 'void' return type.
5671   // c) Must take 1 or 2 arguments.
5672   // d) The 1st argument must be a pointer.
5673   // e) The 2nd argument (if any) must be an unsigned integer.
5674   if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) ||
5675       CXXMethodDecl::isStaticOverloadedOperator(
5676           cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) {
5677     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
5678         << AL << ExpectedFunctionWithProtoType;
5679     return;
5680   }
5681   // Interrupt handler must have void return type.
5682   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
5683     S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(),
5684            diag::err_anyx86_interrupt_attribute)
5685         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
5686                 ? 0
5687                 : 1)
5688         << 0;
5689     return;
5690   }
5691   // Interrupt handler must have 1 or 2 parameters.
5692   unsigned NumParams = getFunctionOrMethodNumParams(D);
5693   if (NumParams < 1 || NumParams > 2) {
5694     S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute)
5695         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
5696                 ? 0
5697                 : 1)
5698         << 1;
5699     return;
5700   }
5701   // The first argument must be a pointer.
5702   if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) {
5703     S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(),
5704            diag::err_anyx86_interrupt_attribute)
5705         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
5706                 ? 0
5707                 : 1)
5708         << 2;
5709     return;
5710   }
5711   // The second argument, if present, must be an unsigned integer.
5712   unsigned TypeSize =
5713       S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64
5714           ? 64
5715           : 32;
5716   if (NumParams == 2 &&
5717       (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() ||
5718        S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) {
5719     S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(),
5720            diag::err_anyx86_interrupt_attribute)
5721         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
5722                 ? 0
5723                 : 1)
5724         << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false);
5725     return;
5726   }
5727   D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL));
5728   D->addAttr(UsedAttr::CreateImplicit(S.Context));
5729 }
5730 
5731 static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5732   if (!isFunctionOrMethod(D)) {
5733     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5734         << "'interrupt'" << ExpectedFunction;
5735     return;
5736   }
5737 
5738   if (!checkAttributeNumArgs(S, AL, 0))
5739     return;
5740 
5741   handleSimpleAttribute<AVRInterruptAttr>(S, D, AL);
5742 }
5743 
5744 static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5745   if (!isFunctionOrMethod(D)) {
5746     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5747         << "'signal'" << ExpectedFunction;
5748     return;
5749   }
5750 
5751   if (!checkAttributeNumArgs(S, AL, 0))
5752     return;
5753 
5754   handleSimpleAttribute<AVRSignalAttr>(S, D, AL);
5755 }
5756 
5757 static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) {
5758   // Add preserve_access_index attribute to all fields and inner records.
5759   for (auto D : RD->decls()) {
5760     if (D->hasAttr<BPFPreserveAccessIndexAttr>())
5761       continue;
5762 
5763     D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context));
5764     if (auto *Rec = dyn_cast<RecordDecl>(D))
5765       handleBPFPreserveAIRecord(S, Rec);
5766   }
5767 }
5768 
5769 static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D,
5770     const ParsedAttr &AL) {
5771   auto *Rec = cast<RecordDecl>(D);
5772   handleBPFPreserveAIRecord(S, Rec);
5773   Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL));
5774 }
5775 
5776 static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5777   if (!isFunctionOrMethod(D)) {
5778     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5779         << "'export_name'" << ExpectedFunction;
5780     return;
5781   }
5782 
5783   auto *FD = cast<FunctionDecl>(D);
5784   if (FD->isThisDeclarationADefinition()) {
5785     S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
5786     return;
5787   }
5788 
5789   StringRef Str;
5790   SourceLocation ArgLoc;
5791   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5792     return;
5793 
5794   D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str));
5795   D->addAttr(UsedAttr::CreateImplicit(S.Context));
5796 }
5797 
5798 static void handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5799   if (!isFunctionOrMethod(D)) {
5800     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5801         << "'import_module'" << ExpectedFunction;
5802     return;
5803   }
5804 
5805   auto *FD = cast<FunctionDecl>(D);
5806   if (FD->isThisDeclarationADefinition()) {
5807     S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
5808     return;
5809   }
5810 
5811   StringRef Str;
5812   SourceLocation ArgLoc;
5813   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5814     return;
5815 
5816   FD->addAttr(::new (S.Context)
5817                   WebAssemblyImportModuleAttr(S.Context, AL, Str));
5818 }
5819 
5820 static void handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5821   if (!isFunctionOrMethod(D)) {
5822     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5823         << "'import_name'" << ExpectedFunction;
5824     return;
5825   }
5826 
5827   auto *FD = cast<FunctionDecl>(D);
5828   if (FD->isThisDeclarationADefinition()) {
5829     S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
5830     return;
5831   }
5832 
5833   StringRef Str;
5834   SourceLocation ArgLoc;
5835   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5836     return;
5837 
5838   FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str));
5839 }
5840 
5841 static void handleRISCVInterruptAttr(Sema &S, Decl *D,
5842                                      const ParsedAttr &AL) {
5843   // Warn about repeated attributes.
5844   if (const auto *A = D->getAttr<RISCVInterruptAttr>()) {
5845     S.Diag(AL.getRange().getBegin(),
5846       diag::warn_riscv_repeated_interrupt_attribute);
5847     S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute);
5848     return;
5849   }
5850 
5851   // Check the attribute argument. Argument is optional.
5852   if (!checkAttributeAtMostNumArgs(S, AL, 1))
5853     return;
5854 
5855   StringRef Str;
5856   SourceLocation ArgLoc;
5857 
5858   // 'machine'is the default interrupt mode.
5859   if (AL.getNumArgs() == 0)
5860     Str = "machine";
5861   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5862     return;
5863 
5864   // Semantic checks for a function with the 'interrupt' attribute:
5865   // - Must be a function.
5866   // - Must have no parameters.
5867   // - Must have the 'void' return type.
5868   // - The attribute itself must either have no argument or one of the
5869   //   valid interrupt types, see [RISCVInterruptDocs].
5870 
5871   if (D->getFunctionType() == nullptr) {
5872     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5873       << "'interrupt'" << ExpectedFunction;
5874     return;
5875   }
5876 
5877   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
5878     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
5879       << /*RISC-V*/ 2 << 0;
5880     return;
5881   }
5882 
5883   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
5884     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
5885       << /*RISC-V*/ 2 << 1;
5886     return;
5887   }
5888 
5889   RISCVInterruptAttr::InterruptType Kind;
5890   if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
5891     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
5892                                                                  << ArgLoc;
5893     return;
5894   }
5895 
5896   D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind));
5897 }
5898 
5899 static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5900   // Dispatch the interrupt attribute based on the current target.
5901   switch (S.Context.getTargetInfo().getTriple().getArch()) {
5902   case llvm::Triple::msp430:
5903     handleMSP430InterruptAttr(S, D, AL);
5904     break;
5905   case llvm::Triple::mipsel:
5906   case llvm::Triple::mips:
5907     handleMipsInterruptAttr(S, D, AL);
5908     break;
5909   case llvm::Triple::x86:
5910   case llvm::Triple::x86_64:
5911     handleAnyX86InterruptAttr(S, D, AL);
5912     break;
5913   case llvm::Triple::avr:
5914     handleAVRInterruptAttr(S, D, AL);
5915     break;
5916   case llvm::Triple::riscv32:
5917   case llvm::Triple::riscv64:
5918     handleRISCVInterruptAttr(S, D, AL);
5919     break;
5920   default:
5921     handleARMInterruptAttr(S, D, AL);
5922     break;
5923   }
5924 }
5925 
5926 static bool
5927 checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr,
5928                                       const AMDGPUFlatWorkGroupSizeAttr &Attr) {
5929   // Accept template arguments for now as they depend on something else.
5930   // We'll get to check them when they eventually get instantiated.
5931   if (MinExpr->isValueDependent() || MaxExpr->isValueDependent())
5932     return false;
5933 
5934   uint32_t Min = 0;
5935   if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
5936     return true;
5937 
5938   uint32_t Max = 0;
5939   if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
5940     return true;
5941 
5942   if (Min == 0 && Max != 0) {
5943     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
5944         << &Attr << 0;
5945     return true;
5946   }
5947   if (Min > Max) {
5948     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
5949         << &Attr << 1;
5950     return true;
5951   }
5952 
5953   return false;
5954 }
5955 
5956 void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D,
5957                                           const AttributeCommonInfo &CI,
5958                                           Expr *MinExpr, Expr *MaxExpr) {
5959   AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
5960 
5961   if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr))
5962     return;
5963 
5964   D->addAttr(::new (Context)
5965                  AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr));
5966 }
5967 
5968 static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D,
5969                                               const ParsedAttr &AL) {
5970   Expr *MinExpr = AL.getArgAsExpr(0);
5971   Expr *MaxExpr = AL.getArgAsExpr(1);
5972 
5973   S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr);
5974 }
5975 
5976 static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr,
5977                                            Expr *MaxExpr,
5978                                            const AMDGPUWavesPerEUAttr &Attr) {
5979   if (S.DiagnoseUnexpandedParameterPack(MinExpr) ||
5980       (MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr)))
5981     return true;
5982 
5983   // Accept template arguments for now as they depend on something else.
5984   // We'll get to check them when they eventually get instantiated.
5985   if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent()))
5986     return false;
5987 
5988   uint32_t Min = 0;
5989   if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
5990     return true;
5991 
5992   uint32_t Max = 0;
5993   if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
5994     return true;
5995 
5996   if (Min == 0 && Max != 0) {
5997     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
5998         << &Attr << 0;
5999     return true;
6000   }
6001   if (Max != 0 && Min > Max) {
6002     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
6003         << &Attr << 1;
6004     return true;
6005   }
6006 
6007   return false;
6008 }
6009 
6010 void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
6011                                    Expr *MinExpr, Expr *MaxExpr) {
6012   AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
6013 
6014   if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr))
6015     return;
6016 
6017   D->addAttr(::new (Context)
6018                  AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr));
6019 }
6020 
6021 static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6022   if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
6023       !checkAttributeAtMostNumArgs(S, AL, 2))
6024     return;
6025 
6026   Expr *MinExpr = AL.getArgAsExpr(0);
6027   Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr;
6028 
6029   S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr);
6030 }
6031 
6032 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6033   uint32_t NumSGPR = 0;
6034   Expr *NumSGPRExpr = AL.getArgAsExpr(0);
6035   if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR))
6036     return;
6037 
6038   D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR));
6039 }
6040 
6041 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6042   uint32_t NumVGPR = 0;
6043   Expr *NumVGPRExpr = AL.getArgAsExpr(0);
6044   if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR))
6045     return;
6046 
6047   D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR));
6048 }
6049 
6050 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
6051                                               const ParsedAttr &AL) {
6052   // If we try to apply it to a function pointer, don't warn, but don't
6053   // do anything, either. It doesn't matter anyway, because there's nothing
6054   // special about calling a force_align_arg_pointer function.
6055   const auto *VD = dyn_cast<ValueDecl>(D);
6056   if (VD && VD->getType()->isFunctionPointerType())
6057     return;
6058   // Also don't warn on function pointer typedefs.
6059   const auto *TD = dyn_cast<TypedefNameDecl>(D);
6060   if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
6061     TD->getUnderlyingType()->isFunctionType()))
6062     return;
6063   // Attribute can only be applied to function types.
6064   if (!isa<FunctionDecl>(D)) {
6065     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
6066         << AL << ExpectedFunction;
6067     return;
6068   }
6069 
6070   D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL));
6071 }
6072 
6073 static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) {
6074   uint32_t Version;
6075   Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
6076   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version))
6077     return;
6078 
6079   // TODO: Investigate what happens with the next major version of MSVC.
6080   if (Version != LangOptions::MSVC2015 / 100) {
6081     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
6082         << AL << Version << VersionExpr->getSourceRange();
6083     return;
6084   }
6085 
6086   // The attribute expects a "major" version number like 19, but new versions of
6087   // MSVC have moved to updating the "minor", or less significant numbers, so we
6088   // have to multiply by 100 now.
6089   Version *= 100;
6090 
6091   D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version));
6092 }
6093 
6094 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D,
6095                                         const AttributeCommonInfo &CI) {
6096   if (D->hasAttr<DLLExportAttr>()) {
6097     Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'";
6098     return nullptr;
6099   }
6100 
6101   if (D->hasAttr<DLLImportAttr>())
6102     return nullptr;
6103 
6104   return ::new (Context) DLLImportAttr(Context, CI);
6105 }
6106 
6107 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D,
6108                                         const AttributeCommonInfo &CI) {
6109   if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
6110     Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
6111     D->dropAttr<DLLImportAttr>();
6112   }
6113 
6114   if (D->hasAttr<DLLExportAttr>())
6115     return nullptr;
6116 
6117   return ::new (Context) DLLExportAttr(Context, CI);
6118 }
6119 
6120 static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) {
6121   if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
6122       S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
6123     S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A;
6124     return;
6125   }
6126 
6127   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
6128     if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport &&
6129         !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
6130       // MinGW doesn't allow dllimport on inline functions.
6131       S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
6132           << A;
6133       return;
6134     }
6135   }
6136 
6137   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
6138     if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
6139         MD->getParent()->isLambda()) {
6140       S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A;
6141       return;
6142     }
6143   }
6144 
6145   Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport
6146                       ? (Attr *)S.mergeDLLExportAttr(D, A)
6147                       : (Attr *)S.mergeDLLImportAttr(D, A);
6148   if (NewAttr)
6149     D->addAttr(NewAttr);
6150 }
6151 
6152 MSInheritanceAttr *
6153 Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI,
6154                              bool BestCase,
6155                              MSInheritanceModel Model) {
6156   if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
6157     if (IA->getInheritanceModel() == Model)
6158       return nullptr;
6159     Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
6160         << 1 /*previous declaration*/;
6161     Diag(CI.getLoc(), diag::note_previous_ms_inheritance);
6162     D->dropAttr<MSInheritanceAttr>();
6163   }
6164 
6165   auto *RD = cast<CXXRecordDecl>(D);
6166   if (RD->hasDefinition()) {
6167     if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase,
6168                                            Model)) {
6169       return nullptr;
6170     }
6171   } else {
6172     if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
6173       Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
6174           << 1 /*partial specialization*/;
6175       return nullptr;
6176     }
6177     if (RD->getDescribedClassTemplate()) {
6178       Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
6179           << 0 /*primary template*/;
6180       return nullptr;
6181     }
6182   }
6183 
6184   return ::new (Context) MSInheritanceAttr(Context, CI, BestCase);
6185 }
6186 
6187 static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6188   // The capability attributes take a single string parameter for the name of
6189   // the capability they represent. The lockable attribute does not take any
6190   // parameters. However, semantically, both attributes represent the same
6191   // concept, and so they use the same semantic attribute. Eventually, the
6192   // lockable attribute will be removed.
6193   //
6194   // For backward compatibility, any capability which has no specified string
6195   // literal will be considered a "mutex."
6196   StringRef N("mutex");
6197   SourceLocation LiteralLoc;
6198   if (AL.getKind() == ParsedAttr::AT_Capability &&
6199       !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
6200     return;
6201 
6202   // Currently, there are only two names allowed for a capability: role and
6203   // mutex (case insensitive). Diagnose other capability names.
6204   if (!N.equals_lower("mutex") && !N.equals_lower("role"))
6205     S.Diag(LiteralLoc, diag::warn_invalid_capability_name) << N;
6206 
6207   D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N));
6208 }
6209 
6210 static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6211   SmallVector<Expr*, 1> Args;
6212   if (!checkLockFunAttrCommon(S, D, AL, Args))
6213     return;
6214 
6215   D->addAttr(::new (S.Context)
6216                  AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size()));
6217 }
6218 
6219 static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
6220                                         const ParsedAttr &AL) {
6221   SmallVector<Expr*, 1> Args;
6222   if (!checkLockFunAttrCommon(S, D, AL, Args))
6223     return;
6224 
6225   D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(),
6226                                                      Args.size()));
6227 }
6228 
6229 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
6230                                            const ParsedAttr &AL) {
6231   SmallVector<Expr*, 2> Args;
6232   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
6233     return;
6234 
6235   D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(
6236       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
6237 }
6238 
6239 static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
6240                                         const ParsedAttr &AL) {
6241   // Check that all arguments are lockable objects.
6242   SmallVector<Expr *, 1> Args;
6243   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
6244 
6245   D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(),
6246                                                      Args.size()));
6247 }
6248 
6249 static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
6250                                          const ParsedAttr &AL) {
6251   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
6252     return;
6253 
6254   // check that all arguments are lockable objects
6255   SmallVector<Expr*, 1> Args;
6256   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
6257   if (Args.empty())
6258     return;
6259 
6260   RequiresCapabilityAttr *RCA = ::new (S.Context)
6261       RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size());
6262 
6263   D->addAttr(RCA);
6264 }
6265 
6266 static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6267   if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
6268     if (NSD->isAnonymousNamespace()) {
6269       S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
6270       // Do not want to attach the attribute to the namespace because that will
6271       // cause confusing diagnostic reports for uses of declarations within the
6272       // namespace.
6273       return;
6274     }
6275   }
6276 
6277   // Handle the cases where the attribute has a text message.
6278   StringRef Str, Replacement;
6279   if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
6280       !S.checkStringLiteralArgumentAttr(AL, 0, Str))
6281     return;
6282 
6283   // Only support a single optional message for Declspec and CXX11.
6284   if (AL.isDeclspecAttribute() || AL.isCXX11Attribute())
6285     checkAttributeAtMostNumArgs(S, AL, 1);
6286   else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
6287            !S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
6288     return;
6289 
6290   if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope())
6291     S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL;
6292 
6293   D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement));
6294 }
6295 
6296 static bool isGlobalVar(const Decl *D) {
6297   if (const auto *S = dyn_cast<VarDecl>(D))
6298     return S->hasGlobalStorage();
6299   return false;
6300 }
6301 
6302 static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6303   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
6304     return;
6305 
6306   std::vector<StringRef> Sanitizers;
6307 
6308   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
6309     StringRef SanitizerName;
6310     SourceLocation LiteralLoc;
6311 
6312     if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
6313       return;
6314 
6315     if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) ==
6316         SanitizerMask())
6317       S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
6318     else if (isGlobalVar(D) && SanitizerName != "address")
6319       S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
6320           << AL << ExpectedFunctionOrMethod;
6321     Sanitizers.push_back(SanitizerName);
6322   }
6323 
6324   D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(),
6325                                               Sanitizers.size()));
6326 }
6327 
6328 static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
6329                                          const ParsedAttr &AL) {
6330   StringRef AttrName = AL.getAttrName()->getName();
6331   normalizeName(AttrName);
6332   StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName)
6333                                 .Case("no_address_safety_analysis", "address")
6334                                 .Case("no_sanitize_address", "address")
6335                                 .Case("no_sanitize_thread", "thread")
6336                                 .Case("no_sanitize_memory", "memory");
6337   if (isGlobalVar(D) && SanitizerName != "address")
6338     S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
6339         << AL << ExpectedFunction;
6340 
6341   // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a
6342   // NoSanitizeAttr object; but we need to calculate the correct spelling list
6343   // index rather than incorrectly assume the index for NoSanitizeSpecificAttr
6344   // has the same spellings as the index for NoSanitizeAttr. We don't have a
6345   // general way to "translate" between the two, so this hack attempts to work
6346   // around the issue with hard-coded indicies. This is critical for calling
6347   // getSpelling() or prettyPrint() on the resulting semantic attribute object
6348   // without failing assertions.
6349   unsigned TranslatedSpellingIndex = 0;
6350   if (AL.isC2xAttribute() || AL.isCXX11Attribute())
6351     TranslatedSpellingIndex = 1;
6352 
6353   AttributeCommonInfo Info = AL;
6354   Info.setAttributeSpellingListIndex(TranslatedSpellingIndex);
6355   D->addAttr(::new (S.Context)
6356                  NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
6357 }
6358 
6359 static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6360   if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL))
6361     D->addAttr(Internal);
6362 }
6363 
6364 static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6365   if (S.LangOpts.OpenCLVersion != 200)
6366     S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version)
6367         << AL << "2.0" << 0;
6368   else
6369     S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored) << AL
6370                                                                    << "2.0";
6371 }
6372 
6373 /// Handles semantic checking for features that are common to all attributes,
6374 /// such as checking whether a parameter was properly specified, or the correct
6375 /// number of arguments were passed, etc.
6376 static bool handleCommonAttributeFeatures(Sema &S, Decl *D,
6377                                           const ParsedAttr &AL) {
6378   // Several attributes carry different semantics than the parsing requires, so
6379   // those are opted out of the common argument checks.
6380   //
6381   // We also bail on unknown and ignored attributes because those are handled
6382   // as part of the target-specific handling logic.
6383   if (AL.getKind() == ParsedAttr::UnknownAttribute)
6384     return false;
6385   // Check whether the attribute requires specific language extensions to be
6386   // enabled.
6387   if (!AL.diagnoseLangOpts(S))
6388     return true;
6389   // Check whether the attribute appertains to the given subject.
6390   if (!AL.diagnoseAppertainsTo(S, D))
6391     return true;
6392   if (AL.hasCustomParsing())
6393     return false;
6394 
6395   if (AL.getMinArgs() == AL.getMaxArgs()) {
6396     // If there are no optional arguments, then checking for the argument count
6397     // is trivial.
6398     if (!checkAttributeNumArgs(S, AL, AL.getMinArgs()))
6399       return true;
6400   } else {
6401     // There are optional arguments, so checking is slightly more involved.
6402     if (AL.getMinArgs() &&
6403         !checkAttributeAtLeastNumArgs(S, AL, AL.getMinArgs()))
6404       return true;
6405     else if (!AL.hasVariadicArg() && AL.getMaxArgs() &&
6406              !checkAttributeAtMostNumArgs(S, AL, AL.getMaxArgs()))
6407       return true;
6408   }
6409 
6410   if (S.CheckAttrTarget(AL))
6411     return true;
6412 
6413   return false;
6414 }
6415 
6416 static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6417   if (D->isInvalidDecl())
6418     return;
6419 
6420   // Check if there is only one access qualifier.
6421   if (D->hasAttr<OpenCLAccessAttr>()) {
6422     if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() ==
6423         AL.getSemanticSpelling()) {
6424       S.Diag(AL.getLoc(), diag::warn_duplicate_declspec)
6425           << AL.getAttrName()->getName() << AL.getRange();
6426     } else {
6427       S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers)
6428           << D->getSourceRange();
6429       D->setInvalidDecl(true);
6430       return;
6431     }
6432   }
6433 
6434   // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that an
6435   // image object can be read and written.
6436   // OpenCL v2.0 s6.13.6 - A kernel cannot read from and write to the same pipe
6437   // object. Using the read_write (or __read_write) qualifier with the pipe
6438   // qualifier is a compilation error.
6439   if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) {
6440     const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr();
6441     if (AL.getAttrName()->getName().find("read_write") != StringRef::npos) {
6442       if ((!S.getLangOpts().OpenCLCPlusPlus &&
6443            S.getLangOpts().OpenCLVersion < 200) ||
6444           DeclTy->isPipeType()) {
6445         S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write)
6446             << AL << PDecl->getType() << DeclTy->isImageType();
6447         D->setInvalidDecl(true);
6448         return;
6449       }
6450     }
6451   }
6452 
6453   D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL));
6454 }
6455 
6456 static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6457   // The 'sycl_kernel' attribute applies only to function templates.
6458   const auto *FD = cast<FunctionDecl>(D);
6459   const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate();
6460   assert(FT && "Function template is expected");
6461 
6462   // Function template must have at least two template parameters.
6463   const TemplateParameterList *TL = FT->getTemplateParameters();
6464   if (TL->size() < 2) {
6465     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params);
6466     return;
6467   }
6468 
6469   // Template parameters must be typenames.
6470   for (unsigned I = 0; I < 2; ++I) {
6471     const NamedDecl *TParam = TL->getParam(I);
6472     if (isa<NonTypeTemplateParmDecl>(TParam)) {
6473       S.Diag(FT->getLocation(),
6474              diag::warn_sycl_kernel_invalid_template_param_type);
6475       return;
6476     }
6477   }
6478 
6479   // Function must have at least one argument.
6480   if (getFunctionOrMethodNumParams(D) != 1) {
6481     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params);
6482     return;
6483   }
6484 
6485   // Function must return void.
6486   QualType RetTy = getFunctionOrMethodResultType(D);
6487   if (!RetTy->isVoidType()) {
6488     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type);
6489     return;
6490   }
6491 
6492   handleSimpleAttribute<SYCLKernelAttr>(S, D, AL);
6493 }
6494 
6495 static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) {
6496   if (!cast<VarDecl>(D)->hasGlobalStorage()) {
6497     S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var)
6498         << (A.getKind() == ParsedAttr::AT_AlwaysDestroy);
6499     return;
6500   }
6501 
6502   if (A.getKind() == ParsedAttr::AT_AlwaysDestroy)
6503     handleSimpleAttributeWithExclusions<AlwaysDestroyAttr, NoDestroyAttr>(S, D, A);
6504   else
6505     handleSimpleAttributeWithExclusions<NoDestroyAttr, AlwaysDestroyAttr>(S, D, A);
6506 }
6507 
6508 static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6509   assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic &&
6510          "uninitialized is only valid on automatic duration variables");
6511   D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL));
6512 }
6513 
6514 static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD,
6515                                         bool DiagnoseFailure) {
6516   QualType Ty = VD->getType();
6517   if (!Ty->isObjCRetainableType()) {
6518     if (DiagnoseFailure) {
6519       S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
6520           << 0;
6521     }
6522     return false;
6523   }
6524 
6525   Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime();
6526 
6527   // Sema::inferObjCARCLifetime must run after processing decl attributes
6528   // (because __block lowers to an attribute), so if the lifetime hasn't been
6529   // explicitly specified, infer it locally now.
6530   if (LifetimeQual == Qualifiers::OCL_None)
6531     LifetimeQual = Ty->getObjCARCImplicitLifetime();
6532 
6533   // The attributes only really makes sense for __strong variables; ignore any
6534   // attempts to annotate a parameter with any other lifetime qualifier.
6535   if (LifetimeQual != Qualifiers::OCL_Strong) {
6536     if (DiagnoseFailure) {
6537       S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
6538           << 1;
6539     }
6540     return false;
6541   }
6542 
6543   // Tampering with the type of a VarDecl here is a bit of a hack, but we need
6544   // to ensure that the variable is 'const' so that we can error on
6545   // modification, which can otherwise over-release.
6546   VD->setType(Ty.withConst());
6547   VD->setARCPseudoStrong(true);
6548   return true;
6549 }
6550 
6551 static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D,
6552                                              const ParsedAttr &AL) {
6553   if (auto *VD = dyn_cast<VarDecl>(D)) {
6554     assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically");
6555     if (!VD->hasLocalStorage()) {
6556       S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
6557           << 0;
6558       return;
6559     }
6560 
6561     if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true))
6562       return;
6563 
6564     handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
6565     return;
6566   }
6567 
6568   // If D is a function-like declaration (method, block, or function), then we
6569   // make every parameter psuedo-strong.
6570   for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) {
6571     auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, I));
6572     QualType Ty = PVD->getType();
6573 
6574     // If a user wrote a parameter with __strong explicitly, then assume they
6575     // want "real" strong semantics for that parameter. This works because if
6576     // the parameter was written with __strong, then the strong qualifier will
6577     // be non-local.
6578     if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() ==
6579         Qualifiers::OCL_Strong)
6580       continue;
6581 
6582     tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false);
6583   }
6584   handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
6585 }
6586 
6587 static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6588   // Check that the return type is a `typedef int kern_return_t` or a typedef
6589   // around it, because otherwise MIG convention checks make no sense.
6590   // BlockDecl doesn't store a return type, so it's annoying to check,
6591   // so let's skip it for now.
6592   if (!isa<BlockDecl>(D)) {
6593     QualType T = getFunctionOrMethodResultType(D);
6594     bool IsKernReturnT = false;
6595     while (const auto *TT = T->getAs<TypedefType>()) {
6596       IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t");
6597       T = TT->desugar();
6598     }
6599     if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) {
6600       S.Diag(D->getBeginLoc(),
6601              diag::warn_mig_server_routine_does_not_return_kern_return_t);
6602       return;
6603     }
6604   }
6605 
6606   handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL);
6607 }
6608 
6609 static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6610   // Warn if the return type is not a pointer or reference type.
6611   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
6612     QualType RetTy = FD->getReturnType();
6613     if (!RetTy->isPointerType() && !RetTy->isReferenceType()) {
6614       S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer)
6615           << AL.getRange() << RetTy;
6616       return;
6617     }
6618   }
6619 
6620   handleSimpleAttribute<MSAllocatorAttr>(S, D, AL);
6621 }
6622 
6623 static void handeAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6624   if (AL.isUsedAsTypeAttr())
6625     return;
6626   // Warn if the parameter is definitely not an output parameter.
6627   if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
6628     if (PVD->getType()->isIntegerType()) {
6629       S.Diag(AL.getLoc(), diag::err_attribute_output_parameter)
6630           << AL.getRange();
6631       return;
6632     }
6633   }
6634   StringRef Argument;
6635   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
6636     return;
6637   D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL));
6638 }
6639 
6640 template<typename Attr>
6641 static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6642   StringRef Argument;
6643   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
6644     return;
6645   D->addAttr(Attr::Create(S.Context, Argument, AL));
6646 }
6647 
6648 static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6649   // The guard attribute takes a single identifier argument.
6650 
6651   if (!AL.isArgIdent(0)) {
6652     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6653         << AL << AANT_ArgumentIdentifier;
6654     return;
6655   }
6656 
6657   CFGuardAttr::GuardArg Arg;
6658   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6659   if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) {
6660     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
6661     return;
6662   }
6663 
6664   D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg));
6665 }
6666 
6667 //===----------------------------------------------------------------------===//
6668 // Top Level Sema Entry Points
6669 //===----------------------------------------------------------------------===//
6670 
6671 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
6672 /// the attribute applies to decls.  If the attribute is a type attribute, just
6673 /// silently ignore it if a GNU attribute.
6674 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
6675                                  const ParsedAttr &AL,
6676                                  bool IncludeCXX11Attributes) {
6677   if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
6678     return;
6679 
6680   // Ignore C++11 attributes on declarator chunks: they appertain to the type
6681   // instead.
6682   if (AL.isCXX11Attribute() && !IncludeCXX11Attributes)
6683     return;
6684 
6685   // Unknown attributes are automatically warned on. Target-specific attributes
6686   // which do not apply to the current target architecture are treated as
6687   // though they were unknown attributes.
6688   if (AL.getKind() == ParsedAttr::UnknownAttribute ||
6689       !AL.existsInTarget(S.Context.getTargetInfo())) {
6690     S.Diag(AL.getLoc(),
6691            AL.isDeclspecAttribute()
6692                ? (unsigned)diag::warn_unhandled_ms_attribute_ignored
6693                : (unsigned)diag::warn_unknown_attribute_ignored)
6694         << AL;
6695     return;
6696   }
6697 
6698   if (handleCommonAttributeFeatures(S, D, AL))
6699     return;
6700 
6701   switch (AL.getKind()) {
6702   default:
6703     if (!AL.isStmtAttr()) {
6704       // Type attributes are handled elsewhere; silently move on.
6705       assert(AL.isTypeAttr() && "Non-type attribute not handled");
6706       break;
6707     }
6708     S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl)
6709         << AL << D->getLocation();
6710     break;
6711   case ParsedAttr::AT_Interrupt:
6712     handleInterruptAttr(S, D, AL);
6713     break;
6714   case ParsedAttr::AT_X86ForceAlignArgPointer:
6715     handleX86ForceAlignArgPointerAttr(S, D, AL);
6716     break;
6717   case ParsedAttr::AT_DLLExport:
6718   case ParsedAttr::AT_DLLImport:
6719     handleDLLAttr(S, D, AL);
6720     break;
6721   case ParsedAttr::AT_Mips16:
6722     handleSimpleAttributeWithExclusions<Mips16Attr, MicroMipsAttr,
6723                                         MipsInterruptAttr>(S, D, AL);
6724     break;
6725   case ParsedAttr::AT_NoMips16:
6726     handleSimpleAttribute<NoMips16Attr>(S, D, AL);
6727     break;
6728   case ParsedAttr::AT_MicroMips:
6729     handleSimpleAttributeWithExclusions<MicroMipsAttr, Mips16Attr>(S, D, AL);
6730     break;
6731   case ParsedAttr::AT_NoMicroMips:
6732     handleSimpleAttribute<NoMicroMipsAttr>(S, D, AL);
6733     break;
6734   case ParsedAttr::AT_MipsLongCall:
6735     handleSimpleAttributeWithExclusions<MipsLongCallAttr, MipsShortCallAttr>(
6736         S, D, AL);
6737     break;
6738   case ParsedAttr::AT_MipsShortCall:
6739     handleSimpleAttributeWithExclusions<MipsShortCallAttr, MipsLongCallAttr>(
6740         S, D, AL);
6741     break;
6742   case ParsedAttr::AT_AMDGPUFlatWorkGroupSize:
6743     handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL);
6744     break;
6745   case ParsedAttr::AT_AMDGPUWavesPerEU:
6746     handleAMDGPUWavesPerEUAttr(S, D, AL);
6747     break;
6748   case ParsedAttr::AT_AMDGPUNumSGPR:
6749     handleAMDGPUNumSGPRAttr(S, D, AL);
6750     break;
6751   case ParsedAttr::AT_AMDGPUNumVGPR:
6752     handleAMDGPUNumVGPRAttr(S, D, AL);
6753     break;
6754   case ParsedAttr::AT_AVRSignal:
6755     handleAVRSignalAttr(S, D, AL);
6756     break;
6757   case ParsedAttr::AT_BPFPreserveAccessIndex:
6758     handleBPFPreserveAccessIndexAttr(S, D, AL);
6759     break;
6760   case ParsedAttr::AT_WebAssemblyExportName:
6761     handleWebAssemblyExportNameAttr(S, D, AL);
6762     break;
6763   case ParsedAttr::AT_WebAssemblyImportModule:
6764     handleWebAssemblyImportModuleAttr(S, D, AL);
6765     break;
6766   case ParsedAttr::AT_WebAssemblyImportName:
6767     handleWebAssemblyImportNameAttr(S, D, AL);
6768     break;
6769   case ParsedAttr::AT_IBAction:
6770     handleSimpleAttribute<IBActionAttr>(S, D, AL);
6771     break;
6772   case ParsedAttr::AT_IBOutlet:
6773     handleIBOutlet(S, D, AL);
6774     break;
6775   case ParsedAttr::AT_IBOutletCollection:
6776     handleIBOutletCollection(S, D, AL);
6777     break;
6778   case ParsedAttr::AT_IFunc:
6779     handleIFuncAttr(S, D, AL);
6780     break;
6781   case ParsedAttr::AT_Alias:
6782     handleAliasAttr(S, D, AL);
6783     break;
6784   case ParsedAttr::AT_Aligned:
6785     handleAlignedAttr(S, D, AL);
6786     break;
6787   case ParsedAttr::AT_AlignValue:
6788     handleAlignValueAttr(S, D, AL);
6789     break;
6790   case ParsedAttr::AT_AllocSize:
6791     handleAllocSizeAttr(S, D, AL);
6792     break;
6793   case ParsedAttr::AT_AlwaysInline:
6794     handleAlwaysInlineAttr(S, D, AL);
6795     break;
6796   case ParsedAttr::AT_Artificial:
6797     handleSimpleAttribute<ArtificialAttr>(S, D, AL);
6798     break;
6799   case ParsedAttr::AT_AnalyzerNoReturn:
6800     handleAnalyzerNoReturnAttr(S, D, AL);
6801     break;
6802   case ParsedAttr::AT_TLSModel:
6803     handleTLSModelAttr(S, D, AL);
6804     break;
6805   case ParsedAttr::AT_Annotate:
6806     handleAnnotateAttr(S, D, AL);
6807     break;
6808   case ParsedAttr::AT_Availability:
6809     handleAvailabilityAttr(S, D, AL);
6810     break;
6811   case ParsedAttr::AT_CarriesDependency:
6812     handleDependencyAttr(S, scope, D, AL);
6813     break;
6814   case ParsedAttr::AT_CPUDispatch:
6815   case ParsedAttr::AT_CPUSpecific:
6816     handleCPUSpecificAttr(S, D, AL);
6817     break;
6818   case ParsedAttr::AT_Common:
6819     handleCommonAttr(S, D, AL);
6820     break;
6821   case ParsedAttr::AT_CUDAConstant:
6822     handleConstantAttr(S, D, AL);
6823     break;
6824   case ParsedAttr::AT_PassObjectSize:
6825     handlePassObjectSizeAttr(S, D, AL);
6826     break;
6827   case ParsedAttr::AT_Constructor:
6828     handleConstructorAttr(S, D, AL);
6829     break;
6830   case ParsedAttr::AT_CXX11NoReturn:
6831     handleSimpleAttribute<CXX11NoReturnAttr>(S, D, AL);
6832     break;
6833   case ParsedAttr::AT_Deprecated:
6834     handleDeprecatedAttr(S, D, AL);
6835     break;
6836   case ParsedAttr::AT_Destructor:
6837     handleDestructorAttr(S, D, AL);
6838     break;
6839   case ParsedAttr::AT_EnableIf:
6840     handleEnableIfAttr(S, D, AL);
6841     break;
6842   case ParsedAttr::AT_DiagnoseIf:
6843     handleDiagnoseIfAttr(S, D, AL);
6844     break;
6845   case ParsedAttr::AT_NoBuiltin:
6846     handleNoBuiltinAttr(S, D, AL);
6847     break;
6848   case ParsedAttr::AT_ExtVectorType:
6849     handleExtVectorTypeAttr(S, D, AL);
6850     break;
6851   case ParsedAttr::AT_ExternalSourceSymbol:
6852     handleExternalSourceSymbolAttr(S, D, AL);
6853     break;
6854   case ParsedAttr::AT_MinSize:
6855     handleMinSizeAttr(S, D, AL);
6856     break;
6857   case ParsedAttr::AT_OptimizeNone:
6858     handleOptimizeNoneAttr(S, D, AL);
6859     break;
6860   case ParsedAttr::AT_FlagEnum:
6861     handleSimpleAttribute<FlagEnumAttr>(S, D, AL);
6862     break;
6863   case ParsedAttr::AT_EnumExtensibility:
6864     handleEnumExtensibilityAttr(S, D, AL);
6865     break;
6866   case ParsedAttr::AT_Flatten:
6867     handleSimpleAttribute<FlattenAttr>(S, D, AL);
6868     break;
6869   case ParsedAttr::AT_SYCLKernel:
6870     handleSYCLKernelAttr(S, D, AL);
6871     break;
6872   case ParsedAttr::AT_Format:
6873     handleFormatAttr(S, D, AL);
6874     break;
6875   case ParsedAttr::AT_FormatArg:
6876     handleFormatArgAttr(S, D, AL);
6877     break;
6878   case ParsedAttr::AT_Callback:
6879     handleCallbackAttr(S, D, AL);
6880     break;
6881   case ParsedAttr::AT_CUDAGlobal:
6882     handleGlobalAttr(S, D, AL);
6883     break;
6884   case ParsedAttr::AT_CUDADevice:
6885     handleSimpleAttributeWithExclusions<CUDADeviceAttr, CUDAGlobalAttr>(S, D,
6886                                                                         AL);
6887     break;
6888   case ParsedAttr::AT_CUDAHost:
6889     handleSimpleAttributeWithExclusions<CUDAHostAttr, CUDAGlobalAttr>(S, D, AL);
6890     break;
6891   case ParsedAttr::AT_HIPPinnedShadow:
6892     handleSimpleAttributeWithExclusions<HIPPinnedShadowAttr, CUDADeviceAttr,
6893                                         CUDAConstantAttr>(S, D, AL);
6894     break;
6895   case ParsedAttr::AT_GNUInline:
6896     handleGNUInlineAttr(S, D, AL);
6897     break;
6898   case ParsedAttr::AT_CUDALaunchBounds:
6899     handleLaunchBoundsAttr(S, D, AL);
6900     break;
6901   case ParsedAttr::AT_Restrict:
6902     handleRestrictAttr(S, D, AL);
6903     break;
6904   case ParsedAttr::AT_LifetimeBound:
6905     handleSimpleAttribute<LifetimeBoundAttr>(S, D, AL);
6906     break;
6907   case ParsedAttr::AT_MayAlias:
6908     handleSimpleAttribute<MayAliasAttr>(S, D, AL);
6909     break;
6910   case ParsedAttr::AT_Mode:
6911     handleModeAttr(S, D, AL);
6912     break;
6913   case ParsedAttr::AT_NoAlias:
6914     handleSimpleAttribute<NoAliasAttr>(S, D, AL);
6915     break;
6916   case ParsedAttr::AT_NoCommon:
6917     handleSimpleAttribute<NoCommonAttr>(S, D, AL);
6918     break;
6919   case ParsedAttr::AT_NoSplitStack:
6920     handleSimpleAttribute<NoSplitStackAttr>(S, D, AL);
6921     break;
6922   case ParsedAttr::AT_NoUniqueAddress:
6923     handleSimpleAttribute<NoUniqueAddressAttr>(S, D, AL);
6924     break;
6925   case ParsedAttr::AT_NonNull:
6926     if (auto *PVD = dyn_cast<ParmVarDecl>(D))
6927       handleNonNullAttrParameter(S, PVD, AL);
6928     else
6929       handleNonNullAttr(S, D, AL);
6930     break;
6931   case ParsedAttr::AT_ReturnsNonNull:
6932     handleReturnsNonNullAttr(S, D, AL);
6933     break;
6934   case ParsedAttr::AT_NoEscape:
6935     handleNoEscapeAttr(S, D, AL);
6936     break;
6937   case ParsedAttr::AT_AssumeAligned:
6938     handleAssumeAlignedAttr(S, D, AL);
6939     break;
6940   case ParsedAttr::AT_AllocAlign:
6941     handleAllocAlignAttr(S, D, AL);
6942     break;
6943   case ParsedAttr::AT_Overloadable:
6944     handleSimpleAttribute<OverloadableAttr>(S, D, AL);
6945     break;
6946   case ParsedAttr::AT_Ownership:
6947     handleOwnershipAttr(S, D, AL);
6948     break;
6949   case ParsedAttr::AT_Cold:
6950     handleSimpleAttributeWithExclusions<ColdAttr, HotAttr>(S, D, AL);
6951     break;
6952   case ParsedAttr::AT_Hot:
6953     handleSimpleAttributeWithExclusions<HotAttr, ColdAttr>(S, D, AL);
6954     break;
6955   case ParsedAttr::AT_Naked:
6956     handleNakedAttr(S, D, AL);
6957     break;
6958   case ParsedAttr::AT_NoReturn:
6959     handleNoReturnAttr(S, D, AL);
6960     break;
6961   case ParsedAttr::AT_AnyX86NoCfCheck:
6962     handleNoCfCheckAttr(S, D, AL);
6963     break;
6964   case ParsedAttr::AT_NoThrow:
6965     if (!AL.isUsedAsTypeAttr())
6966       handleSimpleAttribute<NoThrowAttr>(S, D, AL);
6967     break;
6968   case ParsedAttr::AT_CUDAShared:
6969     handleSharedAttr(S, D, AL);
6970     break;
6971   case ParsedAttr::AT_VecReturn:
6972     handleVecReturnAttr(S, D, AL);
6973     break;
6974   case ParsedAttr::AT_ObjCOwnership:
6975     handleObjCOwnershipAttr(S, D, AL);
6976     break;
6977   case ParsedAttr::AT_ObjCPreciseLifetime:
6978     handleObjCPreciseLifetimeAttr(S, D, AL);
6979     break;
6980   case ParsedAttr::AT_ObjCReturnsInnerPointer:
6981     handleObjCReturnsInnerPointerAttr(S, D, AL);
6982     break;
6983   case ParsedAttr::AT_ObjCRequiresSuper:
6984     handleObjCRequiresSuperAttr(S, D, AL);
6985     break;
6986   case ParsedAttr::AT_ObjCBridge:
6987     handleObjCBridgeAttr(S, D, AL);
6988     break;
6989   case ParsedAttr::AT_ObjCBridgeMutable:
6990     handleObjCBridgeMutableAttr(S, D, AL);
6991     break;
6992   case ParsedAttr::AT_ObjCBridgeRelated:
6993     handleObjCBridgeRelatedAttr(S, D, AL);
6994     break;
6995   case ParsedAttr::AT_ObjCDesignatedInitializer:
6996     handleObjCDesignatedInitializer(S, D, AL);
6997     break;
6998   case ParsedAttr::AT_ObjCRuntimeName:
6999     handleObjCRuntimeName(S, D, AL);
7000     break;
7001   case ParsedAttr::AT_ObjCRuntimeVisible:
7002     handleSimpleAttribute<ObjCRuntimeVisibleAttr>(S, D, AL);
7003     break;
7004   case ParsedAttr::AT_ObjCBoxable:
7005     handleObjCBoxable(S, D, AL);
7006     break;
7007   case ParsedAttr::AT_CFAuditedTransfer:
7008     handleSimpleAttributeWithExclusions<CFAuditedTransferAttr,
7009                                         CFUnknownTransferAttr>(S, D, AL);
7010     break;
7011   case ParsedAttr::AT_CFUnknownTransfer:
7012     handleSimpleAttributeWithExclusions<CFUnknownTransferAttr,
7013                                         CFAuditedTransferAttr>(S, D, AL);
7014     break;
7015   case ParsedAttr::AT_CFConsumed:
7016   case ParsedAttr::AT_NSConsumed:
7017   case ParsedAttr::AT_OSConsumed:
7018     S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL),
7019                        /*IsTemplateInstantiation=*/false);
7020     break;
7021   case ParsedAttr::AT_NSConsumesSelf:
7022     handleSimpleAttribute<NSConsumesSelfAttr>(S, D, AL);
7023     break;
7024   case ParsedAttr::AT_OSConsumesThis:
7025     handleSimpleAttribute<OSConsumesThisAttr>(S, D, AL);
7026     break;
7027   case ParsedAttr::AT_OSReturnsRetainedOnZero:
7028     handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>(
7029         S, D, AL, isValidOSObjectOutParameter(D),
7030         diag::warn_ns_attribute_wrong_parameter_type,
7031         /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange());
7032     break;
7033   case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
7034     handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>(
7035         S, D, AL, isValidOSObjectOutParameter(D),
7036         diag::warn_ns_attribute_wrong_parameter_type,
7037         /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange());
7038     break;
7039   case ParsedAttr::AT_NSReturnsAutoreleased:
7040   case ParsedAttr::AT_NSReturnsNotRetained:
7041   case ParsedAttr::AT_NSReturnsRetained:
7042   case ParsedAttr::AT_CFReturnsNotRetained:
7043   case ParsedAttr::AT_CFReturnsRetained:
7044   case ParsedAttr::AT_OSReturnsNotRetained:
7045   case ParsedAttr::AT_OSReturnsRetained:
7046     handleXReturnsXRetainedAttr(S, D, AL);
7047     break;
7048   case ParsedAttr::AT_WorkGroupSizeHint:
7049     handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL);
7050     break;
7051   case ParsedAttr::AT_ReqdWorkGroupSize:
7052     handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL);
7053     break;
7054   case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize:
7055     handleSubGroupSize(S, D, AL);
7056     break;
7057   case ParsedAttr::AT_VecTypeHint:
7058     handleVecTypeHint(S, D, AL);
7059     break;
7060   case ParsedAttr::AT_ConstInit:
7061     handleSimpleAttribute<ConstInitAttr>(S, D, AL);
7062     break;
7063   case ParsedAttr::AT_InitPriority:
7064     handleInitPriorityAttr(S, D, AL);
7065     break;
7066   case ParsedAttr::AT_Packed:
7067     handlePackedAttr(S, D, AL);
7068     break;
7069   case ParsedAttr::AT_Section:
7070     handleSectionAttr(S, D, AL);
7071     break;
7072   case ParsedAttr::AT_SpeculativeLoadHardening:
7073     handleSimpleAttributeWithExclusions<SpeculativeLoadHardeningAttr,
7074                                         NoSpeculativeLoadHardeningAttr>(S, D,
7075                                                                         AL);
7076     break;
7077   case ParsedAttr::AT_NoSpeculativeLoadHardening:
7078     handleSimpleAttributeWithExclusions<NoSpeculativeLoadHardeningAttr,
7079                                         SpeculativeLoadHardeningAttr>(S, D, AL);
7080     break;
7081   case ParsedAttr::AT_CodeSeg:
7082     handleCodeSegAttr(S, D, AL);
7083     break;
7084   case ParsedAttr::AT_Target:
7085     handleTargetAttr(S, D, AL);
7086     break;
7087   case ParsedAttr::AT_MinVectorWidth:
7088     handleMinVectorWidthAttr(S, D, AL);
7089     break;
7090   case ParsedAttr::AT_Unavailable:
7091     handleAttrWithMessage<UnavailableAttr>(S, D, AL);
7092     break;
7093   case ParsedAttr::AT_ArcWeakrefUnavailable:
7094     handleSimpleAttribute<ArcWeakrefUnavailableAttr>(S, D, AL);
7095     break;
7096   case ParsedAttr::AT_ObjCRootClass:
7097     handleSimpleAttribute<ObjCRootClassAttr>(S, D, AL);
7098     break;
7099   case ParsedAttr::AT_ObjCDirect:
7100     handleObjCDirectAttr(S, D, AL);
7101     break;
7102   case ParsedAttr::AT_ObjCDirectMembers:
7103     handleObjCDirectMembersAttr(S, D, AL);
7104     handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
7105     break;
7106   case ParsedAttr::AT_ObjCNonLazyClass:
7107     handleSimpleAttribute<ObjCNonLazyClassAttr>(S, D, AL);
7108     break;
7109   case ParsedAttr::AT_ObjCSubclassingRestricted:
7110     handleSimpleAttribute<ObjCSubclassingRestrictedAttr>(S, D, AL);
7111     break;
7112   case ParsedAttr::AT_ObjCClassStub:
7113     handleSimpleAttribute<ObjCClassStubAttr>(S, D, AL);
7114     break;
7115   case ParsedAttr::AT_ObjCExplicitProtocolImpl:
7116     handleObjCSuppresProtocolAttr(S, D, AL);
7117     break;
7118   case ParsedAttr::AT_ObjCRequiresPropertyDefs:
7119     handleSimpleAttribute<ObjCRequiresPropertyDefsAttr>(S, D, AL);
7120     break;
7121   case ParsedAttr::AT_Unused:
7122     handleUnusedAttr(S, D, AL);
7123     break;
7124   case ParsedAttr::AT_ReturnsTwice:
7125     handleSimpleAttribute<ReturnsTwiceAttr>(S, D, AL);
7126     break;
7127   case ParsedAttr::AT_NotTailCalled:
7128     handleSimpleAttributeWithExclusions<NotTailCalledAttr, AlwaysInlineAttr>(
7129         S, D, AL);
7130     break;
7131   case ParsedAttr::AT_DisableTailCalls:
7132     handleSimpleAttributeWithExclusions<DisableTailCallsAttr, NakedAttr>(S, D,
7133                                                                          AL);
7134     break;
7135   case ParsedAttr::AT_Used:
7136     handleSimpleAttribute<UsedAttr>(S, D, AL);
7137     break;
7138   case ParsedAttr::AT_Visibility:
7139     handleVisibilityAttr(S, D, AL, false);
7140     break;
7141   case ParsedAttr::AT_TypeVisibility:
7142     handleVisibilityAttr(S, D, AL, true);
7143     break;
7144   case ParsedAttr::AT_WarnUnused:
7145     handleSimpleAttribute<WarnUnusedAttr>(S, D, AL);
7146     break;
7147   case ParsedAttr::AT_WarnUnusedResult:
7148     handleWarnUnusedResult(S, D, AL);
7149     break;
7150   case ParsedAttr::AT_Weak:
7151     handleSimpleAttribute<WeakAttr>(S, D, AL);
7152     break;
7153   case ParsedAttr::AT_WeakRef:
7154     handleWeakRefAttr(S, D, AL);
7155     break;
7156   case ParsedAttr::AT_WeakImport:
7157     handleWeakImportAttr(S, D, AL);
7158     break;
7159   case ParsedAttr::AT_TransparentUnion:
7160     handleTransparentUnionAttr(S, D, AL);
7161     break;
7162   case ParsedAttr::AT_ObjCException:
7163     handleSimpleAttribute<ObjCExceptionAttr>(S, D, AL);
7164     break;
7165   case ParsedAttr::AT_ObjCMethodFamily:
7166     handleObjCMethodFamilyAttr(S, D, AL);
7167     break;
7168   case ParsedAttr::AT_ObjCNSObject:
7169     handleObjCNSObject(S, D, AL);
7170     break;
7171   case ParsedAttr::AT_ObjCIndependentClass:
7172     handleObjCIndependentClass(S, D, AL);
7173     break;
7174   case ParsedAttr::AT_Blocks:
7175     handleBlocksAttr(S, D, AL);
7176     break;
7177   case ParsedAttr::AT_Sentinel:
7178     handleSentinelAttr(S, D, AL);
7179     break;
7180   case ParsedAttr::AT_Const:
7181     handleSimpleAttribute<ConstAttr>(S, D, AL);
7182     break;
7183   case ParsedAttr::AT_Pure:
7184     handleSimpleAttribute<PureAttr>(S, D, AL);
7185     break;
7186   case ParsedAttr::AT_Cleanup:
7187     handleCleanupAttr(S, D, AL);
7188     break;
7189   case ParsedAttr::AT_NoDebug:
7190     handleNoDebugAttr(S, D, AL);
7191     break;
7192   case ParsedAttr::AT_NoDuplicate:
7193     handleSimpleAttribute<NoDuplicateAttr>(S, D, AL);
7194     break;
7195   case ParsedAttr::AT_Convergent:
7196     handleSimpleAttribute<ConvergentAttr>(S, D, AL);
7197     break;
7198   case ParsedAttr::AT_NoInline:
7199     handleSimpleAttribute<NoInlineAttr>(S, D, AL);
7200     break;
7201   case ParsedAttr::AT_NoInstrumentFunction: // Interacts with -pg.
7202     handleSimpleAttribute<NoInstrumentFunctionAttr>(S, D, AL);
7203     break;
7204   case ParsedAttr::AT_NoStackProtector:
7205     // Interacts with -fstack-protector options.
7206     handleSimpleAttribute<NoStackProtectorAttr>(S, D, AL);
7207     break;
7208   case ParsedAttr::AT_CFICanonicalJumpTable:
7209     handleSimpleAttribute<CFICanonicalJumpTableAttr>(S, D, AL);
7210     break;
7211   case ParsedAttr::AT_StdCall:
7212   case ParsedAttr::AT_CDecl:
7213   case ParsedAttr::AT_FastCall:
7214   case ParsedAttr::AT_ThisCall:
7215   case ParsedAttr::AT_Pascal:
7216   case ParsedAttr::AT_RegCall:
7217   case ParsedAttr::AT_SwiftCall:
7218   case ParsedAttr::AT_VectorCall:
7219   case ParsedAttr::AT_MSABI:
7220   case ParsedAttr::AT_SysVABI:
7221   case ParsedAttr::AT_Pcs:
7222   case ParsedAttr::AT_IntelOclBicc:
7223   case ParsedAttr::AT_PreserveMost:
7224   case ParsedAttr::AT_PreserveAll:
7225   case ParsedAttr::AT_AArch64VectorPcs:
7226     handleCallConvAttr(S, D, AL);
7227     break;
7228   case ParsedAttr::AT_Suppress:
7229     handleSuppressAttr(S, D, AL);
7230     break;
7231   case ParsedAttr::AT_Owner:
7232   case ParsedAttr::AT_Pointer:
7233     handleLifetimeCategoryAttr(S, D, AL);
7234     break;
7235   case ParsedAttr::AT_OpenCLKernel:
7236     handleSimpleAttribute<OpenCLKernelAttr>(S, D, AL);
7237     break;
7238   case ParsedAttr::AT_OpenCLAccess:
7239     handleOpenCLAccessAttr(S, D, AL);
7240     break;
7241   case ParsedAttr::AT_OpenCLNoSVM:
7242     handleOpenCLNoSVMAttr(S, D, AL);
7243     break;
7244   case ParsedAttr::AT_SwiftContext:
7245     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext);
7246     break;
7247   case ParsedAttr::AT_SwiftErrorResult:
7248     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult);
7249     break;
7250   case ParsedAttr::AT_SwiftIndirectResult:
7251     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult);
7252     break;
7253   case ParsedAttr::AT_InternalLinkage:
7254     handleInternalLinkageAttr(S, D, AL);
7255     break;
7256   case ParsedAttr::AT_ExcludeFromExplicitInstantiation:
7257     handleSimpleAttribute<ExcludeFromExplicitInstantiationAttr>(S, D, AL);
7258     break;
7259   case ParsedAttr::AT_LTOVisibilityPublic:
7260     handleSimpleAttribute<LTOVisibilityPublicAttr>(S, D, AL);
7261     break;
7262 
7263   // Microsoft attributes:
7264   case ParsedAttr::AT_EmptyBases:
7265     handleSimpleAttribute<EmptyBasesAttr>(S, D, AL);
7266     break;
7267   case ParsedAttr::AT_LayoutVersion:
7268     handleLayoutVersion(S, D, AL);
7269     break;
7270   case ParsedAttr::AT_TrivialABI:
7271     handleSimpleAttribute<TrivialABIAttr>(S, D, AL);
7272     break;
7273   case ParsedAttr::AT_MSNoVTable:
7274     handleSimpleAttribute<MSNoVTableAttr>(S, D, AL);
7275     break;
7276   case ParsedAttr::AT_MSStruct:
7277     handleSimpleAttribute<MSStructAttr>(S, D, AL);
7278     break;
7279   case ParsedAttr::AT_Uuid:
7280     handleUuidAttr(S, D, AL);
7281     break;
7282   case ParsedAttr::AT_MSInheritance:
7283     handleMSInheritanceAttr(S, D, AL);
7284     break;
7285   case ParsedAttr::AT_SelectAny:
7286     handleSimpleAttribute<SelectAnyAttr>(S, D, AL);
7287     break;
7288   case ParsedAttr::AT_Thread:
7289     handleDeclspecThreadAttr(S, D, AL);
7290     break;
7291 
7292   case ParsedAttr::AT_AbiTag:
7293     handleAbiTagAttr(S, D, AL);
7294     break;
7295   case ParsedAttr::AT_CFGuard:
7296     handleCFGuardAttr(S, D, AL);
7297     break;
7298 
7299   // Thread safety attributes:
7300   case ParsedAttr::AT_AssertExclusiveLock:
7301     handleAssertExclusiveLockAttr(S, D, AL);
7302     break;
7303   case ParsedAttr::AT_AssertSharedLock:
7304     handleAssertSharedLockAttr(S, D, AL);
7305     break;
7306   case ParsedAttr::AT_GuardedVar:
7307     handleSimpleAttribute<GuardedVarAttr>(S, D, AL);
7308     break;
7309   case ParsedAttr::AT_PtGuardedVar:
7310     handlePtGuardedVarAttr(S, D, AL);
7311     break;
7312   case ParsedAttr::AT_ScopedLockable:
7313     handleSimpleAttribute<ScopedLockableAttr>(S, D, AL);
7314     break;
7315   case ParsedAttr::AT_NoSanitize:
7316     handleNoSanitizeAttr(S, D, AL);
7317     break;
7318   case ParsedAttr::AT_NoSanitizeSpecific:
7319     handleNoSanitizeSpecificAttr(S, D, AL);
7320     break;
7321   case ParsedAttr::AT_NoThreadSafetyAnalysis:
7322     handleSimpleAttribute<NoThreadSafetyAnalysisAttr>(S, D, AL);
7323     break;
7324   case ParsedAttr::AT_GuardedBy:
7325     handleGuardedByAttr(S, D, AL);
7326     break;
7327   case ParsedAttr::AT_PtGuardedBy:
7328     handlePtGuardedByAttr(S, D, AL);
7329     break;
7330   case ParsedAttr::AT_ExclusiveTrylockFunction:
7331     handleExclusiveTrylockFunctionAttr(S, D, AL);
7332     break;
7333   case ParsedAttr::AT_LockReturned:
7334     handleLockReturnedAttr(S, D, AL);
7335     break;
7336   case ParsedAttr::AT_LocksExcluded:
7337     handleLocksExcludedAttr(S, D, AL);
7338     break;
7339   case ParsedAttr::AT_SharedTrylockFunction:
7340     handleSharedTrylockFunctionAttr(S, D, AL);
7341     break;
7342   case ParsedAttr::AT_AcquiredBefore:
7343     handleAcquiredBeforeAttr(S, D, AL);
7344     break;
7345   case ParsedAttr::AT_AcquiredAfter:
7346     handleAcquiredAfterAttr(S, D, AL);
7347     break;
7348 
7349   // Capability analysis attributes.
7350   case ParsedAttr::AT_Capability:
7351   case ParsedAttr::AT_Lockable:
7352     handleCapabilityAttr(S, D, AL);
7353     break;
7354   case ParsedAttr::AT_RequiresCapability:
7355     handleRequiresCapabilityAttr(S, D, AL);
7356     break;
7357 
7358   case ParsedAttr::AT_AssertCapability:
7359     handleAssertCapabilityAttr(S, D, AL);
7360     break;
7361   case ParsedAttr::AT_AcquireCapability:
7362     handleAcquireCapabilityAttr(S, D, AL);
7363     break;
7364   case ParsedAttr::AT_ReleaseCapability:
7365     handleReleaseCapabilityAttr(S, D, AL);
7366     break;
7367   case ParsedAttr::AT_TryAcquireCapability:
7368     handleTryAcquireCapabilityAttr(S, D, AL);
7369     break;
7370 
7371   // Consumed analysis attributes.
7372   case ParsedAttr::AT_Consumable:
7373     handleConsumableAttr(S, D, AL);
7374     break;
7375   case ParsedAttr::AT_ConsumableAutoCast:
7376     handleSimpleAttribute<ConsumableAutoCastAttr>(S, D, AL);
7377     break;
7378   case ParsedAttr::AT_ConsumableSetOnRead:
7379     handleSimpleAttribute<ConsumableSetOnReadAttr>(S, D, AL);
7380     break;
7381   case ParsedAttr::AT_CallableWhen:
7382     handleCallableWhenAttr(S, D, AL);
7383     break;
7384   case ParsedAttr::AT_ParamTypestate:
7385     handleParamTypestateAttr(S, D, AL);
7386     break;
7387   case ParsedAttr::AT_ReturnTypestate:
7388     handleReturnTypestateAttr(S, D, AL);
7389     break;
7390   case ParsedAttr::AT_SetTypestate:
7391     handleSetTypestateAttr(S, D, AL);
7392     break;
7393   case ParsedAttr::AT_TestTypestate:
7394     handleTestTypestateAttr(S, D, AL);
7395     break;
7396 
7397   // Type safety attributes.
7398   case ParsedAttr::AT_ArgumentWithTypeTag:
7399     handleArgumentWithTypeTagAttr(S, D, AL);
7400     break;
7401   case ParsedAttr::AT_TypeTagForDatatype:
7402     handleTypeTagForDatatypeAttr(S, D, AL);
7403     break;
7404   case ParsedAttr::AT_AnyX86NoCallerSavedRegisters:
7405     handleSimpleAttribute<AnyX86NoCallerSavedRegistersAttr>(S, D, AL);
7406     break;
7407   case ParsedAttr::AT_RenderScriptKernel:
7408     handleSimpleAttribute<RenderScriptKernelAttr>(S, D, AL);
7409     break;
7410   // XRay attributes.
7411   case ParsedAttr::AT_XRayInstrument:
7412     handleSimpleAttribute<XRayInstrumentAttr>(S, D, AL);
7413     break;
7414   case ParsedAttr::AT_XRayLogArgs:
7415     handleXRayLogArgsAttr(S, D, AL);
7416     break;
7417 
7418   case ParsedAttr::AT_PatchableFunctionEntry:
7419     handlePatchableFunctionEntryAttr(S, D, AL);
7420     break;
7421 
7422   // Move semantics attribute.
7423   case ParsedAttr::AT_Reinitializes:
7424     handleSimpleAttribute<ReinitializesAttr>(S, D, AL);
7425     break;
7426 
7427   case ParsedAttr::AT_AlwaysDestroy:
7428   case ParsedAttr::AT_NoDestroy:
7429     handleDestroyAttr(S, D, AL);
7430     break;
7431 
7432   case ParsedAttr::AT_Uninitialized:
7433     handleUninitializedAttr(S, D, AL);
7434     break;
7435 
7436   case ParsedAttr::AT_ObjCExternallyRetained:
7437     handleObjCExternallyRetainedAttr(S, D, AL);
7438     break;
7439 
7440   case ParsedAttr::AT_MIGServerRoutine:
7441     handleMIGServerRoutineAttr(S, D, AL);
7442     break;
7443 
7444   case ParsedAttr::AT_MSAllocator:
7445     handleMSAllocatorAttr(S, D, AL);
7446     break;
7447 
7448   case ParsedAttr::AT_ArmMveAlias:
7449     handleArmMveAliasAttr(S, D, AL);
7450     break;
7451 
7452   case ParsedAttr::AT_AcquireHandle:
7453     handeAcquireHandleAttr(S, D, AL);
7454     break;
7455 
7456   case ParsedAttr::AT_ReleaseHandle:
7457     handleHandleAttr<ReleaseHandleAttr>(S, D, AL);
7458     break;
7459 
7460   case ParsedAttr::AT_UseHandle:
7461     handleHandleAttr<UseHandleAttr>(S, D, AL);
7462     break;
7463   }
7464 }
7465 
7466 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
7467 /// attribute list to the specified decl, ignoring any type attributes.
7468 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
7469                                     const ParsedAttributesView &AttrList,
7470                                     bool IncludeCXX11Attributes) {
7471   if (AttrList.empty())
7472     return;
7473 
7474   for (const ParsedAttr &AL : AttrList)
7475     ProcessDeclAttribute(*this, S, D, AL, IncludeCXX11Attributes);
7476 
7477   // FIXME: We should be able to handle these cases in TableGen.
7478   // GCC accepts
7479   // static int a9 __attribute__((weakref));
7480   // but that looks really pointless. We reject it.
7481   if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
7482     Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias)
7483         << cast<NamedDecl>(D);
7484     D->dropAttr<WeakRefAttr>();
7485     return;
7486   }
7487 
7488   // FIXME: We should be able to handle this in TableGen as well. It would be
7489   // good to have a way to specify "these attributes must appear as a group",
7490   // for these. Additionally, it would be good to have a way to specify "these
7491   // attribute must never appear as a group" for attributes like cold and hot.
7492   if (!D->hasAttr<OpenCLKernelAttr>()) {
7493     // These attributes cannot be applied to a non-kernel function.
7494     if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
7495       // FIXME: This emits a different error message than
7496       // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
7497       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7498       D->setInvalidDecl();
7499     } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) {
7500       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7501       D->setInvalidDecl();
7502     } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) {
7503       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7504       D->setInvalidDecl();
7505     } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
7506       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7507       D->setInvalidDecl();
7508     } else if (!D->hasAttr<CUDAGlobalAttr>()) {
7509       if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
7510         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7511             << A << ExpectedKernelFunction;
7512         D->setInvalidDecl();
7513       } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) {
7514         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7515             << A << ExpectedKernelFunction;
7516         D->setInvalidDecl();
7517       } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
7518         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7519             << A << ExpectedKernelFunction;
7520         D->setInvalidDecl();
7521       } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
7522         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7523             << A << ExpectedKernelFunction;
7524         D->setInvalidDecl();
7525       }
7526     }
7527   }
7528 
7529   // Do this check after processing D's attributes because the attribute
7530   // objc_method_family can change whether the given method is in the init
7531   // family, and it can be applied after objc_designated_initializer. This is a
7532   // bit of a hack, but we need it to be compatible with versions of clang that
7533   // processed the attribute list in the wrong order.
7534   if (D->hasAttr<ObjCDesignatedInitializerAttr>() &&
7535       cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) {
7536     Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
7537     D->dropAttr<ObjCDesignatedInitializerAttr>();
7538   }
7539 }
7540 
7541 // Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr
7542 // attribute.
7543 void Sema::ProcessDeclAttributeDelayed(Decl *D,
7544                                        const ParsedAttributesView &AttrList) {
7545   for (const ParsedAttr &AL : AttrList)
7546     if (AL.getKind() == ParsedAttr::AT_TransparentUnion) {
7547       handleTransparentUnionAttr(*this, D, AL);
7548       break;
7549     }
7550 
7551   // For BPFPreserveAccessIndexAttr, we want to populate the attributes
7552   // to fields and inner records as well.
7553   if (D && D->hasAttr<BPFPreserveAccessIndexAttr>())
7554     handleBPFPreserveAIRecord(*this, cast<RecordDecl>(D));
7555 }
7556 
7557 // Annotation attributes are the only attributes allowed after an access
7558 // specifier.
7559 bool Sema::ProcessAccessDeclAttributeList(
7560     AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) {
7561   for (const ParsedAttr &AL : AttrList) {
7562     if (AL.getKind() == ParsedAttr::AT_Annotate) {
7563       ProcessDeclAttribute(*this, nullptr, ASDecl, AL, AL.isCXX11Attribute());
7564     } else {
7565       Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec);
7566       return true;
7567     }
7568   }
7569   return false;
7570 }
7571 
7572 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
7573 /// contains any decl attributes that we should warn about.
7574 static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) {
7575   for (const ParsedAttr &AL : A) {
7576     // Only warn if the attribute is an unignored, non-type attribute.
7577     if (AL.isUsedAsTypeAttr() || AL.isInvalid())
7578       continue;
7579     if (AL.getKind() == ParsedAttr::IgnoredAttribute)
7580       continue;
7581 
7582     if (AL.getKind() == ParsedAttr::UnknownAttribute) {
7583       S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
7584           << AL << AL.getRange();
7585     } else {
7586       S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL
7587                                                             << AL.getRange();
7588     }
7589   }
7590 }
7591 
7592 /// checkUnusedDeclAttributes - Given a declarator which is not being
7593 /// used to build a declaration, complain about any decl attributes
7594 /// which might be lying around on it.
7595 void Sema::checkUnusedDeclAttributes(Declarator &D) {
7596   ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes());
7597   ::checkUnusedDeclAttributes(*this, D.getAttributes());
7598   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
7599     ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
7600 }
7601 
7602 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
7603 /// \#pragma weak needs a non-definition decl and source may not have one.
7604 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
7605                                       SourceLocation Loc) {
7606   assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
7607   NamedDecl *NewD = nullptr;
7608   if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
7609     FunctionDecl *NewFD;
7610     // FIXME: Missing call to CheckFunctionDeclaration().
7611     // FIXME: Mangling?
7612     // FIXME: Is the qualifier info correct?
7613     // FIXME: Is the DeclContext correct?
7614     NewFD = FunctionDecl::Create(
7615         FD->getASTContext(), FD->getDeclContext(), Loc, Loc,
7616         DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None,
7617         false /*isInlineSpecified*/, FD->hasPrototype(), CSK_unspecified,
7618         FD->getTrailingRequiresClause());
7619     NewD = NewFD;
7620 
7621     if (FD->getQualifier())
7622       NewFD->setQualifierInfo(FD->getQualifierLoc());
7623 
7624     // Fake up parameter variables; they are declared as if this were
7625     // a typedef.
7626     QualType FDTy = FD->getType();
7627     if (const auto *FT = FDTy->getAs<FunctionProtoType>()) {
7628       SmallVector<ParmVarDecl*, 16> Params;
7629       for (const auto &AI : FT->param_types()) {
7630         ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
7631         Param->setScopeInfo(0, Params.size());
7632         Params.push_back(Param);
7633       }
7634       NewFD->setParams(Params);
7635     }
7636   } else if (auto *VD = dyn_cast<VarDecl>(ND)) {
7637     NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
7638                            VD->getInnerLocStart(), VD->getLocation(), II,
7639                            VD->getType(), VD->getTypeSourceInfo(),
7640                            VD->getStorageClass());
7641     if (VD->getQualifier())
7642       cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc());
7643   }
7644   return NewD;
7645 }
7646 
7647 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
7648 /// applied to it, possibly with an alias.
7649 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
7650   if (W.getUsed()) return; // only do this once
7651   W.setUsed(true);
7652   if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
7653     IdentifierInfo *NDId = ND->getIdentifier();
7654     NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
7655     NewD->addAttr(
7656         AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation()));
7657     NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
7658                                            AttributeCommonInfo::AS_Pragma));
7659     WeakTopLevelDecl.push_back(NewD);
7660     // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
7661     // to insert Decl at TU scope, sorry.
7662     DeclContext *SavedContext = CurContext;
7663     CurContext = Context.getTranslationUnitDecl();
7664     NewD->setDeclContext(CurContext);
7665     NewD->setLexicalDeclContext(CurContext);
7666     PushOnScopeChains(NewD, S);
7667     CurContext = SavedContext;
7668   } else { // just add weak to existing
7669     ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
7670                                          AttributeCommonInfo::AS_Pragma));
7671   }
7672 }
7673 
7674 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
7675   // It's valid to "forward-declare" #pragma weak, in which case we
7676   // have to do this.
7677   LoadExternalWeakUndeclaredIdentifiers();
7678   if (!WeakUndeclaredIdentifiers.empty()) {
7679     NamedDecl *ND = nullptr;
7680     if (auto *VD = dyn_cast<VarDecl>(D))
7681       if (VD->isExternC())
7682         ND = VD;
7683     if (auto *FD = dyn_cast<FunctionDecl>(D))
7684       if (FD->isExternC())
7685         ND = FD;
7686     if (ND) {
7687       if (IdentifierInfo *Id = ND->getIdentifier()) {
7688         auto I = WeakUndeclaredIdentifiers.find(Id);
7689         if (I != WeakUndeclaredIdentifiers.end()) {
7690           WeakInfo W = I->second;
7691           DeclApplyPragmaWeak(S, ND, W);
7692           WeakUndeclaredIdentifiers[Id] = W;
7693         }
7694       }
7695     }
7696   }
7697 }
7698 
7699 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
7700 /// it, apply them to D.  This is a bit tricky because PD can have attributes
7701 /// specified in many different places, and we need to find and apply them all.
7702 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
7703   // Apply decl attributes from the DeclSpec if present.
7704   if (!PD.getDeclSpec().getAttributes().empty())
7705     ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes());
7706 
7707   // Walk the declarator structure, applying decl attributes that were in a type
7708   // position to the decl itself.  This handles cases like:
7709   //   int *__attr__(x)** D;
7710   // when X is a decl attribute.
7711   for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
7712     ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(),
7713                              /*IncludeCXX11Attributes=*/false);
7714 
7715   // Finally, apply any attributes on the decl itself.
7716   ProcessDeclAttributeList(S, D, PD.getAttributes());
7717 
7718   // Apply additional attributes specified by '#pragma clang attribute'.
7719   AddPragmaAttributes(S, D);
7720 }
7721 
7722 /// Is the given declaration allowed to use a forbidden type?
7723 /// If so, it'll still be annotated with an attribute that makes it
7724 /// illegal to actually use.
7725 static bool isForbiddenTypeAllowed(Sema &S, Decl *D,
7726                                    const DelayedDiagnostic &diag,
7727                                    UnavailableAttr::ImplicitReason &reason) {
7728   // Private ivars are always okay.  Unfortunately, people don't
7729   // always properly make their ivars private, even in system headers.
7730   // Plus we need to make fields okay, too.
7731   if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) &&
7732       !isa<FunctionDecl>(D))
7733     return false;
7734 
7735   // Silently accept unsupported uses of __weak in both user and system
7736   // declarations when it's been disabled, for ease of integration with
7737   // -fno-objc-arc files.  We do have to take some care against attempts
7738   // to define such things;  for now, we've only done that for ivars
7739   // and properties.
7740   if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) {
7741     if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
7742         diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
7743       reason = UnavailableAttr::IR_ForbiddenWeak;
7744       return true;
7745     }
7746   }
7747 
7748   // Allow all sorts of things in system headers.
7749   if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) {
7750     // Currently, all the failures dealt with this way are due to ARC
7751     // restrictions.
7752     reason = UnavailableAttr::IR_ARCForbiddenType;
7753     return true;
7754   }
7755 
7756   return false;
7757 }
7758 
7759 /// Handle a delayed forbidden-type diagnostic.
7760 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD,
7761                                        Decl *D) {
7762   auto Reason = UnavailableAttr::IR_None;
7763   if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) {
7764     assert(Reason && "didn't set reason?");
7765     D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc));
7766     return;
7767   }
7768   if (S.getLangOpts().ObjCAutoRefCount)
7769     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
7770       // FIXME: we may want to suppress diagnostics for all
7771       // kind of forbidden type messages on unavailable functions.
7772       if (FD->hasAttr<UnavailableAttr>() &&
7773           DD.getForbiddenTypeDiagnostic() ==
7774               diag::err_arc_array_param_no_ownership) {
7775         DD.Triggered = true;
7776         return;
7777       }
7778     }
7779 
7780   S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic())
7781       << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument();
7782   DD.Triggered = true;
7783 }
7784 
7785 static const AvailabilityAttr *getAttrForPlatform(ASTContext &Context,
7786                                                   const Decl *D) {
7787   // Check each AvailabilityAttr to find the one for this platform.
7788   for (const auto *A : D->attrs()) {
7789     if (const auto *Avail = dyn_cast<AvailabilityAttr>(A)) {
7790       // FIXME: this is copied from CheckAvailability. We should try to
7791       // de-duplicate.
7792 
7793       // Check if this is an App Extension "platform", and if so chop off
7794       // the suffix for matching with the actual platform.
7795       StringRef ActualPlatform = Avail->getPlatform()->getName();
7796       StringRef RealizedPlatform = ActualPlatform;
7797       if (Context.getLangOpts().AppExt) {
7798         size_t suffix = RealizedPlatform.rfind("_app_extension");
7799         if (suffix != StringRef::npos)
7800           RealizedPlatform = RealizedPlatform.slice(0, suffix);
7801       }
7802 
7803       StringRef TargetPlatform = Context.getTargetInfo().getPlatformName();
7804 
7805       // Match the platform name.
7806       if (RealizedPlatform == TargetPlatform)
7807         return Avail;
7808     }
7809   }
7810   return nullptr;
7811 }
7812 
7813 /// The diagnostic we should emit for \c D, and the declaration that
7814 /// originated it, or \c AR_Available.
7815 ///
7816 /// \param D The declaration to check.
7817 /// \param Message If non-null, this will be populated with the message from
7818 /// the availability attribute that is selected.
7819 /// \param ClassReceiver If we're checking the the method of a class message
7820 /// send, the class. Otherwise nullptr.
7821 static std::pair<AvailabilityResult, const NamedDecl *>
7822 ShouldDiagnoseAvailabilityOfDecl(Sema &S, const NamedDecl *D,
7823                                  std::string *Message,
7824                                  ObjCInterfaceDecl *ClassReceiver) {
7825   AvailabilityResult Result = D->getAvailability(Message);
7826 
7827   // For typedefs, if the typedef declaration appears available look
7828   // to the underlying type to see if it is more restrictive.
7829   while (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
7830     if (Result == AR_Available) {
7831       if (const auto *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7832         D = TT->getDecl();
7833         Result = D->getAvailability(Message);
7834         continue;
7835       }
7836     }
7837     break;
7838   }
7839 
7840   // Forward class declarations get their attributes from their definition.
7841   if (const auto *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
7842     if (IDecl->getDefinition()) {
7843       D = IDecl->getDefinition();
7844       Result = D->getAvailability(Message);
7845     }
7846   }
7847 
7848   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D))
7849     if (Result == AR_Available) {
7850       const DeclContext *DC = ECD->getDeclContext();
7851       if (const auto *TheEnumDecl = dyn_cast<EnumDecl>(DC)) {
7852         Result = TheEnumDecl->getAvailability(Message);
7853         D = TheEnumDecl;
7854       }
7855     }
7856 
7857   // For +new, infer availability from -init.
7858   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
7859     if (S.NSAPIObj && ClassReceiver) {
7860       ObjCMethodDecl *Init = ClassReceiver->lookupInstanceMethod(
7861           S.NSAPIObj->getInitSelector());
7862       if (Init && Result == AR_Available && MD->isClassMethod() &&
7863           MD->getSelector() == S.NSAPIObj->getNewSelector() &&
7864           MD->definedInNSObject(S.getASTContext())) {
7865         Result = Init->getAvailability(Message);
7866         D = Init;
7867       }
7868     }
7869   }
7870 
7871   return {Result, D};
7872 }
7873 
7874 
7875 /// whether we should emit a diagnostic for \c K and \c DeclVersion in
7876 /// the context of \c Ctx. For example, we should emit an unavailable diagnostic
7877 /// in a deprecated context, but not the other way around.
7878 static bool
7879 ShouldDiagnoseAvailabilityInContext(Sema &S, AvailabilityResult K,
7880                                     VersionTuple DeclVersion, Decl *Ctx,
7881                                     const NamedDecl *OffendingDecl) {
7882   assert(K != AR_Available && "Expected an unavailable declaration here!");
7883 
7884   // Checks if we should emit the availability diagnostic in the context of C.
7885   auto CheckContext = [&](const Decl *C) {
7886     if (K == AR_NotYetIntroduced) {
7887       if (const AvailabilityAttr *AA = getAttrForPlatform(S.Context, C))
7888         if (AA->getIntroduced() >= DeclVersion)
7889           return true;
7890     } else if (K == AR_Deprecated) {
7891       if (C->isDeprecated())
7892         return true;
7893     } else if (K == AR_Unavailable) {
7894       // It is perfectly fine to refer to an 'unavailable' Objective-C method
7895       // when it is referenced from within the @implementation itself. In this
7896       // context, we interpret unavailable as a form of access control.
7897       if (const auto *MD = dyn_cast<ObjCMethodDecl>(OffendingDecl)) {
7898         if (const auto *Impl = dyn_cast<ObjCImplDecl>(C)) {
7899           if (MD->getClassInterface() == Impl->getClassInterface())
7900             return true;
7901         }
7902       }
7903     }
7904 
7905     if (C->isUnavailable())
7906       return true;
7907     return false;
7908   };
7909 
7910   do {
7911     if (CheckContext(Ctx))
7912       return false;
7913 
7914     // An implementation implicitly has the availability of the interface.
7915     // Unless it is "+load" method.
7916     if (const auto *MethodD = dyn_cast<ObjCMethodDecl>(Ctx))
7917       if (MethodD->isClassMethod() &&
7918           MethodD->getSelector().getAsString() == "load")
7919         return true;
7920 
7921     if (const auto *CatOrImpl = dyn_cast<ObjCImplDecl>(Ctx)) {
7922       if (const ObjCInterfaceDecl *Interface = CatOrImpl->getClassInterface())
7923         if (CheckContext(Interface))
7924           return false;
7925     }
7926     // A category implicitly has the availability of the interface.
7927     else if (const auto *CatD = dyn_cast<ObjCCategoryDecl>(Ctx))
7928       if (const ObjCInterfaceDecl *Interface = CatD->getClassInterface())
7929         if (CheckContext(Interface))
7930           return false;
7931   } while ((Ctx = cast_or_null<Decl>(Ctx->getDeclContext())));
7932 
7933   return true;
7934 }
7935 
7936 static bool
7937 shouldDiagnoseAvailabilityByDefault(const ASTContext &Context,
7938                                     const VersionTuple &DeploymentVersion,
7939                                     const VersionTuple &DeclVersion) {
7940   const auto &Triple = Context.getTargetInfo().getTriple();
7941   VersionTuple ForceAvailabilityFromVersion;
7942   switch (Triple.getOS()) {
7943   case llvm::Triple::IOS:
7944   case llvm::Triple::TvOS:
7945     ForceAvailabilityFromVersion = VersionTuple(/*Major=*/11);
7946     break;
7947   case llvm::Triple::WatchOS:
7948     ForceAvailabilityFromVersion = VersionTuple(/*Major=*/4);
7949     break;
7950   case llvm::Triple::Darwin:
7951   case llvm::Triple::MacOSX:
7952     ForceAvailabilityFromVersion = VersionTuple(/*Major=*/10, /*Minor=*/13);
7953     break;
7954   default:
7955     // New targets should always warn about availability.
7956     return Triple.getVendor() == llvm::Triple::Apple;
7957   }
7958   return DeploymentVersion >= ForceAvailabilityFromVersion ||
7959          DeclVersion >= ForceAvailabilityFromVersion;
7960 }
7961 
7962 static NamedDecl *findEnclosingDeclToAnnotate(Decl *OrigCtx) {
7963   for (Decl *Ctx = OrigCtx; Ctx;
7964        Ctx = cast_or_null<Decl>(Ctx->getDeclContext())) {
7965     if (isa<TagDecl>(Ctx) || isa<FunctionDecl>(Ctx) || isa<ObjCMethodDecl>(Ctx))
7966       return cast<NamedDecl>(Ctx);
7967     if (auto *CD = dyn_cast<ObjCContainerDecl>(Ctx)) {
7968       if (auto *Imp = dyn_cast<ObjCImplDecl>(Ctx))
7969         return Imp->getClassInterface();
7970       return CD;
7971     }
7972   }
7973 
7974   return dyn_cast<NamedDecl>(OrigCtx);
7975 }
7976 
7977 namespace {
7978 
7979 struct AttributeInsertion {
7980   StringRef Prefix;
7981   SourceLocation Loc;
7982   StringRef Suffix;
7983 
7984   static AttributeInsertion createInsertionAfter(const NamedDecl *D) {
7985     return {" ", D->getEndLoc(), ""};
7986   }
7987   static AttributeInsertion createInsertionAfter(SourceLocation Loc) {
7988     return {" ", Loc, ""};
7989   }
7990   static AttributeInsertion createInsertionBefore(const NamedDecl *D) {
7991     return {"", D->getBeginLoc(), "\n"};
7992   }
7993 };
7994 
7995 } // end anonymous namespace
7996 
7997 /// Tries to parse a string as ObjC method name.
7998 ///
7999 /// \param Name The string to parse. Expected to originate from availability
8000 /// attribute argument.
8001 /// \param SlotNames The vector that will be populated with slot names. In case
8002 /// of unsuccessful parsing can contain invalid data.
8003 /// \returns A number of method parameters if parsing was successful, None
8004 /// otherwise.
8005 static Optional<unsigned>
8006 tryParseObjCMethodName(StringRef Name, SmallVectorImpl<StringRef> &SlotNames,
8007                        const LangOptions &LangOpts) {
8008   // Accept replacements starting with - or + as valid ObjC method names.
8009   if (!Name.empty() && (Name.front() == '-' || Name.front() == '+'))
8010     Name = Name.drop_front(1);
8011   if (Name.empty())
8012     return None;
8013   Name.split(SlotNames, ':');
8014   unsigned NumParams;
8015   if (Name.back() == ':') {
8016     // Remove an empty string at the end that doesn't represent any slot.
8017     SlotNames.pop_back();
8018     NumParams = SlotNames.size();
8019   } else {
8020     if (SlotNames.size() != 1)
8021       // Not a valid method name, just a colon-separated string.
8022       return None;
8023     NumParams = 0;
8024   }
8025   // Verify all slot names are valid.
8026   bool AllowDollar = LangOpts.DollarIdents;
8027   for (StringRef S : SlotNames) {
8028     if (S.empty())
8029       continue;
8030     if (!isValidIdentifier(S, AllowDollar))
8031       return None;
8032   }
8033   return NumParams;
8034 }
8035 
8036 /// Returns a source location in which it's appropriate to insert a new
8037 /// attribute for the given declaration \D.
8038 static Optional<AttributeInsertion>
8039 createAttributeInsertion(const NamedDecl *D, const SourceManager &SM,
8040                          const LangOptions &LangOpts) {
8041   if (isa<ObjCPropertyDecl>(D))
8042     return AttributeInsertion::createInsertionAfter(D);
8043   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
8044     if (MD->hasBody())
8045       return None;
8046     return AttributeInsertion::createInsertionAfter(D);
8047   }
8048   if (const auto *TD = dyn_cast<TagDecl>(D)) {
8049     SourceLocation Loc =
8050         Lexer::getLocForEndOfToken(TD->getInnerLocStart(), 0, SM, LangOpts);
8051     if (Loc.isInvalid())
8052       return None;
8053     // Insert after the 'struct'/whatever keyword.
8054     return AttributeInsertion::createInsertionAfter(Loc);
8055   }
8056   return AttributeInsertion::createInsertionBefore(D);
8057 }
8058 
8059 /// Actually emit an availability diagnostic for a reference to an unavailable
8060 /// decl.
8061 ///
8062 /// \param Ctx The context that the reference occurred in
8063 /// \param ReferringDecl The exact declaration that was referenced.
8064 /// \param OffendingDecl A related decl to \c ReferringDecl that has an
8065 /// availability attribute corresponding to \c K attached to it. Note that this
8066 /// may not be the same as ReferringDecl, i.e. if an EnumDecl is annotated and
8067 /// we refer to a member EnumConstantDecl, ReferringDecl is the EnumConstantDecl
8068 /// and OffendingDecl is the EnumDecl.
8069 static void DoEmitAvailabilityWarning(Sema &S, AvailabilityResult K,
8070                                       Decl *Ctx, const NamedDecl *ReferringDecl,
8071                                       const NamedDecl *OffendingDecl,
8072                                       StringRef Message,
8073                                       ArrayRef<SourceLocation> Locs,
8074                                       const ObjCInterfaceDecl *UnknownObjCClass,
8075                                       const ObjCPropertyDecl *ObjCProperty,
8076                                       bool ObjCPropertyAccess) {
8077   // Diagnostics for deprecated or unavailable.
8078   unsigned diag, diag_message, diag_fwdclass_message;
8079   unsigned diag_available_here = diag::note_availability_specified_here;
8080   SourceLocation NoteLocation = OffendingDecl->getLocation();
8081 
8082   // Matches 'diag::note_property_attribute' options.
8083   unsigned property_note_select;
8084 
8085   // Matches diag::note_availability_specified_here.
8086   unsigned available_here_select_kind;
8087 
8088   VersionTuple DeclVersion;
8089   if (const AvailabilityAttr *AA = getAttrForPlatform(S.Context, OffendingDecl))
8090     DeclVersion = AA->getIntroduced();
8091 
8092   if (!ShouldDiagnoseAvailabilityInContext(S, K, DeclVersion, Ctx,
8093                                            OffendingDecl))
8094     return;
8095 
8096   SourceLocation Loc = Locs.front();
8097 
8098   // The declaration can have multiple availability attributes, we are looking
8099   // at one of them.
8100   const AvailabilityAttr *A = getAttrForPlatform(S.Context, OffendingDecl);
8101   if (A && A->isInherited()) {
8102     for (const Decl *Redecl = OffendingDecl->getMostRecentDecl(); Redecl;
8103          Redecl = Redecl->getPreviousDecl()) {
8104       const AvailabilityAttr *AForRedecl =
8105           getAttrForPlatform(S.Context, Redecl);
8106       if (AForRedecl && !AForRedecl->isInherited()) {
8107         // If D is a declaration with inherited attributes, the note should
8108         // point to the declaration with actual attributes.
8109         NoteLocation = Redecl->getLocation();
8110         break;
8111       }
8112     }
8113   }
8114 
8115   switch (K) {
8116   case AR_NotYetIntroduced: {
8117     // We would like to emit the diagnostic even if -Wunguarded-availability is
8118     // not specified for deployment targets >= to iOS 11 or equivalent or
8119     // for declarations that were introduced in iOS 11 (macOS 10.13, ...) or
8120     // later.
8121     const AvailabilityAttr *AA =
8122         getAttrForPlatform(S.getASTContext(), OffendingDecl);
8123     VersionTuple Introduced = AA->getIntroduced();
8124 
8125     bool UseNewWarning = shouldDiagnoseAvailabilityByDefault(
8126         S.Context, S.Context.getTargetInfo().getPlatformMinVersion(),
8127         Introduced);
8128     unsigned Warning = UseNewWarning ? diag::warn_unguarded_availability_new
8129                                      : diag::warn_unguarded_availability;
8130 
8131     std::string PlatformName = AvailabilityAttr::getPrettyPlatformName(
8132         S.getASTContext().getTargetInfo().getPlatformName());
8133 
8134     S.Diag(Loc, Warning) << OffendingDecl << PlatformName
8135                          << Introduced.getAsString();
8136 
8137     S.Diag(OffendingDecl->getLocation(),
8138            diag::note_partial_availability_specified_here)
8139         << OffendingDecl << PlatformName << Introduced.getAsString()
8140         << S.Context.getTargetInfo().getPlatformMinVersion().getAsString();
8141 
8142     if (const auto *Enclosing = findEnclosingDeclToAnnotate(Ctx)) {
8143       if (const auto *TD = dyn_cast<TagDecl>(Enclosing))
8144         if (TD->getDeclName().isEmpty()) {
8145           S.Diag(TD->getLocation(),
8146                  diag::note_decl_unguarded_availability_silence)
8147               << /*Anonymous*/ 1 << TD->getKindName();
8148           return;
8149         }
8150       auto FixitNoteDiag =
8151           S.Diag(Enclosing->getLocation(),
8152                  diag::note_decl_unguarded_availability_silence)
8153           << /*Named*/ 0 << Enclosing;
8154       // Don't offer a fixit for declarations with availability attributes.
8155       if (Enclosing->hasAttr<AvailabilityAttr>())
8156         return;
8157       if (!S.getPreprocessor().isMacroDefined("API_AVAILABLE"))
8158         return;
8159       Optional<AttributeInsertion> Insertion = createAttributeInsertion(
8160           Enclosing, S.getSourceManager(), S.getLangOpts());
8161       if (!Insertion)
8162         return;
8163       std::string PlatformName =
8164           AvailabilityAttr::getPlatformNameSourceSpelling(
8165               S.getASTContext().getTargetInfo().getPlatformName())
8166               .lower();
8167       std::string Introduced =
8168           OffendingDecl->getVersionIntroduced().getAsString();
8169       FixitNoteDiag << FixItHint::CreateInsertion(
8170           Insertion->Loc,
8171           (llvm::Twine(Insertion->Prefix) + "API_AVAILABLE(" + PlatformName +
8172            "(" + Introduced + "))" + Insertion->Suffix)
8173               .str());
8174     }
8175     return;
8176   }
8177   case AR_Deprecated:
8178     diag = !ObjCPropertyAccess ? diag::warn_deprecated
8179                                : diag::warn_property_method_deprecated;
8180     diag_message = diag::warn_deprecated_message;
8181     diag_fwdclass_message = diag::warn_deprecated_fwdclass_message;
8182     property_note_select = /* deprecated */ 0;
8183     available_here_select_kind = /* deprecated */ 2;
8184     if (const auto *AL = OffendingDecl->getAttr<DeprecatedAttr>())
8185       NoteLocation = AL->getLocation();
8186     break;
8187 
8188   case AR_Unavailable:
8189     diag = !ObjCPropertyAccess ? diag::err_unavailable
8190                                : diag::err_property_method_unavailable;
8191     diag_message = diag::err_unavailable_message;
8192     diag_fwdclass_message = diag::warn_unavailable_fwdclass_message;
8193     property_note_select = /* unavailable */ 1;
8194     available_here_select_kind = /* unavailable */ 0;
8195 
8196     if (auto AL = OffendingDecl->getAttr<UnavailableAttr>()) {
8197       if (AL->isImplicit() && AL->getImplicitReason()) {
8198         // Most of these failures are due to extra restrictions in ARC;
8199         // reflect that in the primary diagnostic when applicable.
8200         auto flagARCError = [&] {
8201           if (S.getLangOpts().ObjCAutoRefCount &&
8202               S.getSourceManager().isInSystemHeader(
8203                   OffendingDecl->getLocation()))
8204             diag = diag::err_unavailable_in_arc;
8205         };
8206 
8207         switch (AL->getImplicitReason()) {
8208         case UnavailableAttr::IR_None: break;
8209 
8210         case UnavailableAttr::IR_ARCForbiddenType:
8211           flagARCError();
8212           diag_available_here = diag::note_arc_forbidden_type;
8213           break;
8214 
8215         case UnavailableAttr::IR_ForbiddenWeak:
8216           if (S.getLangOpts().ObjCWeakRuntime)
8217             diag_available_here = diag::note_arc_weak_disabled;
8218           else
8219             diag_available_here = diag::note_arc_weak_no_runtime;
8220           break;
8221 
8222         case UnavailableAttr::IR_ARCForbiddenConversion:
8223           flagARCError();
8224           diag_available_here = diag::note_performs_forbidden_arc_conversion;
8225           break;
8226 
8227         case UnavailableAttr::IR_ARCInitReturnsUnrelated:
8228           flagARCError();
8229           diag_available_here = diag::note_arc_init_returns_unrelated;
8230           break;
8231 
8232         case UnavailableAttr::IR_ARCFieldWithOwnership:
8233           flagARCError();
8234           diag_available_here = diag::note_arc_field_with_ownership;
8235           break;
8236         }
8237       }
8238     }
8239     break;
8240 
8241   case AR_Available:
8242     llvm_unreachable("Warning for availability of available declaration?");
8243   }
8244 
8245   SmallVector<FixItHint, 12> FixIts;
8246   if (K == AR_Deprecated) {
8247     StringRef Replacement;
8248     if (auto AL = OffendingDecl->getAttr<DeprecatedAttr>())
8249       Replacement = AL->getReplacement();
8250     if (auto AL = getAttrForPlatform(S.Context, OffendingDecl))
8251       Replacement = AL->getReplacement();
8252 
8253     CharSourceRange UseRange;
8254     if (!Replacement.empty())
8255       UseRange =
8256           CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
8257     if (UseRange.isValid()) {
8258       if (const auto *MethodDecl = dyn_cast<ObjCMethodDecl>(ReferringDecl)) {
8259         Selector Sel = MethodDecl->getSelector();
8260         SmallVector<StringRef, 12> SelectorSlotNames;
8261         Optional<unsigned> NumParams = tryParseObjCMethodName(
8262             Replacement, SelectorSlotNames, S.getLangOpts());
8263         if (NumParams && NumParams.getValue() == Sel.getNumArgs()) {
8264           assert(SelectorSlotNames.size() == Locs.size());
8265           for (unsigned I = 0; I < Locs.size(); ++I) {
8266             if (!Sel.getNameForSlot(I).empty()) {
8267               CharSourceRange NameRange = CharSourceRange::getCharRange(
8268                   Locs[I], S.getLocForEndOfToken(Locs[I]));
8269               FixIts.push_back(FixItHint::CreateReplacement(
8270                   NameRange, SelectorSlotNames[I]));
8271             } else
8272               FixIts.push_back(
8273                   FixItHint::CreateInsertion(Locs[I], SelectorSlotNames[I]));
8274           }
8275         } else
8276           FixIts.push_back(FixItHint::CreateReplacement(UseRange, Replacement));
8277       } else
8278         FixIts.push_back(FixItHint::CreateReplacement(UseRange, Replacement));
8279     }
8280   }
8281 
8282   if (!Message.empty()) {
8283     S.Diag(Loc, diag_message) << ReferringDecl << Message << FixIts;
8284     if (ObjCProperty)
8285       S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
8286           << ObjCProperty->getDeclName() << property_note_select;
8287   } else if (!UnknownObjCClass) {
8288     S.Diag(Loc, diag) << ReferringDecl << FixIts;
8289     if (ObjCProperty)
8290       S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
8291           << ObjCProperty->getDeclName() << property_note_select;
8292   } else {
8293     S.Diag(Loc, diag_fwdclass_message) << ReferringDecl << FixIts;
8294     S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
8295   }
8296 
8297   S.Diag(NoteLocation, diag_available_here)
8298     << OffendingDecl << available_here_select_kind;
8299 }
8300 
8301 static void handleDelayedAvailabilityCheck(Sema &S, DelayedDiagnostic &DD,
8302                                            Decl *Ctx) {
8303   assert(DD.Kind == DelayedDiagnostic::Availability &&
8304          "Expected an availability diagnostic here");
8305 
8306   DD.Triggered = true;
8307   DoEmitAvailabilityWarning(
8308       S, DD.getAvailabilityResult(), Ctx, DD.getAvailabilityReferringDecl(),
8309       DD.getAvailabilityOffendingDecl(), DD.getAvailabilityMessage(),
8310       DD.getAvailabilitySelectorLocs(), DD.getUnknownObjCClass(),
8311       DD.getObjCProperty(), false);
8312 }
8313 
8314 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
8315   assert(DelayedDiagnostics.getCurrentPool());
8316   DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
8317   DelayedDiagnostics.popWithoutEmitting(state);
8318 
8319   // When delaying diagnostics to run in the context of a parsed
8320   // declaration, we only want to actually emit anything if parsing
8321   // succeeds.
8322   if (!decl) return;
8323 
8324   // We emit all the active diagnostics in this pool or any of its
8325   // parents.  In general, we'll get one pool for the decl spec
8326   // and a child pool for each declarator; in a decl group like:
8327   //   deprecated_typedef foo, *bar, baz();
8328   // only the declarator pops will be passed decls.  This is correct;
8329   // we really do need to consider delayed diagnostics from the decl spec
8330   // for each of the different declarations.
8331   const DelayedDiagnosticPool *pool = &poppedPool;
8332   do {
8333     bool AnyAccessFailures = false;
8334     for (DelayedDiagnosticPool::pool_iterator
8335            i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
8336       // This const_cast is a bit lame.  Really, Triggered should be mutable.
8337       DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
8338       if (diag.Triggered)
8339         continue;
8340 
8341       switch (diag.Kind) {
8342       case DelayedDiagnostic::Availability:
8343         // Don't bother giving deprecation/unavailable diagnostics if
8344         // the decl is invalid.
8345         if (!decl->isInvalidDecl())
8346           handleDelayedAvailabilityCheck(*this, diag, decl);
8347         break;
8348 
8349       case DelayedDiagnostic::Access:
8350         // Only produce one access control diagnostic for a structured binding
8351         // declaration: we don't need to tell the user that all the fields are
8352         // inaccessible one at a time.
8353         if (AnyAccessFailures && isa<DecompositionDecl>(decl))
8354           continue;
8355         HandleDelayedAccessCheck(diag, decl);
8356         if (diag.Triggered)
8357           AnyAccessFailures = true;
8358         break;
8359 
8360       case DelayedDiagnostic::ForbiddenType:
8361         handleDelayedForbiddenType(*this, diag, decl);
8362         break;
8363       }
8364     }
8365   } while ((pool = pool->getParent()));
8366 }
8367 
8368 /// Given a set of delayed diagnostics, re-emit them as if they had
8369 /// been delayed in the current context instead of in the given pool.
8370 /// Essentially, this just moves them to the current pool.
8371 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
8372   DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
8373   assert(curPool && "re-emitting in undelayed context not supported");
8374   curPool->steal(pool);
8375 }
8376 
8377 static void EmitAvailabilityWarning(Sema &S, AvailabilityResult AR,
8378                                     const NamedDecl *ReferringDecl,
8379                                     const NamedDecl *OffendingDecl,
8380                                     StringRef Message,
8381                                     ArrayRef<SourceLocation> Locs,
8382                                     const ObjCInterfaceDecl *UnknownObjCClass,
8383                                     const ObjCPropertyDecl *ObjCProperty,
8384                                     bool ObjCPropertyAccess) {
8385   // Delay if we're currently parsing a declaration.
8386   if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
8387     S.DelayedDiagnostics.add(
8388         DelayedDiagnostic::makeAvailability(
8389             AR, Locs, ReferringDecl, OffendingDecl, UnknownObjCClass,
8390             ObjCProperty, Message, ObjCPropertyAccess));
8391     return;
8392   }
8393 
8394   Decl *Ctx = cast<Decl>(S.getCurLexicalContext());
8395   DoEmitAvailabilityWarning(S, AR, Ctx, ReferringDecl, OffendingDecl,
8396                             Message, Locs, UnknownObjCClass, ObjCProperty,
8397                             ObjCPropertyAccess);
8398 }
8399 
8400 namespace {
8401 
8402 /// Returns true if the given statement can be a body-like child of \p Parent.
8403 bool isBodyLikeChildStmt(const Stmt *S, const Stmt *Parent) {
8404   switch (Parent->getStmtClass()) {
8405   case Stmt::IfStmtClass:
8406     return cast<IfStmt>(Parent)->getThen() == S ||
8407            cast<IfStmt>(Parent)->getElse() == S;
8408   case Stmt::WhileStmtClass:
8409     return cast<WhileStmt>(Parent)->getBody() == S;
8410   case Stmt::DoStmtClass:
8411     return cast<DoStmt>(Parent)->getBody() == S;
8412   case Stmt::ForStmtClass:
8413     return cast<ForStmt>(Parent)->getBody() == S;
8414   case Stmt::CXXForRangeStmtClass:
8415     return cast<CXXForRangeStmt>(Parent)->getBody() == S;
8416   case Stmt::ObjCForCollectionStmtClass:
8417     return cast<ObjCForCollectionStmt>(Parent)->getBody() == S;
8418   case Stmt::CaseStmtClass:
8419   case Stmt::DefaultStmtClass:
8420     return cast<SwitchCase>(Parent)->getSubStmt() == S;
8421   default:
8422     return false;
8423   }
8424 }
8425 
8426 class StmtUSEFinder : public RecursiveASTVisitor<StmtUSEFinder> {
8427   const Stmt *Target;
8428 
8429 public:
8430   bool VisitStmt(Stmt *S) { return S != Target; }
8431 
8432   /// Returns true if the given statement is present in the given declaration.
8433   static bool isContained(const Stmt *Target, const Decl *D) {
8434     StmtUSEFinder Visitor;
8435     Visitor.Target = Target;
8436     return !Visitor.TraverseDecl(const_cast<Decl *>(D));
8437   }
8438 };
8439 
8440 /// Traverses the AST and finds the last statement that used a given
8441 /// declaration.
8442 class LastDeclUSEFinder : public RecursiveASTVisitor<LastDeclUSEFinder> {
8443   const Decl *D;
8444 
8445 public:
8446   bool VisitDeclRefExpr(DeclRefExpr *DRE) {
8447     if (DRE->getDecl() == D)
8448       return false;
8449     return true;
8450   }
8451 
8452   static const Stmt *findLastStmtThatUsesDecl(const Decl *D,
8453                                               const CompoundStmt *Scope) {
8454     LastDeclUSEFinder Visitor;
8455     Visitor.D = D;
8456     for (auto I = Scope->body_rbegin(), E = Scope->body_rend(); I != E; ++I) {
8457       const Stmt *S = *I;
8458       if (!Visitor.TraverseStmt(const_cast<Stmt *>(S)))
8459         return S;
8460     }
8461     return nullptr;
8462   }
8463 };
8464 
8465 /// This class implements -Wunguarded-availability.
8466 ///
8467 /// This is done with a traversal of the AST of a function that makes reference
8468 /// to a partially available declaration. Whenever we encounter an \c if of the
8469 /// form: \c if(@available(...)), we use the version from the condition to visit
8470 /// the then statement.
8471 class DiagnoseUnguardedAvailability
8472     : public RecursiveASTVisitor<DiagnoseUnguardedAvailability> {
8473   typedef RecursiveASTVisitor<DiagnoseUnguardedAvailability> Base;
8474 
8475   Sema &SemaRef;
8476   Decl *Ctx;
8477 
8478   /// Stack of potentially nested 'if (@available(...))'s.
8479   SmallVector<VersionTuple, 8> AvailabilityStack;
8480   SmallVector<const Stmt *, 16> StmtStack;
8481 
8482   void DiagnoseDeclAvailability(NamedDecl *D, SourceRange Range,
8483                                 ObjCInterfaceDecl *ClassReceiver = nullptr);
8484 
8485 public:
8486   DiagnoseUnguardedAvailability(Sema &SemaRef, Decl *Ctx)
8487       : SemaRef(SemaRef), Ctx(Ctx) {
8488     AvailabilityStack.push_back(
8489         SemaRef.Context.getTargetInfo().getPlatformMinVersion());
8490   }
8491 
8492   bool TraverseDecl(Decl *D) {
8493     // Avoid visiting nested functions to prevent duplicate warnings.
8494     if (!D || isa<FunctionDecl>(D))
8495       return true;
8496     return Base::TraverseDecl(D);
8497   }
8498 
8499   bool TraverseStmt(Stmt *S) {
8500     if (!S)
8501       return true;
8502     StmtStack.push_back(S);
8503     bool Result = Base::TraverseStmt(S);
8504     StmtStack.pop_back();
8505     return Result;
8506   }
8507 
8508   void IssueDiagnostics(Stmt *S) { TraverseStmt(S); }
8509 
8510   bool TraverseIfStmt(IfStmt *If);
8511 
8512   bool TraverseLambdaExpr(LambdaExpr *E) { return true; }
8513 
8514   // for 'case X:' statements, don't bother looking at the 'X'; it can't lead
8515   // to any useful diagnostics.
8516   bool TraverseCaseStmt(CaseStmt *CS) { return TraverseStmt(CS->getSubStmt()); }
8517 
8518   bool VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *PRE) {
8519     if (PRE->isClassReceiver())
8520       DiagnoseDeclAvailability(PRE->getClassReceiver(), PRE->getReceiverLocation());
8521     return true;
8522   }
8523 
8524   bool VisitObjCMessageExpr(ObjCMessageExpr *Msg) {
8525     if (ObjCMethodDecl *D = Msg->getMethodDecl()) {
8526       ObjCInterfaceDecl *ID = nullptr;
8527       QualType ReceiverTy = Msg->getClassReceiver();
8528       if (!ReceiverTy.isNull() && ReceiverTy->getAsObjCInterfaceType())
8529         ID = ReceiverTy->getAsObjCInterfaceType()->getInterface();
8530 
8531       DiagnoseDeclAvailability(
8532           D, SourceRange(Msg->getSelectorStartLoc(), Msg->getEndLoc()), ID);
8533     }
8534     return true;
8535   }
8536 
8537   bool VisitDeclRefExpr(DeclRefExpr *DRE) {
8538     DiagnoseDeclAvailability(DRE->getDecl(),
8539                              SourceRange(DRE->getBeginLoc(), DRE->getEndLoc()));
8540     return true;
8541   }
8542 
8543   bool VisitMemberExpr(MemberExpr *ME) {
8544     DiagnoseDeclAvailability(ME->getMemberDecl(),
8545                              SourceRange(ME->getBeginLoc(), ME->getEndLoc()));
8546     return true;
8547   }
8548 
8549   bool VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
8550     SemaRef.Diag(E->getBeginLoc(), diag::warn_at_available_unchecked_use)
8551         << (!SemaRef.getLangOpts().ObjC);
8552     return true;
8553   }
8554 
8555   bool VisitTypeLoc(TypeLoc Ty);
8556 };
8557 
8558 void DiagnoseUnguardedAvailability::DiagnoseDeclAvailability(
8559     NamedDecl *D, SourceRange Range, ObjCInterfaceDecl *ReceiverClass) {
8560   AvailabilityResult Result;
8561   const NamedDecl *OffendingDecl;
8562   std::tie(Result, OffendingDecl) =
8563       ShouldDiagnoseAvailabilityOfDecl(SemaRef, D, nullptr, ReceiverClass);
8564   if (Result != AR_Available) {
8565     // All other diagnostic kinds have already been handled in
8566     // DiagnoseAvailabilityOfDecl.
8567     if (Result != AR_NotYetIntroduced)
8568       return;
8569 
8570     const AvailabilityAttr *AA =
8571       getAttrForPlatform(SemaRef.getASTContext(), OffendingDecl);
8572     VersionTuple Introduced = AA->getIntroduced();
8573 
8574     if (AvailabilityStack.back() >= Introduced)
8575       return;
8576 
8577     // If the context of this function is less available than D, we should not
8578     // emit a diagnostic.
8579     if (!ShouldDiagnoseAvailabilityInContext(SemaRef, Result, Introduced, Ctx,
8580                                              OffendingDecl))
8581       return;
8582 
8583     // We would like to emit the diagnostic even if -Wunguarded-availability is
8584     // not specified for deployment targets >= to iOS 11 or equivalent or
8585     // for declarations that were introduced in iOS 11 (macOS 10.13, ...) or
8586     // later.
8587     unsigned DiagKind =
8588         shouldDiagnoseAvailabilityByDefault(
8589             SemaRef.Context,
8590             SemaRef.Context.getTargetInfo().getPlatformMinVersion(), Introduced)
8591             ? diag::warn_unguarded_availability_new
8592             : diag::warn_unguarded_availability;
8593 
8594     std::string PlatformName = AvailabilityAttr::getPrettyPlatformName(
8595         SemaRef.getASTContext().getTargetInfo().getPlatformName());
8596 
8597     SemaRef.Diag(Range.getBegin(), DiagKind)
8598         << Range << D << PlatformName << Introduced.getAsString();
8599 
8600     SemaRef.Diag(OffendingDecl->getLocation(),
8601                  diag::note_partial_availability_specified_here)
8602         << OffendingDecl << PlatformName << Introduced.getAsString()
8603         << SemaRef.Context.getTargetInfo()
8604                .getPlatformMinVersion()
8605                .getAsString();
8606 
8607     auto FixitDiag =
8608         SemaRef.Diag(Range.getBegin(), diag::note_unguarded_available_silence)
8609         << Range << D
8610         << (SemaRef.getLangOpts().ObjC ? /*@available*/ 0
8611                                        : /*__builtin_available*/ 1);
8612 
8613     // Find the statement which should be enclosed in the if @available check.
8614     if (StmtStack.empty())
8615       return;
8616     const Stmt *StmtOfUse = StmtStack.back();
8617     const CompoundStmt *Scope = nullptr;
8618     for (const Stmt *S : llvm::reverse(StmtStack)) {
8619       if (const auto *CS = dyn_cast<CompoundStmt>(S)) {
8620         Scope = CS;
8621         break;
8622       }
8623       if (isBodyLikeChildStmt(StmtOfUse, S)) {
8624         // The declaration won't be seen outside of the statement, so we don't
8625         // have to wrap the uses of any declared variables in if (@available).
8626         // Therefore we can avoid setting Scope here.
8627         break;
8628       }
8629       StmtOfUse = S;
8630     }
8631     const Stmt *LastStmtOfUse = nullptr;
8632     if (isa<DeclStmt>(StmtOfUse) && Scope) {
8633       for (const Decl *D : cast<DeclStmt>(StmtOfUse)->decls()) {
8634         if (StmtUSEFinder::isContained(StmtStack.back(), D)) {
8635           LastStmtOfUse = LastDeclUSEFinder::findLastStmtThatUsesDecl(D, Scope);
8636           break;
8637         }
8638       }
8639     }
8640 
8641     const SourceManager &SM = SemaRef.getSourceManager();
8642     SourceLocation IfInsertionLoc =
8643         SM.getExpansionLoc(StmtOfUse->getBeginLoc());
8644     SourceLocation StmtEndLoc =
8645         SM.getExpansionRange(
8646               (LastStmtOfUse ? LastStmtOfUse : StmtOfUse)->getEndLoc())
8647             .getEnd();
8648     if (SM.getFileID(IfInsertionLoc) != SM.getFileID(StmtEndLoc))
8649       return;
8650 
8651     StringRef Indentation = Lexer::getIndentationForLine(IfInsertionLoc, SM);
8652     const char *ExtraIndentation = "    ";
8653     std::string FixItString;
8654     llvm::raw_string_ostream FixItOS(FixItString);
8655     FixItOS << "if (" << (SemaRef.getLangOpts().ObjC ? "@available"
8656                                                      : "__builtin_available")
8657             << "("
8658             << AvailabilityAttr::getPlatformNameSourceSpelling(
8659                    SemaRef.getASTContext().getTargetInfo().getPlatformName())
8660             << " " << Introduced.getAsString() << ", *)) {\n"
8661             << Indentation << ExtraIndentation;
8662     FixitDiag << FixItHint::CreateInsertion(IfInsertionLoc, FixItOS.str());
8663     SourceLocation ElseInsertionLoc = Lexer::findLocationAfterToken(
8664         StmtEndLoc, tok::semi, SM, SemaRef.getLangOpts(),
8665         /*SkipTrailingWhitespaceAndNewLine=*/false);
8666     if (ElseInsertionLoc.isInvalid())
8667       ElseInsertionLoc =
8668           Lexer::getLocForEndOfToken(StmtEndLoc, 0, SM, SemaRef.getLangOpts());
8669     FixItOS.str().clear();
8670     FixItOS << "\n"
8671             << Indentation << "} else {\n"
8672             << Indentation << ExtraIndentation
8673             << "// Fallback on earlier versions\n"
8674             << Indentation << "}";
8675     FixitDiag << FixItHint::CreateInsertion(ElseInsertionLoc, FixItOS.str());
8676   }
8677 }
8678 
8679 bool DiagnoseUnguardedAvailability::VisitTypeLoc(TypeLoc Ty) {
8680   const Type *TyPtr = Ty.getTypePtr();
8681   SourceRange Range{Ty.getBeginLoc(), Ty.getEndLoc()};
8682 
8683   if (Range.isInvalid())
8684     return true;
8685 
8686   if (const auto *TT = dyn_cast<TagType>(TyPtr)) {
8687     TagDecl *TD = TT->getDecl();
8688     DiagnoseDeclAvailability(TD, Range);
8689 
8690   } else if (const auto *TD = dyn_cast<TypedefType>(TyPtr)) {
8691     TypedefNameDecl *D = TD->getDecl();
8692     DiagnoseDeclAvailability(D, Range);
8693 
8694   } else if (const auto *ObjCO = dyn_cast<ObjCObjectType>(TyPtr)) {
8695     if (NamedDecl *D = ObjCO->getInterface())
8696       DiagnoseDeclAvailability(D, Range);
8697   }
8698 
8699   return true;
8700 }
8701 
8702 bool DiagnoseUnguardedAvailability::TraverseIfStmt(IfStmt *If) {
8703   VersionTuple CondVersion;
8704   if (auto *E = dyn_cast<ObjCAvailabilityCheckExpr>(If->getCond())) {
8705     CondVersion = E->getVersion();
8706 
8707     // If we're using the '*' case here or if this check is redundant, then we
8708     // use the enclosing version to check both branches.
8709     if (CondVersion.empty() || CondVersion <= AvailabilityStack.back())
8710       return TraverseStmt(If->getThen()) && TraverseStmt(If->getElse());
8711   } else {
8712     // This isn't an availability checking 'if', we can just continue.
8713     return Base::TraverseIfStmt(If);
8714   }
8715 
8716   AvailabilityStack.push_back(CondVersion);
8717   bool ShouldContinue = TraverseStmt(If->getThen());
8718   AvailabilityStack.pop_back();
8719 
8720   return ShouldContinue && TraverseStmt(If->getElse());
8721 }
8722 
8723 } // end anonymous namespace
8724 
8725 void Sema::DiagnoseUnguardedAvailabilityViolations(Decl *D) {
8726   Stmt *Body = nullptr;
8727 
8728   if (auto *FD = D->getAsFunction()) {
8729     // FIXME: We only examine the pattern decl for availability violations now,
8730     // but we should also examine instantiated templates.
8731     if (FD->isTemplateInstantiation())
8732       return;
8733 
8734     Body = FD->getBody();
8735   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(D))
8736     Body = MD->getBody();
8737   else if (auto *BD = dyn_cast<BlockDecl>(D))
8738     Body = BD->getBody();
8739 
8740   assert(Body && "Need a body here!");
8741 
8742   DiagnoseUnguardedAvailability(*this, D).IssueDiagnostics(Body);
8743 }
8744 
8745 void Sema::DiagnoseAvailabilityOfDecl(NamedDecl *D,
8746                                       ArrayRef<SourceLocation> Locs,
8747                                       const ObjCInterfaceDecl *UnknownObjCClass,
8748                                       bool ObjCPropertyAccess,
8749                                       bool AvoidPartialAvailabilityChecks,
8750                                       ObjCInterfaceDecl *ClassReceiver) {
8751   std::string Message;
8752   AvailabilityResult Result;
8753   const NamedDecl* OffendingDecl;
8754   // See if this declaration is unavailable, deprecated, or partial.
8755   std::tie(Result, OffendingDecl) =
8756       ShouldDiagnoseAvailabilityOfDecl(*this, D, &Message, ClassReceiver);
8757   if (Result == AR_Available)
8758     return;
8759 
8760   if (Result == AR_NotYetIntroduced) {
8761     if (AvoidPartialAvailabilityChecks)
8762       return;
8763 
8764     // We need to know the @available context in the current function to
8765     // diagnose this use, let DiagnoseUnguardedAvailabilityViolations do that
8766     // when we're done parsing the current function.
8767     if (getCurFunctionOrMethodDecl()) {
8768       getEnclosingFunction()->HasPotentialAvailabilityViolations = true;
8769       return;
8770     } else if (getCurBlock() || getCurLambda()) {
8771       getCurFunction()->HasPotentialAvailabilityViolations = true;
8772       return;
8773     }
8774   }
8775 
8776   const ObjCPropertyDecl *ObjCPDecl = nullptr;
8777   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
8778     if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
8779       AvailabilityResult PDeclResult = PD->getAvailability(nullptr);
8780       if (PDeclResult == Result)
8781         ObjCPDecl = PD;
8782     }
8783   }
8784 
8785   EmitAvailabilityWarning(*this, Result, D, OffendingDecl, Message, Locs,
8786                           UnknownObjCClass, ObjCPDecl, ObjCPropertyAccess);
8787 }
8788