1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements decl-related attribute processing. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTConsumer.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTMutationListener.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/Mangle.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/Basic/CharInfo.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Lex/Preprocessor.h" 29 #include "clang/Sema/DeclSpec.h" 30 #include "clang/Sema/DelayedDiagnostic.h" 31 #include "clang/Sema/Initialization.h" 32 #include "clang/Sema/Lookup.h" 33 #include "clang/Sema/Scope.h" 34 #include "clang/Sema/ScopeInfo.h" 35 #include "clang/Sema/SemaInternal.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/ADT/StringExtras.h" 38 #include "llvm/Support/MathExtras.h" 39 40 using namespace clang; 41 using namespace sema; 42 43 namespace AttributeLangSupport { 44 enum LANG { 45 C, 46 Cpp, 47 ObjC 48 }; 49 } // end namespace AttributeLangSupport 50 51 //===----------------------------------------------------------------------===// 52 // Helper functions 53 //===----------------------------------------------------------------------===// 54 55 /// isFunctionOrMethod - Return true if the given decl has function 56 /// type (function or function-typed variable) or an Objective-C 57 /// method. 58 static bool isFunctionOrMethod(const Decl *D) { 59 return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D); 60 } 61 62 /// Return true if the given decl has function type (function or 63 /// function-typed variable) or an Objective-C method or a block. 64 static bool isFunctionOrMethodOrBlock(const Decl *D) { 65 return isFunctionOrMethod(D) || isa<BlockDecl>(D); 66 } 67 68 /// Return true if the given decl has a declarator that should have 69 /// been processed by Sema::GetTypeForDeclarator. 70 static bool hasDeclarator(const Decl *D) { 71 // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl. 72 return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) || 73 isa<ObjCPropertyDecl>(D); 74 } 75 76 /// hasFunctionProto - Return true if the given decl has a argument 77 /// information. This decl should have already passed 78 /// isFunctionOrMethod or isFunctionOrMethodOrBlock. 79 static bool hasFunctionProto(const Decl *D) { 80 if (const FunctionType *FnTy = D->getFunctionType()) 81 return isa<FunctionProtoType>(FnTy); 82 return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D); 83 } 84 85 /// getFunctionOrMethodNumParams - Return number of function or method 86 /// parameters. It is an error to call this on a K&R function (use 87 /// hasFunctionProto first). 88 static unsigned getFunctionOrMethodNumParams(const Decl *D) { 89 if (const FunctionType *FnTy = D->getFunctionType()) 90 return cast<FunctionProtoType>(FnTy)->getNumParams(); 91 if (const auto *BD = dyn_cast<BlockDecl>(D)) 92 return BD->getNumParams(); 93 return cast<ObjCMethodDecl>(D)->param_size(); 94 } 95 96 static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D, 97 unsigned Idx) { 98 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 99 return FD->getParamDecl(Idx); 100 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 101 return MD->getParamDecl(Idx); 102 if (const auto *BD = dyn_cast<BlockDecl>(D)) 103 return BD->getParamDecl(Idx); 104 return nullptr; 105 } 106 107 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) { 108 if (const FunctionType *FnTy = D->getFunctionType()) 109 return cast<FunctionProtoType>(FnTy)->getParamType(Idx); 110 if (const auto *BD = dyn_cast<BlockDecl>(D)) 111 return BD->getParamDecl(Idx)->getType(); 112 113 return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType(); 114 } 115 116 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) { 117 if (auto *PVD = getFunctionOrMethodParam(D, Idx)) 118 return PVD->getSourceRange(); 119 return SourceRange(); 120 } 121 122 static QualType getFunctionOrMethodResultType(const Decl *D) { 123 if (const FunctionType *FnTy = D->getFunctionType()) 124 return FnTy->getReturnType(); 125 return cast<ObjCMethodDecl>(D)->getReturnType(); 126 } 127 128 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) { 129 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 130 return FD->getReturnTypeSourceRange(); 131 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 132 return MD->getReturnTypeSourceRange(); 133 return SourceRange(); 134 } 135 136 static bool isFunctionOrMethodVariadic(const Decl *D) { 137 if (const FunctionType *FnTy = D->getFunctionType()) 138 return cast<FunctionProtoType>(FnTy)->isVariadic(); 139 if (const auto *BD = dyn_cast<BlockDecl>(D)) 140 return BD->isVariadic(); 141 return cast<ObjCMethodDecl>(D)->isVariadic(); 142 } 143 144 static bool isInstanceMethod(const Decl *D) { 145 if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D)) 146 return MethodDecl->isInstance(); 147 return false; 148 } 149 150 static inline bool isNSStringType(QualType T, ASTContext &Ctx) { 151 const auto *PT = T->getAs<ObjCObjectPointerType>(); 152 if (!PT) 153 return false; 154 155 ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface(); 156 if (!Cls) 157 return false; 158 159 IdentifierInfo* ClsName = Cls->getIdentifier(); 160 161 // FIXME: Should we walk the chain of classes? 162 return ClsName == &Ctx.Idents.get("NSString") || 163 ClsName == &Ctx.Idents.get("NSMutableString"); 164 } 165 166 static inline bool isCFStringType(QualType T, ASTContext &Ctx) { 167 const auto *PT = T->getAs<PointerType>(); 168 if (!PT) 169 return false; 170 171 const auto *RT = PT->getPointeeType()->getAs<RecordType>(); 172 if (!RT) 173 return false; 174 175 const RecordDecl *RD = RT->getDecl(); 176 if (RD->getTagKind() != TTK_Struct) 177 return false; 178 179 return RD->getIdentifier() == &Ctx.Idents.get("__CFString"); 180 } 181 182 static unsigned getNumAttributeArgs(const ParsedAttr &AL) { 183 // FIXME: Include the type in the argument list. 184 return AL.getNumArgs() + AL.hasParsedType(); 185 } 186 187 template <typename Compare> 188 static bool checkAttributeNumArgsImpl(Sema &S, const ParsedAttr &AL, 189 unsigned Num, unsigned Diag, 190 Compare Comp) { 191 if (Comp(getNumAttributeArgs(AL), Num)) { 192 S.Diag(AL.getLoc(), Diag) << AL << Num; 193 return false; 194 } 195 196 return true; 197 } 198 199 /// Check if the attribute has exactly as many args as Num. May 200 /// output an error. 201 static bool checkAttributeNumArgs(Sema &S, const ParsedAttr &AL, unsigned Num) { 202 return checkAttributeNumArgsImpl(S, AL, Num, 203 diag::err_attribute_wrong_number_arguments, 204 std::not_equal_to<unsigned>()); 205 } 206 207 /// Check if the attribute has at least as many args as Num. May 208 /// output an error. 209 static bool checkAttributeAtLeastNumArgs(Sema &S, const ParsedAttr &AL, 210 unsigned Num) { 211 return checkAttributeNumArgsImpl(S, AL, Num, 212 diag::err_attribute_too_few_arguments, 213 std::less<unsigned>()); 214 } 215 216 /// Check if the attribute has at most as many args as Num. May 217 /// output an error. 218 static bool checkAttributeAtMostNumArgs(Sema &S, const ParsedAttr &AL, 219 unsigned Num) { 220 return checkAttributeNumArgsImpl(S, AL, Num, 221 diag::err_attribute_too_many_arguments, 222 std::greater<unsigned>()); 223 } 224 225 /// A helper function to provide Attribute Location for the Attr types 226 /// AND the ParsedAttr. 227 template <typename AttrInfo> 228 static std::enable_if_t<std::is_base_of<Attr, AttrInfo>::value, SourceLocation> 229 getAttrLoc(const AttrInfo &AL) { 230 return AL.getLocation(); 231 } 232 static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); } 233 234 /// If Expr is a valid integer constant, get the value of the integer 235 /// expression and return success or failure. May output an error. 236 /// 237 /// Negative argument is implicitly converted to unsigned, unless 238 /// \p StrictlyUnsigned is true. 239 template <typename AttrInfo> 240 static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr, 241 uint32_t &Val, unsigned Idx = UINT_MAX, 242 bool StrictlyUnsigned = false) { 243 llvm::APSInt I(32); 244 if (Expr->isTypeDependent() || Expr->isValueDependent() || 245 !Expr->isIntegerConstantExpr(I, S.Context)) { 246 if (Idx != UINT_MAX) 247 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type) 248 << &AI << Idx << AANT_ArgumentIntegerConstant 249 << Expr->getSourceRange(); 250 else 251 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type) 252 << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange(); 253 return false; 254 } 255 256 if (!I.isIntN(32)) { 257 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) 258 << I.toString(10, false) << 32 << /* Unsigned */ 1; 259 return false; 260 } 261 262 if (StrictlyUnsigned && I.isSigned() && I.isNegative()) { 263 S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer) 264 << &AI << /*non-negative*/ 1; 265 return false; 266 } 267 268 Val = (uint32_t)I.getZExtValue(); 269 return true; 270 } 271 272 /// Wrapper around checkUInt32Argument, with an extra check to be sure 273 /// that the result will fit into a regular (signed) int. All args have the same 274 /// purpose as they do in checkUInt32Argument. 275 template <typename AttrInfo> 276 static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr, 277 int &Val, unsigned Idx = UINT_MAX) { 278 uint32_t UVal; 279 if (!checkUInt32Argument(S, AI, Expr, UVal, Idx)) 280 return false; 281 282 if (UVal > (uint32_t)std::numeric_limits<int>::max()) { 283 llvm::APSInt I(32); // for toString 284 I = UVal; 285 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) 286 << I.toString(10, false) << 32 << /* Unsigned */ 0; 287 return false; 288 } 289 290 Val = UVal; 291 return true; 292 } 293 294 /// Diagnose mutually exclusive attributes when present on a given 295 /// declaration. Returns true if diagnosed. 296 template <typename AttrTy> 297 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) { 298 if (const auto *A = D->getAttr<AttrTy>()) { 299 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A; 300 S.Diag(A->getLocation(), diag::note_conflicting_attribute); 301 return true; 302 } 303 return false; 304 } 305 306 template <typename AttrTy> 307 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) { 308 if (const auto *A = D->getAttr<AttrTy>()) { 309 S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL 310 << A; 311 S.Diag(A->getLocation(), diag::note_conflicting_attribute); 312 return true; 313 } 314 return false; 315 } 316 317 /// Check if IdxExpr is a valid parameter index for a function or 318 /// instance method D. May output an error. 319 /// 320 /// \returns true if IdxExpr is a valid index. 321 template <typename AttrInfo> 322 static bool checkFunctionOrMethodParameterIndex( 323 Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum, 324 const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) { 325 assert(isFunctionOrMethodOrBlock(D)); 326 327 // In C++ the implicit 'this' function parameter also counts. 328 // Parameters are counted from one. 329 bool HP = hasFunctionProto(D); 330 bool HasImplicitThisParam = isInstanceMethod(D); 331 bool IV = HP && isFunctionOrMethodVariadic(D); 332 unsigned NumParams = 333 (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam; 334 335 llvm::APSInt IdxInt; 336 if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() || 337 !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) { 338 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type) 339 << &AI << AttrArgNum << AANT_ArgumentIntegerConstant 340 << IdxExpr->getSourceRange(); 341 return false; 342 } 343 344 unsigned IdxSource = IdxInt.getLimitedValue(UINT_MAX); 345 if (IdxSource < 1 || (!IV && IdxSource > NumParams)) { 346 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds) 347 << &AI << AttrArgNum << IdxExpr->getSourceRange(); 348 return false; 349 } 350 if (HasImplicitThisParam && !CanIndexImplicitThis) { 351 if (IdxSource == 1) { 352 S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument) 353 << &AI << IdxExpr->getSourceRange(); 354 return false; 355 } 356 } 357 358 Idx = ParamIdx(IdxSource, D); 359 return true; 360 } 361 362 /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal. 363 /// If not emit an error and return false. If the argument is an identifier it 364 /// will emit an error with a fixit hint and treat it as if it was a string 365 /// literal. 366 bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum, 367 StringRef &Str, 368 SourceLocation *ArgLocation) { 369 // Look for identifiers. If we have one emit a hint to fix it to a literal. 370 if (AL.isArgIdent(ArgNum)) { 371 IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum); 372 Diag(Loc->Loc, diag::err_attribute_argument_type) 373 << AL << AANT_ArgumentString 374 << FixItHint::CreateInsertion(Loc->Loc, "\"") 375 << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\""); 376 Str = Loc->Ident->getName(); 377 if (ArgLocation) 378 *ArgLocation = Loc->Loc; 379 return true; 380 } 381 382 // Now check for an actual string literal. 383 Expr *ArgExpr = AL.getArgAsExpr(ArgNum); 384 const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts()); 385 if (ArgLocation) 386 *ArgLocation = ArgExpr->getBeginLoc(); 387 388 if (!Literal || !Literal->isAscii()) { 389 Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type) 390 << AL << AANT_ArgumentString; 391 return false; 392 } 393 394 Str = Literal->getString(); 395 return true; 396 } 397 398 /// Applies the given attribute to the Decl without performing any 399 /// additional semantic checking. 400 template <typename AttrType> 401 static void handleSimpleAttribute(Sema &S, Decl *D, 402 const AttributeCommonInfo &CI) { 403 D->addAttr(::new (S.Context) AttrType(S.Context, CI)); 404 } 405 406 template <typename... DiagnosticArgs> 407 static const Sema::SemaDiagnosticBuilder& 408 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) { 409 return Bldr; 410 } 411 412 template <typename T, typename... DiagnosticArgs> 413 static const Sema::SemaDiagnosticBuilder& 414 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg, 415 DiagnosticArgs &&... ExtraArgs) { 416 return appendDiagnostics(Bldr << std::forward<T>(ExtraArg), 417 std::forward<DiagnosticArgs>(ExtraArgs)...); 418 } 419 420 /// Add an attribute {@code AttrType} to declaration {@code D}, provided that 421 /// {@code PassesCheck} is true. 422 /// Otherwise, emit diagnostic {@code DiagID}, passing in all parameters 423 /// specified in {@code ExtraArgs}. 424 template <typename AttrType, typename... DiagnosticArgs> 425 static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D, 426 const AttributeCommonInfo &CI, 427 bool PassesCheck, unsigned DiagID, 428 DiagnosticArgs &&... ExtraArgs) { 429 if (!PassesCheck) { 430 Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID); 431 appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...); 432 return; 433 } 434 handleSimpleAttribute<AttrType>(S, D, CI); 435 } 436 437 template <typename AttrType> 438 static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D, 439 const ParsedAttr &AL) { 440 handleSimpleAttribute<AttrType>(S, D, AL); 441 } 442 443 /// Applies the given attribute to the Decl so long as the Decl doesn't 444 /// already have one of the given incompatible attributes. 445 template <typename AttrType, typename IncompatibleAttrType, 446 typename... IncompatibleAttrTypes> 447 static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D, 448 const ParsedAttr &AL) { 449 if (checkAttrMutualExclusion<IncompatibleAttrType>(S, D, AL)) 450 return; 451 handleSimpleAttributeWithExclusions<AttrType, IncompatibleAttrTypes...>(S, D, 452 AL); 453 } 454 455 /// Check if the passed-in expression is of type int or bool. 456 static bool isIntOrBool(Expr *Exp) { 457 QualType QT = Exp->getType(); 458 return QT->isBooleanType() || QT->isIntegerType(); 459 } 460 461 462 // Check to see if the type is a smart pointer of some kind. We assume 463 // it's a smart pointer if it defines both operator-> and operator*. 464 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) { 465 auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record, 466 OverloadedOperatorKind Op) { 467 DeclContextLookupResult Result = 468 Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op)); 469 return !Result.empty(); 470 }; 471 472 const RecordDecl *Record = RT->getDecl(); 473 bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star); 474 bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow); 475 if (foundStarOperator && foundArrowOperator) 476 return true; 477 478 const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record); 479 if (!CXXRecord) 480 return false; 481 482 for (auto BaseSpecifier : CXXRecord->bases()) { 483 if (!foundStarOperator) 484 foundStarOperator = IsOverloadedOperatorPresent( 485 BaseSpecifier.getType()->getAsRecordDecl(), OO_Star); 486 if (!foundArrowOperator) 487 foundArrowOperator = IsOverloadedOperatorPresent( 488 BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow); 489 } 490 491 if (foundStarOperator && foundArrowOperator) 492 return true; 493 494 return false; 495 } 496 497 /// Check if passed in Decl is a pointer type. 498 /// Note that this function may produce an error message. 499 /// \return true if the Decl is a pointer type; false otherwise 500 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, 501 const ParsedAttr &AL) { 502 const auto *VD = cast<ValueDecl>(D); 503 QualType QT = VD->getType(); 504 if (QT->isAnyPointerType()) 505 return true; 506 507 if (const auto *RT = QT->getAs<RecordType>()) { 508 // If it's an incomplete type, it could be a smart pointer; skip it. 509 // (We don't want to force template instantiation if we can avoid it, 510 // since that would alter the order in which templates are instantiated.) 511 if (RT->isIncompleteType()) 512 return true; 513 514 if (threadSafetyCheckIsSmartPointer(S, RT)) 515 return true; 516 } 517 518 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT; 519 return false; 520 } 521 522 /// Checks that the passed in QualType either is of RecordType or points 523 /// to RecordType. Returns the relevant RecordType, null if it does not exit. 524 static const RecordType *getRecordType(QualType QT) { 525 if (const auto *RT = QT->getAs<RecordType>()) 526 return RT; 527 528 // Now check if we point to record type. 529 if (const auto *PT = QT->getAs<PointerType>()) 530 return PT->getPointeeType()->getAs<RecordType>(); 531 532 return nullptr; 533 } 534 535 template <typename AttrType> 536 static bool checkRecordDeclForAttr(const RecordDecl *RD) { 537 // Check if the record itself has the attribute. 538 if (RD->hasAttr<AttrType>()) 539 return true; 540 541 // Else check if any base classes have the attribute. 542 if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) { 543 CXXBasePaths BPaths(false, false); 544 if (CRD->lookupInBases( 545 [](const CXXBaseSpecifier *BS, CXXBasePath &) { 546 const auto &Ty = *BS->getType(); 547 // If it's type-dependent, we assume it could have the attribute. 548 if (Ty.isDependentType()) 549 return true; 550 return Ty.castAs<RecordType>()->getDecl()->hasAttr<AttrType>(); 551 }, 552 BPaths, true)) 553 return true; 554 } 555 return false; 556 } 557 558 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) { 559 const RecordType *RT = getRecordType(Ty); 560 561 if (!RT) 562 return false; 563 564 // Don't check for the capability if the class hasn't been defined yet. 565 if (RT->isIncompleteType()) 566 return true; 567 568 // Allow smart pointers to be used as capability objects. 569 // FIXME -- Check the type that the smart pointer points to. 570 if (threadSafetyCheckIsSmartPointer(S, RT)) 571 return true; 572 573 return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl()); 574 } 575 576 static bool checkTypedefTypeForCapability(QualType Ty) { 577 const auto *TD = Ty->getAs<TypedefType>(); 578 if (!TD) 579 return false; 580 581 TypedefNameDecl *TN = TD->getDecl(); 582 if (!TN) 583 return false; 584 585 return TN->hasAttr<CapabilityAttr>(); 586 } 587 588 static bool typeHasCapability(Sema &S, QualType Ty) { 589 if (checkTypedefTypeForCapability(Ty)) 590 return true; 591 592 if (checkRecordTypeForCapability(S, Ty)) 593 return true; 594 595 return false; 596 } 597 598 static bool isCapabilityExpr(Sema &S, const Expr *Ex) { 599 // Capability expressions are simple expressions involving the boolean logic 600 // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once 601 // a DeclRefExpr is found, its type should be checked to determine whether it 602 // is a capability or not. 603 604 if (const auto *E = dyn_cast<CastExpr>(Ex)) 605 return isCapabilityExpr(S, E->getSubExpr()); 606 else if (const auto *E = dyn_cast<ParenExpr>(Ex)) 607 return isCapabilityExpr(S, E->getSubExpr()); 608 else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) { 609 if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf || 610 E->getOpcode() == UO_Deref) 611 return isCapabilityExpr(S, E->getSubExpr()); 612 return false; 613 } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) { 614 if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr) 615 return isCapabilityExpr(S, E->getLHS()) && 616 isCapabilityExpr(S, E->getRHS()); 617 return false; 618 } 619 620 return typeHasCapability(S, Ex->getType()); 621 } 622 623 /// Checks that all attribute arguments, starting from Sidx, resolve to 624 /// a capability object. 625 /// \param Sidx The attribute argument index to start checking with. 626 /// \param ParamIdxOk Whether an argument can be indexing into a function 627 /// parameter list. 628 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D, 629 const ParsedAttr &AL, 630 SmallVectorImpl<Expr *> &Args, 631 unsigned Sidx = 0, 632 bool ParamIdxOk = false) { 633 if (Sidx == AL.getNumArgs()) { 634 // If we don't have any capability arguments, the attribute implicitly 635 // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're 636 // a non-static method, and that the class is a (scoped) capability. 637 const auto *MD = dyn_cast<const CXXMethodDecl>(D); 638 if (MD && !MD->isStatic()) { 639 const CXXRecordDecl *RD = MD->getParent(); 640 // FIXME -- need to check this again on template instantiation 641 if (!checkRecordDeclForAttr<CapabilityAttr>(RD) && 642 !checkRecordDeclForAttr<ScopedLockableAttr>(RD)) 643 S.Diag(AL.getLoc(), 644 diag::warn_thread_attribute_not_on_capability_member) 645 << AL << MD->getParent(); 646 } else { 647 S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member) 648 << AL; 649 } 650 } 651 652 for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) { 653 Expr *ArgExp = AL.getArgAsExpr(Idx); 654 655 if (ArgExp->isTypeDependent()) { 656 // FIXME -- need to check this again on template instantiation 657 Args.push_back(ArgExp); 658 continue; 659 } 660 661 if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) { 662 if (StrLit->getLength() == 0 || 663 (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) { 664 // Pass empty strings to the analyzer without warnings. 665 // Treat "*" as the universal lock. 666 Args.push_back(ArgExp); 667 continue; 668 } 669 670 // We allow constant strings to be used as a placeholder for expressions 671 // that are not valid C++ syntax, but warn that they are ignored. 672 S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL; 673 Args.push_back(ArgExp); 674 continue; 675 } 676 677 QualType ArgTy = ArgExp->getType(); 678 679 // A pointer to member expression of the form &MyClass::mu is treated 680 // specially -- we need to look at the type of the member. 681 if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp)) 682 if (UOp->getOpcode() == UO_AddrOf) 683 if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr())) 684 if (DRE->getDecl()->isCXXInstanceMember()) 685 ArgTy = DRE->getDecl()->getType(); 686 687 // First see if we can just cast to record type, or pointer to record type. 688 const RecordType *RT = getRecordType(ArgTy); 689 690 // Now check if we index into a record type function param. 691 if(!RT && ParamIdxOk) { 692 const auto *FD = dyn_cast<FunctionDecl>(D); 693 const auto *IL = dyn_cast<IntegerLiteral>(ArgExp); 694 if(FD && IL) { 695 unsigned int NumParams = FD->getNumParams(); 696 llvm::APInt ArgValue = IL->getValue(); 697 uint64_t ParamIdxFromOne = ArgValue.getZExtValue(); 698 uint64_t ParamIdxFromZero = ParamIdxFromOne - 1; 699 if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) { 700 S.Diag(AL.getLoc(), 701 diag::err_attribute_argument_out_of_bounds_extra_info) 702 << AL << Idx + 1 << NumParams; 703 continue; 704 } 705 ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType(); 706 } 707 } 708 709 // If the type does not have a capability, see if the components of the 710 // expression have capabilities. This allows for writing C code where the 711 // capability may be on the type, and the expression is a capability 712 // boolean logic expression. Eg) requires_capability(A || B && !C) 713 if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp)) 714 S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable) 715 << AL << ArgTy; 716 717 Args.push_back(ArgExp); 718 } 719 } 720 721 //===----------------------------------------------------------------------===// 722 // Attribute Implementations 723 //===----------------------------------------------------------------------===// 724 725 static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 726 if (!threadSafetyCheckIsPointer(S, D, AL)) 727 return; 728 729 D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL)); 730 } 731 732 static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, 733 Expr *&Arg) { 734 SmallVector<Expr *, 1> Args; 735 // check that all arguments are lockable objects 736 checkAttrArgsAreCapabilityObjs(S, D, AL, Args); 737 unsigned Size = Args.size(); 738 if (Size != 1) 739 return false; 740 741 Arg = Args[0]; 742 743 return true; 744 } 745 746 static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 747 Expr *Arg = nullptr; 748 if (!checkGuardedByAttrCommon(S, D, AL, Arg)) 749 return; 750 751 D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg)); 752 } 753 754 static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 755 Expr *Arg = nullptr; 756 if (!checkGuardedByAttrCommon(S, D, AL, Arg)) 757 return; 758 759 if (!threadSafetyCheckIsPointer(S, D, AL)) 760 return; 761 762 D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg)); 763 } 764 765 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, 766 SmallVectorImpl<Expr *> &Args) { 767 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 768 return false; 769 770 // Check that this attribute only applies to lockable types. 771 QualType QT = cast<ValueDecl>(D)->getType(); 772 if (!QT->isDependentType() && !typeHasCapability(S, QT)) { 773 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL; 774 return false; 775 } 776 777 // Check that all arguments are lockable objects. 778 checkAttrArgsAreCapabilityObjs(S, D, AL, Args); 779 if (Args.empty()) 780 return false; 781 782 return true; 783 } 784 785 static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 786 SmallVector<Expr *, 1> Args; 787 if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) 788 return; 789 790 Expr **StartArg = &Args[0]; 791 D->addAttr(::new (S.Context) 792 AcquiredAfterAttr(S.Context, AL, StartArg, Args.size())); 793 } 794 795 static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 796 SmallVector<Expr *, 1> Args; 797 if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) 798 return; 799 800 Expr **StartArg = &Args[0]; 801 D->addAttr(::new (S.Context) 802 AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size())); 803 } 804 805 static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, 806 SmallVectorImpl<Expr *> &Args) { 807 // zero or more arguments ok 808 // check that all arguments are lockable objects 809 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true); 810 811 return true; 812 } 813 814 static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 815 SmallVector<Expr *, 1> Args; 816 if (!checkLockFunAttrCommon(S, D, AL, Args)) 817 return; 818 819 unsigned Size = Args.size(); 820 Expr **StartArg = Size == 0 ? nullptr : &Args[0]; 821 D->addAttr(::new (S.Context) 822 AssertSharedLockAttr(S.Context, AL, StartArg, Size)); 823 } 824 825 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D, 826 const ParsedAttr &AL) { 827 SmallVector<Expr *, 1> Args; 828 if (!checkLockFunAttrCommon(S, D, AL, Args)) 829 return; 830 831 unsigned Size = Args.size(); 832 Expr **StartArg = Size == 0 ? nullptr : &Args[0]; 833 D->addAttr(::new (S.Context) 834 AssertExclusiveLockAttr(S.Context, AL, StartArg, Size)); 835 } 836 837 /// Checks to be sure that the given parameter number is in bounds, and 838 /// is an integral type. Will emit appropriate diagnostics if this returns 839 /// false. 840 /// 841 /// AttrArgNo is used to actually retrieve the argument, so it's base-0. 842 template <typename AttrInfo> 843 static bool checkParamIsIntegerType(Sema &S, const FunctionDecl *FD, 844 const AttrInfo &AI, unsigned AttrArgNo) { 845 assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument"); 846 Expr *AttrArg = AI.getArgAsExpr(AttrArgNo); 847 ParamIdx Idx; 848 if (!checkFunctionOrMethodParameterIndex(S, FD, AI, AttrArgNo + 1, AttrArg, 849 Idx)) 850 return false; 851 852 const ParmVarDecl *Param = FD->getParamDecl(Idx.getASTIndex()); 853 if (!Param->getType()->isIntegerType() && !Param->getType()->isCharType()) { 854 SourceLocation SrcLoc = AttrArg->getBeginLoc(); 855 S.Diag(SrcLoc, diag::err_attribute_integers_only) 856 << AI << Param->getSourceRange(); 857 return false; 858 } 859 return true; 860 } 861 862 static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 863 if (!checkAttributeAtLeastNumArgs(S, AL, 1) || 864 !checkAttributeAtMostNumArgs(S, AL, 2)) 865 return; 866 867 const auto *FD = cast<FunctionDecl>(D); 868 if (!FD->getReturnType()->isPointerType()) { 869 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL; 870 return; 871 } 872 873 const Expr *SizeExpr = AL.getArgAsExpr(0); 874 int SizeArgNoVal; 875 // Parameter indices are 1-indexed, hence Index=1 876 if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1)) 877 return; 878 if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/0)) 879 return; 880 ParamIdx SizeArgNo(SizeArgNoVal, D); 881 882 ParamIdx NumberArgNo; 883 if (AL.getNumArgs() == 2) { 884 const Expr *NumberExpr = AL.getArgAsExpr(1); 885 int Val; 886 // Parameter indices are 1-based, hence Index=2 887 if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2)) 888 return; 889 if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/1)) 890 return; 891 NumberArgNo = ParamIdx(Val, D); 892 } 893 894 D->addAttr(::new (S.Context) 895 AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo)); 896 } 897 898 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, 899 SmallVectorImpl<Expr *> &Args) { 900 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 901 return false; 902 903 if (!isIntOrBool(AL.getArgAsExpr(0))) { 904 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 905 << AL << 1 << AANT_ArgumentIntOrBool; 906 return false; 907 } 908 909 // check that all arguments are lockable objects 910 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1); 911 912 return true; 913 } 914 915 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D, 916 const ParsedAttr &AL) { 917 SmallVector<Expr*, 2> Args; 918 if (!checkTryLockFunAttrCommon(S, D, AL, Args)) 919 return; 920 921 D->addAttr(::new (S.Context) SharedTrylockFunctionAttr( 922 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); 923 } 924 925 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D, 926 const ParsedAttr &AL) { 927 SmallVector<Expr*, 2> Args; 928 if (!checkTryLockFunAttrCommon(S, D, AL, Args)) 929 return; 930 931 D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr( 932 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); 933 } 934 935 static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 936 // check that the argument is lockable object 937 SmallVector<Expr*, 1> Args; 938 checkAttrArgsAreCapabilityObjs(S, D, AL, Args); 939 unsigned Size = Args.size(); 940 if (Size == 0) 941 return; 942 943 D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0])); 944 } 945 946 static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 947 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 948 return; 949 950 // check that all arguments are lockable objects 951 SmallVector<Expr*, 1> Args; 952 checkAttrArgsAreCapabilityObjs(S, D, AL, Args); 953 unsigned Size = Args.size(); 954 if (Size == 0) 955 return; 956 Expr **StartArg = &Args[0]; 957 958 D->addAttr(::new (S.Context) 959 LocksExcludedAttr(S.Context, AL, StartArg, Size)); 960 } 961 962 static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL, 963 Expr *&Cond, StringRef &Msg) { 964 Cond = AL.getArgAsExpr(0); 965 if (!Cond->isTypeDependent()) { 966 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); 967 if (Converted.isInvalid()) 968 return false; 969 Cond = Converted.get(); 970 } 971 972 if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg)) 973 return false; 974 975 if (Msg.empty()) 976 Msg = "<no message provided>"; 977 978 SmallVector<PartialDiagnosticAt, 8> Diags; 979 if (isa<FunctionDecl>(D) && !Cond->isValueDependent() && 980 !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D), 981 Diags)) { 982 S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL; 983 for (const PartialDiagnosticAt &PDiag : Diags) 984 S.Diag(PDiag.first, PDiag.second); 985 return false; 986 } 987 return true; 988 } 989 990 static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 991 S.Diag(AL.getLoc(), diag::ext_clang_enable_if); 992 993 Expr *Cond; 994 StringRef Msg; 995 if (checkFunctionConditionAttr(S, D, AL, Cond, Msg)) 996 D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg)); 997 } 998 999 namespace { 1000 /// Determines if a given Expr references any of the given function's 1001 /// ParmVarDecls, or the function's implicit `this` parameter (if applicable). 1002 class ArgumentDependenceChecker 1003 : public RecursiveASTVisitor<ArgumentDependenceChecker> { 1004 #ifndef NDEBUG 1005 const CXXRecordDecl *ClassType; 1006 #endif 1007 llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms; 1008 bool Result; 1009 1010 public: 1011 ArgumentDependenceChecker(const FunctionDecl *FD) { 1012 #ifndef NDEBUG 1013 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1014 ClassType = MD->getParent(); 1015 else 1016 ClassType = nullptr; 1017 #endif 1018 Parms.insert(FD->param_begin(), FD->param_end()); 1019 } 1020 1021 bool referencesArgs(Expr *E) { 1022 Result = false; 1023 TraverseStmt(E); 1024 return Result; 1025 } 1026 1027 bool VisitCXXThisExpr(CXXThisExpr *E) { 1028 assert(E->getType()->getPointeeCXXRecordDecl() == ClassType && 1029 "`this` doesn't refer to the enclosing class?"); 1030 Result = true; 1031 return false; 1032 } 1033 1034 bool VisitDeclRefExpr(DeclRefExpr *DRE) { 1035 if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 1036 if (Parms.count(PVD)) { 1037 Result = true; 1038 return false; 1039 } 1040 return true; 1041 } 1042 }; 1043 } 1044 1045 static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1046 S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if); 1047 1048 Expr *Cond; 1049 StringRef Msg; 1050 if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg)) 1051 return; 1052 1053 StringRef DiagTypeStr; 1054 if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr)) 1055 return; 1056 1057 DiagnoseIfAttr::DiagnosticType DiagType; 1058 if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) { 1059 S.Diag(AL.getArgAsExpr(2)->getBeginLoc(), 1060 diag::err_diagnose_if_invalid_diagnostic_type); 1061 return; 1062 } 1063 1064 bool ArgDependent = false; 1065 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 1066 ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond); 1067 D->addAttr(::new (S.Context) DiagnoseIfAttr( 1068 S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D))); 1069 } 1070 1071 static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1072 static constexpr const StringRef kWildcard = "*"; 1073 1074 llvm::SmallVector<StringRef, 16> Names; 1075 bool HasWildcard = false; 1076 1077 const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) { 1078 if (Name == kWildcard) 1079 HasWildcard = true; 1080 Names.push_back(Name); 1081 }; 1082 1083 // Add previously defined attributes. 1084 if (const auto *NBA = D->getAttr<NoBuiltinAttr>()) 1085 for (StringRef BuiltinName : NBA->builtinNames()) 1086 AddBuiltinName(BuiltinName); 1087 1088 // Add current attributes. 1089 if (AL.getNumArgs() == 0) 1090 AddBuiltinName(kWildcard); 1091 else 1092 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { 1093 StringRef BuiltinName; 1094 SourceLocation LiteralLoc; 1095 if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc)) 1096 return; 1097 1098 if (Builtin::Context::isBuiltinFunc(BuiltinName)) 1099 AddBuiltinName(BuiltinName); 1100 else 1101 S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name) 1102 << BuiltinName << AL; 1103 } 1104 1105 // Repeating the same attribute is fine. 1106 llvm::sort(Names); 1107 Names.erase(std::unique(Names.begin(), Names.end()), Names.end()); 1108 1109 // Empty no_builtin must be on its own. 1110 if (HasWildcard && Names.size() > 1) 1111 S.Diag(D->getLocation(), 1112 diag::err_attribute_no_builtin_wildcard_or_builtin_name) 1113 << AL; 1114 1115 if (D->hasAttr<NoBuiltinAttr>()) 1116 D->dropAttr<NoBuiltinAttr>(); 1117 D->addAttr(::new (S.Context) 1118 NoBuiltinAttr(S.Context, AL, Names.data(), Names.size())); 1119 } 1120 1121 static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1122 if (D->hasAttr<PassObjectSizeAttr>()) { 1123 S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL; 1124 return; 1125 } 1126 1127 Expr *E = AL.getArgAsExpr(0); 1128 uint32_t Type; 1129 if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1)) 1130 return; 1131 1132 // pass_object_size's argument is passed in as the second argument of 1133 // __builtin_object_size. So, it has the same constraints as that second 1134 // argument; namely, it must be in the range [0, 3]. 1135 if (Type > 3) { 1136 S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range) 1137 << AL << 0 << 3 << E->getSourceRange(); 1138 return; 1139 } 1140 1141 // pass_object_size is only supported on constant pointer parameters; as a 1142 // kindness to users, we allow the parameter to be non-const for declarations. 1143 // At this point, we have no clue if `D` belongs to a function declaration or 1144 // definition, so we defer the constness check until later. 1145 if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) { 1146 S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1; 1147 return; 1148 } 1149 1150 D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type)); 1151 } 1152 1153 static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1154 ConsumableAttr::ConsumedState DefaultState; 1155 1156 if (AL.isArgIdent(0)) { 1157 IdentifierLoc *IL = AL.getArgAsIdent(0); 1158 if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(), 1159 DefaultState)) { 1160 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL 1161 << IL->Ident; 1162 return; 1163 } 1164 } else { 1165 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 1166 << AL << AANT_ArgumentIdentifier; 1167 return; 1168 } 1169 1170 D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState)); 1171 } 1172 1173 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, 1174 const ParsedAttr &AL) { 1175 QualType ThisType = MD->getThisType()->getPointeeType(); 1176 1177 if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) { 1178 if (!RD->hasAttr<ConsumableAttr>()) { 1179 S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD; 1180 1181 return false; 1182 } 1183 } 1184 1185 return true; 1186 } 1187 1188 static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1189 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 1190 return; 1191 1192 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) 1193 return; 1194 1195 SmallVector<CallableWhenAttr::ConsumedState, 3> States; 1196 for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) { 1197 CallableWhenAttr::ConsumedState CallableState; 1198 1199 StringRef StateString; 1200 SourceLocation Loc; 1201 if (AL.isArgIdent(ArgIndex)) { 1202 IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex); 1203 StateString = Ident->Ident->getName(); 1204 Loc = Ident->Loc; 1205 } else { 1206 if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc)) 1207 return; 1208 } 1209 1210 if (!CallableWhenAttr::ConvertStrToConsumedState(StateString, 1211 CallableState)) { 1212 S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString; 1213 return; 1214 } 1215 1216 States.push_back(CallableState); 1217 } 1218 1219 D->addAttr(::new (S.Context) 1220 CallableWhenAttr(S.Context, AL, States.data(), States.size())); 1221 } 1222 1223 static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1224 ParamTypestateAttr::ConsumedState ParamState; 1225 1226 if (AL.isArgIdent(0)) { 1227 IdentifierLoc *Ident = AL.getArgAsIdent(0); 1228 StringRef StateString = Ident->Ident->getName(); 1229 1230 if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString, 1231 ParamState)) { 1232 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) 1233 << AL << StateString; 1234 return; 1235 } 1236 } else { 1237 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 1238 << AL << AANT_ArgumentIdentifier; 1239 return; 1240 } 1241 1242 // FIXME: This check is currently being done in the analysis. It can be 1243 // enabled here only after the parser propagates attributes at 1244 // template specialization definition, not declaration. 1245 //QualType ReturnType = cast<ParmVarDecl>(D)->getType(); 1246 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); 1247 // 1248 //if (!RD || !RD->hasAttr<ConsumableAttr>()) { 1249 // S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) << 1250 // ReturnType.getAsString(); 1251 // return; 1252 //} 1253 1254 D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState)); 1255 } 1256 1257 static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1258 ReturnTypestateAttr::ConsumedState ReturnState; 1259 1260 if (AL.isArgIdent(0)) { 1261 IdentifierLoc *IL = AL.getArgAsIdent(0); 1262 if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(), 1263 ReturnState)) { 1264 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL 1265 << IL->Ident; 1266 return; 1267 } 1268 } else { 1269 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 1270 << AL << AANT_ArgumentIdentifier; 1271 return; 1272 } 1273 1274 // FIXME: This check is currently being done in the analysis. It can be 1275 // enabled here only after the parser propagates attributes at 1276 // template specialization definition, not declaration. 1277 //QualType ReturnType; 1278 // 1279 //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) { 1280 // ReturnType = Param->getType(); 1281 // 1282 //} else if (const CXXConstructorDecl *Constructor = 1283 // dyn_cast<CXXConstructorDecl>(D)) { 1284 // ReturnType = Constructor->getThisType()->getPointeeType(); 1285 // 1286 //} else { 1287 // 1288 // ReturnType = cast<FunctionDecl>(D)->getCallResultType(); 1289 //} 1290 // 1291 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); 1292 // 1293 //if (!RD || !RD->hasAttr<ConsumableAttr>()) { 1294 // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << 1295 // ReturnType.getAsString(); 1296 // return; 1297 //} 1298 1299 D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState)); 1300 } 1301 1302 static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1303 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) 1304 return; 1305 1306 SetTypestateAttr::ConsumedState NewState; 1307 if (AL.isArgIdent(0)) { 1308 IdentifierLoc *Ident = AL.getArgAsIdent(0); 1309 StringRef Param = Ident->Ident->getName(); 1310 if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) { 1311 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL 1312 << Param; 1313 return; 1314 } 1315 } else { 1316 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 1317 << AL << AANT_ArgumentIdentifier; 1318 return; 1319 } 1320 1321 D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState)); 1322 } 1323 1324 static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1325 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) 1326 return; 1327 1328 TestTypestateAttr::ConsumedState TestState; 1329 if (AL.isArgIdent(0)) { 1330 IdentifierLoc *Ident = AL.getArgAsIdent(0); 1331 StringRef Param = Ident->Ident->getName(); 1332 if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) { 1333 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL 1334 << Param; 1335 return; 1336 } 1337 } else { 1338 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 1339 << AL << AANT_ArgumentIdentifier; 1340 return; 1341 } 1342 1343 D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState)); 1344 } 1345 1346 static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1347 // Remember this typedef decl, we will need it later for diagnostics. 1348 S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D)); 1349 } 1350 1351 static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1352 if (auto *TD = dyn_cast<TagDecl>(D)) 1353 TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); 1354 else if (auto *FD = dyn_cast<FieldDecl>(D)) { 1355 bool BitfieldByteAligned = (!FD->getType()->isDependentType() && 1356 !FD->getType()->isIncompleteType() && 1357 FD->isBitField() && 1358 S.Context.getTypeAlign(FD->getType()) <= 8); 1359 1360 if (S.getASTContext().getTargetInfo().getTriple().isPS4()) { 1361 if (BitfieldByteAligned) 1362 // The PS4 target needs to maintain ABI backwards compatibility. 1363 S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type) 1364 << AL << FD->getType(); 1365 else 1366 FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); 1367 } else { 1368 // Report warning about changed offset in the newer compiler versions. 1369 if (BitfieldByteAligned) 1370 S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield); 1371 1372 FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); 1373 } 1374 1375 } else 1376 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; 1377 } 1378 1379 static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) { 1380 // The IBOutlet/IBOutletCollection attributes only apply to instance 1381 // variables or properties of Objective-C classes. The outlet must also 1382 // have an object reference type. 1383 if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) { 1384 if (!VD->getType()->getAs<ObjCObjectPointerType>()) { 1385 S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type) 1386 << AL << VD->getType() << 0; 1387 return false; 1388 } 1389 } 1390 else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) { 1391 if (!PD->getType()->getAs<ObjCObjectPointerType>()) { 1392 S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type) 1393 << AL << PD->getType() << 1; 1394 return false; 1395 } 1396 } 1397 else { 1398 S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL; 1399 return false; 1400 } 1401 1402 return true; 1403 } 1404 1405 static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) { 1406 if (!checkIBOutletCommon(S, D, AL)) 1407 return; 1408 1409 D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL)); 1410 } 1411 1412 static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) { 1413 1414 // The iboutletcollection attribute can have zero or one arguments. 1415 if (AL.getNumArgs() > 1) { 1416 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; 1417 return; 1418 } 1419 1420 if (!checkIBOutletCommon(S, D, AL)) 1421 return; 1422 1423 ParsedType PT; 1424 1425 if (AL.hasParsedType()) 1426 PT = AL.getTypeArg(); 1427 else { 1428 PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(), 1429 S.getScopeForContext(D->getDeclContext()->getParent())); 1430 if (!PT) { 1431 S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject"; 1432 return; 1433 } 1434 } 1435 1436 TypeSourceInfo *QTLoc = nullptr; 1437 QualType QT = S.GetTypeFromParser(PT, &QTLoc); 1438 if (!QTLoc) 1439 QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc()); 1440 1441 // Diagnose use of non-object type in iboutletcollection attribute. 1442 // FIXME. Gnu attribute extension ignores use of builtin types in 1443 // attributes. So, __attribute__((iboutletcollection(char))) will be 1444 // treated as __attribute__((iboutletcollection())). 1445 if (!QT->isObjCIdType() && !QT->isObjCObjectType()) { 1446 S.Diag(AL.getLoc(), 1447 QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype 1448 : diag::err_iboutletcollection_type) << QT; 1449 return; 1450 } 1451 1452 D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc)); 1453 } 1454 1455 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) { 1456 if (RefOkay) { 1457 if (T->isReferenceType()) 1458 return true; 1459 } else { 1460 T = T.getNonReferenceType(); 1461 } 1462 1463 // The nonnull attribute, and other similar attributes, can be applied to a 1464 // transparent union that contains a pointer type. 1465 if (const RecordType *UT = T->getAsUnionType()) { 1466 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) { 1467 RecordDecl *UD = UT->getDecl(); 1468 for (const auto *I : UD->fields()) { 1469 QualType QT = I->getType(); 1470 if (QT->isAnyPointerType() || QT->isBlockPointerType()) 1471 return true; 1472 } 1473 } 1474 } 1475 1476 return T->isAnyPointerType() || T->isBlockPointerType(); 1477 } 1478 1479 static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL, 1480 SourceRange AttrParmRange, 1481 SourceRange TypeRange, 1482 bool isReturnValue = false) { 1483 if (!S.isValidPointerAttrType(T)) { 1484 if (isReturnValue) 1485 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) 1486 << AL << AttrParmRange << TypeRange; 1487 else 1488 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) 1489 << AL << AttrParmRange << TypeRange << 0; 1490 return false; 1491 } 1492 return true; 1493 } 1494 1495 static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1496 SmallVector<ParamIdx, 8> NonNullArgs; 1497 for (unsigned I = 0; I < AL.getNumArgs(); ++I) { 1498 Expr *Ex = AL.getArgAsExpr(I); 1499 ParamIdx Idx; 1500 if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx)) 1501 return; 1502 1503 // Is the function argument a pointer type? 1504 if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) && 1505 !attrNonNullArgCheck( 1506 S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL, 1507 Ex->getSourceRange(), 1508 getFunctionOrMethodParamRange(D, Idx.getASTIndex()))) 1509 continue; 1510 1511 NonNullArgs.push_back(Idx); 1512 } 1513 1514 // If no arguments were specified to __attribute__((nonnull)) then all pointer 1515 // arguments have a nonnull attribute; warn if there aren't any. Skip this 1516 // check if the attribute came from a macro expansion or a template 1517 // instantiation. 1518 if (NonNullArgs.empty() && AL.getLoc().isFileID() && 1519 !S.inTemplateInstantiation()) { 1520 bool AnyPointers = isFunctionOrMethodVariadic(D); 1521 for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); 1522 I != E && !AnyPointers; ++I) { 1523 QualType T = getFunctionOrMethodParamType(D, I); 1524 if (T->isDependentType() || S.isValidPointerAttrType(T)) 1525 AnyPointers = true; 1526 } 1527 1528 if (!AnyPointers) 1529 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers); 1530 } 1531 1532 ParamIdx *Start = NonNullArgs.data(); 1533 unsigned Size = NonNullArgs.size(); 1534 llvm::array_pod_sort(Start, Start + Size); 1535 D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size)); 1536 } 1537 1538 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D, 1539 const ParsedAttr &AL) { 1540 if (AL.getNumArgs() > 0) { 1541 if (D->getFunctionType()) { 1542 handleNonNullAttr(S, D, AL); 1543 } else { 1544 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args) 1545 << D->getSourceRange(); 1546 } 1547 return; 1548 } 1549 1550 // Is the argument a pointer type? 1551 if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(), 1552 D->getSourceRange())) 1553 return; 1554 1555 D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0)); 1556 } 1557 1558 static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1559 QualType ResultType = getFunctionOrMethodResultType(D); 1560 SourceRange SR = getFunctionOrMethodResultSourceRange(D); 1561 if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR, 1562 /* isReturnValue */ true)) 1563 return; 1564 1565 D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL)); 1566 } 1567 1568 static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1569 if (D->isInvalidDecl()) 1570 return; 1571 1572 // noescape only applies to pointer types. 1573 QualType T = cast<ParmVarDecl>(D)->getType(); 1574 if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) { 1575 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) 1576 << AL << AL.getRange() << 0; 1577 return; 1578 } 1579 1580 D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL)); 1581 } 1582 1583 static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1584 Expr *E = AL.getArgAsExpr(0), 1585 *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr; 1586 S.AddAssumeAlignedAttr(D, AL, E, OE); 1587 } 1588 1589 static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1590 S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0)); 1591 } 1592 1593 void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, 1594 Expr *OE) { 1595 QualType ResultType = getFunctionOrMethodResultType(D); 1596 SourceRange SR = getFunctionOrMethodResultSourceRange(D); 1597 1598 AssumeAlignedAttr TmpAttr(Context, CI, E, OE); 1599 SourceLocation AttrLoc = TmpAttr.getLocation(); 1600 1601 if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) { 1602 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) 1603 << &TmpAttr << TmpAttr.getRange() << SR; 1604 return; 1605 } 1606 1607 if (!E->isValueDependent()) { 1608 llvm::APSInt I(64); 1609 if (!E->isIntegerConstantExpr(I, Context)) { 1610 if (OE) 1611 Diag(AttrLoc, diag::err_attribute_argument_n_type) 1612 << &TmpAttr << 1 << AANT_ArgumentIntegerConstant 1613 << E->getSourceRange(); 1614 else 1615 Diag(AttrLoc, diag::err_attribute_argument_type) 1616 << &TmpAttr << AANT_ArgumentIntegerConstant 1617 << E->getSourceRange(); 1618 return; 1619 } 1620 1621 if (!I.isPowerOf2()) { 1622 Diag(AttrLoc, diag::err_alignment_not_power_of_two) 1623 << E->getSourceRange(); 1624 return; 1625 } 1626 1627 if (I > Sema::MaximumAlignment) 1628 Diag(CI.getLoc(), diag::warn_assume_aligned_too_great) 1629 << CI.getRange() << Sema::MaximumAlignment; 1630 } 1631 1632 if (OE) { 1633 if (!OE->isValueDependent()) { 1634 llvm::APSInt I(64); 1635 if (!OE->isIntegerConstantExpr(I, Context)) { 1636 Diag(AttrLoc, diag::err_attribute_argument_n_type) 1637 << &TmpAttr << 2 << AANT_ArgumentIntegerConstant 1638 << OE->getSourceRange(); 1639 return; 1640 } 1641 } 1642 } 1643 1644 D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE)); 1645 } 1646 1647 void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, 1648 Expr *ParamExpr) { 1649 QualType ResultType = getFunctionOrMethodResultType(D); 1650 1651 AllocAlignAttr TmpAttr(Context, CI, ParamIdx()); 1652 SourceLocation AttrLoc = CI.getLoc(); 1653 1654 if (!ResultType->isDependentType() && 1655 !isValidPointerAttrType(ResultType, /* RefOkay */ true)) { 1656 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) 1657 << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D); 1658 return; 1659 } 1660 1661 ParamIdx Idx; 1662 const auto *FuncDecl = cast<FunctionDecl>(D); 1663 if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr, 1664 /*AttrArgNum=*/1, ParamExpr, Idx)) 1665 return; 1666 1667 QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex()); 1668 if (!Ty->isDependentType() && !Ty->isIntegralType(Context) && 1669 !Ty->isAlignValT()) { 1670 Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only) 1671 << &TmpAttr 1672 << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange(); 1673 return; 1674 } 1675 1676 D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx)); 1677 } 1678 1679 /// Normalize the attribute, __foo__ becomes foo. 1680 /// Returns true if normalization was applied. 1681 static bool normalizeName(StringRef &AttrName) { 1682 if (AttrName.size() > 4 && AttrName.startswith("__") && 1683 AttrName.endswith("__")) { 1684 AttrName = AttrName.drop_front(2).drop_back(2); 1685 return true; 1686 } 1687 return false; 1688 } 1689 1690 static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1691 // This attribute must be applied to a function declaration. The first 1692 // argument to the attribute must be an identifier, the name of the resource, 1693 // for example: malloc. The following arguments must be argument indexes, the 1694 // arguments must be of integer type for Returns, otherwise of pointer type. 1695 // The difference between Holds and Takes is that a pointer may still be used 1696 // after being held. free() should be __attribute((ownership_takes)), whereas 1697 // a list append function may well be __attribute((ownership_holds)). 1698 1699 if (!AL.isArgIdent(0)) { 1700 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 1701 << AL << 1 << AANT_ArgumentIdentifier; 1702 return; 1703 } 1704 1705 // Figure out our Kind. 1706 OwnershipAttr::OwnershipKind K = 1707 OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind(); 1708 1709 // Check arguments. 1710 switch (K) { 1711 case OwnershipAttr::Takes: 1712 case OwnershipAttr::Holds: 1713 if (AL.getNumArgs() < 2) { 1714 S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2; 1715 return; 1716 } 1717 break; 1718 case OwnershipAttr::Returns: 1719 if (AL.getNumArgs() > 2) { 1720 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; 1721 return; 1722 } 1723 break; 1724 } 1725 1726 IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident; 1727 1728 StringRef ModuleName = Module->getName(); 1729 if (normalizeName(ModuleName)) { 1730 Module = &S.PP.getIdentifierTable().get(ModuleName); 1731 } 1732 1733 SmallVector<ParamIdx, 8> OwnershipArgs; 1734 for (unsigned i = 1; i < AL.getNumArgs(); ++i) { 1735 Expr *Ex = AL.getArgAsExpr(i); 1736 ParamIdx Idx; 1737 if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx)) 1738 return; 1739 1740 // Is the function argument a pointer type? 1741 QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex()); 1742 int Err = -1; // No error 1743 switch (K) { 1744 case OwnershipAttr::Takes: 1745 case OwnershipAttr::Holds: 1746 if (!T->isAnyPointerType() && !T->isBlockPointerType()) 1747 Err = 0; 1748 break; 1749 case OwnershipAttr::Returns: 1750 if (!T->isIntegerType()) 1751 Err = 1; 1752 break; 1753 } 1754 if (-1 != Err) { 1755 S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err 1756 << Ex->getSourceRange(); 1757 return; 1758 } 1759 1760 // Check we don't have a conflict with another ownership attribute. 1761 for (const auto *I : D->specific_attrs<OwnershipAttr>()) { 1762 // Cannot have two ownership attributes of different kinds for the same 1763 // index. 1764 if (I->getOwnKind() != K && I->args_end() != 1765 std::find(I->args_begin(), I->args_end(), Idx)) { 1766 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I; 1767 return; 1768 } else if (K == OwnershipAttr::Returns && 1769 I->getOwnKind() == OwnershipAttr::Returns) { 1770 // A returns attribute conflicts with any other returns attribute using 1771 // a different index. 1772 if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) { 1773 S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch) 1774 << I->args_begin()->getSourceIndex(); 1775 if (I->args_size()) 1776 S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch) 1777 << Idx.getSourceIndex() << Ex->getSourceRange(); 1778 return; 1779 } 1780 } 1781 } 1782 OwnershipArgs.push_back(Idx); 1783 } 1784 1785 ParamIdx *Start = OwnershipArgs.data(); 1786 unsigned Size = OwnershipArgs.size(); 1787 llvm::array_pod_sort(Start, Start + Size); 1788 D->addAttr(::new (S.Context) 1789 OwnershipAttr(S.Context, AL, Module, Start, Size)); 1790 } 1791 1792 static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1793 // Check the attribute arguments. 1794 if (AL.getNumArgs() > 1) { 1795 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; 1796 return; 1797 } 1798 1799 // gcc rejects 1800 // class c { 1801 // static int a __attribute__((weakref ("v2"))); 1802 // static int b() __attribute__((weakref ("f3"))); 1803 // }; 1804 // and ignores the attributes of 1805 // void f(void) { 1806 // static int a __attribute__((weakref ("v2"))); 1807 // } 1808 // we reject them 1809 const DeclContext *Ctx = D->getDeclContext()->getRedeclContext(); 1810 if (!Ctx->isFileContext()) { 1811 S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context) 1812 << cast<NamedDecl>(D); 1813 return; 1814 } 1815 1816 // The GCC manual says 1817 // 1818 // At present, a declaration to which `weakref' is attached can only 1819 // be `static'. 1820 // 1821 // It also says 1822 // 1823 // Without a TARGET, 1824 // given as an argument to `weakref' or to `alias', `weakref' is 1825 // equivalent to `weak'. 1826 // 1827 // gcc 4.4.1 will accept 1828 // int a7 __attribute__((weakref)); 1829 // as 1830 // int a7 __attribute__((weak)); 1831 // This looks like a bug in gcc. We reject that for now. We should revisit 1832 // it if this behaviour is actually used. 1833 1834 // GCC rejects 1835 // static ((alias ("y"), weakref)). 1836 // Should we? How to check that weakref is before or after alias? 1837 1838 // FIXME: it would be good for us to keep the WeakRefAttr as-written instead 1839 // of transforming it into an AliasAttr. The WeakRefAttr never uses the 1840 // StringRef parameter it was given anyway. 1841 StringRef Str; 1842 if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str)) 1843 // GCC will accept anything as the argument of weakref. Should we 1844 // check for an existing decl? 1845 D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str)); 1846 1847 D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL)); 1848 } 1849 1850 static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1851 StringRef Str; 1852 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) 1853 return; 1854 1855 // Aliases should be on declarations, not definitions. 1856 const auto *FD = cast<FunctionDecl>(D); 1857 if (FD->isThisDeclarationADefinition()) { 1858 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1; 1859 return; 1860 } 1861 1862 D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str)); 1863 } 1864 1865 static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1866 StringRef Str; 1867 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) 1868 return; 1869 1870 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { 1871 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin); 1872 return; 1873 } 1874 if (S.Context.getTargetInfo().getTriple().isNVPTX()) { 1875 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx); 1876 } 1877 1878 // Aliases should be on declarations, not definitions. 1879 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1880 if (FD->isThisDeclarationADefinition()) { 1881 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0; 1882 return; 1883 } 1884 } else { 1885 const auto *VD = cast<VarDecl>(D); 1886 if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) { 1887 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0; 1888 return; 1889 } 1890 } 1891 1892 // Mark target used to prevent unneeded-internal-declaration warnings. 1893 if (!S.LangOpts.CPlusPlus) { 1894 // FIXME: demangle Str for C++, as the attribute refers to the mangled 1895 // linkage name, not the pre-mangled identifier. 1896 const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc()); 1897 LookupResult LR(S, target, Sema::LookupOrdinaryName); 1898 if (S.LookupQualifiedName(LR, S.getCurLexicalContext())) 1899 for (NamedDecl *ND : LR) 1900 ND->markUsed(S.Context); 1901 } 1902 1903 D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str)); 1904 } 1905 1906 static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1907 StringRef Model; 1908 SourceLocation LiteralLoc; 1909 // Check that it is a string. 1910 if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc)) 1911 return; 1912 1913 // Check that the value. 1914 if (Model != "global-dynamic" && Model != "local-dynamic" 1915 && Model != "initial-exec" && Model != "local-exec") { 1916 S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg); 1917 return; 1918 } 1919 1920 D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model)); 1921 } 1922 1923 static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1924 QualType ResultType = getFunctionOrMethodResultType(D); 1925 if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) { 1926 D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL)); 1927 return; 1928 } 1929 1930 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) 1931 << AL << getFunctionOrMethodResultSourceRange(D); 1932 } 1933 1934 static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1935 FunctionDecl *FD = cast<FunctionDecl>(D); 1936 1937 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 1938 if (MD->getParent()->isLambda()) { 1939 S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL; 1940 return; 1941 } 1942 } 1943 1944 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 1945 return; 1946 1947 SmallVector<IdentifierInfo *, 8> CPUs; 1948 for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) { 1949 if (!AL.isArgIdent(ArgNo)) { 1950 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 1951 << AL << AANT_ArgumentIdentifier; 1952 return; 1953 } 1954 1955 IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo); 1956 StringRef CPUName = CPUArg->Ident->getName().trim(); 1957 1958 if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) { 1959 S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value) 1960 << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch); 1961 return; 1962 } 1963 1964 const TargetInfo &Target = S.Context.getTargetInfo(); 1965 if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) { 1966 return Target.CPUSpecificManglingCharacter(CPUName) == 1967 Target.CPUSpecificManglingCharacter(Cur->getName()); 1968 })) { 1969 S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries); 1970 return; 1971 } 1972 CPUs.push_back(CPUArg->Ident); 1973 } 1974 1975 FD->setIsMultiVersion(true); 1976 if (AL.getKind() == ParsedAttr::AT_CPUSpecific) 1977 D->addAttr(::new (S.Context) 1978 CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size())); 1979 else 1980 D->addAttr(::new (S.Context) 1981 CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size())); 1982 } 1983 1984 static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1985 if (S.LangOpts.CPlusPlus) { 1986 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) 1987 << AL << AttributeLangSupport::Cpp; 1988 return; 1989 } 1990 1991 if (CommonAttr *CA = S.mergeCommonAttr(D, AL)) 1992 D->addAttr(CA); 1993 } 1994 1995 static void handleCmseNSEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1996 if (S.LangOpts.CPlusPlus && !D->getDeclContext()->isExternCContext()) { 1997 S.Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL; 1998 return; 1999 } 2000 2001 const auto *FD = cast<FunctionDecl>(D); 2002 if (!FD->isExternallyVisible()) { 2003 S.Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static); 2004 return; 2005 } 2006 2007 D->addAttr(::new (S.Context) CmseNSEntryAttr(S.Context, AL)); 2008 } 2009 2010 static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2011 if (checkAttrMutualExclusion<DisableTailCallsAttr>(S, D, AL)) 2012 return; 2013 2014 if (AL.isDeclspecAttribute()) { 2015 const auto &Triple = S.getASTContext().getTargetInfo().getTriple(); 2016 const auto &Arch = Triple.getArch(); 2017 if (Arch != llvm::Triple::x86 && 2018 (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) { 2019 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch) 2020 << AL << Triple.getArchName(); 2021 return; 2022 } 2023 } 2024 2025 D->addAttr(::new (S.Context) NakedAttr(S.Context, AL)); 2026 } 2027 2028 static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { 2029 if (hasDeclarator(D)) return; 2030 2031 if (!isa<ObjCMethodDecl>(D)) { 2032 S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type) 2033 << Attrs << ExpectedFunctionOrMethod; 2034 return; 2035 } 2036 2037 D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs)); 2038 } 2039 2040 static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { 2041 if (!S.getLangOpts().CFProtectionBranch) 2042 S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored); 2043 else 2044 handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs); 2045 } 2046 2047 bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) { 2048 if (!checkAttributeNumArgs(*this, Attrs, 0)) { 2049 Attrs.setInvalid(); 2050 return true; 2051 } 2052 2053 return false; 2054 } 2055 2056 bool Sema::CheckAttrTarget(const ParsedAttr &AL) { 2057 // Check whether the attribute is valid on the current target. 2058 if (!AL.existsInTarget(Context.getTargetInfo())) { 2059 Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL; 2060 AL.setInvalid(); 2061 return true; 2062 } 2063 2064 return false; 2065 } 2066 2067 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2068 2069 // The checking path for 'noreturn' and 'analyzer_noreturn' are different 2070 // because 'analyzer_noreturn' does not impact the type. 2071 if (!isFunctionOrMethodOrBlock(D)) { 2072 ValueDecl *VD = dyn_cast<ValueDecl>(D); 2073 if (!VD || (!VD->getType()->isBlockPointerType() && 2074 !VD->getType()->isFunctionPointerType())) { 2075 S.Diag(AL.getLoc(), AL.isCXX11Attribute() 2076 ? diag::err_attribute_wrong_decl_type 2077 : diag::warn_attribute_wrong_decl_type) 2078 << AL << ExpectedFunctionMethodOrBlock; 2079 return; 2080 } 2081 } 2082 2083 D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL)); 2084 } 2085 2086 // PS3 PPU-specific. 2087 static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2088 /* 2089 Returning a Vector Class in Registers 2090 2091 According to the PPU ABI specifications, a class with a single member of 2092 vector type is returned in memory when used as the return value of a 2093 function. 2094 This results in inefficient code when implementing vector classes. To return 2095 the value in a single vector register, add the vecreturn attribute to the 2096 class definition. This attribute is also applicable to struct types. 2097 2098 Example: 2099 2100 struct Vector 2101 { 2102 __vector float xyzw; 2103 } __attribute__((vecreturn)); 2104 2105 Vector Add(Vector lhs, Vector rhs) 2106 { 2107 Vector result; 2108 result.xyzw = vec_add(lhs.xyzw, rhs.xyzw); 2109 return result; // This will be returned in a register 2110 } 2111 */ 2112 if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) { 2113 S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A; 2114 return; 2115 } 2116 2117 const auto *R = cast<RecordDecl>(D); 2118 int count = 0; 2119 2120 if (!isa<CXXRecordDecl>(R)) { 2121 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); 2122 return; 2123 } 2124 2125 if (!cast<CXXRecordDecl>(R)->isPOD()) { 2126 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record); 2127 return; 2128 } 2129 2130 for (const auto *I : R->fields()) { 2131 if ((count == 1) || !I->getType()->isVectorType()) { 2132 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); 2133 return; 2134 } 2135 count++; 2136 } 2137 2138 D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL)); 2139 } 2140 2141 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, 2142 const ParsedAttr &AL) { 2143 if (isa<ParmVarDecl>(D)) { 2144 // [[carries_dependency]] can only be applied to a parameter if it is a 2145 // parameter of a function declaration or lambda. 2146 if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) { 2147 S.Diag(AL.getLoc(), 2148 diag::err_carries_dependency_param_not_function_decl); 2149 return; 2150 } 2151 } 2152 2153 D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL)); 2154 } 2155 2156 static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2157 bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName(); 2158 2159 // If this is spelled as the standard C++17 attribute, but not in C++17, warn 2160 // about using it as an extension. 2161 if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr) 2162 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; 2163 2164 D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL)); 2165 } 2166 2167 static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2168 uint32_t priority = ConstructorAttr::DefaultPriority; 2169 if (AL.getNumArgs() && 2170 !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority)) 2171 return; 2172 2173 D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority)); 2174 } 2175 2176 static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2177 uint32_t priority = DestructorAttr::DefaultPriority; 2178 if (AL.getNumArgs() && 2179 !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority)) 2180 return; 2181 2182 D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority)); 2183 } 2184 2185 template <typename AttrTy> 2186 static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) { 2187 // Handle the case where the attribute has a text message. 2188 StringRef Str; 2189 if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str)) 2190 return; 2191 2192 D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str)); 2193 } 2194 2195 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D, 2196 const ParsedAttr &AL) { 2197 if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) { 2198 S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition) 2199 << AL << AL.getRange(); 2200 return; 2201 } 2202 2203 D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL)); 2204 } 2205 2206 static bool checkAvailabilityAttr(Sema &S, SourceRange Range, 2207 IdentifierInfo *Platform, 2208 VersionTuple Introduced, 2209 VersionTuple Deprecated, 2210 VersionTuple Obsoleted) { 2211 StringRef PlatformName 2212 = AvailabilityAttr::getPrettyPlatformName(Platform->getName()); 2213 if (PlatformName.empty()) 2214 PlatformName = Platform->getName(); 2215 2216 // Ensure that Introduced <= Deprecated <= Obsoleted (although not all 2217 // of these steps are needed). 2218 if (!Introduced.empty() && !Deprecated.empty() && 2219 !(Introduced <= Deprecated)) { 2220 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) 2221 << 1 << PlatformName << Deprecated.getAsString() 2222 << 0 << Introduced.getAsString(); 2223 return true; 2224 } 2225 2226 if (!Introduced.empty() && !Obsoleted.empty() && 2227 !(Introduced <= Obsoleted)) { 2228 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) 2229 << 2 << PlatformName << Obsoleted.getAsString() 2230 << 0 << Introduced.getAsString(); 2231 return true; 2232 } 2233 2234 if (!Deprecated.empty() && !Obsoleted.empty() && 2235 !(Deprecated <= Obsoleted)) { 2236 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) 2237 << 2 << PlatformName << Obsoleted.getAsString() 2238 << 1 << Deprecated.getAsString(); 2239 return true; 2240 } 2241 2242 return false; 2243 } 2244 2245 /// Check whether the two versions match. 2246 /// 2247 /// If either version tuple is empty, then they are assumed to match. If 2248 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y. 2249 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, 2250 bool BeforeIsOkay) { 2251 if (X.empty() || Y.empty()) 2252 return true; 2253 2254 if (X == Y) 2255 return true; 2256 2257 if (BeforeIsOkay && X < Y) 2258 return true; 2259 2260 return false; 2261 } 2262 2263 AvailabilityAttr *Sema::mergeAvailabilityAttr( 2264 NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform, 2265 bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, 2266 VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, 2267 bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, 2268 int Priority) { 2269 VersionTuple MergedIntroduced = Introduced; 2270 VersionTuple MergedDeprecated = Deprecated; 2271 VersionTuple MergedObsoleted = Obsoleted; 2272 bool FoundAny = false; 2273 bool OverrideOrImpl = false; 2274 switch (AMK) { 2275 case AMK_None: 2276 case AMK_Redeclaration: 2277 OverrideOrImpl = false; 2278 break; 2279 2280 case AMK_Override: 2281 case AMK_ProtocolImplementation: 2282 OverrideOrImpl = true; 2283 break; 2284 } 2285 2286 if (D->hasAttrs()) { 2287 AttrVec &Attrs = D->getAttrs(); 2288 for (unsigned i = 0, e = Attrs.size(); i != e;) { 2289 const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]); 2290 if (!OldAA) { 2291 ++i; 2292 continue; 2293 } 2294 2295 IdentifierInfo *OldPlatform = OldAA->getPlatform(); 2296 if (OldPlatform != Platform) { 2297 ++i; 2298 continue; 2299 } 2300 2301 // If there is an existing availability attribute for this platform that 2302 // has a lower priority use the existing one and discard the new 2303 // attribute. 2304 if (OldAA->getPriority() < Priority) 2305 return nullptr; 2306 2307 // If there is an existing attribute for this platform that has a higher 2308 // priority than the new attribute then erase the old one and continue 2309 // processing the attributes. 2310 if (OldAA->getPriority() > Priority) { 2311 Attrs.erase(Attrs.begin() + i); 2312 --e; 2313 continue; 2314 } 2315 2316 FoundAny = true; 2317 VersionTuple OldIntroduced = OldAA->getIntroduced(); 2318 VersionTuple OldDeprecated = OldAA->getDeprecated(); 2319 VersionTuple OldObsoleted = OldAA->getObsoleted(); 2320 bool OldIsUnavailable = OldAA->getUnavailable(); 2321 2322 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) || 2323 !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) || 2324 !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) || 2325 !(OldIsUnavailable == IsUnavailable || 2326 (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) { 2327 if (OverrideOrImpl) { 2328 int Which = -1; 2329 VersionTuple FirstVersion; 2330 VersionTuple SecondVersion; 2331 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) { 2332 Which = 0; 2333 FirstVersion = OldIntroduced; 2334 SecondVersion = Introduced; 2335 } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) { 2336 Which = 1; 2337 FirstVersion = Deprecated; 2338 SecondVersion = OldDeprecated; 2339 } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) { 2340 Which = 2; 2341 FirstVersion = Obsoleted; 2342 SecondVersion = OldObsoleted; 2343 } 2344 2345 if (Which == -1) { 2346 Diag(OldAA->getLocation(), 2347 diag::warn_mismatched_availability_override_unavail) 2348 << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) 2349 << (AMK == AMK_Override); 2350 } else { 2351 Diag(OldAA->getLocation(), 2352 diag::warn_mismatched_availability_override) 2353 << Which 2354 << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) 2355 << FirstVersion.getAsString() << SecondVersion.getAsString() 2356 << (AMK == AMK_Override); 2357 } 2358 if (AMK == AMK_Override) 2359 Diag(CI.getLoc(), diag::note_overridden_method); 2360 else 2361 Diag(CI.getLoc(), diag::note_protocol_method); 2362 } else { 2363 Diag(OldAA->getLocation(), diag::warn_mismatched_availability); 2364 Diag(CI.getLoc(), diag::note_previous_attribute); 2365 } 2366 2367 Attrs.erase(Attrs.begin() + i); 2368 --e; 2369 continue; 2370 } 2371 2372 VersionTuple MergedIntroduced2 = MergedIntroduced; 2373 VersionTuple MergedDeprecated2 = MergedDeprecated; 2374 VersionTuple MergedObsoleted2 = MergedObsoleted; 2375 2376 if (MergedIntroduced2.empty()) 2377 MergedIntroduced2 = OldIntroduced; 2378 if (MergedDeprecated2.empty()) 2379 MergedDeprecated2 = OldDeprecated; 2380 if (MergedObsoleted2.empty()) 2381 MergedObsoleted2 = OldObsoleted; 2382 2383 if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform, 2384 MergedIntroduced2, MergedDeprecated2, 2385 MergedObsoleted2)) { 2386 Attrs.erase(Attrs.begin() + i); 2387 --e; 2388 continue; 2389 } 2390 2391 MergedIntroduced = MergedIntroduced2; 2392 MergedDeprecated = MergedDeprecated2; 2393 MergedObsoleted = MergedObsoleted2; 2394 ++i; 2395 } 2396 } 2397 2398 if (FoundAny && 2399 MergedIntroduced == Introduced && 2400 MergedDeprecated == Deprecated && 2401 MergedObsoleted == Obsoleted) 2402 return nullptr; 2403 2404 // Only create a new attribute if !OverrideOrImpl, but we want to do 2405 // the checking. 2406 if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced, 2407 MergedDeprecated, MergedObsoleted) && 2408 !OverrideOrImpl) { 2409 auto *Avail = ::new (Context) AvailabilityAttr( 2410 Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable, 2411 Message, IsStrict, Replacement, Priority); 2412 Avail->setImplicit(Implicit); 2413 return Avail; 2414 } 2415 return nullptr; 2416 } 2417 2418 static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2419 if (!checkAttributeNumArgs(S, AL, 1)) 2420 return; 2421 IdentifierLoc *Platform = AL.getArgAsIdent(0); 2422 2423 IdentifierInfo *II = Platform->Ident; 2424 if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty()) 2425 S.Diag(Platform->Loc, diag::warn_availability_unknown_platform) 2426 << Platform->Ident; 2427 2428 auto *ND = dyn_cast<NamedDecl>(D); 2429 if (!ND) // We warned about this already, so just return. 2430 return; 2431 2432 AvailabilityChange Introduced = AL.getAvailabilityIntroduced(); 2433 AvailabilityChange Deprecated = AL.getAvailabilityDeprecated(); 2434 AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted(); 2435 bool IsUnavailable = AL.getUnavailableLoc().isValid(); 2436 bool IsStrict = AL.getStrictLoc().isValid(); 2437 StringRef Str; 2438 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr())) 2439 Str = SE->getString(); 2440 StringRef Replacement; 2441 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr())) 2442 Replacement = SE->getString(); 2443 2444 if (II->isStr("swift")) { 2445 if (Introduced.isValid() || Obsoleted.isValid() || 2446 (!IsUnavailable && !Deprecated.isValid())) { 2447 S.Diag(AL.getLoc(), 2448 diag::warn_availability_swift_unavailable_deprecated_only); 2449 return; 2450 } 2451 } 2452 2453 int PriorityModifier = AL.isPragmaClangAttribute() 2454 ? Sema::AP_PragmaClangAttribute 2455 : Sema::AP_Explicit; 2456 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( 2457 ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version, 2458 Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement, 2459 Sema::AMK_None, PriorityModifier); 2460 if (NewAttr) 2461 D->addAttr(NewAttr); 2462 2463 // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning 2464 // matches before the start of the watchOS platform. 2465 if (S.Context.getTargetInfo().getTriple().isWatchOS()) { 2466 IdentifierInfo *NewII = nullptr; 2467 if (II->getName() == "ios") 2468 NewII = &S.Context.Idents.get("watchos"); 2469 else if (II->getName() == "ios_app_extension") 2470 NewII = &S.Context.Idents.get("watchos_app_extension"); 2471 2472 if (NewII) { 2473 auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple { 2474 if (Version.empty()) 2475 return Version; 2476 auto Major = Version.getMajor(); 2477 auto NewMajor = Major >= 9 ? Major - 7 : 0; 2478 if (NewMajor >= 2) { 2479 if (Version.getMinor().hasValue()) { 2480 if (Version.getSubminor().hasValue()) 2481 return VersionTuple(NewMajor, Version.getMinor().getValue(), 2482 Version.getSubminor().getValue()); 2483 else 2484 return VersionTuple(NewMajor, Version.getMinor().getValue()); 2485 } 2486 return VersionTuple(NewMajor); 2487 } 2488 2489 return VersionTuple(2, 0); 2490 }; 2491 2492 auto NewIntroduced = adjustWatchOSVersion(Introduced.Version); 2493 auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version); 2494 auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version); 2495 2496 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( 2497 ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated, 2498 NewObsoleted, IsUnavailable, Str, IsStrict, Replacement, 2499 Sema::AMK_None, 2500 PriorityModifier + Sema::AP_InferredFromOtherPlatform); 2501 if (NewAttr) 2502 D->addAttr(NewAttr); 2503 } 2504 } else if (S.Context.getTargetInfo().getTriple().isTvOS()) { 2505 // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning 2506 // matches before the start of the tvOS platform. 2507 IdentifierInfo *NewII = nullptr; 2508 if (II->getName() == "ios") 2509 NewII = &S.Context.Idents.get("tvos"); 2510 else if (II->getName() == "ios_app_extension") 2511 NewII = &S.Context.Idents.get("tvos_app_extension"); 2512 2513 if (NewII) { 2514 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( 2515 ND, AL, NewII, true /*Implicit*/, Introduced.Version, 2516 Deprecated.Version, Obsoleted.Version, IsUnavailable, Str, IsStrict, 2517 Replacement, Sema::AMK_None, 2518 PriorityModifier + Sema::AP_InferredFromOtherPlatform); 2519 if (NewAttr) 2520 D->addAttr(NewAttr); 2521 } 2522 } 2523 } 2524 2525 static void handleExternalSourceSymbolAttr(Sema &S, Decl *D, 2526 const ParsedAttr &AL) { 2527 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 2528 return; 2529 assert(checkAttributeAtMostNumArgs(S, AL, 3) && 2530 "Invalid number of arguments in an external_source_symbol attribute"); 2531 2532 StringRef Language; 2533 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0))) 2534 Language = SE->getString(); 2535 StringRef DefinedIn; 2536 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1))) 2537 DefinedIn = SE->getString(); 2538 bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr; 2539 2540 D->addAttr(::new (S.Context) ExternalSourceSymbolAttr( 2541 S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration)); 2542 } 2543 2544 template <class T> 2545 static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI, 2546 typename T::VisibilityType value) { 2547 T *existingAttr = D->getAttr<T>(); 2548 if (existingAttr) { 2549 typename T::VisibilityType existingValue = existingAttr->getVisibility(); 2550 if (existingValue == value) 2551 return nullptr; 2552 S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility); 2553 S.Diag(CI.getLoc(), diag::note_previous_attribute); 2554 D->dropAttr<T>(); 2555 } 2556 return ::new (S.Context) T(S.Context, CI, value); 2557 } 2558 2559 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, 2560 const AttributeCommonInfo &CI, 2561 VisibilityAttr::VisibilityType Vis) { 2562 return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis); 2563 } 2564 2565 TypeVisibilityAttr * 2566 Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, 2567 TypeVisibilityAttr::VisibilityType Vis) { 2568 return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis); 2569 } 2570 2571 static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL, 2572 bool isTypeVisibility) { 2573 // Visibility attributes don't mean anything on a typedef. 2574 if (isa<TypedefNameDecl>(D)) { 2575 S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL; 2576 return; 2577 } 2578 2579 // 'type_visibility' can only go on a type or namespace. 2580 if (isTypeVisibility && 2581 !(isa<TagDecl>(D) || 2582 isa<ObjCInterfaceDecl>(D) || 2583 isa<NamespaceDecl>(D))) { 2584 S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type) 2585 << AL << ExpectedTypeOrNamespace; 2586 return; 2587 } 2588 2589 // Check that the argument is a string literal. 2590 StringRef TypeStr; 2591 SourceLocation LiteralLoc; 2592 if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc)) 2593 return; 2594 2595 VisibilityAttr::VisibilityType type; 2596 if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) { 2597 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL 2598 << TypeStr; 2599 return; 2600 } 2601 2602 // Complain about attempts to use protected visibility on targets 2603 // (like Darwin) that don't support it. 2604 if (type == VisibilityAttr::Protected && 2605 !S.Context.getTargetInfo().hasProtectedVisibility()) { 2606 S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility); 2607 type = VisibilityAttr::Default; 2608 } 2609 2610 Attr *newAttr; 2611 if (isTypeVisibility) { 2612 newAttr = S.mergeTypeVisibilityAttr( 2613 D, AL, (TypeVisibilityAttr::VisibilityType)type); 2614 } else { 2615 newAttr = S.mergeVisibilityAttr(D, AL, type); 2616 } 2617 if (newAttr) 2618 D->addAttr(newAttr); 2619 } 2620 2621 static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2622 // objc_direct cannot be set on methods declared in the context of a protocol 2623 if (isa<ObjCProtocolDecl>(D->getDeclContext())) { 2624 S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false; 2625 return; 2626 } 2627 2628 if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) { 2629 handleSimpleAttribute<ObjCDirectAttr>(S, D, AL); 2630 } else { 2631 S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL; 2632 } 2633 } 2634 2635 static void handleObjCDirectMembersAttr(Sema &S, Decl *D, 2636 const ParsedAttr &AL) { 2637 if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) { 2638 handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL); 2639 } else { 2640 S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL; 2641 } 2642 } 2643 2644 static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2645 const auto *M = cast<ObjCMethodDecl>(D); 2646 if (!AL.isArgIdent(0)) { 2647 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 2648 << AL << 1 << AANT_ArgumentIdentifier; 2649 return; 2650 } 2651 2652 IdentifierLoc *IL = AL.getArgAsIdent(0); 2653 ObjCMethodFamilyAttr::FamilyKind F; 2654 if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) { 2655 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident; 2656 return; 2657 } 2658 2659 if (F == ObjCMethodFamilyAttr::OMF_init && 2660 !M->getReturnType()->isObjCObjectPointerType()) { 2661 S.Diag(M->getLocation(), diag::err_init_method_bad_return_type) 2662 << M->getReturnType(); 2663 // Ignore the attribute. 2664 return; 2665 } 2666 2667 D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F)); 2668 } 2669 2670 static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) { 2671 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { 2672 QualType T = TD->getUnderlyingType(); 2673 if (!T->isCARCBridgableType()) { 2674 S.Diag(TD->getLocation(), diag::err_nsobject_attribute); 2675 return; 2676 } 2677 } 2678 else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) { 2679 QualType T = PD->getType(); 2680 if (!T->isCARCBridgableType()) { 2681 S.Diag(PD->getLocation(), diag::err_nsobject_attribute); 2682 return; 2683 } 2684 } 2685 else { 2686 // It is okay to include this attribute on properties, e.g.: 2687 // 2688 // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject)); 2689 // 2690 // In this case it follows tradition and suppresses an error in the above 2691 // case. 2692 S.Diag(D->getLocation(), diag::warn_nsobject_attribute); 2693 } 2694 D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL)); 2695 } 2696 2697 static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) { 2698 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { 2699 QualType T = TD->getUnderlyingType(); 2700 if (!T->isObjCObjectPointerType()) { 2701 S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute); 2702 return; 2703 } 2704 } else { 2705 S.Diag(D->getLocation(), diag::warn_independentclass_attribute); 2706 return; 2707 } 2708 D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL)); 2709 } 2710 2711 static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2712 if (!AL.isArgIdent(0)) { 2713 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 2714 << AL << 1 << AANT_ArgumentIdentifier; 2715 return; 2716 } 2717 2718 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; 2719 BlocksAttr::BlockType type; 2720 if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) { 2721 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; 2722 return; 2723 } 2724 2725 D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type)); 2726 } 2727 2728 static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2729 unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel; 2730 if (AL.getNumArgs() > 0) { 2731 Expr *E = AL.getArgAsExpr(0); 2732 llvm::APSInt Idx(32); 2733 if (E->isTypeDependent() || E->isValueDependent() || 2734 !E->isIntegerConstantExpr(Idx, S.Context)) { 2735 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 2736 << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); 2737 return; 2738 } 2739 2740 if (Idx.isSigned() && Idx.isNegative()) { 2741 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero) 2742 << E->getSourceRange(); 2743 return; 2744 } 2745 2746 sentinel = Idx.getZExtValue(); 2747 } 2748 2749 unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos; 2750 if (AL.getNumArgs() > 1) { 2751 Expr *E = AL.getArgAsExpr(1); 2752 llvm::APSInt Idx(32); 2753 if (E->isTypeDependent() || E->isValueDependent() || 2754 !E->isIntegerConstantExpr(Idx, S.Context)) { 2755 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 2756 << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange(); 2757 return; 2758 } 2759 nullPos = Idx.getZExtValue(); 2760 2761 if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) { 2762 // FIXME: This error message could be improved, it would be nice 2763 // to say what the bounds actually are. 2764 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) 2765 << E->getSourceRange(); 2766 return; 2767 } 2768 } 2769 2770 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2771 const FunctionType *FT = FD->getType()->castAs<FunctionType>(); 2772 if (isa<FunctionNoProtoType>(FT)) { 2773 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments); 2774 return; 2775 } 2776 2777 if (!cast<FunctionProtoType>(FT)->isVariadic()) { 2778 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; 2779 return; 2780 } 2781 } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { 2782 if (!MD->isVariadic()) { 2783 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; 2784 return; 2785 } 2786 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 2787 if (!BD->isVariadic()) { 2788 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; 2789 return; 2790 } 2791 } else if (const auto *V = dyn_cast<VarDecl>(D)) { 2792 QualType Ty = V->getType(); 2793 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { 2794 const FunctionType *FT = Ty->isFunctionPointerType() 2795 ? D->getFunctionType() 2796 : Ty->castAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>(); 2797 if (!cast<FunctionProtoType>(FT)->isVariadic()) { 2798 int m = Ty->isFunctionPointerType() ? 0 : 1; 2799 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m; 2800 return; 2801 } 2802 } else { 2803 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) 2804 << AL << ExpectedFunctionMethodOrBlock; 2805 return; 2806 } 2807 } else { 2808 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) 2809 << AL << ExpectedFunctionMethodOrBlock; 2810 return; 2811 } 2812 D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos)); 2813 } 2814 2815 static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) { 2816 if (D->getFunctionType() && 2817 D->getFunctionType()->getReturnType()->isVoidType() && 2818 !isa<CXXConstructorDecl>(D)) { 2819 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0; 2820 return; 2821 } 2822 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 2823 if (MD->getReturnType()->isVoidType()) { 2824 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1; 2825 return; 2826 } 2827 2828 StringRef Str; 2829 if ((AL.isCXX11Attribute() || AL.isC2xAttribute()) && !AL.getScopeName()) { 2830 // The standard attribute cannot be applied to variable declarations such 2831 // as a function pointer. 2832 if (isa<VarDecl>(D)) 2833 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str) 2834 << AL << "functions, classes, or enumerations"; 2835 2836 // If this is spelled as the standard C++17 attribute, but not in C++17, 2837 // warn about using it as an extension. If there are attribute arguments, 2838 // then claim it's a C++2a extension instead. 2839 // FIXME: If WG14 does not seem likely to adopt the same feature, add an 2840 // extension warning for C2x mode. 2841 const LangOptions &LO = S.getLangOpts(); 2842 if (AL.getNumArgs() == 1) { 2843 if (LO.CPlusPlus && !LO.CPlusPlus20) 2844 S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL; 2845 2846 // Since this this is spelled [[nodiscard]], get the optional string 2847 // literal. If in C++ mode, but not in C++2a mode, diagnose as an 2848 // extension. 2849 // FIXME: C2x should support this feature as well, even as an extension. 2850 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr)) 2851 return; 2852 } else if (LO.CPlusPlus && !LO.CPlusPlus17) 2853 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; 2854 } 2855 2856 D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str)); 2857 } 2858 2859 static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2860 // weak_import only applies to variable & function declarations. 2861 bool isDef = false; 2862 if (!D->canBeWeakImported(isDef)) { 2863 if (isDef) 2864 S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition) 2865 << "weak_import"; 2866 else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) || 2867 (S.Context.getTargetInfo().getTriple().isOSDarwin() && 2868 (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) { 2869 // Nothing to warn about here. 2870 } else 2871 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) 2872 << AL << ExpectedVariableOrFunction; 2873 2874 return; 2875 } 2876 2877 D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL)); 2878 } 2879 2880 // Handles reqd_work_group_size and work_group_size_hint. 2881 template <typename WorkGroupAttr> 2882 static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { 2883 uint32_t WGSize[3]; 2884 for (unsigned i = 0; i < 3; ++i) { 2885 const Expr *E = AL.getArgAsExpr(i); 2886 if (!checkUInt32Argument(S, AL, E, WGSize[i], i, 2887 /*StrictlyUnsigned=*/true)) 2888 return; 2889 if (WGSize[i] == 0) { 2890 S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero) 2891 << AL << E->getSourceRange(); 2892 return; 2893 } 2894 } 2895 2896 WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>(); 2897 if (Existing && !(Existing->getXDim() == WGSize[0] && 2898 Existing->getYDim() == WGSize[1] && 2899 Existing->getZDim() == WGSize[2])) 2900 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; 2901 2902 D->addAttr(::new (S.Context) 2903 WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2])); 2904 } 2905 2906 // Handles intel_reqd_sub_group_size. 2907 static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { 2908 uint32_t SGSize; 2909 const Expr *E = AL.getArgAsExpr(0); 2910 if (!checkUInt32Argument(S, AL, E, SGSize)) 2911 return; 2912 if (SGSize == 0) { 2913 S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero) 2914 << AL << E->getSourceRange(); 2915 return; 2916 } 2917 2918 OpenCLIntelReqdSubGroupSizeAttr *Existing = 2919 D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>(); 2920 if (Existing && Existing->getSubGroupSize() != SGSize) 2921 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; 2922 2923 D->addAttr(::new (S.Context) 2924 OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize)); 2925 } 2926 2927 static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) { 2928 if (!AL.hasParsedType()) { 2929 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; 2930 return; 2931 } 2932 2933 TypeSourceInfo *ParmTSI = nullptr; 2934 QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI); 2935 assert(ParmTSI && "no type source info for attribute argument"); 2936 2937 if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() && 2938 (ParmType->isBooleanType() || 2939 !ParmType->isIntegralType(S.getASTContext()))) { 2940 S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL; 2941 return; 2942 } 2943 2944 if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) { 2945 if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) { 2946 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; 2947 return; 2948 } 2949 } 2950 2951 D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI)); 2952 } 2953 2954 SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, 2955 StringRef Name) { 2956 // Explicit or partial specializations do not inherit 2957 // the section attribute from the primary template. 2958 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2959 if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate && 2960 FD->isFunctionTemplateSpecialization()) 2961 return nullptr; 2962 } 2963 if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) { 2964 if (ExistingAttr->getName() == Name) 2965 return nullptr; 2966 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) 2967 << 1 /*section*/; 2968 Diag(CI.getLoc(), diag::note_previous_attribute); 2969 return nullptr; 2970 } 2971 return ::new (Context) SectionAttr(Context, CI, Name); 2972 } 2973 2974 bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) { 2975 std::string Error = Context.getTargetInfo().isValidSectionSpecifier(SecName); 2976 if (!Error.empty()) { 2977 Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error 2978 << 1 /*'section'*/; 2979 return false; 2980 } 2981 return true; 2982 } 2983 2984 static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2985 // Make sure that there is a string literal as the sections's single 2986 // argument. 2987 StringRef Str; 2988 SourceLocation LiteralLoc; 2989 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) 2990 return; 2991 2992 if (!S.checkSectionName(LiteralLoc, Str)) 2993 return; 2994 2995 // If the target wants to validate the section specifier, make it happen. 2996 std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str); 2997 if (!Error.empty()) { 2998 S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) 2999 << Error; 3000 return; 3001 } 3002 3003 SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str); 3004 if (NewAttr) 3005 D->addAttr(NewAttr); 3006 } 3007 3008 // This is used for `__declspec(code_seg("segname"))` on a decl. 3009 // `#pragma code_seg("segname")` uses checkSectionName() instead. 3010 static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc, 3011 StringRef CodeSegName) { 3012 std::string Error = 3013 S.Context.getTargetInfo().isValidSectionSpecifier(CodeSegName); 3014 if (!Error.empty()) { 3015 S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) 3016 << Error << 0 /*'code-seg'*/; 3017 return false; 3018 } 3019 3020 return true; 3021 } 3022 3023 CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, 3024 StringRef Name) { 3025 // Explicit or partial specializations do not inherit 3026 // the code_seg attribute from the primary template. 3027 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3028 if (FD->isFunctionTemplateSpecialization()) 3029 return nullptr; 3030 } 3031 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { 3032 if (ExistingAttr->getName() == Name) 3033 return nullptr; 3034 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) 3035 << 0 /*codeseg*/; 3036 Diag(CI.getLoc(), diag::note_previous_attribute); 3037 return nullptr; 3038 } 3039 return ::new (Context) CodeSegAttr(Context, CI, Name); 3040 } 3041 3042 static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3043 StringRef Str; 3044 SourceLocation LiteralLoc; 3045 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) 3046 return; 3047 if (!checkCodeSegName(S, LiteralLoc, Str)) 3048 return; 3049 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { 3050 if (!ExistingAttr->isImplicit()) { 3051 S.Diag(AL.getLoc(), 3052 ExistingAttr->getName() == Str 3053 ? diag::warn_duplicate_codeseg_attribute 3054 : diag::err_conflicting_codeseg_attribute); 3055 return; 3056 } 3057 D->dropAttr<CodeSegAttr>(); 3058 } 3059 if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str)) 3060 D->addAttr(CSA); 3061 } 3062 3063 // Check for things we'd like to warn about. Multiversioning issues are 3064 // handled later in the process, once we know how many exist. 3065 bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) { 3066 enum FirstParam { Unsupported, Duplicate }; 3067 enum SecondParam { None, Architecture }; 3068 for (auto Str : {"tune=", "fpmath="}) 3069 if (AttrStr.find(Str) != StringRef::npos) 3070 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) 3071 << Unsupported << None << Str; 3072 3073 ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr); 3074 3075 if (!ParsedAttrs.Architecture.empty() && 3076 !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture)) 3077 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) 3078 << Unsupported << Architecture << ParsedAttrs.Architecture; 3079 3080 if (ParsedAttrs.DuplicateArchitecture) 3081 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) 3082 << Duplicate << None << "arch="; 3083 3084 for (const auto &Feature : ParsedAttrs.Features) { 3085 auto CurFeature = StringRef(Feature).drop_front(); // remove + or -. 3086 if (!Context.getTargetInfo().isValidFeatureName(CurFeature)) 3087 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) 3088 << Unsupported << None << CurFeature; 3089 } 3090 3091 TargetInfo::BranchProtectionInfo BPI; 3092 StringRef Error; 3093 if (!ParsedAttrs.BranchProtection.empty() && 3094 !Context.getTargetInfo().validateBranchProtection( 3095 ParsedAttrs.BranchProtection, BPI, Error)) { 3096 if (Error.empty()) 3097 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) 3098 << Unsupported << None << "branch-protection"; 3099 else 3100 return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec) 3101 << Error; 3102 } 3103 3104 return false; 3105 } 3106 3107 static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3108 StringRef Str; 3109 SourceLocation LiteralLoc; 3110 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) || 3111 S.checkTargetAttr(LiteralLoc, Str)) 3112 return; 3113 3114 TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str); 3115 D->addAttr(NewAttr); 3116 } 3117 3118 static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3119 Expr *E = AL.getArgAsExpr(0); 3120 uint32_t VecWidth; 3121 if (!checkUInt32Argument(S, AL, E, VecWidth)) { 3122 AL.setInvalid(); 3123 return; 3124 } 3125 3126 MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>(); 3127 if (Existing && Existing->getVectorWidth() != VecWidth) { 3128 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; 3129 return; 3130 } 3131 3132 D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth)); 3133 } 3134 3135 static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3136 Expr *E = AL.getArgAsExpr(0); 3137 SourceLocation Loc = E->getExprLoc(); 3138 FunctionDecl *FD = nullptr; 3139 DeclarationNameInfo NI; 3140 3141 // gcc only allows for simple identifiers. Since we support more than gcc, we 3142 // will warn the user. 3143 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3144 if (DRE->hasQualifier()) 3145 S.Diag(Loc, diag::warn_cleanup_ext); 3146 FD = dyn_cast<FunctionDecl>(DRE->getDecl()); 3147 NI = DRE->getNameInfo(); 3148 if (!FD) { 3149 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1 3150 << NI.getName(); 3151 return; 3152 } 3153 } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 3154 if (ULE->hasExplicitTemplateArgs()) 3155 S.Diag(Loc, diag::warn_cleanup_ext); 3156 FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true); 3157 NI = ULE->getNameInfo(); 3158 if (!FD) { 3159 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2 3160 << NI.getName(); 3161 if (ULE->getType() == S.Context.OverloadTy) 3162 S.NoteAllOverloadCandidates(ULE); 3163 return; 3164 } 3165 } else { 3166 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0; 3167 return; 3168 } 3169 3170 if (FD->getNumParams() != 1) { 3171 S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg) 3172 << NI.getName(); 3173 return; 3174 } 3175 3176 // We're currently more strict than GCC about what function types we accept. 3177 // If this ever proves to be a problem it should be easy to fix. 3178 QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType()); 3179 QualType ParamTy = FD->getParamDecl(0)->getType(); 3180 if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(), 3181 ParamTy, Ty) != Sema::Compatible) { 3182 S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type) 3183 << NI.getName() << ParamTy << Ty; 3184 return; 3185 } 3186 3187 D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD)); 3188 } 3189 3190 static void handleEnumExtensibilityAttr(Sema &S, Decl *D, 3191 const ParsedAttr &AL) { 3192 if (!AL.isArgIdent(0)) { 3193 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 3194 << AL << 0 << AANT_ArgumentIdentifier; 3195 return; 3196 } 3197 3198 EnumExtensibilityAttr::Kind ExtensibilityKind; 3199 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; 3200 if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(), 3201 ExtensibilityKind)) { 3202 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; 3203 return; 3204 } 3205 3206 D->addAttr(::new (S.Context) 3207 EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind)); 3208 } 3209 3210 /// Handle __attribute__((format_arg((idx)))) attribute based on 3211 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html 3212 static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3213 Expr *IdxExpr = AL.getArgAsExpr(0); 3214 ParamIdx Idx; 3215 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx)) 3216 return; 3217 3218 // Make sure the format string is really a string. 3219 QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex()); 3220 3221 bool NotNSStringTy = !isNSStringType(Ty, S.Context); 3222 if (NotNSStringTy && 3223 !isCFStringType(Ty, S.Context) && 3224 (!Ty->isPointerType() || 3225 !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { 3226 S.Diag(AL.getLoc(), diag::err_format_attribute_not) 3227 << "a string type" << IdxExpr->getSourceRange() 3228 << getFunctionOrMethodParamRange(D, 0); 3229 return; 3230 } 3231 Ty = getFunctionOrMethodResultType(D); 3232 if (!isNSStringType(Ty, S.Context) && 3233 !isCFStringType(Ty, S.Context) && 3234 (!Ty->isPointerType() || 3235 !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { 3236 S.Diag(AL.getLoc(), diag::err_format_attribute_result_not) 3237 << (NotNSStringTy ? "string type" : "NSString") 3238 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0); 3239 return; 3240 } 3241 3242 D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx)); 3243 } 3244 3245 enum FormatAttrKind { 3246 CFStringFormat, 3247 NSStringFormat, 3248 StrftimeFormat, 3249 SupportedFormat, 3250 IgnoredFormat, 3251 InvalidFormat 3252 }; 3253 3254 /// getFormatAttrKind - Map from format attribute names to supported format 3255 /// types. 3256 static FormatAttrKind getFormatAttrKind(StringRef Format) { 3257 return llvm::StringSwitch<FormatAttrKind>(Format) 3258 // Check for formats that get handled specially. 3259 .Case("NSString", NSStringFormat) 3260 .Case("CFString", CFStringFormat) 3261 .Case("strftime", StrftimeFormat) 3262 3263 // Otherwise, check for supported formats. 3264 .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat) 3265 .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat) 3266 .Case("kprintf", SupportedFormat) // OpenBSD. 3267 .Case("freebsd_kprintf", SupportedFormat) // FreeBSD. 3268 .Case("os_trace", SupportedFormat) 3269 .Case("os_log", SupportedFormat) 3270 3271 .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat) 3272 .Default(InvalidFormat); 3273 } 3274 3275 /// Handle __attribute__((init_priority(priority))) attributes based on 3276 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html 3277 static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3278 if (!S.getLangOpts().CPlusPlus) { 3279 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; 3280 return; 3281 } 3282 3283 if (S.getCurFunctionOrMethodDecl()) { 3284 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); 3285 AL.setInvalid(); 3286 return; 3287 } 3288 QualType T = cast<VarDecl>(D)->getType(); 3289 if (S.Context.getAsArrayType(T)) 3290 T = S.Context.getBaseElementType(T); 3291 if (!T->getAs<RecordType>()) { 3292 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); 3293 AL.setInvalid(); 3294 return; 3295 } 3296 3297 Expr *E = AL.getArgAsExpr(0); 3298 uint32_t prioritynum; 3299 if (!checkUInt32Argument(S, AL, E, prioritynum)) { 3300 AL.setInvalid(); 3301 return; 3302 } 3303 3304 if (prioritynum < 101 || prioritynum > 65535) { 3305 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range) 3306 << E->getSourceRange() << AL << 101 << 65535; 3307 AL.setInvalid(); 3308 return; 3309 } 3310 D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum)); 3311 } 3312 3313 FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, 3314 IdentifierInfo *Format, int FormatIdx, 3315 int FirstArg) { 3316 // Check whether we already have an equivalent format attribute. 3317 for (auto *F : D->specific_attrs<FormatAttr>()) { 3318 if (F->getType() == Format && 3319 F->getFormatIdx() == FormatIdx && 3320 F->getFirstArg() == FirstArg) { 3321 // If we don't have a valid location for this attribute, adopt the 3322 // location. 3323 if (F->getLocation().isInvalid()) 3324 F->setRange(CI.getRange()); 3325 return nullptr; 3326 } 3327 } 3328 3329 return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg); 3330 } 3331 3332 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on 3333 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html 3334 static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3335 if (!AL.isArgIdent(0)) { 3336 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 3337 << AL << 1 << AANT_ArgumentIdentifier; 3338 return; 3339 } 3340 3341 // In C++ the implicit 'this' function parameter also counts, and they are 3342 // counted from one. 3343 bool HasImplicitThisParam = isInstanceMethod(D); 3344 unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam; 3345 3346 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; 3347 StringRef Format = II->getName(); 3348 3349 if (normalizeName(Format)) { 3350 // If we've modified the string name, we need a new identifier for it. 3351 II = &S.Context.Idents.get(Format); 3352 } 3353 3354 // Check for supported formats. 3355 FormatAttrKind Kind = getFormatAttrKind(Format); 3356 3357 if (Kind == IgnoredFormat) 3358 return; 3359 3360 if (Kind == InvalidFormat) { 3361 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) 3362 << AL << II->getName(); 3363 return; 3364 } 3365 3366 // checks for the 2nd argument 3367 Expr *IdxExpr = AL.getArgAsExpr(1); 3368 uint32_t Idx; 3369 if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2)) 3370 return; 3371 3372 if (Idx < 1 || Idx > NumArgs) { 3373 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) 3374 << AL << 2 << IdxExpr->getSourceRange(); 3375 return; 3376 } 3377 3378 // FIXME: Do we need to bounds check? 3379 unsigned ArgIdx = Idx - 1; 3380 3381 if (HasImplicitThisParam) { 3382 if (ArgIdx == 0) { 3383 S.Diag(AL.getLoc(), 3384 diag::err_format_attribute_implicit_this_format_string) 3385 << IdxExpr->getSourceRange(); 3386 return; 3387 } 3388 ArgIdx--; 3389 } 3390 3391 // make sure the format string is really a string 3392 QualType Ty = getFunctionOrMethodParamType(D, ArgIdx); 3393 3394 if (Kind == CFStringFormat) { 3395 if (!isCFStringType(Ty, S.Context)) { 3396 S.Diag(AL.getLoc(), diag::err_format_attribute_not) 3397 << "a CFString" << IdxExpr->getSourceRange() 3398 << getFunctionOrMethodParamRange(D, ArgIdx); 3399 return; 3400 } 3401 } else if (Kind == NSStringFormat) { 3402 // FIXME: do we need to check if the type is NSString*? What are the 3403 // semantics? 3404 if (!isNSStringType(Ty, S.Context)) { 3405 S.Diag(AL.getLoc(), diag::err_format_attribute_not) 3406 << "an NSString" << IdxExpr->getSourceRange() 3407 << getFunctionOrMethodParamRange(D, ArgIdx); 3408 return; 3409 } 3410 } else if (!Ty->isPointerType() || 3411 !Ty->castAs<PointerType>()->getPointeeType()->isCharType()) { 3412 S.Diag(AL.getLoc(), diag::err_format_attribute_not) 3413 << "a string type" << IdxExpr->getSourceRange() 3414 << getFunctionOrMethodParamRange(D, ArgIdx); 3415 return; 3416 } 3417 3418 // check the 3rd argument 3419 Expr *FirstArgExpr = AL.getArgAsExpr(2); 3420 uint32_t FirstArg; 3421 if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3)) 3422 return; 3423 3424 // check if the function is variadic if the 3rd argument non-zero 3425 if (FirstArg != 0) { 3426 if (isFunctionOrMethodVariadic(D)) { 3427 ++NumArgs; // +1 for ... 3428 } else { 3429 S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic); 3430 return; 3431 } 3432 } 3433 3434 // strftime requires FirstArg to be 0 because it doesn't read from any 3435 // variable the input is just the current time + the format string. 3436 if (Kind == StrftimeFormat) { 3437 if (FirstArg != 0) { 3438 S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter) 3439 << FirstArgExpr->getSourceRange(); 3440 return; 3441 } 3442 // if 0 it disables parameter checking (to use with e.g. va_list) 3443 } else if (FirstArg != 0 && FirstArg != NumArgs) { 3444 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) 3445 << AL << 3 << FirstArgExpr->getSourceRange(); 3446 return; 3447 } 3448 3449 FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg); 3450 if (NewAttr) 3451 D->addAttr(NewAttr); 3452 } 3453 3454 /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes. 3455 static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3456 // The index that identifies the callback callee is mandatory. 3457 if (AL.getNumArgs() == 0) { 3458 S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee) 3459 << AL.getRange(); 3460 return; 3461 } 3462 3463 bool HasImplicitThisParam = isInstanceMethod(D); 3464 int32_t NumArgs = getFunctionOrMethodNumParams(D); 3465 3466 FunctionDecl *FD = D->getAsFunction(); 3467 assert(FD && "Expected a function declaration!"); 3468 3469 llvm::StringMap<int> NameIdxMapping; 3470 NameIdxMapping["__"] = -1; 3471 3472 NameIdxMapping["this"] = 0; 3473 3474 int Idx = 1; 3475 for (const ParmVarDecl *PVD : FD->parameters()) 3476 NameIdxMapping[PVD->getName()] = Idx++; 3477 3478 auto UnknownName = NameIdxMapping.end(); 3479 3480 SmallVector<int, 8> EncodingIndices; 3481 for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) { 3482 SourceRange SR; 3483 int32_t ArgIdx; 3484 3485 if (AL.isArgIdent(I)) { 3486 IdentifierLoc *IdLoc = AL.getArgAsIdent(I); 3487 auto It = NameIdxMapping.find(IdLoc->Ident->getName()); 3488 if (It == UnknownName) { 3489 S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown) 3490 << IdLoc->Ident << IdLoc->Loc; 3491 return; 3492 } 3493 3494 SR = SourceRange(IdLoc->Loc); 3495 ArgIdx = It->second; 3496 } else if (AL.isArgExpr(I)) { 3497 Expr *IdxExpr = AL.getArgAsExpr(I); 3498 3499 // If the expression is not parseable as an int32_t we have a problem. 3500 if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1, 3501 false)) { 3502 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) 3503 << AL << (I + 1) << IdxExpr->getSourceRange(); 3504 return; 3505 } 3506 3507 // Check oob, excluding the special values, 0 and -1. 3508 if (ArgIdx < -1 || ArgIdx > NumArgs) { 3509 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) 3510 << AL << (I + 1) << IdxExpr->getSourceRange(); 3511 return; 3512 } 3513 3514 SR = IdxExpr->getSourceRange(); 3515 } else { 3516 llvm_unreachable("Unexpected ParsedAttr argument type!"); 3517 } 3518 3519 if (ArgIdx == 0 && !HasImplicitThisParam) { 3520 S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available) 3521 << (I + 1) << SR; 3522 return; 3523 } 3524 3525 // Adjust for the case we do not have an implicit "this" parameter. In this 3526 // case we decrease all positive values by 1 to get LLVM argument indices. 3527 if (!HasImplicitThisParam && ArgIdx > 0) 3528 ArgIdx -= 1; 3529 3530 EncodingIndices.push_back(ArgIdx); 3531 } 3532 3533 int CalleeIdx = EncodingIndices.front(); 3534 // Check if the callee index is proper, thus not "this" and not "unknown". 3535 // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam" 3536 // is false and positive if "HasImplicitThisParam" is true. 3537 if (CalleeIdx < (int)HasImplicitThisParam) { 3538 S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee) 3539 << AL.getRange(); 3540 return; 3541 } 3542 3543 // Get the callee type, note the index adjustment as the AST doesn't contain 3544 // the this type (which the callee cannot reference anyway!). 3545 const Type *CalleeType = 3546 getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam) 3547 .getTypePtr(); 3548 if (!CalleeType || !CalleeType->isFunctionPointerType()) { 3549 S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type) 3550 << AL.getRange(); 3551 return; 3552 } 3553 3554 const Type *CalleeFnType = 3555 CalleeType->getPointeeType()->getUnqualifiedDesugaredType(); 3556 3557 // TODO: Check the type of the callee arguments. 3558 3559 const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType); 3560 if (!CalleeFnProtoType) { 3561 S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type) 3562 << AL.getRange(); 3563 return; 3564 } 3565 3566 if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) { 3567 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) 3568 << AL << (unsigned)(EncodingIndices.size() - 1); 3569 return; 3570 } 3571 3572 if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) { 3573 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) 3574 << AL << (unsigned)(EncodingIndices.size() - 1); 3575 return; 3576 } 3577 3578 if (CalleeFnProtoType->isVariadic()) { 3579 S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange(); 3580 return; 3581 } 3582 3583 // Do not allow multiple callback attributes. 3584 if (D->hasAttr<CallbackAttr>()) { 3585 S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange(); 3586 return; 3587 } 3588 3589 D->addAttr(::new (S.Context) CallbackAttr( 3590 S.Context, AL, EncodingIndices.data(), EncodingIndices.size())); 3591 } 3592 3593 static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3594 // Try to find the underlying union declaration. 3595 RecordDecl *RD = nullptr; 3596 const auto *TD = dyn_cast<TypedefNameDecl>(D); 3597 if (TD && TD->getUnderlyingType()->isUnionType()) 3598 RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); 3599 else 3600 RD = dyn_cast<RecordDecl>(D); 3601 3602 if (!RD || !RD->isUnion()) { 3603 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL 3604 << ExpectedUnion; 3605 return; 3606 } 3607 3608 if (!RD->isCompleteDefinition()) { 3609 if (!RD->isBeingDefined()) 3610 S.Diag(AL.getLoc(), 3611 diag::warn_transparent_union_attribute_not_definition); 3612 return; 3613 } 3614 3615 RecordDecl::field_iterator Field = RD->field_begin(), 3616 FieldEnd = RD->field_end(); 3617 if (Field == FieldEnd) { 3618 S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields); 3619 return; 3620 } 3621 3622 FieldDecl *FirstField = *Field; 3623 QualType FirstType = FirstField->getType(); 3624 if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) { 3625 S.Diag(FirstField->getLocation(), 3626 diag::warn_transparent_union_attribute_floating) 3627 << FirstType->isVectorType() << FirstType; 3628 return; 3629 } 3630 3631 if (FirstType->isIncompleteType()) 3632 return; 3633 uint64_t FirstSize = S.Context.getTypeSize(FirstType); 3634 uint64_t FirstAlign = S.Context.getTypeAlign(FirstType); 3635 for (; Field != FieldEnd; ++Field) { 3636 QualType FieldType = Field->getType(); 3637 if (FieldType->isIncompleteType()) 3638 return; 3639 // FIXME: this isn't fully correct; we also need to test whether the 3640 // members of the union would all have the same calling convention as the 3641 // first member of the union. Checking just the size and alignment isn't 3642 // sufficient (consider structs passed on the stack instead of in registers 3643 // as an example). 3644 if (S.Context.getTypeSize(FieldType) != FirstSize || 3645 S.Context.getTypeAlign(FieldType) > FirstAlign) { 3646 // Warn if we drop the attribute. 3647 bool isSize = S.Context.getTypeSize(FieldType) != FirstSize; 3648 unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType) 3649 : S.Context.getTypeAlign(FieldType); 3650 S.Diag(Field->getLocation(), 3651 diag::warn_transparent_union_attribute_field_size_align) 3652 << isSize << Field->getDeclName() << FieldBits; 3653 unsigned FirstBits = isSize? FirstSize : FirstAlign; 3654 S.Diag(FirstField->getLocation(), 3655 diag::note_transparent_union_first_field_size_align) 3656 << isSize << FirstBits; 3657 return; 3658 } 3659 } 3660 3661 RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL)); 3662 } 3663 3664 static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3665 // Make sure that there is a string literal as the annotation's single 3666 // argument. 3667 StringRef Str; 3668 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) 3669 return; 3670 3671 // Don't duplicate annotations that are already set. 3672 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 3673 if (I->getAnnotation() == Str) 3674 return; 3675 } 3676 3677 D->addAttr(::new (S.Context) AnnotateAttr(S.Context, AL, Str)); 3678 } 3679 3680 static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3681 S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0)); 3682 } 3683 3684 void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) { 3685 AlignValueAttr TmpAttr(Context, CI, E); 3686 SourceLocation AttrLoc = CI.getLoc(); 3687 3688 QualType T; 3689 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) 3690 T = TD->getUnderlyingType(); 3691 else if (const auto *VD = dyn_cast<ValueDecl>(D)) 3692 T = VD->getType(); 3693 else 3694 llvm_unreachable("Unknown decl type for align_value"); 3695 3696 if (!T->isDependentType() && !T->isAnyPointerType() && 3697 !T->isReferenceType() && !T->isMemberPointerType()) { 3698 Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only) 3699 << &TmpAttr << T << D->getSourceRange(); 3700 return; 3701 } 3702 3703 if (!E->isValueDependent()) { 3704 llvm::APSInt Alignment; 3705 ExprResult ICE 3706 = VerifyIntegerConstantExpression(E, &Alignment, 3707 diag::err_align_value_attribute_argument_not_int, 3708 /*AllowFold*/ false); 3709 if (ICE.isInvalid()) 3710 return; 3711 3712 if (!Alignment.isPowerOf2()) { 3713 Diag(AttrLoc, diag::err_alignment_not_power_of_two) 3714 << E->getSourceRange(); 3715 return; 3716 } 3717 3718 D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get())); 3719 return; 3720 } 3721 3722 // Save dependent expressions in the AST to be instantiated. 3723 D->addAttr(::new (Context) AlignValueAttr(Context, CI, E)); 3724 } 3725 3726 static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3727 // check the attribute arguments. 3728 if (AL.getNumArgs() > 1) { 3729 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; 3730 return; 3731 } 3732 3733 if (AL.getNumArgs() == 0) { 3734 D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr)); 3735 return; 3736 } 3737 3738 Expr *E = AL.getArgAsExpr(0); 3739 if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) { 3740 S.Diag(AL.getEllipsisLoc(), 3741 diag::err_pack_expansion_without_parameter_packs); 3742 return; 3743 } 3744 3745 if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E)) 3746 return; 3747 3748 S.AddAlignedAttr(D, AL, E, AL.isPackExpansion()); 3749 } 3750 3751 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, 3752 bool IsPackExpansion) { 3753 AlignedAttr TmpAttr(Context, CI, true, E); 3754 SourceLocation AttrLoc = CI.getLoc(); 3755 3756 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. 3757 if (TmpAttr.isAlignas()) { 3758 // C++11 [dcl.align]p1: 3759 // An alignment-specifier may be applied to a variable or to a class 3760 // data member, but it shall not be applied to a bit-field, a function 3761 // parameter, the formal parameter of a catch clause, or a variable 3762 // declared with the register storage class specifier. An 3763 // alignment-specifier may also be applied to the declaration of a class 3764 // or enumeration type. 3765 // C11 6.7.5/2: 3766 // An alignment attribute shall not be specified in a declaration of 3767 // a typedef, or a bit-field, or a function, or a parameter, or an 3768 // object declared with the register storage-class specifier. 3769 int DiagKind = -1; 3770 if (isa<ParmVarDecl>(D)) { 3771 DiagKind = 0; 3772 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 3773 if (VD->getStorageClass() == SC_Register) 3774 DiagKind = 1; 3775 if (VD->isExceptionVariable()) 3776 DiagKind = 2; 3777 } else if (const auto *FD = dyn_cast<FieldDecl>(D)) { 3778 if (FD->isBitField()) 3779 DiagKind = 3; 3780 } else if (!isa<TagDecl>(D)) { 3781 Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr 3782 << (TmpAttr.isC11() ? ExpectedVariableOrField 3783 : ExpectedVariableFieldOrTag); 3784 return; 3785 } 3786 if (DiagKind != -1) { 3787 Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type) 3788 << &TmpAttr << DiagKind; 3789 return; 3790 } 3791 } 3792 3793 if (E->isValueDependent()) { 3794 // We can't support a dependent alignment on a non-dependent type, 3795 // because we have no way to model that a type is "alignment-dependent" 3796 // but not dependent in any other way. 3797 if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) { 3798 if (!TND->getUnderlyingType()->isDependentType()) { 3799 Diag(AttrLoc, diag::err_alignment_dependent_typedef_name) 3800 << E->getSourceRange(); 3801 return; 3802 } 3803 } 3804 3805 // Save dependent expressions in the AST to be instantiated. 3806 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E); 3807 AA->setPackExpansion(IsPackExpansion); 3808 D->addAttr(AA); 3809 return; 3810 } 3811 3812 // FIXME: Cache the number on the AL object? 3813 llvm::APSInt Alignment; 3814 ExprResult ICE 3815 = VerifyIntegerConstantExpression(E, &Alignment, 3816 diag::err_aligned_attribute_argument_not_int, 3817 /*AllowFold*/ false); 3818 if (ICE.isInvalid()) 3819 return; 3820 3821 uint64_t AlignVal = Alignment.getZExtValue(); 3822 3823 // C++11 [dcl.align]p2: 3824 // -- if the constant expression evaluates to zero, the alignment 3825 // specifier shall have no effect 3826 // C11 6.7.5p6: 3827 // An alignment specification of zero has no effect. 3828 if (!(TmpAttr.isAlignas() && !Alignment)) { 3829 if (!llvm::isPowerOf2_64(AlignVal)) { 3830 Diag(AttrLoc, diag::err_alignment_not_power_of_two) 3831 << E->getSourceRange(); 3832 return; 3833 } 3834 } 3835 3836 unsigned MaximumAlignment = Sema::MaximumAlignment; 3837 if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF()) 3838 MaximumAlignment = std::min(MaximumAlignment, 8192u); 3839 if (AlignVal > MaximumAlignment) { 3840 Diag(AttrLoc, diag::err_attribute_aligned_too_great) 3841 << MaximumAlignment << E->getSourceRange(); 3842 return; 3843 } 3844 3845 if (Context.getTargetInfo().isTLSSupported()) { 3846 unsigned MaxTLSAlign = 3847 Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign()) 3848 .getQuantity(); 3849 const auto *VD = dyn_cast<VarDecl>(D); 3850 if (MaxTLSAlign && AlignVal > MaxTLSAlign && VD && 3851 VD->getTLSKind() != VarDecl::TLS_None) { 3852 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) 3853 << (unsigned)AlignVal << VD << MaxTLSAlign; 3854 return; 3855 } 3856 } 3857 3858 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get()); 3859 AA->setPackExpansion(IsPackExpansion); 3860 D->addAttr(AA); 3861 } 3862 3863 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, 3864 TypeSourceInfo *TS, bool IsPackExpansion) { 3865 // FIXME: Cache the number on the AL object if non-dependent? 3866 // FIXME: Perform checking of type validity 3867 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS); 3868 AA->setPackExpansion(IsPackExpansion); 3869 D->addAttr(AA); 3870 } 3871 3872 void Sema::CheckAlignasUnderalignment(Decl *D) { 3873 assert(D->hasAttrs() && "no attributes on decl"); 3874 3875 QualType UnderlyingTy, DiagTy; 3876 if (const auto *VD = dyn_cast<ValueDecl>(D)) { 3877 UnderlyingTy = DiagTy = VD->getType(); 3878 } else { 3879 UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D)); 3880 if (const auto *ED = dyn_cast<EnumDecl>(D)) 3881 UnderlyingTy = ED->getIntegerType(); 3882 } 3883 if (DiagTy->isDependentType() || DiagTy->isIncompleteType()) 3884 return; 3885 3886 // C++11 [dcl.align]p5, C11 6.7.5/4: 3887 // The combined effect of all alignment attributes in a declaration shall 3888 // not specify an alignment that is less strict than the alignment that 3889 // would otherwise be required for the entity being declared. 3890 AlignedAttr *AlignasAttr = nullptr; 3891 AlignedAttr *LastAlignedAttr = nullptr; 3892 unsigned Align = 0; 3893 for (auto *I : D->specific_attrs<AlignedAttr>()) { 3894 if (I->isAlignmentDependent()) 3895 return; 3896 if (I->isAlignas()) 3897 AlignasAttr = I; 3898 Align = std::max(Align, I->getAlignment(Context)); 3899 LastAlignedAttr = I; 3900 } 3901 3902 if (Align && DiagTy->isSizelessType()) { 3903 Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type) 3904 << LastAlignedAttr << DiagTy; 3905 } else if (AlignasAttr && Align) { 3906 CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align); 3907 CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy); 3908 if (NaturalAlign > RequestedAlign) 3909 Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned) 3910 << DiagTy << (unsigned)NaturalAlign.getQuantity(); 3911 } 3912 } 3913 3914 bool Sema::checkMSInheritanceAttrOnDefinition( 3915 CXXRecordDecl *RD, SourceRange Range, bool BestCase, 3916 MSInheritanceModel ExplicitModel) { 3917 assert(RD->hasDefinition() && "RD has no definition!"); 3918 3919 // We may not have seen base specifiers or any virtual methods yet. We will 3920 // have to wait until the record is defined to catch any mismatches. 3921 if (!RD->getDefinition()->isCompleteDefinition()) 3922 return false; 3923 3924 // The unspecified model never matches what a definition could need. 3925 if (ExplicitModel == MSInheritanceModel::Unspecified) 3926 return false; 3927 3928 if (BestCase) { 3929 if (RD->calculateInheritanceModel() == ExplicitModel) 3930 return false; 3931 } else { 3932 if (RD->calculateInheritanceModel() <= ExplicitModel) 3933 return false; 3934 } 3935 3936 Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance) 3937 << 0 /*definition*/; 3938 Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD; 3939 return true; 3940 } 3941 3942 /// parseModeAttrArg - Parses attribute mode string and returns parsed type 3943 /// attribute. 3944 static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth, 3945 bool &IntegerMode, bool &ComplexMode, 3946 bool &ExplicitIEEE) { 3947 IntegerMode = true; 3948 ComplexMode = false; 3949 switch (Str.size()) { 3950 case 2: 3951 switch (Str[0]) { 3952 case 'Q': 3953 DestWidth = 8; 3954 break; 3955 case 'H': 3956 DestWidth = 16; 3957 break; 3958 case 'S': 3959 DestWidth = 32; 3960 break; 3961 case 'D': 3962 DestWidth = 64; 3963 break; 3964 case 'X': 3965 DestWidth = 96; 3966 break; 3967 case 'K': // KFmode - IEEE quad precision (__float128) 3968 ExplicitIEEE = true; 3969 DestWidth = Str[1] == 'I' ? 0 : 128; 3970 break; 3971 case 'T': 3972 ExplicitIEEE = false; 3973 DestWidth = 128; 3974 break; 3975 } 3976 if (Str[1] == 'F') { 3977 IntegerMode = false; 3978 } else if (Str[1] == 'C') { 3979 IntegerMode = false; 3980 ComplexMode = true; 3981 } else if (Str[1] != 'I') { 3982 DestWidth = 0; 3983 } 3984 break; 3985 case 4: 3986 // FIXME: glibc uses 'word' to define register_t; this is narrower than a 3987 // pointer on PIC16 and other embedded platforms. 3988 if (Str == "word") 3989 DestWidth = S.Context.getTargetInfo().getRegisterWidth(); 3990 else if (Str == "byte") 3991 DestWidth = S.Context.getTargetInfo().getCharWidth(); 3992 break; 3993 case 7: 3994 if (Str == "pointer") 3995 DestWidth = S.Context.getTargetInfo().getPointerWidth(0); 3996 break; 3997 case 11: 3998 if (Str == "unwind_word") 3999 DestWidth = S.Context.getTargetInfo().getUnwindWordWidth(); 4000 break; 4001 } 4002 } 4003 4004 /// handleModeAttr - This attribute modifies the width of a decl with primitive 4005 /// type. 4006 /// 4007 /// Despite what would be logical, the mode attribute is a decl attribute, not a 4008 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be 4009 /// HImode, not an intermediate pointer. 4010 static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4011 // This attribute isn't documented, but glibc uses it. It changes 4012 // the width of an int or unsigned int to the specified size. 4013 if (!AL.isArgIdent(0)) { 4014 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 4015 << AL << AANT_ArgumentIdentifier; 4016 return; 4017 } 4018 4019 IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident; 4020 4021 S.AddModeAttr(D, AL, Name); 4022 } 4023 4024 void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI, 4025 IdentifierInfo *Name, bool InInstantiation) { 4026 StringRef Str = Name->getName(); 4027 normalizeName(Str); 4028 SourceLocation AttrLoc = CI.getLoc(); 4029 4030 unsigned DestWidth = 0; 4031 bool IntegerMode = true; 4032 bool ComplexMode = false; 4033 bool ExplicitIEEE = false; 4034 llvm::APInt VectorSize(64, 0); 4035 if (Str.size() >= 4 && Str[0] == 'V') { 4036 // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2). 4037 size_t StrSize = Str.size(); 4038 size_t VectorStringLength = 0; 4039 while ((VectorStringLength + 1) < StrSize && 4040 isdigit(Str[VectorStringLength + 1])) 4041 ++VectorStringLength; 4042 if (VectorStringLength && 4043 !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) && 4044 VectorSize.isPowerOf2()) { 4045 parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth, 4046 IntegerMode, ComplexMode, ExplicitIEEE); 4047 // Avoid duplicate warning from template instantiation. 4048 if (!InInstantiation) 4049 Diag(AttrLoc, diag::warn_vector_mode_deprecated); 4050 } else { 4051 VectorSize = 0; 4052 } 4053 } 4054 4055 if (!VectorSize) 4056 parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode, 4057 ExplicitIEEE); 4058 4059 // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t 4060 // and friends, at least with glibc. 4061 // FIXME: Make sure floating-point mappings are accurate 4062 // FIXME: Support XF and TF types 4063 if (!DestWidth) { 4064 Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name; 4065 return; 4066 } 4067 4068 QualType OldTy; 4069 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) 4070 OldTy = TD->getUnderlyingType(); 4071 else if (const auto *ED = dyn_cast<EnumDecl>(D)) { 4072 // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'. 4073 // Try to get type from enum declaration, default to int. 4074 OldTy = ED->getIntegerType(); 4075 if (OldTy.isNull()) 4076 OldTy = Context.IntTy; 4077 } else 4078 OldTy = cast<ValueDecl>(D)->getType(); 4079 4080 if (OldTy->isDependentType()) { 4081 D->addAttr(::new (Context) ModeAttr(Context, CI, Name)); 4082 return; 4083 } 4084 4085 // Base type can also be a vector type (see PR17453). 4086 // Distinguish between base type and base element type. 4087 QualType OldElemTy = OldTy; 4088 if (const auto *VT = OldTy->getAs<VectorType>()) 4089 OldElemTy = VT->getElementType(); 4090 4091 // GCC allows 'mode' attribute on enumeration types (even incomplete), except 4092 // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete 4093 // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected. 4094 if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) && 4095 VectorSize.getBoolValue()) { 4096 Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange(); 4097 return; 4098 } 4099 bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() && 4100 !OldElemTy->isExtIntType()) || 4101 OldElemTy->getAs<EnumType>(); 4102 4103 if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() && 4104 !IntegralOrAnyEnumType) 4105 Diag(AttrLoc, diag::err_mode_not_primitive); 4106 else if (IntegerMode) { 4107 if (!IntegralOrAnyEnumType) 4108 Diag(AttrLoc, diag::err_mode_wrong_type); 4109 } else if (ComplexMode) { 4110 if (!OldElemTy->isComplexType()) 4111 Diag(AttrLoc, diag::err_mode_wrong_type); 4112 } else { 4113 if (!OldElemTy->isFloatingType()) 4114 Diag(AttrLoc, diag::err_mode_wrong_type); 4115 } 4116 4117 QualType NewElemTy; 4118 4119 if (IntegerMode) 4120 NewElemTy = Context.getIntTypeForBitwidth(DestWidth, 4121 OldElemTy->isSignedIntegerType()); 4122 else 4123 NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitIEEE); 4124 4125 if (NewElemTy.isNull()) { 4126 Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name; 4127 return; 4128 } 4129 4130 if (ComplexMode) { 4131 NewElemTy = Context.getComplexType(NewElemTy); 4132 } 4133 4134 QualType NewTy = NewElemTy; 4135 if (VectorSize.getBoolValue()) { 4136 NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(), 4137 VectorType::GenericVector); 4138 } else if (const auto *OldVT = OldTy->getAs<VectorType>()) { 4139 // Complex machine mode does not support base vector types. 4140 if (ComplexMode) { 4141 Diag(AttrLoc, diag::err_complex_mode_vector_type); 4142 return; 4143 } 4144 unsigned NumElements = Context.getTypeSize(OldElemTy) * 4145 OldVT->getNumElements() / 4146 Context.getTypeSize(NewElemTy); 4147 NewTy = 4148 Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind()); 4149 } 4150 4151 if (NewTy.isNull()) { 4152 Diag(AttrLoc, diag::err_mode_wrong_type); 4153 return; 4154 } 4155 4156 // Install the new type. 4157 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) 4158 TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy); 4159 else if (auto *ED = dyn_cast<EnumDecl>(D)) 4160 ED->setIntegerType(NewTy); 4161 else 4162 cast<ValueDecl>(D)->setType(NewTy); 4163 4164 D->addAttr(::new (Context) ModeAttr(Context, CI, Name)); 4165 } 4166 4167 static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4168 D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL)); 4169 } 4170 4171 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, 4172 const AttributeCommonInfo &CI, 4173 const IdentifierInfo *Ident) { 4174 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { 4175 Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident; 4176 Diag(Optnone->getLocation(), diag::note_conflicting_attribute); 4177 return nullptr; 4178 } 4179 4180 if (D->hasAttr<AlwaysInlineAttr>()) 4181 return nullptr; 4182 4183 return ::new (Context) AlwaysInlineAttr(Context, CI); 4184 } 4185 4186 CommonAttr *Sema::mergeCommonAttr(Decl *D, const ParsedAttr &AL) { 4187 if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL)) 4188 return nullptr; 4189 4190 return ::new (Context) CommonAttr(Context, AL); 4191 } 4192 4193 CommonAttr *Sema::mergeCommonAttr(Decl *D, const CommonAttr &AL) { 4194 if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL)) 4195 return nullptr; 4196 4197 return ::new (Context) CommonAttr(Context, AL); 4198 } 4199 4200 InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D, 4201 const ParsedAttr &AL) { 4202 if (const auto *VD = dyn_cast<VarDecl>(D)) { 4203 // Attribute applies to Var but not any subclass of it (like ParmVar, 4204 // ImplicitParm or VarTemplateSpecialization). 4205 if (VD->getKind() != Decl::Var) { 4206 Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) 4207 << AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass 4208 : ExpectedVariableOrFunction); 4209 return nullptr; 4210 } 4211 // Attribute does not apply to non-static local variables. 4212 if (VD->hasLocalStorage()) { 4213 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); 4214 return nullptr; 4215 } 4216 } 4217 4218 if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL)) 4219 return nullptr; 4220 4221 return ::new (Context) InternalLinkageAttr(Context, AL); 4222 } 4223 InternalLinkageAttr * 4224 Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) { 4225 if (const auto *VD = dyn_cast<VarDecl>(D)) { 4226 // Attribute applies to Var but not any subclass of it (like ParmVar, 4227 // ImplicitParm or VarTemplateSpecialization). 4228 if (VD->getKind() != Decl::Var) { 4229 Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type) 4230 << &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass 4231 : ExpectedVariableOrFunction); 4232 return nullptr; 4233 } 4234 // Attribute does not apply to non-static local variables. 4235 if (VD->hasLocalStorage()) { 4236 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); 4237 return nullptr; 4238 } 4239 } 4240 4241 if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL)) 4242 return nullptr; 4243 4244 return ::new (Context) InternalLinkageAttr(Context, AL); 4245 } 4246 4247 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) { 4248 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { 4249 Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'"; 4250 Diag(Optnone->getLocation(), diag::note_conflicting_attribute); 4251 return nullptr; 4252 } 4253 4254 if (D->hasAttr<MinSizeAttr>()) 4255 return nullptr; 4256 4257 return ::new (Context) MinSizeAttr(Context, CI); 4258 } 4259 4260 NoSpeculativeLoadHardeningAttr *Sema::mergeNoSpeculativeLoadHardeningAttr( 4261 Decl *D, const NoSpeculativeLoadHardeningAttr &AL) { 4262 if (checkAttrMutualExclusion<SpeculativeLoadHardeningAttr>(*this, D, AL)) 4263 return nullptr; 4264 4265 return ::new (Context) NoSpeculativeLoadHardeningAttr(Context, AL); 4266 } 4267 4268 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, 4269 const AttributeCommonInfo &CI) { 4270 if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) { 4271 Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline; 4272 Diag(CI.getLoc(), diag::note_conflicting_attribute); 4273 D->dropAttr<AlwaysInlineAttr>(); 4274 } 4275 if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) { 4276 Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize; 4277 Diag(CI.getLoc(), diag::note_conflicting_attribute); 4278 D->dropAttr<MinSizeAttr>(); 4279 } 4280 4281 if (D->hasAttr<OptimizeNoneAttr>()) 4282 return nullptr; 4283 4284 return ::new (Context) OptimizeNoneAttr(Context, CI); 4285 } 4286 4287 SpeculativeLoadHardeningAttr *Sema::mergeSpeculativeLoadHardeningAttr( 4288 Decl *D, const SpeculativeLoadHardeningAttr &AL) { 4289 if (checkAttrMutualExclusion<NoSpeculativeLoadHardeningAttr>(*this, D, AL)) 4290 return nullptr; 4291 4292 return ::new (Context) SpeculativeLoadHardeningAttr(Context, AL); 4293 } 4294 4295 static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4296 if (checkAttrMutualExclusion<NotTailCalledAttr>(S, D, AL)) 4297 return; 4298 4299 if (AlwaysInlineAttr *Inline = 4300 S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName())) 4301 D->addAttr(Inline); 4302 } 4303 4304 static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4305 if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL)) 4306 D->addAttr(MinSize); 4307 } 4308 4309 static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4310 if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL)) 4311 D->addAttr(Optnone); 4312 } 4313 4314 static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4315 if (checkAttrMutualExclusion<CUDASharedAttr>(S, D, AL)) 4316 return; 4317 const auto *VD = cast<VarDecl>(D); 4318 if (!VD->hasGlobalStorage()) { 4319 S.Diag(AL.getLoc(), diag::err_cuda_nonglobal_constant); 4320 return; 4321 } 4322 D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL)); 4323 } 4324 4325 static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4326 if (checkAttrMutualExclusion<CUDAConstantAttr>(S, D, AL)) 4327 return; 4328 const auto *VD = cast<VarDecl>(D); 4329 // extern __shared__ is only allowed on arrays with no length (e.g. 4330 // "int x[]"). 4331 if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() && 4332 !isa<IncompleteArrayType>(VD->getType())) { 4333 S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD; 4334 return; 4335 } 4336 if (S.getLangOpts().CUDA && VD->hasLocalStorage() && 4337 S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared) 4338 << S.CurrentCUDATarget()) 4339 return; 4340 D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL)); 4341 } 4342 4343 static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4344 if (checkAttrMutualExclusion<CUDADeviceAttr>(S, D, AL) || 4345 checkAttrMutualExclusion<CUDAHostAttr>(S, D, AL)) { 4346 return; 4347 } 4348 const auto *FD = cast<FunctionDecl>(D); 4349 if (!FD->getReturnType()->isVoidType() && 4350 !FD->getReturnType()->getAs<AutoType>() && 4351 !FD->getReturnType()->isInstantiationDependentType()) { 4352 SourceRange RTRange = FD->getReturnTypeSourceRange(); 4353 S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) 4354 << FD->getType() 4355 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") 4356 : FixItHint()); 4357 return; 4358 } 4359 if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) { 4360 if (Method->isInstance()) { 4361 S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method) 4362 << Method; 4363 return; 4364 } 4365 S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method; 4366 } 4367 // Only warn for "inline" when compiling for host, to cut down on noise. 4368 if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice) 4369 S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD; 4370 4371 D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL)); 4372 // In host compilation the kernel is emitted as a stub function, which is 4373 // a helper function for launching the kernel. The instructions in the helper 4374 // function has nothing to do with the source code of the kernel. Do not emit 4375 // debug info for the stub function to avoid confusing the debugger. 4376 if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice) 4377 D->addAttr(NoDebugAttr::CreateImplicit(S.Context)); 4378 } 4379 4380 static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4381 const auto *Fn = cast<FunctionDecl>(D); 4382 if (!Fn->isInlineSpecified()) { 4383 S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline); 4384 return; 4385 } 4386 4387 if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern) 4388 S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern); 4389 4390 D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL)); 4391 } 4392 4393 static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4394 if (hasDeclarator(D)) return; 4395 4396 // Diagnostic is emitted elsewhere: here we store the (valid) AL 4397 // in the Decl node for syntactic reasoning, e.g., pretty-printing. 4398 CallingConv CC; 4399 if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr)) 4400 return; 4401 4402 if (!isa<ObjCMethodDecl>(D)) { 4403 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) 4404 << AL << ExpectedFunctionOrMethod; 4405 return; 4406 } 4407 4408 switch (AL.getKind()) { 4409 case ParsedAttr::AT_FastCall: 4410 D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL)); 4411 return; 4412 case ParsedAttr::AT_StdCall: 4413 D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL)); 4414 return; 4415 case ParsedAttr::AT_ThisCall: 4416 D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL)); 4417 return; 4418 case ParsedAttr::AT_CDecl: 4419 D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL)); 4420 return; 4421 case ParsedAttr::AT_Pascal: 4422 D->addAttr(::new (S.Context) PascalAttr(S.Context, AL)); 4423 return; 4424 case ParsedAttr::AT_SwiftCall: 4425 D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL)); 4426 return; 4427 case ParsedAttr::AT_VectorCall: 4428 D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL)); 4429 return; 4430 case ParsedAttr::AT_MSABI: 4431 D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL)); 4432 return; 4433 case ParsedAttr::AT_SysVABI: 4434 D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL)); 4435 return; 4436 case ParsedAttr::AT_RegCall: 4437 D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL)); 4438 return; 4439 case ParsedAttr::AT_Pcs: { 4440 PcsAttr::PCSType PCS; 4441 switch (CC) { 4442 case CC_AAPCS: 4443 PCS = PcsAttr::AAPCS; 4444 break; 4445 case CC_AAPCS_VFP: 4446 PCS = PcsAttr::AAPCS_VFP; 4447 break; 4448 default: 4449 llvm_unreachable("unexpected calling convention in pcs attribute"); 4450 } 4451 4452 D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS)); 4453 return; 4454 } 4455 case ParsedAttr::AT_AArch64VectorPcs: 4456 D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL)); 4457 return; 4458 case ParsedAttr::AT_IntelOclBicc: 4459 D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL)); 4460 return; 4461 case ParsedAttr::AT_PreserveMost: 4462 D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL)); 4463 return; 4464 case ParsedAttr::AT_PreserveAll: 4465 D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL)); 4466 return; 4467 default: 4468 llvm_unreachable("unexpected attribute kind"); 4469 } 4470 } 4471 4472 static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4473 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 4474 return; 4475 4476 std::vector<StringRef> DiagnosticIdentifiers; 4477 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { 4478 StringRef RuleName; 4479 4480 if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr)) 4481 return; 4482 4483 // FIXME: Warn if the rule name is unknown. This is tricky because only 4484 // clang-tidy knows about available rules. 4485 DiagnosticIdentifiers.push_back(RuleName); 4486 } 4487 D->addAttr(::new (S.Context) 4488 SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(), 4489 DiagnosticIdentifiers.size())); 4490 } 4491 4492 static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4493 TypeSourceInfo *DerefTypeLoc = nullptr; 4494 QualType ParmType; 4495 if (AL.hasParsedType()) { 4496 ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc); 4497 4498 unsigned SelectIdx = ~0U; 4499 if (ParmType->isReferenceType()) 4500 SelectIdx = 0; 4501 else if (ParmType->isArrayType()) 4502 SelectIdx = 1; 4503 4504 if (SelectIdx != ~0U) { 4505 S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) 4506 << SelectIdx << AL; 4507 return; 4508 } 4509 } 4510 4511 // To check if earlier decl attributes do not conflict the newly parsed ones 4512 // we always add (and check) the attribute to the cannonical decl. 4513 D = D->getCanonicalDecl(); 4514 if (AL.getKind() == ParsedAttr::AT_Owner) { 4515 if (checkAttrMutualExclusion<PointerAttr>(S, D, AL)) 4516 return; 4517 if (const auto *OAttr = D->getAttr<OwnerAttr>()) { 4518 const Type *ExistingDerefType = OAttr->getDerefTypeLoc() 4519 ? OAttr->getDerefType().getTypePtr() 4520 : nullptr; 4521 if (ExistingDerefType != ParmType.getTypePtrOrNull()) { 4522 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) 4523 << AL << OAttr; 4524 S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute); 4525 } 4526 return; 4527 } 4528 for (Decl *Redecl : D->redecls()) { 4529 Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc)); 4530 } 4531 } else { 4532 if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL)) 4533 return; 4534 if (const auto *PAttr = D->getAttr<PointerAttr>()) { 4535 const Type *ExistingDerefType = PAttr->getDerefTypeLoc() 4536 ? PAttr->getDerefType().getTypePtr() 4537 : nullptr; 4538 if (ExistingDerefType != ParmType.getTypePtrOrNull()) { 4539 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) 4540 << AL << PAttr; 4541 S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute); 4542 } 4543 return; 4544 } 4545 for (Decl *Redecl : D->redecls()) { 4546 Redecl->addAttr(::new (S.Context) 4547 PointerAttr(S.Context, AL, DerefTypeLoc)); 4548 } 4549 } 4550 } 4551 4552 bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC, 4553 const FunctionDecl *FD) { 4554 if (Attrs.isInvalid()) 4555 return true; 4556 4557 if (Attrs.hasProcessingCache()) { 4558 CC = (CallingConv) Attrs.getProcessingCache(); 4559 return false; 4560 } 4561 4562 unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0; 4563 if (!checkAttributeNumArgs(*this, Attrs, ReqArgs)) { 4564 Attrs.setInvalid(); 4565 return true; 4566 } 4567 4568 // TODO: diagnose uses of these conventions on the wrong target. 4569 switch (Attrs.getKind()) { 4570 case ParsedAttr::AT_CDecl: 4571 CC = CC_C; 4572 break; 4573 case ParsedAttr::AT_FastCall: 4574 CC = CC_X86FastCall; 4575 break; 4576 case ParsedAttr::AT_StdCall: 4577 CC = CC_X86StdCall; 4578 break; 4579 case ParsedAttr::AT_ThisCall: 4580 CC = CC_X86ThisCall; 4581 break; 4582 case ParsedAttr::AT_Pascal: 4583 CC = CC_X86Pascal; 4584 break; 4585 case ParsedAttr::AT_SwiftCall: 4586 CC = CC_Swift; 4587 break; 4588 case ParsedAttr::AT_VectorCall: 4589 CC = CC_X86VectorCall; 4590 break; 4591 case ParsedAttr::AT_AArch64VectorPcs: 4592 CC = CC_AArch64VectorCall; 4593 break; 4594 case ParsedAttr::AT_RegCall: 4595 CC = CC_X86RegCall; 4596 break; 4597 case ParsedAttr::AT_MSABI: 4598 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C : 4599 CC_Win64; 4600 break; 4601 case ParsedAttr::AT_SysVABI: 4602 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV : 4603 CC_C; 4604 break; 4605 case ParsedAttr::AT_Pcs: { 4606 StringRef StrRef; 4607 if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) { 4608 Attrs.setInvalid(); 4609 return true; 4610 } 4611 if (StrRef == "aapcs") { 4612 CC = CC_AAPCS; 4613 break; 4614 } else if (StrRef == "aapcs-vfp") { 4615 CC = CC_AAPCS_VFP; 4616 break; 4617 } 4618 4619 Attrs.setInvalid(); 4620 Diag(Attrs.getLoc(), diag::err_invalid_pcs); 4621 return true; 4622 } 4623 case ParsedAttr::AT_IntelOclBicc: 4624 CC = CC_IntelOclBicc; 4625 break; 4626 case ParsedAttr::AT_PreserveMost: 4627 CC = CC_PreserveMost; 4628 break; 4629 case ParsedAttr::AT_PreserveAll: 4630 CC = CC_PreserveAll; 4631 break; 4632 default: llvm_unreachable("unexpected attribute kind"); 4633 } 4634 4635 TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK; 4636 const TargetInfo &TI = Context.getTargetInfo(); 4637 // CUDA functions may have host and/or device attributes which indicate 4638 // their targeted execution environment, therefore the calling convention 4639 // of functions in CUDA should be checked against the target deduced based 4640 // on their host/device attributes. 4641 if (LangOpts.CUDA) { 4642 auto *Aux = Context.getAuxTargetInfo(); 4643 auto CudaTarget = IdentifyCUDATarget(FD); 4644 bool CheckHost = false, CheckDevice = false; 4645 switch (CudaTarget) { 4646 case CFT_HostDevice: 4647 CheckHost = true; 4648 CheckDevice = true; 4649 break; 4650 case CFT_Host: 4651 CheckHost = true; 4652 break; 4653 case CFT_Device: 4654 case CFT_Global: 4655 CheckDevice = true; 4656 break; 4657 case CFT_InvalidTarget: 4658 llvm_unreachable("unexpected cuda target"); 4659 } 4660 auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI; 4661 auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux; 4662 if (CheckHost && HostTI) 4663 A = HostTI->checkCallingConvention(CC); 4664 if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI) 4665 A = DeviceTI->checkCallingConvention(CC); 4666 } else { 4667 A = TI.checkCallingConvention(CC); 4668 } 4669 4670 switch (A) { 4671 case TargetInfo::CCCR_OK: 4672 break; 4673 4674 case TargetInfo::CCCR_Ignore: 4675 // Treat an ignored convention as if it was an explicit C calling convention 4676 // attribute. For example, __stdcall on Win x64 functions as __cdecl, so 4677 // that command line flags that change the default convention to 4678 // __vectorcall don't affect declarations marked __stdcall. 4679 CC = CC_C; 4680 break; 4681 4682 case TargetInfo::CCCR_Error: 4683 Diag(Attrs.getLoc(), diag::error_cconv_unsupported) 4684 << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; 4685 break; 4686 4687 case TargetInfo::CCCR_Warning: { 4688 Diag(Attrs.getLoc(), diag::warn_cconv_unsupported) 4689 << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; 4690 4691 // This convention is not valid for the target. Use the default function or 4692 // method calling convention. 4693 bool IsCXXMethod = false, IsVariadic = false; 4694 if (FD) { 4695 IsCXXMethod = FD->isCXXInstanceMember(); 4696 IsVariadic = FD->isVariadic(); 4697 } 4698 CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod); 4699 break; 4700 } 4701 } 4702 4703 Attrs.setProcessingCache((unsigned) CC); 4704 return false; 4705 } 4706 4707 /// Pointer-like types in the default address space. 4708 static bool isValidSwiftContextType(QualType Ty) { 4709 if (!Ty->hasPointerRepresentation()) 4710 return Ty->isDependentType(); 4711 return Ty->getPointeeType().getAddressSpace() == LangAS::Default; 4712 } 4713 4714 /// Pointers and references in the default address space. 4715 static bool isValidSwiftIndirectResultType(QualType Ty) { 4716 if (const auto *PtrType = Ty->getAs<PointerType>()) { 4717 Ty = PtrType->getPointeeType(); 4718 } else if (const auto *RefType = Ty->getAs<ReferenceType>()) { 4719 Ty = RefType->getPointeeType(); 4720 } else { 4721 return Ty->isDependentType(); 4722 } 4723 return Ty.getAddressSpace() == LangAS::Default; 4724 } 4725 4726 /// Pointers and references to pointers in the default address space. 4727 static bool isValidSwiftErrorResultType(QualType Ty) { 4728 if (const auto *PtrType = Ty->getAs<PointerType>()) { 4729 Ty = PtrType->getPointeeType(); 4730 } else if (const auto *RefType = Ty->getAs<ReferenceType>()) { 4731 Ty = RefType->getPointeeType(); 4732 } else { 4733 return Ty->isDependentType(); 4734 } 4735 if (!Ty.getQualifiers().empty()) 4736 return false; 4737 return isValidSwiftContextType(Ty); 4738 } 4739 4740 void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI, 4741 ParameterABI abi) { 4742 4743 QualType type = cast<ParmVarDecl>(D)->getType(); 4744 4745 if (auto existingAttr = D->getAttr<ParameterABIAttr>()) { 4746 if (existingAttr->getABI() != abi) { 4747 Diag(CI.getLoc(), diag::err_attributes_are_not_compatible) 4748 << getParameterABISpelling(abi) << existingAttr; 4749 Diag(existingAttr->getLocation(), diag::note_conflicting_attribute); 4750 return; 4751 } 4752 } 4753 4754 switch (abi) { 4755 case ParameterABI::Ordinary: 4756 llvm_unreachable("explicit attribute for ordinary parameter ABI?"); 4757 4758 case ParameterABI::SwiftContext: 4759 if (!isValidSwiftContextType(type)) { 4760 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) 4761 << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type; 4762 } 4763 D->addAttr(::new (Context) SwiftContextAttr(Context, CI)); 4764 return; 4765 4766 case ParameterABI::SwiftErrorResult: 4767 if (!isValidSwiftErrorResultType(type)) { 4768 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) 4769 << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type; 4770 } 4771 D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI)); 4772 return; 4773 4774 case ParameterABI::SwiftIndirectResult: 4775 if (!isValidSwiftIndirectResultType(type)) { 4776 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) 4777 << getParameterABISpelling(abi) << /*pointer*/ 0 << type; 4778 } 4779 D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI)); 4780 return; 4781 } 4782 llvm_unreachable("bad parameter ABI attribute"); 4783 } 4784 4785 /// Checks a regparm attribute, returning true if it is ill-formed and 4786 /// otherwise setting numParams to the appropriate value. 4787 bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) { 4788 if (AL.isInvalid()) 4789 return true; 4790 4791 if (!checkAttributeNumArgs(*this, AL, 1)) { 4792 AL.setInvalid(); 4793 return true; 4794 } 4795 4796 uint32_t NP; 4797 Expr *NumParamsExpr = AL.getArgAsExpr(0); 4798 if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) { 4799 AL.setInvalid(); 4800 return true; 4801 } 4802 4803 if (Context.getTargetInfo().getRegParmMax() == 0) { 4804 Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform) 4805 << NumParamsExpr->getSourceRange(); 4806 AL.setInvalid(); 4807 return true; 4808 } 4809 4810 numParams = NP; 4811 if (numParams > Context.getTargetInfo().getRegParmMax()) { 4812 Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number) 4813 << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange(); 4814 AL.setInvalid(); 4815 return true; 4816 } 4817 4818 return false; 4819 } 4820 4821 // Checks whether an argument of launch_bounds attribute is 4822 // acceptable, performs implicit conversion to Rvalue, and returns 4823 // non-nullptr Expr result on success. Otherwise, it returns nullptr 4824 // and may output an error. 4825 static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E, 4826 const CUDALaunchBoundsAttr &AL, 4827 const unsigned Idx) { 4828 if (S.DiagnoseUnexpandedParameterPack(E)) 4829 return nullptr; 4830 4831 // Accept template arguments for now as they depend on something else. 4832 // We'll get to check them when they eventually get instantiated. 4833 if (E->isValueDependent()) 4834 return E; 4835 4836 llvm::APSInt I(64); 4837 if (!E->isIntegerConstantExpr(I, S.Context)) { 4838 S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type) 4839 << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange(); 4840 return nullptr; 4841 } 4842 // Make sure we can fit it in 32 bits. 4843 if (!I.isIntN(32)) { 4844 S.Diag(E->getExprLoc(), diag::err_ice_too_large) << I.toString(10, false) 4845 << 32 << /* Unsigned */ 1; 4846 return nullptr; 4847 } 4848 if (I < 0) 4849 S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative) 4850 << &AL << Idx << E->getSourceRange(); 4851 4852 // We may need to perform implicit conversion of the argument. 4853 InitializedEntity Entity = InitializedEntity::InitializeParameter( 4854 S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false); 4855 ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E); 4856 assert(!ValArg.isInvalid() && 4857 "Unexpected PerformCopyInitialization() failure."); 4858 4859 return ValArg.getAs<Expr>(); 4860 } 4861 4862 void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, 4863 Expr *MaxThreads, Expr *MinBlocks) { 4864 CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks); 4865 MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0); 4866 if (MaxThreads == nullptr) 4867 return; 4868 4869 if (MinBlocks) { 4870 MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1); 4871 if (MinBlocks == nullptr) 4872 return; 4873 } 4874 4875 D->addAttr(::new (Context) 4876 CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks)); 4877 } 4878 4879 static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4880 if (!checkAttributeAtLeastNumArgs(S, AL, 1) || 4881 !checkAttributeAtMostNumArgs(S, AL, 2)) 4882 return; 4883 4884 S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0), 4885 AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr); 4886 } 4887 4888 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, 4889 const ParsedAttr &AL) { 4890 if (!AL.isArgIdent(0)) { 4891 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 4892 << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier; 4893 return; 4894 } 4895 4896 ParamIdx ArgumentIdx; 4897 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1), 4898 ArgumentIdx)) 4899 return; 4900 4901 ParamIdx TypeTagIdx; 4902 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2), 4903 TypeTagIdx)) 4904 return; 4905 4906 bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag"; 4907 if (IsPointer) { 4908 // Ensure that buffer has a pointer type. 4909 unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex(); 4910 if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) || 4911 !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType()) 4912 S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0; 4913 } 4914 4915 D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr( 4916 S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx, 4917 IsPointer)); 4918 } 4919 4920 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, 4921 const ParsedAttr &AL) { 4922 if (!AL.isArgIdent(0)) { 4923 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 4924 << AL << 1 << AANT_ArgumentIdentifier; 4925 return; 4926 } 4927 4928 if (!checkAttributeNumArgs(S, AL, 1)) 4929 return; 4930 4931 if (!isa<VarDecl>(D)) { 4932 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type) 4933 << AL << ExpectedVariable; 4934 return; 4935 } 4936 4937 IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident; 4938 TypeSourceInfo *MatchingCTypeLoc = nullptr; 4939 S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc); 4940 assert(MatchingCTypeLoc && "no type source info for attribute argument"); 4941 4942 D->addAttr(::new (S.Context) TypeTagForDatatypeAttr( 4943 S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(), 4944 AL.getMustBeNull())); 4945 } 4946 4947 static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4948 ParamIdx ArgCount; 4949 4950 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0), 4951 ArgCount, 4952 true /* CanIndexImplicitThis */)) 4953 return; 4954 4955 // ArgCount isn't a parameter index [0;n), it's a count [1;n] 4956 D->addAttr(::new (S.Context) 4957 XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex())); 4958 } 4959 4960 static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D, 4961 const ParsedAttr &AL) { 4962 uint32_t Count = 0, Offset = 0; 4963 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true)) 4964 return; 4965 if (AL.getNumArgs() == 2) { 4966 Expr *Arg = AL.getArgAsExpr(1); 4967 if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true)) 4968 return; 4969 if (Count < Offset) { 4970 S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range) 4971 << &AL << 0 << Count << Arg->getBeginLoc(); 4972 return; 4973 } 4974 } 4975 D->addAttr(::new (S.Context) 4976 PatchableFunctionEntryAttr(S.Context, AL, Count, Offset)); 4977 } 4978 4979 namespace { 4980 struct IntrinToName { 4981 uint32_t Id; 4982 int32_t FullName; 4983 int32_t ShortName; 4984 }; 4985 } // unnamed namespace 4986 4987 static bool ArmBuiltinAliasValid(unsigned BuiltinID, StringRef AliasName, 4988 ArrayRef<IntrinToName> Map, 4989 const char *IntrinNames) { 4990 if (AliasName.startswith("__arm_")) 4991 AliasName = AliasName.substr(6); 4992 const IntrinToName *It = std::lower_bound( 4993 Map.begin(), Map.end(), BuiltinID, 4994 [](const IntrinToName &L, unsigned Id) { return L.Id < Id; }); 4995 if (It == Map.end() || It->Id != BuiltinID) 4996 return false; 4997 StringRef FullName(&IntrinNames[It->FullName]); 4998 if (AliasName == FullName) 4999 return true; 5000 if (It->ShortName == -1) 5001 return false; 5002 StringRef ShortName(&IntrinNames[It->ShortName]); 5003 return AliasName == ShortName; 5004 } 5005 5006 static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) { 5007 #include "clang/Basic/arm_mve_builtin_aliases.inc" 5008 // The included file defines: 5009 // - ArrayRef<IntrinToName> Map 5010 // - const char IntrinNames[] 5011 return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames); 5012 } 5013 5014 static bool ArmCdeAliasValid(unsigned BuiltinID, StringRef AliasName) { 5015 #include "clang/Basic/arm_cde_builtin_aliases.inc" 5016 return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames); 5017 } 5018 5019 static bool ArmSveAliasValid(unsigned BuiltinID, StringRef AliasName) { 5020 switch (BuiltinID) { 5021 default: 5022 return false; 5023 #define GET_SVE_BUILTINS 5024 #define BUILTIN(name, types, attr) case SVE::BI##name: 5025 #include "clang/Basic/arm_sve_builtins.inc" 5026 return true; 5027 } 5028 } 5029 5030 static void handleArmBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5031 if (!AL.isArgIdent(0)) { 5032 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 5033 << AL << 1 << AANT_ArgumentIdentifier; 5034 return; 5035 } 5036 5037 IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident; 5038 unsigned BuiltinID = Ident->getBuiltinID(); 5039 StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName(); 5040 5041 bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); 5042 if ((IsAArch64 && !ArmSveAliasValid(BuiltinID, AliasName)) || 5043 (!IsAArch64 && !ArmMveAliasValid(BuiltinID, AliasName) && 5044 !ArmCdeAliasValid(BuiltinID, AliasName))) { 5045 S.Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias); 5046 return; 5047 } 5048 5049 D->addAttr(::new (S.Context) ArmBuiltinAliasAttr(S.Context, AL, Ident)); 5050 } 5051 5052 //===----------------------------------------------------------------------===// 5053 // Checker-specific attribute handlers. 5054 //===----------------------------------------------------------------------===// 5055 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) { 5056 return QT->isDependentType() || QT->isObjCRetainableType(); 5057 } 5058 5059 static bool isValidSubjectOfNSAttribute(QualType QT) { 5060 return QT->isDependentType() || QT->isObjCObjectPointerType() || 5061 QT->isObjCNSObjectType(); 5062 } 5063 5064 static bool isValidSubjectOfCFAttribute(QualType QT) { 5065 return QT->isDependentType() || QT->isPointerType() || 5066 isValidSubjectOfNSAttribute(QT); 5067 } 5068 5069 static bool isValidSubjectOfOSAttribute(QualType QT) { 5070 if (QT->isDependentType()) 5071 return true; 5072 QualType PT = QT->getPointeeType(); 5073 return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr; 5074 } 5075 5076 void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI, 5077 RetainOwnershipKind K, 5078 bool IsTemplateInstantiation) { 5079 ValueDecl *VD = cast<ValueDecl>(D); 5080 switch (K) { 5081 case RetainOwnershipKind::OS: 5082 handleSimpleAttributeOrDiagnose<OSConsumedAttr>( 5083 *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()), 5084 diag::warn_ns_attribute_wrong_parameter_type, 5085 /*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1); 5086 return; 5087 case RetainOwnershipKind::NS: 5088 handleSimpleAttributeOrDiagnose<NSConsumedAttr>( 5089 *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()), 5090 5091 // These attributes are normally just advisory, but in ARC, ns_consumed 5092 // is significant. Allow non-dependent code to contain inappropriate 5093 // attributes even in ARC, but require template instantiations to be 5094 // set up correctly. 5095 ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount) 5096 ? diag::err_ns_attribute_wrong_parameter_type 5097 : diag::warn_ns_attribute_wrong_parameter_type), 5098 /*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0); 5099 return; 5100 case RetainOwnershipKind::CF: 5101 handleSimpleAttributeOrDiagnose<CFConsumedAttr>( 5102 *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()), 5103 diag::warn_ns_attribute_wrong_parameter_type, 5104 /*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1); 5105 return; 5106 } 5107 } 5108 5109 static Sema::RetainOwnershipKind 5110 parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) { 5111 switch (AL.getKind()) { 5112 case ParsedAttr::AT_CFConsumed: 5113 case ParsedAttr::AT_CFReturnsRetained: 5114 case ParsedAttr::AT_CFReturnsNotRetained: 5115 return Sema::RetainOwnershipKind::CF; 5116 case ParsedAttr::AT_OSConsumesThis: 5117 case ParsedAttr::AT_OSConsumed: 5118 case ParsedAttr::AT_OSReturnsRetained: 5119 case ParsedAttr::AT_OSReturnsNotRetained: 5120 case ParsedAttr::AT_OSReturnsRetainedOnZero: 5121 case ParsedAttr::AT_OSReturnsRetainedOnNonZero: 5122 return Sema::RetainOwnershipKind::OS; 5123 case ParsedAttr::AT_NSConsumesSelf: 5124 case ParsedAttr::AT_NSConsumed: 5125 case ParsedAttr::AT_NSReturnsRetained: 5126 case ParsedAttr::AT_NSReturnsNotRetained: 5127 case ParsedAttr::AT_NSReturnsAutoreleased: 5128 return Sema::RetainOwnershipKind::NS; 5129 default: 5130 llvm_unreachable("Wrong argument supplied"); 5131 } 5132 } 5133 5134 bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) { 5135 if (isValidSubjectOfNSReturnsRetainedAttribute(QT)) 5136 return false; 5137 5138 Diag(Loc, diag::warn_ns_attribute_wrong_return_type) 5139 << "'ns_returns_retained'" << 0 << 0; 5140 return true; 5141 } 5142 5143 /// \return whether the parameter is a pointer to OSObject pointer. 5144 static bool isValidOSObjectOutParameter(const Decl *D) { 5145 const auto *PVD = dyn_cast<ParmVarDecl>(D); 5146 if (!PVD) 5147 return false; 5148 QualType QT = PVD->getType(); 5149 QualType PT = QT->getPointeeType(); 5150 return !PT.isNull() && isValidSubjectOfOSAttribute(PT); 5151 } 5152 5153 static void handleXReturnsXRetainedAttr(Sema &S, Decl *D, 5154 const ParsedAttr &AL) { 5155 QualType ReturnType; 5156 Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL); 5157 5158 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { 5159 ReturnType = MD->getReturnType(); 5160 } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) && 5161 (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) { 5162 return; // ignore: was handled as a type attribute 5163 } else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) { 5164 ReturnType = PD->getType(); 5165 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 5166 ReturnType = FD->getReturnType(); 5167 } else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) { 5168 // Attributes on parameters are used for out-parameters, 5169 // passed as pointers-to-pointers. 5170 unsigned DiagID = K == Sema::RetainOwnershipKind::CF 5171 ? /*pointer-to-CF-pointer*/2 5172 : /*pointer-to-OSObject-pointer*/3; 5173 ReturnType = Param->getType()->getPointeeType(); 5174 if (ReturnType.isNull()) { 5175 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type) 5176 << AL << DiagID << AL.getRange(); 5177 return; 5178 } 5179 } else if (AL.isUsedAsTypeAttr()) { 5180 return; 5181 } else { 5182 AttributeDeclKind ExpectedDeclKind; 5183 switch (AL.getKind()) { 5184 default: llvm_unreachable("invalid ownership attribute"); 5185 case ParsedAttr::AT_NSReturnsRetained: 5186 case ParsedAttr::AT_NSReturnsAutoreleased: 5187 case ParsedAttr::AT_NSReturnsNotRetained: 5188 ExpectedDeclKind = ExpectedFunctionOrMethod; 5189 break; 5190 5191 case ParsedAttr::AT_OSReturnsRetained: 5192 case ParsedAttr::AT_OSReturnsNotRetained: 5193 case ParsedAttr::AT_CFReturnsRetained: 5194 case ParsedAttr::AT_CFReturnsNotRetained: 5195 ExpectedDeclKind = ExpectedFunctionMethodOrParameter; 5196 break; 5197 } 5198 S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type) 5199 << AL.getRange() << AL << ExpectedDeclKind; 5200 return; 5201 } 5202 5203 bool TypeOK; 5204 bool Cf; 5205 unsigned ParmDiagID = 2; // Pointer-to-CF-pointer 5206 switch (AL.getKind()) { 5207 default: llvm_unreachable("invalid ownership attribute"); 5208 case ParsedAttr::AT_NSReturnsRetained: 5209 TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType); 5210 Cf = false; 5211 break; 5212 5213 case ParsedAttr::AT_NSReturnsAutoreleased: 5214 case ParsedAttr::AT_NSReturnsNotRetained: 5215 TypeOK = isValidSubjectOfNSAttribute(ReturnType); 5216 Cf = false; 5217 break; 5218 5219 case ParsedAttr::AT_CFReturnsRetained: 5220 case ParsedAttr::AT_CFReturnsNotRetained: 5221 TypeOK = isValidSubjectOfCFAttribute(ReturnType); 5222 Cf = true; 5223 break; 5224 5225 case ParsedAttr::AT_OSReturnsRetained: 5226 case ParsedAttr::AT_OSReturnsNotRetained: 5227 TypeOK = isValidSubjectOfOSAttribute(ReturnType); 5228 Cf = true; 5229 ParmDiagID = 3; // Pointer-to-OSObject-pointer 5230 break; 5231 } 5232 5233 if (!TypeOK) { 5234 if (AL.isUsedAsTypeAttr()) 5235 return; 5236 5237 if (isa<ParmVarDecl>(D)) { 5238 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type) 5239 << AL << ParmDiagID << AL.getRange(); 5240 } else { 5241 // Needs to be kept in sync with warn_ns_attribute_wrong_return_type. 5242 enum : unsigned { 5243 Function, 5244 Method, 5245 Property 5246 } SubjectKind = Function; 5247 if (isa<ObjCMethodDecl>(D)) 5248 SubjectKind = Method; 5249 else if (isa<ObjCPropertyDecl>(D)) 5250 SubjectKind = Property; 5251 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type) 5252 << AL << SubjectKind << Cf << AL.getRange(); 5253 } 5254 return; 5255 } 5256 5257 switch (AL.getKind()) { 5258 default: 5259 llvm_unreachable("invalid ownership attribute"); 5260 case ParsedAttr::AT_NSReturnsAutoreleased: 5261 handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL); 5262 return; 5263 case ParsedAttr::AT_CFReturnsNotRetained: 5264 handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL); 5265 return; 5266 case ParsedAttr::AT_NSReturnsNotRetained: 5267 handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL); 5268 return; 5269 case ParsedAttr::AT_CFReturnsRetained: 5270 handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL); 5271 return; 5272 case ParsedAttr::AT_NSReturnsRetained: 5273 handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL); 5274 return; 5275 case ParsedAttr::AT_OSReturnsRetained: 5276 handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL); 5277 return; 5278 case ParsedAttr::AT_OSReturnsNotRetained: 5279 handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL); 5280 return; 5281 }; 5282 } 5283 5284 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D, 5285 const ParsedAttr &Attrs) { 5286 const int EP_ObjCMethod = 1; 5287 const int EP_ObjCProperty = 2; 5288 5289 SourceLocation loc = Attrs.getLoc(); 5290 QualType resultType; 5291 if (isa<ObjCMethodDecl>(D)) 5292 resultType = cast<ObjCMethodDecl>(D)->getReturnType(); 5293 else 5294 resultType = cast<ObjCPropertyDecl>(D)->getType(); 5295 5296 if (!resultType->isReferenceType() && 5297 (!resultType->isPointerType() || resultType->isObjCRetainableType())) { 5298 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type) 5299 << SourceRange(loc) << Attrs 5300 << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty) 5301 << /*non-retainable pointer*/ 2; 5302 5303 // Drop the attribute. 5304 return; 5305 } 5306 5307 D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs)); 5308 } 5309 5310 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D, 5311 const ParsedAttr &Attrs) { 5312 const auto *Method = cast<ObjCMethodDecl>(D); 5313 5314 const DeclContext *DC = Method->getDeclContext(); 5315 if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) { 5316 S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs 5317 << 0; 5318 S.Diag(PDecl->getLocation(), diag::note_protocol_decl); 5319 return; 5320 } 5321 if (Method->getMethodFamily() == OMF_dealloc) { 5322 S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs 5323 << 1; 5324 return; 5325 } 5326 5327 D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs)); 5328 } 5329 5330 static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5331 IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr; 5332 5333 if (!Parm) { 5334 S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; 5335 return; 5336 } 5337 5338 // Typedefs only allow objc_bridge(id) and have some additional checking. 5339 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { 5340 if (!Parm->Ident->isStr("id")) { 5341 S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL; 5342 return; 5343 } 5344 5345 // Only allow 'cv void *'. 5346 QualType T = TD->getUnderlyingType(); 5347 if (!T->isVoidPointerType()) { 5348 S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer); 5349 return; 5350 } 5351 } 5352 5353 D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident)); 5354 } 5355 5356 static void handleObjCBridgeMutableAttr(Sema &S, Decl *D, 5357 const ParsedAttr &AL) { 5358 IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr; 5359 5360 if (!Parm) { 5361 S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; 5362 return; 5363 } 5364 5365 D->addAttr(::new (S.Context) 5366 ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident)); 5367 } 5368 5369 static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D, 5370 const ParsedAttr &AL) { 5371 IdentifierInfo *RelatedClass = 5372 AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr; 5373 if (!RelatedClass) { 5374 S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; 5375 return; 5376 } 5377 IdentifierInfo *ClassMethod = 5378 AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr; 5379 IdentifierInfo *InstanceMethod = 5380 AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr; 5381 D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr( 5382 S.Context, AL, RelatedClass, ClassMethod, InstanceMethod)); 5383 } 5384 5385 static void handleObjCDesignatedInitializer(Sema &S, Decl *D, 5386 const ParsedAttr &AL) { 5387 DeclContext *Ctx = D->getDeclContext(); 5388 5389 // This attribute can only be applied to methods in interfaces or class 5390 // extensions. 5391 if (!isa<ObjCInterfaceDecl>(Ctx) && 5392 !(isa<ObjCCategoryDecl>(Ctx) && 5393 cast<ObjCCategoryDecl>(Ctx)->IsClassExtension())) { 5394 S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init); 5395 return; 5396 } 5397 5398 ObjCInterfaceDecl *IFace; 5399 if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Ctx)) 5400 IFace = CatDecl->getClassInterface(); 5401 else 5402 IFace = cast<ObjCInterfaceDecl>(Ctx); 5403 5404 if (!IFace) 5405 return; 5406 5407 IFace->setHasDesignatedInitializers(); 5408 D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL)); 5409 } 5410 5411 static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) { 5412 StringRef MetaDataName; 5413 if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName)) 5414 return; 5415 D->addAttr(::new (S.Context) 5416 ObjCRuntimeNameAttr(S.Context, AL, MetaDataName)); 5417 } 5418 5419 // When a user wants to use objc_boxable with a union or struct 5420 // but they don't have access to the declaration (legacy/third-party code) 5421 // then they can 'enable' this feature with a typedef: 5422 // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct; 5423 static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) { 5424 bool notify = false; 5425 5426 auto *RD = dyn_cast<RecordDecl>(D); 5427 if (RD && RD->getDefinition()) { 5428 RD = RD->getDefinition(); 5429 notify = true; 5430 } 5431 5432 if (RD) { 5433 ObjCBoxableAttr *BoxableAttr = 5434 ::new (S.Context) ObjCBoxableAttr(S.Context, AL); 5435 RD->addAttr(BoxableAttr); 5436 if (notify) { 5437 // we need to notify ASTReader/ASTWriter about 5438 // modification of existing declaration 5439 if (ASTMutationListener *L = S.getASTMutationListener()) 5440 L->AddedAttributeToRecord(BoxableAttr, RD); 5441 } 5442 } 5443 } 5444 5445 static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5446 if (hasDeclarator(D)) return; 5447 5448 S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type) 5449 << AL.getRange() << AL << ExpectedVariable; 5450 } 5451 5452 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D, 5453 const ParsedAttr &AL) { 5454 const auto *VD = cast<ValueDecl>(D); 5455 QualType QT = VD->getType(); 5456 5457 if (!QT->isDependentType() && 5458 !QT->isObjCLifetimeType()) { 5459 S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type) 5460 << QT; 5461 return; 5462 } 5463 5464 Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime(); 5465 5466 // If we have no lifetime yet, check the lifetime we're presumably 5467 // going to infer. 5468 if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType()) 5469 Lifetime = QT->getObjCARCImplicitLifetime(); 5470 5471 switch (Lifetime) { 5472 case Qualifiers::OCL_None: 5473 assert(QT->isDependentType() && 5474 "didn't infer lifetime for non-dependent type?"); 5475 break; 5476 5477 case Qualifiers::OCL_Weak: // meaningful 5478 case Qualifiers::OCL_Strong: // meaningful 5479 break; 5480 5481 case Qualifiers::OCL_ExplicitNone: 5482 case Qualifiers::OCL_Autoreleasing: 5483 S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless) 5484 << (Lifetime == Qualifiers::OCL_Autoreleasing); 5485 break; 5486 } 5487 5488 D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL)); 5489 } 5490 5491 //===----------------------------------------------------------------------===// 5492 // Microsoft specific attribute handlers. 5493 //===----------------------------------------------------------------------===// 5494 5495 UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, 5496 StringRef UuidAsWritten, MSGuidDecl *GuidDecl) { 5497 if (const auto *UA = D->getAttr<UuidAttr>()) { 5498 if (declaresSameEntity(UA->getGuidDecl(), GuidDecl)) 5499 return nullptr; 5500 if (!UA->getGuid().empty()) { 5501 Diag(UA->getLocation(), diag::err_mismatched_uuid); 5502 Diag(CI.getLoc(), diag::note_previous_uuid); 5503 D->dropAttr<UuidAttr>(); 5504 } 5505 } 5506 5507 return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl); 5508 } 5509 5510 static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5511 if (!S.LangOpts.CPlusPlus) { 5512 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) 5513 << AL << AttributeLangSupport::C; 5514 return; 5515 } 5516 5517 StringRef OrigStrRef; 5518 SourceLocation LiteralLoc; 5519 if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc)) 5520 return; 5521 5522 // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or 5523 // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former. 5524 StringRef StrRef = OrigStrRef; 5525 if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}') 5526 StrRef = StrRef.drop_front().drop_back(); 5527 5528 // Validate GUID length. 5529 if (StrRef.size() != 36) { 5530 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); 5531 return; 5532 } 5533 5534 for (unsigned i = 0; i < 36; ++i) { 5535 if (i == 8 || i == 13 || i == 18 || i == 23) { 5536 if (StrRef[i] != '-') { 5537 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); 5538 return; 5539 } 5540 } else if (!isHexDigit(StrRef[i])) { 5541 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); 5542 return; 5543 } 5544 } 5545 5546 // Convert to our parsed format and canonicalize. 5547 MSGuidDecl::Parts Parsed; 5548 StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1); 5549 StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2); 5550 StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3); 5551 for (unsigned i = 0; i != 8; ++i) 5552 StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2) 5553 .getAsInteger(16, Parsed.Part4And5[i]); 5554 MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed); 5555 5556 // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's 5557 // the only thing in the [] list, the [] too), and add an insertion of 5558 // __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas 5559 // separating attributes nor of the [ and the ] are in the AST. 5560 // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc" 5561 // on cfe-dev. 5562 if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling. 5563 S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated); 5564 5565 UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid); 5566 if (UA) 5567 D->addAttr(UA); 5568 } 5569 5570 static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5571 if (!S.LangOpts.CPlusPlus) { 5572 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) 5573 << AL << AttributeLangSupport::C; 5574 return; 5575 } 5576 MSInheritanceAttr *IA = S.mergeMSInheritanceAttr( 5577 D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling()); 5578 if (IA) { 5579 D->addAttr(IA); 5580 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); 5581 } 5582 } 5583 5584 static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5585 const auto *VD = cast<VarDecl>(D); 5586 if (!S.Context.getTargetInfo().isTLSSupported()) { 5587 S.Diag(AL.getLoc(), diag::err_thread_unsupported); 5588 return; 5589 } 5590 if (VD->getTSCSpec() != TSCS_unspecified) { 5591 S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable); 5592 return; 5593 } 5594 if (VD->hasLocalStorage()) { 5595 S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)"; 5596 return; 5597 } 5598 D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL)); 5599 } 5600 5601 static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5602 SmallVector<StringRef, 4> Tags; 5603 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { 5604 StringRef Tag; 5605 if (!S.checkStringLiteralArgumentAttr(AL, I, Tag)) 5606 return; 5607 Tags.push_back(Tag); 5608 } 5609 5610 if (const auto *NS = dyn_cast<NamespaceDecl>(D)) { 5611 if (!NS->isInline()) { 5612 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0; 5613 return; 5614 } 5615 if (NS->isAnonymousNamespace()) { 5616 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1; 5617 return; 5618 } 5619 if (AL.getNumArgs() == 0) 5620 Tags.push_back(NS->getName()); 5621 } else if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 5622 return; 5623 5624 // Store tags sorted and without duplicates. 5625 llvm::sort(Tags); 5626 Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end()); 5627 5628 D->addAttr(::new (S.Context) 5629 AbiTagAttr(S.Context, AL, Tags.data(), Tags.size())); 5630 } 5631 5632 static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5633 // Check the attribute arguments. 5634 if (AL.getNumArgs() > 1) { 5635 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; 5636 return; 5637 } 5638 5639 StringRef Str; 5640 SourceLocation ArgLoc; 5641 5642 if (AL.getNumArgs() == 0) 5643 Str = ""; 5644 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) 5645 return; 5646 5647 ARMInterruptAttr::InterruptType Kind; 5648 if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { 5649 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str 5650 << ArgLoc; 5651 return; 5652 } 5653 5654 D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind)); 5655 } 5656 5657 static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5658 // MSP430 'interrupt' attribute is applied to 5659 // a function with no parameters and void return type. 5660 if (!isFunctionOrMethod(D)) { 5661 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) 5662 << "'interrupt'" << ExpectedFunctionOrMethod; 5663 return; 5664 } 5665 5666 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { 5667 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) 5668 << /*MSP430*/ 1 << 0; 5669 return; 5670 } 5671 5672 if (!getFunctionOrMethodResultType(D)->isVoidType()) { 5673 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) 5674 << /*MSP430*/ 1 << 1; 5675 return; 5676 } 5677 5678 // The attribute takes one integer argument. 5679 if (!checkAttributeNumArgs(S, AL, 1)) 5680 return; 5681 5682 if (!AL.isArgExpr(0)) { 5683 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 5684 << AL << AANT_ArgumentIntegerConstant; 5685 return; 5686 } 5687 5688 Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0)); 5689 llvm::APSInt NumParams(32); 5690 if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) { 5691 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 5692 << AL << AANT_ArgumentIntegerConstant 5693 << NumParamsExpr->getSourceRange(); 5694 return; 5695 } 5696 // The argument should be in range 0..63. 5697 unsigned Num = NumParams.getLimitedValue(255); 5698 if (Num > 63) { 5699 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) 5700 << AL << (int)NumParams.getSExtValue() 5701 << NumParamsExpr->getSourceRange(); 5702 return; 5703 } 5704 5705 D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num)); 5706 D->addAttr(UsedAttr::CreateImplicit(S.Context)); 5707 } 5708 5709 static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5710 // Only one optional argument permitted. 5711 if (AL.getNumArgs() > 1) { 5712 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; 5713 return; 5714 } 5715 5716 StringRef Str; 5717 SourceLocation ArgLoc; 5718 5719 if (AL.getNumArgs() == 0) 5720 Str = ""; 5721 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) 5722 return; 5723 5724 // Semantic checks for a function with the 'interrupt' attribute for MIPS: 5725 // a) Must be a function. 5726 // b) Must have no parameters. 5727 // c) Must have the 'void' return type. 5728 // d) Cannot have the 'mips16' attribute, as that instruction set 5729 // lacks the 'eret' instruction. 5730 // e) The attribute itself must either have no argument or one of the 5731 // valid interrupt types, see [MipsInterruptDocs]. 5732 5733 if (!isFunctionOrMethod(D)) { 5734 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) 5735 << "'interrupt'" << ExpectedFunctionOrMethod; 5736 return; 5737 } 5738 5739 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { 5740 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) 5741 << /*MIPS*/ 0 << 0; 5742 return; 5743 } 5744 5745 if (!getFunctionOrMethodResultType(D)->isVoidType()) { 5746 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) 5747 << /*MIPS*/ 0 << 1; 5748 return; 5749 } 5750 5751 if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL)) 5752 return; 5753 5754 MipsInterruptAttr::InterruptType Kind; 5755 if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { 5756 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) 5757 << AL << "'" + std::string(Str) + "'"; 5758 return; 5759 } 5760 5761 D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind)); 5762 } 5763 5764 static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5765 // Semantic checks for a function with the 'interrupt' attribute. 5766 // a) Must be a function. 5767 // b) Must have the 'void' return type. 5768 // c) Must take 1 or 2 arguments. 5769 // d) The 1st argument must be a pointer. 5770 // e) The 2nd argument (if any) must be an unsigned integer. 5771 if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) || 5772 CXXMethodDecl::isStaticOverloadedOperator( 5773 cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) { 5774 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) 5775 << AL << ExpectedFunctionWithProtoType; 5776 return; 5777 } 5778 // Interrupt handler must have void return type. 5779 if (!getFunctionOrMethodResultType(D)->isVoidType()) { 5780 S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(), 5781 diag::err_anyx86_interrupt_attribute) 5782 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 5783 ? 0 5784 : 1) 5785 << 0; 5786 return; 5787 } 5788 // Interrupt handler must have 1 or 2 parameters. 5789 unsigned NumParams = getFunctionOrMethodNumParams(D); 5790 if (NumParams < 1 || NumParams > 2) { 5791 S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute) 5792 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 5793 ? 0 5794 : 1) 5795 << 1; 5796 return; 5797 } 5798 // The first argument must be a pointer. 5799 if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) { 5800 S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(), 5801 diag::err_anyx86_interrupt_attribute) 5802 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 5803 ? 0 5804 : 1) 5805 << 2; 5806 return; 5807 } 5808 // The second argument, if present, must be an unsigned integer. 5809 unsigned TypeSize = 5810 S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64 5811 ? 64 5812 : 32; 5813 if (NumParams == 2 && 5814 (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() || 5815 S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) { 5816 S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(), 5817 diag::err_anyx86_interrupt_attribute) 5818 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 5819 ? 0 5820 : 1) 5821 << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false); 5822 return; 5823 } 5824 D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL)); 5825 D->addAttr(UsedAttr::CreateImplicit(S.Context)); 5826 } 5827 5828 static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5829 if (!isFunctionOrMethod(D)) { 5830 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) 5831 << "'interrupt'" << ExpectedFunction; 5832 return; 5833 } 5834 5835 if (!checkAttributeNumArgs(S, AL, 0)) 5836 return; 5837 5838 handleSimpleAttribute<AVRInterruptAttr>(S, D, AL); 5839 } 5840 5841 static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5842 if (!isFunctionOrMethod(D)) { 5843 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) 5844 << "'signal'" << ExpectedFunction; 5845 return; 5846 } 5847 5848 if (!checkAttributeNumArgs(S, AL, 0)) 5849 return; 5850 5851 handleSimpleAttribute<AVRSignalAttr>(S, D, AL); 5852 } 5853 5854 static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) { 5855 // Add preserve_access_index attribute to all fields and inner records. 5856 for (auto D : RD->decls()) { 5857 if (D->hasAttr<BPFPreserveAccessIndexAttr>()) 5858 continue; 5859 5860 D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context)); 5861 if (auto *Rec = dyn_cast<RecordDecl>(D)) 5862 handleBPFPreserveAIRecord(S, Rec); 5863 } 5864 } 5865 5866 static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D, 5867 const ParsedAttr &AL) { 5868 auto *Rec = cast<RecordDecl>(D); 5869 handleBPFPreserveAIRecord(S, Rec); 5870 Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL)); 5871 } 5872 5873 static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5874 if (!isFunctionOrMethod(D)) { 5875 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) 5876 << "'export_name'" << ExpectedFunction; 5877 return; 5878 } 5879 5880 auto *FD = cast<FunctionDecl>(D); 5881 if (FD->isThisDeclarationADefinition()) { 5882 S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0; 5883 return; 5884 } 5885 5886 StringRef Str; 5887 SourceLocation ArgLoc; 5888 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) 5889 return; 5890 5891 D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str)); 5892 D->addAttr(UsedAttr::CreateImplicit(S.Context)); 5893 } 5894 5895 WebAssemblyImportModuleAttr * 5896 Sema::mergeImportModuleAttr(Decl *D, const WebAssemblyImportModuleAttr &AL) { 5897 auto *FD = cast<FunctionDecl>(D); 5898 5899 if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 5900 if (ExistingAttr->getImportModule() == AL.getImportModule()) 5901 return nullptr; 5902 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 0 5903 << ExistingAttr->getImportModule() << AL.getImportModule(); 5904 Diag(AL.getLoc(), diag::note_previous_attribute); 5905 return nullptr; 5906 } 5907 if (FD->hasBody()) { 5908 Diag(AL.getLoc(), diag::warn_import_on_definition) << 0; 5909 return nullptr; 5910 } 5911 return ::new (Context) WebAssemblyImportModuleAttr(Context, AL, 5912 AL.getImportModule()); 5913 } 5914 5915 WebAssemblyImportNameAttr * 5916 Sema::mergeImportNameAttr(Decl *D, const WebAssemblyImportNameAttr &AL) { 5917 auto *FD = cast<FunctionDecl>(D); 5918 5919 if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportNameAttr>()) { 5920 if (ExistingAttr->getImportName() == AL.getImportName()) 5921 return nullptr; 5922 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 1 5923 << ExistingAttr->getImportName() << AL.getImportName(); 5924 Diag(AL.getLoc(), diag::note_previous_attribute); 5925 return nullptr; 5926 } 5927 if (FD->hasBody()) { 5928 Diag(AL.getLoc(), diag::warn_import_on_definition) << 1; 5929 return nullptr; 5930 } 5931 return ::new (Context) WebAssemblyImportNameAttr(Context, AL, 5932 AL.getImportName()); 5933 } 5934 5935 static void 5936 handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5937 auto *FD = cast<FunctionDecl>(D); 5938 5939 StringRef Str; 5940 SourceLocation ArgLoc; 5941 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) 5942 return; 5943 if (FD->hasBody()) { 5944 S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 0; 5945 return; 5946 } 5947 5948 FD->addAttr(::new (S.Context) 5949 WebAssemblyImportModuleAttr(S.Context, AL, Str)); 5950 } 5951 5952 static void 5953 handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5954 auto *FD = cast<FunctionDecl>(D); 5955 5956 StringRef Str; 5957 SourceLocation ArgLoc; 5958 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) 5959 return; 5960 if (FD->hasBody()) { 5961 S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 1; 5962 return; 5963 } 5964 5965 FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str)); 5966 } 5967 5968 static void handleRISCVInterruptAttr(Sema &S, Decl *D, 5969 const ParsedAttr &AL) { 5970 // Warn about repeated attributes. 5971 if (const auto *A = D->getAttr<RISCVInterruptAttr>()) { 5972 S.Diag(AL.getRange().getBegin(), 5973 diag::warn_riscv_repeated_interrupt_attribute); 5974 S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute); 5975 return; 5976 } 5977 5978 // Check the attribute argument. Argument is optional. 5979 if (!checkAttributeAtMostNumArgs(S, AL, 1)) 5980 return; 5981 5982 StringRef Str; 5983 SourceLocation ArgLoc; 5984 5985 // 'machine'is the default interrupt mode. 5986 if (AL.getNumArgs() == 0) 5987 Str = "machine"; 5988 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) 5989 return; 5990 5991 // Semantic checks for a function with the 'interrupt' attribute: 5992 // - Must be a function. 5993 // - Must have no parameters. 5994 // - Must have the 'void' return type. 5995 // - The attribute itself must either have no argument or one of the 5996 // valid interrupt types, see [RISCVInterruptDocs]. 5997 5998 if (D->getFunctionType() == nullptr) { 5999 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) 6000 << "'interrupt'" << ExpectedFunction; 6001 return; 6002 } 6003 6004 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { 6005 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) 6006 << /*RISC-V*/ 2 << 0; 6007 return; 6008 } 6009 6010 if (!getFunctionOrMethodResultType(D)->isVoidType()) { 6011 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) 6012 << /*RISC-V*/ 2 << 1; 6013 return; 6014 } 6015 6016 RISCVInterruptAttr::InterruptType Kind; 6017 if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { 6018 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str 6019 << ArgLoc; 6020 return; 6021 } 6022 6023 D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind)); 6024 } 6025 6026 static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6027 // Dispatch the interrupt attribute based on the current target. 6028 switch (S.Context.getTargetInfo().getTriple().getArch()) { 6029 case llvm::Triple::msp430: 6030 handleMSP430InterruptAttr(S, D, AL); 6031 break; 6032 case llvm::Triple::mipsel: 6033 case llvm::Triple::mips: 6034 handleMipsInterruptAttr(S, D, AL); 6035 break; 6036 case llvm::Triple::x86: 6037 case llvm::Triple::x86_64: 6038 handleAnyX86InterruptAttr(S, D, AL); 6039 break; 6040 case llvm::Triple::avr: 6041 handleAVRInterruptAttr(S, D, AL); 6042 break; 6043 case llvm::Triple::riscv32: 6044 case llvm::Triple::riscv64: 6045 handleRISCVInterruptAttr(S, D, AL); 6046 break; 6047 default: 6048 handleARMInterruptAttr(S, D, AL); 6049 break; 6050 } 6051 } 6052 6053 static bool 6054 checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr, 6055 const AMDGPUFlatWorkGroupSizeAttr &Attr) { 6056 // Accept template arguments for now as they depend on something else. 6057 // We'll get to check them when they eventually get instantiated. 6058 if (MinExpr->isValueDependent() || MaxExpr->isValueDependent()) 6059 return false; 6060 6061 uint32_t Min = 0; 6062 if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0)) 6063 return true; 6064 6065 uint32_t Max = 0; 6066 if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1)) 6067 return true; 6068 6069 if (Min == 0 && Max != 0) { 6070 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) 6071 << &Attr << 0; 6072 return true; 6073 } 6074 if (Min > Max) { 6075 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) 6076 << &Attr << 1; 6077 return true; 6078 } 6079 6080 return false; 6081 } 6082 6083 void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D, 6084 const AttributeCommonInfo &CI, 6085 Expr *MinExpr, Expr *MaxExpr) { 6086 AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr); 6087 6088 if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr)) 6089 return; 6090 6091 D->addAttr(::new (Context) 6092 AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr)); 6093 } 6094 6095 static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D, 6096 const ParsedAttr &AL) { 6097 Expr *MinExpr = AL.getArgAsExpr(0); 6098 Expr *MaxExpr = AL.getArgAsExpr(1); 6099 6100 S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr); 6101 } 6102 6103 static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr, 6104 Expr *MaxExpr, 6105 const AMDGPUWavesPerEUAttr &Attr) { 6106 if (S.DiagnoseUnexpandedParameterPack(MinExpr) || 6107 (MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr))) 6108 return true; 6109 6110 // Accept template arguments for now as they depend on something else. 6111 // We'll get to check them when they eventually get instantiated. 6112 if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent())) 6113 return false; 6114 6115 uint32_t Min = 0; 6116 if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0)) 6117 return true; 6118 6119 uint32_t Max = 0; 6120 if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1)) 6121 return true; 6122 6123 if (Min == 0 && Max != 0) { 6124 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) 6125 << &Attr << 0; 6126 return true; 6127 } 6128 if (Max != 0 && Min > Max) { 6129 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) 6130 << &Attr << 1; 6131 return true; 6132 } 6133 6134 return false; 6135 } 6136 6137 void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI, 6138 Expr *MinExpr, Expr *MaxExpr) { 6139 AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr); 6140 6141 if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr)) 6142 return; 6143 6144 D->addAttr(::new (Context) 6145 AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr)); 6146 } 6147 6148 static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6149 if (!checkAttributeAtLeastNumArgs(S, AL, 1) || 6150 !checkAttributeAtMostNumArgs(S, AL, 2)) 6151 return; 6152 6153 Expr *MinExpr = AL.getArgAsExpr(0); 6154 Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr; 6155 6156 S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr); 6157 } 6158 6159 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6160 uint32_t NumSGPR = 0; 6161 Expr *NumSGPRExpr = AL.getArgAsExpr(0); 6162 if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR)) 6163 return; 6164 6165 D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR)); 6166 } 6167 6168 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6169 uint32_t NumVGPR = 0; 6170 Expr *NumVGPRExpr = AL.getArgAsExpr(0); 6171 if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR)) 6172 return; 6173 6174 D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR)); 6175 } 6176 6177 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D, 6178 const ParsedAttr &AL) { 6179 // If we try to apply it to a function pointer, don't warn, but don't 6180 // do anything, either. It doesn't matter anyway, because there's nothing 6181 // special about calling a force_align_arg_pointer function. 6182 const auto *VD = dyn_cast<ValueDecl>(D); 6183 if (VD && VD->getType()->isFunctionPointerType()) 6184 return; 6185 // Also don't warn on function pointer typedefs. 6186 const auto *TD = dyn_cast<TypedefNameDecl>(D); 6187 if (TD && (TD->getUnderlyingType()->isFunctionPointerType() || 6188 TD->getUnderlyingType()->isFunctionType())) 6189 return; 6190 // Attribute can only be applied to function types. 6191 if (!isa<FunctionDecl>(D)) { 6192 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) 6193 << AL << ExpectedFunction; 6194 return; 6195 } 6196 6197 D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL)); 6198 } 6199 6200 static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) { 6201 uint32_t Version; 6202 Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0)); 6203 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version)) 6204 return; 6205 6206 // TODO: Investigate what happens with the next major version of MSVC. 6207 if (Version != LangOptions::MSVC2015 / 100) { 6208 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) 6209 << AL << Version << VersionExpr->getSourceRange(); 6210 return; 6211 } 6212 6213 // The attribute expects a "major" version number like 19, but new versions of 6214 // MSVC have moved to updating the "minor", or less significant numbers, so we 6215 // have to multiply by 100 now. 6216 Version *= 100; 6217 6218 D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version)); 6219 } 6220 6221 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, 6222 const AttributeCommonInfo &CI) { 6223 if (D->hasAttr<DLLExportAttr>()) { 6224 Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'"; 6225 return nullptr; 6226 } 6227 6228 if (D->hasAttr<DLLImportAttr>()) 6229 return nullptr; 6230 6231 return ::new (Context) DLLImportAttr(Context, CI); 6232 } 6233 6234 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, 6235 const AttributeCommonInfo &CI) { 6236 if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) { 6237 Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import; 6238 D->dropAttr<DLLImportAttr>(); 6239 } 6240 6241 if (D->hasAttr<DLLExportAttr>()) 6242 return nullptr; 6243 6244 return ::new (Context) DLLExportAttr(Context, CI); 6245 } 6246 6247 static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) { 6248 if (isa<ClassTemplatePartialSpecializationDecl>(D) && 6249 S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 6250 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A; 6251 return; 6252 } 6253 6254 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 6255 if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport && 6256 !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 6257 // MinGW doesn't allow dllimport on inline functions. 6258 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline) 6259 << A; 6260 return; 6261 } 6262 } 6263 6264 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 6265 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() && 6266 MD->getParent()->isLambda()) { 6267 S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A; 6268 return; 6269 } 6270 } 6271 6272 Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport 6273 ? (Attr *)S.mergeDLLExportAttr(D, A) 6274 : (Attr *)S.mergeDLLImportAttr(D, A); 6275 if (NewAttr) 6276 D->addAttr(NewAttr); 6277 } 6278 6279 MSInheritanceAttr * 6280 Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI, 6281 bool BestCase, 6282 MSInheritanceModel Model) { 6283 if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) { 6284 if (IA->getInheritanceModel() == Model) 6285 return nullptr; 6286 Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance) 6287 << 1 /*previous declaration*/; 6288 Diag(CI.getLoc(), diag::note_previous_ms_inheritance); 6289 D->dropAttr<MSInheritanceAttr>(); 6290 } 6291 6292 auto *RD = cast<CXXRecordDecl>(D); 6293 if (RD->hasDefinition()) { 6294 if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase, 6295 Model)) { 6296 return nullptr; 6297 } 6298 } else { 6299 if (isa<ClassTemplatePartialSpecializationDecl>(RD)) { 6300 Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance) 6301 << 1 /*partial specialization*/; 6302 return nullptr; 6303 } 6304 if (RD->getDescribedClassTemplate()) { 6305 Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance) 6306 << 0 /*primary template*/; 6307 return nullptr; 6308 } 6309 } 6310 6311 return ::new (Context) MSInheritanceAttr(Context, CI, BestCase); 6312 } 6313 6314 static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6315 // The capability attributes take a single string parameter for the name of 6316 // the capability they represent. The lockable attribute does not take any 6317 // parameters. However, semantically, both attributes represent the same 6318 // concept, and so they use the same semantic attribute. Eventually, the 6319 // lockable attribute will be removed. 6320 // 6321 // For backward compatibility, any capability which has no specified string 6322 // literal will be considered a "mutex." 6323 StringRef N("mutex"); 6324 SourceLocation LiteralLoc; 6325 if (AL.getKind() == ParsedAttr::AT_Capability && 6326 !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc)) 6327 return; 6328 6329 D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N)); 6330 } 6331 6332 static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6333 SmallVector<Expr*, 1> Args; 6334 if (!checkLockFunAttrCommon(S, D, AL, Args)) 6335 return; 6336 6337 D->addAttr(::new (S.Context) 6338 AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size())); 6339 } 6340 6341 static void handleAcquireCapabilityAttr(Sema &S, Decl *D, 6342 const ParsedAttr &AL) { 6343 SmallVector<Expr*, 1> Args; 6344 if (!checkLockFunAttrCommon(S, D, AL, Args)) 6345 return; 6346 6347 D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(), 6348 Args.size())); 6349 } 6350 6351 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D, 6352 const ParsedAttr &AL) { 6353 SmallVector<Expr*, 2> Args; 6354 if (!checkTryLockFunAttrCommon(S, D, AL, Args)) 6355 return; 6356 6357 D->addAttr(::new (S.Context) TryAcquireCapabilityAttr( 6358 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); 6359 } 6360 6361 static void handleReleaseCapabilityAttr(Sema &S, Decl *D, 6362 const ParsedAttr &AL) { 6363 // Check that all arguments are lockable objects. 6364 SmallVector<Expr *, 1> Args; 6365 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true); 6366 6367 D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(), 6368 Args.size())); 6369 } 6370 6371 static void handleRequiresCapabilityAttr(Sema &S, Decl *D, 6372 const ParsedAttr &AL) { 6373 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 6374 return; 6375 6376 // check that all arguments are lockable objects 6377 SmallVector<Expr*, 1> Args; 6378 checkAttrArgsAreCapabilityObjs(S, D, AL, Args); 6379 if (Args.empty()) 6380 return; 6381 6382 RequiresCapabilityAttr *RCA = ::new (S.Context) 6383 RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size()); 6384 6385 D->addAttr(RCA); 6386 } 6387 6388 static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6389 if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) { 6390 if (NSD->isAnonymousNamespace()) { 6391 S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace); 6392 // Do not want to attach the attribute to the namespace because that will 6393 // cause confusing diagnostic reports for uses of declarations within the 6394 // namespace. 6395 return; 6396 } 6397 } 6398 6399 // Handle the cases where the attribute has a text message. 6400 StringRef Str, Replacement; 6401 if (AL.isArgExpr(0) && AL.getArgAsExpr(0) && 6402 !S.checkStringLiteralArgumentAttr(AL, 0, Str)) 6403 return; 6404 6405 // Only support a single optional message for Declspec and CXX11. 6406 if (AL.isDeclspecAttribute() || AL.isCXX11Attribute()) 6407 checkAttributeAtMostNumArgs(S, AL, 1); 6408 else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) && 6409 !S.checkStringLiteralArgumentAttr(AL, 1, Replacement)) 6410 return; 6411 6412 if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope()) 6413 S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL; 6414 6415 D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement)); 6416 } 6417 6418 static bool isGlobalVar(const Decl *D) { 6419 if (const auto *S = dyn_cast<VarDecl>(D)) 6420 return S->hasGlobalStorage(); 6421 return false; 6422 } 6423 6424 static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6425 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 6426 return; 6427 6428 std::vector<StringRef> Sanitizers; 6429 6430 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { 6431 StringRef SanitizerName; 6432 SourceLocation LiteralLoc; 6433 6434 if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc)) 6435 return; 6436 6437 if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) == 6438 SanitizerMask()) 6439 S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName; 6440 else if (isGlobalVar(D) && SanitizerName != "address") 6441 S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) 6442 << AL << ExpectedFunctionOrMethod; 6443 Sanitizers.push_back(SanitizerName); 6444 } 6445 6446 D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(), 6447 Sanitizers.size())); 6448 } 6449 6450 static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D, 6451 const ParsedAttr &AL) { 6452 StringRef AttrName = AL.getAttrName()->getName(); 6453 normalizeName(AttrName); 6454 StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName) 6455 .Case("no_address_safety_analysis", "address") 6456 .Case("no_sanitize_address", "address") 6457 .Case("no_sanitize_thread", "thread") 6458 .Case("no_sanitize_memory", "memory"); 6459 if (isGlobalVar(D) && SanitizerName != "address") 6460 S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) 6461 << AL << ExpectedFunction; 6462 6463 // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a 6464 // NoSanitizeAttr object; but we need to calculate the correct spelling list 6465 // index rather than incorrectly assume the index for NoSanitizeSpecificAttr 6466 // has the same spellings as the index for NoSanitizeAttr. We don't have a 6467 // general way to "translate" between the two, so this hack attempts to work 6468 // around the issue with hard-coded indicies. This is critical for calling 6469 // getSpelling() or prettyPrint() on the resulting semantic attribute object 6470 // without failing assertions. 6471 unsigned TranslatedSpellingIndex = 0; 6472 if (AL.isC2xAttribute() || AL.isCXX11Attribute()) 6473 TranslatedSpellingIndex = 1; 6474 6475 AttributeCommonInfo Info = AL; 6476 Info.setAttributeSpellingListIndex(TranslatedSpellingIndex); 6477 D->addAttr(::new (S.Context) 6478 NoSanitizeAttr(S.Context, Info, &SanitizerName, 1)); 6479 } 6480 6481 static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6482 if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL)) 6483 D->addAttr(Internal); 6484 } 6485 6486 static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6487 if (S.LangOpts.OpenCLVersion != 200) 6488 S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version) 6489 << AL << "2.0" << 0; 6490 else 6491 S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored) << AL 6492 << "2.0"; 6493 } 6494 6495 /// Handles semantic checking for features that are common to all attributes, 6496 /// such as checking whether a parameter was properly specified, or the correct 6497 /// number of arguments were passed, etc. 6498 static bool handleCommonAttributeFeatures(Sema &S, Decl *D, 6499 const ParsedAttr &AL) { 6500 // Several attributes carry different semantics than the parsing requires, so 6501 // those are opted out of the common argument checks. 6502 // 6503 // We also bail on unknown and ignored attributes because those are handled 6504 // as part of the target-specific handling logic. 6505 if (AL.getKind() == ParsedAttr::UnknownAttribute) 6506 return false; 6507 // Check whether the attribute requires specific language extensions to be 6508 // enabled. 6509 if (!AL.diagnoseLangOpts(S)) 6510 return true; 6511 // Check whether the attribute appertains to the given subject. 6512 if (!AL.diagnoseAppertainsTo(S, D)) 6513 return true; 6514 if (AL.hasCustomParsing()) 6515 return false; 6516 6517 if (AL.getMinArgs() == AL.getMaxArgs()) { 6518 // If there are no optional arguments, then checking for the argument count 6519 // is trivial. 6520 if (!checkAttributeNumArgs(S, AL, AL.getMinArgs())) 6521 return true; 6522 } else { 6523 // There are optional arguments, so checking is slightly more involved. 6524 if (AL.getMinArgs() && 6525 !checkAttributeAtLeastNumArgs(S, AL, AL.getMinArgs())) 6526 return true; 6527 else if (!AL.hasVariadicArg() && AL.getMaxArgs() && 6528 !checkAttributeAtMostNumArgs(S, AL, AL.getMaxArgs())) 6529 return true; 6530 } 6531 6532 if (S.CheckAttrTarget(AL)) 6533 return true; 6534 6535 return false; 6536 } 6537 6538 static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6539 if (D->isInvalidDecl()) 6540 return; 6541 6542 // Check if there is only one access qualifier. 6543 if (D->hasAttr<OpenCLAccessAttr>()) { 6544 if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() == 6545 AL.getSemanticSpelling()) { 6546 S.Diag(AL.getLoc(), diag::warn_duplicate_declspec) 6547 << AL.getAttrName()->getName() << AL.getRange(); 6548 } else { 6549 S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers) 6550 << D->getSourceRange(); 6551 D->setInvalidDecl(true); 6552 return; 6553 } 6554 } 6555 6556 // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that an 6557 // image object can be read and written. 6558 // OpenCL v2.0 s6.13.6 - A kernel cannot read from and write to the same pipe 6559 // object. Using the read_write (or __read_write) qualifier with the pipe 6560 // qualifier is a compilation error. 6561 if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) { 6562 const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr(); 6563 if (AL.getAttrName()->getName().find("read_write") != StringRef::npos) { 6564 if ((!S.getLangOpts().OpenCLCPlusPlus && 6565 S.getLangOpts().OpenCLVersion < 200) || 6566 DeclTy->isPipeType()) { 6567 S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write) 6568 << AL << PDecl->getType() << DeclTy->isImageType(); 6569 D->setInvalidDecl(true); 6570 return; 6571 } 6572 } 6573 } 6574 6575 D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL)); 6576 } 6577 6578 static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6579 // The 'sycl_kernel' attribute applies only to function templates. 6580 const auto *FD = cast<FunctionDecl>(D); 6581 const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate(); 6582 assert(FT && "Function template is expected"); 6583 6584 // Function template must have at least two template parameters. 6585 const TemplateParameterList *TL = FT->getTemplateParameters(); 6586 if (TL->size() < 2) { 6587 S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params); 6588 return; 6589 } 6590 6591 // Template parameters must be typenames. 6592 for (unsigned I = 0; I < 2; ++I) { 6593 const NamedDecl *TParam = TL->getParam(I); 6594 if (isa<NonTypeTemplateParmDecl>(TParam)) { 6595 S.Diag(FT->getLocation(), 6596 diag::warn_sycl_kernel_invalid_template_param_type); 6597 return; 6598 } 6599 } 6600 6601 // Function must have at least one argument. 6602 if (getFunctionOrMethodNumParams(D) != 1) { 6603 S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params); 6604 return; 6605 } 6606 6607 // Function must return void. 6608 QualType RetTy = getFunctionOrMethodResultType(D); 6609 if (!RetTy->isVoidType()) { 6610 S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type); 6611 return; 6612 } 6613 6614 handleSimpleAttribute<SYCLKernelAttr>(S, D, AL); 6615 } 6616 6617 static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) { 6618 if (!cast<VarDecl>(D)->hasGlobalStorage()) { 6619 S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var) 6620 << (A.getKind() == ParsedAttr::AT_AlwaysDestroy); 6621 return; 6622 } 6623 6624 if (A.getKind() == ParsedAttr::AT_AlwaysDestroy) 6625 handleSimpleAttributeWithExclusions<AlwaysDestroyAttr, NoDestroyAttr>(S, D, A); 6626 else 6627 handleSimpleAttributeWithExclusions<NoDestroyAttr, AlwaysDestroyAttr>(S, D, A); 6628 } 6629 6630 static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6631 assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic && 6632 "uninitialized is only valid on automatic duration variables"); 6633 D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL)); 6634 } 6635 6636 static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD, 6637 bool DiagnoseFailure) { 6638 QualType Ty = VD->getType(); 6639 if (!Ty->isObjCRetainableType()) { 6640 if (DiagnoseFailure) { 6641 S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained) 6642 << 0; 6643 } 6644 return false; 6645 } 6646 6647 Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime(); 6648 6649 // Sema::inferObjCARCLifetime must run after processing decl attributes 6650 // (because __block lowers to an attribute), so if the lifetime hasn't been 6651 // explicitly specified, infer it locally now. 6652 if (LifetimeQual == Qualifiers::OCL_None) 6653 LifetimeQual = Ty->getObjCARCImplicitLifetime(); 6654 6655 // The attributes only really makes sense for __strong variables; ignore any 6656 // attempts to annotate a parameter with any other lifetime qualifier. 6657 if (LifetimeQual != Qualifiers::OCL_Strong) { 6658 if (DiagnoseFailure) { 6659 S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained) 6660 << 1; 6661 } 6662 return false; 6663 } 6664 6665 // Tampering with the type of a VarDecl here is a bit of a hack, but we need 6666 // to ensure that the variable is 'const' so that we can error on 6667 // modification, which can otherwise over-release. 6668 VD->setType(Ty.withConst()); 6669 VD->setARCPseudoStrong(true); 6670 return true; 6671 } 6672 6673 static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D, 6674 const ParsedAttr &AL) { 6675 if (auto *VD = dyn_cast<VarDecl>(D)) { 6676 assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically"); 6677 if (!VD->hasLocalStorage()) { 6678 S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained) 6679 << 0; 6680 return; 6681 } 6682 6683 if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true)) 6684 return; 6685 6686 handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL); 6687 return; 6688 } 6689 6690 // If D is a function-like declaration (method, block, or function), then we 6691 // make every parameter psuedo-strong. 6692 unsigned NumParams = 6693 hasFunctionProto(D) ? getFunctionOrMethodNumParams(D) : 0; 6694 for (unsigned I = 0; I != NumParams; ++I) { 6695 auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, I)); 6696 QualType Ty = PVD->getType(); 6697 6698 // If a user wrote a parameter with __strong explicitly, then assume they 6699 // want "real" strong semantics for that parameter. This works because if 6700 // the parameter was written with __strong, then the strong qualifier will 6701 // be non-local. 6702 if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() == 6703 Qualifiers::OCL_Strong) 6704 continue; 6705 6706 tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false); 6707 } 6708 handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL); 6709 } 6710 6711 static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6712 // Check that the return type is a `typedef int kern_return_t` or a typedef 6713 // around it, because otherwise MIG convention checks make no sense. 6714 // BlockDecl doesn't store a return type, so it's annoying to check, 6715 // so let's skip it for now. 6716 if (!isa<BlockDecl>(D)) { 6717 QualType T = getFunctionOrMethodResultType(D); 6718 bool IsKernReturnT = false; 6719 while (const auto *TT = T->getAs<TypedefType>()) { 6720 IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t"); 6721 T = TT->desugar(); 6722 } 6723 if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) { 6724 S.Diag(D->getBeginLoc(), 6725 diag::warn_mig_server_routine_does_not_return_kern_return_t); 6726 return; 6727 } 6728 } 6729 6730 handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL); 6731 } 6732 6733 static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6734 // Warn if the return type is not a pointer or reference type. 6735 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 6736 QualType RetTy = FD->getReturnType(); 6737 if (!RetTy->isPointerType() && !RetTy->isReferenceType()) { 6738 S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer) 6739 << AL.getRange() << RetTy; 6740 return; 6741 } 6742 } 6743 6744 handleSimpleAttribute<MSAllocatorAttr>(S, D, AL); 6745 } 6746 6747 static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6748 if (AL.isUsedAsTypeAttr()) 6749 return; 6750 // Warn if the parameter is definitely not an output parameter. 6751 if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { 6752 if (PVD->getType()->isIntegerType()) { 6753 S.Diag(AL.getLoc(), diag::err_attribute_output_parameter) 6754 << AL.getRange(); 6755 return; 6756 } 6757 } 6758 StringRef Argument; 6759 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) 6760 return; 6761 D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL)); 6762 } 6763 6764 template<typename Attr> 6765 static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6766 StringRef Argument; 6767 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) 6768 return; 6769 D->addAttr(Attr::Create(S.Context, Argument, AL)); 6770 } 6771 6772 static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6773 // The guard attribute takes a single identifier argument. 6774 6775 if (!AL.isArgIdent(0)) { 6776 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 6777 << AL << AANT_ArgumentIdentifier; 6778 return; 6779 } 6780 6781 CFGuardAttr::GuardArg Arg; 6782 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; 6783 if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) { 6784 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; 6785 return; 6786 } 6787 6788 D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg)); 6789 } 6790 6791 //===----------------------------------------------------------------------===// 6792 // Top Level Sema Entry Points 6793 //===----------------------------------------------------------------------===// 6794 6795 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if 6796 /// the attribute applies to decls. If the attribute is a type attribute, just 6797 /// silently ignore it if a GNU attribute. 6798 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, 6799 const ParsedAttr &AL, 6800 bool IncludeCXX11Attributes) { 6801 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) 6802 return; 6803 6804 // Ignore C++11 attributes on declarator chunks: they appertain to the type 6805 // instead. 6806 if (AL.isCXX11Attribute() && !IncludeCXX11Attributes) 6807 return; 6808 6809 // Unknown attributes are automatically warned on. Target-specific attributes 6810 // which do not apply to the current target architecture are treated as 6811 // though they were unknown attributes. 6812 if (AL.getKind() == ParsedAttr::UnknownAttribute || 6813 !AL.existsInTarget(S.Context.getTargetInfo())) { 6814 S.Diag(AL.getLoc(), 6815 AL.isDeclspecAttribute() 6816 ? (unsigned)diag::warn_unhandled_ms_attribute_ignored 6817 : (unsigned)diag::warn_unknown_attribute_ignored) 6818 << AL; 6819 return; 6820 } 6821 6822 if (handleCommonAttributeFeatures(S, D, AL)) 6823 return; 6824 6825 switch (AL.getKind()) { 6826 default: 6827 if (AL.getInfo().handleDeclAttribute(S, D, AL) != ParsedAttrInfo::NotHandled) 6828 break; 6829 if (!AL.isStmtAttr()) { 6830 // Type attributes are handled elsewhere; silently move on. 6831 assert(AL.isTypeAttr() && "Non-type attribute not handled"); 6832 break; 6833 } 6834 S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl) 6835 << AL << D->getLocation(); 6836 break; 6837 case ParsedAttr::AT_Interrupt: 6838 handleInterruptAttr(S, D, AL); 6839 break; 6840 case ParsedAttr::AT_X86ForceAlignArgPointer: 6841 handleX86ForceAlignArgPointerAttr(S, D, AL); 6842 break; 6843 case ParsedAttr::AT_DLLExport: 6844 case ParsedAttr::AT_DLLImport: 6845 handleDLLAttr(S, D, AL); 6846 break; 6847 case ParsedAttr::AT_Mips16: 6848 handleSimpleAttributeWithExclusions<Mips16Attr, MicroMipsAttr, 6849 MipsInterruptAttr>(S, D, AL); 6850 break; 6851 case ParsedAttr::AT_MicroMips: 6852 handleSimpleAttributeWithExclusions<MicroMipsAttr, Mips16Attr>(S, D, AL); 6853 break; 6854 case ParsedAttr::AT_MipsLongCall: 6855 handleSimpleAttributeWithExclusions<MipsLongCallAttr, MipsShortCallAttr>( 6856 S, D, AL); 6857 break; 6858 case ParsedAttr::AT_MipsShortCall: 6859 handleSimpleAttributeWithExclusions<MipsShortCallAttr, MipsLongCallAttr>( 6860 S, D, AL); 6861 break; 6862 case ParsedAttr::AT_AMDGPUFlatWorkGroupSize: 6863 handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL); 6864 break; 6865 case ParsedAttr::AT_AMDGPUWavesPerEU: 6866 handleAMDGPUWavesPerEUAttr(S, D, AL); 6867 break; 6868 case ParsedAttr::AT_AMDGPUNumSGPR: 6869 handleAMDGPUNumSGPRAttr(S, D, AL); 6870 break; 6871 case ParsedAttr::AT_AMDGPUNumVGPR: 6872 handleAMDGPUNumVGPRAttr(S, D, AL); 6873 break; 6874 case ParsedAttr::AT_AVRSignal: 6875 handleAVRSignalAttr(S, D, AL); 6876 break; 6877 case ParsedAttr::AT_BPFPreserveAccessIndex: 6878 handleBPFPreserveAccessIndexAttr(S, D, AL); 6879 break; 6880 case ParsedAttr::AT_WebAssemblyExportName: 6881 handleWebAssemblyExportNameAttr(S, D, AL); 6882 break; 6883 case ParsedAttr::AT_WebAssemblyImportModule: 6884 handleWebAssemblyImportModuleAttr(S, D, AL); 6885 break; 6886 case ParsedAttr::AT_WebAssemblyImportName: 6887 handleWebAssemblyImportNameAttr(S, D, AL); 6888 break; 6889 case ParsedAttr::AT_IBOutlet: 6890 handleIBOutlet(S, D, AL); 6891 break; 6892 case ParsedAttr::AT_IBOutletCollection: 6893 handleIBOutletCollection(S, D, AL); 6894 break; 6895 case ParsedAttr::AT_IFunc: 6896 handleIFuncAttr(S, D, AL); 6897 break; 6898 case ParsedAttr::AT_Alias: 6899 handleAliasAttr(S, D, AL); 6900 break; 6901 case ParsedAttr::AT_Aligned: 6902 handleAlignedAttr(S, D, AL); 6903 break; 6904 case ParsedAttr::AT_AlignValue: 6905 handleAlignValueAttr(S, D, AL); 6906 break; 6907 case ParsedAttr::AT_AllocSize: 6908 handleAllocSizeAttr(S, D, AL); 6909 break; 6910 case ParsedAttr::AT_AlwaysInline: 6911 handleAlwaysInlineAttr(S, D, AL); 6912 break; 6913 case ParsedAttr::AT_AnalyzerNoReturn: 6914 handleAnalyzerNoReturnAttr(S, D, AL); 6915 break; 6916 case ParsedAttr::AT_TLSModel: 6917 handleTLSModelAttr(S, D, AL); 6918 break; 6919 case ParsedAttr::AT_Annotate: 6920 handleAnnotateAttr(S, D, AL); 6921 break; 6922 case ParsedAttr::AT_Availability: 6923 handleAvailabilityAttr(S, D, AL); 6924 break; 6925 case ParsedAttr::AT_CarriesDependency: 6926 handleDependencyAttr(S, scope, D, AL); 6927 break; 6928 case ParsedAttr::AT_CPUDispatch: 6929 case ParsedAttr::AT_CPUSpecific: 6930 handleCPUSpecificAttr(S, D, AL); 6931 break; 6932 case ParsedAttr::AT_Common: 6933 handleCommonAttr(S, D, AL); 6934 break; 6935 case ParsedAttr::AT_CUDAConstant: 6936 handleConstantAttr(S, D, AL); 6937 break; 6938 case ParsedAttr::AT_PassObjectSize: 6939 handlePassObjectSizeAttr(S, D, AL); 6940 break; 6941 case ParsedAttr::AT_Constructor: 6942 if (S.Context.getTargetInfo().getTriple().isOSAIX()) 6943 llvm::report_fatal_error( 6944 "'constructor' attribute is not yet supported on AIX"); 6945 else 6946 handleConstructorAttr(S, D, AL); 6947 break; 6948 case ParsedAttr::AT_Deprecated: 6949 handleDeprecatedAttr(S, D, AL); 6950 break; 6951 case ParsedAttr::AT_Destructor: 6952 if (S.Context.getTargetInfo().getTriple().isOSAIX()) 6953 llvm::report_fatal_error("'destructor' attribute is not yet supported on AIX"); 6954 else 6955 handleDestructorAttr(S, D, AL); 6956 break; 6957 case ParsedAttr::AT_EnableIf: 6958 handleEnableIfAttr(S, D, AL); 6959 break; 6960 case ParsedAttr::AT_DiagnoseIf: 6961 handleDiagnoseIfAttr(S, D, AL); 6962 break; 6963 case ParsedAttr::AT_NoBuiltin: 6964 handleNoBuiltinAttr(S, D, AL); 6965 break; 6966 case ParsedAttr::AT_ExtVectorType: 6967 handleExtVectorTypeAttr(S, D, AL); 6968 break; 6969 case ParsedAttr::AT_ExternalSourceSymbol: 6970 handleExternalSourceSymbolAttr(S, D, AL); 6971 break; 6972 case ParsedAttr::AT_MinSize: 6973 handleMinSizeAttr(S, D, AL); 6974 break; 6975 case ParsedAttr::AT_OptimizeNone: 6976 handleOptimizeNoneAttr(S, D, AL); 6977 break; 6978 case ParsedAttr::AT_EnumExtensibility: 6979 handleEnumExtensibilityAttr(S, D, AL); 6980 break; 6981 case ParsedAttr::AT_SYCLKernel: 6982 handleSYCLKernelAttr(S, D, AL); 6983 break; 6984 case ParsedAttr::AT_Format: 6985 handleFormatAttr(S, D, AL); 6986 break; 6987 case ParsedAttr::AT_FormatArg: 6988 handleFormatArgAttr(S, D, AL); 6989 break; 6990 case ParsedAttr::AT_Callback: 6991 handleCallbackAttr(S, D, AL); 6992 break; 6993 case ParsedAttr::AT_CUDAGlobal: 6994 handleGlobalAttr(S, D, AL); 6995 break; 6996 case ParsedAttr::AT_CUDADevice: 6997 handleSimpleAttributeWithExclusions<CUDADeviceAttr, CUDAGlobalAttr>(S, D, 6998 AL); 6999 break; 7000 case ParsedAttr::AT_CUDAHost: 7001 handleSimpleAttributeWithExclusions<CUDAHostAttr, CUDAGlobalAttr>(S, D, AL); 7002 break; 7003 case ParsedAttr::AT_CUDADeviceBuiltinSurfaceType: 7004 handleSimpleAttributeWithExclusions<CUDADeviceBuiltinSurfaceTypeAttr, 7005 CUDADeviceBuiltinTextureTypeAttr>(S, D, 7006 AL); 7007 break; 7008 case ParsedAttr::AT_CUDADeviceBuiltinTextureType: 7009 handleSimpleAttributeWithExclusions<CUDADeviceBuiltinTextureTypeAttr, 7010 CUDADeviceBuiltinSurfaceTypeAttr>(S, D, 7011 AL); 7012 break; 7013 case ParsedAttr::AT_GNUInline: 7014 handleGNUInlineAttr(S, D, AL); 7015 break; 7016 case ParsedAttr::AT_CUDALaunchBounds: 7017 handleLaunchBoundsAttr(S, D, AL); 7018 break; 7019 case ParsedAttr::AT_Restrict: 7020 handleRestrictAttr(S, D, AL); 7021 break; 7022 case ParsedAttr::AT_Mode: 7023 handleModeAttr(S, D, AL); 7024 break; 7025 case ParsedAttr::AT_NonNull: 7026 if (auto *PVD = dyn_cast<ParmVarDecl>(D)) 7027 handleNonNullAttrParameter(S, PVD, AL); 7028 else 7029 handleNonNullAttr(S, D, AL); 7030 break; 7031 case ParsedAttr::AT_ReturnsNonNull: 7032 handleReturnsNonNullAttr(S, D, AL); 7033 break; 7034 case ParsedAttr::AT_NoEscape: 7035 handleNoEscapeAttr(S, D, AL); 7036 break; 7037 case ParsedAttr::AT_AssumeAligned: 7038 handleAssumeAlignedAttr(S, D, AL); 7039 break; 7040 case ParsedAttr::AT_AllocAlign: 7041 handleAllocAlignAttr(S, D, AL); 7042 break; 7043 case ParsedAttr::AT_Ownership: 7044 handleOwnershipAttr(S, D, AL); 7045 break; 7046 case ParsedAttr::AT_Cold: 7047 handleSimpleAttributeWithExclusions<ColdAttr, HotAttr>(S, D, AL); 7048 break; 7049 case ParsedAttr::AT_Hot: 7050 handleSimpleAttributeWithExclusions<HotAttr, ColdAttr>(S, D, AL); 7051 break; 7052 case ParsedAttr::AT_Naked: 7053 handleNakedAttr(S, D, AL); 7054 break; 7055 case ParsedAttr::AT_NoReturn: 7056 handleNoReturnAttr(S, D, AL); 7057 break; 7058 case ParsedAttr::AT_AnyX86NoCfCheck: 7059 handleNoCfCheckAttr(S, D, AL); 7060 break; 7061 case ParsedAttr::AT_NoThrow: 7062 if (!AL.isUsedAsTypeAttr()) 7063 handleSimpleAttribute<NoThrowAttr>(S, D, AL); 7064 break; 7065 case ParsedAttr::AT_CUDAShared: 7066 handleSharedAttr(S, D, AL); 7067 break; 7068 case ParsedAttr::AT_VecReturn: 7069 handleVecReturnAttr(S, D, AL); 7070 break; 7071 case ParsedAttr::AT_ObjCOwnership: 7072 handleObjCOwnershipAttr(S, D, AL); 7073 break; 7074 case ParsedAttr::AT_ObjCPreciseLifetime: 7075 handleObjCPreciseLifetimeAttr(S, D, AL); 7076 break; 7077 case ParsedAttr::AT_ObjCReturnsInnerPointer: 7078 handleObjCReturnsInnerPointerAttr(S, D, AL); 7079 break; 7080 case ParsedAttr::AT_ObjCRequiresSuper: 7081 handleObjCRequiresSuperAttr(S, D, AL); 7082 break; 7083 case ParsedAttr::AT_ObjCBridge: 7084 handleObjCBridgeAttr(S, D, AL); 7085 break; 7086 case ParsedAttr::AT_ObjCBridgeMutable: 7087 handleObjCBridgeMutableAttr(S, D, AL); 7088 break; 7089 case ParsedAttr::AT_ObjCBridgeRelated: 7090 handleObjCBridgeRelatedAttr(S, D, AL); 7091 break; 7092 case ParsedAttr::AT_ObjCDesignatedInitializer: 7093 handleObjCDesignatedInitializer(S, D, AL); 7094 break; 7095 case ParsedAttr::AT_ObjCRuntimeName: 7096 handleObjCRuntimeName(S, D, AL); 7097 break; 7098 case ParsedAttr::AT_ObjCBoxable: 7099 handleObjCBoxable(S, D, AL); 7100 break; 7101 case ParsedAttr::AT_CFAuditedTransfer: 7102 handleSimpleAttributeWithExclusions<CFAuditedTransferAttr, 7103 CFUnknownTransferAttr>(S, D, AL); 7104 break; 7105 case ParsedAttr::AT_CFUnknownTransfer: 7106 handleSimpleAttributeWithExclusions<CFUnknownTransferAttr, 7107 CFAuditedTransferAttr>(S, D, AL); 7108 break; 7109 case ParsedAttr::AT_CFConsumed: 7110 case ParsedAttr::AT_NSConsumed: 7111 case ParsedAttr::AT_OSConsumed: 7112 S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL), 7113 /*IsTemplateInstantiation=*/false); 7114 break; 7115 case ParsedAttr::AT_OSReturnsRetainedOnZero: 7116 handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>( 7117 S, D, AL, isValidOSObjectOutParameter(D), 7118 diag::warn_ns_attribute_wrong_parameter_type, 7119 /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange()); 7120 break; 7121 case ParsedAttr::AT_OSReturnsRetainedOnNonZero: 7122 handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>( 7123 S, D, AL, isValidOSObjectOutParameter(D), 7124 diag::warn_ns_attribute_wrong_parameter_type, 7125 /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange()); 7126 break; 7127 case ParsedAttr::AT_NSReturnsAutoreleased: 7128 case ParsedAttr::AT_NSReturnsNotRetained: 7129 case ParsedAttr::AT_NSReturnsRetained: 7130 case ParsedAttr::AT_CFReturnsNotRetained: 7131 case ParsedAttr::AT_CFReturnsRetained: 7132 case ParsedAttr::AT_OSReturnsNotRetained: 7133 case ParsedAttr::AT_OSReturnsRetained: 7134 handleXReturnsXRetainedAttr(S, D, AL); 7135 break; 7136 case ParsedAttr::AT_WorkGroupSizeHint: 7137 handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL); 7138 break; 7139 case ParsedAttr::AT_ReqdWorkGroupSize: 7140 handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL); 7141 break; 7142 case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize: 7143 handleSubGroupSize(S, D, AL); 7144 break; 7145 case ParsedAttr::AT_VecTypeHint: 7146 handleVecTypeHint(S, D, AL); 7147 break; 7148 case ParsedAttr::AT_InitPriority: 7149 if (S.Context.getTargetInfo().getTriple().isOSAIX()) 7150 llvm::report_fatal_error( 7151 "'init_priority' attribute is not yet supported on AIX"); 7152 else 7153 handleInitPriorityAttr(S, D, AL); 7154 break; 7155 case ParsedAttr::AT_Packed: 7156 handlePackedAttr(S, D, AL); 7157 break; 7158 case ParsedAttr::AT_Section: 7159 handleSectionAttr(S, D, AL); 7160 break; 7161 case ParsedAttr::AT_SpeculativeLoadHardening: 7162 handleSimpleAttributeWithExclusions<SpeculativeLoadHardeningAttr, 7163 NoSpeculativeLoadHardeningAttr>(S, D, 7164 AL); 7165 break; 7166 case ParsedAttr::AT_NoSpeculativeLoadHardening: 7167 handleSimpleAttributeWithExclusions<NoSpeculativeLoadHardeningAttr, 7168 SpeculativeLoadHardeningAttr>(S, D, AL); 7169 break; 7170 case ParsedAttr::AT_CodeSeg: 7171 handleCodeSegAttr(S, D, AL); 7172 break; 7173 case ParsedAttr::AT_Target: 7174 handleTargetAttr(S, D, AL); 7175 break; 7176 case ParsedAttr::AT_MinVectorWidth: 7177 handleMinVectorWidthAttr(S, D, AL); 7178 break; 7179 case ParsedAttr::AT_Unavailable: 7180 handleAttrWithMessage<UnavailableAttr>(S, D, AL); 7181 break; 7182 case ParsedAttr::AT_ObjCDirect: 7183 handleObjCDirectAttr(S, D, AL); 7184 break; 7185 case ParsedAttr::AT_ObjCDirectMembers: 7186 handleObjCDirectMembersAttr(S, D, AL); 7187 handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL); 7188 break; 7189 case ParsedAttr::AT_ObjCExplicitProtocolImpl: 7190 handleObjCSuppresProtocolAttr(S, D, AL); 7191 break; 7192 case ParsedAttr::AT_Unused: 7193 handleUnusedAttr(S, D, AL); 7194 break; 7195 case ParsedAttr::AT_NotTailCalled: 7196 handleSimpleAttributeWithExclusions<NotTailCalledAttr, AlwaysInlineAttr>( 7197 S, D, AL); 7198 break; 7199 case ParsedAttr::AT_DisableTailCalls: 7200 handleSimpleAttributeWithExclusions<DisableTailCallsAttr, NakedAttr>(S, D, 7201 AL); 7202 break; 7203 case ParsedAttr::AT_Visibility: 7204 handleVisibilityAttr(S, D, AL, false); 7205 break; 7206 case ParsedAttr::AT_TypeVisibility: 7207 handleVisibilityAttr(S, D, AL, true); 7208 break; 7209 case ParsedAttr::AT_WarnUnusedResult: 7210 handleWarnUnusedResult(S, D, AL); 7211 break; 7212 case ParsedAttr::AT_WeakRef: 7213 handleWeakRefAttr(S, D, AL); 7214 break; 7215 case ParsedAttr::AT_WeakImport: 7216 handleWeakImportAttr(S, D, AL); 7217 break; 7218 case ParsedAttr::AT_TransparentUnion: 7219 handleTransparentUnionAttr(S, D, AL); 7220 break; 7221 case ParsedAttr::AT_ObjCMethodFamily: 7222 handleObjCMethodFamilyAttr(S, D, AL); 7223 break; 7224 case ParsedAttr::AT_ObjCNSObject: 7225 handleObjCNSObject(S, D, AL); 7226 break; 7227 case ParsedAttr::AT_ObjCIndependentClass: 7228 handleObjCIndependentClass(S, D, AL); 7229 break; 7230 case ParsedAttr::AT_Blocks: 7231 handleBlocksAttr(S, D, AL); 7232 break; 7233 case ParsedAttr::AT_Sentinel: 7234 handleSentinelAttr(S, D, AL); 7235 break; 7236 case ParsedAttr::AT_Cleanup: 7237 handleCleanupAttr(S, D, AL); 7238 break; 7239 case ParsedAttr::AT_NoDebug: 7240 handleNoDebugAttr(S, D, AL); 7241 break; 7242 case ParsedAttr::AT_CmseNSEntry: 7243 handleCmseNSEntryAttr(S, D, AL); 7244 break; 7245 case ParsedAttr::AT_StdCall: 7246 case ParsedAttr::AT_CDecl: 7247 case ParsedAttr::AT_FastCall: 7248 case ParsedAttr::AT_ThisCall: 7249 case ParsedAttr::AT_Pascal: 7250 case ParsedAttr::AT_RegCall: 7251 case ParsedAttr::AT_SwiftCall: 7252 case ParsedAttr::AT_VectorCall: 7253 case ParsedAttr::AT_MSABI: 7254 case ParsedAttr::AT_SysVABI: 7255 case ParsedAttr::AT_Pcs: 7256 case ParsedAttr::AT_IntelOclBicc: 7257 case ParsedAttr::AT_PreserveMost: 7258 case ParsedAttr::AT_PreserveAll: 7259 case ParsedAttr::AT_AArch64VectorPcs: 7260 handleCallConvAttr(S, D, AL); 7261 break; 7262 case ParsedAttr::AT_Suppress: 7263 handleSuppressAttr(S, D, AL); 7264 break; 7265 case ParsedAttr::AT_Owner: 7266 case ParsedAttr::AT_Pointer: 7267 handleLifetimeCategoryAttr(S, D, AL); 7268 break; 7269 case ParsedAttr::AT_OpenCLAccess: 7270 handleOpenCLAccessAttr(S, D, AL); 7271 break; 7272 case ParsedAttr::AT_OpenCLNoSVM: 7273 handleOpenCLNoSVMAttr(S, D, AL); 7274 break; 7275 case ParsedAttr::AT_SwiftContext: 7276 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext); 7277 break; 7278 case ParsedAttr::AT_SwiftErrorResult: 7279 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult); 7280 break; 7281 case ParsedAttr::AT_SwiftIndirectResult: 7282 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult); 7283 break; 7284 case ParsedAttr::AT_InternalLinkage: 7285 handleInternalLinkageAttr(S, D, AL); 7286 break; 7287 7288 // Microsoft attributes: 7289 case ParsedAttr::AT_LayoutVersion: 7290 handleLayoutVersion(S, D, AL); 7291 break; 7292 case ParsedAttr::AT_Uuid: 7293 handleUuidAttr(S, D, AL); 7294 break; 7295 case ParsedAttr::AT_MSInheritance: 7296 handleMSInheritanceAttr(S, D, AL); 7297 break; 7298 case ParsedAttr::AT_Thread: 7299 handleDeclspecThreadAttr(S, D, AL); 7300 break; 7301 7302 case ParsedAttr::AT_AbiTag: 7303 handleAbiTagAttr(S, D, AL); 7304 break; 7305 case ParsedAttr::AT_CFGuard: 7306 handleCFGuardAttr(S, D, AL); 7307 break; 7308 7309 // Thread safety attributes: 7310 case ParsedAttr::AT_AssertExclusiveLock: 7311 handleAssertExclusiveLockAttr(S, D, AL); 7312 break; 7313 case ParsedAttr::AT_AssertSharedLock: 7314 handleAssertSharedLockAttr(S, D, AL); 7315 break; 7316 case ParsedAttr::AT_PtGuardedVar: 7317 handlePtGuardedVarAttr(S, D, AL); 7318 break; 7319 case ParsedAttr::AT_NoSanitize: 7320 handleNoSanitizeAttr(S, D, AL); 7321 break; 7322 case ParsedAttr::AT_NoSanitizeSpecific: 7323 handleNoSanitizeSpecificAttr(S, D, AL); 7324 break; 7325 case ParsedAttr::AT_GuardedBy: 7326 handleGuardedByAttr(S, D, AL); 7327 break; 7328 case ParsedAttr::AT_PtGuardedBy: 7329 handlePtGuardedByAttr(S, D, AL); 7330 break; 7331 case ParsedAttr::AT_ExclusiveTrylockFunction: 7332 handleExclusiveTrylockFunctionAttr(S, D, AL); 7333 break; 7334 case ParsedAttr::AT_LockReturned: 7335 handleLockReturnedAttr(S, D, AL); 7336 break; 7337 case ParsedAttr::AT_LocksExcluded: 7338 handleLocksExcludedAttr(S, D, AL); 7339 break; 7340 case ParsedAttr::AT_SharedTrylockFunction: 7341 handleSharedTrylockFunctionAttr(S, D, AL); 7342 break; 7343 case ParsedAttr::AT_AcquiredBefore: 7344 handleAcquiredBeforeAttr(S, D, AL); 7345 break; 7346 case ParsedAttr::AT_AcquiredAfter: 7347 handleAcquiredAfterAttr(S, D, AL); 7348 break; 7349 7350 // Capability analysis attributes. 7351 case ParsedAttr::AT_Capability: 7352 case ParsedAttr::AT_Lockable: 7353 handleCapabilityAttr(S, D, AL); 7354 break; 7355 case ParsedAttr::AT_RequiresCapability: 7356 handleRequiresCapabilityAttr(S, D, AL); 7357 break; 7358 7359 case ParsedAttr::AT_AssertCapability: 7360 handleAssertCapabilityAttr(S, D, AL); 7361 break; 7362 case ParsedAttr::AT_AcquireCapability: 7363 handleAcquireCapabilityAttr(S, D, AL); 7364 break; 7365 case ParsedAttr::AT_ReleaseCapability: 7366 handleReleaseCapabilityAttr(S, D, AL); 7367 break; 7368 case ParsedAttr::AT_TryAcquireCapability: 7369 handleTryAcquireCapabilityAttr(S, D, AL); 7370 break; 7371 7372 // Consumed analysis attributes. 7373 case ParsedAttr::AT_Consumable: 7374 handleConsumableAttr(S, D, AL); 7375 break; 7376 case ParsedAttr::AT_CallableWhen: 7377 handleCallableWhenAttr(S, D, AL); 7378 break; 7379 case ParsedAttr::AT_ParamTypestate: 7380 handleParamTypestateAttr(S, D, AL); 7381 break; 7382 case ParsedAttr::AT_ReturnTypestate: 7383 handleReturnTypestateAttr(S, D, AL); 7384 break; 7385 case ParsedAttr::AT_SetTypestate: 7386 handleSetTypestateAttr(S, D, AL); 7387 break; 7388 case ParsedAttr::AT_TestTypestate: 7389 handleTestTypestateAttr(S, D, AL); 7390 break; 7391 7392 // Type safety attributes. 7393 case ParsedAttr::AT_ArgumentWithTypeTag: 7394 handleArgumentWithTypeTagAttr(S, D, AL); 7395 break; 7396 case ParsedAttr::AT_TypeTagForDatatype: 7397 handleTypeTagForDatatypeAttr(S, D, AL); 7398 break; 7399 7400 // XRay attributes. 7401 case ParsedAttr::AT_XRayLogArgs: 7402 handleXRayLogArgsAttr(S, D, AL); 7403 break; 7404 7405 case ParsedAttr::AT_PatchableFunctionEntry: 7406 handlePatchableFunctionEntryAttr(S, D, AL); 7407 break; 7408 7409 case ParsedAttr::AT_AlwaysDestroy: 7410 case ParsedAttr::AT_NoDestroy: 7411 handleDestroyAttr(S, D, AL); 7412 break; 7413 7414 case ParsedAttr::AT_Uninitialized: 7415 handleUninitializedAttr(S, D, AL); 7416 break; 7417 7418 case ParsedAttr::AT_LoaderUninitialized: 7419 handleSimpleAttribute<LoaderUninitializedAttr>(S, D, AL); 7420 break; 7421 7422 case ParsedAttr::AT_ObjCExternallyRetained: 7423 handleObjCExternallyRetainedAttr(S, D, AL); 7424 break; 7425 7426 case ParsedAttr::AT_MIGServerRoutine: 7427 handleMIGServerRoutineAttr(S, D, AL); 7428 break; 7429 7430 case ParsedAttr::AT_MSAllocator: 7431 handleMSAllocatorAttr(S, D, AL); 7432 break; 7433 7434 case ParsedAttr::AT_ArmBuiltinAlias: 7435 handleArmBuiltinAliasAttr(S, D, AL); 7436 break; 7437 7438 case ParsedAttr::AT_AcquireHandle: 7439 handleAcquireHandleAttr(S, D, AL); 7440 break; 7441 7442 case ParsedAttr::AT_ReleaseHandle: 7443 handleHandleAttr<ReleaseHandleAttr>(S, D, AL); 7444 break; 7445 7446 case ParsedAttr::AT_UseHandle: 7447 handleHandleAttr<UseHandleAttr>(S, D, AL); 7448 break; 7449 } 7450 } 7451 7452 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified 7453 /// attribute list to the specified decl, ignoring any type attributes. 7454 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D, 7455 const ParsedAttributesView &AttrList, 7456 bool IncludeCXX11Attributes) { 7457 if (AttrList.empty()) 7458 return; 7459 7460 for (const ParsedAttr &AL : AttrList) 7461 ProcessDeclAttribute(*this, S, D, AL, IncludeCXX11Attributes); 7462 7463 // FIXME: We should be able to handle these cases in TableGen. 7464 // GCC accepts 7465 // static int a9 __attribute__((weakref)); 7466 // but that looks really pointless. We reject it. 7467 if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) { 7468 Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias) 7469 << cast<NamedDecl>(D); 7470 D->dropAttr<WeakRefAttr>(); 7471 return; 7472 } 7473 7474 // FIXME: We should be able to handle this in TableGen as well. It would be 7475 // good to have a way to specify "these attributes must appear as a group", 7476 // for these. Additionally, it would be good to have a way to specify "these 7477 // attribute must never appear as a group" for attributes like cold and hot. 7478 if (!D->hasAttr<OpenCLKernelAttr>()) { 7479 // These attributes cannot be applied to a non-kernel function. 7480 if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) { 7481 // FIXME: This emits a different error message than 7482 // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction. 7483 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; 7484 D->setInvalidDecl(); 7485 } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) { 7486 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; 7487 D->setInvalidDecl(); 7488 } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) { 7489 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; 7490 D->setInvalidDecl(); 7491 } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 7492 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; 7493 D->setInvalidDecl(); 7494 } else if (!D->hasAttr<CUDAGlobalAttr>()) { 7495 if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) { 7496 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) 7497 << A << ExpectedKernelFunction; 7498 D->setInvalidDecl(); 7499 } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) { 7500 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) 7501 << A << ExpectedKernelFunction; 7502 D->setInvalidDecl(); 7503 } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) { 7504 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) 7505 << A << ExpectedKernelFunction; 7506 D->setInvalidDecl(); 7507 } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) { 7508 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) 7509 << A << ExpectedKernelFunction; 7510 D->setInvalidDecl(); 7511 } 7512 } 7513 } 7514 7515 // Do this check after processing D's attributes because the attribute 7516 // objc_method_family can change whether the given method is in the init 7517 // family, and it can be applied after objc_designated_initializer. This is a 7518 // bit of a hack, but we need it to be compatible with versions of clang that 7519 // processed the attribute list in the wrong order. 7520 if (D->hasAttr<ObjCDesignatedInitializerAttr>() && 7521 cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) { 7522 Diag(D->getLocation(), diag::err_designated_init_attr_non_init); 7523 D->dropAttr<ObjCDesignatedInitializerAttr>(); 7524 } 7525 } 7526 7527 // Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr 7528 // attribute. 7529 void Sema::ProcessDeclAttributeDelayed(Decl *D, 7530 const ParsedAttributesView &AttrList) { 7531 for (const ParsedAttr &AL : AttrList) 7532 if (AL.getKind() == ParsedAttr::AT_TransparentUnion) { 7533 handleTransparentUnionAttr(*this, D, AL); 7534 break; 7535 } 7536 7537 // For BPFPreserveAccessIndexAttr, we want to populate the attributes 7538 // to fields and inner records as well. 7539 if (D && D->hasAttr<BPFPreserveAccessIndexAttr>()) 7540 handleBPFPreserveAIRecord(*this, cast<RecordDecl>(D)); 7541 } 7542 7543 // Annotation attributes are the only attributes allowed after an access 7544 // specifier. 7545 bool Sema::ProcessAccessDeclAttributeList( 7546 AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) { 7547 for (const ParsedAttr &AL : AttrList) { 7548 if (AL.getKind() == ParsedAttr::AT_Annotate) { 7549 ProcessDeclAttribute(*this, nullptr, ASDecl, AL, AL.isCXX11Attribute()); 7550 } else { 7551 Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec); 7552 return true; 7553 } 7554 } 7555 return false; 7556 } 7557 7558 /// checkUnusedDeclAttributes - Check a list of attributes to see if it 7559 /// contains any decl attributes that we should warn about. 7560 static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) { 7561 for (const ParsedAttr &AL : A) { 7562 // Only warn if the attribute is an unignored, non-type attribute. 7563 if (AL.isUsedAsTypeAttr() || AL.isInvalid()) 7564 continue; 7565 if (AL.getKind() == ParsedAttr::IgnoredAttribute) 7566 continue; 7567 7568 if (AL.getKind() == ParsedAttr::UnknownAttribute) { 7569 S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) 7570 << AL << AL.getRange(); 7571 } else { 7572 S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL 7573 << AL.getRange(); 7574 } 7575 } 7576 } 7577 7578 /// checkUnusedDeclAttributes - Given a declarator which is not being 7579 /// used to build a declaration, complain about any decl attributes 7580 /// which might be lying around on it. 7581 void Sema::checkUnusedDeclAttributes(Declarator &D) { 7582 ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes()); 7583 ::checkUnusedDeclAttributes(*this, D.getAttributes()); 7584 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) 7585 ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs()); 7586 } 7587 7588 /// DeclClonePragmaWeak - clone existing decl (maybe definition), 7589 /// \#pragma weak needs a non-definition decl and source may not have one. 7590 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II, 7591 SourceLocation Loc) { 7592 assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND)); 7593 NamedDecl *NewD = nullptr; 7594 if (auto *FD = dyn_cast<FunctionDecl>(ND)) { 7595 FunctionDecl *NewFD; 7596 // FIXME: Missing call to CheckFunctionDeclaration(). 7597 // FIXME: Mangling? 7598 // FIXME: Is the qualifier info correct? 7599 // FIXME: Is the DeclContext correct? 7600 NewFD = FunctionDecl::Create( 7601 FD->getASTContext(), FD->getDeclContext(), Loc, Loc, 7602 DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None, 7603 false /*isInlineSpecified*/, FD->hasPrototype(), CSK_unspecified, 7604 FD->getTrailingRequiresClause()); 7605 NewD = NewFD; 7606 7607 if (FD->getQualifier()) 7608 NewFD->setQualifierInfo(FD->getQualifierLoc()); 7609 7610 // Fake up parameter variables; they are declared as if this were 7611 // a typedef. 7612 QualType FDTy = FD->getType(); 7613 if (const auto *FT = FDTy->getAs<FunctionProtoType>()) { 7614 SmallVector<ParmVarDecl*, 16> Params; 7615 for (const auto &AI : FT->param_types()) { 7616 ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI); 7617 Param->setScopeInfo(0, Params.size()); 7618 Params.push_back(Param); 7619 } 7620 NewFD->setParams(Params); 7621 } 7622 } else if (auto *VD = dyn_cast<VarDecl>(ND)) { 7623 NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(), 7624 VD->getInnerLocStart(), VD->getLocation(), II, 7625 VD->getType(), VD->getTypeSourceInfo(), 7626 VD->getStorageClass()); 7627 if (VD->getQualifier()) 7628 cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc()); 7629 } 7630 return NewD; 7631 } 7632 7633 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak 7634 /// applied to it, possibly with an alias. 7635 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) { 7636 if (W.getUsed()) return; // only do this once 7637 W.setUsed(true); 7638 if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...)) 7639 IdentifierInfo *NDId = ND->getIdentifier(); 7640 NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation()); 7641 NewD->addAttr( 7642 AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation())); 7643 NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(), 7644 AttributeCommonInfo::AS_Pragma)); 7645 WeakTopLevelDecl.push_back(NewD); 7646 // FIXME: "hideous" code from Sema::LazilyCreateBuiltin 7647 // to insert Decl at TU scope, sorry. 7648 DeclContext *SavedContext = CurContext; 7649 CurContext = Context.getTranslationUnitDecl(); 7650 NewD->setDeclContext(CurContext); 7651 NewD->setLexicalDeclContext(CurContext); 7652 PushOnScopeChains(NewD, S); 7653 CurContext = SavedContext; 7654 } else { // just add weak to existing 7655 ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(), 7656 AttributeCommonInfo::AS_Pragma)); 7657 } 7658 } 7659 7660 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) { 7661 // It's valid to "forward-declare" #pragma weak, in which case we 7662 // have to do this. 7663 LoadExternalWeakUndeclaredIdentifiers(); 7664 if (!WeakUndeclaredIdentifiers.empty()) { 7665 NamedDecl *ND = nullptr; 7666 if (auto *VD = dyn_cast<VarDecl>(D)) 7667 if (VD->isExternC()) 7668 ND = VD; 7669 if (auto *FD = dyn_cast<FunctionDecl>(D)) 7670 if (FD->isExternC()) 7671 ND = FD; 7672 if (ND) { 7673 if (IdentifierInfo *Id = ND->getIdentifier()) { 7674 auto I = WeakUndeclaredIdentifiers.find(Id); 7675 if (I != WeakUndeclaredIdentifiers.end()) { 7676 WeakInfo W = I->second; 7677 DeclApplyPragmaWeak(S, ND, W); 7678 WeakUndeclaredIdentifiers[Id] = W; 7679 } 7680 } 7681 } 7682 } 7683 } 7684 7685 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in 7686 /// it, apply them to D. This is a bit tricky because PD can have attributes 7687 /// specified in many different places, and we need to find and apply them all. 7688 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) { 7689 // Apply decl attributes from the DeclSpec if present. 7690 if (!PD.getDeclSpec().getAttributes().empty()) 7691 ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes()); 7692 7693 // Walk the declarator structure, applying decl attributes that were in a type 7694 // position to the decl itself. This handles cases like: 7695 // int *__attr__(x)** D; 7696 // when X is a decl attribute. 7697 for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) 7698 ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(), 7699 /*IncludeCXX11Attributes=*/false); 7700 7701 // Finally, apply any attributes on the decl itself. 7702 ProcessDeclAttributeList(S, D, PD.getAttributes()); 7703 7704 // Apply additional attributes specified by '#pragma clang attribute'. 7705 AddPragmaAttributes(S, D); 7706 } 7707 7708 /// Is the given declaration allowed to use a forbidden type? 7709 /// If so, it'll still be annotated with an attribute that makes it 7710 /// illegal to actually use. 7711 static bool isForbiddenTypeAllowed(Sema &S, Decl *D, 7712 const DelayedDiagnostic &diag, 7713 UnavailableAttr::ImplicitReason &reason) { 7714 // Private ivars are always okay. Unfortunately, people don't 7715 // always properly make their ivars private, even in system headers. 7716 // Plus we need to make fields okay, too. 7717 if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) && 7718 !isa<FunctionDecl>(D)) 7719 return false; 7720 7721 // Silently accept unsupported uses of __weak in both user and system 7722 // declarations when it's been disabled, for ease of integration with 7723 // -fno-objc-arc files. We do have to take some care against attempts 7724 // to define such things; for now, we've only done that for ivars 7725 // and properties. 7726 if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) { 7727 if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled || 7728 diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) { 7729 reason = UnavailableAttr::IR_ForbiddenWeak; 7730 return true; 7731 } 7732 } 7733 7734 // Allow all sorts of things in system headers. 7735 if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) { 7736 // Currently, all the failures dealt with this way are due to ARC 7737 // restrictions. 7738 reason = UnavailableAttr::IR_ARCForbiddenType; 7739 return true; 7740 } 7741 7742 return false; 7743 } 7744 7745 /// Handle a delayed forbidden-type diagnostic. 7746 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD, 7747 Decl *D) { 7748 auto Reason = UnavailableAttr::IR_None; 7749 if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) { 7750 assert(Reason && "didn't set reason?"); 7751 D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc)); 7752 return; 7753 } 7754 if (S.getLangOpts().ObjCAutoRefCount) 7755 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 7756 // FIXME: we may want to suppress diagnostics for all 7757 // kind of forbidden type messages on unavailable functions. 7758 if (FD->hasAttr<UnavailableAttr>() && 7759 DD.getForbiddenTypeDiagnostic() == 7760 diag::err_arc_array_param_no_ownership) { 7761 DD.Triggered = true; 7762 return; 7763 } 7764 } 7765 7766 S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic()) 7767 << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument(); 7768 DD.Triggered = true; 7769 } 7770 7771 7772 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) { 7773 assert(DelayedDiagnostics.getCurrentPool()); 7774 DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool(); 7775 DelayedDiagnostics.popWithoutEmitting(state); 7776 7777 // When delaying diagnostics to run in the context of a parsed 7778 // declaration, we only want to actually emit anything if parsing 7779 // succeeds. 7780 if (!decl) return; 7781 7782 // We emit all the active diagnostics in this pool or any of its 7783 // parents. In general, we'll get one pool for the decl spec 7784 // and a child pool for each declarator; in a decl group like: 7785 // deprecated_typedef foo, *bar, baz(); 7786 // only the declarator pops will be passed decls. This is correct; 7787 // we really do need to consider delayed diagnostics from the decl spec 7788 // for each of the different declarations. 7789 const DelayedDiagnosticPool *pool = &poppedPool; 7790 do { 7791 bool AnyAccessFailures = false; 7792 for (DelayedDiagnosticPool::pool_iterator 7793 i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) { 7794 // This const_cast is a bit lame. Really, Triggered should be mutable. 7795 DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i); 7796 if (diag.Triggered) 7797 continue; 7798 7799 switch (diag.Kind) { 7800 case DelayedDiagnostic::Availability: 7801 // Don't bother giving deprecation/unavailable diagnostics if 7802 // the decl is invalid. 7803 if (!decl->isInvalidDecl()) 7804 handleDelayedAvailabilityCheck(diag, decl); 7805 break; 7806 7807 case DelayedDiagnostic::Access: 7808 // Only produce one access control diagnostic for a structured binding 7809 // declaration: we don't need to tell the user that all the fields are 7810 // inaccessible one at a time. 7811 if (AnyAccessFailures && isa<DecompositionDecl>(decl)) 7812 continue; 7813 HandleDelayedAccessCheck(diag, decl); 7814 if (diag.Triggered) 7815 AnyAccessFailures = true; 7816 break; 7817 7818 case DelayedDiagnostic::ForbiddenType: 7819 handleDelayedForbiddenType(*this, diag, decl); 7820 break; 7821 } 7822 } 7823 } while ((pool = pool->getParent())); 7824 } 7825 7826 /// Given a set of delayed diagnostics, re-emit them as if they had 7827 /// been delayed in the current context instead of in the given pool. 7828 /// Essentially, this just moves them to the current pool. 7829 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) { 7830 DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool(); 7831 assert(curPool && "re-emitting in undelayed context not supported"); 7832 curPool->steal(pool); 7833 } 7834