1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements decl-related attribute processing. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTConsumer.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTMutationListener.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/Mangle.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/Basic/CharInfo.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Lex/Preprocessor.h" 29 #include "clang/Sema/DeclSpec.h" 30 #include "clang/Sema/DelayedDiagnostic.h" 31 #include "clang/Sema/Initialization.h" 32 #include "clang/Sema/Lookup.h" 33 #include "clang/Sema/Scope.h" 34 #include "clang/Sema/ScopeInfo.h" 35 #include "clang/Sema/SemaInternal.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/ADT/StringExtras.h" 38 #include "llvm/Support/MathExtras.h" 39 40 using namespace clang; 41 using namespace sema; 42 43 namespace AttributeLangSupport { 44 enum LANG { 45 C, 46 Cpp, 47 ObjC 48 }; 49 } // end namespace AttributeLangSupport 50 51 //===----------------------------------------------------------------------===// 52 // Helper functions 53 //===----------------------------------------------------------------------===// 54 55 /// isFunctionOrMethod - Return true if the given decl has function 56 /// type (function or function-typed variable) or an Objective-C 57 /// method. 58 static bool isFunctionOrMethod(const Decl *D) { 59 return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D); 60 } 61 62 /// Return true if the given decl has function type (function or 63 /// function-typed variable) or an Objective-C method or a block. 64 static bool isFunctionOrMethodOrBlock(const Decl *D) { 65 return isFunctionOrMethod(D) || isa<BlockDecl>(D); 66 } 67 68 /// Return true if the given decl has a declarator that should have 69 /// been processed by Sema::GetTypeForDeclarator. 70 static bool hasDeclarator(const Decl *D) { 71 // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl. 72 return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) || 73 isa<ObjCPropertyDecl>(D); 74 } 75 76 /// hasFunctionProto - Return true if the given decl has a argument 77 /// information. This decl should have already passed 78 /// isFunctionOrMethod or isFunctionOrMethodOrBlock. 79 static bool hasFunctionProto(const Decl *D) { 80 if (const FunctionType *FnTy = D->getFunctionType()) 81 return isa<FunctionProtoType>(FnTy); 82 return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D); 83 } 84 85 /// getFunctionOrMethodNumParams - Return number of function or method 86 /// parameters. It is an error to call this on a K&R function (use 87 /// hasFunctionProto first). 88 static unsigned getFunctionOrMethodNumParams(const Decl *D) { 89 if (const FunctionType *FnTy = D->getFunctionType()) 90 return cast<FunctionProtoType>(FnTy)->getNumParams(); 91 if (const auto *BD = dyn_cast<BlockDecl>(D)) 92 return BD->getNumParams(); 93 return cast<ObjCMethodDecl>(D)->param_size(); 94 } 95 96 static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D, 97 unsigned Idx) { 98 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 99 return FD->getParamDecl(Idx); 100 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 101 return MD->getParamDecl(Idx); 102 if (const auto *BD = dyn_cast<BlockDecl>(D)) 103 return BD->getParamDecl(Idx); 104 return nullptr; 105 } 106 107 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) { 108 if (const FunctionType *FnTy = D->getFunctionType()) 109 return cast<FunctionProtoType>(FnTy)->getParamType(Idx); 110 if (const auto *BD = dyn_cast<BlockDecl>(D)) 111 return BD->getParamDecl(Idx)->getType(); 112 113 return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType(); 114 } 115 116 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) { 117 if (auto *PVD = getFunctionOrMethodParam(D, Idx)) 118 return PVD->getSourceRange(); 119 return SourceRange(); 120 } 121 122 static QualType getFunctionOrMethodResultType(const Decl *D) { 123 if (const FunctionType *FnTy = D->getFunctionType()) 124 return FnTy->getReturnType(); 125 return cast<ObjCMethodDecl>(D)->getReturnType(); 126 } 127 128 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) { 129 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 130 return FD->getReturnTypeSourceRange(); 131 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 132 return MD->getReturnTypeSourceRange(); 133 return SourceRange(); 134 } 135 136 static bool isFunctionOrMethodVariadic(const Decl *D) { 137 if (const FunctionType *FnTy = D->getFunctionType()) 138 return cast<FunctionProtoType>(FnTy)->isVariadic(); 139 if (const auto *BD = dyn_cast<BlockDecl>(D)) 140 return BD->isVariadic(); 141 return cast<ObjCMethodDecl>(D)->isVariadic(); 142 } 143 144 static bool isInstanceMethod(const Decl *D) { 145 if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D)) 146 return MethodDecl->isInstance(); 147 return false; 148 } 149 150 static inline bool isNSStringType(QualType T, ASTContext &Ctx) { 151 const auto *PT = T->getAs<ObjCObjectPointerType>(); 152 if (!PT) 153 return false; 154 155 ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface(); 156 if (!Cls) 157 return false; 158 159 IdentifierInfo* ClsName = Cls->getIdentifier(); 160 161 // FIXME: Should we walk the chain of classes? 162 return ClsName == &Ctx.Idents.get("NSString") || 163 ClsName == &Ctx.Idents.get("NSMutableString"); 164 } 165 166 static inline bool isCFStringType(QualType T, ASTContext &Ctx) { 167 const auto *PT = T->getAs<PointerType>(); 168 if (!PT) 169 return false; 170 171 const auto *RT = PT->getPointeeType()->getAs<RecordType>(); 172 if (!RT) 173 return false; 174 175 const RecordDecl *RD = RT->getDecl(); 176 if (RD->getTagKind() != TTK_Struct) 177 return false; 178 179 return RD->getIdentifier() == &Ctx.Idents.get("__CFString"); 180 } 181 182 static unsigned getNumAttributeArgs(const ParsedAttr &AL) { 183 // FIXME: Include the type in the argument list. 184 return AL.getNumArgs() + AL.hasParsedType(); 185 } 186 187 template <typename Compare> 188 static bool checkAttributeNumArgsImpl(Sema &S, const ParsedAttr &AL, 189 unsigned Num, unsigned Diag, 190 Compare Comp) { 191 if (Comp(getNumAttributeArgs(AL), Num)) { 192 S.Diag(AL.getLoc(), Diag) << AL << Num; 193 return false; 194 } 195 196 return true; 197 } 198 199 /// Check if the attribute has exactly as many args as Num. May 200 /// output an error. 201 static bool checkAttributeNumArgs(Sema &S, const ParsedAttr &AL, unsigned Num) { 202 return checkAttributeNumArgsImpl(S, AL, Num, 203 diag::err_attribute_wrong_number_arguments, 204 std::not_equal_to<unsigned>()); 205 } 206 207 /// Check if the attribute has at least as many args as Num. May 208 /// output an error. 209 static bool checkAttributeAtLeastNumArgs(Sema &S, const ParsedAttr &AL, 210 unsigned Num) { 211 return checkAttributeNumArgsImpl(S, AL, Num, 212 diag::err_attribute_too_few_arguments, 213 std::less<unsigned>()); 214 } 215 216 /// Check if the attribute has at most as many args as Num. May 217 /// output an error. 218 static bool checkAttributeAtMostNumArgs(Sema &S, const ParsedAttr &AL, 219 unsigned Num) { 220 return checkAttributeNumArgsImpl(S, AL, Num, 221 diag::err_attribute_too_many_arguments, 222 std::greater<unsigned>()); 223 } 224 225 /// A helper function to provide Attribute Location for the Attr types 226 /// AND the ParsedAttr. 227 template <typename AttrInfo> 228 static typename std::enable_if<std::is_base_of<Attr, AttrInfo>::value, 229 SourceLocation>::type 230 getAttrLoc(const AttrInfo &AL) { 231 return AL.getLocation(); 232 } 233 static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); } 234 235 /// If Expr is a valid integer constant, get the value of the integer 236 /// expression and return success or failure. May output an error. 237 /// 238 /// Negative argument is implicitly converted to unsigned, unless 239 /// \p StrictlyUnsigned is true. 240 template <typename AttrInfo> 241 static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr, 242 uint32_t &Val, unsigned Idx = UINT_MAX, 243 bool StrictlyUnsigned = false) { 244 llvm::APSInt I(32); 245 if (Expr->isTypeDependent() || Expr->isValueDependent() || 246 !Expr->isIntegerConstantExpr(I, S.Context)) { 247 if (Idx != UINT_MAX) 248 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type) 249 << &AI << Idx << AANT_ArgumentIntegerConstant 250 << Expr->getSourceRange(); 251 else 252 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type) 253 << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange(); 254 return false; 255 } 256 257 if (!I.isIntN(32)) { 258 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) 259 << I.toString(10, false) << 32 << /* Unsigned */ 1; 260 return false; 261 } 262 263 if (StrictlyUnsigned && I.isSigned() && I.isNegative()) { 264 S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer) 265 << &AI << /*non-negative*/ 1; 266 return false; 267 } 268 269 Val = (uint32_t)I.getZExtValue(); 270 return true; 271 } 272 273 /// Wrapper around checkUInt32Argument, with an extra check to be sure 274 /// that the result will fit into a regular (signed) int. All args have the same 275 /// purpose as they do in checkUInt32Argument. 276 template <typename AttrInfo> 277 static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr, 278 int &Val, unsigned Idx = UINT_MAX) { 279 uint32_t UVal; 280 if (!checkUInt32Argument(S, AI, Expr, UVal, Idx)) 281 return false; 282 283 if (UVal > (uint32_t)std::numeric_limits<int>::max()) { 284 llvm::APSInt I(32); // for toString 285 I = UVal; 286 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) 287 << I.toString(10, false) << 32 << /* Unsigned */ 0; 288 return false; 289 } 290 291 Val = UVal; 292 return true; 293 } 294 295 /// Diagnose mutually exclusive attributes when present on a given 296 /// declaration. Returns true if diagnosed. 297 template <typename AttrTy> 298 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) { 299 if (const auto *A = D->getAttr<AttrTy>()) { 300 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A; 301 S.Diag(A->getLocation(), diag::note_conflicting_attribute); 302 return true; 303 } 304 return false; 305 } 306 307 template <typename AttrTy> 308 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) { 309 if (const auto *A = D->getAttr<AttrTy>()) { 310 S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL 311 << A; 312 S.Diag(A->getLocation(), diag::note_conflicting_attribute); 313 return true; 314 } 315 return false; 316 } 317 318 /// Check if IdxExpr is a valid parameter index for a function or 319 /// instance method D. May output an error. 320 /// 321 /// \returns true if IdxExpr is a valid index. 322 template <typename AttrInfo> 323 static bool checkFunctionOrMethodParameterIndex( 324 Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum, 325 const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) { 326 assert(isFunctionOrMethodOrBlock(D)); 327 328 // In C++ the implicit 'this' function parameter also counts. 329 // Parameters are counted from one. 330 bool HP = hasFunctionProto(D); 331 bool HasImplicitThisParam = isInstanceMethod(D); 332 bool IV = HP && isFunctionOrMethodVariadic(D); 333 unsigned NumParams = 334 (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam; 335 336 llvm::APSInt IdxInt; 337 if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() || 338 !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) { 339 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type) 340 << &AI << AttrArgNum << AANT_ArgumentIntegerConstant 341 << IdxExpr->getSourceRange(); 342 return false; 343 } 344 345 unsigned IdxSource = IdxInt.getLimitedValue(UINT_MAX); 346 if (IdxSource < 1 || (!IV && IdxSource > NumParams)) { 347 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds) 348 << &AI << AttrArgNum << IdxExpr->getSourceRange(); 349 return false; 350 } 351 if (HasImplicitThisParam && !CanIndexImplicitThis) { 352 if (IdxSource == 1) { 353 S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument) 354 << &AI << IdxExpr->getSourceRange(); 355 return false; 356 } 357 } 358 359 Idx = ParamIdx(IdxSource, D); 360 return true; 361 } 362 363 /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal. 364 /// If not emit an error and return false. If the argument is an identifier it 365 /// will emit an error with a fixit hint and treat it as if it was a string 366 /// literal. 367 bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum, 368 StringRef &Str, 369 SourceLocation *ArgLocation) { 370 // Look for identifiers. If we have one emit a hint to fix it to a literal. 371 if (AL.isArgIdent(ArgNum)) { 372 IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum); 373 Diag(Loc->Loc, diag::err_attribute_argument_type) 374 << AL << AANT_ArgumentString 375 << FixItHint::CreateInsertion(Loc->Loc, "\"") 376 << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\""); 377 Str = Loc->Ident->getName(); 378 if (ArgLocation) 379 *ArgLocation = Loc->Loc; 380 return true; 381 } 382 383 // Now check for an actual string literal. 384 Expr *ArgExpr = AL.getArgAsExpr(ArgNum); 385 const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts()); 386 if (ArgLocation) 387 *ArgLocation = ArgExpr->getBeginLoc(); 388 389 if (!Literal || !Literal->isAscii()) { 390 Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type) 391 << AL << AANT_ArgumentString; 392 return false; 393 } 394 395 Str = Literal->getString(); 396 return true; 397 } 398 399 /// Applies the given attribute to the Decl without performing any 400 /// additional semantic checking. 401 template <typename AttrType> 402 static void handleSimpleAttribute(Sema &S, Decl *D, 403 const AttributeCommonInfo &CI) { 404 D->addAttr(::new (S.Context) AttrType(S.Context, CI)); 405 } 406 407 template <typename... DiagnosticArgs> 408 static const Sema::SemaDiagnosticBuilder& 409 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) { 410 return Bldr; 411 } 412 413 template <typename T, typename... DiagnosticArgs> 414 static const Sema::SemaDiagnosticBuilder& 415 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg, 416 DiagnosticArgs &&... ExtraArgs) { 417 return appendDiagnostics(Bldr << std::forward<T>(ExtraArg), 418 std::forward<DiagnosticArgs>(ExtraArgs)...); 419 } 420 421 /// Add an attribute {@code AttrType} to declaration {@code D}, provided that 422 /// {@code PassesCheck} is true. 423 /// Otherwise, emit diagnostic {@code DiagID}, passing in all parameters 424 /// specified in {@code ExtraArgs}. 425 template <typename AttrType, typename... DiagnosticArgs> 426 static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D, 427 const AttributeCommonInfo &CI, 428 bool PassesCheck, unsigned DiagID, 429 DiagnosticArgs &&... ExtraArgs) { 430 if (!PassesCheck) { 431 Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID); 432 appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...); 433 return; 434 } 435 handleSimpleAttribute<AttrType>(S, D, CI); 436 } 437 438 template <typename AttrType> 439 static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D, 440 const ParsedAttr &AL) { 441 handleSimpleAttribute<AttrType>(S, D, AL); 442 } 443 444 /// Applies the given attribute to the Decl so long as the Decl doesn't 445 /// already have one of the given incompatible attributes. 446 template <typename AttrType, typename IncompatibleAttrType, 447 typename... IncompatibleAttrTypes> 448 static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D, 449 const ParsedAttr &AL) { 450 if (checkAttrMutualExclusion<IncompatibleAttrType>(S, D, AL)) 451 return; 452 handleSimpleAttributeWithExclusions<AttrType, IncompatibleAttrTypes...>(S, D, 453 AL); 454 } 455 456 /// Check if the passed-in expression is of type int or bool. 457 static bool isIntOrBool(Expr *Exp) { 458 QualType QT = Exp->getType(); 459 return QT->isBooleanType() || QT->isIntegerType(); 460 } 461 462 463 // Check to see if the type is a smart pointer of some kind. We assume 464 // it's a smart pointer if it defines both operator-> and operator*. 465 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) { 466 auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record, 467 OverloadedOperatorKind Op) { 468 DeclContextLookupResult Result = 469 Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op)); 470 return !Result.empty(); 471 }; 472 473 const RecordDecl *Record = RT->getDecl(); 474 bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star); 475 bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow); 476 if (foundStarOperator && foundArrowOperator) 477 return true; 478 479 const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record); 480 if (!CXXRecord) 481 return false; 482 483 for (auto BaseSpecifier : CXXRecord->bases()) { 484 if (!foundStarOperator) 485 foundStarOperator = IsOverloadedOperatorPresent( 486 BaseSpecifier.getType()->getAsRecordDecl(), OO_Star); 487 if (!foundArrowOperator) 488 foundArrowOperator = IsOverloadedOperatorPresent( 489 BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow); 490 } 491 492 if (foundStarOperator && foundArrowOperator) 493 return true; 494 495 return false; 496 } 497 498 /// Check if passed in Decl is a pointer type. 499 /// Note that this function may produce an error message. 500 /// \return true if the Decl is a pointer type; false otherwise 501 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, 502 const ParsedAttr &AL) { 503 const auto *VD = cast<ValueDecl>(D); 504 QualType QT = VD->getType(); 505 if (QT->isAnyPointerType()) 506 return true; 507 508 if (const auto *RT = QT->getAs<RecordType>()) { 509 // If it's an incomplete type, it could be a smart pointer; skip it. 510 // (We don't want to force template instantiation if we can avoid it, 511 // since that would alter the order in which templates are instantiated.) 512 if (RT->isIncompleteType()) 513 return true; 514 515 if (threadSafetyCheckIsSmartPointer(S, RT)) 516 return true; 517 } 518 519 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT; 520 return false; 521 } 522 523 /// Checks that the passed in QualType either is of RecordType or points 524 /// to RecordType. Returns the relevant RecordType, null if it does not exit. 525 static const RecordType *getRecordType(QualType QT) { 526 if (const auto *RT = QT->getAs<RecordType>()) 527 return RT; 528 529 // Now check if we point to record type. 530 if (const auto *PT = QT->getAs<PointerType>()) 531 return PT->getPointeeType()->getAs<RecordType>(); 532 533 return nullptr; 534 } 535 536 template <typename AttrType> 537 static bool checkRecordDeclForAttr(const RecordDecl *RD) { 538 // Check if the record itself has the attribute. 539 if (RD->hasAttr<AttrType>()) 540 return true; 541 542 // Else check if any base classes have the attribute. 543 if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) { 544 CXXBasePaths BPaths(false, false); 545 if (CRD->lookupInBases( 546 [](const CXXBaseSpecifier *BS, CXXBasePath &) { 547 const auto &Ty = *BS->getType(); 548 // If it's type-dependent, we assume it could have the attribute. 549 if (Ty.isDependentType()) 550 return true; 551 return Ty.castAs<RecordType>()->getDecl()->hasAttr<AttrType>(); 552 }, 553 BPaths, true)) 554 return true; 555 } 556 return false; 557 } 558 559 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) { 560 const RecordType *RT = getRecordType(Ty); 561 562 if (!RT) 563 return false; 564 565 // Don't check for the capability if the class hasn't been defined yet. 566 if (RT->isIncompleteType()) 567 return true; 568 569 // Allow smart pointers to be used as capability objects. 570 // FIXME -- Check the type that the smart pointer points to. 571 if (threadSafetyCheckIsSmartPointer(S, RT)) 572 return true; 573 574 return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl()); 575 } 576 577 static bool checkTypedefTypeForCapability(QualType Ty) { 578 const auto *TD = Ty->getAs<TypedefType>(); 579 if (!TD) 580 return false; 581 582 TypedefNameDecl *TN = TD->getDecl(); 583 if (!TN) 584 return false; 585 586 return TN->hasAttr<CapabilityAttr>(); 587 } 588 589 static bool typeHasCapability(Sema &S, QualType Ty) { 590 if (checkTypedefTypeForCapability(Ty)) 591 return true; 592 593 if (checkRecordTypeForCapability(S, Ty)) 594 return true; 595 596 return false; 597 } 598 599 static bool isCapabilityExpr(Sema &S, const Expr *Ex) { 600 // Capability expressions are simple expressions involving the boolean logic 601 // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once 602 // a DeclRefExpr is found, its type should be checked to determine whether it 603 // is a capability or not. 604 605 if (const auto *E = dyn_cast<CastExpr>(Ex)) 606 return isCapabilityExpr(S, E->getSubExpr()); 607 else if (const auto *E = dyn_cast<ParenExpr>(Ex)) 608 return isCapabilityExpr(S, E->getSubExpr()); 609 else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) { 610 if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf || 611 E->getOpcode() == UO_Deref) 612 return isCapabilityExpr(S, E->getSubExpr()); 613 return false; 614 } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) { 615 if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr) 616 return isCapabilityExpr(S, E->getLHS()) && 617 isCapabilityExpr(S, E->getRHS()); 618 return false; 619 } 620 621 return typeHasCapability(S, Ex->getType()); 622 } 623 624 /// Checks that all attribute arguments, starting from Sidx, resolve to 625 /// a capability object. 626 /// \param Sidx The attribute argument index to start checking with. 627 /// \param ParamIdxOk Whether an argument can be indexing into a function 628 /// parameter list. 629 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D, 630 const ParsedAttr &AL, 631 SmallVectorImpl<Expr *> &Args, 632 unsigned Sidx = 0, 633 bool ParamIdxOk = false) { 634 if (Sidx == AL.getNumArgs()) { 635 // If we don't have any capability arguments, the attribute implicitly 636 // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're 637 // a non-static method, and that the class is a (scoped) capability. 638 const auto *MD = dyn_cast<const CXXMethodDecl>(D); 639 if (MD && !MD->isStatic()) { 640 const CXXRecordDecl *RD = MD->getParent(); 641 // FIXME -- need to check this again on template instantiation 642 if (!checkRecordDeclForAttr<CapabilityAttr>(RD) && 643 !checkRecordDeclForAttr<ScopedLockableAttr>(RD)) 644 S.Diag(AL.getLoc(), 645 diag::warn_thread_attribute_not_on_capability_member) 646 << AL << MD->getParent(); 647 } else { 648 S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member) 649 << AL; 650 } 651 } 652 653 for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) { 654 Expr *ArgExp = AL.getArgAsExpr(Idx); 655 656 if (ArgExp->isTypeDependent()) { 657 // FIXME -- need to check this again on template instantiation 658 Args.push_back(ArgExp); 659 continue; 660 } 661 662 if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) { 663 if (StrLit->getLength() == 0 || 664 (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) { 665 // Pass empty strings to the analyzer without warnings. 666 // Treat "*" as the universal lock. 667 Args.push_back(ArgExp); 668 continue; 669 } 670 671 // We allow constant strings to be used as a placeholder for expressions 672 // that are not valid C++ syntax, but warn that they are ignored. 673 S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL; 674 Args.push_back(ArgExp); 675 continue; 676 } 677 678 QualType ArgTy = ArgExp->getType(); 679 680 // A pointer to member expression of the form &MyClass::mu is treated 681 // specially -- we need to look at the type of the member. 682 if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp)) 683 if (UOp->getOpcode() == UO_AddrOf) 684 if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr())) 685 if (DRE->getDecl()->isCXXInstanceMember()) 686 ArgTy = DRE->getDecl()->getType(); 687 688 // First see if we can just cast to record type, or pointer to record type. 689 const RecordType *RT = getRecordType(ArgTy); 690 691 // Now check if we index into a record type function param. 692 if(!RT && ParamIdxOk) { 693 const auto *FD = dyn_cast<FunctionDecl>(D); 694 const auto *IL = dyn_cast<IntegerLiteral>(ArgExp); 695 if(FD && IL) { 696 unsigned int NumParams = FD->getNumParams(); 697 llvm::APInt ArgValue = IL->getValue(); 698 uint64_t ParamIdxFromOne = ArgValue.getZExtValue(); 699 uint64_t ParamIdxFromZero = ParamIdxFromOne - 1; 700 if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) { 701 S.Diag(AL.getLoc(), 702 diag::err_attribute_argument_out_of_bounds_extra_info) 703 << AL << Idx + 1 << NumParams; 704 continue; 705 } 706 ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType(); 707 } 708 } 709 710 // If the type does not have a capability, see if the components of the 711 // expression have capabilities. This allows for writing C code where the 712 // capability may be on the type, and the expression is a capability 713 // boolean logic expression. Eg) requires_capability(A || B && !C) 714 if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp)) 715 S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable) 716 << AL << ArgTy; 717 718 Args.push_back(ArgExp); 719 } 720 } 721 722 //===----------------------------------------------------------------------===// 723 // Attribute Implementations 724 //===----------------------------------------------------------------------===// 725 726 static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 727 if (!threadSafetyCheckIsPointer(S, D, AL)) 728 return; 729 730 D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL)); 731 } 732 733 static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, 734 Expr *&Arg) { 735 SmallVector<Expr *, 1> Args; 736 // check that all arguments are lockable objects 737 checkAttrArgsAreCapabilityObjs(S, D, AL, Args); 738 unsigned Size = Args.size(); 739 if (Size != 1) 740 return false; 741 742 Arg = Args[0]; 743 744 return true; 745 } 746 747 static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 748 Expr *Arg = nullptr; 749 if (!checkGuardedByAttrCommon(S, D, AL, Arg)) 750 return; 751 752 D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg)); 753 } 754 755 static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 756 Expr *Arg = nullptr; 757 if (!checkGuardedByAttrCommon(S, D, AL, Arg)) 758 return; 759 760 if (!threadSafetyCheckIsPointer(S, D, AL)) 761 return; 762 763 D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg)); 764 } 765 766 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, 767 SmallVectorImpl<Expr *> &Args) { 768 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 769 return false; 770 771 // Check that this attribute only applies to lockable types. 772 QualType QT = cast<ValueDecl>(D)->getType(); 773 if (!QT->isDependentType() && !typeHasCapability(S, QT)) { 774 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL; 775 return false; 776 } 777 778 // Check that all arguments are lockable objects. 779 checkAttrArgsAreCapabilityObjs(S, D, AL, Args); 780 if (Args.empty()) 781 return false; 782 783 return true; 784 } 785 786 static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 787 SmallVector<Expr *, 1> Args; 788 if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) 789 return; 790 791 Expr **StartArg = &Args[0]; 792 D->addAttr(::new (S.Context) 793 AcquiredAfterAttr(S.Context, AL, StartArg, Args.size())); 794 } 795 796 static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 797 SmallVector<Expr *, 1> Args; 798 if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) 799 return; 800 801 Expr **StartArg = &Args[0]; 802 D->addAttr(::new (S.Context) 803 AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size())); 804 } 805 806 static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, 807 SmallVectorImpl<Expr *> &Args) { 808 // zero or more arguments ok 809 // check that all arguments are lockable objects 810 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true); 811 812 return true; 813 } 814 815 static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 816 SmallVector<Expr *, 1> Args; 817 if (!checkLockFunAttrCommon(S, D, AL, Args)) 818 return; 819 820 unsigned Size = Args.size(); 821 Expr **StartArg = Size == 0 ? nullptr : &Args[0]; 822 D->addAttr(::new (S.Context) 823 AssertSharedLockAttr(S.Context, AL, StartArg, Size)); 824 } 825 826 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D, 827 const ParsedAttr &AL) { 828 SmallVector<Expr *, 1> Args; 829 if (!checkLockFunAttrCommon(S, D, AL, Args)) 830 return; 831 832 unsigned Size = Args.size(); 833 Expr **StartArg = Size == 0 ? nullptr : &Args[0]; 834 D->addAttr(::new (S.Context) 835 AssertExclusiveLockAttr(S.Context, AL, StartArg, Size)); 836 } 837 838 /// Checks to be sure that the given parameter number is in bounds, and 839 /// is an integral type. Will emit appropriate diagnostics if this returns 840 /// false. 841 /// 842 /// AttrArgNo is used to actually retrieve the argument, so it's base-0. 843 template <typename AttrInfo> 844 static bool checkParamIsIntegerType(Sema &S, const FunctionDecl *FD, 845 const AttrInfo &AI, unsigned AttrArgNo) { 846 assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument"); 847 Expr *AttrArg = AI.getArgAsExpr(AttrArgNo); 848 ParamIdx Idx; 849 if (!checkFunctionOrMethodParameterIndex(S, FD, AI, AttrArgNo + 1, AttrArg, 850 Idx)) 851 return false; 852 853 const ParmVarDecl *Param = FD->getParamDecl(Idx.getASTIndex()); 854 if (!Param->getType()->isIntegerType() && !Param->getType()->isCharType()) { 855 SourceLocation SrcLoc = AttrArg->getBeginLoc(); 856 S.Diag(SrcLoc, diag::err_attribute_integers_only) 857 << AI << Param->getSourceRange(); 858 return false; 859 } 860 return true; 861 } 862 863 static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 864 if (!checkAttributeAtLeastNumArgs(S, AL, 1) || 865 !checkAttributeAtMostNumArgs(S, AL, 2)) 866 return; 867 868 const auto *FD = cast<FunctionDecl>(D); 869 if (!FD->getReturnType()->isPointerType()) { 870 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL; 871 return; 872 } 873 874 const Expr *SizeExpr = AL.getArgAsExpr(0); 875 int SizeArgNoVal; 876 // Parameter indices are 1-indexed, hence Index=1 877 if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1)) 878 return; 879 if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/0)) 880 return; 881 ParamIdx SizeArgNo(SizeArgNoVal, D); 882 883 ParamIdx NumberArgNo; 884 if (AL.getNumArgs() == 2) { 885 const Expr *NumberExpr = AL.getArgAsExpr(1); 886 int Val; 887 // Parameter indices are 1-based, hence Index=2 888 if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2)) 889 return; 890 if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/1)) 891 return; 892 NumberArgNo = ParamIdx(Val, D); 893 } 894 895 D->addAttr(::new (S.Context) 896 AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo)); 897 } 898 899 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, 900 SmallVectorImpl<Expr *> &Args) { 901 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 902 return false; 903 904 if (!isIntOrBool(AL.getArgAsExpr(0))) { 905 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 906 << AL << 1 << AANT_ArgumentIntOrBool; 907 return false; 908 } 909 910 // check that all arguments are lockable objects 911 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1); 912 913 return true; 914 } 915 916 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D, 917 const ParsedAttr &AL) { 918 SmallVector<Expr*, 2> Args; 919 if (!checkTryLockFunAttrCommon(S, D, AL, Args)) 920 return; 921 922 D->addAttr(::new (S.Context) SharedTrylockFunctionAttr( 923 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); 924 } 925 926 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D, 927 const ParsedAttr &AL) { 928 SmallVector<Expr*, 2> Args; 929 if (!checkTryLockFunAttrCommon(S, D, AL, Args)) 930 return; 931 932 D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr( 933 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); 934 } 935 936 static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 937 // check that the argument is lockable object 938 SmallVector<Expr*, 1> Args; 939 checkAttrArgsAreCapabilityObjs(S, D, AL, Args); 940 unsigned Size = Args.size(); 941 if (Size == 0) 942 return; 943 944 D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0])); 945 } 946 947 static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 948 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 949 return; 950 951 // check that all arguments are lockable objects 952 SmallVector<Expr*, 1> Args; 953 checkAttrArgsAreCapabilityObjs(S, D, AL, Args); 954 unsigned Size = Args.size(); 955 if (Size == 0) 956 return; 957 Expr **StartArg = &Args[0]; 958 959 D->addAttr(::new (S.Context) 960 LocksExcludedAttr(S.Context, AL, StartArg, Size)); 961 } 962 963 static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL, 964 Expr *&Cond, StringRef &Msg) { 965 Cond = AL.getArgAsExpr(0); 966 if (!Cond->isTypeDependent()) { 967 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); 968 if (Converted.isInvalid()) 969 return false; 970 Cond = Converted.get(); 971 } 972 973 if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg)) 974 return false; 975 976 if (Msg.empty()) 977 Msg = "<no message provided>"; 978 979 SmallVector<PartialDiagnosticAt, 8> Diags; 980 if (isa<FunctionDecl>(D) && !Cond->isValueDependent() && 981 !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D), 982 Diags)) { 983 S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL; 984 for (const PartialDiagnosticAt &PDiag : Diags) 985 S.Diag(PDiag.first, PDiag.second); 986 return false; 987 } 988 return true; 989 } 990 991 static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 992 S.Diag(AL.getLoc(), diag::ext_clang_enable_if); 993 994 Expr *Cond; 995 StringRef Msg; 996 if (checkFunctionConditionAttr(S, D, AL, Cond, Msg)) 997 D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg)); 998 } 999 1000 namespace { 1001 /// Determines if a given Expr references any of the given function's 1002 /// ParmVarDecls, or the function's implicit `this` parameter (if applicable). 1003 class ArgumentDependenceChecker 1004 : public RecursiveASTVisitor<ArgumentDependenceChecker> { 1005 #ifndef NDEBUG 1006 const CXXRecordDecl *ClassType; 1007 #endif 1008 llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms; 1009 bool Result; 1010 1011 public: 1012 ArgumentDependenceChecker(const FunctionDecl *FD) { 1013 #ifndef NDEBUG 1014 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1015 ClassType = MD->getParent(); 1016 else 1017 ClassType = nullptr; 1018 #endif 1019 Parms.insert(FD->param_begin(), FD->param_end()); 1020 } 1021 1022 bool referencesArgs(Expr *E) { 1023 Result = false; 1024 TraverseStmt(E); 1025 return Result; 1026 } 1027 1028 bool VisitCXXThisExpr(CXXThisExpr *E) { 1029 assert(E->getType()->getPointeeCXXRecordDecl() == ClassType && 1030 "`this` doesn't refer to the enclosing class?"); 1031 Result = true; 1032 return false; 1033 } 1034 1035 bool VisitDeclRefExpr(DeclRefExpr *DRE) { 1036 if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 1037 if (Parms.count(PVD)) { 1038 Result = true; 1039 return false; 1040 } 1041 return true; 1042 } 1043 }; 1044 } 1045 1046 static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1047 S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if); 1048 1049 Expr *Cond; 1050 StringRef Msg; 1051 if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg)) 1052 return; 1053 1054 StringRef DiagTypeStr; 1055 if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr)) 1056 return; 1057 1058 DiagnoseIfAttr::DiagnosticType DiagType; 1059 if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) { 1060 S.Diag(AL.getArgAsExpr(2)->getBeginLoc(), 1061 diag::err_diagnose_if_invalid_diagnostic_type); 1062 return; 1063 } 1064 1065 bool ArgDependent = false; 1066 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 1067 ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond); 1068 D->addAttr(::new (S.Context) DiagnoseIfAttr( 1069 S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D))); 1070 } 1071 1072 static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1073 static constexpr const StringRef kWildcard = "*"; 1074 1075 llvm::SmallVector<StringRef, 16> Names; 1076 bool HasWildcard = false; 1077 1078 const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) { 1079 if (Name == kWildcard) 1080 HasWildcard = true; 1081 Names.push_back(Name); 1082 }; 1083 1084 // Add previously defined attributes. 1085 if (const auto *NBA = D->getAttr<NoBuiltinAttr>()) 1086 for (StringRef BuiltinName : NBA->builtinNames()) 1087 AddBuiltinName(BuiltinName); 1088 1089 // Add current attributes. 1090 if (AL.getNumArgs() == 0) 1091 AddBuiltinName(kWildcard); 1092 else 1093 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { 1094 StringRef BuiltinName; 1095 SourceLocation LiteralLoc; 1096 if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc)) 1097 return; 1098 1099 if (Builtin::Context::isBuiltinFunc(BuiltinName)) 1100 AddBuiltinName(BuiltinName); 1101 else 1102 S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name) 1103 << BuiltinName << AL.getAttrName()->getName(); 1104 } 1105 1106 // Repeating the same attribute is fine. 1107 llvm::sort(Names); 1108 Names.erase(std::unique(Names.begin(), Names.end()), Names.end()); 1109 1110 // Empty no_builtin must be on its own. 1111 if (HasWildcard && Names.size() > 1) 1112 S.Diag(D->getLocation(), 1113 diag::err_attribute_no_builtin_wildcard_or_builtin_name) 1114 << AL.getAttrName()->getName(); 1115 1116 if (D->hasAttr<NoBuiltinAttr>()) 1117 D->dropAttr<NoBuiltinAttr>(); 1118 D->addAttr(::new (S.Context) 1119 NoBuiltinAttr(S.Context, AL, Names.data(), Names.size())); 1120 } 1121 1122 static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1123 if (D->hasAttr<PassObjectSizeAttr>()) { 1124 S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL; 1125 return; 1126 } 1127 1128 Expr *E = AL.getArgAsExpr(0); 1129 uint32_t Type; 1130 if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1)) 1131 return; 1132 1133 // pass_object_size's argument is passed in as the second argument of 1134 // __builtin_object_size. So, it has the same constraints as that second 1135 // argument; namely, it must be in the range [0, 3]. 1136 if (Type > 3) { 1137 S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range) 1138 << AL << 0 << 3 << E->getSourceRange(); 1139 return; 1140 } 1141 1142 // pass_object_size is only supported on constant pointer parameters; as a 1143 // kindness to users, we allow the parameter to be non-const for declarations. 1144 // At this point, we have no clue if `D` belongs to a function declaration or 1145 // definition, so we defer the constness check until later. 1146 if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) { 1147 S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1; 1148 return; 1149 } 1150 1151 D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type)); 1152 } 1153 1154 static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1155 ConsumableAttr::ConsumedState DefaultState; 1156 1157 if (AL.isArgIdent(0)) { 1158 IdentifierLoc *IL = AL.getArgAsIdent(0); 1159 if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(), 1160 DefaultState)) { 1161 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL 1162 << IL->Ident; 1163 return; 1164 } 1165 } else { 1166 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 1167 << AL << AANT_ArgumentIdentifier; 1168 return; 1169 } 1170 1171 D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState)); 1172 } 1173 1174 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, 1175 const ParsedAttr &AL) { 1176 QualType ThisType = MD->getThisType()->getPointeeType(); 1177 1178 if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) { 1179 if (!RD->hasAttr<ConsumableAttr>()) { 1180 S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << 1181 RD->getNameAsString(); 1182 1183 return false; 1184 } 1185 } 1186 1187 return true; 1188 } 1189 1190 static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1191 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 1192 return; 1193 1194 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) 1195 return; 1196 1197 SmallVector<CallableWhenAttr::ConsumedState, 3> States; 1198 for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) { 1199 CallableWhenAttr::ConsumedState CallableState; 1200 1201 StringRef StateString; 1202 SourceLocation Loc; 1203 if (AL.isArgIdent(ArgIndex)) { 1204 IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex); 1205 StateString = Ident->Ident->getName(); 1206 Loc = Ident->Loc; 1207 } else { 1208 if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc)) 1209 return; 1210 } 1211 1212 if (!CallableWhenAttr::ConvertStrToConsumedState(StateString, 1213 CallableState)) { 1214 S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString; 1215 return; 1216 } 1217 1218 States.push_back(CallableState); 1219 } 1220 1221 D->addAttr(::new (S.Context) 1222 CallableWhenAttr(S.Context, AL, States.data(), States.size())); 1223 } 1224 1225 static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1226 ParamTypestateAttr::ConsumedState ParamState; 1227 1228 if (AL.isArgIdent(0)) { 1229 IdentifierLoc *Ident = AL.getArgAsIdent(0); 1230 StringRef StateString = Ident->Ident->getName(); 1231 1232 if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString, 1233 ParamState)) { 1234 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) 1235 << AL << StateString; 1236 return; 1237 } 1238 } else { 1239 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 1240 << AL << AANT_ArgumentIdentifier; 1241 return; 1242 } 1243 1244 // FIXME: This check is currently being done in the analysis. It can be 1245 // enabled here only after the parser propagates attributes at 1246 // template specialization definition, not declaration. 1247 //QualType ReturnType = cast<ParmVarDecl>(D)->getType(); 1248 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); 1249 // 1250 //if (!RD || !RD->hasAttr<ConsumableAttr>()) { 1251 // S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) << 1252 // ReturnType.getAsString(); 1253 // return; 1254 //} 1255 1256 D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState)); 1257 } 1258 1259 static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1260 ReturnTypestateAttr::ConsumedState ReturnState; 1261 1262 if (AL.isArgIdent(0)) { 1263 IdentifierLoc *IL = AL.getArgAsIdent(0); 1264 if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(), 1265 ReturnState)) { 1266 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL 1267 << IL->Ident; 1268 return; 1269 } 1270 } else { 1271 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 1272 << AL << AANT_ArgumentIdentifier; 1273 return; 1274 } 1275 1276 // FIXME: This check is currently being done in the analysis. It can be 1277 // enabled here only after the parser propagates attributes at 1278 // template specialization definition, not declaration. 1279 //QualType ReturnType; 1280 // 1281 //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) { 1282 // ReturnType = Param->getType(); 1283 // 1284 //} else if (const CXXConstructorDecl *Constructor = 1285 // dyn_cast<CXXConstructorDecl>(D)) { 1286 // ReturnType = Constructor->getThisType()->getPointeeType(); 1287 // 1288 //} else { 1289 // 1290 // ReturnType = cast<FunctionDecl>(D)->getCallResultType(); 1291 //} 1292 // 1293 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); 1294 // 1295 //if (!RD || !RD->hasAttr<ConsumableAttr>()) { 1296 // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << 1297 // ReturnType.getAsString(); 1298 // return; 1299 //} 1300 1301 D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState)); 1302 } 1303 1304 static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1305 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) 1306 return; 1307 1308 SetTypestateAttr::ConsumedState NewState; 1309 if (AL.isArgIdent(0)) { 1310 IdentifierLoc *Ident = AL.getArgAsIdent(0); 1311 StringRef Param = Ident->Ident->getName(); 1312 if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) { 1313 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL 1314 << Param; 1315 return; 1316 } 1317 } else { 1318 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 1319 << AL << AANT_ArgumentIdentifier; 1320 return; 1321 } 1322 1323 D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState)); 1324 } 1325 1326 static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1327 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) 1328 return; 1329 1330 TestTypestateAttr::ConsumedState TestState; 1331 if (AL.isArgIdent(0)) { 1332 IdentifierLoc *Ident = AL.getArgAsIdent(0); 1333 StringRef Param = Ident->Ident->getName(); 1334 if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) { 1335 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL 1336 << Param; 1337 return; 1338 } 1339 } else { 1340 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 1341 << AL << AANT_ArgumentIdentifier; 1342 return; 1343 } 1344 1345 D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState)); 1346 } 1347 1348 static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1349 // Remember this typedef decl, we will need it later for diagnostics. 1350 S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D)); 1351 } 1352 1353 static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1354 if (auto *TD = dyn_cast<TagDecl>(D)) 1355 TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); 1356 else if (auto *FD = dyn_cast<FieldDecl>(D)) { 1357 bool BitfieldByteAligned = (!FD->getType()->isDependentType() && 1358 !FD->getType()->isIncompleteType() && 1359 FD->isBitField() && 1360 S.Context.getTypeAlign(FD->getType()) <= 8); 1361 1362 if (S.getASTContext().getTargetInfo().getTriple().isPS4()) { 1363 if (BitfieldByteAligned) 1364 // The PS4 target needs to maintain ABI backwards compatibility. 1365 S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type) 1366 << AL << FD->getType(); 1367 else 1368 FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); 1369 } else { 1370 // Report warning about changed offset in the newer compiler versions. 1371 if (BitfieldByteAligned) 1372 S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield); 1373 1374 FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); 1375 } 1376 1377 } else 1378 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; 1379 } 1380 1381 static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) { 1382 // The IBOutlet/IBOutletCollection attributes only apply to instance 1383 // variables or properties of Objective-C classes. The outlet must also 1384 // have an object reference type. 1385 if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) { 1386 if (!VD->getType()->getAs<ObjCObjectPointerType>()) { 1387 S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type) 1388 << AL << VD->getType() << 0; 1389 return false; 1390 } 1391 } 1392 else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) { 1393 if (!PD->getType()->getAs<ObjCObjectPointerType>()) { 1394 S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type) 1395 << AL << PD->getType() << 1; 1396 return false; 1397 } 1398 } 1399 else { 1400 S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL; 1401 return false; 1402 } 1403 1404 return true; 1405 } 1406 1407 static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) { 1408 if (!checkIBOutletCommon(S, D, AL)) 1409 return; 1410 1411 D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL)); 1412 } 1413 1414 static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) { 1415 1416 // The iboutletcollection attribute can have zero or one arguments. 1417 if (AL.getNumArgs() > 1) { 1418 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; 1419 return; 1420 } 1421 1422 if (!checkIBOutletCommon(S, D, AL)) 1423 return; 1424 1425 ParsedType PT; 1426 1427 if (AL.hasParsedType()) 1428 PT = AL.getTypeArg(); 1429 else { 1430 PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(), 1431 S.getScopeForContext(D->getDeclContext()->getParent())); 1432 if (!PT) { 1433 S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject"; 1434 return; 1435 } 1436 } 1437 1438 TypeSourceInfo *QTLoc = nullptr; 1439 QualType QT = S.GetTypeFromParser(PT, &QTLoc); 1440 if (!QTLoc) 1441 QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc()); 1442 1443 // Diagnose use of non-object type in iboutletcollection attribute. 1444 // FIXME. Gnu attribute extension ignores use of builtin types in 1445 // attributes. So, __attribute__((iboutletcollection(char))) will be 1446 // treated as __attribute__((iboutletcollection())). 1447 if (!QT->isObjCIdType() && !QT->isObjCObjectType()) { 1448 S.Diag(AL.getLoc(), 1449 QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype 1450 : diag::err_iboutletcollection_type) << QT; 1451 return; 1452 } 1453 1454 D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc)); 1455 } 1456 1457 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) { 1458 if (RefOkay) { 1459 if (T->isReferenceType()) 1460 return true; 1461 } else { 1462 T = T.getNonReferenceType(); 1463 } 1464 1465 // The nonnull attribute, and other similar attributes, can be applied to a 1466 // transparent union that contains a pointer type. 1467 if (const RecordType *UT = T->getAsUnionType()) { 1468 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) { 1469 RecordDecl *UD = UT->getDecl(); 1470 for (const auto *I : UD->fields()) { 1471 QualType QT = I->getType(); 1472 if (QT->isAnyPointerType() || QT->isBlockPointerType()) 1473 return true; 1474 } 1475 } 1476 } 1477 1478 return T->isAnyPointerType() || T->isBlockPointerType(); 1479 } 1480 1481 static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL, 1482 SourceRange AttrParmRange, 1483 SourceRange TypeRange, 1484 bool isReturnValue = false) { 1485 if (!S.isValidPointerAttrType(T)) { 1486 if (isReturnValue) 1487 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) 1488 << AL << AttrParmRange << TypeRange; 1489 else 1490 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) 1491 << AL << AttrParmRange << TypeRange << 0; 1492 return false; 1493 } 1494 return true; 1495 } 1496 1497 static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1498 SmallVector<ParamIdx, 8> NonNullArgs; 1499 for (unsigned I = 0; I < AL.getNumArgs(); ++I) { 1500 Expr *Ex = AL.getArgAsExpr(I); 1501 ParamIdx Idx; 1502 if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx)) 1503 return; 1504 1505 // Is the function argument a pointer type? 1506 if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) && 1507 !attrNonNullArgCheck( 1508 S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL, 1509 Ex->getSourceRange(), 1510 getFunctionOrMethodParamRange(D, Idx.getASTIndex()))) 1511 continue; 1512 1513 NonNullArgs.push_back(Idx); 1514 } 1515 1516 // If no arguments were specified to __attribute__((nonnull)) then all pointer 1517 // arguments have a nonnull attribute; warn if there aren't any. Skip this 1518 // check if the attribute came from a macro expansion or a template 1519 // instantiation. 1520 if (NonNullArgs.empty() && AL.getLoc().isFileID() && 1521 !S.inTemplateInstantiation()) { 1522 bool AnyPointers = isFunctionOrMethodVariadic(D); 1523 for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); 1524 I != E && !AnyPointers; ++I) { 1525 QualType T = getFunctionOrMethodParamType(D, I); 1526 if (T->isDependentType() || S.isValidPointerAttrType(T)) 1527 AnyPointers = true; 1528 } 1529 1530 if (!AnyPointers) 1531 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers); 1532 } 1533 1534 ParamIdx *Start = NonNullArgs.data(); 1535 unsigned Size = NonNullArgs.size(); 1536 llvm::array_pod_sort(Start, Start + Size); 1537 D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size)); 1538 } 1539 1540 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D, 1541 const ParsedAttr &AL) { 1542 if (AL.getNumArgs() > 0) { 1543 if (D->getFunctionType()) { 1544 handleNonNullAttr(S, D, AL); 1545 } else { 1546 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args) 1547 << D->getSourceRange(); 1548 } 1549 return; 1550 } 1551 1552 // Is the argument a pointer type? 1553 if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(), 1554 D->getSourceRange())) 1555 return; 1556 1557 D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0)); 1558 } 1559 1560 static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1561 QualType ResultType = getFunctionOrMethodResultType(D); 1562 SourceRange SR = getFunctionOrMethodResultSourceRange(D); 1563 if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR, 1564 /* isReturnValue */ true)) 1565 return; 1566 1567 D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL)); 1568 } 1569 1570 static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1571 if (D->isInvalidDecl()) 1572 return; 1573 1574 // noescape only applies to pointer types. 1575 QualType T = cast<ParmVarDecl>(D)->getType(); 1576 if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) { 1577 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) 1578 << AL << AL.getRange() << 0; 1579 return; 1580 } 1581 1582 D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL)); 1583 } 1584 1585 static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1586 Expr *E = AL.getArgAsExpr(0), 1587 *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr; 1588 S.AddAssumeAlignedAttr(D, AL, E, OE); 1589 } 1590 1591 static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1592 S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0)); 1593 } 1594 1595 void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, 1596 Expr *OE) { 1597 QualType ResultType = getFunctionOrMethodResultType(D); 1598 SourceRange SR = getFunctionOrMethodResultSourceRange(D); 1599 1600 AssumeAlignedAttr TmpAttr(Context, CI, E, OE); 1601 SourceLocation AttrLoc = TmpAttr.getLocation(); 1602 1603 if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) { 1604 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) 1605 << &TmpAttr << TmpAttr.getRange() << SR; 1606 return; 1607 } 1608 1609 if (!E->isValueDependent()) { 1610 llvm::APSInt I(64); 1611 if (!E->isIntegerConstantExpr(I, Context)) { 1612 if (OE) 1613 Diag(AttrLoc, diag::err_attribute_argument_n_type) 1614 << &TmpAttr << 1 << AANT_ArgumentIntegerConstant 1615 << E->getSourceRange(); 1616 else 1617 Diag(AttrLoc, diag::err_attribute_argument_type) 1618 << &TmpAttr << AANT_ArgumentIntegerConstant 1619 << E->getSourceRange(); 1620 return; 1621 } 1622 1623 if (!I.isPowerOf2()) { 1624 Diag(AttrLoc, diag::err_alignment_not_power_of_two) 1625 << E->getSourceRange(); 1626 return; 1627 } 1628 } 1629 1630 if (OE) { 1631 if (!OE->isValueDependent()) { 1632 llvm::APSInt I(64); 1633 if (!OE->isIntegerConstantExpr(I, Context)) { 1634 Diag(AttrLoc, diag::err_attribute_argument_n_type) 1635 << &TmpAttr << 2 << AANT_ArgumentIntegerConstant 1636 << OE->getSourceRange(); 1637 return; 1638 } 1639 } 1640 } 1641 1642 D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE)); 1643 } 1644 1645 void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, 1646 Expr *ParamExpr) { 1647 QualType ResultType = getFunctionOrMethodResultType(D); 1648 1649 AllocAlignAttr TmpAttr(Context, CI, ParamIdx()); 1650 SourceLocation AttrLoc = CI.getLoc(); 1651 1652 if (!ResultType->isDependentType() && 1653 !isValidPointerAttrType(ResultType, /* RefOkay */ true)) { 1654 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) 1655 << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D); 1656 return; 1657 } 1658 1659 ParamIdx Idx; 1660 const auto *FuncDecl = cast<FunctionDecl>(D); 1661 if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr, 1662 /*AttrArgNum=*/1, ParamExpr, Idx)) 1663 return; 1664 1665 QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex()); 1666 if (!Ty->isDependentType() && !Ty->isIntegralType(Context)) { 1667 Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only) 1668 << &TmpAttr 1669 << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange(); 1670 return; 1671 } 1672 1673 D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx)); 1674 } 1675 1676 /// Normalize the attribute, __foo__ becomes foo. 1677 /// Returns true if normalization was applied. 1678 static bool normalizeName(StringRef &AttrName) { 1679 if (AttrName.size() > 4 && AttrName.startswith("__") && 1680 AttrName.endswith("__")) { 1681 AttrName = AttrName.drop_front(2).drop_back(2); 1682 return true; 1683 } 1684 return false; 1685 } 1686 1687 static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1688 // This attribute must be applied to a function declaration. The first 1689 // argument to the attribute must be an identifier, the name of the resource, 1690 // for example: malloc. The following arguments must be argument indexes, the 1691 // arguments must be of integer type for Returns, otherwise of pointer type. 1692 // The difference between Holds and Takes is that a pointer may still be used 1693 // after being held. free() should be __attribute((ownership_takes)), whereas 1694 // a list append function may well be __attribute((ownership_holds)). 1695 1696 if (!AL.isArgIdent(0)) { 1697 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 1698 << AL << 1 << AANT_ArgumentIdentifier; 1699 return; 1700 } 1701 1702 // Figure out our Kind. 1703 OwnershipAttr::OwnershipKind K = 1704 OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind(); 1705 1706 // Check arguments. 1707 switch (K) { 1708 case OwnershipAttr::Takes: 1709 case OwnershipAttr::Holds: 1710 if (AL.getNumArgs() < 2) { 1711 S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2; 1712 return; 1713 } 1714 break; 1715 case OwnershipAttr::Returns: 1716 if (AL.getNumArgs() > 2) { 1717 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; 1718 return; 1719 } 1720 break; 1721 } 1722 1723 IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident; 1724 1725 StringRef ModuleName = Module->getName(); 1726 if (normalizeName(ModuleName)) { 1727 Module = &S.PP.getIdentifierTable().get(ModuleName); 1728 } 1729 1730 SmallVector<ParamIdx, 8> OwnershipArgs; 1731 for (unsigned i = 1; i < AL.getNumArgs(); ++i) { 1732 Expr *Ex = AL.getArgAsExpr(i); 1733 ParamIdx Idx; 1734 if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx)) 1735 return; 1736 1737 // Is the function argument a pointer type? 1738 QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex()); 1739 int Err = -1; // No error 1740 switch (K) { 1741 case OwnershipAttr::Takes: 1742 case OwnershipAttr::Holds: 1743 if (!T->isAnyPointerType() && !T->isBlockPointerType()) 1744 Err = 0; 1745 break; 1746 case OwnershipAttr::Returns: 1747 if (!T->isIntegerType()) 1748 Err = 1; 1749 break; 1750 } 1751 if (-1 != Err) { 1752 S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err 1753 << Ex->getSourceRange(); 1754 return; 1755 } 1756 1757 // Check we don't have a conflict with another ownership attribute. 1758 for (const auto *I : D->specific_attrs<OwnershipAttr>()) { 1759 // Cannot have two ownership attributes of different kinds for the same 1760 // index. 1761 if (I->getOwnKind() != K && I->args_end() != 1762 std::find(I->args_begin(), I->args_end(), Idx)) { 1763 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I; 1764 return; 1765 } else if (K == OwnershipAttr::Returns && 1766 I->getOwnKind() == OwnershipAttr::Returns) { 1767 // A returns attribute conflicts with any other returns attribute using 1768 // a different index. 1769 if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) { 1770 S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch) 1771 << I->args_begin()->getSourceIndex(); 1772 if (I->args_size()) 1773 S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch) 1774 << Idx.getSourceIndex() << Ex->getSourceRange(); 1775 return; 1776 } 1777 } 1778 } 1779 OwnershipArgs.push_back(Idx); 1780 } 1781 1782 ParamIdx *Start = OwnershipArgs.data(); 1783 unsigned Size = OwnershipArgs.size(); 1784 llvm::array_pod_sort(Start, Start + Size); 1785 D->addAttr(::new (S.Context) 1786 OwnershipAttr(S.Context, AL, Module, Start, Size)); 1787 } 1788 1789 static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1790 // Check the attribute arguments. 1791 if (AL.getNumArgs() > 1) { 1792 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; 1793 return; 1794 } 1795 1796 // gcc rejects 1797 // class c { 1798 // static int a __attribute__((weakref ("v2"))); 1799 // static int b() __attribute__((weakref ("f3"))); 1800 // }; 1801 // and ignores the attributes of 1802 // void f(void) { 1803 // static int a __attribute__((weakref ("v2"))); 1804 // } 1805 // we reject them 1806 const DeclContext *Ctx = D->getDeclContext()->getRedeclContext(); 1807 if (!Ctx->isFileContext()) { 1808 S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context) 1809 << cast<NamedDecl>(D); 1810 return; 1811 } 1812 1813 // The GCC manual says 1814 // 1815 // At present, a declaration to which `weakref' is attached can only 1816 // be `static'. 1817 // 1818 // It also says 1819 // 1820 // Without a TARGET, 1821 // given as an argument to `weakref' or to `alias', `weakref' is 1822 // equivalent to `weak'. 1823 // 1824 // gcc 4.4.1 will accept 1825 // int a7 __attribute__((weakref)); 1826 // as 1827 // int a7 __attribute__((weak)); 1828 // This looks like a bug in gcc. We reject that for now. We should revisit 1829 // it if this behaviour is actually used. 1830 1831 // GCC rejects 1832 // static ((alias ("y"), weakref)). 1833 // Should we? How to check that weakref is before or after alias? 1834 1835 // FIXME: it would be good for us to keep the WeakRefAttr as-written instead 1836 // of transforming it into an AliasAttr. The WeakRefAttr never uses the 1837 // StringRef parameter it was given anyway. 1838 StringRef Str; 1839 if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str)) 1840 // GCC will accept anything as the argument of weakref. Should we 1841 // check for an existing decl? 1842 D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str)); 1843 1844 D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL)); 1845 } 1846 1847 static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1848 StringRef Str; 1849 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) 1850 return; 1851 1852 // Aliases should be on declarations, not definitions. 1853 const auto *FD = cast<FunctionDecl>(D); 1854 if (FD->isThisDeclarationADefinition()) { 1855 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1; 1856 return; 1857 } 1858 1859 D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str)); 1860 } 1861 1862 static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1863 StringRef Str; 1864 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) 1865 return; 1866 1867 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { 1868 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin); 1869 return; 1870 } 1871 if (S.Context.getTargetInfo().getTriple().isNVPTX()) { 1872 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx); 1873 } 1874 1875 // Aliases should be on declarations, not definitions. 1876 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1877 if (FD->isThisDeclarationADefinition()) { 1878 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0; 1879 return; 1880 } 1881 } else { 1882 const auto *VD = cast<VarDecl>(D); 1883 if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) { 1884 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0; 1885 return; 1886 } 1887 } 1888 1889 // Mark target used to prevent unneeded-internal-declaration warnings. 1890 if (!S.LangOpts.CPlusPlus) { 1891 // FIXME: demangle Str for C++, as the attribute refers to the mangled 1892 // linkage name, not the pre-mangled identifier. 1893 const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc()); 1894 LookupResult LR(S, target, Sema::LookupOrdinaryName); 1895 if (S.LookupQualifiedName(LR, S.getCurLexicalContext())) 1896 for (NamedDecl *ND : LR) 1897 ND->markUsed(S.Context); 1898 } 1899 1900 D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str)); 1901 } 1902 1903 static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1904 StringRef Model; 1905 SourceLocation LiteralLoc; 1906 // Check that it is a string. 1907 if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc)) 1908 return; 1909 1910 // Check that the value. 1911 if (Model != "global-dynamic" && Model != "local-dynamic" 1912 && Model != "initial-exec" && Model != "local-exec") { 1913 S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg); 1914 return; 1915 } 1916 1917 D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model)); 1918 } 1919 1920 static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1921 QualType ResultType = getFunctionOrMethodResultType(D); 1922 if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) { 1923 D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL)); 1924 return; 1925 } 1926 1927 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) 1928 << AL << getFunctionOrMethodResultSourceRange(D); 1929 } 1930 1931 static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1932 FunctionDecl *FD = cast<FunctionDecl>(D); 1933 1934 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 1935 if (MD->getParent()->isLambda()) { 1936 S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL; 1937 return; 1938 } 1939 } 1940 1941 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 1942 return; 1943 1944 SmallVector<IdentifierInfo *, 8> CPUs; 1945 for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) { 1946 if (!AL.isArgIdent(ArgNo)) { 1947 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 1948 << AL << AANT_ArgumentIdentifier; 1949 return; 1950 } 1951 1952 IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo); 1953 StringRef CPUName = CPUArg->Ident->getName().trim(); 1954 1955 if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) { 1956 S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value) 1957 << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch); 1958 return; 1959 } 1960 1961 const TargetInfo &Target = S.Context.getTargetInfo(); 1962 if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) { 1963 return Target.CPUSpecificManglingCharacter(CPUName) == 1964 Target.CPUSpecificManglingCharacter(Cur->getName()); 1965 })) { 1966 S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries); 1967 return; 1968 } 1969 CPUs.push_back(CPUArg->Ident); 1970 } 1971 1972 FD->setIsMultiVersion(true); 1973 if (AL.getKind() == ParsedAttr::AT_CPUSpecific) 1974 D->addAttr(::new (S.Context) 1975 CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size())); 1976 else 1977 D->addAttr(::new (S.Context) 1978 CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size())); 1979 } 1980 1981 static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1982 if (S.LangOpts.CPlusPlus) { 1983 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) 1984 << AL << AttributeLangSupport::Cpp; 1985 return; 1986 } 1987 1988 if (CommonAttr *CA = S.mergeCommonAttr(D, AL)) 1989 D->addAttr(CA); 1990 } 1991 1992 static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 1993 if (checkAttrMutualExclusion<DisableTailCallsAttr>(S, D, AL)) 1994 return; 1995 1996 if (AL.isDeclspecAttribute()) { 1997 const auto &Triple = S.getASTContext().getTargetInfo().getTriple(); 1998 const auto &Arch = Triple.getArch(); 1999 if (Arch != llvm::Triple::x86 && 2000 (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) { 2001 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch) 2002 << AL << Triple.getArchName(); 2003 return; 2004 } 2005 } 2006 2007 D->addAttr(::new (S.Context) NakedAttr(S.Context, AL)); 2008 } 2009 2010 static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { 2011 if (hasDeclarator(D)) return; 2012 2013 if (!isa<ObjCMethodDecl>(D)) { 2014 S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type) 2015 << Attrs << ExpectedFunctionOrMethod; 2016 return; 2017 } 2018 2019 D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs)); 2020 } 2021 2022 static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { 2023 if (!S.getLangOpts().CFProtectionBranch) 2024 S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored); 2025 else 2026 handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs); 2027 } 2028 2029 bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) { 2030 if (!checkAttributeNumArgs(*this, Attrs, 0)) { 2031 Attrs.setInvalid(); 2032 return true; 2033 } 2034 2035 return false; 2036 } 2037 2038 bool Sema::CheckAttrTarget(const ParsedAttr &AL) { 2039 // Check whether the attribute is valid on the current target. 2040 if (!AL.existsInTarget(Context.getTargetInfo())) { 2041 Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL; 2042 AL.setInvalid(); 2043 return true; 2044 } 2045 2046 return false; 2047 } 2048 2049 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2050 2051 // The checking path for 'noreturn' and 'analyzer_noreturn' are different 2052 // because 'analyzer_noreturn' does not impact the type. 2053 if (!isFunctionOrMethodOrBlock(D)) { 2054 ValueDecl *VD = dyn_cast<ValueDecl>(D); 2055 if (!VD || (!VD->getType()->isBlockPointerType() && 2056 !VD->getType()->isFunctionPointerType())) { 2057 S.Diag(AL.getLoc(), AL.isCXX11Attribute() 2058 ? diag::err_attribute_wrong_decl_type 2059 : diag::warn_attribute_wrong_decl_type) 2060 << AL << ExpectedFunctionMethodOrBlock; 2061 return; 2062 } 2063 } 2064 2065 D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL)); 2066 } 2067 2068 // PS3 PPU-specific. 2069 static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2070 /* 2071 Returning a Vector Class in Registers 2072 2073 According to the PPU ABI specifications, a class with a single member of 2074 vector type is returned in memory when used as the return value of a 2075 function. 2076 This results in inefficient code when implementing vector classes. To return 2077 the value in a single vector register, add the vecreturn attribute to the 2078 class definition. This attribute is also applicable to struct types. 2079 2080 Example: 2081 2082 struct Vector 2083 { 2084 __vector float xyzw; 2085 } __attribute__((vecreturn)); 2086 2087 Vector Add(Vector lhs, Vector rhs) 2088 { 2089 Vector result; 2090 result.xyzw = vec_add(lhs.xyzw, rhs.xyzw); 2091 return result; // This will be returned in a register 2092 } 2093 */ 2094 if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) { 2095 S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A; 2096 return; 2097 } 2098 2099 const auto *R = cast<RecordDecl>(D); 2100 int count = 0; 2101 2102 if (!isa<CXXRecordDecl>(R)) { 2103 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); 2104 return; 2105 } 2106 2107 if (!cast<CXXRecordDecl>(R)->isPOD()) { 2108 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record); 2109 return; 2110 } 2111 2112 for (const auto *I : R->fields()) { 2113 if ((count == 1) || !I->getType()->isVectorType()) { 2114 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); 2115 return; 2116 } 2117 count++; 2118 } 2119 2120 D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL)); 2121 } 2122 2123 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, 2124 const ParsedAttr &AL) { 2125 if (isa<ParmVarDecl>(D)) { 2126 // [[carries_dependency]] can only be applied to a parameter if it is a 2127 // parameter of a function declaration or lambda. 2128 if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) { 2129 S.Diag(AL.getLoc(), 2130 diag::err_carries_dependency_param_not_function_decl); 2131 return; 2132 } 2133 } 2134 2135 D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL)); 2136 } 2137 2138 static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2139 bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName(); 2140 2141 // If this is spelled as the standard C++17 attribute, but not in C++17, warn 2142 // about using it as an extension. 2143 if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr) 2144 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; 2145 2146 D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL)); 2147 } 2148 2149 static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2150 uint32_t priority = ConstructorAttr::DefaultPriority; 2151 if (AL.getNumArgs() && 2152 !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority)) 2153 return; 2154 2155 D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority)); 2156 } 2157 2158 static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2159 uint32_t priority = DestructorAttr::DefaultPriority; 2160 if (AL.getNumArgs() && 2161 !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority)) 2162 return; 2163 2164 D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority)); 2165 } 2166 2167 template <typename AttrTy> 2168 static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) { 2169 // Handle the case where the attribute has a text message. 2170 StringRef Str; 2171 if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str)) 2172 return; 2173 2174 D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str)); 2175 } 2176 2177 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D, 2178 const ParsedAttr &AL) { 2179 if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) { 2180 S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition) 2181 << AL << AL.getRange(); 2182 return; 2183 } 2184 2185 D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL)); 2186 } 2187 2188 static bool checkAvailabilityAttr(Sema &S, SourceRange Range, 2189 IdentifierInfo *Platform, 2190 VersionTuple Introduced, 2191 VersionTuple Deprecated, 2192 VersionTuple Obsoleted) { 2193 StringRef PlatformName 2194 = AvailabilityAttr::getPrettyPlatformName(Platform->getName()); 2195 if (PlatformName.empty()) 2196 PlatformName = Platform->getName(); 2197 2198 // Ensure that Introduced <= Deprecated <= Obsoleted (although not all 2199 // of these steps are needed). 2200 if (!Introduced.empty() && !Deprecated.empty() && 2201 !(Introduced <= Deprecated)) { 2202 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) 2203 << 1 << PlatformName << Deprecated.getAsString() 2204 << 0 << Introduced.getAsString(); 2205 return true; 2206 } 2207 2208 if (!Introduced.empty() && !Obsoleted.empty() && 2209 !(Introduced <= Obsoleted)) { 2210 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) 2211 << 2 << PlatformName << Obsoleted.getAsString() 2212 << 0 << Introduced.getAsString(); 2213 return true; 2214 } 2215 2216 if (!Deprecated.empty() && !Obsoleted.empty() && 2217 !(Deprecated <= Obsoleted)) { 2218 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) 2219 << 2 << PlatformName << Obsoleted.getAsString() 2220 << 1 << Deprecated.getAsString(); 2221 return true; 2222 } 2223 2224 return false; 2225 } 2226 2227 /// Check whether the two versions match. 2228 /// 2229 /// If either version tuple is empty, then they are assumed to match. If 2230 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y. 2231 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, 2232 bool BeforeIsOkay) { 2233 if (X.empty() || Y.empty()) 2234 return true; 2235 2236 if (X == Y) 2237 return true; 2238 2239 if (BeforeIsOkay && X < Y) 2240 return true; 2241 2242 return false; 2243 } 2244 2245 AvailabilityAttr *Sema::mergeAvailabilityAttr( 2246 NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform, 2247 bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, 2248 VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, 2249 bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, 2250 int Priority) { 2251 VersionTuple MergedIntroduced = Introduced; 2252 VersionTuple MergedDeprecated = Deprecated; 2253 VersionTuple MergedObsoleted = Obsoleted; 2254 bool FoundAny = false; 2255 bool OverrideOrImpl = false; 2256 switch (AMK) { 2257 case AMK_None: 2258 case AMK_Redeclaration: 2259 OverrideOrImpl = false; 2260 break; 2261 2262 case AMK_Override: 2263 case AMK_ProtocolImplementation: 2264 OverrideOrImpl = true; 2265 break; 2266 } 2267 2268 if (D->hasAttrs()) { 2269 AttrVec &Attrs = D->getAttrs(); 2270 for (unsigned i = 0, e = Attrs.size(); i != e;) { 2271 const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]); 2272 if (!OldAA) { 2273 ++i; 2274 continue; 2275 } 2276 2277 IdentifierInfo *OldPlatform = OldAA->getPlatform(); 2278 if (OldPlatform != Platform) { 2279 ++i; 2280 continue; 2281 } 2282 2283 // If there is an existing availability attribute for this platform that 2284 // has a lower priority use the existing one and discard the new 2285 // attribute. 2286 if (OldAA->getPriority() < Priority) 2287 return nullptr; 2288 2289 // If there is an existing attribute for this platform that has a higher 2290 // priority than the new attribute then erase the old one and continue 2291 // processing the attributes. 2292 if (OldAA->getPriority() > Priority) { 2293 Attrs.erase(Attrs.begin() + i); 2294 --e; 2295 continue; 2296 } 2297 2298 FoundAny = true; 2299 VersionTuple OldIntroduced = OldAA->getIntroduced(); 2300 VersionTuple OldDeprecated = OldAA->getDeprecated(); 2301 VersionTuple OldObsoleted = OldAA->getObsoleted(); 2302 bool OldIsUnavailable = OldAA->getUnavailable(); 2303 2304 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) || 2305 !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) || 2306 !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) || 2307 !(OldIsUnavailable == IsUnavailable || 2308 (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) { 2309 if (OverrideOrImpl) { 2310 int Which = -1; 2311 VersionTuple FirstVersion; 2312 VersionTuple SecondVersion; 2313 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) { 2314 Which = 0; 2315 FirstVersion = OldIntroduced; 2316 SecondVersion = Introduced; 2317 } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) { 2318 Which = 1; 2319 FirstVersion = Deprecated; 2320 SecondVersion = OldDeprecated; 2321 } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) { 2322 Which = 2; 2323 FirstVersion = Obsoleted; 2324 SecondVersion = OldObsoleted; 2325 } 2326 2327 if (Which == -1) { 2328 Diag(OldAA->getLocation(), 2329 diag::warn_mismatched_availability_override_unavail) 2330 << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) 2331 << (AMK == AMK_Override); 2332 } else { 2333 Diag(OldAA->getLocation(), 2334 diag::warn_mismatched_availability_override) 2335 << Which 2336 << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) 2337 << FirstVersion.getAsString() << SecondVersion.getAsString() 2338 << (AMK == AMK_Override); 2339 } 2340 if (AMK == AMK_Override) 2341 Diag(CI.getLoc(), diag::note_overridden_method); 2342 else 2343 Diag(CI.getLoc(), diag::note_protocol_method); 2344 } else { 2345 Diag(OldAA->getLocation(), diag::warn_mismatched_availability); 2346 Diag(CI.getLoc(), diag::note_previous_attribute); 2347 } 2348 2349 Attrs.erase(Attrs.begin() + i); 2350 --e; 2351 continue; 2352 } 2353 2354 VersionTuple MergedIntroduced2 = MergedIntroduced; 2355 VersionTuple MergedDeprecated2 = MergedDeprecated; 2356 VersionTuple MergedObsoleted2 = MergedObsoleted; 2357 2358 if (MergedIntroduced2.empty()) 2359 MergedIntroduced2 = OldIntroduced; 2360 if (MergedDeprecated2.empty()) 2361 MergedDeprecated2 = OldDeprecated; 2362 if (MergedObsoleted2.empty()) 2363 MergedObsoleted2 = OldObsoleted; 2364 2365 if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform, 2366 MergedIntroduced2, MergedDeprecated2, 2367 MergedObsoleted2)) { 2368 Attrs.erase(Attrs.begin() + i); 2369 --e; 2370 continue; 2371 } 2372 2373 MergedIntroduced = MergedIntroduced2; 2374 MergedDeprecated = MergedDeprecated2; 2375 MergedObsoleted = MergedObsoleted2; 2376 ++i; 2377 } 2378 } 2379 2380 if (FoundAny && 2381 MergedIntroduced == Introduced && 2382 MergedDeprecated == Deprecated && 2383 MergedObsoleted == Obsoleted) 2384 return nullptr; 2385 2386 // Only create a new attribute if !OverrideOrImpl, but we want to do 2387 // the checking. 2388 if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced, 2389 MergedDeprecated, MergedObsoleted) && 2390 !OverrideOrImpl) { 2391 auto *Avail = ::new (Context) AvailabilityAttr( 2392 Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable, 2393 Message, IsStrict, Replacement, Priority); 2394 Avail->setImplicit(Implicit); 2395 return Avail; 2396 } 2397 return nullptr; 2398 } 2399 2400 static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2401 if (!checkAttributeNumArgs(S, AL, 1)) 2402 return; 2403 IdentifierLoc *Platform = AL.getArgAsIdent(0); 2404 2405 IdentifierInfo *II = Platform->Ident; 2406 if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty()) 2407 S.Diag(Platform->Loc, diag::warn_availability_unknown_platform) 2408 << Platform->Ident; 2409 2410 auto *ND = dyn_cast<NamedDecl>(D); 2411 if (!ND) // We warned about this already, so just return. 2412 return; 2413 2414 AvailabilityChange Introduced = AL.getAvailabilityIntroduced(); 2415 AvailabilityChange Deprecated = AL.getAvailabilityDeprecated(); 2416 AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted(); 2417 bool IsUnavailable = AL.getUnavailableLoc().isValid(); 2418 bool IsStrict = AL.getStrictLoc().isValid(); 2419 StringRef Str; 2420 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr())) 2421 Str = SE->getString(); 2422 StringRef Replacement; 2423 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr())) 2424 Replacement = SE->getString(); 2425 2426 if (II->isStr("swift")) { 2427 if (Introduced.isValid() || Obsoleted.isValid() || 2428 (!IsUnavailable && !Deprecated.isValid())) { 2429 S.Diag(AL.getLoc(), 2430 diag::warn_availability_swift_unavailable_deprecated_only); 2431 return; 2432 } 2433 } 2434 2435 int PriorityModifier = AL.isPragmaClangAttribute() 2436 ? Sema::AP_PragmaClangAttribute 2437 : Sema::AP_Explicit; 2438 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( 2439 ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version, 2440 Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement, 2441 Sema::AMK_None, PriorityModifier); 2442 if (NewAttr) 2443 D->addAttr(NewAttr); 2444 2445 // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning 2446 // matches before the start of the watchOS platform. 2447 if (S.Context.getTargetInfo().getTriple().isWatchOS()) { 2448 IdentifierInfo *NewII = nullptr; 2449 if (II->getName() == "ios") 2450 NewII = &S.Context.Idents.get("watchos"); 2451 else if (II->getName() == "ios_app_extension") 2452 NewII = &S.Context.Idents.get("watchos_app_extension"); 2453 2454 if (NewII) { 2455 auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple { 2456 if (Version.empty()) 2457 return Version; 2458 auto Major = Version.getMajor(); 2459 auto NewMajor = Major >= 9 ? Major - 7 : 0; 2460 if (NewMajor >= 2) { 2461 if (Version.getMinor().hasValue()) { 2462 if (Version.getSubminor().hasValue()) 2463 return VersionTuple(NewMajor, Version.getMinor().getValue(), 2464 Version.getSubminor().getValue()); 2465 else 2466 return VersionTuple(NewMajor, Version.getMinor().getValue()); 2467 } 2468 return VersionTuple(NewMajor); 2469 } 2470 2471 return VersionTuple(2, 0); 2472 }; 2473 2474 auto NewIntroduced = adjustWatchOSVersion(Introduced.Version); 2475 auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version); 2476 auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version); 2477 2478 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( 2479 ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated, 2480 NewObsoleted, IsUnavailable, Str, IsStrict, Replacement, 2481 Sema::AMK_None, 2482 PriorityModifier + Sema::AP_InferredFromOtherPlatform); 2483 if (NewAttr) 2484 D->addAttr(NewAttr); 2485 } 2486 } else if (S.Context.getTargetInfo().getTriple().isTvOS()) { 2487 // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning 2488 // matches before the start of the tvOS platform. 2489 IdentifierInfo *NewII = nullptr; 2490 if (II->getName() == "ios") 2491 NewII = &S.Context.Idents.get("tvos"); 2492 else if (II->getName() == "ios_app_extension") 2493 NewII = &S.Context.Idents.get("tvos_app_extension"); 2494 2495 if (NewII) { 2496 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( 2497 ND, AL, NewII, true /*Implicit*/, Introduced.Version, 2498 Deprecated.Version, Obsoleted.Version, IsUnavailable, Str, IsStrict, 2499 Replacement, Sema::AMK_None, 2500 PriorityModifier + Sema::AP_InferredFromOtherPlatform); 2501 if (NewAttr) 2502 D->addAttr(NewAttr); 2503 } 2504 } 2505 } 2506 2507 static void handleExternalSourceSymbolAttr(Sema &S, Decl *D, 2508 const ParsedAttr &AL) { 2509 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 2510 return; 2511 assert(checkAttributeAtMostNumArgs(S, AL, 3) && 2512 "Invalid number of arguments in an external_source_symbol attribute"); 2513 2514 StringRef Language; 2515 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0))) 2516 Language = SE->getString(); 2517 StringRef DefinedIn; 2518 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1))) 2519 DefinedIn = SE->getString(); 2520 bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr; 2521 2522 D->addAttr(::new (S.Context) ExternalSourceSymbolAttr( 2523 S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration)); 2524 } 2525 2526 template <class T> 2527 static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI, 2528 typename T::VisibilityType value) { 2529 T *existingAttr = D->getAttr<T>(); 2530 if (existingAttr) { 2531 typename T::VisibilityType existingValue = existingAttr->getVisibility(); 2532 if (existingValue == value) 2533 return nullptr; 2534 S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility); 2535 S.Diag(CI.getLoc(), diag::note_previous_attribute); 2536 D->dropAttr<T>(); 2537 } 2538 return ::new (S.Context) T(S.Context, CI, value); 2539 } 2540 2541 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, 2542 const AttributeCommonInfo &CI, 2543 VisibilityAttr::VisibilityType Vis) { 2544 return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis); 2545 } 2546 2547 TypeVisibilityAttr * 2548 Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, 2549 TypeVisibilityAttr::VisibilityType Vis) { 2550 return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis); 2551 } 2552 2553 static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL, 2554 bool isTypeVisibility) { 2555 // Visibility attributes don't mean anything on a typedef. 2556 if (isa<TypedefNameDecl>(D)) { 2557 S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL; 2558 return; 2559 } 2560 2561 // 'type_visibility' can only go on a type or namespace. 2562 if (isTypeVisibility && 2563 !(isa<TagDecl>(D) || 2564 isa<ObjCInterfaceDecl>(D) || 2565 isa<NamespaceDecl>(D))) { 2566 S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type) 2567 << AL << ExpectedTypeOrNamespace; 2568 return; 2569 } 2570 2571 // Check that the argument is a string literal. 2572 StringRef TypeStr; 2573 SourceLocation LiteralLoc; 2574 if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc)) 2575 return; 2576 2577 VisibilityAttr::VisibilityType type; 2578 if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) { 2579 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL 2580 << TypeStr; 2581 return; 2582 } 2583 2584 // Complain about attempts to use protected visibility on targets 2585 // (like Darwin) that don't support it. 2586 if (type == VisibilityAttr::Protected && 2587 !S.Context.getTargetInfo().hasProtectedVisibility()) { 2588 S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility); 2589 type = VisibilityAttr::Default; 2590 } 2591 2592 Attr *newAttr; 2593 if (isTypeVisibility) { 2594 newAttr = S.mergeTypeVisibilityAttr( 2595 D, AL, (TypeVisibilityAttr::VisibilityType)type); 2596 } else { 2597 newAttr = S.mergeVisibilityAttr(D, AL, type); 2598 } 2599 if (newAttr) 2600 D->addAttr(newAttr); 2601 } 2602 2603 static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2604 // objc_direct cannot be set on methods declared in the context of a protocol 2605 if (isa<ObjCProtocolDecl>(D->getDeclContext())) { 2606 S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false; 2607 return; 2608 } 2609 2610 if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) { 2611 handleSimpleAttribute<ObjCDirectAttr>(S, D, AL); 2612 } else { 2613 S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL; 2614 } 2615 } 2616 2617 static void handleObjCDirectMembersAttr(Sema &S, Decl *D, 2618 const ParsedAttr &AL) { 2619 if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) { 2620 handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL); 2621 } else { 2622 S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL; 2623 } 2624 } 2625 2626 static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2627 const auto *M = cast<ObjCMethodDecl>(D); 2628 if (!AL.isArgIdent(0)) { 2629 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 2630 << AL << 1 << AANT_ArgumentIdentifier; 2631 return; 2632 } 2633 2634 IdentifierLoc *IL = AL.getArgAsIdent(0); 2635 ObjCMethodFamilyAttr::FamilyKind F; 2636 if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) { 2637 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident; 2638 return; 2639 } 2640 2641 if (F == ObjCMethodFamilyAttr::OMF_init && 2642 !M->getReturnType()->isObjCObjectPointerType()) { 2643 S.Diag(M->getLocation(), diag::err_init_method_bad_return_type) 2644 << M->getReturnType(); 2645 // Ignore the attribute. 2646 return; 2647 } 2648 2649 D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F)); 2650 } 2651 2652 static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) { 2653 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { 2654 QualType T = TD->getUnderlyingType(); 2655 if (!T->isCARCBridgableType()) { 2656 S.Diag(TD->getLocation(), diag::err_nsobject_attribute); 2657 return; 2658 } 2659 } 2660 else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) { 2661 QualType T = PD->getType(); 2662 if (!T->isCARCBridgableType()) { 2663 S.Diag(PD->getLocation(), diag::err_nsobject_attribute); 2664 return; 2665 } 2666 } 2667 else { 2668 // It is okay to include this attribute on properties, e.g.: 2669 // 2670 // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject)); 2671 // 2672 // In this case it follows tradition and suppresses an error in the above 2673 // case. 2674 S.Diag(D->getLocation(), diag::warn_nsobject_attribute); 2675 } 2676 D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL)); 2677 } 2678 2679 static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) { 2680 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { 2681 QualType T = TD->getUnderlyingType(); 2682 if (!T->isObjCObjectPointerType()) { 2683 S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute); 2684 return; 2685 } 2686 } else { 2687 S.Diag(D->getLocation(), diag::warn_independentclass_attribute); 2688 return; 2689 } 2690 D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL)); 2691 } 2692 2693 static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2694 if (!AL.isArgIdent(0)) { 2695 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 2696 << AL << 1 << AANT_ArgumentIdentifier; 2697 return; 2698 } 2699 2700 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; 2701 BlocksAttr::BlockType type; 2702 if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) { 2703 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; 2704 return; 2705 } 2706 2707 D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type)); 2708 } 2709 2710 static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2711 unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel; 2712 if (AL.getNumArgs() > 0) { 2713 Expr *E = AL.getArgAsExpr(0); 2714 llvm::APSInt Idx(32); 2715 if (E->isTypeDependent() || E->isValueDependent() || 2716 !E->isIntegerConstantExpr(Idx, S.Context)) { 2717 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 2718 << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); 2719 return; 2720 } 2721 2722 if (Idx.isSigned() && Idx.isNegative()) { 2723 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero) 2724 << E->getSourceRange(); 2725 return; 2726 } 2727 2728 sentinel = Idx.getZExtValue(); 2729 } 2730 2731 unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos; 2732 if (AL.getNumArgs() > 1) { 2733 Expr *E = AL.getArgAsExpr(1); 2734 llvm::APSInt Idx(32); 2735 if (E->isTypeDependent() || E->isValueDependent() || 2736 !E->isIntegerConstantExpr(Idx, S.Context)) { 2737 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 2738 << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange(); 2739 return; 2740 } 2741 nullPos = Idx.getZExtValue(); 2742 2743 if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) { 2744 // FIXME: This error message could be improved, it would be nice 2745 // to say what the bounds actually are. 2746 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) 2747 << E->getSourceRange(); 2748 return; 2749 } 2750 } 2751 2752 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2753 const FunctionType *FT = FD->getType()->castAs<FunctionType>(); 2754 if (isa<FunctionNoProtoType>(FT)) { 2755 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments); 2756 return; 2757 } 2758 2759 if (!cast<FunctionProtoType>(FT)->isVariadic()) { 2760 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; 2761 return; 2762 } 2763 } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { 2764 if (!MD->isVariadic()) { 2765 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; 2766 return; 2767 } 2768 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 2769 if (!BD->isVariadic()) { 2770 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; 2771 return; 2772 } 2773 } else if (const auto *V = dyn_cast<VarDecl>(D)) { 2774 QualType Ty = V->getType(); 2775 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { 2776 const FunctionType *FT = Ty->isFunctionPointerType() 2777 ? D->getFunctionType() 2778 : Ty->castAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>(); 2779 if (!cast<FunctionProtoType>(FT)->isVariadic()) { 2780 int m = Ty->isFunctionPointerType() ? 0 : 1; 2781 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m; 2782 return; 2783 } 2784 } else { 2785 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) 2786 << AL << ExpectedFunctionMethodOrBlock; 2787 return; 2788 } 2789 } else { 2790 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) 2791 << AL << ExpectedFunctionMethodOrBlock; 2792 return; 2793 } 2794 D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos)); 2795 } 2796 2797 static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) { 2798 if (D->getFunctionType() && 2799 D->getFunctionType()->getReturnType()->isVoidType() && 2800 !isa<CXXConstructorDecl>(D)) { 2801 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0; 2802 return; 2803 } 2804 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 2805 if (MD->getReturnType()->isVoidType()) { 2806 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1; 2807 return; 2808 } 2809 2810 StringRef Str; 2811 if ((AL.isCXX11Attribute() || AL.isC2xAttribute()) && !AL.getScopeName()) { 2812 // If this is spelled as the standard C++17 attribute, but not in C++17, 2813 // warn about using it as an extension. If there are attribute arguments, 2814 // then claim it's a C++2a extension instead. 2815 // FIXME: If WG14 does not seem likely to adopt the same feature, add an 2816 // extension warning for C2x mode. 2817 const LangOptions &LO = S.getLangOpts(); 2818 if (AL.getNumArgs() == 1) { 2819 if (LO.CPlusPlus && !LO.CPlusPlus2a) 2820 S.Diag(AL.getLoc(), diag::ext_cxx2a_attr) << AL; 2821 2822 // Since this this is spelled [[nodiscard]], get the optional string 2823 // literal. If in C++ mode, but not in C++2a mode, diagnose as an 2824 // extension. 2825 // FIXME: C2x should support this feature as well, even as an extension. 2826 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr)) 2827 return; 2828 } else if (LO.CPlusPlus && !LO.CPlusPlus17) 2829 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; 2830 } 2831 2832 D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str)); 2833 } 2834 2835 static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2836 // weak_import only applies to variable & function declarations. 2837 bool isDef = false; 2838 if (!D->canBeWeakImported(isDef)) { 2839 if (isDef) 2840 S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition) 2841 << "weak_import"; 2842 else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) || 2843 (S.Context.getTargetInfo().getTriple().isOSDarwin() && 2844 (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) { 2845 // Nothing to warn about here. 2846 } else 2847 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) 2848 << AL << ExpectedVariableOrFunction; 2849 2850 return; 2851 } 2852 2853 D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL)); 2854 } 2855 2856 // Handles reqd_work_group_size and work_group_size_hint. 2857 template <typename WorkGroupAttr> 2858 static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { 2859 uint32_t WGSize[3]; 2860 for (unsigned i = 0; i < 3; ++i) { 2861 const Expr *E = AL.getArgAsExpr(i); 2862 if (!checkUInt32Argument(S, AL, E, WGSize[i], i, 2863 /*StrictlyUnsigned=*/true)) 2864 return; 2865 if (WGSize[i] == 0) { 2866 S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero) 2867 << AL << E->getSourceRange(); 2868 return; 2869 } 2870 } 2871 2872 WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>(); 2873 if (Existing && !(Existing->getXDim() == WGSize[0] && 2874 Existing->getYDim() == WGSize[1] && 2875 Existing->getZDim() == WGSize[2])) 2876 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; 2877 2878 D->addAttr(::new (S.Context) 2879 WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2])); 2880 } 2881 2882 // Handles intel_reqd_sub_group_size. 2883 static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { 2884 uint32_t SGSize; 2885 const Expr *E = AL.getArgAsExpr(0); 2886 if (!checkUInt32Argument(S, AL, E, SGSize)) 2887 return; 2888 if (SGSize == 0) { 2889 S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero) 2890 << AL << E->getSourceRange(); 2891 return; 2892 } 2893 2894 OpenCLIntelReqdSubGroupSizeAttr *Existing = 2895 D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>(); 2896 if (Existing && Existing->getSubGroupSize() != SGSize) 2897 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; 2898 2899 D->addAttr(::new (S.Context) 2900 OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize)); 2901 } 2902 2903 static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) { 2904 if (!AL.hasParsedType()) { 2905 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; 2906 return; 2907 } 2908 2909 TypeSourceInfo *ParmTSI = nullptr; 2910 QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI); 2911 assert(ParmTSI && "no type source info for attribute argument"); 2912 2913 if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() && 2914 (ParmType->isBooleanType() || 2915 !ParmType->isIntegralType(S.getASTContext()))) { 2916 S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL; 2917 return; 2918 } 2919 2920 if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) { 2921 if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) { 2922 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; 2923 return; 2924 } 2925 } 2926 2927 D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI)); 2928 } 2929 2930 SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, 2931 StringRef Name) { 2932 // Explicit or partial specializations do not inherit 2933 // the section attribute from the primary template. 2934 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2935 if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate && 2936 FD->isFunctionTemplateSpecialization()) 2937 return nullptr; 2938 } 2939 if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) { 2940 if (ExistingAttr->getName() == Name) 2941 return nullptr; 2942 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) 2943 << 1 /*section*/; 2944 Diag(CI.getLoc(), diag::note_previous_attribute); 2945 return nullptr; 2946 } 2947 return ::new (Context) SectionAttr(Context, CI, Name); 2948 } 2949 2950 bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) { 2951 std::string Error = Context.getTargetInfo().isValidSectionSpecifier(SecName); 2952 if (!Error.empty()) { 2953 Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error 2954 << 1 /*'section'*/; 2955 return false; 2956 } 2957 return true; 2958 } 2959 2960 static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 2961 // Make sure that there is a string literal as the sections's single 2962 // argument. 2963 StringRef Str; 2964 SourceLocation LiteralLoc; 2965 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) 2966 return; 2967 2968 if (!S.checkSectionName(LiteralLoc, Str)) 2969 return; 2970 2971 // If the target wants to validate the section specifier, make it happen. 2972 std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str); 2973 if (!Error.empty()) { 2974 S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) 2975 << Error; 2976 return; 2977 } 2978 2979 SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str); 2980 if (NewAttr) 2981 D->addAttr(NewAttr); 2982 } 2983 2984 // This is used for `__declspec(code_seg("segname"))` on a decl. 2985 // `#pragma code_seg("segname")` uses checkSectionName() instead. 2986 static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc, 2987 StringRef CodeSegName) { 2988 std::string Error = 2989 S.Context.getTargetInfo().isValidSectionSpecifier(CodeSegName); 2990 if (!Error.empty()) { 2991 S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) 2992 << Error << 0 /*'code-seg'*/; 2993 return false; 2994 } 2995 2996 return true; 2997 } 2998 2999 CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, 3000 StringRef Name) { 3001 // Explicit or partial specializations do not inherit 3002 // the code_seg attribute from the primary template. 3003 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3004 if (FD->isFunctionTemplateSpecialization()) 3005 return nullptr; 3006 } 3007 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { 3008 if (ExistingAttr->getName() == Name) 3009 return nullptr; 3010 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) 3011 << 0 /*codeseg*/; 3012 Diag(CI.getLoc(), diag::note_previous_attribute); 3013 return nullptr; 3014 } 3015 return ::new (Context) CodeSegAttr(Context, CI, Name); 3016 } 3017 3018 static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3019 StringRef Str; 3020 SourceLocation LiteralLoc; 3021 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) 3022 return; 3023 if (!checkCodeSegName(S, LiteralLoc, Str)) 3024 return; 3025 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { 3026 if (!ExistingAttr->isImplicit()) { 3027 S.Diag(AL.getLoc(), 3028 ExistingAttr->getName() == Str 3029 ? diag::warn_duplicate_codeseg_attribute 3030 : diag::err_conflicting_codeseg_attribute); 3031 return; 3032 } 3033 D->dropAttr<CodeSegAttr>(); 3034 } 3035 if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str)) 3036 D->addAttr(CSA); 3037 } 3038 3039 // Check for things we'd like to warn about. Multiversioning issues are 3040 // handled later in the process, once we know how many exist. 3041 bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) { 3042 enum FirstParam { Unsupported, Duplicate }; 3043 enum SecondParam { None, Architecture }; 3044 for (auto Str : {"tune=", "fpmath="}) 3045 if (AttrStr.find(Str) != StringRef::npos) 3046 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) 3047 << Unsupported << None << Str; 3048 3049 ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr); 3050 3051 if (!ParsedAttrs.Architecture.empty() && 3052 !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture)) 3053 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) 3054 << Unsupported << Architecture << ParsedAttrs.Architecture; 3055 3056 if (ParsedAttrs.DuplicateArchitecture) 3057 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) 3058 << Duplicate << None << "arch="; 3059 3060 for (const auto &Feature : ParsedAttrs.Features) { 3061 auto CurFeature = StringRef(Feature).drop_front(); // remove + or -. 3062 if (!Context.getTargetInfo().isValidFeatureName(CurFeature)) 3063 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) 3064 << Unsupported << None << CurFeature; 3065 } 3066 3067 TargetInfo::BranchProtectionInfo BPI; 3068 StringRef Error; 3069 if (!ParsedAttrs.BranchProtection.empty() && 3070 !Context.getTargetInfo().validateBranchProtection( 3071 ParsedAttrs.BranchProtection, BPI, Error)) { 3072 if (Error.empty()) 3073 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) 3074 << Unsupported << None << "branch-protection"; 3075 else 3076 return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec) 3077 << Error; 3078 } 3079 3080 return false; 3081 } 3082 3083 static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3084 StringRef Str; 3085 SourceLocation LiteralLoc; 3086 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) || 3087 S.checkTargetAttr(LiteralLoc, Str)) 3088 return; 3089 3090 TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str); 3091 D->addAttr(NewAttr); 3092 } 3093 3094 static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3095 Expr *E = AL.getArgAsExpr(0); 3096 uint32_t VecWidth; 3097 if (!checkUInt32Argument(S, AL, E, VecWidth)) { 3098 AL.setInvalid(); 3099 return; 3100 } 3101 3102 MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>(); 3103 if (Existing && Existing->getVectorWidth() != VecWidth) { 3104 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; 3105 return; 3106 } 3107 3108 D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth)); 3109 } 3110 3111 static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3112 Expr *E = AL.getArgAsExpr(0); 3113 SourceLocation Loc = E->getExprLoc(); 3114 FunctionDecl *FD = nullptr; 3115 DeclarationNameInfo NI; 3116 3117 // gcc only allows for simple identifiers. Since we support more than gcc, we 3118 // will warn the user. 3119 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3120 if (DRE->hasQualifier()) 3121 S.Diag(Loc, diag::warn_cleanup_ext); 3122 FD = dyn_cast<FunctionDecl>(DRE->getDecl()); 3123 NI = DRE->getNameInfo(); 3124 if (!FD) { 3125 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1 3126 << NI.getName(); 3127 return; 3128 } 3129 } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 3130 if (ULE->hasExplicitTemplateArgs()) 3131 S.Diag(Loc, diag::warn_cleanup_ext); 3132 FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true); 3133 NI = ULE->getNameInfo(); 3134 if (!FD) { 3135 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2 3136 << NI.getName(); 3137 if (ULE->getType() == S.Context.OverloadTy) 3138 S.NoteAllOverloadCandidates(ULE); 3139 return; 3140 } 3141 } else { 3142 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0; 3143 return; 3144 } 3145 3146 if (FD->getNumParams() != 1) { 3147 S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg) 3148 << NI.getName(); 3149 return; 3150 } 3151 3152 // We're currently more strict than GCC about what function types we accept. 3153 // If this ever proves to be a problem it should be easy to fix. 3154 QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType()); 3155 QualType ParamTy = FD->getParamDecl(0)->getType(); 3156 if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(), 3157 ParamTy, Ty) != Sema::Compatible) { 3158 S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type) 3159 << NI.getName() << ParamTy << Ty; 3160 return; 3161 } 3162 3163 D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD)); 3164 } 3165 3166 static void handleEnumExtensibilityAttr(Sema &S, Decl *D, 3167 const ParsedAttr &AL) { 3168 if (!AL.isArgIdent(0)) { 3169 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 3170 << AL << 0 << AANT_ArgumentIdentifier; 3171 return; 3172 } 3173 3174 EnumExtensibilityAttr::Kind ExtensibilityKind; 3175 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; 3176 if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(), 3177 ExtensibilityKind)) { 3178 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; 3179 return; 3180 } 3181 3182 D->addAttr(::new (S.Context) 3183 EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind)); 3184 } 3185 3186 /// Handle __attribute__((format_arg((idx)))) attribute based on 3187 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html 3188 static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3189 Expr *IdxExpr = AL.getArgAsExpr(0); 3190 ParamIdx Idx; 3191 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx)) 3192 return; 3193 3194 // Make sure the format string is really a string. 3195 QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex()); 3196 3197 bool NotNSStringTy = !isNSStringType(Ty, S.Context); 3198 if (NotNSStringTy && 3199 !isCFStringType(Ty, S.Context) && 3200 (!Ty->isPointerType() || 3201 !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { 3202 S.Diag(AL.getLoc(), diag::err_format_attribute_not) 3203 << "a string type" << IdxExpr->getSourceRange() 3204 << getFunctionOrMethodParamRange(D, 0); 3205 return; 3206 } 3207 Ty = getFunctionOrMethodResultType(D); 3208 if (!isNSStringType(Ty, S.Context) && 3209 !isCFStringType(Ty, S.Context) && 3210 (!Ty->isPointerType() || 3211 !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { 3212 S.Diag(AL.getLoc(), diag::err_format_attribute_result_not) 3213 << (NotNSStringTy ? "string type" : "NSString") 3214 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0); 3215 return; 3216 } 3217 3218 D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx)); 3219 } 3220 3221 enum FormatAttrKind { 3222 CFStringFormat, 3223 NSStringFormat, 3224 StrftimeFormat, 3225 SupportedFormat, 3226 IgnoredFormat, 3227 InvalidFormat 3228 }; 3229 3230 /// getFormatAttrKind - Map from format attribute names to supported format 3231 /// types. 3232 static FormatAttrKind getFormatAttrKind(StringRef Format) { 3233 return llvm::StringSwitch<FormatAttrKind>(Format) 3234 // Check for formats that get handled specially. 3235 .Case("NSString", NSStringFormat) 3236 .Case("CFString", CFStringFormat) 3237 .Case("strftime", StrftimeFormat) 3238 3239 // Otherwise, check for supported formats. 3240 .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat) 3241 .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat) 3242 .Case("kprintf", SupportedFormat) // OpenBSD. 3243 .Case("freebsd_kprintf", SupportedFormat) // FreeBSD. 3244 .Case("os_trace", SupportedFormat) 3245 .Case("os_log", SupportedFormat) 3246 3247 .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat) 3248 .Default(InvalidFormat); 3249 } 3250 3251 /// Handle __attribute__((init_priority(priority))) attributes based on 3252 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html 3253 static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3254 if (!S.getLangOpts().CPlusPlus) { 3255 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; 3256 return; 3257 } 3258 3259 if (S.getCurFunctionOrMethodDecl()) { 3260 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); 3261 AL.setInvalid(); 3262 return; 3263 } 3264 QualType T = cast<VarDecl>(D)->getType(); 3265 if (S.Context.getAsArrayType(T)) 3266 T = S.Context.getBaseElementType(T); 3267 if (!T->getAs<RecordType>()) { 3268 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); 3269 AL.setInvalid(); 3270 return; 3271 } 3272 3273 Expr *E = AL.getArgAsExpr(0); 3274 uint32_t prioritynum; 3275 if (!checkUInt32Argument(S, AL, E, prioritynum)) { 3276 AL.setInvalid(); 3277 return; 3278 } 3279 3280 if (prioritynum < 101 || prioritynum > 65535) { 3281 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range) 3282 << E->getSourceRange() << AL << 101 << 65535; 3283 AL.setInvalid(); 3284 return; 3285 } 3286 D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum)); 3287 } 3288 3289 FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, 3290 IdentifierInfo *Format, int FormatIdx, 3291 int FirstArg) { 3292 // Check whether we already have an equivalent format attribute. 3293 for (auto *F : D->specific_attrs<FormatAttr>()) { 3294 if (F->getType() == Format && 3295 F->getFormatIdx() == FormatIdx && 3296 F->getFirstArg() == FirstArg) { 3297 // If we don't have a valid location for this attribute, adopt the 3298 // location. 3299 if (F->getLocation().isInvalid()) 3300 F->setRange(CI.getRange()); 3301 return nullptr; 3302 } 3303 } 3304 3305 return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg); 3306 } 3307 3308 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on 3309 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html 3310 static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3311 if (!AL.isArgIdent(0)) { 3312 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 3313 << AL << 1 << AANT_ArgumentIdentifier; 3314 return; 3315 } 3316 3317 // In C++ the implicit 'this' function parameter also counts, and they are 3318 // counted from one. 3319 bool HasImplicitThisParam = isInstanceMethod(D); 3320 unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam; 3321 3322 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; 3323 StringRef Format = II->getName(); 3324 3325 if (normalizeName(Format)) { 3326 // If we've modified the string name, we need a new identifier for it. 3327 II = &S.Context.Idents.get(Format); 3328 } 3329 3330 // Check for supported formats. 3331 FormatAttrKind Kind = getFormatAttrKind(Format); 3332 3333 if (Kind == IgnoredFormat) 3334 return; 3335 3336 if (Kind == InvalidFormat) { 3337 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) 3338 << AL << II->getName(); 3339 return; 3340 } 3341 3342 // checks for the 2nd argument 3343 Expr *IdxExpr = AL.getArgAsExpr(1); 3344 uint32_t Idx; 3345 if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2)) 3346 return; 3347 3348 if (Idx < 1 || Idx > NumArgs) { 3349 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) 3350 << AL << 2 << IdxExpr->getSourceRange(); 3351 return; 3352 } 3353 3354 // FIXME: Do we need to bounds check? 3355 unsigned ArgIdx = Idx - 1; 3356 3357 if (HasImplicitThisParam) { 3358 if (ArgIdx == 0) { 3359 S.Diag(AL.getLoc(), 3360 diag::err_format_attribute_implicit_this_format_string) 3361 << IdxExpr->getSourceRange(); 3362 return; 3363 } 3364 ArgIdx--; 3365 } 3366 3367 // make sure the format string is really a string 3368 QualType Ty = getFunctionOrMethodParamType(D, ArgIdx); 3369 3370 if (Kind == CFStringFormat) { 3371 if (!isCFStringType(Ty, S.Context)) { 3372 S.Diag(AL.getLoc(), diag::err_format_attribute_not) 3373 << "a CFString" << IdxExpr->getSourceRange() 3374 << getFunctionOrMethodParamRange(D, ArgIdx); 3375 return; 3376 } 3377 } else if (Kind == NSStringFormat) { 3378 // FIXME: do we need to check if the type is NSString*? What are the 3379 // semantics? 3380 if (!isNSStringType(Ty, S.Context)) { 3381 S.Diag(AL.getLoc(), diag::err_format_attribute_not) 3382 << "an NSString" << IdxExpr->getSourceRange() 3383 << getFunctionOrMethodParamRange(D, ArgIdx); 3384 return; 3385 } 3386 } else if (!Ty->isPointerType() || 3387 !Ty->castAs<PointerType>()->getPointeeType()->isCharType()) { 3388 S.Diag(AL.getLoc(), diag::err_format_attribute_not) 3389 << "a string type" << IdxExpr->getSourceRange() 3390 << getFunctionOrMethodParamRange(D, ArgIdx); 3391 return; 3392 } 3393 3394 // check the 3rd argument 3395 Expr *FirstArgExpr = AL.getArgAsExpr(2); 3396 uint32_t FirstArg; 3397 if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3)) 3398 return; 3399 3400 // check if the function is variadic if the 3rd argument non-zero 3401 if (FirstArg != 0) { 3402 if (isFunctionOrMethodVariadic(D)) { 3403 ++NumArgs; // +1 for ... 3404 } else { 3405 S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic); 3406 return; 3407 } 3408 } 3409 3410 // strftime requires FirstArg to be 0 because it doesn't read from any 3411 // variable the input is just the current time + the format string. 3412 if (Kind == StrftimeFormat) { 3413 if (FirstArg != 0) { 3414 S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter) 3415 << FirstArgExpr->getSourceRange(); 3416 return; 3417 } 3418 // if 0 it disables parameter checking (to use with e.g. va_list) 3419 } else if (FirstArg != 0 && FirstArg != NumArgs) { 3420 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) 3421 << AL << 3 << FirstArgExpr->getSourceRange(); 3422 return; 3423 } 3424 3425 FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg); 3426 if (NewAttr) 3427 D->addAttr(NewAttr); 3428 } 3429 3430 /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes. 3431 static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3432 // The index that identifies the callback callee is mandatory. 3433 if (AL.getNumArgs() == 0) { 3434 S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee) 3435 << AL.getRange(); 3436 return; 3437 } 3438 3439 bool HasImplicitThisParam = isInstanceMethod(D); 3440 int32_t NumArgs = getFunctionOrMethodNumParams(D); 3441 3442 FunctionDecl *FD = D->getAsFunction(); 3443 assert(FD && "Expected a function declaration!"); 3444 3445 llvm::StringMap<int> NameIdxMapping; 3446 NameIdxMapping["__"] = -1; 3447 3448 NameIdxMapping["this"] = 0; 3449 3450 int Idx = 1; 3451 for (const ParmVarDecl *PVD : FD->parameters()) 3452 NameIdxMapping[PVD->getName()] = Idx++; 3453 3454 auto UnknownName = NameIdxMapping.end(); 3455 3456 SmallVector<int, 8> EncodingIndices; 3457 for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) { 3458 SourceRange SR; 3459 int32_t ArgIdx; 3460 3461 if (AL.isArgIdent(I)) { 3462 IdentifierLoc *IdLoc = AL.getArgAsIdent(I); 3463 auto It = NameIdxMapping.find(IdLoc->Ident->getName()); 3464 if (It == UnknownName) { 3465 S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown) 3466 << IdLoc->Ident << IdLoc->Loc; 3467 return; 3468 } 3469 3470 SR = SourceRange(IdLoc->Loc); 3471 ArgIdx = It->second; 3472 } else if (AL.isArgExpr(I)) { 3473 Expr *IdxExpr = AL.getArgAsExpr(I); 3474 3475 // If the expression is not parseable as an int32_t we have a problem. 3476 if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1, 3477 false)) { 3478 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) 3479 << AL << (I + 1) << IdxExpr->getSourceRange(); 3480 return; 3481 } 3482 3483 // Check oob, excluding the special values, 0 and -1. 3484 if (ArgIdx < -1 || ArgIdx > NumArgs) { 3485 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) 3486 << AL << (I + 1) << IdxExpr->getSourceRange(); 3487 return; 3488 } 3489 3490 SR = IdxExpr->getSourceRange(); 3491 } else { 3492 llvm_unreachable("Unexpected ParsedAttr argument type!"); 3493 } 3494 3495 if (ArgIdx == 0 && !HasImplicitThisParam) { 3496 S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available) 3497 << (I + 1) << SR; 3498 return; 3499 } 3500 3501 // Adjust for the case we do not have an implicit "this" parameter. In this 3502 // case we decrease all positive values by 1 to get LLVM argument indices. 3503 if (!HasImplicitThisParam && ArgIdx > 0) 3504 ArgIdx -= 1; 3505 3506 EncodingIndices.push_back(ArgIdx); 3507 } 3508 3509 int CalleeIdx = EncodingIndices.front(); 3510 // Check if the callee index is proper, thus not "this" and not "unknown". 3511 // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam" 3512 // is false and positive if "HasImplicitThisParam" is true. 3513 if (CalleeIdx < (int)HasImplicitThisParam) { 3514 S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee) 3515 << AL.getRange(); 3516 return; 3517 } 3518 3519 // Get the callee type, note the index adjustment as the AST doesn't contain 3520 // the this type (which the callee cannot reference anyway!). 3521 const Type *CalleeType = 3522 getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam) 3523 .getTypePtr(); 3524 if (!CalleeType || !CalleeType->isFunctionPointerType()) { 3525 S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type) 3526 << AL.getRange(); 3527 return; 3528 } 3529 3530 const Type *CalleeFnType = 3531 CalleeType->getPointeeType()->getUnqualifiedDesugaredType(); 3532 3533 // TODO: Check the type of the callee arguments. 3534 3535 const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType); 3536 if (!CalleeFnProtoType) { 3537 S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type) 3538 << AL.getRange(); 3539 return; 3540 } 3541 3542 if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) { 3543 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) 3544 << AL << (unsigned)(EncodingIndices.size() - 1); 3545 return; 3546 } 3547 3548 if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) { 3549 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) 3550 << AL << (unsigned)(EncodingIndices.size() - 1); 3551 return; 3552 } 3553 3554 if (CalleeFnProtoType->isVariadic()) { 3555 S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange(); 3556 return; 3557 } 3558 3559 // Do not allow multiple callback attributes. 3560 if (D->hasAttr<CallbackAttr>()) { 3561 S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange(); 3562 return; 3563 } 3564 3565 D->addAttr(::new (S.Context) CallbackAttr( 3566 S.Context, AL, EncodingIndices.data(), EncodingIndices.size())); 3567 } 3568 3569 static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3570 // Try to find the underlying union declaration. 3571 RecordDecl *RD = nullptr; 3572 const auto *TD = dyn_cast<TypedefNameDecl>(D); 3573 if (TD && TD->getUnderlyingType()->isUnionType()) 3574 RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); 3575 else 3576 RD = dyn_cast<RecordDecl>(D); 3577 3578 if (!RD || !RD->isUnion()) { 3579 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL 3580 << ExpectedUnion; 3581 return; 3582 } 3583 3584 if (!RD->isCompleteDefinition()) { 3585 if (!RD->isBeingDefined()) 3586 S.Diag(AL.getLoc(), 3587 diag::warn_transparent_union_attribute_not_definition); 3588 return; 3589 } 3590 3591 RecordDecl::field_iterator Field = RD->field_begin(), 3592 FieldEnd = RD->field_end(); 3593 if (Field == FieldEnd) { 3594 S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields); 3595 return; 3596 } 3597 3598 FieldDecl *FirstField = *Field; 3599 QualType FirstType = FirstField->getType(); 3600 if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) { 3601 S.Diag(FirstField->getLocation(), 3602 diag::warn_transparent_union_attribute_floating) 3603 << FirstType->isVectorType() << FirstType; 3604 return; 3605 } 3606 3607 if (FirstType->isIncompleteType()) 3608 return; 3609 uint64_t FirstSize = S.Context.getTypeSize(FirstType); 3610 uint64_t FirstAlign = S.Context.getTypeAlign(FirstType); 3611 for (; Field != FieldEnd; ++Field) { 3612 QualType FieldType = Field->getType(); 3613 if (FieldType->isIncompleteType()) 3614 return; 3615 // FIXME: this isn't fully correct; we also need to test whether the 3616 // members of the union would all have the same calling convention as the 3617 // first member of the union. Checking just the size and alignment isn't 3618 // sufficient (consider structs passed on the stack instead of in registers 3619 // as an example). 3620 if (S.Context.getTypeSize(FieldType) != FirstSize || 3621 S.Context.getTypeAlign(FieldType) > FirstAlign) { 3622 // Warn if we drop the attribute. 3623 bool isSize = S.Context.getTypeSize(FieldType) != FirstSize; 3624 unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType) 3625 : S.Context.getTypeAlign(FieldType); 3626 S.Diag(Field->getLocation(), 3627 diag::warn_transparent_union_attribute_field_size_align) 3628 << isSize << Field->getDeclName() << FieldBits; 3629 unsigned FirstBits = isSize? FirstSize : FirstAlign; 3630 S.Diag(FirstField->getLocation(), 3631 diag::note_transparent_union_first_field_size_align) 3632 << isSize << FirstBits; 3633 return; 3634 } 3635 } 3636 3637 RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL)); 3638 } 3639 3640 static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3641 // Make sure that there is a string literal as the annotation's single 3642 // argument. 3643 StringRef Str; 3644 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) 3645 return; 3646 3647 // Don't duplicate annotations that are already set. 3648 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 3649 if (I->getAnnotation() == Str) 3650 return; 3651 } 3652 3653 D->addAttr(::new (S.Context) AnnotateAttr(S.Context, AL, Str)); 3654 } 3655 3656 static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3657 S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0)); 3658 } 3659 3660 void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) { 3661 AlignValueAttr TmpAttr(Context, CI, E); 3662 SourceLocation AttrLoc = CI.getLoc(); 3663 3664 QualType T; 3665 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) 3666 T = TD->getUnderlyingType(); 3667 else if (const auto *VD = dyn_cast<ValueDecl>(D)) 3668 T = VD->getType(); 3669 else 3670 llvm_unreachable("Unknown decl type for align_value"); 3671 3672 if (!T->isDependentType() && !T->isAnyPointerType() && 3673 !T->isReferenceType() && !T->isMemberPointerType()) { 3674 Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only) 3675 << &TmpAttr /*TmpAttr.getName()*/ << T << D->getSourceRange(); 3676 return; 3677 } 3678 3679 if (!E->isValueDependent()) { 3680 llvm::APSInt Alignment; 3681 ExprResult ICE 3682 = VerifyIntegerConstantExpression(E, &Alignment, 3683 diag::err_align_value_attribute_argument_not_int, 3684 /*AllowFold*/ false); 3685 if (ICE.isInvalid()) 3686 return; 3687 3688 if (!Alignment.isPowerOf2()) { 3689 Diag(AttrLoc, diag::err_alignment_not_power_of_two) 3690 << E->getSourceRange(); 3691 return; 3692 } 3693 3694 D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get())); 3695 return; 3696 } 3697 3698 // Save dependent expressions in the AST to be instantiated. 3699 D->addAttr(::new (Context) AlignValueAttr(Context, CI, E)); 3700 } 3701 3702 static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3703 // check the attribute arguments. 3704 if (AL.getNumArgs() > 1) { 3705 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; 3706 return; 3707 } 3708 3709 if (AL.getNumArgs() == 0) { 3710 D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr)); 3711 return; 3712 } 3713 3714 Expr *E = AL.getArgAsExpr(0); 3715 if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) { 3716 S.Diag(AL.getEllipsisLoc(), 3717 diag::err_pack_expansion_without_parameter_packs); 3718 return; 3719 } 3720 3721 if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E)) 3722 return; 3723 3724 S.AddAlignedAttr(D, AL, E, AL.isPackExpansion()); 3725 } 3726 3727 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, 3728 bool IsPackExpansion) { 3729 AlignedAttr TmpAttr(Context, CI, true, E); 3730 SourceLocation AttrLoc = CI.getLoc(); 3731 3732 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. 3733 if (TmpAttr.isAlignas()) { 3734 // C++11 [dcl.align]p1: 3735 // An alignment-specifier may be applied to a variable or to a class 3736 // data member, but it shall not be applied to a bit-field, a function 3737 // parameter, the formal parameter of a catch clause, or a variable 3738 // declared with the register storage class specifier. An 3739 // alignment-specifier may also be applied to the declaration of a class 3740 // or enumeration type. 3741 // C11 6.7.5/2: 3742 // An alignment attribute shall not be specified in a declaration of 3743 // a typedef, or a bit-field, or a function, or a parameter, or an 3744 // object declared with the register storage-class specifier. 3745 int DiagKind = -1; 3746 if (isa<ParmVarDecl>(D)) { 3747 DiagKind = 0; 3748 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 3749 if (VD->getStorageClass() == SC_Register) 3750 DiagKind = 1; 3751 if (VD->isExceptionVariable()) 3752 DiagKind = 2; 3753 } else if (const auto *FD = dyn_cast<FieldDecl>(D)) { 3754 if (FD->isBitField()) 3755 DiagKind = 3; 3756 } else if (!isa<TagDecl>(D)) { 3757 Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr 3758 << (TmpAttr.isC11() ? ExpectedVariableOrField 3759 : ExpectedVariableFieldOrTag); 3760 return; 3761 } 3762 if (DiagKind != -1) { 3763 Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type) 3764 << &TmpAttr << DiagKind; 3765 return; 3766 } 3767 } 3768 3769 if (E->isValueDependent()) { 3770 // We can't support a dependent alignment on a non-dependent type, 3771 // because we have no way to model that a type is "alignment-dependent" 3772 // but not dependent in any other way. 3773 if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) { 3774 if (!TND->getUnderlyingType()->isDependentType()) { 3775 Diag(AttrLoc, diag::err_alignment_dependent_typedef_name) 3776 << E->getSourceRange(); 3777 return; 3778 } 3779 } 3780 3781 // Save dependent expressions in the AST to be instantiated. 3782 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E); 3783 AA->setPackExpansion(IsPackExpansion); 3784 D->addAttr(AA); 3785 return; 3786 } 3787 3788 // FIXME: Cache the number on the AL object? 3789 llvm::APSInt Alignment; 3790 ExprResult ICE 3791 = VerifyIntegerConstantExpression(E, &Alignment, 3792 diag::err_aligned_attribute_argument_not_int, 3793 /*AllowFold*/ false); 3794 if (ICE.isInvalid()) 3795 return; 3796 3797 uint64_t AlignVal = Alignment.getZExtValue(); 3798 3799 // C++11 [dcl.align]p2: 3800 // -- if the constant expression evaluates to zero, the alignment 3801 // specifier shall have no effect 3802 // C11 6.7.5p6: 3803 // An alignment specification of zero has no effect. 3804 if (!(TmpAttr.isAlignas() && !Alignment)) { 3805 if (!llvm::isPowerOf2_64(AlignVal)) { 3806 Diag(AttrLoc, diag::err_alignment_not_power_of_two) 3807 << E->getSourceRange(); 3808 return; 3809 } 3810 } 3811 3812 // Alignment calculations can wrap around if it's greater than 2**28. 3813 unsigned MaxValidAlignment = 3814 Context.getTargetInfo().getTriple().isOSBinFormatCOFF() ? 8192 3815 : 268435456; 3816 if (AlignVal > MaxValidAlignment) { 3817 Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaxValidAlignment 3818 << E->getSourceRange(); 3819 return; 3820 } 3821 3822 if (Context.getTargetInfo().isTLSSupported()) { 3823 unsigned MaxTLSAlign = 3824 Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign()) 3825 .getQuantity(); 3826 const auto *VD = dyn_cast<VarDecl>(D); 3827 if (MaxTLSAlign && AlignVal > MaxTLSAlign && VD && 3828 VD->getTLSKind() != VarDecl::TLS_None) { 3829 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) 3830 << (unsigned)AlignVal << VD << MaxTLSAlign; 3831 return; 3832 } 3833 } 3834 3835 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get()); 3836 AA->setPackExpansion(IsPackExpansion); 3837 D->addAttr(AA); 3838 } 3839 3840 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, 3841 TypeSourceInfo *TS, bool IsPackExpansion) { 3842 // FIXME: Cache the number on the AL object if non-dependent? 3843 // FIXME: Perform checking of type validity 3844 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS); 3845 AA->setPackExpansion(IsPackExpansion); 3846 D->addAttr(AA); 3847 } 3848 3849 void Sema::CheckAlignasUnderalignment(Decl *D) { 3850 assert(D->hasAttrs() && "no attributes on decl"); 3851 3852 QualType UnderlyingTy, DiagTy; 3853 if (const auto *VD = dyn_cast<ValueDecl>(D)) { 3854 UnderlyingTy = DiagTy = VD->getType(); 3855 } else { 3856 UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D)); 3857 if (const auto *ED = dyn_cast<EnumDecl>(D)) 3858 UnderlyingTy = ED->getIntegerType(); 3859 } 3860 if (DiagTy->isDependentType() || DiagTy->isIncompleteType()) 3861 return; 3862 3863 // C++11 [dcl.align]p5, C11 6.7.5/4: 3864 // The combined effect of all alignment attributes in a declaration shall 3865 // not specify an alignment that is less strict than the alignment that 3866 // would otherwise be required for the entity being declared. 3867 AlignedAttr *AlignasAttr = nullptr; 3868 unsigned Align = 0; 3869 for (auto *I : D->specific_attrs<AlignedAttr>()) { 3870 if (I->isAlignmentDependent()) 3871 return; 3872 if (I->isAlignas()) 3873 AlignasAttr = I; 3874 Align = std::max(Align, I->getAlignment(Context)); 3875 } 3876 3877 if (AlignasAttr && Align) { 3878 CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align); 3879 CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy); 3880 if (NaturalAlign > RequestedAlign) 3881 Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned) 3882 << DiagTy << (unsigned)NaturalAlign.getQuantity(); 3883 } 3884 } 3885 3886 bool Sema::checkMSInheritanceAttrOnDefinition( 3887 CXXRecordDecl *RD, SourceRange Range, bool BestCase, 3888 MSInheritanceModel ExplicitModel) { 3889 assert(RD->hasDefinition() && "RD has no definition!"); 3890 3891 // We may not have seen base specifiers or any virtual methods yet. We will 3892 // have to wait until the record is defined to catch any mismatches. 3893 if (!RD->getDefinition()->isCompleteDefinition()) 3894 return false; 3895 3896 // The unspecified model never matches what a definition could need. 3897 if (ExplicitModel == MSInheritanceModel::Unspecified) 3898 return false; 3899 3900 if (BestCase) { 3901 if (RD->calculateInheritanceModel() == ExplicitModel) 3902 return false; 3903 } else { 3904 if (RD->calculateInheritanceModel() <= ExplicitModel) 3905 return false; 3906 } 3907 3908 Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance) 3909 << 0 /*definition*/; 3910 Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) 3911 << RD->getNameAsString(); 3912 return true; 3913 } 3914 3915 /// parseModeAttrArg - Parses attribute mode string and returns parsed type 3916 /// attribute. 3917 static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth, 3918 bool &IntegerMode, bool &ComplexMode) { 3919 IntegerMode = true; 3920 ComplexMode = false; 3921 switch (Str.size()) { 3922 case 2: 3923 switch (Str[0]) { 3924 case 'Q': 3925 DestWidth = 8; 3926 break; 3927 case 'H': 3928 DestWidth = 16; 3929 break; 3930 case 'S': 3931 DestWidth = 32; 3932 break; 3933 case 'D': 3934 DestWidth = 64; 3935 break; 3936 case 'X': 3937 DestWidth = 96; 3938 break; 3939 case 'T': 3940 DestWidth = 128; 3941 break; 3942 } 3943 if (Str[1] == 'F') { 3944 IntegerMode = false; 3945 } else if (Str[1] == 'C') { 3946 IntegerMode = false; 3947 ComplexMode = true; 3948 } else if (Str[1] != 'I') { 3949 DestWidth = 0; 3950 } 3951 break; 3952 case 4: 3953 // FIXME: glibc uses 'word' to define register_t; this is narrower than a 3954 // pointer on PIC16 and other embedded platforms. 3955 if (Str == "word") 3956 DestWidth = S.Context.getTargetInfo().getRegisterWidth(); 3957 else if (Str == "byte") 3958 DestWidth = S.Context.getTargetInfo().getCharWidth(); 3959 break; 3960 case 7: 3961 if (Str == "pointer") 3962 DestWidth = S.Context.getTargetInfo().getPointerWidth(0); 3963 break; 3964 case 11: 3965 if (Str == "unwind_word") 3966 DestWidth = S.Context.getTargetInfo().getUnwindWordWidth(); 3967 break; 3968 } 3969 } 3970 3971 /// handleModeAttr - This attribute modifies the width of a decl with primitive 3972 /// type. 3973 /// 3974 /// Despite what would be logical, the mode attribute is a decl attribute, not a 3975 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be 3976 /// HImode, not an intermediate pointer. 3977 static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 3978 // This attribute isn't documented, but glibc uses it. It changes 3979 // the width of an int or unsigned int to the specified size. 3980 if (!AL.isArgIdent(0)) { 3981 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 3982 << AL << AANT_ArgumentIdentifier; 3983 return; 3984 } 3985 3986 IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident; 3987 3988 S.AddModeAttr(D, AL, Name); 3989 } 3990 3991 void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI, 3992 IdentifierInfo *Name, bool InInstantiation) { 3993 StringRef Str = Name->getName(); 3994 normalizeName(Str); 3995 SourceLocation AttrLoc = CI.getLoc(); 3996 3997 unsigned DestWidth = 0; 3998 bool IntegerMode = true; 3999 bool ComplexMode = false; 4000 llvm::APInt VectorSize(64, 0); 4001 if (Str.size() >= 4 && Str[0] == 'V') { 4002 // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2). 4003 size_t StrSize = Str.size(); 4004 size_t VectorStringLength = 0; 4005 while ((VectorStringLength + 1) < StrSize && 4006 isdigit(Str[VectorStringLength + 1])) 4007 ++VectorStringLength; 4008 if (VectorStringLength && 4009 !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) && 4010 VectorSize.isPowerOf2()) { 4011 parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth, 4012 IntegerMode, ComplexMode); 4013 // Avoid duplicate warning from template instantiation. 4014 if (!InInstantiation) 4015 Diag(AttrLoc, diag::warn_vector_mode_deprecated); 4016 } else { 4017 VectorSize = 0; 4018 } 4019 } 4020 4021 if (!VectorSize) 4022 parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode); 4023 4024 // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t 4025 // and friends, at least with glibc. 4026 // FIXME: Make sure floating-point mappings are accurate 4027 // FIXME: Support XF and TF types 4028 if (!DestWidth) { 4029 Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name; 4030 return; 4031 } 4032 4033 QualType OldTy; 4034 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) 4035 OldTy = TD->getUnderlyingType(); 4036 else if (const auto *ED = dyn_cast<EnumDecl>(D)) { 4037 // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'. 4038 // Try to get type from enum declaration, default to int. 4039 OldTy = ED->getIntegerType(); 4040 if (OldTy.isNull()) 4041 OldTy = Context.IntTy; 4042 } else 4043 OldTy = cast<ValueDecl>(D)->getType(); 4044 4045 if (OldTy->isDependentType()) { 4046 D->addAttr(::new (Context) ModeAttr(Context, CI, Name)); 4047 return; 4048 } 4049 4050 // Base type can also be a vector type (see PR17453). 4051 // Distinguish between base type and base element type. 4052 QualType OldElemTy = OldTy; 4053 if (const auto *VT = OldTy->getAs<VectorType>()) 4054 OldElemTy = VT->getElementType(); 4055 4056 // GCC allows 'mode' attribute on enumeration types (even incomplete), except 4057 // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete 4058 // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected. 4059 if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) && 4060 VectorSize.getBoolValue()) { 4061 Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange(); 4062 return; 4063 } 4064 bool IntegralOrAnyEnumType = 4065 OldElemTy->isIntegralOrEnumerationType() || OldElemTy->getAs<EnumType>(); 4066 4067 if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() && 4068 !IntegralOrAnyEnumType) 4069 Diag(AttrLoc, diag::err_mode_not_primitive); 4070 else if (IntegerMode) { 4071 if (!IntegralOrAnyEnumType) 4072 Diag(AttrLoc, diag::err_mode_wrong_type); 4073 } else if (ComplexMode) { 4074 if (!OldElemTy->isComplexType()) 4075 Diag(AttrLoc, diag::err_mode_wrong_type); 4076 } else { 4077 if (!OldElemTy->isFloatingType()) 4078 Diag(AttrLoc, diag::err_mode_wrong_type); 4079 } 4080 4081 QualType NewElemTy; 4082 4083 if (IntegerMode) 4084 NewElemTy = Context.getIntTypeForBitwidth(DestWidth, 4085 OldElemTy->isSignedIntegerType()); 4086 else 4087 NewElemTy = Context.getRealTypeForBitwidth(DestWidth); 4088 4089 if (NewElemTy.isNull()) { 4090 Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name; 4091 return; 4092 } 4093 4094 if (ComplexMode) { 4095 NewElemTy = Context.getComplexType(NewElemTy); 4096 } 4097 4098 QualType NewTy = NewElemTy; 4099 if (VectorSize.getBoolValue()) { 4100 NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(), 4101 VectorType::GenericVector); 4102 } else if (const auto *OldVT = OldTy->getAs<VectorType>()) { 4103 // Complex machine mode does not support base vector types. 4104 if (ComplexMode) { 4105 Diag(AttrLoc, diag::err_complex_mode_vector_type); 4106 return; 4107 } 4108 unsigned NumElements = Context.getTypeSize(OldElemTy) * 4109 OldVT->getNumElements() / 4110 Context.getTypeSize(NewElemTy); 4111 NewTy = 4112 Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind()); 4113 } 4114 4115 if (NewTy.isNull()) { 4116 Diag(AttrLoc, diag::err_mode_wrong_type); 4117 return; 4118 } 4119 4120 // Install the new type. 4121 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) 4122 TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy); 4123 else if (auto *ED = dyn_cast<EnumDecl>(D)) 4124 ED->setIntegerType(NewTy); 4125 else 4126 cast<ValueDecl>(D)->setType(NewTy); 4127 4128 D->addAttr(::new (Context) ModeAttr(Context, CI, Name)); 4129 } 4130 4131 static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4132 D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL)); 4133 } 4134 4135 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, 4136 const AttributeCommonInfo &CI, 4137 const IdentifierInfo *Ident) { 4138 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { 4139 Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident; 4140 Diag(Optnone->getLocation(), diag::note_conflicting_attribute); 4141 return nullptr; 4142 } 4143 4144 if (D->hasAttr<AlwaysInlineAttr>()) 4145 return nullptr; 4146 4147 return ::new (Context) AlwaysInlineAttr(Context, CI); 4148 } 4149 4150 CommonAttr *Sema::mergeCommonAttr(Decl *D, const ParsedAttr &AL) { 4151 if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL)) 4152 return nullptr; 4153 4154 return ::new (Context) CommonAttr(Context, AL); 4155 } 4156 4157 CommonAttr *Sema::mergeCommonAttr(Decl *D, const CommonAttr &AL) { 4158 if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL)) 4159 return nullptr; 4160 4161 return ::new (Context) CommonAttr(Context, AL); 4162 } 4163 4164 InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D, 4165 const ParsedAttr &AL) { 4166 if (const auto *VD = dyn_cast<VarDecl>(D)) { 4167 // Attribute applies to Var but not any subclass of it (like ParmVar, 4168 // ImplicitParm or VarTemplateSpecialization). 4169 if (VD->getKind() != Decl::Var) { 4170 Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) 4171 << AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass 4172 : ExpectedVariableOrFunction); 4173 return nullptr; 4174 } 4175 // Attribute does not apply to non-static local variables. 4176 if (VD->hasLocalStorage()) { 4177 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); 4178 return nullptr; 4179 } 4180 } 4181 4182 if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL)) 4183 return nullptr; 4184 4185 return ::new (Context) InternalLinkageAttr(Context, AL); 4186 } 4187 InternalLinkageAttr * 4188 Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) { 4189 if (const auto *VD = dyn_cast<VarDecl>(D)) { 4190 // Attribute applies to Var but not any subclass of it (like ParmVar, 4191 // ImplicitParm or VarTemplateSpecialization). 4192 if (VD->getKind() != Decl::Var) { 4193 Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type) 4194 << &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass 4195 : ExpectedVariableOrFunction); 4196 return nullptr; 4197 } 4198 // Attribute does not apply to non-static local variables. 4199 if (VD->hasLocalStorage()) { 4200 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); 4201 return nullptr; 4202 } 4203 } 4204 4205 if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL)) 4206 return nullptr; 4207 4208 return ::new (Context) InternalLinkageAttr(Context, AL); 4209 } 4210 4211 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) { 4212 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { 4213 Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'"; 4214 Diag(Optnone->getLocation(), diag::note_conflicting_attribute); 4215 return nullptr; 4216 } 4217 4218 if (D->hasAttr<MinSizeAttr>()) 4219 return nullptr; 4220 4221 return ::new (Context) MinSizeAttr(Context, CI); 4222 } 4223 4224 NoSpeculativeLoadHardeningAttr *Sema::mergeNoSpeculativeLoadHardeningAttr( 4225 Decl *D, const NoSpeculativeLoadHardeningAttr &AL) { 4226 if (checkAttrMutualExclusion<SpeculativeLoadHardeningAttr>(*this, D, AL)) 4227 return nullptr; 4228 4229 return ::new (Context) NoSpeculativeLoadHardeningAttr(Context, AL); 4230 } 4231 4232 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, 4233 const AttributeCommonInfo &CI) { 4234 if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) { 4235 Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline; 4236 Diag(CI.getLoc(), diag::note_conflicting_attribute); 4237 D->dropAttr<AlwaysInlineAttr>(); 4238 } 4239 if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) { 4240 Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize; 4241 Diag(CI.getLoc(), diag::note_conflicting_attribute); 4242 D->dropAttr<MinSizeAttr>(); 4243 } 4244 4245 if (D->hasAttr<OptimizeNoneAttr>()) 4246 return nullptr; 4247 4248 return ::new (Context) OptimizeNoneAttr(Context, CI); 4249 } 4250 4251 SpeculativeLoadHardeningAttr *Sema::mergeSpeculativeLoadHardeningAttr( 4252 Decl *D, const SpeculativeLoadHardeningAttr &AL) { 4253 if (checkAttrMutualExclusion<NoSpeculativeLoadHardeningAttr>(*this, D, AL)) 4254 return nullptr; 4255 4256 return ::new (Context) SpeculativeLoadHardeningAttr(Context, AL); 4257 } 4258 4259 static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4260 if (checkAttrMutualExclusion<NotTailCalledAttr>(S, D, AL)) 4261 return; 4262 4263 if (AlwaysInlineAttr *Inline = 4264 S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName())) 4265 D->addAttr(Inline); 4266 } 4267 4268 static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4269 if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL)) 4270 D->addAttr(MinSize); 4271 } 4272 4273 static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4274 if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL)) 4275 D->addAttr(Optnone); 4276 } 4277 4278 static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4279 if (checkAttrMutualExclusion<CUDASharedAttr>(S, D, AL)) 4280 return; 4281 const auto *VD = cast<VarDecl>(D); 4282 if (!VD->hasGlobalStorage()) { 4283 S.Diag(AL.getLoc(), diag::err_cuda_nonglobal_constant); 4284 return; 4285 } 4286 D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL)); 4287 } 4288 4289 static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4290 if (checkAttrMutualExclusion<CUDAConstantAttr>(S, D, AL)) 4291 return; 4292 const auto *VD = cast<VarDecl>(D); 4293 // extern __shared__ is only allowed on arrays with no length (e.g. 4294 // "int x[]"). 4295 if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() && 4296 !isa<IncompleteArrayType>(VD->getType())) { 4297 S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD; 4298 return; 4299 } 4300 if (S.getLangOpts().CUDA && VD->hasLocalStorage() && 4301 S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared) 4302 << S.CurrentCUDATarget()) 4303 return; 4304 D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL)); 4305 } 4306 4307 static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4308 if (checkAttrMutualExclusion<CUDADeviceAttr>(S, D, AL) || 4309 checkAttrMutualExclusion<CUDAHostAttr>(S, D, AL)) { 4310 return; 4311 } 4312 const auto *FD = cast<FunctionDecl>(D); 4313 if (!FD->getReturnType()->isVoidType() && 4314 !FD->getReturnType()->getAs<AutoType>() && 4315 !FD->getReturnType()->isInstantiationDependentType()) { 4316 SourceRange RTRange = FD->getReturnTypeSourceRange(); 4317 S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) 4318 << FD->getType() 4319 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") 4320 : FixItHint()); 4321 return; 4322 } 4323 if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) { 4324 if (Method->isInstance()) { 4325 S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method) 4326 << Method; 4327 return; 4328 } 4329 S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method; 4330 } 4331 // Only warn for "inline" when compiling for host, to cut down on noise. 4332 if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice) 4333 S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD; 4334 4335 D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL)); 4336 } 4337 4338 static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4339 const auto *Fn = cast<FunctionDecl>(D); 4340 if (!Fn->isInlineSpecified()) { 4341 S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline); 4342 return; 4343 } 4344 4345 if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern) 4346 S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern); 4347 4348 D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL)); 4349 } 4350 4351 static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4352 if (hasDeclarator(D)) return; 4353 4354 // Diagnostic is emitted elsewhere: here we store the (valid) AL 4355 // in the Decl node for syntactic reasoning, e.g., pretty-printing. 4356 CallingConv CC; 4357 if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr)) 4358 return; 4359 4360 if (!isa<ObjCMethodDecl>(D)) { 4361 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) 4362 << AL << ExpectedFunctionOrMethod; 4363 return; 4364 } 4365 4366 switch (AL.getKind()) { 4367 case ParsedAttr::AT_FastCall: 4368 D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL)); 4369 return; 4370 case ParsedAttr::AT_StdCall: 4371 D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL)); 4372 return; 4373 case ParsedAttr::AT_ThisCall: 4374 D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL)); 4375 return; 4376 case ParsedAttr::AT_CDecl: 4377 D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL)); 4378 return; 4379 case ParsedAttr::AT_Pascal: 4380 D->addAttr(::new (S.Context) PascalAttr(S.Context, AL)); 4381 return; 4382 case ParsedAttr::AT_SwiftCall: 4383 D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL)); 4384 return; 4385 case ParsedAttr::AT_VectorCall: 4386 D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL)); 4387 return; 4388 case ParsedAttr::AT_MSABI: 4389 D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL)); 4390 return; 4391 case ParsedAttr::AT_SysVABI: 4392 D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL)); 4393 return; 4394 case ParsedAttr::AT_RegCall: 4395 D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL)); 4396 return; 4397 case ParsedAttr::AT_Pcs: { 4398 PcsAttr::PCSType PCS; 4399 switch (CC) { 4400 case CC_AAPCS: 4401 PCS = PcsAttr::AAPCS; 4402 break; 4403 case CC_AAPCS_VFP: 4404 PCS = PcsAttr::AAPCS_VFP; 4405 break; 4406 default: 4407 llvm_unreachable("unexpected calling convention in pcs attribute"); 4408 } 4409 4410 D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS)); 4411 return; 4412 } 4413 case ParsedAttr::AT_AArch64VectorPcs: 4414 D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL)); 4415 return; 4416 case ParsedAttr::AT_IntelOclBicc: 4417 D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL)); 4418 return; 4419 case ParsedAttr::AT_PreserveMost: 4420 D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL)); 4421 return; 4422 case ParsedAttr::AT_PreserveAll: 4423 D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL)); 4424 return; 4425 default: 4426 llvm_unreachable("unexpected attribute kind"); 4427 } 4428 } 4429 4430 static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4431 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 4432 return; 4433 4434 std::vector<StringRef> DiagnosticIdentifiers; 4435 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { 4436 StringRef RuleName; 4437 4438 if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr)) 4439 return; 4440 4441 // FIXME: Warn if the rule name is unknown. This is tricky because only 4442 // clang-tidy knows about available rules. 4443 DiagnosticIdentifiers.push_back(RuleName); 4444 } 4445 D->addAttr(::new (S.Context) 4446 SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(), 4447 DiagnosticIdentifiers.size())); 4448 } 4449 4450 static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4451 TypeSourceInfo *DerefTypeLoc = nullptr; 4452 QualType ParmType; 4453 if (AL.hasParsedType()) { 4454 ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc); 4455 4456 unsigned SelectIdx = ~0U; 4457 if (ParmType->isReferenceType()) 4458 SelectIdx = 0; 4459 else if (ParmType->isArrayType()) 4460 SelectIdx = 1; 4461 4462 if (SelectIdx != ~0U) { 4463 S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) 4464 << SelectIdx << AL; 4465 return; 4466 } 4467 } 4468 4469 // To check if earlier decl attributes do not conflict the newly parsed ones 4470 // we always add (and check) the attribute to the cannonical decl. 4471 D = D->getCanonicalDecl(); 4472 if (AL.getKind() == ParsedAttr::AT_Owner) { 4473 if (checkAttrMutualExclusion<PointerAttr>(S, D, AL)) 4474 return; 4475 if (const auto *OAttr = D->getAttr<OwnerAttr>()) { 4476 const Type *ExistingDerefType = OAttr->getDerefTypeLoc() 4477 ? OAttr->getDerefType().getTypePtr() 4478 : nullptr; 4479 if (ExistingDerefType != ParmType.getTypePtrOrNull()) { 4480 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) 4481 << AL << OAttr; 4482 S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute); 4483 } 4484 return; 4485 } 4486 for (Decl *Redecl : D->redecls()) { 4487 Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc)); 4488 } 4489 } else { 4490 if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL)) 4491 return; 4492 if (const auto *PAttr = D->getAttr<PointerAttr>()) { 4493 const Type *ExistingDerefType = PAttr->getDerefTypeLoc() 4494 ? PAttr->getDerefType().getTypePtr() 4495 : nullptr; 4496 if (ExistingDerefType != ParmType.getTypePtrOrNull()) { 4497 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) 4498 << AL << PAttr; 4499 S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute); 4500 } 4501 return; 4502 } 4503 for (Decl *Redecl : D->redecls()) { 4504 Redecl->addAttr(::new (S.Context) 4505 PointerAttr(S.Context, AL, DerefTypeLoc)); 4506 } 4507 } 4508 } 4509 4510 bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC, 4511 const FunctionDecl *FD) { 4512 if (Attrs.isInvalid()) 4513 return true; 4514 4515 if (Attrs.hasProcessingCache()) { 4516 CC = (CallingConv) Attrs.getProcessingCache(); 4517 return false; 4518 } 4519 4520 unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0; 4521 if (!checkAttributeNumArgs(*this, Attrs, ReqArgs)) { 4522 Attrs.setInvalid(); 4523 return true; 4524 } 4525 4526 // TODO: diagnose uses of these conventions on the wrong target. 4527 switch (Attrs.getKind()) { 4528 case ParsedAttr::AT_CDecl: 4529 CC = CC_C; 4530 break; 4531 case ParsedAttr::AT_FastCall: 4532 CC = CC_X86FastCall; 4533 break; 4534 case ParsedAttr::AT_StdCall: 4535 CC = CC_X86StdCall; 4536 break; 4537 case ParsedAttr::AT_ThisCall: 4538 CC = CC_X86ThisCall; 4539 break; 4540 case ParsedAttr::AT_Pascal: 4541 CC = CC_X86Pascal; 4542 break; 4543 case ParsedAttr::AT_SwiftCall: 4544 CC = CC_Swift; 4545 break; 4546 case ParsedAttr::AT_VectorCall: 4547 CC = CC_X86VectorCall; 4548 break; 4549 case ParsedAttr::AT_AArch64VectorPcs: 4550 CC = CC_AArch64VectorCall; 4551 break; 4552 case ParsedAttr::AT_RegCall: 4553 CC = CC_X86RegCall; 4554 break; 4555 case ParsedAttr::AT_MSABI: 4556 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C : 4557 CC_Win64; 4558 break; 4559 case ParsedAttr::AT_SysVABI: 4560 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV : 4561 CC_C; 4562 break; 4563 case ParsedAttr::AT_Pcs: { 4564 StringRef StrRef; 4565 if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) { 4566 Attrs.setInvalid(); 4567 return true; 4568 } 4569 if (StrRef == "aapcs") { 4570 CC = CC_AAPCS; 4571 break; 4572 } else if (StrRef == "aapcs-vfp") { 4573 CC = CC_AAPCS_VFP; 4574 break; 4575 } 4576 4577 Attrs.setInvalid(); 4578 Diag(Attrs.getLoc(), diag::err_invalid_pcs); 4579 return true; 4580 } 4581 case ParsedAttr::AT_IntelOclBicc: 4582 CC = CC_IntelOclBicc; 4583 break; 4584 case ParsedAttr::AT_PreserveMost: 4585 CC = CC_PreserveMost; 4586 break; 4587 case ParsedAttr::AT_PreserveAll: 4588 CC = CC_PreserveAll; 4589 break; 4590 default: llvm_unreachable("unexpected attribute kind"); 4591 } 4592 4593 TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK; 4594 const TargetInfo &TI = Context.getTargetInfo(); 4595 // CUDA functions may have host and/or device attributes which indicate 4596 // their targeted execution environment, therefore the calling convention 4597 // of functions in CUDA should be checked against the target deduced based 4598 // on their host/device attributes. 4599 if (LangOpts.CUDA) { 4600 auto *Aux = Context.getAuxTargetInfo(); 4601 auto CudaTarget = IdentifyCUDATarget(FD); 4602 bool CheckHost = false, CheckDevice = false; 4603 switch (CudaTarget) { 4604 case CFT_HostDevice: 4605 CheckHost = true; 4606 CheckDevice = true; 4607 break; 4608 case CFT_Host: 4609 CheckHost = true; 4610 break; 4611 case CFT_Device: 4612 case CFT_Global: 4613 CheckDevice = true; 4614 break; 4615 case CFT_InvalidTarget: 4616 llvm_unreachable("unexpected cuda target"); 4617 } 4618 auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI; 4619 auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux; 4620 if (CheckHost && HostTI) 4621 A = HostTI->checkCallingConvention(CC); 4622 if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI) 4623 A = DeviceTI->checkCallingConvention(CC); 4624 } else { 4625 A = TI.checkCallingConvention(CC); 4626 } 4627 4628 switch (A) { 4629 case TargetInfo::CCCR_OK: 4630 break; 4631 4632 case TargetInfo::CCCR_Ignore: 4633 // Treat an ignored convention as if it was an explicit C calling convention 4634 // attribute. For example, __stdcall on Win x64 functions as __cdecl, so 4635 // that command line flags that change the default convention to 4636 // __vectorcall don't affect declarations marked __stdcall. 4637 CC = CC_C; 4638 break; 4639 4640 case TargetInfo::CCCR_Error: 4641 Diag(Attrs.getLoc(), diag::error_cconv_unsupported) 4642 << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; 4643 break; 4644 4645 case TargetInfo::CCCR_Warning: { 4646 Diag(Attrs.getLoc(), diag::warn_cconv_unsupported) 4647 << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; 4648 4649 // This convention is not valid for the target. Use the default function or 4650 // method calling convention. 4651 bool IsCXXMethod = false, IsVariadic = false; 4652 if (FD) { 4653 IsCXXMethod = FD->isCXXInstanceMember(); 4654 IsVariadic = FD->isVariadic(); 4655 } 4656 CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod); 4657 break; 4658 } 4659 } 4660 4661 Attrs.setProcessingCache((unsigned) CC); 4662 return false; 4663 } 4664 4665 /// Pointer-like types in the default address space. 4666 static bool isValidSwiftContextType(QualType Ty) { 4667 if (!Ty->hasPointerRepresentation()) 4668 return Ty->isDependentType(); 4669 return Ty->getPointeeType().getAddressSpace() == LangAS::Default; 4670 } 4671 4672 /// Pointers and references in the default address space. 4673 static bool isValidSwiftIndirectResultType(QualType Ty) { 4674 if (const auto *PtrType = Ty->getAs<PointerType>()) { 4675 Ty = PtrType->getPointeeType(); 4676 } else if (const auto *RefType = Ty->getAs<ReferenceType>()) { 4677 Ty = RefType->getPointeeType(); 4678 } else { 4679 return Ty->isDependentType(); 4680 } 4681 return Ty.getAddressSpace() == LangAS::Default; 4682 } 4683 4684 /// Pointers and references to pointers in the default address space. 4685 static bool isValidSwiftErrorResultType(QualType Ty) { 4686 if (const auto *PtrType = Ty->getAs<PointerType>()) { 4687 Ty = PtrType->getPointeeType(); 4688 } else if (const auto *RefType = Ty->getAs<ReferenceType>()) { 4689 Ty = RefType->getPointeeType(); 4690 } else { 4691 return Ty->isDependentType(); 4692 } 4693 if (!Ty.getQualifiers().empty()) 4694 return false; 4695 return isValidSwiftContextType(Ty); 4696 } 4697 4698 void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI, 4699 ParameterABI abi) { 4700 4701 QualType type = cast<ParmVarDecl>(D)->getType(); 4702 4703 if (auto existingAttr = D->getAttr<ParameterABIAttr>()) { 4704 if (existingAttr->getABI() != abi) { 4705 Diag(CI.getLoc(), diag::err_attributes_are_not_compatible) 4706 << getParameterABISpelling(abi) << existingAttr; 4707 Diag(existingAttr->getLocation(), diag::note_conflicting_attribute); 4708 return; 4709 } 4710 } 4711 4712 switch (abi) { 4713 case ParameterABI::Ordinary: 4714 llvm_unreachable("explicit attribute for ordinary parameter ABI?"); 4715 4716 case ParameterABI::SwiftContext: 4717 if (!isValidSwiftContextType(type)) { 4718 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) 4719 << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type; 4720 } 4721 D->addAttr(::new (Context) SwiftContextAttr(Context, CI)); 4722 return; 4723 4724 case ParameterABI::SwiftErrorResult: 4725 if (!isValidSwiftErrorResultType(type)) { 4726 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) 4727 << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type; 4728 } 4729 D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI)); 4730 return; 4731 4732 case ParameterABI::SwiftIndirectResult: 4733 if (!isValidSwiftIndirectResultType(type)) { 4734 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) 4735 << getParameterABISpelling(abi) << /*pointer*/ 0 << type; 4736 } 4737 D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI)); 4738 return; 4739 } 4740 llvm_unreachable("bad parameter ABI attribute"); 4741 } 4742 4743 /// Checks a regparm attribute, returning true if it is ill-formed and 4744 /// otherwise setting numParams to the appropriate value. 4745 bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) { 4746 if (AL.isInvalid()) 4747 return true; 4748 4749 if (!checkAttributeNumArgs(*this, AL, 1)) { 4750 AL.setInvalid(); 4751 return true; 4752 } 4753 4754 uint32_t NP; 4755 Expr *NumParamsExpr = AL.getArgAsExpr(0); 4756 if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) { 4757 AL.setInvalid(); 4758 return true; 4759 } 4760 4761 if (Context.getTargetInfo().getRegParmMax() == 0) { 4762 Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform) 4763 << NumParamsExpr->getSourceRange(); 4764 AL.setInvalid(); 4765 return true; 4766 } 4767 4768 numParams = NP; 4769 if (numParams > Context.getTargetInfo().getRegParmMax()) { 4770 Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number) 4771 << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange(); 4772 AL.setInvalid(); 4773 return true; 4774 } 4775 4776 return false; 4777 } 4778 4779 // Checks whether an argument of launch_bounds attribute is 4780 // acceptable, performs implicit conversion to Rvalue, and returns 4781 // non-nullptr Expr result on success. Otherwise, it returns nullptr 4782 // and may output an error. 4783 static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E, 4784 const CUDALaunchBoundsAttr &AL, 4785 const unsigned Idx) { 4786 if (S.DiagnoseUnexpandedParameterPack(E)) 4787 return nullptr; 4788 4789 // Accept template arguments for now as they depend on something else. 4790 // We'll get to check them when they eventually get instantiated. 4791 if (E->isValueDependent()) 4792 return E; 4793 4794 llvm::APSInt I(64); 4795 if (!E->isIntegerConstantExpr(I, S.Context)) { 4796 S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type) 4797 << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange(); 4798 return nullptr; 4799 } 4800 // Make sure we can fit it in 32 bits. 4801 if (!I.isIntN(32)) { 4802 S.Diag(E->getExprLoc(), diag::err_ice_too_large) << I.toString(10, false) 4803 << 32 << /* Unsigned */ 1; 4804 return nullptr; 4805 } 4806 if (I < 0) 4807 S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative) 4808 << &AL << Idx << E->getSourceRange(); 4809 4810 // We may need to perform implicit conversion of the argument. 4811 InitializedEntity Entity = InitializedEntity::InitializeParameter( 4812 S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false); 4813 ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E); 4814 assert(!ValArg.isInvalid() && 4815 "Unexpected PerformCopyInitialization() failure."); 4816 4817 return ValArg.getAs<Expr>(); 4818 } 4819 4820 void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, 4821 Expr *MaxThreads, Expr *MinBlocks) { 4822 CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks); 4823 MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0); 4824 if (MaxThreads == nullptr) 4825 return; 4826 4827 if (MinBlocks) { 4828 MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1); 4829 if (MinBlocks == nullptr) 4830 return; 4831 } 4832 4833 D->addAttr(::new (Context) 4834 CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks)); 4835 } 4836 4837 static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4838 if (!checkAttributeAtLeastNumArgs(S, AL, 1) || 4839 !checkAttributeAtMostNumArgs(S, AL, 2)) 4840 return; 4841 4842 S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0), 4843 AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr); 4844 } 4845 4846 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, 4847 const ParsedAttr &AL) { 4848 if (!AL.isArgIdent(0)) { 4849 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 4850 << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier; 4851 return; 4852 } 4853 4854 ParamIdx ArgumentIdx; 4855 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1), 4856 ArgumentIdx)) 4857 return; 4858 4859 ParamIdx TypeTagIdx; 4860 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2), 4861 TypeTagIdx)) 4862 return; 4863 4864 bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag"; 4865 if (IsPointer) { 4866 // Ensure that buffer has a pointer type. 4867 unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex(); 4868 if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) || 4869 !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType()) 4870 S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0; 4871 } 4872 4873 D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr( 4874 S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx, 4875 IsPointer)); 4876 } 4877 4878 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, 4879 const ParsedAttr &AL) { 4880 if (!AL.isArgIdent(0)) { 4881 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 4882 << AL << 1 << AANT_ArgumentIdentifier; 4883 return; 4884 } 4885 4886 if (!checkAttributeNumArgs(S, AL, 1)) 4887 return; 4888 4889 if (!isa<VarDecl>(D)) { 4890 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type) 4891 << AL << ExpectedVariable; 4892 return; 4893 } 4894 4895 IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident; 4896 TypeSourceInfo *MatchingCTypeLoc = nullptr; 4897 S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc); 4898 assert(MatchingCTypeLoc && "no type source info for attribute argument"); 4899 4900 D->addAttr(::new (S.Context) TypeTagForDatatypeAttr( 4901 S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(), 4902 AL.getMustBeNull())); 4903 } 4904 4905 static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4906 ParamIdx ArgCount; 4907 4908 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0), 4909 ArgCount, 4910 true /* CanIndexImplicitThis */)) 4911 return; 4912 4913 // ArgCount isn't a parameter index [0;n), it's a count [1;n] 4914 D->addAttr(::new (S.Context) 4915 XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex())); 4916 } 4917 4918 static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D, 4919 const ParsedAttr &AL) { 4920 uint32_t Count = 0, Offset = 0; 4921 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true)) 4922 return; 4923 if (AL.getNumArgs() == 2) { 4924 Expr *Arg = AL.getArgAsExpr(1); 4925 if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true)) 4926 return; 4927 if (Count < Offset) { 4928 S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range) 4929 << &AL << 0 << Count << Arg->getBeginLoc(); 4930 return; 4931 } 4932 } 4933 D->addAttr(::new (S.Context) 4934 PatchableFunctionEntryAttr(S.Context, AL, Count, Offset)); 4935 } 4936 4937 static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) { 4938 if (AliasName.startswith("__arm_")) 4939 AliasName = AliasName.substr(6); 4940 switch (BuiltinID) { 4941 #include "clang/Basic/arm_mve_builtin_aliases.inc" 4942 default: 4943 return false; 4944 } 4945 } 4946 4947 static void handleArmMveAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 4948 if (!AL.isArgIdent(0)) { 4949 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 4950 << AL << 1 << AANT_ArgumentIdentifier; 4951 return; 4952 } 4953 4954 IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident; 4955 unsigned BuiltinID = Ident->getBuiltinID(); 4956 4957 if (!ArmMveAliasValid(BuiltinID, 4958 cast<FunctionDecl>(D)->getIdentifier()->getName())) { 4959 S.Diag(AL.getLoc(), diag::err_attribute_arm_mve_alias); 4960 return; 4961 } 4962 4963 D->addAttr(::new (S.Context) ArmMveAliasAttr(S.Context, AL, Ident)); 4964 } 4965 4966 //===----------------------------------------------------------------------===// 4967 // Checker-specific attribute handlers. 4968 //===----------------------------------------------------------------------===// 4969 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) { 4970 return QT->isDependentType() || QT->isObjCRetainableType(); 4971 } 4972 4973 static bool isValidSubjectOfNSAttribute(QualType QT) { 4974 return QT->isDependentType() || QT->isObjCObjectPointerType() || 4975 QT->isObjCNSObjectType(); 4976 } 4977 4978 static bool isValidSubjectOfCFAttribute(QualType QT) { 4979 return QT->isDependentType() || QT->isPointerType() || 4980 isValidSubjectOfNSAttribute(QT); 4981 } 4982 4983 static bool isValidSubjectOfOSAttribute(QualType QT) { 4984 if (QT->isDependentType()) 4985 return true; 4986 QualType PT = QT->getPointeeType(); 4987 return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr; 4988 } 4989 4990 void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI, 4991 RetainOwnershipKind K, 4992 bool IsTemplateInstantiation) { 4993 ValueDecl *VD = cast<ValueDecl>(D); 4994 switch (K) { 4995 case RetainOwnershipKind::OS: 4996 handleSimpleAttributeOrDiagnose<OSConsumedAttr>( 4997 *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()), 4998 diag::warn_ns_attribute_wrong_parameter_type, 4999 /*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1); 5000 return; 5001 case RetainOwnershipKind::NS: 5002 handleSimpleAttributeOrDiagnose<NSConsumedAttr>( 5003 *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()), 5004 5005 // These attributes are normally just advisory, but in ARC, ns_consumed 5006 // is significant. Allow non-dependent code to contain inappropriate 5007 // attributes even in ARC, but require template instantiations to be 5008 // set up correctly. 5009 ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount) 5010 ? diag::err_ns_attribute_wrong_parameter_type 5011 : diag::warn_ns_attribute_wrong_parameter_type), 5012 /*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0); 5013 return; 5014 case RetainOwnershipKind::CF: 5015 handleSimpleAttributeOrDiagnose<CFConsumedAttr>( 5016 *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()), 5017 diag::warn_ns_attribute_wrong_parameter_type, 5018 /*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1); 5019 return; 5020 } 5021 } 5022 5023 static Sema::RetainOwnershipKind 5024 parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) { 5025 switch (AL.getKind()) { 5026 case ParsedAttr::AT_CFConsumed: 5027 case ParsedAttr::AT_CFReturnsRetained: 5028 case ParsedAttr::AT_CFReturnsNotRetained: 5029 return Sema::RetainOwnershipKind::CF; 5030 case ParsedAttr::AT_OSConsumesThis: 5031 case ParsedAttr::AT_OSConsumed: 5032 case ParsedAttr::AT_OSReturnsRetained: 5033 case ParsedAttr::AT_OSReturnsNotRetained: 5034 case ParsedAttr::AT_OSReturnsRetainedOnZero: 5035 case ParsedAttr::AT_OSReturnsRetainedOnNonZero: 5036 return Sema::RetainOwnershipKind::OS; 5037 case ParsedAttr::AT_NSConsumesSelf: 5038 case ParsedAttr::AT_NSConsumed: 5039 case ParsedAttr::AT_NSReturnsRetained: 5040 case ParsedAttr::AT_NSReturnsNotRetained: 5041 case ParsedAttr::AT_NSReturnsAutoreleased: 5042 return Sema::RetainOwnershipKind::NS; 5043 default: 5044 llvm_unreachable("Wrong argument supplied"); 5045 } 5046 } 5047 5048 bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) { 5049 if (isValidSubjectOfNSReturnsRetainedAttribute(QT)) 5050 return false; 5051 5052 Diag(Loc, diag::warn_ns_attribute_wrong_return_type) 5053 << "'ns_returns_retained'" << 0 << 0; 5054 return true; 5055 } 5056 5057 /// \return whether the parameter is a pointer to OSObject pointer. 5058 static bool isValidOSObjectOutParameter(const Decl *D) { 5059 const auto *PVD = dyn_cast<ParmVarDecl>(D); 5060 if (!PVD) 5061 return false; 5062 QualType QT = PVD->getType(); 5063 QualType PT = QT->getPointeeType(); 5064 return !PT.isNull() && isValidSubjectOfOSAttribute(PT); 5065 } 5066 5067 static void handleXReturnsXRetainedAttr(Sema &S, Decl *D, 5068 const ParsedAttr &AL) { 5069 QualType ReturnType; 5070 Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL); 5071 5072 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { 5073 ReturnType = MD->getReturnType(); 5074 } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) && 5075 (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) { 5076 return; // ignore: was handled as a type attribute 5077 } else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) { 5078 ReturnType = PD->getType(); 5079 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 5080 ReturnType = FD->getReturnType(); 5081 } else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) { 5082 // Attributes on parameters are used for out-parameters, 5083 // passed as pointers-to-pointers. 5084 unsigned DiagID = K == Sema::RetainOwnershipKind::CF 5085 ? /*pointer-to-CF-pointer*/2 5086 : /*pointer-to-OSObject-pointer*/3; 5087 ReturnType = Param->getType()->getPointeeType(); 5088 if (ReturnType.isNull()) { 5089 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type) 5090 << AL << DiagID << AL.getRange(); 5091 return; 5092 } 5093 } else if (AL.isUsedAsTypeAttr()) { 5094 return; 5095 } else { 5096 AttributeDeclKind ExpectedDeclKind; 5097 switch (AL.getKind()) { 5098 default: llvm_unreachable("invalid ownership attribute"); 5099 case ParsedAttr::AT_NSReturnsRetained: 5100 case ParsedAttr::AT_NSReturnsAutoreleased: 5101 case ParsedAttr::AT_NSReturnsNotRetained: 5102 ExpectedDeclKind = ExpectedFunctionOrMethod; 5103 break; 5104 5105 case ParsedAttr::AT_OSReturnsRetained: 5106 case ParsedAttr::AT_OSReturnsNotRetained: 5107 case ParsedAttr::AT_CFReturnsRetained: 5108 case ParsedAttr::AT_CFReturnsNotRetained: 5109 ExpectedDeclKind = ExpectedFunctionMethodOrParameter; 5110 break; 5111 } 5112 S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type) 5113 << AL.getRange() << AL << ExpectedDeclKind; 5114 return; 5115 } 5116 5117 bool TypeOK; 5118 bool Cf; 5119 unsigned ParmDiagID = 2; // Pointer-to-CF-pointer 5120 switch (AL.getKind()) { 5121 default: llvm_unreachable("invalid ownership attribute"); 5122 case ParsedAttr::AT_NSReturnsRetained: 5123 TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType); 5124 Cf = false; 5125 break; 5126 5127 case ParsedAttr::AT_NSReturnsAutoreleased: 5128 case ParsedAttr::AT_NSReturnsNotRetained: 5129 TypeOK = isValidSubjectOfNSAttribute(ReturnType); 5130 Cf = false; 5131 break; 5132 5133 case ParsedAttr::AT_CFReturnsRetained: 5134 case ParsedAttr::AT_CFReturnsNotRetained: 5135 TypeOK = isValidSubjectOfCFAttribute(ReturnType); 5136 Cf = true; 5137 break; 5138 5139 case ParsedAttr::AT_OSReturnsRetained: 5140 case ParsedAttr::AT_OSReturnsNotRetained: 5141 TypeOK = isValidSubjectOfOSAttribute(ReturnType); 5142 Cf = true; 5143 ParmDiagID = 3; // Pointer-to-OSObject-pointer 5144 break; 5145 } 5146 5147 if (!TypeOK) { 5148 if (AL.isUsedAsTypeAttr()) 5149 return; 5150 5151 if (isa<ParmVarDecl>(D)) { 5152 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type) 5153 << AL << ParmDiagID << AL.getRange(); 5154 } else { 5155 // Needs to be kept in sync with warn_ns_attribute_wrong_return_type. 5156 enum : unsigned { 5157 Function, 5158 Method, 5159 Property 5160 } SubjectKind = Function; 5161 if (isa<ObjCMethodDecl>(D)) 5162 SubjectKind = Method; 5163 else if (isa<ObjCPropertyDecl>(D)) 5164 SubjectKind = Property; 5165 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type) 5166 << AL << SubjectKind << Cf << AL.getRange(); 5167 } 5168 return; 5169 } 5170 5171 switch (AL.getKind()) { 5172 default: 5173 llvm_unreachable("invalid ownership attribute"); 5174 case ParsedAttr::AT_NSReturnsAutoreleased: 5175 handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL); 5176 return; 5177 case ParsedAttr::AT_CFReturnsNotRetained: 5178 handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL); 5179 return; 5180 case ParsedAttr::AT_NSReturnsNotRetained: 5181 handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL); 5182 return; 5183 case ParsedAttr::AT_CFReturnsRetained: 5184 handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL); 5185 return; 5186 case ParsedAttr::AT_NSReturnsRetained: 5187 handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL); 5188 return; 5189 case ParsedAttr::AT_OSReturnsRetained: 5190 handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL); 5191 return; 5192 case ParsedAttr::AT_OSReturnsNotRetained: 5193 handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL); 5194 return; 5195 }; 5196 } 5197 5198 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D, 5199 const ParsedAttr &Attrs) { 5200 const int EP_ObjCMethod = 1; 5201 const int EP_ObjCProperty = 2; 5202 5203 SourceLocation loc = Attrs.getLoc(); 5204 QualType resultType; 5205 if (isa<ObjCMethodDecl>(D)) 5206 resultType = cast<ObjCMethodDecl>(D)->getReturnType(); 5207 else 5208 resultType = cast<ObjCPropertyDecl>(D)->getType(); 5209 5210 if (!resultType->isReferenceType() && 5211 (!resultType->isPointerType() || resultType->isObjCRetainableType())) { 5212 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type) 5213 << SourceRange(loc) << Attrs 5214 << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty) 5215 << /*non-retainable pointer*/ 2; 5216 5217 // Drop the attribute. 5218 return; 5219 } 5220 5221 D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs)); 5222 } 5223 5224 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D, 5225 const ParsedAttr &Attrs) { 5226 const auto *Method = cast<ObjCMethodDecl>(D); 5227 5228 const DeclContext *DC = Method->getDeclContext(); 5229 if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) { 5230 S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs 5231 << 0; 5232 S.Diag(PDecl->getLocation(), diag::note_protocol_decl); 5233 return; 5234 } 5235 if (Method->getMethodFamily() == OMF_dealloc) { 5236 S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs 5237 << 1; 5238 return; 5239 } 5240 5241 D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs)); 5242 } 5243 5244 static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5245 IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr; 5246 5247 if (!Parm) { 5248 S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; 5249 return; 5250 } 5251 5252 // Typedefs only allow objc_bridge(id) and have some additional checking. 5253 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { 5254 if (!Parm->Ident->isStr("id")) { 5255 S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL; 5256 return; 5257 } 5258 5259 // Only allow 'cv void *'. 5260 QualType T = TD->getUnderlyingType(); 5261 if (!T->isVoidPointerType()) { 5262 S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer); 5263 return; 5264 } 5265 } 5266 5267 D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident)); 5268 } 5269 5270 static void handleObjCBridgeMutableAttr(Sema &S, Decl *D, 5271 const ParsedAttr &AL) { 5272 IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr; 5273 5274 if (!Parm) { 5275 S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; 5276 return; 5277 } 5278 5279 D->addAttr(::new (S.Context) 5280 ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident)); 5281 } 5282 5283 static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D, 5284 const ParsedAttr &AL) { 5285 IdentifierInfo *RelatedClass = 5286 AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr; 5287 if (!RelatedClass) { 5288 S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; 5289 return; 5290 } 5291 IdentifierInfo *ClassMethod = 5292 AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr; 5293 IdentifierInfo *InstanceMethod = 5294 AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr; 5295 D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr( 5296 S.Context, AL, RelatedClass, ClassMethod, InstanceMethod)); 5297 } 5298 5299 static void handleObjCDesignatedInitializer(Sema &S, Decl *D, 5300 const ParsedAttr &AL) { 5301 DeclContext *Ctx = D->getDeclContext(); 5302 5303 // This attribute can only be applied to methods in interfaces or class 5304 // extensions. 5305 if (!isa<ObjCInterfaceDecl>(Ctx) && 5306 !(isa<ObjCCategoryDecl>(Ctx) && 5307 cast<ObjCCategoryDecl>(Ctx)->IsClassExtension())) { 5308 S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init); 5309 return; 5310 } 5311 5312 ObjCInterfaceDecl *IFace; 5313 if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Ctx)) 5314 IFace = CatDecl->getClassInterface(); 5315 else 5316 IFace = cast<ObjCInterfaceDecl>(Ctx); 5317 5318 if (!IFace) 5319 return; 5320 5321 IFace->setHasDesignatedInitializers(); 5322 D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL)); 5323 } 5324 5325 static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) { 5326 StringRef MetaDataName; 5327 if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName)) 5328 return; 5329 D->addAttr(::new (S.Context) 5330 ObjCRuntimeNameAttr(S.Context, AL, MetaDataName)); 5331 } 5332 5333 // When a user wants to use objc_boxable with a union or struct 5334 // but they don't have access to the declaration (legacy/third-party code) 5335 // then they can 'enable' this feature with a typedef: 5336 // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct; 5337 static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) { 5338 bool notify = false; 5339 5340 auto *RD = dyn_cast<RecordDecl>(D); 5341 if (RD && RD->getDefinition()) { 5342 RD = RD->getDefinition(); 5343 notify = true; 5344 } 5345 5346 if (RD) { 5347 ObjCBoxableAttr *BoxableAttr = 5348 ::new (S.Context) ObjCBoxableAttr(S.Context, AL); 5349 RD->addAttr(BoxableAttr); 5350 if (notify) { 5351 // we need to notify ASTReader/ASTWriter about 5352 // modification of existing declaration 5353 if (ASTMutationListener *L = S.getASTMutationListener()) 5354 L->AddedAttributeToRecord(BoxableAttr, RD); 5355 } 5356 } 5357 } 5358 5359 static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5360 if (hasDeclarator(D)) return; 5361 5362 S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type) 5363 << AL.getRange() << AL << ExpectedVariable; 5364 } 5365 5366 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D, 5367 const ParsedAttr &AL) { 5368 const auto *VD = cast<ValueDecl>(D); 5369 QualType QT = VD->getType(); 5370 5371 if (!QT->isDependentType() && 5372 !QT->isObjCLifetimeType()) { 5373 S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type) 5374 << QT; 5375 return; 5376 } 5377 5378 Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime(); 5379 5380 // If we have no lifetime yet, check the lifetime we're presumably 5381 // going to infer. 5382 if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType()) 5383 Lifetime = QT->getObjCARCImplicitLifetime(); 5384 5385 switch (Lifetime) { 5386 case Qualifiers::OCL_None: 5387 assert(QT->isDependentType() && 5388 "didn't infer lifetime for non-dependent type?"); 5389 break; 5390 5391 case Qualifiers::OCL_Weak: // meaningful 5392 case Qualifiers::OCL_Strong: // meaningful 5393 break; 5394 5395 case Qualifiers::OCL_ExplicitNone: 5396 case Qualifiers::OCL_Autoreleasing: 5397 S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless) 5398 << (Lifetime == Qualifiers::OCL_Autoreleasing); 5399 break; 5400 } 5401 5402 D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL)); 5403 } 5404 5405 //===----------------------------------------------------------------------===// 5406 // Microsoft specific attribute handlers. 5407 //===----------------------------------------------------------------------===// 5408 5409 UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, 5410 StringRef Uuid) { 5411 if (const auto *UA = D->getAttr<UuidAttr>()) { 5412 if (UA->getGuid().equals_lower(Uuid)) 5413 return nullptr; 5414 if (!UA->getGuid().empty()) { 5415 Diag(UA->getLocation(), diag::err_mismatched_uuid); 5416 Diag(CI.getLoc(), diag::note_previous_uuid); 5417 D->dropAttr<UuidAttr>(); 5418 } 5419 } 5420 5421 return ::new (Context) UuidAttr(Context, CI, Uuid); 5422 } 5423 5424 static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5425 if (!S.LangOpts.CPlusPlus) { 5426 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) 5427 << AL << AttributeLangSupport::C; 5428 return; 5429 } 5430 5431 StringRef StrRef; 5432 SourceLocation LiteralLoc; 5433 if (!S.checkStringLiteralArgumentAttr(AL, 0, StrRef, &LiteralLoc)) 5434 return; 5435 5436 // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or 5437 // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former. 5438 if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}') 5439 StrRef = StrRef.drop_front().drop_back(); 5440 5441 // Validate GUID length. 5442 if (StrRef.size() != 36) { 5443 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); 5444 return; 5445 } 5446 5447 for (unsigned i = 0; i < 36; ++i) { 5448 if (i == 8 || i == 13 || i == 18 || i == 23) { 5449 if (StrRef[i] != '-') { 5450 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); 5451 return; 5452 } 5453 } else if (!isHexDigit(StrRef[i])) { 5454 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); 5455 return; 5456 } 5457 } 5458 5459 // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's 5460 // the only thing in the [] list, the [] too), and add an insertion of 5461 // __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas 5462 // separating attributes nor of the [ and the ] are in the AST. 5463 // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc" 5464 // on cfe-dev. 5465 if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling. 5466 S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated); 5467 5468 UuidAttr *UA = S.mergeUuidAttr(D, AL, StrRef); 5469 if (UA) 5470 D->addAttr(UA); 5471 } 5472 5473 static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5474 if (!S.LangOpts.CPlusPlus) { 5475 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) 5476 << AL << AttributeLangSupport::C; 5477 return; 5478 } 5479 MSInheritanceAttr *IA = S.mergeMSInheritanceAttr( 5480 D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling()); 5481 if (IA) { 5482 D->addAttr(IA); 5483 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); 5484 } 5485 } 5486 5487 static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5488 const auto *VD = cast<VarDecl>(D); 5489 if (!S.Context.getTargetInfo().isTLSSupported()) { 5490 S.Diag(AL.getLoc(), diag::err_thread_unsupported); 5491 return; 5492 } 5493 if (VD->getTSCSpec() != TSCS_unspecified) { 5494 S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable); 5495 return; 5496 } 5497 if (VD->hasLocalStorage()) { 5498 S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)"; 5499 return; 5500 } 5501 D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL)); 5502 } 5503 5504 static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5505 SmallVector<StringRef, 4> Tags; 5506 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { 5507 StringRef Tag; 5508 if (!S.checkStringLiteralArgumentAttr(AL, I, Tag)) 5509 return; 5510 Tags.push_back(Tag); 5511 } 5512 5513 if (const auto *NS = dyn_cast<NamespaceDecl>(D)) { 5514 if (!NS->isInline()) { 5515 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0; 5516 return; 5517 } 5518 if (NS->isAnonymousNamespace()) { 5519 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1; 5520 return; 5521 } 5522 if (AL.getNumArgs() == 0) 5523 Tags.push_back(NS->getName()); 5524 } else if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 5525 return; 5526 5527 // Store tags sorted and without duplicates. 5528 llvm::sort(Tags); 5529 Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end()); 5530 5531 D->addAttr(::new (S.Context) 5532 AbiTagAttr(S.Context, AL, Tags.data(), Tags.size())); 5533 } 5534 5535 static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5536 // Check the attribute arguments. 5537 if (AL.getNumArgs() > 1) { 5538 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; 5539 return; 5540 } 5541 5542 StringRef Str; 5543 SourceLocation ArgLoc; 5544 5545 if (AL.getNumArgs() == 0) 5546 Str = ""; 5547 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) 5548 return; 5549 5550 ARMInterruptAttr::InterruptType Kind; 5551 if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { 5552 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str 5553 << ArgLoc; 5554 return; 5555 } 5556 5557 D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind)); 5558 } 5559 5560 static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5561 // MSP430 'interrupt' attribute is applied to 5562 // a function with no parameters and void return type. 5563 if (!isFunctionOrMethod(D)) { 5564 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) 5565 << "'interrupt'" << ExpectedFunctionOrMethod; 5566 return; 5567 } 5568 5569 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { 5570 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) 5571 << /*MSP430*/ 1 << 0; 5572 return; 5573 } 5574 5575 if (!getFunctionOrMethodResultType(D)->isVoidType()) { 5576 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) 5577 << /*MSP430*/ 1 << 1; 5578 return; 5579 } 5580 5581 // The attribute takes one integer argument. 5582 if (!checkAttributeNumArgs(S, AL, 1)) 5583 return; 5584 5585 if (!AL.isArgExpr(0)) { 5586 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 5587 << AL << AANT_ArgumentIntegerConstant; 5588 return; 5589 } 5590 5591 Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0)); 5592 llvm::APSInt NumParams(32); 5593 if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) { 5594 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 5595 << AL << AANT_ArgumentIntegerConstant 5596 << NumParamsExpr->getSourceRange(); 5597 return; 5598 } 5599 // The argument should be in range 0..63. 5600 unsigned Num = NumParams.getLimitedValue(255); 5601 if (Num > 63) { 5602 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) 5603 << AL << (int)NumParams.getSExtValue() 5604 << NumParamsExpr->getSourceRange(); 5605 return; 5606 } 5607 5608 D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num)); 5609 D->addAttr(UsedAttr::CreateImplicit(S.Context)); 5610 } 5611 5612 static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5613 // Only one optional argument permitted. 5614 if (AL.getNumArgs() > 1) { 5615 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; 5616 return; 5617 } 5618 5619 StringRef Str; 5620 SourceLocation ArgLoc; 5621 5622 if (AL.getNumArgs() == 0) 5623 Str = ""; 5624 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) 5625 return; 5626 5627 // Semantic checks for a function with the 'interrupt' attribute for MIPS: 5628 // a) Must be a function. 5629 // b) Must have no parameters. 5630 // c) Must have the 'void' return type. 5631 // d) Cannot have the 'mips16' attribute, as that instruction set 5632 // lacks the 'eret' instruction. 5633 // e) The attribute itself must either have no argument or one of the 5634 // valid interrupt types, see [MipsInterruptDocs]. 5635 5636 if (!isFunctionOrMethod(D)) { 5637 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) 5638 << "'interrupt'" << ExpectedFunctionOrMethod; 5639 return; 5640 } 5641 5642 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { 5643 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) 5644 << /*MIPS*/ 0 << 0; 5645 return; 5646 } 5647 5648 if (!getFunctionOrMethodResultType(D)->isVoidType()) { 5649 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) 5650 << /*MIPS*/ 0 << 1; 5651 return; 5652 } 5653 5654 if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL)) 5655 return; 5656 5657 MipsInterruptAttr::InterruptType Kind; 5658 if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { 5659 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) 5660 << AL << "'" + std::string(Str) + "'"; 5661 return; 5662 } 5663 5664 D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind)); 5665 } 5666 5667 static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5668 // Semantic checks for a function with the 'interrupt' attribute. 5669 // a) Must be a function. 5670 // b) Must have the 'void' return type. 5671 // c) Must take 1 or 2 arguments. 5672 // d) The 1st argument must be a pointer. 5673 // e) The 2nd argument (if any) must be an unsigned integer. 5674 if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) || 5675 CXXMethodDecl::isStaticOverloadedOperator( 5676 cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) { 5677 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) 5678 << AL << ExpectedFunctionWithProtoType; 5679 return; 5680 } 5681 // Interrupt handler must have void return type. 5682 if (!getFunctionOrMethodResultType(D)->isVoidType()) { 5683 S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(), 5684 diag::err_anyx86_interrupt_attribute) 5685 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 5686 ? 0 5687 : 1) 5688 << 0; 5689 return; 5690 } 5691 // Interrupt handler must have 1 or 2 parameters. 5692 unsigned NumParams = getFunctionOrMethodNumParams(D); 5693 if (NumParams < 1 || NumParams > 2) { 5694 S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute) 5695 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 5696 ? 0 5697 : 1) 5698 << 1; 5699 return; 5700 } 5701 // The first argument must be a pointer. 5702 if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) { 5703 S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(), 5704 diag::err_anyx86_interrupt_attribute) 5705 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 5706 ? 0 5707 : 1) 5708 << 2; 5709 return; 5710 } 5711 // The second argument, if present, must be an unsigned integer. 5712 unsigned TypeSize = 5713 S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64 5714 ? 64 5715 : 32; 5716 if (NumParams == 2 && 5717 (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() || 5718 S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) { 5719 S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(), 5720 diag::err_anyx86_interrupt_attribute) 5721 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 5722 ? 0 5723 : 1) 5724 << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false); 5725 return; 5726 } 5727 D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL)); 5728 D->addAttr(UsedAttr::CreateImplicit(S.Context)); 5729 } 5730 5731 static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5732 if (!isFunctionOrMethod(D)) { 5733 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) 5734 << "'interrupt'" << ExpectedFunction; 5735 return; 5736 } 5737 5738 if (!checkAttributeNumArgs(S, AL, 0)) 5739 return; 5740 5741 handleSimpleAttribute<AVRInterruptAttr>(S, D, AL); 5742 } 5743 5744 static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5745 if (!isFunctionOrMethod(D)) { 5746 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) 5747 << "'signal'" << ExpectedFunction; 5748 return; 5749 } 5750 5751 if (!checkAttributeNumArgs(S, AL, 0)) 5752 return; 5753 5754 handleSimpleAttribute<AVRSignalAttr>(S, D, AL); 5755 } 5756 5757 static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) { 5758 // Add preserve_access_index attribute to all fields and inner records. 5759 for (auto D : RD->decls()) { 5760 if (D->hasAttr<BPFPreserveAccessIndexAttr>()) 5761 continue; 5762 5763 D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context)); 5764 if (auto *Rec = dyn_cast<RecordDecl>(D)) 5765 handleBPFPreserveAIRecord(S, Rec); 5766 } 5767 } 5768 5769 static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D, 5770 const ParsedAttr &AL) { 5771 auto *Rec = cast<RecordDecl>(D); 5772 handleBPFPreserveAIRecord(S, Rec); 5773 Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL)); 5774 } 5775 5776 static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5777 if (!isFunctionOrMethod(D)) { 5778 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) 5779 << "'export_name'" << ExpectedFunction; 5780 return; 5781 } 5782 5783 auto *FD = cast<FunctionDecl>(D); 5784 if (FD->isThisDeclarationADefinition()) { 5785 S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0; 5786 return; 5787 } 5788 5789 StringRef Str; 5790 SourceLocation ArgLoc; 5791 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) 5792 return; 5793 5794 D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str)); 5795 D->addAttr(UsedAttr::CreateImplicit(S.Context)); 5796 } 5797 5798 static void handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5799 if (!isFunctionOrMethod(D)) { 5800 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) 5801 << "'import_module'" << ExpectedFunction; 5802 return; 5803 } 5804 5805 auto *FD = cast<FunctionDecl>(D); 5806 if (FD->isThisDeclarationADefinition()) { 5807 S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0; 5808 return; 5809 } 5810 5811 StringRef Str; 5812 SourceLocation ArgLoc; 5813 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) 5814 return; 5815 5816 FD->addAttr(::new (S.Context) 5817 WebAssemblyImportModuleAttr(S.Context, AL, Str)); 5818 } 5819 5820 static void handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5821 if (!isFunctionOrMethod(D)) { 5822 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) 5823 << "'import_name'" << ExpectedFunction; 5824 return; 5825 } 5826 5827 auto *FD = cast<FunctionDecl>(D); 5828 if (FD->isThisDeclarationADefinition()) { 5829 S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0; 5830 return; 5831 } 5832 5833 StringRef Str; 5834 SourceLocation ArgLoc; 5835 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) 5836 return; 5837 5838 FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str)); 5839 } 5840 5841 static void handleRISCVInterruptAttr(Sema &S, Decl *D, 5842 const ParsedAttr &AL) { 5843 // Warn about repeated attributes. 5844 if (const auto *A = D->getAttr<RISCVInterruptAttr>()) { 5845 S.Diag(AL.getRange().getBegin(), 5846 diag::warn_riscv_repeated_interrupt_attribute); 5847 S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute); 5848 return; 5849 } 5850 5851 // Check the attribute argument. Argument is optional. 5852 if (!checkAttributeAtMostNumArgs(S, AL, 1)) 5853 return; 5854 5855 StringRef Str; 5856 SourceLocation ArgLoc; 5857 5858 // 'machine'is the default interrupt mode. 5859 if (AL.getNumArgs() == 0) 5860 Str = "machine"; 5861 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) 5862 return; 5863 5864 // Semantic checks for a function with the 'interrupt' attribute: 5865 // - Must be a function. 5866 // - Must have no parameters. 5867 // - Must have the 'void' return type. 5868 // - The attribute itself must either have no argument or one of the 5869 // valid interrupt types, see [RISCVInterruptDocs]. 5870 5871 if (D->getFunctionType() == nullptr) { 5872 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) 5873 << "'interrupt'" << ExpectedFunction; 5874 return; 5875 } 5876 5877 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { 5878 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) 5879 << /*RISC-V*/ 2 << 0; 5880 return; 5881 } 5882 5883 if (!getFunctionOrMethodResultType(D)->isVoidType()) { 5884 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) 5885 << /*RISC-V*/ 2 << 1; 5886 return; 5887 } 5888 5889 RISCVInterruptAttr::InterruptType Kind; 5890 if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { 5891 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str 5892 << ArgLoc; 5893 return; 5894 } 5895 5896 D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind)); 5897 } 5898 5899 static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 5900 // Dispatch the interrupt attribute based on the current target. 5901 switch (S.Context.getTargetInfo().getTriple().getArch()) { 5902 case llvm::Triple::msp430: 5903 handleMSP430InterruptAttr(S, D, AL); 5904 break; 5905 case llvm::Triple::mipsel: 5906 case llvm::Triple::mips: 5907 handleMipsInterruptAttr(S, D, AL); 5908 break; 5909 case llvm::Triple::x86: 5910 case llvm::Triple::x86_64: 5911 handleAnyX86InterruptAttr(S, D, AL); 5912 break; 5913 case llvm::Triple::avr: 5914 handleAVRInterruptAttr(S, D, AL); 5915 break; 5916 case llvm::Triple::riscv32: 5917 case llvm::Triple::riscv64: 5918 handleRISCVInterruptAttr(S, D, AL); 5919 break; 5920 default: 5921 handleARMInterruptAttr(S, D, AL); 5922 break; 5923 } 5924 } 5925 5926 static bool 5927 checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr, 5928 const AMDGPUFlatWorkGroupSizeAttr &Attr) { 5929 // Accept template arguments for now as they depend on something else. 5930 // We'll get to check them when they eventually get instantiated. 5931 if (MinExpr->isValueDependent() || MaxExpr->isValueDependent()) 5932 return false; 5933 5934 uint32_t Min = 0; 5935 if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0)) 5936 return true; 5937 5938 uint32_t Max = 0; 5939 if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1)) 5940 return true; 5941 5942 if (Min == 0 && Max != 0) { 5943 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) 5944 << &Attr << 0; 5945 return true; 5946 } 5947 if (Min > Max) { 5948 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) 5949 << &Attr << 1; 5950 return true; 5951 } 5952 5953 return false; 5954 } 5955 5956 void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D, 5957 const AttributeCommonInfo &CI, 5958 Expr *MinExpr, Expr *MaxExpr) { 5959 AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr); 5960 5961 if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr)) 5962 return; 5963 5964 D->addAttr(::new (Context) 5965 AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr)); 5966 } 5967 5968 static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D, 5969 const ParsedAttr &AL) { 5970 Expr *MinExpr = AL.getArgAsExpr(0); 5971 Expr *MaxExpr = AL.getArgAsExpr(1); 5972 5973 S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr); 5974 } 5975 5976 static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr, 5977 Expr *MaxExpr, 5978 const AMDGPUWavesPerEUAttr &Attr) { 5979 if (S.DiagnoseUnexpandedParameterPack(MinExpr) || 5980 (MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr))) 5981 return true; 5982 5983 // Accept template arguments for now as they depend on something else. 5984 // We'll get to check them when they eventually get instantiated. 5985 if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent())) 5986 return false; 5987 5988 uint32_t Min = 0; 5989 if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0)) 5990 return true; 5991 5992 uint32_t Max = 0; 5993 if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1)) 5994 return true; 5995 5996 if (Min == 0 && Max != 0) { 5997 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) 5998 << &Attr << 0; 5999 return true; 6000 } 6001 if (Max != 0 && Min > Max) { 6002 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) 6003 << &Attr << 1; 6004 return true; 6005 } 6006 6007 return false; 6008 } 6009 6010 void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI, 6011 Expr *MinExpr, Expr *MaxExpr) { 6012 AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr); 6013 6014 if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr)) 6015 return; 6016 6017 D->addAttr(::new (Context) 6018 AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr)); 6019 } 6020 6021 static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6022 if (!checkAttributeAtLeastNumArgs(S, AL, 1) || 6023 !checkAttributeAtMostNumArgs(S, AL, 2)) 6024 return; 6025 6026 Expr *MinExpr = AL.getArgAsExpr(0); 6027 Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr; 6028 6029 S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr); 6030 } 6031 6032 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6033 uint32_t NumSGPR = 0; 6034 Expr *NumSGPRExpr = AL.getArgAsExpr(0); 6035 if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR)) 6036 return; 6037 6038 D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR)); 6039 } 6040 6041 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6042 uint32_t NumVGPR = 0; 6043 Expr *NumVGPRExpr = AL.getArgAsExpr(0); 6044 if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR)) 6045 return; 6046 6047 D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR)); 6048 } 6049 6050 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D, 6051 const ParsedAttr &AL) { 6052 // If we try to apply it to a function pointer, don't warn, but don't 6053 // do anything, either. It doesn't matter anyway, because there's nothing 6054 // special about calling a force_align_arg_pointer function. 6055 const auto *VD = dyn_cast<ValueDecl>(D); 6056 if (VD && VD->getType()->isFunctionPointerType()) 6057 return; 6058 // Also don't warn on function pointer typedefs. 6059 const auto *TD = dyn_cast<TypedefNameDecl>(D); 6060 if (TD && (TD->getUnderlyingType()->isFunctionPointerType() || 6061 TD->getUnderlyingType()->isFunctionType())) 6062 return; 6063 // Attribute can only be applied to function types. 6064 if (!isa<FunctionDecl>(D)) { 6065 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) 6066 << AL << ExpectedFunction; 6067 return; 6068 } 6069 6070 D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL)); 6071 } 6072 6073 static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) { 6074 uint32_t Version; 6075 Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0)); 6076 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version)) 6077 return; 6078 6079 // TODO: Investigate what happens with the next major version of MSVC. 6080 if (Version != LangOptions::MSVC2015 / 100) { 6081 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) 6082 << AL << Version << VersionExpr->getSourceRange(); 6083 return; 6084 } 6085 6086 // The attribute expects a "major" version number like 19, but new versions of 6087 // MSVC have moved to updating the "minor", or less significant numbers, so we 6088 // have to multiply by 100 now. 6089 Version *= 100; 6090 6091 D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version)); 6092 } 6093 6094 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, 6095 const AttributeCommonInfo &CI) { 6096 if (D->hasAttr<DLLExportAttr>()) { 6097 Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'"; 6098 return nullptr; 6099 } 6100 6101 if (D->hasAttr<DLLImportAttr>()) 6102 return nullptr; 6103 6104 return ::new (Context) DLLImportAttr(Context, CI); 6105 } 6106 6107 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, 6108 const AttributeCommonInfo &CI) { 6109 if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) { 6110 Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import; 6111 D->dropAttr<DLLImportAttr>(); 6112 } 6113 6114 if (D->hasAttr<DLLExportAttr>()) 6115 return nullptr; 6116 6117 return ::new (Context) DLLExportAttr(Context, CI); 6118 } 6119 6120 static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) { 6121 if (isa<ClassTemplatePartialSpecializationDecl>(D) && 6122 S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 6123 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A; 6124 return; 6125 } 6126 6127 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 6128 if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport && 6129 !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 6130 // MinGW doesn't allow dllimport on inline functions. 6131 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline) 6132 << A; 6133 return; 6134 } 6135 } 6136 6137 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 6138 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() && 6139 MD->getParent()->isLambda()) { 6140 S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A; 6141 return; 6142 } 6143 } 6144 6145 Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport 6146 ? (Attr *)S.mergeDLLExportAttr(D, A) 6147 : (Attr *)S.mergeDLLImportAttr(D, A); 6148 if (NewAttr) 6149 D->addAttr(NewAttr); 6150 } 6151 6152 MSInheritanceAttr * 6153 Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI, 6154 bool BestCase, 6155 MSInheritanceModel Model) { 6156 if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) { 6157 if (IA->getInheritanceModel() == Model) 6158 return nullptr; 6159 Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance) 6160 << 1 /*previous declaration*/; 6161 Diag(CI.getLoc(), diag::note_previous_ms_inheritance); 6162 D->dropAttr<MSInheritanceAttr>(); 6163 } 6164 6165 auto *RD = cast<CXXRecordDecl>(D); 6166 if (RD->hasDefinition()) { 6167 if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase, 6168 Model)) { 6169 return nullptr; 6170 } 6171 } else { 6172 if (isa<ClassTemplatePartialSpecializationDecl>(RD)) { 6173 Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance) 6174 << 1 /*partial specialization*/; 6175 return nullptr; 6176 } 6177 if (RD->getDescribedClassTemplate()) { 6178 Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance) 6179 << 0 /*primary template*/; 6180 return nullptr; 6181 } 6182 } 6183 6184 return ::new (Context) MSInheritanceAttr(Context, CI, BestCase); 6185 } 6186 6187 static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6188 // The capability attributes take a single string parameter for the name of 6189 // the capability they represent. The lockable attribute does not take any 6190 // parameters. However, semantically, both attributes represent the same 6191 // concept, and so they use the same semantic attribute. Eventually, the 6192 // lockable attribute will be removed. 6193 // 6194 // For backward compatibility, any capability which has no specified string 6195 // literal will be considered a "mutex." 6196 StringRef N("mutex"); 6197 SourceLocation LiteralLoc; 6198 if (AL.getKind() == ParsedAttr::AT_Capability && 6199 !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc)) 6200 return; 6201 6202 // Currently, there are only two names allowed for a capability: role and 6203 // mutex (case insensitive). Diagnose other capability names. 6204 if (!N.equals_lower("mutex") && !N.equals_lower("role")) 6205 S.Diag(LiteralLoc, diag::warn_invalid_capability_name) << N; 6206 6207 D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N)); 6208 } 6209 6210 static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6211 SmallVector<Expr*, 1> Args; 6212 if (!checkLockFunAttrCommon(S, D, AL, Args)) 6213 return; 6214 6215 D->addAttr(::new (S.Context) 6216 AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size())); 6217 } 6218 6219 static void handleAcquireCapabilityAttr(Sema &S, Decl *D, 6220 const ParsedAttr &AL) { 6221 SmallVector<Expr*, 1> Args; 6222 if (!checkLockFunAttrCommon(S, D, AL, Args)) 6223 return; 6224 6225 D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(), 6226 Args.size())); 6227 } 6228 6229 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D, 6230 const ParsedAttr &AL) { 6231 SmallVector<Expr*, 2> Args; 6232 if (!checkTryLockFunAttrCommon(S, D, AL, Args)) 6233 return; 6234 6235 D->addAttr(::new (S.Context) TryAcquireCapabilityAttr( 6236 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); 6237 } 6238 6239 static void handleReleaseCapabilityAttr(Sema &S, Decl *D, 6240 const ParsedAttr &AL) { 6241 // Check that all arguments are lockable objects. 6242 SmallVector<Expr *, 1> Args; 6243 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true); 6244 6245 D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(), 6246 Args.size())); 6247 } 6248 6249 static void handleRequiresCapabilityAttr(Sema &S, Decl *D, 6250 const ParsedAttr &AL) { 6251 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 6252 return; 6253 6254 // check that all arguments are lockable objects 6255 SmallVector<Expr*, 1> Args; 6256 checkAttrArgsAreCapabilityObjs(S, D, AL, Args); 6257 if (Args.empty()) 6258 return; 6259 6260 RequiresCapabilityAttr *RCA = ::new (S.Context) 6261 RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size()); 6262 6263 D->addAttr(RCA); 6264 } 6265 6266 static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6267 if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) { 6268 if (NSD->isAnonymousNamespace()) { 6269 S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace); 6270 // Do not want to attach the attribute to the namespace because that will 6271 // cause confusing diagnostic reports for uses of declarations within the 6272 // namespace. 6273 return; 6274 } 6275 } 6276 6277 // Handle the cases where the attribute has a text message. 6278 StringRef Str, Replacement; 6279 if (AL.isArgExpr(0) && AL.getArgAsExpr(0) && 6280 !S.checkStringLiteralArgumentAttr(AL, 0, Str)) 6281 return; 6282 6283 // Only support a single optional message for Declspec and CXX11. 6284 if (AL.isDeclspecAttribute() || AL.isCXX11Attribute()) 6285 checkAttributeAtMostNumArgs(S, AL, 1); 6286 else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) && 6287 !S.checkStringLiteralArgumentAttr(AL, 1, Replacement)) 6288 return; 6289 6290 if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope()) 6291 S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL; 6292 6293 D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement)); 6294 } 6295 6296 static bool isGlobalVar(const Decl *D) { 6297 if (const auto *S = dyn_cast<VarDecl>(D)) 6298 return S->hasGlobalStorage(); 6299 return false; 6300 } 6301 6302 static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6303 if (!checkAttributeAtLeastNumArgs(S, AL, 1)) 6304 return; 6305 6306 std::vector<StringRef> Sanitizers; 6307 6308 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { 6309 StringRef SanitizerName; 6310 SourceLocation LiteralLoc; 6311 6312 if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc)) 6313 return; 6314 6315 if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) == 6316 SanitizerMask()) 6317 S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName; 6318 else if (isGlobalVar(D) && SanitizerName != "address") 6319 S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) 6320 << AL << ExpectedFunctionOrMethod; 6321 Sanitizers.push_back(SanitizerName); 6322 } 6323 6324 D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(), 6325 Sanitizers.size())); 6326 } 6327 6328 static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D, 6329 const ParsedAttr &AL) { 6330 StringRef AttrName = AL.getAttrName()->getName(); 6331 normalizeName(AttrName); 6332 StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName) 6333 .Case("no_address_safety_analysis", "address") 6334 .Case("no_sanitize_address", "address") 6335 .Case("no_sanitize_thread", "thread") 6336 .Case("no_sanitize_memory", "memory"); 6337 if (isGlobalVar(D) && SanitizerName != "address") 6338 S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) 6339 << AL << ExpectedFunction; 6340 6341 // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a 6342 // NoSanitizeAttr object; but we need to calculate the correct spelling list 6343 // index rather than incorrectly assume the index for NoSanitizeSpecificAttr 6344 // has the same spellings as the index for NoSanitizeAttr. We don't have a 6345 // general way to "translate" between the two, so this hack attempts to work 6346 // around the issue with hard-coded indicies. This is critical for calling 6347 // getSpelling() or prettyPrint() on the resulting semantic attribute object 6348 // without failing assertions. 6349 unsigned TranslatedSpellingIndex = 0; 6350 if (AL.isC2xAttribute() || AL.isCXX11Attribute()) 6351 TranslatedSpellingIndex = 1; 6352 6353 AttributeCommonInfo Info = AL; 6354 Info.setAttributeSpellingListIndex(TranslatedSpellingIndex); 6355 D->addAttr(::new (S.Context) 6356 NoSanitizeAttr(S.Context, Info, &SanitizerName, 1)); 6357 } 6358 6359 static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6360 if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL)) 6361 D->addAttr(Internal); 6362 } 6363 6364 static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6365 if (S.LangOpts.OpenCLVersion != 200) 6366 S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version) 6367 << AL << "2.0" << 0; 6368 else 6369 S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored) << AL 6370 << "2.0"; 6371 } 6372 6373 /// Handles semantic checking for features that are common to all attributes, 6374 /// such as checking whether a parameter was properly specified, or the correct 6375 /// number of arguments were passed, etc. 6376 static bool handleCommonAttributeFeatures(Sema &S, Decl *D, 6377 const ParsedAttr &AL) { 6378 // Several attributes carry different semantics than the parsing requires, so 6379 // those are opted out of the common argument checks. 6380 // 6381 // We also bail on unknown and ignored attributes because those are handled 6382 // as part of the target-specific handling logic. 6383 if (AL.getKind() == ParsedAttr::UnknownAttribute) 6384 return false; 6385 // Check whether the attribute requires specific language extensions to be 6386 // enabled. 6387 if (!AL.diagnoseLangOpts(S)) 6388 return true; 6389 // Check whether the attribute appertains to the given subject. 6390 if (!AL.diagnoseAppertainsTo(S, D)) 6391 return true; 6392 if (AL.hasCustomParsing()) 6393 return false; 6394 6395 if (AL.getMinArgs() == AL.getMaxArgs()) { 6396 // If there are no optional arguments, then checking for the argument count 6397 // is trivial. 6398 if (!checkAttributeNumArgs(S, AL, AL.getMinArgs())) 6399 return true; 6400 } else { 6401 // There are optional arguments, so checking is slightly more involved. 6402 if (AL.getMinArgs() && 6403 !checkAttributeAtLeastNumArgs(S, AL, AL.getMinArgs())) 6404 return true; 6405 else if (!AL.hasVariadicArg() && AL.getMaxArgs() && 6406 !checkAttributeAtMostNumArgs(S, AL, AL.getMaxArgs())) 6407 return true; 6408 } 6409 6410 if (S.CheckAttrTarget(AL)) 6411 return true; 6412 6413 return false; 6414 } 6415 6416 static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6417 if (D->isInvalidDecl()) 6418 return; 6419 6420 // Check if there is only one access qualifier. 6421 if (D->hasAttr<OpenCLAccessAttr>()) { 6422 if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() == 6423 AL.getSemanticSpelling()) { 6424 S.Diag(AL.getLoc(), diag::warn_duplicate_declspec) 6425 << AL.getAttrName()->getName() << AL.getRange(); 6426 } else { 6427 S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers) 6428 << D->getSourceRange(); 6429 D->setInvalidDecl(true); 6430 return; 6431 } 6432 } 6433 6434 // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that an 6435 // image object can be read and written. 6436 // OpenCL v2.0 s6.13.6 - A kernel cannot read from and write to the same pipe 6437 // object. Using the read_write (or __read_write) qualifier with the pipe 6438 // qualifier is a compilation error. 6439 if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) { 6440 const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr(); 6441 if (AL.getAttrName()->getName().find("read_write") != StringRef::npos) { 6442 if ((!S.getLangOpts().OpenCLCPlusPlus && 6443 S.getLangOpts().OpenCLVersion < 200) || 6444 DeclTy->isPipeType()) { 6445 S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write) 6446 << AL << PDecl->getType() << DeclTy->isImageType(); 6447 D->setInvalidDecl(true); 6448 return; 6449 } 6450 } 6451 } 6452 6453 D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL)); 6454 } 6455 6456 static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6457 // The 'sycl_kernel' attribute applies only to function templates. 6458 const auto *FD = cast<FunctionDecl>(D); 6459 const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate(); 6460 assert(FT && "Function template is expected"); 6461 6462 // Function template must have at least two template parameters. 6463 const TemplateParameterList *TL = FT->getTemplateParameters(); 6464 if (TL->size() < 2) { 6465 S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params); 6466 return; 6467 } 6468 6469 // Template parameters must be typenames. 6470 for (unsigned I = 0; I < 2; ++I) { 6471 const NamedDecl *TParam = TL->getParam(I); 6472 if (isa<NonTypeTemplateParmDecl>(TParam)) { 6473 S.Diag(FT->getLocation(), 6474 diag::warn_sycl_kernel_invalid_template_param_type); 6475 return; 6476 } 6477 } 6478 6479 // Function must have at least one argument. 6480 if (getFunctionOrMethodNumParams(D) != 1) { 6481 S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params); 6482 return; 6483 } 6484 6485 // Function must return void. 6486 QualType RetTy = getFunctionOrMethodResultType(D); 6487 if (!RetTy->isVoidType()) { 6488 S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type); 6489 return; 6490 } 6491 6492 handleSimpleAttribute<SYCLKernelAttr>(S, D, AL); 6493 } 6494 6495 static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) { 6496 if (!cast<VarDecl>(D)->hasGlobalStorage()) { 6497 S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var) 6498 << (A.getKind() == ParsedAttr::AT_AlwaysDestroy); 6499 return; 6500 } 6501 6502 if (A.getKind() == ParsedAttr::AT_AlwaysDestroy) 6503 handleSimpleAttributeWithExclusions<AlwaysDestroyAttr, NoDestroyAttr>(S, D, A); 6504 else 6505 handleSimpleAttributeWithExclusions<NoDestroyAttr, AlwaysDestroyAttr>(S, D, A); 6506 } 6507 6508 static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6509 assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic && 6510 "uninitialized is only valid on automatic duration variables"); 6511 D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL)); 6512 } 6513 6514 static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD, 6515 bool DiagnoseFailure) { 6516 QualType Ty = VD->getType(); 6517 if (!Ty->isObjCRetainableType()) { 6518 if (DiagnoseFailure) { 6519 S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained) 6520 << 0; 6521 } 6522 return false; 6523 } 6524 6525 Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime(); 6526 6527 // Sema::inferObjCARCLifetime must run after processing decl attributes 6528 // (because __block lowers to an attribute), so if the lifetime hasn't been 6529 // explicitly specified, infer it locally now. 6530 if (LifetimeQual == Qualifiers::OCL_None) 6531 LifetimeQual = Ty->getObjCARCImplicitLifetime(); 6532 6533 // The attributes only really makes sense for __strong variables; ignore any 6534 // attempts to annotate a parameter with any other lifetime qualifier. 6535 if (LifetimeQual != Qualifiers::OCL_Strong) { 6536 if (DiagnoseFailure) { 6537 S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained) 6538 << 1; 6539 } 6540 return false; 6541 } 6542 6543 // Tampering with the type of a VarDecl here is a bit of a hack, but we need 6544 // to ensure that the variable is 'const' so that we can error on 6545 // modification, which can otherwise over-release. 6546 VD->setType(Ty.withConst()); 6547 VD->setARCPseudoStrong(true); 6548 return true; 6549 } 6550 6551 static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D, 6552 const ParsedAttr &AL) { 6553 if (auto *VD = dyn_cast<VarDecl>(D)) { 6554 assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically"); 6555 if (!VD->hasLocalStorage()) { 6556 S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained) 6557 << 0; 6558 return; 6559 } 6560 6561 if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true)) 6562 return; 6563 6564 handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL); 6565 return; 6566 } 6567 6568 // If D is a function-like declaration (method, block, or function), then we 6569 // make every parameter psuedo-strong. 6570 for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) { 6571 auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, I)); 6572 QualType Ty = PVD->getType(); 6573 6574 // If a user wrote a parameter with __strong explicitly, then assume they 6575 // want "real" strong semantics for that parameter. This works because if 6576 // the parameter was written with __strong, then the strong qualifier will 6577 // be non-local. 6578 if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() == 6579 Qualifiers::OCL_Strong) 6580 continue; 6581 6582 tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false); 6583 } 6584 handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL); 6585 } 6586 6587 static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6588 // Check that the return type is a `typedef int kern_return_t` or a typedef 6589 // around it, because otherwise MIG convention checks make no sense. 6590 // BlockDecl doesn't store a return type, so it's annoying to check, 6591 // so let's skip it for now. 6592 if (!isa<BlockDecl>(D)) { 6593 QualType T = getFunctionOrMethodResultType(D); 6594 bool IsKernReturnT = false; 6595 while (const auto *TT = T->getAs<TypedefType>()) { 6596 IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t"); 6597 T = TT->desugar(); 6598 } 6599 if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) { 6600 S.Diag(D->getBeginLoc(), 6601 diag::warn_mig_server_routine_does_not_return_kern_return_t); 6602 return; 6603 } 6604 } 6605 6606 handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL); 6607 } 6608 6609 static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6610 // Warn if the return type is not a pointer or reference type. 6611 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 6612 QualType RetTy = FD->getReturnType(); 6613 if (!RetTy->isPointerType() && !RetTy->isReferenceType()) { 6614 S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer) 6615 << AL.getRange() << RetTy; 6616 return; 6617 } 6618 } 6619 6620 handleSimpleAttribute<MSAllocatorAttr>(S, D, AL); 6621 } 6622 6623 static void handeAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6624 if (AL.isUsedAsTypeAttr()) 6625 return; 6626 // Warn if the parameter is definitely not an output parameter. 6627 if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { 6628 if (PVD->getType()->isIntegerType()) { 6629 S.Diag(AL.getLoc(), diag::err_attribute_output_parameter) 6630 << AL.getRange(); 6631 return; 6632 } 6633 } 6634 StringRef Argument; 6635 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) 6636 return; 6637 D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL)); 6638 } 6639 6640 template<typename Attr> 6641 static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6642 StringRef Argument; 6643 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) 6644 return; 6645 D->addAttr(Attr::Create(S.Context, Argument, AL)); 6646 } 6647 6648 static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) { 6649 // The guard attribute takes a single identifier argument. 6650 6651 if (!AL.isArgIdent(0)) { 6652 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) 6653 << AL << AANT_ArgumentIdentifier; 6654 return; 6655 } 6656 6657 CFGuardAttr::GuardArg Arg; 6658 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; 6659 if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) { 6660 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; 6661 return; 6662 } 6663 6664 D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg)); 6665 } 6666 6667 //===----------------------------------------------------------------------===// 6668 // Top Level Sema Entry Points 6669 //===----------------------------------------------------------------------===// 6670 6671 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if 6672 /// the attribute applies to decls. If the attribute is a type attribute, just 6673 /// silently ignore it if a GNU attribute. 6674 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, 6675 const ParsedAttr &AL, 6676 bool IncludeCXX11Attributes) { 6677 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) 6678 return; 6679 6680 // Ignore C++11 attributes on declarator chunks: they appertain to the type 6681 // instead. 6682 if (AL.isCXX11Attribute() && !IncludeCXX11Attributes) 6683 return; 6684 6685 // Unknown attributes are automatically warned on. Target-specific attributes 6686 // which do not apply to the current target architecture are treated as 6687 // though they were unknown attributes. 6688 if (AL.getKind() == ParsedAttr::UnknownAttribute || 6689 !AL.existsInTarget(S.Context.getTargetInfo())) { 6690 S.Diag(AL.getLoc(), 6691 AL.isDeclspecAttribute() 6692 ? (unsigned)diag::warn_unhandled_ms_attribute_ignored 6693 : (unsigned)diag::warn_unknown_attribute_ignored) 6694 << AL; 6695 return; 6696 } 6697 6698 if (handleCommonAttributeFeatures(S, D, AL)) 6699 return; 6700 6701 switch (AL.getKind()) { 6702 default: 6703 if (!AL.isStmtAttr()) { 6704 // Type attributes are handled elsewhere; silently move on. 6705 assert(AL.isTypeAttr() && "Non-type attribute not handled"); 6706 break; 6707 } 6708 S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl) 6709 << AL << D->getLocation(); 6710 break; 6711 case ParsedAttr::AT_Interrupt: 6712 handleInterruptAttr(S, D, AL); 6713 break; 6714 case ParsedAttr::AT_X86ForceAlignArgPointer: 6715 handleX86ForceAlignArgPointerAttr(S, D, AL); 6716 break; 6717 case ParsedAttr::AT_DLLExport: 6718 case ParsedAttr::AT_DLLImport: 6719 handleDLLAttr(S, D, AL); 6720 break; 6721 case ParsedAttr::AT_Mips16: 6722 handleSimpleAttributeWithExclusions<Mips16Attr, MicroMipsAttr, 6723 MipsInterruptAttr>(S, D, AL); 6724 break; 6725 case ParsedAttr::AT_NoMips16: 6726 handleSimpleAttribute<NoMips16Attr>(S, D, AL); 6727 break; 6728 case ParsedAttr::AT_MicroMips: 6729 handleSimpleAttributeWithExclusions<MicroMipsAttr, Mips16Attr>(S, D, AL); 6730 break; 6731 case ParsedAttr::AT_NoMicroMips: 6732 handleSimpleAttribute<NoMicroMipsAttr>(S, D, AL); 6733 break; 6734 case ParsedAttr::AT_MipsLongCall: 6735 handleSimpleAttributeWithExclusions<MipsLongCallAttr, MipsShortCallAttr>( 6736 S, D, AL); 6737 break; 6738 case ParsedAttr::AT_MipsShortCall: 6739 handleSimpleAttributeWithExclusions<MipsShortCallAttr, MipsLongCallAttr>( 6740 S, D, AL); 6741 break; 6742 case ParsedAttr::AT_AMDGPUFlatWorkGroupSize: 6743 handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL); 6744 break; 6745 case ParsedAttr::AT_AMDGPUWavesPerEU: 6746 handleAMDGPUWavesPerEUAttr(S, D, AL); 6747 break; 6748 case ParsedAttr::AT_AMDGPUNumSGPR: 6749 handleAMDGPUNumSGPRAttr(S, D, AL); 6750 break; 6751 case ParsedAttr::AT_AMDGPUNumVGPR: 6752 handleAMDGPUNumVGPRAttr(S, D, AL); 6753 break; 6754 case ParsedAttr::AT_AVRSignal: 6755 handleAVRSignalAttr(S, D, AL); 6756 break; 6757 case ParsedAttr::AT_BPFPreserveAccessIndex: 6758 handleBPFPreserveAccessIndexAttr(S, D, AL); 6759 break; 6760 case ParsedAttr::AT_WebAssemblyExportName: 6761 handleWebAssemblyExportNameAttr(S, D, AL); 6762 break; 6763 case ParsedAttr::AT_WebAssemblyImportModule: 6764 handleWebAssemblyImportModuleAttr(S, D, AL); 6765 break; 6766 case ParsedAttr::AT_WebAssemblyImportName: 6767 handleWebAssemblyImportNameAttr(S, D, AL); 6768 break; 6769 case ParsedAttr::AT_IBAction: 6770 handleSimpleAttribute<IBActionAttr>(S, D, AL); 6771 break; 6772 case ParsedAttr::AT_IBOutlet: 6773 handleIBOutlet(S, D, AL); 6774 break; 6775 case ParsedAttr::AT_IBOutletCollection: 6776 handleIBOutletCollection(S, D, AL); 6777 break; 6778 case ParsedAttr::AT_IFunc: 6779 handleIFuncAttr(S, D, AL); 6780 break; 6781 case ParsedAttr::AT_Alias: 6782 handleAliasAttr(S, D, AL); 6783 break; 6784 case ParsedAttr::AT_Aligned: 6785 handleAlignedAttr(S, D, AL); 6786 break; 6787 case ParsedAttr::AT_AlignValue: 6788 handleAlignValueAttr(S, D, AL); 6789 break; 6790 case ParsedAttr::AT_AllocSize: 6791 handleAllocSizeAttr(S, D, AL); 6792 break; 6793 case ParsedAttr::AT_AlwaysInline: 6794 handleAlwaysInlineAttr(S, D, AL); 6795 break; 6796 case ParsedAttr::AT_Artificial: 6797 handleSimpleAttribute<ArtificialAttr>(S, D, AL); 6798 break; 6799 case ParsedAttr::AT_AnalyzerNoReturn: 6800 handleAnalyzerNoReturnAttr(S, D, AL); 6801 break; 6802 case ParsedAttr::AT_TLSModel: 6803 handleTLSModelAttr(S, D, AL); 6804 break; 6805 case ParsedAttr::AT_Annotate: 6806 handleAnnotateAttr(S, D, AL); 6807 break; 6808 case ParsedAttr::AT_Availability: 6809 handleAvailabilityAttr(S, D, AL); 6810 break; 6811 case ParsedAttr::AT_CarriesDependency: 6812 handleDependencyAttr(S, scope, D, AL); 6813 break; 6814 case ParsedAttr::AT_CPUDispatch: 6815 case ParsedAttr::AT_CPUSpecific: 6816 handleCPUSpecificAttr(S, D, AL); 6817 break; 6818 case ParsedAttr::AT_Common: 6819 handleCommonAttr(S, D, AL); 6820 break; 6821 case ParsedAttr::AT_CUDAConstant: 6822 handleConstantAttr(S, D, AL); 6823 break; 6824 case ParsedAttr::AT_PassObjectSize: 6825 handlePassObjectSizeAttr(S, D, AL); 6826 break; 6827 case ParsedAttr::AT_Constructor: 6828 handleConstructorAttr(S, D, AL); 6829 break; 6830 case ParsedAttr::AT_CXX11NoReturn: 6831 handleSimpleAttribute<CXX11NoReturnAttr>(S, D, AL); 6832 break; 6833 case ParsedAttr::AT_Deprecated: 6834 handleDeprecatedAttr(S, D, AL); 6835 break; 6836 case ParsedAttr::AT_Destructor: 6837 handleDestructorAttr(S, D, AL); 6838 break; 6839 case ParsedAttr::AT_EnableIf: 6840 handleEnableIfAttr(S, D, AL); 6841 break; 6842 case ParsedAttr::AT_DiagnoseIf: 6843 handleDiagnoseIfAttr(S, D, AL); 6844 break; 6845 case ParsedAttr::AT_NoBuiltin: 6846 handleNoBuiltinAttr(S, D, AL); 6847 break; 6848 case ParsedAttr::AT_ExtVectorType: 6849 handleExtVectorTypeAttr(S, D, AL); 6850 break; 6851 case ParsedAttr::AT_ExternalSourceSymbol: 6852 handleExternalSourceSymbolAttr(S, D, AL); 6853 break; 6854 case ParsedAttr::AT_MinSize: 6855 handleMinSizeAttr(S, D, AL); 6856 break; 6857 case ParsedAttr::AT_OptimizeNone: 6858 handleOptimizeNoneAttr(S, D, AL); 6859 break; 6860 case ParsedAttr::AT_FlagEnum: 6861 handleSimpleAttribute<FlagEnumAttr>(S, D, AL); 6862 break; 6863 case ParsedAttr::AT_EnumExtensibility: 6864 handleEnumExtensibilityAttr(S, D, AL); 6865 break; 6866 case ParsedAttr::AT_Flatten: 6867 handleSimpleAttribute<FlattenAttr>(S, D, AL); 6868 break; 6869 case ParsedAttr::AT_SYCLKernel: 6870 handleSYCLKernelAttr(S, D, AL); 6871 break; 6872 case ParsedAttr::AT_Format: 6873 handleFormatAttr(S, D, AL); 6874 break; 6875 case ParsedAttr::AT_FormatArg: 6876 handleFormatArgAttr(S, D, AL); 6877 break; 6878 case ParsedAttr::AT_Callback: 6879 handleCallbackAttr(S, D, AL); 6880 break; 6881 case ParsedAttr::AT_CUDAGlobal: 6882 handleGlobalAttr(S, D, AL); 6883 break; 6884 case ParsedAttr::AT_CUDADevice: 6885 handleSimpleAttributeWithExclusions<CUDADeviceAttr, CUDAGlobalAttr>(S, D, 6886 AL); 6887 break; 6888 case ParsedAttr::AT_CUDAHost: 6889 handleSimpleAttributeWithExclusions<CUDAHostAttr, CUDAGlobalAttr>(S, D, AL); 6890 break; 6891 case ParsedAttr::AT_HIPPinnedShadow: 6892 handleSimpleAttributeWithExclusions<HIPPinnedShadowAttr, CUDADeviceAttr, 6893 CUDAConstantAttr>(S, D, AL); 6894 break; 6895 case ParsedAttr::AT_GNUInline: 6896 handleGNUInlineAttr(S, D, AL); 6897 break; 6898 case ParsedAttr::AT_CUDALaunchBounds: 6899 handleLaunchBoundsAttr(S, D, AL); 6900 break; 6901 case ParsedAttr::AT_Restrict: 6902 handleRestrictAttr(S, D, AL); 6903 break; 6904 case ParsedAttr::AT_LifetimeBound: 6905 handleSimpleAttribute<LifetimeBoundAttr>(S, D, AL); 6906 break; 6907 case ParsedAttr::AT_MayAlias: 6908 handleSimpleAttribute<MayAliasAttr>(S, D, AL); 6909 break; 6910 case ParsedAttr::AT_Mode: 6911 handleModeAttr(S, D, AL); 6912 break; 6913 case ParsedAttr::AT_NoAlias: 6914 handleSimpleAttribute<NoAliasAttr>(S, D, AL); 6915 break; 6916 case ParsedAttr::AT_NoCommon: 6917 handleSimpleAttribute<NoCommonAttr>(S, D, AL); 6918 break; 6919 case ParsedAttr::AT_NoSplitStack: 6920 handleSimpleAttribute<NoSplitStackAttr>(S, D, AL); 6921 break; 6922 case ParsedAttr::AT_NoUniqueAddress: 6923 handleSimpleAttribute<NoUniqueAddressAttr>(S, D, AL); 6924 break; 6925 case ParsedAttr::AT_NonNull: 6926 if (auto *PVD = dyn_cast<ParmVarDecl>(D)) 6927 handleNonNullAttrParameter(S, PVD, AL); 6928 else 6929 handleNonNullAttr(S, D, AL); 6930 break; 6931 case ParsedAttr::AT_ReturnsNonNull: 6932 handleReturnsNonNullAttr(S, D, AL); 6933 break; 6934 case ParsedAttr::AT_NoEscape: 6935 handleNoEscapeAttr(S, D, AL); 6936 break; 6937 case ParsedAttr::AT_AssumeAligned: 6938 handleAssumeAlignedAttr(S, D, AL); 6939 break; 6940 case ParsedAttr::AT_AllocAlign: 6941 handleAllocAlignAttr(S, D, AL); 6942 break; 6943 case ParsedAttr::AT_Overloadable: 6944 handleSimpleAttribute<OverloadableAttr>(S, D, AL); 6945 break; 6946 case ParsedAttr::AT_Ownership: 6947 handleOwnershipAttr(S, D, AL); 6948 break; 6949 case ParsedAttr::AT_Cold: 6950 handleSimpleAttributeWithExclusions<ColdAttr, HotAttr>(S, D, AL); 6951 break; 6952 case ParsedAttr::AT_Hot: 6953 handleSimpleAttributeWithExclusions<HotAttr, ColdAttr>(S, D, AL); 6954 break; 6955 case ParsedAttr::AT_Naked: 6956 handleNakedAttr(S, D, AL); 6957 break; 6958 case ParsedAttr::AT_NoReturn: 6959 handleNoReturnAttr(S, D, AL); 6960 break; 6961 case ParsedAttr::AT_AnyX86NoCfCheck: 6962 handleNoCfCheckAttr(S, D, AL); 6963 break; 6964 case ParsedAttr::AT_NoThrow: 6965 if (!AL.isUsedAsTypeAttr()) 6966 handleSimpleAttribute<NoThrowAttr>(S, D, AL); 6967 break; 6968 case ParsedAttr::AT_CUDAShared: 6969 handleSharedAttr(S, D, AL); 6970 break; 6971 case ParsedAttr::AT_VecReturn: 6972 handleVecReturnAttr(S, D, AL); 6973 break; 6974 case ParsedAttr::AT_ObjCOwnership: 6975 handleObjCOwnershipAttr(S, D, AL); 6976 break; 6977 case ParsedAttr::AT_ObjCPreciseLifetime: 6978 handleObjCPreciseLifetimeAttr(S, D, AL); 6979 break; 6980 case ParsedAttr::AT_ObjCReturnsInnerPointer: 6981 handleObjCReturnsInnerPointerAttr(S, D, AL); 6982 break; 6983 case ParsedAttr::AT_ObjCRequiresSuper: 6984 handleObjCRequiresSuperAttr(S, D, AL); 6985 break; 6986 case ParsedAttr::AT_ObjCBridge: 6987 handleObjCBridgeAttr(S, D, AL); 6988 break; 6989 case ParsedAttr::AT_ObjCBridgeMutable: 6990 handleObjCBridgeMutableAttr(S, D, AL); 6991 break; 6992 case ParsedAttr::AT_ObjCBridgeRelated: 6993 handleObjCBridgeRelatedAttr(S, D, AL); 6994 break; 6995 case ParsedAttr::AT_ObjCDesignatedInitializer: 6996 handleObjCDesignatedInitializer(S, D, AL); 6997 break; 6998 case ParsedAttr::AT_ObjCRuntimeName: 6999 handleObjCRuntimeName(S, D, AL); 7000 break; 7001 case ParsedAttr::AT_ObjCRuntimeVisible: 7002 handleSimpleAttribute<ObjCRuntimeVisibleAttr>(S, D, AL); 7003 break; 7004 case ParsedAttr::AT_ObjCBoxable: 7005 handleObjCBoxable(S, D, AL); 7006 break; 7007 case ParsedAttr::AT_CFAuditedTransfer: 7008 handleSimpleAttributeWithExclusions<CFAuditedTransferAttr, 7009 CFUnknownTransferAttr>(S, D, AL); 7010 break; 7011 case ParsedAttr::AT_CFUnknownTransfer: 7012 handleSimpleAttributeWithExclusions<CFUnknownTransferAttr, 7013 CFAuditedTransferAttr>(S, D, AL); 7014 break; 7015 case ParsedAttr::AT_CFConsumed: 7016 case ParsedAttr::AT_NSConsumed: 7017 case ParsedAttr::AT_OSConsumed: 7018 S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL), 7019 /*IsTemplateInstantiation=*/false); 7020 break; 7021 case ParsedAttr::AT_NSConsumesSelf: 7022 handleSimpleAttribute<NSConsumesSelfAttr>(S, D, AL); 7023 break; 7024 case ParsedAttr::AT_OSConsumesThis: 7025 handleSimpleAttribute<OSConsumesThisAttr>(S, D, AL); 7026 break; 7027 case ParsedAttr::AT_OSReturnsRetainedOnZero: 7028 handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>( 7029 S, D, AL, isValidOSObjectOutParameter(D), 7030 diag::warn_ns_attribute_wrong_parameter_type, 7031 /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange()); 7032 break; 7033 case ParsedAttr::AT_OSReturnsRetainedOnNonZero: 7034 handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>( 7035 S, D, AL, isValidOSObjectOutParameter(D), 7036 diag::warn_ns_attribute_wrong_parameter_type, 7037 /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange()); 7038 break; 7039 case ParsedAttr::AT_NSReturnsAutoreleased: 7040 case ParsedAttr::AT_NSReturnsNotRetained: 7041 case ParsedAttr::AT_NSReturnsRetained: 7042 case ParsedAttr::AT_CFReturnsNotRetained: 7043 case ParsedAttr::AT_CFReturnsRetained: 7044 case ParsedAttr::AT_OSReturnsNotRetained: 7045 case ParsedAttr::AT_OSReturnsRetained: 7046 handleXReturnsXRetainedAttr(S, D, AL); 7047 break; 7048 case ParsedAttr::AT_WorkGroupSizeHint: 7049 handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL); 7050 break; 7051 case ParsedAttr::AT_ReqdWorkGroupSize: 7052 handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL); 7053 break; 7054 case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize: 7055 handleSubGroupSize(S, D, AL); 7056 break; 7057 case ParsedAttr::AT_VecTypeHint: 7058 handleVecTypeHint(S, D, AL); 7059 break; 7060 case ParsedAttr::AT_ConstInit: 7061 handleSimpleAttribute<ConstInitAttr>(S, D, AL); 7062 break; 7063 case ParsedAttr::AT_InitPriority: 7064 handleInitPriorityAttr(S, D, AL); 7065 break; 7066 case ParsedAttr::AT_Packed: 7067 handlePackedAttr(S, D, AL); 7068 break; 7069 case ParsedAttr::AT_Section: 7070 handleSectionAttr(S, D, AL); 7071 break; 7072 case ParsedAttr::AT_SpeculativeLoadHardening: 7073 handleSimpleAttributeWithExclusions<SpeculativeLoadHardeningAttr, 7074 NoSpeculativeLoadHardeningAttr>(S, D, 7075 AL); 7076 break; 7077 case ParsedAttr::AT_NoSpeculativeLoadHardening: 7078 handleSimpleAttributeWithExclusions<NoSpeculativeLoadHardeningAttr, 7079 SpeculativeLoadHardeningAttr>(S, D, AL); 7080 break; 7081 case ParsedAttr::AT_CodeSeg: 7082 handleCodeSegAttr(S, D, AL); 7083 break; 7084 case ParsedAttr::AT_Target: 7085 handleTargetAttr(S, D, AL); 7086 break; 7087 case ParsedAttr::AT_MinVectorWidth: 7088 handleMinVectorWidthAttr(S, D, AL); 7089 break; 7090 case ParsedAttr::AT_Unavailable: 7091 handleAttrWithMessage<UnavailableAttr>(S, D, AL); 7092 break; 7093 case ParsedAttr::AT_ArcWeakrefUnavailable: 7094 handleSimpleAttribute<ArcWeakrefUnavailableAttr>(S, D, AL); 7095 break; 7096 case ParsedAttr::AT_ObjCRootClass: 7097 handleSimpleAttribute<ObjCRootClassAttr>(S, D, AL); 7098 break; 7099 case ParsedAttr::AT_ObjCDirect: 7100 handleObjCDirectAttr(S, D, AL); 7101 break; 7102 case ParsedAttr::AT_ObjCDirectMembers: 7103 handleObjCDirectMembersAttr(S, D, AL); 7104 handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL); 7105 break; 7106 case ParsedAttr::AT_ObjCNonLazyClass: 7107 handleSimpleAttribute<ObjCNonLazyClassAttr>(S, D, AL); 7108 break; 7109 case ParsedAttr::AT_ObjCSubclassingRestricted: 7110 handleSimpleAttribute<ObjCSubclassingRestrictedAttr>(S, D, AL); 7111 break; 7112 case ParsedAttr::AT_ObjCClassStub: 7113 handleSimpleAttribute<ObjCClassStubAttr>(S, D, AL); 7114 break; 7115 case ParsedAttr::AT_ObjCExplicitProtocolImpl: 7116 handleObjCSuppresProtocolAttr(S, D, AL); 7117 break; 7118 case ParsedAttr::AT_ObjCRequiresPropertyDefs: 7119 handleSimpleAttribute<ObjCRequiresPropertyDefsAttr>(S, D, AL); 7120 break; 7121 case ParsedAttr::AT_Unused: 7122 handleUnusedAttr(S, D, AL); 7123 break; 7124 case ParsedAttr::AT_ReturnsTwice: 7125 handleSimpleAttribute<ReturnsTwiceAttr>(S, D, AL); 7126 break; 7127 case ParsedAttr::AT_NotTailCalled: 7128 handleSimpleAttributeWithExclusions<NotTailCalledAttr, AlwaysInlineAttr>( 7129 S, D, AL); 7130 break; 7131 case ParsedAttr::AT_DisableTailCalls: 7132 handleSimpleAttributeWithExclusions<DisableTailCallsAttr, NakedAttr>(S, D, 7133 AL); 7134 break; 7135 case ParsedAttr::AT_Used: 7136 handleSimpleAttribute<UsedAttr>(S, D, AL); 7137 break; 7138 case ParsedAttr::AT_Visibility: 7139 handleVisibilityAttr(S, D, AL, false); 7140 break; 7141 case ParsedAttr::AT_TypeVisibility: 7142 handleVisibilityAttr(S, D, AL, true); 7143 break; 7144 case ParsedAttr::AT_WarnUnused: 7145 handleSimpleAttribute<WarnUnusedAttr>(S, D, AL); 7146 break; 7147 case ParsedAttr::AT_WarnUnusedResult: 7148 handleWarnUnusedResult(S, D, AL); 7149 break; 7150 case ParsedAttr::AT_Weak: 7151 handleSimpleAttribute<WeakAttr>(S, D, AL); 7152 break; 7153 case ParsedAttr::AT_WeakRef: 7154 handleWeakRefAttr(S, D, AL); 7155 break; 7156 case ParsedAttr::AT_WeakImport: 7157 handleWeakImportAttr(S, D, AL); 7158 break; 7159 case ParsedAttr::AT_TransparentUnion: 7160 handleTransparentUnionAttr(S, D, AL); 7161 break; 7162 case ParsedAttr::AT_ObjCException: 7163 handleSimpleAttribute<ObjCExceptionAttr>(S, D, AL); 7164 break; 7165 case ParsedAttr::AT_ObjCMethodFamily: 7166 handleObjCMethodFamilyAttr(S, D, AL); 7167 break; 7168 case ParsedAttr::AT_ObjCNSObject: 7169 handleObjCNSObject(S, D, AL); 7170 break; 7171 case ParsedAttr::AT_ObjCIndependentClass: 7172 handleObjCIndependentClass(S, D, AL); 7173 break; 7174 case ParsedAttr::AT_Blocks: 7175 handleBlocksAttr(S, D, AL); 7176 break; 7177 case ParsedAttr::AT_Sentinel: 7178 handleSentinelAttr(S, D, AL); 7179 break; 7180 case ParsedAttr::AT_Const: 7181 handleSimpleAttribute<ConstAttr>(S, D, AL); 7182 break; 7183 case ParsedAttr::AT_Pure: 7184 handleSimpleAttribute<PureAttr>(S, D, AL); 7185 break; 7186 case ParsedAttr::AT_Cleanup: 7187 handleCleanupAttr(S, D, AL); 7188 break; 7189 case ParsedAttr::AT_NoDebug: 7190 handleNoDebugAttr(S, D, AL); 7191 break; 7192 case ParsedAttr::AT_NoDuplicate: 7193 handleSimpleAttribute<NoDuplicateAttr>(S, D, AL); 7194 break; 7195 case ParsedAttr::AT_Convergent: 7196 handleSimpleAttribute<ConvergentAttr>(S, D, AL); 7197 break; 7198 case ParsedAttr::AT_NoInline: 7199 handleSimpleAttribute<NoInlineAttr>(S, D, AL); 7200 break; 7201 case ParsedAttr::AT_NoInstrumentFunction: // Interacts with -pg. 7202 handleSimpleAttribute<NoInstrumentFunctionAttr>(S, D, AL); 7203 break; 7204 case ParsedAttr::AT_NoStackProtector: 7205 // Interacts with -fstack-protector options. 7206 handleSimpleAttribute<NoStackProtectorAttr>(S, D, AL); 7207 break; 7208 case ParsedAttr::AT_CFICanonicalJumpTable: 7209 handleSimpleAttribute<CFICanonicalJumpTableAttr>(S, D, AL); 7210 break; 7211 case ParsedAttr::AT_StdCall: 7212 case ParsedAttr::AT_CDecl: 7213 case ParsedAttr::AT_FastCall: 7214 case ParsedAttr::AT_ThisCall: 7215 case ParsedAttr::AT_Pascal: 7216 case ParsedAttr::AT_RegCall: 7217 case ParsedAttr::AT_SwiftCall: 7218 case ParsedAttr::AT_VectorCall: 7219 case ParsedAttr::AT_MSABI: 7220 case ParsedAttr::AT_SysVABI: 7221 case ParsedAttr::AT_Pcs: 7222 case ParsedAttr::AT_IntelOclBicc: 7223 case ParsedAttr::AT_PreserveMost: 7224 case ParsedAttr::AT_PreserveAll: 7225 case ParsedAttr::AT_AArch64VectorPcs: 7226 handleCallConvAttr(S, D, AL); 7227 break; 7228 case ParsedAttr::AT_Suppress: 7229 handleSuppressAttr(S, D, AL); 7230 break; 7231 case ParsedAttr::AT_Owner: 7232 case ParsedAttr::AT_Pointer: 7233 handleLifetimeCategoryAttr(S, D, AL); 7234 break; 7235 case ParsedAttr::AT_OpenCLKernel: 7236 handleSimpleAttribute<OpenCLKernelAttr>(S, D, AL); 7237 break; 7238 case ParsedAttr::AT_OpenCLAccess: 7239 handleOpenCLAccessAttr(S, D, AL); 7240 break; 7241 case ParsedAttr::AT_OpenCLNoSVM: 7242 handleOpenCLNoSVMAttr(S, D, AL); 7243 break; 7244 case ParsedAttr::AT_SwiftContext: 7245 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext); 7246 break; 7247 case ParsedAttr::AT_SwiftErrorResult: 7248 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult); 7249 break; 7250 case ParsedAttr::AT_SwiftIndirectResult: 7251 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult); 7252 break; 7253 case ParsedAttr::AT_InternalLinkage: 7254 handleInternalLinkageAttr(S, D, AL); 7255 break; 7256 case ParsedAttr::AT_ExcludeFromExplicitInstantiation: 7257 handleSimpleAttribute<ExcludeFromExplicitInstantiationAttr>(S, D, AL); 7258 break; 7259 case ParsedAttr::AT_LTOVisibilityPublic: 7260 handleSimpleAttribute<LTOVisibilityPublicAttr>(S, D, AL); 7261 break; 7262 7263 // Microsoft attributes: 7264 case ParsedAttr::AT_EmptyBases: 7265 handleSimpleAttribute<EmptyBasesAttr>(S, D, AL); 7266 break; 7267 case ParsedAttr::AT_LayoutVersion: 7268 handleLayoutVersion(S, D, AL); 7269 break; 7270 case ParsedAttr::AT_TrivialABI: 7271 handleSimpleAttribute<TrivialABIAttr>(S, D, AL); 7272 break; 7273 case ParsedAttr::AT_MSNoVTable: 7274 handleSimpleAttribute<MSNoVTableAttr>(S, D, AL); 7275 break; 7276 case ParsedAttr::AT_MSStruct: 7277 handleSimpleAttribute<MSStructAttr>(S, D, AL); 7278 break; 7279 case ParsedAttr::AT_Uuid: 7280 handleUuidAttr(S, D, AL); 7281 break; 7282 case ParsedAttr::AT_MSInheritance: 7283 handleMSInheritanceAttr(S, D, AL); 7284 break; 7285 case ParsedAttr::AT_SelectAny: 7286 handleSimpleAttribute<SelectAnyAttr>(S, D, AL); 7287 break; 7288 case ParsedAttr::AT_Thread: 7289 handleDeclspecThreadAttr(S, D, AL); 7290 break; 7291 7292 case ParsedAttr::AT_AbiTag: 7293 handleAbiTagAttr(S, D, AL); 7294 break; 7295 case ParsedAttr::AT_CFGuard: 7296 handleCFGuardAttr(S, D, AL); 7297 break; 7298 7299 // Thread safety attributes: 7300 case ParsedAttr::AT_AssertExclusiveLock: 7301 handleAssertExclusiveLockAttr(S, D, AL); 7302 break; 7303 case ParsedAttr::AT_AssertSharedLock: 7304 handleAssertSharedLockAttr(S, D, AL); 7305 break; 7306 case ParsedAttr::AT_GuardedVar: 7307 handleSimpleAttribute<GuardedVarAttr>(S, D, AL); 7308 break; 7309 case ParsedAttr::AT_PtGuardedVar: 7310 handlePtGuardedVarAttr(S, D, AL); 7311 break; 7312 case ParsedAttr::AT_ScopedLockable: 7313 handleSimpleAttribute<ScopedLockableAttr>(S, D, AL); 7314 break; 7315 case ParsedAttr::AT_NoSanitize: 7316 handleNoSanitizeAttr(S, D, AL); 7317 break; 7318 case ParsedAttr::AT_NoSanitizeSpecific: 7319 handleNoSanitizeSpecificAttr(S, D, AL); 7320 break; 7321 case ParsedAttr::AT_NoThreadSafetyAnalysis: 7322 handleSimpleAttribute<NoThreadSafetyAnalysisAttr>(S, D, AL); 7323 break; 7324 case ParsedAttr::AT_GuardedBy: 7325 handleGuardedByAttr(S, D, AL); 7326 break; 7327 case ParsedAttr::AT_PtGuardedBy: 7328 handlePtGuardedByAttr(S, D, AL); 7329 break; 7330 case ParsedAttr::AT_ExclusiveTrylockFunction: 7331 handleExclusiveTrylockFunctionAttr(S, D, AL); 7332 break; 7333 case ParsedAttr::AT_LockReturned: 7334 handleLockReturnedAttr(S, D, AL); 7335 break; 7336 case ParsedAttr::AT_LocksExcluded: 7337 handleLocksExcludedAttr(S, D, AL); 7338 break; 7339 case ParsedAttr::AT_SharedTrylockFunction: 7340 handleSharedTrylockFunctionAttr(S, D, AL); 7341 break; 7342 case ParsedAttr::AT_AcquiredBefore: 7343 handleAcquiredBeforeAttr(S, D, AL); 7344 break; 7345 case ParsedAttr::AT_AcquiredAfter: 7346 handleAcquiredAfterAttr(S, D, AL); 7347 break; 7348 7349 // Capability analysis attributes. 7350 case ParsedAttr::AT_Capability: 7351 case ParsedAttr::AT_Lockable: 7352 handleCapabilityAttr(S, D, AL); 7353 break; 7354 case ParsedAttr::AT_RequiresCapability: 7355 handleRequiresCapabilityAttr(S, D, AL); 7356 break; 7357 7358 case ParsedAttr::AT_AssertCapability: 7359 handleAssertCapabilityAttr(S, D, AL); 7360 break; 7361 case ParsedAttr::AT_AcquireCapability: 7362 handleAcquireCapabilityAttr(S, D, AL); 7363 break; 7364 case ParsedAttr::AT_ReleaseCapability: 7365 handleReleaseCapabilityAttr(S, D, AL); 7366 break; 7367 case ParsedAttr::AT_TryAcquireCapability: 7368 handleTryAcquireCapabilityAttr(S, D, AL); 7369 break; 7370 7371 // Consumed analysis attributes. 7372 case ParsedAttr::AT_Consumable: 7373 handleConsumableAttr(S, D, AL); 7374 break; 7375 case ParsedAttr::AT_ConsumableAutoCast: 7376 handleSimpleAttribute<ConsumableAutoCastAttr>(S, D, AL); 7377 break; 7378 case ParsedAttr::AT_ConsumableSetOnRead: 7379 handleSimpleAttribute<ConsumableSetOnReadAttr>(S, D, AL); 7380 break; 7381 case ParsedAttr::AT_CallableWhen: 7382 handleCallableWhenAttr(S, D, AL); 7383 break; 7384 case ParsedAttr::AT_ParamTypestate: 7385 handleParamTypestateAttr(S, D, AL); 7386 break; 7387 case ParsedAttr::AT_ReturnTypestate: 7388 handleReturnTypestateAttr(S, D, AL); 7389 break; 7390 case ParsedAttr::AT_SetTypestate: 7391 handleSetTypestateAttr(S, D, AL); 7392 break; 7393 case ParsedAttr::AT_TestTypestate: 7394 handleTestTypestateAttr(S, D, AL); 7395 break; 7396 7397 // Type safety attributes. 7398 case ParsedAttr::AT_ArgumentWithTypeTag: 7399 handleArgumentWithTypeTagAttr(S, D, AL); 7400 break; 7401 case ParsedAttr::AT_TypeTagForDatatype: 7402 handleTypeTagForDatatypeAttr(S, D, AL); 7403 break; 7404 case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: 7405 handleSimpleAttribute<AnyX86NoCallerSavedRegistersAttr>(S, D, AL); 7406 break; 7407 case ParsedAttr::AT_RenderScriptKernel: 7408 handleSimpleAttribute<RenderScriptKernelAttr>(S, D, AL); 7409 break; 7410 // XRay attributes. 7411 case ParsedAttr::AT_XRayInstrument: 7412 handleSimpleAttribute<XRayInstrumentAttr>(S, D, AL); 7413 break; 7414 case ParsedAttr::AT_XRayLogArgs: 7415 handleXRayLogArgsAttr(S, D, AL); 7416 break; 7417 7418 case ParsedAttr::AT_PatchableFunctionEntry: 7419 handlePatchableFunctionEntryAttr(S, D, AL); 7420 break; 7421 7422 // Move semantics attribute. 7423 case ParsedAttr::AT_Reinitializes: 7424 handleSimpleAttribute<ReinitializesAttr>(S, D, AL); 7425 break; 7426 7427 case ParsedAttr::AT_AlwaysDestroy: 7428 case ParsedAttr::AT_NoDestroy: 7429 handleDestroyAttr(S, D, AL); 7430 break; 7431 7432 case ParsedAttr::AT_Uninitialized: 7433 handleUninitializedAttr(S, D, AL); 7434 break; 7435 7436 case ParsedAttr::AT_ObjCExternallyRetained: 7437 handleObjCExternallyRetainedAttr(S, D, AL); 7438 break; 7439 7440 case ParsedAttr::AT_MIGServerRoutine: 7441 handleMIGServerRoutineAttr(S, D, AL); 7442 break; 7443 7444 case ParsedAttr::AT_MSAllocator: 7445 handleMSAllocatorAttr(S, D, AL); 7446 break; 7447 7448 case ParsedAttr::AT_ArmMveAlias: 7449 handleArmMveAliasAttr(S, D, AL); 7450 break; 7451 7452 case ParsedAttr::AT_AcquireHandle: 7453 handeAcquireHandleAttr(S, D, AL); 7454 break; 7455 7456 case ParsedAttr::AT_ReleaseHandle: 7457 handleHandleAttr<ReleaseHandleAttr>(S, D, AL); 7458 break; 7459 7460 case ParsedAttr::AT_UseHandle: 7461 handleHandleAttr<UseHandleAttr>(S, D, AL); 7462 break; 7463 } 7464 } 7465 7466 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified 7467 /// attribute list to the specified decl, ignoring any type attributes. 7468 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D, 7469 const ParsedAttributesView &AttrList, 7470 bool IncludeCXX11Attributes) { 7471 if (AttrList.empty()) 7472 return; 7473 7474 for (const ParsedAttr &AL : AttrList) 7475 ProcessDeclAttribute(*this, S, D, AL, IncludeCXX11Attributes); 7476 7477 // FIXME: We should be able to handle these cases in TableGen. 7478 // GCC accepts 7479 // static int a9 __attribute__((weakref)); 7480 // but that looks really pointless. We reject it. 7481 if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) { 7482 Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias) 7483 << cast<NamedDecl>(D); 7484 D->dropAttr<WeakRefAttr>(); 7485 return; 7486 } 7487 7488 // FIXME: We should be able to handle this in TableGen as well. It would be 7489 // good to have a way to specify "these attributes must appear as a group", 7490 // for these. Additionally, it would be good to have a way to specify "these 7491 // attribute must never appear as a group" for attributes like cold and hot. 7492 if (!D->hasAttr<OpenCLKernelAttr>()) { 7493 // These attributes cannot be applied to a non-kernel function. 7494 if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) { 7495 // FIXME: This emits a different error message than 7496 // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction. 7497 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; 7498 D->setInvalidDecl(); 7499 } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) { 7500 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; 7501 D->setInvalidDecl(); 7502 } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) { 7503 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; 7504 D->setInvalidDecl(); 7505 } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 7506 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; 7507 D->setInvalidDecl(); 7508 } else if (!D->hasAttr<CUDAGlobalAttr>()) { 7509 if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) { 7510 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) 7511 << A << ExpectedKernelFunction; 7512 D->setInvalidDecl(); 7513 } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) { 7514 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) 7515 << A << ExpectedKernelFunction; 7516 D->setInvalidDecl(); 7517 } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) { 7518 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) 7519 << A << ExpectedKernelFunction; 7520 D->setInvalidDecl(); 7521 } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) { 7522 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) 7523 << A << ExpectedKernelFunction; 7524 D->setInvalidDecl(); 7525 } 7526 } 7527 } 7528 7529 // Do this check after processing D's attributes because the attribute 7530 // objc_method_family can change whether the given method is in the init 7531 // family, and it can be applied after objc_designated_initializer. This is a 7532 // bit of a hack, but we need it to be compatible with versions of clang that 7533 // processed the attribute list in the wrong order. 7534 if (D->hasAttr<ObjCDesignatedInitializerAttr>() && 7535 cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) { 7536 Diag(D->getLocation(), diag::err_designated_init_attr_non_init); 7537 D->dropAttr<ObjCDesignatedInitializerAttr>(); 7538 } 7539 } 7540 7541 // Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr 7542 // attribute. 7543 void Sema::ProcessDeclAttributeDelayed(Decl *D, 7544 const ParsedAttributesView &AttrList) { 7545 for (const ParsedAttr &AL : AttrList) 7546 if (AL.getKind() == ParsedAttr::AT_TransparentUnion) { 7547 handleTransparentUnionAttr(*this, D, AL); 7548 break; 7549 } 7550 7551 // For BPFPreserveAccessIndexAttr, we want to populate the attributes 7552 // to fields and inner records as well. 7553 if (D && D->hasAttr<BPFPreserveAccessIndexAttr>()) 7554 handleBPFPreserveAIRecord(*this, cast<RecordDecl>(D)); 7555 } 7556 7557 // Annotation attributes are the only attributes allowed after an access 7558 // specifier. 7559 bool Sema::ProcessAccessDeclAttributeList( 7560 AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) { 7561 for (const ParsedAttr &AL : AttrList) { 7562 if (AL.getKind() == ParsedAttr::AT_Annotate) { 7563 ProcessDeclAttribute(*this, nullptr, ASDecl, AL, AL.isCXX11Attribute()); 7564 } else { 7565 Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec); 7566 return true; 7567 } 7568 } 7569 return false; 7570 } 7571 7572 /// checkUnusedDeclAttributes - Check a list of attributes to see if it 7573 /// contains any decl attributes that we should warn about. 7574 static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) { 7575 for (const ParsedAttr &AL : A) { 7576 // Only warn if the attribute is an unignored, non-type attribute. 7577 if (AL.isUsedAsTypeAttr() || AL.isInvalid()) 7578 continue; 7579 if (AL.getKind() == ParsedAttr::IgnoredAttribute) 7580 continue; 7581 7582 if (AL.getKind() == ParsedAttr::UnknownAttribute) { 7583 S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) 7584 << AL << AL.getRange(); 7585 } else { 7586 S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL 7587 << AL.getRange(); 7588 } 7589 } 7590 } 7591 7592 /// checkUnusedDeclAttributes - Given a declarator which is not being 7593 /// used to build a declaration, complain about any decl attributes 7594 /// which might be lying around on it. 7595 void Sema::checkUnusedDeclAttributes(Declarator &D) { 7596 ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes()); 7597 ::checkUnusedDeclAttributes(*this, D.getAttributes()); 7598 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) 7599 ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs()); 7600 } 7601 7602 /// DeclClonePragmaWeak - clone existing decl (maybe definition), 7603 /// \#pragma weak needs a non-definition decl and source may not have one. 7604 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II, 7605 SourceLocation Loc) { 7606 assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND)); 7607 NamedDecl *NewD = nullptr; 7608 if (auto *FD = dyn_cast<FunctionDecl>(ND)) { 7609 FunctionDecl *NewFD; 7610 // FIXME: Missing call to CheckFunctionDeclaration(). 7611 // FIXME: Mangling? 7612 // FIXME: Is the qualifier info correct? 7613 // FIXME: Is the DeclContext correct? 7614 NewFD = FunctionDecl::Create( 7615 FD->getASTContext(), FD->getDeclContext(), Loc, Loc, 7616 DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None, 7617 false /*isInlineSpecified*/, FD->hasPrototype(), CSK_unspecified, 7618 FD->getTrailingRequiresClause()); 7619 NewD = NewFD; 7620 7621 if (FD->getQualifier()) 7622 NewFD->setQualifierInfo(FD->getQualifierLoc()); 7623 7624 // Fake up parameter variables; they are declared as if this were 7625 // a typedef. 7626 QualType FDTy = FD->getType(); 7627 if (const auto *FT = FDTy->getAs<FunctionProtoType>()) { 7628 SmallVector<ParmVarDecl*, 16> Params; 7629 for (const auto &AI : FT->param_types()) { 7630 ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI); 7631 Param->setScopeInfo(0, Params.size()); 7632 Params.push_back(Param); 7633 } 7634 NewFD->setParams(Params); 7635 } 7636 } else if (auto *VD = dyn_cast<VarDecl>(ND)) { 7637 NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(), 7638 VD->getInnerLocStart(), VD->getLocation(), II, 7639 VD->getType(), VD->getTypeSourceInfo(), 7640 VD->getStorageClass()); 7641 if (VD->getQualifier()) 7642 cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc()); 7643 } 7644 return NewD; 7645 } 7646 7647 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak 7648 /// applied to it, possibly with an alias. 7649 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) { 7650 if (W.getUsed()) return; // only do this once 7651 W.setUsed(true); 7652 if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...)) 7653 IdentifierInfo *NDId = ND->getIdentifier(); 7654 NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation()); 7655 NewD->addAttr( 7656 AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation())); 7657 NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(), 7658 AttributeCommonInfo::AS_Pragma)); 7659 WeakTopLevelDecl.push_back(NewD); 7660 // FIXME: "hideous" code from Sema::LazilyCreateBuiltin 7661 // to insert Decl at TU scope, sorry. 7662 DeclContext *SavedContext = CurContext; 7663 CurContext = Context.getTranslationUnitDecl(); 7664 NewD->setDeclContext(CurContext); 7665 NewD->setLexicalDeclContext(CurContext); 7666 PushOnScopeChains(NewD, S); 7667 CurContext = SavedContext; 7668 } else { // just add weak to existing 7669 ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(), 7670 AttributeCommonInfo::AS_Pragma)); 7671 } 7672 } 7673 7674 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) { 7675 // It's valid to "forward-declare" #pragma weak, in which case we 7676 // have to do this. 7677 LoadExternalWeakUndeclaredIdentifiers(); 7678 if (!WeakUndeclaredIdentifiers.empty()) { 7679 NamedDecl *ND = nullptr; 7680 if (auto *VD = dyn_cast<VarDecl>(D)) 7681 if (VD->isExternC()) 7682 ND = VD; 7683 if (auto *FD = dyn_cast<FunctionDecl>(D)) 7684 if (FD->isExternC()) 7685 ND = FD; 7686 if (ND) { 7687 if (IdentifierInfo *Id = ND->getIdentifier()) { 7688 auto I = WeakUndeclaredIdentifiers.find(Id); 7689 if (I != WeakUndeclaredIdentifiers.end()) { 7690 WeakInfo W = I->second; 7691 DeclApplyPragmaWeak(S, ND, W); 7692 WeakUndeclaredIdentifiers[Id] = W; 7693 } 7694 } 7695 } 7696 } 7697 } 7698 7699 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in 7700 /// it, apply them to D. This is a bit tricky because PD can have attributes 7701 /// specified in many different places, and we need to find and apply them all. 7702 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) { 7703 // Apply decl attributes from the DeclSpec if present. 7704 if (!PD.getDeclSpec().getAttributes().empty()) 7705 ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes()); 7706 7707 // Walk the declarator structure, applying decl attributes that were in a type 7708 // position to the decl itself. This handles cases like: 7709 // int *__attr__(x)** D; 7710 // when X is a decl attribute. 7711 for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) 7712 ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(), 7713 /*IncludeCXX11Attributes=*/false); 7714 7715 // Finally, apply any attributes on the decl itself. 7716 ProcessDeclAttributeList(S, D, PD.getAttributes()); 7717 7718 // Apply additional attributes specified by '#pragma clang attribute'. 7719 AddPragmaAttributes(S, D); 7720 } 7721 7722 /// Is the given declaration allowed to use a forbidden type? 7723 /// If so, it'll still be annotated with an attribute that makes it 7724 /// illegal to actually use. 7725 static bool isForbiddenTypeAllowed(Sema &S, Decl *D, 7726 const DelayedDiagnostic &diag, 7727 UnavailableAttr::ImplicitReason &reason) { 7728 // Private ivars are always okay. Unfortunately, people don't 7729 // always properly make their ivars private, even in system headers. 7730 // Plus we need to make fields okay, too. 7731 if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) && 7732 !isa<FunctionDecl>(D)) 7733 return false; 7734 7735 // Silently accept unsupported uses of __weak in both user and system 7736 // declarations when it's been disabled, for ease of integration with 7737 // -fno-objc-arc files. We do have to take some care against attempts 7738 // to define such things; for now, we've only done that for ivars 7739 // and properties. 7740 if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) { 7741 if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled || 7742 diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) { 7743 reason = UnavailableAttr::IR_ForbiddenWeak; 7744 return true; 7745 } 7746 } 7747 7748 // Allow all sorts of things in system headers. 7749 if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) { 7750 // Currently, all the failures dealt with this way are due to ARC 7751 // restrictions. 7752 reason = UnavailableAttr::IR_ARCForbiddenType; 7753 return true; 7754 } 7755 7756 return false; 7757 } 7758 7759 /// Handle a delayed forbidden-type diagnostic. 7760 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD, 7761 Decl *D) { 7762 auto Reason = UnavailableAttr::IR_None; 7763 if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) { 7764 assert(Reason && "didn't set reason?"); 7765 D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc)); 7766 return; 7767 } 7768 if (S.getLangOpts().ObjCAutoRefCount) 7769 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 7770 // FIXME: we may want to suppress diagnostics for all 7771 // kind of forbidden type messages on unavailable functions. 7772 if (FD->hasAttr<UnavailableAttr>() && 7773 DD.getForbiddenTypeDiagnostic() == 7774 diag::err_arc_array_param_no_ownership) { 7775 DD.Triggered = true; 7776 return; 7777 } 7778 } 7779 7780 S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic()) 7781 << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument(); 7782 DD.Triggered = true; 7783 } 7784 7785 static const AvailabilityAttr *getAttrForPlatform(ASTContext &Context, 7786 const Decl *D) { 7787 // Check each AvailabilityAttr to find the one for this platform. 7788 for (const auto *A : D->attrs()) { 7789 if (const auto *Avail = dyn_cast<AvailabilityAttr>(A)) { 7790 // FIXME: this is copied from CheckAvailability. We should try to 7791 // de-duplicate. 7792 7793 // Check if this is an App Extension "platform", and if so chop off 7794 // the suffix for matching with the actual platform. 7795 StringRef ActualPlatform = Avail->getPlatform()->getName(); 7796 StringRef RealizedPlatform = ActualPlatform; 7797 if (Context.getLangOpts().AppExt) { 7798 size_t suffix = RealizedPlatform.rfind("_app_extension"); 7799 if (suffix != StringRef::npos) 7800 RealizedPlatform = RealizedPlatform.slice(0, suffix); 7801 } 7802 7803 StringRef TargetPlatform = Context.getTargetInfo().getPlatformName(); 7804 7805 // Match the platform name. 7806 if (RealizedPlatform == TargetPlatform) 7807 return Avail; 7808 } 7809 } 7810 return nullptr; 7811 } 7812 7813 /// The diagnostic we should emit for \c D, and the declaration that 7814 /// originated it, or \c AR_Available. 7815 /// 7816 /// \param D The declaration to check. 7817 /// \param Message If non-null, this will be populated with the message from 7818 /// the availability attribute that is selected. 7819 /// \param ClassReceiver If we're checking the the method of a class message 7820 /// send, the class. Otherwise nullptr. 7821 static std::pair<AvailabilityResult, const NamedDecl *> 7822 ShouldDiagnoseAvailabilityOfDecl(Sema &S, const NamedDecl *D, 7823 std::string *Message, 7824 ObjCInterfaceDecl *ClassReceiver) { 7825 AvailabilityResult Result = D->getAvailability(Message); 7826 7827 // For typedefs, if the typedef declaration appears available look 7828 // to the underlying type to see if it is more restrictive. 7829 while (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { 7830 if (Result == AR_Available) { 7831 if (const auto *TT = TD->getUnderlyingType()->getAs<TagType>()) { 7832 D = TT->getDecl(); 7833 Result = D->getAvailability(Message); 7834 continue; 7835 } 7836 } 7837 break; 7838 } 7839 7840 // Forward class declarations get their attributes from their definition. 7841 if (const auto *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) { 7842 if (IDecl->getDefinition()) { 7843 D = IDecl->getDefinition(); 7844 Result = D->getAvailability(Message); 7845 } 7846 } 7847 7848 if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) 7849 if (Result == AR_Available) { 7850 const DeclContext *DC = ECD->getDeclContext(); 7851 if (const auto *TheEnumDecl = dyn_cast<EnumDecl>(DC)) { 7852 Result = TheEnumDecl->getAvailability(Message); 7853 D = TheEnumDecl; 7854 } 7855 } 7856 7857 // For +new, infer availability from -init. 7858 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { 7859 if (S.NSAPIObj && ClassReceiver) { 7860 ObjCMethodDecl *Init = ClassReceiver->lookupInstanceMethod( 7861 S.NSAPIObj->getInitSelector()); 7862 if (Init && Result == AR_Available && MD->isClassMethod() && 7863 MD->getSelector() == S.NSAPIObj->getNewSelector() && 7864 MD->definedInNSObject(S.getASTContext())) { 7865 Result = Init->getAvailability(Message); 7866 D = Init; 7867 } 7868 } 7869 } 7870 7871 return {Result, D}; 7872 } 7873 7874 7875 /// whether we should emit a diagnostic for \c K and \c DeclVersion in 7876 /// the context of \c Ctx. For example, we should emit an unavailable diagnostic 7877 /// in a deprecated context, but not the other way around. 7878 static bool 7879 ShouldDiagnoseAvailabilityInContext(Sema &S, AvailabilityResult K, 7880 VersionTuple DeclVersion, Decl *Ctx, 7881 const NamedDecl *OffendingDecl) { 7882 assert(K != AR_Available && "Expected an unavailable declaration here!"); 7883 7884 // Checks if we should emit the availability diagnostic in the context of C. 7885 auto CheckContext = [&](const Decl *C) { 7886 if (K == AR_NotYetIntroduced) { 7887 if (const AvailabilityAttr *AA = getAttrForPlatform(S.Context, C)) 7888 if (AA->getIntroduced() >= DeclVersion) 7889 return true; 7890 } else if (K == AR_Deprecated) { 7891 if (C->isDeprecated()) 7892 return true; 7893 } else if (K == AR_Unavailable) { 7894 // It is perfectly fine to refer to an 'unavailable' Objective-C method 7895 // when it is referenced from within the @implementation itself. In this 7896 // context, we interpret unavailable as a form of access control. 7897 if (const auto *MD = dyn_cast<ObjCMethodDecl>(OffendingDecl)) { 7898 if (const auto *Impl = dyn_cast<ObjCImplDecl>(C)) { 7899 if (MD->getClassInterface() == Impl->getClassInterface()) 7900 return true; 7901 } 7902 } 7903 } 7904 7905 if (C->isUnavailable()) 7906 return true; 7907 return false; 7908 }; 7909 7910 do { 7911 if (CheckContext(Ctx)) 7912 return false; 7913 7914 // An implementation implicitly has the availability of the interface. 7915 // Unless it is "+load" method. 7916 if (const auto *MethodD = dyn_cast<ObjCMethodDecl>(Ctx)) 7917 if (MethodD->isClassMethod() && 7918 MethodD->getSelector().getAsString() == "load") 7919 return true; 7920 7921 if (const auto *CatOrImpl = dyn_cast<ObjCImplDecl>(Ctx)) { 7922 if (const ObjCInterfaceDecl *Interface = CatOrImpl->getClassInterface()) 7923 if (CheckContext(Interface)) 7924 return false; 7925 } 7926 // A category implicitly has the availability of the interface. 7927 else if (const auto *CatD = dyn_cast<ObjCCategoryDecl>(Ctx)) 7928 if (const ObjCInterfaceDecl *Interface = CatD->getClassInterface()) 7929 if (CheckContext(Interface)) 7930 return false; 7931 } while ((Ctx = cast_or_null<Decl>(Ctx->getDeclContext()))); 7932 7933 return true; 7934 } 7935 7936 static bool 7937 shouldDiagnoseAvailabilityByDefault(const ASTContext &Context, 7938 const VersionTuple &DeploymentVersion, 7939 const VersionTuple &DeclVersion) { 7940 const auto &Triple = Context.getTargetInfo().getTriple(); 7941 VersionTuple ForceAvailabilityFromVersion; 7942 switch (Triple.getOS()) { 7943 case llvm::Triple::IOS: 7944 case llvm::Triple::TvOS: 7945 ForceAvailabilityFromVersion = VersionTuple(/*Major=*/11); 7946 break; 7947 case llvm::Triple::WatchOS: 7948 ForceAvailabilityFromVersion = VersionTuple(/*Major=*/4); 7949 break; 7950 case llvm::Triple::Darwin: 7951 case llvm::Triple::MacOSX: 7952 ForceAvailabilityFromVersion = VersionTuple(/*Major=*/10, /*Minor=*/13); 7953 break; 7954 default: 7955 // New targets should always warn about availability. 7956 return Triple.getVendor() == llvm::Triple::Apple; 7957 } 7958 return DeploymentVersion >= ForceAvailabilityFromVersion || 7959 DeclVersion >= ForceAvailabilityFromVersion; 7960 } 7961 7962 static NamedDecl *findEnclosingDeclToAnnotate(Decl *OrigCtx) { 7963 for (Decl *Ctx = OrigCtx; Ctx; 7964 Ctx = cast_or_null<Decl>(Ctx->getDeclContext())) { 7965 if (isa<TagDecl>(Ctx) || isa<FunctionDecl>(Ctx) || isa<ObjCMethodDecl>(Ctx)) 7966 return cast<NamedDecl>(Ctx); 7967 if (auto *CD = dyn_cast<ObjCContainerDecl>(Ctx)) { 7968 if (auto *Imp = dyn_cast<ObjCImplDecl>(Ctx)) 7969 return Imp->getClassInterface(); 7970 return CD; 7971 } 7972 } 7973 7974 return dyn_cast<NamedDecl>(OrigCtx); 7975 } 7976 7977 namespace { 7978 7979 struct AttributeInsertion { 7980 StringRef Prefix; 7981 SourceLocation Loc; 7982 StringRef Suffix; 7983 7984 static AttributeInsertion createInsertionAfter(const NamedDecl *D) { 7985 return {" ", D->getEndLoc(), ""}; 7986 } 7987 static AttributeInsertion createInsertionAfter(SourceLocation Loc) { 7988 return {" ", Loc, ""}; 7989 } 7990 static AttributeInsertion createInsertionBefore(const NamedDecl *D) { 7991 return {"", D->getBeginLoc(), "\n"}; 7992 } 7993 }; 7994 7995 } // end anonymous namespace 7996 7997 /// Tries to parse a string as ObjC method name. 7998 /// 7999 /// \param Name The string to parse. Expected to originate from availability 8000 /// attribute argument. 8001 /// \param SlotNames The vector that will be populated with slot names. In case 8002 /// of unsuccessful parsing can contain invalid data. 8003 /// \returns A number of method parameters if parsing was successful, None 8004 /// otherwise. 8005 static Optional<unsigned> 8006 tryParseObjCMethodName(StringRef Name, SmallVectorImpl<StringRef> &SlotNames, 8007 const LangOptions &LangOpts) { 8008 // Accept replacements starting with - or + as valid ObjC method names. 8009 if (!Name.empty() && (Name.front() == '-' || Name.front() == '+')) 8010 Name = Name.drop_front(1); 8011 if (Name.empty()) 8012 return None; 8013 Name.split(SlotNames, ':'); 8014 unsigned NumParams; 8015 if (Name.back() == ':') { 8016 // Remove an empty string at the end that doesn't represent any slot. 8017 SlotNames.pop_back(); 8018 NumParams = SlotNames.size(); 8019 } else { 8020 if (SlotNames.size() != 1) 8021 // Not a valid method name, just a colon-separated string. 8022 return None; 8023 NumParams = 0; 8024 } 8025 // Verify all slot names are valid. 8026 bool AllowDollar = LangOpts.DollarIdents; 8027 for (StringRef S : SlotNames) { 8028 if (S.empty()) 8029 continue; 8030 if (!isValidIdentifier(S, AllowDollar)) 8031 return None; 8032 } 8033 return NumParams; 8034 } 8035 8036 /// Returns a source location in which it's appropriate to insert a new 8037 /// attribute for the given declaration \D. 8038 static Optional<AttributeInsertion> 8039 createAttributeInsertion(const NamedDecl *D, const SourceManager &SM, 8040 const LangOptions &LangOpts) { 8041 if (isa<ObjCPropertyDecl>(D)) 8042 return AttributeInsertion::createInsertionAfter(D); 8043 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { 8044 if (MD->hasBody()) 8045 return None; 8046 return AttributeInsertion::createInsertionAfter(D); 8047 } 8048 if (const auto *TD = dyn_cast<TagDecl>(D)) { 8049 SourceLocation Loc = 8050 Lexer::getLocForEndOfToken(TD->getInnerLocStart(), 0, SM, LangOpts); 8051 if (Loc.isInvalid()) 8052 return None; 8053 // Insert after the 'struct'/whatever keyword. 8054 return AttributeInsertion::createInsertionAfter(Loc); 8055 } 8056 return AttributeInsertion::createInsertionBefore(D); 8057 } 8058 8059 /// Actually emit an availability diagnostic for a reference to an unavailable 8060 /// decl. 8061 /// 8062 /// \param Ctx The context that the reference occurred in 8063 /// \param ReferringDecl The exact declaration that was referenced. 8064 /// \param OffendingDecl A related decl to \c ReferringDecl that has an 8065 /// availability attribute corresponding to \c K attached to it. Note that this 8066 /// may not be the same as ReferringDecl, i.e. if an EnumDecl is annotated and 8067 /// we refer to a member EnumConstantDecl, ReferringDecl is the EnumConstantDecl 8068 /// and OffendingDecl is the EnumDecl. 8069 static void DoEmitAvailabilityWarning(Sema &S, AvailabilityResult K, 8070 Decl *Ctx, const NamedDecl *ReferringDecl, 8071 const NamedDecl *OffendingDecl, 8072 StringRef Message, 8073 ArrayRef<SourceLocation> Locs, 8074 const ObjCInterfaceDecl *UnknownObjCClass, 8075 const ObjCPropertyDecl *ObjCProperty, 8076 bool ObjCPropertyAccess) { 8077 // Diagnostics for deprecated or unavailable. 8078 unsigned diag, diag_message, diag_fwdclass_message; 8079 unsigned diag_available_here = diag::note_availability_specified_here; 8080 SourceLocation NoteLocation = OffendingDecl->getLocation(); 8081 8082 // Matches 'diag::note_property_attribute' options. 8083 unsigned property_note_select; 8084 8085 // Matches diag::note_availability_specified_here. 8086 unsigned available_here_select_kind; 8087 8088 VersionTuple DeclVersion; 8089 if (const AvailabilityAttr *AA = getAttrForPlatform(S.Context, OffendingDecl)) 8090 DeclVersion = AA->getIntroduced(); 8091 8092 if (!ShouldDiagnoseAvailabilityInContext(S, K, DeclVersion, Ctx, 8093 OffendingDecl)) 8094 return; 8095 8096 SourceLocation Loc = Locs.front(); 8097 8098 // The declaration can have multiple availability attributes, we are looking 8099 // at one of them. 8100 const AvailabilityAttr *A = getAttrForPlatform(S.Context, OffendingDecl); 8101 if (A && A->isInherited()) { 8102 for (const Decl *Redecl = OffendingDecl->getMostRecentDecl(); Redecl; 8103 Redecl = Redecl->getPreviousDecl()) { 8104 const AvailabilityAttr *AForRedecl = 8105 getAttrForPlatform(S.Context, Redecl); 8106 if (AForRedecl && !AForRedecl->isInherited()) { 8107 // If D is a declaration with inherited attributes, the note should 8108 // point to the declaration with actual attributes. 8109 NoteLocation = Redecl->getLocation(); 8110 break; 8111 } 8112 } 8113 } 8114 8115 switch (K) { 8116 case AR_NotYetIntroduced: { 8117 // We would like to emit the diagnostic even if -Wunguarded-availability is 8118 // not specified for deployment targets >= to iOS 11 or equivalent or 8119 // for declarations that were introduced in iOS 11 (macOS 10.13, ...) or 8120 // later. 8121 const AvailabilityAttr *AA = 8122 getAttrForPlatform(S.getASTContext(), OffendingDecl); 8123 VersionTuple Introduced = AA->getIntroduced(); 8124 8125 bool UseNewWarning = shouldDiagnoseAvailabilityByDefault( 8126 S.Context, S.Context.getTargetInfo().getPlatformMinVersion(), 8127 Introduced); 8128 unsigned Warning = UseNewWarning ? diag::warn_unguarded_availability_new 8129 : diag::warn_unguarded_availability; 8130 8131 std::string PlatformName = AvailabilityAttr::getPrettyPlatformName( 8132 S.getASTContext().getTargetInfo().getPlatformName()); 8133 8134 S.Diag(Loc, Warning) << OffendingDecl << PlatformName 8135 << Introduced.getAsString(); 8136 8137 S.Diag(OffendingDecl->getLocation(), 8138 diag::note_partial_availability_specified_here) 8139 << OffendingDecl << PlatformName << Introduced.getAsString() 8140 << S.Context.getTargetInfo().getPlatformMinVersion().getAsString(); 8141 8142 if (const auto *Enclosing = findEnclosingDeclToAnnotate(Ctx)) { 8143 if (const auto *TD = dyn_cast<TagDecl>(Enclosing)) 8144 if (TD->getDeclName().isEmpty()) { 8145 S.Diag(TD->getLocation(), 8146 diag::note_decl_unguarded_availability_silence) 8147 << /*Anonymous*/ 1 << TD->getKindName(); 8148 return; 8149 } 8150 auto FixitNoteDiag = 8151 S.Diag(Enclosing->getLocation(), 8152 diag::note_decl_unguarded_availability_silence) 8153 << /*Named*/ 0 << Enclosing; 8154 // Don't offer a fixit for declarations with availability attributes. 8155 if (Enclosing->hasAttr<AvailabilityAttr>()) 8156 return; 8157 if (!S.getPreprocessor().isMacroDefined("API_AVAILABLE")) 8158 return; 8159 Optional<AttributeInsertion> Insertion = createAttributeInsertion( 8160 Enclosing, S.getSourceManager(), S.getLangOpts()); 8161 if (!Insertion) 8162 return; 8163 std::string PlatformName = 8164 AvailabilityAttr::getPlatformNameSourceSpelling( 8165 S.getASTContext().getTargetInfo().getPlatformName()) 8166 .lower(); 8167 std::string Introduced = 8168 OffendingDecl->getVersionIntroduced().getAsString(); 8169 FixitNoteDiag << FixItHint::CreateInsertion( 8170 Insertion->Loc, 8171 (llvm::Twine(Insertion->Prefix) + "API_AVAILABLE(" + PlatformName + 8172 "(" + Introduced + "))" + Insertion->Suffix) 8173 .str()); 8174 } 8175 return; 8176 } 8177 case AR_Deprecated: 8178 diag = !ObjCPropertyAccess ? diag::warn_deprecated 8179 : diag::warn_property_method_deprecated; 8180 diag_message = diag::warn_deprecated_message; 8181 diag_fwdclass_message = diag::warn_deprecated_fwdclass_message; 8182 property_note_select = /* deprecated */ 0; 8183 available_here_select_kind = /* deprecated */ 2; 8184 if (const auto *AL = OffendingDecl->getAttr<DeprecatedAttr>()) 8185 NoteLocation = AL->getLocation(); 8186 break; 8187 8188 case AR_Unavailable: 8189 diag = !ObjCPropertyAccess ? diag::err_unavailable 8190 : diag::err_property_method_unavailable; 8191 diag_message = diag::err_unavailable_message; 8192 diag_fwdclass_message = diag::warn_unavailable_fwdclass_message; 8193 property_note_select = /* unavailable */ 1; 8194 available_here_select_kind = /* unavailable */ 0; 8195 8196 if (auto AL = OffendingDecl->getAttr<UnavailableAttr>()) { 8197 if (AL->isImplicit() && AL->getImplicitReason()) { 8198 // Most of these failures are due to extra restrictions in ARC; 8199 // reflect that in the primary diagnostic when applicable. 8200 auto flagARCError = [&] { 8201 if (S.getLangOpts().ObjCAutoRefCount && 8202 S.getSourceManager().isInSystemHeader( 8203 OffendingDecl->getLocation())) 8204 diag = diag::err_unavailable_in_arc; 8205 }; 8206 8207 switch (AL->getImplicitReason()) { 8208 case UnavailableAttr::IR_None: break; 8209 8210 case UnavailableAttr::IR_ARCForbiddenType: 8211 flagARCError(); 8212 diag_available_here = diag::note_arc_forbidden_type; 8213 break; 8214 8215 case UnavailableAttr::IR_ForbiddenWeak: 8216 if (S.getLangOpts().ObjCWeakRuntime) 8217 diag_available_here = diag::note_arc_weak_disabled; 8218 else 8219 diag_available_here = diag::note_arc_weak_no_runtime; 8220 break; 8221 8222 case UnavailableAttr::IR_ARCForbiddenConversion: 8223 flagARCError(); 8224 diag_available_here = diag::note_performs_forbidden_arc_conversion; 8225 break; 8226 8227 case UnavailableAttr::IR_ARCInitReturnsUnrelated: 8228 flagARCError(); 8229 diag_available_here = diag::note_arc_init_returns_unrelated; 8230 break; 8231 8232 case UnavailableAttr::IR_ARCFieldWithOwnership: 8233 flagARCError(); 8234 diag_available_here = diag::note_arc_field_with_ownership; 8235 break; 8236 } 8237 } 8238 } 8239 break; 8240 8241 case AR_Available: 8242 llvm_unreachable("Warning for availability of available declaration?"); 8243 } 8244 8245 SmallVector<FixItHint, 12> FixIts; 8246 if (K == AR_Deprecated) { 8247 StringRef Replacement; 8248 if (auto AL = OffendingDecl->getAttr<DeprecatedAttr>()) 8249 Replacement = AL->getReplacement(); 8250 if (auto AL = getAttrForPlatform(S.Context, OffendingDecl)) 8251 Replacement = AL->getReplacement(); 8252 8253 CharSourceRange UseRange; 8254 if (!Replacement.empty()) 8255 UseRange = 8256 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc)); 8257 if (UseRange.isValid()) { 8258 if (const auto *MethodDecl = dyn_cast<ObjCMethodDecl>(ReferringDecl)) { 8259 Selector Sel = MethodDecl->getSelector(); 8260 SmallVector<StringRef, 12> SelectorSlotNames; 8261 Optional<unsigned> NumParams = tryParseObjCMethodName( 8262 Replacement, SelectorSlotNames, S.getLangOpts()); 8263 if (NumParams && NumParams.getValue() == Sel.getNumArgs()) { 8264 assert(SelectorSlotNames.size() == Locs.size()); 8265 for (unsigned I = 0; I < Locs.size(); ++I) { 8266 if (!Sel.getNameForSlot(I).empty()) { 8267 CharSourceRange NameRange = CharSourceRange::getCharRange( 8268 Locs[I], S.getLocForEndOfToken(Locs[I])); 8269 FixIts.push_back(FixItHint::CreateReplacement( 8270 NameRange, SelectorSlotNames[I])); 8271 } else 8272 FixIts.push_back( 8273 FixItHint::CreateInsertion(Locs[I], SelectorSlotNames[I])); 8274 } 8275 } else 8276 FixIts.push_back(FixItHint::CreateReplacement(UseRange, Replacement)); 8277 } else 8278 FixIts.push_back(FixItHint::CreateReplacement(UseRange, Replacement)); 8279 } 8280 } 8281 8282 if (!Message.empty()) { 8283 S.Diag(Loc, diag_message) << ReferringDecl << Message << FixIts; 8284 if (ObjCProperty) 8285 S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute) 8286 << ObjCProperty->getDeclName() << property_note_select; 8287 } else if (!UnknownObjCClass) { 8288 S.Diag(Loc, diag) << ReferringDecl << FixIts; 8289 if (ObjCProperty) 8290 S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute) 8291 << ObjCProperty->getDeclName() << property_note_select; 8292 } else { 8293 S.Diag(Loc, diag_fwdclass_message) << ReferringDecl << FixIts; 8294 S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class); 8295 } 8296 8297 S.Diag(NoteLocation, diag_available_here) 8298 << OffendingDecl << available_here_select_kind; 8299 } 8300 8301 static void handleDelayedAvailabilityCheck(Sema &S, DelayedDiagnostic &DD, 8302 Decl *Ctx) { 8303 assert(DD.Kind == DelayedDiagnostic::Availability && 8304 "Expected an availability diagnostic here"); 8305 8306 DD.Triggered = true; 8307 DoEmitAvailabilityWarning( 8308 S, DD.getAvailabilityResult(), Ctx, DD.getAvailabilityReferringDecl(), 8309 DD.getAvailabilityOffendingDecl(), DD.getAvailabilityMessage(), 8310 DD.getAvailabilitySelectorLocs(), DD.getUnknownObjCClass(), 8311 DD.getObjCProperty(), false); 8312 } 8313 8314 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) { 8315 assert(DelayedDiagnostics.getCurrentPool()); 8316 DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool(); 8317 DelayedDiagnostics.popWithoutEmitting(state); 8318 8319 // When delaying diagnostics to run in the context of a parsed 8320 // declaration, we only want to actually emit anything if parsing 8321 // succeeds. 8322 if (!decl) return; 8323 8324 // We emit all the active diagnostics in this pool or any of its 8325 // parents. In general, we'll get one pool for the decl spec 8326 // and a child pool for each declarator; in a decl group like: 8327 // deprecated_typedef foo, *bar, baz(); 8328 // only the declarator pops will be passed decls. This is correct; 8329 // we really do need to consider delayed diagnostics from the decl spec 8330 // for each of the different declarations. 8331 const DelayedDiagnosticPool *pool = &poppedPool; 8332 do { 8333 bool AnyAccessFailures = false; 8334 for (DelayedDiagnosticPool::pool_iterator 8335 i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) { 8336 // This const_cast is a bit lame. Really, Triggered should be mutable. 8337 DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i); 8338 if (diag.Triggered) 8339 continue; 8340 8341 switch (diag.Kind) { 8342 case DelayedDiagnostic::Availability: 8343 // Don't bother giving deprecation/unavailable diagnostics if 8344 // the decl is invalid. 8345 if (!decl->isInvalidDecl()) 8346 handleDelayedAvailabilityCheck(*this, diag, decl); 8347 break; 8348 8349 case DelayedDiagnostic::Access: 8350 // Only produce one access control diagnostic for a structured binding 8351 // declaration: we don't need to tell the user that all the fields are 8352 // inaccessible one at a time. 8353 if (AnyAccessFailures && isa<DecompositionDecl>(decl)) 8354 continue; 8355 HandleDelayedAccessCheck(diag, decl); 8356 if (diag.Triggered) 8357 AnyAccessFailures = true; 8358 break; 8359 8360 case DelayedDiagnostic::ForbiddenType: 8361 handleDelayedForbiddenType(*this, diag, decl); 8362 break; 8363 } 8364 } 8365 } while ((pool = pool->getParent())); 8366 } 8367 8368 /// Given a set of delayed diagnostics, re-emit them as if they had 8369 /// been delayed in the current context instead of in the given pool. 8370 /// Essentially, this just moves them to the current pool. 8371 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) { 8372 DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool(); 8373 assert(curPool && "re-emitting in undelayed context not supported"); 8374 curPool->steal(pool); 8375 } 8376 8377 static void EmitAvailabilityWarning(Sema &S, AvailabilityResult AR, 8378 const NamedDecl *ReferringDecl, 8379 const NamedDecl *OffendingDecl, 8380 StringRef Message, 8381 ArrayRef<SourceLocation> Locs, 8382 const ObjCInterfaceDecl *UnknownObjCClass, 8383 const ObjCPropertyDecl *ObjCProperty, 8384 bool ObjCPropertyAccess) { 8385 // Delay if we're currently parsing a declaration. 8386 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) { 8387 S.DelayedDiagnostics.add( 8388 DelayedDiagnostic::makeAvailability( 8389 AR, Locs, ReferringDecl, OffendingDecl, UnknownObjCClass, 8390 ObjCProperty, Message, ObjCPropertyAccess)); 8391 return; 8392 } 8393 8394 Decl *Ctx = cast<Decl>(S.getCurLexicalContext()); 8395 DoEmitAvailabilityWarning(S, AR, Ctx, ReferringDecl, OffendingDecl, 8396 Message, Locs, UnknownObjCClass, ObjCProperty, 8397 ObjCPropertyAccess); 8398 } 8399 8400 namespace { 8401 8402 /// Returns true if the given statement can be a body-like child of \p Parent. 8403 bool isBodyLikeChildStmt(const Stmt *S, const Stmt *Parent) { 8404 switch (Parent->getStmtClass()) { 8405 case Stmt::IfStmtClass: 8406 return cast<IfStmt>(Parent)->getThen() == S || 8407 cast<IfStmt>(Parent)->getElse() == S; 8408 case Stmt::WhileStmtClass: 8409 return cast<WhileStmt>(Parent)->getBody() == S; 8410 case Stmt::DoStmtClass: 8411 return cast<DoStmt>(Parent)->getBody() == S; 8412 case Stmt::ForStmtClass: 8413 return cast<ForStmt>(Parent)->getBody() == S; 8414 case Stmt::CXXForRangeStmtClass: 8415 return cast<CXXForRangeStmt>(Parent)->getBody() == S; 8416 case Stmt::ObjCForCollectionStmtClass: 8417 return cast<ObjCForCollectionStmt>(Parent)->getBody() == S; 8418 case Stmt::CaseStmtClass: 8419 case Stmt::DefaultStmtClass: 8420 return cast<SwitchCase>(Parent)->getSubStmt() == S; 8421 default: 8422 return false; 8423 } 8424 } 8425 8426 class StmtUSEFinder : public RecursiveASTVisitor<StmtUSEFinder> { 8427 const Stmt *Target; 8428 8429 public: 8430 bool VisitStmt(Stmt *S) { return S != Target; } 8431 8432 /// Returns true if the given statement is present in the given declaration. 8433 static bool isContained(const Stmt *Target, const Decl *D) { 8434 StmtUSEFinder Visitor; 8435 Visitor.Target = Target; 8436 return !Visitor.TraverseDecl(const_cast<Decl *>(D)); 8437 } 8438 }; 8439 8440 /// Traverses the AST and finds the last statement that used a given 8441 /// declaration. 8442 class LastDeclUSEFinder : public RecursiveASTVisitor<LastDeclUSEFinder> { 8443 const Decl *D; 8444 8445 public: 8446 bool VisitDeclRefExpr(DeclRefExpr *DRE) { 8447 if (DRE->getDecl() == D) 8448 return false; 8449 return true; 8450 } 8451 8452 static const Stmt *findLastStmtThatUsesDecl(const Decl *D, 8453 const CompoundStmt *Scope) { 8454 LastDeclUSEFinder Visitor; 8455 Visitor.D = D; 8456 for (auto I = Scope->body_rbegin(), E = Scope->body_rend(); I != E; ++I) { 8457 const Stmt *S = *I; 8458 if (!Visitor.TraverseStmt(const_cast<Stmt *>(S))) 8459 return S; 8460 } 8461 return nullptr; 8462 } 8463 }; 8464 8465 /// This class implements -Wunguarded-availability. 8466 /// 8467 /// This is done with a traversal of the AST of a function that makes reference 8468 /// to a partially available declaration. Whenever we encounter an \c if of the 8469 /// form: \c if(@available(...)), we use the version from the condition to visit 8470 /// the then statement. 8471 class DiagnoseUnguardedAvailability 8472 : public RecursiveASTVisitor<DiagnoseUnguardedAvailability> { 8473 typedef RecursiveASTVisitor<DiagnoseUnguardedAvailability> Base; 8474 8475 Sema &SemaRef; 8476 Decl *Ctx; 8477 8478 /// Stack of potentially nested 'if (@available(...))'s. 8479 SmallVector<VersionTuple, 8> AvailabilityStack; 8480 SmallVector<const Stmt *, 16> StmtStack; 8481 8482 void DiagnoseDeclAvailability(NamedDecl *D, SourceRange Range, 8483 ObjCInterfaceDecl *ClassReceiver = nullptr); 8484 8485 public: 8486 DiagnoseUnguardedAvailability(Sema &SemaRef, Decl *Ctx) 8487 : SemaRef(SemaRef), Ctx(Ctx) { 8488 AvailabilityStack.push_back( 8489 SemaRef.Context.getTargetInfo().getPlatformMinVersion()); 8490 } 8491 8492 bool TraverseDecl(Decl *D) { 8493 // Avoid visiting nested functions to prevent duplicate warnings. 8494 if (!D || isa<FunctionDecl>(D)) 8495 return true; 8496 return Base::TraverseDecl(D); 8497 } 8498 8499 bool TraverseStmt(Stmt *S) { 8500 if (!S) 8501 return true; 8502 StmtStack.push_back(S); 8503 bool Result = Base::TraverseStmt(S); 8504 StmtStack.pop_back(); 8505 return Result; 8506 } 8507 8508 void IssueDiagnostics(Stmt *S) { TraverseStmt(S); } 8509 8510 bool TraverseIfStmt(IfStmt *If); 8511 8512 bool TraverseLambdaExpr(LambdaExpr *E) { return true; } 8513 8514 // for 'case X:' statements, don't bother looking at the 'X'; it can't lead 8515 // to any useful diagnostics. 8516 bool TraverseCaseStmt(CaseStmt *CS) { return TraverseStmt(CS->getSubStmt()); } 8517 8518 bool VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *PRE) { 8519 if (PRE->isClassReceiver()) 8520 DiagnoseDeclAvailability(PRE->getClassReceiver(), PRE->getReceiverLocation()); 8521 return true; 8522 } 8523 8524 bool VisitObjCMessageExpr(ObjCMessageExpr *Msg) { 8525 if (ObjCMethodDecl *D = Msg->getMethodDecl()) { 8526 ObjCInterfaceDecl *ID = nullptr; 8527 QualType ReceiverTy = Msg->getClassReceiver(); 8528 if (!ReceiverTy.isNull() && ReceiverTy->getAsObjCInterfaceType()) 8529 ID = ReceiverTy->getAsObjCInterfaceType()->getInterface(); 8530 8531 DiagnoseDeclAvailability( 8532 D, SourceRange(Msg->getSelectorStartLoc(), Msg->getEndLoc()), ID); 8533 } 8534 return true; 8535 } 8536 8537 bool VisitDeclRefExpr(DeclRefExpr *DRE) { 8538 DiagnoseDeclAvailability(DRE->getDecl(), 8539 SourceRange(DRE->getBeginLoc(), DRE->getEndLoc())); 8540 return true; 8541 } 8542 8543 bool VisitMemberExpr(MemberExpr *ME) { 8544 DiagnoseDeclAvailability(ME->getMemberDecl(), 8545 SourceRange(ME->getBeginLoc(), ME->getEndLoc())); 8546 return true; 8547 } 8548 8549 bool VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 8550 SemaRef.Diag(E->getBeginLoc(), diag::warn_at_available_unchecked_use) 8551 << (!SemaRef.getLangOpts().ObjC); 8552 return true; 8553 } 8554 8555 bool VisitTypeLoc(TypeLoc Ty); 8556 }; 8557 8558 void DiagnoseUnguardedAvailability::DiagnoseDeclAvailability( 8559 NamedDecl *D, SourceRange Range, ObjCInterfaceDecl *ReceiverClass) { 8560 AvailabilityResult Result; 8561 const NamedDecl *OffendingDecl; 8562 std::tie(Result, OffendingDecl) = 8563 ShouldDiagnoseAvailabilityOfDecl(SemaRef, D, nullptr, ReceiverClass); 8564 if (Result != AR_Available) { 8565 // All other diagnostic kinds have already been handled in 8566 // DiagnoseAvailabilityOfDecl. 8567 if (Result != AR_NotYetIntroduced) 8568 return; 8569 8570 const AvailabilityAttr *AA = 8571 getAttrForPlatform(SemaRef.getASTContext(), OffendingDecl); 8572 VersionTuple Introduced = AA->getIntroduced(); 8573 8574 if (AvailabilityStack.back() >= Introduced) 8575 return; 8576 8577 // If the context of this function is less available than D, we should not 8578 // emit a diagnostic. 8579 if (!ShouldDiagnoseAvailabilityInContext(SemaRef, Result, Introduced, Ctx, 8580 OffendingDecl)) 8581 return; 8582 8583 // We would like to emit the diagnostic even if -Wunguarded-availability is 8584 // not specified for deployment targets >= to iOS 11 or equivalent or 8585 // for declarations that were introduced in iOS 11 (macOS 10.13, ...) or 8586 // later. 8587 unsigned DiagKind = 8588 shouldDiagnoseAvailabilityByDefault( 8589 SemaRef.Context, 8590 SemaRef.Context.getTargetInfo().getPlatformMinVersion(), Introduced) 8591 ? diag::warn_unguarded_availability_new 8592 : diag::warn_unguarded_availability; 8593 8594 std::string PlatformName = AvailabilityAttr::getPrettyPlatformName( 8595 SemaRef.getASTContext().getTargetInfo().getPlatformName()); 8596 8597 SemaRef.Diag(Range.getBegin(), DiagKind) 8598 << Range << D << PlatformName << Introduced.getAsString(); 8599 8600 SemaRef.Diag(OffendingDecl->getLocation(), 8601 diag::note_partial_availability_specified_here) 8602 << OffendingDecl << PlatformName << Introduced.getAsString() 8603 << SemaRef.Context.getTargetInfo() 8604 .getPlatformMinVersion() 8605 .getAsString(); 8606 8607 auto FixitDiag = 8608 SemaRef.Diag(Range.getBegin(), diag::note_unguarded_available_silence) 8609 << Range << D 8610 << (SemaRef.getLangOpts().ObjC ? /*@available*/ 0 8611 : /*__builtin_available*/ 1); 8612 8613 // Find the statement which should be enclosed in the if @available check. 8614 if (StmtStack.empty()) 8615 return; 8616 const Stmt *StmtOfUse = StmtStack.back(); 8617 const CompoundStmt *Scope = nullptr; 8618 for (const Stmt *S : llvm::reverse(StmtStack)) { 8619 if (const auto *CS = dyn_cast<CompoundStmt>(S)) { 8620 Scope = CS; 8621 break; 8622 } 8623 if (isBodyLikeChildStmt(StmtOfUse, S)) { 8624 // The declaration won't be seen outside of the statement, so we don't 8625 // have to wrap the uses of any declared variables in if (@available). 8626 // Therefore we can avoid setting Scope here. 8627 break; 8628 } 8629 StmtOfUse = S; 8630 } 8631 const Stmt *LastStmtOfUse = nullptr; 8632 if (isa<DeclStmt>(StmtOfUse) && Scope) { 8633 for (const Decl *D : cast<DeclStmt>(StmtOfUse)->decls()) { 8634 if (StmtUSEFinder::isContained(StmtStack.back(), D)) { 8635 LastStmtOfUse = LastDeclUSEFinder::findLastStmtThatUsesDecl(D, Scope); 8636 break; 8637 } 8638 } 8639 } 8640 8641 const SourceManager &SM = SemaRef.getSourceManager(); 8642 SourceLocation IfInsertionLoc = 8643 SM.getExpansionLoc(StmtOfUse->getBeginLoc()); 8644 SourceLocation StmtEndLoc = 8645 SM.getExpansionRange( 8646 (LastStmtOfUse ? LastStmtOfUse : StmtOfUse)->getEndLoc()) 8647 .getEnd(); 8648 if (SM.getFileID(IfInsertionLoc) != SM.getFileID(StmtEndLoc)) 8649 return; 8650 8651 StringRef Indentation = Lexer::getIndentationForLine(IfInsertionLoc, SM); 8652 const char *ExtraIndentation = " "; 8653 std::string FixItString; 8654 llvm::raw_string_ostream FixItOS(FixItString); 8655 FixItOS << "if (" << (SemaRef.getLangOpts().ObjC ? "@available" 8656 : "__builtin_available") 8657 << "(" 8658 << AvailabilityAttr::getPlatformNameSourceSpelling( 8659 SemaRef.getASTContext().getTargetInfo().getPlatformName()) 8660 << " " << Introduced.getAsString() << ", *)) {\n" 8661 << Indentation << ExtraIndentation; 8662 FixitDiag << FixItHint::CreateInsertion(IfInsertionLoc, FixItOS.str()); 8663 SourceLocation ElseInsertionLoc = Lexer::findLocationAfterToken( 8664 StmtEndLoc, tok::semi, SM, SemaRef.getLangOpts(), 8665 /*SkipTrailingWhitespaceAndNewLine=*/false); 8666 if (ElseInsertionLoc.isInvalid()) 8667 ElseInsertionLoc = 8668 Lexer::getLocForEndOfToken(StmtEndLoc, 0, SM, SemaRef.getLangOpts()); 8669 FixItOS.str().clear(); 8670 FixItOS << "\n" 8671 << Indentation << "} else {\n" 8672 << Indentation << ExtraIndentation 8673 << "// Fallback on earlier versions\n" 8674 << Indentation << "}"; 8675 FixitDiag << FixItHint::CreateInsertion(ElseInsertionLoc, FixItOS.str()); 8676 } 8677 } 8678 8679 bool DiagnoseUnguardedAvailability::VisitTypeLoc(TypeLoc Ty) { 8680 const Type *TyPtr = Ty.getTypePtr(); 8681 SourceRange Range{Ty.getBeginLoc(), Ty.getEndLoc()}; 8682 8683 if (Range.isInvalid()) 8684 return true; 8685 8686 if (const auto *TT = dyn_cast<TagType>(TyPtr)) { 8687 TagDecl *TD = TT->getDecl(); 8688 DiagnoseDeclAvailability(TD, Range); 8689 8690 } else if (const auto *TD = dyn_cast<TypedefType>(TyPtr)) { 8691 TypedefNameDecl *D = TD->getDecl(); 8692 DiagnoseDeclAvailability(D, Range); 8693 8694 } else if (const auto *ObjCO = dyn_cast<ObjCObjectType>(TyPtr)) { 8695 if (NamedDecl *D = ObjCO->getInterface()) 8696 DiagnoseDeclAvailability(D, Range); 8697 } 8698 8699 return true; 8700 } 8701 8702 bool DiagnoseUnguardedAvailability::TraverseIfStmt(IfStmt *If) { 8703 VersionTuple CondVersion; 8704 if (auto *E = dyn_cast<ObjCAvailabilityCheckExpr>(If->getCond())) { 8705 CondVersion = E->getVersion(); 8706 8707 // If we're using the '*' case here or if this check is redundant, then we 8708 // use the enclosing version to check both branches. 8709 if (CondVersion.empty() || CondVersion <= AvailabilityStack.back()) 8710 return TraverseStmt(If->getThen()) && TraverseStmt(If->getElse()); 8711 } else { 8712 // This isn't an availability checking 'if', we can just continue. 8713 return Base::TraverseIfStmt(If); 8714 } 8715 8716 AvailabilityStack.push_back(CondVersion); 8717 bool ShouldContinue = TraverseStmt(If->getThen()); 8718 AvailabilityStack.pop_back(); 8719 8720 return ShouldContinue && TraverseStmt(If->getElse()); 8721 } 8722 8723 } // end anonymous namespace 8724 8725 void Sema::DiagnoseUnguardedAvailabilityViolations(Decl *D) { 8726 Stmt *Body = nullptr; 8727 8728 if (auto *FD = D->getAsFunction()) { 8729 // FIXME: We only examine the pattern decl for availability violations now, 8730 // but we should also examine instantiated templates. 8731 if (FD->isTemplateInstantiation()) 8732 return; 8733 8734 Body = FD->getBody(); 8735 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(D)) 8736 Body = MD->getBody(); 8737 else if (auto *BD = dyn_cast<BlockDecl>(D)) 8738 Body = BD->getBody(); 8739 8740 assert(Body && "Need a body here!"); 8741 8742 DiagnoseUnguardedAvailability(*this, D).IssueDiagnostics(Body); 8743 } 8744 8745 void Sema::DiagnoseAvailabilityOfDecl(NamedDecl *D, 8746 ArrayRef<SourceLocation> Locs, 8747 const ObjCInterfaceDecl *UnknownObjCClass, 8748 bool ObjCPropertyAccess, 8749 bool AvoidPartialAvailabilityChecks, 8750 ObjCInterfaceDecl *ClassReceiver) { 8751 std::string Message; 8752 AvailabilityResult Result; 8753 const NamedDecl* OffendingDecl; 8754 // See if this declaration is unavailable, deprecated, or partial. 8755 std::tie(Result, OffendingDecl) = 8756 ShouldDiagnoseAvailabilityOfDecl(*this, D, &Message, ClassReceiver); 8757 if (Result == AR_Available) 8758 return; 8759 8760 if (Result == AR_NotYetIntroduced) { 8761 if (AvoidPartialAvailabilityChecks) 8762 return; 8763 8764 // We need to know the @available context in the current function to 8765 // diagnose this use, let DiagnoseUnguardedAvailabilityViolations do that 8766 // when we're done parsing the current function. 8767 if (getCurFunctionOrMethodDecl()) { 8768 getEnclosingFunction()->HasPotentialAvailabilityViolations = true; 8769 return; 8770 } else if (getCurBlock() || getCurLambda()) { 8771 getCurFunction()->HasPotentialAvailabilityViolations = true; 8772 return; 8773 } 8774 } 8775 8776 const ObjCPropertyDecl *ObjCPDecl = nullptr; 8777 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { 8778 if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) { 8779 AvailabilityResult PDeclResult = PD->getAvailability(nullptr); 8780 if (PDeclResult == Result) 8781 ObjCPDecl = PD; 8782 } 8783 } 8784 8785 EmitAvailabilityWarning(*this, Result, D, OffendingDecl, Message, Locs, 8786 UnknownObjCClass, ObjCPDecl, ObjCPropertyAccess); 8787 } 8788