xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaDeclAttr.cpp (revision 65f8467e3351c38a9d57b538b85cf6c5fab5818e)
1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements decl-related attribute processing.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTMutationListener.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/CharInfo.h"
26 #include "clang/Basic/DarwinSDKInfo.h"
27 #include "clang/Basic/HLSLRuntime.h"
28 #include "clang/Basic/LangOptions.h"
29 #include "clang/Basic/SourceLocation.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetBuiltins.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/DelayedDiagnostic.h"
36 #include "clang/Sema/Initialization.h"
37 #include "clang/Sema/Lookup.h"
38 #include "clang/Sema/ParsedAttr.h"
39 #include "clang/Sema/Scope.h"
40 #include "clang/Sema/ScopeInfo.h"
41 #include "clang/Sema/SemaInternal.h"
42 #include "llvm/ADT/STLExtras.h"
43 #include "llvm/ADT/StringExtras.h"
44 #include "llvm/IR/Assumptions.h"
45 #include "llvm/MC/MCSectionMachO.h"
46 #include "llvm/Support/Error.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <optional>
50 
51 using namespace clang;
52 using namespace sema;
53 
54 namespace AttributeLangSupport {
55   enum LANG {
56     C,
57     Cpp,
58     ObjC
59   };
60 } // end namespace AttributeLangSupport
61 
62 //===----------------------------------------------------------------------===//
63 //  Helper functions
64 //===----------------------------------------------------------------------===//
65 
66 /// isFunctionOrMethod - Return true if the given decl has function
67 /// type (function or function-typed variable) or an Objective-C
68 /// method.
69 static bool isFunctionOrMethod(const Decl *D) {
70   return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
71 }
72 
73 /// Return true if the given decl has function type (function or
74 /// function-typed variable) or an Objective-C method or a block.
75 static bool isFunctionOrMethodOrBlock(const Decl *D) {
76   return isFunctionOrMethod(D) || isa<BlockDecl>(D);
77 }
78 
79 /// Return true if the given decl has a declarator that should have
80 /// been processed by Sema::GetTypeForDeclarator.
81 static bool hasDeclarator(const Decl *D) {
82   // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
83   return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
84          isa<ObjCPropertyDecl>(D);
85 }
86 
87 /// hasFunctionProto - Return true if the given decl has a argument
88 /// information. This decl should have already passed
89 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
90 static bool hasFunctionProto(const Decl *D) {
91   if (const FunctionType *FnTy = D->getFunctionType())
92     return isa<FunctionProtoType>(FnTy);
93   return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
94 }
95 
96 /// getFunctionOrMethodNumParams - Return number of function or method
97 /// parameters. It is an error to call this on a K&R function (use
98 /// hasFunctionProto first).
99 static unsigned getFunctionOrMethodNumParams(const Decl *D) {
100   if (const FunctionType *FnTy = D->getFunctionType())
101     return cast<FunctionProtoType>(FnTy)->getNumParams();
102   if (const auto *BD = dyn_cast<BlockDecl>(D))
103     return BD->getNumParams();
104   return cast<ObjCMethodDecl>(D)->param_size();
105 }
106 
107 static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D,
108                                                    unsigned Idx) {
109   if (const auto *FD = dyn_cast<FunctionDecl>(D))
110     return FD->getParamDecl(Idx);
111   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
112     return MD->getParamDecl(Idx);
113   if (const auto *BD = dyn_cast<BlockDecl>(D))
114     return BD->getParamDecl(Idx);
115   return nullptr;
116 }
117 
118 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
119   if (const FunctionType *FnTy = D->getFunctionType())
120     return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
121   if (const auto *BD = dyn_cast<BlockDecl>(D))
122     return BD->getParamDecl(Idx)->getType();
123 
124   return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
125 }
126 
127 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
128   if (auto *PVD = getFunctionOrMethodParam(D, Idx))
129     return PVD->getSourceRange();
130   return SourceRange();
131 }
132 
133 static QualType getFunctionOrMethodResultType(const Decl *D) {
134   if (const FunctionType *FnTy = D->getFunctionType())
135     return FnTy->getReturnType();
136   return cast<ObjCMethodDecl>(D)->getReturnType();
137 }
138 
139 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
140   if (const auto *FD = dyn_cast<FunctionDecl>(D))
141     return FD->getReturnTypeSourceRange();
142   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
143     return MD->getReturnTypeSourceRange();
144   return SourceRange();
145 }
146 
147 static bool isFunctionOrMethodVariadic(const Decl *D) {
148   if (const FunctionType *FnTy = D->getFunctionType())
149     return cast<FunctionProtoType>(FnTy)->isVariadic();
150   if (const auto *BD = dyn_cast<BlockDecl>(D))
151     return BD->isVariadic();
152   return cast<ObjCMethodDecl>(D)->isVariadic();
153 }
154 
155 static bool isInstanceMethod(const Decl *D) {
156   if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D))
157     return MethodDecl->isInstance();
158   return false;
159 }
160 
161 static inline bool isNSStringType(QualType T, ASTContext &Ctx,
162                                   bool AllowNSAttributedString = false) {
163   const auto *PT = T->getAs<ObjCObjectPointerType>();
164   if (!PT)
165     return false;
166 
167   ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
168   if (!Cls)
169     return false;
170 
171   IdentifierInfo* ClsName = Cls->getIdentifier();
172 
173   if (AllowNSAttributedString &&
174       ClsName == &Ctx.Idents.get("NSAttributedString"))
175     return true;
176   // FIXME: Should we walk the chain of classes?
177   return ClsName == &Ctx.Idents.get("NSString") ||
178          ClsName == &Ctx.Idents.get("NSMutableString");
179 }
180 
181 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
182   const auto *PT = T->getAs<PointerType>();
183   if (!PT)
184     return false;
185 
186   const auto *RT = PT->getPointeeType()->getAs<RecordType>();
187   if (!RT)
188     return false;
189 
190   const RecordDecl *RD = RT->getDecl();
191   if (RD->getTagKind() != TTK_Struct)
192     return false;
193 
194   return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
195 }
196 
197 static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
198   // FIXME: Include the type in the argument list.
199   return AL.getNumArgs() + AL.hasParsedType();
200 }
201 
202 /// A helper function to provide Attribute Location for the Attr types
203 /// AND the ParsedAttr.
204 template <typename AttrInfo>
205 static std::enable_if_t<std::is_base_of_v<Attr, AttrInfo>, SourceLocation>
206 getAttrLoc(const AttrInfo &AL) {
207   return AL.getLocation();
208 }
209 static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); }
210 
211 /// If Expr is a valid integer constant, get the value of the integer
212 /// expression and return success or failure. May output an error.
213 ///
214 /// Negative argument is implicitly converted to unsigned, unless
215 /// \p StrictlyUnsigned is true.
216 template <typename AttrInfo>
217 static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr,
218                                 uint32_t &Val, unsigned Idx = UINT_MAX,
219                                 bool StrictlyUnsigned = false) {
220   std::optional<llvm::APSInt> I = llvm::APSInt(32);
221   if (Expr->isTypeDependent() ||
222       !(I = Expr->getIntegerConstantExpr(S.Context))) {
223     if (Idx != UINT_MAX)
224       S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
225           << &AI << Idx << AANT_ArgumentIntegerConstant
226           << Expr->getSourceRange();
227     else
228       S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
229           << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange();
230     return false;
231   }
232 
233   if (!I->isIntN(32)) {
234     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
235         << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
236     return false;
237   }
238 
239   if (StrictlyUnsigned && I->isSigned() && I->isNegative()) {
240     S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer)
241         << &AI << /*non-negative*/ 1;
242     return false;
243   }
244 
245   Val = (uint32_t)I->getZExtValue();
246   return true;
247 }
248 
249 /// Wrapper around checkUInt32Argument, with an extra check to be sure
250 /// that the result will fit into a regular (signed) int. All args have the same
251 /// purpose as they do in checkUInt32Argument.
252 template <typename AttrInfo>
253 static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
254                                      int &Val, unsigned Idx = UINT_MAX) {
255   uint32_t UVal;
256   if (!checkUInt32Argument(S, AI, Expr, UVal, Idx))
257     return false;
258 
259   if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
260     llvm::APSInt I(32); // for toString
261     I = UVal;
262     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
263         << toString(I, 10, false) << 32 << /* Unsigned */ 0;
264     return false;
265   }
266 
267   Val = UVal;
268   return true;
269 }
270 
271 /// Diagnose mutually exclusive attributes when present on a given
272 /// declaration. Returns true if diagnosed.
273 template <typename AttrTy>
274 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) {
275   if (const auto *A = D->getAttr<AttrTy>()) {
276     S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A;
277     S.Diag(A->getLocation(), diag::note_conflicting_attribute);
278     return true;
279   }
280   return false;
281 }
282 
283 template <typename AttrTy>
284 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) {
285   if (const auto *A = D->getAttr<AttrTy>()) {
286     S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL
287                                                                       << A;
288     S.Diag(A->getLocation(), diag::note_conflicting_attribute);
289     return true;
290   }
291   return false;
292 }
293 
294 /// Check if IdxExpr is a valid parameter index for a function or
295 /// instance method D.  May output an error.
296 ///
297 /// \returns true if IdxExpr is a valid index.
298 template <typename AttrInfo>
299 static bool checkFunctionOrMethodParameterIndex(
300     Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum,
301     const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) {
302   assert(isFunctionOrMethodOrBlock(D));
303 
304   // In C++ the implicit 'this' function parameter also counts.
305   // Parameters are counted from one.
306   bool HP = hasFunctionProto(D);
307   bool HasImplicitThisParam = isInstanceMethod(D);
308   bool IV = HP && isFunctionOrMethodVariadic(D);
309   unsigned NumParams =
310       (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
311 
312   std::optional<llvm::APSInt> IdxInt;
313   if (IdxExpr->isTypeDependent() ||
314       !(IdxInt = IdxExpr->getIntegerConstantExpr(S.Context))) {
315     S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
316         << &AI << AttrArgNum << AANT_ArgumentIntegerConstant
317         << IdxExpr->getSourceRange();
318     return false;
319   }
320 
321   unsigned IdxSource = IdxInt->getLimitedValue(UINT_MAX);
322   if (IdxSource < 1 || (!IV && IdxSource > NumParams)) {
323     S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
324         << &AI << AttrArgNum << IdxExpr->getSourceRange();
325     return false;
326   }
327   if (HasImplicitThisParam && !CanIndexImplicitThis) {
328     if (IdxSource == 1) {
329       S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument)
330           << &AI << IdxExpr->getSourceRange();
331       return false;
332     }
333   }
334 
335   Idx = ParamIdx(IdxSource, D);
336   return true;
337 }
338 
339 /// Check if the argument \p E is a ASCII string literal. If not emit an error
340 /// and return false, otherwise set \p Str to the value of the string literal
341 /// and return true.
342 bool Sema::checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI,
343                                           const Expr *E, StringRef &Str,
344                                           SourceLocation *ArgLocation) {
345   const auto *Literal = dyn_cast<StringLiteral>(E->IgnoreParenCasts());
346   if (ArgLocation)
347     *ArgLocation = E->getBeginLoc();
348 
349   if (!Literal || !Literal->isOrdinary()) {
350     Diag(E->getBeginLoc(), diag::err_attribute_argument_type)
351         << CI << AANT_ArgumentString;
352     return false;
353   }
354 
355   Str = Literal->getString();
356   return true;
357 }
358 
359 /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
360 /// If not emit an error and return false. If the argument is an identifier it
361 /// will emit an error with a fixit hint and treat it as if it was a string
362 /// literal.
363 bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
364                                           StringRef &Str,
365                                           SourceLocation *ArgLocation) {
366   // Look for identifiers. If we have one emit a hint to fix it to a literal.
367   if (AL.isArgIdent(ArgNum)) {
368     IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
369     Diag(Loc->Loc, diag::err_attribute_argument_type)
370         << AL << AANT_ArgumentString
371         << FixItHint::CreateInsertion(Loc->Loc, "\"")
372         << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
373     Str = Loc->Ident->getName();
374     if (ArgLocation)
375       *ArgLocation = Loc->Loc;
376     return true;
377   }
378 
379   // Now check for an actual string literal.
380   Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
381   return checkStringLiteralArgumentAttr(AL, ArgExpr, Str, ArgLocation);
382 }
383 
384 /// Applies the given attribute to the Decl without performing any
385 /// additional semantic checking.
386 template <typename AttrType>
387 static void handleSimpleAttribute(Sema &S, Decl *D,
388                                   const AttributeCommonInfo &CI) {
389   D->addAttr(::new (S.Context) AttrType(S.Context, CI));
390 }
391 
392 template <typename... DiagnosticArgs>
393 static const Sema::SemaDiagnosticBuilder&
394 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) {
395   return Bldr;
396 }
397 
398 template <typename T, typename... DiagnosticArgs>
399 static const Sema::SemaDiagnosticBuilder&
400 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg,
401                   DiagnosticArgs &&... ExtraArgs) {
402   return appendDiagnostics(Bldr << std::forward<T>(ExtraArg),
403                            std::forward<DiagnosticArgs>(ExtraArgs)...);
404 }
405 
406 /// Add an attribute @c AttrType to declaration @c D, provided that
407 /// @c PassesCheck is true.
408 /// Otherwise, emit diagnostic @c DiagID, passing in all parameters
409 /// specified in @c ExtraArgs.
410 template <typename AttrType, typename... DiagnosticArgs>
411 static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D,
412                                             const AttributeCommonInfo &CI,
413                                             bool PassesCheck, unsigned DiagID,
414                                             DiagnosticArgs &&... ExtraArgs) {
415   if (!PassesCheck) {
416     Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID);
417     appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...);
418     return;
419   }
420   handleSimpleAttribute<AttrType>(S, D, CI);
421 }
422 
423 /// Check if the passed-in expression is of type int or bool.
424 static bool isIntOrBool(Expr *Exp) {
425   QualType QT = Exp->getType();
426   return QT->isBooleanType() || QT->isIntegerType();
427 }
428 
429 
430 // Check to see if the type is a smart pointer of some kind.  We assume
431 // it's a smart pointer if it defines both operator-> and operator*.
432 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
433   auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record,
434                                           OverloadedOperatorKind Op) {
435     DeclContextLookupResult Result =
436         Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op));
437     return !Result.empty();
438   };
439 
440   const RecordDecl *Record = RT->getDecl();
441   bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star);
442   bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow);
443   if (foundStarOperator && foundArrowOperator)
444     return true;
445 
446   const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record);
447   if (!CXXRecord)
448     return false;
449 
450   for (auto BaseSpecifier : CXXRecord->bases()) {
451     if (!foundStarOperator)
452       foundStarOperator = IsOverloadedOperatorPresent(
453           BaseSpecifier.getType()->getAsRecordDecl(), OO_Star);
454     if (!foundArrowOperator)
455       foundArrowOperator = IsOverloadedOperatorPresent(
456           BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow);
457   }
458 
459   if (foundStarOperator && foundArrowOperator)
460     return true;
461 
462   return false;
463 }
464 
465 /// Check if passed in Decl is a pointer type.
466 /// Note that this function may produce an error message.
467 /// \return true if the Decl is a pointer type; false otherwise
468 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
469                                        const ParsedAttr &AL) {
470   const auto *VD = cast<ValueDecl>(D);
471   QualType QT = VD->getType();
472   if (QT->isAnyPointerType())
473     return true;
474 
475   if (const auto *RT = QT->getAs<RecordType>()) {
476     // If it's an incomplete type, it could be a smart pointer; skip it.
477     // (We don't want to force template instantiation if we can avoid it,
478     // since that would alter the order in which templates are instantiated.)
479     if (RT->isIncompleteType())
480       return true;
481 
482     if (threadSafetyCheckIsSmartPointer(S, RT))
483       return true;
484   }
485 
486   S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT;
487   return false;
488 }
489 
490 /// Checks that the passed in QualType either is of RecordType or points
491 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
492 static const RecordType *getRecordType(QualType QT) {
493   if (const auto *RT = QT->getAs<RecordType>())
494     return RT;
495 
496   // Now check if we point to record type.
497   if (const auto *PT = QT->getAs<PointerType>())
498     return PT->getPointeeType()->getAs<RecordType>();
499 
500   return nullptr;
501 }
502 
503 template <typename AttrType>
504 static bool checkRecordDeclForAttr(const RecordDecl *RD) {
505   // Check if the record itself has the attribute.
506   if (RD->hasAttr<AttrType>())
507     return true;
508 
509   // Else check if any base classes have the attribute.
510   if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
511     if (!CRD->forallBases([](const CXXRecordDecl *Base) {
512           return !Base->hasAttr<AttrType>();
513         }))
514       return true;
515   }
516   return false;
517 }
518 
519 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
520   const RecordType *RT = getRecordType(Ty);
521 
522   if (!RT)
523     return false;
524 
525   // Don't check for the capability if the class hasn't been defined yet.
526   if (RT->isIncompleteType())
527     return true;
528 
529   // Allow smart pointers to be used as capability objects.
530   // FIXME -- Check the type that the smart pointer points to.
531   if (threadSafetyCheckIsSmartPointer(S, RT))
532     return true;
533 
534   return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl());
535 }
536 
537 static bool checkTypedefTypeForCapability(QualType Ty) {
538   const auto *TD = Ty->getAs<TypedefType>();
539   if (!TD)
540     return false;
541 
542   TypedefNameDecl *TN = TD->getDecl();
543   if (!TN)
544     return false;
545 
546   return TN->hasAttr<CapabilityAttr>();
547 }
548 
549 static bool typeHasCapability(Sema &S, QualType Ty) {
550   if (checkTypedefTypeForCapability(Ty))
551     return true;
552 
553   if (checkRecordTypeForCapability(S, Ty))
554     return true;
555 
556   return false;
557 }
558 
559 static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
560   // Capability expressions are simple expressions involving the boolean logic
561   // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
562   // a DeclRefExpr is found, its type should be checked to determine whether it
563   // is a capability or not.
564 
565   if (const auto *E = dyn_cast<CastExpr>(Ex))
566     return isCapabilityExpr(S, E->getSubExpr());
567   else if (const auto *E = dyn_cast<ParenExpr>(Ex))
568     return isCapabilityExpr(S, E->getSubExpr());
569   else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
570     if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
571         E->getOpcode() == UO_Deref)
572       return isCapabilityExpr(S, E->getSubExpr());
573     return false;
574   } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
575     if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
576       return isCapabilityExpr(S, E->getLHS()) &&
577              isCapabilityExpr(S, E->getRHS());
578     return false;
579   }
580 
581   return typeHasCapability(S, Ex->getType());
582 }
583 
584 /// Checks that all attribute arguments, starting from Sidx, resolve to
585 /// a capability object.
586 /// \param Sidx The attribute argument index to start checking with.
587 /// \param ParamIdxOk Whether an argument can be indexing into a function
588 /// parameter list.
589 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
590                                            const ParsedAttr &AL,
591                                            SmallVectorImpl<Expr *> &Args,
592                                            unsigned Sidx = 0,
593                                            bool ParamIdxOk = false) {
594   if (Sidx == AL.getNumArgs()) {
595     // If we don't have any capability arguments, the attribute implicitly
596     // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're
597     // a non-static method, and that the class is a (scoped) capability.
598     const auto *MD = dyn_cast<const CXXMethodDecl>(D);
599     if (MD && !MD->isStatic()) {
600       const CXXRecordDecl *RD = MD->getParent();
601       // FIXME -- need to check this again on template instantiation
602       if (!checkRecordDeclForAttr<CapabilityAttr>(RD) &&
603           !checkRecordDeclForAttr<ScopedLockableAttr>(RD))
604         S.Diag(AL.getLoc(),
605                diag::warn_thread_attribute_not_on_capability_member)
606             << AL << MD->getParent();
607     } else {
608       S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member)
609           << AL;
610     }
611   }
612 
613   for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
614     Expr *ArgExp = AL.getArgAsExpr(Idx);
615 
616     if (ArgExp->isTypeDependent()) {
617       // FIXME -- need to check this again on template instantiation
618       Args.push_back(ArgExp);
619       continue;
620     }
621 
622     if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
623       if (StrLit->getLength() == 0 ||
624           (StrLit->isOrdinary() && StrLit->getString() == StringRef("*"))) {
625         // Pass empty strings to the analyzer without warnings.
626         // Treat "*" as the universal lock.
627         Args.push_back(ArgExp);
628         continue;
629       }
630 
631       // We allow constant strings to be used as a placeholder for expressions
632       // that are not valid C++ syntax, but warn that they are ignored.
633       S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL;
634       Args.push_back(ArgExp);
635       continue;
636     }
637 
638     QualType ArgTy = ArgExp->getType();
639 
640     // A pointer to member expression of the form  &MyClass::mu is treated
641     // specially -- we need to look at the type of the member.
642     if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
643       if (UOp->getOpcode() == UO_AddrOf)
644         if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
645           if (DRE->getDecl()->isCXXInstanceMember())
646             ArgTy = DRE->getDecl()->getType();
647 
648     // First see if we can just cast to record type, or pointer to record type.
649     const RecordType *RT = getRecordType(ArgTy);
650 
651     // Now check if we index into a record type function param.
652     if(!RT && ParamIdxOk) {
653       const auto *FD = dyn_cast<FunctionDecl>(D);
654       const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
655       if(FD && IL) {
656         unsigned int NumParams = FD->getNumParams();
657         llvm::APInt ArgValue = IL->getValue();
658         uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
659         uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
660         if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
661           S.Diag(AL.getLoc(),
662                  diag::err_attribute_argument_out_of_bounds_extra_info)
663               << AL << Idx + 1 << NumParams;
664           continue;
665         }
666         ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
667       }
668     }
669 
670     // If the type does not have a capability, see if the components of the
671     // expression have capabilities. This allows for writing C code where the
672     // capability may be on the type, and the expression is a capability
673     // boolean logic expression. Eg) requires_capability(A || B && !C)
674     if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
675       S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
676           << AL << ArgTy;
677 
678     Args.push_back(ArgExp);
679   }
680 }
681 
682 //===----------------------------------------------------------------------===//
683 // Attribute Implementations
684 //===----------------------------------------------------------------------===//
685 
686 static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
687   if (!threadSafetyCheckIsPointer(S, D, AL))
688     return;
689 
690   D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL));
691 }
692 
693 static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
694                                      Expr *&Arg) {
695   SmallVector<Expr *, 1> Args;
696   // check that all arguments are lockable objects
697   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
698   unsigned Size = Args.size();
699   if (Size != 1)
700     return false;
701 
702   Arg = Args[0];
703 
704   return true;
705 }
706 
707 static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
708   Expr *Arg = nullptr;
709   if (!checkGuardedByAttrCommon(S, D, AL, Arg))
710     return;
711 
712   D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg));
713 }
714 
715 static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
716   Expr *Arg = nullptr;
717   if (!checkGuardedByAttrCommon(S, D, AL, Arg))
718     return;
719 
720   if (!threadSafetyCheckIsPointer(S, D, AL))
721     return;
722 
723   D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg));
724 }
725 
726 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
727                                         SmallVectorImpl<Expr *> &Args) {
728   if (!AL.checkAtLeastNumArgs(S, 1))
729     return false;
730 
731   // Check that this attribute only applies to lockable types.
732   QualType QT = cast<ValueDecl>(D)->getType();
733   if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
734     S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL;
735     return false;
736   }
737 
738   // Check that all arguments are lockable objects.
739   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
740   if (Args.empty())
741     return false;
742 
743   return true;
744 }
745 
746 static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
747   SmallVector<Expr *, 1> Args;
748   if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
749     return;
750 
751   Expr **StartArg = &Args[0];
752   D->addAttr(::new (S.Context)
753                  AcquiredAfterAttr(S.Context, AL, StartArg, Args.size()));
754 }
755 
756 static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
757   SmallVector<Expr *, 1> Args;
758   if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
759     return;
760 
761   Expr **StartArg = &Args[0];
762   D->addAttr(::new (S.Context)
763                  AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size()));
764 }
765 
766 static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
767                                    SmallVectorImpl<Expr *> &Args) {
768   // zero or more arguments ok
769   // check that all arguments are lockable objects
770   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
771 
772   return true;
773 }
774 
775 static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
776   SmallVector<Expr *, 1> Args;
777   if (!checkLockFunAttrCommon(S, D, AL, Args))
778     return;
779 
780   unsigned Size = Args.size();
781   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
782   D->addAttr(::new (S.Context)
783                  AssertSharedLockAttr(S.Context, AL, StartArg, Size));
784 }
785 
786 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
787                                           const ParsedAttr &AL) {
788   SmallVector<Expr *, 1> Args;
789   if (!checkLockFunAttrCommon(S, D, AL, Args))
790     return;
791 
792   unsigned Size = Args.size();
793   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
794   D->addAttr(::new (S.Context)
795                  AssertExclusiveLockAttr(S.Context, AL, StartArg, Size));
796 }
797 
798 /// Checks to be sure that the given parameter number is in bounds, and
799 /// is an integral type. Will emit appropriate diagnostics if this returns
800 /// false.
801 ///
802 /// AttrArgNo is used to actually retrieve the argument, so it's base-0.
803 template <typename AttrInfo>
804 static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI,
805                                     unsigned AttrArgNo) {
806   assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
807   Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
808   ParamIdx Idx;
809   if (!checkFunctionOrMethodParameterIndex(S, D, AI, AttrArgNo + 1, AttrArg,
810                                            Idx))
811     return false;
812 
813   QualType ParamTy = getFunctionOrMethodParamType(D, Idx.getASTIndex());
814   if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) {
815     SourceLocation SrcLoc = AttrArg->getBeginLoc();
816     S.Diag(SrcLoc, diag::err_attribute_integers_only)
817         << AI << getFunctionOrMethodParamRange(D, Idx.getASTIndex());
818     return false;
819   }
820   return true;
821 }
822 
823 static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
824   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
825     return;
826 
827   assert(isFunctionOrMethod(D) && hasFunctionProto(D));
828 
829   QualType RetTy = getFunctionOrMethodResultType(D);
830   if (!RetTy->isPointerType()) {
831     S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL;
832     return;
833   }
834 
835   const Expr *SizeExpr = AL.getArgAsExpr(0);
836   int SizeArgNoVal;
837   // Parameter indices are 1-indexed, hence Index=1
838   if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1))
839     return;
840   if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/0))
841     return;
842   ParamIdx SizeArgNo(SizeArgNoVal, D);
843 
844   ParamIdx NumberArgNo;
845   if (AL.getNumArgs() == 2) {
846     const Expr *NumberExpr = AL.getArgAsExpr(1);
847     int Val;
848     // Parameter indices are 1-based, hence Index=2
849     if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2))
850       return;
851     if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/1))
852       return;
853     NumberArgNo = ParamIdx(Val, D);
854   }
855 
856   D->addAttr(::new (S.Context)
857                  AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo));
858 }
859 
860 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
861                                       SmallVectorImpl<Expr *> &Args) {
862   if (!AL.checkAtLeastNumArgs(S, 1))
863     return false;
864 
865   if (!isIntOrBool(AL.getArgAsExpr(0))) {
866     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
867         << AL << 1 << AANT_ArgumentIntOrBool;
868     return false;
869   }
870 
871   // check that all arguments are lockable objects
872   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
873 
874   return true;
875 }
876 
877 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
878                                             const ParsedAttr &AL) {
879   SmallVector<Expr*, 2> Args;
880   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
881     return;
882 
883   D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(
884       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
885 }
886 
887 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
888                                                const ParsedAttr &AL) {
889   SmallVector<Expr*, 2> Args;
890   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
891     return;
892 
893   D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
894       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
895 }
896 
897 static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
898   // check that the argument is lockable object
899   SmallVector<Expr*, 1> Args;
900   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
901   unsigned Size = Args.size();
902   if (Size == 0)
903     return;
904 
905   D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0]));
906 }
907 
908 static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
909   if (!AL.checkAtLeastNumArgs(S, 1))
910     return;
911 
912   // check that all arguments are lockable objects
913   SmallVector<Expr*, 1> Args;
914   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
915   unsigned Size = Args.size();
916   if (Size == 0)
917     return;
918   Expr **StartArg = &Args[0];
919 
920   D->addAttr(::new (S.Context)
921                  LocksExcludedAttr(S.Context, AL, StartArg, Size));
922 }
923 
924 static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
925                                        Expr *&Cond, StringRef &Msg) {
926   Cond = AL.getArgAsExpr(0);
927   if (!Cond->isTypeDependent()) {
928     ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
929     if (Converted.isInvalid())
930       return false;
931     Cond = Converted.get();
932   }
933 
934   if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
935     return false;
936 
937   if (Msg.empty())
938     Msg = "<no message provided>";
939 
940   SmallVector<PartialDiagnosticAt, 8> Diags;
941   if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
942       !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
943                                                 Diags)) {
944     S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL;
945     for (const PartialDiagnosticAt &PDiag : Diags)
946       S.Diag(PDiag.first, PDiag.second);
947     return false;
948   }
949   return true;
950 }
951 
952 static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
953   S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
954 
955   Expr *Cond;
956   StringRef Msg;
957   if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
958     D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg));
959 }
960 
961 static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
962   StringRef NewUserDiagnostic;
963   if (!S.checkStringLiteralArgumentAttr(AL, 0, NewUserDiagnostic))
964     return;
965   if (ErrorAttr *EA = S.mergeErrorAttr(D, AL, NewUserDiagnostic))
966     D->addAttr(EA);
967 }
968 
969 namespace {
970 /// Determines if a given Expr references any of the given function's
971 /// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
972 class ArgumentDependenceChecker
973     : public RecursiveASTVisitor<ArgumentDependenceChecker> {
974 #ifndef NDEBUG
975   const CXXRecordDecl *ClassType;
976 #endif
977   llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
978   bool Result;
979 
980 public:
981   ArgumentDependenceChecker(const FunctionDecl *FD) {
982 #ifndef NDEBUG
983     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
984       ClassType = MD->getParent();
985     else
986       ClassType = nullptr;
987 #endif
988     Parms.insert(FD->param_begin(), FD->param_end());
989   }
990 
991   bool referencesArgs(Expr *E) {
992     Result = false;
993     TraverseStmt(E);
994     return Result;
995   }
996 
997   bool VisitCXXThisExpr(CXXThisExpr *E) {
998     assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
999            "`this` doesn't refer to the enclosing class?");
1000     Result = true;
1001     return false;
1002   }
1003 
1004   bool VisitDeclRefExpr(DeclRefExpr *DRE) {
1005     if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
1006       if (Parms.count(PVD)) {
1007         Result = true;
1008         return false;
1009       }
1010     return true;
1011   }
1012 };
1013 }
1014 
1015 static void handleDiagnoseAsBuiltinAttr(Sema &S, Decl *D,
1016                                         const ParsedAttr &AL) {
1017   const auto *DeclFD = cast<FunctionDecl>(D);
1018 
1019   if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclFD))
1020     if (!MethodDecl->isStatic()) {
1021       S.Diag(AL.getLoc(), diag::err_attribute_no_member_function) << AL;
1022       return;
1023     }
1024 
1025   auto DiagnoseType = [&](unsigned Index, AttributeArgumentNType T) {
1026     SourceLocation Loc = [&]() {
1027       auto Union = AL.getArg(Index - 1);
1028       if (Union.is<Expr *>())
1029         return Union.get<Expr *>()->getBeginLoc();
1030       return Union.get<IdentifierLoc *>()->Loc;
1031     }();
1032 
1033     S.Diag(Loc, diag::err_attribute_argument_n_type) << AL << Index << T;
1034   };
1035 
1036   FunctionDecl *AttrFD = [&]() -> FunctionDecl * {
1037     if (!AL.isArgExpr(0))
1038       return nullptr;
1039     auto *F = dyn_cast_or_null<DeclRefExpr>(AL.getArgAsExpr(0));
1040     if (!F)
1041       return nullptr;
1042     return dyn_cast_or_null<FunctionDecl>(F->getFoundDecl());
1043   }();
1044 
1045   if (!AttrFD || !AttrFD->getBuiltinID(true)) {
1046     DiagnoseType(1, AANT_ArgumentBuiltinFunction);
1047     return;
1048   }
1049 
1050   if (AttrFD->getNumParams() != AL.getNumArgs() - 1) {
1051     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments_for)
1052         << AL << AttrFD << AttrFD->getNumParams();
1053     return;
1054   }
1055 
1056   SmallVector<unsigned, 8> Indices;
1057 
1058   for (unsigned I = 1; I < AL.getNumArgs(); ++I) {
1059     if (!AL.isArgExpr(I)) {
1060       DiagnoseType(I + 1, AANT_ArgumentIntegerConstant);
1061       return;
1062     }
1063 
1064     const Expr *IndexExpr = AL.getArgAsExpr(I);
1065     uint32_t Index;
1066 
1067     if (!checkUInt32Argument(S, AL, IndexExpr, Index, I + 1, false))
1068       return;
1069 
1070     if (Index > DeclFD->getNumParams()) {
1071       S.Diag(AL.getLoc(), diag::err_attribute_bounds_for_function)
1072           << AL << Index << DeclFD << DeclFD->getNumParams();
1073       return;
1074     }
1075 
1076     QualType T1 = AttrFD->getParamDecl(I - 1)->getType();
1077     QualType T2 = DeclFD->getParamDecl(Index - 1)->getType();
1078 
1079     if (T1.getCanonicalType().getUnqualifiedType() !=
1080         T2.getCanonicalType().getUnqualifiedType()) {
1081       S.Diag(IndexExpr->getBeginLoc(), diag::err_attribute_parameter_types)
1082           << AL << Index << DeclFD << T2 << I << AttrFD << T1;
1083       return;
1084     }
1085 
1086     Indices.push_back(Index - 1);
1087   }
1088 
1089   D->addAttr(::new (S.Context) DiagnoseAsBuiltinAttr(
1090       S.Context, AL, AttrFD, Indices.data(), Indices.size()));
1091 }
1092 
1093 static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1094   S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
1095 
1096   Expr *Cond;
1097   StringRef Msg;
1098   if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
1099     return;
1100 
1101   StringRef DiagTypeStr;
1102   if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr))
1103     return;
1104 
1105   DiagnoseIfAttr::DiagnosticType DiagType;
1106   if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) {
1107     S.Diag(AL.getArgAsExpr(2)->getBeginLoc(),
1108            diag::err_diagnose_if_invalid_diagnostic_type);
1109     return;
1110   }
1111 
1112   bool ArgDependent = false;
1113   if (const auto *FD = dyn_cast<FunctionDecl>(D))
1114     ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
1115   D->addAttr(::new (S.Context) DiagnoseIfAttr(
1116       S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D)));
1117 }
1118 
1119 static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1120   static constexpr const StringRef kWildcard = "*";
1121 
1122   llvm::SmallVector<StringRef, 16> Names;
1123   bool HasWildcard = false;
1124 
1125   const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) {
1126     if (Name == kWildcard)
1127       HasWildcard = true;
1128     Names.push_back(Name);
1129   };
1130 
1131   // Add previously defined attributes.
1132   if (const auto *NBA = D->getAttr<NoBuiltinAttr>())
1133     for (StringRef BuiltinName : NBA->builtinNames())
1134       AddBuiltinName(BuiltinName);
1135 
1136   // Add current attributes.
1137   if (AL.getNumArgs() == 0)
1138     AddBuiltinName(kWildcard);
1139   else
1140     for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
1141       StringRef BuiltinName;
1142       SourceLocation LiteralLoc;
1143       if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc))
1144         return;
1145 
1146       if (Builtin::Context::isBuiltinFunc(BuiltinName))
1147         AddBuiltinName(BuiltinName);
1148       else
1149         S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name)
1150             << BuiltinName << AL;
1151     }
1152 
1153   // Repeating the same attribute is fine.
1154   llvm::sort(Names);
1155   Names.erase(std::unique(Names.begin(), Names.end()), Names.end());
1156 
1157   // Empty no_builtin must be on its own.
1158   if (HasWildcard && Names.size() > 1)
1159     S.Diag(D->getLocation(),
1160            diag::err_attribute_no_builtin_wildcard_or_builtin_name)
1161         << AL;
1162 
1163   if (D->hasAttr<NoBuiltinAttr>())
1164     D->dropAttr<NoBuiltinAttr>();
1165   D->addAttr(::new (S.Context)
1166                  NoBuiltinAttr(S.Context, AL, Names.data(), Names.size()));
1167 }
1168 
1169 static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1170   if (D->hasAttr<PassObjectSizeAttr>()) {
1171     S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL;
1172     return;
1173   }
1174 
1175   Expr *E = AL.getArgAsExpr(0);
1176   uint32_t Type;
1177   if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1))
1178     return;
1179 
1180   // pass_object_size's argument is passed in as the second argument of
1181   // __builtin_object_size. So, it has the same constraints as that second
1182   // argument; namely, it must be in the range [0, 3].
1183   if (Type > 3) {
1184     S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range)
1185         << AL << 0 << 3 << E->getSourceRange();
1186     return;
1187   }
1188 
1189   // pass_object_size is only supported on constant pointer parameters; as a
1190   // kindness to users, we allow the parameter to be non-const for declarations.
1191   // At this point, we have no clue if `D` belongs to a function declaration or
1192   // definition, so we defer the constness check until later.
1193   if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
1194     S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1;
1195     return;
1196   }
1197 
1198   D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type));
1199 }
1200 
1201 static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1202   ConsumableAttr::ConsumedState DefaultState;
1203 
1204   if (AL.isArgIdent(0)) {
1205     IdentifierLoc *IL = AL.getArgAsIdent(0);
1206     if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1207                                                    DefaultState)) {
1208       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1209                                                                << IL->Ident;
1210       return;
1211     }
1212   } else {
1213     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1214         << AL << AANT_ArgumentIdentifier;
1215     return;
1216   }
1217 
1218   D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState));
1219 }
1220 
1221 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
1222                                     const ParsedAttr &AL) {
1223   QualType ThisType = MD->getThisType()->getPointeeType();
1224 
1225   if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
1226     if (!RD->hasAttr<ConsumableAttr>()) {
1227       S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD;
1228 
1229       return false;
1230     }
1231   }
1232 
1233   return true;
1234 }
1235 
1236 static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1237   if (!AL.checkAtLeastNumArgs(S, 1))
1238     return;
1239 
1240   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1241     return;
1242 
1243   SmallVector<CallableWhenAttr::ConsumedState, 3> States;
1244   for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
1245     CallableWhenAttr::ConsumedState CallableState;
1246 
1247     StringRef StateString;
1248     SourceLocation Loc;
1249     if (AL.isArgIdent(ArgIndex)) {
1250       IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
1251       StateString = Ident->Ident->getName();
1252       Loc = Ident->Loc;
1253     } else {
1254       if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
1255         return;
1256     }
1257 
1258     if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
1259                                                      CallableState)) {
1260       S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString;
1261       return;
1262     }
1263 
1264     States.push_back(CallableState);
1265   }
1266 
1267   D->addAttr(::new (S.Context)
1268                  CallableWhenAttr(S.Context, AL, States.data(), States.size()));
1269 }
1270 
1271 static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1272   ParamTypestateAttr::ConsumedState ParamState;
1273 
1274   if (AL.isArgIdent(0)) {
1275     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1276     StringRef StateString = Ident->Ident->getName();
1277 
1278     if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
1279                                                        ParamState)) {
1280       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1281           << AL << StateString;
1282       return;
1283     }
1284   } else {
1285     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1286         << AL << AANT_ArgumentIdentifier;
1287     return;
1288   }
1289 
1290   // FIXME: This check is currently being done in the analysis.  It can be
1291   //        enabled here only after the parser propagates attributes at
1292   //        template specialization definition, not declaration.
1293   //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
1294   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1295   //
1296   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1297   //    S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1298   //      ReturnType.getAsString();
1299   //    return;
1300   //}
1301 
1302   D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState));
1303 }
1304 
1305 static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1306   ReturnTypestateAttr::ConsumedState ReturnState;
1307 
1308   if (AL.isArgIdent(0)) {
1309     IdentifierLoc *IL = AL.getArgAsIdent(0);
1310     if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1311                                                         ReturnState)) {
1312       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1313                                                                << IL->Ident;
1314       return;
1315     }
1316   } else {
1317     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1318         << AL << AANT_ArgumentIdentifier;
1319     return;
1320   }
1321 
1322   // FIXME: This check is currently being done in the analysis.  It can be
1323   //        enabled here only after the parser propagates attributes at
1324   //        template specialization definition, not declaration.
1325   //QualType ReturnType;
1326   //
1327   //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
1328   //  ReturnType = Param->getType();
1329   //
1330   //} else if (const CXXConstructorDecl *Constructor =
1331   //             dyn_cast<CXXConstructorDecl>(D)) {
1332   //  ReturnType = Constructor->getThisType()->getPointeeType();
1333   //
1334   //} else {
1335   //
1336   //  ReturnType = cast<FunctionDecl>(D)->getCallResultType();
1337   //}
1338   //
1339   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1340   //
1341   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1342   //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1343   //      ReturnType.getAsString();
1344   //    return;
1345   //}
1346 
1347   D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState));
1348 }
1349 
1350 static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1351   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1352     return;
1353 
1354   SetTypestateAttr::ConsumedState NewState;
1355   if (AL.isArgIdent(0)) {
1356     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1357     StringRef Param = Ident->Ident->getName();
1358     if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
1359       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1360                                                                   << Param;
1361       return;
1362     }
1363   } else {
1364     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1365         << AL << AANT_ArgumentIdentifier;
1366     return;
1367   }
1368 
1369   D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState));
1370 }
1371 
1372 static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1373   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1374     return;
1375 
1376   TestTypestateAttr::ConsumedState TestState;
1377   if (AL.isArgIdent(0)) {
1378     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1379     StringRef Param = Ident->Ident->getName();
1380     if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1381       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1382                                                                   << Param;
1383       return;
1384     }
1385   } else {
1386     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1387         << AL << AANT_ArgumentIdentifier;
1388     return;
1389   }
1390 
1391   D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState));
1392 }
1393 
1394 static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1395   // Remember this typedef decl, we will need it later for diagnostics.
1396   S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
1397 }
1398 
1399 static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1400   if (auto *TD = dyn_cast<TagDecl>(D))
1401     TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1402   else if (auto *FD = dyn_cast<FieldDecl>(D)) {
1403     bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
1404                                 !FD->getType()->isIncompleteType() &&
1405                                 FD->isBitField() &&
1406                                 S.Context.getTypeAlign(FD->getType()) <= 8);
1407 
1408     if (S.getASTContext().getTargetInfo().getTriple().isPS()) {
1409       if (BitfieldByteAligned)
1410         // The PS4/PS5 targets need to maintain ABI backwards compatibility.
1411         S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1412             << AL << FD->getType();
1413       else
1414         FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1415     } else {
1416       // Report warning about changed offset in the newer compiler versions.
1417       if (BitfieldByteAligned)
1418         S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
1419 
1420       FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1421     }
1422 
1423   } else
1424     S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
1425 }
1426 
1427 static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) {
1428   auto *RD = cast<CXXRecordDecl>(D);
1429   ClassTemplateDecl *CTD = RD->getDescribedClassTemplate();
1430   assert(CTD && "attribute does not appertain to this declaration");
1431 
1432   ParsedType PT = AL.getTypeArg();
1433   TypeSourceInfo *TSI = nullptr;
1434   QualType T = S.GetTypeFromParser(PT, &TSI);
1435   if (!TSI)
1436     TSI = S.Context.getTrivialTypeSourceInfo(T, AL.getLoc());
1437 
1438   if (!T.hasQualifiers() && T->isTypedefNameType()) {
1439     // Find the template name, if this type names a template specialization.
1440     const TemplateDecl *Template = nullptr;
1441     if (const auto *CTSD = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
1442             T->getAsCXXRecordDecl())) {
1443       Template = CTSD->getSpecializedTemplate();
1444     } else if (const auto *TST = T->getAs<TemplateSpecializationType>()) {
1445       while (TST && TST->isTypeAlias())
1446         TST = TST->getAliasedType()->getAs<TemplateSpecializationType>();
1447       if (TST)
1448         Template = TST->getTemplateName().getAsTemplateDecl();
1449     }
1450 
1451     if (Template && declaresSameEntity(Template, CTD)) {
1452       D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI));
1453       return;
1454     }
1455   }
1456 
1457   S.Diag(AL.getLoc(), diag::err_attribute_preferred_name_arg_invalid)
1458       << T << CTD;
1459   if (const auto *TT = T->getAs<TypedefType>())
1460     S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at)
1461         << TT->getDecl();
1462 }
1463 
1464 static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) {
1465   // The IBOutlet/IBOutletCollection attributes only apply to instance
1466   // variables or properties of Objective-C classes.  The outlet must also
1467   // have an object reference type.
1468   if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) {
1469     if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1470       S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1471           << AL << VD->getType() << 0;
1472       return false;
1473     }
1474   }
1475   else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1476     if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1477       S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1478           << AL << PD->getType() << 1;
1479       return false;
1480     }
1481   }
1482   else {
1483     S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL;
1484     return false;
1485   }
1486 
1487   return true;
1488 }
1489 
1490 static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) {
1491   if (!checkIBOutletCommon(S, D, AL))
1492     return;
1493 
1494   D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL));
1495 }
1496 
1497 static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) {
1498 
1499   // The iboutletcollection attribute can have zero or one arguments.
1500   if (AL.getNumArgs() > 1) {
1501     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1502     return;
1503   }
1504 
1505   if (!checkIBOutletCommon(S, D, AL))
1506     return;
1507 
1508   ParsedType PT;
1509 
1510   if (AL.hasParsedType())
1511     PT = AL.getTypeArg();
1512   else {
1513     PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(),
1514                        S.getScopeForContext(D->getDeclContext()->getParent()));
1515     if (!PT) {
1516       S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
1517       return;
1518     }
1519   }
1520 
1521   TypeSourceInfo *QTLoc = nullptr;
1522   QualType QT = S.GetTypeFromParser(PT, &QTLoc);
1523   if (!QTLoc)
1524     QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc());
1525 
1526   // Diagnose use of non-object type in iboutletcollection attribute.
1527   // FIXME. Gnu attribute extension ignores use of builtin types in
1528   // attributes. So, __attribute__((iboutletcollection(char))) will be
1529   // treated as __attribute__((iboutletcollection())).
1530   if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1531     S.Diag(AL.getLoc(),
1532            QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
1533                                : diag::err_iboutletcollection_type) << QT;
1534     return;
1535   }
1536 
1537   D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc));
1538 }
1539 
1540 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
1541   if (RefOkay) {
1542     if (T->isReferenceType())
1543       return true;
1544   } else {
1545     T = T.getNonReferenceType();
1546   }
1547 
1548   // The nonnull attribute, and other similar attributes, can be applied to a
1549   // transparent union that contains a pointer type.
1550   if (const RecordType *UT = T->getAsUnionType()) {
1551     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1552       RecordDecl *UD = UT->getDecl();
1553       for (const auto *I : UD->fields()) {
1554         QualType QT = I->getType();
1555         if (QT->isAnyPointerType() || QT->isBlockPointerType())
1556           return true;
1557       }
1558     }
1559   }
1560 
1561   return T->isAnyPointerType() || T->isBlockPointerType();
1562 }
1563 
1564 static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
1565                                 SourceRange AttrParmRange,
1566                                 SourceRange TypeRange,
1567                                 bool isReturnValue = false) {
1568   if (!S.isValidPointerAttrType(T)) {
1569     if (isReturnValue)
1570       S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1571           << AL << AttrParmRange << TypeRange;
1572     else
1573       S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1574           << AL << AttrParmRange << TypeRange << 0;
1575     return false;
1576   }
1577   return true;
1578 }
1579 
1580 static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1581   SmallVector<ParamIdx, 8> NonNullArgs;
1582   for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
1583     Expr *Ex = AL.getArgAsExpr(I);
1584     ParamIdx Idx;
1585     if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx))
1586       return;
1587 
1588     // Is the function argument a pointer type?
1589     if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) &&
1590         !attrNonNullArgCheck(
1591             S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL,
1592             Ex->getSourceRange(),
1593             getFunctionOrMethodParamRange(D, Idx.getASTIndex())))
1594       continue;
1595 
1596     NonNullArgs.push_back(Idx);
1597   }
1598 
1599   // If no arguments were specified to __attribute__((nonnull)) then all pointer
1600   // arguments have a nonnull attribute; warn if there aren't any. Skip this
1601   // check if the attribute came from a macro expansion or a template
1602   // instantiation.
1603   if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
1604       !S.inTemplateInstantiation()) {
1605     bool AnyPointers = isFunctionOrMethodVariadic(D);
1606     for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1607          I != E && !AnyPointers; ++I) {
1608       QualType T = getFunctionOrMethodParamType(D, I);
1609       if (T->isDependentType() || S.isValidPointerAttrType(T))
1610         AnyPointers = true;
1611     }
1612 
1613     if (!AnyPointers)
1614       S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1615   }
1616 
1617   ParamIdx *Start = NonNullArgs.data();
1618   unsigned Size = NonNullArgs.size();
1619   llvm::array_pod_sort(Start, Start + Size);
1620   D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size));
1621 }
1622 
1623 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
1624                                        const ParsedAttr &AL) {
1625   if (AL.getNumArgs() > 0) {
1626     if (D->getFunctionType()) {
1627       handleNonNullAttr(S, D, AL);
1628     } else {
1629       S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1630         << D->getSourceRange();
1631     }
1632     return;
1633   }
1634 
1635   // Is the argument a pointer type?
1636   if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
1637                            D->getSourceRange()))
1638     return;
1639 
1640   D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0));
1641 }
1642 
1643 static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1644   QualType ResultType = getFunctionOrMethodResultType(D);
1645   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1646   if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
1647                            /* isReturnValue */ true))
1648     return;
1649 
1650   D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL));
1651 }
1652 
1653 static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1654   if (D->isInvalidDecl())
1655     return;
1656 
1657   // noescape only applies to pointer types.
1658   QualType T = cast<ParmVarDecl>(D)->getType();
1659   if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
1660     S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1661         << AL << AL.getRange() << 0;
1662     return;
1663   }
1664 
1665   D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL));
1666 }
1667 
1668 static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1669   Expr *E = AL.getArgAsExpr(0),
1670        *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
1671   S.AddAssumeAlignedAttr(D, AL, E, OE);
1672 }
1673 
1674 static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1675   S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0));
1676 }
1677 
1678 void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
1679                                 Expr *OE) {
1680   QualType ResultType = getFunctionOrMethodResultType(D);
1681   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1682 
1683   AssumeAlignedAttr TmpAttr(Context, CI, E, OE);
1684   SourceLocation AttrLoc = TmpAttr.getLocation();
1685 
1686   if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1687     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1688         << &TmpAttr << TmpAttr.getRange() << SR;
1689     return;
1690   }
1691 
1692   if (!E->isValueDependent()) {
1693     std::optional<llvm::APSInt> I = llvm::APSInt(64);
1694     if (!(I = E->getIntegerConstantExpr(Context))) {
1695       if (OE)
1696         Diag(AttrLoc, diag::err_attribute_argument_n_type)
1697           << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
1698           << E->getSourceRange();
1699       else
1700         Diag(AttrLoc, diag::err_attribute_argument_type)
1701           << &TmpAttr << AANT_ArgumentIntegerConstant
1702           << E->getSourceRange();
1703       return;
1704     }
1705 
1706     if (!I->isPowerOf2()) {
1707       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1708         << E->getSourceRange();
1709       return;
1710     }
1711 
1712     if (*I > Sema::MaximumAlignment)
1713       Diag(CI.getLoc(), diag::warn_assume_aligned_too_great)
1714           << CI.getRange() << Sema::MaximumAlignment;
1715   }
1716 
1717   if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) {
1718     Diag(AttrLoc, diag::err_attribute_argument_n_type)
1719         << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
1720         << OE->getSourceRange();
1721     return;
1722   }
1723 
1724   D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE));
1725 }
1726 
1727 void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
1728                              Expr *ParamExpr) {
1729   QualType ResultType = getFunctionOrMethodResultType(D);
1730 
1731   AllocAlignAttr TmpAttr(Context, CI, ParamIdx());
1732   SourceLocation AttrLoc = CI.getLoc();
1733 
1734   if (!ResultType->isDependentType() &&
1735       !isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1736     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1737         << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D);
1738     return;
1739   }
1740 
1741   ParamIdx Idx;
1742   const auto *FuncDecl = cast<FunctionDecl>(D);
1743   if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr,
1744                                            /*AttrArgNum=*/1, ParamExpr, Idx))
1745     return;
1746 
1747   QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1748   if (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
1749       !Ty->isAlignValT()) {
1750     Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only)
1751         << &TmpAttr
1752         << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
1753     return;
1754   }
1755 
1756   D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx));
1757 }
1758 
1759 /// Check if \p AssumptionStr is a known assumption and warn if not.
1760 static void checkAssumptionAttr(Sema &S, SourceLocation Loc,
1761                                 StringRef AssumptionStr) {
1762   if (llvm::KnownAssumptionStrings.count(AssumptionStr))
1763     return;
1764 
1765   unsigned BestEditDistance = 3;
1766   StringRef Suggestion;
1767   for (const auto &KnownAssumptionIt : llvm::KnownAssumptionStrings) {
1768     unsigned EditDistance =
1769         AssumptionStr.edit_distance(KnownAssumptionIt.getKey());
1770     if (EditDistance < BestEditDistance) {
1771       Suggestion = KnownAssumptionIt.getKey();
1772       BestEditDistance = EditDistance;
1773     }
1774   }
1775 
1776   if (!Suggestion.empty())
1777     S.Diag(Loc, diag::warn_assume_attribute_string_unknown_suggested)
1778         << AssumptionStr << Suggestion;
1779   else
1780     S.Diag(Loc, diag::warn_assume_attribute_string_unknown) << AssumptionStr;
1781 }
1782 
1783 static void handleAssumumptionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1784   // Handle the case where the attribute has a text message.
1785   StringRef Str;
1786   SourceLocation AttrStrLoc;
1787   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &AttrStrLoc))
1788     return;
1789 
1790   checkAssumptionAttr(S, AttrStrLoc, Str);
1791 
1792   D->addAttr(::new (S.Context) AssumptionAttr(S.Context, AL, Str));
1793 }
1794 
1795 /// Normalize the attribute, __foo__ becomes foo.
1796 /// Returns true if normalization was applied.
1797 static bool normalizeName(StringRef &AttrName) {
1798   if (AttrName.size() > 4 && AttrName.startswith("__") &&
1799       AttrName.endswith("__")) {
1800     AttrName = AttrName.drop_front(2).drop_back(2);
1801     return true;
1802   }
1803   return false;
1804 }
1805 
1806 static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1807   // This attribute must be applied to a function declaration. The first
1808   // argument to the attribute must be an identifier, the name of the resource,
1809   // for example: malloc. The following arguments must be argument indexes, the
1810   // arguments must be of integer type for Returns, otherwise of pointer type.
1811   // The difference between Holds and Takes is that a pointer may still be used
1812   // after being held. free() should be __attribute((ownership_takes)), whereas
1813   // a list append function may well be __attribute((ownership_holds)).
1814 
1815   if (!AL.isArgIdent(0)) {
1816     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1817         << AL << 1 << AANT_ArgumentIdentifier;
1818     return;
1819   }
1820 
1821   // Figure out our Kind.
1822   OwnershipAttr::OwnershipKind K =
1823       OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind();
1824 
1825   // Check arguments.
1826   switch (K) {
1827   case OwnershipAttr::Takes:
1828   case OwnershipAttr::Holds:
1829     if (AL.getNumArgs() < 2) {
1830       S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2;
1831       return;
1832     }
1833     break;
1834   case OwnershipAttr::Returns:
1835     if (AL.getNumArgs() > 2) {
1836       S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
1837       return;
1838     }
1839     break;
1840   }
1841 
1842   IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
1843 
1844   StringRef ModuleName = Module->getName();
1845   if (normalizeName(ModuleName)) {
1846     Module = &S.PP.getIdentifierTable().get(ModuleName);
1847   }
1848 
1849   SmallVector<ParamIdx, 8> OwnershipArgs;
1850   for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1851     Expr *Ex = AL.getArgAsExpr(i);
1852     ParamIdx Idx;
1853     if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
1854       return;
1855 
1856     // Is the function argument a pointer type?
1857     QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1858     int Err = -1;  // No error
1859     switch (K) {
1860       case OwnershipAttr::Takes:
1861       case OwnershipAttr::Holds:
1862         if (!T->isAnyPointerType() && !T->isBlockPointerType())
1863           Err = 0;
1864         break;
1865       case OwnershipAttr::Returns:
1866         if (!T->isIntegerType())
1867           Err = 1;
1868         break;
1869     }
1870     if (-1 != Err) {
1871       S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err
1872                                                     << Ex->getSourceRange();
1873       return;
1874     }
1875 
1876     // Check we don't have a conflict with another ownership attribute.
1877     for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1878       // Cannot have two ownership attributes of different kinds for the same
1879       // index.
1880       if (I->getOwnKind() != K && llvm::is_contained(I->args(), Idx)) {
1881         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I;
1882         return;
1883       } else if (K == OwnershipAttr::Returns &&
1884                  I->getOwnKind() == OwnershipAttr::Returns) {
1885         // A returns attribute conflicts with any other returns attribute using
1886         // a different index.
1887         if (!llvm::is_contained(I->args(), Idx)) {
1888           S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1889               << I->args_begin()->getSourceIndex();
1890           if (I->args_size())
1891             S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1892                 << Idx.getSourceIndex() << Ex->getSourceRange();
1893           return;
1894         }
1895       }
1896     }
1897     OwnershipArgs.push_back(Idx);
1898   }
1899 
1900   ParamIdx *Start = OwnershipArgs.data();
1901   unsigned Size = OwnershipArgs.size();
1902   llvm::array_pod_sort(Start, Start + Size);
1903   D->addAttr(::new (S.Context)
1904                  OwnershipAttr(S.Context, AL, Module, Start, Size));
1905 }
1906 
1907 static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1908   // Check the attribute arguments.
1909   if (AL.getNumArgs() > 1) {
1910     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1911     return;
1912   }
1913 
1914   // gcc rejects
1915   // class c {
1916   //   static int a __attribute__((weakref ("v2")));
1917   //   static int b() __attribute__((weakref ("f3")));
1918   // };
1919   // and ignores the attributes of
1920   // void f(void) {
1921   //   static int a __attribute__((weakref ("v2")));
1922   // }
1923   // we reject them
1924   const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1925   if (!Ctx->isFileContext()) {
1926     S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
1927         << cast<NamedDecl>(D);
1928     return;
1929   }
1930 
1931   // The GCC manual says
1932   //
1933   // At present, a declaration to which `weakref' is attached can only
1934   // be `static'.
1935   //
1936   // It also says
1937   //
1938   // Without a TARGET,
1939   // given as an argument to `weakref' or to `alias', `weakref' is
1940   // equivalent to `weak'.
1941   //
1942   // gcc 4.4.1 will accept
1943   // int a7 __attribute__((weakref));
1944   // as
1945   // int a7 __attribute__((weak));
1946   // This looks like a bug in gcc. We reject that for now. We should revisit
1947   // it if this behaviour is actually used.
1948 
1949   // GCC rejects
1950   // static ((alias ("y"), weakref)).
1951   // Should we? How to check that weakref is before or after alias?
1952 
1953   // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1954   // of transforming it into an AliasAttr.  The WeakRefAttr never uses the
1955   // StringRef parameter it was given anyway.
1956   StringRef Str;
1957   if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
1958     // GCC will accept anything as the argument of weakref. Should we
1959     // check for an existing decl?
1960     D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1961 
1962   D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL));
1963 }
1964 
1965 static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1966   StringRef Str;
1967   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1968     return;
1969 
1970   // Aliases should be on declarations, not definitions.
1971   const auto *FD = cast<FunctionDecl>(D);
1972   if (FD->isThisDeclarationADefinition()) {
1973     S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
1974     return;
1975   }
1976 
1977   D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str));
1978 }
1979 
1980 static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1981   StringRef Str;
1982   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1983     return;
1984 
1985   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1986     S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
1987     return;
1988   }
1989   if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
1990     S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
1991   }
1992 
1993   // Aliases should be on declarations, not definitions.
1994   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1995     if (FD->isThisDeclarationADefinition()) {
1996       S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
1997       return;
1998     }
1999   } else {
2000     const auto *VD = cast<VarDecl>(D);
2001     if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
2002       S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
2003       return;
2004     }
2005   }
2006 
2007   // Mark target used to prevent unneeded-internal-declaration warnings.
2008   if (!S.LangOpts.CPlusPlus) {
2009     // FIXME: demangle Str for C++, as the attribute refers to the mangled
2010     // linkage name, not the pre-mangled identifier.
2011     const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc());
2012     LookupResult LR(S, target, Sema::LookupOrdinaryName);
2013     if (S.LookupQualifiedName(LR, S.getCurLexicalContext()))
2014       for (NamedDecl *ND : LR)
2015         ND->markUsed(S.Context);
2016   }
2017 
2018   D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
2019 }
2020 
2021 static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2022   StringRef Model;
2023   SourceLocation LiteralLoc;
2024   // Check that it is a string.
2025   if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
2026     return;
2027 
2028   // Check that the value.
2029   if (Model != "global-dynamic" && Model != "local-dynamic"
2030       && Model != "initial-exec" && Model != "local-exec") {
2031     S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
2032     return;
2033   }
2034 
2035   if (S.Context.getTargetInfo().getTriple().isOSAIX() &&
2036       Model != "global-dynamic") {
2037     S.Diag(LiteralLoc, diag::err_aix_attr_unsupported_tls_model) << Model;
2038     return;
2039   }
2040 
2041   D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model));
2042 }
2043 
2044 static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2045   QualType ResultType = getFunctionOrMethodResultType(D);
2046   if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
2047     D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL));
2048     return;
2049   }
2050 
2051   S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
2052       << AL << getFunctionOrMethodResultSourceRange(D);
2053 }
2054 
2055 static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2056   // Ensure we don't combine these with themselves, since that causes some
2057   // confusing behavior.
2058   if (AL.getParsedKind() == ParsedAttr::AT_CPUDispatch) {
2059     if (checkAttrMutualExclusion<CPUSpecificAttr>(S, D, AL))
2060       return;
2061 
2062     if (const auto *Other = D->getAttr<CPUDispatchAttr>()) {
2063       S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
2064       S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
2065       return;
2066     }
2067   } else if (AL.getParsedKind() == ParsedAttr::AT_CPUSpecific) {
2068     if (checkAttrMutualExclusion<CPUDispatchAttr>(S, D, AL))
2069       return;
2070 
2071     if (const auto *Other = D->getAttr<CPUSpecificAttr>()) {
2072       S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
2073       S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
2074       return;
2075     }
2076   }
2077 
2078   FunctionDecl *FD = cast<FunctionDecl>(D);
2079 
2080   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
2081     if (MD->getParent()->isLambda()) {
2082       S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL;
2083       return;
2084     }
2085   }
2086 
2087   if (!AL.checkAtLeastNumArgs(S, 1))
2088     return;
2089 
2090   SmallVector<IdentifierInfo *, 8> CPUs;
2091   for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
2092     if (!AL.isArgIdent(ArgNo)) {
2093       S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
2094           << AL << AANT_ArgumentIdentifier;
2095       return;
2096     }
2097 
2098     IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
2099     StringRef CPUName = CPUArg->Ident->getName().trim();
2100 
2101     if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) {
2102       S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value)
2103           << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
2104       return;
2105     }
2106 
2107     const TargetInfo &Target = S.Context.getTargetInfo();
2108     if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
2109           return Target.CPUSpecificManglingCharacter(CPUName) ==
2110                  Target.CPUSpecificManglingCharacter(Cur->getName());
2111         })) {
2112       S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
2113       return;
2114     }
2115     CPUs.push_back(CPUArg->Ident);
2116   }
2117 
2118   FD->setIsMultiVersion(true);
2119   if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
2120     D->addAttr(::new (S.Context)
2121                    CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size()));
2122   else
2123     D->addAttr(::new (S.Context)
2124                    CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size()));
2125 }
2126 
2127 static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2128   if (S.LangOpts.CPlusPlus) {
2129     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
2130         << AL << AttributeLangSupport::Cpp;
2131     return;
2132   }
2133 
2134   D->addAttr(::new (S.Context) CommonAttr(S.Context, AL));
2135 }
2136 
2137 static void handleCmseNSEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2138   if (S.LangOpts.CPlusPlus && !D->getDeclContext()->isExternCContext()) {
2139     S.Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL;
2140     return;
2141   }
2142 
2143   const auto *FD = cast<FunctionDecl>(D);
2144   if (!FD->isExternallyVisible()) {
2145     S.Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static);
2146     return;
2147   }
2148 
2149   D->addAttr(::new (S.Context) CmseNSEntryAttr(S.Context, AL));
2150 }
2151 
2152 static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2153   if (AL.isDeclspecAttribute()) {
2154     const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
2155     const auto &Arch = Triple.getArch();
2156     if (Arch != llvm::Triple::x86 &&
2157         (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
2158       S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
2159           << AL << Triple.getArchName();
2160       return;
2161     }
2162 
2163     // This form is not allowed to be written on a member function (static or
2164     // nonstatic) when in Microsoft compatibility mode.
2165     if (S.getLangOpts().MSVCCompat && isa<CXXMethodDecl>(D)) {
2166       S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type_str)
2167           << AL << "non-member functions";
2168       return;
2169     }
2170   }
2171 
2172   D->addAttr(::new (S.Context) NakedAttr(S.Context, AL));
2173 }
2174 
2175 static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2176   if (hasDeclarator(D)) return;
2177 
2178   if (!isa<ObjCMethodDecl>(D)) {
2179     S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
2180         << Attrs << ExpectedFunctionOrMethod;
2181     return;
2182   }
2183 
2184   D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs));
2185 }
2186 
2187 static void handleStandardNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &A) {
2188   // The [[_Noreturn]] spelling is deprecated in C2x, so if that was used,
2189   // issue an appropriate diagnostic. However, don't issue a diagnostic if the
2190   // attribute name comes from a macro expansion. We don't want to punish users
2191   // who write [[noreturn]] after including <stdnoreturn.h> (where 'noreturn'
2192   // is defined as a macro which expands to '_Noreturn').
2193   if (!S.getLangOpts().CPlusPlus &&
2194       A.getSemanticSpelling() == CXX11NoReturnAttr::C2x_Noreturn &&
2195       !(A.getLoc().isMacroID() &&
2196         S.getSourceManager().isInSystemMacro(A.getLoc())))
2197     S.Diag(A.getLoc(), diag::warn_deprecated_noreturn_spelling) << A.getRange();
2198 
2199   D->addAttr(::new (S.Context) CXX11NoReturnAttr(S.Context, A));
2200 }
2201 
2202 static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2203   if (!S.getLangOpts().CFProtectionBranch)
2204     S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
2205   else
2206     handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs);
2207 }
2208 
2209 bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) {
2210   if (!Attrs.checkExactlyNumArgs(*this, 0)) {
2211     Attrs.setInvalid();
2212     return true;
2213   }
2214 
2215   return false;
2216 }
2217 
2218 bool Sema::CheckAttrTarget(const ParsedAttr &AL) {
2219   // Check whether the attribute is valid on the current target.
2220   if (!AL.existsInTarget(Context.getTargetInfo())) {
2221     Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
2222         << AL << AL.getRange();
2223     AL.setInvalid();
2224     return true;
2225   }
2226 
2227   return false;
2228 }
2229 
2230 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2231 
2232   // The checking path for 'noreturn' and 'analyzer_noreturn' are different
2233   // because 'analyzer_noreturn' does not impact the type.
2234   if (!isFunctionOrMethodOrBlock(D)) {
2235     ValueDecl *VD = dyn_cast<ValueDecl>(D);
2236     if (!VD || (!VD->getType()->isBlockPointerType() &&
2237                 !VD->getType()->isFunctionPointerType())) {
2238       S.Diag(AL.getLoc(), AL.isStandardAttributeSyntax()
2239                               ? diag::err_attribute_wrong_decl_type
2240                               : diag::warn_attribute_wrong_decl_type)
2241           << AL << ExpectedFunctionMethodOrBlock;
2242       return;
2243     }
2244   }
2245 
2246   D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL));
2247 }
2248 
2249 // PS3 PPU-specific.
2250 static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2251   /*
2252     Returning a Vector Class in Registers
2253 
2254     According to the PPU ABI specifications, a class with a single member of
2255     vector type is returned in memory when used as the return value of a
2256     function.
2257     This results in inefficient code when implementing vector classes. To return
2258     the value in a single vector register, add the vecreturn attribute to the
2259     class definition. This attribute is also applicable to struct types.
2260 
2261     Example:
2262 
2263     struct Vector
2264     {
2265       __vector float xyzw;
2266     } __attribute__((vecreturn));
2267 
2268     Vector Add(Vector lhs, Vector rhs)
2269     {
2270       Vector result;
2271       result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
2272       return result; // This will be returned in a register
2273     }
2274   */
2275   if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
2276     S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
2277     return;
2278   }
2279 
2280   const auto *R = cast<RecordDecl>(D);
2281   int count = 0;
2282 
2283   if (!isa<CXXRecordDecl>(R)) {
2284     S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2285     return;
2286   }
2287 
2288   if (!cast<CXXRecordDecl>(R)->isPOD()) {
2289     S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
2290     return;
2291   }
2292 
2293   for (const auto *I : R->fields()) {
2294     if ((count == 1) || !I->getType()->isVectorType()) {
2295       S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2296       return;
2297     }
2298     count++;
2299   }
2300 
2301   D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL));
2302 }
2303 
2304 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
2305                                  const ParsedAttr &AL) {
2306   if (isa<ParmVarDecl>(D)) {
2307     // [[carries_dependency]] can only be applied to a parameter if it is a
2308     // parameter of a function declaration or lambda.
2309     if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
2310       S.Diag(AL.getLoc(),
2311              diag::err_carries_dependency_param_not_function_decl);
2312       return;
2313     }
2314   }
2315 
2316   D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL));
2317 }
2318 
2319 static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2320   bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
2321 
2322   // If this is spelled as the standard C++17 attribute, but not in C++17, warn
2323   // about using it as an extension.
2324   if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
2325     S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2326 
2327   D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL));
2328 }
2329 
2330 static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2331   uint32_t priority = ConstructorAttr::DefaultPriority;
2332   if (S.getLangOpts().HLSL && AL.getNumArgs()) {
2333     S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported);
2334     return;
2335   }
2336   if (AL.getNumArgs() &&
2337       !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2338     return;
2339 
2340   D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority));
2341 }
2342 
2343 static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2344   uint32_t priority = DestructorAttr::DefaultPriority;
2345   if (AL.getNumArgs() &&
2346       !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2347     return;
2348 
2349   D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority));
2350 }
2351 
2352 template <typename AttrTy>
2353 static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
2354   // Handle the case where the attribute has a text message.
2355   StringRef Str;
2356   if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
2357     return;
2358 
2359   D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str));
2360 }
2361 
2362 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
2363                                           const ParsedAttr &AL) {
2364   if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
2365     S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition)
2366         << AL << AL.getRange();
2367     return;
2368   }
2369 
2370   D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL));
2371 }
2372 
2373 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
2374                                   IdentifierInfo *Platform,
2375                                   VersionTuple Introduced,
2376                                   VersionTuple Deprecated,
2377                                   VersionTuple Obsoleted) {
2378   StringRef PlatformName
2379     = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2380   if (PlatformName.empty())
2381     PlatformName = Platform->getName();
2382 
2383   // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
2384   // of these steps are needed).
2385   if (!Introduced.empty() && !Deprecated.empty() &&
2386       !(Introduced <= Deprecated)) {
2387     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2388       << 1 << PlatformName << Deprecated.getAsString()
2389       << 0 << Introduced.getAsString();
2390     return true;
2391   }
2392 
2393   if (!Introduced.empty() && !Obsoleted.empty() &&
2394       !(Introduced <= Obsoleted)) {
2395     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2396       << 2 << PlatformName << Obsoleted.getAsString()
2397       << 0 << Introduced.getAsString();
2398     return true;
2399   }
2400 
2401   if (!Deprecated.empty() && !Obsoleted.empty() &&
2402       !(Deprecated <= Obsoleted)) {
2403     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2404       << 2 << PlatformName << Obsoleted.getAsString()
2405       << 1 << Deprecated.getAsString();
2406     return true;
2407   }
2408 
2409   return false;
2410 }
2411 
2412 /// Check whether the two versions match.
2413 ///
2414 /// If either version tuple is empty, then they are assumed to match. If
2415 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
2416 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
2417                           bool BeforeIsOkay) {
2418   if (X.empty() || Y.empty())
2419     return true;
2420 
2421   if (X == Y)
2422     return true;
2423 
2424   if (BeforeIsOkay && X < Y)
2425     return true;
2426 
2427   return false;
2428 }
2429 
2430 AvailabilityAttr *Sema::mergeAvailabilityAttr(
2431     NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
2432     bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
2433     VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
2434     bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
2435     int Priority) {
2436   VersionTuple MergedIntroduced = Introduced;
2437   VersionTuple MergedDeprecated = Deprecated;
2438   VersionTuple MergedObsoleted = Obsoleted;
2439   bool FoundAny = false;
2440   bool OverrideOrImpl = false;
2441   switch (AMK) {
2442   case AMK_None:
2443   case AMK_Redeclaration:
2444     OverrideOrImpl = false;
2445     break;
2446 
2447   case AMK_Override:
2448   case AMK_ProtocolImplementation:
2449   case AMK_OptionalProtocolImplementation:
2450     OverrideOrImpl = true;
2451     break;
2452   }
2453 
2454   if (D->hasAttrs()) {
2455     AttrVec &Attrs = D->getAttrs();
2456     for (unsigned i = 0, e = Attrs.size(); i != e;) {
2457       const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2458       if (!OldAA) {
2459         ++i;
2460         continue;
2461       }
2462 
2463       IdentifierInfo *OldPlatform = OldAA->getPlatform();
2464       if (OldPlatform != Platform) {
2465         ++i;
2466         continue;
2467       }
2468 
2469       // If there is an existing availability attribute for this platform that
2470       // has a lower priority use the existing one and discard the new
2471       // attribute.
2472       if (OldAA->getPriority() < Priority)
2473         return nullptr;
2474 
2475       // If there is an existing attribute for this platform that has a higher
2476       // priority than the new attribute then erase the old one and continue
2477       // processing the attributes.
2478       if (OldAA->getPriority() > Priority) {
2479         Attrs.erase(Attrs.begin() + i);
2480         --e;
2481         continue;
2482       }
2483 
2484       FoundAny = true;
2485       VersionTuple OldIntroduced = OldAA->getIntroduced();
2486       VersionTuple OldDeprecated = OldAA->getDeprecated();
2487       VersionTuple OldObsoleted = OldAA->getObsoleted();
2488       bool OldIsUnavailable = OldAA->getUnavailable();
2489 
2490       if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
2491           !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
2492           !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
2493           !(OldIsUnavailable == IsUnavailable ||
2494             (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
2495         if (OverrideOrImpl) {
2496           int Which = -1;
2497           VersionTuple FirstVersion;
2498           VersionTuple SecondVersion;
2499           if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
2500             Which = 0;
2501             FirstVersion = OldIntroduced;
2502             SecondVersion = Introduced;
2503           } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
2504             Which = 1;
2505             FirstVersion = Deprecated;
2506             SecondVersion = OldDeprecated;
2507           } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
2508             Which = 2;
2509             FirstVersion = Obsoleted;
2510             SecondVersion = OldObsoleted;
2511           }
2512 
2513           if (Which == -1) {
2514             Diag(OldAA->getLocation(),
2515                  diag::warn_mismatched_availability_override_unavail)
2516               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2517               << (AMK == AMK_Override);
2518           } else if (Which != 1 && AMK == AMK_OptionalProtocolImplementation) {
2519             // Allow different 'introduced' / 'obsoleted' availability versions
2520             // on a method that implements an optional protocol requirement. It
2521             // makes less sense to allow this for 'deprecated' as the user can't
2522             // see if the method is 'deprecated' as 'respondsToSelector' will
2523             // still return true when the method is deprecated.
2524             ++i;
2525             continue;
2526           } else {
2527             Diag(OldAA->getLocation(),
2528                  diag::warn_mismatched_availability_override)
2529               << Which
2530               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2531               << FirstVersion.getAsString() << SecondVersion.getAsString()
2532               << (AMK == AMK_Override);
2533           }
2534           if (AMK == AMK_Override)
2535             Diag(CI.getLoc(), diag::note_overridden_method);
2536           else
2537             Diag(CI.getLoc(), diag::note_protocol_method);
2538         } else {
2539           Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2540           Diag(CI.getLoc(), diag::note_previous_attribute);
2541         }
2542 
2543         Attrs.erase(Attrs.begin() + i);
2544         --e;
2545         continue;
2546       }
2547 
2548       VersionTuple MergedIntroduced2 = MergedIntroduced;
2549       VersionTuple MergedDeprecated2 = MergedDeprecated;
2550       VersionTuple MergedObsoleted2 = MergedObsoleted;
2551 
2552       if (MergedIntroduced2.empty())
2553         MergedIntroduced2 = OldIntroduced;
2554       if (MergedDeprecated2.empty())
2555         MergedDeprecated2 = OldDeprecated;
2556       if (MergedObsoleted2.empty())
2557         MergedObsoleted2 = OldObsoleted;
2558 
2559       if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2560                                 MergedIntroduced2, MergedDeprecated2,
2561                                 MergedObsoleted2)) {
2562         Attrs.erase(Attrs.begin() + i);
2563         --e;
2564         continue;
2565       }
2566 
2567       MergedIntroduced = MergedIntroduced2;
2568       MergedDeprecated = MergedDeprecated2;
2569       MergedObsoleted = MergedObsoleted2;
2570       ++i;
2571     }
2572   }
2573 
2574   if (FoundAny &&
2575       MergedIntroduced == Introduced &&
2576       MergedDeprecated == Deprecated &&
2577       MergedObsoleted == Obsoleted)
2578     return nullptr;
2579 
2580   // Only create a new attribute if !OverrideOrImpl, but we want to do
2581   // the checking.
2582   if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced,
2583                              MergedDeprecated, MergedObsoleted) &&
2584       !OverrideOrImpl) {
2585     auto *Avail = ::new (Context) AvailabilityAttr(
2586         Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable,
2587         Message, IsStrict, Replacement, Priority);
2588     Avail->setImplicit(Implicit);
2589     return Avail;
2590   }
2591   return nullptr;
2592 }
2593 
2594 static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2595   if (isa<UsingDecl, UnresolvedUsingTypenameDecl, UnresolvedUsingValueDecl>(
2596           D)) {
2597     S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
2598         << AL;
2599     return;
2600   }
2601 
2602   if (!AL.checkExactlyNumArgs(S, 1))
2603     return;
2604   IdentifierLoc *Platform = AL.getArgAsIdent(0);
2605 
2606   IdentifierInfo *II = Platform->Ident;
2607   if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
2608     S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
2609       << Platform->Ident;
2610 
2611   auto *ND = dyn_cast<NamedDecl>(D);
2612   if (!ND) // We warned about this already, so just return.
2613     return;
2614 
2615   AvailabilityChange Introduced = AL.getAvailabilityIntroduced();
2616   AvailabilityChange Deprecated = AL.getAvailabilityDeprecated();
2617   AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted();
2618   bool IsUnavailable = AL.getUnavailableLoc().isValid();
2619   bool IsStrict = AL.getStrictLoc().isValid();
2620   StringRef Str;
2621   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr()))
2622     Str = SE->getString();
2623   StringRef Replacement;
2624   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr()))
2625     Replacement = SE->getString();
2626 
2627   if (II->isStr("swift")) {
2628     if (Introduced.isValid() || Obsoleted.isValid() ||
2629         (!IsUnavailable && !Deprecated.isValid())) {
2630       S.Diag(AL.getLoc(),
2631              diag::warn_availability_swift_unavailable_deprecated_only);
2632       return;
2633     }
2634   }
2635 
2636   if (II->isStr("fuchsia")) {
2637     std::optional<unsigned> Min, Sub;
2638     if ((Min = Introduced.Version.getMinor()) ||
2639         (Sub = Introduced.Version.getSubminor())) {
2640       S.Diag(AL.getLoc(), diag::warn_availability_fuchsia_unavailable_minor);
2641       return;
2642     }
2643   }
2644 
2645   int PriorityModifier = AL.isPragmaClangAttribute()
2646                              ? Sema::AP_PragmaClangAttribute
2647                              : Sema::AP_Explicit;
2648   AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2649       ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version,
2650       Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement,
2651       Sema::AMK_None, PriorityModifier);
2652   if (NewAttr)
2653     D->addAttr(NewAttr);
2654 
2655   // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
2656   // matches before the start of the watchOS platform.
2657   if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
2658     IdentifierInfo *NewII = nullptr;
2659     if (II->getName() == "ios")
2660       NewII = &S.Context.Idents.get("watchos");
2661     else if (II->getName() == "ios_app_extension")
2662       NewII = &S.Context.Idents.get("watchos_app_extension");
2663 
2664     if (NewII) {
2665       const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking();
2666       const auto *IOSToWatchOSMapping =
2667           SDKInfo ? SDKInfo->getVersionMapping(
2668                         DarwinSDKInfo::OSEnvPair::iOStoWatchOSPair())
2669                   : nullptr;
2670 
2671       auto adjustWatchOSVersion =
2672           [IOSToWatchOSMapping](VersionTuple Version) -> VersionTuple {
2673         if (Version.empty())
2674           return Version;
2675         auto MinimumWatchOSVersion = VersionTuple(2, 0);
2676 
2677         if (IOSToWatchOSMapping) {
2678           if (auto MappedVersion = IOSToWatchOSMapping->map(
2679                   Version, MinimumWatchOSVersion, std::nullopt)) {
2680             return *MappedVersion;
2681           }
2682         }
2683 
2684         auto Major = Version.getMajor();
2685         auto NewMajor = Major >= 9 ? Major - 7 : 0;
2686         if (NewMajor >= 2) {
2687           if (Version.getMinor()) {
2688             if (Version.getSubminor())
2689               return VersionTuple(NewMajor, *Version.getMinor(),
2690                                   *Version.getSubminor());
2691             else
2692               return VersionTuple(NewMajor, *Version.getMinor());
2693           }
2694           return VersionTuple(NewMajor);
2695         }
2696 
2697         return MinimumWatchOSVersion;
2698       };
2699 
2700       auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
2701       auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
2702       auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
2703 
2704       AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2705           ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2706           NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2707           Sema::AMK_None,
2708           PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2709       if (NewAttr)
2710         D->addAttr(NewAttr);
2711     }
2712   } else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
2713     // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
2714     // matches before the start of the tvOS platform.
2715     IdentifierInfo *NewII = nullptr;
2716     if (II->getName() == "ios")
2717       NewII = &S.Context.Idents.get("tvos");
2718     else if (II->getName() == "ios_app_extension")
2719       NewII = &S.Context.Idents.get("tvos_app_extension");
2720 
2721     if (NewII) {
2722       const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking();
2723       const auto *IOSToTvOSMapping =
2724           SDKInfo ? SDKInfo->getVersionMapping(
2725                         DarwinSDKInfo::OSEnvPair::iOStoTvOSPair())
2726                   : nullptr;
2727 
2728       auto AdjustTvOSVersion =
2729           [IOSToTvOSMapping](VersionTuple Version) -> VersionTuple {
2730         if (Version.empty())
2731           return Version;
2732 
2733         if (IOSToTvOSMapping) {
2734           if (auto MappedVersion = IOSToTvOSMapping->map(
2735                   Version, VersionTuple(0, 0), std::nullopt)) {
2736             return *MappedVersion;
2737           }
2738         }
2739         return Version;
2740       };
2741 
2742       auto NewIntroduced = AdjustTvOSVersion(Introduced.Version);
2743       auto NewDeprecated = AdjustTvOSVersion(Deprecated.Version);
2744       auto NewObsoleted = AdjustTvOSVersion(Obsoleted.Version);
2745 
2746       AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2747           ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2748           NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2749           Sema::AMK_None,
2750           PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2751       if (NewAttr)
2752         D->addAttr(NewAttr);
2753     }
2754   } else if (S.Context.getTargetInfo().getTriple().getOS() ==
2755                  llvm::Triple::IOS &&
2756              S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) {
2757     auto GetSDKInfo = [&]() {
2758       return S.getDarwinSDKInfoForAvailabilityChecking(AL.getRange().getBegin(),
2759                                                        "macOS");
2760     };
2761 
2762     // Transcribe "ios" to "maccatalyst" (and add a new attribute).
2763     IdentifierInfo *NewII = nullptr;
2764     if (II->getName() == "ios")
2765       NewII = &S.Context.Idents.get("maccatalyst");
2766     else if (II->getName() == "ios_app_extension")
2767       NewII = &S.Context.Idents.get("maccatalyst_app_extension");
2768     if (NewII) {
2769       auto MinMacCatalystVersion = [](const VersionTuple &V) {
2770         if (V.empty())
2771           return V;
2772         if (V.getMajor() < 13 ||
2773             (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1))
2774           return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1.
2775         return V;
2776       };
2777       AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2778           ND, AL.getRange(), NewII, true /*Implicit*/,
2779           MinMacCatalystVersion(Introduced.Version),
2780           MinMacCatalystVersion(Deprecated.Version),
2781           MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Str,
2782           IsStrict, Replacement, Sema::AMK_None,
2783           PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2784       if (NewAttr)
2785         D->addAttr(NewAttr);
2786     } else if (II->getName() == "macos" && GetSDKInfo() &&
2787                (!Introduced.Version.empty() || !Deprecated.Version.empty() ||
2788                 !Obsoleted.Version.empty())) {
2789       if (const auto *MacOStoMacCatalystMapping =
2790               GetSDKInfo()->getVersionMapping(
2791                   DarwinSDKInfo::OSEnvPair::macOStoMacCatalystPair())) {
2792         // Infer Mac Catalyst availability from the macOS availability attribute
2793         // if it has versioned availability. Don't infer 'unavailable'. This
2794         // inferred availability has lower priority than the other availability
2795         // attributes that are inferred from 'ios'.
2796         NewII = &S.Context.Idents.get("maccatalyst");
2797         auto RemapMacOSVersion =
2798             [&](const VersionTuple &V) -> std::optional<VersionTuple> {
2799           if (V.empty())
2800             return std::nullopt;
2801           // API_TO_BE_DEPRECATED is 100000.
2802           if (V.getMajor() == 100000)
2803             return VersionTuple(100000);
2804           // The minimum iosmac version is 13.1
2805           return MacOStoMacCatalystMapping->map(V, VersionTuple(13, 1),
2806                                                 std::nullopt);
2807         };
2808         std::optional<VersionTuple> NewIntroduced =
2809                                         RemapMacOSVersion(Introduced.Version),
2810                                     NewDeprecated =
2811                                         RemapMacOSVersion(Deprecated.Version),
2812                                     NewObsoleted =
2813                                         RemapMacOSVersion(Obsoleted.Version);
2814         if (NewIntroduced || NewDeprecated || NewObsoleted) {
2815           auto VersionOrEmptyVersion =
2816               [](const std::optional<VersionTuple> &V) -> VersionTuple {
2817             return V ? *V : VersionTuple();
2818           };
2819           AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2820               ND, AL.getRange(), NewII, true /*Implicit*/,
2821               VersionOrEmptyVersion(NewIntroduced),
2822               VersionOrEmptyVersion(NewDeprecated),
2823               VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Str,
2824               IsStrict, Replacement, Sema::AMK_None,
2825               PriorityModifier + Sema::AP_InferredFromOtherPlatform +
2826                   Sema::AP_InferredFromOtherPlatform);
2827           if (NewAttr)
2828             D->addAttr(NewAttr);
2829         }
2830       }
2831     }
2832   }
2833 }
2834 
2835 static void handleExternalSourceSymbolAttr(Sema &S, Decl *D,
2836                                            const ParsedAttr &AL) {
2837   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 3))
2838     return;
2839 
2840   StringRef Language;
2841   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0)))
2842     Language = SE->getString();
2843   StringRef DefinedIn;
2844   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1)))
2845     DefinedIn = SE->getString();
2846   bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
2847 
2848   D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
2849       S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration));
2850 }
2851 
2852 template <class T>
2853 static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI,
2854                               typename T::VisibilityType value) {
2855   T *existingAttr = D->getAttr<T>();
2856   if (existingAttr) {
2857     typename T::VisibilityType existingValue = existingAttr->getVisibility();
2858     if (existingValue == value)
2859       return nullptr;
2860     S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2861     S.Diag(CI.getLoc(), diag::note_previous_attribute);
2862     D->dropAttr<T>();
2863   }
2864   return ::new (S.Context) T(S.Context, CI, value);
2865 }
2866 
2867 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D,
2868                                           const AttributeCommonInfo &CI,
2869                                           VisibilityAttr::VisibilityType Vis) {
2870   return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis);
2871 }
2872 
2873 TypeVisibilityAttr *
2874 Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
2875                               TypeVisibilityAttr::VisibilityType Vis) {
2876   return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis);
2877 }
2878 
2879 static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL,
2880                                  bool isTypeVisibility) {
2881   // Visibility attributes don't mean anything on a typedef.
2882   if (isa<TypedefNameDecl>(D)) {
2883     S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL;
2884     return;
2885   }
2886 
2887   // 'type_visibility' can only go on a type or namespace.
2888   if (isTypeVisibility &&
2889       !(isa<TagDecl>(D) ||
2890         isa<ObjCInterfaceDecl>(D) ||
2891         isa<NamespaceDecl>(D))) {
2892     S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2893         << AL << ExpectedTypeOrNamespace;
2894     return;
2895   }
2896 
2897   // Check that the argument is a string literal.
2898   StringRef TypeStr;
2899   SourceLocation LiteralLoc;
2900   if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
2901     return;
2902 
2903   VisibilityAttr::VisibilityType type;
2904   if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2905     S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL
2906                                                                 << TypeStr;
2907     return;
2908   }
2909 
2910   // Complain about attempts to use protected visibility on targets
2911   // (like Darwin) that don't support it.
2912   if (type == VisibilityAttr::Protected &&
2913       !S.Context.getTargetInfo().hasProtectedVisibility()) {
2914     S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
2915     type = VisibilityAttr::Default;
2916   }
2917 
2918   Attr *newAttr;
2919   if (isTypeVisibility) {
2920     newAttr = S.mergeTypeVisibilityAttr(
2921         D, AL, (TypeVisibilityAttr::VisibilityType)type);
2922   } else {
2923     newAttr = S.mergeVisibilityAttr(D, AL, type);
2924   }
2925   if (newAttr)
2926     D->addAttr(newAttr);
2927 }
2928 
2929 static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2930   // objc_direct cannot be set on methods declared in the context of a protocol
2931   if (isa<ObjCProtocolDecl>(D->getDeclContext())) {
2932     S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false;
2933     return;
2934   }
2935 
2936   if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2937     handleSimpleAttribute<ObjCDirectAttr>(S, D, AL);
2938   } else {
2939     S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2940   }
2941 }
2942 
2943 static void handleObjCDirectMembersAttr(Sema &S, Decl *D,
2944                                         const ParsedAttr &AL) {
2945   if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2946     handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
2947   } else {
2948     S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2949   }
2950 }
2951 
2952 static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2953   const auto *M = cast<ObjCMethodDecl>(D);
2954   if (!AL.isArgIdent(0)) {
2955     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2956         << AL << 1 << AANT_ArgumentIdentifier;
2957     return;
2958   }
2959 
2960   IdentifierLoc *IL = AL.getArgAsIdent(0);
2961   ObjCMethodFamilyAttr::FamilyKind F;
2962   if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
2963     S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident;
2964     return;
2965   }
2966 
2967   if (F == ObjCMethodFamilyAttr::OMF_init &&
2968       !M->getReturnType()->isObjCObjectPointerType()) {
2969     S.Diag(M->getLocation(), diag::err_init_method_bad_return_type)
2970         << M->getReturnType();
2971     // Ignore the attribute.
2972     return;
2973   }
2974 
2975   D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F));
2976 }
2977 
2978 static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) {
2979   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2980     QualType T = TD->getUnderlyingType();
2981     if (!T->isCARCBridgableType()) {
2982       S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2983       return;
2984     }
2985   }
2986   else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
2987     QualType T = PD->getType();
2988     if (!T->isCARCBridgableType()) {
2989       S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
2990       return;
2991     }
2992   }
2993   else {
2994     // It is okay to include this attribute on properties, e.g.:
2995     //
2996     //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2997     //
2998     // In this case it follows tradition and suppresses an error in the above
2999     // case.
3000     S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
3001   }
3002   D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL));
3003 }
3004 
3005 static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) {
3006   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
3007     QualType T = TD->getUnderlyingType();
3008     if (!T->isObjCObjectPointerType()) {
3009       S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
3010       return;
3011     }
3012   } else {
3013     S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
3014     return;
3015   }
3016   D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL));
3017 }
3018 
3019 static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3020   if (!AL.isArgIdent(0)) {
3021     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3022         << AL << 1 << AANT_ArgumentIdentifier;
3023     return;
3024   }
3025 
3026   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3027   BlocksAttr::BlockType type;
3028   if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
3029     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
3030     return;
3031   }
3032 
3033   D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type));
3034 }
3035 
3036 static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3037   unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
3038   if (AL.getNumArgs() > 0) {
3039     Expr *E = AL.getArgAsExpr(0);
3040     std::optional<llvm::APSInt> Idx = llvm::APSInt(32);
3041     if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
3042       S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3043           << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
3044       return;
3045     }
3046 
3047     if (Idx->isSigned() && Idx->isNegative()) {
3048       S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
3049         << E->getSourceRange();
3050       return;
3051     }
3052 
3053     sentinel = Idx->getZExtValue();
3054   }
3055 
3056   unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
3057   if (AL.getNumArgs() > 1) {
3058     Expr *E = AL.getArgAsExpr(1);
3059     std::optional<llvm::APSInt> Idx = llvm::APSInt(32);
3060     if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
3061       S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3062           << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange();
3063       return;
3064     }
3065     nullPos = Idx->getZExtValue();
3066 
3067     if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) {
3068       // FIXME: This error message could be improved, it would be nice
3069       // to say what the bounds actually are.
3070       S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
3071         << E->getSourceRange();
3072       return;
3073     }
3074   }
3075 
3076   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3077     const FunctionType *FT = FD->getType()->castAs<FunctionType>();
3078     if (isa<FunctionNoProtoType>(FT)) {
3079       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
3080       return;
3081     }
3082 
3083     if (!cast<FunctionProtoType>(FT)->isVariadic()) {
3084       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
3085       return;
3086     }
3087   } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
3088     if (!MD->isVariadic()) {
3089       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
3090       return;
3091     }
3092   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3093     if (!BD->isVariadic()) {
3094       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
3095       return;
3096     }
3097   } else if (const auto *V = dyn_cast<VarDecl>(D)) {
3098     QualType Ty = V->getType();
3099     if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
3100       const FunctionType *FT = Ty->isFunctionPointerType()
3101                                    ? D->getFunctionType()
3102                                    : Ty->castAs<BlockPointerType>()
3103                                          ->getPointeeType()
3104                                          ->castAs<FunctionType>();
3105       if (!cast<FunctionProtoType>(FT)->isVariadic()) {
3106         int m = Ty->isFunctionPointerType() ? 0 : 1;
3107         S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
3108         return;
3109       }
3110     } else {
3111       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3112           << AL << ExpectedFunctionMethodOrBlock;
3113       return;
3114     }
3115   } else {
3116     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3117         << AL << ExpectedFunctionMethodOrBlock;
3118     return;
3119   }
3120   D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos));
3121 }
3122 
3123 static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) {
3124   if (D->getFunctionType() &&
3125       D->getFunctionType()->getReturnType()->isVoidType() &&
3126       !isa<CXXConstructorDecl>(D)) {
3127     S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0;
3128     return;
3129   }
3130   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
3131     if (MD->getReturnType()->isVoidType()) {
3132       S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1;
3133       return;
3134     }
3135 
3136   StringRef Str;
3137   if (AL.isStandardAttributeSyntax() && !AL.getScopeName()) {
3138     // The standard attribute cannot be applied to variable declarations such
3139     // as a function pointer.
3140     if (isa<VarDecl>(D))
3141       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
3142           << AL << "functions, classes, or enumerations";
3143 
3144     // If this is spelled as the standard C++17 attribute, but not in C++17,
3145     // warn about using it as an extension. If there are attribute arguments,
3146     // then claim it's a C++2a extension instead.
3147     // FIXME: If WG14 does not seem likely to adopt the same feature, add an
3148     // extension warning for C2x mode.
3149     const LangOptions &LO = S.getLangOpts();
3150     if (AL.getNumArgs() == 1) {
3151       if (LO.CPlusPlus && !LO.CPlusPlus20)
3152         S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL;
3153 
3154       // Since this is spelled [[nodiscard]], get the optional string
3155       // literal. If in C++ mode, but not in C++2a mode, diagnose as an
3156       // extension.
3157       // FIXME: C2x should support this feature as well, even as an extension.
3158       if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
3159         return;
3160     } else if (LO.CPlusPlus && !LO.CPlusPlus17)
3161       S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
3162   }
3163 
3164   if ((!AL.isGNUAttribute() &&
3165        !(AL.isStandardAttributeSyntax() && AL.isClangScope())) &&
3166       isa<TypedefNameDecl>(D)) {
3167     S.Diag(AL.getLoc(), diag::warn_unused_result_typedef_unsupported_spelling)
3168         << AL.isGNUScope();
3169     return;
3170   }
3171 
3172   D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str));
3173 }
3174 
3175 static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3176   // weak_import only applies to variable & function declarations.
3177   bool isDef = false;
3178   if (!D->canBeWeakImported(isDef)) {
3179     if (isDef)
3180       S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
3181         << "weak_import";
3182     else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
3183              (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
3184               (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
3185       // Nothing to warn about here.
3186     } else
3187       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3188           << AL << ExpectedVariableOrFunction;
3189 
3190     return;
3191   }
3192 
3193   D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL));
3194 }
3195 
3196 // Handles reqd_work_group_size and work_group_size_hint.
3197 template <typename WorkGroupAttr>
3198 static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
3199   uint32_t WGSize[3];
3200   for (unsigned i = 0; i < 3; ++i) {
3201     const Expr *E = AL.getArgAsExpr(i);
3202     if (!checkUInt32Argument(S, AL, E, WGSize[i], i,
3203                              /*StrictlyUnsigned=*/true))
3204       return;
3205     if (WGSize[i] == 0) {
3206       S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3207           << AL << E->getSourceRange();
3208       return;
3209     }
3210   }
3211 
3212   WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
3213   if (Existing && !(Existing->getXDim() == WGSize[0] &&
3214                     Existing->getYDim() == WGSize[1] &&
3215                     Existing->getZDim() == WGSize[2]))
3216     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3217 
3218   D->addAttr(::new (S.Context)
3219                  WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2]));
3220 }
3221 
3222 // Handles intel_reqd_sub_group_size.
3223 static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
3224   uint32_t SGSize;
3225   const Expr *E = AL.getArgAsExpr(0);
3226   if (!checkUInt32Argument(S, AL, E, SGSize))
3227     return;
3228   if (SGSize == 0) {
3229     S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3230         << AL << E->getSourceRange();
3231     return;
3232   }
3233 
3234   OpenCLIntelReqdSubGroupSizeAttr *Existing =
3235       D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>();
3236   if (Existing && Existing->getSubGroupSize() != SGSize)
3237     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3238 
3239   D->addAttr(::new (S.Context)
3240                  OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize));
3241 }
3242 
3243 static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) {
3244   if (!AL.hasParsedType()) {
3245     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
3246     return;
3247   }
3248 
3249   TypeSourceInfo *ParmTSI = nullptr;
3250   QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
3251   assert(ParmTSI && "no type source info for attribute argument");
3252 
3253   if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
3254       (ParmType->isBooleanType() ||
3255        !ParmType->isIntegralType(S.getASTContext()))) {
3256     S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL;
3257     return;
3258   }
3259 
3260   if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
3261     if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
3262       S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3263       return;
3264     }
3265   }
3266 
3267   D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI));
3268 }
3269 
3270 SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
3271                                     StringRef Name) {
3272   // Explicit or partial specializations do not inherit
3273   // the section attribute from the primary template.
3274   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3275     if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate &&
3276         FD->isFunctionTemplateSpecialization())
3277       return nullptr;
3278   }
3279   if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
3280     if (ExistingAttr->getName() == Name)
3281       return nullptr;
3282     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3283          << 1 /*section*/;
3284     Diag(CI.getLoc(), diag::note_previous_attribute);
3285     return nullptr;
3286   }
3287   return ::new (Context) SectionAttr(Context, CI, Name);
3288 }
3289 
3290 /// Used to implement to perform semantic checking on
3291 /// attribute((section("foo"))) specifiers.
3292 ///
3293 /// In this case, "foo" is passed in to be checked.  If the section
3294 /// specifier is invalid, return an Error that indicates the problem.
3295 ///
3296 /// This is a simple quality of implementation feature to catch errors
3297 /// and give good diagnostics in cases when the assembler or code generator
3298 /// would otherwise reject the section specifier.
3299 llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) {
3300   if (!Context.getTargetInfo().getTriple().isOSDarwin())
3301     return llvm::Error::success();
3302 
3303   // Let MCSectionMachO validate this.
3304   StringRef Segment, Section;
3305   unsigned TAA, StubSize;
3306   bool HasTAA;
3307   return llvm::MCSectionMachO::ParseSectionSpecifier(SecName, Segment, Section,
3308                                                      TAA, HasTAA, StubSize);
3309 }
3310 
3311 bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
3312   if (llvm::Error E = isValidSectionSpecifier(SecName)) {
3313     Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3314         << toString(std::move(E)) << 1 /*'section'*/;
3315     return false;
3316   }
3317   return true;
3318 }
3319 
3320 static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3321   // Make sure that there is a string literal as the sections's single
3322   // argument.
3323   StringRef Str;
3324   SourceLocation LiteralLoc;
3325   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3326     return;
3327 
3328   if (!S.checkSectionName(LiteralLoc, Str))
3329     return;
3330 
3331   SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str);
3332   if (NewAttr) {
3333     D->addAttr(NewAttr);
3334     if (isa<FunctionDecl, FunctionTemplateDecl, ObjCMethodDecl,
3335             ObjCPropertyDecl>(D))
3336       S.UnifySection(NewAttr->getName(),
3337                      ASTContext::PSF_Execute | ASTContext::PSF_Read,
3338                      cast<NamedDecl>(D));
3339   }
3340 }
3341 
3342 // This is used for `__declspec(code_seg("segname"))` on a decl.
3343 // `#pragma code_seg("segname")` uses checkSectionName() instead.
3344 static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc,
3345                              StringRef CodeSegName) {
3346   if (llvm::Error E = S.isValidSectionSpecifier(CodeSegName)) {
3347     S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3348         << toString(std::move(E)) << 0 /*'code-seg'*/;
3349     return false;
3350   }
3351 
3352   return true;
3353 }
3354 
3355 CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3356                                     StringRef Name) {
3357   // Explicit or partial specializations do not inherit
3358   // the code_seg attribute from the primary template.
3359   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3360     if (FD->isFunctionTemplateSpecialization())
3361       return nullptr;
3362   }
3363   if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3364     if (ExistingAttr->getName() == Name)
3365       return nullptr;
3366     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3367          << 0 /*codeseg*/;
3368     Diag(CI.getLoc(), diag::note_previous_attribute);
3369     return nullptr;
3370   }
3371   return ::new (Context) CodeSegAttr(Context, CI, Name);
3372 }
3373 
3374 static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3375   StringRef Str;
3376   SourceLocation LiteralLoc;
3377   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3378     return;
3379   if (!checkCodeSegName(S, LiteralLoc, Str))
3380     return;
3381   if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3382     if (!ExistingAttr->isImplicit()) {
3383       S.Diag(AL.getLoc(),
3384              ExistingAttr->getName() == Str
3385              ? diag::warn_duplicate_codeseg_attribute
3386              : diag::err_conflicting_codeseg_attribute);
3387       return;
3388     }
3389     D->dropAttr<CodeSegAttr>();
3390   }
3391   if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str))
3392     D->addAttr(CSA);
3393 }
3394 
3395 // Check for things we'd like to warn about. Multiversioning issues are
3396 // handled later in the process, once we know how many exist.
3397 bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
3398   enum FirstParam { Unsupported, Duplicate, Unknown };
3399   enum SecondParam { None, CPU, Tune };
3400   enum ThirdParam { Target, TargetClones };
3401   if (AttrStr.contains("fpmath="))
3402     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3403            << Unsupported << None << "fpmath=" << Target;
3404 
3405   // Diagnose use of tune if target doesn't support it.
3406   if (!Context.getTargetInfo().supportsTargetAttributeTune() &&
3407       AttrStr.contains("tune="))
3408     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3409            << Unsupported << None << "tune=" << Target;
3410 
3411   ParsedTargetAttr ParsedAttrs =
3412       Context.getTargetInfo().parseTargetAttr(AttrStr);
3413 
3414   if (!ParsedAttrs.CPU.empty() &&
3415       !Context.getTargetInfo().isValidCPUName(ParsedAttrs.CPU))
3416     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3417            << Unknown << CPU << ParsedAttrs.CPU << Target;
3418 
3419   if (!ParsedAttrs.Tune.empty() &&
3420       !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune))
3421     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3422            << Unknown << Tune << ParsedAttrs.Tune << Target;
3423 
3424   if (ParsedAttrs.Duplicate != "")
3425     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3426            << Duplicate << None << ParsedAttrs.Duplicate << Target;
3427 
3428   for (const auto &Feature : ParsedAttrs.Features) {
3429     auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
3430     if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
3431       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3432              << Unsupported << None << CurFeature << Target;
3433   }
3434 
3435   TargetInfo::BranchProtectionInfo BPI;
3436   StringRef DiagMsg;
3437   if (ParsedAttrs.BranchProtection.empty())
3438     return false;
3439   if (!Context.getTargetInfo().validateBranchProtection(
3440           ParsedAttrs.BranchProtection, ParsedAttrs.CPU, BPI, DiagMsg)) {
3441     if (DiagMsg.empty())
3442       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3443              << Unsupported << None << "branch-protection" << Target;
3444     return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec)
3445            << DiagMsg;
3446   }
3447   if (!DiagMsg.empty())
3448     Diag(LiteralLoc, diag::warn_unsupported_branch_protection_spec) << DiagMsg;
3449 
3450   return false;
3451 }
3452 
3453 // Check Target Version attrs
3454 bool Sema::checkTargetVersionAttr(SourceLocation LiteralLoc, StringRef &AttrStr,
3455                                   bool &isDefault) {
3456   enum FirstParam { Unsupported };
3457   enum SecondParam { None };
3458   enum ThirdParam { Target, TargetClones, TargetVersion };
3459   if (AttrStr.trim() == "default")
3460     isDefault = true;
3461   llvm::SmallVector<StringRef, 8> Features;
3462   AttrStr.split(Features, "+");
3463   for (auto &CurFeature : Features) {
3464     CurFeature = CurFeature.trim();
3465     if (CurFeature == "default")
3466       continue;
3467     if (!Context.getTargetInfo().validateCpuSupports(CurFeature))
3468       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3469              << Unsupported << None << CurFeature << TargetVersion;
3470   }
3471   return false;
3472 }
3473 
3474 static void handleTargetVersionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3475   StringRef Str;
3476   SourceLocation LiteralLoc;
3477   bool isDefault = false;
3478   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3479       S.checkTargetVersionAttr(LiteralLoc, Str, isDefault))
3480     return;
3481   // Do not create default only target_version attribute
3482   if (!isDefault) {
3483     TargetVersionAttr *NewAttr =
3484         ::new (S.Context) TargetVersionAttr(S.Context, AL, Str);
3485     D->addAttr(NewAttr);
3486   }
3487 }
3488 
3489 static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3490   StringRef Str;
3491   SourceLocation LiteralLoc;
3492   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3493       S.checkTargetAttr(LiteralLoc, Str))
3494     return;
3495 
3496   TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str);
3497   D->addAttr(NewAttr);
3498 }
3499 
3500 bool Sema::checkTargetClonesAttrString(
3501     SourceLocation LiteralLoc, StringRef Str, const StringLiteral *Literal,
3502     bool &HasDefault, bool &HasCommas, bool &HasNotDefault,
3503     SmallVectorImpl<SmallString<64>> &StringsBuffer) {
3504   enum FirstParam { Unsupported, Duplicate, Unknown };
3505   enum SecondParam { None, CPU, Tune };
3506   enum ThirdParam { Target, TargetClones };
3507   HasCommas = HasCommas || Str.contains(',');
3508   // Warn on empty at the beginning of a string.
3509   if (Str.size() == 0)
3510     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3511            << Unsupported << None << "" << TargetClones;
3512 
3513   std::pair<StringRef, StringRef> Parts = {{}, Str};
3514   while (!Parts.second.empty()) {
3515     Parts = Parts.second.split(',');
3516     StringRef Cur = Parts.first.trim();
3517     SourceLocation CurLoc = Literal->getLocationOfByte(
3518         Cur.data() - Literal->getString().data(), getSourceManager(),
3519         getLangOpts(), Context.getTargetInfo());
3520 
3521     bool DefaultIsDupe = false;
3522     bool HasCodeGenImpact = false;
3523     if (Cur.empty())
3524       return Diag(CurLoc, diag::warn_unsupported_target_attribute)
3525              << Unsupported << None << "" << TargetClones;
3526 
3527     if (Context.getTargetInfo().getTriple().isAArch64()) {
3528       // AArch64 target clones specific
3529       if (Cur == "default") {
3530         DefaultIsDupe = HasDefault;
3531         HasDefault = true;
3532         if (llvm::is_contained(StringsBuffer, Cur) || DefaultIsDupe)
3533           Diag(CurLoc, diag::warn_target_clone_duplicate_options);
3534         else
3535           StringsBuffer.push_back(Cur);
3536       } else {
3537         std::pair<StringRef, StringRef> CurParts = {{}, Cur};
3538         llvm::SmallVector<StringRef, 8> CurFeatures;
3539         while (!CurParts.second.empty()) {
3540           CurParts = CurParts.second.split('+');
3541           StringRef CurFeature = CurParts.first.trim();
3542           if (!Context.getTargetInfo().validateCpuSupports(CurFeature)) {
3543             Diag(CurLoc, diag::warn_unsupported_target_attribute)
3544                 << Unsupported << None << CurFeature << TargetClones;
3545             continue;
3546           }
3547           std::string Options;
3548           if (Context.getTargetInfo().getFeatureDepOptions(CurFeature, Options))
3549             HasCodeGenImpact = true;
3550           CurFeatures.push_back(CurFeature);
3551         }
3552         // Canonize TargetClones Attributes
3553         llvm::sort(CurFeatures);
3554         SmallString<64> Res;
3555         for (auto &CurFeat : CurFeatures) {
3556           if (!Res.equals(""))
3557             Res.append("+");
3558           Res.append(CurFeat);
3559         }
3560         if (llvm::is_contained(StringsBuffer, Res) || DefaultIsDupe)
3561           Diag(CurLoc, diag::warn_target_clone_duplicate_options);
3562         else if (!HasCodeGenImpact)
3563           // Ignore features in target_clone attribute that don't impact
3564           // code generation
3565           Diag(CurLoc, diag::warn_target_clone_no_impact_options);
3566         else if (!Res.empty()) {
3567           StringsBuffer.push_back(Res);
3568           HasNotDefault = true;
3569         }
3570       }
3571     } else {
3572       // Other targets ( currently X86 )
3573       if (Cur.startswith("arch=")) {
3574         if (!Context.getTargetInfo().isValidCPUName(
3575                 Cur.drop_front(sizeof("arch=") - 1)))
3576           return Diag(CurLoc, diag::warn_unsupported_target_attribute)
3577                  << Unsupported << CPU << Cur.drop_front(sizeof("arch=") - 1)
3578                  << TargetClones;
3579       } else if (Cur == "default") {
3580         DefaultIsDupe = HasDefault;
3581         HasDefault = true;
3582       } else if (!Context.getTargetInfo().isValidFeatureName(Cur))
3583         return Diag(CurLoc, diag::warn_unsupported_target_attribute)
3584                << Unsupported << None << Cur << TargetClones;
3585       if (llvm::is_contained(StringsBuffer, Cur) || DefaultIsDupe)
3586         Diag(CurLoc, diag::warn_target_clone_duplicate_options);
3587       // Note: Add even if there are duplicates, since it changes name mangling.
3588       StringsBuffer.push_back(Cur);
3589     }
3590   }
3591   if (Str.rtrim().endswith(","))
3592     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3593            << Unsupported << None << "" << TargetClones;
3594   return false;
3595 }
3596 
3597 static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3598   if (S.Context.getTargetInfo().getTriple().isAArch64() &&
3599       !S.Context.getTargetInfo().hasFeature("fmv"))
3600     return;
3601 
3602   // Ensure we don't combine these with themselves, since that causes some
3603   // confusing behavior.
3604   if (const auto *Other = D->getAttr<TargetClonesAttr>()) {
3605     S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
3606     S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
3607     return;
3608   }
3609   if (checkAttrMutualExclusion<TargetClonesAttr>(S, D, AL))
3610     return;
3611 
3612   SmallVector<StringRef, 2> Strings;
3613   SmallVector<SmallString<64>, 2> StringsBuffer;
3614   bool HasCommas = false, HasDefault = false, HasNotDefault = false;
3615 
3616   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
3617     StringRef CurStr;
3618     SourceLocation LiteralLoc;
3619     if (!S.checkStringLiteralArgumentAttr(AL, I, CurStr, &LiteralLoc) ||
3620         S.checkTargetClonesAttrString(
3621             LiteralLoc, CurStr,
3622             cast<StringLiteral>(AL.getArgAsExpr(I)->IgnoreParenCasts()),
3623             HasDefault, HasCommas, HasNotDefault, StringsBuffer))
3624       return;
3625   }
3626   for (auto &SmallStr : StringsBuffer)
3627     Strings.push_back(SmallStr.str());
3628 
3629   if (HasCommas && AL.getNumArgs() > 1)
3630     S.Diag(AL.getLoc(), diag::warn_target_clone_mixed_values);
3631 
3632   if (S.Context.getTargetInfo().getTriple().isAArch64() && !HasDefault) {
3633     // Add default attribute if there is no one
3634     HasDefault = true;
3635     Strings.push_back("default");
3636   }
3637 
3638   if (!HasDefault) {
3639     S.Diag(AL.getLoc(), diag::err_target_clone_must_have_default);
3640     return;
3641   }
3642 
3643   // FIXME: We could probably figure out how to get this to work for lambdas
3644   // someday.
3645   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3646     if (MD->getParent()->isLambda()) {
3647       S.Diag(D->getLocation(), diag::err_multiversion_doesnt_support)
3648           << static_cast<unsigned>(MultiVersionKind::TargetClones)
3649           << /*Lambda*/ 9;
3650       return;
3651     }
3652   }
3653 
3654   // No multiversion if we have default version only.
3655   if (S.Context.getTargetInfo().getTriple().isAArch64() && !HasNotDefault)
3656     return;
3657 
3658   cast<FunctionDecl>(D)->setIsMultiVersion();
3659   TargetClonesAttr *NewAttr = ::new (S.Context)
3660       TargetClonesAttr(S.Context, AL, Strings.data(), Strings.size());
3661   D->addAttr(NewAttr);
3662 }
3663 
3664 static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3665   Expr *E = AL.getArgAsExpr(0);
3666   uint32_t VecWidth;
3667   if (!checkUInt32Argument(S, AL, E, VecWidth)) {
3668     AL.setInvalid();
3669     return;
3670   }
3671 
3672   MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>();
3673   if (Existing && Existing->getVectorWidth() != VecWidth) {
3674     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3675     return;
3676   }
3677 
3678   D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth));
3679 }
3680 
3681 static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3682   Expr *E = AL.getArgAsExpr(0);
3683   SourceLocation Loc = E->getExprLoc();
3684   FunctionDecl *FD = nullptr;
3685   DeclarationNameInfo NI;
3686 
3687   // gcc only allows for simple identifiers. Since we support more than gcc, we
3688   // will warn the user.
3689   if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3690     if (DRE->hasQualifier())
3691       S.Diag(Loc, diag::warn_cleanup_ext);
3692     FD = dyn_cast<FunctionDecl>(DRE->getDecl());
3693     NI = DRE->getNameInfo();
3694     if (!FD) {
3695       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
3696         << NI.getName();
3697       return;
3698     }
3699   } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
3700     if (ULE->hasExplicitTemplateArgs())
3701       S.Diag(Loc, diag::warn_cleanup_ext);
3702     FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
3703     NI = ULE->getNameInfo();
3704     if (!FD) {
3705       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
3706         << NI.getName();
3707       if (ULE->getType() == S.Context.OverloadTy)
3708         S.NoteAllOverloadCandidates(ULE);
3709       return;
3710     }
3711   } else {
3712     S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
3713     return;
3714   }
3715 
3716   if (FD->getNumParams() != 1) {
3717     S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
3718       << NI.getName();
3719     return;
3720   }
3721 
3722   // We're currently more strict than GCC about what function types we accept.
3723   // If this ever proves to be a problem it should be easy to fix.
3724   QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType());
3725   QualType ParamTy = FD->getParamDecl(0)->getType();
3726   if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
3727                                    ParamTy, Ty) != Sema::Compatible) {
3728     S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
3729       << NI.getName() << ParamTy << Ty;
3730     return;
3731   }
3732 
3733   D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD));
3734 }
3735 
3736 static void handleEnumExtensibilityAttr(Sema &S, Decl *D,
3737                                         const ParsedAttr &AL) {
3738   if (!AL.isArgIdent(0)) {
3739     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3740         << AL << 0 << AANT_ArgumentIdentifier;
3741     return;
3742   }
3743 
3744   EnumExtensibilityAttr::Kind ExtensibilityKind;
3745   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3746   if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
3747                                                ExtensibilityKind)) {
3748     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
3749     return;
3750   }
3751 
3752   D->addAttr(::new (S.Context)
3753                  EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind));
3754 }
3755 
3756 /// Handle __attribute__((format_arg((idx)))) attribute based on
3757 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3758 static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3759   Expr *IdxExpr = AL.getArgAsExpr(0);
3760   ParamIdx Idx;
3761   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx))
3762     return;
3763 
3764   // Make sure the format string is really a string.
3765   QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
3766 
3767   bool NotNSStringTy = !isNSStringType(Ty, S.Context);
3768   if (NotNSStringTy &&
3769       !isCFStringType(Ty, S.Context) &&
3770       (!Ty->isPointerType() ||
3771        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3772     S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3773         << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3774     return;
3775   }
3776   Ty = getFunctionOrMethodResultType(D);
3777   // replace instancetype with the class type
3778   auto Instancetype = S.Context.getObjCInstanceTypeDecl()->getTypeForDecl();
3779   if (Ty->getAs<TypedefType>() == Instancetype)
3780     if (auto *OMD = dyn_cast<ObjCMethodDecl>(D))
3781       if (auto *Interface = OMD->getClassInterface())
3782         Ty = S.Context.getObjCObjectPointerType(
3783             QualType(Interface->getTypeForDecl(), 0));
3784   if (!isNSStringType(Ty, S.Context, /*AllowNSAttributedString=*/true) &&
3785       !isCFStringType(Ty, S.Context) &&
3786       (!Ty->isPointerType() ||
3787        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3788     S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
3789         << (NotNSStringTy ? "string type" : "NSString")
3790         << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3791     return;
3792   }
3793 
3794   D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx));
3795 }
3796 
3797 enum FormatAttrKind {
3798   CFStringFormat,
3799   NSStringFormat,
3800   StrftimeFormat,
3801   SupportedFormat,
3802   IgnoredFormat,
3803   InvalidFormat
3804 };
3805 
3806 /// getFormatAttrKind - Map from format attribute names to supported format
3807 /// types.
3808 static FormatAttrKind getFormatAttrKind(StringRef Format) {
3809   return llvm::StringSwitch<FormatAttrKind>(Format)
3810       // Check for formats that get handled specially.
3811       .Case("NSString", NSStringFormat)
3812       .Case("CFString", CFStringFormat)
3813       .Case("strftime", StrftimeFormat)
3814 
3815       // Otherwise, check for supported formats.
3816       .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
3817       .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
3818       .Case("kprintf", SupportedFormat)         // OpenBSD.
3819       .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
3820       .Case("os_trace", SupportedFormat)
3821       .Case("os_log", SupportedFormat)
3822 
3823       .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
3824       .Default(InvalidFormat);
3825 }
3826 
3827 /// Handle __attribute__((init_priority(priority))) attributes based on
3828 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
3829 static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3830   if (!S.getLangOpts().CPlusPlus) {
3831     S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
3832     return;
3833   }
3834 
3835   if (S.getLangOpts().HLSL) {
3836     S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported);
3837     return;
3838   }
3839 
3840   if (S.getCurFunctionOrMethodDecl()) {
3841     S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3842     AL.setInvalid();
3843     return;
3844   }
3845   QualType T = cast<VarDecl>(D)->getType();
3846   if (S.Context.getAsArrayType(T))
3847     T = S.Context.getBaseElementType(T);
3848   if (!T->getAs<RecordType>()) {
3849     S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3850     AL.setInvalid();
3851     return;
3852   }
3853 
3854   Expr *E = AL.getArgAsExpr(0);
3855   uint32_t prioritynum;
3856   if (!checkUInt32Argument(S, AL, E, prioritynum)) {
3857     AL.setInvalid();
3858     return;
3859   }
3860 
3861   // Only perform the priority check if the attribute is outside of a system
3862   // header. Values <= 100 are reserved for the implementation, and libc++
3863   // benefits from being able to specify values in that range.
3864   if ((prioritynum < 101 || prioritynum > 65535) &&
3865       !S.getSourceManager().isInSystemHeader(AL.getLoc())) {
3866     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
3867         << E->getSourceRange() << AL << 101 << 65535;
3868     AL.setInvalid();
3869     return;
3870   }
3871   D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum));
3872 }
3873 
3874 ErrorAttr *Sema::mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI,
3875                                 StringRef NewUserDiagnostic) {
3876   if (const auto *EA = D->getAttr<ErrorAttr>()) {
3877     std::string NewAttr = CI.getNormalizedFullName();
3878     assert((NewAttr == "error" || NewAttr == "warning") &&
3879            "unexpected normalized full name");
3880     bool Match = (EA->isError() && NewAttr == "error") ||
3881                  (EA->isWarning() && NewAttr == "warning");
3882     if (!Match) {
3883       Diag(EA->getLocation(), diag::err_attributes_are_not_compatible)
3884           << CI << EA;
3885       Diag(CI.getLoc(), diag::note_conflicting_attribute);
3886       return nullptr;
3887     }
3888     if (EA->getUserDiagnostic() != NewUserDiagnostic) {
3889       Diag(CI.getLoc(), diag::warn_duplicate_attribute) << EA;
3890       Diag(EA->getLoc(), diag::note_previous_attribute);
3891     }
3892     D->dropAttr<ErrorAttr>();
3893   }
3894   return ::new (Context) ErrorAttr(Context, CI, NewUserDiagnostic);
3895 }
3896 
3897 FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3898                                   IdentifierInfo *Format, int FormatIdx,
3899                                   int FirstArg) {
3900   // Check whether we already have an equivalent format attribute.
3901   for (auto *F : D->specific_attrs<FormatAttr>()) {
3902     if (F->getType() == Format &&
3903         F->getFormatIdx() == FormatIdx &&
3904         F->getFirstArg() == FirstArg) {
3905       // If we don't have a valid location for this attribute, adopt the
3906       // location.
3907       if (F->getLocation().isInvalid())
3908         F->setRange(CI.getRange());
3909       return nullptr;
3910     }
3911   }
3912 
3913   return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg);
3914 }
3915 
3916 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
3917 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3918 static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3919   if (!AL.isArgIdent(0)) {
3920     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3921         << AL << 1 << AANT_ArgumentIdentifier;
3922     return;
3923   }
3924 
3925   // In C++ the implicit 'this' function parameter also counts, and they are
3926   // counted from one.
3927   bool HasImplicitThisParam = isInstanceMethod(D);
3928   unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
3929 
3930   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3931   StringRef Format = II->getName();
3932 
3933   if (normalizeName(Format)) {
3934     // If we've modified the string name, we need a new identifier for it.
3935     II = &S.Context.Idents.get(Format);
3936   }
3937 
3938   // Check for supported formats.
3939   FormatAttrKind Kind = getFormatAttrKind(Format);
3940 
3941   if (Kind == IgnoredFormat)
3942     return;
3943 
3944   if (Kind == InvalidFormat) {
3945     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
3946         << AL << II->getName();
3947     return;
3948   }
3949 
3950   // checks for the 2nd argument
3951   Expr *IdxExpr = AL.getArgAsExpr(1);
3952   uint32_t Idx;
3953   if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2))
3954     return;
3955 
3956   if (Idx < 1 || Idx > NumArgs) {
3957     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3958         << AL << 2 << IdxExpr->getSourceRange();
3959     return;
3960   }
3961 
3962   // FIXME: Do we need to bounds check?
3963   unsigned ArgIdx = Idx - 1;
3964 
3965   if (HasImplicitThisParam) {
3966     if (ArgIdx == 0) {
3967       S.Diag(AL.getLoc(),
3968              diag::err_format_attribute_implicit_this_format_string)
3969         << IdxExpr->getSourceRange();
3970       return;
3971     }
3972     ArgIdx--;
3973   }
3974 
3975   // make sure the format string is really a string
3976   QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
3977 
3978   if (!isNSStringType(Ty, S.Context, true) &&
3979       !isCFStringType(Ty, S.Context) &&
3980       (!Ty->isPointerType() ||
3981        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3982     S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3983       << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, ArgIdx);
3984     return;
3985   }
3986 
3987   // check the 3rd argument
3988   Expr *FirstArgExpr = AL.getArgAsExpr(2);
3989   uint32_t FirstArg;
3990   if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3))
3991     return;
3992 
3993   // FirstArg == 0 is is always valid.
3994   if (FirstArg != 0) {
3995     if (Kind == StrftimeFormat) {
3996       // If the kind is strftime, FirstArg must be 0 because strftime does not
3997       // use any variadic arguments.
3998       S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
3999           << FirstArgExpr->getSourceRange()
4000           << FixItHint::CreateReplacement(FirstArgExpr->getSourceRange(), "0");
4001       return;
4002     } else if (isFunctionOrMethodVariadic(D)) {
4003       // Else, if the function is variadic, then FirstArg must be 0 or the
4004       // "position" of the ... parameter. It's unusual to use 0 with variadic
4005       // functions, so the fixit proposes the latter.
4006       if (FirstArg != NumArgs + 1) {
4007         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
4008             << AL << 3 << FirstArgExpr->getSourceRange()
4009             << FixItHint::CreateReplacement(FirstArgExpr->getSourceRange(),
4010                                             std::to_string(NumArgs + 1));
4011         return;
4012       }
4013     } else {
4014       // Inescapable GCC compatibility diagnostic.
4015       S.Diag(D->getLocation(), diag::warn_gcc_requires_variadic_function) << AL;
4016       if (FirstArg <= Idx) {
4017         // Else, the function is not variadic, and FirstArg must be 0 or any
4018         // parameter after the format parameter. We don't offer a fixit because
4019         // there are too many possible good values.
4020         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
4021             << AL << 3 << FirstArgExpr->getSourceRange();
4022         return;
4023       }
4024     }
4025   }
4026 
4027   FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg);
4028   if (NewAttr)
4029     D->addAttr(NewAttr);
4030 }
4031 
4032 /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
4033 static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4034   // The index that identifies the callback callee is mandatory.
4035   if (AL.getNumArgs() == 0) {
4036     S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee)
4037         << AL.getRange();
4038     return;
4039   }
4040 
4041   bool HasImplicitThisParam = isInstanceMethod(D);
4042   int32_t NumArgs = getFunctionOrMethodNumParams(D);
4043 
4044   FunctionDecl *FD = D->getAsFunction();
4045   assert(FD && "Expected a function declaration!");
4046 
4047   llvm::StringMap<int> NameIdxMapping;
4048   NameIdxMapping["__"] = -1;
4049 
4050   NameIdxMapping["this"] = 0;
4051 
4052   int Idx = 1;
4053   for (const ParmVarDecl *PVD : FD->parameters())
4054     NameIdxMapping[PVD->getName()] = Idx++;
4055 
4056   auto UnknownName = NameIdxMapping.end();
4057 
4058   SmallVector<int, 8> EncodingIndices;
4059   for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) {
4060     SourceRange SR;
4061     int32_t ArgIdx;
4062 
4063     if (AL.isArgIdent(I)) {
4064       IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
4065       auto It = NameIdxMapping.find(IdLoc->Ident->getName());
4066       if (It == UnknownName) {
4067         S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown)
4068             << IdLoc->Ident << IdLoc->Loc;
4069         return;
4070       }
4071 
4072       SR = SourceRange(IdLoc->Loc);
4073       ArgIdx = It->second;
4074     } else if (AL.isArgExpr(I)) {
4075       Expr *IdxExpr = AL.getArgAsExpr(I);
4076 
4077       // If the expression is not parseable as an int32_t we have a problem.
4078       if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1,
4079                                false)) {
4080         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
4081             << AL << (I + 1) << IdxExpr->getSourceRange();
4082         return;
4083       }
4084 
4085       // Check oob, excluding the special values, 0 and -1.
4086       if (ArgIdx < -1 || ArgIdx > NumArgs) {
4087         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
4088             << AL << (I + 1) << IdxExpr->getSourceRange();
4089         return;
4090       }
4091 
4092       SR = IdxExpr->getSourceRange();
4093     } else {
4094       llvm_unreachable("Unexpected ParsedAttr argument type!");
4095     }
4096 
4097     if (ArgIdx == 0 && !HasImplicitThisParam) {
4098       S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available)
4099           << (I + 1) << SR;
4100       return;
4101     }
4102 
4103     // Adjust for the case we do not have an implicit "this" parameter. In this
4104     // case we decrease all positive values by 1 to get LLVM argument indices.
4105     if (!HasImplicitThisParam && ArgIdx > 0)
4106       ArgIdx -= 1;
4107 
4108     EncodingIndices.push_back(ArgIdx);
4109   }
4110 
4111   int CalleeIdx = EncodingIndices.front();
4112   // Check if the callee index is proper, thus not "this" and not "unknown".
4113   // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam"
4114   // is false and positive if "HasImplicitThisParam" is true.
4115   if (CalleeIdx < (int)HasImplicitThisParam) {
4116     S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee)
4117         << AL.getRange();
4118     return;
4119   }
4120 
4121   // Get the callee type, note the index adjustment as the AST doesn't contain
4122   // the this type (which the callee cannot reference anyway!).
4123   const Type *CalleeType =
4124       getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam)
4125           .getTypePtr();
4126   if (!CalleeType || !CalleeType->isFunctionPointerType()) {
4127     S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
4128         << AL.getRange();
4129     return;
4130   }
4131 
4132   const Type *CalleeFnType =
4133       CalleeType->getPointeeType()->getUnqualifiedDesugaredType();
4134 
4135   // TODO: Check the type of the callee arguments.
4136 
4137   const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType);
4138   if (!CalleeFnProtoType) {
4139     S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
4140         << AL.getRange();
4141     return;
4142   }
4143 
4144   if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) {
4145     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
4146         << AL << (unsigned)(EncodingIndices.size() - 1);
4147     return;
4148   }
4149 
4150   if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) {
4151     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
4152         << AL << (unsigned)(EncodingIndices.size() - 1);
4153     return;
4154   }
4155 
4156   if (CalleeFnProtoType->isVariadic()) {
4157     S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange();
4158     return;
4159   }
4160 
4161   // Do not allow multiple callback attributes.
4162   if (D->hasAttr<CallbackAttr>()) {
4163     S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange();
4164     return;
4165   }
4166 
4167   D->addAttr(::new (S.Context) CallbackAttr(
4168       S.Context, AL, EncodingIndices.data(), EncodingIndices.size()));
4169 }
4170 
4171 static bool isFunctionLike(const Type &T) {
4172   // Check for explicit function types.
4173   // 'called_once' is only supported in Objective-C and it has
4174   // function pointers and block pointers.
4175   return T.isFunctionPointerType() || T.isBlockPointerType();
4176 }
4177 
4178 /// Handle 'called_once' attribute.
4179 static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4180   // 'called_once' only applies to parameters representing functions.
4181   QualType T = cast<ParmVarDecl>(D)->getType();
4182 
4183   if (!isFunctionLike(*T)) {
4184     S.Diag(AL.getLoc(), diag::err_called_once_attribute_wrong_type);
4185     return;
4186   }
4187 
4188   D->addAttr(::new (S.Context) CalledOnceAttr(S.Context, AL));
4189 }
4190 
4191 static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4192   // Try to find the underlying union declaration.
4193   RecordDecl *RD = nullptr;
4194   const auto *TD = dyn_cast<TypedefNameDecl>(D);
4195   if (TD && TD->getUnderlyingType()->isUnionType())
4196     RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
4197   else
4198     RD = dyn_cast<RecordDecl>(D);
4199 
4200   if (!RD || !RD->isUnion()) {
4201     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL
4202                                                               << ExpectedUnion;
4203     return;
4204   }
4205 
4206   if (!RD->isCompleteDefinition()) {
4207     if (!RD->isBeingDefined())
4208       S.Diag(AL.getLoc(),
4209              diag::warn_transparent_union_attribute_not_definition);
4210     return;
4211   }
4212 
4213   RecordDecl::field_iterator Field = RD->field_begin(),
4214                           FieldEnd = RD->field_end();
4215   if (Field == FieldEnd) {
4216     S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
4217     return;
4218   }
4219 
4220   FieldDecl *FirstField = *Field;
4221   QualType FirstType = FirstField->getType();
4222   if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
4223     S.Diag(FirstField->getLocation(),
4224            diag::warn_transparent_union_attribute_floating)
4225       << FirstType->isVectorType() << FirstType;
4226     return;
4227   }
4228 
4229   if (FirstType->isIncompleteType())
4230     return;
4231   uint64_t FirstSize = S.Context.getTypeSize(FirstType);
4232   uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
4233   for (; Field != FieldEnd; ++Field) {
4234     QualType FieldType = Field->getType();
4235     if (FieldType->isIncompleteType())
4236       return;
4237     // FIXME: this isn't fully correct; we also need to test whether the
4238     // members of the union would all have the same calling convention as the
4239     // first member of the union. Checking just the size and alignment isn't
4240     // sufficient (consider structs passed on the stack instead of in registers
4241     // as an example).
4242     if (S.Context.getTypeSize(FieldType) != FirstSize ||
4243         S.Context.getTypeAlign(FieldType) > FirstAlign) {
4244       // Warn if we drop the attribute.
4245       bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
4246       unsigned FieldBits = isSize ? S.Context.getTypeSize(FieldType)
4247                                   : S.Context.getTypeAlign(FieldType);
4248       S.Diag(Field->getLocation(),
4249              diag::warn_transparent_union_attribute_field_size_align)
4250           << isSize << *Field << FieldBits;
4251       unsigned FirstBits = isSize ? FirstSize : FirstAlign;
4252       S.Diag(FirstField->getLocation(),
4253              diag::note_transparent_union_first_field_size_align)
4254           << isSize << FirstBits;
4255       return;
4256     }
4257   }
4258 
4259   RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL));
4260 }
4261 
4262 void Sema::AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
4263                              StringRef Str, MutableArrayRef<Expr *> Args) {
4264   auto *Attr = AnnotateAttr::Create(Context, Str, Args.data(), Args.size(), CI);
4265   if (ConstantFoldAttrArgs(
4266           CI, MutableArrayRef<Expr *>(Attr->args_begin(), Attr->args_end()))) {
4267     D->addAttr(Attr);
4268   }
4269 }
4270 
4271 static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4272   // Make sure that there is a string literal as the annotation's first
4273   // argument.
4274   StringRef Str;
4275   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
4276     return;
4277 
4278   llvm::SmallVector<Expr *, 4> Args;
4279   Args.reserve(AL.getNumArgs() - 1);
4280   for (unsigned Idx = 1; Idx < AL.getNumArgs(); Idx++) {
4281     assert(!AL.isArgIdent(Idx));
4282     Args.push_back(AL.getArgAsExpr(Idx));
4283   }
4284 
4285   S.AddAnnotationAttr(D, AL, Str, Args);
4286 }
4287 
4288 static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4289   S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0));
4290 }
4291 
4292 void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) {
4293   AlignValueAttr TmpAttr(Context, CI, E);
4294   SourceLocation AttrLoc = CI.getLoc();
4295 
4296   QualType T;
4297   if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4298     T = TD->getUnderlyingType();
4299   else if (const auto *VD = dyn_cast<ValueDecl>(D))
4300     T = VD->getType();
4301   else
4302     llvm_unreachable("Unknown decl type for align_value");
4303 
4304   if (!T->isDependentType() && !T->isAnyPointerType() &&
4305       !T->isReferenceType() && !T->isMemberPointerType()) {
4306     Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
4307       << &TmpAttr << T << D->getSourceRange();
4308     return;
4309   }
4310 
4311   if (!E->isValueDependent()) {
4312     llvm::APSInt Alignment;
4313     ExprResult ICE = VerifyIntegerConstantExpression(
4314         E, &Alignment, diag::err_align_value_attribute_argument_not_int);
4315     if (ICE.isInvalid())
4316       return;
4317 
4318     if (!Alignment.isPowerOf2()) {
4319       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4320         << E->getSourceRange();
4321       return;
4322     }
4323 
4324     D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get()));
4325     return;
4326   }
4327 
4328   // Save dependent expressions in the AST to be instantiated.
4329   D->addAttr(::new (Context) AlignValueAttr(Context, CI, E));
4330 }
4331 
4332 static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4333   // check the attribute arguments.
4334   if (AL.getNumArgs() > 1) {
4335     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
4336     return;
4337   }
4338 
4339   if (AL.getNumArgs() == 0) {
4340     D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr));
4341     return;
4342   }
4343 
4344   Expr *E = AL.getArgAsExpr(0);
4345   if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
4346     S.Diag(AL.getEllipsisLoc(),
4347            diag::err_pack_expansion_without_parameter_packs);
4348     return;
4349   }
4350 
4351   if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
4352     return;
4353 
4354   S.AddAlignedAttr(D, AL, E, AL.isPackExpansion());
4355 }
4356 
4357 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
4358                           bool IsPackExpansion) {
4359   AlignedAttr TmpAttr(Context, CI, true, E);
4360   SourceLocation AttrLoc = CI.getLoc();
4361 
4362   // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
4363   if (TmpAttr.isAlignas()) {
4364     // C++11 [dcl.align]p1:
4365     //   An alignment-specifier may be applied to a variable or to a class
4366     //   data member, but it shall not be applied to a bit-field, a function
4367     //   parameter, the formal parameter of a catch clause, or a variable
4368     //   declared with the register storage class specifier. An
4369     //   alignment-specifier may also be applied to the declaration of a class
4370     //   or enumeration type.
4371     // CWG 2354:
4372     //   CWG agreed to remove permission for alignas to be applied to
4373     //   enumerations.
4374     // C11 6.7.5/2:
4375     //   An alignment attribute shall not be specified in a declaration of
4376     //   a typedef, or a bit-field, or a function, or a parameter, or an
4377     //   object declared with the register storage-class specifier.
4378     int DiagKind = -1;
4379     if (isa<ParmVarDecl>(D)) {
4380       DiagKind = 0;
4381     } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
4382       if (VD->getStorageClass() == SC_Register)
4383         DiagKind = 1;
4384       if (VD->isExceptionVariable())
4385         DiagKind = 2;
4386     } else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
4387       if (FD->isBitField())
4388         DiagKind = 3;
4389     } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4390       if (ED->getLangOpts().CPlusPlus)
4391         DiagKind = 4;
4392     } else if (!isa<TagDecl>(D)) {
4393       Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
4394         << (TmpAttr.isC11() ? ExpectedVariableOrField
4395                             : ExpectedVariableFieldOrTag);
4396       return;
4397     }
4398     if (DiagKind != -1) {
4399       Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
4400         << &TmpAttr << DiagKind;
4401       return;
4402     }
4403   }
4404 
4405   if (E->isValueDependent()) {
4406     // We can't support a dependent alignment on a non-dependent type,
4407     // because we have no way to model that a type is "alignment-dependent"
4408     // but not dependent in any other way.
4409     if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
4410       if (!TND->getUnderlyingType()->isDependentType()) {
4411         Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
4412             << E->getSourceRange();
4413         return;
4414       }
4415     }
4416 
4417     // Save dependent expressions in the AST to be instantiated.
4418     AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E);
4419     AA->setPackExpansion(IsPackExpansion);
4420     D->addAttr(AA);
4421     return;
4422   }
4423 
4424   // FIXME: Cache the number on the AL object?
4425   llvm::APSInt Alignment;
4426   ExprResult ICE = VerifyIntegerConstantExpression(
4427       E, &Alignment, diag::err_aligned_attribute_argument_not_int);
4428   if (ICE.isInvalid())
4429     return;
4430 
4431   uint64_t AlignVal = Alignment.getZExtValue();
4432   // C++11 [dcl.align]p2:
4433   //   -- if the constant expression evaluates to zero, the alignment
4434   //      specifier shall have no effect
4435   // C11 6.7.5p6:
4436   //   An alignment specification of zero has no effect.
4437   if (!(TmpAttr.isAlignas() && !Alignment)) {
4438     if (!llvm::isPowerOf2_64(AlignVal)) {
4439       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4440         << E->getSourceRange();
4441       return;
4442     }
4443   }
4444 
4445   uint64_t MaximumAlignment = Sema::MaximumAlignment;
4446   if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF())
4447     MaximumAlignment = std::min(MaximumAlignment, uint64_t(8192));
4448   if (AlignVal > MaximumAlignment) {
4449     Diag(AttrLoc, diag::err_attribute_aligned_too_great)
4450         << MaximumAlignment << E->getSourceRange();
4451     return;
4452   }
4453 
4454   const auto *VD = dyn_cast<VarDecl>(D);
4455   if (VD) {
4456     unsigned MaxTLSAlign =
4457         Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
4458             .getQuantity();
4459     if (MaxTLSAlign && AlignVal > MaxTLSAlign &&
4460         VD->getTLSKind() != VarDecl::TLS_None) {
4461       Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
4462           << (unsigned)AlignVal << VD << MaxTLSAlign;
4463       return;
4464     }
4465   }
4466 
4467   // On AIX, an aligned attribute can not decrease the alignment when applied
4468   // to a variable declaration with vector type.
4469   if (VD && Context.getTargetInfo().getTriple().isOSAIX()) {
4470     const Type *Ty = VD->getType().getTypePtr();
4471     if (Ty->isVectorType() && AlignVal < 16) {
4472       Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned)
4473           << VD->getType() << 16;
4474       return;
4475     }
4476   }
4477 
4478   AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get());
4479   AA->setPackExpansion(IsPackExpansion);
4480   D->addAttr(AA);
4481 }
4482 
4483 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI,
4484                           TypeSourceInfo *TS, bool IsPackExpansion) {
4485   // FIXME: Cache the number on the AL object if non-dependent?
4486   // FIXME: Perform checking of type validity
4487   AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
4488   AA->setPackExpansion(IsPackExpansion);
4489   D->addAttr(AA);
4490 }
4491 
4492 void Sema::CheckAlignasUnderalignment(Decl *D) {
4493   assert(D->hasAttrs() && "no attributes on decl");
4494 
4495   QualType UnderlyingTy, DiagTy;
4496   if (const auto *VD = dyn_cast<ValueDecl>(D)) {
4497     UnderlyingTy = DiagTy = VD->getType();
4498   } else {
4499     UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
4500     if (const auto *ED = dyn_cast<EnumDecl>(D))
4501       UnderlyingTy = ED->getIntegerType();
4502   }
4503   if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
4504     return;
4505 
4506   // C++11 [dcl.align]p5, C11 6.7.5/4:
4507   //   The combined effect of all alignment attributes in a declaration shall
4508   //   not specify an alignment that is less strict than the alignment that
4509   //   would otherwise be required for the entity being declared.
4510   AlignedAttr *AlignasAttr = nullptr;
4511   AlignedAttr *LastAlignedAttr = nullptr;
4512   unsigned Align = 0;
4513   for (auto *I : D->specific_attrs<AlignedAttr>()) {
4514     if (I->isAlignmentDependent())
4515       return;
4516     if (I->isAlignas())
4517       AlignasAttr = I;
4518     Align = std::max(Align, I->getAlignment(Context));
4519     LastAlignedAttr = I;
4520   }
4521 
4522   if (Align && DiagTy->isSizelessType()) {
4523     Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type)
4524         << LastAlignedAttr << DiagTy;
4525   } else if (AlignasAttr && Align) {
4526     CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
4527     CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
4528     if (NaturalAlign > RequestedAlign)
4529       Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
4530         << DiagTy << (unsigned)NaturalAlign.getQuantity();
4531   }
4532 }
4533 
4534 bool Sema::checkMSInheritanceAttrOnDefinition(
4535     CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4536     MSInheritanceModel ExplicitModel) {
4537   assert(RD->hasDefinition() && "RD has no definition!");
4538 
4539   // We may not have seen base specifiers or any virtual methods yet.  We will
4540   // have to wait until the record is defined to catch any mismatches.
4541   if (!RD->getDefinition()->isCompleteDefinition())
4542     return false;
4543 
4544   // The unspecified model never matches what a definition could need.
4545   if (ExplicitModel == MSInheritanceModel::Unspecified)
4546     return false;
4547 
4548   if (BestCase) {
4549     if (RD->calculateInheritanceModel() == ExplicitModel)
4550       return false;
4551   } else {
4552     if (RD->calculateInheritanceModel() <= ExplicitModel)
4553       return false;
4554   }
4555 
4556   Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
4557       << 0 /*definition*/;
4558   Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD;
4559   return true;
4560 }
4561 
4562 /// parseModeAttrArg - Parses attribute mode string and returns parsed type
4563 /// attribute.
4564 static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
4565                              bool &IntegerMode, bool &ComplexMode,
4566                              FloatModeKind &ExplicitType) {
4567   IntegerMode = true;
4568   ComplexMode = false;
4569   ExplicitType = FloatModeKind::NoFloat;
4570   switch (Str.size()) {
4571   case 2:
4572     switch (Str[0]) {
4573     case 'Q':
4574       DestWidth = 8;
4575       break;
4576     case 'H':
4577       DestWidth = 16;
4578       break;
4579     case 'S':
4580       DestWidth = 32;
4581       break;
4582     case 'D':
4583       DestWidth = 64;
4584       break;
4585     case 'X':
4586       DestWidth = 96;
4587       break;
4588     case 'K': // KFmode - IEEE quad precision (__float128)
4589       ExplicitType = FloatModeKind::Float128;
4590       DestWidth = Str[1] == 'I' ? 0 : 128;
4591       break;
4592     case 'T':
4593       ExplicitType = FloatModeKind::LongDouble;
4594       DestWidth = 128;
4595       break;
4596     case 'I':
4597       ExplicitType = FloatModeKind::Ibm128;
4598       DestWidth = Str[1] == 'I' ? 0 : 128;
4599       break;
4600     }
4601     if (Str[1] == 'F') {
4602       IntegerMode = false;
4603     } else if (Str[1] == 'C') {
4604       IntegerMode = false;
4605       ComplexMode = true;
4606     } else if (Str[1] != 'I') {
4607       DestWidth = 0;
4608     }
4609     break;
4610   case 4:
4611     // FIXME: glibc uses 'word' to define register_t; this is narrower than a
4612     // pointer on PIC16 and other embedded platforms.
4613     if (Str == "word")
4614       DestWidth = S.Context.getTargetInfo().getRegisterWidth();
4615     else if (Str == "byte")
4616       DestWidth = S.Context.getTargetInfo().getCharWidth();
4617     break;
4618   case 7:
4619     if (Str == "pointer")
4620       DestWidth = S.Context.getTargetInfo().getPointerWidth(LangAS::Default);
4621     break;
4622   case 11:
4623     if (Str == "unwind_word")
4624       DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
4625     break;
4626   }
4627 }
4628 
4629 /// handleModeAttr - This attribute modifies the width of a decl with primitive
4630 /// type.
4631 ///
4632 /// Despite what would be logical, the mode attribute is a decl attribute, not a
4633 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
4634 /// HImode, not an intermediate pointer.
4635 static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4636   // This attribute isn't documented, but glibc uses it.  It changes
4637   // the width of an int or unsigned int to the specified size.
4638   if (!AL.isArgIdent(0)) {
4639     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
4640         << AL << AANT_ArgumentIdentifier;
4641     return;
4642   }
4643 
4644   IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident;
4645 
4646   S.AddModeAttr(D, AL, Name);
4647 }
4648 
4649 void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI,
4650                        IdentifierInfo *Name, bool InInstantiation) {
4651   StringRef Str = Name->getName();
4652   normalizeName(Str);
4653   SourceLocation AttrLoc = CI.getLoc();
4654 
4655   unsigned DestWidth = 0;
4656   bool IntegerMode = true;
4657   bool ComplexMode = false;
4658   FloatModeKind ExplicitType = FloatModeKind::NoFloat;
4659   llvm::APInt VectorSize(64, 0);
4660   if (Str.size() >= 4 && Str[0] == 'V') {
4661     // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
4662     size_t StrSize = Str.size();
4663     size_t VectorStringLength = 0;
4664     while ((VectorStringLength + 1) < StrSize &&
4665            isdigit(Str[VectorStringLength + 1]))
4666       ++VectorStringLength;
4667     if (VectorStringLength &&
4668         !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
4669         VectorSize.isPowerOf2()) {
4670       parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
4671                        IntegerMode, ComplexMode, ExplicitType);
4672       // Avoid duplicate warning from template instantiation.
4673       if (!InInstantiation)
4674         Diag(AttrLoc, diag::warn_vector_mode_deprecated);
4675     } else {
4676       VectorSize = 0;
4677     }
4678   }
4679 
4680   if (!VectorSize)
4681     parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode,
4682                      ExplicitType);
4683 
4684   // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
4685   // and friends, at least with glibc.
4686   // FIXME: Make sure floating-point mappings are accurate
4687   // FIXME: Support XF and TF types
4688   if (!DestWidth) {
4689     Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
4690     return;
4691   }
4692 
4693   QualType OldTy;
4694   if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4695     OldTy = TD->getUnderlyingType();
4696   else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4697     // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
4698     // Try to get type from enum declaration, default to int.
4699     OldTy = ED->getIntegerType();
4700     if (OldTy.isNull())
4701       OldTy = Context.IntTy;
4702   } else
4703     OldTy = cast<ValueDecl>(D)->getType();
4704 
4705   if (OldTy->isDependentType()) {
4706     D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4707     return;
4708   }
4709 
4710   // Base type can also be a vector type (see PR17453).
4711   // Distinguish between base type and base element type.
4712   QualType OldElemTy = OldTy;
4713   if (const auto *VT = OldTy->getAs<VectorType>())
4714     OldElemTy = VT->getElementType();
4715 
4716   // GCC allows 'mode' attribute on enumeration types (even incomplete), except
4717   // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
4718   // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
4719   if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) &&
4720       VectorSize.getBoolValue()) {
4721     Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange();
4722     return;
4723   }
4724   bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() &&
4725                                 !OldElemTy->isBitIntType()) ||
4726                                OldElemTy->getAs<EnumType>();
4727 
4728   if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
4729       !IntegralOrAnyEnumType)
4730     Diag(AttrLoc, diag::err_mode_not_primitive);
4731   else if (IntegerMode) {
4732     if (!IntegralOrAnyEnumType)
4733       Diag(AttrLoc, diag::err_mode_wrong_type);
4734   } else if (ComplexMode) {
4735     if (!OldElemTy->isComplexType())
4736       Diag(AttrLoc, diag::err_mode_wrong_type);
4737   } else {
4738     if (!OldElemTy->isFloatingType())
4739       Diag(AttrLoc, diag::err_mode_wrong_type);
4740   }
4741 
4742   QualType NewElemTy;
4743 
4744   if (IntegerMode)
4745     NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
4746                                               OldElemTy->isSignedIntegerType());
4747   else
4748     NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitType);
4749 
4750   if (NewElemTy.isNull()) {
4751     Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
4752     return;
4753   }
4754 
4755   if (ComplexMode) {
4756     NewElemTy = Context.getComplexType(NewElemTy);
4757   }
4758 
4759   QualType NewTy = NewElemTy;
4760   if (VectorSize.getBoolValue()) {
4761     NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
4762                                   VectorType::GenericVector);
4763   } else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
4764     // Complex machine mode does not support base vector types.
4765     if (ComplexMode) {
4766       Diag(AttrLoc, diag::err_complex_mode_vector_type);
4767       return;
4768     }
4769     unsigned NumElements = Context.getTypeSize(OldElemTy) *
4770                            OldVT->getNumElements() /
4771                            Context.getTypeSize(NewElemTy);
4772     NewTy =
4773         Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
4774   }
4775 
4776   if (NewTy.isNull()) {
4777     Diag(AttrLoc, diag::err_mode_wrong_type);
4778     return;
4779   }
4780 
4781   // Install the new type.
4782   if (auto *TD = dyn_cast<TypedefNameDecl>(D))
4783     TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
4784   else if (auto *ED = dyn_cast<EnumDecl>(D))
4785     ED->setIntegerType(NewTy);
4786   else
4787     cast<ValueDecl>(D)->setType(NewTy);
4788 
4789   D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4790 }
4791 
4792 static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4793   D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL));
4794 }
4795 
4796 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D,
4797                                               const AttributeCommonInfo &CI,
4798                                               const IdentifierInfo *Ident) {
4799   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4800     Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident;
4801     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4802     return nullptr;
4803   }
4804 
4805   if (D->hasAttr<AlwaysInlineAttr>())
4806     return nullptr;
4807 
4808   return ::new (Context) AlwaysInlineAttr(Context, CI);
4809 }
4810 
4811 InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D,
4812                                                     const ParsedAttr &AL) {
4813   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4814     // Attribute applies to Var but not any subclass of it (like ParmVar,
4815     // ImplicitParm or VarTemplateSpecialization).
4816     if (VD->getKind() != Decl::Var) {
4817       Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4818           << AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4819                                             : ExpectedVariableOrFunction);
4820       return nullptr;
4821     }
4822     // Attribute does not apply to non-static local variables.
4823     if (VD->hasLocalStorage()) {
4824       Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4825       return nullptr;
4826     }
4827   }
4828 
4829   return ::new (Context) InternalLinkageAttr(Context, AL);
4830 }
4831 InternalLinkageAttr *
4832 Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) {
4833   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4834     // Attribute applies to Var but not any subclass of it (like ParmVar,
4835     // ImplicitParm or VarTemplateSpecialization).
4836     if (VD->getKind() != Decl::Var) {
4837       Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type)
4838           << &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4839                                              : ExpectedVariableOrFunction);
4840       return nullptr;
4841     }
4842     // Attribute does not apply to non-static local variables.
4843     if (VD->hasLocalStorage()) {
4844       Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4845       return nullptr;
4846     }
4847   }
4848 
4849   return ::new (Context) InternalLinkageAttr(Context, AL);
4850 }
4851 
4852 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) {
4853   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4854     Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'";
4855     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4856     return nullptr;
4857   }
4858 
4859   if (D->hasAttr<MinSizeAttr>())
4860     return nullptr;
4861 
4862   return ::new (Context) MinSizeAttr(Context, CI);
4863 }
4864 
4865 SwiftNameAttr *Sema::mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA,
4866                                         StringRef Name) {
4867   if (const auto *PrevSNA = D->getAttr<SwiftNameAttr>()) {
4868     if (PrevSNA->getName() != Name && !PrevSNA->isImplicit()) {
4869       Diag(PrevSNA->getLocation(), diag::err_attributes_are_not_compatible)
4870           << PrevSNA << &SNA;
4871       Diag(SNA.getLoc(), diag::note_conflicting_attribute);
4872     }
4873 
4874     D->dropAttr<SwiftNameAttr>();
4875   }
4876   return ::new (Context) SwiftNameAttr(Context, SNA, Name);
4877 }
4878 
4879 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D,
4880                                               const AttributeCommonInfo &CI) {
4881   if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
4882     Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
4883     Diag(CI.getLoc(), diag::note_conflicting_attribute);
4884     D->dropAttr<AlwaysInlineAttr>();
4885   }
4886   if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
4887     Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
4888     Diag(CI.getLoc(), diag::note_conflicting_attribute);
4889     D->dropAttr<MinSizeAttr>();
4890   }
4891 
4892   if (D->hasAttr<OptimizeNoneAttr>())
4893     return nullptr;
4894 
4895   return ::new (Context) OptimizeNoneAttr(Context, CI);
4896 }
4897 
4898 static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4899   if (AlwaysInlineAttr *Inline =
4900           S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName()))
4901     D->addAttr(Inline);
4902 }
4903 
4904 static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4905   if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL))
4906     D->addAttr(MinSize);
4907 }
4908 
4909 static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4910   if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL))
4911     D->addAttr(Optnone);
4912 }
4913 
4914 static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4915   const auto *VD = cast<VarDecl>(D);
4916   if (VD->hasLocalStorage()) {
4917     S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4918     return;
4919   }
4920   // constexpr variable may already get an implicit constant attr, which should
4921   // be replaced by the explicit constant attr.
4922   if (auto *A = D->getAttr<CUDAConstantAttr>()) {
4923     if (!A->isImplicit())
4924       return;
4925     D->dropAttr<CUDAConstantAttr>();
4926   }
4927   D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL));
4928 }
4929 
4930 static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4931   const auto *VD = cast<VarDecl>(D);
4932   // extern __shared__ is only allowed on arrays with no length (e.g.
4933   // "int x[]").
4934   if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() &&
4935       !isa<IncompleteArrayType>(VD->getType())) {
4936     S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
4937     return;
4938   }
4939   if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
4940       S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
4941           << S.CurrentCUDATarget())
4942     return;
4943   D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL));
4944 }
4945 
4946 static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4947   const auto *FD = cast<FunctionDecl>(D);
4948   if (!FD->getReturnType()->isVoidType() &&
4949       !FD->getReturnType()->getAs<AutoType>() &&
4950       !FD->getReturnType()->isInstantiationDependentType()) {
4951     SourceRange RTRange = FD->getReturnTypeSourceRange();
4952     S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
4953         << FD->getType()
4954         << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
4955                               : FixItHint());
4956     return;
4957   }
4958   if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
4959     if (Method->isInstance()) {
4960       S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method)
4961           << Method;
4962       return;
4963     }
4964     S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method;
4965   }
4966   // Only warn for "inline" when compiling for host, to cut down on noise.
4967   if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
4968     S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD;
4969 
4970   D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL));
4971   // In host compilation the kernel is emitted as a stub function, which is
4972   // a helper function for launching the kernel. The instructions in the helper
4973   // function has nothing to do with the source code of the kernel. Do not emit
4974   // debug info for the stub function to avoid confusing the debugger.
4975   if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice)
4976     D->addAttr(NoDebugAttr::CreateImplicit(S.Context));
4977 }
4978 
4979 static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4980   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4981     if (VD->hasLocalStorage()) {
4982       S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4983       return;
4984     }
4985   }
4986 
4987   if (auto *A = D->getAttr<CUDADeviceAttr>()) {
4988     if (!A->isImplicit())
4989       return;
4990     D->dropAttr<CUDADeviceAttr>();
4991   }
4992   D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL));
4993 }
4994 
4995 static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4996   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4997     if (VD->hasLocalStorage()) {
4998       S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4999       return;
5000     }
5001   }
5002   if (!D->hasAttr<HIPManagedAttr>())
5003     D->addAttr(::new (S.Context) HIPManagedAttr(S.Context, AL));
5004   if (!D->hasAttr<CUDADeviceAttr>())
5005     D->addAttr(CUDADeviceAttr::CreateImplicit(S.Context));
5006 }
5007 
5008 static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5009   const auto *Fn = cast<FunctionDecl>(D);
5010   if (!Fn->isInlineSpecified()) {
5011     S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
5012     return;
5013   }
5014 
5015   if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern)
5016     S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern);
5017 
5018   D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL));
5019 }
5020 
5021 static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5022   if (hasDeclarator(D)) return;
5023 
5024   // Diagnostic is emitted elsewhere: here we store the (valid) AL
5025   // in the Decl node for syntactic reasoning, e.g., pretty-printing.
5026   CallingConv CC;
5027   if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr))
5028     return;
5029 
5030   if (!isa<ObjCMethodDecl>(D)) {
5031     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
5032         << AL << ExpectedFunctionOrMethod;
5033     return;
5034   }
5035 
5036   switch (AL.getKind()) {
5037   case ParsedAttr::AT_FastCall:
5038     D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL));
5039     return;
5040   case ParsedAttr::AT_StdCall:
5041     D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL));
5042     return;
5043   case ParsedAttr::AT_ThisCall:
5044     D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL));
5045     return;
5046   case ParsedAttr::AT_CDecl:
5047     D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL));
5048     return;
5049   case ParsedAttr::AT_Pascal:
5050     D->addAttr(::new (S.Context) PascalAttr(S.Context, AL));
5051     return;
5052   case ParsedAttr::AT_SwiftCall:
5053     D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL));
5054     return;
5055   case ParsedAttr::AT_SwiftAsyncCall:
5056     D->addAttr(::new (S.Context) SwiftAsyncCallAttr(S.Context, AL));
5057     return;
5058   case ParsedAttr::AT_VectorCall:
5059     D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL));
5060     return;
5061   case ParsedAttr::AT_MSABI:
5062     D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL));
5063     return;
5064   case ParsedAttr::AT_SysVABI:
5065     D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL));
5066     return;
5067   case ParsedAttr::AT_RegCall:
5068     D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL));
5069     return;
5070   case ParsedAttr::AT_Pcs: {
5071     PcsAttr::PCSType PCS;
5072     switch (CC) {
5073     case CC_AAPCS:
5074       PCS = PcsAttr::AAPCS;
5075       break;
5076     case CC_AAPCS_VFP:
5077       PCS = PcsAttr::AAPCS_VFP;
5078       break;
5079     default:
5080       llvm_unreachable("unexpected calling convention in pcs attribute");
5081     }
5082 
5083     D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS));
5084     return;
5085   }
5086   case ParsedAttr::AT_AArch64VectorPcs:
5087     D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL));
5088     return;
5089   case ParsedAttr::AT_AArch64SVEPcs:
5090     D->addAttr(::new (S.Context) AArch64SVEPcsAttr(S.Context, AL));
5091     return;
5092   case ParsedAttr::AT_AMDGPUKernelCall:
5093     D->addAttr(::new (S.Context) AMDGPUKernelCallAttr(S.Context, AL));
5094     return;
5095   case ParsedAttr::AT_IntelOclBicc:
5096     D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL));
5097     return;
5098   case ParsedAttr::AT_PreserveMost:
5099     D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL));
5100     return;
5101   case ParsedAttr::AT_PreserveAll:
5102     D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL));
5103     return;
5104   default:
5105     llvm_unreachable("unexpected attribute kind");
5106   }
5107 }
5108 
5109 static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5110   if (!AL.checkAtLeastNumArgs(S, 1))
5111     return;
5112 
5113   std::vector<StringRef> DiagnosticIdentifiers;
5114   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
5115     StringRef RuleName;
5116 
5117     if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
5118       return;
5119 
5120     // FIXME: Warn if the rule name is unknown. This is tricky because only
5121     // clang-tidy knows about available rules.
5122     DiagnosticIdentifiers.push_back(RuleName);
5123   }
5124   D->addAttr(::new (S.Context)
5125                  SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(),
5126                               DiagnosticIdentifiers.size()));
5127 }
5128 
5129 static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5130   TypeSourceInfo *DerefTypeLoc = nullptr;
5131   QualType ParmType;
5132   if (AL.hasParsedType()) {
5133     ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc);
5134 
5135     unsigned SelectIdx = ~0U;
5136     if (ParmType->isReferenceType())
5137       SelectIdx = 0;
5138     else if (ParmType->isArrayType())
5139       SelectIdx = 1;
5140 
5141     if (SelectIdx != ~0U) {
5142       S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument)
5143           << SelectIdx << AL;
5144       return;
5145     }
5146   }
5147 
5148   // To check if earlier decl attributes do not conflict the newly parsed ones
5149   // we always add (and check) the attribute to the canonical decl. We need
5150   // to repeat the check for attribute mutual exclusion because we're attaching
5151   // all of the attributes to the canonical declaration rather than the current
5152   // declaration.
5153   D = D->getCanonicalDecl();
5154   if (AL.getKind() == ParsedAttr::AT_Owner) {
5155     if (checkAttrMutualExclusion<PointerAttr>(S, D, AL))
5156       return;
5157     if (const auto *OAttr = D->getAttr<OwnerAttr>()) {
5158       const Type *ExistingDerefType = OAttr->getDerefTypeLoc()
5159                                           ? OAttr->getDerefType().getTypePtr()
5160                                           : nullptr;
5161       if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
5162         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
5163             << AL << OAttr;
5164         S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute);
5165       }
5166       return;
5167     }
5168     for (Decl *Redecl : D->redecls()) {
5169       Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc));
5170     }
5171   } else {
5172     if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL))
5173       return;
5174     if (const auto *PAttr = D->getAttr<PointerAttr>()) {
5175       const Type *ExistingDerefType = PAttr->getDerefTypeLoc()
5176                                           ? PAttr->getDerefType().getTypePtr()
5177                                           : nullptr;
5178       if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
5179         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
5180             << AL << PAttr;
5181         S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute);
5182       }
5183       return;
5184     }
5185     for (Decl *Redecl : D->redecls()) {
5186       Redecl->addAttr(::new (S.Context)
5187                           PointerAttr(S.Context, AL, DerefTypeLoc));
5188     }
5189   }
5190 }
5191 
5192 static void handleRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5193   if (checkAttrMutualExclusion<NoRandomizeLayoutAttr>(S, D, AL))
5194     return;
5195   if (!D->hasAttr<RandomizeLayoutAttr>())
5196     D->addAttr(::new (S.Context) RandomizeLayoutAttr(S.Context, AL));
5197 }
5198 
5199 static void handleNoRandomizeLayoutAttr(Sema &S, Decl *D,
5200                                         const ParsedAttr &AL) {
5201   if (checkAttrMutualExclusion<RandomizeLayoutAttr>(S, D, AL))
5202     return;
5203   if (!D->hasAttr<NoRandomizeLayoutAttr>())
5204     D->addAttr(::new (S.Context) NoRandomizeLayoutAttr(S.Context, AL));
5205 }
5206 
5207 bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC,
5208                                 const FunctionDecl *FD) {
5209   if (Attrs.isInvalid())
5210     return true;
5211 
5212   if (Attrs.hasProcessingCache()) {
5213     CC = (CallingConv) Attrs.getProcessingCache();
5214     return false;
5215   }
5216 
5217   unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0;
5218   if (!Attrs.checkExactlyNumArgs(*this, ReqArgs)) {
5219     Attrs.setInvalid();
5220     return true;
5221   }
5222 
5223   // TODO: diagnose uses of these conventions on the wrong target.
5224   switch (Attrs.getKind()) {
5225   case ParsedAttr::AT_CDecl:
5226     CC = CC_C;
5227     break;
5228   case ParsedAttr::AT_FastCall:
5229     CC = CC_X86FastCall;
5230     break;
5231   case ParsedAttr::AT_StdCall:
5232     CC = CC_X86StdCall;
5233     break;
5234   case ParsedAttr::AT_ThisCall:
5235     CC = CC_X86ThisCall;
5236     break;
5237   case ParsedAttr::AT_Pascal:
5238     CC = CC_X86Pascal;
5239     break;
5240   case ParsedAttr::AT_SwiftCall:
5241     CC = CC_Swift;
5242     break;
5243   case ParsedAttr::AT_SwiftAsyncCall:
5244     CC = CC_SwiftAsync;
5245     break;
5246   case ParsedAttr::AT_VectorCall:
5247     CC = CC_X86VectorCall;
5248     break;
5249   case ParsedAttr::AT_AArch64VectorPcs:
5250     CC = CC_AArch64VectorCall;
5251     break;
5252   case ParsedAttr::AT_AArch64SVEPcs:
5253     CC = CC_AArch64SVEPCS;
5254     break;
5255   case ParsedAttr::AT_AMDGPUKernelCall:
5256     CC = CC_AMDGPUKernelCall;
5257     break;
5258   case ParsedAttr::AT_RegCall:
5259     CC = CC_X86RegCall;
5260     break;
5261   case ParsedAttr::AT_MSABI:
5262     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
5263                                                              CC_Win64;
5264     break;
5265   case ParsedAttr::AT_SysVABI:
5266     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
5267                                                              CC_C;
5268     break;
5269   case ParsedAttr::AT_Pcs: {
5270     StringRef StrRef;
5271     if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
5272       Attrs.setInvalid();
5273       return true;
5274     }
5275     if (StrRef == "aapcs") {
5276       CC = CC_AAPCS;
5277       break;
5278     } else if (StrRef == "aapcs-vfp") {
5279       CC = CC_AAPCS_VFP;
5280       break;
5281     }
5282 
5283     Attrs.setInvalid();
5284     Diag(Attrs.getLoc(), diag::err_invalid_pcs);
5285     return true;
5286   }
5287   case ParsedAttr::AT_IntelOclBicc:
5288     CC = CC_IntelOclBicc;
5289     break;
5290   case ParsedAttr::AT_PreserveMost:
5291     CC = CC_PreserveMost;
5292     break;
5293   case ParsedAttr::AT_PreserveAll:
5294     CC = CC_PreserveAll;
5295     break;
5296   default: llvm_unreachable("unexpected attribute kind");
5297   }
5298 
5299   TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK;
5300   const TargetInfo &TI = Context.getTargetInfo();
5301   // CUDA functions may have host and/or device attributes which indicate
5302   // their targeted execution environment, therefore the calling convention
5303   // of functions in CUDA should be checked against the target deduced based
5304   // on their host/device attributes.
5305   if (LangOpts.CUDA) {
5306     auto *Aux = Context.getAuxTargetInfo();
5307     auto CudaTarget = IdentifyCUDATarget(FD);
5308     bool CheckHost = false, CheckDevice = false;
5309     switch (CudaTarget) {
5310     case CFT_HostDevice:
5311       CheckHost = true;
5312       CheckDevice = true;
5313       break;
5314     case CFT_Host:
5315       CheckHost = true;
5316       break;
5317     case CFT_Device:
5318     case CFT_Global:
5319       CheckDevice = true;
5320       break;
5321     case CFT_InvalidTarget:
5322       llvm_unreachable("unexpected cuda target");
5323     }
5324     auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI;
5325     auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux;
5326     if (CheckHost && HostTI)
5327       A = HostTI->checkCallingConvention(CC);
5328     if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI)
5329       A = DeviceTI->checkCallingConvention(CC);
5330   } else {
5331     A = TI.checkCallingConvention(CC);
5332   }
5333 
5334   switch (A) {
5335   case TargetInfo::CCCR_OK:
5336     break;
5337 
5338   case TargetInfo::CCCR_Ignore:
5339     // Treat an ignored convention as if it was an explicit C calling convention
5340     // attribute. For example, __stdcall on Win x64 functions as __cdecl, so
5341     // that command line flags that change the default convention to
5342     // __vectorcall don't affect declarations marked __stdcall.
5343     CC = CC_C;
5344     break;
5345 
5346   case TargetInfo::CCCR_Error:
5347     Diag(Attrs.getLoc(), diag::error_cconv_unsupported)
5348         << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
5349     break;
5350 
5351   case TargetInfo::CCCR_Warning: {
5352     Diag(Attrs.getLoc(), diag::warn_cconv_unsupported)
5353         << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
5354 
5355     // This convention is not valid for the target. Use the default function or
5356     // method calling convention.
5357     bool IsCXXMethod = false, IsVariadic = false;
5358     if (FD) {
5359       IsCXXMethod = FD->isCXXInstanceMember();
5360       IsVariadic = FD->isVariadic();
5361     }
5362     CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
5363     break;
5364   }
5365   }
5366 
5367   Attrs.setProcessingCache((unsigned) CC);
5368   return false;
5369 }
5370 
5371 /// Pointer-like types in the default address space.
5372 static bool isValidSwiftContextType(QualType Ty) {
5373   if (!Ty->hasPointerRepresentation())
5374     return Ty->isDependentType();
5375   return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
5376 }
5377 
5378 /// Pointers and references in the default address space.
5379 static bool isValidSwiftIndirectResultType(QualType Ty) {
5380   if (const auto *PtrType = Ty->getAs<PointerType>()) {
5381     Ty = PtrType->getPointeeType();
5382   } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
5383     Ty = RefType->getPointeeType();
5384   } else {
5385     return Ty->isDependentType();
5386   }
5387   return Ty.getAddressSpace() == LangAS::Default;
5388 }
5389 
5390 /// Pointers and references to pointers in the default address space.
5391 static bool isValidSwiftErrorResultType(QualType Ty) {
5392   if (const auto *PtrType = Ty->getAs<PointerType>()) {
5393     Ty = PtrType->getPointeeType();
5394   } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
5395     Ty = RefType->getPointeeType();
5396   } else {
5397     return Ty->isDependentType();
5398   }
5399   if (!Ty.getQualifiers().empty())
5400     return false;
5401   return isValidSwiftContextType(Ty);
5402 }
5403 
5404 void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
5405                                ParameterABI abi) {
5406 
5407   QualType type = cast<ParmVarDecl>(D)->getType();
5408 
5409   if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
5410     if (existingAttr->getABI() != abi) {
5411       Diag(CI.getLoc(), diag::err_attributes_are_not_compatible)
5412           << getParameterABISpelling(abi) << existingAttr;
5413       Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
5414       return;
5415     }
5416   }
5417 
5418   switch (abi) {
5419   case ParameterABI::Ordinary:
5420     llvm_unreachable("explicit attribute for ordinary parameter ABI?");
5421 
5422   case ParameterABI::SwiftContext:
5423     if (!isValidSwiftContextType(type)) {
5424       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5425           << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
5426     }
5427     D->addAttr(::new (Context) SwiftContextAttr(Context, CI));
5428     return;
5429 
5430   case ParameterABI::SwiftAsyncContext:
5431     if (!isValidSwiftContextType(type)) {
5432       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5433           << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
5434     }
5435     D->addAttr(::new (Context) SwiftAsyncContextAttr(Context, CI));
5436     return;
5437 
5438   case ParameterABI::SwiftErrorResult:
5439     if (!isValidSwiftErrorResultType(type)) {
5440       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5441           << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type;
5442     }
5443     D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI));
5444     return;
5445 
5446   case ParameterABI::SwiftIndirectResult:
5447     if (!isValidSwiftIndirectResultType(type)) {
5448       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5449           << getParameterABISpelling(abi) << /*pointer*/ 0 << type;
5450     }
5451     D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI));
5452     return;
5453   }
5454   llvm_unreachable("bad parameter ABI attribute");
5455 }
5456 
5457 /// Checks a regparm attribute, returning true if it is ill-formed and
5458 /// otherwise setting numParams to the appropriate value.
5459 bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) {
5460   if (AL.isInvalid())
5461     return true;
5462 
5463   if (!AL.checkExactlyNumArgs(*this, 1)) {
5464     AL.setInvalid();
5465     return true;
5466   }
5467 
5468   uint32_t NP;
5469   Expr *NumParamsExpr = AL.getArgAsExpr(0);
5470   if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) {
5471     AL.setInvalid();
5472     return true;
5473   }
5474 
5475   if (Context.getTargetInfo().getRegParmMax() == 0) {
5476     Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
5477       << NumParamsExpr->getSourceRange();
5478     AL.setInvalid();
5479     return true;
5480   }
5481 
5482   numParams = NP;
5483   if (numParams > Context.getTargetInfo().getRegParmMax()) {
5484     Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
5485       << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
5486     AL.setInvalid();
5487     return true;
5488   }
5489 
5490   return false;
5491 }
5492 
5493 // Checks whether an argument of launch_bounds attribute is
5494 // acceptable, performs implicit conversion to Rvalue, and returns
5495 // non-nullptr Expr result on success. Otherwise, it returns nullptr
5496 // and may output an error.
5497 static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E,
5498                                      const CUDALaunchBoundsAttr &AL,
5499                                      const unsigned Idx) {
5500   if (S.DiagnoseUnexpandedParameterPack(E))
5501     return nullptr;
5502 
5503   // Accept template arguments for now as they depend on something else.
5504   // We'll get to check them when they eventually get instantiated.
5505   if (E->isValueDependent())
5506     return E;
5507 
5508   std::optional<llvm::APSInt> I = llvm::APSInt(64);
5509   if (!(I = E->getIntegerConstantExpr(S.Context))) {
5510     S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
5511         << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
5512     return nullptr;
5513   }
5514   // Make sure we can fit it in 32 bits.
5515   if (!I->isIntN(32)) {
5516     S.Diag(E->getExprLoc(), diag::err_ice_too_large)
5517         << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
5518     return nullptr;
5519   }
5520   if (*I < 0)
5521     S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
5522         << &AL << Idx << E->getSourceRange();
5523 
5524   // We may need to perform implicit conversion of the argument.
5525   InitializedEntity Entity = InitializedEntity::InitializeParameter(
5526       S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
5527   ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
5528   assert(!ValArg.isInvalid() &&
5529          "Unexpected PerformCopyInitialization() failure.");
5530 
5531   return ValArg.getAs<Expr>();
5532 }
5533 
5534 void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
5535                                Expr *MaxThreads, Expr *MinBlocks) {
5536   CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks);
5537   MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
5538   if (MaxThreads == nullptr)
5539     return;
5540 
5541   if (MinBlocks) {
5542     MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
5543     if (MinBlocks == nullptr)
5544       return;
5545   }
5546 
5547   D->addAttr(::new (Context)
5548                  CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks));
5549 }
5550 
5551 static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5552   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
5553     return;
5554 
5555   S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0),
5556                         AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr);
5557 }
5558 
5559 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
5560                                           const ParsedAttr &AL) {
5561   if (!AL.isArgIdent(0)) {
5562     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5563         << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier;
5564     return;
5565   }
5566 
5567   ParamIdx ArgumentIdx;
5568   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1),
5569                                            ArgumentIdx))
5570     return;
5571 
5572   ParamIdx TypeTagIdx;
5573   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2),
5574                                            TypeTagIdx))
5575     return;
5576 
5577   bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag";
5578   if (IsPointer) {
5579     // Ensure that buffer has a pointer type.
5580     unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
5581     if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
5582         !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
5583       S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0;
5584   }
5585 
5586   D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
5587       S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx,
5588       IsPointer));
5589 }
5590 
5591 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
5592                                          const ParsedAttr &AL) {
5593   if (!AL.isArgIdent(0)) {
5594     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5595         << AL << 1 << AANT_ArgumentIdentifier;
5596     return;
5597   }
5598 
5599   if (!AL.checkExactlyNumArgs(S, 1))
5600     return;
5601 
5602   if (!isa<VarDecl>(D)) {
5603     S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
5604         << AL << ExpectedVariable;
5605     return;
5606   }
5607 
5608   IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident;
5609   TypeSourceInfo *MatchingCTypeLoc = nullptr;
5610   S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
5611   assert(MatchingCTypeLoc && "no type source info for attribute argument");
5612 
5613   D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(
5614       S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(),
5615       AL.getMustBeNull()));
5616 }
5617 
5618 static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5619   ParamIdx ArgCount;
5620 
5621   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0),
5622                                            ArgCount,
5623                                            true /* CanIndexImplicitThis */))
5624     return;
5625 
5626   // ArgCount isn't a parameter index [0;n), it's a count [1;n]
5627   D->addAttr(::new (S.Context)
5628                  XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex()));
5629 }
5630 
5631 static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D,
5632                                              const ParsedAttr &AL) {
5633   uint32_t Count = 0, Offset = 0;
5634   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true))
5635     return;
5636   if (AL.getNumArgs() == 2) {
5637     Expr *Arg = AL.getArgAsExpr(1);
5638     if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true))
5639       return;
5640     if (Count < Offset) {
5641       S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range)
5642           << &AL << 0 << Count << Arg->getBeginLoc();
5643       return;
5644     }
5645   }
5646   D->addAttr(::new (S.Context)
5647                  PatchableFunctionEntryAttr(S.Context, AL, Count, Offset));
5648 }
5649 
5650 namespace {
5651 struct IntrinToName {
5652   uint32_t Id;
5653   int32_t FullName;
5654   int32_t ShortName;
5655 };
5656 } // unnamed namespace
5657 
5658 static bool ArmBuiltinAliasValid(unsigned BuiltinID, StringRef AliasName,
5659                                  ArrayRef<IntrinToName> Map,
5660                                  const char *IntrinNames) {
5661   if (AliasName.startswith("__arm_"))
5662     AliasName = AliasName.substr(6);
5663   const IntrinToName *It =
5664       llvm::lower_bound(Map, BuiltinID, [](const IntrinToName &L, unsigned Id) {
5665         return L.Id < Id;
5666       });
5667   if (It == Map.end() || It->Id != BuiltinID)
5668     return false;
5669   StringRef FullName(&IntrinNames[It->FullName]);
5670   if (AliasName == FullName)
5671     return true;
5672   if (It->ShortName == -1)
5673     return false;
5674   StringRef ShortName(&IntrinNames[It->ShortName]);
5675   return AliasName == ShortName;
5676 }
5677 
5678 static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) {
5679 #include "clang/Basic/arm_mve_builtin_aliases.inc"
5680   // The included file defines:
5681   // - ArrayRef<IntrinToName> Map
5682   // - const char IntrinNames[]
5683   return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
5684 }
5685 
5686 static bool ArmCdeAliasValid(unsigned BuiltinID, StringRef AliasName) {
5687 #include "clang/Basic/arm_cde_builtin_aliases.inc"
5688   return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
5689 }
5690 
5691 static bool ArmSveAliasValid(ASTContext &Context, unsigned BuiltinID,
5692                              StringRef AliasName) {
5693   if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
5694     BuiltinID = Context.BuiltinInfo.getAuxBuiltinID(BuiltinID);
5695   return BuiltinID >= AArch64::FirstSVEBuiltin &&
5696          BuiltinID <= AArch64::LastSVEBuiltin;
5697 }
5698 
5699 static void handleArmBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5700   if (!AL.isArgIdent(0)) {
5701     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5702         << AL << 1 << AANT_ArgumentIdentifier;
5703     return;
5704   }
5705 
5706   IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
5707   unsigned BuiltinID = Ident->getBuiltinID();
5708   StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5709 
5710   bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5711   if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) ||
5712       (!IsAArch64 && !ArmMveAliasValid(BuiltinID, AliasName) &&
5713        !ArmCdeAliasValid(BuiltinID, AliasName))) {
5714     S.Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias);
5715     return;
5716   }
5717 
5718   D->addAttr(::new (S.Context) ArmBuiltinAliasAttr(S.Context, AL, Ident));
5719 }
5720 
5721 static bool RISCVAliasValid(unsigned BuiltinID, StringRef AliasName) {
5722   return BuiltinID >= RISCV::FirstRVVBuiltin &&
5723          BuiltinID <= RISCV::LastRVVBuiltin;
5724 }
5725 
5726 static void handleBuiltinAliasAttr(Sema &S, Decl *D,
5727                                         const ParsedAttr &AL) {
5728   if (!AL.isArgIdent(0)) {
5729     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5730         << AL << 1 << AANT_ArgumentIdentifier;
5731     return;
5732   }
5733 
5734   IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
5735   unsigned BuiltinID = Ident->getBuiltinID();
5736   StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5737 
5738   bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5739   bool IsARM = S.Context.getTargetInfo().getTriple().isARM();
5740   bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV();
5741   bool IsHLSL = S.Context.getLangOpts().HLSL;
5742   if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) ||
5743       (IsARM && !ArmMveAliasValid(BuiltinID, AliasName) &&
5744        !ArmCdeAliasValid(BuiltinID, AliasName)) ||
5745       (IsRISCV && !RISCVAliasValid(BuiltinID, AliasName)) ||
5746       (!IsAArch64 && !IsARM && !IsRISCV && !IsHLSL)) {
5747     S.Diag(AL.getLoc(), diag::err_attribute_builtin_alias) << AL;
5748     return;
5749   }
5750 
5751   D->addAttr(::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident));
5752 }
5753 
5754 //===----------------------------------------------------------------------===//
5755 // Checker-specific attribute handlers.
5756 //===----------------------------------------------------------------------===//
5757 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) {
5758   return QT->isDependentType() || QT->isObjCRetainableType();
5759 }
5760 
5761 static bool isValidSubjectOfNSAttribute(QualType QT) {
5762   return QT->isDependentType() || QT->isObjCObjectPointerType() ||
5763          QT->isObjCNSObjectType();
5764 }
5765 
5766 static bool isValidSubjectOfCFAttribute(QualType QT) {
5767   return QT->isDependentType() || QT->isPointerType() ||
5768          isValidSubjectOfNSAttribute(QT);
5769 }
5770 
5771 static bool isValidSubjectOfOSAttribute(QualType QT) {
5772   if (QT->isDependentType())
5773     return true;
5774   QualType PT = QT->getPointeeType();
5775   return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr;
5776 }
5777 
5778 void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
5779                             RetainOwnershipKind K,
5780                             bool IsTemplateInstantiation) {
5781   ValueDecl *VD = cast<ValueDecl>(D);
5782   switch (K) {
5783   case RetainOwnershipKind::OS:
5784     handleSimpleAttributeOrDiagnose<OSConsumedAttr>(
5785         *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()),
5786         diag::warn_ns_attribute_wrong_parameter_type,
5787         /*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1);
5788     return;
5789   case RetainOwnershipKind::NS:
5790     handleSimpleAttributeOrDiagnose<NSConsumedAttr>(
5791         *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()),
5792 
5793         // These attributes are normally just advisory, but in ARC, ns_consumed
5794         // is significant.  Allow non-dependent code to contain inappropriate
5795         // attributes even in ARC, but require template instantiations to be
5796         // set up correctly.
5797         ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount)
5798              ? diag::err_ns_attribute_wrong_parameter_type
5799              : diag::warn_ns_attribute_wrong_parameter_type),
5800         /*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0);
5801     return;
5802   case RetainOwnershipKind::CF:
5803     handleSimpleAttributeOrDiagnose<CFConsumedAttr>(
5804         *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()),
5805         diag::warn_ns_attribute_wrong_parameter_type,
5806         /*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1);
5807     return;
5808   }
5809 }
5810 
5811 static Sema::RetainOwnershipKind
5812 parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) {
5813   switch (AL.getKind()) {
5814   case ParsedAttr::AT_CFConsumed:
5815   case ParsedAttr::AT_CFReturnsRetained:
5816   case ParsedAttr::AT_CFReturnsNotRetained:
5817     return Sema::RetainOwnershipKind::CF;
5818   case ParsedAttr::AT_OSConsumesThis:
5819   case ParsedAttr::AT_OSConsumed:
5820   case ParsedAttr::AT_OSReturnsRetained:
5821   case ParsedAttr::AT_OSReturnsNotRetained:
5822   case ParsedAttr::AT_OSReturnsRetainedOnZero:
5823   case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
5824     return Sema::RetainOwnershipKind::OS;
5825   case ParsedAttr::AT_NSConsumesSelf:
5826   case ParsedAttr::AT_NSConsumed:
5827   case ParsedAttr::AT_NSReturnsRetained:
5828   case ParsedAttr::AT_NSReturnsNotRetained:
5829   case ParsedAttr::AT_NSReturnsAutoreleased:
5830     return Sema::RetainOwnershipKind::NS;
5831   default:
5832     llvm_unreachable("Wrong argument supplied");
5833   }
5834 }
5835 
5836 bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) {
5837   if (isValidSubjectOfNSReturnsRetainedAttribute(QT))
5838     return false;
5839 
5840   Diag(Loc, diag::warn_ns_attribute_wrong_return_type)
5841       << "'ns_returns_retained'" << 0 << 0;
5842   return true;
5843 }
5844 
5845 /// \return whether the parameter is a pointer to OSObject pointer.
5846 static bool isValidOSObjectOutParameter(const Decl *D) {
5847   const auto *PVD = dyn_cast<ParmVarDecl>(D);
5848   if (!PVD)
5849     return false;
5850   QualType QT = PVD->getType();
5851   QualType PT = QT->getPointeeType();
5852   return !PT.isNull() && isValidSubjectOfOSAttribute(PT);
5853 }
5854 
5855 static void handleXReturnsXRetainedAttr(Sema &S, Decl *D,
5856                                         const ParsedAttr &AL) {
5857   QualType ReturnType;
5858   Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL);
5859 
5860   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
5861     ReturnType = MD->getReturnType();
5862   } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
5863              (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) {
5864     return; // ignore: was handled as a type attribute
5865   } else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
5866     ReturnType = PD->getType();
5867   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
5868     ReturnType = FD->getReturnType();
5869   } else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) {
5870     // Attributes on parameters are used for out-parameters,
5871     // passed as pointers-to-pointers.
5872     unsigned DiagID = K == Sema::RetainOwnershipKind::CF
5873             ? /*pointer-to-CF-pointer*/2
5874             : /*pointer-to-OSObject-pointer*/3;
5875     ReturnType = Param->getType()->getPointeeType();
5876     if (ReturnType.isNull()) {
5877       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5878           << AL << DiagID << AL.getRange();
5879       return;
5880     }
5881   } else if (AL.isUsedAsTypeAttr()) {
5882     return;
5883   } else {
5884     AttributeDeclKind ExpectedDeclKind;
5885     switch (AL.getKind()) {
5886     default: llvm_unreachable("invalid ownership attribute");
5887     case ParsedAttr::AT_NSReturnsRetained:
5888     case ParsedAttr::AT_NSReturnsAutoreleased:
5889     case ParsedAttr::AT_NSReturnsNotRetained:
5890       ExpectedDeclKind = ExpectedFunctionOrMethod;
5891       break;
5892 
5893     case ParsedAttr::AT_OSReturnsRetained:
5894     case ParsedAttr::AT_OSReturnsNotRetained:
5895     case ParsedAttr::AT_CFReturnsRetained:
5896     case ParsedAttr::AT_CFReturnsNotRetained:
5897       ExpectedDeclKind = ExpectedFunctionMethodOrParameter;
5898       break;
5899     }
5900     S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type)
5901         << AL.getRange() << AL << ExpectedDeclKind;
5902     return;
5903   }
5904 
5905   bool TypeOK;
5906   bool Cf;
5907   unsigned ParmDiagID = 2; // Pointer-to-CF-pointer
5908   switch (AL.getKind()) {
5909   default: llvm_unreachable("invalid ownership attribute");
5910   case ParsedAttr::AT_NSReturnsRetained:
5911     TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType);
5912     Cf = false;
5913     break;
5914 
5915   case ParsedAttr::AT_NSReturnsAutoreleased:
5916   case ParsedAttr::AT_NSReturnsNotRetained:
5917     TypeOK = isValidSubjectOfNSAttribute(ReturnType);
5918     Cf = false;
5919     break;
5920 
5921   case ParsedAttr::AT_CFReturnsRetained:
5922   case ParsedAttr::AT_CFReturnsNotRetained:
5923     TypeOK = isValidSubjectOfCFAttribute(ReturnType);
5924     Cf = true;
5925     break;
5926 
5927   case ParsedAttr::AT_OSReturnsRetained:
5928   case ParsedAttr::AT_OSReturnsNotRetained:
5929     TypeOK = isValidSubjectOfOSAttribute(ReturnType);
5930     Cf = true;
5931     ParmDiagID = 3; // Pointer-to-OSObject-pointer
5932     break;
5933   }
5934 
5935   if (!TypeOK) {
5936     if (AL.isUsedAsTypeAttr())
5937       return;
5938 
5939     if (isa<ParmVarDecl>(D)) {
5940       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5941           << AL << ParmDiagID << AL.getRange();
5942     } else {
5943       // Needs to be kept in sync with warn_ns_attribute_wrong_return_type.
5944       enum : unsigned {
5945         Function,
5946         Method,
5947         Property
5948       } SubjectKind = Function;
5949       if (isa<ObjCMethodDecl>(D))
5950         SubjectKind = Method;
5951       else if (isa<ObjCPropertyDecl>(D))
5952         SubjectKind = Property;
5953       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
5954           << AL << SubjectKind << Cf << AL.getRange();
5955     }
5956     return;
5957   }
5958 
5959   switch (AL.getKind()) {
5960     default:
5961       llvm_unreachable("invalid ownership attribute");
5962     case ParsedAttr::AT_NSReturnsAutoreleased:
5963       handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL);
5964       return;
5965     case ParsedAttr::AT_CFReturnsNotRetained:
5966       handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL);
5967       return;
5968     case ParsedAttr::AT_NSReturnsNotRetained:
5969       handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL);
5970       return;
5971     case ParsedAttr::AT_CFReturnsRetained:
5972       handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL);
5973       return;
5974     case ParsedAttr::AT_NSReturnsRetained:
5975       handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL);
5976       return;
5977     case ParsedAttr::AT_OSReturnsRetained:
5978       handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL);
5979       return;
5980     case ParsedAttr::AT_OSReturnsNotRetained:
5981       handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL);
5982       return;
5983   };
5984 }
5985 
5986 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
5987                                               const ParsedAttr &Attrs) {
5988   const int EP_ObjCMethod = 1;
5989   const int EP_ObjCProperty = 2;
5990 
5991   SourceLocation loc = Attrs.getLoc();
5992   QualType resultType;
5993   if (isa<ObjCMethodDecl>(D))
5994     resultType = cast<ObjCMethodDecl>(D)->getReturnType();
5995   else
5996     resultType = cast<ObjCPropertyDecl>(D)->getType();
5997 
5998   if (!resultType->isReferenceType() &&
5999       (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
6000     S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
6001         << SourceRange(loc) << Attrs
6002         << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
6003         << /*non-retainable pointer*/ 2;
6004 
6005     // Drop the attribute.
6006     return;
6007   }
6008 
6009   D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs));
6010 }
6011 
6012 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
6013                                         const ParsedAttr &Attrs) {
6014   const auto *Method = cast<ObjCMethodDecl>(D);
6015 
6016   const DeclContext *DC = Method->getDeclContext();
6017   if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
6018     S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
6019                                                                       << 0;
6020     S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
6021     return;
6022   }
6023   if (Method->getMethodFamily() == OMF_dealloc) {
6024     S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
6025                                                                       << 1;
6026     return;
6027   }
6028 
6029   D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs));
6030 }
6031 
6032 static void handleNSErrorDomain(Sema &S, Decl *D, const ParsedAttr &AL) {
6033   auto *E = AL.getArgAsExpr(0);
6034   auto Loc = E ? E->getBeginLoc() : AL.getLoc();
6035 
6036   auto *DRE = dyn_cast<DeclRefExpr>(AL.getArgAsExpr(0));
6037   if (!DRE) {
6038     S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 0;
6039     return;
6040   }
6041 
6042   auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6043   if (!VD) {
6044     S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 1 << DRE->getDecl();
6045     return;
6046   }
6047 
6048   if (!isNSStringType(VD->getType(), S.Context) &&
6049       !isCFStringType(VD->getType(), S.Context)) {
6050     S.Diag(Loc, diag::err_nserrordomain_wrong_type) << VD;
6051     return;
6052   }
6053 
6054   D->addAttr(::new (S.Context) NSErrorDomainAttr(S.Context, AL, VD));
6055 }
6056 
6057 static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6058   IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
6059 
6060   if (!Parm) {
6061     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
6062     return;
6063   }
6064 
6065   // Typedefs only allow objc_bridge(id) and have some additional checking.
6066   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
6067     if (!Parm->Ident->isStr("id")) {
6068       S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL;
6069       return;
6070     }
6071 
6072     // Only allow 'cv void *'.
6073     QualType T = TD->getUnderlyingType();
6074     if (!T->isVoidPointerType()) {
6075       S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
6076       return;
6077     }
6078   }
6079 
6080   D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident));
6081 }
6082 
6083 static void handleObjCBridgeMutableAttr(Sema &S, Decl *D,
6084                                         const ParsedAttr &AL) {
6085   IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
6086 
6087   if (!Parm) {
6088     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
6089     return;
6090   }
6091 
6092   D->addAttr(::new (S.Context)
6093                  ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident));
6094 }
6095 
6096 static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D,
6097                                         const ParsedAttr &AL) {
6098   IdentifierInfo *RelatedClass =
6099       AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr;
6100   if (!RelatedClass) {
6101     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
6102     return;
6103   }
6104   IdentifierInfo *ClassMethod =
6105     AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr;
6106   IdentifierInfo *InstanceMethod =
6107     AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr;
6108   D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr(
6109       S.Context, AL, RelatedClass, ClassMethod, InstanceMethod));
6110 }
6111 
6112 static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
6113                                             const ParsedAttr &AL) {
6114   DeclContext *Ctx = D->getDeclContext();
6115 
6116   // This attribute can only be applied to methods in interfaces or class
6117   // extensions.
6118   if (!isa<ObjCInterfaceDecl>(Ctx) &&
6119       !(isa<ObjCCategoryDecl>(Ctx) &&
6120         cast<ObjCCategoryDecl>(Ctx)->IsClassExtension())) {
6121     S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
6122     return;
6123   }
6124 
6125   ObjCInterfaceDecl *IFace;
6126   if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Ctx))
6127     IFace = CatDecl->getClassInterface();
6128   else
6129     IFace = cast<ObjCInterfaceDecl>(Ctx);
6130 
6131   if (!IFace)
6132     return;
6133 
6134   IFace->setHasDesignatedInitializers();
6135   D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL));
6136 }
6137 
6138 static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) {
6139   StringRef MetaDataName;
6140   if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName))
6141     return;
6142   D->addAttr(::new (S.Context)
6143                  ObjCRuntimeNameAttr(S.Context, AL, MetaDataName));
6144 }
6145 
6146 // When a user wants to use objc_boxable with a union or struct
6147 // but they don't have access to the declaration (legacy/third-party code)
6148 // then they can 'enable' this feature with a typedef:
6149 // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct;
6150 static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) {
6151   bool notify = false;
6152 
6153   auto *RD = dyn_cast<RecordDecl>(D);
6154   if (RD && RD->getDefinition()) {
6155     RD = RD->getDefinition();
6156     notify = true;
6157   }
6158 
6159   if (RD) {
6160     ObjCBoxableAttr *BoxableAttr =
6161         ::new (S.Context) ObjCBoxableAttr(S.Context, AL);
6162     RD->addAttr(BoxableAttr);
6163     if (notify) {
6164       // we need to notify ASTReader/ASTWriter about
6165       // modification of existing declaration
6166       if (ASTMutationListener *L = S.getASTMutationListener())
6167         L->AddedAttributeToRecord(BoxableAttr, RD);
6168     }
6169   }
6170 }
6171 
6172 static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6173   if (hasDeclarator(D)) return;
6174 
6175   S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type)
6176       << AL.getRange() << AL << ExpectedVariable;
6177 }
6178 
6179 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
6180                                           const ParsedAttr &AL) {
6181   const auto *VD = cast<ValueDecl>(D);
6182   QualType QT = VD->getType();
6183 
6184   if (!QT->isDependentType() &&
6185       !QT->isObjCLifetimeType()) {
6186     S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type)
6187       << QT;
6188     return;
6189   }
6190 
6191   Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime();
6192 
6193   // If we have no lifetime yet, check the lifetime we're presumably
6194   // going to infer.
6195   if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType())
6196     Lifetime = QT->getObjCARCImplicitLifetime();
6197 
6198   switch (Lifetime) {
6199   case Qualifiers::OCL_None:
6200     assert(QT->isDependentType() &&
6201            "didn't infer lifetime for non-dependent type?");
6202     break;
6203 
6204   case Qualifiers::OCL_Weak:   // meaningful
6205   case Qualifiers::OCL_Strong: // meaningful
6206     break;
6207 
6208   case Qualifiers::OCL_ExplicitNone:
6209   case Qualifiers::OCL_Autoreleasing:
6210     S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
6211         << (Lifetime == Qualifiers::OCL_Autoreleasing);
6212     break;
6213   }
6214 
6215   D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL));
6216 }
6217 
6218 static void handleSwiftAttrAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6219   // Make sure that there is a string literal as the annotation's single
6220   // argument.
6221   StringRef Str;
6222   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
6223     return;
6224 
6225   D->addAttr(::new (S.Context) SwiftAttrAttr(S.Context, AL, Str));
6226 }
6227 
6228 static void handleSwiftBridge(Sema &S, Decl *D, const ParsedAttr &AL) {
6229   // Make sure that there is a string literal as the annotation's single
6230   // argument.
6231   StringRef BT;
6232   if (!S.checkStringLiteralArgumentAttr(AL, 0, BT))
6233     return;
6234 
6235   // Warn about duplicate attributes if they have different arguments, but drop
6236   // any duplicate attributes regardless.
6237   if (const auto *Other = D->getAttr<SwiftBridgeAttr>()) {
6238     if (Other->getSwiftType() != BT)
6239       S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
6240     return;
6241   }
6242 
6243   D->addAttr(::new (S.Context) SwiftBridgeAttr(S.Context, AL, BT));
6244 }
6245 
6246 static bool isErrorParameter(Sema &S, QualType QT) {
6247   const auto *PT = QT->getAs<PointerType>();
6248   if (!PT)
6249     return false;
6250 
6251   QualType Pointee = PT->getPointeeType();
6252 
6253   // Check for NSError**.
6254   if (const auto *OPT = Pointee->getAs<ObjCObjectPointerType>())
6255     if (const auto *ID = OPT->getInterfaceDecl())
6256       if (ID->getIdentifier() == S.getNSErrorIdent())
6257         return true;
6258 
6259   // Check for CFError**.
6260   if (const auto *PT = Pointee->getAs<PointerType>())
6261     if (const auto *RT = PT->getPointeeType()->getAs<RecordType>())
6262       if (S.isCFError(RT->getDecl()))
6263         return true;
6264 
6265   return false;
6266 }
6267 
6268 static void handleSwiftError(Sema &S, Decl *D, const ParsedAttr &AL) {
6269   auto hasErrorParameter = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
6270     for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) {
6271       if (isErrorParameter(S, getFunctionOrMethodParamType(D, I)))
6272         return true;
6273     }
6274 
6275     S.Diag(AL.getLoc(), diag::err_attr_swift_error_no_error_parameter)
6276         << AL << isa<ObjCMethodDecl>(D);
6277     return false;
6278   };
6279 
6280   auto hasPointerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
6281     // - C, ObjC, and block pointers are definitely okay.
6282     // - References are definitely not okay.
6283     // - nullptr_t is weird, but acceptable.
6284     QualType RT = getFunctionOrMethodResultType(D);
6285     if (RT->hasPointerRepresentation() && !RT->isReferenceType())
6286       return true;
6287 
6288     S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
6289         << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
6290         << /*pointer*/ 1;
6291     return false;
6292   };
6293 
6294   auto hasIntegerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
6295     QualType RT = getFunctionOrMethodResultType(D);
6296     if (RT->isIntegralType(S.Context))
6297       return true;
6298 
6299     S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
6300         << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
6301         << /*integral*/ 0;
6302     return false;
6303   };
6304 
6305   if (D->isInvalidDecl())
6306     return;
6307 
6308   IdentifierLoc *Loc = AL.getArgAsIdent(0);
6309   SwiftErrorAttr::ConventionKind Convention;
6310   if (!SwiftErrorAttr::ConvertStrToConventionKind(Loc->Ident->getName(),
6311                                                   Convention)) {
6312     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
6313         << AL << Loc->Ident;
6314     return;
6315   }
6316 
6317   switch (Convention) {
6318   case SwiftErrorAttr::None:
6319     // No additional validation required.
6320     break;
6321 
6322   case SwiftErrorAttr::NonNullError:
6323     if (!hasErrorParameter(S, D, AL))
6324       return;
6325     break;
6326 
6327   case SwiftErrorAttr::NullResult:
6328     if (!hasErrorParameter(S, D, AL) || !hasPointerResult(S, D, AL))
6329       return;
6330     break;
6331 
6332   case SwiftErrorAttr::NonZeroResult:
6333   case SwiftErrorAttr::ZeroResult:
6334     if (!hasErrorParameter(S, D, AL) || !hasIntegerResult(S, D, AL))
6335       return;
6336     break;
6337   }
6338 
6339   D->addAttr(::new (S.Context) SwiftErrorAttr(S.Context, AL, Convention));
6340 }
6341 
6342 static void checkSwiftAsyncErrorBlock(Sema &S, Decl *D,
6343                                       const SwiftAsyncErrorAttr *ErrorAttr,
6344                                       const SwiftAsyncAttr *AsyncAttr) {
6345   if (AsyncAttr->getKind() == SwiftAsyncAttr::None) {
6346     if (ErrorAttr->getConvention() != SwiftAsyncErrorAttr::None) {
6347       S.Diag(AsyncAttr->getLocation(),
6348              diag::err_swift_async_error_without_swift_async)
6349           << AsyncAttr << isa<ObjCMethodDecl>(D);
6350     }
6351     return;
6352   }
6353 
6354   const ParmVarDecl *HandlerParam = getFunctionOrMethodParam(
6355       D, AsyncAttr->getCompletionHandlerIndex().getASTIndex());
6356   // handleSwiftAsyncAttr already verified the type is correct, so no need to
6357   // double-check it here.
6358   const auto *FuncTy = HandlerParam->getType()
6359                            ->castAs<BlockPointerType>()
6360                            ->getPointeeType()
6361                            ->getAs<FunctionProtoType>();
6362   ArrayRef<QualType> BlockParams;
6363   if (FuncTy)
6364     BlockParams = FuncTy->getParamTypes();
6365 
6366   switch (ErrorAttr->getConvention()) {
6367   case SwiftAsyncErrorAttr::ZeroArgument:
6368   case SwiftAsyncErrorAttr::NonZeroArgument: {
6369     uint32_t ParamIdx = ErrorAttr->getHandlerParamIdx();
6370     if (ParamIdx == 0 || ParamIdx > BlockParams.size()) {
6371       S.Diag(ErrorAttr->getLocation(),
6372              diag::err_attribute_argument_out_of_bounds) << ErrorAttr << 2;
6373       return;
6374     }
6375     QualType ErrorParam = BlockParams[ParamIdx - 1];
6376     if (!ErrorParam->isIntegralType(S.Context)) {
6377       StringRef ConvStr =
6378           ErrorAttr->getConvention() == SwiftAsyncErrorAttr::ZeroArgument
6379               ? "zero_argument"
6380               : "nonzero_argument";
6381       S.Diag(ErrorAttr->getLocation(), diag::err_swift_async_error_non_integral)
6382           << ErrorAttr << ConvStr << ParamIdx << ErrorParam;
6383       return;
6384     }
6385     break;
6386   }
6387   case SwiftAsyncErrorAttr::NonNullError: {
6388     bool AnyErrorParams = false;
6389     for (QualType Param : BlockParams) {
6390       // Check for NSError *.
6391       if (const auto *ObjCPtrTy = Param->getAs<ObjCObjectPointerType>()) {
6392         if (const auto *ID = ObjCPtrTy->getInterfaceDecl()) {
6393           if (ID->getIdentifier() == S.getNSErrorIdent()) {
6394             AnyErrorParams = true;
6395             break;
6396           }
6397         }
6398       }
6399       // Check for CFError *.
6400       if (const auto *PtrTy = Param->getAs<PointerType>()) {
6401         if (const auto *RT = PtrTy->getPointeeType()->getAs<RecordType>()) {
6402           if (S.isCFError(RT->getDecl())) {
6403             AnyErrorParams = true;
6404             break;
6405           }
6406         }
6407       }
6408     }
6409 
6410     if (!AnyErrorParams) {
6411       S.Diag(ErrorAttr->getLocation(),
6412              diag::err_swift_async_error_no_error_parameter)
6413           << ErrorAttr << isa<ObjCMethodDecl>(D);
6414       return;
6415     }
6416     break;
6417   }
6418   case SwiftAsyncErrorAttr::None:
6419     break;
6420   }
6421 }
6422 
6423 static void handleSwiftAsyncError(Sema &S, Decl *D, const ParsedAttr &AL) {
6424   IdentifierLoc *IDLoc = AL.getArgAsIdent(0);
6425   SwiftAsyncErrorAttr::ConventionKind ConvKind;
6426   if (!SwiftAsyncErrorAttr::ConvertStrToConventionKind(IDLoc->Ident->getName(),
6427                                                        ConvKind)) {
6428     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
6429         << AL << IDLoc->Ident;
6430     return;
6431   }
6432 
6433   uint32_t ParamIdx = 0;
6434   switch (ConvKind) {
6435   case SwiftAsyncErrorAttr::ZeroArgument:
6436   case SwiftAsyncErrorAttr::NonZeroArgument: {
6437     if (!AL.checkExactlyNumArgs(S, 2))
6438       return;
6439 
6440     Expr *IdxExpr = AL.getArgAsExpr(1);
6441     if (!checkUInt32Argument(S, AL, IdxExpr, ParamIdx))
6442       return;
6443     break;
6444   }
6445   case SwiftAsyncErrorAttr::NonNullError:
6446   case SwiftAsyncErrorAttr::None: {
6447     if (!AL.checkExactlyNumArgs(S, 1))
6448       return;
6449     break;
6450   }
6451   }
6452 
6453   auto *ErrorAttr =
6454       ::new (S.Context) SwiftAsyncErrorAttr(S.Context, AL, ConvKind, ParamIdx);
6455   D->addAttr(ErrorAttr);
6456 
6457   if (auto *AsyncAttr = D->getAttr<SwiftAsyncAttr>())
6458     checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr);
6459 }
6460 
6461 // For a function, this will validate a compound Swift name, e.g.
6462 // <code>init(foo:bar:baz:)</code> or <code>controllerForName(_:)</code>, and
6463 // the function will output the number of parameter names, and whether this is a
6464 // single-arg initializer.
6465 //
6466 // For a type, enum constant, property, or variable declaration, this will
6467 // validate either a simple identifier, or a qualified
6468 // <code>context.identifier</code> name.
6469 static bool
6470 validateSwiftFunctionName(Sema &S, const ParsedAttr &AL, SourceLocation Loc,
6471                           StringRef Name, unsigned &SwiftParamCount,
6472                           bool &IsSingleParamInit) {
6473   SwiftParamCount = 0;
6474   IsSingleParamInit = false;
6475 
6476   // Check whether this will be mapped to a getter or setter of a property.
6477   bool IsGetter = false, IsSetter = false;
6478   if (Name.startswith("getter:")) {
6479     IsGetter = true;
6480     Name = Name.substr(7);
6481   } else if (Name.startswith("setter:")) {
6482     IsSetter = true;
6483     Name = Name.substr(7);
6484   }
6485 
6486   if (Name.back() != ')') {
6487     S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
6488     return false;
6489   }
6490 
6491   bool IsMember = false;
6492   StringRef ContextName, BaseName, Parameters;
6493 
6494   std::tie(BaseName, Parameters) = Name.split('(');
6495 
6496   // Split at the first '.', if it exists, which separates the context name
6497   // from the base name.
6498   std::tie(ContextName, BaseName) = BaseName.split('.');
6499   if (BaseName.empty()) {
6500     BaseName = ContextName;
6501     ContextName = StringRef();
6502   } else if (ContextName.empty() || !isValidAsciiIdentifier(ContextName)) {
6503     S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6504         << AL << /*context*/ 1;
6505     return false;
6506   } else {
6507     IsMember = true;
6508   }
6509 
6510   if (!isValidAsciiIdentifier(BaseName) || BaseName == "_") {
6511     S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6512         << AL << /*basename*/ 0;
6513     return false;
6514   }
6515 
6516   bool IsSubscript = BaseName == "subscript";
6517   // A subscript accessor must be a getter or setter.
6518   if (IsSubscript && !IsGetter && !IsSetter) {
6519     S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6520         << AL << /* getter or setter */ 0;
6521     return false;
6522   }
6523 
6524   if (Parameters.empty()) {
6525     S.Diag(Loc, diag::warn_attr_swift_name_missing_parameters) << AL;
6526     return false;
6527   }
6528 
6529   assert(Parameters.back() == ')' && "expected ')'");
6530   Parameters = Parameters.drop_back(); // ')'
6531 
6532   if (Parameters.empty()) {
6533     // Setters and subscripts must have at least one parameter.
6534     if (IsSubscript) {
6535       S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6536           << AL << /* have at least one parameter */1;
6537       return false;
6538     }
6539 
6540     if (IsSetter) {
6541       S.Diag(Loc, diag::warn_attr_swift_name_setter_parameters) << AL;
6542       return false;
6543     }
6544 
6545     return true;
6546   }
6547 
6548   if (Parameters.back() != ':') {
6549     S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
6550     return false;
6551   }
6552 
6553   StringRef CurrentParam;
6554   std::optional<unsigned> SelfLocation;
6555   unsigned NewValueCount = 0;
6556   std::optional<unsigned> NewValueLocation;
6557   do {
6558     std::tie(CurrentParam, Parameters) = Parameters.split(':');
6559 
6560     if (!isValidAsciiIdentifier(CurrentParam)) {
6561       S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6562           << AL << /*parameter*/2;
6563       return false;
6564     }
6565 
6566     if (IsMember && CurrentParam == "self") {
6567       // "self" indicates the "self" argument for a member.
6568 
6569       // More than one "self"?
6570       if (SelfLocation) {
6571         S.Diag(Loc, diag::warn_attr_swift_name_multiple_selfs) << AL;
6572         return false;
6573       }
6574 
6575       // The "self" location is the current parameter.
6576       SelfLocation = SwiftParamCount;
6577     } else if (CurrentParam == "newValue") {
6578       // "newValue" indicates the "newValue" argument for a setter.
6579 
6580       // There should only be one 'newValue', but it's only significant for
6581       // subscript accessors, so don't error right away.
6582       ++NewValueCount;
6583 
6584       NewValueLocation = SwiftParamCount;
6585     }
6586 
6587     ++SwiftParamCount;
6588   } while (!Parameters.empty());
6589 
6590   // Only instance subscripts are currently supported.
6591   if (IsSubscript && !SelfLocation) {
6592     S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6593         << AL << /*have a 'self:' parameter*/2;
6594     return false;
6595   }
6596 
6597   IsSingleParamInit =
6598         SwiftParamCount == 1 && BaseName == "init" && CurrentParam != "_";
6599 
6600   // Check the number of parameters for a getter/setter.
6601   if (IsGetter || IsSetter) {
6602     // Setters have one parameter for the new value.
6603     unsigned NumExpectedParams = IsGetter ? 0 : 1;
6604     unsigned ParamDiag =
6605         IsGetter ? diag::warn_attr_swift_name_getter_parameters
6606                  : diag::warn_attr_swift_name_setter_parameters;
6607 
6608     // Instance methods have one parameter for "self".
6609     if (SelfLocation)
6610       ++NumExpectedParams;
6611 
6612     // Subscripts may have additional parameters beyond the expected params for
6613     // the index.
6614     if (IsSubscript) {
6615       if (SwiftParamCount < NumExpectedParams) {
6616         S.Diag(Loc, ParamDiag) << AL;
6617         return false;
6618       }
6619 
6620       // A subscript setter must explicitly label its newValue parameter to
6621       // distinguish it from index parameters.
6622       if (IsSetter) {
6623         if (!NewValueLocation) {
6624           S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_no_newValue)
6625               << AL;
6626           return false;
6627         }
6628         if (NewValueCount > 1) {
6629           S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_multiple_newValues)
6630               << AL;
6631           return false;
6632         }
6633       } else {
6634         // Subscript getters should have no 'newValue:' parameter.
6635         if (NewValueLocation) {
6636           S.Diag(Loc, diag::warn_attr_swift_name_subscript_getter_newValue)
6637               << AL;
6638           return false;
6639         }
6640       }
6641     } else {
6642       // Property accessors must have exactly the number of expected params.
6643       if (SwiftParamCount != NumExpectedParams) {
6644         S.Diag(Loc, ParamDiag) << AL;
6645         return false;
6646       }
6647     }
6648   }
6649 
6650   return true;
6651 }
6652 
6653 bool Sema::DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc,
6654                              const ParsedAttr &AL, bool IsAsync) {
6655   if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
6656     ArrayRef<ParmVarDecl*> Params;
6657     unsigned ParamCount;
6658 
6659     if (const auto *Method = dyn_cast<ObjCMethodDecl>(D)) {
6660       ParamCount = Method->getSelector().getNumArgs();
6661       Params = Method->parameters().slice(0, ParamCount);
6662     } else {
6663       const auto *F = cast<FunctionDecl>(D);
6664 
6665       ParamCount = F->getNumParams();
6666       Params = F->parameters();
6667 
6668       if (!F->hasWrittenPrototype()) {
6669         Diag(Loc, diag::warn_attribute_wrong_decl_type) << AL
6670             << ExpectedFunctionWithProtoType;
6671         return false;
6672       }
6673     }
6674 
6675     // The async name drops the last callback parameter.
6676     if (IsAsync) {
6677       if (ParamCount == 0) {
6678         Diag(Loc, diag::warn_attr_swift_name_decl_missing_params)
6679             << AL << isa<ObjCMethodDecl>(D);
6680         return false;
6681       }
6682       ParamCount -= 1;
6683     }
6684 
6685     unsigned SwiftParamCount;
6686     bool IsSingleParamInit;
6687     if (!validateSwiftFunctionName(*this, AL, Loc, Name,
6688                                    SwiftParamCount, IsSingleParamInit))
6689       return false;
6690 
6691     bool ParamCountValid;
6692     if (SwiftParamCount == ParamCount) {
6693       ParamCountValid = true;
6694     } else if (SwiftParamCount > ParamCount) {
6695       ParamCountValid = IsSingleParamInit && ParamCount == 0;
6696     } else {
6697       // We have fewer Swift parameters than Objective-C parameters, but that
6698       // might be because we've transformed some of them. Check for potential
6699       // "out" parameters and err on the side of not warning.
6700       unsigned MaybeOutParamCount =
6701           llvm::count_if(Params, [](const ParmVarDecl *Param) -> bool {
6702             QualType ParamTy = Param->getType();
6703             if (ParamTy->isReferenceType() || ParamTy->isPointerType())
6704               return !ParamTy->getPointeeType().isConstQualified();
6705             return false;
6706           });
6707 
6708       ParamCountValid = SwiftParamCount + MaybeOutParamCount >= ParamCount;
6709     }
6710 
6711     if (!ParamCountValid) {
6712       Diag(Loc, diag::warn_attr_swift_name_num_params)
6713           << (SwiftParamCount > ParamCount) << AL << ParamCount
6714           << SwiftParamCount;
6715       return false;
6716     }
6717   } else if ((isa<EnumConstantDecl>(D) || isa<ObjCProtocolDecl>(D) ||
6718               isa<ObjCInterfaceDecl>(D) || isa<ObjCPropertyDecl>(D) ||
6719               isa<VarDecl>(D) || isa<TypedefNameDecl>(D) || isa<TagDecl>(D) ||
6720               isa<IndirectFieldDecl>(D) || isa<FieldDecl>(D)) &&
6721              !IsAsync) {
6722     StringRef ContextName, BaseName;
6723 
6724     std::tie(ContextName, BaseName) = Name.split('.');
6725     if (BaseName.empty()) {
6726       BaseName = ContextName;
6727       ContextName = StringRef();
6728     } else if (!isValidAsciiIdentifier(ContextName)) {
6729       Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL
6730           << /*context*/1;
6731       return false;
6732     }
6733 
6734     if (!isValidAsciiIdentifier(BaseName)) {
6735       Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL
6736           << /*basename*/0;
6737       return false;
6738     }
6739   } else {
6740     Diag(Loc, diag::warn_attr_swift_name_decl_kind) << AL;
6741     return false;
6742   }
6743   return true;
6744 }
6745 
6746 static void handleSwiftName(Sema &S, Decl *D, const ParsedAttr &AL) {
6747   StringRef Name;
6748   SourceLocation Loc;
6749   if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
6750     return;
6751 
6752   if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/false))
6753     return;
6754 
6755   D->addAttr(::new (S.Context) SwiftNameAttr(S.Context, AL, Name));
6756 }
6757 
6758 static void handleSwiftAsyncName(Sema &S, Decl *D, const ParsedAttr &AL) {
6759   StringRef Name;
6760   SourceLocation Loc;
6761   if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
6762     return;
6763 
6764   if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/true))
6765     return;
6766 
6767   D->addAttr(::new (S.Context) SwiftAsyncNameAttr(S.Context, AL, Name));
6768 }
6769 
6770 static void handleSwiftNewType(Sema &S, Decl *D, const ParsedAttr &AL) {
6771   // Make sure that there is an identifier as the annotation's single argument.
6772   if (!AL.checkExactlyNumArgs(S, 1))
6773     return;
6774 
6775   if (!AL.isArgIdent(0)) {
6776     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6777         << AL << AANT_ArgumentIdentifier;
6778     return;
6779   }
6780 
6781   SwiftNewTypeAttr::NewtypeKind Kind;
6782   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6783   if (!SwiftNewTypeAttr::ConvertStrToNewtypeKind(II->getName(), Kind)) {
6784     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
6785     return;
6786   }
6787 
6788   if (!isa<TypedefNameDecl>(D)) {
6789     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
6790         << AL << "typedefs";
6791     return;
6792   }
6793 
6794   D->addAttr(::new (S.Context) SwiftNewTypeAttr(S.Context, AL, Kind));
6795 }
6796 
6797 static void handleSwiftAsyncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6798   if (!AL.isArgIdent(0)) {
6799     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
6800         << AL << 1 << AANT_ArgumentIdentifier;
6801     return;
6802   }
6803 
6804   SwiftAsyncAttr::Kind Kind;
6805   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6806   if (!SwiftAsyncAttr::ConvertStrToKind(II->getName(), Kind)) {
6807     S.Diag(AL.getLoc(), diag::err_swift_async_no_access) << AL << II;
6808     return;
6809   }
6810 
6811   ParamIdx Idx;
6812   if (Kind == SwiftAsyncAttr::None) {
6813     // If this is 'none', then there shouldn't be any additional arguments.
6814     if (!AL.checkExactlyNumArgs(S, 1))
6815       return;
6816   } else {
6817     // Non-none swift_async requires a completion handler index argument.
6818     if (!AL.checkExactlyNumArgs(S, 2))
6819       return;
6820 
6821     Expr *HandlerIdx = AL.getArgAsExpr(1);
6822     if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, HandlerIdx, Idx))
6823       return;
6824 
6825     const ParmVarDecl *CompletionBlock =
6826         getFunctionOrMethodParam(D, Idx.getASTIndex());
6827     QualType CompletionBlockType = CompletionBlock->getType();
6828     if (!CompletionBlockType->isBlockPointerType()) {
6829       S.Diag(CompletionBlock->getLocation(),
6830              diag::err_swift_async_bad_block_type)
6831           << CompletionBlock->getType();
6832       return;
6833     }
6834     QualType BlockTy =
6835         CompletionBlockType->castAs<BlockPointerType>()->getPointeeType();
6836     if (!BlockTy->castAs<FunctionType>()->getReturnType()->isVoidType()) {
6837       S.Diag(CompletionBlock->getLocation(),
6838              diag::err_swift_async_bad_block_type)
6839           << CompletionBlock->getType();
6840       return;
6841     }
6842   }
6843 
6844   auto *AsyncAttr =
6845       ::new (S.Context) SwiftAsyncAttr(S.Context, AL, Kind, Idx);
6846   D->addAttr(AsyncAttr);
6847 
6848   if (auto *ErrorAttr = D->getAttr<SwiftAsyncErrorAttr>())
6849     checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr);
6850 }
6851 
6852 //===----------------------------------------------------------------------===//
6853 // Microsoft specific attribute handlers.
6854 //===----------------------------------------------------------------------===//
6855 
6856 UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
6857                               StringRef UuidAsWritten, MSGuidDecl *GuidDecl) {
6858   if (const auto *UA = D->getAttr<UuidAttr>()) {
6859     if (declaresSameEntity(UA->getGuidDecl(), GuidDecl))
6860       return nullptr;
6861     if (!UA->getGuid().empty()) {
6862       Diag(UA->getLocation(), diag::err_mismatched_uuid);
6863       Diag(CI.getLoc(), diag::note_previous_uuid);
6864       D->dropAttr<UuidAttr>();
6865     }
6866   }
6867 
6868   return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl);
6869 }
6870 
6871 static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6872   if (!S.LangOpts.CPlusPlus) {
6873     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
6874         << AL << AttributeLangSupport::C;
6875     return;
6876   }
6877 
6878   StringRef OrigStrRef;
6879   SourceLocation LiteralLoc;
6880   if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc))
6881     return;
6882 
6883   // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
6884   // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
6885   StringRef StrRef = OrigStrRef;
6886   if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
6887     StrRef = StrRef.drop_front().drop_back();
6888 
6889   // Validate GUID length.
6890   if (StrRef.size() != 36) {
6891     S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6892     return;
6893   }
6894 
6895   for (unsigned i = 0; i < 36; ++i) {
6896     if (i == 8 || i == 13 || i == 18 || i == 23) {
6897       if (StrRef[i] != '-') {
6898         S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6899         return;
6900       }
6901     } else if (!isHexDigit(StrRef[i])) {
6902       S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6903       return;
6904     }
6905   }
6906 
6907   // Convert to our parsed format and canonicalize.
6908   MSGuidDecl::Parts Parsed;
6909   StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1);
6910   StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2);
6911   StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3);
6912   for (unsigned i = 0; i != 8; ++i)
6913     StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2)
6914         .getAsInteger(16, Parsed.Part4And5[i]);
6915   MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed);
6916 
6917   // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
6918   // the only thing in the [] list, the [] too), and add an insertion of
6919   // __declspec(uuid(...)).  But sadly, neither the SourceLocs of the commas
6920   // separating attributes nor of the [ and the ] are in the AST.
6921   // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
6922   // on cfe-dev.
6923   if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
6924     S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
6925 
6926   UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid);
6927   if (UA)
6928     D->addAttr(UA);
6929 }
6930 
6931 static void handleHLSLNumThreadsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6932   using llvm::Triple;
6933   Triple Target = S.Context.getTargetInfo().getTriple();
6934   auto Env = S.Context.getTargetInfo().getTriple().getEnvironment();
6935   if (!llvm::is_contained({Triple::Compute, Triple::Mesh, Triple::Amplification,
6936                            Triple::Library},
6937                           Env)) {
6938     uint32_t Pipeline =
6939         static_cast<uint32_t>(hlsl::getStageFromEnvironment(Env));
6940     S.Diag(AL.getLoc(), diag::err_hlsl_attr_unsupported_in_stage)
6941         << AL << Pipeline << "Compute, Amplification, Mesh or Library";
6942     return;
6943   }
6944 
6945   llvm::VersionTuple SMVersion = Target.getOSVersion();
6946   uint32_t ZMax = 1024;
6947   uint32_t ThreadMax = 1024;
6948   if (SMVersion.getMajor() <= 4) {
6949     ZMax = 1;
6950     ThreadMax = 768;
6951   } else if (SMVersion.getMajor() == 5) {
6952     ZMax = 64;
6953     ThreadMax = 1024;
6954   }
6955 
6956   uint32_t X;
6957   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), X))
6958     return;
6959   if (X > 1024) {
6960     S.Diag(AL.getArgAsExpr(0)->getExprLoc(),
6961            diag::err_hlsl_numthreads_argument_oor) << 0 << 1024;
6962     return;
6963   }
6964   uint32_t Y;
6965   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(1), Y))
6966     return;
6967   if (Y > 1024) {
6968     S.Diag(AL.getArgAsExpr(1)->getExprLoc(),
6969            diag::err_hlsl_numthreads_argument_oor) << 1 << 1024;
6970     return;
6971   }
6972   uint32_t Z;
6973   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(2), Z))
6974     return;
6975   if (Z > ZMax) {
6976     S.Diag(AL.getArgAsExpr(2)->getExprLoc(),
6977            diag::err_hlsl_numthreads_argument_oor) << 2 << ZMax;
6978     return;
6979   }
6980 
6981   if (X * Y * Z > ThreadMax) {
6982     S.Diag(AL.getLoc(), diag::err_hlsl_numthreads_invalid) << ThreadMax;
6983     return;
6984   }
6985 
6986   HLSLNumThreadsAttr *NewAttr = S.mergeHLSLNumThreadsAttr(D, AL, X, Y, Z);
6987   if (NewAttr)
6988     D->addAttr(NewAttr);
6989 }
6990 
6991 HLSLNumThreadsAttr *Sema::mergeHLSLNumThreadsAttr(Decl *D,
6992                                                   const AttributeCommonInfo &AL,
6993                                                   int X, int Y, int Z) {
6994   if (HLSLNumThreadsAttr *NT = D->getAttr<HLSLNumThreadsAttr>()) {
6995     if (NT->getX() != X || NT->getY() != Y || NT->getZ() != Z) {
6996       Diag(NT->getLocation(), diag::err_hlsl_attribute_param_mismatch) << AL;
6997       Diag(AL.getLoc(), diag::note_conflicting_attribute);
6998     }
6999     return nullptr;
7000   }
7001   return ::new (Context) HLSLNumThreadsAttr(Context, AL, X, Y, Z);
7002 }
7003 
7004 static void handleHLSLSVGroupIndexAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7005   using llvm::Triple;
7006   auto Env = S.Context.getTargetInfo().getTriple().getEnvironment();
7007   if (Env != Triple::Compute && Env != Triple::Library) {
7008     // FIXME: it is OK for a compute shader entry and pixel shader entry live in
7009     // same HLSL file. Issue https://github.com/llvm/llvm-project/issues/57880.
7010     ShaderStage Pipeline = hlsl::getStageFromEnvironment(Env);
7011     S.Diag(AL.getLoc(), diag::err_hlsl_attr_unsupported_in_stage)
7012         << AL << (uint32_t)Pipeline << "Compute";
7013     return;
7014   }
7015 
7016   D->addAttr(::new (S.Context) HLSLSV_GroupIndexAttr(S.Context, AL));
7017 }
7018 
7019 static bool isLegalTypeForHLSLSV_DispatchThreadID(QualType T) {
7020   if (!T->hasUnsignedIntegerRepresentation())
7021     return false;
7022   if (const auto *VT = T->getAs<VectorType>())
7023     return VT->getNumElements() <= 3;
7024   return true;
7025 }
7026 
7027 static void handleHLSLSV_DispatchThreadIDAttr(Sema &S, Decl *D,
7028                                               const ParsedAttr &AL) {
7029   using llvm::Triple;
7030   Triple Target = S.Context.getTargetInfo().getTriple();
7031   // FIXME: it is OK for a compute shader entry and pixel shader entry live in
7032   // same HLSL file.Issue https://github.com/llvm/llvm-project/issues/57880.
7033   if (Target.getEnvironment() != Triple::Compute &&
7034       Target.getEnvironment() != Triple::Library) {
7035     uint32_t Pipeline =
7036         (uint32_t)S.Context.getTargetInfo().getTriple().getEnvironment() -
7037         (uint32_t)llvm::Triple::Pixel;
7038     S.Diag(AL.getLoc(), diag::err_hlsl_attr_unsupported_in_stage)
7039         << AL << Pipeline << "Compute";
7040     return;
7041   }
7042 
7043   // FIXME: report warning and ignore semantic when cannot apply on the Decl.
7044   // See https://github.com/llvm/llvm-project/issues/57916.
7045 
7046   // FIXME: support semantic on field.
7047   // See https://github.com/llvm/llvm-project/issues/57889.
7048   if (isa<FieldDecl>(D)) {
7049     S.Diag(AL.getLoc(), diag::err_hlsl_attr_invalid_ast_node)
7050         << AL << "parameter";
7051     return;
7052   }
7053 
7054   auto *VD = cast<ValueDecl>(D);
7055   if (!isLegalTypeForHLSLSV_DispatchThreadID(VD->getType())) {
7056     S.Diag(AL.getLoc(), diag::err_hlsl_attr_invalid_type)
7057         << AL << "uint/uint2/uint3";
7058     return;
7059   }
7060 
7061   D->addAttr(::new (S.Context) HLSLSV_DispatchThreadIDAttr(S.Context, AL));
7062 }
7063 
7064 static void handleHLSLShaderAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7065   StringRef Str;
7066   SourceLocation ArgLoc;
7067   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7068     return;
7069 
7070   HLSLShaderAttr::ShaderType ShaderType;
7071   if (!HLSLShaderAttr::ConvertStrToShaderType(Str, ShaderType) ||
7072       // Library is added to help convert HLSLShaderAttr::ShaderType to
7073       // llvm::Triple::EnviromentType. It is not a legal
7074       // HLSLShaderAttr::ShaderType.
7075       ShaderType == HLSLShaderAttr::Library) {
7076     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
7077         << AL << Str << ArgLoc;
7078     return;
7079   }
7080 
7081   // FIXME: check function match the shader stage.
7082 
7083   HLSLShaderAttr *NewAttr = S.mergeHLSLShaderAttr(D, AL, ShaderType);
7084   if (NewAttr)
7085     D->addAttr(NewAttr);
7086 }
7087 
7088 HLSLShaderAttr *
7089 Sema::mergeHLSLShaderAttr(Decl *D, const AttributeCommonInfo &AL,
7090                           HLSLShaderAttr::ShaderType ShaderType) {
7091   if (HLSLShaderAttr *NT = D->getAttr<HLSLShaderAttr>()) {
7092     if (NT->getType() != ShaderType) {
7093       Diag(NT->getLocation(), diag::err_hlsl_attribute_param_mismatch) << AL;
7094       Diag(AL.getLoc(), diag::note_conflicting_attribute);
7095     }
7096     return nullptr;
7097   }
7098   return HLSLShaderAttr::Create(Context, ShaderType, AL);
7099 }
7100 
7101 static void handleHLSLResourceBindingAttr(Sema &S, Decl *D,
7102                                           const ParsedAttr &AL) {
7103   StringRef Space = "space0";
7104   StringRef Slot = "";
7105 
7106   if (!AL.isArgIdent(0)) {
7107     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7108         << AL << AANT_ArgumentIdentifier;
7109     return;
7110   }
7111 
7112   IdentifierLoc *Loc = AL.getArgAsIdent(0);
7113   StringRef Str = Loc->Ident->getName();
7114   SourceLocation ArgLoc = Loc->Loc;
7115 
7116   SourceLocation SpaceArgLoc;
7117   if (AL.getNumArgs() == 2) {
7118     Slot = Str;
7119     if (!AL.isArgIdent(1)) {
7120       S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7121           << AL << AANT_ArgumentIdentifier;
7122       return;
7123     }
7124 
7125     IdentifierLoc *Loc = AL.getArgAsIdent(1);
7126     Space = Loc->Ident->getName();
7127     SpaceArgLoc = Loc->Loc;
7128   } else {
7129     Slot = Str;
7130   }
7131 
7132   // Validate.
7133   if (!Slot.empty()) {
7134     switch (Slot[0]) {
7135     case 'u':
7136     case 'b':
7137     case 's':
7138     case 't':
7139       break;
7140     default:
7141       S.Diag(ArgLoc, diag::err_hlsl_unsupported_register_type)
7142           << Slot.substr(0, 1);
7143       return;
7144     }
7145 
7146     StringRef SlotNum = Slot.substr(1);
7147     unsigned Num = 0;
7148     if (SlotNum.getAsInteger(10, Num)) {
7149       S.Diag(ArgLoc, diag::err_hlsl_unsupported_register_number);
7150       return;
7151     }
7152   }
7153 
7154   if (!Space.startswith("space")) {
7155     S.Diag(SpaceArgLoc, diag::err_hlsl_expected_space) << Space;
7156     return;
7157   }
7158   StringRef SpaceNum = Space.substr(5);
7159   unsigned Num = 0;
7160   if (SpaceNum.getAsInteger(10, Num)) {
7161     S.Diag(SpaceArgLoc, diag::err_hlsl_expected_space) << Space;
7162     return;
7163   }
7164 
7165   // FIXME: check reg type match decl. Issue
7166   // https://github.com/llvm/llvm-project/issues/57886.
7167   HLSLResourceBindingAttr *NewAttr =
7168       HLSLResourceBindingAttr::Create(S.getASTContext(), Slot, Space, AL);
7169   if (NewAttr)
7170     D->addAttr(NewAttr);
7171 }
7172 
7173 static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7174   if (!S.LangOpts.CPlusPlus) {
7175     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
7176         << AL << AttributeLangSupport::C;
7177     return;
7178   }
7179   MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
7180       D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling());
7181   if (IA) {
7182     D->addAttr(IA);
7183     S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
7184   }
7185 }
7186 
7187 static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7188   const auto *VD = cast<VarDecl>(D);
7189   if (!S.Context.getTargetInfo().isTLSSupported()) {
7190     S.Diag(AL.getLoc(), diag::err_thread_unsupported);
7191     return;
7192   }
7193   if (VD->getTSCSpec() != TSCS_unspecified) {
7194     S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
7195     return;
7196   }
7197   if (VD->hasLocalStorage()) {
7198     S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
7199     return;
7200   }
7201   D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL));
7202 }
7203 
7204 static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7205   SmallVector<StringRef, 4> Tags;
7206   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
7207     StringRef Tag;
7208     if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
7209       return;
7210     Tags.push_back(Tag);
7211   }
7212 
7213   if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
7214     if (!NS->isInline()) {
7215       S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
7216       return;
7217     }
7218     if (NS->isAnonymousNamespace()) {
7219       S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
7220       return;
7221     }
7222     if (AL.getNumArgs() == 0)
7223       Tags.push_back(NS->getName());
7224   } else if (!AL.checkAtLeastNumArgs(S, 1))
7225     return;
7226 
7227   // Store tags sorted and without duplicates.
7228   llvm::sort(Tags);
7229   Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end());
7230 
7231   D->addAttr(::new (S.Context)
7232                  AbiTagAttr(S.Context, AL, Tags.data(), Tags.size()));
7233 }
7234 
7235 static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7236   // Check the attribute arguments.
7237   if (AL.getNumArgs() > 1) {
7238     S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
7239     return;
7240   }
7241 
7242   StringRef Str;
7243   SourceLocation ArgLoc;
7244 
7245   if (AL.getNumArgs() == 0)
7246     Str = "";
7247   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7248     return;
7249 
7250   ARMInterruptAttr::InterruptType Kind;
7251   if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
7252     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
7253                                                                  << ArgLoc;
7254     return;
7255   }
7256 
7257   D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind));
7258 }
7259 
7260 static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7261   // MSP430 'interrupt' attribute is applied to
7262   // a function with no parameters and void return type.
7263   if (!isFunctionOrMethod(D)) {
7264     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7265         << "'interrupt'" << ExpectedFunctionOrMethod;
7266     return;
7267   }
7268 
7269   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
7270     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7271         << /*MSP430*/ 1 << 0;
7272     return;
7273   }
7274 
7275   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7276     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7277         << /*MSP430*/ 1 << 1;
7278     return;
7279   }
7280 
7281   // The attribute takes one integer argument.
7282   if (!AL.checkExactlyNumArgs(S, 1))
7283     return;
7284 
7285   if (!AL.isArgExpr(0)) {
7286     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7287         << AL << AANT_ArgumentIntegerConstant;
7288     return;
7289   }
7290 
7291   Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
7292   std::optional<llvm::APSInt> NumParams = llvm::APSInt(32);
7293   if (!(NumParams = NumParamsExpr->getIntegerConstantExpr(S.Context))) {
7294     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7295         << AL << AANT_ArgumentIntegerConstant
7296         << NumParamsExpr->getSourceRange();
7297     return;
7298   }
7299   // The argument should be in range 0..63.
7300   unsigned Num = NumParams->getLimitedValue(255);
7301   if (Num > 63) {
7302     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
7303         << AL << (int)NumParams->getSExtValue()
7304         << NumParamsExpr->getSourceRange();
7305     return;
7306   }
7307 
7308   D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num));
7309   D->addAttr(UsedAttr::CreateImplicit(S.Context));
7310 }
7311 
7312 static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7313   // Only one optional argument permitted.
7314   if (AL.getNumArgs() > 1) {
7315     S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
7316     return;
7317   }
7318 
7319   StringRef Str;
7320   SourceLocation ArgLoc;
7321 
7322   if (AL.getNumArgs() == 0)
7323     Str = "";
7324   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7325     return;
7326 
7327   // Semantic checks for a function with the 'interrupt' attribute for MIPS:
7328   // a) Must be a function.
7329   // b) Must have no parameters.
7330   // c) Must have the 'void' return type.
7331   // d) Cannot have the 'mips16' attribute, as that instruction set
7332   //    lacks the 'eret' instruction.
7333   // e) The attribute itself must either have no argument or one of the
7334   //    valid interrupt types, see [MipsInterruptDocs].
7335 
7336   if (!isFunctionOrMethod(D)) {
7337     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7338         << "'interrupt'" << ExpectedFunctionOrMethod;
7339     return;
7340   }
7341 
7342   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
7343     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7344         << /*MIPS*/ 0 << 0;
7345     return;
7346   }
7347 
7348   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7349     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7350         << /*MIPS*/ 0 << 1;
7351     return;
7352   }
7353 
7354   // We still have to do this manually because the Interrupt attributes are
7355   // a bit special due to sharing their spellings across targets.
7356   if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL))
7357     return;
7358 
7359   MipsInterruptAttr::InterruptType Kind;
7360   if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
7361     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
7362         << AL << "'" + std::string(Str) + "'";
7363     return;
7364   }
7365 
7366   D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind));
7367 }
7368 
7369 static void handleM68kInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7370   if (!AL.checkExactlyNumArgs(S, 1))
7371     return;
7372 
7373   if (!AL.isArgExpr(0)) {
7374     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7375         << AL << AANT_ArgumentIntegerConstant;
7376     return;
7377   }
7378 
7379   // FIXME: Check for decl - it should be void ()(void).
7380 
7381   Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
7382   auto MaybeNumParams = NumParamsExpr->getIntegerConstantExpr(S.Context);
7383   if (!MaybeNumParams) {
7384     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7385         << AL << AANT_ArgumentIntegerConstant
7386         << NumParamsExpr->getSourceRange();
7387     return;
7388   }
7389 
7390   unsigned Num = MaybeNumParams->getLimitedValue(255);
7391   if ((Num & 1) || Num > 30) {
7392     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
7393         << AL << (int)MaybeNumParams->getSExtValue()
7394         << NumParamsExpr->getSourceRange();
7395     return;
7396   }
7397 
7398   D->addAttr(::new (S.Context) M68kInterruptAttr(S.Context, AL, Num));
7399   D->addAttr(UsedAttr::CreateImplicit(S.Context));
7400 }
7401 
7402 static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7403   // Semantic checks for a function with the 'interrupt' attribute.
7404   // a) Must be a function.
7405   // b) Must have the 'void' return type.
7406   // c) Must take 1 or 2 arguments.
7407   // d) The 1st argument must be a pointer.
7408   // e) The 2nd argument (if any) must be an unsigned integer.
7409   if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) ||
7410       CXXMethodDecl::isStaticOverloadedOperator(
7411           cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) {
7412     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
7413         << AL << ExpectedFunctionWithProtoType;
7414     return;
7415   }
7416   // Interrupt handler must have void return type.
7417   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7418     S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(),
7419            diag::err_anyx86_interrupt_attribute)
7420         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7421                 ? 0
7422                 : 1)
7423         << 0;
7424     return;
7425   }
7426   // Interrupt handler must have 1 or 2 parameters.
7427   unsigned NumParams = getFunctionOrMethodNumParams(D);
7428   if (NumParams < 1 || NumParams > 2) {
7429     S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute)
7430         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7431                 ? 0
7432                 : 1)
7433         << 1;
7434     return;
7435   }
7436   // The first argument must be a pointer.
7437   if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) {
7438     S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(),
7439            diag::err_anyx86_interrupt_attribute)
7440         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7441                 ? 0
7442                 : 1)
7443         << 2;
7444     return;
7445   }
7446   // The second argument, if present, must be an unsigned integer.
7447   unsigned TypeSize =
7448       S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64
7449           ? 64
7450           : 32;
7451   if (NumParams == 2 &&
7452       (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() ||
7453        S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) {
7454     S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(),
7455            diag::err_anyx86_interrupt_attribute)
7456         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7457                 ? 0
7458                 : 1)
7459         << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false);
7460     return;
7461   }
7462   D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL));
7463   D->addAttr(UsedAttr::CreateImplicit(S.Context));
7464 }
7465 
7466 static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7467   if (!isFunctionOrMethod(D)) {
7468     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7469         << "'interrupt'" << ExpectedFunction;
7470     return;
7471   }
7472 
7473   if (!AL.checkExactlyNumArgs(S, 0))
7474     return;
7475 
7476   handleSimpleAttribute<AVRInterruptAttr>(S, D, AL);
7477 }
7478 
7479 static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7480   if (!isFunctionOrMethod(D)) {
7481     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7482         << "'signal'" << ExpectedFunction;
7483     return;
7484   }
7485 
7486   if (!AL.checkExactlyNumArgs(S, 0))
7487     return;
7488 
7489   handleSimpleAttribute<AVRSignalAttr>(S, D, AL);
7490 }
7491 
7492 static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) {
7493   // Add preserve_access_index attribute to all fields and inner records.
7494   for (auto *D : RD->decls()) {
7495     if (D->hasAttr<BPFPreserveAccessIndexAttr>())
7496       continue;
7497 
7498     D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context));
7499     if (auto *Rec = dyn_cast<RecordDecl>(D))
7500       handleBPFPreserveAIRecord(S, Rec);
7501   }
7502 }
7503 
7504 static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D,
7505     const ParsedAttr &AL) {
7506   auto *Rec = cast<RecordDecl>(D);
7507   handleBPFPreserveAIRecord(S, Rec);
7508   Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL));
7509 }
7510 
7511 static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag) {
7512   for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) {
7513     if (I->getBTFDeclTag() == Tag)
7514       return true;
7515   }
7516   return false;
7517 }
7518 
7519 static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7520   StringRef Str;
7521   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
7522     return;
7523   if (hasBTFDeclTagAttr(D, Str))
7524     return;
7525 
7526   D->addAttr(::new (S.Context) BTFDeclTagAttr(S.Context, AL, Str));
7527 }
7528 
7529 BTFDeclTagAttr *Sema::mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL) {
7530   if (hasBTFDeclTagAttr(D, AL.getBTFDeclTag()))
7531     return nullptr;
7532   return ::new (Context) BTFDeclTagAttr(Context, AL, AL.getBTFDeclTag());
7533 }
7534 
7535 static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7536   if (!isFunctionOrMethod(D)) {
7537     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7538         << "'export_name'" << ExpectedFunction;
7539     return;
7540   }
7541 
7542   auto *FD = cast<FunctionDecl>(D);
7543   if (FD->isThisDeclarationADefinition()) {
7544     S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
7545     return;
7546   }
7547 
7548   StringRef Str;
7549   SourceLocation ArgLoc;
7550   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7551     return;
7552 
7553   D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str));
7554   D->addAttr(UsedAttr::CreateImplicit(S.Context));
7555 }
7556 
7557 WebAssemblyImportModuleAttr *
7558 Sema::mergeImportModuleAttr(Decl *D, const WebAssemblyImportModuleAttr &AL) {
7559   auto *FD = cast<FunctionDecl>(D);
7560 
7561   if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
7562     if (ExistingAttr->getImportModule() == AL.getImportModule())
7563       return nullptr;
7564     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 0
7565       << ExistingAttr->getImportModule() << AL.getImportModule();
7566     Diag(AL.getLoc(), diag::note_previous_attribute);
7567     return nullptr;
7568   }
7569   if (FD->hasBody()) {
7570     Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
7571     return nullptr;
7572   }
7573   return ::new (Context) WebAssemblyImportModuleAttr(Context, AL,
7574                                                      AL.getImportModule());
7575 }
7576 
7577 WebAssemblyImportNameAttr *
7578 Sema::mergeImportNameAttr(Decl *D, const WebAssemblyImportNameAttr &AL) {
7579   auto *FD = cast<FunctionDecl>(D);
7580 
7581   if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportNameAttr>()) {
7582     if (ExistingAttr->getImportName() == AL.getImportName())
7583       return nullptr;
7584     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 1
7585       << ExistingAttr->getImportName() << AL.getImportName();
7586     Diag(AL.getLoc(), diag::note_previous_attribute);
7587     return nullptr;
7588   }
7589   if (FD->hasBody()) {
7590     Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
7591     return nullptr;
7592   }
7593   return ::new (Context) WebAssemblyImportNameAttr(Context, AL,
7594                                                    AL.getImportName());
7595 }
7596 
7597 static void
7598 handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7599   auto *FD = cast<FunctionDecl>(D);
7600 
7601   StringRef Str;
7602   SourceLocation ArgLoc;
7603   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7604     return;
7605   if (FD->hasBody()) {
7606     S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
7607     return;
7608   }
7609 
7610   FD->addAttr(::new (S.Context)
7611                   WebAssemblyImportModuleAttr(S.Context, AL, Str));
7612 }
7613 
7614 static void
7615 handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7616   auto *FD = cast<FunctionDecl>(D);
7617 
7618   StringRef Str;
7619   SourceLocation ArgLoc;
7620   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7621     return;
7622   if (FD->hasBody()) {
7623     S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
7624     return;
7625   }
7626 
7627   FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str));
7628 }
7629 
7630 static void handleRISCVInterruptAttr(Sema &S, Decl *D,
7631                                      const ParsedAttr &AL) {
7632   // Warn about repeated attributes.
7633   if (const auto *A = D->getAttr<RISCVInterruptAttr>()) {
7634     S.Diag(AL.getRange().getBegin(),
7635       diag::warn_riscv_repeated_interrupt_attribute);
7636     S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute);
7637     return;
7638   }
7639 
7640   // Check the attribute argument. Argument is optional.
7641   if (!AL.checkAtMostNumArgs(S, 1))
7642     return;
7643 
7644   StringRef Str;
7645   SourceLocation ArgLoc;
7646 
7647   // 'machine'is the default interrupt mode.
7648   if (AL.getNumArgs() == 0)
7649     Str = "machine";
7650   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7651     return;
7652 
7653   // Semantic checks for a function with the 'interrupt' attribute:
7654   // - Must be a function.
7655   // - Must have no parameters.
7656   // - Must have the 'void' return type.
7657   // - The attribute itself must either have no argument or one of the
7658   //   valid interrupt types, see [RISCVInterruptDocs].
7659 
7660   if (D->getFunctionType() == nullptr) {
7661     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7662       << "'interrupt'" << ExpectedFunction;
7663     return;
7664   }
7665 
7666   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
7667     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7668       << /*RISC-V*/ 2 << 0;
7669     return;
7670   }
7671 
7672   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7673     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7674       << /*RISC-V*/ 2 << 1;
7675     return;
7676   }
7677 
7678   RISCVInterruptAttr::InterruptType Kind;
7679   if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
7680     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
7681                                                                  << ArgLoc;
7682     return;
7683   }
7684 
7685   D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind));
7686 }
7687 
7688 static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7689   // Dispatch the interrupt attribute based on the current target.
7690   switch (S.Context.getTargetInfo().getTriple().getArch()) {
7691   case llvm::Triple::msp430:
7692     handleMSP430InterruptAttr(S, D, AL);
7693     break;
7694   case llvm::Triple::mipsel:
7695   case llvm::Triple::mips:
7696     handleMipsInterruptAttr(S, D, AL);
7697     break;
7698   case llvm::Triple::m68k:
7699     handleM68kInterruptAttr(S, D, AL);
7700     break;
7701   case llvm::Triple::x86:
7702   case llvm::Triple::x86_64:
7703     handleAnyX86InterruptAttr(S, D, AL);
7704     break;
7705   case llvm::Triple::avr:
7706     handleAVRInterruptAttr(S, D, AL);
7707     break;
7708   case llvm::Triple::riscv32:
7709   case llvm::Triple::riscv64:
7710     handleRISCVInterruptAttr(S, D, AL);
7711     break;
7712   default:
7713     handleARMInterruptAttr(S, D, AL);
7714     break;
7715   }
7716 }
7717 
7718 static bool
7719 checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr,
7720                                       const AMDGPUFlatWorkGroupSizeAttr &Attr) {
7721   // Accept template arguments for now as they depend on something else.
7722   // We'll get to check them when they eventually get instantiated.
7723   if (MinExpr->isValueDependent() || MaxExpr->isValueDependent())
7724     return false;
7725 
7726   uint32_t Min = 0;
7727   if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
7728     return true;
7729 
7730   uint32_t Max = 0;
7731   if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
7732     return true;
7733 
7734   if (Min == 0 && Max != 0) {
7735     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7736         << &Attr << 0;
7737     return true;
7738   }
7739   if (Min > Max) {
7740     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7741         << &Attr << 1;
7742     return true;
7743   }
7744 
7745   return false;
7746 }
7747 
7748 void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D,
7749                                           const AttributeCommonInfo &CI,
7750                                           Expr *MinExpr, Expr *MaxExpr) {
7751   AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
7752 
7753   if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr))
7754     return;
7755 
7756   D->addAttr(::new (Context)
7757                  AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr));
7758 }
7759 
7760 static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D,
7761                                               const ParsedAttr &AL) {
7762   Expr *MinExpr = AL.getArgAsExpr(0);
7763   Expr *MaxExpr = AL.getArgAsExpr(1);
7764 
7765   S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr);
7766 }
7767 
7768 static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr,
7769                                            Expr *MaxExpr,
7770                                            const AMDGPUWavesPerEUAttr &Attr) {
7771   if (S.DiagnoseUnexpandedParameterPack(MinExpr) ||
7772       (MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr)))
7773     return true;
7774 
7775   // Accept template arguments for now as they depend on something else.
7776   // We'll get to check them when they eventually get instantiated.
7777   if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent()))
7778     return false;
7779 
7780   uint32_t Min = 0;
7781   if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
7782     return true;
7783 
7784   uint32_t Max = 0;
7785   if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
7786     return true;
7787 
7788   if (Min == 0 && Max != 0) {
7789     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7790         << &Attr << 0;
7791     return true;
7792   }
7793   if (Max != 0 && Min > Max) {
7794     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7795         << &Attr << 1;
7796     return true;
7797   }
7798 
7799   return false;
7800 }
7801 
7802 void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
7803                                    Expr *MinExpr, Expr *MaxExpr) {
7804   AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
7805 
7806   if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr))
7807     return;
7808 
7809   D->addAttr(::new (Context)
7810                  AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr));
7811 }
7812 
7813 static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7814   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
7815     return;
7816 
7817   Expr *MinExpr = AL.getArgAsExpr(0);
7818   Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr;
7819 
7820   S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr);
7821 }
7822 
7823 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7824   uint32_t NumSGPR = 0;
7825   Expr *NumSGPRExpr = AL.getArgAsExpr(0);
7826   if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR))
7827     return;
7828 
7829   D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR));
7830 }
7831 
7832 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7833   uint32_t NumVGPR = 0;
7834   Expr *NumVGPRExpr = AL.getArgAsExpr(0);
7835   if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR))
7836     return;
7837 
7838   D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR));
7839 }
7840 
7841 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
7842                                               const ParsedAttr &AL) {
7843   // If we try to apply it to a function pointer, don't warn, but don't
7844   // do anything, either. It doesn't matter anyway, because there's nothing
7845   // special about calling a force_align_arg_pointer function.
7846   const auto *VD = dyn_cast<ValueDecl>(D);
7847   if (VD && VD->getType()->isFunctionPointerType())
7848     return;
7849   // Also don't warn on function pointer typedefs.
7850   const auto *TD = dyn_cast<TypedefNameDecl>(D);
7851   if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
7852     TD->getUnderlyingType()->isFunctionType()))
7853     return;
7854   // Attribute can only be applied to function types.
7855   if (!isa<FunctionDecl>(D)) {
7856     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
7857         << AL << ExpectedFunction;
7858     return;
7859   }
7860 
7861   D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL));
7862 }
7863 
7864 static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) {
7865   uint32_t Version;
7866   Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
7867   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version))
7868     return;
7869 
7870   // TODO: Investigate what happens with the next major version of MSVC.
7871   if (Version != LangOptions::MSVC2015 / 100) {
7872     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
7873         << AL << Version << VersionExpr->getSourceRange();
7874     return;
7875   }
7876 
7877   // The attribute expects a "major" version number like 19, but new versions of
7878   // MSVC have moved to updating the "minor", or less significant numbers, so we
7879   // have to multiply by 100 now.
7880   Version *= 100;
7881 
7882   D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version));
7883 }
7884 
7885 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D,
7886                                         const AttributeCommonInfo &CI) {
7887   if (D->hasAttr<DLLExportAttr>()) {
7888     Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'";
7889     return nullptr;
7890   }
7891 
7892   if (D->hasAttr<DLLImportAttr>())
7893     return nullptr;
7894 
7895   return ::new (Context) DLLImportAttr(Context, CI);
7896 }
7897 
7898 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D,
7899                                         const AttributeCommonInfo &CI) {
7900   if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
7901     Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
7902     D->dropAttr<DLLImportAttr>();
7903   }
7904 
7905   if (D->hasAttr<DLLExportAttr>())
7906     return nullptr;
7907 
7908   return ::new (Context) DLLExportAttr(Context, CI);
7909 }
7910 
7911 static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) {
7912   if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
7913       (S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) {
7914     S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A;
7915     return;
7916   }
7917 
7918   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
7919     if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport &&
7920         !(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) {
7921       // MinGW doesn't allow dllimport on inline functions.
7922       S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
7923           << A;
7924       return;
7925     }
7926   }
7927 
7928   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
7929     if ((S.Context.getTargetInfo().shouldDLLImportComdatSymbols()) &&
7930         MD->getParent()->isLambda()) {
7931       S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A;
7932       return;
7933     }
7934   }
7935 
7936   Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport
7937                       ? (Attr *)S.mergeDLLExportAttr(D, A)
7938                       : (Attr *)S.mergeDLLImportAttr(D, A);
7939   if (NewAttr)
7940     D->addAttr(NewAttr);
7941 }
7942 
7943 MSInheritanceAttr *
7944 Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI,
7945                              bool BestCase,
7946                              MSInheritanceModel Model) {
7947   if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
7948     if (IA->getInheritanceModel() == Model)
7949       return nullptr;
7950     Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
7951         << 1 /*previous declaration*/;
7952     Diag(CI.getLoc(), diag::note_previous_ms_inheritance);
7953     D->dropAttr<MSInheritanceAttr>();
7954   }
7955 
7956   auto *RD = cast<CXXRecordDecl>(D);
7957   if (RD->hasDefinition()) {
7958     if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase,
7959                                            Model)) {
7960       return nullptr;
7961     }
7962   } else {
7963     if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
7964       Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
7965           << 1 /*partial specialization*/;
7966       return nullptr;
7967     }
7968     if (RD->getDescribedClassTemplate()) {
7969       Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
7970           << 0 /*primary template*/;
7971       return nullptr;
7972     }
7973   }
7974 
7975   return ::new (Context) MSInheritanceAttr(Context, CI, BestCase);
7976 }
7977 
7978 static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7979   // The capability attributes take a single string parameter for the name of
7980   // the capability they represent. The lockable attribute does not take any
7981   // parameters. However, semantically, both attributes represent the same
7982   // concept, and so they use the same semantic attribute. Eventually, the
7983   // lockable attribute will be removed.
7984   //
7985   // For backward compatibility, any capability which has no specified string
7986   // literal will be considered a "mutex."
7987   StringRef N("mutex");
7988   SourceLocation LiteralLoc;
7989   if (AL.getKind() == ParsedAttr::AT_Capability &&
7990       !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
7991     return;
7992 
7993   D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N));
7994 }
7995 
7996 static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7997   SmallVector<Expr*, 1> Args;
7998   if (!checkLockFunAttrCommon(S, D, AL, Args))
7999     return;
8000 
8001   D->addAttr(::new (S.Context)
8002                  AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size()));
8003 }
8004 
8005 static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
8006                                         const ParsedAttr &AL) {
8007   SmallVector<Expr*, 1> Args;
8008   if (!checkLockFunAttrCommon(S, D, AL, Args))
8009     return;
8010 
8011   D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(),
8012                                                      Args.size()));
8013 }
8014 
8015 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
8016                                            const ParsedAttr &AL) {
8017   SmallVector<Expr*, 2> Args;
8018   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
8019     return;
8020 
8021   D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(
8022       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
8023 }
8024 
8025 static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
8026                                         const ParsedAttr &AL) {
8027   // Check that all arguments are lockable objects.
8028   SmallVector<Expr *, 1> Args;
8029   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
8030 
8031   D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(),
8032                                                      Args.size()));
8033 }
8034 
8035 static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
8036                                          const ParsedAttr &AL) {
8037   if (!AL.checkAtLeastNumArgs(S, 1))
8038     return;
8039 
8040   // check that all arguments are lockable objects
8041   SmallVector<Expr*, 1> Args;
8042   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
8043   if (Args.empty())
8044     return;
8045 
8046   RequiresCapabilityAttr *RCA = ::new (S.Context)
8047       RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size());
8048 
8049   D->addAttr(RCA);
8050 }
8051 
8052 static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8053   if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
8054     if (NSD->isAnonymousNamespace()) {
8055       S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
8056       // Do not want to attach the attribute to the namespace because that will
8057       // cause confusing diagnostic reports for uses of declarations within the
8058       // namespace.
8059       return;
8060     }
8061   } else if (isa<UsingDecl, UnresolvedUsingTypenameDecl,
8062                  UnresolvedUsingValueDecl>(D)) {
8063     S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
8064         << AL;
8065     return;
8066   }
8067 
8068   // Handle the cases where the attribute has a text message.
8069   StringRef Str, Replacement;
8070   if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
8071       !S.checkStringLiteralArgumentAttr(AL, 0, Str))
8072     return;
8073 
8074   // Support a single optional message only for Declspec and [[]] spellings.
8075   if (AL.isDeclspecAttribute() || AL.isStandardAttributeSyntax())
8076     AL.checkAtMostNumArgs(S, 1);
8077   else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
8078            !S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
8079     return;
8080 
8081   if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope())
8082     S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL;
8083 
8084   D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement));
8085 }
8086 
8087 static bool isGlobalVar(const Decl *D) {
8088   if (const auto *S = dyn_cast<VarDecl>(D))
8089     return S->hasGlobalStorage();
8090   return false;
8091 }
8092 
8093 static bool isSanitizerAttributeAllowedOnGlobals(StringRef Sanitizer) {
8094   return Sanitizer == "address" || Sanitizer == "hwaddress" ||
8095          Sanitizer == "memtag";
8096 }
8097 
8098 static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8099   if (!AL.checkAtLeastNumArgs(S, 1))
8100     return;
8101 
8102   std::vector<StringRef> Sanitizers;
8103 
8104   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
8105     StringRef SanitizerName;
8106     SourceLocation LiteralLoc;
8107 
8108     if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
8109       return;
8110 
8111     if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) ==
8112             SanitizerMask() &&
8113         SanitizerName != "coverage")
8114       S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
8115     else if (isGlobalVar(D) && !isSanitizerAttributeAllowedOnGlobals(SanitizerName))
8116       S.Diag(D->getLocation(), diag::warn_attribute_type_not_supported_global)
8117           << AL << SanitizerName;
8118     Sanitizers.push_back(SanitizerName);
8119   }
8120 
8121   D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(),
8122                                               Sanitizers.size()));
8123 }
8124 
8125 static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
8126                                          const ParsedAttr &AL) {
8127   StringRef AttrName = AL.getAttrName()->getName();
8128   normalizeName(AttrName);
8129   StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName)
8130                                 .Case("no_address_safety_analysis", "address")
8131                                 .Case("no_sanitize_address", "address")
8132                                 .Case("no_sanitize_thread", "thread")
8133                                 .Case("no_sanitize_memory", "memory");
8134   if (isGlobalVar(D) && SanitizerName != "address")
8135     S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8136         << AL << ExpectedFunction;
8137 
8138   // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a
8139   // NoSanitizeAttr object; but we need to calculate the correct spelling list
8140   // index rather than incorrectly assume the index for NoSanitizeSpecificAttr
8141   // has the same spellings as the index for NoSanitizeAttr. We don't have a
8142   // general way to "translate" between the two, so this hack attempts to work
8143   // around the issue with hard-coded indices. This is critical for calling
8144   // getSpelling() or prettyPrint() on the resulting semantic attribute object
8145   // without failing assertions.
8146   unsigned TranslatedSpellingIndex = 0;
8147   if (AL.isStandardAttributeSyntax())
8148     TranslatedSpellingIndex = 1;
8149 
8150   AttributeCommonInfo Info = AL;
8151   Info.setAttributeSpellingListIndex(TranslatedSpellingIndex);
8152   D->addAttr(::new (S.Context)
8153                  NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
8154 }
8155 
8156 static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8157   if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL))
8158     D->addAttr(Internal);
8159 }
8160 
8161 static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8162   if (S.LangOpts.getOpenCLCompatibleVersion() < 200)
8163     S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version)
8164         << AL << "2.0" << 1;
8165   else
8166     S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored)
8167         << AL << S.LangOpts.getOpenCLVersionString();
8168 }
8169 
8170 static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8171   if (D->isInvalidDecl())
8172     return;
8173 
8174   // Check if there is only one access qualifier.
8175   if (D->hasAttr<OpenCLAccessAttr>()) {
8176     if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() ==
8177         AL.getSemanticSpelling()) {
8178       S.Diag(AL.getLoc(), diag::warn_duplicate_declspec)
8179           << AL.getAttrName()->getName() << AL.getRange();
8180     } else {
8181       S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers)
8182           << D->getSourceRange();
8183       D->setInvalidDecl(true);
8184       return;
8185     }
8186   }
8187 
8188   // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that
8189   // an image object can be read and written. OpenCL v2.0 s6.13.6 - A kernel
8190   // cannot read from and write to the same pipe object. Using the read_write
8191   // (or __read_write) qualifier with the pipe qualifier is a compilation error.
8192   // OpenCL v3.0 s6.8 - For OpenCL C 2.0, or with the
8193   // __opencl_c_read_write_images feature, image objects specified as arguments
8194   // to a kernel can additionally be declared to be read-write.
8195   // C++ for OpenCL 1.0 inherits rule from OpenCL C v2.0.
8196   // C++ for OpenCL 2021 inherits rule from OpenCL C v3.0.
8197   if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) {
8198     const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr();
8199     if (AL.getAttrName()->getName().contains("read_write")) {
8200       bool ReadWriteImagesUnsupported =
8201           (S.getLangOpts().getOpenCLCompatibleVersion() < 200) ||
8202           (S.getLangOpts().getOpenCLCompatibleVersion() == 300 &&
8203            !S.getOpenCLOptions().isSupported("__opencl_c_read_write_images",
8204                                              S.getLangOpts()));
8205       if (ReadWriteImagesUnsupported || DeclTy->isPipeType()) {
8206         S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write)
8207             << AL << PDecl->getType() << DeclTy->isImageType();
8208         D->setInvalidDecl(true);
8209         return;
8210       }
8211     }
8212   }
8213 
8214   D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL));
8215 }
8216 
8217 static void handleZeroCallUsedRegsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8218   // Check that the argument is a string literal.
8219   StringRef KindStr;
8220   SourceLocation LiteralLoc;
8221   if (!S.checkStringLiteralArgumentAttr(AL, 0, KindStr, &LiteralLoc))
8222     return;
8223 
8224   ZeroCallUsedRegsAttr::ZeroCallUsedRegsKind Kind;
8225   if (!ZeroCallUsedRegsAttr::ConvertStrToZeroCallUsedRegsKind(KindStr, Kind)) {
8226     S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
8227         << AL << KindStr;
8228     return;
8229   }
8230 
8231   D->dropAttr<ZeroCallUsedRegsAttr>();
8232   D->addAttr(ZeroCallUsedRegsAttr::Create(S.Context, Kind, AL));
8233 }
8234 
8235 static void handleFunctionReturnThunksAttr(Sema &S, Decl *D,
8236                                            const ParsedAttr &AL) {
8237   StringRef KindStr;
8238   SourceLocation LiteralLoc;
8239   if (!S.checkStringLiteralArgumentAttr(AL, 0, KindStr, &LiteralLoc))
8240     return;
8241 
8242   FunctionReturnThunksAttr::Kind Kind;
8243   if (!FunctionReturnThunksAttr::ConvertStrToKind(KindStr, Kind)) {
8244     S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
8245         << AL << KindStr;
8246     return;
8247   }
8248   // FIXME: it would be good to better handle attribute merging rather than
8249   // silently replacing the existing attribute, so long as it does not break
8250   // the expected codegen tests.
8251   D->dropAttr<FunctionReturnThunksAttr>();
8252   D->addAttr(FunctionReturnThunksAttr::Create(S.Context, Kind, AL));
8253 }
8254 
8255 static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8256   // The 'sycl_kernel' attribute applies only to function templates.
8257   const auto *FD = cast<FunctionDecl>(D);
8258   const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate();
8259   assert(FT && "Function template is expected");
8260 
8261   // Function template must have at least two template parameters.
8262   const TemplateParameterList *TL = FT->getTemplateParameters();
8263   if (TL->size() < 2) {
8264     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params);
8265     return;
8266   }
8267 
8268   // Template parameters must be typenames.
8269   for (unsigned I = 0; I < 2; ++I) {
8270     const NamedDecl *TParam = TL->getParam(I);
8271     if (isa<NonTypeTemplateParmDecl>(TParam)) {
8272       S.Diag(FT->getLocation(),
8273              diag::warn_sycl_kernel_invalid_template_param_type);
8274       return;
8275     }
8276   }
8277 
8278   // Function must have at least one argument.
8279   if (getFunctionOrMethodNumParams(D) != 1) {
8280     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params);
8281     return;
8282   }
8283 
8284   // Function must return void.
8285   QualType RetTy = getFunctionOrMethodResultType(D);
8286   if (!RetTy->isVoidType()) {
8287     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type);
8288     return;
8289   }
8290 
8291   handleSimpleAttribute<SYCLKernelAttr>(S, D, AL);
8292 }
8293 
8294 static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) {
8295   if (!cast<VarDecl>(D)->hasGlobalStorage()) {
8296     S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var)
8297         << (A.getKind() == ParsedAttr::AT_AlwaysDestroy);
8298     return;
8299   }
8300 
8301   if (A.getKind() == ParsedAttr::AT_AlwaysDestroy)
8302     handleSimpleAttribute<AlwaysDestroyAttr>(S, D, A);
8303   else
8304     handleSimpleAttribute<NoDestroyAttr>(S, D, A);
8305 }
8306 
8307 static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8308   assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic &&
8309          "uninitialized is only valid on automatic duration variables");
8310   D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL));
8311 }
8312 
8313 static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD,
8314                                         bool DiagnoseFailure) {
8315   QualType Ty = VD->getType();
8316   if (!Ty->isObjCRetainableType()) {
8317     if (DiagnoseFailure) {
8318       S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
8319           << 0;
8320     }
8321     return false;
8322   }
8323 
8324   Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime();
8325 
8326   // Sema::inferObjCARCLifetime must run after processing decl attributes
8327   // (because __block lowers to an attribute), so if the lifetime hasn't been
8328   // explicitly specified, infer it locally now.
8329   if (LifetimeQual == Qualifiers::OCL_None)
8330     LifetimeQual = Ty->getObjCARCImplicitLifetime();
8331 
8332   // The attributes only really makes sense for __strong variables; ignore any
8333   // attempts to annotate a parameter with any other lifetime qualifier.
8334   if (LifetimeQual != Qualifiers::OCL_Strong) {
8335     if (DiagnoseFailure) {
8336       S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
8337           << 1;
8338     }
8339     return false;
8340   }
8341 
8342   // Tampering with the type of a VarDecl here is a bit of a hack, but we need
8343   // to ensure that the variable is 'const' so that we can error on
8344   // modification, which can otherwise over-release.
8345   VD->setType(Ty.withConst());
8346   VD->setARCPseudoStrong(true);
8347   return true;
8348 }
8349 
8350 static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D,
8351                                              const ParsedAttr &AL) {
8352   if (auto *VD = dyn_cast<VarDecl>(D)) {
8353     assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically");
8354     if (!VD->hasLocalStorage()) {
8355       S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
8356           << 0;
8357       return;
8358     }
8359 
8360     if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true))
8361       return;
8362 
8363     handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
8364     return;
8365   }
8366 
8367   // If D is a function-like declaration (method, block, or function), then we
8368   // make every parameter psuedo-strong.
8369   unsigned NumParams =
8370       hasFunctionProto(D) ? getFunctionOrMethodNumParams(D) : 0;
8371   for (unsigned I = 0; I != NumParams; ++I) {
8372     auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, I));
8373     QualType Ty = PVD->getType();
8374 
8375     // If a user wrote a parameter with __strong explicitly, then assume they
8376     // want "real" strong semantics for that parameter. This works because if
8377     // the parameter was written with __strong, then the strong qualifier will
8378     // be non-local.
8379     if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() ==
8380         Qualifiers::OCL_Strong)
8381       continue;
8382 
8383     tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false);
8384   }
8385   handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
8386 }
8387 
8388 static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8389   // Check that the return type is a `typedef int kern_return_t` or a typedef
8390   // around it, because otherwise MIG convention checks make no sense.
8391   // BlockDecl doesn't store a return type, so it's annoying to check,
8392   // so let's skip it for now.
8393   if (!isa<BlockDecl>(D)) {
8394     QualType T = getFunctionOrMethodResultType(D);
8395     bool IsKernReturnT = false;
8396     while (const auto *TT = T->getAs<TypedefType>()) {
8397       IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t");
8398       T = TT->desugar();
8399     }
8400     if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) {
8401       S.Diag(D->getBeginLoc(),
8402              diag::warn_mig_server_routine_does_not_return_kern_return_t);
8403       return;
8404     }
8405   }
8406 
8407   handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL);
8408 }
8409 
8410 static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8411   // Warn if the return type is not a pointer or reference type.
8412   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
8413     QualType RetTy = FD->getReturnType();
8414     if (!RetTy->isPointerType() && !RetTy->isReferenceType()) {
8415       S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer)
8416           << AL.getRange() << RetTy;
8417       return;
8418     }
8419   }
8420 
8421   handleSimpleAttribute<MSAllocatorAttr>(S, D, AL);
8422 }
8423 
8424 static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8425   if (AL.isUsedAsTypeAttr())
8426     return;
8427   // Warn if the parameter is definitely not an output parameter.
8428   if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
8429     if (PVD->getType()->isIntegerType()) {
8430       S.Diag(AL.getLoc(), diag::err_attribute_output_parameter)
8431           << AL.getRange();
8432       return;
8433     }
8434   }
8435   StringRef Argument;
8436   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
8437     return;
8438   D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL));
8439 }
8440 
8441 template<typename Attr>
8442 static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8443   StringRef Argument;
8444   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
8445     return;
8446   D->addAttr(Attr::Create(S.Context, Argument, AL));
8447 }
8448 
8449 static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8450   // The guard attribute takes a single identifier argument.
8451 
8452   if (!AL.isArgIdent(0)) {
8453     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
8454         << AL << AANT_ArgumentIdentifier;
8455     return;
8456   }
8457 
8458   CFGuardAttr::GuardArg Arg;
8459   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
8460   if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) {
8461     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
8462     return;
8463   }
8464 
8465   D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg));
8466 }
8467 
8468 
8469 template <typename AttrTy>
8470 static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) {
8471   auto Attrs = D->specific_attrs<AttrTy>();
8472   auto I = llvm::find_if(Attrs,
8473                          [Name](const AttrTy *A) {
8474                            return A->getTCBName() == Name;
8475                          });
8476   return I == Attrs.end() ? nullptr : *I;
8477 }
8478 
8479 template <typename AttrTy, typename ConflictingAttrTy>
8480 static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8481   StringRef Argument;
8482   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
8483     return;
8484 
8485   // A function cannot be have both regular and leaf membership in the same TCB.
8486   if (const ConflictingAttrTy *ConflictingAttr =
8487       findEnforceTCBAttrByName<ConflictingAttrTy>(D, Argument)) {
8488     // We could attach a note to the other attribute but in this case
8489     // there's no need given how the two are very close to each other.
8490     S.Diag(AL.getLoc(), diag::err_tcb_conflicting_attributes)
8491       << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName()
8492       << Argument;
8493 
8494     // Error recovery: drop the non-leaf attribute so that to suppress
8495     // all future warnings caused by erroneous attributes. The leaf attribute
8496     // needs to be kept because it can only suppresses warnings, not cause them.
8497     D->dropAttr<EnforceTCBAttr>();
8498     return;
8499   }
8500 
8501   D->addAttr(AttrTy::Create(S.Context, Argument, AL));
8502 }
8503 
8504 template <typename AttrTy, typename ConflictingAttrTy>
8505 static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) {
8506   // Check if the new redeclaration has different leaf-ness in the same TCB.
8507   StringRef TCBName = AL.getTCBName();
8508   if (const ConflictingAttrTy *ConflictingAttr =
8509       findEnforceTCBAttrByName<ConflictingAttrTy>(D, TCBName)) {
8510     S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes)
8511       << ConflictingAttr->getAttrName()->getName()
8512       << AL.getAttrName()->getName() << TCBName;
8513 
8514     // Add a note so that the user could easily find the conflicting attribute.
8515     S.Diag(AL.getLoc(), diag::note_conflicting_attribute);
8516 
8517     // More error recovery.
8518     D->dropAttr<EnforceTCBAttr>();
8519     return nullptr;
8520   }
8521 
8522   ASTContext &Context = S.getASTContext();
8523   return ::new(Context) AttrTy(Context, AL, AL.getTCBName());
8524 }
8525 
8526 EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) {
8527   return mergeEnforceTCBAttrImpl<EnforceTCBAttr, EnforceTCBLeafAttr>(
8528       *this, D, AL);
8529 }
8530 
8531 EnforceTCBLeafAttr *Sema::mergeEnforceTCBLeafAttr(
8532     Decl *D, const EnforceTCBLeafAttr &AL) {
8533   return mergeEnforceTCBAttrImpl<EnforceTCBLeafAttr, EnforceTCBAttr>(
8534       *this, D, AL);
8535 }
8536 
8537 //===----------------------------------------------------------------------===//
8538 // Top Level Sema Entry Points
8539 //===----------------------------------------------------------------------===//
8540 
8541 // Returns true if the attribute must delay setting its arguments until after
8542 // template instantiation, and false otherwise.
8543 static bool MustDelayAttributeArguments(const ParsedAttr &AL) {
8544   // Only attributes that accept expression parameter packs can delay arguments.
8545   if (!AL.acceptsExprPack())
8546     return false;
8547 
8548   bool AttrHasVariadicArg = AL.hasVariadicArg();
8549   unsigned AttrNumArgs = AL.getNumArgMembers();
8550   for (size_t I = 0; I < std::min(AL.getNumArgs(), AttrNumArgs); ++I) {
8551     bool IsLastAttrArg = I == (AttrNumArgs - 1);
8552     // If the argument is the last argument and it is variadic it can contain
8553     // any expression.
8554     if (IsLastAttrArg && AttrHasVariadicArg)
8555       return false;
8556     Expr *E = AL.getArgAsExpr(I);
8557     bool ArgMemberCanHoldExpr = AL.isParamExpr(I);
8558     // If the expression is a pack expansion then arguments must be delayed
8559     // unless the argument is an expression and it is the last argument of the
8560     // attribute.
8561     if (isa<PackExpansionExpr>(E))
8562       return !(IsLastAttrArg && ArgMemberCanHoldExpr);
8563     // Last case is if the expression is value dependent then it must delay
8564     // arguments unless the corresponding argument is able to hold the
8565     // expression.
8566     if (E->isValueDependent() && !ArgMemberCanHoldExpr)
8567       return true;
8568   }
8569   return false;
8570 }
8571 
8572 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
8573 /// the attribute applies to decls.  If the attribute is a type attribute, just
8574 /// silently ignore it if a GNU attribute.
8575 static void
8576 ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, const ParsedAttr &AL,
8577                      const Sema::ProcessDeclAttributeOptions &Options) {
8578   if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
8579     return;
8580 
8581   // Ignore C++11 attributes on declarator chunks: they appertain to the type
8582   // instead.
8583   // FIXME: We currently check the attribute syntax directly instead of using
8584   // isCXX11Attribute(), which currently erroneously classifies the C11
8585   // `_Alignas` attribute as a C++11 attribute. `_Alignas` can appear on the
8586   // `DeclSpec`, so we need to let it through here to make sure it is processed
8587   // appropriately. Once the behavior of isCXX11Attribute() is fixed, we can
8588   // go back to using that here.
8589   if (AL.getSyntax() == ParsedAttr::AS_CXX11 && !Options.IncludeCXX11Attributes)
8590     return;
8591 
8592   // Unknown attributes are automatically warned on. Target-specific attributes
8593   // which do not apply to the current target architecture are treated as
8594   // though they were unknown attributes.
8595   if (AL.getKind() == ParsedAttr::UnknownAttribute ||
8596       !AL.existsInTarget(S.Context.getTargetInfo())) {
8597     S.Diag(AL.getLoc(),
8598            AL.isDeclspecAttribute()
8599                ? (unsigned)diag::warn_unhandled_ms_attribute_ignored
8600                : (unsigned)diag::warn_unknown_attribute_ignored)
8601         << AL << AL.getRange();
8602     return;
8603   }
8604 
8605   // Check if argument population must delayed to after template instantiation.
8606   bool MustDelayArgs = MustDelayAttributeArguments(AL);
8607 
8608   // Argument number check must be skipped if arguments are delayed.
8609   if (S.checkCommonAttributeFeatures(D, AL, MustDelayArgs))
8610     return;
8611 
8612   if (MustDelayArgs) {
8613     AL.handleAttrWithDelayedArgs(S, D);
8614     return;
8615   }
8616 
8617   switch (AL.getKind()) {
8618   default:
8619     if (AL.getInfo().handleDeclAttribute(S, D, AL) != ParsedAttrInfo::NotHandled)
8620       break;
8621     if (!AL.isStmtAttr()) {
8622       assert(AL.isTypeAttr() && "Non-type attribute not handled");
8623     }
8624     if (AL.isTypeAttr()) {
8625       if (Options.IgnoreTypeAttributes)
8626         break;
8627       if (!AL.isStandardAttributeSyntax()) {
8628         // Non-[[]] type attributes are handled in processTypeAttrs(); silently
8629         // move on.
8630         break;
8631       }
8632 
8633       // According to the C and C++ standards, we should never see a
8634       // [[]] type attribute on a declaration. However, we have in the past
8635       // allowed some type attributes to "slide" to the `DeclSpec`, so we need
8636       // to continue to support this legacy behavior. We only do this, however,
8637       // if
8638       // - we actually have a `DeclSpec`, i.e. if we're looking at a
8639       //   `DeclaratorDecl`, or
8640       // - we are looking at an alias-declaration, where historically we have
8641       //   allowed type attributes after the identifier to slide to the type.
8642       if (AL.slidesFromDeclToDeclSpecLegacyBehavior() &&
8643           isa<DeclaratorDecl, TypeAliasDecl>(D)) {
8644         // Suggest moving the attribute to the type instead, but only for our
8645         // own vendor attributes; moving other vendors' attributes might hurt
8646         // portability.
8647         if (AL.isClangScope()) {
8648           S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl)
8649               << AL << D->getLocation();
8650         }
8651 
8652         // Allow this type attribute to be handled in processTypeAttrs();
8653         // silently move on.
8654         break;
8655       }
8656 
8657       if (AL.getKind() == ParsedAttr::AT_Regparm) {
8658         // `regparm` is a special case: It's a type attribute but we still want
8659         // to treat it as if it had been written on the declaration because that
8660         // way we'll be able to handle it directly in `processTypeAttr()`.
8661         // If we treated `regparm` it as if it had been written on the
8662         // `DeclSpec`, the logic in `distributeFunctionTypeAttrFromDeclSepc()`
8663         // would try to move it to the declarator, but that doesn't work: We
8664         // can't remove the attribute from the list of declaration attributes
8665         // because it might be needed by other declarators in the same
8666         // declaration.
8667         break;
8668       }
8669 
8670       if (AL.getKind() == ParsedAttr::AT_VectorSize) {
8671         // `vector_size` is a special case: It's a type attribute semantically,
8672         // but GCC expects the [[]] syntax to be written on the declaration (and
8673         // warns that the attribute has no effect if it is placed on the
8674         // decl-specifier-seq).
8675         // Silently move on and allow the attribute to be handled in
8676         // processTypeAttr().
8677         break;
8678       }
8679 
8680       if (AL.getKind() == ParsedAttr::AT_NoDeref) {
8681         // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
8682         // See https://github.com/llvm/llvm-project/issues/55790 for details.
8683         // We allow processTypeAttrs() to emit a warning and silently move on.
8684         break;
8685       }
8686     }
8687     // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a
8688     // statement attribute is not written on a declaration, but this code is
8689     // needed for type attributes as well as statement attributes in Attr.td
8690     // that do not list any subjects.
8691     S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl)
8692         << AL << D->getLocation();
8693     break;
8694   case ParsedAttr::AT_Interrupt:
8695     handleInterruptAttr(S, D, AL);
8696     break;
8697   case ParsedAttr::AT_X86ForceAlignArgPointer:
8698     handleX86ForceAlignArgPointerAttr(S, D, AL);
8699     break;
8700   case ParsedAttr::AT_ReadOnlyPlacement:
8701     handleSimpleAttribute<ReadOnlyPlacementAttr>(S, D, AL);
8702     break;
8703   case ParsedAttr::AT_DLLExport:
8704   case ParsedAttr::AT_DLLImport:
8705     handleDLLAttr(S, D, AL);
8706     break;
8707   case ParsedAttr::AT_AMDGPUFlatWorkGroupSize:
8708     handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL);
8709     break;
8710   case ParsedAttr::AT_AMDGPUWavesPerEU:
8711     handleAMDGPUWavesPerEUAttr(S, D, AL);
8712     break;
8713   case ParsedAttr::AT_AMDGPUNumSGPR:
8714     handleAMDGPUNumSGPRAttr(S, D, AL);
8715     break;
8716   case ParsedAttr::AT_AMDGPUNumVGPR:
8717     handleAMDGPUNumVGPRAttr(S, D, AL);
8718     break;
8719   case ParsedAttr::AT_AVRSignal:
8720     handleAVRSignalAttr(S, D, AL);
8721     break;
8722   case ParsedAttr::AT_BPFPreserveAccessIndex:
8723     handleBPFPreserveAccessIndexAttr(S, D, AL);
8724     break;
8725   case ParsedAttr::AT_BTFDeclTag:
8726     handleBTFDeclTagAttr(S, D, AL);
8727     break;
8728   case ParsedAttr::AT_WebAssemblyExportName:
8729     handleWebAssemblyExportNameAttr(S, D, AL);
8730     break;
8731   case ParsedAttr::AT_WebAssemblyImportModule:
8732     handleWebAssemblyImportModuleAttr(S, D, AL);
8733     break;
8734   case ParsedAttr::AT_WebAssemblyImportName:
8735     handleWebAssemblyImportNameAttr(S, D, AL);
8736     break;
8737   case ParsedAttr::AT_IBOutlet:
8738     handleIBOutlet(S, D, AL);
8739     break;
8740   case ParsedAttr::AT_IBOutletCollection:
8741     handleIBOutletCollection(S, D, AL);
8742     break;
8743   case ParsedAttr::AT_IFunc:
8744     handleIFuncAttr(S, D, AL);
8745     break;
8746   case ParsedAttr::AT_Alias:
8747     handleAliasAttr(S, D, AL);
8748     break;
8749   case ParsedAttr::AT_Aligned:
8750     handleAlignedAttr(S, D, AL);
8751     break;
8752   case ParsedAttr::AT_AlignValue:
8753     handleAlignValueAttr(S, D, AL);
8754     break;
8755   case ParsedAttr::AT_AllocSize:
8756     handleAllocSizeAttr(S, D, AL);
8757     break;
8758   case ParsedAttr::AT_AlwaysInline:
8759     handleAlwaysInlineAttr(S, D, AL);
8760     break;
8761   case ParsedAttr::AT_AnalyzerNoReturn:
8762     handleAnalyzerNoReturnAttr(S, D, AL);
8763     break;
8764   case ParsedAttr::AT_TLSModel:
8765     handleTLSModelAttr(S, D, AL);
8766     break;
8767   case ParsedAttr::AT_Annotate:
8768     handleAnnotateAttr(S, D, AL);
8769     break;
8770   case ParsedAttr::AT_Availability:
8771     handleAvailabilityAttr(S, D, AL);
8772     break;
8773   case ParsedAttr::AT_CarriesDependency:
8774     handleDependencyAttr(S, scope, D, AL);
8775     break;
8776   case ParsedAttr::AT_CPUDispatch:
8777   case ParsedAttr::AT_CPUSpecific:
8778     handleCPUSpecificAttr(S, D, AL);
8779     break;
8780   case ParsedAttr::AT_Common:
8781     handleCommonAttr(S, D, AL);
8782     break;
8783   case ParsedAttr::AT_CUDAConstant:
8784     handleConstantAttr(S, D, AL);
8785     break;
8786   case ParsedAttr::AT_PassObjectSize:
8787     handlePassObjectSizeAttr(S, D, AL);
8788     break;
8789   case ParsedAttr::AT_Constructor:
8790       handleConstructorAttr(S, D, AL);
8791     break;
8792   case ParsedAttr::AT_Deprecated:
8793     handleDeprecatedAttr(S, D, AL);
8794     break;
8795   case ParsedAttr::AT_Destructor:
8796       handleDestructorAttr(S, D, AL);
8797     break;
8798   case ParsedAttr::AT_EnableIf:
8799     handleEnableIfAttr(S, D, AL);
8800     break;
8801   case ParsedAttr::AT_Error:
8802     handleErrorAttr(S, D, AL);
8803     break;
8804   case ParsedAttr::AT_DiagnoseIf:
8805     handleDiagnoseIfAttr(S, D, AL);
8806     break;
8807   case ParsedAttr::AT_DiagnoseAsBuiltin:
8808     handleDiagnoseAsBuiltinAttr(S, D, AL);
8809     break;
8810   case ParsedAttr::AT_NoBuiltin:
8811     handleNoBuiltinAttr(S, D, AL);
8812     break;
8813   case ParsedAttr::AT_ExtVectorType:
8814     handleExtVectorTypeAttr(S, D, AL);
8815     break;
8816   case ParsedAttr::AT_ExternalSourceSymbol:
8817     handleExternalSourceSymbolAttr(S, D, AL);
8818     break;
8819   case ParsedAttr::AT_MinSize:
8820     handleMinSizeAttr(S, D, AL);
8821     break;
8822   case ParsedAttr::AT_OptimizeNone:
8823     handleOptimizeNoneAttr(S, D, AL);
8824     break;
8825   case ParsedAttr::AT_EnumExtensibility:
8826     handleEnumExtensibilityAttr(S, D, AL);
8827     break;
8828   case ParsedAttr::AT_SYCLKernel:
8829     handleSYCLKernelAttr(S, D, AL);
8830     break;
8831   case ParsedAttr::AT_SYCLSpecialClass:
8832     handleSimpleAttribute<SYCLSpecialClassAttr>(S, D, AL);
8833     break;
8834   case ParsedAttr::AT_Format:
8835     handleFormatAttr(S, D, AL);
8836     break;
8837   case ParsedAttr::AT_FormatArg:
8838     handleFormatArgAttr(S, D, AL);
8839     break;
8840   case ParsedAttr::AT_Callback:
8841     handleCallbackAttr(S, D, AL);
8842     break;
8843   case ParsedAttr::AT_CalledOnce:
8844     handleCalledOnceAttr(S, D, AL);
8845     break;
8846   case ParsedAttr::AT_CUDAGlobal:
8847     handleGlobalAttr(S, D, AL);
8848     break;
8849   case ParsedAttr::AT_CUDADevice:
8850     handleDeviceAttr(S, D, AL);
8851     break;
8852   case ParsedAttr::AT_HIPManaged:
8853     handleManagedAttr(S, D, AL);
8854     break;
8855   case ParsedAttr::AT_GNUInline:
8856     handleGNUInlineAttr(S, D, AL);
8857     break;
8858   case ParsedAttr::AT_CUDALaunchBounds:
8859     handleLaunchBoundsAttr(S, D, AL);
8860     break;
8861   case ParsedAttr::AT_Restrict:
8862     handleRestrictAttr(S, D, AL);
8863     break;
8864   case ParsedAttr::AT_Mode:
8865     handleModeAttr(S, D, AL);
8866     break;
8867   case ParsedAttr::AT_NonNull:
8868     if (auto *PVD = dyn_cast<ParmVarDecl>(D))
8869       handleNonNullAttrParameter(S, PVD, AL);
8870     else
8871       handleNonNullAttr(S, D, AL);
8872     break;
8873   case ParsedAttr::AT_ReturnsNonNull:
8874     handleReturnsNonNullAttr(S, D, AL);
8875     break;
8876   case ParsedAttr::AT_NoEscape:
8877     handleNoEscapeAttr(S, D, AL);
8878     break;
8879   case ParsedAttr::AT_MaybeUndef:
8880     handleSimpleAttribute<MaybeUndefAttr>(S, D, AL);
8881     break;
8882   case ParsedAttr::AT_AssumeAligned:
8883     handleAssumeAlignedAttr(S, D, AL);
8884     break;
8885   case ParsedAttr::AT_AllocAlign:
8886     handleAllocAlignAttr(S, D, AL);
8887     break;
8888   case ParsedAttr::AT_Ownership:
8889     handleOwnershipAttr(S, D, AL);
8890     break;
8891   case ParsedAttr::AT_Naked:
8892     handleNakedAttr(S, D, AL);
8893     break;
8894   case ParsedAttr::AT_NoReturn:
8895     handleNoReturnAttr(S, D, AL);
8896     break;
8897   case ParsedAttr::AT_CXX11NoReturn:
8898     handleStandardNoReturnAttr(S, D, AL);
8899     break;
8900   case ParsedAttr::AT_AnyX86NoCfCheck:
8901     handleNoCfCheckAttr(S, D, AL);
8902     break;
8903   case ParsedAttr::AT_NoThrow:
8904     if (!AL.isUsedAsTypeAttr())
8905       handleSimpleAttribute<NoThrowAttr>(S, D, AL);
8906     break;
8907   case ParsedAttr::AT_CUDAShared:
8908     handleSharedAttr(S, D, AL);
8909     break;
8910   case ParsedAttr::AT_VecReturn:
8911     handleVecReturnAttr(S, D, AL);
8912     break;
8913   case ParsedAttr::AT_ObjCOwnership:
8914     handleObjCOwnershipAttr(S, D, AL);
8915     break;
8916   case ParsedAttr::AT_ObjCPreciseLifetime:
8917     handleObjCPreciseLifetimeAttr(S, D, AL);
8918     break;
8919   case ParsedAttr::AT_ObjCReturnsInnerPointer:
8920     handleObjCReturnsInnerPointerAttr(S, D, AL);
8921     break;
8922   case ParsedAttr::AT_ObjCRequiresSuper:
8923     handleObjCRequiresSuperAttr(S, D, AL);
8924     break;
8925   case ParsedAttr::AT_ObjCBridge:
8926     handleObjCBridgeAttr(S, D, AL);
8927     break;
8928   case ParsedAttr::AT_ObjCBridgeMutable:
8929     handleObjCBridgeMutableAttr(S, D, AL);
8930     break;
8931   case ParsedAttr::AT_ObjCBridgeRelated:
8932     handleObjCBridgeRelatedAttr(S, D, AL);
8933     break;
8934   case ParsedAttr::AT_ObjCDesignatedInitializer:
8935     handleObjCDesignatedInitializer(S, D, AL);
8936     break;
8937   case ParsedAttr::AT_ObjCRuntimeName:
8938     handleObjCRuntimeName(S, D, AL);
8939     break;
8940   case ParsedAttr::AT_ObjCBoxable:
8941     handleObjCBoxable(S, D, AL);
8942     break;
8943   case ParsedAttr::AT_NSErrorDomain:
8944     handleNSErrorDomain(S, D, AL);
8945     break;
8946   case ParsedAttr::AT_CFConsumed:
8947   case ParsedAttr::AT_NSConsumed:
8948   case ParsedAttr::AT_OSConsumed:
8949     S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL),
8950                        /*IsTemplateInstantiation=*/false);
8951     break;
8952   case ParsedAttr::AT_OSReturnsRetainedOnZero:
8953     handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>(
8954         S, D, AL, isValidOSObjectOutParameter(D),
8955         diag::warn_ns_attribute_wrong_parameter_type,
8956         /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange());
8957     break;
8958   case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
8959     handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>(
8960         S, D, AL, isValidOSObjectOutParameter(D),
8961         diag::warn_ns_attribute_wrong_parameter_type,
8962         /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange());
8963     break;
8964   case ParsedAttr::AT_NSReturnsAutoreleased:
8965   case ParsedAttr::AT_NSReturnsNotRetained:
8966   case ParsedAttr::AT_NSReturnsRetained:
8967   case ParsedAttr::AT_CFReturnsNotRetained:
8968   case ParsedAttr::AT_CFReturnsRetained:
8969   case ParsedAttr::AT_OSReturnsNotRetained:
8970   case ParsedAttr::AT_OSReturnsRetained:
8971     handleXReturnsXRetainedAttr(S, D, AL);
8972     break;
8973   case ParsedAttr::AT_WorkGroupSizeHint:
8974     handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL);
8975     break;
8976   case ParsedAttr::AT_ReqdWorkGroupSize:
8977     handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL);
8978     break;
8979   case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize:
8980     handleSubGroupSize(S, D, AL);
8981     break;
8982   case ParsedAttr::AT_VecTypeHint:
8983     handleVecTypeHint(S, D, AL);
8984     break;
8985   case ParsedAttr::AT_InitPriority:
8986       handleInitPriorityAttr(S, D, AL);
8987     break;
8988   case ParsedAttr::AT_Packed:
8989     handlePackedAttr(S, D, AL);
8990     break;
8991   case ParsedAttr::AT_PreferredName:
8992     handlePreferredName(S, D, AL);
8993     break;
8994   case ParsedAttr::AT_Section:
8995     handleSectionAttr(S, D, AL);
8996     break;
8997   case ParsedAttr::AT_RandomizeLayout:
8998     handleRandomizeLayoutAttr(S, D, AL);
8999     break;
9000   case ParsedAttr::AT_NoRandomizeLayout:
9001     handleNoRandomizeLayoutAttr(S, D, AL);
9002     break;
9003   case ParsedAttr::AT_CodeSeg:
9004     handleCodeSegAttr(S, D, AL);
9005     break;
9006   case ParsedAttr::AT_Target:
9007     handleTargetAttr(S, D, AL);
9008     break;
9009   case ParsedAttr::AT_TargetVersion:
9010     handleTargetVersionAttr(S, D, AL);
9011     break;
9012   case ParsedAttr::AT_TargetClones:
9013     handleTargetClonesAttr(S, D, AL);
9014     break;
9015   case ParsedAttr::AT_MinVectorWidth:
9016     handleMinVectorWidthAttr(S, D, AL);
9017     break;
9018   case ParsedAttr::AT_Unavailable:
9019     handleAttrWithMessage<UnavailableAttr>(S, D, AL);
9020     break;
9021   case ParsedAttr::AT_Assumption:
9022     handleAssumumptionAttr(S, D, AL);
9023     break;
9024   case ParsedAttr::AT_ObjCDirect:
9025     handleObjCDirectAttr(S, D, AL);
9026     break;
9027   case ParsedAttr::AT_ObjCDirectMembers:
9028     handleObjCDirectMembersAttr(S, D, AL);
9029     handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
9030     break;
9031   case ParsedAttr::AT_ObjCExplicitProtocolImpl:
9032     handleObjCSuppresProtocolAttr(S, D, AL);
9033     break;
9034   case ParsedAttr::AT_Unused:
9035     handleUnusedAttr(S, D, AL);
9036     break;
9037   case ParsedAttr::AT_Visibility:
9038     handleVisibilityAttr(S, D, AL, false);
9039     break;
9040   case ParsedAttr::AT_TypeVisibility:
9041     handleVisibilityAttr(S, D, AL, true);
9042     break;
9043   case ParsedAttr::AT_WarnUnusedResult:
9044     handleWarnUnusedResult(S, D, AL);
9045     break;
9046   case ParsedAttr::AT_WeakRef:
9047     handleWeakRefAttr(S, D, AL);
9048     break;
9049   case ParsedAttr::AT_WeakImport:
9050     handleWeakImportAttr(S, D, AL);
9051     break;
9052   case ParsedAttr::AT_TransparentUnion:
9053     handleTransparentUnionAttr(S, D, AL);
9054     break;
9055   case ParsedAttr::AT_ObjCMethodFamily:
9056     handleObjCMethodFamilyAttr(S, D, AL);
9057     break;
9058   case ParsedAttr::AT_ObjCNSObject:
9059     handleObjCNSObject(S, D, AL);
9060     break;
9061   case ParsedAttr::AT_ObjCIndependentClass:
9062     handleObjCIndependentClass(S, D, AL);
9063     break;
9064   case ParsedAttr::AT_Blocks:
9065     handleBlocksAttr(S, D, AL);
9066     break;
9067   case ParsedAttr::AT_Sentinel:
9068     handleSentinelAttr(S, D, AL);
9069     break;
9070   case ParsedAttr::AT_Cleanup:
9071     handleCleanupAttr(S, D, AL);
9072     break;
9073   case ParsedAttr::AT_NoDebug:
9074     handleNoDebugAttr(S, D, AL);
9075     break;
9076   case ParsedAttr::AT_CmseNSEntry:
9077     handleCmseNSEntryAttr(S, D, AL);
9078     break;
9079   case ParsedAttr::AT_StdCall:
9080   case ParsedAttr::AT_CDecl:
9081   case ParsedAttr::AT_FastCall:
9082   case ParsedAttr::AT_ThisCall:
9083   case ParsedAttr::AT_Pascal:
9084   case ParsedAttr::AT_RegCall:
9085   case ParsedAttr::AT_SwiftCall:
9086   case ParsedAttr::AT_SwiftAsyncCall:
9087   case ParsedAttr::AT_VectorCall:
9088   case ParsedAttr::AT_MSABI:
9089   case ParsedAttr::AT_SysVABI:
9090   case ParsedAttr::AT_Pcs:
9091   case ParsedAttr::AT_IntelOclBicc:
9092   case ParsedAttr::AT_PreserveMost:
9093   case ParsedAttr::AT_PreserveAll:
9094   case ParsedAttr::AT_AArch64VectorPcs:
9095   case ParsedAttr::AT_AArch64SVEPcs:
9096   case ParsedAttr::AT_AMDGPUKernelCall:
9097     handleCallConvAttr(S, D, AL);
9098     break;
9099   case ParsedAttr::AT_Suppress:
9100     handleSuppressAttr(S, D, AL);
9101     break;
9102   case ParsedAttr::AT_Owner:
9103   case ParsedAttr::AT_Pointer:
9104     handleLifetimeCategoryAttr(S, D, AL);
9105     break;
9106   case ParsedAttr::AT_OpenCLAccess:
9107     handleOpenCLAccessAttr(S, D, AL);
9108     break;
9109   case ParsedAttr::AT_OpenCLNoSVM:
9110     handleOpenCLNoSVMAttr(S, D, AL);
9111     break;
9112   case ParsedAttr::AT_SwiftContext:
9113     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext);
9114     break;
9115   case ParsedAttr::AT_SwiftAsyncContext:
9116     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftAsyncContext);
9117     break;
9118   case ParsedAttr::AT_SwiftErrorResult:
9119     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult);
9120     break;
9121   case ParsedAttr::AT_SwiftIndirectResult:
9122     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult);
9123     break;
9124   case ParsedAttr::AT_InternalLinkage:
9125     handleInternalLinkageAttr(S, D, AL);
9126     break;
9127   case ParsedAttr::AT_ZeroCallUsedRegs:
9128     handleZeroCallUsedRegsAttr(S, D, AL);
9129     break;
9130   case ParsedAttr::AT_FunctionReturnThunks:
9131     handleFunctionReturnThunksAttr(S, D, AL);
9132     break;
9133 
9134   // Microsoft attributes:
9135   case ParsedAttr::AT_LayoutVersion:
9136     handleLayoutVersion(S, D, AL);
9137     break;
9138   case ParsedAttr::AT_Uuid:
9139     handleUuidAttr(S, D, AL);
9140     break;
9141   case ParsedAttr::AT_MSInheritance:
9142     handleMSInheritanceAttr(S, D, AL);
9143     break;
9144   case ParsedAttr::AT_Thread:
9145     handleDeclspecThreadAttr(S, D, AL);
9146     break;
9147 
9148   // HLSL attributes:
9149   case ParsedAttr::AT_HLSLNumThreads:
9150     handleHLSLNumThreadsAttr(S, D, AL);
9151     break;
9152   case ParsedAttr::AT_HLSLSV_GroupIndex:
9153     handleHLSLSVGroupIndexAttr(S, D, AL);
9154     break;
9155   case ParsedAttr::AT_HLSLSV_DispatchThreadID:
9156     handleHLSLSV_DispatchThreadIDAttr(S, D, AL);
9157     break;
9158   case ParsedAttr::AT_HLSLShader:
9159     handleHLSLShaderAttr(S, D, AL);
9160     break;
9161   case ParsedAttr::AT_HLSLResourceBinding:
9162     handleHLSLResourceBindingAttr(S, D, AL);
9163     break;
9164 
9165   case ParsedAttr::AT_AbiTag:
9166     handleAbiTagAttr(S, D, AL);
9167     break;
9168   case ParsedAttr::AT_CFGuard:
9169     handleCFGuardAttr(S, D, AL);
9170     break;
9171 
9172   // Thread safety attributes:
9173   case ParsedAttr::AT_AssertExclusiveLock:
9174     handleAssertExclusiveLockAttr(S, D, AL);
9175     break;
9176   case ParsedAttr::AT_AssertSharedLock:
9177     handleAssertSharedLockAttr(S, D, AL);
9178     break;
9179   case ParsedAttr::AT_PtGuardedVar:
9180     handlePtGuardedVarAttr(S, D, AL);
9181     break;
9182   case ParsedAttr::AT_NoSanitize:
9183     handleNoSanitizeAttr(S, D, AL);
9184     break;
9185   case ParsedAttr::AT_NoSanitizeSpecific:
9186     handleNoSanitizeSpecificAttr(S, D, AL);
9187     break;
9188   case ParsedAttr::AT_GuardedBy:
9189     handleGuardedByAttr(S, D, AL);
9190     break;
9191   case ParsedAttr::AT_PtGuardedBy:
9192     handlePtGuardedByAttr(S, D, AL);
9193     break;
9194   case ParsedAttr::AT_ExclusiveTrylockFunction:
9195     handleExclusiveTrylockFunctionAttr(S, D, AL);
9196     break;
9197   case ParsedAttr::AT_LockReturned:
9198     handleLockReturnedAttr(S, D, AL);
9199     break;
9200   case ParsedAttr::AT_LocksExcluded:
9201     handleLocksExcludedAttr(S, D, AL);
9202     break;
9203   case ParsedAttr::AT_SharedTrylockFunction:
9204     handleSharedTrylockFunctionAttr(S, D, AL);
9205     break;
9206   case ParsedAttr::AT_AcquiredBefore:
9207     handleAcquiredBeforeAttr(S, D, AL);
9208     break;
9209   case ParsedAttr::AT_AcquiredAfter:
9210     handleAcquiredAfterAttr(S, D, AL);
9211     break;
9212 
9213   // Capability analysis attributes.
9214   case ParsedAttr::AT_Capability:
9215   case ParsedAttr::AT_Lockable:
9216     handleCapabilityAttr(S, D, AL);
9217     break;
9218   case ParsedAttr::AT_RequiresCapability:
9219     handleRequiresCapabilityAttr(S, D, AL);
9220     break;
9221 
9222   case ParsedAttr::AT_AssertCapability:
9223     handleAssertCapabilityAttr(S, D, AL);
9224     break;
9225   case ParsedAttr::AT_AcquireCapability:
9226     handleAcquireCapabilityAttr(S, D, AL);
9227     break;
9228   case ParsedAttr::AT_ReleaseCapability:
9229     handleReleaseCapabilityAttr(S, D, AL);
9230     break;
9231   case ParsedAttr::AT_TryAcquireCapability:
9232     handleTryAcquireCapabilityAttr(S, D, AL);
9233     break;
9234 
9235   // Consumed analysis attributes.
9236   case ParsedAttr::AT_Consumable:
9237     handleConsumableAttr(S, D, AL);
9238     break;
9239   case ParsedAttr::AT_CallableWhen:
9240     handleCallableWhenAttr(S, D, AL);
9241     break;
9242   case ParsedAttr::AT_ParamTypestate:
9243     handleParamTypestateAttr(S, D, AL);
9244     break;
9245   case ParsedAttr::AT_ReturnTypestate:
9246     handleReturnTypestateAttr(S, D, AL);
9247     break;
9248   case ParsedAttr::AT_SetTypestate:
9249     handleSetTypestateAttr(S, D, AL);
9250     break;
9251   case ParsedAttr::AT_TestTypestate:
9252     handleTestTypestateAttr(S, D, AL);
9253     break;
9254 
9255   // Type safety attributes.
9256   case ParsedAttr::AT_ArgumentWithTypeTag:
9257     handleArgumentWithTypeTagAttr(S, D, AL);
9258     break;
9259   case ParsedAttr::AT_TypeTagForDatatype:
9260     handleTypeTagForDatatypeAttr(S, D, AL);
9261     break;
9262 
9263   // Swift attributes.
9264   case ParsedAttr::AT_SwiftAsyncName:
9265     handleSwiftAsyncName(S, D, AL);
9266     break;
9267   case ParsedAttr::AT_SwiftAttr:
9268     handleSwiftAttrAttr(S, D, AL);
9269     break;
9270   case ParsedAttr::AT_SwiftBridge:
9271     handleSwiftBridge(S, D, AL);
9272     break;
9273   case ParsedAttr::AT_SwiftError:
9274     handleSwiftError(S, D, AL);
9275     break;
9276   case ParsedAttr::AT_SwiftName:
9277     handleSwiftName(S, D, AL);
9278     break;
9279   case ParsedAttr::AT_SwiftNewType:
9280     handleSwiftNewType(S, D, AL);
9281     break;
9282   case ParsedAttr::AT_SwiftAsync:
9283     handleSwiftAsyncAttr(S, D, AL);
9284     break;
9285   case ParsedAttr::AT_SwiftAsyncError:
9286     handleSwiftAsyncError(S, D, AL);
9287     break;
9288 
9289   // XRay attributes.
9290   case ParsedAttr::AT_XRayLogArgs:
9291     handleXRayLogArgsAttr(S, D, AL);
9292     break;
9293 
9294   case ParsedAttr::AT_PatchableFunctionEntry:
9295     handlePatchableFunctionEntryAttr(S, D, AL);
9296     break;
9297 
9298   case ParsedAttr::AT_AlwaysDestroy:
9299   case ParsedAttr::AT_NoDestroy:
9300     handleDestroyAttr(S, D, AL);
9301     break;
9302 
9303   case ParsedAttr::AT_Uninitialized:
9304     handleUninitializedAttr(S, D, AL);
9305     break;
9306 
9307   case ParsedAttr::AT_ObjCExternallyRetained:
9308     handleObjCExternallyRetainedAttr(S, D, AL);
9309     break;
9310 
9311   case ParsedAttr::AT_MIGServerRoutine:
9312     handleMIGServerRoutineAttr(S, D, AL);
9313     break;
9314 
9315   case ParsedAttr::AT_MSAllocator:
9316     handleMSAllocatorAttr(S, D, AL);
9317     break;
9318 
9319   case ParsedAttr::AT_ArmBuiltinAlias:
9320     handleArmBuiltinAliasAttr(S, D, AL);
9321     break;
9322 
9323   case ParsedAttr::AT_AcquireHandle:
9324     handleAcquireHandleAttr(S, D, AL);
9325     break;
9326 
9327   case ParsedAttr::AT_ReleaseHandle:
9328     handleHandleAttr<ReleaseHandleAttr>(S, D, AL);
9329     break;
9330 
9331   case ParsedAttr::AT_UseHandle:
9332     handleHandleAttr<UseHandleAttr>(S, D, AL);
9333     break;
9334 
9335   case ParsedAttr::AT_EnforceTCB:
9336     handleEnforceTCBAttr<EnforceTCBAttr, EnforceTCBLeafAttr>(S, D, AL);
9337     break;
9338 
9339   case ParsedAttr::AT_EnforceTCBLeaf:
9340     handleEnforceTCBAttr<EnforceTCBLeafAttr, EnforceTCBAttr>(S, D, AL);
9341     break;
9342 
9343   case ParsedAttr::AT_BuiltinAlias:
9344     handleBuiltinAliasAttr(S, D, AL);
9345     break;
9346 
9347   case ParsedAttr::AT_UsingIfExists:
9348     handleSimpleAttribute<UsingIfExistsAttr>(S, D, AL);
9349     break;
9350   }
9351 }
9352 
9353 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
9354 /// attribute list to the specified decl, ignoring any type attributes.
9355 void Sema::ProcessDeclAttributeList(
9356     Scope *S, Decl *D, const ParsedAttributesView &AttrList,
9357     const ProcessDeclAttributeOptions &Options) {
9358   if (AttrList.empty())
9359     return;
9360 
9361   for (const ParsedAttr &AL : AttrList)
9362     ProcessDeclAttribute(*this, S, D, AL, Options);
9363 
9364   // FIXME: We should be able to handle these cases in TableGen.
9365   // GCC accepts
9366   // static int a9 __attribute__((weakref));
9367   // but that looks really pointless. We reject it.
9368   if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
9369     Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias)
9370         << cast<NamedDecl>(D);
9371     D->dropAttr<WeakRefAttr>();
9372     return;
9373   }
9374 
9375   // FIXME: We should be able to handle this in TableGen as well. It would be
9376   // good to have a way to specify "these attributes must appear as a group",
9377   // for these. Additionally, it would be good to have a way to specify "these
9378   // attribute must never appear as a group" for attributes like cold and hot.
9379   if (!D->hasAttr<OpenCLKernelAttr>()) {
9380     // These attributes cannot be applied to a non-kernel function.
9381     if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
9382       // FIXME: This emits a different error message than
9383       // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
9384       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
9385       D->setInvalidDecl();
9386     } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) {
9387       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
9388       D->setInvalidDecl();
9389     } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) {
9390       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
9391       D->setInvalidDecl();
9392     } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
9393       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
9394       D->setInvalidDecl();
9395     } else if (!D->hasAttr<CUDAGlobalAttr>()) {
9396       if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
9397         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
9398             << A << ExpectedKernelFunction;
9399         D->setInvalidDecl();
9400       } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) {
9401         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
9402             << A << ExpectedKernelFunction;
9403         D->setInvalidDecl();
9404       } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
9405         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
9406             << A << ExpectedKernelFunction;
9407         D->setInvalidDecl();
9408       } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
9409         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
9410             << A << ExpectedKernelFunction;
9411         D->setInvalidDecl();
9412       }
9413     }
9414   }
9415 
9416   // Do this check after processing D's attributes because the attribute
9417   // objc_method_family can change whether the given method is in the init
9418   // family, and it can be applied after objc_designated_initializer. This is a
9419   // bit of a hack, but we need it to be compatible with versions of clang that
9420   // processed the attribute list in the wrong order.
9421   if (D->hasAttr<ObjCDesignatedInitializerAttr>() &&
9422       cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) {
9423     Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
9424     D->dropAttr<ObjCDesignatedInitializerAttr>();
9425   }
9426 }
9427 
9428 // Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr
9429 // attribute.
9430 void Sema::ProcessDeclAttributeDelayed(Decl *D,
9431                                        const ParsedAttributesView &AttrList) {
9432   for (const ParsedAttr &AL : AttrList)
9433     if (AL.getKind() == ParsedAttr::AT_TransparentUnion) {
9434       handleTransparentUnionAttr(*this, D, AL);
9435       break;
9436     }
9437 
9438   // For BPFPreserveAccessIndexAttr, we want to populate the attributes
9439   // to fields and inner records as well.
9440   if (D && D->hasAttr<BPFPreserveAccessIndexAttr>())
9441     handleBPFPreserveAIRecord(*this, cast<RecordDecl>(D));
9442 }
9443 
9444 // Annotation attributes are the only attributes allowed after an access
9445 // specifier.
9446 bool Sema::ProcessAccessDeclAttributeList(
9447     AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) {
9448   for (const ParsedAttr &AL : AttrList) {
9449     if (AL.getKind() == ParsedAttr::AT_Annotate) {
9450       ProcessDeclAttribute(*this, nullptr, ASDecl, AL,
9451                            ProcessDeclAttributeOptions());
9452     } else {
9453       Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec);
9454       return true;
9455     }
9456   }
9457   return false;
9458 }
9459 
9460 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
9461 /// contains any decl attributes that we should warn about.
9462 static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) {
9463   for (const ParsedAttr &AL : A) {
9464     // Only warn if the attribute is an unignored, non-type attribute.
9465     if (AL.isUsedAsTypeAttr() || AL.isInvalid())
9466       continue;
9467     if (AL.getKind() == ParsedAttr::IgnoredAttribute)
9468       continue;
9469 
9470     if (AL.getKind() == ParsedAttr::UnknownAttribute) {
9471       S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
9472           << AL << AL.getRange();
9473     } else {
9474       S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL
9475                                                             << AL.getRange();
9476     }
9477   }
9478 }
9479 
9480 /// checkUnusedDeclAttributes - Given a declarator which is not being
9481 /// used to build a declaration, complain about any decl attributes
9482 /// which might be lying around on it.
9483 void Sema::checkUnusedDeclAttributes(Declarator &D) {
9484   ::checkUnusedDeclAttributes(*this, D.getDeclarationAttributes());
9485   ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes());
9486   ::checkUnusedDeclAttributes(*this, D.getAttributes());
9487   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
9488     ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
9489 }
9490 
9491 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
9492 /// \#pragma weak needs a non-definition decl and source may not have one.
9493 NamedDecl *Sema::DeclClonePragmaWeak(NamedDecl *ND, const IdentifierInfo *II,
9494                                      SourceLocation Loc) {
9495   assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
9496   NamedDecl *NewD = nullptr;
9497   if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
9498     FunctionDecl *NewFD;
9499     // FIXME: Missing call to CheckFunctionDeclaration().
9500     // FIXME: Mangling?
9501     // FIXME: Is the qualifier info correct?
9502     // FIXME: Is the DeclContext correct?
9503     NewFD = FunctionDecl::Create(
9504         FD->getASTContext(), FD->getDeclContext(), Loc, Loc,
9505         DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None,
9506         getCurFPFeatures().isFPConstrained(), false /*isInlineSpecified*/,
9507         FD->hasPrototype(), ConstexprSpecKind::Unspecified,
9508         FD->getTrailingRequiresClause());
9509     NewD = NewFD;
9510 
9511     if (FD->getQualifier())
9512       NewFD->setQualifierInfo(FD->getQualifierLoc());
9513 
9514     // Fake up parameter variables; they are declared as if this were
9515     // a typedef.
9516     QualType FDTy = FD->getType();
9517     if (const auto *FT = FDTy->getAs<FunctionProtoType>()) {
9518       SmallVector<ParmVarDecl*, 16> Params;
9519       for (const auto &AI : FT->param_types()) {
9520         ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
9521         Param->setScopeInfo(0, Params.size());
9522         Params.push_back(Param);
9523       }
9524       NewFD->setParams(Params);
9525     }
9526   } else if (auto *VD = dyn_cast<VarDecl>(ND)) {
9527     NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
9528                            VD->getInnerLocStart(), VD->getLocation(), II,
9529                            VD->getType(), VD->getTypeSourceInfo(),
9530                            VD->getStorageClass());
9531     if (VD->getQualifier())
9532       cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc());
9533   }
9534   return NewD;
9535 }
9536 
9537 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
9538 /// applied to it, possibly with an alias.
9539 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, const WeakInfo &W) {
9540   if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
9541     IdentifierInfo *NDId = ND->getIdentifier();
9542     NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
9543     NewD->addAttr(
9544         AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation()));
9545     NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
9546                                            AttributeCommonInfo::AS_Pragma));
9547     WeakTopLevelDecl.push_back(NewD);
9548     // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
9549     // to insert Decl at TU scope, sorry.
9550     DeclContext *SavedContext = CurContext;
9551     CurContext = Context.getTranslationUnitDecl();
9552     NewD->setDeclContext(CurContext);
9553     NewD->setLexicalDeclContext(CurContext);
9554     PushOnScopeChains(NewD, S);
9555     CurContext = SavedContext;
9556   } else { // just add weak to existing
9557     ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
9558                                          AttributeCommonInfo::AS_Pragma));
9559   }
9560 }
9561 
9562 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
9563   // It's valid to "forward-declare" #pragma weak, in which case we
9564   // have to do this.
9565   LoadExternalWeakUndeclaredIdentifiers();
9566   if (WeakUndeclaredIdentifiers.empty())
9567     return;
9568   NamedDecl *ND = nullptr;
9569   if (auto *VD = dyn_cast<VarDecl>(D))
9570     if (VD->isExternC())
9571       ND = VD;
9572   if (auto *FD = dyn_cast<FunctionDecl>(D))
9573     if (FD->isExternC())
9574       ND = FD;
9575   if (!ND)
9576     return;
9577   if (IdentifierInfo *Id = ND->getIdentifier()) {
9578     auto I = WeakUndeclaredIdentifiers.find(Id);
9579     if (I != WeakUndeclaredIdentifiers.end()) {
9580       auto &WeakInfos = I->second;
9581       for (const auto &W : WeakInfos)
9582         DeclApplyPragmaWeak(S, ND, W);
9583       std::remove_reference_t<decltype(WeakInfos)> EmptyWeakInfos;
9584       WeakInfos.swap(EmptyWeakInfos);
9585     }
9586   }
9587 }
9588 
9589 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
9590 /// it, apply them to D.  This is a bit tricky because PD can have attributes
9591 /// specified in many different places, and we need to find and apply them all.
9592 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
9593   // Ordering of attributes can be important, so we take care to process
9594   // attributes in the order in which they appeared in the source code.
9595 
9596   // First, process attributes that appeared on the declaration itself (but
9597   // only if they don't have the legacy behavior of "sliding" to the DeclSepc).
9598   ParsedAttributesView NonSlidingAttrs;
9599   for (ParsedAttr &AL : PD.getDeclarationAttributes()) {
9600     if (AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
9601       // Skip processing the attribute, but do check if it appertains to the
9602       // declaration. This is needed for the `MatrixType` attribute, which,
9603       // despite being a type attribute, defines a `SubjectList` that only
9604       // allows it to be used on typedef declarations.
9605       AL.diagnoseAppertainsTo(*this, D);
9606     } else {
9607       NonSlidingAttrs.addAtEnd(&AL);
9608     }
9609   }
9610   ProcessDeclAttributeList(S, D, NonSlidingAttrs);
9611 
9612   // Apply decl attributes from the DeclSpec if present.
9613   if (!PD.getDeclSpec().getAttributes().empty()) {
9614     ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes(),
9615                              ProcessDeclAttributeOptions()
9616                                  .WithIncludeCXX11Attributes(false)
9617                                  .WithIgnoreTypeAttributes(true));
9618   }
9619 
9620   // Walk the declarator structure, applying decl attributes that were in a type
9621   // position to the decl itself.  This handles cases like:
9622   //   int *__attr__(x)** D;
9623   // when X is a decl attribute.
9624   for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) {
9625     ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(),
9626                              ProcessDeclAttributeOptions()
9627                                  .WithIncludeCXX11Attributes(false)
9628                                  .WithIgnoreTypeAttributes(true));
9629   }
9630 
9631   // Finally, apply any attributes on the decl itself.
9632   ProcessDeclAttributeList(S, D, PD.getAttributes());
9633 
9634   // Apply additional attributes specified by '#pragma clang attribute'.
9635   AddPragmaAttributes(S, D);
9636 }
9637 
9638 /// Is the given declaration allowed to use a forbidden type?
9639 /// If so, it'll still be annotated with an attribute that makes it
9640 /// illegal to actually use.
9641 static bool isForbiddenTypeAllowed(Sema &S, Decl *D,
9642                                    const DelayedDiagnostic &diag,
9643                                    UnavailableAttr::ImplicitReason &reason) {
9644   // Private ivars are always okay.  Unfortunately, people don't
9645   // always properly make their ivars private, even in system headers.
9646   // Plus we need to make fields okay, too.
9647   if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) &&
9648       !isa<FunctionDecl>(D))
9649     return false;
9650 
9651   // Silently accept unsupported uses of __weak in both user and system
9652   // declarations when it's been disabled, for ease of integration with
9653   // -fno-objc-arc files.  We do have to take some care against attempts
9654   // to define such things;  for now, we've only done that for ivars
9655   // and properties.
9656   if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) {
9657     if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
9658         diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
9659       reason = UnavailableAttr::IR_ForbiddenWeak;
9660       return true;
9661     }
9662   }
9663 
9664   // Allow all sorts of things in system headers.
9665   if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) {
9666     // Currently, all the failures dealt with this way are due to ARC
9667     // restrictions.
9668     reason = UnavailableAttr::IR_ARCForbiddenType;
9669     return true;
9670   }
9671 
9672   return false;
9673 }
9674 
9675 /// Handle a delayed forbidden-type diagnostic.
9676 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD,
9677                                        Decl *D) {
9678   auto Reason = UnavailableAttr::IR_None;
9679   if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) {
9680     assert(Reason && "didn't set reason?");
9681     D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc));
9682     return;
9683   }
9684   if (S.getLangOpts().ObjCAutoRefCount)
9685     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
9686       // FIXME: we may want to suppress diagnostics for all
9687       // kind of forbidden type messages on unavailable functions.
9688       if (FD->hasAttr<UnavailableAttr>() &&
9689           DD.getForbiddenTypeDiagnostic() ==
9690               diag::err_arc_array_param_no_ownership) {
9691         DD.Triggered = true;
9692         return;
9693       }
9694     }
9695 
9696   S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic())
9697       << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument();
9698   DD.Triggered = true;
9699 }
9700 
9701 
9702 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
9703   assert(DelayedDiagnostics.getCurrentPool());
9704   DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
9705   DelayedDiagnostics.popWithoutEmitting(state);
9706 
9707   // When delaying diagnostics to run in the context of a parsed
9708   // declaration, we only want to actually emit anything if parsing
9709   // succeeds.
9710   if (!decl) return;
9711 
9712   // We emit all the active diagnostics in this pool or any of its
9713   // parents.  In general, we'll get one pool for the decl spec
9714   // and a child pool for each declarator; in a decl group like:
9715   //   deprecated_typedef foo, *bar, baz();
9716   // only the declarator pops will be passed decls.  This is correct;
9717   // we really do need to consider delayed diagnostics from the decl spec
9718   // for each of the different declarations.
9719   const DelayedDiagnosticPool *pool = &poppedPool;
9720   do {
9721     bool AnyAccessFailures = false;
9722     for (DelayedDiagnosticPool::pool_iterator
9723            i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
9724       // This const_cast is a bit lame.  Really, Triggered should be mutable.
9725       DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
9726       if (diag.Triggered)
9727         continue;
9728 
9729       switch (diag.Kind) {
9730       case DelayedDiagnostic::Availability:
9731         // Don't bother giving deprecation/unavailable diagnostics if
9732         // the decl is invalid.
9733         if (!decl->isInvalidDecl())
9734           handleDelayedAvailabilityCheck(diag, decl);
9735         break;
9736 
9737       case DelayedDiagnostic::Access:
9738         // Only produce one access control diagnostic for a structured binding
9739         // declaration: we don't need to tell the user that all the fields are
9740         // inaccessible one at a time.
9741         if (AnyAccessFailures && isa<DecompositionDecl>(decl))
9742           continue;
9743         HandleDelayedAccessCheck(diag, decl);
9744         if (diag.Triggered)
9745           AnyAccessFailures = true;
9746         break;
9747 
9748       case DelayedDiagnostic::ForbiddenType:
9749         handleDelayedForbiddenType(*this, diag, decl);
9750         break;
9751       }
9752     }
9753   } while ((pool = pool->getParent()));
9754 }
9755 
9756 /// Given a set of delayed diagnostics, re-emit them as if they had
9757 /// been delayed in the current context instead of in the given pool.
9758 /// Essentially, this just moves them to the current pool.
9759 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
9760   DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
9761   assert(curPool && "re-emitting in undelayed context not supported");
9762   curPool->steal(pool);
9763 }
9764