1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTLambda.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/CommentDiagnostic.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/EvaluatedExprVisitor.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/NonTrivialTypeVisitor.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/PartialDiagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex 33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex 35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled() 36 #include "clang/Sema/CXXFieldCollector.h" 37 #include "clang/Sema/DeclSpec.h" 38 #include "clang/Sema/DelayedDiagnostic.h" 39 #include "clang/Sema/Initialization.h" 40 #include "clang/Sema/Lookup.h" 41 #include "clang/Sema/ParsedTemplate.h" 42 #include "clang/Sema/Scope.h" 43 #include "clang/Sema/ScopeInfo.h" 44 #include "clang/Sema/SemaInternal.h" 45 #include "clang/Sema/Template.h" 46 #include "llvm/ADT/SmallString.h" 47 #include "llvm/ADT/Triple.h" 48 #include <algorithm> 49 #include <cstring> 50 #include <functional> 51 #include <unordered_map> 52 53 using namespace clang; 54 using namespace sema; 55 56 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { 57 if (OwnedType) { 58 Decl *Group[2] = { OwnedType, Ptr }; 59 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2)); 60 } 61 62 return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); 63 } 64 65 namespace { 66 67 class TypeNameValidatorCCC final : public CorrectionCandidateCallback { 68 public: 69 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false, 70 bool AllowTemplates = false, 71 bool AllowNonTemplates = true) 72 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass), 73 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) { 74 WantExpressionKeywords = false; 75 WantCXXNamedCasts = false; 76 WantRemainingKeywords = false; 77 } 78 79 bool ValidateCandidate(const TypoCorrection &candidate) override { 80 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 81 if (!AllowInvalidDecl && ND->isInvalidDecl()) 82 return false; 83 84 if (getAsTypeTemplateDecl(ND)) 85 return AllowTemplates; 86 87 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND); 88 if (!IsType) 89 return false; 90 91 if (AllowNonTemplates) 92 return true; 93 94 // An injected-class-name of a class template (specialization) is valid 95 // as a template or as a non-template. 96 if (AllowTemplates) { 97 auto *RD = dyn_cast<CXXRecordDecl>(ND); 98 if (!RD || !RD->isInjectedClassName()) 99 return false; 100 RD = cast<CXXRecordDecl>(RD->getDeclContext()); 101 return RD->getDescribedClassTemplate() || 102 isa<ClassTemplateSpecializationDecl>(RD); 103 } 104 105 return false; 106 } 107 108 return !WantClassName && candidate.isKeyword(); 109 } 110 111 std::unique_ptr<CorrectionCandidateCallback> clone() override { 112 return std::make_unique<TypeNameValidatorCCC>(*this); 113 } 114 115 private: 116 bool AllowInvalidDecl; 117 bool WantClassName; 118 bool AllowTemplates; 119 bool AllowNonTemplates; 120 }; 121 122 } // end anonymous namespace 123 124 /// Determine whether the token kind starts a simple-type-specifier. 125 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const { 126 switch (Kind) { 127 // FIXME: Take into account the current language when deciding whether a 128 // token kind is a valid type specifier 129 case tok::kw_short: 130 case tok::kw_long: 131 case tok::kw___int64: 132 case tok::kw___int128: 133 case tok::kw_signed: 134 case tok::kw_unsigned: 135 case tok::kw_void: 136 case tok::kw_char: 137 case tok::kw_int: 138 case tok::kw_half: 139 case tok::kw_float: 140 case tok::kw_double: 141 case tok::kw___bf16: 142 case tok::kw__Float16: 143 case tok::kw___float128: 144 case tok::kw_wchar_t: 145 case tok::kw_bool: 146 case tok::kw___underlying_type: 147 case tok::kw___auto_type: 148 return true; 149 150 case tok::annot_typename: 151 case tok::kw_char16_t: 152 case tok::kw_char32_t: 153 case tok::kw_typeof: 154 case tok::annot_decltype: 155 case tok::kw_decltype: 156 return getLangOpts().CPlusPlus; 157 158 case tok::kw_char8_t: 159 return getLangOpts().Char8; 160 161 default: 162 break; 163 } 164 165 return false; 166 } 167 168 namespace { 169 enum class UnqualifiedTypeNameLookupResult { 170 NotFound, 171 FoundNonType, 172 FoundType 173 }; 174 } // end anonymous namespace 175 176 /// Tries to perform unqualified lookup of the type decls in bases for 177 /// dependent class. 178 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a 179 /// type decl, \a FoundType if only type decls are found. 180 static UnqualifiedTypeNameLookupResult 181 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II, 182 SourceLocation NameLoc, 183 const CXXRecordDecl *RD) { 184 if (!RD->hasDefinition()) 185 return UnqualifiedTypeNameLookupResult::NotFound; 186 // Look for type decls in base classes. 187 UnqualifiedTypeNameLookupResult FoundTypeDecl = 188 UnqualifiedTypeNameLookupResult::NotFound; 189 for (const auto &Base : RD->bases()) { 190 const CXXRecordDecl *BaseRD = nullptr; 191 if (auto *BaseTT = Base.getType()->getAs<TagType>()) 192 BaseRD = BaseTT->getAsCXXRecordDecl(); 193 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) { 194 // Look for type decls in dependent base classes that have known primary 195 // templates. 196 if (!TST || !TST->isDependentType()) 197 continue; 198 auto *TD = TST->getTemplateName().getAsTemplateDecl(); 199 if (!TD) 200 continue; 201 if (auto *BasePrimaryTemplate = 202 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) { 203 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl()) 204 BaseRD = BasePrimaryTemplate; 205 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) { 206 if (const ClassTemplatePartialSpecializationDecl *PS = 207 CTD->findPartialSpecialization(Base.getType())) 208 if (PS->getCanonicalDecl() != RD->getCanonicalDecl()) 209 BaseRD = PS; 210 } 211 } 212 } 213 if (BaseRD) { 214 for (NamedDecl *ND : BaseRD->lookup(&II)) { 215 if (!isa<TypeDecl>(ND)) 216 return UnqualifiedTypeNameLookupResult::FoundNonType; 217 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; 218 } 219 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) { 220 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) { 221 case UnqualifiedTypeNameLookupResult::FoundNonType: 222 return UnqualifiedTypeNameLookupResult::FoundNonType; 223 case UnqualifiedTypeNameLookupResult::FoundType: 224 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; 225 break; 226 case UnqualifiedTypeNameLookupResult::NotFound: 227 break; 228 } 229 } 230 } 231 } 232 233 return FoundTypeDecl; 234 } 235 236 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, 237 const IdentifierInfo &II, 238 SourceLocation NameLoc) { 239 // Lookup in the parent class template context, if any. 240 const CXXRecordDecl *RD = nullptr; 241 UnqualifiedTypeNameLookupResult FoundTypeDecl = 242 UnqualifiedTypeNameLookupResult::NotFound; 243 for (DeclContext *DC = S.CurContext; 244 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound; 245 DC = DC->getParent()) { 246 // Look for type decls in dependent base classes that have known primary 247 // templates. 248 RD = dyn_cast<CXXRecordDecl>(DC); 249 if (RD && RD->getDescribedClassTemplate()) 250 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD); 251 } 252 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType) 253 return nullptr; 254 255 // We found some types in dependent base classes. Recover as if the user 256 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the 257 // lookup during template instantiation. 258 S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II; 259 260 ASTContext &Context = S.Context; 261 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false, 262 cast<Type>(Context.getRecordType(RD))); 263 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II); 264 265 CXXScopeSpec SS; 266 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 267 268 TypeLocBuilder Builder; 269 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); 270 DepTL.setNameLoc(NameLoc); 271 DepTL.setElaboratedKeywordLoc(SourceLocation()); 272 DepTL.setQualifierLoc(SS.getWithLocInContext(Context)); 273 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 274 } 275 276 /// If the identifier refers to a type name within this scope, 277 /// return the declaration of that type. 278 /// 279 /// This routine performs ordinary name lookup of the identifier II 280 /// within the given scope, with optional C++ scope specifier SS, to 281 /// determine whether the name refers to a type. If so, returns an 282 /// opaque pointer (actually a QualType) corresponding to that 283 /// type. Otherwise, returns NULL. 284 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, 285 Scope *S, CXXScopeSpec *SS, 286 bool isClassName, bool HasTrailingDot, 287 ParsedType ObjectTypePtr, 288 bool IsCtorOrDtorName, 289 bool WantNontrivialTypeSourceInfo, 290 bool IsClassTemplateDeductionContext, 291 IdentifierInfo **CorrectedII) { 292 // FIXME: Consider allowing this outside C++1z mode as an extension. 293 bool AllowDeducedTemplate = IsClassTemplateDeductionContext && 294 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName && 295 !isClassName && !HasTrailingDot; 296 297 // Determine where we will perform name lookup. 298 DeclContext *LookupCtx = nullptr; 299 if (ObjectTypePtr) { 300 QualType ObjectType = ObjectTypePtr.get(); 301 if (ObjectType->isRecordType()) 302 LookupCtx = computeDeclContext(ObjectType); 303 } else if (SS && SS->isNotEmpty()) { 304 LookupCtx = computeDeclContext(*SS, false); 305 306 if (!LookupCtx) { 307 if (isDependentScopeSpecifier(*SS)) { 308 // C++ [temp.res]p3: 309 // A qualified-id that refers to a type and in which the 310 // nested-name-specifier depends on a template-parameter (14.6.2) 311 // shall be prefixed by the keyword typename to indicate that the 312 // qualified-id denotes a type, forming an 313 // elaborated-type-specifier (7.1.5.3). 314 // 315 // We therefore do not perform any name lookup if the result would 316 // refer to a member of an unknown specialization. 317 if (!isClassName && !IsCtorOrDtorName) 318 return nullptr; 319 320 // We know from the grammar that this name refers to a type, 321 // so build a dependent node to describe the type. 322 if (WantNontrivialTypeSourceInfo) 323 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get(); 324 325 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); 326 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc, 327 II, NameLoc); 328 return ParsedType::make(T); 329 } 330 331 return nullptr; 332 } 333 334 if (!LookupCtx->isDependentContext() && 335 RequireCompleteDeclContext(*SS, LookupCtx)) 336 return nullptr; 337 } 338 339 // FIXME: LookupNestedNameSpecifierName isn't the right kind of 340 // lookup for class-names. 341 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : 342 LookupOrdinaryName; 343 LookupResult Result(*this, &II, NameLoc, Kind); 344 if (LookupCtx) { 345 // Perform "qualified" name lookup into the declaration context we 346 // computed, which is either the type of the base of a member access 347 // expression or the declaration context associated with a prior 348 // nested-name-specifier. 349 LookupQualifiedName(Result, LookupCtx); 350 351 if (ObjectTypePtr && Result.empty()) { 352 // C++ [basic.lookup.classref]p3: 353 // If the unqualified-id is ~type-name, the type-name is looked up 354 // in the context of the entire postfix-expression. If the type T of 355 // the object expression is of a class type C, the type-name is also 356 // looked up in the scope of class C. At least one of the lookups shall 357 // find a name that refers to (possibly cv-qualified) T. 358 LookupName(Result, S); 359 } 360 } else { 361 // Perform unqualified name lookup. 362 LookupName(Result, S); 363 364 // For unqualified lookup in a class template in MSVC mode, look into 365 // dependent base classes where the primary class template is known. 366 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) { 367 if (ParsedType TypeInBase = 368 recoverFromTypeInKnownDependentBase(*this, II, NameLoc)) 369 return TypeInBase; 370 } 371 } 372 373 NamedDecl *IIDecl = nullptr; 374 switch (Result.getResultKind()) { 375 case LookupResult::NotFound: 376 case LookupResult::NotFoundInCurrentInstantiation: 377 if (CorrectedII) { 378 TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName, 379 AllowDeducedTemplate); 380 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind, 381 S, SS, CCC, CTK_ErrorRecovery); 382 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo(); 383 TemplateTy Template; 384 bool MemberOfUnknownSpecialization; 385 UnqualifiedId TemplateName; 386 TemplateName.setIdentifier(NewII, NameLoc); 387 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier(); 388 CXXScopeSpec NewSS, *NewSSPtr = SS; 389 if (SS && NNS) { 390 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 391 NewSSPtr = &NewSS; 392 } 393 if (Correction && (NNS || NewII != &II) && 394 // Ignore a correction to a template type as the to-be-corrected 395 // identifier is not a template (typo correction for template names 396 // is handled elsewhere). 397 !(getLangOpts().CPlusPlus && NewSSPtr && 398 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false, 399 Template, MemberOfUnknownSpecialization))) { 400 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr, 401 isClassName, HasTrailingDot, ObjectTypePtr, 402 IsCtorOrDtorName, 403 WantNontrivialTypeSourceInfo, 404 IsClassTemplateDeductionContext); 405 if (Ty) { 406 diagnoseTypo(Correction, 407 PDiag(diag::err_unknown_type_or_class_name_suggest) 408 << Result.getLookupName() << isClassName); 409 if (SS && NNS) 410 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc)); 411 *CorrectedII = NewII; 412 return Ty; 413 } 414 } 415 } 416 // If typo correction failed or was not performed, fall through 417 LLVM_FALLTHROUGH; 418 case LookupResult::FoundOverloaded: 419 case LookupResult::FoundUnresolvedValue: 420 Result.suppressDiagnostics(); 421 return nullptr; 422 423 case LookupResult::Ambiguous: 424 // Recover from type-hiding ambiguities by hiding the type. We'll 425 // do the lookup again when looking for an object, and we can 426 // diagnose the error then. If we don't do this, then the error 427 // about hiding the type will be immediately followed by an error 428 // that only makes sense if the identifier was treated like a type. 429 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { 430 Result.suppressDiagnostics(); 431 return nullptr; 432 } 433 434 // Look to see if we have a type anywhere in the list of results. 435 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); 436 Res != ResEnd; ++Res) { 437 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) || 438 (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) { 439 if (!IIDecl || 440 (*Res)->getLocation().getRawEncoding() < 441 IIDecl->getLocation().getRawEncoding()) 442 IIDecl = *Res; 443 } 444 } 445 446 if (!IIDecl) { 447 // None of the entities we found is a type, so there is no way 448 // to even assume that the result is a type. In this case, don't 449 // complain about the ambiguity. The parser will either try to 450 // perform this lookup again (e.g., as an object name), which 451 // will produce the ambiguity, or will complain that it expected 452 // a type name. 453 Result.suppressDiagnostics(); 454 return nullptr; 455 } 456 457 // We found a type within the ambiguous lookup; diagnose the 458 // ambiguity and then return that type. This might be the right 459 // answer, or it might not be, but it suppresses any attempt to 460 // perform the name lookup again. 461 break; 462 463 case LookupResult::Found: 464 IIDecl = Result.getFoundDecl(); 465 break; 466 } 467 468 assert(IIDecl && "Didn't find decl"); 469 470 QualType T; 471 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { 472 // C++ [class.qual]p2: A lookup that would find the injected-class-name 473 // instead names the constructors of the class, except when naming a class. 474 // This is ill-formed when we're not actually forming a ctor or dtor name. 475 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 476 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD); 477 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD && 478 FoundRD->isInjectedClassName() && 479 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) 480 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor) 481 << &II << /*Type*/1; 482 483 DiagnoseUseOfDecl(IIDecl, NameLoc); 484 485 T = Context.getTypeDeclType(TD); 486 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 487 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { 488 (void)DiagnoseUseOfDecl(IDecl, NameLoc); 489 if (!HasTrailingDot) 490 T = Context.getObjCInterfaceType(IDecl); 491 } else if (AllowDeducedTemplate) { 492 if (auto *TD = getAsTypeTemplateDecl(IIDecl)) 493 T = Context.getDeducedTemplateSpecializationType(TemplateName(TD), 494 QualType(), false); 495 } 496 497 if (T.isNull()) { 498 // If it's not plausibly a type, suppress diagnostics. 499 Result.suppressDiagnostics(); 500 return nullptr; 501 } 502 503 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a 504 // constructor or destructor name (in such a case, the scope specifier 505 // will be attached to the enclosing Expr or Decl node). 506 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName && 507 !isa<ObjCInterfaceDecl>(IIDecl)) { 508 if (WantNontrivialTypeSourceInfo) { 509 // Construct a type with type-source information. 510 TypeLocBuilder Builder; 511 Builder.pushTypeSpec(T).setNameLoc(NameLoc); 512 513 T = getElaboratedType(ETK_None, *SS, T); 514 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); 515 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 516 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context)); 517 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 518 } else { 519 T = getElaboratedType(ETK_None, *SS, T); 520 } 521 } 522 523 return ParsedType::make(T); 524 } 525 526 // Builds a fake NNS for the given decl context. 527 static NestedNameSpecifier * 528 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) { 529 for (;; DC = DC->getLookupParent()) { 530 DC = DC->getPrimaryContext(); 531 auto *ND = dyn_cast<NamespaceDecl>(DC); 532 if (ND && !ND->isInline() && !ND->isAnonymousNamespace()) 533 return NestedNameSpecifier::Create(Context, nullptr, ND); 534 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) 535 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), 536 RD->getTypeForDecl()); 537 else if (isa<TranslationUnitDecl>(DC)) 538 return NestedNameSpecifier::GlobalSpecifier(Context); 539 } 540 llvm_unreachable("something isn't in TU scope?"); 541 } 542 543 /// Find the parent class with dependent bases of the innermost enclosing method 544 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end 545 /// up allowing unqualified dependent type names at class-level, which MSVC 546 /// correctly rejects. 547 static const CXXRecordDecl * 548 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) { 549 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) { 550 DC = DC->getPrimaryContext(); 551 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) 552 if (MD->getParent()->hasAnyDependentBases()) 553 return MD->getParent(); 554 } 555 return nullptr; 556 } 557 558 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II, 559 SourceLocation NameLoc, 560 bool IsTemplateTypeArg) { 561 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode"); 562 563 NestedNameSpecifier *NNS = nullptr; 564 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) { 565 // If we weren't able to parse a default template argument, delay lookup 566 // until instantiation time by making a non-dependent DependentTypeName. We 567 // pretend we saw a NestedNameSpecifier referring to the current scope, and 568 // lookup is retried. 569 // FIXME: This hurts our diagnostic quality, since we get errors like "no 570 // type named 'Foo' in 'current_namespace'" when the user didn't write any 571 // name specifiers. 572 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext); 573 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II; 574 } else if (const CXXRecordDecl *RD = 575 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) { 576 // Build a DependentNameType that will perform lookup into RD at 577 // instantiation time. 578 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), 579 RD->getTypeForDecl()); 580 581 // Diagnose that this identifier was undeclared, and retry the lookup during 582 // template instantiation. 583 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II 584 << RD; 585 } else { 586 // This is not a situation that we should recover from. 587 return ParsedType(); 588 } 589 590 QualType T = Context.getDependentNameType(ETK_None, NNS, &II); 591 592 // Build type location information. We synthesized the qualifier, so we have 593 // to build a fake NestedNameSpecifierLoc. 594 NestedNameSpecifierLocBuilder NNSLocBuilder; 595 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 596 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context); 597 598 TypeLocBuilder Builder; 599 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); 600 DepTL.setNameLoc(NameLoc); 601 DepTL.setElaboratedKeywordLoc(SourceLocation()); 602 DepTL.setQualifierLoc(QualifierLoc); 603 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 604 } 605 606 /// isTagName() - This method is called *for error recovery purposes only* 607 /// to determine if the specified name is a valid tag name ("struct foo"). If 608 /// so, this returns the TST for the tag corresponding to it (TST_enum, 609 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose 610 /// cases in C where the user forgot to specify the tag. 611 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { 612 // Do a tag name lookup in this scope. 613 LookupResult R(*this, &II, SourceLocation(), LookupTagName); 614 LookupName(R, S, false); 615 R.suppressDiagnostics(); 616 if (R.getResultKind() == LookupResult::Found) 617 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { 618 switch (TD->getTagKind()) { 619 case TTK_Struct: return DeclSpec::TST_struct; 620 case TTK_Interface: return DeclSpec::TST_interface; 621 case TTK_Union: return DeclSpec::TST_union; 622 case TTK_Class: return DeclSpec::TST_class; 623 case TTK_Enum: return DeclSpec::TST_enum; 624 } 625 } 626 627 return DeclSpec::TST_unspecified; 628 } 629 630 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope, 631 /// if a CXXScopeSpec's type is equal to the type of one of the base classes 632 /// then downgrade the missing typename error to a warning. 633 /// This is needed for MSVC compatibility; Example: 634 /// @code 635 /// template<class T> class A { 636 /// public: 637 /// typedef int TYPE; 638 /// }; 639 /// template<class T> class B : public A<T> { 640 /// public: 641 /// A<T>::TYPE a; // no typename required because A<T> is a base class. 642 /// }; 643 /// @endcode 644 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) { 645 if (CurContext->isRecord()) { 646 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super) 647 return true; 648 649 const Type *Ty = SS->getScopeRep()->getAsType(); 650 651 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext); 652 for (const auto &Base : RD->bases()) 653 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType())) 654 return true; 655 return S->isFunctionPrototypeScope(); 656 } 657 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope(); 658 } 659 660 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II, 661 SourceLocation IILoc, 662 Scope *S, 663 CXXScopeSpec *SS, 664 ParsedType &SuggestedType, 665 bool IsTemplateName) { 666 // Don't report typename errors for editor placeholders. 667 if (II->isEditorPlaceholder()) 668 return; 669 // We don't have anything to suggest (yet). 670 SuggestedType = nullptr; 671 672 // There may have been a typo in the name of the type. Look up typo 673 // results, in case we have something that we can suggest. 674 TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false, 675 /*AllowTemplates=*/IsTemplateName, 676 /*AllowNonTemplates=*/!IsTemplateName); 677 if (TypoCorrection Corrected = 678 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS, 679 CCC, CTK_ErrorRecovery)) { 680 // FIXME: Support error recovery for the template-name case. 681 bool CanRecover = !IsTemplateName; 682 if (Corrected.isKeyword()) { 683 // We corrected to a keyword. 684 diagnoseTypo(Corrected, 685 PDiag(IsTemplateName ? diag::err_no_template_suggest 686 : diag::err_unknown_typename_suggest) 687 << II); 688 II = Corrected.getCorrectionAsIdentifierInfo(); 689 } else { 690 // We found a similarly-named type or interface; suggest that. 691 if (!SS || !SS->isSet()) { 692 diagnoseTypo(Corrected, 693 PDiag(IsTemplateName ? diag::err_no_template_suggest 694 : diag::err_unknown_typename_suggest) 695 << II, CanRecover); 696 } else if (DeclContext *DC = computeDeclContext(*SS, false)) { 697 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 698 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 699 II->getName().equals(CorrectedStr); 700 diagnoseTypo(Corrected, 701 PDiag(IsTemplateName 702 ? diag::err_no_member_template_suggest 703 : diag::err_unknown_nested_typename_suggest) 704 << II << DC << DroppedSpecifier << SS->getRange(), 705 CanRecover); 706 } else { 707 llvm_unreachable("could not have corrected a typo here"); 708 } 709 710 if (!CanRecover) 711 return; 712 713 CXXScopeSpec tmpSS; 714 if (Corrected.getCorrectionSpecifier()) 715 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 716 SourceRange(IILoc)); 717 // FIXME: Support class template argument deduction here. 718 SuggestedType = 719 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S, 720 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr, 721 /*IsCtorOrDtorName=*/false, 722 /*WantNontrivialTypeSourceInfo=*/true); 723 } 724 return; 725 } 726 727 if (getLangOpts().CPlusPlus && !IsTemplateName) { 728 // See if II is a class template that the user forgot to pass arguments to. 729 UnqualifiedId Name; 730 Name.setIdentifier(II, IILoc); 731 CXXScopeSpec EmptySS; 732 TemplateTy TemplateResult; 733 bool MemberOfUnknownSpecialization; 734 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, 735 Name, nullptr, true, TemplateResult, 736 MemberOfUnknownSpecialization) == TNK_Type_template) { 737 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc); 738 return; 739 } 740 } 741 742 // FIXME: Should we move the logic that tries to recover from a missing tag 743 // (struct, union, enum) from Parser::ParseImplicitInt here, instead? 744 745 if (!SS || (!SS->isSet() && !SS->isInvalid())) 746 Diag(IILoc, IsTemplateName ? diag::err_no_template 747 : diag::err_unknown_typename) 748 << II; 749 else if (DeclContext *DC = computeDeclContext(*SS, false)) 750 Diag(IILoc, IsTemplateName ? diag::err_no_member_template 751 : diag::err_typename_nested_not_found) 752 << II << DC << SS->getRange(); 753 else if (SS->isValid() && SS->getScopeRep()->containsErrors()) { 754 SuggestedType = 755 ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get(); 756 } else if (isDependentScopeSpecifier(*SS)) { 757 unsigned DiagID = diag::err_typename_missing; 758 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S)) 759 DiagID = diag::ext_typename_missing; 760 761 Diag(SS->getRange().getBegin(), DiagID) 762 << SS->getScopeRep() << II->getName() 763 << SourceRange(SS->getRange().getBegin(), IILoc) 764 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); 765 SuggestedType = ActOnTypenameType(S, SourceLocation(), 766 *SS, *II, IILoc).get(); 767 } else { 768 assert(SS && SS->isInvalid() && 769 "Invalid scope specifier has already been diagnosed"); 770 } 771 } 772 773 /// Determine whether the given result set contains either a type name 774 /// or 775 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { 776 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus && 777 NextToken.is(tok::less); 778 779 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 780 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I)) 781 return true; 782 783 if (CheckTemplate && isa<TemplateDecl>(*I)) 784 return true; 785 } 786 787 return false; 788 } 789 790 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, 791 Scope *S, CXXScopeSpec &SS, 792 IdentifierInfo *&Name, 793 SourceLocation NameLoc) { 794 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName); 795 SemaRef.LookupParsedName(R, S, &SS); 796 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) { 797 StringRef FixItTagName; 798 switch (Tag->getTagKind()) { 799 case TTK_Class: 800 FixItTagName = "class "; 801 break; 802 803 case TTK_Enum: 804 FixItTagName = "enum "; 805 break; 806 807 case TTK_Struct: 808 FixItTagName = "struct "; 809 break; 810 811 case TTK_Interface: 812 FixItTagName = "__interface "; 813 break; 814 815 case TTK_Union: 816 FixItTagName = "union "; 817 break; 818 } 819 820 StringRef TagName = FixItTagName.drop_back(); 821 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag) 822 << Name << TagName << SemaRef.getLangOpts().CPlusPlus 823 << FixItHint::CreateInsertion(NameLoc, FixItTagName); 824 825 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end(); 826 I != IEnd; ++I) 827 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) 828 << Name << TagName; 829 830 // Replace lookup results with just the tag decl. 831 Result.clear(Sema::LookupTagName); 832 SemaRef.LookupParsedName(Result, S, &SS); 833 return true; 834 } 835 836 return false; 837 } 838 839 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier. 840 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS, 841 QualType T, SourceLocation NameLoc) { 842 ASTContext &Context = S.Context; 843 844 TypeLocBuilder Builder; 845 Builder.pushTypeSpec(T).setNameLoc(NameLoc); 846 847 T = S.getElaboratedType(ETK_None, SS, T); 848 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); 849 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 850 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 851 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 852 } 853 854 Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, 855 IdentifierInfo *&Name, 856 SourceLocation NameLoc, 857 const Token &NextToken, 858 CorrectionCandidateCallback *CCC) { 859 DeclarationNameInfo NameInfo(Name, NameLoc); 860 ObjCMethodDecl *CurMethod = getCurMethodDecl(); 861 862 assert(NextToken.isNot(tok::coloncolon) && 863 "parse nested name specifiers before calling ClassifyName"); 864 if (getLangOpts().CPlusPlus && SS.isSet() && 865 isCurrentClassName(*Name, S, &SS)) { 866 // Per [class.qual]p2, this names the constructors of SS, not the 867 // injected-class-name. We don't have a classification for that. 868 // There's not much point caching this result, since the parser 869 // will reject it later. 870 return NameClassification::Unknown(); 871 } 872 873 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 874 LookupParsedName(Result, S, &SS, !CurMethod); 875 876 if (SS.isInvalid()) 877 return NameClassification::Error(); 878 879 // For unqualified lookup in a class template in MSVC mode, look into 880 // dependent base classes where the primary class template is known. 881 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) { 882 if (ParsedType TypeInBase = 883 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc)) 884 return TypeInBase; 885 } 886 887 // Perform lookup for Objective-C instance variables (including automatically 888 // synthesized instance variables), if we're in an Objective-C method. 889 // FIXME: This lookup really, really needs to be folded in to the normal 890 // unqualified lookup mechanism. 891 if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) { 892 DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name); 893 if (Ivar.isInvalid()) 894 return NameClassification::Error(); 895 if (Ivar.isUsable()) 896 return NameClassification::NonType(cast<NamedDecl>(Ivar.get())); 897 898 // We defer builtin creation until after ivar lookup inside ObjC methods. 899 if (Result.empty()) 900 LookupBuiltin(Result); 901 } 902 903 bool SecondTry = false; 904 bool IsFilteredTemplateName = false; 905 906 Corrected: 907 switch (Result.getResultKind()) { 908 case LookupResult::NotFound: 909 // If an unqualified-id is followed by a '(', then we have a function 910 // call. 911 if (SS.isEmpty() && NextToken.is(tok::l_paren)) { 912 // In C++, this is an ADL-only call. 913 // FIXME: Reference? 914 if (getLangOpts().CPlusPlus) 915 return NameClassification::UndeclaredNonType(); 916 917 // C90 6.3.2.2: 918 // If the expression that precedes the parenthesized argument list in a 919 // function call consists solely of an identifier, and if no 920 // declaration is visible for this identifier, the identifier is 921 // implicitly declared exactly as if, in the innermost block containing 922 // the function call, the declaration 923 // 924 // extern int identifier (); 925 // 926 // appeared. 927 // 928 // We also allow this in C99 as an extension. 929 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) 930 return NameClassification::NonType(D); 931 } 932 933 if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) { 934 // In C++20 onwards, this could be an ADL-only call to a function 935 // template, and we're required to assume that this is a template name. 936 // 937 // FIXME: Find a way to still do typo correction in this case. 938 TemplateName Template = 939 Context.getAssumedTemplateName(NameInfo.getName()); 940 return NameClassification::UndeclaredTemplate(Template); 941 } 942 943 // In C, we first see whether there is a tag type by the same name, in 944 // which case it's likely that the user just forgot to write "enum", 945 // "struct", or "union". 946 if (!getLangOpts().CPlusPlus && !SecondTry && 947 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { 948 break; 949 } 950 951 // Perform typo correction to determine if there is another name that is 952 // close to this name. 953 if (!SecondTry && CCC) { 954 SecondTry = true; 955 if (TypoCorrection Corrected = 956 CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S, 957 &SS, *CCC, CTK_ErrorRecovery)) { 958 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; 959 unsigned QualifiedDiag = diag::err_no_member_suggest; 960 961 NamedDecl *FirstDecl = Corrected.getFoundDecl(); 962 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl(); 963 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 964 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) { 965 UnqualifiedDiag = diag::err_no_template_suggest; 966 QualifiedDiag = diag::err_no_member_template_suggest; 967 } else if (UnderlyingFirstDecl && 968 (isa<TypeDecl>(UnderlyingFirstDecl) || 969 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) || 970 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) { 971 UnqualifiedDiag = diag::err_unknown_typename_suggest; 972 QualifiedDiag = diag::err_unknown_nested_typename_suggest; 973 } 974 975 if (SS.isEmpty()) { 976 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name); 977 } else {// FIXME: is this even reachable? Test it. 978 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 979 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 980 Name->getName().equals(CorrectedStr); 981 diagnoseTypo(Corrected, PDiag(QualifiedDiag) 982 << Name << computeDeclContext(SS, false) 983 << DroppedSpecifier << SS.getRange()); 984 } 985 986 // Update the name, so that the caller has the new name. 987 Name = Corrected.getCorrectionAsIdentifierInfo(); 988 989 // Typo correction corrected to a keyword. 990 if (Corrected.isKeyword()) 991 return Name; 992 993 // Also update the LookupResult... 994 // FIXME: This should probably go away at some point 995 Result.clear(); 996 Result.setLookupName(Corrected.getCorrection()); 997 if (FirstDecl) 998 Result.addDecl(FirstDecl); 999 1000 // If we found an Objective-C instance variable, let 1001 // LookupInObjCMethod build the appropriate expression to 1002 // reference the ivar. 1003 // FIXME: This is a gross hack. 1004 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { 1005 DeclResult R = 1006 LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier()); 1007 if (R.isInvalid()) 1008 return NameClassification::Error(); 1009 if (R.isUsable()) 1010 return NameClassification::NonType(Ivar); 1011 } 1012 1013 goto Corrected; 1014 } 1015 } 1016 1017 // We failed to correct; just fall through and let the parser deal with it. 1018 Result.suppressDiagnostics(); 1019 return NameClassification::Unknown(); 1020 1021 case LookupResult::NotFoundInCurrentInstantiation: { 1022 // We performed name lookup into the current instantiation, and there were 1023 // dependent bases, so we treat this result the same way as any other 1024 // dependent nested-name-specifier. 1025 1026 // C++ [temp.res]p2: 1027 // A name used in a template declaration or definition and that is 1028 // dependent on a template-parameter is assumed not to name a type 1029 // unless the applicable name lookup finds a type name or the name is 1030 // qualified by the keyword typename. 1031 // 1032 // FIXME: If the next token is '<', we might want to ask the parser to 1033 // perform some heroics to see if we actually have a 1034 // template-argument-list, which would indicate a missing 'template' 1035 // keyword here. 1036 return NameClassification::DependentNonType(); 1037 } 1038 1039 case LookupResult::Found: 1040 case LookupResult::FoundOverloaded: 1041 case LookupResult::FoundUnresolvedValue: 1042 break; 1043 1044 case LookupResult::Ambiguous: 1045 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 1046 hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true, 1047 /*AllowDependent=*/false)) { 1048 // C++ [temp.local]p3: 1049 // A lookup that finds an injected-class-name (10.2) can result in an 1050 // ambiguity in certain cases (for example, if it is found in more than 1051 // one base class). If all of the injected-class-names that are found 1052 // refer to specializations of the same class template, and if the name 1053 // is followed by a template-argument-list, the reference refers to the 1054 // class template itself and not a specialization thereof, and is not 1055 // ambiguous. 1056 // 1057 // This filtering can make an ambiguous result into an unambiguous one, 1058 // so try again after filtering out template names. 1059 FilterAcceptableTemplateNames(Result); 1060 if (!Result.isAmbiguous()) { 1061 IsFilteredTemplateName = true; 1062 break; 1063 } 1064 } 1065 1066 // Diagnose the ambiguity and return an error. 1067 return NameClassification::Error(); 1068 } 1069 1070 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 1071 (IsFilteredTemplateName || 1072 hasAnyAcceptableTemplateNames( 1073 Result, /*AllowFunctionTemplates=*/true, 1074 /*AllowDependent=*/false, 1075 /*AllowNonTemplateFunctions*/ SS.isEmpty() && 1076 getLangOpts().CPlusPlus20))) { 1077 // C++ [temp.names]p3: 1078 // After name lookup (3.4) finds that a name is a template-name or that 1079 // an operator-function-id or a literal- operator-id refers to a set of 1080 // overloaded functions any member of which is a function template if 1081 // this is followed by a <, the < is always taken as the delimiter of a 1082 // template-argument-list and never as the less-than operator. 1083 // C++2a [temp.names]p2: 1084 // A name is also considered to refer to a template if it is an 1085 // unqualified-id followed by a < and name lookup finds either one 1086 // or more functions or finds nothing. 1087 if (!IsFilteredTemplateName) 1088 FilterAcceptableTemplateNames(Result); 1089 1090 bool IsFunctionTemplate; 1091 bool IsVarTemplate; 1092 TemplateName Template; 1093 if (Result.end() - Result.begin() > 1) { 1094 IsFunctionTemplate = true; 1095 Template = Context.getOverloadedTemplateName(Result.begin(), 1096 Result.end()); 1097 } else if (!Result.empty()) { 1098 auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl( 1099 *Result.begin(), /*AllowFunctionTemplates=*/true, 1100 /*AllowDependent=*/false)); 1101 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD); 1102 IsVarTemplate = isa<VarTemplateDecl>(TD); 1103 1104 if (SS.isNotEmpty()) 1105 Template = 1106 Context.getQualifiedTemplateName(SS.getScopeRep(), 1107 /*TemplateKeyword=*/false, TD); 1108 else 1109 Template = TemplateName(TD); 1110 } else { 1111 // All results were non-template functions. This is a function template 1112 // name. 1113 IsFunctionTemplate = true; 1114 Template = Context.getAssumedTemplateName(NameInfo.getName()); 1115 } 1116 1117 if (IsFunctionTemplate) { 1118 // Function templates always go through overload resolution, at which 1119 // point we'll perform the various checks (e.g., accessibility) we need 1120 // to based on which function we selected. 1121 Result.suppressDiagnostics(); 1122 1123 return NameClassification::FunctionTemplate(Template); 1124 } 1125 1126 return IsVarTemplate ? NameClassification::VarTemplate(Template) 1127 : NameClassification::TypeTemplate(Template); 1128 } 1129 1130 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); 1131 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) { 1132 DiagnoseUseOfDecl(Type, NameLoc); 1133 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 1134 QualType T = Context.getTypeDeclType(Type); 1135 if (SS.isNotEmpty()) 1136 return buildNestedType(*this, SS, T, NameLoc); 1137 return ParsedType::make(T); 1138 } 1139 1140 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl); 1141 if (!Class) { 1142 // FIXME: It's unfortunate that we don't have a Type node for handling this. 1143 if (ObjCCompatibleAliasDecl *Alias = 1144 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl)) 1145 Class = Alias->getClassInterface(); 1146 } 1147 1148 if (Class) { 1149 DiagnoseUseOfDecl(Class, NameLoc); 1150 1151 if (NextToken.is(tok::period)) { 1152 // Interface. <something> is parsed as a property reference expression. 1153 // Just return "unknown" as a fall-through for now. 1154 Result.suppressDiagnostics(); 1155 return NameClassification::Unknown(); 1156 } 1157 1158 QualType T = Context.getObjCInterfaceType(Class); 1159 return ParsedType::make(T); 1160 } 1161 1162 if (isa<ConceptDecl>(FirstDecl)) 1163 return NameClassification::Concept( 1164 TemplateName(cast<TemplateDecl>(FirstDecl))); 1165 1166 // We can have a type template here if we're classifying a template argument. 1167 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) && 1168 !isa<VarTemplateDecl>(FirstDecl)) 1169 return NameClassification::TypeTemplate( 1170 TemplateName(cast<TemplateDecl>(FirstDecl))); 1171 1172 // Check for a tag type hidden by a non-type decl in a few cases where it 1173 // seems likely a type is wanted instead of the non-type that was found. 1174 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star); 1175 if ((NextToken.is(tok::identifier) || 1176 (NextIsOp && 1177 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) && 1178 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { 1179 TypeDecl *Type = Result.getAsSingle<TypeDecl>(); 1180 DiagnoseUseOfDecl(Type, NameLoc); 1181 QualType T = Context.getTypeDeclType(Type); 1182 if (SS.isNotEmpty()) 1183 return buildNestedType(*this, SS, T, NameLoc); 1184 return ParsedType::make(T); 1185 } 1186 1187 // FIXME: This is context-dependent. We need to defer building the member 1188 // expression until the classification is consumed. 1189 if (FirstDecl->isCXXClassMember()) 1190 return NameClassification::ContextIndependentExpr( 1191 BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, nullptr, 1192 S)); 1193 1194 // If we already know which single declaration is referenced, just annotate 1195 // that declaration directly. 1196 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); 1197 if (Result.isSingleResult() && !ADL) 1198 return NameClassification::NonType(Result.getRepresentativeDecl()); 1199 1200 // Build an UnresolvedLookupExpr. Note that this doesn't depend on the 1201 // context in which we performed classification, so it's safe to do now. 1202 return NameClassification::ContextIndependentExpr( 1203 BuildDeclarationNameExpr(SS, Result, ADL)); 1204 } 1205 1206 ExprResult 1207 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name, 1208 SourceLocation NameLoc) { 1209 assert(getLangOpts().CPlusPlus && "ADL-only call in C?"); 1210 CXXScopeSpec SS; 1211 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 1212 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true); 1213 } 1214 1215 ExprResult 1216 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS, 1217 IdentifierInfo *Name, 1218 SourceLocation NameLoc, 1219 bool IsAddressOfOperand) { 1220 DeclarationNameInfo NameInfo(Name, NameLoc); 1221 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(), 1222 NameInfo, IsAddressOfOperand, 1223 /*TemplateArgs=*/nullptr); 1224 } 1225 1226 ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS, 1227 NamedDecl *Found, 1228 SourceLocation NameLoc, 1229 const Token &NextToken) { 1230 if (getCurMethodDecl() && SS.isEmpty()) 1231 if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl())) 1232 return BuildIvarRefExpr(S, NameLoc, Ivar); 1233 1234 // Reconstruct the lookup result. 1235 LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName); 1236 Result.addDecl(Found); 1237 Result.resolveKind(); 1238 1239 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); 1240 return BuildDeclarationNameExpr(SS, Result, ADL); 1241 } 1242 1243 Sema::TemplateNameKindForDiagnostics 1244 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) { 1245 auto *TD = Name.getAsTemplateDecl(); 1246 if (!TD) 1247 return TemplateNameKindForDiagnostics::DependentTemplate; 1248 if (isa<ClassTemplateDecl>(TD)) 1249 return TemplateNameKindForDiagnostics::ClassTemplate; 1250 if (isa<FunctionTemplateDecl>(TD)) 1251 return TemplateNameKindForDiagnostics::FunctionTemplate; 1252 if (isa<VarTemplateDecl>(TD)) 1253 return TemplateNameKindForDiagnostics::VarTemplate; 1254 if (isa<TypeAliasTemplateDecl>(TD)) 1255 return TemplateNameKindForDiagnostics::AliasTemplate; 1256 if (isa<TemplateTemplateParmDecl>(TD)) 1257 return TemplateNameKindForDiagnostics::TemplateTemplateParam; 1258 if (isa<ConceptDecl>(TD)) 1259 return TemplateNameKindForDiagnostics::Concept; 1260 return TemplateNameKindForDiagnostics::DependentTemplate; 1261 } 1262 1263 void Sema::PushDeclContext(Scope *S, DeclContext *DC) { 1264 assert(DC->getLexicalParent() == CurContext && 1265 "The next DeclContext should be lexically contained in the current one."); 1266 CurContext = DC; 1267 S->setEntity(DC); 1268 } 1269 1270 void Sema::PopDeclContext() { 1271 assert(CurContext && "DeclContext imbalance!"); 1272 1273 CurContext = CurContext->getLexicalParent(); 1274 assert(CurContext && "Popped translation unit!"); 1275 } 1276 1277 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S, 1278 Decl *D) { 1279 // Unlike PushDeclContext, the context to which we return is not necessarily 1280 // the containing DC of TD, because the new context will be some pre-existing 1281 // TagDecl definition instead of a fresh one. 1282 auto Result = static_cast<SkippedDefinitionContext>(CurContext); 1283 CurContext = cast<TagDecl>(D)->getDefinition(); 1284 assert(CurContext && "skipping definition of undefined tag"); 1285 // Start lookups from the parent of the current context; we don't want to look 1286 // into the pre-existing complete definition. 1287 S->setEntity(CurContext->getLookupParent()); 1288 return Result; 1289 } 1290 1291 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) { 1292 CurContext = static_cast<decltype(CurContext)>(Context); 1293 } 1294 1295 /// EnterDeclaratorContext - Used when we must lookup names in the context 1296 /// of a declarator's nested name specifier. 1297 /// 1298 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { 1299 // C++0x [basic.lookup.unqual]p13: 1300 // A name used in the definition of a static data member of class 1301 // X (after the qualified-id of the static member) is looked up as 1302 // if the name was used in a member function of X. 1303 // C++0x [basic.lookup.unqual]p14: 1304 // If a variable member of a namespace is defined outside of the 1305 // scope of its namespace then any name used in the definition of 1306 // the variable member (after the declarator-id) is looked up as 1307 // if the definition of the variable member occurred in its 1308 // namespace. 1309 // Both of these imply that we should push a scope whose context 1310 // is the semantic context of the declaration. We can't use 1311 // PushDeclContext here because that context is not necessarily 1312 // lexically contained in the current context. Fortunately, 1313 // the containing scope should have the appropriate information. 1314 1315 assert(!S->getEntity() && "scope already has entity"); 1316 1317 #ifndef NDEBUG 1318 Scope *Ancestor = S->getParent(); 1319 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); 1320 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch"); 1321 #endif 1322 1323 CurContext = DC; 1324 S->setEntity(DC); 1325 1326 if (S->getParent()->isTemplateParamScope()) { 1327 // Also set the corresponding entities for all immediately-enclosing 1328 // template parameter scopes. 1329 EnterTemplatedContext(S->getParent(), DC); 1330 } 1331 } 1332 1333 void Sema::ExitDeclaratorContext(Scope *S) { 1334 assert(S->getEntity() == CurContext && "Context imbalance!"); 1335 1336 // Switch back to the lexical context. The safety of this is 1337 // enforced by an assert in EnterDeclaratorContext. 1338 Scope *Ancestor = S->getParent(); 1339 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); 1340 CurContext = Ancestor->getEntity(); 1341 1342 // We don't need to do anything with the scope, which is going to 1343 // disappear. 1344 } 1345 1346 void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) { 1347 assert(S->isTemplateParamScope() && 1348 "expected to be initializing a template parameter scope"); 1349 1350 // C++20 [temp.local]p7: 1351 // In the definition of a member of a class template that appears outside 1352 // of the class template definition, the name of a member of the class 1353 // template hides the name of a template-parameter of any enclosing class 1354 // templates (but not a template-parameter of the member if the member is a 1355 // class or function template). 1356 // C++20 [temp.local]p9: 1357 // In the definition of a class template or in the definition of a member 1358 // of such a template that appears outside of the template definition, for 1359 // each non-dependent base class (13.8.2.1), if the name of the base class 1360 // or the name of a member of the base class is the same as the name of a 1361 // template-parameter, the base class name or member name hides the 1362 // template-parameter name (6.4.10). 1363 // 1364 // This means that a template parameter scope should be searched immediately 1365 // after searching the DeclContext for which it is a template parameter 1366 // scope. For example, for 1367 // template<typename T> template<typename U> template<typename V> 1368 // void N::A<T>::B<U>::f(...) 1369 // we search V then B<U> (and base classes) then U then A<T> (and base 1370 // classes) then T then N then ::. 1371 unsigned ScopeDepth = getTemplateDepth(S); 1372 for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) { 1373 DeclContext *SearchDCAfterScope = DC; 1374 for (; DC; DC = DC->getLookupParent()) { 1375 if (const TemplateParameterList *TPL = 1376 cast<Decl>(DC)->getDescribedTemplateParams()) { 1377 unsigned DCDepth = TPL->getDepth() + 1; 1378 if (DCDepth > ScopeDepth) 1379 continue; 1380 if (ScopeDepth == DCDepth) 1381 SearchDCAfterScope = DC = DC->getLookupParent(); 1382 break; 1383 } 1384 } 1385 S->setLookupEntity(SearchDCAfterScope); 1386 } 1387 } 1388 1389 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { 1390 // We assume that the caller has already called 1391 // ActOnReenterTemplateScope so getTemplatedDecl() works. 1392 FunctionDecl *FD = D->getAsFunction(); 1393 if (!FD) 1394 return; 1395 1396 // Same implementation as PushDeclContext, but enters the context 1397 // from the lexical parent, rather than the top-level class. 1398 assert(CurContext == FD->getLexicalParent() && 1399 "The next DeclContext should be lexically contained in the current one."); 1400 CurContext = FD; 1401 S->setEntity(CurContext); 1402 1403 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { 1404 ParmVarDecl *Param = FD->getParamDecl(P); 1405 // If the parameter has an identifier, then add it to the scope 1406 if (Param->getIdentifier()) { 1407 S->AddDecl(Param); 1408 IdResolver.AddDecl(Param); 1409 } 1410 } 1411 } 1412 1413 void Sema::ActOnExitFunctionContext() { 1414 // Same implementation as PopDeclContext, but returns to the lexical parent, 1415 // rather than the top-level class. 1416 assert(CurContext && "DeclContext imbalance!"); 1417 CurContext = CurContext->getLexicalParent(); 1418 assert(CurContext && "Popped translation unit!"); 1419 } 1420 1421 /// Determine whether we allow overloading of the function 1422 /// PrevDecl with another declaration. 1423 /// 1424 /// This routine determines whether overloading is possible, not 1425 /// whether some new function is actually an overload. It will return 1426 /// true in C++ (where we can always provide overloads) or, as an 1427 /// extension, in C when the previous function is already an 1428 /// overloaded function declaration or has the "overloadable" 1429 /// attribute. 1430 static bool AllowOverloadingOfFunction(LookupResult &Previous, 1431 ASTContext &Context, 1432 const FunctionDecl *New) { 1433 if (Context.getLangOpts().CPlusPlus) 1434 return true; 1435 1436 if (Previous.getResultKind() == LookupResult::FoundOverloaded) 1437 return true; 1438 1439 return Previous.getResultKind() == LookupResult::Found && 1440 (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() || 1441 New->hasAttr<OverloadableAttr>()); 1442 } 1443 1444 /// Add this decl to the scope shadowed decl chains. 1445 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { 1446 // Move up the scope chain until we find the nearest enclosing 1447 // non-transparent context. The declaration will be introduced into this 1448 // scope. 1449 while (S->getEntity() && S->getEntity()->isTransparentContext()) 1450 S = S->getParent(); 1451 1452 // Add scoped declarations into their context, so that they can be 1453 // found later. Declarations without a context won't be inserted 1454 // into any context. 1455 if (AddToContext) 1456 CurContext->addDecl(D); 1457 1458 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they 1459 // are function-local declarations. 1460 if (getLangOpts().CPlusPlus && D->isOutOfLine() && 1461 !D->getDeclContext()->getRedeclContext()->Equals( 1462 D->getLexicalDeclContext()->getRedeclContext()) && 1463 !D->getLexicalDeclContext()->isFunctionOrMethod()) 1464 return; 1465 1466 // Template instantiations should also not be pushed into scope. 1467 if (isa<FunctionDecl>(D) && 1468 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) 1469 return; 1470 1471 // If this replaces anything in the current scope, 1472 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), 1473 IEnd = IdResolver.end(); 1474 for (; I != IEnd; ++I) { 1475 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { 1476 S->RemoveDecl(*I); 1477 IdResolver.RemoveDecl(*I); 1478 1479 // Should only need to replace one decl. 1480 break; 1481 } 1482 } 1483 1484 S->AddDecl(D); 1485 1486 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) { 1487 // Implicitly-generated labels may end up getting generated in an order that 1488 // isn't strictly lexical, which breaks name lookup. Be careful to insert 1489 // the label at the appropriate place in the identifier chain. 1490 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) { 1491 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); 1492 if (IDC == CurContext) { 1493 if (!S->isDeclScope(*I)) 1494 continue; 1495 } else if (IDC->Encloses(CurContext)) 1496 break; 1497 } 1498 1499 IdResolver.InsertDeclAfter(I, D); 1500 } else { 1501 IdResolver.AddDecl(D); 1502 } 1503 } 1504 1505 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S, 1506 bool AllowInlineNamespace) { 1507 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace); 1508 } 1509 1510 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { 1511 DeclContext *TargetDC = DC->getPrimaryContext(); 1512 do { 1513 if (DeclContext *ScopeDC = S->getEntity()) 1514 if (ScopeDC->getPrimaryContext() == TargetDC) 1515 return S; 1516 } while ((S = S->getParent())); 1517 1518 return nullptr; 1519 } 1520 1521 static bool isOutOfScopePreviousDeclaration(NamedDecl *, 1522 DeclContext*, 1523 ASTContext&); 1524 1525 /// Filters out lookup results that don't fall within the given scope 1526 /// as determined by isDeclInScope. 1527 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, 1528 bool ConsiderLinkage, 1529 bool AllowInlineNamespace) { 1530 LookupResult::Filter F = R.makeFilter(); 1531 while (F.hasNext()) { 1532 NamedDecl *D = F.next(); 1533 1534 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace)) 1535 continue; 1536 1537 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context)) 1538 continue; 1539 1540 F.erase(); 1541 } 1542 1543 F.done(); 1544 } 1545 1546 /// We've determined that \p New is a redeclaration of \p Old. Check that they 1547 /// have compatible owning modules. 1548 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) { 1549 // FIXME: The Modules TS is not clear about how friend declarations are 1550 // to be treated. It's not meaningful to have different owning modules for 1551 // linkage in redeclarations of the same entity, so for now allow the 1552 // redeclaration and change the owning modules to match. 1553 if (New->getFriendObjectKind() && 1554 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) { 1555 New->setLocalOwningModule(Old->getOwningModule()); 1556 makeMergedDefinitionVisible(New); 1557 return false; 1558 } 1559 1560 Module *NewM = New->getOwningModule(); 1561 Module *OldM = Old->getOwningModule(); 1562 1563 if (NewM && NewM->Kind == Module::PrivateModuleFragment) 1564 NewM = NewM->Parent; 1565 if (OldM && OldM->Kind == Module::PrivateModuleFragment) 1566 OldM = OldM->Parent; 1567 1568 if (NewM == OldM) 1569 return false; 1570 1571 bool NewIsModuleInterface = NewM && NewM->isModulePurview(); 1572 bool OldIsModuleInterface = OldM && OldM->isModulePurview(); 1573 if (NewIsModuleInterface || OldIsModuleInterface) { 1574 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]: 1575 // if a declaration of D [...] appears in the purview of a module, all 1576 // other such declarations shall appear in the purview of the same module 1577 Diag(New->getLocation(), diag::err_mismatched_owning_module) 1578 << New 1579 << NewIsModuleInterface 1580 << (NewIsModuleInterface ? NewM->getFullModuleName() : "") 1581 << OldIsModuleInterface 1582 << (OldIsModuleInterface ? OldM->getFullModuleName() : ""); 1583 Diag(Old->getLocation(), diag::note_previous_declaration); 1584 New->setInvalidDecl(); 1585 return true; 1586 } 1587 1588 return false; 1589 } 1590 1591 static bool isUsingDecl(NamedDecl *D) { 1592 return isa<UsingShadowDecl>(D) || 1593 isa<UnresolvedUsingTypenameDecl>(D) || 1594 isa<UnresolvedUsingValueDecl>(D); 1595 } 1596 1597 /// Removes using shadow declarations from the lookup results. 1598 static void RemoveUsingDecls(LookupResult &R) { 1599 LookupResult::Filter F = R.makeFilter(); 1600 while (F.hasNext()) 1601 if (isUsingDecl(F.next())) 1602 F.erase(); 1603 1604 F.done(); 1605 } 1606 1607 /// Check for this common pattern: 1608 /// @code 1609 /// class S { 1610 /// S(const S&); // DO NOT IMPLEMENT 1611 /// void operator=(const S&); // DO NOT IMPLEMENT 1612 /// }; 1613 /// @endcode 1614 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { 1615 // FIXME: Should check for private access too but access is set after we get 1616 // the decl here. 1617 if (D->doesThisDeclarationHaveABody()) 1618 return false; 1619 1620 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 1621 return CD->isCopyConstructor(); 1622 return D->isCopyAssignmentOperator(); 1623 } 1624 1625 // We need this to handle 1626 // 1627 // typedef struct { 1628 // void *foo() { return 0; } 1629 // } A; 1630 // 1631 // When we see foo we don't know if after the typedef we will get 'A' or '*A' 1632 // for example. If 'A', foo will have external linkage. If we have '*A', 1633 // foo will have no linkage. Since we can't know until we get to the end 1634 // of the typedef, this function finds out if D might have non-external linkage. 1635 // Callers should verify at the end of the TU if it D has external linkage or 1636 // not. 1637 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) { 1638 const DeclContext *DC = D->getDeclContext(); 1639 while (!DC->isTranslationUnit()) { 1640 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){ 1641 if (!RD->hasNameForLinkage()) 1642 return true; 1643 } 1644 DC = DC->getParent(); 1645 } 1646 1647 return !D->isExternallyVisible(); 1648 } 1649 1650 // FIXME: This needs to be refactored; some other isInMainFile users want 1651 // these semantics. 1652 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) { 1653 if (S.TUKind != TU_Complete) 1654 return false; 1655 return S.SourceMgr.isInMainFile(Loc); 1656 } 1657 1658 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { 1659 assert(D); 1660 1661 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) 1662 return false; 1663 1664 // Ignore all entities declared within templates, and out-of-line definitions 1665 // of members of class templates. 1666 if (D->getDeclContext()->isDependentContext() || 1667 D->getLexicalDeclContext()->isDependentContext()) 1668 return false; 1669 1670 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1671 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1672 return false; 1673 // A non-out-of-line declaration of a member specialization was implicitly 1674 // instantiated; it's the out-of-line declaration that we're interested in. 1675 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 1676 FD->getMemberSpecializationInfo() && !FD->isOutOfLine()) 1677 return false; 1678 1679 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 1680 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) 1681 return false; 1682 } else { 1683 // 'static inline' functions are defined in headers; don't warn. 1684 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation())) 1685 return false; 1686 } 1687 1688 if (FD->doesThisDeclarationHaveABody() && 1689 Context.DeclMustBeEmitted(FD)) 1690 return false; 1691 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1692 // Constants and utility variables are defined in headers with internal 1693 // linkage; don't warn. (Unlike functions, there isn't a convenient marker 1694 // like "inline".) 1695 if (!isMainFileLoc(*this, VD->getLocation())) 1696 return false; 1697 1698 if (Context.DeclMustBeEmitted(VD)) 1699 return false; 1700 1701 if (VD->isStaticDataMember() && 1702 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1703 return false; 1704 if (VD->isStaticDataMember() && 1705 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 1706 VD->getMemberSpecializationInfo() && !VD->isOutOfLine()) 1707 return false; 1708 1709 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation())) 1710 return false; 1711 } else { 1712 return false; 1713 } 1714 1715 // Only warn for unused decls internal to the translation unit. 1716 // FIXME: This seems like a bogus check; it suppresses -Wunused-function 1717 // for inline functions defined in the main source file, for instance. 1718 return mightHaveNonExternalLinkage(D); 1719 } 1720 1721 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { 1722 if (!D) 1723 return; 1724 1725 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1726 const FunctionDecl *First = FD->getFirstDecl(); 1727 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) 1728 return; // First should already be in the vector. 1729 } 1730 1731 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1732 const VarDecl *First = VD->getFirstDecl(); 1733 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) 1734 return; // First should already be in the vector. 1735 } 1736 1737 if (ShouldWarnIfUnusedFileScopedDecl(D)) 1738 UnusedFileScopedDecls.push_back(D); 1739 } 1740 1741 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { 1742 if (D->isInvalidDecl()) 1743 return false; 1744 1745 bool Referenced = false; 1746 if (auto *DD = dyn_cast<DecompositionDecl>(D)) { 1747 // For a decomposition declaration, warn if none of the bindings are 1748 // referenced, instead of if the variable itself is referenced (which 1749 // it is, by the bindings' expressions). 1750 for (auto *BD : DD->bindings()) { 1751 if (BD->isReferenced()) { 1752 Referenced = true; 1753 break; 1754 } 1755 } 1756 } else if (!D->getDeclName()) { 1757 return false; 1758 } else if (D->isReferenced() || D->isUsed()) { 1759 Referenced = true; 1760 } 1761 1762 if (Referenced || D->hasAttr<UnusedAttr>() || 1763 D->hasAttr<ObjCPreciseLifetimeAttr>()) 1764 return false; 1765 1766 if (isa<LabelDecl>(D)) 1767 return true; 1768 1769 // Except for labels, we only care about unused decls that are local to 1770 // functions. 1771 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod(); 1772 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext())) 1773 // For dependent types, the diagnostic is deferred. 1774 WithinFunction = 1775 WithinFunction || (R->isLocalClass() && !R->isDependentType()); 1776 if (!WithinFunction) 1777 return false; 1778 1779 if (isa<TypedefNameDecl>(D)) 1780 return true; 1781 1782 // White-list anything that isn't a local variable. 1783 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) 1784 return false; 1785 1786 // Types of valid local variables should be complete, so this should succeed. 1787 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1788 1789 // White-list anything with an __attribute__((unused)) type. 1790 const auto *Ty = VD->getType().getTypePtr(); 1791 1792 // Only look at the outermost level of typedef. 1793 if (const TypedefType *TT = Ty->getAs<TypedefType>()) { 1794 if (TT->getDecl()->hasAttr<UnusedAttr>()) 1795 return false; 1796 } 1797 1798 // If we failed to complete the type for some reason, or if the type is 1799 // dependent, don't diagnose the variable. 1800 if (Ty->isIncompleteType() || Ty->isDependentType()) 1801 return false; 1802 1803 // Look at the element type to ensure that the warning behaviour is 1804 // consistent for both scalars and arrays. 1805 Ty = Ty->getBaseElementTypeUnsafe(); 1806 1807 if (const TagType *TT = Ty->getAs<TagType>()) { 1808 const TagDecl *Tag = TT->getDecl(); 1809 if (Tag->hasAttr<UnusedAttr>()) 1810 return false; 1811 1812 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { 1813 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>()) 1814 return false; 1815 1816 if (const Expr *Init = VD->getInit()) { 1817 if (const ExprWithCleanups *Cleanups = 1818 dyn_cast<ExprWithCleanups>(Init)) 1819 Init = Cleanups->getSubExpr(); 1820 const CXXConstructExpr *Construct = 1821 dyn_cast<CXXConstructExpr>(Init); 1822 if (Construct && !Construct->isElidable()) { 1823 CXXConstructorDecl *CD = Construct->getConstructor(); 1824 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() && 1825 (VD->getInit()->isValueDependent() || !VD->evaluateValue())) 1826 return false; 1827 } 1828 1829 // Suppress the warning if we don't know how this is constructed, and 1830 // it could possibly be non-trivial constructor. 1831 if (Init->isTypeDependent()) 1832 for (const CXXConstructorDecl *Ctor : RD->ctors()) 1833 if (!Ctor->isTrivial()) 1834 return false; 1835 } 1836 } 1837 } 1838 1839 // TODO: __attribute__((unused)) templates? 1840 } 1841 1842 return true; 1843 } 1844 1845 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, 1846 FixItHint &Hint) { 1847 if (isa<LabelDecl>(D)) { 1848 SourceLocation AfterColon = Lexer::findLocationAfterToken( 1849 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), 1850 true); 1851 if (AfterColon.isInvalid()) 1852 return; 1853 Hint = FixItHint::CreateRemoval( 1854 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon)); 1855 } 1856 } 1857 1858 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) { 1859 if (D->getTypeForDecl()->isDependentType()) 1860 return; 1861 1862 for (auto *TmpD : D->decls()) { 1863 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD)) 1864 DiagnoseUnusedDecl(T); 1865 else if(const auto *R = dyn_cast<RecordDecl>(TmpD)) 1866 DiagnoseUnusedNestedTypedefs(R); 1867 } 1868 } 1869 1870 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used 1871 /// unless they are marked attr(unused). 1872 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { 1873 if (!ShouldDiagnoseUnusedDecl(D)) 1874 return; 1875 1876 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 1877 // typedefs can be referenced later on, so the diagnostics are emitted 1878 // at end-of-translation-unit. 1879 UnusedLocalTypedefNameCandidates.insert(TD); 1880 return; 1881 } 1882 1883 FixItHint Hint; 1884 GenerateFixForUnusedDecl(D, Context, Hint); 1885 1886 unsigned DiagID; 1887 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) 1888 DiagID = diag::warn_unused_exception_param; 1889 else if (isa<LabelDecl>(D)) 1890 DiagID = diag::warn_unused_label; 1891 else 1892 DiagID = diag::warn_unused_variable; 1893 1894 Diag(D->getLocation(), DiagID) << D << Hint; 1895 } 1896 1897 static void CheckPoppedLabel(LabelDecl *L, Sema &S) { 1898 // Verify that we have no forward references left. If so, there was a goto 1899 // or address of a label taken, but no definition of it. Label fwd 1900 // definitions are indicated with a null substmt which is also not a resolved 1901 // MS inline assembly label name. 1902 bool Diagnose = false; 1903 if (L->isMSAsmLabel()) 1904 Diagnose = !L->isResolvedMSAsmLabel(); 1905 else 1906 Diagnose = L->getStmt() == nullptr; 1907 if (Diagnose) 1908 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName(); 1909 } 1910 1911 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { 1912 S->mergeNRVOIntoParent(); 1913 1914 if (S->decl_empty()) return; 1915 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && 1916 "Scope shouldn't contain decls!"); 1917 1918 for (auto *TmpD : S->decls()) { 1919 assert(TmpD && "This decl didn't get pushed??"); 1920 1921 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"); 1922 NamedDecl *D = cast<NamedDecl>(TmpD); 1923 1924 // Diagnose unused variables in this scope. 1925 if (!S->hasUnrecoverableErrorOccurred()) { 1926 DiagnoseUnusedDecl(D); 1927 if (const auto *RD = dyn_cast<RecordDecl>(D)) 1928 DiagnoseUnusedNestedTypedefs(RD); 1929 } 1930 1931 if (!D->getDeclName()) continue; 1932 1933 // If this was a forward reference to a label, verify it was defined. 1934 if (LabelDecl *LD = dyn_cast<LabelDecl>(D)) 1935 CheckPoppedLabel(LD, *this); 1936 1937 // Remove this name from our lexical scope, and warn on it if we haven't 1938 // already. 1939 IdResolver.RemoveDecl(D); 1940 auto ShadowI = ShadowingDecls.find(D); 1941 if (ShadowI != ShadowingDecls.end()) { 1942 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) { 1943 Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field) 1944 << D << FD << FD->getParent(); 1945 Diag(FD->getLocation(), diag::note_previous_declaration); 1946 } 1947 ShadowingDecls.erase(ShadowI); 1948 } 1949 } 1950 } 1951 1952 /// Look for an Objective-C class in the translation unit. 1953 /// 1954 /// \param Id The name of the Objective-C class we're looking for. If 1955 /// typo-correction fixes this name, the Id will be updated 1956 /// to the fixed name. 1957 /// 1958 /// \param IdLoc The location of the name in the translation unit. 1959 /// 1960 /// \param DoTypoCorrection If true, this routine will attempt typo correction 1961 /// if there is no class with the given name. 1962 /// 1963 /// \returns The declaration of the named Objective-C class, or NULL if the 1964 /// class could not be found. 1965 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, 1966 SourceLocation IdLoc, 1967 bool DoTypoCorrection) { 1968 // The third "scope" argument is 0 since we aren't enabling lazy built-in 1969 // creation from this context. 1970 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); 1971 1972 if (!IDecl && DoTypoCorrection) { 1973 // Perform typo correction at the given location, but only if we 1974 // find an Objective-C class name. 1975 DeclFilterCCC<ObjCInterfaceDecl> CCC{}; 1976 if (TypoCorrection C = 1977 CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, 1978 TUScope, nullptr, CCC, CTK_ErrorRecovery)) { 1979 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id); 1980 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); 1981 Id = IDecl->getIdentifier(); 1982 } 1983 } 1984 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); 1985 // This routine must always return a class definition, if any. 1986 if (Def && Def->getDefinition()) 1987 Def = Def->getDefinition(); 1988 return Def; 1989 } 1990 1991 /// getNonFieldDeclScope - Retrieves the innermost scope, starting 1992 /// from S, where a non-field would be declared. This routine copes 1993 /// with the difference between C and C++ scoping rules in structs and 1994 /// unions. For example, the following code is well-formed in C but 1995 /// ill-formed in C++: 1996 /// @code 1997 /// struct S6 { 1998 /// enum { BAR } e; 1999 /// }; 2000 /// 2001 /// void test_S6() { 2002 /// struct S6 a; 2003 /// a.e = BAR; 2004 /// } 2005 /// @endcode 2006 /// For the declaration of BAR, this routine will return a different 2007 /// scope. The scope S will be the scope of the unnamed enumeration 2008 /// within S6. In C++, this routine will return the scope associated 2009 /// with S6, because the enumeration's scope is a transparent 2010 /// context but structures can contain non-field names. In C, this 2011 /// routine will return the translation unit scope, since the 2012 /// enumeration's scope is a transparent context and structures cannot 2013 /// contain non-field names. 2014 Scope *Sema::getNonFieldDeclScope(Scope *S) { 2015 while (((S->getFlags() & Scope::DeclScope) == 0) || 2016 (S->getEntity() && S->getEntity()->isTransparentContext()) || 2017 (S->isClassScope() && !getLangOpts().CPlusPlus)) 2018 S = S->getParent(); 2019 return S; 2020 } 2021 2022 /// Looks up the declaration of "struct objc_super" and 2023 /// saves it for later use in building builtin declaration of 2024 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such 2025 /// pre-existing declaration exists no action takes place. 2026 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S, 2027 IdentifierInfo *II) { 2028 if (!II->isStr("objc_msgSendSuper")) 2029 return; 2030 ASTContext &Context = ThisSema.Context; 2031 2032 LookupResult Result(ThisSema, &Context.Idents.get("objc_super"), 2033 SourceLocation(), Sema::LookupTagName); 2034 ThisSema.LookupName(Result, S); 2035 if (Result.getResultKind() == LookupResult::Found) 2036 if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) 2037 Context.setObjCSuperType(Context.getTagDeclType(TD)); 2038 } 2039 2040 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID, 2041 ASTContext::GetBuiltinTypeError Error) { 2042 switch (Error) { 2043 case ASTContext::GE_None: 2044 return ""; 2045 case ASTContext::GE_Missing_type: 2046 return BuiltinInfo.getHeaderName(ID); 2047 case ASTContext::GE_Missing_stdio: 2048 return "stdio.h"; 2049 case ASTContext::GE_Missing_setjmp: 2050 return "setjmp.h"; 2051 case ASTContext::GE_Missing_ucontext: 2052 return "ucontext.h"; 2053 } 2054 llvm_unreachable("unhandled error kind"); 2055 } 2056 2057 FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type, 2058 unsigned ID, SourceLocation Loc) { 2059 DeclContext *Parent = Context.getTranslationUnitDecl(); 2060 2061 if (getLangOpts().CPlusPlus) { 2062 LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create( 2063 Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false); 2064 CLinkageDecl->setImplicit(); 2065 Parent->addDecl(CLinkageDecl); 2066 Parent = CLinkageDecl; 2067 } 2068 2069 FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type, 2070 /*TInfo=*/nullptr, SC_Extern, false, 2071 Type->isFunctionProtoType()); 2072 New->setImplicit(); 2073 New->addAttr(BuiltinAttr::CreateImplicit(Context, ID)); 2074 2075 // Create Decl objects for each parameter, adding them to the 2076 // FunctionDecl. 2077 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) { 2078 SmallVector<ParmVarDecl *, 16> Params; 2079 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 2080 ParmVarDecl *parm = ParmVarDecl::Create( 2081 Context, New, SourceLocation(), SourceLocation(), nullptr, 2082 FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr); 2083 parm->setScopeInfo(0, i); 2084 Params.push_back(parm); 2085 } 2086 New->setParams(Params); 2087 } 2088 2089 AddKnownFunctionAttributes(New); 2090 return New; 2091 } 2092 2093 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at 2094 /// file scope. lazily create a decl for it. ForRedeclaration is true 2095 /// if we're creating this built-in in anticipation of redeclaring the 2096 /// built-in. 2097 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, 2098 Scope *S, bool ForRedeclaration, 2099 SourceLocation Loc) { 2100 LookupPredefedObjCSuperType(*this, S, II); 2101 2102 ASTContext::GetBuiltinTypeError Error; 2103 QualType R = Context.GetBuiltinType(ID, Error); 2104 if (Error) { 2105 if (!ForRedeclaration) 2106 return nullptr; 2107 2108 // If we have a builtin without an associated type we should not emit a 2109 // warning when we were not able to find a type for it. 2110 if (Error == ASTContext::GE_Missing_type) 2111 return nullptr; 2112 2113 // If we could not find a type for setjmp it is because the jmp_buf type was 2114 // not defined prior to the setjmp declaration. 2115 if (Error == ASTContext::GE_Missing_setjmp) { 2116 Diag(Loc, diag::warn_implicit_decl_no_jmp_buf) 2117 << Context.BuiltinInfo.getName(ID); 2118 return nullptr; 2119 } 2120 2121 // Generally, we emit a warning that the declaration requires the 2122 // appropriate header. 2123 Diag(Loc, diag::warn_implicit_decl_requires_sysheader) 2124 << getHeaderName(Context.BuiltinInfo, ID, Error) 2125 << Context.BuiltinInfo.getName(ID); 2126 return nullptr; 2127 } 2128 2129 if (!ForRedeclaration && 2130 (Context.BuiltinInfo.isPredefinedLibFunction(ID) || 2131 Context.BuiltinInfo.isHeaderDependentFunction(ID))) { 2132 Diag(Loc, diag::ext_implicit_lib_function_decl) 2133 << Context.BuiltinInfo.getName(ID) << R; 2134 if (Context.BuiltinInfo.getHeaderName(ID) && 2135 !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc)) 2136 Diag(Loc, diag::note_include_header_or_declare) 2137 << Context.BuiltinInfo.getHeaderName(ID) 2138 << Context.BuiltinInfo.getName(ID); 2139 } 2140 2141 if (R.isNull()) 2142 return nullptr; 2143 2144 FunctionDecl *New = CreateBuiltin(II, R, ID, Loc); 2145 RegisterLocallyScopedExternCDecl(New, S); 2146 2147 // TUScope is the translation-unit scope to insert this function into. 2148 // FIXME: This is hideous. We need to teach PushOnScopeChains to 2149 // relate Scopes to DeclContexts, and probably eliminate CurContext 2150 // entirely, but we're not there yet. 2151 DeclContext *SavedContext = CurContext; 2152 CurContext = New->getDeclContext(); 2153 PushOnScopeChains(New, TUScope); 2154 CurContext = SavedContext; 2155 return New; 2156 } 2157 2158 /// Typedef declarations don't have linkage, but they still denote the same 2159 /// entity if their types are the same. 2160 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's 2161 /// isSameEntity. 2162 static void filterNonConflictingPreviousTypedefDecls(Sema &S, 2163 TypedefNameDecl *Decl, 2164 LookupResult &Previous) { 2165 // This is only interesting when modules are enabled. 2166 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility) 2167 return; 2168 2169 // Empty sets are uninteresting. 2170 if (Previous.empty()) 2171 return; 2172 2173 LookupResult::Filter Filter = Previous.makeFilter(); 2174 while (Filter.hasNext()) { 2175 NamedDecl *Old = Filter.next(); 2176 2177 // Non-hidden declarations are never ignored. 2178 if (S.isVisible(Old)) 2179 continue; 2180 2181 // Declarations of the same entity are not ignored, even if they have 2182 // different linkages. 2183 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { 2184 if (S.Context.hasSameType(OldTD->getUnderlyingType(), 2185 Decl->getUnderlyingType())) 2186 continue; 2187 2188 // If both declarations give a tag declaration a typedef name for linkage 2189 // purposes, then they declare the same entity. 2190 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) && 2191 Decl->getAnonDeclWithTypedefName()) 2192 continue; 2193 } 2194 2195 Filter.erase(); 2196 } 2197 2198 Filter.done(); 2199 } 2200 2201 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) { 2202 QualType OldType; 2203 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old)) 2204 OldType = OldTypedef->getUnderlyingType(); 2205 else 2206 OldType = Context.getTypeDeclType(Old); 2207 QualType NewType = New->getUnderlyingType(); 2208 2209 if (NewType->isVariablyModifiedType()) { 2210 // Must not redefine a typedef with a variably-modified type. 2211 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; 2212 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef) 2213 << Kind << NewType; 2214 if (Old->getLocation().isValid()) 2215 notePreviousDefinition(Old, New->getLocation()); 2216 New->setInvalidDecl(); 2217 return true; 2218 } 2219 2220 if (OldType != NewType && 2221 !OldType->isDependentType() && 2222 !NewType->isDependentType() && 2223 !Context.hasSameType(OldType, NewType)) { 2224 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; 2225 Diag(New->getLocation(), diag::err_redefinition_different_typedef) 2226 << Kind << NewType << OldType; 2227 if (Old->getLocation().isValid()) 2228 notePreviousDefinition(Old, New->getLocation()); 2229 New->setInvalidDecl(); 2230 return true; 2231 } 2232 return false; 2233 } 2234 2235 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the 2236 /// same name and scope as a previous declaration 'Old'. Figure out 2237 /// how to resolve this situation, merging decls or emitting 2238 /// diagnostics as appropriate. If there was an error, set New to be invalid. 2239 /// 2240 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, 2241 LookupResult &OldDecls) { 2242 // If the new decl is known invalid already, don't bother doing any 2243 // merging checks. 2244 if (New->isInvalidDecl()) return; 2245 2246 // Allow multiple definitions for ObjC built-in typedefs. 2247 // FIXME: Verify the underlying types are equivalent! 2248 if (getLangOpts().ObjC) { 2249 const IdentifierInfo *TypeID = New->getIdentifier(); 2250 switch (TypeID->getLength()) { 2251 default: break; 2252 case 2: 2253 { 2254 if (!TypeID->isStr("id")) 2255 break; 2256 QualType T = New->getUnderlyingType(); 2257 if (!T->isPointerType()) 2258 break; 2259 if (!T->isVoidPointerType()) { 2260 QualType PT = T->castAs<PointerType>()->getPointeeType(); 2261 if (!PT->isStructureType()) 2262 break; 2263 } 2264 Context.setObjCIdRedefinitionType(T); 2265 // Install the built-in type for 'id', ignoring the current definition. 2266 New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); 2267 return; 2268 } 2269 case 5: 2270 if (!TypeID->isStr("Class")) 2271 break; 2272 Context.setObjCClassRedefinitionType(New->getUnderlyingType()); 2273 // Install the built-in type for 'Class', ignoring the current definition. 2274 New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); 2275 return; 2276 case 3: 2277 if (!TypeID->isStr("SEL")) 2278 break; 2279 Context.setObjCSelRedefinitionType(New->getUnderlyingType()); 2280 // Install the built-in type for 'SEL', ignoring the current definition. 2281 New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); 2282 return; 2283 } 2284 // Fall through - the typedef name was not a builtin type. 2285 } 2286 2287 // Verify the old decl was also a type. 2288 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); 2289 if (!Old) { 2290 Diag(New->getLocation(), diag::err_redefinition_different_kind) 2291 << New->getDeclName(); 2292 2293 NamedDecl *OldD = OldDecls.getRepresentativeDecl(); 2294 if (OldD->getLocation().isValid()) 2295 notePreviousDefinition(OldD, New->getLocation()); 2296 2297 return New->setInvalidDecl(); 2298 } 2299 2300 // If the old declaration is invalid, just give up here. 2301 if (Old->isInvalidDecl()) 2302 return New->setInvalidDecl(); 2303 2304 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { 2305 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true); 2306 auto *NewTag = New->getAnonDeclWithTypedefName(); 2307 NamedDecl *Hidden = nullptr; 2308 if (OldTag && NewTag && 2309 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() && 2310 !hasVisibleDefinition(OldTag, &Hidden)) { 2311 // There is a definition of this tag, but it is not visible. Use it 2312 // instead of our tag. 2313 New->setTypeForDecl(OldTD->getTypeForDecl()); 2314 if (OldTD->isModed()) 2315 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(), 2316 OldTD->getUnderlyingType()); 2317 else 2318 New->setTypeSourceInfo(OldTD->getTypeSourceInfo()); 2319 2320 // Make the old tag definition visible. 2321 makeMergedDefinitionVisible(Hidden); 2322 2323 // If this was an unscoped enumeration, yank all of its enumerators 2324 // out of the scope. 2325 if (isa<EnumDecl>(NewTag)) { 2326 Scope *EnumScope = getNonFieldDeclScope(S); 2327 for (auto *D : NewTag->decls()) { 2328 auto *ED = cast<EnumConstantDecl>(D); 2329 assert(EnumScope->isDeclScope(ED)); 2330 EnumScope->RemoveDecl(ED); 2331 IdResolver.RemoveDecl(ED); 2332 ED->getLexicalDeclContext()->removeDecl(ED); 2333 } 2334 } 2335 } 2336 } 2337 2338 // If the typedef types are not identical, reject them in all languages and 2339 // with any extensions enabled. 2340 if (isIncompatibleTypedef(Old, New)) 2341 return; 2342 2343 // The types match. Link up the redeclaration chain and merge attributes if 2344 // the old declaration was a typedef. 2345 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) { 2346 New->setPreviousDecl(Typedef); 2347 mergeDeclAttributes(New, Old); 2348 } 2349 2350 if (getLangOpts().MicrosoftExt) 2351 return; 2352 2353 if (getLangOpts().CPlusPlus) { 2354 // C++ [dcl.typedef]p2: 2355 // In a given non-class scope, a typedef specifier can be used to 2356 // redefine the name of any type declared in that scope to refer 2357 // to the type to which it already refers. 2358 if (!isa<CXXRecordDecl>(CurContext)) 2359 return; 2360 2361 // C++0x [dcl.typedef]p4: 2362 // In a given class scope, a typedef specifier can be used to redefine 2363 // any class-name declared in that scope that is not also a typedef-name 2364 // to refer to the type to which it already refers. 2365 // 2366 // This wording came in via DR424, which was a correction to the 2367 // wording in DR56, which accidentally banned code like: 2368 // 2369 // struct S { 2370 // typedef struct A { } A; 2371 // }; 2372 // 2373 // in the C++03 standard. We implement the C++0x semantics, which 2374 // allow the above but disallow 2375 // 2376 // struct S { 2377 // typedef int I; 2378 // typedef int I; 2379 // }; 2380 // 2381 // since that was the intent of DR56. 2382 if (!isa<TypedefNameDecl>(Old)) 2383 return; 2384 2385 Diag(New->getLocation(), diag::err_redefinition) 2386 << New->getDeclName(); 2387 notePreviousDefinition(Old, New->getLocation()); 2388 return New->setInvalidDecl(); 2389 } 2390 2391 // Modules always permit redefinition of typedefs, as does C11. 2392 if (getLangOpts().Modules || getLangOpts().C11) 2393 return; 2394 2395 // If we have a redefinition of a typedef in C, emit a warning. This warning 2396 // is normally mapped to an error, but can be controlled with 2397 // -Wtypedef-redefinition. If either the original or the redefinition is 2398 // in a system header, don't emit this for compatibility with GCC. 2399 if (getDiagnostics().getSuppressSystemWarnings() && 2400 // Some standard types are defined implicitly in Clang (e.g. OpenCL). 2401 (Old->isImplicit() || 2402 Context.getSourceManager().isInSystemHeader(Old->getLocation()) || 2403 Context.getSourceManager().isInSystemHeader(New->getLocation()))) 2404 return; 2405 2406 Diag(New->getLocation(), diag::ext_redefinition_of_typedef) 2407 << New->getDeclName(); 2408 notePreviousDefinition(Old, New->getLocation()); 2409 } 2410 2411 /// DeclhasAttr - returns true if decl Declaration already has the target 2412 /// attribute. 2413 static bool DeclHasAttr(const Decl *D, const Attr *A) { 2414 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); 2415 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); 2416 for (const auto *i : D->attrs()) 2417 if (i->getKind() == A->getKind()) { 2418 if (Ann) { 2419 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation()) 2420 return true; 2421 continue; 2422 } 2423 // FIXME: Don't hardcode this check 2424 if (OA && isa<OwnershipAttr>(i)) 2425 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind(); 2426 return true; 2427 } 2428 2429 return false; 2430 } 2431 2432 static bool isAttributeTargetADefinition(Decl *D) { 2433 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 2434 return VD->isThisDeclarationADefinition(); 2435 if (TagDecl *TD = dyn_cast<TagDecl>(D)) 2436 return TD->isCompleteDefinition() || TD->isBeingDefined(); 2437 return true; 2438 } 2439 2440 /// Merge alignment attributes from \p Old to \p New, taking into account the 2441 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute. 2442 /// 2443 /// \return \c true if any attributes were added to \p New. 2444 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) { 2445 // Look for alignas attributes on Old, and pick out whichever attribute 2446 // specifies the strictest alignment requirement. 2447 AlignedAttr *OldAlignasAttr = nullptr; 2448 AlignedAttr *OldStrictestAlignAttr = nullptr; 2449 unsigned OldAlign = 0; 2450 for (auto *I : Old->specific_attrs<AlignedAttr>()) { 2451 // FIXME: We have no way of representing inherited dependent alignments 2452 // in a case like: 2453 // template<int A, int B> struct alignas(A) X; 2454 // template<int A, int B> struct alignas(B) X {}; 2455 // For now, we just ignore any alignas attributes which are not on the 2456 // definition in such a case. 2457 if (I->isAlignmentDependent()) 2458 return false; 2459 2460 if (I->isAlignas()) 2461 OldAlignasAttr = I; 2462 2463 unsigned Align = I->getAlignment(S.Context); 2464 if (Align > OldAlign) { 2465 OldAlign = Align; 2466 OldStrictestAlignAttr = I; 2467 } 2468 } 2469 2470 // Look for alignas attributes on New. 2471 AlignedAttr *NewAlignasAttr = nullptr; 2472 unsigned NewAlign = 0; 2473 for (auto *I : New->specific_attrs<AlignedAttr>()) { 2474 if (I->isAlignmentDependent()) 2475 return false; 2476 2477 if (I->isAlignas()) 2478 NewAlignasAttr = I; 2479 2480 unsigned Align = I->getAlignment(S.Context); 2481 if (Align > NewAlign) 2482 NewAlign = Align; 2483 } 2484 2485 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) { 2486 // Both declarations have 'alignas' attributes. We require them to match. 2487 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but 2488 // fall short. (If two declarations both have alignas, they must both match 2489 // every definition, and so must match each other if there is a definition.) 2490 2491 // If either declaration only contains 'alignas(0)' specifiers, then it 2492 // specifies the natural alignment for the type. 2493 if (OldAlign == 0 || NewAlign == 0) { 2494 QualType Ty; 2495 if (ValueDecl *VD = dyn_cast<ValueDecl>(New)) 2496 Ty = VD->getType(); 2497 else 2498 Ty = S.Context.getTagDeclType(cast<TagDecl>(New)); 2499 2500 if (OldAlign == 0) 2501 OldAlign = S.Context.getTypeAlign(Ty); 2502 if (NewAlign == 0) 2503 NewAlign = S.Context.getTypeAlign(Ty); 2504 } 2505 2506 if (OldAlign != NewAlign) { 2507 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch) 2508 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity() 2509 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity(); 2510 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration); 2511 } 2512 } 2513 2514 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) { 2515 // C++11 [dcl.align]p6: 2516 // if any declaration of an entity has an alignment-specifier, 2517 // every defining declaration of that entity shall specify an 2518 // equivalent alignment. 2519 // C11 6.7.5/7: 2520 // If the definition of an object does not have an alignment 2521 // specifier, any other declaration of that object shall also 2522 // have no alignment specifier. 2523 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition) 2524 << OldAlignasAttr; 2525 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration) 2526 << OldAlignasAttr; 2527 } 2528 2529 bool AnyAdded = false; 2530 2531 // Ensure we have an attribute representing the strictest alignment. 2532 if (OldAlign > NewAlign) { 2533 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context); 2534 Clone->setInherited(true); 2535 New->addAttr(Clone); 2536 AnyAdded = true; 2537 } 2538 2539 // Ensure we have an alignas attribute if the old declaration had one. 2540 if (OldAlignasAttr && !NewAlignasAttr && 2541 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) { 2542 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context); 2543 Clone->setInherited(true); 2544 New->addAttr(Clone); 2545 AnyAdded = true; 2546 } 2547 2548 return AnyAdded; 2549 } 2550 2551 static bool mergeDeclAttribute(Sema &S, NamedDecl *D, 2552 const InheritableAttr *Attr, 2553 Sema::AvailabilityMergeKind AMK) { 2554 // This function copies an attribute Attr from a previous declaration to the 2555 // new declaration D if the new declaration doesn't itself have that attribute 2556 // yet or if that attribute allows duplicates. 2557 // If you're adding a new attribute that requires logic different from 2558 // "use explicit attribute on decl if present, else use attribute from 2559 // previous decl", for example if the attribute needs to be consistent 2560 // between redeclarations, you need to call a custom merge function here. 2561 InheritableAttr *NewAttr = nullptr; 2562 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr)) 2563 NewAttr = S.mergeAvailabilityAttr( 2564 D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(), 2565 AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(), 2566 AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK, 2567 AA->getPriority()); 2568 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr)) 2569 NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility()); 2570 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr)) 2571 NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility()); 2572 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr)) 2573 NewAttr = S.mergeDLLImportAttr(D, *ImportA); 2574 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr)) 2575 NewAttr = S.mergeDLLExportAttr(D, *ExportA); 2576 else if (const auto *FA = dyn_cast<FormatAttr>(Attr)) 2577 NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(), 2578 FA->getFirstArg()); 2579 else if (const auto *SA = dyn_cast<SectionAttr>(Attr)) 2580 NewAttr = S.mergeSectionAttr(D, *SA, SA->getName()); 2581 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr)) 2582 NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName()); 2583 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr)) 2584 NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(), 2585 IA->getInheritanceModel()); 2586 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr)) 2587 NewAttr = S.mergeAlwaysInlineAttr(D, *AA, 2588 &S.Context.Idents.get(AA->getSpelling())); 2589 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) && 2590 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) || 2591 isa<CUDAGlobalAttr>(Attr))) { 2592 // CUDA target attributes are part of function signature for 2593 // overloading purposes and must not be merged. 2594 return false; 2595 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr)) 2596 NewAttr = S.mergeMinSizeAttr(D, *MA); 2597 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr)) 2598 NewAttr = S.mergeOptimizeNoneAttr(D, *OA); 2599 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr)) 2600 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA); 2601 else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr)) 2602 NewAttr = S.mergeCommonAttr(D, *CommonA); 2603 else if (isa<AlignedAttr>(Attr)) 2604 // AlignedAttrs are handled separately, because we need to handle all 2605 // such attributes on a declaration at the same time. 2606 NewAttr = nullptr; 2607 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) && 2608 (AMK == Sema::AMK_Override || 2609 AMK == Sema::AMK_ProtocolImplementation)) 2610 NewAttr = nullptr; 2611 else if (const auto *UA = dyn_cast<UuidAttr>(Attr)) 2612 NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl()); 2613 else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr)) 2614 NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA); 2615 else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr)) 2616 NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA); 2617 else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr)) 2618 NewAttr = S.mergeImportModuleAttr(D, *IMA); 2619 else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr)) 2620 NewAttr = S.mergeImportNameAttr(D, *INA); 2621 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr)) 2622 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context)); 2623 2624 if (NewAttr) { 2625 NewAttr->setInherited(true); 2626 D->addAttr(NewAttr); 2627 if (isa<MSInheritanceAttr>(NewAttr)) 2628 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); 2629 return true; 2630 } 2631 2632 return false; 2633 } 2634 2635 static const NamedDecl *getDefinition(const Decl *D) { 2636 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) 2637 return TD->getDefinition(); 2638 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2639 const VarDecl *Def = VD->getDefinition(); 2640 if (Def) 2641 return Def; 2642 return VD->getActingDefinition(); 2643 } 2644 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 2645 return FD->getDefinition(); 2646 return nullptr; 2647 } 2648 2649 static bool hasAttribute(const Decl *D, attr::Kind Kind) { 2650 for (const auto *Attribute : D->attrs()) 2651 if (Attribute->getKind() == Kind) 2652 return true; 2653 return false; 2654 } 2655 2656 /// checkNewAttributesAfterDef - If we already have a definition, check that 2657 /// there are no new attributes in this declaration. 2658 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) { 2659 if (!New->hasAttrs()) 2660 return; 2661 2662 const NamedDecl *Def = getDefinition(Old); 2663 if (!Def || Def == New) 2664 return; 2665 2666 AttrVec &NewAttributes = New->getAttrs(); 2667 for (unsigned I = 0, E = NewAttributes.size(); I != E;) { 2668 const Attr *NewAttribute = NewAttributes[I]; 2669 2670 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) { 2671 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) { 2672 Sema::SkipBodyInfo SkipBody; 2673 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody); 2674 2675 // If we're skipping this definition, drop the "alias" attribute. 2676 if (SkipBody.ShouldSkip) { 2677 NewAttributes.erase(NewAttributes.begin() + I); 2678 --E; 2679 continue; 2680 } 2681 } else { 2682 VarDecl *VD = cast<VarDecl>(New); 2683 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() == 2684 VarDecl::TentativeDefinition 2685 ? diag::err_alias_after_tentative 2686 : diag::err_redefinition; 2687 S.Diag(VD->getLocation(), Diag) << VD->getDeclName(); 2688 if (Diag == diag::err_redefinition) 2689 S.notePreviousDefinition(Def, VD->getLocation()); 2690 else 2691 S.Diag(Def->getLocation(), diag::note_previous_definition); 2692 VD->setInvalidDecl(); 2693 } 2694 ++I; 2695 continue; 2696 } 2697 2698 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) { 2699 // Tentative definitions are only interesting for the alias check above. 2700 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) { 2701 ++I; 2702 continue; 2703 } 2704 } 2705 2706 if (hasAttribute(Def, NewAttribute->getKind())) { 2707 ++I; 2708 continue; // regular attr merging will take care of validating this. 2709 } 2710 2711 if (isa<C11NoReturnAttr>(NewAttribute)) { 2712 // C's _Noreturn is allowed to be added to a function after it is defined. 2713 ++I; 2714 continue; 2715 } else if (isa<UuidAttr>(NewAttribute)) { 2716 // msvc will allow a subsequent definition to add an uuid to a class 2717 ++I; 2718 continue; 2719 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) { 2720 if (AA->isAlignas()) { 2721 // C++11 [dcl.align]p6: 2722 // if any declaration of an entity has an alignment-specifier, 2723 // every defining declaration of that entity shall specify an 2724 // equivalent alignment. 2725 // C11 6.7.5/7: 2726 // If the definition of an object does not have an alignment 2727 // specifier, any other declaration of that object shall also 2728 // have no alignment specifier. 2729 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition) 2730 << AA; 2731 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration) 2732 << AA; 2733 NewAttributes.erase(NewAttributes.begin() + I); 2734 --E; 2735 continue; 2736 } 2737 } else if (isa<LoaderUninitializedAttr>(NewAttribute)) { 2738 // If there is a C definition followed by a redeclaration with this 2739 // attribute then there are two different definitions. In C++, prefer the 2740 // standard diagnostics. 2741 if (!S.getLangOpts().CPlusPlus) { 2742 S.Diag(NewAttribute->getLocation(), 2743 diag::err_loader_uninitialized_redeclaration); 2744 S.Diag(Def->getLocation(), diag::note_previous_definition); 2745 NewAttributes.erase(NewAttributes.begin() + I); 2746 --E; 2747 continue; 2748 } 2749 } else if (isa<SelectAnyAttr>(NewAttribute) && 2750 cast<VarDecl>(New)->isInline() && 2751 !cast<VarDecl>(New)->isInlineSpecified()) { 2752 // Don't warn about applying selectany to implicitly inline variables. 2753 // Older compilers and language modes would require the use of selectany 2754 // to make such variables inline, and it would have no effect if we 2755 // honored it. 2756 ++I; 2757 continue; 2758 } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) { 2759 // We allow to add OMP[Begin]DeclareVariantAttr to be added to 2760 // declarations after defintions. 2761 ++I; 2762 continue; 2763 } 2764 2765 S.Diag(NewAttribute->getLocation(), 2766 diag::warn_attribute_precede_definition); 2767 S.Diag(Def->getLocation(), diag::note_previous_definition); 2768 NewAttributes.erase(NewAttributes.begin() + I); 2769 --E; 2770 } 2771 } 2772 2773 static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl, 2774 const ConstInitAttr *CIAttr, 2775 bool AttrBeforeInit) { 2776 SourceLocation InsertLoc = InitDecl->getInnerLocStart(); 2777 2778 // Figure out a good way to write this specifier on the old declaration. 2779 // FIXME: We should just use the spelling of CIAttr, but we don't preserve 2780 // enough of the attribute list spelling information to extract that without 2781 // heroics. 2782 std::string SuitableSpelling; 2783 if (S.getLangOpts().CPlusPlus20) 2784 SuitableSpelling = std::string( 2785 S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit})); 2786 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) 2787 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( 2788 InsertLoc, {tok::l_square, tok::l_square, 2789 S.PP.getIdentifierInfo("clang"), tok::coloncolon, 2790 S.PP.getIdentifierInfo("require_constant_initialization"), 2791 tok::r_square, tok::r_square})); 2792 if (SuitableSpelling.empty()) 2793 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( 2794 InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren, 2795 S.PP.getIdentifierInfo("require_constant_initialization"), 2796 tok::r_paren, tok::r_paren})); 2797 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20) 2798 SuitableSpelling = "constinit"; 2799 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) 2800 SuitableSpelling = "[[clang::require_constant_initialization]]"; 2801 if (SuitableSpelling.empty()) 2802 SuitableSpelling = "__attribute__((require_constant_initialization))"; 2803 SuitableSpelling += " "; 2804 2805 if (AttrBeforeInit) { 2806 // extern constinit int a; 2807 // int a = 0; // error (missing 'constinit'), accepted as extension 2808 assert(CIAttr->isConstinit() && "should not diagnose this for attribute"); 2809 S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing) 2810 << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); 2811 S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here); 2812 } else { 2813 // int a = 0; 2814 // constinit extern int a; // error (missing 'constinit') 2815 S.Diag(CIAttr->getLocation(), 2816 CIAttr->isConstinit() ? diag::err_constinit_added_too_late 2817 : diag::warn_require_const_init_added_too_late) 2818 << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation())); 2819 S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here) 2820 << CIAttr->isConstinit() 2821 << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); 2822 } 2823 } 2824 2825 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one. 2826 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old, 2827 AvailabilityMergeKind AMK) { 2828 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) { 2829 UsedAttr *NewAttr = OldAttr->clone(Context); 2830 NewAttr->setInherited(true); 2831 New->addAttr(NewAttr); 2832 } 2833 2834 if (!Old->hasAttrs() && !New->hasAttrs()) 2835 return; 2836 2837 // [dcl.constinit]p1: 2838 // If the [constinit] specifier is applied to any declaration of a 2839 // variable, it shall be applied to the initializing declaration. 2840 const auto *OldConstInit = Old->getAttr<ConstInitAttr>(); 2841 const auto *NewConstInit = New->getAttr<ConstInitAttr>(); 2842 if (bool(OldConstInit) != bool(NewConstInit)) { 2843 const auto *OldVD = cast<VarDecl>(Old); 2844 auto *NewVD = cast<VarDecl>(New); 2845 2846 // Find the initializing declaration. Note that we might not have linked 2847 // the new declaration into the redeclaration chain yet. 2848 const VarDecl *InitDecl = OldVD->getInitializingDeclaration(); 2849 if (!InitDecl && 2850 (NewVD->hasInit() || NewVD->isThisDeclarationADefinition())) 2851 InitDecl = NewVD; 2852 2853 if (InitDecl == NewVD) { 2854 // This is the initializing declaration. If it would inherit 'constinit', 2855 // that's ill-formed. (Note that we do not apply this to the attribute 2856 // form). 2857 if (OldConstInit && OldConstInit->isConstinit()) 2858 diagnoseMissingConstinit(*this, NewVD, OldConstInit, 2859 /*AttrBeforeInit=*/true); 2860 } else if (NewConstInit) { 2861 // This is the first time we've been told that this declaration should 2862 // have a constant initializer. If we already saw the initializing 2863 // declaration, this is too late. 2864 if (InitDecl && InitDecl != NewVD) { 2865 diagnoseMissingConstinit(*this, InitDecl, NewConstInit, 2866 /*AttrBeforeInit=*/false); 2867 NewVD->dropAttr<ConstInitAttr>(); 2868 } 2869 } 2870 } 2871 2872 // Attributes declared post-definition are currently ignored. 2873 checkNewAttributesAfterDef(*this, New, Old); 2874 2875 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) { 2876 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) { 2877 if (!OldA->isEquivalent(NewA)) { 2878 // This redeclaration changes __asm__ label. 2879 Diag(New->getLocation(), diag::err_different_asm_label); 2880 Diag(OldA->getLocation(), diag::note_previous_declaration); 2881 } 2882 } else if (Old->isUsed()) { 2883 // This redeclaration adds an __asm__ label to a declaration that has 2884 // already been ODR-used. 2885 Diag(New->getLocation(), diag::err_late_asm_label_name) 2886 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange(); 2887 } 2888 } 2889 2890 // Re-declaration cannot add abi_tag's. 2891 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) { 2892 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) { 2893 for (const auto &NewTag : NewAbiTagAttr->tags()) { 2894 if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(), 2895 NewTag) == OldAbiTagAttr->tags_end()) { 2896 Diag(NewAbiTagAttr->getLocation(), 2897 diag::err_new_abi_tag_on_redeclaration) 2898 << NewTag; 2899 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration); 2900 } 2901 } 2902 } else { 2903 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration); 2904 Diag(Old->getLocation(), diag::note_previous_declaration); 2905 } 2906 } 2907 2908 // This redeclaration adds a section attribute. 2909 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) { 2910 if (auto *VD = dyn_cast<VarDecl>(New)) { 2911 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) { 2912 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration); 2913 Diag(Old->getLocation(), diag::note_previous_declaration); 2914 } 2915 } 2916 } 2917 2918 // Redeclaration adds code-seg attribute. 2919 const auto *NewCSA = New->getAttr<CodeSegAttr>(); 2920 if (NewCSA && !Old->hasAttr<CodeSegAttr>() && 2921 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) { 2922 Diag(New->getLocation(), diag::warn_mismatched_section) 2923 << 0 /*codeseg*/; 2924 Diag(Old->getLocation(), diag::note_previous_declaration); 2925 } 2926 2927 if (!Old->hasAttrs()) 2928 return; 2929 2930 bool foundAny = New->hasAttrs(); 2931 2932 // Ensure that any moving of objects within the allocated map is done before 2933 // we process them. 2934 if (!foundAny) New->setAttrs(AttrVec()); 2935 2936 for (auto *I : Old->specific_attrs<InheritableAttr>()) { 2937 // Ignore deprecated/unavailable/availability attributes if requested. 2938 AvailabilityMergeKind LocalAMK = AMK_None; 2939 if (isa<DeprecatedAttr>(I) || 2940 isa<UnavailableAttr>(I) || 2941 isa<AvailabilityAttr>(I)) { 2942 switch (AMK) { 2943 case AMK_None: 2944 continue; 2945 2946 case AMK_Redeclaration: 2947 case AMK_Override: 2948 case AMK_ProtocolImplementation: 2949 LocalAMK = AMK; 2950 break; 2951 } 2952 } 2953 2954 // Already handled. 2955 if (isa<UsedAttr>(I)) 2956 continue; 2957 2958 if (mergeDeclAttribute(*this, New, I, LocalAMK)) 2959 foundAny = true; 2960 } 2961 2962 if (mergeAlignedAttrs(*this, New, Old)) 2963 foundAny = true; 2964 2965 if (!foundAny) New->dropAttrs(); 2966 } 2967 2968 /// mergeParamDeclAttributes - Copy attributes from the old parameter 2969 /// to the new one. 2970 static void mergeParamDeclAttributes(ParmVarDecl *newDecl, 2971 const ParmVarDecl *oldDecl, 2972 Sema &S) { 2973 // C++11 [dcl.attr.depend]p2: 2974 // The first declaration of a function shall specify the 2975 // carries_dependency attribute for its declarator-id if any declaration 2976 // of the function specifies the carries_dependency attribute. 2977 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>(); 2978 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) { 2979 S.Diag(CDA->getLocation(), 2980 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/; 2981 // Find the first declaration of the parameter. 2982 // FIXME: Should we build redeclaration chains for function parameters? 2983 const FunctionDecl *FirstFD = 2984 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl(); 2985 const ParmVarDecl *FirstVD = 2986 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex()); 2987 S.Diag(FirstVD->getLocation(), 2988 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/; 2989 } 2990 2991 if (!oldDecl->hasAttrs()) 2992 return; 2993 2994 bool foundAny = newDecl->hasAttrs(); 2995 2996 // Ensure that any moving of objects within the allocated map is 2997 // done before we process them. 2998 if (!foundAny) newDecl->setAttrs(AttrVec()); 2999 3000 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) { 3001 if (!DeclHasAttr(newDecl, I)) { 3002 InheritableAttr *newAttr = 3003 cast<InheritableParamAttr>(I->clone(S.Context)); 3004 newAttr->setInherited(true); 3005 newDecl->addAttr(newAttr); 3006 foundAny = true; 3007 } 3008 } 3009 3010 if (!foundAny) newDecl->dropAttrs(); 3011 } 3012 3013 static void mergeParamDeclTypes(ParmVarDecl *NewParam, 3014 const ParmVarDecl *OldParam, 3015 Sema &S) { 3016 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) { 3017 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) { 3018 if (*Oldnullability != *Newnullability) { 3019 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr) 3020 << DiagNullabilityKind( 3021 *Newnullability, 3022 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 3023 != 0)) 3024 << DiagNullabilityKind( 3025 *Oldnullability, 3026 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 3027 != 0)); 3028 S.Diag(OldParam->getLocation(), diag::note_previous_declaration); 3029 } 3030 } else { 3031 QualType NewT = NewParam->getType(); 3032 NewT = S.Context.getAttributedType( 3033 AttributedType::getNullabilityAttrKind(*Oldnullability), 3034 NewT, NewT); 3035 NewParam->setType(NewT); 3036 } 3037 } 3038 } 3039 3040 namespace { 3041 3042 /// Used in MergeFunctionDecl to keep track of function parameters in 3043 /// C. 3044 struct GNUCompatibleParamWarning { 3045 ParmVarDecl *OldParm; 3046 ParmVarDecl *NewParm; 3047 QualType PromotedType; 3048 }; 3049 3050 } // end anonymous namespace 3051 3052 // Determine whether the previous declaration was a definition, implicit 3053 // declaration, or a declaration. 3054 template <typename T> 3055 static std::pair<diag::kind, SourceLocation> 3056 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { 3057 diag::kind PrevDiag; 3058 SourceLocation OldLocation = Old->getLocation(); 3059 if (Old->isThisDeclarationADefinition()) 3060 PrevDiag = diag::note_previous_definition; 3061 else if (Old->isImplicit()) { 3062 PrevDiag = diag::note_previous_implicit_declaration; 3063 if (OldLocation.isInvalid()) 3064 OldLocation = New->getLocation(); 3065 } else 3066 PrevDiag = diag::note_previous_declaration; 3067 return std::make_pair(PrevDiag, OldLocation); 3068 } 3069 3070 /// canRedefineFunction - checks if a function can be redefined. Currently, 3071 /// only extern inline functions can be redefined, and even then only in 3072 /// GNU89 mode. 3073 static bool canRedefineFunction(const FunctionDecl *FD, 3074 const LangOptions& LangOpts) { 3075 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && 3076 !LangOpts.CPlusPlus && 3077 FD->isInlineSpecified() && 3078 FD->getStorageClass() == SC_Extern); 3079 } 3080 3081 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const { 3082 const AttributedType *AT = T->getAs<AttributedType>(); 3083 while (AT && !AT->isCallingConv()) 3084 AT = AT->getModifiedType()->getAs<AttributedType>(); 3085 return AT; 3086 } 3087 3088 template <typename T> 3089 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { 3090 const DeclContext *DC = Old->getDeclContext(); 3091 if (DC->isRecord()) 3092 return false; 3093 3094 LanguageLinkage OldLinkage = Old->getLanguageLinkage(); 3095 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) 3096 return true; 3097 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) 3098 return true; 3099 return false; 3100 } 3101 3102 template<typename T> static bool isExternC(T *D) { return D->isExternC(); } 3103 static bool isExternC(VarTemplateDecl *) { return false; } 3104 3105 /// Check whether a redeclaration of an entity introduced by a 3106 /// using-declaration is valid, given that we know it's not an overload 3107 /// (nor a hidden tag declaration). 3108 template<typename ExpectedDecl> 3109 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS, 3110 ExpectedDecl *New) { 3111 // C++11 [basic.scope.declarative]p4: 3112 // Given a set of declarations in a single declarative region, each of 3113 // which specifies the same unqualified name, 3114 // -- they shall all refer to the same entity, or all refer to functions 3115 // and function templates; or 3116 // -- exactly one declaration shall declare a class name or enumeration 3117 // name that is not a typedef name and the other declarations shall all 3118 // refer to the same variable or enumerator, or all refer to functions 3119 // and function templates; in this case the class name or enumeration 3120 // name is hidden (3.3.10). 3121 3122 // C++11 [namespace.udecl]p14: 3123 // If a function declaration in namespace scope or block scope has the 3124 // same name and the same parameter-type-list as a function introduced 3125 // by a using-declaration, and the declarations do not declare the same 3126 // function, the program is ill-formed. 3127 3128 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl()); 3129 if (Old && 3130 !Old->getDeclContext()->getRedeclContext()->Equals( 3131 New->getDeclContext()->getRedeclContext()) && 3132 !(isExternC(Old) && isExternC(New))) 3133 Old = nullptr; 3134 3135 if (!Old) { 3136 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); 3137 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target); 3138 S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0; 3139 return true; 3140 } 3141 return false; 3142 } 3143 3144 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A, 3145 const FunctionDecl *B) { 3146 assert(A->getNumParams() == B->getNumParams()); 3147 3148 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) { 3149 const auto *AttrA = A->getAttr<PassObjectSizeAttr>(); 3150 const auto *AttrB = B->getAttr<PassObjectSizeAttr>(); 3151 if (AttrA == AttrB) 3152 return true; 3153 return AttrA && AttrB && AttrA->getType() == AttrB->getType() && 3154 AttrA->isDynamic() == AttrB->isDynamic(); 3155 }; 3156 3157 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq); 3158 } 3159 3160 /// If necessary, adjust the semantic declaration context for a qualified 3161 /// declaration to name the correct inline namespace within the qualifier. 3162 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD, 3163 DeclaratorDecl *OldD) { 3164 // The only case where we need to update the DeclContext is when 3165 // redeclaration lookup for a qualified name finds a declaration 3166 // in an inline namespace within the context named by the qualifier: 3167 // 3168 // inline namespace N { int f(); } 3169 // int ::f(); // Sema DC needs adjusting from :: to N::. 3170 // 3171 // For unqualified declarations, the semantic context *can* change 3172 // along the redeclaration chain (for local extern declarations, 3173 // extern "C" declarations, and friend declarations in particular). 3174 if (!NewD->getQualifier()) 3175 return; 3176 3177 // NewD is probably already in the right context. 3178 auto *NamedDC = NewD->getDeclContext()->getRedeclContext(); 3179 auto *SemaDC = OldD->getDeclContext()->getRedeclContext(); 3180 if (NamedDC->Equals(SemaDC)) 3181 return; 3182 3183 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || 3184 NewD->isInvalidDecl() || OldD->isInvalidDecl()) && 3185 "unexpected context for redeclaration"); 3186 3187 auto *LexDC = NewD->getLexicalDeclContext(); 3188 auto FixSemaDC = [=](NamedDecl *D) { 3189 if (!D) 3190 return; 3191 D->setDeclContext(SemaDC); 3192 D->setLexicalDeclContext(LexDC); 3193 }; 3194 3195 FixSemaDC(NewD); 3196 if (auto *FD = dyn_cast<FunctionDecl>(NewD)) 3197 FixSemaDC(FD->getDescribedFunctionTemplate()); 3198 else if (auto *VD = dyn_cast<VarDecl>(NewD)) 3199 FixSemaDC(VD->getDescribedVarTemplate()); 3200 } 3201 3202 /// MergeFunctionDecl - We just parsed a function 'New' from 3203 /// declarator D which has the same name and scope as a previous 3204 /// declaration 'Old'. Figure out how to resolve this situation, 3205 /// merging decls or emitting diagnostics as appropriate. 3206 /// 3207 /// In C++, New and Old must be declarations that are not 3208 /// overloaded. Use IsOverload to determine whether New and Old are 3209 /// overloaded, and to select the Old declaration that New should be 3210 /// merged with. 3211 /// 3212 /// Returns true if there was an error, false otherwise. 3213 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, 3214 Scope *S, bool MergeTypeWithOld) { 3215 // Verify the old decl was also a function. 3216 FunctionDecl *Old = OldD->getAsFunction(); 3217 if (!Old) { 3218 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { 3219 if (New->getFriendObjectKind()) { 3220 Diag(New->getLocation(), diag::err_using_decl_friend); 3221 Diag(Shadow->getTargetDecl()->getLocation(), 3222 diag::note_using_decl_target); 3223 Diag(Shadow->getUsingDecl()->getLocation(), 3224 diag::note_using_decl) << 0; 3225 return true; 3226 } 3227 3228 // Check whether the two declarations might declare the same function. 3229 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New)) 3230 return true; 3231 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl()); 3232 } else { 3233 Diag(New->getLocation(), diag::err_redefinition_different_kind) 3234 << New->getDeclName(); 3235 notePreviousDefinition(OldD, New->getLocation()); 3236 return true; 3237 } 3238 } 3239 3240 // If the old declaration is invalid, just give up here. 3241 if (Old->isInvalidDecl()) 3242 return true; 3243 3244 // Disallow redeclaration of some builtins. 3245 if (!getASTContext().canBuiltinBeRedeclared(Old)) { 3246 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName(); 3247 Diag(Old->getLocation(), diag::note_previous_builtin_declaration) 3248 << Old << Old->getType(); 3249 return true; 3250 } 3251 3252 diag::kind PrevDiag; 3253 SourceLocation OldLocation; 3254 std::tie(PrevDiag, OldLocation) = 3255 getNoteDiagForInvalidRedeclaration(Old, New); 3256 3257 // Don't complain about this if we're in GNU89 mode and the old function 3258 // is an extern inline function. 3259 // Don't complain about specializations. They are not supposed to have 3260 // storage classes. 3261 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && 3262 New->getStorageClass() == SC_Static && 3263 Old->hasExternalFormalLinkage() && 3264 !New->getTemplateSpecializationInfo() && 3265 !canRedefineFunction(Old, getLangOpts())) { 3266 if (getLangOpts().MicrosoftExt) { 3267 Diag(New->getLocation(), diag::ext_static_non_static) << New; 3268 Diag(OldLocation, PrevDiag); 3269 } else { 3270 Diag(New->getLocation(), diag::err_static_non_static) << New; 3271 Diag(OldLocation, PrevDiag); 3272 return true; 3273 } 3274 } 3275 3276 if (New->hasAttr<InternalLinkageAttr>() && 3277 !Old->hasAttr<InternalLinkageAttr>()) { 3278 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration) 3279 << New->getDeclName(); 3280 notePreviousDefinition(Old, New->getLocation()); 3281 New->dropAttr<InternalLinkageAttr>(); 3282 } 3283 3284 if (CheckRedeclarationModuleOwnership(New, Old)) 3285 return true; 3286 3287 if (!getLangOpts().CPlusPlus) { 3288 bool OldOvl = Old->hasAttr<OverloadableAttr>(); 3289 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) { 3290 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch) 3291 << New << OldOvl; 3292 3293 // Try our best to find a decl that actually has the overloadable 3294 // attribute for the note. In most cases (e.g. programs with only one 3295 // broken declaration/definition), this won't matter. 3296 // 3297 // FIXME: We could do this if we juggled some extra state in 3298 // OverloadableAttr, rather than just removing it. 3299 const Decl *DiagOld = Old; 3300 if (OldOvl) { 3301 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) { 3302 const auto *A = D->getAttr<OverloadableAttr>(); 3303 return A && !A->isImplicit(); 3304 }); 3305 // If we've implicitly added *all* of the overloadable attrs to this 3306 // chain, emitting a "previous redecl" note is pointless. 3307 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter; 3308 } 3309 3310 if (DiagOld) 3311 Diag(DiagOld->getLocation(), 3312 diag::note_attribute_overloadable_prev_overload) 3313 << OldOvl; 3314 3315 if (OldOvl) 3316 New->addAttr(OverloadableAttr::CreateImplicit(Context)); 3317 else 3318 New->dropAttr<OverloadableAttr>(); 3319 } 3320 } 3321 3322 // If a function is first declared with a calling convention, but is later 3323 // declared or defined without one, all following decls assume the calling 3324 // convention of the first. 3325 // 3326 // It's OK if a function is first declared without a calling convention, 3327 // but is later declared or defined with the default calling convention. 3328 // 3329 // To test if either decl has an explicit calling convention, we look for 3330 // AttributedType sugar nodes on the type as written. If they are missing or 3331 // were canonicalized away, we assume the calling convention was implicit. 3332 // 3333 // Note also that we DO NOT return at this point, because we still have 3334 // other tests to run. 3335 QualType OldQType = Context.getCanonicalType(Old->getType()); 3336 QualType NewQType = Context.getCanonicalType(New->getType()); 3337 const FunctionType *OldType = cast<FunctionType>(OldQType); 3338 const FunctionType *NewType = cast<FunctionType>(NewQType); 3339 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); 3340 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); 3341 bool RequiresAdjustment = false; 3342 3343 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) { 3344 FunctionDecl *First = Old->getFirstDecl(); 3345 const FunctionType *FT = 3346 First->getType().getCanonicalType()->castAs<FunctionType>(); 3347 FunctionType::ExtInfo FI = FT->getExtInfo(); 3348 bool NewCCExplicit = getCallingConvAttributedType(New->getType()); 3349 if (!NewCCExplicit) { 3350 // Inherit the CC from the previous declaration if it was specified 3351 // there but not here. 3352 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); 3353 RequiresAdjustment = true; 3354 } else if (Old->getBuiltinID()) { 3355 // Builtin attribute isn't propagated to the new one yet at this point, 3356 // so we check if the old one is a builtin. 3357 3358 // Calling Conventions on a Builtin aren't really useful and setting a 3359 // default calling convention and cdecl'ing some builtin redeclarations is 3360 // common, so warn and ignore the calling convention on the redeclaration. 3361 Diag(New->getLocation(), diag::warn_cconv_unsupported) 3362 << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) 3363 << (int)CallingConventionIgnoredReason::BuiltinFunction; 3364 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); 3365 RequiresAdjustment = true; 3366 } else { 3367 // Calling conventions aren't compatible, so complain. 3368 bool FirstCCExplicit = getCallingConvAttributedType(First->getType()); 3369 Diag(New->getLocation(), diag::err_cconv_change) 3370 << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) 3371 << !FirstCCExplicit 3372 << (!FirstCCExplicit ? "" : 3373 FunctionType::getNameForCallConv(FI.getCC())); 3374 3375 // Put the note on the first decl, since it is the one that matters. 3376 Diag(First->getLocation(), diag::note_previous_declaration); 3377 return true; 3378 } 3379 } 3380 3381 // FIXME: diagnose the other way around? 3382 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { 3383 NewTypeInfo = NewTypeInfo.withNoReturn(true); 3384 RequiresAdjustment = true; 3385 } 3386 3387 // Merge regparm attribute. 3388 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || 3389 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { 3390 if (NewTypeInfo.getHasRegParm()) { 3391 Diag(New->getLocation(), diag::err_regparm_mismatch) 3392 << NewType->getRegParmType() 3393 << OldType->getRegParmType(); 3394 Diag(OldLocation, diag::note_previous_declaration); 3395 return true; 3396 } 3397 3398 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); 3399 RequiresAdjustment = true; 3400 } 3401 3402 // Merge ns_returns_retained attribute. 3403 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) { 3404 if (NewTypeInfo.getProducesResult()) { 3405 Diag(New->getLocation(), diag::err_function_attribute_mismatch) 3406 << "'ns_returns_retained'"; 3407 Diag(OldLocation, diag::note_previous_declaration); 3408 return true; 3409 } 3410 3411 NewTypeInfo = NewTypeInfo.withProducesResult(true); 3412 RequiresAdjustment = true; 3413 } 3414 3415 if (OldTypeInfo.getNoCallerSavedRegs() != 3416 NewTypeInfo.getNoCallerSavedRegs()) { 3417 if (NewTypeInfo.getNoCallerSavedRegs()) { 3418 AnyX86NoCallerSavedRegistersAttr *Attr = 3419 New->getAttr<AnyX86NoCallerSavedRegistersAttr>(); 3420 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr; 3421 Diag(OldLocation, diag::note_previous_declaration); 3422 return true; 3423 } 3424 3425 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true); 3426 RequiresAdjustment = true; 3427 } 3428 3429 if (RequiresAdjustment) { 3430 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>(); 3431 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo); 3432 New->setType(QualType(AdjustedType, 0)); 3433 NewQType = Context.getCanonicalType(New->getType()); 3434 } 3435 3436 // If this redeclaration makes the function inline, we may need to add it to 3437 // UndefinedButUsed. 3438 if (!Old->isInlined() && New->isInlined() && 3439 !New->hasAttr<GNUInlineAttr>() && 3440 !getLangOpts().GNUInline && 3441 Old->isUsed(false) && 3442 !Old->isDefined() && !New->isThisDeclarationADefinition()) 3443 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), 3444 SourceLocation())); 3445 3446 // If this redeclaration makes it newly gnu_inline, we don't want to warn 3447 // about it. 3448 if (New->hasAttr<GNUInlineAttr>() && 3449 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) { 3450 UndefinedButUsed.erase(Old->getCanonicalDecl()); 3451 } 3452 3453 // If pass_object_size params don't match up perfectly, this isn't a valid 3454 // redeclaration. 3455 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() && 3456 !hasIdenticalPassObjectSizeAttrs(Old, New)) { 3457 Diag(New->getLocation(), diag::err_different_pass_object_size_params) 3458 << New->getDeclName(); 3459 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3460 return true; 3461 } 3462 3463 if (getLangOpts().CPlusPlus) { 3464 // C++1z [over.load]p2 3465 // Certain function declarations cannot be overloaded: 3466 // -- Function declarations that differ only in the return type, 3467 // the exception specification, or both cannot be overloaded. 3468 3469 // Check the exception specifications match. This may recompute the type of 3470 // both Old and New if it resolved exception specifications, so grab the 3471 // types again after this. Because this updates the type, we do this before 3472 // any of the other checks below, which may update the "de facto" NewQType 3473 // but do not necessarily update the type of New. 3474 if (CheckEquivalentExceptionSpec(Old, New)) 3475 return true; 3476 OldQType = Context.getCanonicalType(Old->getType()); 3477 NewQType = Context.getCanonicalType(New->getType()); 3478 3479 // Go back to the type source info to compare the declared return types, 3480 // per C++1y [dcl.type.auto]p13: 3481 // Redeclarations or specializations of a function or function template 3482 // with a declared return type that uses a placeholder type shall also 3483 // use that placeholder, not a deduced type. 3484 QualType OldDeclaredReturnType = Old->getDeclaredReturnType(); 3485 QualType NewDeclaredReturnType = New->getDeclaredReturnType(); 3486 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) && 3487 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType, 3488 OldDeclaredReturnType)) { 3489 QualType ResQT; 3490 if (NewDeclaredReturnType->isObjCObjectPointerType() && 3491 OldDeclaredReturnType->isObjCObjectPointerType()) 3492 // FIXME: This does the wrong thing for a deduced return type. 3493 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); 3494 if (ResQT.isNull()) { 3495 if (New->isCXXClassMember() && New->isOutOfLine()) 3496 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type) 3497 << New << New->getReturnTypeSourceRange(); 3498 else 3499 Diag(New->getLocation(), diag::err_ovl_diff_return_type) 3500 << New->getReturnTypeSourceRange(); 3501 Diag(OldLocation, PrevDiag) << Old << Old->getType() 3502 << Old->getReturnTypeSourceRange(); 3503 return true; 3504 } 3505 else 3506 NewQType = ResQT; 3507 } 3508 3509 QualType OldReturnType = OldType->getReturnType(); 3510 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType(); 3511 if (OldReturnType != NewReturnType) { 3512 // If this function has a deduced return type and has already been 3513 // defined, copy the deduced value from the old declaration. 3514 AutoType *OldAT = Old->getReturnType()->getContainedAutoType(); 3515 if (OldAT && OldAT->isDeduced()) { 3516 New->setType( 3517 SubstAutoType(New->getType(), 3518 OldAT->isDependentType() ? Context.DependentTy 3519 : OldAT->getDeducedType())); 3520 NewQType = Context.getCanonicalType( 3521 SubstAutoType(NewQType, 3522 OldAT->isDependentType() ? Context.DependentTy 3523 : OldAT->getDeducedType())); 3524 } 3525 } 3526 3527 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); 3528 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); 3529 if (OldMethod && NewMethod) { 3530 // Preserve triviality. 3531 NewMethod->setTrivial(OldMethod->isTrivial()); 3532 3533 // MSVC allows explicit template specialization at class scope: 3534 // 2 CXXMethodDecls referring to the same function will be injected. 3535 // We don't want a redeclaration error. 3536 bool IsClassScopeExplicitSpecialization = 3537 OldMethod->isFunctionTemplateSpecialization() && 3538 NewMethod->isFunctionTemplateSpecialization(); 3539 bool isFriend = NewMethod->getFriendObjectKind(); 3540 3541 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && 3542 !IsClassScopeExplicitSpecialization) { 3543 // -- Member function declarations with the same name and the 3544 // same parameter types cannot be overloaded if any of them 3545 // is a static member function declaration. 3546 if (OldMethod->isStatic() != NewMethod->isStatic()) { 3547 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); 3548 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3549 return true; 3550 } 3551 3552 // C++ [class.mem]p1: 3553 // [...] A member shall not be declared twice in the 3554 // member-specification, except that a nested class or member 3555 // class template can be declared and then later defined. 3556 if (!inTemplateInstantiation()) { 3557 unsigned NewDiag; 3558 if (isa<CXXConstructorDecl>(OldMethod)) 3559 NewDiag = diag::err_constructor_redeclared; 3560 else if (isa<CXXDestructorDecl>(NewMethod)) 3561 NewDiag = diag::err_destructor_redeclared; 3562 else if (isa<CXXConversionDecl>(NewMethod)) 3563 NewDiag = diag::err_conv_function_redeclared; 3564 else 3565 NewDiag = diag::err_member_redeclared; 3566 3567 Diag(New->getLocation(), NewDiag); 3568 } else { 3569 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation) 3570 << New << New->getType(); 3571 } 3572 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3573 return true; 3574 3575 // Complain if this is an explicit declaration of a special 3576 // member that was initially declared implicitly. 3577 // 3578 // As an exception, it's okay to befriend such methods in order 3579 // to permit the implicit constructor/destructor/operator calls. 3580 } else if (OldMethod->isImplicit()) { 3581 if (isFriend) { 3582 NewMethod->setImplicit(); 3583 } else { 3584 Diag(NewMethod->getLocation(), 3585 diag::err_definition_of_implicitly_declared_member) 3586 << New << getSpecialMember(OldMethod); 3587 return true; 3588 } 3589 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) { 3590 Diag(NewMethod->getLocation(), 3591 diag::err_definition_of_explicitly_defaulted_member) 3592 << getSpecialMember(OldMethod); 3593 return true; 3594 } 3595 } 3596 3597 // C++11 [dcl.attr.noreturn]p1: 3598 // The first declaration of a function shall specify the noreturn 3599 // attribute if any declaration of that function specifies the noreturn 3600 // attribute. 3601 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>(); 3602 if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) { 3603 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl); 3604 Diag(Old->getFirstDecl()->getLocation(), 3605 diag::note_noreturn_missing_first_decl); 3606 } 3607 3608 // C++11 [dcl.attr.depend]p2: 3609 // The first declaration of a function shall specify the 3610 // carries_dependency attribute for its declarator-id if any declaration 3611 // of the function specifies the carries_dependency attribute. 3612 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>(); 3613 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) { 3614 Diag(CDA->getLocation(), 3615 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/; 3616 Diag(Old->getFirstDecl()->getLocation(), 3617 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/; 3618 } 3619 3620 // (C++98 8.3.5p3): 3621 // All declarations for a function shall agree exactly in both the 3622 // return type and the parameter-type-list. 3623 // We also want to respect all the extended bits except noreturn. 3624 3625 // noreturn should now match unless the old type info didn't have it. 3626 QualType OldQTypeForComparison = OldQType; 3627 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { 3628 auto *OldType = OldQType->castAs<FunctionProtoType>(); 3629 const FunctionType *OldTypeForComparison 3630 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); 3631 OldQTypeForComparison = QualType(OldTypeForComparison, 0); 3632 assert(OldQTypeForComparison.isCanonical()); 3633 } 3634 3635 if (haveIncompatibleLanguageLinkages(Old, New)) { 3636 // As a special case, retain the language linkage from previous 3637 // declarations of a friend function as an extension. 3638 // 3639 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC 3640 // and is useful because there's otherwise no way to specify language 3641 // linkage within class scope. 3642 // 3643 // Check cautiously as the friend object kind isn't yet complete. 3644 if (New->getFriendObjectKind() != Decl::FOK_None) { 3645 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New; 3646 Diag(OldLocation, PrevDiag); 3647 } else { 3648 Diag(New->getLocation(), diag::err_different_language_linkage) << New; 3649 Diag(OldLocation, PrevDiag); 3650 return true; 3651 } 3652 } 3653 3654 // If the function types are compatible, merge the declarations. Ignore the 3655 // exception specifier because it was already checked above in 3656 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics 3657 // about incompatible types under -fms-compatibility. 3658 if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison, 3659 NewQType)) 3660 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 3661 3662 // If the types are imprecise (due to dependent constructs in friends or 3663 // local extern declarations), it's OK if they differ. We'll check again 3664 // during instantiation. 3665 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType)) 3666 return false; 3667 3668 // Fall through for conflicting redeclarations and redefinitions. 3669 } 3670 3671 // C: Function types need to be compatible, not identical. This handles 3672 // duplicate function decls like "void f(int); void f(enum X);" properly. 3673 if (!getLangOpts().CPlusPlus && 3674 Context.typesAreCompatible(OldQType, NewQType)) { 3675 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); 3676 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); 3677 const FunctionProtoType *OldProto = nullptr; 3678 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) && 3679 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { 3680 // The old declaration provided a function prototype, but the 3681 // new declaration does not. Merge in the prototype. 3682 assert(!OldProto->hasExceptionSpec() && "Exception spec in C"); 3683 SmallVector<QualType, 16> ParamTypes(OldProto->param_types()); 3684 NewQType = 3685 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes, 3686 OldProto->getExtProtoInfo()); 3687 New->setType(NewQType); 3688 New->setHasInheritedPrototype(); 3689 3690 // Synthesize parameters with the same types. 3691 SmallVector<ParmVarDecl*, 16> Params; 3692 for (const auto &ParamType : OldProto->param_types()) { 3693 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(), 3694 SourceLocation(), nullptr, 3695 ParamType, /*TInfo=*/nullptr, 3696 SC_None, nullptr); 3697 Param->setScopeInfo(0, Params.size()); 3698 Param->setImplicit(); 3699 Params.push_back(Param); 3700 } 3701 3702 New->setParams(Params); 3703 } 3704 3705 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 3706 } 3707 3708 // Check if the function types are compatible when pointer size address 3709 // spaces are ignored. 3710 if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType)) 3711 return false; 3712 3713 // GNU C permits a K&R definition to follow a prototype declaration 3714 // if the declared types of the parameters in the K&R definition 3715 // match the types in the prototype declaration, even when the 3716 // promoted types of the parameters from the K&R definition differ 3717 // from the types in the prototype. GCC then keeps the types from 3718 // the prototype. 3719 // 3720 // If a variadic prototype is followed by a non-variadic K&R definition, 3721 // the K&R definition becomes variadic. This is sort of an edge case, but 3722 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and 3723 // C99 6.9.1p8. 3724 if (!getLangOpts().CPlusPlus && 3725 Old->hasPrototype() && !New->hasPrototype() && 3726 New->getType()->getAs<FunctionProtoType>() && 3727 Old->getNumParams() == New->getNumParams()) { 3728 SmallVector<QualType, 16> ArgTypes; 3729 SmallVector<GNUCompatibleParamWarning, 16> Warnings; 3730 const FunctionProtoType *OldProto 3731 = Old->getType()->getAs<FunctionProtoType>(); 3732 const FunctionProtoType *NewProto 3733 = New->getType()->getAs<FunctionProtoType>(); 3734 3735 // Determine whether this is the GNU C extension. 3736 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(), 3737 NewProto->getReturnType()); 3738 bool LooseCompatible = !MergedReturn.isNull(); 3739 for (unsigned Idx = 0, End = Old->getNumParams(); 3740 LooseCompatible && Idx != End; ++Idx) { 3741 ParmVarDecl *OldParm = Old->getParamDecl(Idx); 3742 ParmVarDecl *NewParm = New->getParamDecl(Idx); 3743 if (Context.typesAreCompatible(OldParm->getType(), 3744 NewProto->getParamType(Idx))) { 3745 ArgTypes.push_back(NewParm->getType()); 3746 } else if (Context.typesAreCompatible(OldParm->getType(), 3747 NewParm->getType(), 3748 /*CompareUnqualified=*/true)) { 3749 GNUCompatibleParamWarning Warn = { OldParm, NewParm, 3750 NewProto->getParamType(Idx) }; 3751 Warnings.push_back(Warn); 3752 ArgTypes.push_back(NewParm->getType()); 3753 } else 3754 LooseCompatible = false; 3755 } 3756 3757 if (LooseCompatible) { 3758 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { 3759 Diag(Warnings[Warn].NewParm->getLocation(), 3760 diag::ext_param_promoted_not_compatible_with_prototype) 3761 << Warnings[Warn].PromotedType 3762 << Warnings[Warn].OldParm->getType(); 3763 if (Warnings[Warn].OldParm->getLocation().isValid()) 3764 Diag(Warnings[Warn].OldParm->getLocation(), 3765 diag::note_previous_declaration); 3766 } 3767 3768 if (MergeTypeWithOld) 3769 New->setType(Context.getFunctionType(MergedReturn, ArgTypes, 3770 OldProto->getExtProtoInfo())); 3771 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 3772 } 3773 3774 // Fall through to diagnose conflicting types. 3775 } 3776 3777 // A function that has already been declared has been redeclared or 3778 // defined with a different type; show an appropriate diagnostic. 3779 3780 // If the previous declaration was an implicitly-generated builtin 3781 // declaration, then at the very least we should use a specialized note. 3782 unsigned BuiltinID; 3783 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) { 3784 // If it's actually a library-defined builtin function like 'malloc' 3785 // or 'printf', just warn about the incompatible redeclaration. 3786 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { 3787 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; 3788 Diag(OldLocation, diag::note_previous_builtin_declaration) 3789 << Old << Old->getType(); 3790 return false; 3791 } 3792 3793 PrevDiag = diag::note_previous_builtin_declaration; 3794 } 3795 3796 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); 3797 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3798 return true; 3799 } 3800 3801 /// Completes the merge of two function declarations that are 3802 /// known to be compatible. 3803 /// 3804 /// This routine handles the merging of attributes and other 3805 /// properties of function declarations from the old declaration to 3806 /// the new declaration, once we know that New is in fact a 3807 /// redeclaration of Old. 3808 /// 3809 /// \returns false 3810 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, 3811 Scope *S, bool MergeTypeWithOld) { 3812 // Merge the attributes 3813 mergeDeclAttributes(New, Old); 3814 3815 // Merge "pure" flag. 3816 if (Old->isPure()) 3817 New->setPure(); 3818 3819 // Merge "used" flag. 3820 if (Old->getMostRecentDecl()->isUsed(false)) 3821 New->setIsUsed(); 3822 3823 // Merge attributes from the parameters. These can mismatch with K&R 3824 // declarations. 3825 if (New->getNumParams() == Old->getNumParams()) 3826 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) { 3827 ParmVarDecl *NewParam = New->getParamDecl(i); 3828 ParmVarDecl *OldParam = Old->getParamDecl(i); 3829 mergeParamDeclAttributes(NewParam, OldParam, *this); 3830 mergeParamDeclTypes(NewParam, OldParam, *this); 3831 } 3832 3833 if (getLangOpts().CPlusPlus) 3834 return MergeCXXFunctionDecl(New, Old, S); 3835 3836 // Merge the function types so the we get the composite types for the return 3837 // and argument types. Per C11 6.2.7/4, only update the type if the old decl 3838 // was visible. 3839 QualType Merged = Context.mergeTypes(Old->getType(), New->getType()); 3840 if (!Merged.isNull() && MergeTypeWithOld) 3841 New->setType(Merged); 3842 3843 return false; 3844 } 3845 3846 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, 3847 ObjCMethodDecl *oldMethod) { 3848 // Merge the attributes, including deprecated/unavailable 3849 AvailabilityMergeKind MergeKind = 3850 isa<ObjCProtocolDecl>(oldMethod->getDeclContext()) 3851 ? AMK_ProtocolImplementation 3852 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration 3853 : AMK_Override; 3854 3855 mergeDeclAttributes(newMethod, oldMethod, MergeKind); 3856 3857 // Merge attributes from the parameters. 3858 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(), 3859 oe = oldMethod->param_end(); 3860 for (ObjCMethodDecl::param_iterator 3861 ni = newMethod->param_begin(), ne = newMethod->param_end(); 3862 ni != ne && oi != oe; ++ni, ++oi) 3863 mergeParamDeclAttributes(*ni, *oi, *this); 3864 3865 CheckObjCMethodOverride(newMethod, oldMethod); 3866 } 3867 3868 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) { 3869 assert(!S.Context.hasSameType(New->getType(), Old->getType())); 3870 3871 S.Diag(New->getLocation(), New->isThisDeclarationADefinition() 3872 ? diag::err_redefinition_different_type 3873 : diag::err_redeclaration_different_type) 3874 << New->getDeclName() << New->getType() << Old->getType(); 3875 3876 diag::kind PrevDiag; 3877 SourceLocation OldLocation; 3878 std::tie(PrevDiag, OldLocation) 3879 = getNoteDiagForInvalidRedeclaration(Old, New); 3880 S.Diag(OldLocation, PrevDiag); 3881 New->setInvalidDecl(); 3882 } 3883 3884 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and 3885 /// scope as a previous declaration 'Old'. Figure out how to merge their types, 3886 /// emitting diagnostics as appropriate. 3887 /// 3888 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back 3889 /// to here in AddInitializerToDecl. We can't check them before the initializer 3890 /// is attached. 3891 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, 3892 bool MergeTypeWithOld) { 3893 if (New->isInvalidDecl() || Old->isInvalidDecl()) 3894 return; 3895 3896 QualType MergedT; 3897 if (getLangOpts().CPlusPlus) { 3898 if (New->getType()->isUndeducedType()) { 3899 // We don't know what the new type is until the initializer is attached. 3900 return; 3901 } else if (Context.hasSameType(New->getType(), Old->getType())) { 3902 // These could still be something that needs exception specs checked. 3903 return MergeVarDeclExceptionSpecs(New, Old); 3904 } 3905 // C++ [basic.link]p10: 3906 // [...] the types specified by all declarations referring to a given 3907 // object or function shall be identical, except that declarations for an 3908 // array object can specify array types that differ by the presence or 3909 // absence of a major array bound (8.3.4). 3910 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) { 3911 const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); 3912 const ArrayType *NewArray = Context.getAsArrayType(New->getType()); 3913 3914 // We are merging a variable declaration New into Old. If it has an array 3915 // bound, and that bound differs from Old's bound, we should diagnose the 3916 // mismatch. 3917 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) { 3918 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD; 3919 PrevVD = PrevVD->getPreviousDecl()) { 3920 QualType PrevVDTy = PrevVD->getType(); 3921 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType()) 3922 continue; 3923 3924 if (!Context.hasSameType(New->getType(), PrevVDTy)) 3925 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD); 3926 } 3927 } 3928 3929 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) { 3930 if (Context.hasSameType(OldArray->getElementType(), 3931 NewArray->getElementType())) 3932 MergedT = New->getType(); 3933 } 3934 // FIXME: Check visibility. New is hidden but has a complete type. If New 3935 // has no array bound, it should not inherit one from Old, if Old is not 3936 // visible. 3937 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) { 3938 if (Context.hasSameType(OldArray->getElementType(), 3939 NewArray->getElementType())) 3940 MergedT = Old->getType(); 3941 } 3942 } 3943 else if (New->getType()->isObjCObjectPointerType() && 3944 Old->getType()->isObjCObjectPointerType()) { 3945 MergedT = Context.mergeObjCGCQualifiers(New->getType(), 3946 Old->getType()); 3947 } 3948 } else { 3949 // C 6.2.7p2: 3950 // All declarations that refer to the same object or function shall have 3951 // compatible type. 3952 MergedT = Context.mergeTypes(New->getType(), Old->getType()); 3953 } 3954 if (MergedT.isNull()) { 3955 // It's OK if we couldn't merge types if either type is dependent, for a 3956 // block-scope variable. In other cases (static data members of class 3957 // templates, variable templates, ...), we require the types to be 3958 // equivalent. 3959 // FIXME: The C++ standard doesn't say anything about this. 3960 if ((New->getType()->isDependentType() || 3961 Old->getType()->isDependentType()) && New->isLocalVarDecl()) { 3962 // If the old type was dependent, we can't merge with it, so the new type 3963 // becomes dependent for now. We'll reproduce the original type when we 3964 // instantiate the TypeSourceInfo for the variable. 3965 if (!New->getType()->isDependentType() && MergeTypeWithOld) 3966 New->setType(Context.DependentTy); 3967 return; 3968 } 3969 return diagnoseVarDeclTypeMismatch(*this, New, Old); 3970 } 3971 3972 // Don't actually update the type on the new declaration if the old 3973 // declaration was an extern declaration in a different scope. 3974 if (MergeTypeWithOld) 3975 New->setType(MergedT); 3976 } 3977 3978 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, 3979 LookupResult &Previous) { 3980 // C11 6.2.7p4: 3981 // For an identifier with internal or external linkage declared 3982 // in a scope in which a prior declaration of that identifier is 3983 // visible, if the prior declaration specifies internal or 3984 // external linkage, the type of the identifier at the later 3985 // declaration becomes the composite type. 3986 // 3987 // If the variable isn't visible, we do not merge with its type. 3988 if (Previous.isShadowed()) 3989 return false; 3990 3991 if (S.getLangOpts().CPlusPlus) { 3992 // C++11 [dcl.array]p3: 3993 // If there is a preceding declaration of the entity in the same 3994 // scope in which the bound was specified, an omitted array bound 3995 // is taken to be the same as in that earlier declaration. 3996 return NewVD->isPreviousDeclInSameBlockScope() || 3997 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() && 3998 !NewVD->getLexicalDeclContext()->isFunctionOrMethod()); 3999 } else { 4000 // If the old declaration was function-local, don't merge with its 4001 // type unless we're in the same function. 4002 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() || 4003 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext(); 4004 } 4005 } 4006 4007 /// MergeVarDecl - We just parsed a variable 'New' which has the same name 4008 /// and scope as a previous declaration 'Old'. Figure out how to resolve this 4009 /// situation, merging decls or emitting diagnostics as appropriate. 4010 /// 4011 /// Tentative definition rules (C99 6.9.2p2) are checked by 4012 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative 4013 /// definitions here, since the initializer hasn't been attached. 4014 /// 4015 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { 4016 // If the new decl is already invalid, don't do any other checking. 4017 if (New->isInvalidDecl()) 4018 return; 4019 4020 if (!shouldLinkPossiblyHiddenDecl(Previous, New)) 4021 return; 4022 4023 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate(); 4024 4025 // Verify the old decl was also a variable or variable template. 4026 VarDecl *Old = nullptr; 4027 VarTemplateDecl *OldTemplate = nullptr; 4028 if (Previous.isSingleResult()) { 4029 if (NewTemplate) { 4030 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl()); 4031 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr; 4032 4033 if (auto *Shadow = 4034 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) 4035 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate)) 4036 return New->setInvalidDecl(); 4037 } else { 4038 Old = dyn_cast<VarDecl>(Previous.getFoundDecl()); 4039 4040 if (auto *Shadow = 4041 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) 4042 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New)) 4043 return New->setInvalidDecl(); 4044 } 4045 } 4046 if (!Old) { 4047 Diag(New->getLocation(), diag::err_redefinition_different_kind) 4048 << New->getDeclName(); 4049 notePreviousDefinition(Previous.getRepresentativeDecl(), 4050 New->getLocation()); 4051 return New->setInvalidDecl(); 4052 } 4053 4054 // Ensure the template parameters are compatible. 4055 if (NewTemplate && 4056 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 4057 OldTemplate->getTemplateParameters(), 4058 /*Complain=*/true, TPL_TemplateMatch)) 4059 return New->setInvalidDecl(); 4060 4061 // C++ [class.mem]p1: 4062 // A member shall not be declared twice in the member-specification [...] 4063 // 4064 // Here, we need only consider static data members. 4065 if (Old->isStaticDataMember() && !New->isOutOfLine()) { 4066 Diag(New->getLocation(), diag::err_duplicate_member) 4067 << New->getIdentifier(); 4068 Diag(Old->getLocation(), diag::note_previous_declaration); 4069 New->setInvalidDecl(); 4070 } 4071 4072 mergeDeclAttributes(New, Old); 4073 // Warn if an already-declared variable is made a weak_import in a subsequent 4074 // declaration 4075 if (New->hasAttr<WeakImportAttr>() && 4076 Old->getStorageClass() == SC_None && 4077 !Old->hasAttr<WeakImportAttr>()) { 4078 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); 4079 notePreviousDefinition(Old, New->getLocation()); 4080 // Remove weak_import attribute on new declaration. 4081 New->dropAttr<WeakImportAttr>(); 4082 } 4083 4084 if (New->hasAttr<InternalLinkageAttr>() && 4085 !Old->hasAttr<InternalLinkageAttr>()) { 4086 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration) 4087 << New->getDeclName(); 4088 notePreviousDefinition(Old, New->getLocation()); 4089 New->dropAttr<InternalLinkageAttr>(); 4090 } 4091 4092 // Merge the types. 4093 VarDecl *MostRecent = Old->getMostRecentDecl(); 4094 if (MostRecent != Old) { 4095 MergeVarDeclTypes(New, MostRecent, 4096 mergeTypeWithPrevious(*this, New, MostRecent, Previous)); 4097 if (New->isInvalidDecl()) 4098 return; 4099 } 4100 4101 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous)); 4102 if (New->isInvalidDecl()) 4103 return; 4104 4105 diag::kind PrevDiag; 4106 SourceLocation OldLocation; 4107 std::tie(PrevDiag, OldLocation) = 4108 getNoteDiagForInvalidRedeclaration(Old, New); 4109 4110 // [dcl.stc]p8: Check if we have a non-static decl followed by a static. 4111 if (New->getStorageClass() == SC_Static && 4112 !New->isStaticDataMember() && 4113 Old->hasExternalFormalLinkage()) { 4114 if (getLangOpts().MicrosoftExt) { 4115 Diag(New->getLocation(), diag::ext_static_non_static) 4116 << New->getDeclName(); 4117 Diag(OldLocation, PrevDiag); 4118 } else { 4119 Diag(New->getLocation(), diag::err_static_non_static) 4120 << New->getDeclName(); 4121 Diag(OldLocation, PrevDiag); 4122 return New->setInvalidDecl(); 4123 } 4124 } 4125 // C99 6.2.2p4: 4126 // For an identifier declared with the storage-class specifier 4127 // extern in a scope in which a prior declaration of that 4128 // identifier is visible,23) if the prior declaration specifies 4129 // internal or external linkage, the linkage of the identifier at 4130 // the later declaration is the same as the linkage specified at 4131 // the prior declaration. If no prior declaration is visible, or 4132 // if the prior declaration specifies no linkage, then the 4133 // identifier has external linkage. 4134 if (New->hasExternalStorage() && Old->hasLinkage()) 4135 /* Okay */; 4136 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static && 4137 !New->isStaticDataMember() && 4138 Old->getCanonicalDecl()->getStorageClass() == SC_Static) { 4139 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); 4140 Diag(OldLocation, PrevDiag); 4141 return New->setInvalidDecl(); 4142 } 4143 4144 // Check if extern is followed by non-extern and vice-versa. 4145 if (New->hasExternalStorage() && 4146 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) { 4147 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); 4148 Diag(OldLocation, PrevDiag); 4149 return New->setInvalidDecl(); 4150 } 4151 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() && 4152 !New->hasExternalStorage()) { 4153 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); 4154 Diag(OldLocation, PrevDiag); 4155 return New->setInvalidDecl(); 4156 } 4157 4158 if (CheckRedeclarationModuleOwnership(New, Old)) 4159 return; 4160 4161 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. 4162 4163 // FIXME: The test for external storage here seems wrong? We still 4164 // need to check for mismatches. 4165 if (!New->hasExternalStorage() && !New->isFileVarDecl() && 4166 // Don't complain about out-of-line definitions of static members. 4167 !(Old->getLexicalDeclContext()->isRecord() && 4168 !New->getLexicalDeclContext()->isRecord())) { 4169 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); 4170 Diag(OldLocation, PrevDiag); 4171 return New->setInvalidDecl(); 4172 } 4173 4174 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) { 4175 if (VarDecl *Def = Old->getDefinition()) { 4176 // C++1z [dcl.fcn.spec]p4: 4177 // If the definition of a variable appears in a translation unit before 4178 // its first declaration as inline, the program is ill-formed. 4179 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 4180 Diag(Def->getLocation(), diag::note_previous_definition); 4181 } 4182 } 4183 4184 // If this redeclaration makes the variable inline, we may need to add it to 4185 // UndefinedButUsed. 4186 if (!Old->isInline() && New->isInline() && Old->isUsed(false) && 4187 !Old->getDefinition() && !New->isThisDeclarationADefinition()) 4188 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), 4189 SourceLocation())); 4190 4191 if (New->getTLSKind() != Old->getTLSKind()) { 4192 if (!Old->getTLSKind()) { 4193 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); 4194 Diag(OldLocation, PrevDiag); 4195 } else if (!New->getTLSKind()) { 4196 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); 4197 Diag(OldLocation, PrevDiag); 4198 } else { 4199 // Do not allow redeclaration to change the variable between requiring 4200 // static and dynamic initialization. 4201 // FIXME: GCC allows this, but uses the TLS keyword on the first 4202 // declaration to determine the kind. Do we need to be compatible here? 4203 Diag(New->getLocation(), diag::err_thread_thread_different_kind) 4204 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic); 4205 Diag(OldLocation, PrevDiag); 4206 } 4207 } 4208 4209 // C++ doesn't have tentative definitions, so go right ahead and check here. 4210 if (getLangOpts().CPlusPlus && 4211 New->isThisDeclarationADefinition() == VarDecl::Definition) { 4212 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() && 4213 Old->getCanonicalDecl()->isConstexpr()) { 4214 // This definition won't be a definition any more once it's been merged. 4215 Diag(New->getLocation(), 4216 diag::warn_deprecated_redundant_constexpr_static_def); 4217 } else if (VarDecl *Def = Old->getDefinition()) { 4218 if (checkVarDeclRedefinition(Def, New)) 4219 return; 4220 } 4221 } 4222 4223 if (haveIncompatibleLanguageLinkages(Old, New)) { 4224 Diag(New->getLocation(), diag::err_different_language_linkage) << New; 4225 Diag(OldLocation, PrevDiag); 4226 New->setInvalidDecl(); 4227 return; 4228 } 4229 4230 // Merge "used" flag. 4231 if (Old->getMostRecentDecl()->isUsed(false)) 4232 New->setIsUsed(); 4233 4234 // Keep a chain of previous declarations. 4235 New->setPreviousDecl(Old); 4236 if (NewTemplate) 4237 NewTemplate->setPreviousDecl(OldTemplate); 4238 adjustDeclContextForDeclaratorDecl(New, Old); 4239 4240 // Inherit access appropriately. 4241 New->setAccess(Old->getAccess()); 4242 if (NewTemplate) 4243 NewTemplate->setAccess(New->getAccess()); 4244 4245 if (Old->isInline()) 4246 New->setImplicitlyInline(); 4247 } 4248 4249 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) { 4250 SourceManager &SrcMgr = getSourceManager(); 4251 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New); 4252 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation()); 4253 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first); 4254 auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first); 4255 auto &HSI = PP.getHeaderSearchInfo(); 4256 StringRef HdrFilename = 4257 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation())); 4258 4259 auto noteFromModuleOrInclude = [&](Module *Mod, 4260 SourceLocation IncLoc) -> bool { 4261 // Redefinition errors with modules are common with non modular mapped 4262 // headers, example: a non-modular header H in module A that also gets 4263 // included directly in a TU. Pointing twice to the same header/definition 4264 // is confusing, try to get better diagnostics when modules is on. 4265 if (IncLoc.isValid()) { 4266 if (Mod) { 4267 Diag(IncLoc, diag::note_redefinition_modules_same_file) 4268 << HdrFilename.str() << Mod->getFullModuleName(); 4269 if (!Mod->DefinitionLoc.isInvalid()) 4270 Diag(Mod->DefinitionLoc, diag::note_defined_here) 4271 << Mod->getFullModuleName(); 4272 } else { 4273 Diag(IncLoc, diag::note_redefinition_include_same_file) 4274 << HdrFilename.str(); 4275 } 4276 return true; 4277 } 4278 4279 return false; 4280 }; 4281 4282 // Is it the same file and same offset? Provide more information on why 4283 // this leads to a redefinition error. 4284 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) { 4285 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first); 4286 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first); 4287 bool EmittedDiag = 4288 noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc); 4289 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc); 4290 4291 // If the header has no guards, emit a note suggesting one. 4292 if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld)) 4293 Diag(Old->getLocation(), diag::note_use_ifdef_guards); 4294 4295 if (EmittedDiag) 4296 return; 4297 } 4298 4299 // Redefinition coming from different files or couldn't do better above. 4300 if (Old->getLocation().isValid()) 4301 Diag(Old->getLocation(), diag::note_previous_definition); 4302 } 4303 4304 /// We've just determined that \p Old and \p New both appear to be definitions 4305 /// of the same variable. Either diagnose or fix the problem. 4306 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) { 4307 if (!hasVisibleDefinition(Old) && 4308 (New->getFormalLinkage() == InternalLinkage || 4309 New->isInline() || 4310 New->getDescribedVarTemplate() || 4311 New->getNumTemplateParameterLists() || 4312 New->getDeclContext()->isDependentContext())) { 4313 // The previous definition is hidden, and multiple definitions are 4314 // permitted (in separate TUs). Demote this to a declaration. 4315 New->demoteThisDefinitionToDeclaration(); 4316 4317 // Make the canonical definition visible. 4318 if (auto *OldTD = Old->getDescribedVarTemplate()) 4319 makeMergedDefinitionVisible(OldTD); 4320 makeMergedDefinitionVisible(Old); 4321 return false; 4322 } else { 4323 Diag(New->getLocation(), diag::err_redefinition) << New; 4324 notePreviousDefinition(Old, New->getLocation()); 4325 New->setInvalidDecl(); 4326 return true; 4327 } 4328 } 4329 4330 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with 4331 /// no declarator (e.g. "struct foo;") is parsed. 4332 Decl * 4333 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, 4334 RecordDecl *&AnonRecord) { 4335 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false, 4336 AnonRecord); 4337 } 4338 4339 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to 4340 // disambiguate entities defined in different scopes. 4341 // While the VS2015 ABI fixes potential miscompiles, it is also breaks 4342 // compatibility. 4343 // We will pick our mangling number depending on which version of MSVC is being 4344 // targeted. 4345 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) { 4346 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015) 4347 ? S->getMSCurManglingNumber() 4348 : S->getMSLastManglingNumber(); 4349 } 4350 4351 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) { 4352 if (!Context.getLangOpts().CPlusPlus) 4353 return; 4354 4355 if (isa<CXXRecordDecl>(Tag->getParent())) { 4356 // If this tag is the direct child of a class, number it if 4357 // it is anonymous. 4358 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl()) 4359 return; 4360 MangleNumberingContext &MCtx = 4361 Context.getManglingNumberContext(Tag->getParent()); 4362 Context.setManglingNumber( 4363 Tag, MCtx.getManglingNumber( 4364 Tag, getMSManglingNumber(getLangOpts(), TagScope))); 4365 return; 4366 } 4367 4368 // If this tag isn't a direct child of a class, number it if it is local. 4369 MangleNumberingContext *MCtx; 4370 Decl *ManglingContextDecl; 4371 std::tie(MCtx, ManglingContextDecl) = 4372 getCurrentMangleNumberContext(Tag->getDeclContext()); 4373 if (MCtx) { 4374 Context.setManglingNumber( 4375 Tag, MCtx->getManglingNumber( 4376 Tag, getMSManglingNumber(getLangOpts(), TagScope))); 4377 } 4378 } 4379 4380 namespace { 4381 struct NonCLikeKind { 4382 enum { 4383 None, 4384 BaseClass, 4385 DefaultMemberInit, 4386 Lambda, 4387 Friend, 4388 OtherMember, 4389 Invalid, 4390 } Kind = None; 4391 SourceRange Range; 4392 4393 explicit operator bool() { return Kind != None; } 4394 }; 4395 } 4396 4397 /// Determine whether a class is C-like, according to the rules of C++ 4398 /// [dcl.typedef] for anonymous classes with typedef names for linkage. 4399 static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) { 4400 if (RD->isInvalidDecl()) 4401 return {NonCLikeKind::Invalid, {}}; 4402 4403 // C++ [dcl.typedef]p9: [P1766R1] 4404 // An unnamed class with a typedef name for linkage purposes shall not 4405 // 4406 // -- have any base classes 4407 if (RD->getNumBases()) 4408 return {NonCLikeKind::BaseClass, 4409 SourceRange(RD->bases_begin()->getBeginLoc(), 4410 RD->bases_end()[-1].getEndLoc())}; 4411 bool Invalid = false; 4412 for (Decl *D : RD->decls()) { 4413 // Don't complain about things we already diagnosed. 4414 if (D->isInvalidDecl()) { 4415 Invalid = true; 4416 continue; 4417 } 4418 4419 // -- have any [...] default member initializers 4420 if (auto *FD = dyn_cast<FieldDecl>(D)) { 4421 if (FD->hasInClassInitializer()) { 4422 auto *Init = FD->getInClassInitializer(); 4423 return {NonCLikeKind::DefaultMemberInit, 4424 Init ? Init->getSourceRange() : D->getSourceRange()}; 4425 } 4426 continue; 4427 } 4428 4429 // FIXME: We don't allow friend declarations. This violates the wording of 4430 // P1766, but not the intent. 4431 if (isa<FriendDecl>(D)) 4432 return {NonCLikeKind::Friend, D->getSourceRange()}; 4433 4434 // -- declare any members other than non-static data members, member 4435 // enumerations, or member classes, 4436 if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) || 4437 isa<EnumDecl>(D)) 4438 continue; 4439 auto *MemberRD = dyn_cast<CXXRecordDecl>(D); 4440 if (!MemberRD) { 4441 if (D->isImplicit()) 4442 continue; 4443 return {NonCLikeKind::OtherMember, D->getSourceRange()}; 4444 } 4445 4446 // -- contain a lambda-expression, 4447 if (MemberRD->isLambda()) 4448 return {NonCLikeKind::Lambda, MemberRD->getSourceRange()}; 4449 4450 // and all member classes shall also satisfy these requirements 4451 // (recursively). 4452 if (MemberRD->isThisDeclarationADefinition()) { 4453 if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD)) 4454 return Kind; 4455 } 4456 } 4457 4458 return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}}; 4459 } 4460 4461 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, 4462 TypedefNameDecl *NewTD) { 4463 if (TagFromDeclSpec->isInvalidDecl()) 4464 return; 4465 4466 // Do nothing if the tag already has a name for linkage purposes. 4467 if (TagFromDeclSpec->hasNameForLinkage()) 4468 return; 4469 4470 // A well-formed anonymous tag must always be a TUK_Definition. 4471 assert(TagFromDeclSpec->isThisDeclarationADefinition()); 4472 4473 // The type must match the tag exactly; no qualifiers allowed. 4474 if (!Context.hasSameType(NewTD->getUnderlyingType(), 4475 Context.getTagDeclType(TagFromDeclSpec))) { 4476 if (getLangOpts().CPlusPlus) 4477 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD); 4478 return; 4479 } 4480 4481 // C++ [dcl.typedef]p9: [P1766R1, applied as DR] 4482 // An unnamed class with a typedef name for linkage purposes shall [be 4483 // C-like]. 4484 // 4485 // FIXME: Also diagnose if we've already computed the linkage. That ideally 4486 // shouldn't happen, but there are constructs that the language rule doesn't 4487 // disallow for which we can't reasonably avoid computing linkage early. 4488 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec); 4489 NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD) 4490 : NonCLikeKind(); 4491 bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed(); 4492 if (NonCLike || ChangesLinkage) { 4493 if (NonCLike.Kind == NonCLikeKind::Invalid) 4494 return; 4495 4496 unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef; 4497 if (ChangesLinkage) { 4498 // If the linkage changes, we can't accept this as an extension. 4499 if (NonCLike.Kind == NonCLikeKind::None) 4500 DiagID = diag::err_typedef_changes_linkage; 4501 else 4502 DiagID = diag::err_non_c_like_anon_struct_in_typedef; 4503 } 4504 4505 SourceLocation FixitLoc = 4506 getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart()); 4507 llvm::SmallString<40> TextToInsert; 4508 TextToInsert += ' '; 4509 TextToInsert += NewTD->getIdentifier()->getName(); 4510 4511 Diag(FixitLoc, DiagID) 4512 << isa<TypeAliasDecl>(NewTD) 4513 << FixItHint::CreateInsertion(FixitLoc, TextToInsert); 4514 if (NonCLike.Kind != NonCLikeKind::None) { 4515 Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct) 4516 << NonCLike.Kind - 1 << NonCLike.Range; 4517 } 4518 Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here) 4519 << NewTD << isa<TypeAliasDecl>(NewTD); 4520 4521 if (ChangesLinkage) 4522 return; 4523 } 4524 4525 // Otherwise, set this as the anon-decl typedef for the tag. 4526 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); 4527 } 4528 4529 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) { 4530 switch (T) { 4531 case DeclSpec::TST_class: 4532 return 0; 4533 case DeclSpec::TST_struct: 4534 return 1; 4535 case DeclSpec::TST_interface: 4536 return 2; 4537 case DeclSpec::TST_union: 4538 return 3; 4539 case DeclSpec::TST_enum: 4540 return 4; 4541 default: 4542 llvm_unreachable("unexpected type specifier"); 4543 } 4544 } 4545 4546 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with 4547 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template 4548 /// parameters to cope with template friend declarations. 4549 Decl * 4550 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, 4551 MultiTemplateParamsArg TemplateParams, 4552 bool IsExplicitInstantiation, 4553 RecordDecl *&AnonRecord) { 4554 Decl *TagD = nullptr; 4555 TagDecl *Tag = nullptr; 4556 if (DS.getTypeSpecType() == DeclSpec::TST_class || 4557 DS.getTypeSpecType() == DeclSpec::TST_struct || 4558 DS.getTypeSpecType() == DeclSpec::TST_interface || 4559 DS.getTypeSpecType() == DeclSpec::TST_union || 4560 DS.getTypeSpecType() == DeclSpec::TST_enum) { 4561 TagD = DS.getRepAsDecl(); 4562 4563 if (!TagD) // We probably had an error 4564 return nullptr; 4565 4566 // Note that the above type specs guarantee that the 4567 // type rep is a Decl, whereas in many of the others 4568 // it's a Type. 4569 if (isa<TagDecl>(TagD)) 4570 Tag = cast<TagDecl>(TagD); 4571 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD)) 4572 Tag = CTD->getTemplatedDecl(); 4573 } 4574 4575 if (Tag) { 4576 handleTagNumbering(Tag, S); 4577 Tag->setFreeStanding(); 4578 if (Tag->isInvalidDecl()) 4579 return Tag; 4580 } 4581 4582 if (unsigned TypeQuals = DS.getTypeQualifiers()) { 4583 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object 4584 // or incomplete types shall not be restrict-qualified." 4585 if (TypeQuals & DeclSpec::TQ_restrict) 4586 Diag(DS.getRestrictSpecLoc(), 4587 diag::err_typecheck_invalid_restrict_not_pointer_noarg) 4588 << DS.getSourceRange(); 4589 } 4590 4591 if (DS.isInlineSpecified()) 4592 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) 4593 << getLangOpts().CPlusPlus17; 4594 4595 if (DS.hasConstexprSpecifier()) { 4596 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations 4597 // and definitions of functions and variables. 4598 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to 4599 // the declaration of a function or function template 4600 if (Tag) 4601 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) 4602 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) 4603 << DS.getConstexprSpecifier(); 4604 else 4605 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind) 4606 << DS.getConstexprSpecifier(); 4607 // Don't emit warnings after this error. 4608 return TagD; 4609 } 4610 4611 DiagnoseFunctionSpecifiers(DS); 4612 4613 if (DS.isFriendSpecified()) { 4614 // If we're dealing with a decl but not a TagDecl, assume that 4615 // whatever routines created it handled the friendship aspect. 4616 if (TagD && !Tag) 4617 return nullptr; 4618 return ActOnFriendTypeDecl(S, DS, TemplateParams); 4619 } 4620 4621 const CXXScopeSpec &SS = DS.getTypeSpecScope(); 4622 bool IsExplicitSpecialization = 4623 !TemplateParams.empty() && TemplateParams.back()->size() == 0; 4624 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() && 4625 !IsExplicitInstantiation && !IsExplicitSpecialization && 4626 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) { 4627 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a 4628 // nested-name-specifier unless it is an explicit instantiation 4629 // or an explicit specialization. 4630 // 4631 // FIXME: We allow class template partial specializations here too, per the 4632 // obvious intent of DR1819. 4633 // 4634 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either. 4635 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier) 4636 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange(); 4637 return nullptr; 4638 } 4639 4640 // Track whether this decl-specifier declares anything. 4641 bool DeclaresAnything = true; 4642 4643 // Handle anonymous struct definitions. 4644 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { 4645 if (!Record->getDeclName() && Record->isCompleteDefinition() && 4646 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { 4647 if (getLangOpts().CPlusPlus || 4648 Record->getDeclContext()->isRecord()) { 4649 // If CurContext is a DeclContext that can contain statements, 4650 // RecursiveASTVisitor won't visit the decls that 4651 // BuildAnonymousStructOrUnion() will put into CurContext. 4652 // Also store them here so that they can be part of the 4653 // DeclStmt that gets created in this case. 4654 // FIXME: Also return the IndirectFieldDecls created by 4655 // BuildAnonymousStructOr union, for the same reason? 4656 if (CurContext->isFunctionOrMethod()) 4657 AnonRecord = Record; 4658 return BuildAnonymousStructOrUnion(S, DS, AS, Record, 4659 Context.getPrintingPolicy()); 4660 } 4661 4662 DeclaresAnything = false; 4663 } 4664 } 4665 4666 // C11 6.7.2.1p2: 4667 // A struct-declaration that does not declare an anonymous structure or 4668 // anonymous union shall contain a struct-declarator-list. 4669 // 4670 // This rule also existed in C89 and C99; the grammar for struct-declaration 4671 // did not permit a struct-declaration without a struct-declarator-list. 4672 if (!getLangOpts().CPlusPlus && CurContext->isRecord() && 4673 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { 4674 // Check for Microsoft C extension: anonymous struct/union member. 4675 // Handle 2 kinds of anonymous struct/union: 4676 // struct STRUCT; 4677 // union UNION; 4678 // and 4679 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct. 4680 // UNION_TYPE; <- where UNION_TYPE is a typedef union. 4681 if ((Tag && Tag->getDeclName()) || 4682 DS.getTypeSpecType() == DeclSpec::TST_typename) { 4683 RecordDecl *Record = nullptr; 4684 if (Tag) 4685 Record = dyn_cast<RecordDecl>(Tag); 4686 else if (const RecordType *RT = 4687 DS.getRepAsType().get()->getAsStructureType()) 4688 Record = RT->getDecl(); 4689 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType()) 4690 Record = UT->getDecl(); 4691 4692 if (Record && getLangOpts().MicrosoftExt) { 4693 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record) 4694 << Record->isUnion() << DS.getSourceRange(); 4695 return BuildMicrosoftCAnonymousStruct(S, DS, Record); 4696 } 4697 4698 DeclaresAnything = false; 4699 } 4700 } 4701 4702 // Skip all the checks below if we have a type error. 4703 if (DS.getTypeSpecType() == DeclSpec::TST_error || 4704 (TagD && TagD->isInvalidDecl())) 4705 return TagD; 4706 4707 if (getLangOpts().CPlusPlus && 4708 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) 4709 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) 4710 if (Enum->enumerator_begin() == Enum->enumerator_end() && 4711 !Enum->getIdentifier() && !Enum->isInvalidDecl()) 4712 DeclaresAnything = false; 4713 4714 if (!DS.isMissingDeclaratorOk()) { 4715 // Customize diagnostic for a typedef missing a name. 4716 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 4717 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name) 4718 << DS.getSourceRange(); 4719 else 4720 DeclaresAnything = false; 4721 } 4722 4723 if (DS.isModulePrivateSpecified() && 4724 Tag && Tag->getDeclContext()->isFunctionOrMethod()) 4725 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) 4726 << Tag->getTagKind() 4727 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); 4728 4729 ActOnDocumentableDecl(TagD); 4730 4731 // C 6.7/2: 4732 // A declaration [...] shall declare at least a declarator [...], a tag, 4733 // or the members of an enumeration. 4734 // C++ [dcl.dcl]p3: 4735 // [If there are no declarators], and except for the declaration of an 4736 // unnamed bit-field, the decl-specifier-seq shall introduce one or more 4737 // names into the program, or shall redeclare a name introduced by a 4738 // previous declaration. 4739 if (!DeclaresAnything) { 4740 // In C, we allow this as a (popular) extension / bug. Don't bother 4741 // producing further diagnostics for redundant qualifiers after this. 4742 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange(); 4743 return TagD; 4744 } 4745 4746 // C++ [dcl.stc]p1: 4747 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the 4748 // init-declarator-list of the declaration shall not be empty. 4749 // C++ [dcl.fct.spec]p1: 4750 // If a cv-qualifier appears in a decl-specifier-seq, the 4751 // init-declarator-list of the declaration shall not be empty. 4752 // 4753 // Spurious qualifiers here appear to be valid in C. 4754 unsigned DiagID = diag::warn_standalone_specifier; 4755 if (getLangOpts().CPlusPlus) 4756 DiagID = diag::ext_standalone_specifier; 4757 4758 // Note that a linkage-specification sets a storage class, but 4759 // 'extern "C" struct foo;' is actually valid and not theoretically 4760 // useless. 4761 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { 4762 if (SCS == DeclSpec::SCS_mutable) 4763 // Since mutable is not a viable storage class specifier in C, there is 4764 // no reason to treat it as an extension. Instead, diagnose as an error. 4765 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember); 4766 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef) 4767 Diag(DS.getStorageClassSpecLoc(), DiagID) 4768 << DeclSpec::getSpecifierName(SCS); 4769 } 4770 4771 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) 4772 Diag(DS.getThreadStorageClassSpecLoc(), DiagID) 4773 << DeclSpec::getSpecifierName(TSCS); 4774 if (DS.getTypeQualifiers()) { 4775 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 4776 Diag(DS.getConstSpecLoc(), DiagID) << "const"; 4777 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 4778 Diag(DS.getConstSpecLoc(), DiagID) << "volatile"; 4779 // Restrict is covered above. 4780 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 4781 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic"; 4782 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 4783 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned"; 4784 } 4785 4786 // Warn about ignored type attributes, for example: 4787 // __attribute__((aligned)) struct A; 4788 // Attributes should be placed after tag to apply to type declaration. 4789 if (!DS.getAttributes().empty()) { 4790 DeclSpec::TST TypeSpecType = DS.getTypeSpecType(); 4791 if (TypeSpecType == DeclSpec::TST_class || 4792 TypeSpecType == DeclSpec::TST_struct || 4793 TypeSpecType == DeclSpec::TST_interface || 4794 TypeSpecType == DeclSpec::TST_union || 4795 TypeSpecType == DeclSpec::TST_enum) { 4796 for (const ParsedAttr &AL : DS.getAttributes()) 4797 Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored) 4798 << AL << GetDiagnosticTypeSpecifierID(TypeSpecType); 4799 } 4800 } 4801 4802 return TagD; 4803 } 4804 4805 /// We are trying to inject an anonymous member into the given scope; 4806 /// check if there's an existing declaration that can't be overloaded. 4807 /// 4808 /// \return true if this is a forbidden redeclaration 4809 static bool CheckAnonMemberRedeclaration(Sema &SemaRef, 4810 Scope *S, 4811 DeclContext *Owner, 4812 DeclarationName Name, 4813 SourceLocation NameLoc, 4814 bool IsUnion) { 4815 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, 4816 Sema::ForVisibleRedeclaration); 4817 if (!SemaRef.LookupName(R, S)) return false; 4818 4819 // Pick a representative declaration. 4820 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); 4821 assert(PrevDecl && "Expected a non-null Decl"); 4822 4823 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) 4824 return false; 4825 4826 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl) 4827 << IsUnion << Name; 4828 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 4829 4830 return true; 4831 } 4832 4833 /// InjectAnonymousStructOrUnionMembers - Inject the members of the 4834 /// anonymous struct or union AnonRecord into the owning context Owner 4835 /// and scope S. This routine will be invoked just after we realize 4836 /// that an unnamed union or struct is actually an anonymous union or 4837 /// struct, e.g., 4838 /// 4839 /// @code 4840 /// union { 4841 /// int i; 4842 /// float f; 4843 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and 4844 /// // f into the surrounding scope.x 4845 /// @endcode 4846 /// 4847 /// This routine is recursive, injecting the names of nested anonymous 4848 /// structs/unions into the owning context and scope as well. 4849 static bool 4850 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner, 4851 RecordDecl *AnonRecord, AccessSpecifier AS, 4852 SmallVectorImpl<NamedDecl *> &Chaining) { 4853 bool Invalid = false; 4854 4855 // Look every FieldDecl and IndirectFieldDecl with a name. 4856 for (auto *D : AnonRecord->decls()) { 4857 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) && 4858 cast<NamedDecl>(D)->getDeclName()) { 4859 ValueDecl *VD = cast<ValueDecl>(D); 4860 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), 4861 VD->getLocation(), 4862 AnonRecord->isUnion())) { 4863 // C++ [class.union]p2: 4864 // The names of the members of an anonymous union shall be 4865 // distinct from the names of any other entity in the 4866 // scope in which the anonymous union is declared. 4867 Invalid = true; 4868 } else { 4869 // C++ [class.union]p2: 4870 // For the purpose of name lookup, after the anonymous union 4871 // definition, the members of the anonymous union are 4872 // considered to have been defined in the scope in which the 4873 // anonymous union is declared. 4874 unsigned OldChainingSize = Chaining.size(); 4875 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) 4876 Chaining.append(IF->chain_begin(), IF->chain_end()); 4877 else 4878 Chaining.push_back(VD); 4879 4880 assert(Chaining.size() >= 2); 4881 NamedDecl **NamedChain = 4882 new (SemaRef.Context)NamedDecl*[Chaining.size()]; 4883 for (unsigned i = 0; i < Chaining.size(); i++) 4884 NamedChain[i] = Chaining[i]; 4885 4886 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( 4887 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(), 4888 VD->getType(), {NamedChain, Chaining.size()}); 4889 4890 for (const auto *Attr : VD->attrs()) 4891 IndirectField->addAttr(Attr->clone(SemaRef.Context)); 4892 4893 IndirectField->setAccess(AS); 4894 IndirectField->setImplicit(); 4895 SemaRef.PushOnScopeChains(IndirectField, S); 4896 4897 // That includes picking up the appropriate access specifier. 4898 if (AS != AS_none) IndirectField->setAccess(AS); 4899 4900 Chaining.resize(OldChainingSize); 4901 } 4902 } 4903 } 4904 4905 return Invalid; 4906 } 4907 4908 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to 4909 /// a VarDecl::StorageClass. Any error reporting is up to the caller: 4910 /// illegal input values are mapped to SC_None. 4911 static StorageClass 4912 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) { 4913 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec(); 4914 assert(StorageClassSpec != DeclSpec::SCS_typedef && 4915 "Parser allowed 'typedef' as storage class VarDecl."); 4916 switch (StorageClassSpec) { 4917 case DeclSpec::SCS_unspecified: return SC_None; 4918 case DeclSpec::SCS_extern: 4919 if (DS.isExternInLinkageSpec()) 4920 return SC_None; 4921 return SC_Extern; 4922 case DeclSpec::SCS_static: return SC_Static; 4923 case DeclSpec::SCS_auto: return SC_Auto; 4924 case DeclSpec::SCS_register: return SC_Register; 4925 case DeclSpec::SCS_private_extern: return SC_PrivateExtern; 4926 // Illegal SCSs map to None: error reporting is up to the caller. 4927 case DeclSpec::SCS_mutable: // Fall through. 4928 case DeclSpec::SCS_typedef: return SC_None; 4929 } 4930 llvm_unreachable("unknown storage class specifier"); 4931 } 4932 4933 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) { 4934 assert(Record->hasInClassInitializer()); 4935 4936 for (const auto *I : Record->decls()) { 4937 const auto *FD = dyn_cast<FieldDecl>(I); 4938 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) 4939 FD = IFD->getAnonField(); 4940 if (FD && FD->hasInClassInitializer()) 4941 return FD->getLocation(); 4942 } 4943 4944 llvm_unreachable("couldn't find in-class initializer"); 4945 } 4946 4947 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, 4948 SourceLocation DefaultInitLoc) { 4949 if (!Parent->isUnion() || !Parent->hasInClassInitializer()) 4950 return; 4951 4952 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization); 4953 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0; 4954 } 4955 4956 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, 4957 CXXRecordDecl *AnonUnion) { 4958 if (!Parent->isUnion() || !Parent->hasInClassInitializer()) 4959 return; 4960 4961 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion)); 4962 } 4963 4964 /// BuildAnonymousStructOrUnion - Handle the declaration of an 4965 /// anonymous structure or union. Anonymous unions are a C++ feature 4966 /// (C++ [class.union]) and a C11 feature; anonymous structures 4967 /// are a C11 feature and GNU C++ extension. 4968 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, 4969 AccessSpecifier AS, 4970 RecordDecl *Record, 4971 const PrintingPolicy &Policy) { 4972 DeclContext *Owner = Record->getDeclContext(); 4973 4974 // Diagnose whether this anonymous struct/union is an extension. 4975 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11) 4976 Diag(Record->getLocation(), diag::ext_anonymous_union); 4977 else if (!Record->isUnion() && getLangOpts().CPlusPlus) 4978 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct); 4979 else if (!Record->isUnion() && !getLangOpts().C11) 4980 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct); 4981 4982 // C and C++ require different kinds of checks for anonymous 4983 // structs/unions. 4984 bool Invalid = false; 4985 if (getLangOpts().CPlusPlus) { 4986 const char *PrevSpec = nullptr; 4987 if (Record->isUnion()) { 4988 // C++ [class.union]p6: 4989 // C++17 [class.union.anon]p2: 4990 // Anonymous unions declared in a named namespace or in the 4991 // global namespace shall be declared static. 4992 unsigned DiagID; 4993 DeclContext *OwnerScope = Owner->getRedeclContext(); 4994 if (DS.getStorageClassSpec() != DeclSpec::SCS_static && 4995 (OwnerScope->isTranslationUnit() || 4996 (OwnerScope->isNamespace() && 4997 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) { 4998 Diag(Record->getLocation(), diag::err_anonymous_union_not_static) 4999 << FixItHint::CreateInsertion(Record->getLocation(), "static "); 5000 5001 // Recover by adding 'static'. 5002 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(), 5003 PrevSpec, DiagID, Policy); 5004 } 5005 // C++ [class.union]p6: 5006 // A storage class is not allowed in a declaration of an 5007 // anonymous union in a class scope. 5008 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && 5009 isa<RecordDecl>(Owner)) { 5010 Diag(DS.getStorageClassSpecLoc(), 5011 diag::err_anonymous_union_with_storage_spec) 5012 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 5013 5014 // Recover by removing the storage specifier. 5015 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, 5016 SourceLocation(), 5017 PrevSpec, DiagID, Context.getPrintingPolicy()); 5018 } 5019 } 5020 5021 // Ignore const/volatile/restrict qualifiers. 5022 if (DS.getTypeQualifiers()) { 5023 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 5024 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) 5025 << Record->isUnion() << "const" 5026 << FixItHint::CreateRemoval(DS.getConstSpecLoc()); 5027 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 5028 Diag(DS.getVolatileSpecLoc(), 5029 diag::ext_anonymous_struct_union_qualified) 5030 << Record->isUnion() << "volatile" 5031 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); 5032 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 5033 Diag(DS.getRestrictSpecLoc(), 5034 diag::ext_anonymous_struct_union_qualified) 5035 << Record->isUnion() << "restrict" 5036 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); 5037 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 5038 Diag(DS.getAtomicSpecLoc(), 5039 diag::ext_anonymous_struct_union_qualified) 5040 << Record->isUnion() << "_Atomic" 5041 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc()); 5042 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 5043 Diag(DS.getUnalignedSpecLoc(), 5044 diag::ext_anonymous_struct_union_qualified) 5045 << Record->isUnion() << "__unaligned" 5046 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc()); 5047 5048 DS.ClearTypeQualifiers(); 5049 } 5050 5051 // C++ [class.union]p2: 5052 // The member-specification of an anonymous union shall only 5053 // define non-static data members. [Note: nested types and 5054 // functions cannot be declared within an anonymous union. ] 5055 for (auto *Mem : Record->decls()) { 5056 // Ignore invalid declarations; we already diagnosed them. 5057 if (Mem->isInvalidDecl()) 5058 continue; 5059 5060 if (auto *FD = dyn_cast<FieldDecl>(Mem)) { 5061 // C++ [class.union]p3: 5062 // An anonymous union shall not have private or protected 5063 // members (clause 11). 5064 assert(FD->getAccess() != AS_none); 5065 if (FD->getAccess() != AS_public) { 5066 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) 5067 << Record->isUnion() << (FD->getAccess() == AS_protected); 5068 Invalid = true; 5069 } 5070 5071 // C++ [class.union]p1 5072 // An object of a class with a non-trivial constructor, a non-trivial 5073 // copy constructor, a non-trivial destructor, or a non-trivial copy 5074 // assignment operator cannot be a member of a union, nor can an 5075 // array of such objects. 5076 if (CheckNontrivialField(FD)) 5077 Invalid = true; 5078 } else if (Mem->isImplicit()) { 5079 // Any implicit members are fine. 5080 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) { 5081 // This is a type that showed up in an 5082 // elaborated-type-specifier inside the anonymous struct or 5083 // union, but which actually declares a type outside of the 5084 // anonymous struct or union. It's okay. 5085 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) { 5086 if (!MemRecord->isAnonymousStructOrUnion() && 5087 MemRecord->getDeclName()) { 5088 // Visual C++ allows type definition in anonymous struct or union. 5089 if (getLangOpts().MicrosoftExt) 5090 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) 5091 << Record->isUnion(); 5092 else { 5093 // This is a nested type declaration. 5094 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) 5095 << Record->isUnion(); 5096 Invalid = true; 5097 } 5098 } else { 5099 // This is an anonymous type definition within another anonymous type. 5100 // This is a popular extension, provided by Plan9, MSVC and GCC, but 5101 // not part of standard C++. 5102 Diag(MemRecord->getLocation(), 5103 diag::ext_anonymous_record_with_anonymous_type) 5104 << Record->isUnion(); 5105 } 5106 } else if (isa<AccessSpecDecl>(Mem)) { 5107 // Any access specifier is fine. 5108 } else if (isa<StaticAssertDecl>(Mem)) { 5109 // In C++1z, static_assert declarations are also fine. 5110 } else { 5111 // We have something that isn't a non-static data 5112 // member. Complain about it. 5113 unsigned DK = diag::err_anonymous_record_bad_member; 5114 if (isa<TypeDecl>(Mem)) 5115 DK = diag::err_anonymous_record_with_type; 5116 else if (isa<FunctionDecl>(Mem)) 5117 DK = diag::err_anonymous_record_with_function; 5118 else if (isa<VarDecl>(Mem)) 5119 DK = diag::err_anonymous_record_with_static; 5120 5121 // Visual C++ allows type definition in anonymous struct or union. 5122 if (getLangOpts().MicrosoftExt && 5123 DK == diag::err_anonymous_record_with_type) 5124 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type) 5125 << Record->isUnion(); 5126 else { 5127 Diag(Mem->getLocation(), DK) << Record->isUnion(); 5128 Invalid = true; 5129 } 5130 } 5131 } 5132 5133 // C++11 [class.union]p8 (DR1460): 5134 // At most one variant member of a union may have a 5135 // brace-or-equal-initializer. 5136 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() && 5137 Owner->isRecord()) 5138 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner), 5139 cast<CXXRecordDecl>(Record)); 5140 } 5141 5142 if (!Record->isUnion() && !Owner->isRecord()) { 5143 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) 5144 << getLangOpts().CPlusPlus; 5145 Invalid = true; 5146 } 5147 5148 // C++ [dcl.dcl]p3: 5149 // [If there are no declarators], and except for the declaration of an 5150 // unnamed bit-field, the decl-specifier-seq shall introduce one or more 5151 // names into the program 5152 // C++ [class.mem]p2: 5153 // each such member-declaration shall either declare at least one member 5154 // name of the class or declare at least one unnamed bit-field 5155 // 5156 // For C this is an error even for a named struct, and is diagnosed elsewhere. 5157 if (getLangOpts().CPlusPlus && Record->field_empty()) 5158 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange(); 5159 5160 // Mock up a declarator. 5161 Declarator Dc(DS, DeclaratorContext::MemberContext); 5162 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); 5163 assert(TInfo && "couldn't build declarator info for anonymous struct/union"); 5164 5165 // Create a declaration for this anonymous struct/union. 5166 NamedDecl *Anon = nullptr; 5167 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { 5168 Anon = FieldDecl::Create( 5169 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(), 5170 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo, 5171 /*BitWidth=*/nullptr, /*Mutable=*/false, 5172 /*InitStyle=*/ICIS_NoInit); 5173 Anon->setAccess(AS); 5174 ProcessDeclAttributes(S, Anon, Dc); 5175 5176 if (getLangOpts().CPlusPlus) 5177 FieldCollector->Add(cast<FieldDecl>(Anon)); 5178 } else { 5179 DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); 5180 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS); 5181 if (SCSpec == DeclSpec::SCS_mutable) { 5182 // mutable can only appear on non-static class members, so it's always 5183 // an error here 5184 Diag(Record->getLocation(), diag::err_mutable_nonmember); 5185 Invalid = true; 5186 SC = SC_None; 5187 } 5188 5189 assert(DS.getAttributes().empty() && "No attribute expected"); 5190 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(), 5191 Record->getLocation(), /*IdentifierInfo=*/nullptr, 5192 Context.getTypeDeclType(Record), TInfo, SC); 5193 5194 // Default-initialize the implicit variable. This initialization will be 5195 // trivial in almost all cases, except if a union member has an in-class 5196 // initializer: 5197 // union { int n = 0; }; 5198 ActOnUninitializedDecl(Anon); 5199 } 5200 Anon->setImplicit(); 5201 5202 // Mark this as an anonymous struct/union type. 5203 Record->setAnonymousStructOrUnion(true); 5204 5205 // Add the anonymous struct/union object to the current 5206 // context. We'll be referencing this object when we refer to one of 5207 // its members. 5208 Owner->addDecl(Anon); 5209 5210 // Inject the members of the anonymous struct/union into the owning 5211 // context and into the identifier resolver chain for name lookup 5212 // purposes. 5213 SmallVector<NamedDecl*, 2> Chain; 5214 Chain.push_back(Anon); 5215 5216 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain)) 5217 Invalid = true; 5218 5219 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) { 5220 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { 5221 MangleNumberingContext *MCtx; 5222 Decl *ManglingContextDecl; 5223 std::tie(MCtx, ManglingContextDecl) = 5224 getCurrentMangleNumberContext(NewVD->getDeclContext()); 5225 if (MCtx) { 5226 Context.setManglingNumber( 5227 NewVD, MCtx->getManglingNumber( 5228 NewVD, getMSManglingNumber(getLangOpts(), S))); 5229 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); 5230 } 5231 } 5232 } 5233 5234 if (Invalid) 5235 Anon->setInvalidDecl(); 5236 5237 return Anon; 5238 } 5239 5240 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an 5241 /// Microsoft C anonymous structure. 5242 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx 5243 /// Example: 5244 /// 5245 /// struct A { int a; }; 5246 /// struct B { struct A; int b; }; 5247 /// 5248 /// void foo() { 5249 /// B var; 5250 /// var.a = 3; 5251 /// } 5252 /// 5253 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, 5254 RecordDecl *Record) { 5255 assert(Record && "expected a record!"); 5256 5257 // Mock up a declarator. 5258 Declarator Dc(DS, DeclaratorContext::TypeNameContext); 5259 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); 5260 assert(TInfo && "couldn't build declarator info for anonymous struct"); 5261 5262 auto *ParentDecl = cast<RecordDecl>(CurContext); 5263 QualType RecTy = Context.getTypeDeclType(Record); 5264 5265 // Create a declaration for this anonymous struct. 5266 NamedDecl *Anon = 5267 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(), 5268 /*IdentifierInfo=*/nullptr, RecTy, TInfo, 5269 /*BitWidth=*/nullptr, /*Mutable=*/false, 5270 /*InitStyle=*/ICIS_NoInit); 5271 Anon->setImplicit(); 5272 5273 // Add the anonymous struct object to the current context. 5274 CurContext->addDecl(Anon); 5275 5276 // Inject the members of the anonymous struct into the current 5277 // context and into the identifier resolver chain for name lookup 5278 // purposes. 5279 SmallVector<NamedDecl*, 2> Chain; 5280 Chain.push_back(Anon); 5281 5282 RecordDecl *RecordDef = Record->getDefinition(); 5283 if (RequireCompleteSizedType(Anon->getLocation(), RecTy, 5284 diag::err_field_incomplete_or_sizeless) || 5285 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef, 5286 AS_none, Chain)) { 5287 Anon->setInvalidDecl(); 5288 ParentDecl->setInvalidDecl(); 5289 } 5290 5291 return Anon; 5292 } 5293 5294 /// GetNameForDeclarator - Determine the full declaration name for the 5295 /// given Declarator. 5296 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { 5297 return GetNameFromUnqualifiedId(D.getName()); 5298 } 5299 5300 /// Retrieves the declaration name from a parsed unqualified-id. 5301 DeclarationNameInfo 5302 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { 5303 DeclarationNameInfo NameInfo; 5304 NameInfo.setLoc(Name.StartLocation); 5305 5306 switch (Name.getKind()) { 5307 5308 case UnqualifiedIdKind::IK_ImplicitSelfParam: 5309 case UnqualifiedIdKind::IK_Identifier: 5310 NameInfo.setName(Name.Identifier); 5311 return NameInfo; 5312 5313 case UnqualifiedIdKind::IK_DeductionGuideName: { 5314 // C++ [temp.deduct.guide]p3: 5315 // The simple-template-id shall name a class template specialization. 5316 // The template-name shall be the same identifier as the template-name 5317 // of the simple-template-id. 5318 // These together intend to imply that the template-name shall name a 5319 // class template. 5320 // FIXME: template<typename T> struct X {}; 5321 // template<typename T> using Y = X<T>; 5322 // Y(int) -> Y<int>; 5323 // satisfies these rules but does not name a class template. 5324 TemplateName TN = Name.TemplateName.get().get(); 5325 auto *Template = TN.getAsTemplateDecl(); 5326 if (!Template || !isa<ClassTemplateDecl>(Template)) { 5327 Diag(Name.StartLocation, 5328 diag::err_deduction_guide_name_not_class_template) 5329 << (int)getTemplateNameKindForDiagnostics(TN) << TN; 5330 if (Template) 5331 Diag(Template->getLocation(), diag::note_template_decl_here); 5332 return DeclarationNameInfo(); 5333 } 5334 5335 NameInfo.setName( 5336 Context.DeclarationNames.getCXXDeductionGuideName(Template)); 5337 return NameInfo; 5338 } 5339 5340 case UnqualifiedIdKind::IK_OperatorFunctionId: 5341 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( 5342 Name.OperatorFunctionId.Operator)); 5343 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc 5344 = Name.OperatorFunctionId.SymbolLocations[0]; 5345 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc 5346 = Name.EndLocation.getRawEncoding(); 5347 return NameInfo; 5348 5349 case UnqualifiedIdKind::IK_LiteralOperatorId: 5350 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( 5351 Name.Identifier)); 5352 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); 5353 return NameInfo; 5354 5355 case UnqualifiedIdKind::IK_ConversionFunctionId: { 5356 TypeSourceInfo *TInfo; 5357 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); 5358 if (Ty.isNull()) 5359 return DeclarationNameInfo(); 5360 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( 5361 Context.getCanonicalType(Ty))); 5362 NameInfo.setNamedTypeInfo(TInfo); 5363 return NameInfo; 5364 } 5365 5366 case UnqualifiedIdKind::IK_ConstructorName: { 5367 TypeSourceInfo *TInfo; 5368 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); 5369 if (Ty.isNull()) 5370 return DeclarationNameInfo(); 5371 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 5372 Context.getCanonicalType(Ty))); 5373 NameInfo.setNamedTypeInfo(TInfo); 5374 return NameInfo; 5375 } 5376 5377 case UnqualifiedIdKind::IK_ConstructorTemplateId: { 5378 // In well-formed code, we can only have a constructor 5379 // template-id that refers to the current context, so go there 5380 // to find the actual type being constructed. 5381 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); 5382 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) 5383 return DeclarationNameInfo(); 5384 5385 // Determine the type of the class being constructed. 5386 QualType CurClassType = Context.getTypeDeclType(CurClass); 5387 5388 // FIXME: Check two things: that the template-id names the same type as 5389 // CurClassType, and that the template-id does not occur when the name 5390 // was qualified. 5391 5392 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 5393 Context.getCanonicalType(CurClassType))); 5394 // FIXME: should we retrieve TypeSourceInfo? 5395 NameInfo.setNamedTypeInfo(nullptr); 5396 return NameInfo; 5397 } 5398 5399 case UnqualifiedIdKind::IK_DestructorName: { 5400 TypeSourceInfo *TInfo; 5401 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo); 5402 if (Ty.isNull()) 5403 return DeclarationNameInfo(); 5404 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( 5405 Context.getCanonicalType(Ty))); 5406 NameInfo.setNamedTypeInfo(TInfo); 5407 return NameInfo; 5408 } 5409 5410 case UnqualifiedIdKind::IK_TemplateId: { 5411 TemplateName TName = Name.TemplateId->Template.get(); 5412 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; 5413 return Context.getNameForTemplate(TName, TNameLoc); 5414 } 5415 5416 } // switch (Name.getKind()) 5417 5418 llvm_unreachable("Unknown name kind"); 5419 } 5420 5421 static QualType getCoreType(QualType Ty) { 5422 do { 5423 if (Ty->isPointerType() || Ty->isReferenceType()) 5424 Ty = Ty->getPointeeType(); 5425 else if (Ty->isArrayType()) 5426 Ty = Ty->castAsArrayTypeUnsafe()->getElementType(); 5427 else 5428 return Ty.withoutLocalFastQualifiers(); 5429 } while (true); 5430 } 5431 5432 /// hasSimilarParameters - Determine whether the C++ functions Declaration 5433 /// and Definition have "nearly" matching parameters. This heuristic is 5434 /// used to improve diagnostics in the case where an out-of-line function 5435 /// definition doesn't match any declaration within the class or namespace. 5436 /// Also sets Params to the list of indices to the parameters that differ 5437 /// between the declaration and the definition. If hasSimilarParameters 5438 /// returns true and Params is empty, then all of the parameters match. 5439 static bool hasSimilarParameters(ASTContext &Context, 5440 FunctionDecl *Declaration, 5441 FunctionDecl *Definition, 5442 SmallVectorImpl<unsigned> &Params) { 5443 Params.clear(); 5444 if (Declaration->param_size() != Definition->param_size()) 5445 return false; 5446 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { 5447 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); 5448 QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); 5449 5450 // The parameter types are identical 5451 if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy)) 5452 continue; 5453 5454 QualType DeclParamBaseTy = getCoreType(DeclParamTy); 5455 QualType DefParamBaseTy = getCoreType(DefParamTy); 5456 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier(); 5457 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier(); 5458 5459 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) || 5460 (DeclTyName && DeclTyName == DefTyName)) 5461 Params.push_back(Idx); 5462 else // The two parameters aren't even close 5463 return false; 5464 } 5465 5466 return true; 5467 } 5468 5469 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given 5470 /// declarator needs to be rebuilt in the current instantiation. 5471 /// Any bits of declarator which appear before the name are valid for 5472 /// consideration here. That's specifically the type in the decl spec 5473 /// and the base type in any member-pointer chunks. 5474 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, 5475 DeclarationName Name) { 5476 // The types we specifically need to rebuild are: 5477 // - typenames, typeofs, and decltypes 5478 // - types which will become injected class names 5479 // Of course, we also need to rebuild any type referencing such a 5480 // type. It's safest to just say "dependent", but we call out a 5481 // few cases here. 5482 5483 DeclSpec &DS = D.getMutableDeclSpec(); 5484 switch (DS.getTypeSpecType()) { 5485 case DeclSpec::TST_typename: 5486 case DeclSpec::TST_typeofType: 5487 case DeclSpec::TST_underlyingType: 5488 case DeclSpec::TST_atomic: { 5489 // Grab the type from the parser. 5490 TypeSourceInfo *TSI = nullptr; 5491 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI); 5492 if (T.isNull() || !T->isDependentType()) break; 5493 5494 // Make sure there's a type source info. This isn't really much 5495 // of a waste; most dependent types should have type source info 5496 // attached already. 5497 if (!TSI) 5498 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc()); 5499 5500 // Rebuild the type in the current instantiation. 5501 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name); 5502 if (!TSI) return true; 5503 5504 // Store the new type back in the decl spec. 5505 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI); 5506 DS.UpdateTypeRep(LocType); 5507 break; 5508 } 5509 5510 case DeclSpec::TST_decltype: 5511 case DeclSpec::TST_typeofExpr: { 5512 Expr *E = DS.getRepAsExpr(); 5513 ExprResult Result = S.RebuildExprInCurrentInstantiation(E); 5514 if (Result.isInvalid()) return true; 5515 DS.UpdateExprRep(Result.get()); 5516 break; 5517 } 5518 5519 default: 5520 // Nothing to do for these decl specs. 5521 break; 5522 } 5523 5524 // It doesn't matter what order we do this in. 5525 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { 5526 DeclaratorChunk &Chunk = D.getTypeObject(I); 5527 5528 // The only type information in the declarator which can come 5529 // before the declaration name is the base type of a member 5530 // pointer. 5531 if (Chunk.Kind != DeclaratorChunk::MemberPointer) 5532 continue; 5533 5534 // Rebuild the scope specifier in-place. 5535 CXXScopeSpec &SS = Chunk.Mem.Scope(); 5536 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) 5537 return true; 5538 } 5539 5540 return false; 5541 } 5542 5543 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { 5544 D.setFunctionDefinitionKind(FDK_Declaration); 5545 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg()); 5546 5547 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() && 5548 Dcl && Dcl->getDeclContext()->isFileContext()) 5549 Dcl->setTopLevelDeclInObjCContainer(); 5550 5551 if (getLangOpts().OpenCL) 5552 setCurrentOpenCLExtensionForDecl(Dcl); 5553 5554 return Dcl; 5555 } 5556 5557 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13: 5558 /// If T is the name of a class, then each of the following shall have a 5559 /// name different from T: 5560 /// - every static data member of class T; 5561 /// - every member function of class T 5562 /// - every member of class T that is itself a type; 5563 /// \returns true if the declaration name violates these rules. 5564 bool Sema::DiagnoseClassNameShadow(DeclContext *DC, 5565 DeclarationNameInfo NameInfo) { 5566 DeclarationName Name = NameInfo.getName(); 5567 5568 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC); 5569 while (Record && Record->isAnonymousStructOrUnion()) 5570 Record = dyn_cast<CXXRecordDecl>(Record->getParent()); 5571 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) { 5572 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name; 5573 return true; 5574 } 5575 5576 return false; 5577 } 5578 5579 /// Diagnose a declaration whose declarator-id has the given 5580 /// nested-name-specifier. 5581 /// 5582 /// \param SS The nested-name-specifier of the declarator-id. 5583 /// 5584 /// \param DC The declaration context to which the nested-name-specifier 5585 /// resolves. 5586 /// 5587 /// \param Name The name of the entity being declared. 5588 /// 5589 /// \param Loc The location of the name of the entity being declared. 5590 /// 5591 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus 5592 /// we're declaring an explicit / partial specialization / instantiation. 5593 /// 5594 /// \returns true if we cannot safely recover from this error, false otherwise. 5595 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, 5596 DeclarationName Name, 5597 SourceLocation Loc, bool IsTemplateId) { 5598 DeclContext *Cur = CurContext; 5599 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur)) 5600 Cur = Cur->getParent(); 5601 5602 // If the user provided a superfluous scope specifier that refers back to the 5603 // class in which the entity is already declared, diagnose and ignore it. 5604 // 5605 // class X { 5606 // void X::f(); 5607 // }; 5608 // 5609 // Note, it was once ill-formed to give redundant qualification in all 5610 // contexts, but that rule was removed by DR482. 5611 if (Cur->Equals(DC)) { 5612 if (Cur->isRecord()) { 5613 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification 5614 : diag::err_member_extra_qualification) 5615 << Name << FixItHint::CreateRemoval(SS.getRange()); 5616 SS.clear(); 5617 } else { 5618 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name; 5619 } 5620 return false; 5621 } 5622 5623 // Check whether the qualifying scope encloses the scope of the original 5624 // declaration. For a template-id, we perform the checks in 5625 // CheckTemplateSpecializationScope. 5626 if (!Cur->Encloses(DC) && !IsTemplateId) { 5627 if (Cur->isRecord()) 5628 Diag(Loc, diag::err_member_qualification) 5629 << Name << SS.getRange(); 5630 else if (isa<TranslationUnitDecl>(DC)) 5631 Diag(Loc, diag::err_invalid_declarator_global_scope) 5632 << Name << SS.getRange(); 5633 else if (isa<FunctionDecl>(Cur)) 5634 Diag(Loc, diag::err_invalid_declarator_in_function) 5635 << Name << SS.getRange(); 5636 else if (isa<BlockDecl>(Cur)) 5637 Diag(Loc, diag::err_invalid_declarator_in_block) 5638 << Name << SS.getRange(); 5639 else 5640 Diag(Loc, diag::err_invalid_declarator_scope) 5641 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange(); 5642 5643 return true; 5644 } 5645 5646 if (Cur->isRecord()) { 5647 // Cannot qualify members within a class. 5648 Diag(Loc, diag::err_member_qualification) 5649 << Name << SS.getRange(); 5650 SS.clear(); 5651 5652 // C++ constructors and destructors with incorrect scopes can break 5653 // our AST invariants by having the wrong underlying types. If 5654 // that's the case, then drop this declaration entirely. 5655 if ((Name.getNameKind() == DeclarationName::CXXConstructorName || 5656 Name.getNameKind() == DeclarationName::CXXDestructorName) && 5657 !Context.hasSameType(Name.getCXXNameType(), 5658 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur)))) 5659 return true; 5660 5661 return false; 5662 } 5663 5664 // C++11 [dcl.meaning]p1: 5665 // [...] "The nested-name-specifier of the qualified declarator-id shall 5666 // not begin with a decltype-specifer" 5667 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data()); 5668 while (SpecLoc.getPrefix()) 5669 SpecLoc = SpecLoc.getPrefix(); 5670 if (dyn_cast_or_null<DecltypeType>( 5671 SpecLoc.getNestedNameSpecifier()->getAsType())) 5672 Diag(Loc, diag::err_decltype_in_declarator) 5673 << SpecLoc.getTypeLoc().getSourceRange(); 5674 5675 return false; 5676 } 5677 5678 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D, 5679 MultiTemplateParamsArg TemplateParamLists) { 5680 // TODO: consider using NameInfo for diagnostic. 5681 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 5682 DeclarationName Name = NameInfo.getName(); 5683 5684 // All of these full declarators require an identifier. If it doesn't have 5685 // one, the ParsedFreeStandingDeclSpec action should be used. 5686 if (D.isDecompositionDeclarator()) { 5687 return ActOnDecompositionDeclarator(S, D, TemplateParamLists); 5688 } else if (!Name) { 5689 if (!D.isInvalidType()) // Reject this if we think it is valid. 5690 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident) 5691 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 5692 return nullptr; 5693 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType)) 5694 return nullptr; 5695 5696 // The scope passed in may not be a decl scope. Zip up the scope tree until 5697 // we find one that is. 5698 while ((S->getFlags() & Scope::DeclScope) == 0 || 5699 (S->getFlags() & Scope::TemplateParamScope) != 0) 5700 S = S->getParent(); 5701 5702 DeclContext *DC = CurContext; 5703 if (D.getCXXScopeSpec().isInvalid()) 5704 D.setInvalidType(); 5705 else if (D.getCXXScopeSpec().isSet()) { 5706 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), 5707 UPPC_DeclarationQualifier)) 5708 return nullptr; 5709 5710 bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); 5711 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext); 5712 if (!DC || isa<EnumDecl>(DC)) { 5713 // If we could not compute the declaration context, it's because the 5714 // declaration context is dependent but does not refer to a class, 5715 // class template, or class template partial specialization. Complain 5716 // and return early, to avoid the coming semantic disaster. 5717 Diag(D.getIdentifierLoc(), 5718 diag::err_template_qualified_declarator_no_match) 5719 << D.getCXXScopeSpec().getScopeRep() 5720 << D.getCXXScopeSpec().getRange(); 5721 return nullptr; 5722 } 5723 bool IsDependentContext = DC->isDependentContext(); 5724 5725 if (!IsDependentContext && 5726 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC)) 5727 return nullptr; 5728 5729 // If a class is incomplete, do not parse entities inside it. 5730 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) { 5731 Diag(D.getIdentifierLoc(), 5732 diag::err_member_def_undefined_record) 5733 << Name << DC << D.getCXXScopeSpec().getRange(); 5734 return nullptr; 5735 } 5736 if (!D.getDeclSpec().isFriendSpecified()) { 5737 if (diagnoseQualifiedDeclaration( 5738 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(), 5739 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) { 5740 if (DC->isRecord()) 5741 return nullptr; 5742 5743 D.setInvalidType(); 5744 } 5745 } 5746 5747 // Check whether we need to rebuild the type of the given 5748 // declaration in the current instantiation. 5749 if (EnteringContext && IsDependentContext && 5750 TemplateParamLists.size() != 0) { 5751 ContextRAII SavedContext(*this, DC); 5752 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name)) 5753 D.setInvalidType(); 5754 } 5755 } 5756 5757 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 5758 QualType R = TInfo->getType(); 5759 5760 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 5761 UPPC_DeclarationType)) 5762 D.setInvalidType(); 5763 5764 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 5765 forRedeclarationInCurContext()); 5766 5767 // See if this is a redefinition of a variable in the same scope. 5768 if (!D.getCXXScopeSpec().isSet()) { 5769 bool IsLinkageLookup = false; 5770 bool CreateBuiltins = false; 5771 5772 // If the declaration we're planning to build will be a function 5773 // or object with linkage, then look for another declaration with 5774 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). 5775 // 5776 // If the declaration we're planning to build will be declared with 5777 // external linkage in the translation unit, create any builtin with 5778 // the same name. 5779 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) 5780 /* Do nothing*/; 5781 else if (CurContext->isFunctionOrMethod() && 5782 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern || 5783 R->isFunctionType())) { 5784 IsLinkageLookup = true; 5785 CreateBuiltins = 5786 CurContext->getEnclosingNamespaceContext()->isTranslationUnit(); 5787 } else if (CurContext->getRedeclContext()->isTranslationUnit() && 5788 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) 5789 CreateBuiltins = true; 5790 5791 if (IsLinkageLookup) { 5792 Previous.clear(LookupRedeclarationWithLinkage); 5793 Previous.setRedeclarationKind(ForExternalRedeclaration); 5794 } 5795 5796 LookupName(Previous, S, CreateBuiltins); 5797 } else { // Something like "int foo::x;" 5798 LookupQualifiedName(Previous, DC); 5799 5800 // C++ [dcl.meaning]p1: 5801 // When the declarator-id is qualified, the declaration shall refer to a 5802 // previously declared member of the class or namespace to which the 5803 // qualifier refers (or, in the case of a namespace, of an element of the 5804 // inline namespace set of that namespace (7.3.1)) or to a specialization 5805 // thereof; [...] 5806 // 5807 // Note that we already checked the context above, and that we do not have 5808 // enough information to make sure that Previous contains the declaration 5809 // we want to match. For example, given: 5810 // 5811 // class X { 5812 // void f(); 5813 // void f(float); 5814 // }; 5815 // 5816 // void X::f(int) { } // ill-formed 5817 // 5818 // In this case, Previous will point to the overload set 5819 // containing the two f's declared in X, but neither of them 5820 // matches. 5821 5822 // C++ [dcl.meaning]p1: 5823 // [...] the member shall not merely have been introduced by a 5824 // using-declaration in the scope of the class or namespace nominated by 5825 // the nested-name-specifier of the declarator-id. 5826 RemoveUsingDecls(Previous); 5827 } 5828 5829 if (Previous.isSingleResult() && 5830 Previous.getFoundDecl()->isTemplateParameter()) { 5831 // Maybe we will complain about the shadowed template parameter. 5832 if (!D.isInvalidType()) 5833 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 5834 Previous.getFoundDecl()); 5835 5836 // Just pretend that we didn't see the previous declaration. 5837 Previous.clear(); 5838 } 5839 5840 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo)) 5841 // Forget that the previous declaration is the injected-class-name. 5842 Previous.clear(); 5843 5844 // In C++, the previous declaration we find might be a tag type 5845 // (class or enum). In this case, the new declaration will hide the 5846 // tag type. Note that this applies to functions, function templates, and 5847 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates. 5848 if (Previous.isSingleTagDecl() && 5849 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 5850 (TemplateParamLists.size() == 0 || R->isFunctionType())) 5851 Previous.clear(); 5852 5853 // Check that there are no default arguments other than in the parameters 5854 // of a function declaration (C++ only). 5855 if (getLangOpts().CPlusPlus) 5856 CheckExtraCXXDefaultArguments(D); 5857 5858 NamedDecl *New; 5859 5860 bool AddToScope = true; 5861 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 5862 if (TemplateParamLists.size()) { 5863 Diag(D.getIdentifierLoc(), diag::err_template_typedef); 5864 return nullptr; 5865 } 5866 5867 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous); 5868 } else if (R->isFunctionType()) { 5869 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous, 5870 TemplateParamLists, 5871 AddToScope); 5872 } else { 5873 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists, 5874 AddToScope); 5875 } 5876 5877 if (!New) 5878 return nullptr; 5879 5880 // If this has an identifier and is not a function template specialization, 5881 // add it to the scope stack. 5882 if (New->getDeclName() && AddToScope) 5883 PushOnScopeChains(New, S); 5884 5885 if (isInOpenMPDeclareTargetContext()) 5886 checkDeclIsAllowedInOpenMPTarget(nullptr, New); 5887 5888 return New; 5889 } 5890 5891 /// Helper method to turn variable array types into constant array 5892 /// types in certain situations which would otherwise be errors (for 5893 /// GCC compatibility). 5894 static QualType TryToFixInvalidVariablyModifiedType(QualType T, 5895 ASTContext &Context, 5896 bool &SizeIsNegative, 5897 llvm::APSInt &Oversized) { 5898 // This method tries to turn a variable array into a constant 5899 // array even when the size isn't an ICE. This is necessary 5900 // for compatibility with code that depends on gcc's buggy 5901 // constant expression folding, like struct {char x[(int)(char*)2];} 5902 SizeIsNegative = false; 5903 Oversized = 0; 5904 5905 if (T->isDependentType()) 5906 return QualType(); 5907 5908 QualifierCollector Qs; 5909 const Type *Ty = Qs.strip(T); 5910 5911 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) { 5912 QualType Pointee = PTy->getPointeeType(); 5913 QualType FixedType = 5914 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative, 5915 Oversized); 5916 if (FixedType.isNull()) return FixedType; 5917 FixedType = Context.getPointerType(FixedType); 5918 return Qs.apply(Context, FixedType); 5919 } 5920 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) { 5921 QualType Inner = PTy->getInnerType(); 5922 QualType FixedType = 5923 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative, 5924 Oversized); 5925 if (FixedType.isNull()) return FixedType; 5926 FixedType = Context.getParenType(FixedType); 5927 return Qs.apply(Context, FixedType); 5928 } 5929 5930 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); 5931 if (!VLATy) 5932 return QualType(); 5933 // FIXME: We should probably handle this case 5934 if (VLATy->getElementType()->isVariablyModifiedType()) 5935 return QualType(); 5936 5937 Expr::EvalResult Result; 5938 if (!VLATy->getSizeExpr() || 5939 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context)) 5940 return QualType(); 5941 5942 llvm::APSInt Res = Result.Val.getInt(); 5943 5944 // Check whether the array size is negative. 5945 if (Res.isSigned() && Res.isNegative()) { 5946 SizeIsNegative = true; 5947 return QualType(); 5948 } 5949 5950 // Check whether the array is too large to be addressed. 5951 unsigned ActiveSizeBits 5952 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(), 5953 Res); 5954 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { 5955 Oversized = Res; 5956 return QualType(); 5957 } 5958 5959 return Context.getConstantArrayType( 5960 VLATy->getElementType(), Res, VLATy->getSizeExpr(), ArrayType::Normal, 0); 5961 } 5962 5963 static void 5964 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) { 5965 SrcTL = SrcTL.getUnqualifiedLoc(); 5966 DstTL = DstTL.getUnqualifiedLoc(); 5967 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) { 5968 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>(); 5969 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(), 5970 DstPTL.getPointeeLoc()); 5971 DstPTL.setStarLoc(SrcPTL.getStarLoc()); 5972 return; 5973 } 5974 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) { 5975 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>(); 5976 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(), 5977 DstPTL.getInnerLoc()); 5978 DstPTL.setLParenLoc(SrcPTL.getLParenLoc()); 5979 DstPTL.setRParenLoc(SrcPTL.getRParenLoc()); 5980 return; 5981 } 5982 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>(); 5983 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>(); 5984 TypeLoc SrcElemTL = SrcATL.getElementLoc(); 5985 TypeLoc DstElemTL = DstATL.getElementLoc(); 5986 DstElemTL.initializeFullCopy(SrcElemTL); 5987 DstATL.setLBracketLoc(SrcATL.getLBracketLoc()); 5988 DstATL.setSizeExpr(SrcATL.getSizeExpr()); 5989 DstATL.setRBracketLoc(SrcATL.getRBracketLoc()); 5990 } 5991 5992 /// Helper method to turn variable array types into constant array 5993 /// types in certain situations which would otherwise be errors (for 5994 /// GCC compatibility). 5995 static TypeSourceInfo* 5996 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo, 5997 ASTContext &Context, 5998 bool &SizeIsNegative, 5999 llvm::APSInt &Oversized) { 6000 QualType FixedTy 6001 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context, 6002 SizeIsNegative, Oversized); 6003 if (FixedTy.isNull()) 6004 return nullptr; 6005 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy); 6006 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(), 6007 FixedTInfo->getTypeLoc()); 6008 return FixedTInfo; 6009 } 6010 6011 /// Register the given locally-scoped extern "C" declaration so 6012 /// that it can be found later for redeclarations. We include any extern "C" 6013 /// declaration that is not visible in the translation unit here, not just 6014 /// function-scope declarations. 6015 void 6016 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) { 6017 if (!getLangOpts().CPlusPlus && 6018 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit()) 6019 // Don't need to track declarations in the TU in C. 6020 return; 6021 6022 // Note that we have a locally-scoped external with this name. 6023 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND); 6024 } 6025 6026 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) { 6027 // FIXME: We can have multiple results via __attribute__((overloadable)). 6028 auto Result = Context.getExternCContextDecl()->lookup(Name); 6029 return Result.empty() ? nullptr : *Result.begin(); 6030 } 6031 6032 /// Diagnose function specifiers on a declaration of an identifier that 6033 /// does not identify a function. 6034 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) { 6035 // FIXME: We should probably indicate the identifier in question to avoid 6036 // confusion for constructs like "virtual int a(), b;" 6037 if (DS.isVirtualSpecified()) 6038 Diag(DS.getVirtualSpecLoc(), 6039 diag::err_virtual_non_function); 6040 6041 if (DS.hasExplicitSpecifier()) 6042 Diag(DS.getExplicitSpecLoc(), 6043 diag::err_explicit_non_function); 6044 6045 if (DS.isNoreturnSpecified()) 6046 Diag(DS.getNoreturnSpecLoc(), 6047 diag::err_noreturn_non_function); 6048 } 6049 6050 NamedDecl* 6051 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, 6052 TypeSourceInfo *TInfo, LookupResult &Previous) { 6053 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). 6054 if (D.getCXXScopeSpec().isSet()) { 6055 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) 6056 << D.getCXXScopeSpec().getRange(); 6057 D.setInvalidType(); 6058 // Pretend we didn't see the scope specifier. 6059 DC = CurContext; 6060 Previous.clear(); 6061 } 6062 6063 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 6064 6065 if (D.getDeclSpec().isInlineSpecified()) 6066 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 6067 << getLangOpts().CPlusPlus17; 6068 if (D.getDeclSpec().hasConstexprSpecifier()) 6069 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) 6070 << 1 << D.getDeclSpec().getConstexprSpecifier(); 6071 6072 if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) { 6073 if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName) 6074 Diag(D.getName().StartLocation, 6075 diag::err_deduction_guide_invalid_specifier) 6076 << "typedef"; 6077 else 6078 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) 6079 << D.getName().getSourceRange(); 6080 return nullptr; 6081 } 6082 6083 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo); 6084 if (!NewTD) return nullptr; 6085 6086 // Handle attributes prior to checking for duplicates in MergeVarDecl 6087 ProcessDeclAttributes(S, NewTD, D); 6088 6089 CheckTypedefForVariablyModifiedType(S, NewTD); 6090 6091 bool Redeclaration = D.isRedeclaration(); 6092 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration); 6093 D.setRedeclaration(Redeclaration); 6094 return ND; 6095 } 6096 6097 void 6098 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) { 6099 // C99 6.7.7p2: If a typedef name specifies a variably modified type 6100 // then it shall have block scope. 6101 // Note that variably modified types must be fixed before merging the decl so 6102 // that redeclarations will match. 6103 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo(); 6104 QualType T = TInfo->getType(); 6105 if (T->isVariablyModifiedType()) { 6106 setFunctionHasBranchProtectedScope(); 6107 6108 if (S->getFnParent() == nullptr) { 6109 bool SizeIsNegative; 6110 llvm::APSInt Oversized; 6111 TypeSourceInfo *FixedTInfo = 6112 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 6113 SizeIsNegative, 6114 Oversized); 6115 if (FixedTInfo) { 6116 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size); 6117 NewTD->setTypeSourceInfo(FixedTInfo); 6118 } else { 6119 if (SizeIsNegative) 6120 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size); 6121 else if (T->isVariableArrayType()) 6122 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope); 6123 else if (Oversized.getBoolValue()) 6124 Diag(NewTD->getLocation(), diag::err_array_too_large) 6125 << Oversized.toString(10); 6126 else 6127 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope); 6128 NewTD->setInvalidDecl(); 6129 } 6130 } 6131 } 6132 } 6133 6134 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which 6135 /// declares a typedef-name, either using the 'typedef' type specifier or via 6136 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'. 6137 NamedDecl* 6138 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD, 6139 LookupResult &Previous, bool &Redeclaration) { 6140 6141 // Find the shadowed declaration before filtering for scope. 6142 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous); 6143 6144 // Merge the decl with the existing one if appropriate. If the decl is 6145 // in an outer scope, it isn't the same thing. 6146 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false, 6147 /*AllowInlineNamespace*/false); 6148 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous); 6149 if (!Previous.empty()) { 6150 Redeclaration = true; 6151 MergeTypedefNameDecl(S, NewTD, Previous); 6152 } else { 6153 inferGslPointerAttribute(NewTD); 6154 } 6155 6156 if (ShadowedDecl && !Redeclaration) 6157 CheckShadow(NewTD, ShadowedDecl, Previous); 6158 6159 // If this is the C FILE type, notify the AST context. 6160 if (IdentifierInfo *II = NewTD->getIdentifier()) 6161 if (!NewTD->isInvalidDecl() && 6162 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 6163 if (II->isStr("FILE")) 6164 Context.setFILEDecl(NewTD); 6165 else if (II->isStr("jmp_buf")) 6166 Context.setjmp_bufDecl(NewTD); 6167 else if (II->isStr("sigjmp_buf")) 6168 Context.setsigjmp_bufDecl(NewTD); 6169 else if (II->isStr("ucontext_t")) 6170 Context.setucontext_tDecl(NewTD); 6171 } 6172 6173 return NewTD; 6174 } 6175 6176 /// Determines whether the given declaration is an out-of-scope 6177 /// previous declaration. 6178 /// 6179 /// This routine should be invoked when name lookup has found a 6180 /// previous declaration (PrevDecl) that is not in the scope where a 6181 /// new declaration by the same name is being introduced. If the new 6182 /// declaration occurs in a local scope, previous declarations with 6183 /// linkage may still be considered previous declarations (C99 6184 /// 6.2.2p4-5, C++ [basic.link]p6). 6185 /// 6186 /// \param PrevDecl the previous declaration found by name 6187 /// lookup 6188 /// 6189 /// \param DC the context in which the new declaration is being 6190 /// declared. 6191 /// 6192 /// \returns true if PrevDecl is an out-of-scope previous declaration 6193 /// for a new delcaration with the same name. 6194 static bool 6195 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, 6196 ASTContext &Context) { 6197 if (!PrevDecl) 6198 return false; 6199 6200 if (!PrevDecl->hasLinkage()) 6201 return false; 6202 6203 if (Context.getLangOpts().CPlusPlus) { 6204 // C++ [basic.link]p6: 6205 // If there is a visible declaration of an entity with linkage 6206 // having the same name and type, ignoring entities declared 6207 // outside the innermost enclosing namespace scope, the block 6208 // scope declaration declares that same entity and receives the 6209 // linkage of the previous declaration. 6210 DeclContext *OuterContext = DC->getRedeclContext(); 6211 if (!OuterContext->isFunctionOrMethod()) 6212 // This rule only applies to block-scope declarations. 6213 return false; 6214 6215 DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); 6216 if (PrevOuterContext->isRecord()) 6217 // We found a member function: ignore it. 6218 return false; 6219 6220 // Find the innermost enclosing namespace for the new and 6221 // previous declarations. 6222 OuterContext = OuterContext->getEnclosingNamespaceContext(); 6223 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); 6224 6225 // The previous declaration is in a different namespace, so it 6226 // isn't the same function. 6227 if (!OuterContext->Equals(PrevOuterContext)) 6228 return false; 6229 } 6230 6231 return true; 6232 } 6233 6234 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) { 6235 CXXScopeSpec &SS = D.getCXXScopeSpec(); 6236 if (!SS.isSet()) return; 6237 DD->setQualifierInfo(SS.getWithLocInContext(S.Context)); 6238 } 6239 6240 bool Sema::inferObjCARCLifetime(ValueDecl *decl) { 6241 QualType type = decl->getType(); 6242 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); 6243 if (lifetime == Qualifiers::OCL_Autoreleasing) { 6244 // Various kinds of declaration aren't allowed to be __autoreleasing. 6245 unsigned kind = -1U; 6246 if (VarDecl *var = dyn_cast<VarDecl>(decl)) { 6247 if (var->hasAttr<BlocksAttr>()) 6248 kind = 0; // __block 6249 else if (!var->hasLocalStorage()) 6250 kind = 1; // global 6251 } else if (isa<ObjCIvarDecl>(decl)) { 6252 kind = 3; // ivar 6253 } else if (isa<FieldDecl>(decl)) { 6254 kind = 2; // field 6255 } 6256 6257 if (kind != -1U) { 6258 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) 6259 << kind; 6260 } 6261 } else if (lifetime == Qualifiers::OCL_None) { 6262 // Try to infer lifetime. 6263 if (!type->isObjCLifetimeType()) 6264 return false; 6265 6266 lifetime = type->getObjCARCImplicitLifetime(); 6267 type = Context.getLifetimeQualifiedType(type, lifetime); 6268 decl->setType(type); 6269 } 6270 6271 if (VarDecl *var = dyn_cast<VarDecl>(decl)) { 6272 // Thread-local variables cannot have lifetime. 6273 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && 6274 var->getTLSKind()) { 6275 Diag(var->getLocation(), diag::err_arc_thread_ownership) 6276 << var->getType(); 6277 return true; 6278 } 6279 } 6280 6281 return false; 6282 } 6283 6284 void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) { 6285 if (Decl->getType().hasAddressSpace()) 6286 return; 6287 if (Decl->getType()->isDependentType()) 6288 return; 6289 if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) { 6290 QualType Type = Var->getType(); 6291 if (Type->isSamplerT() || Type->isVoidType()) 6292 return; 6293 LangAS ImplAS = LangAS::opencl_private; 6294 if ((getLangOpts().OpenCLCPlusPlus || getLangOpts().OpenCLVersion >= 200) && 6295 Var->hasGlobalStorage()) 6296 ImplAS = LangAS::opencl_global; 6297 // If the original type from a decayed type is an array type and that array 6298 // type has no address space yet, deduce it now. 6299 if (auto DT = dyn_cast<DecayedType>(Type)) { 6300 auto OrigTy = DT->getOriginalType(); 6301 if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) { 6302 // Add the address space to the original array type and then propagate 6303 // that to the element type through `getAsArrayType`. 6304 OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS); 6305 OrigTy = QualType(Context.getAsArrayType(OrigTy), 0); 6306 // Re-generate the decayed type. 6307 Type = Context.getDecayedType(OrigTy); 6308 } 6309 } 6310 Type = Context.getAddrSpaceQualType(Type, ImplAS); 6311 // Apply any qualifiers (including address space) from the array type to 6312 // the element type. This implements C99 6.7.3p8: "If the specification of 6313 // an array type includes any type qualifiers, the element type is so 6314 // qualified, not the array type." 6315 if (Type->isArrayType()) 6316 Type = QualType(Context.getAsArrayType(Type), 0); 6317 Decl->setType(Type); 6318 } 6319 } 6320 6321 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) { 6322 // Ensure that an auto decl is deduced otherwise the checks below might cache 6323 // the wrong linkage. 6324 assert(S.ParsingInitForAutoVars.count(&ND) == 0); 6325 6326 // 'weak' only applies to declarations with external linkage. 6327 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) { 6328 if (!ND.isExternallyVisible()) { 6329 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static); 6330 ND.dropAttr<WeakAttr>(); 6331 } 6332 } 6333 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) { 6334 if (ND.isExternallyVisible()) { 6335 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static); 6336 ND.dropAttr<WeakRefAttr>(); 6337 ND.dropAttr<AliasAttr>(); 6338 } 6339 } 6340 6341 if (auto *VD = dyn_cast<VarDecl>(&ND)) { 6342 if (VD->hasInit()) { 6343 if (const auto *Attr = VD->getAttr<AliasAttr>()) { 6344 assert(VD->isThisDeclarationADefinition() && 6345 !VD->isExternallyVisible() && "Broken AliasAttr handled late!"); 6346 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0; 6347 VD->dropAttr<AliasAttr>(); 6348 } 6349 } 6350 } 6351 6352 // 'selectany' only applies to externally visible variable declarations. 6353 // It does not apply to functions. 6354 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) { 6355 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) { 6356 S.Diag(Attr->getLocation(), 6357 diag::err_attribute_selectany_non_extern_data); 6358 ND.dropAttr<SelectAnyAttr>(); 6359 } 6360 } 6361 6362 if (const InheritableAttr *Attr = getDLLAttr(&ND)) { 6363 auto *VD = dyn_cast<VarDecl>(&ND); 6364 bool IsAnonymousNS = false; 6365 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft(); 6366 if (VD) { 6367 const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext()); 6368 while (NS && !IsAnonymousNS) { 6369 IsAnonymousNS = NS->isAnonymousNamespace(); 6370 NS = dyn_cast<NamespaceDecl>(NS->getParent()); 6371 } 6372 } 6373 // dll attributes require external linkage. Static locals may have external 6374 // linkage but still cannot be explicitly imported or exported. 6375 // In Microsoft mode, a variable defined in anonymous namespace must have 6376 // external linkage in order to be exported. 6377 bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft; 6378 if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) || 6379 (!AnonNSInMicrosoftMode && 6380 (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) { 6381 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern) 6382 << &ND << Attr; 6383 ND.setInvalidDecl(); 6384 } 6385 } 6386 6387 // Virtual functions cannot be marked as 'notail'. 6388 if (auto *Attr = ND.getAttr<NotTailCalledAttr>()) 6389 if (auto *MD = dyn_cast<CXXMethodDecl>(&ND)) 6390 if (MD->isVirtual()) { 6391 S.Diag(ND.getLocation(), 6392 diag::err_invalid_attribute_on_virtual_function) 6393 << Attr; 6394 ND.dropAttr<NotTailCalledAttr>(); 6395 } 6396 6397 // Check the attributes on the function type, if any. 6398 if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) { 6399 // Don't declare this variable in the second operand of the for-statement; 6400 // GCC miscompiles that by ending its lifetime before evaluating the 6401 // third operand. See gcc.gnu.org/PR86769. 6402 AttributedTypeLoc ATL; 6403 for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc(); 6404 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6405 TL = ATL.getModifiedLoc()) { 6406 // The [[lifetimebound]] attribute can be applied to the implicit object 6407 // parameter of a non-static member function (other than a ctor or dtor) 6408 // by applying it to the function type. 6409 if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) { 6410 const auto *MD = dyn_cast<CXXMethodDecl>(FD); 6411 if (!MD || MD->isStatic()) { 6412 S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param) 6413 << !MD << A->getRange(); 6414 } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) { 6415 S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor) 6416 << isa<CXXDestructorDecl>(MD) << A->getRange(); 6417 } 6418 } 6419 } 6420 } 6421 } 6422 6423 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl, 6424 NamedDecl *NewDecl, 6425 bool IsSpecialization, 6426 bool IsDefinition) { 6427 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl()) 6428 return; 6429 6430 bool IsTemplate = false; 6431 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) { 6432 OldDecl = OldTD->getTemplatedDecl(); 6433 IsTemplate = true; 6434 if (!IsSpecialization) 6435 IsDefinition = false; 6436 } 6437 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) { 6438 NewDecl = NewTD->getTemplatedDecl(); 6439 IsTemplate = true; 6440 } 6441 6442 if (!OldDecl || !NewDecl) 6443 return; 6444 6445 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>(); 6446 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>(); 6447 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>(); 6448 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>(); 6449 6450 // dllimport and dllexport are inheritable attributes so we have to exclude 6451 // inherited attribute instances. 6452 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) || 6453 (NewExportAttr && !NewExportAttr->isInherited()); 6454 6455 // A redeclaration is not allowed to add a dllimport or dllexport attribute, 6456 // the only exception being explicit specializations. 6457 // Implicitly generated declarations are also excluded for now because there 6458 // is no other way to switch these to use dllimport or dllexport. 6459 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr; 6460 6461 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) { 6462 // Allow with a warning for free functions and global variables. 6463 bool JustWarn = false; 6464 if (!OldDecl->isCXXClassMember()) { 6465 auto *VD = dyn_cast<VarDecl>(OldDecl); 6466 if (VD && !VD->getDescribedVarTemplate()) 6467 JustWarn = true; 6468 auto *FD = dyn_cast<FunctionDecl>(OldDecl); 6469 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) 6470 JustWarn = true; 6471 } 6472 6473 // We cannot change a declaration that's been used because IR has already 6474 // been emitted. Dllimported functions will still work though (modulo 6475 // address equality) as they can use the thunk. 6476 if (OldDecl->isUsed()) 6477 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr) 6478 JustWarn = false; 6479 6480 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration 6481 : diag::err_attribute_dll_redeclaration; 6482 S.Diag(NewDecl->getLocation(), DiagID) 6483 << NewDecl 6484 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr); 6485 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 6486 if (!JustWarn) { 6487 NewDecl->setInvalidDecl(); 6488 return; 6489 } 6490 } 6491 6492 // A redeclaration is not allowed to drop a dllimport attribute, the only 6493 // exceptions being inline function definitions (except for function 6494 // templates), local extern declarations, qualified friend declarations or 6495 // special MSVC extension: in the last case, the declaration is treated as if 6496 // it were marked dllexport. 6497 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false; 6498 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft(); 6499 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) { 6500 // Ignore static data because out-of-line definitions are diagnosed 6501 // separately. 6502 IsStaticDataMember = VD->isStaticDataMember(); 6503 IsDefinition = VD->isThisDeclarationADefinition(S.Context) != 6504 VarDecl::DeclarationOnly; 6505 } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) { 6506 IsInline = FD->isInlined(); 6507 IsQualifiedFriend = FD->getQualifier() && 6508 FD->getFriendObjectKind() == Decl::FOK_Declared; 6509 } 6510 6511 if (OldImportAttr && !HasNewAttr && 6512 (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember && 6513 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) { 6514 if (IsMicrosoft && IsDefinition) { 6515 S.Diag(NewDecl->getLocation(), 6516 diag::warn_redeclaration_without_import_attribute) 6517 << NewDecl; 6518 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 6519 NewDecl->dropAttr<DLLImportAttr>(); 6520 NewDecl->addAttr( 6521 DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange())); 6522 } else { 6523 S.Diag(NewDecl->getLocation(), 6524 diag::warn_redeclaration_without_attribute_prev_attribute_ignored) 6525 << NewDecl << OldImportAttr; 6526 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 6527 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute); 6528 OldDecl->dropAttr<DLLImportAttr>(); 6529 NewDecl->dropAttr<DLLImportAttr>(); 6530 } 6531 } else if (IsInline && OldImportAttr && !IsMicrosoft) { 6532 // In MinGW, seeing a function declared inline drops the dllimport 6533 // attribute. 6534 OldDecl->dropAttr<DLLImportAttr>(); 6535 NewDecl->dropAttr<DLLImportAttr>(); 6536 S.Diag(NewDecl->getLocation(), 6537 diag::warn_dllimport_dropped_from_inline_function) 6538 << NewDecl << OldImportAttr; 6539 } 6540 6541 // A specialization of a class template member function is processed here 6542 // since it's a redeclaration. If the parent class is dllexport, the 6543 // specialization inherits that attribute. This doesn't happen automatically 6544 // since the parent class isn't instantiated until later. 6545 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) { 6546 if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization && 6547 !NewImportAttr && !NewExportAttr) { 6548 if (const DLLExportAttr *ParentExportAttr = 6549 MD->getParent()->getAttr<DLLExportAttr>()) { 6550 DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context); 6551 NewAttr->setInherited(true); 6552 NewDecl->addAttr(NewAttr); 6553 } 6554 } 6555 } 6556 } 6557 6558 /// Given that we are within the definition of the given function, 6559 /// will that definition behave like C99's 'inline', where the 6560 /// definition is discarded except for optimization purposes? 6561 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) { 6562 // Try to avoid calling GetGVALinkageForFunction. 6563 6564 // All cases of this require the 'inline' keyword. 6565 if (!FD->isInlined()) return false; 6566 6567 // This is only possible in C++ with the gnu_inline attribute. 6568 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>()) 6569 return false; 6570 6571 // Okay, go ahead and call the relatively-more-expensive function. 6572 return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally; 6573 } 6574 6575 /// Determine whether a variable is extern "C" prior to attaching 6576 /// an initializer. We can't just call isExternC() here, because that 6577 /// will also compute and cache whether the declaration is externally 6578 /// visible, which might change when we attach the initializer. 6579 /// 6580 /// This can only be used if the declaration is known to not be a 6581 /// redeclaration of an internal linkage declaration. 6582 /// 6583 /// For instance: 6584 /// 6585 /// auto x = []{}; 6586 /// 6587 /// Attaching the initializer here makes this declaration not externally 6588 /// visible, because its type has internal linkage. 6589 /// 6590 /// FIXME: This is a hack. 6591 template<typename T> 6592 static bool isIncompleteDeclExternC(Sema &S, const T *D) { 6593 if (S.getLangOpts().CPlusPlus) { 6594 // In C++, the overloadable attribute negates the effects of extern "C". 6595 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>()) 6596 return false; 6597 6598 // So do CUDA's host/device attributes. 6599 if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() || 6600 D->template hasAttr<CUDAHostAttr>())) 6601 return false; 6602 } 6603 return D->isExternC(); 6604 } 6605 6606 static bool shouldConsiderLinkage(const VarDecl *VD) { 6607 const DeclContext *DC = VD->getDeclContext()->getRedeclContext(); 6608 if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) || 6609 isa<OMPDeclareMapperDecl>(DC)) 6610 return VD->hasExternalStorage(); 6611 if (DC->isFileContext()) 6612 return true; 6613 if (DC->isRecord()) 6614 return false; 6615 if (isa<RequiresExprBodyDecl>(DC)) 6616 return false; 6617 llvm_unreachable("Unexpected context"); 6618 } 6619 6620 static bool shouldConsiderLinkage(const FunctionDecl *FD) { 6621 const DeclContext *DC = FD->getDeclContext()->getRedeclContext(); 6622 if (DC->isFileContext() || DC->isFunctionOrMethod() || 6623 isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC)) 6624 return true; 6625 if (DC->isRecord()) 6626 return false; 6627 llvm_unreachable("Unexpected context"); 6628 } 6629 6630 static bool hasParsedAttr(Scope *S, const Declarator &PD, 6631 ParsedAttr::Kind Kind) { 6632 // Check decl attributes on the DeclSpec. 6633 if (PD.getDeclSpec().getAttributes().hasAttribute(Kind)) 6634 return true; 6635 6636 // Walk the declarator structure, checking decl attributes that were in a type 6637 // position to the decl itself. 6638 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) { 6639 if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind)) 6640 return true; 6641 } 6642 6643 // Finally, check attributes on the decl itself. 6644 return PD.getAttributes().hasAttribute(Kind); 6645 } 6646 6647 /// Adjust the \c DeclContext for a function or variable that might be a 6648 /// function-local external declaration. 6649 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) { 6650 if (!DC->isFunctionOrMethod()) 6651 return false; 6652 6653 // If this is a local extern function or variable declared within a function 6654 // template, don't add it into the enclosing namespace scope until it is 6655 // instantiated; it might have a dependent type right now. 6656 if (DC->isDependentContext()) 6657 return true; 6658 6659 // C++11 [basic.link]p7: 6660 // When a block scope declaration of an entity with linkage is not found to 6661 // refer to some other declaration, then that entity is a member of the 6662 // innermost enclosing namespace. 6663 // 6664 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a 6665 // semantically-enclosing namespace, not a lexically-enclosing one. 6666 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) 6667 DC = DC->getParent(); 6668 return true; 6669 } 6670 6671 /// Returns true if given declaration has external C language linkage. 6672 static bool isDeclExternC(const Decl *D) { 6673 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 6674 return FD->isExternC(); 6675 if (const auto *VD = dyn_cast<VarDecl>(D)) 6676 return VD->isExternC(); 6677 6678 llvm_unreachable("Unknown type of decl!"); 6679 } 6680 /// Returns true if there hasn't been any invalid type diagnosed. 6681 static bool diagnoseOpenCLTypes(Scope *S, Sema &Se, Declarator &D, 6682 DeclContext *DC, QualType R) { 6683 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument. 6684 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function 6685 // argument. 6686 if (R->isImageType() || R->isPipeType()) { 6687 Se.Diag(D.getIdentifierLoc(), 6688 diag::err_opencl_type_can_only_be_used_as_function_parameter) 6689 << R; 6690 D.setInvalidType(); 6691 return false; 6692 } 6693 6694 // OpenCL v1.2 s6.9.r: 6695 // The event type cannot be used to declare a program scope variable. 6696 // OpenCL v2.0 s6.9.q: 6697 // The clk_event_t and reserve_id_t types cannot be declared in program 6698 // scope. 6699 if (NULL == S->getParent()) { 6700 if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) { 6701 Se.Diag(D.getIdentifierLoc(), 6702 diag::err_invalid_type_for_program_scope_var) 6703 << R; 6704 D.setInvalidType(); 6705 return false; 6706 } 6707 } 6708 6709 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed. 6710 QualType NR = R; 6711 while (NR->isPointerType()) { 6712 if (NR->isFunctionPointerType()) { 6713 Se.Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer); 6714 D.setInvalidType(); 6715 return false; 6716 } 6717 NR = NR->getPointeeType(); 6718 } 6719 6720 if (!Se.getOpenCLOptions().isEnabled("cl_khr_fp16")) { 6721 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and 6722 // half array type (unless the cl_khr_fp16 extension is enabled). 6723 if (Se.Context.getBaseElementType(R)->isHalfType()) { 6724 Se.Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R; 6725 D.setInvalidType(); 6726 return false; 6727 } 6728 } 6729 6730 // OpenCL v1.2 s6.9.r: 6731 // The event type cannot be used with the __local, __constant and __global 6732 // address space qualifiers. 6733 if (R->isEventT()) { 6734 if (R.getAddressSpace() != LangAS::opencl_private) { 6735 Se.Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual); 6736 D.setInvalidType(); 6737 return false; 6738 } 6739 } 6740 6741 // C++ for OpenCL does not allow the thread_local storage qualifier. 6742 // OpenCL C does not support thread_local either, and 6743 // also reject all other thread storage class specifiers. 6744 DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec(); 6745 if (TSC != TSCS_unspecified) { 6746 bool IsCXX = Se.getLangOpts().OpenCLCPlusPlus; 6747 Se.Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 6748 diag::err_opencl_unknown_type_specifier) 6749 << IsCXX << Se.getLangOpts().getOpenCLVersionTuple().getAsString() 6750 << DeclSpec::getSpecifierName(TSC) << 1; 6751 D.setInvalidType(); 6752 return false; 6753 } 6754 6755 if (R->isSamplerT()) { 6756 // OpenCL v1.2 s6.9.b p4: 6757 // The sampler type cannot be used with the __local and __global address 6758 // space qualifiers. 6759 if (R.getAddressSpace() == LangAS::opencl_local || 6760 R.getAddressSpace() == LangAS::opencl_global) { 6761 Se.Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace); 6762 D.setInvalidType(); 6763 } 6764 6765 // OpenCL v1.2 s6.12.14.1: 6766 // A global sampler must be declared with either the constant address 6767 // space qualifier or with the const qualifier. 6768 if (DC->isTranslationUnit() && 6769 !(R.getAddressSpace() == LangAS::opencl_constant || 6770 R.isConstQualified())) { 6771 Se.Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler); 6772 D.setInvalidType(); 6773 } 6774 if (D.isInvalidType()) 6775 return false; 6776 } 6777 return true; 6778 } 6779 6780 NamedDecl *Sema::ActOnVariableDeclarator( 6781 Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, 6782 LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, 6783 bool &AddToScope, ArrayRef<BindingDecl *> Bindings) { 6784 QualType R = TInfo->getType(); 6785 DeclarationName Name = GetNameForDeclarator(D).getName(); 6786 6787 IdentifierInfo *II = Name.getAsIdentifierInfo(); 6788 6789 if (D.isDecompositionDeclarator()) { 6790 // Take the name of the first declarator as our name for diagnostic 6791 // purposes. 6792 auto &Decomp = D.getDecompositionDeclarator(); 6793 if (!Decomp.bindings().empty()) { 6794 II = Decomp.bindings()[0].Name; 6795 Name = II; 6796 } 6797 } else if (!II) { 6798 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name; 6799 return nullptr; 6800 } 6801 6802 6803 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); 6804 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec()); 6805 6806 // dllimport globals without explicit storage class are treated as extern. We 6807 // have to change the storage class this early to get the right DeclContext. 6808 if (SC == SC_None && !DC->isRecord() && 6809 hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) && 6810 !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport)) 6811 SC = SC_Extern; 6812 6813 DeclContext *OriginalDC = DC; 6814 bool IsLocalExternDecl = SC == SC_Extern && 6815 adjustContextForLocalExternDecl(DC); 6816 6817 if (SCSpec == DeclSpec::SCS_mutable) { 6818 // mutable can only appear on non-static class members, so it's always 6819 // an error here 6820 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); 6821 D.setInvalidType(); 6822 SC = SC_None; 6823 } 6824 6825 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register && 6826 !D.getAsmLabel() && !getSourceManager().isInSystemMacro( 6827 D.getDeclSpec().getStorageClassSpecLoc())) { 6828 // In C++11, the 'register' storage class specifier is deprecated. 6829 // Suppress the warning in system macros, it's used in macros in some 6830 // popular C system headers, such as in glibc's htonl() macro. 6831 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 6832 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class 6833 : diag::warn_deprecated_register) 6834 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6835 } 6836 6837 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 6838 6839 if (!DC->isRecord() && S->getFnParent() == nullptr) { 6840 // C99 6.9p2: The storage-class specifiers auto and register shall not 6841 // appear in the declaration specifiers in an external declaration. 6842 // Global Register+Asm is a GNU extension we support. 6843 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) { 6844 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); 6845 D.setInvalidType(); 6846 } 6847 } 6848 6849 bool IsMemberSpecialization = false; 6850 bool IsVariableTemplateSpecialization = false; 6851 bool IsPartialSpecialization = false; 6852 bool IsVariableTemplate = false; 6853 VarDecl *NewVD = nullptr; 6854 VarTemplateDecl *NewTemplate = nullptr; 6855 TemplateParameterList *TemplateParams = nullptr; 6856 if (!getLangOpts().CPlusPlus) { 6857 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), 6858 II, R, TInfo, SC); 6859 6860 if (R->getContainedDeducedType()) 6861 ParsingInitForAutoVars.insert(NewVD); 6862 6863 if (D.isInvalidType()) 6864 NewVD->setInvalidDecl(); 6865 6866 if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() && 6867 NewVD->hasLocalStorage()) 6868 checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(), 6869 NTCUC_AutoVar, NTCUK_Destruct); 6870 } else { 6871 bool Invalid = false; 6872 6873 if (DC->isRecord() && !CurContext->isRecord()) { 6874 // This is an out-of-line definition of a static data member. 6875 switch (SC) { 6876 case SC_None: 6877 break; 6878 case SC_Static: 6879 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 6880 diag::err_static_out_of_line) 6881 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6882 break; 6883 case SC_Auto: 6884 case SC_Register: 6885 case SC_Extern: 6886 // [dcl.stc] p2: The auto or register specifiers shall be applied only 6887 // to names of variables declared in a block or to function parameters. 6888 // [dcl.stc] p6: The extern specifier cannot be used in the declaration 6889 // of class members 6890 6891 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 6892 diag::err_storage_class_for_static_member) 6893 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6894 break; 6895 case SC_PrivateExtern: 6896 llvm_unreachable("C storage class in c++!"); 6897 } 6898 } 6899 6900 if (SC == SC_Static && CurContext->isRecord()) { 6901 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { 6902 // Walk up the enclosing DeclContexts to check for any that are 6903 // incompatible with static data members. 6904 const DeclContext *FunctionOrMethod = nullptr; 6905 const CXXRecordDecl *AnonStruct = nullptr; 6906 for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) { 6907 if (Ctxt->isFunctionOrMethod()) { 6908 FunctionOrMethod = Ctxt; 6909 break; 6910 } 6911 const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt); 6912 if (ParentDecl && !ParentDecl->getDeclName()) { 6913 AnonStruct = ParentDecl; 6914 break; 6915 } 6916 } 6917 if (FunctionOrMethod) { 6918 // C++ [class.static.data]p5: A local class shall not have static data 6919 // members. 6920 Diag(D.getIdentifierLoc(), 6921 diag::err_static_data_member_not_allowed_in_local_class) 6922 << Name << RD->getDeclName() << RD->getTagKind(); 6923 } else if (AnonStruct) { 6924 // C++ [class.static.data]p4: Unnamed classes and classes contained 6925 // directly or indirectly within unnamed classes shall not contain 6926 // static data members. 6927 Diag(D.getIdentifierLoc(), 6928 diag::err_static_data_member_not_allowed_in_anon_struct) 6929 << Name << AnonStruct->getTagKind(); 6930 Invalid = true; 6931 } else if (RD->isUnion()) { 6932 // C++98 [class.union]p1: If a union contains a static data member, 6933 // the program is ill-formed. C++11 drops this restriction. 6934 Diag(D.getIdentifierLoc(), 6935 getLangOpts().CPlusPlus11 6936 ? diag::warn_cxx98_compat_static_data_member_in_union 6937 : diag::ext_static_data_member_in_union) << Name; 6938 } 6939 } 6940 } 6941 6942 // Match up the template parameter lists with the scope specifier, then 6943 // determine whether we have a template or a template specialization. 6944 bool InvalidScope = false; 6945 TemplateParams = MatchTemplateParametersToScopeSpecifier( 6946 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), 6947 D.getCXXScopeSpec(), 6948 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId 6949 ? D.getName().TemplateId 6950 : nullptr, 6951 TemplateParamLists, 6952 /*never a friend*/ false, IsMemberSpecialization, InvalidScope); 6953 Invalid |= InvalidScope; 6954 6955 if (TemplateParams) { 6956 if (!TemplateParams->size() && 6957 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 6958 // There is an extraneous 'template<>' for this variable. Complain 6959 // about it, but allow the declaration of the variable. 6960 Diag(TemplateParams->getTemplateLoc(), 6961 diag::err_template_variable_noparams) 6962 << II 6963 << SourceRange(TemplateParams->getTemplateLoc(), 6964 TemplateParams->getRAngleLoc()); 6965 TemplateParams = nullptr; 6966 } else { 6967 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 6968 // This is an explicit specialization or a partial specialization. 6969 // FIXME: Check that we can declare a specialization here. 6970 IsVariableTemplateSpecialization = true; 6971 IsPartialSpecialization = TemplateParams->size() > 0; 6972 } else { // if (TemplateParams->size() > 0) 6973 // This is a template declaration. 6974 IsVariableTemplate = true; 6975 6976 // Check that we can declare a template here. 6977 if (CheckTemplateDeclScope(S, TemplateParams)) 6978 return nullptr; 6979 6980 // Only C++1y supports variable templates (N3651). 6981 Diag(D.getIdentifierLoc(), 6982 getLangOpts().CPlusPlus14 6983 ? diag::warn_cxx11_compat_variable_template 6984 : diag::ext_variable_template); 6985 } 6986 } 6987 } else { 6988 assert((Invalid || 6989 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && 6990 "should have a 'template<>' for this decl"); 6991 } 6992 6993 if (IsVariableTemplateSpecialization) { 6994 SourceLocation TemplateKWLoc = 6995 TemplateParamLists.size() > 0 6996 ? TemplateParamLists[0]->getTemplateLoc() 6997 : SourceLocation(); 6998 DeclResult Res = ActOnVarTemplateSpecialization( 6999 S, D, TInfo, TemplateKWLoc, TemplateParams, SC, 7000 IsPartialSpecialization); 7001 if (Res.isInvalid()) 7002 return nullptr; 7003 NewVD = cast<VarDecl>(Res.get()); 7004 AddToScope = false; 7005 } else if (D.isDecompositionDeclarator()) { 7006 NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(), 7007 D.getIdentifierLoc(), R, TInfo, SC, 7008 Bindings); 7009 } else 7010 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), 7011 D.getIdentifierLoc(), II, R, TInfo, SC); 7012 7013 // If this is supposed to be a variable template, create it as such. 7014 if (IsVariableTemplate) { 7015 NewTemplate = 7016 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name, 7017 TemplateParams, NewVD); 7018 NewVD->setDescribedVarTemplate(NewTemplate); 7019 } 7020 7021 // If this decl has an auto type in need of deduction, make a note of the 7022 // Decl so we can diagnose uses of it in its own initializer. 7023 if (R->getContainedDeducedType()) 7024 ParsingInitForAutoVars.insert(NewVD); 7025 7026 if (D.isInvalidType() || Invalid) { 7027 NewVD->setInvalidDecl(); 7028 if (NewTemplate) 7029 NewTemplate->setInvalidDecl(); 7030 } 7031 7032 SetNestedNameSpecifier(*this, NewVD, D); 7033 7034 // If we have any template parameter lists that don't directly belong to 7035 // the variable (matching the scope specifier), store them. 7036 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0; 7037 if (TemplateParamLists.size() > VDTemplateParamLists) 7038 NewVD->setTemplateParameterListsInfo( 7039 Context, TemplateParamLists.drop_back(VDTemplateParamLists)); 7040 } 7041 7042 if (D.getDeclSpec().isInlineSpecified()) { 7043 if (!getLangOpts().CPlusPlus) { 7044 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 7045 << 0; 7046 } else if (CurContext->isFunctionOrMethod()) { 7047 // 'inline' is not allowed on block scope variable declaration. 7048 Diag(D.getDeclSpec().getInlineSpecLoc(), 7049 diag::err_inline_declaration_block_scope) << Name 7050 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 7051 } else { 7052 Diag(D.getDeclSpec().getInlineSpecLoc(), 7053 getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable 7054 : diag::ext_inline_variable); 7055 NewVD->setInlineSpecified(); 7056 } 7057 } 7058 7059 // Set the lexical context. If the declarator has a C++ scope specifier, the 7060 // lexical context will be different from the semantic context. 7061 NewVD->setLexicalDeclContext(CurContext); 7062 if (NewTemplate) 7063 NewTemplate->setLexicalDeclContext(CurContext); 7064 7065 if (IsLocalExternDecl) { 7066 if (D.isDecompositionDeclarator()) 7067 for (auto *B : Bindings) 7068 B->setLocalExternDecl(); 7069 else 7070 NewVD->setLocalExternDecl(); 7071 } 7072 7073 bool EmitTLSUnsupportedError = false; 7074 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) { 7075 // C++11 [dcl.stc]p4: 7076 // When thread_local is applied to a variable of block scope the 7077 // storage-class-specifier static is implied if it does not appear 7078 // explicitly. 7079 // Core issue: 'static' is not implied if the variable is declared 7080 // 'extern'. 7081 if (NewVD->hasLocalStorage() && 7082 (SCSpec != DeclSpec::SCS_unspecified || 7083 TSCS != DeclSpec::TSCS_thread_local || 7084 !DC->isFunctionOrMethod())) 7085 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 7086 diag::err_thread_non_global) 7087 << DeclSpec::getSpecifierName(TSCS); 7088 else if (!Context.getTargetInfo().isTLSSupported()) { 7089 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice || 7090 getLangOpts().SYCLIsDevice) { 7091 // Postpone error emission until we've collected attributes required to 7092 // figure out whether it's a host or device variable and whether the 7093 // error should be ignored. 7094 EmitTLSUnsupportedError = true; 7095 // We still need to mark the variable as TLS so it shows up in AST with 7096 // proper storage class for other tools to use even if we're not going 7097 // to emit any code for it. 7098 NewVD->setTSCSpec(TSCS); 7099 } else 7100 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 7101 diag::err_thread_unsupported); 7102 } else 7103 NewVD->setTSCSpec(TSCS); 7104 } 7105 7106 switch (D.getDeclSpec().getConstexprSpecifier()) { 7107 case CSK_unspecified: 7108 break; 7109 7110 case CSK_consteval: 7111 Diag(D.getDeclSpec().getConstexprSpecLoc(), 7112 diag::err_constexpr_wrong_decl_kind) 7113 << D.getDeclSpec().getConstexprSpecifier(); 7114 LLVM_FALLTHROUGH; 7115 7116 case CSK_constexpr: 7117 NewVD->setConstexpr(true); 7118 MaybeAddCUDAConstantAttr(NewVD); 7119 // C++1z [dcl.spec.constexpr]p1: 7120 // A static data member declared with the constexpr specifier is 7121 // implicitly an inline variable. 7122 if (NewVD->isStaticDataMember() && 7123 (getLangOpts().CPlusPlus17 || 7124 Context.getTargetInfo().getCXXABI().isMicrosoft())) 7125 NewVD->setImplicitlyInline(); 7126 break; 7127 7128 case CSK_constinit: 7129 if (!NewVD->hasGlobalStorage()) 7130 Diag(D.getDeclSpec().getConstexprSpecLoc(), 7131 diag::err_constinit_local_variable); 7132 else 7133 NewVD->addAttr(ConstInitAttr::Create( 7134 Context, D.getDeclSpec().getConstexprSpecLoc(), 7135 AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit)); 7136 break; 7137 } 7138 7139 // C99 6.7.4p3 7140 // An inline definition of a function with external linkage shall 7141 // not contain a definition of a modifiable object with static or 7142 // thread storage duration... 7143 // We only apply this when the function is required to be defined 7144 // elsewhere, i.e. when the function is not 'extern inline'. Note 7145 // that a local variable with thread storage duration still has to 7146 // be marked 'static'. Also note that it's possible to get these 7147 // semantics in C++ using __attribute__((gnu_inline)). 7148 if (SC == SC_Static && S->getFnParent() != nullptr && 7149 !NewVD->getType().isConstQualified()) { 7150 FunctionDecl *CurFD = getCurFunctionDecl(); 7151 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) { 7152 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 7153 diag::warn_static_local_in_extern_inline); 7154 MaybeSuggestAddingStaticToDecl(CurFD); 7155 } 7156 } 7157 7158 if (D.getDeclSpec().isModulePrivateSpecified()) { 7159 if (IsVariableTemplateSpecialization) 7160 Diag(NewVD->getLocation(), diag::err_module_private_specialization) 7161 << (IsPartialSpecialization ? 1 : 0) 7162 << FixItHint::CreateRemoval( 7163 D.getDeclSpec().getModulePrivateSpecLoc()); 7164 else if (IsMemberSpecialization) 7165 Diag(NewVD->getLocation(), diag::err_module_private_specialization) 7166 << 2 7167 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 7168 else if (NewVD->hasLocalStorage()) 7169 Diag(NewVD->getLocation(), diag::err_module_private_local) 7170 << 0 << NewVD->getDeclName() 7171 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 7172 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 7173 else { 7174 NewVD->setModulePrivate(); 7175 if (NewTemplate) 7176 NewTemplate->setModulePrivate(); 7177 for (auto *B : Bindings) 7178 B->setModulePrivate(); 7179 } 7180 } 7181 7182 if (getLangOpts().OpenCL) { 7183 7184 deduceOpenCLAddressSpace(NewVD); 7185 7186 diagnoseOpenCLTypes(S, *this, D, DC, NewVD->getType()); 7187 } 7188 7189 // Handle attributes prior to checking for duplicates in MergeVarDecl 7190 ProcessDeclAttributes(S, NewVD, D); 7191 7192 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice || 7193 getLangOpts().SYCLIsDevice) { 7194 if (EmitTLSUnsupportedError && 7195 ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) || 7196 (getLangOpts().OpenMPIsDevice && 7197 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD)))) 7198 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 7199 diag::err_thread_unsupported); 7200 7201 if (EmitTLSUnsupportedError && 7202 (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice))) 7203 targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported); 7204 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static 7205 // storage [duration]." 7206 if (SC == SC_None && S->getFnParent() != nullptr && 7207 (NewVD->hasAttr<CUDASharedAttr>() || 7208 NewVD->hasAttr<CUDAConstantAttr>())) { 7209 NewVD->setStorageClass(SC_Static); 7210 } 7211 } 7212 7213 // Ensure that dllimport globals without explicit storage class are treated as 7214 // extern. The storage class is set above using parsed attributes. Now we can 7215 // check the VarDecl itself. 7216 assert(!NewVD->hasAttr<DLLImportAttr>() || 7217 NewVD->getAttr<DLLImportAttr>()->isInherited() || 7218 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None); 7219 7220 // In auto-retain/release, infer strong retension for variables of 7221 // retainable type. 7222 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD)) 7223 NewVD->setInvalidDecl(); 7224 7225 // Handle GNU asm-label extension (encoded as an attribute). 7226 if (Expr *E = (Expr*)D.getAsmLabel()) { 7227 // The parser guarantees this is a string. 7228 StringLiteral *SE = cast<StringLiteral>(E); 7229 StringRef Label = SE->getString(); 7230 if (S->getFnParent() != nullptr) { 7231 switch (SC) { 7232 case SC_None: 7233 case SC_Auto: 7234 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label; 7235 break; 7236 case SC_Register: 7237 // Local Named register 7238 if (!Context.getTargetInfo().isValidGCCRegisterName(Label) && 7239 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl())) 7240 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; 7241 break; 7242 case SC_Static: 7243 case SC_Extern: 7244 case SC_PrivateExtern: 7245 break; 7246 } 7247 } else if (SC == SC_Register) { 7248 // Global Named register 7249 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) { 7250 const auto &TI = Context.getTargetInfo(); 7251 bool HasSizeMismatch; 7252 7253 if (!TI.isValidGCCRegisterName(Label)) 7254 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; 7255 else if (!TI.validateGlobalRegisterVariable(Label, 7256 Context.getTypeSize(R), 7257 HasSizeMismatch)) 7258 Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label; 7259 else if (HasSizeMismatch) 7260 Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label; 7261 } 7262 7263 if (!R->isIntegralType(Context) && !R->isPointerType()) { 7264 Diag(D.getBeginLoc(), diag::err_asm_bad_register_type); 7265 NewVD->setInvalidDecl(true); 7266 } 7267 } 7268 7269 NewVD->addAttr(AsmLabelAttr::Create(Context, Label, 7270 /*IsLiteralLabel=*/true, 7271 SE->getStrTokenLoc(0))); 7272 } else if (!ExtnameUndeclaredIdentifiers.empty()) { 7273 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = 7274 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier()); 7275 if (I != ExtnameUndeclaredIdentifiers.end()) { 7276 if (isDeclExternC(NewVD)) { 7277 NewVD->addAttr(I->second); 7278 ExtnameUndeclaredIdentifiers.erase(I); 7279 } else 7280 Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied) 7281 << /*Variable*/1 << NewVD; 7282 } 7283 } 7284 7285 // Find the shadowed declaration before filtering for scope. 7286 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() 7287 ? getShadowedDeclaration(NewVD, Previous) 7288 : nullptr; 7289 7290 // Don't consider existing declarations that are in a different 7291 // scope and are out-of-semantic-context declarations (if the new 7292 // declaration has linkage). 7293 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD), 7294 D.getCXXScopeSpec().isNotEmpty() || 7295 IsMemberSpecialization || 7296 IsVariableTemplateSpecialization); 7297 7298 // Check whether the previous declaration is in the same block scope. This 7299 // affects whether we merge types with it, per C++11 [dcl.array]p3. 7300 if (getLangOpts().CPlusPlus && 7301 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage()) 7302 NewVD->setPreviousDeclInSameBlockScope( 7303 Previous.isSingleResult() && !Previous.isShadowed() && 7304 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false)); 7305 7306 if (!getLangOpts().CPlusPlus) { 7307 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); 7308 } else { 7309 // If this is an explicit specialization of a static data member, check it. 7310 if (IsMemberSpecialization && !NewVD->isInvalidDecl() && 7311 CheckMemberSpecialization(NewVD, Previous)) 7312 NewVD->setInvalidDecl(); 7313 7314 // Merge the decl with the existing one if appropriate. 7315 if (!Previous.empty()) { 7316 if (Previous.isSingleResult() && 7317 isa<FieldDecl>(Previous.getFoundDecl()) && 7318 D.getCXXScopeSpec().isSet()) { 7319 // The user tried to define a non-static data member 7320 // out-of-line (C++ [dcl.meaning]p1). 7321 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) 7322 << D.getCXXScopeSpec().getRange(); 7323 Previous.clear(); 7324 NewVD->setInvalidDecl(); 7325 } 7326 } else if (D.getCXXScopeSpec().isSet()) { 7327 // No previous declaration in the qualifying scope. 7328 Diag(D.getIdentifierLoc(), diag::err_no_member) 7329 << Name << computeDeclContext(D.getCXXScopeSpec(), true) 7330 << D.getCXXScopeSpec().getRange(); 7331 NewVD->setInvalidDecl(); 7332 } 7333 7334 if (!IsVariableTemplateSpecialization) 7335 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); 7336 7337 if (NewTemplate) { 7338 VarTemplateDecl *PrevVarTemplate = 7339 NewVD->getPreviousDecl() 7340 ? NewVD->getPreviousDecl()->getDescribedVarTemplate() 7341 : nullptr; 7342 7343 // Check the template parameter list of this declaration, possibly 7344 // merging in the template parameter list from the previous variable 7345 // template declaration. 7346 if (CheckTemplateParameterList( 7347 TemplateParams, 7348 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters() 7349 : nullptr, 7350 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() && 7351 DC->isDependentContext()) 7352 ? TPC_ClassTemplateMember 7353 : TPC_VarTemplate)) 7354 NewVD->setInvalidDecl(); 7355 7356 // If we are providing an explicit specialization of a static variable 7357 // template, make a note of that. 7358 if (PrevVarTemplate && 7359 PrevVarTemplate->getInstantiatedFromMemberTemplate()) 7360 PrevVarTemplate->setMemberSpecialization(); 7361 } 7362 } 7363 7364 // Diagnose shadowed variables iff this isn't a redeclaration. 7365 if (ShadowedDecl && !D.isRedeclaration()) 7366 CheckShadow(NewVD, ShadowedDecl, Previous); 7367 7368 ProcessPragmaWeak(S, NewVD); 7369 7370 // If this is the first declaration of an extern C variable, update 7371 // the map of such variables. 7372 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() && 7373 isIncompleteDeclExternC(*this, NewVD)) 7374 RegisterLocallyScopedExternCDecl(NewVD, S); 7375 7376 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { 7377 MangleNumberingContext *MCtx; 7378 Decl *ManglingContextDecl; 7379 std::tie(MCtx, ManglingContextDecl) = 7380 getCurrentMangleNumberContext(NewVD->getDeclContext()); 7381 if (MCtx) { 7382 Context.setManglingNumber( 7383 NewVD, MCtx->getManglingNumber( 7384 NewVD, getMSManglingNumber(getLangOpts(), S))); 7385 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); 7386 } 7387 } 7388 7389 // Special handling of variable named 'main'. 7390 if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") && 7391 NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() && 7392 !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) { 7393 7394 // C++ [basic.start.main]p3 7395 // A program that declares a variable main at global scope is ill-formed. 7396 if (getLangOpts().CPlusPlus) 7397 Diag(D.getBeginLoc(), diag::err_main_global_variable); 7398 7399 // In C, and external-linkage variable named main results in undefined 7400 // behavior. 7401 else if (NewVD->hasExternalFormalLinkage()) 7402 Diag(D.getBeginLoc(), diag::warn_main_redefined); 7403 } 7404 7405 if (D.isRedeclaration() && !Previous.empty()) { 7406 NamedDecl *Prev = Previous.getRepresentativeDecl(); 7407 checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization, 7408 D.isFunctionDefinition()); 7409 } 7410 7411 if (NewTemplate) { 7412 if (NewVD->isInvalidDecl()) 7413 NewTemplate->setInvalidDecl(); 7414 ActOnDocumentableDecl(NewTemplate); 7415 return NewTemplate; 7416 } 7417 7418 if (IsMemberSpecialization && !NewVD->isInvalidDecl()) 7419 CompleteMemberSpecialization(NewVD, Previous); 7420 7421 return NewVD; 7422 } 7423 7424 /// Enum describing the %select options in diag::warn_decl_shadow. 7425 enum ShadowedDeclKind { 7426 SDK_Local, 7427 SDK_Global, 7428 SDK_StaticMember, 7429 SDK_Field, 7430 SDK_Typedef, 7431 SDK_Using 7432 }; 7433 7434 /// Determine what kind of declaration we're shadowing. 7435 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl, 7436 const DeclContext *OldDC) { 7437 if (isa<TypeAliasDecl>(ShadowedDecl)) 7438 return SDK_Using; 7439 else if (isa<TypedefDecl>(ShadowedDecl)) 7440 return SDK_Typedef; 7441 else if (isa<RecordDecl>(OldDC)) 7442 return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember; 7443 7444 return OldDC->isFileContext() ? SDK_Global : SDK_Local; 7445 } 7446 7447 /// Return the location of the capture if the given lambda captures the given 7448 /// variable \p VD, or an invalid source location otherwise. 7449 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI, 7450 const VarDecl *VD) { 7451 for (const Capture &Capture : LSI->Captures) { 7452 if (Capture.isVariableCapture() && Capture.getVariable() == VD) 7453 return Capture.getLocation(); 7454 } 7455 return SourceLocation(); 7456 } 7457 7458 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags, 7459 const LookupResult &R) { 7460 // Only diagnose if we're shadowing an unambiguous field or variable. 7461 if (R.getResultKind() != LookupResult::Found) 7462 return false; 7463 7464 // Return false if warning is ignored. 7465 return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()); 7466 } 7467 7468 /// Return the declaration shadowed by the given variable \p D, or null 7469 /// if it doesn't shadow any declaration or shadowing warnings are disabled. 7470 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D, 7471 const LookupResult &R) { 7472 if (!shouldWarnIfShadowedDecl(Diags, R)) 7473 return nullptr; 7474 7475 // Don't diagnose declarations at file scope. 7476 if (D->hasGlobalStorage()) 7477 return nullptr; 7478 7479 NamedDecl *ShadowedDecl = R.getFoundDecl(); 7480 return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl) 7481 ? ShadowedDecl 7482 : nullptr; 7483 } 7484 7485 /// Return the declaration shadowed by the given typedef \p D, or null 7486 /// if it doesn't shadow any declaration or shadowing warnings are disabled. 7487 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D, 7488 const LookupResult &R) { 7489 // Don't warn if typedef declaration is part of a class 7490 if (D->getDeclContext()->isRecord()) 7491 return nullptr; 7492 7493 if (!shouldWarnIfShadowedDecl(Diags, R)) 7494 return nullptr; 7495 7496 NamedDecl *ShadowedDecl = R.getFoundDecl(); 7497 return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr; 7498 } 7499 7500 /// Diagnose variable or built-in function shadowing. Implements 7501 /// -Wshadow. 7502 /// 7503 /// This method is called whenever a VarDecl is added to a "useful" 7504 /// scope. 7505 /// 7506 /// \param ShadowedDecl the declaration that is shadowed by the given variable 7507 /// \param R the lookup of the name 7508 /// 7509 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl, 7510 const LookupResult &R) { 7511 DeclContext *NewDC = D->getDeclContext(); 7512 7513 if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) { 7514 // Fields are not shadowed by variables in C++ static methods. 7515 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC)) 7516 if (MD->isStatic()) 7517 return; 7518 7519 // Fields shadowed by constructor parameters are a special case. Usually 7520 // the constructor initializes the field with the parameter. 7521 if (isa<CXXConstructorDecl>(NewDC)) 7522 if (const auto PVD = dyn_cast<ParmVarDecl>(D)) { 7523 // Remember that this was shadowed so we can either warn about its 7524 // modification or its existence depending on warning settings. 7525 ShadowingDecls.insert({PVD->getCanonicalDecl(), FD}); 7526 return; 7527 } 7528 } 7529 7530 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl)) 7531 if (shadowedVar->isExternC()) { 7532 // For shadowing external vars, make sure that we point to the global 7533 // declaration, not a locally scoped extern declaration. 7534 for (auto I : shadowedVar->redecls()) 7535 if (I->isFileVarDecl()) { 7536 ShadowedDecl = I; 7537 break; 7538 } 7539 } 7540 7541 DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext(); 7542 7543 unsigned WarningDiag = diag::warn_decl_shadow; 7544 SourceLocation CaptureLoc; 7545 if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC && 7546 isa<CXXMethodDecl>(NewDC)) { 7547 if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) { 7548 if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) { 7549 if (RD->getLambdaCaptureDefault() == LCD_None) { 7550 // Try to avoid warnings for lambdas with an explicit capture list. 7551 const auto *LSI = cast<LambdaScopeInfo>(getCurFunction()); 7552 // Warn only when the lambda captures the shadowed decl explicitly. 7553 CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl)); 7554 if (CaptureLoc.isInvalid()) 7555 WarningDiag = diag::warn_decl_shadow_uncaptured_local; 7556 } else { 7557 // Remember that this was shadowed so we can avoid the warning if the 7558 // shadowed decl isn't captured and the warning settings allow it. 7559 cast<LambdaScopeInfo>(getCurFunction()) 7560 ->ShadowingDecls.push_back( 7561 {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)}); 7562 return; 7563 } 7564 } 7565 7566 if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) { 7567 // A variable can't shadow a local variable in an enclosing scope, if 7568 // they are separated by a non-capturing declaration context. 7569 for (DeclContext *ParentDC = NewDC; 7570 ParentDC && !ParentDC->Equals(OldDC); 7571 ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) { 7572 // Only block literals, captured statements, and lambda expressions 7573 // can capture; other scopes don't. 7574 if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) && 7575 !isLambdaCallOperator(ParentDC)) { 7576 return; 7577 } 7578 } 7579 } 7580 } 7581 } 7582 7583 // Only warn about certain kinds of shadowing for class members. 7584 if (NewDC && NewDC->isRecord()) { 7585 // In particular, don't warn about shadowing non-class members. 7586 if (!OldDC->isRecord()) 7587 return; 7588 7589 // TODO: should we warn about static data members shadowing 7590 // static data members from base classes? 7591 7592 // TODO: don't diagnose for inaccessible shadowed members. 7593 // This is hard to do perfectly because we might friend the 7594 // shadowing context, but that's just a false negative. 7595 } 7596 7597 7598 DeclarationName Name = R.getLookupName(); 7599 7600 // Emit warning and note. 7601 if (getSourceManager().isInSystemMacro(R.getNameLoc())) 7602 return; 7603 ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC); 7604 Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC; 7605 if (!CaptureLoc.isInvalid()) 7606 Diag(CaptureLoc, diag::note_var_explicitly_captured_here) 7607 << Name << /*explicitly*/ 1; 7608 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 7609 } 7610 7611 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD 7612 /// when these variables are captured by the lambda. 7613 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) { 7614 for (const auto &Shadow : LSI->ShadowingDecls) { 7615 const VarDecl *ShadowedDecl = Shadow.ShadowedDecl; 7616 // Try to avoid the warning when the shadowed decl isn't captured. 7617 SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl); 7618 const DeclContext *OldDC = ShadowedDecl->getDeclContext(); 7619 Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid() 7620 ? diag::warn_decl_shadow_uncaptured_local 7621 : diag::warn_decl_shadow) 7622 << Shadow.VD->getDeclName() 7623 << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC; 7624 if (!CaptureLoc.isInvalid()) 7625 Diag(CaptureLoc, diag::note_var_explicitly_captured_here) 7626 << Shadow.VD->getDeclName() << /*explicitly*/ 0; 7627 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 7628 } 7629 } 7630 7631 /// Check -Wshadow without the advantage of a previous lookup. 7632 void Sema::CheckShadow(Scope *S, VarDecl *D) { 7633 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation())) 7634 return; 7635 7636 LookupResult R(*this, D->getDeclName(), D->getLocation(), 7637 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); 7638 LookupName(R, S); 7639 if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R)) 7640 CheckShadow(D, ShadowedDecl, R); 7641 } 7642 7643 /// Check if 'E', which is an expression that is about to be modified, refers 7644 /// to a constructor parameter that shadows a field. 7645 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) { 7646 // Quickly ignore expressions that can't be shadowing ctor parameters. 7647 if (!getLangOpts().CPlusPlus || ShadowingDecls.empty()) 7648 return; 7649 E = E->IgnoreParenImpCasts(); 7650 auto *DRE = dyn_cast<DeclRefExpr>(E); 7651 if (!DRE) 7652 return; 7653 const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl()); 7654 auto I = ShadowingDecls.find(D); 7655 if (I == ShadowingDecls.end()) 7656 return; 7657 const NamedDecl *ShadowedDecl = I->second; 7658 const DeclContext *OldDC = ShadowedDecl->getDeclContext(); 7659 Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC; 7660 Diag(D->getLocation(), diag::note_var_declared_here) << D; 7661 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 7662 7663 // Avoid issuing multiple warnings about the same decl. 7664 ShadowingDecls.erase(I); 7665 } 7666 7667 /// Check for conflict between this global or extern "C" declaration and 7668 /// previous global or extern "C" declarations. This is only used in C++. 7669 template<typename T> 7670 static bool checkGlobalOrExternCConflict( 7671 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) { 7672 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""); 7673 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName()); 7674 7675 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) { 7676 // The common case: this global doesn't conflict with any extern "C" 7677 // declaration. 7678 return false; 7679 } 7680 7681 if (Prev) { 7682 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) { 7683 // Both the old and new declarations have C language linkage. This is a 7684 // redeclaration. 7685 Previous.clear(); 7686 Previous.addDecl(Prev); 7687 return true; 7688 } 7689 7690 // This is a global, non-extern "C" declaration, and there is a previous 7691 // non-global extern "C" declaration. Diagnose if this is a variable 7692 // declaration. 7693 if (!isa<VarDecl>(ND)) 7694 return false; 7695 } else { 7696 // The declaration is extern "C". Check for any declaration in the 7697 // translation unit which might conflict. 7698 if (IsGlobal) { 7699 // We have already performed the lookup into the translation unit. 7700 IsGlobal = false; 7701 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 7702 I != E; ++I) { 7703 if (isa<VarDecl>(*I)) { 7704 Prev = *I; 7705 break; 7706 } 7707 } 7708 } else { 7709 DeclContext::lookup_result R = 7710 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName()); 7711 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end(); 7712 I != E; ++I) { 7713 if (isa<VarDecl>(*I)) { 7714 Prev = *I; 7715 break; 7716 } 7717 // FIXME: If we have any other entity with this name in global scope, 7718 // the declaration is ill-formed, but that is a defect: it breaks the 7719 // 'stat' hack, for instance. Only variables can have mangled name 7720 // clashes with extern "C" declarations, so only they deserve a 7721 // diagnostic. 7722 } 7723 } 7724 7725 if (!Prev) 7726 return false; 7727 } 7728 7729 // Use the first declaration's location to ensure we point at something which 7730 // is lexically inside an extern "C" linkage-spec. 7731 assert(Prev && "should have found a previous declaration to diagnose"); 7732 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev)) 7733 Prev = FD->getFirstDecl(); 7734 else 7735 Prev = cast<VarDecl>(Prev)->getFirstDecl(); 7736 7737 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict) 7738 << IsGlobal << ND; 7739 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict) 7740 << IsGlobal; 7741 return false; 7742 } 7743 7744 /// Apply special rules for handling extern "C" declarations. Returns \c true 7745 /// if we have found that this is a redeclaration of some prior entity. 7746 /// 7747 /// Per C++ [dcl.link]p6: 7748 /// Two declarations [for a function or variable] with C language linkage 7749 /// with the same name that appear in different scopes refer to the same 7750 /// [entity]. An entity with C language linkage shall not be declared with 7751 /// the same name as an entity in global scope. 7752 template<typename T> 7753 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND, 7754 LookupResult &Previous) { 7755 if (!S.getLangOpts().CPlusPlus) { 7756 // In C, when declaring a global variable, look for a corresponding 'extern' 7757 // variable declared in function scope. We don't need this in C++, because 7758 // we find local extern decls in the surrounding file-scope DeclContext. 7759 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 7760 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) { 7761 Previous.clear(); 7762 Previous.addDecl(Prev); 7763 return true; 7764 } 7765 } 7766 return false; 7767 } 7768 7769 // A declaration in the translation unit can conflict with an extern "C" 7770 // declaration. 7771 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) 7772 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous); 7773 7774 // An extern "C" declaration can conflict with a declaration in the 7775 // translation unit or can be a redeclaration of an extern "C" declaration 7776 // in another scope. 7777 if (isIncompleteDeclExternC(S,ND)) 7778 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous); 7779 7780 // Neither global nor extern "C": nothing to do. 7781 return false; 7782 } 7783 7784 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) { 7785 // If the decl is already known invalid, don't check it. 7786 if (NewVD->isInvalidDecl()) 7787 return; 7788 7789 QualType T = NewVD->getType(); 7790 7791 // Defer checking an 'auto' type until its initializer is attached. 7792 if (T->isUndeducedType()) 7793 return; 7794 7795 if (NewVD->hasAttrs()) 7796 CheckAlignasUnderalignment(NewVD); 7797 7798 if (T->isObjCObjectType()) { 7799 Diag(NewVD->getLocation(), diag::err_statically_allocated_object) 7800 << FixItHint::CreateInsertion(NewVD->getLocation(), "*"); 7801 T = Context.getObjCObjectPointerType(T); 7802 NewVD->setType(T); 7803 } 7804 7805 // Emit an error if an address space was applied to decl with local storage. 7806 // This includes arrays of objects with address space qualifiers, but not 7807 // automatic variables that point to other address spaces. 7808 // ISO/IEC TR 18037 S5.1.2 7809 if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() && 7810 T.getAddressSpace() != LangAS::Default) { 7811 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0; 7812 NewVD->setInvalidDecl(); 7813 return; 7814 } 7815 7816 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program 7817 // scope. 7818 if (getLangOpts().OpenCLVersion == 120 && 7819 !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") && 7820 NewVD->isStaticLocal()) { 7821 Diag(NewVD->getLocation(), diag::err_static_function_scope); 7822 NewVD->setInvalidDecl(); 7823 return; 7824 } 7825 7826 if (getLangOpts().OpenCL) { 7827 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported. 7828 if (NewVD->hasAttr<BlocksAttr>()) { 7829 Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type); 7830 return; 7831 } 7832 7833 if (T->isBlockPointerType()) { 7834 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and 7835 // can't use 'extern' storage class. 7836 if (!T.isConstQualified()) { 7837 Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration) 7838 << 0 /*const*/; 7839 NewVD->setInvalidDecl(); 7840 return; 7841 } 7842 if (NewVD->hasExternalStorage()) { 7843 Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration); 7844 NewVD->setInvalidDecl(); 7845 return; 7846 } 7847 } 7848 // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the 7849 // __constant address space. 7850 // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static 7851 // variables inside a function can also be declared in the global 7852 // address space. 7853 // C++ for OpenCL inherits rule from OpenCL C v2.0. 7854 // FIXME: Adding local AS in C++ for OpenCL might make sense. 7855 if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() || 7856 NewVD->hasExternalStorage()) { 7857 if (!T->isSamplerT() && 7858 !T->isDependentType() && 7859 !(T.getAddressSpace() == LangAS::opencl_constant || 7860 (T.getAddressSpace() == LangAS::opencl_global && 7861 (getLangOpts().OpenCLVersion == 200 || 7862 getLangOpts().OpenCLCPlusPlus)))) { 7863 int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1; 7864 if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus) 7865 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) 7866 << Scope << "global or constant"; 7867 else 7868 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) 7869 << Scope << "constant"; 7870 NewVD->setInvalidDecl(); 7871 return; 7872 } 7873 } else { 7874 if (T.getAddressSpace() == LangAS::opencl_global) { 7875 Diag(NewVD->getLocation(), diag::err_opencl_function_variable) 7876 << 1 /*is any function*/ << "global"; 7877 NewVD->setInvalidDecl(); 7878 return; 7879 } 7880 if (T.getAddressSpace() == LangAS::opencl_constant || 7881 T.getAddressSpace() == LangAS::opencl_local) { 7882 FunctionDecl *FD = getCurFunctionDecl(); 7883 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables 7884 // in functions. 7885 if (FD && !FD->hasAttr<OpenCLKernelAttr>()) { 7886 if (T.getAddressSpace() == LangAS::opencl_constant) 7887 Diag(NewVD->getLocation(), diag::err_opencl_function_variable) 7888 << 0 /*non-kernel only*/ << "constant"; 7889 else 7890 Diag(NewVD->getLocation(), diag::err_opencl_function_variable) 7891 << 0 /*non-kernel only*/ << "local"; 7892 NewVD->setInvalidDecl(); 7893 return; 7894 } 7895 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be 7896 // in the outermost scope of a kernel function. 7897 if (FD && FD->hasAttr<OpenCLKernelAttr>()) { 7898 if (!getCurScope()->isFunctionScope()) { 7899 if (T.getAddressSpace() == LangAS::opencl_constant) 7900 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) 7901 << "constant"; 7902 else 7903 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) 7904 << "local"; 7905 NewVD->setInvalidDecl(); 7906 return; 7907 } 7908 } 7909 } else if (T.getAddressSpace() != LangAS::opencl_private && 7910 // If we are parsing a template we didn't deduce an addr 7911 // space yet. 7912 T.getAddressSpace() != LangAS::Default) { 7913 // Do not allow other address spaces on automatic variable. 7914 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1; 7915 NewVD->setInvalidDecl(); 7916 return; 7917 } 7918 } 7919 } 7920 7921 if (NewVD->hasLocalStorage() && T.isObjCGCWeak() 7922 && !NewVD->hasAttr<BlocksAttr>()) { 7923 if (getLangOpts().getGC() != LangOptions::NonGC) 7924 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local); 7925 else { 7926 assert(!getLangOpts().ObjCAutoRefCount); 7927 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); 7928 } 7929 } 7930 7931 bool isVM = T->isVariablyModifiedType(); 7932 if (isVM || NewVD->hasAttr<CleanupAttr>() || 7933 NewVD->hasAttr<BlocksAttr>()) 7934 setFunctionHasBranchProtectedScope(); 7935 7936 if ((isVM && NewVD->hasLinkage()) || 7937 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) { 7938 bool SizeIsNegative; 7939 llvm::APSInt Oversized; 7940 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo( 7941 NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized); 7942 QualType FixedT; 7943 if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType()) 7944 FixedT = FixedTInfo->getType(); 7945 else if (FixedTInfo) { 7946 // Type and type-as-written are canonically different. We need to fix up 7947 // both types separately. 7948 FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, 7949 Oversized); 7950 } 7951 if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) { 7952 const VariableArrayType *VAT = Context.getAsVariableArrayType(T); 7953 // FIXME: This won't give the correct result for 7954 // int a[10][n]; 7955 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); 7956 7957 if (NewVD->isFileVarDecl()) 7958 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) 7959 << SizeRange; 7960 else if (NewVD->isStaticLocal()) 7961 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) 7962 << SizeRange; 7963 else 7964 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) 7965 << SizeRange; 7966 NewVD->setInvalidDecl(); 7967 return; 7968 } 7969 7970 if (!FixedTInfo) { 7971 if (NewVD->isFileVarDecl()) 7972 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); 7973 else 7974 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); 7975 NewVD->setInvalidDecl(); 7976 return; 7977 } 7978 7979 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size); 7980 NewVD->setType(FixedT); 7981 NewVD->setTypeSourceInfo(FixedTInfo); 7982 } 7983 7984 if (T->isVoidType()) { 7985 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names 7986 // of objects and functions. 7987 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) { 7988 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) 7989 << T; 7990 NewVD->setInvalidDecl(); 7991 return; 7992 } 7993 } 7994 7995 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { 7996 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); 7997 NewVD->setInvalidDecl(); 7998 return; 7999 } 8000 8001 if (!NewVD->hasLocalStorage() && T->isSizelessType()) { 8002 Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T; 8003 NewVD->setInvalidDecl(); 8004 return; 8005 } 8006 8007 if (isVM && NewVD->hasAttr<BlocksAttr>()) { 8008 Diag(NewVD->getLocation(), diag::err_block_on_vm); 8009 NewVD->setInvalidDecl(); 8010 return; 8011 } 8012 8013 if (NewVD->isConstexpr() && !T->isDependentType() && 8014 RequireLiteralType(NewVD->getLocation(), T, 8015 diag::err_constexpr_var_non_literal)) { 8016 NewVD->setInvalidDecl(); 8017 return; 8018 } 8019 } 8020 8021 /// Perform semantic checking on a newly-created variable 8022 /// declaration. 8023 /// 8024 /// This routine performs all of the type-checking required for a 8025 /// variable declaration once it has been built. It is used both to 8026 /// check variables after they have been parsed and their declarators 8027 /// have been translated into a declaration, and to check variables 8028 /// that have been instantiated from a template. 8029 /// 8030 /// Sets NewVD->isInvalidDecl() if an error was encountered. 8031 /// 8032 /// Returns true if the variable declaration is a redeclaration. 8033 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) { 8034 CheckVariableDeclarationType(NewVD); 8035 8036 // If the decl is already known invalid, don't check it. 8037 if (NewVD->isInvalidDecl()) 8038 return false; 8039 8040 // If we did not find anything by this name, look for a non-visible 8041 // extern "C" declaration with the same name. 8042 if (Previous.empty() && 8043 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous)) 8044 Previous.setShadowed(); 8045 8046 if (!Previous.empty()) { 8047 MergeVarDecl(NewVD, Previous); 8048 return true; 8049 } 8050 return false; 8051 } 8052 8053 namespace { 8054 struct FindOverriddenMethod { 8055 Sema *S; 8056 CXXMethodDecl *Method; 8057 8058 /// Member lookup function that determines whether a given C++ 8059 /// method overrides a method in a base class, to be used with 8060 /// CXXRecordDecl::lookupInBases(). 8061 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 8062 RecordDecl *BaseRecord = 8063 Specifier->getType()->castAs<RecordType>()->getDecl(); 8064 8065 DeclarationName Name = Method->getDeclName(); 8066 8067 // FIXME: Do we care about other names here too? 8068 if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 8069 // We really want to find the base class destructor here. 8070 QualType T = S->Context.getTypeDeclType(BaseRecord); 8071 CanQualType CT = S->Context.getCanonicalType(T); 8072 8073 Name = S->Context.DeclarationNames.getCXXDestructorName(CT); 8074 } 8075 8076 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty(); 8077 Path.Decls = Path.Decls.slice(1)) { 8078 NamedDecl *D = Path.Decls.front(); 8079 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 8080 if (MD->isVirtual() && 8081 !S->IsOverload( 8082 Method, MD, /*UseMemberUsingDeclRules=*/false, 8083 /*ConsiderCudaAttrs=*/true, 8084 // C++2a [class.virtual]p2 does not consider requires clauses 8085 // when overriding. 8086 /*ConsiderRequiresClauses=*/false)) 8087 return true; 8088 } 8089 } 8090 8091 return false; 8092 } 8093 }; 8094 } // end anonymous namespace 8095 8096 /// AddOverriddenMethods - See if a method overrides any in the base classes, 8097 /// and if so, check that it's a valid override and remember it. 8098 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { 8099 // Look for methods in base classes that this method might override. 8100 CXXBasePaths Paths; 8101 FindOverriddenMethod FOM; 8102 FOM.Method = MD; 8103 FOM.S = this; 8104 bool AddedAny = false; 8105 if (DC->lookupInBases(FOM, Paths)) { 8106 for (auto *I : Paths.found_decls()) { 8107 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) { 8108 MD->addOverriddenMethod(OldMD->getCanonicalDecl()); 8109 if (!CheckOverridingFunctionReturnType(MD, OldMD) && 8110 !CheckOverridingFunctionAttributes(MD, OldMD) && 8111 !CheckOverridingFunctionExceptionSpec(MD, OldMD) && 8112 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) { 8113 AddedAny = true; 8114 } 8115 } 8116 } 8117 } 8118 8119 return AddedAny; 8120 } 8121 8122 namespace { 8123 // Struct for holding all of the extra arguments needed by 8124 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator. 8125 struct ActOnFDArgs { 8126 Scope *S; 8127 Declarator &D; 8128 MultiTemplateParamsArg TemplateParamLists; 8129 bool AddToScope; 8130 }; 8131 } // end anonymous namespace 8132 8133 namespace { 8134 8135 // Callback to only accept typo corrections that have a non-zero edit distance. 8136 // Also only accept corrections that have the same parent decl. 8137 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback { 8138 public: 8139 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD, 8140 CXXRecordDecl *Parent) 8141 : Context(Context), OriginalFD(TypoFD), 8142 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {} 8143 8144 bool ValidateCandidate(const TypoCorrection &candidate) override { 8145 if (candidate.getEditDistance() == 0) 8146 return false; 8147 8148 SmallVector<unsigned, 1> MismatchedParams; 8149 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(), 8150 CDeclEnd = candidate.end(); 8151 CDecl != CDeclEnd; ++CDecl) { 8152 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); 8153 8154 if (FD && !FD->hasBody() && 8155 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) { 8156 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 8157 CXXRecordDecl *Parent = MD->getParent(); 8158 if (Parent && Parent->getCanonicalDecl() == ExpectedParent) 8159 return true; 8160 } else if (!ExpectedParent) { 8161 return true; 8162 } 8163 } 8164 } 8165 8166 return false; 8167 } 8168 8169 std::unique_ptr<CorrectionCandidateCallback> clone() override { 8170 return std::make_unique<DifferentNameValidatorCCC>(*this); 8171 } 8172 8173 private: 8174 ASTContext &Context; 8175 FunctionDecl *OriginalFD; 8176 CXXRecordDecl *ExpectedParent; 8177 }; 8178 8179 } // end anonymous namespace 8180 8181 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) { 8182 TypoCorrectedFunctionDefinitions.insert(F); 8183 } 8184 8185 /// Generate diagnostics for an invalid function redeclaration. 8186 /// 8187 /// This routine handles generating the diagnostic messages for an invalid 8188 /// function redeclaration, including finding possible similar declarations 8189 /// or performing typo correction if there are no previous declarations with 8190 /// the same name. 8191 /// 8192 /// Returns a NamedDecl iff typo correction was performed and substituting in 8193 /// the new declaration name does not cause new errors. 8194 static NamedDecl *DiagnoseInvalidRedeclaration( 8195 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD, 8196 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) { 8197 DeclarationName Name = NewFD->getDeclName(); 8198 DeclContext *NewDC = NewFD->getDeclContext(); 8199 SmallVector<unsigned, 1> MismatchedParams; 8200 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches; 8201 TypoCorrection Correction; 8202 bool IsDefinition = ExtraArgs.D.isFunctionDefinition(); 8203 unsigned DiagMsg = 8204 IsLocalFriend ? diag::err_no_matching_local_friend : 8205 NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match : 8206 diag::err_member_decl_does_not_match; 8207 LookupResult Prev(SemaRef, Name, NewFD->getLocation(), 8208 IsLocalFriend ? Sema::LookupLocalFriendName 8209 : Sema::LookupOrdinaryName, 8210 Sema::ForVisibleRedeclaration); 8211 8212 NewFD->setInvalidDecl(); 8213 if (IsLocalFriend) 8214 SemaRef.LookupName(Prev, S); 8215 else 8216 SemaRef.LookupQualifiedName(Prev, NewDC); 8217 assert(!Prev.isAmbiguous() && 8218 "Cannot have an ambiguity in previous-declaration lookup"); 8219 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 8220 DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD, 8221 MD ? MD->getParent() : nullptr); 8222 if (!Prev.empty()) { 8223 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); 8224 Func != FuncEnd; ++Func) { 8225 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func); 8226 if (FD && 8227 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { 8228 // Add 1 to the index so that 0 can mean the mismatch didn't 8229 // involve a parameter 8230 unsigned ParamNum = 8231 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1; 8232 NearMatches.push_back(std::make_pair(FD, ParamNum)); 8233 } 8234 } 8235 // If the qualified name lookup yielded nothing, try typo correction 8236 } else if ((Correction = SemaRef.CorrectTypo( 8237 Prev.getLookupNameInfo(), Prev.getLookupKind(), S, 8238 &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery, 8239 IsLocalFriend ? nullptr : NewDC))) { 8240 // Set up everything for the call to ActOnFunctionDeclarator 8241 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(), 8242 ExtraArgs.D.getIdentifierLoc()); 8243 Previous.clear(); 8244 Previous.setLookupName(Correction.getCorrection()); 8245 for (TypoCorrection::decl_iterator CDecl = Correction.begin(), 8246 CDeclEnd = Correction.end(); 8247 CDecl != CDeclEnd; ++CDecl) { 8248 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); 8249 if (FD && !FD->hasBody() && 8250 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { 8251 Previous.addDecl(FD); 8252 } 8253 } 8254 bool wasRedeclaration = ExtraArgs.D.isRedeclaration(); 8255 8256 NamedDecl *Result; 8257 // Retry building the function declaration with the new previous 8258 // declarations, and with errors suppressed. 8259 { 8260 // Trap errors. 8261 Sema::SFINAETrap Trap(SemaRef); 8262 8263 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the 8264 // pieces need to verify the typo-corrected C++ declaration and hopefully 8265 // eliminate the need for the parameter pack ExtraArgs. 8266 Result = SemaRef.ActOnFunctionDeclarator( 8267 ExtraArgs.S, ExtraArgs.D, 8268 Correction.getCorrectionDecl()->getDeclContext(), 8269 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists, 8270 ExtraArgs.AddToScope); 8271 8272 if (Trap.hasErrorOccurred()) 8273 Result = nullptr; 8274 } 8275 8276 if (Result) { 8277 // Determine which correction we picked. 8278 Decl *Canonical = Result->getCanonicalDecl(); 8279 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 8280 I != E; ++I) 8281 if ((*I)->getCanonicalDecl() == Canonical) 8282 Correction.setCorrectionDecl(*I); 8283 8284 // Let Sema know about the correction. 8285 SemaRef.MarkTypoCorrectedFunctionDefinition(Result); 8286 SemaRef.diagnoseTypo( 8287 Correction, 8288 SemaRef.PDiag(IsLocalFriend 8289 ? diag::err_no_matching_local_friend_suggest 8290 : diag::err_member_decl_does_not_match_suggest) 8291 << Name << NewDC << IsDefinition); 8292 return Result; 8293 } 8294 8295 // Pretend the typo correction never occurred 8296 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(), 8297 ExtraArgs.D.getIdentifierLoc()); 8298 ExtraArgs.D.setRedeclaration(wasRedeclaration); 8299 Previous.clear(); 8300 Previous.setLookupName(Name); 8301 } 8302 8303 SemaRef.Diag(NewFD->getLocation(), DiagMsg) 8304 << Name << NewDC << IsDefinition << NewFD->getLocation(); 8305 8306 bool NewFDisConst = false; 8307 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) 8308 NewFDisConst = NewMD->isConst(); 8309 8310 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator 8311 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end(); 8312 NearMatch != NearMatchEnd; ++NearMatch) { 8313 FunctionDecl *FD = NearMatch->first; 8314 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 8315 bool FDisConst = MD && MD->isConst(); 8316 bool IsMember = MD || !IsLocalFriend; 8317 8318 // FIXME: These notes are poorly worded for the local friend case. 8319 if (unsigned Idx = NearMatch->second) { 8320 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1); 8321 SourceLocation Loc = FDParam->getTypeSpecStartLoc(); 8322 if (Loc.isInvalid()) Loc = FD->getLocation(); 8323 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match 8324 : diag::note_local_decl_close_param_match) 8325 << Idx << FDParam->getType() 8326 << NewFD->getParamDecl(Idx - 1)->getType(); 8327 } else if (FDisConst != NewFDisConst) { 8328 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match) 8329 << NewFDisConst << FD->getSourceRange().getEnd(); 8330 } else 8331 SemaRef.Diag(FD->getLocation(), 8332 IsMember ? diag::note_member_def_close_match 8333 : diag::note_local_decl_close_match); 8334 } 8335 return nullptr; 8336 } 8337 8338 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) { 8339 switch (D.getDeclSpec().getStorageClassSpec()) { 8340 default: llvm_unreachable("Unknown storage class!"); 8341 case DeclSpec::SCS_auto: 8342 case DeclSpec::SCS_register: 8343 case DeclSpec::SCS_mutable: 8344 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), 8345 diag::err_typecheck_sclass_func); 8346 D.getMutableDeclSpec().ClearStorageClassSpecs(); 8347 D.setInvalidType(); 8348 break; 8349 case DeclSpec::SCS_unspecified: break; 8350 case DeclSpec::SCS_extern: 8351 if (D.getDeclSpec().isExternInLinkageSpec()) 8352 return SC_None; 8353 return SC_Extern; 8354 case DeclSpec::SCS_static: { 8355 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) { 8356 // C99 6.7.1p5: 8357 // The declaration of an identifier for a function that has 8358 // block scope shall have no explicit storage-class specifier 8359 // other than extern 8360 // See also (C++ [dcl.stc]p4). 8361 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), 8362 diag::err_static_block_func); 8363 break; 8364 } else 8365 return SC_Static; 8366 } 8367 case DeclSpec::SCS_private_extern: return SC_PrivateExtern; 8368 } 8369 8370 // No explicit storage class has already been returned 8371 return SC_None; 8372 } 8373 8374 static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D, 8375 DeclContext *DC, QualType &R, 8376 TypeSourceInfo *TInfo, 8377 StorageClass SC, 8378 bool &IsVirtualOkay) { 8379 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D); 8380 DeclarationName Name = NameInfo.getName(); 8381 8382 FunctionDecl *NewFD = nullptr; 8383 bool isInline = D.getDeclSpec().isInlineSpecified(); 8384 8385 if (!SemaRef.getLangOpts().CPlusPlus) { 8386 // Determine whether the function was written with a 8387 // prototype. This true when: 8388 // - there is a prototype in the declarator, or 8389 // - the type R of the function is some kind of typedef or other non- 8390 // attributed reference to a type name (which eventually refers to a 8391 // function type). 8392 bool HasPrototype = 8393 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) || 8394 (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType()); 8395 8396 NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo, 8397 R, TInfo, SC, isInline, HasPrototype, 8398 CSK_unspecified, 8399 /*TrailingRequiresClause=*/nullptr); 8400 if (D.isInvalidType()) 8401 NewFD->setInvalidDecl(); 8402 8403 return NewFD; 8404 } 8405 8406 ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier(); 8407 8408 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); 8409 if (ConstexprKind == CSK_constinit) { 8410 SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(), 8411 diag::err_constexpr_wrong_decl_kind) 8412 << ConstexprKind; 8413 ConstexprKind = CSK_unspecified; 8414 D.getMutableDeclSpec().ClearConstexprSpec(); 8415 } 8416 Expr *TrailingRequiresClause = D.getTrailingRequiresClause(); 8417 8418 // Check that the return type is not an abstract class type. 8419 // For record types, this is done by the AbstractClassUsageDiagnoser once 8420 // the class has been completely parsed. 8421 if (!DC->isRecord() && 8422 SemaRef.RequireNonAbstractType( 8423 D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(), 8424 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType)) 8425 D.setInvalidType(); 8426 8427 if (Name.getNameKind() == DeclarationName::CXXConstructorName) { 8428 // This is a C++ constructor declaration. 8429 assert(DC->isRecord() && 8430 "Constructors can only be declared in a member context"); 8431 8432 R = SemaRef.CheckConstructorDeclarator(D, R, SC); 8433 return CXXConstructorDecl::Create( 8434 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, 8435 TInfo, ExplicitSpecifier, isInline, 8436 /*isImplicitlyDeclared=*/false, ConstexprKind, InheritedConstructor(), 8437 TrailingRequiresClause); 8438 8439 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 8440 // This is a C++ destructor declaration. 8441 if (DC->isRecord()) { 8442 R = SemaRef.CheckDestructorDeclarator(D, R, SC); 8443 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 8444 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create( 8445 SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo, 8446 isInline, /*isImplicitlyDeclared=*/false, ConstexprKind, 8447 TrailingRequiresClause); 8448 8449 // If the destructor needs an implicit exception specification, set it 8450 // now. FIXME: It'd be nice to be able to create the right type to start 8451 // with, but the type needs to reference the destructor declaration. 8452 if (SemaRef.getLangOpts().CPlusPlus11) 8453 SemaRef.AdjustDestructorExceptionSpec(NewDD); 8454 8455 IsVirtualOkay = true; 8456 return NewDD; 8457 8458 } else { 8459 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); 8460 D.setInvalidType(); 8461 8462 // Create a FunctionDecl to satisfy the function definition parsing 8463 // code path. 8464 return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), 8465 D.getIdentifierLoc(), Name, R, TInfo, SC, 8466 isInline, 8467 /*hasPrototype=*/true, ConstexprKind, 8468 TrailingRequiresClause); 8469 } 8470 8471 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { 8472 if (!DC->isRecord()) { 8473 SemaRef.Diag(D.getIdentifierLoc(), 8474 diag::err_conv_function_not_member); 8475 return nullptr; 8476 } 8477 8478 SemaRef.CheckConversionDeclarator(D, R, SC); 8479 if (D.isInvalidType()) 8480 return nullptr; 8481 8482 IsVirtualOkay = true; 8483 return CXXConversionDecl::Create( 8484 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, 8485 TInfo, isInline, ExplicitSpecifier, ConstexprKind, SourceLocation(), 8486 TrailingRequiresClause); 8487 8488 } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { 8489 if (TrailingRequiresClause) 8490 SemaRef.Diag(TrailingRequiresClause->getBeginLoc(), 8491 diag::err_trailing_requires_clause_on_deduction_guide) 8492 << TrailingRequiresClause->getSourceRange(); 8493 SemaRef.CheckDeductionGuideDeclarator(D, R, SC); 8494 8495 return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), 8496 ExplicitSpecifier, NameInfo, R, TInfo, 8497 D.getEndLoc()); 8498 } else if (DC->isRecord()) { 8499 // If the name of the function is the same as the name of the record, 8500 // then this must be an invalid constructor that has a return type. 8501 // (The parser checks for a return type and makes the declarator a 8502 // constructor if it has no return type). 8503 if (Name.getAsIdentifierInfo() && 8504 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){ 8505 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) 8506 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 8507 << SourceRange(D.getIdentifierLoc()); 8508 return nullptr; 8509 } 8510 8511 // This is a C++ method declaration. 8512 CXXMethodDecl *Ret = CXXMethodDecl::Create( 8513 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, 8514 TInfo, SC, isInline, ConstexprKind, SourceLocation(), 8515 TrailingRequiresClause); 8516 IsVirtualOkay = !Ret->isStatic(); 8517 return Ret; 8518 } else { 8519 bool isFriend = 8520 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified(); 8521 if (!isFriend && SemaRef.CurContext->isRecord()) 8522 return nullptr; 8523 8524 // Determine whether the function was written with a 8525 // prototype. This true when: 8526 // - we're in C++ (where every function has a prototype), 8527 return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo, 8528 R, TInfo, SC, isInline, true /*HasPrototype*/, 8529 ConstexprKind, TrailingRequiresClause); 8530 } 8531 } 8532 8533 enum OpenCLParamType { 8534 ValidKernelParam, 8535 PtrPtrKernelParam, 8536 PtrKernelParam, 8537 InvalidAddrSpacePtrKernelParam, 8538 InvalidKernelParam, 8539 RecordKernelParam 8540 }; 8541 8542 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) { 8543 // Size dependent types are just typedefs to normal integer types 8544 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to 8545 // integers other than by their names. 8546 StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"}; 8547 8548 // Remove typedefs one by one until we reach a typedef 8549 // for a size dependent type. 8550 QualType DesugaredTy = Ty; 8551 do { 8552 ArrayRef<StringRef> Names(SizeTypeNames); 8553 auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString()); 8554 if (Names.end() != Match) 8555 return true; 8556 8557 Ty = DesugaredTy; 8558 DesugaredTy = Ty.getSingleStepDesugaredType(C); 8559 } while (DesugaredTy != Ty); 8560 8561 return false; 8562 } 8563 8564 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) { 8565 if (PT->isPointerType()) { 8566 QualType PointeeType = PT->getPointeeType(); 8567 if (PointeeType->isPointerType()) 8568 return PtrPtrKernelParam; 8569 if (PointeeType.getAddressSpace() == LangAS::opencl_generic || 8570 PointeeType.getAddressSpace() == LangAS::opencl_private || 8571 PointeeType.getAddressSpace() == LangAS::Default) 8572 return InvalidAddrSpacePtrKernelParam; 8573 return PtrKernelParam; 8574 } 8575 8576 // OpenCL v1.2 s6.9.k: 8577 // Arguments to kernel functions in a program cannot be declared with the 8578 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and 8579 // uintptr_t or a struct and/or union that contain fields declared to be one 8580 // of these built-in scalar types. 8581 if (isOpenCLSizeDependentType(S.getASTContext(), PT)) 8582 return InvalidKernelParam; 8583 8584 if (PT->isImageType()) 8585 return PtrKernelParam; 8586 8587 if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT()) 8588 return InvalidKernelParam; 8589 8590 // OpenCL extension spec v1.2 s9.5: 8591 // This extension adds support for half scalar and vector types as built-in 8592 // types that can be used for arithmetic operations, conversions etc. 8593 if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType()) 8594 return InvalidKernelParam; 8595 8596 if (PT->isRecordType()) 8597 return RecordKernelParam; 8598 8599 // Look into an array argument to check if it has a forbidden type. 8600 if (PT->isArrayType()) { 8601 const Type *UnderlyingTy = PT->getPointeeOrArrayElementType(); 8602 // Call ourself to check an underlying type of an array. Since the 8603 // getPointeeOrArrayElementType returns an innermost type which is not an 8604 // array, this recursive call only happens once. 8605 return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0)); 8606 } 8607 8608 return ValidKernelParam; 8609 } 8610 8611 static void checkIsValidOpenCLKernelParameter( 8612 Sema &S, 8613 Declarator &D, 8614 ParmVarDecl *Param, 8615 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) { 8616 QualType PT = Param->getType(); 8617 8618 // Cache the valid types we encounter to avoid rechecking structs that are 8619 // used again 8620 if (ValidTypes.count(PT.getTypePtr())) 8621 return; 8622 8623 switch (getOpenCLKernelParameterType(S, PT)) { 8624 case PtrPtrKernelParam: 8625 // OpenCL v1.2 s6.9.a: 8626 // A kernel function argument cannot be declared as a 8627 // pointer to a pointer type. 8628 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param); 8629 D.setInvalidType(); 8630 return; 8631 8632 case InvalidAddrSpacePtrKernelParam: 8633 // OpenCL v1.0 s6.5: 8634 // __kernel function arguments declared to be a pointer of a type can point 8635 // to one of the following address spaces only : __global, __local or 8636 // __constant. 8637 S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space); 8638 D.setInvalidType(); 8639 return; 8640 8641 // OpenCL v1.2 s6.9.k: 8642 // Arguments to kernel functions in a program cannot be declared with the 8643 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and 8644 // uintptr_t or a struct and/or union that contain fields declared to be 8645 // one of these built-in scalar types. 8646 8647 case InvalidKernelParam: 8648 // OpenCL v1.2 s6.8 n: 8649 // A kernel function argument cannot be declared 8650 // of event_t type. 8651 // Do not diagnose half type since it is diagnosed as invalid argument 8652 // type for any function elsewhere. 8653 if (!PT->isHalfType()) { 8654 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; 8655 8656 // Explain what typedefs are involved. 8657 const TypedefType *Typedef = nullptr; 8658 while ((Typedef = PT->getAs<TypedefType>())) { 8659 SourceLocation Loc = Typedef->getDecl()->getLocation(); 8660 // SourceLocation may be invalid for a built-in type. 8661 if (Loc.isValid()) 8662 S.Diag(Loc, diag::note_entity_declared_at) << PT; 8663 PT = Typedef->desugar(); 8664 } 8665 } 8666 8667 D.setInvalidType(); 8668 return; 8669 8670 case PtrKernelParam: 8671 case ValidKernelParam: 8672 ValidTypes.insert(PT.getTypePtr()); 8673 return; 8674 8675 case RecordKernelParam: 8676 break; 8677 } 8678 8679 // Track nested structs we will inspect 8680 SmallVector<const Decl *, 4> VisitStack; 8681 8682 // Track where we are in the nested structs. Items will migrate from 8683 // VisitStack to HistoryStack as we do the DFS for bad field. 8684 SmallVector<const FieldDecl *, 4> HistoryStack; 8685 HistoryStack.push_back(nullptr); 8686 8687 // At this point we already handled everything except of a RecordType or 8688 // an ArrayType of a RecordType. 8689 assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type."); 8690 const RecordType *RecTy = 8691 PT->getPointeeOrArrayElementType()->getAs<RecordType>(); 8692 const RecordDecl *OrigRecDecl = RecTy->getDecl(); 8693 8694 VisitStack.push_back(RecTy->getDecl()); 8695 assert(VisitStack.back() && "First decl null?"); 8696 8697 do { 8698 const Decl *Next = VisitStack.pop_back_val(); 8699 if (!Next) { 8700 assert(!HistoryStack.empty()); 8701 // Found a marker, we have gone up a level 8702 if (const FieldDecl *Hist = HistoryStack.pop_back_val()) 8703 ValidTypes.insert(Hist->getType().getTypePtr()); 8704 8705 continue; 8706 } 8707 8708 // Adds everything except the original parameter declaration (which is not a 8709 // field itself) to the history stack. 8710 const RecordDecl *RD; 8711 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) { 8712 HistoryStack.push_back(Field); 8713 8714 QualType FieldTy = Field->getType(); 8715 // Other field types (known to be valid or invalid) are handled while we 8716 // walk around RecordDecl::fields(). 8717 assert((FieldTy->isArrayType() || FieldTy->isRecordType()) && 8718 "Unexpected type."); 8719 const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType(); 8720 8721 RD = FieldRecTy->castAs<RecordType>()->getDecl(); 8722 } else { 8723 RD = cast<RecordDecl>(Next); 8724 } 8725 8726 // Add a null marker so we know when we've gone back up a level 8727 VisitStack.push_back(nullptr); 8728 8729 for (const auto *FD : RD->fields()) { 8730 QualType QT = FD->getType(); 8731 8732 if (ValidTypes.count(QT.getTypePtr())) 8733 continue; 8734 8735 OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT); 8736 if (ParamType == ValidKernelParam) 8737 continue; 8738 8739 if (ParamType == RecordKernelParam) { 8740 VisitStack.push_back(FD); 8741 continue; 8742 } 8743 8744 // OpenCL v1.2 s6.9.p: 8745 // Arguments to kernel functions that are declared to be a struct or union 8746 // do not allow OpenCL objects to be passed as elements of the struct or 8747 // union. 8748 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam || 8749 ParamType == InvalidAddrSpacePtrKernelParam) { 8750 S.Diag(Param->getLocation(), 8751 diag::err_record_with_pointers_kernel_param) 8752 << PT->isUnionType() 8753 << PT; 8754 } else { 8755 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; 8756 } 8757 8758 S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type) 8759 << OrigRecDecl->getDeclName(); 8760 8761 // We have an error, now let's go back up through history and show where 8762 // the offending field came from 8763 for (ArrayRef<const FieldDecl *>::const_iterator 8764 I = HistoryStack.begin() + 1, 8765 E = HistoryStack.end(); 8766 I != E; ++I) { 8767 const FieldDecl *OuterField = *I; 8768 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type) 8769 << OuterField->getType(); 8770 } 8771 8772 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here) 8773 << QT->isPointerType() 8774 << QT; 8775 D.setInvalidType(); 8776 return; 8777 } 8778 } while (!VisitStack.empty()); 8779 } 8780 8781 /// Find the DeclContext in which a tag is implicitly declared if we see an 8782 /// elaborated type specifier in the specified context, and lookup finds 8783 /// nothing. 8784 static DeclContext *getTagInjectionContext(DeclContext *DC) { 8785 while (!DC->isFileContext() && !DC->isFunctionOrMethod()) 8786 DC = DC->getParent(); 8787 return DC; 8788 } 8789 8790 /// Find the Scope in which a tag is implicitly declared if we see an 8791 /// elaborated type specifier in the specified context, and lookup finds 8792 /// nothing. 8793 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) { 8794 while (S->isClassScope() || 8795 (LangOpts.CPlusPlus && 8796 S->isFunctionPrototypeScope()) || 8797 ((S->getFlags() & Scope::DeclScope) == 0) || 8798 (S->getEntity() && S->getEntity()->isTransparentContext())) 8799 S = S->getParent(); 8800 return S; 8801 } 8802 8803 NamedDecl* 8804 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC, 8805 TypeSourceInfo *TInfo, LookupResult &Previous, 8806 MultiTemplateParamsArg TemplateParamListsRef, 8807 bool &AddToScope) { 8808 QualType R = TInfo->getType(); 8809 8810 assert(R->isFunctionType()); 8811 if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr()) 8812 Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call); 8813 8814 SmallVector<TemplateParameterList *, 4> TemplateParamLists; 8815 for (TemplateParameterList *TPL : TemplateParamListsRef) 8816 TemplateParamLists.push_back(TPL); 8817 if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) { 8818 if (!TemplateParamLists.empty() && 8819 Invented->getDepth() == TemplateParamLists.back()->getDepth()) 8820 TemplateParamLists.back() = Invented; 8821 else 8822 TemplateParamLists.push_back(Invented); 8823 } 8824 8825 // TODO: consider using NameInfo for diagnostic. 8826 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 8827 DeclarationName Name = NameInfo.getName(); 8828 StorageClass SC = getFunctionStorageClass(*this, D); 8829 8830 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 8831 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 8832 diag::err_invalid_thread) 8833 << DeclSpec::getSpecifierName(TSCS); 8834 8835 if (D.isFirstDeclarationOfMember()) 8836 adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(), 8837 D.getIdentifierLoc()); 8838 8839 bool isFriend = false; 8840 FunctionTemplateDecl *FunctionTemplate = nullptr; 8841 bool isMemberSpecialization = false; 8842 bool isFunctionTemplateSpecialization = false; 8843 8844 bool isDependentClassScopeExplicitSpecialization = false; 8845 bool HasExplicitTemplateArgs = false; 8846 TemplateArgumentListInfo TemplateArgs; 8847 8848 bool isVirtualOkay = false; 8849 8850 DeclContext *OriginalDC = DC; 8851 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC); 8852 8853 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC, 8854 isVirtualOkay); 8855 if (!NewFD) return nullptr; 8856 8857 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer()) 8858 NewFD->setTopLevelDeclInObjCContainer(); 8859 8860 // Set the lexical context. If this is a function-scope declaration, or has a 8861 // C++ scope specifier, or is the object of a friend declaration, the lexical 8862 // context will be different from the semantic context. 8863 NewFD->setLexicalDeclContext(CurContext); 8864 8865 if (IsLocalExternDecl) 8866 NewFD->setLocalExternDecl(); 8867 8868 if (getLangOpts().CPlusPlus) { 8869 bool isInline = D.getDeclSpec().isInlineSpecified(); 8870 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 8871 bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier(); 8872 isFriend = D.getDeclSpec().isFriendSpecified(); 8873 if (isFriend && !isInline && D.isFunctionDefinition()) { 8874 // C++ [class.friend]p5 8875 // A function can be defined in a friend declaration of a 8876 // class . . . . Such a function is implicitly inline. 8877 NewFD->setImplicitlyInline(); 8878 } 8879 8880 // If this is a method defined in an __interface, and is not a constructor 8881 // or an overloaded operator, then set the pure flag (isVirtual will already 8882 // return true). 8883 if (const CXXRecordDecl *Parent = 8884 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) { 8885 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided()) 8886 NewFD->setPure(true); 8887 8888 // C++ [class.union]p2 8889 // A union can have member functions, but not virtual functions. 8890 if (isVirtual && Parent->isUnion()) 8891 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union); 8892 } 8893 8894 SetNestedNameSpecifier(*this, NewFD, D); 8895 isMemberSpecialization = false; 8896 isFunctionTemplateSpecialization = false; 8897 if (D.isInvalidType()) 8898 NewFD->setInvalidDecl(); 8899 8900 // Match up the template parameter lists with the scope specifier, then 8901 // determine whether we have a template or a template specialization. 8902 bool Invalid = false; 8903 TemplateParameterList *TemplateParams = 8904 MatchTemplateParametersToScopeSpecifier( 8905 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), 8906 D.getCXXScopeSpec(), 8907 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId 8908 ? D.getName().TemplateId 8909 : nullptr, 8910 TemplateParamLists, isFriend, isMemberSpecialization, 8911 Invalid); 8912 if (TemplateParams) { 8913 if (TemplateParams->size() > 0) { 8914 // This is a function template 8915 8916 // Check that we can declare a template here. 8917 if (CheckTemplateDeclScope(S, TemplateParams)) 8918 NewFD->setInvalidDecl(); 8919 8920 // A destructor cannot be a template. 8921 if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 8922 Diag(NewFD->getLocation(), diag::err_destructor_template); 8923 NewFD->setInvalidDecl(); 8924 } 8925 8926 // If we're adding a template to a dependent context, we may need to 8927 // rebuilding some of the types used within the template parameter list, 8928 // now that we know what the current instantiation is. 8929 if (DC->isDependentContext()) { 8930 ContextRAII SavedContext(*this, DC); 8931 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 8932 Invalid = true; 8933 } 8934 8935 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC, 8936 NewFD->getLocation(), 8937 Name, TemplateParams, 8938 NewFD); 8939 FunctionTemplate->setLexicalDeclContext(CurContext); 8940 NewFD->setDescribedFunctionTemplate(FunctionTemplate); 8941 8942 // For source fidelity, store the other template param lists. 8943 if (TemplateParamLists.size() > 1) { 8944 NewFD->setTemplateParameterListsInfo(Context, 8945 ArrayRef<TemplateParameterList *>(TemplateParamLists) 8946 .drop_back(1)); 8947 } 8948 } else { 8949 // This is a function template specialization. 8950 isFunctionTemplateSpecialization = true; 8951 // For source fidelity, store all the template param lists. 8952 if (TemplateParamLists.size() > 0) 8953 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); 8954 8955 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". 8956 if (isFriend) { 8957 // We want to remove the "template<>", found here. 8958 SourceRange RemoveRange = TemplateParams->getSourceRange(); 8959 8960 // If we remove the template<> and the name is not a 8961 // template-id, we're actually silently creating a problem: 8962 // the friend declaration will refer to an untemplated decl, 8963 // and clearly the user wants a template specialization. So 8964 // we need to insert '<>' after the name. 8965 SourceLocation InsertLoc; 8966 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 8967 InsertLoc = D.getName().getSourceRange().getEnd(); 8968 InsertLoc = getLocForEndOfToken(InsertLoc); 8969 } 8970 8971 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) 8972 << Name << RemoveRange 8973 << FixItHint::CreateRemoval(RemoveRange) 8974 << FixItHint::CreateInsertion(InsertLoc, "<>"); 8975 } 8976 } 8977 } else { 8978 // All template param lists were matched against the scope specifier: 8979 // this is NOT (an explicit specialization of) a template. 8980 if (TemplateParamLists.size() > 0) 8981 // For source fidelity, store all the template param lists. 8982 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); 8983 } 8984 8985 if (Invalid) { 8986 NewFD->setInvalidDecl(); 8987 if (FunctionTemplate) 8988 FunctionTemplate->setInvalidDecl(); 8989 } 8990 8991 // C++ [dcl.fct.spec]p5: 8992 // The virtual specifier shall only be used in declarations of 8993 // nonstatic class member functions that appear within a 8994 // member-specification of a class declaration; see 10.3. 8995 // 8996 if (isVirtual && !NewFD->isInvalidDecl()) { 8997 if (!isVirtualOkay) { 8998 Diag(D.getDeclSpec().getVirtualSpecLoc(), 8999 diag::err_virtual_non_function); 9000 } else if (!CurContext->isRecord()) { 9001 // 'virtual' was specified outside of the class. 9002 Diag(D.getDeclSpec().getVirtualSpecLoc(), 9003 diag::err_virtual_out_of_class) 9004 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); 9005 } else if (NewFD->getDescribedFunctionTemplate()) { 9006 // C++ [temp.mem]p3: 9007 // A member function template shall not be virtual. 9008 Diag(D.getDeclSpec().getVirtualSpecLoc(), 9009 diag::err_virtual_member_function_template) 9010 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); 9011 } else { 9012 // Okay: Add virtual to the method. 9013 NewFD->setVirtualAsWritten(true); 9014 } 9015 9016 if (getLangOpts().CPlusPlus14 && 9017 NewFD->getReturnType()->isUndeducedType()) 9018 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual); 9019 } 9020 9021 if (getLangOpts().CPlusPlus14 && 9022 (NewFD->isDependentContext() || 9023 (isFriend && CurContext->isDependentContext())) && 9024 NewFD->getReturnType()->isUndeducedType()) { 9025 // If the function template is referenced directly (for instance, as a 9026 // member of the current instantiation), pretend it has a dependent type. 9027 // This is not really justified by the standard, but is the only sane 9028 // thing to do. 9029 // FIXME: For a friend function, we have not marked the function as being 9030 // a friend yet, so 'isDependentContext' on the FD doesn't work. 9031 const FunctionProtoType *FPT = 9032 NewFD->getType()->castAs<FunctionProtoType>(); 9033 QualType Result = 9034 SubstAutoType(FPT->getReturnType(), Context.DependentTy); 9035 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(), 9036 FPT->getExtProtoInfo())); 9037 } 9038 9039 // C++ [dcl.fct.spec]p3: 9040 // The inline specifier shall not appear on a block scope function 9041 // declaration. 9042 if (isInline && !NewFD->isInvalidDecl()) { 9043 if (CurContext->isFunctionOrMethod()) { 9044 // 'inline' is not allowed on block scope function declaration. 9045 Diag(D.getDeclSpec().getInlineSpecLoc(), 9046 diag::err_inline_declaration_block_scope) << Name 9047 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 9048 } 9049 } 9050 9051 // C++ [dcl.fct.spec]p6: 9052 // The explicit specifier shall be used only in the declaration of a 9053 // constructor or conversion function within its class definition; 9054 // see 12.3.1 and 12.3.2. 9055 if (hasExplicit && !NewFD->isInvalidDecl() && 9056 !isa<CXXDeductionGuideDecl>(NewFD)) { 9057 if (!CurContext->isRecord()) { 9058 // 'explicit' was specified outside of the class. 9059 Diag(D.getDeclSpec().getExplicitSpecLoc(), 9060 diag::err_explicit_out_of_class) 9061 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); 9062 } else if (!isa<CXXConstructorDecl>(NewFD) && 9063 !isa<CXXConversionDecl>(NewFD)) { 9064 // 'explicit' was specified on a function that wasn't a constructor 9065 // or conversion function. 9066 Diag(D.getDeclSpec().getExplicitSpecLoc(), 9067 diag::err_explicit_non_ctor_or_conv_function) 9068 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); 9069 } 9070 } 9071 9072 if (ConstexprSpecKind ConstexprKind = 9073 D.getDeclSpec().getConstexprSpecifier()) { 9074 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors 9075 // are implicitly inline. 9076 NewFD->setImplicitlyInline(); 9077 9078 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to 9079 // be either constructors or to return a literal type. Therefore, 9080 // destructors cannot be declared constexpr. 9081 if (isa<CXXDestructorDecl>(NewFD) && 9082 (!getLangOpts().CPlusPlus20 || ConstexprKind == CSK_consteval)) { 9083 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor) 9084 << ConstexprKind; 9085 NewFD->setConstexprKind(getLangOpts().CPlusPlus20 ? CSK_unspecified : CSK_constexpr); 9086 } 9087 // C++20 [dcl.constexpr]p2: An allocation function, or a 9088 // deallocation function shall not be declared with the consteval 9089 // specifier. 9090 if (ConstexprKind == CSK_consteval && 9091 (NewFD->getOverloadedOperator() == OO_New || 9092 NewFD->getOverloadedOperator() == OO_Array_New || 9093 NewFD->getOverloadedOperator() == OO_Delete || 9094 NewFD->getOverloadedOperator() == OO_Array_Delete)) { 9095 Diag(D.getDeclSpec().getConstexprSpecLoc(), 9096 diag::err_invalid_consteval_decl_kind) 9097 << NewFD; 9098 NewFD->setConstexprKind(CSK_constexpr); 9099 } 9100 } 9101 9102 // If __module_private__ was specified, mark the function accordingly. 9103 if (D.getDeclSpec().isModulePrivateSpecified()) { 9104 if (isFunctionTemplateSpecialization) { 9105 SourceLocation ModulePrivateLoc 9106 = D.getDeclSpec().getModulePrivateSpecLoc(); 9107 Diag(ModulePrivateLoc, diag::err_module_private_specialization) 9108 << 0 9109 << FixItHint::CreateRemoval(ModulePrivateLoc); 9110 } else { 9111 NewFD->setModulePrivate(); 9112 if (FunctionTemplate) 9113 FunctionTemplate->setModulePrivate(); 9114 } 9115 } 9116 9117 if (isFriend) { 9118 if (FunctionTemplate) { 9119 FunctionTemplate->setObjectOfFriendDecl(); 9120 FunctionTemplate->setAccess(AS_public); 9121 } 9122 NewFD->setObjectOfFriendDecl(); 9123 NewFD->setAccess(AS_public); 9124 } 9125 9126 // If a function is defined as defaulted or deleted, mark it as such now. 9127 // We'll do the relevant checks on defaulted / deleted functions later. 9128 switch (D.getFunctionDefinitionKind()) { 9129 case FDK_Declaration: 9130 case FDK_Definition: 9131 break; 9132 9133 case FDK_Defaulted: 9134 NewFD->setDefaulted(); 9135 break; 9136 9137 case FDK_Deleted: 9138 NewFD->setDeletedAsWritten(); 9139 break; 9140 } 9141 9142 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && 9143 D.isFunctionDefinition()) { 9144 // C++ [class.mfct]p2: 9145 // A member function may be defined (8.4) in its class definition, in 9146 // which case it is an inline member function (7.1.2) 9147 NewFD->setImplicitlyInline(); 9148 } 9149 9150 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) && 9151 !CurContext->isRecord()) { 9152 // C++ [class.static]p1: 9153 // A data or function member of a class may be declared static 9154 // in a class definition, in which case it is a static member of 9155 // the class. 9156 9157 // Complain about the 'static' specifier if it's on an out-of-line 9158 // member function definition. 9159 9160 // MSVC permits the use of a 'static' storage specifier on an out-of-line 9161 // member function template declaration and class member template 9162 // declaration (MSVC versions before 2015), warn about this. 9163 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 9164 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 9165 cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) || 9166 (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate())) 9167 ? diag::ext_static_out_of_line : diag::err_static_out_of_line) 9168 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 9169 } 9170 9171 // C++11 [except.spec]p15: 9172 // A deallocation function with no exception-specification is treated 9173 // as if it were specified with noexcept(true). 9174 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>(); 9175 if ((Name.getCXXOverloadedOperator() == OO_Delete || 9176 Name.getCXXOverloadedOperator() == OO_Array_Delete) && 9177 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) 9178 NewFD->setType(Context.getFunctionType( 9179 FPT->getReturnType(), FPT->getParamTypes(), 9180 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept))); 9181 } 9182 9183 // Filter out previous declarations that don't match the scope. 9184 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD), 9185 D.getCXXScopeSpec().isNotEmpty() || 9186 isMemberSpecialization || 9187 isFunctionTemplateSpecialization); 9188 9189 // Handle GNU asm-label extension (encoded as an attribute). 9190 if (Expr *E = (Expr*) D.getAsmLabel()) { 9191 // The parser guarantees this is a string. 9192 StringLiteral *SE = cast<StringLiteral>(E); 9193 NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(), 9194 /*IsLiteralLabel=*/true, 9195 SE->getStrTokenLoc(0))); 9196 } else if (!ExtnameUndeclaredIdentifiers.empty()) { 9197 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = 9198 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier()); 9199 if (I != ExtnameUndeclaredIdentifiers.end()) { 9200 if (isDeclExternC(NewFD)) { 9201 NewFD->addAttr(I->second); 9202 ExtnameUndeclaredIdentifiers.erase(I); 9203 } else 9204 Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied) 9205 << /*Variable*/0 << NewFD; 9206 } 9207 } 9208 9209 // Copy the parameter declarations from the declarator D to the function 9210 // declaration NewFD, if they are available. First scavenge them into Params. 9211 SmallVector<ParmVarDecl*, 16> Params; 9212 unsigned FTIIdx; 9213 if (D.isFunctionDeclarator(FTIIdx)) { 9214 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun; 9215 9216 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs 9217 // function that takes no arguments, not a function that takes a 9218 // single void argument. 9219 // We let through "const void" here because Sema::GetTypeForDeclarator 9220 // already checks for that case. 9221 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) { 9222 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { 9223 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); 9224 assert(Param->getDeclContext() != NewFD && "Was set before ?"); 9225 Param->setDeclContext(NewFD); 9226 Params.push_back(Param); 9227 9228 if (Param->isInvalidDecl()) 9229 NewFD->setInvalidDecl(); 9230 } 9231 } 9232 9233 if (!getLangOpts().CPlusPlus) { 9234 // In C, find all the tag declarations from the prototype and move them 9235 // into the function DeclContext. Remove them from the surrounding tag 9236 // injection context of the function, which is typically but not always 9237 // the TU. 9238 DeclContext *PrototypeTagContext = 9239 getTagInjectionContext(NewFD->getLexicalDeclContext()); 9240 for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) { 9241 auto *TD = dyn_cast<TagDecl>(NonParmDecl); 9242 9243 // We don't want to reparent enumerators. Look at their parent enum 9244 // instead. 9245 if (!TD) { 9246 if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl)) 9247 TD = cast<EnumDecl>(ECD->getDeclContext()); 9248 } 9249 if (!TD) 9250 continue; 9251 DeclContext *TagDC = TD->getLexicalDeclContext(); 9252 if (!TagDC->containsDecl(TD)) 9253 continue; 9254 TagDC->removeDecl(TD); 9255 TD->setDeclContext(NewFD); 9256 NewFD->addDecl(TD); 9257 9258 // Preserve the lexical DeclContext if it is not the surrounding tag 9259 // injection context of the FD. In this example, the semantic context of 9260 // E will be f and the lexical context will be S, while both the 9261 // semantic and lexical contexts of S will be f: 9262 // void f(struct S { enum E { a } f; } s); 9263 if (TagDC != PrototypeTagContext) 9264 TD->setLexicalDeclContext(TagDC); 9265 } 9266 } 9267 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { 9268 // When we're declaring a function with a typedef, typeof, etc as in the 9269 // following example, we'll need to synthesize (unnamed) 9270 // parameters for use in the declaration. 9271 // 9272 // @code 9273 // typedef void fn(int); 9274 // fn f; 9275 // @endcode 9276 9277 // Synthesize a parameter for each argument type. 9278 for (const auto &AI : FT->param_types()) { 9279 ParmVarDecl *Param = 9280 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI); 9281 Param->setScopeInfo(0, Params.size()); 9282 Params.push_back(Param); 9283 } 9284 } else { 9285 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && 9286 "Should not need args for typedef of non-prototype fn"); 9287 } 9288 9289 // Finally, we know we have the right number of parameters, install them. 9290 NewFD->setParams(Params); 9291 9292 if (D.getDeclSpec().isNoreturnSpecified()) 9293 NewFD->addAttr(C11NoReturnAttr::Create(Context, 9294 D.getDeclSpec().getNoreturnSpecLoc(), 9295 AttributeCommonInfo::AS_Keyword)); 9296 9297 // Functions returning a variably modified type violate C99 6.7.5.2p2 9298 // because all functions have linkage. 9299 if (!NewFD->isInvalidDecl() && 9300 NewFD->getReturnType()->isVariablyModifiedType()) { 9301 Diag(NewFD->getLocation(), diag::err_vm_func_decl); 9302 NewFD->setInvalidDecl(); 9303 } 9304 9305 // Apply an implicit SectionAttr if '#pragma clang section text' is active 9306 if (PragmaClangTextSection.Valid && D.isFunctionDefinition() && 9307 !NewFD->hasAttr<SectionAttr>()) 9308 NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit( 9309 Context, PragmaClangTextSection.SectionName, 9310 PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma)); 9311 9312 // Apply an implicit SectionAttr if #pragma code_seg is active. 9313 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() && 9314 !NewFD->hasAttr<SectionAttr>()) { 9315 NewFD->addAttr(SectionAttr::CreateImplicit( 9316 Context, CodeSegStack.CurrentValue->getString(), 9317 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma, 9318 SectionAttr::Declspec_allocate)); 9319 if (UnifySection(CodeSegStack.CurrentValue->getString(), 9320 ASTContext::PSF_Implicit | ASTContext::PSF_Execute | 9321 ASTContext::PSF_Read, 9322 NewFD)) 9323 NewFD->dropAttr<SectionAttr>(); 9324 } 9325 9326 // Apply an implicit CodeSegAttr from class declspec or 9327 // apply an implicit SectionAttr from #pragma code_seg if active. 9328 if (!NewFD->hasAttr<CodeSegAttr>()) { 9329 if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD, 9330 D.isFunctionDefinition())) { 9331 NewFD->addAttr(SAttr); 9332 } 9333 } 9334 9335 // Handle attributes. 9336 ProcessDeclAttributes(S, NewFD, D); 9337 9338 if (getLangOpts().OpenCL) { 9339 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return 9340 // type declaration will generate a compilation error. 9341 LangAS AddressSpace = NewFD->getReturnType().getAddressSpace(); 9342 if (AddressSpace != LangAS::Default) { 9343 Diag(NewFD->getLocation(), 9344 diag::err_opencl_return_value_with_address_space); 9345 NewFD->setInvalidDecl(); 9346 } 9347 } 9348 9349 if (!getLangOpts().CPlusPlus) { 9350 // Perform semantic checking on the function declaration. 9351 if (!NewFD->isInvalidDecl() && NewFD->isMain()) 9352 CheckMain(NewFD, D.getDeclSpec()); 9353 9354 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) 9355 CheckMSVCRTEntryPoint(NewFD); 9356 9357 if (!NewFD->isInvalidDecl()) 9358 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, 9359 isMemberSpecialization)); 9360 else if (!Previous.empty()) 9361 // Recover gracefully from an invalid redeclaration. 9362 D.setRedeclaration(true); 9363 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || 9364 Previous.getResultKind() != LookupResult::FoundOverloaded) && 9365 "previous declaration set still overloaded"); 9366 9367 // Diagnose no-prototype function declarations with calling conventions that 9368 // don't support variadic calls. Only do this in C and do it after merging 9369 // possibly prototyped redeclarations. 9370 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>(); 9371 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) { 9372 CallingConv CC = FT->getExtInfo().getCC(); 9373 if (!supportsVariadicCall(CC)) { 9374 // Windows system headers sometimes accidentally use stdcall without 9375 // (void) parameters, so we relax this to a warning. 9376 int DiagID = 9377 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr; 9378 Diag(NewFD->getLocation(), DiagID) 9379 << FunctionType::getNameForCallConv(CC); 9380 } 9381 } 9382 9383 if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() || 9384 NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion()) 9385 checkNonTrivialCUnion(NewFD->getReturnType(), 9386 NewFD->getReturnTypeSourceRange().getBegin(), 9387 NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy); 9388 } else { 9389 // C++11 [replacement.functions]p3: 9390 // The program's definitions shall not be specified as inline. 9391 // 9392 // N.B. We diagnose declarations instead of definitions per LWG issue 2340. 9393 // 9394 // Suppress the diagnostic if the function is __attribute__((used)), since 9395 // that forces an external definition to be emitted. 9396 if (D.getDeclSpec().isInlineSpecified() && 9397 NewFD->isReplaceableGlobalAllocationFunction() && 9398 !NewFD->hasAttr<UsedAttr>()) 9399 Diag(D.getDeclSpec().getInlineSpecLoc(), 9400 diag::ext_operator_new_delete_declared_inline) 9401 << NewFD->getDeclName(); 9402 9403 // If the declarator is a template-id, translate the parser's template 9404 // argument list into our AST format. 9405 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 9406 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 9407 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 9408 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 9409 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 9410 TemplateId->NumArgs); 9411 translateTemplateArguments(TemplateArgsPtr, 9412 TemplateArgs); 9413 9414 HasExplicitTemplateArgs = true; 9415 9416 if (NewFD->isInvalidDecl()) { 9417 HasExplicitTemplateArgs = false; 9418 } else if (FunctionTemplate) { 9419 // Function template with explicit template arguments. 9420 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec) 9421 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc); 9422 9423 HasExplicitTemplateArgs = false; 9424 } else { 9425 assert((isFunctionTemplateSpecialization || 9426 D.getDeclSpec().isFriendSpecified()) && 9427 "should have a 'template<>' for this decl"); 9428 // "friend void foo<>(int);" is an implicit specialization decl. 9429 isFunctionTemplateSpecialization = true; 9430 } 9431 } else if (isFriend && isFunctionTemplateSpecialization) { 9432 // This combination is only possible in a recovery case; the user 9433 // wrote something like: 9434 // template <> friend void foo(int); 9435 // which we're recovering from as if the user had written: 9436 // friend void foo<>(int); 9437 // Go ahead and fake up a template id. 9438 HasExplicitTemplateArgs = true; 9439 TemplateArgs.setLAngleLoc(D.getIdentifierLoc()); 9440 TemplateArgs.setRAngleLoc(D.getIdentifierLoc()); 9441 } 9442 9443 // We do not add HD attributes to specializations here because 9444 // they may have different constexpr-ness compared to their 9445 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied, 9446 // may end up with different effective targets. Instead, a 9447 // specialization inherits its target attributes from its template 9448 // in the CheckFunctionTemplateSpecialization() call below. 9449 if (getLangOpts().CUDA && !isFunctionTemplateSpecialization) 9450 maybeAddCUDAHostDeviceAttrs(NewFD, Previous); 9451 9452 // If it's a friend (and only if it's a friend), it's possible 9453 // that either the specialized function type or the specialized 9454 // template is dependent, and therefore matching will fail. In 9455 // this case, don't check the specialization yet. 9456 bool InstantiationDependent = false; 9457 if (isFunctionTemplateSpecialization && isFriend && 9458 (NewFD->getType()->isDependentType() || DC->isDependentContext() || 9459 TemplateSpecializationType::anyDependentTemplateArguments( 9460 TemplateArgs, 9461 InstantiationDependent))) { 9462 assert(HasExplicitTemplateArgs && 9463 "friend function specialization without template args"); 9464 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs, 9465 Previous)) 9466 NewFD->setInvalidDecl(); 9467 } else if (isFunctionTemplateSpecialization) { 9468 if (CurContext->isDependentContext() && CurContext->isRecord() 9469 && !isFriend) { 9470 isDependentClassScopeExplicitSpecialization = true; 9471 } else if (!NewFD->isInvalidDecl() && 9472 CheckFunctionTemplateSpecialization( 9473 NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), 9474 Previous)) 9475 NewFD->setInvalidDecl(); 9476 9477 // C++ [dcl.stc]p1: 9478 // A storage-class-specifier shall not be specified in an explicit 9479 // specialization (14.7.3) 9480 FunctionTemplateSpecializationInfo *Info = 9481 NewFD->getTemplateSpecializationInfo(); 9482 if (Info && SC != SC_None) { 9483 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass()) 9484 Diag(NewFD->getLocation(), 9485 diag::err_explicit_specialization_inconsistent_storage_class) 9486 << SC 9487 << FixItHint::CreateRemoval( 9488 D.getDeclSpec().getStorageClassSpecLoc()); 9489 9490 else 9491 Diag(NewFD->getLocation(), 9492 diag::ext_explicit_specialization_storage_class) 9493 << FixItHint::CreateRemoval( 9494 D.getDeclSpec().getStorageClassSpecLoc()); 9495 } 9496 } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) { 9497 if (CheckMemberSpecialization(NewFD, Previous)) 9498 NewFD->setInvalidDecl(); 9499 } 9500 9501 // Perform semantic checking on the function declaration. 9502 if (!isDependentClassScopeExplicitSpecialization) { 9503 if (!NewFD->isInvalidDecl() && NewFD->isMain()) 9504 CheckMain(NewFD, D.getDeclSpec()); 9505 9506 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) 9507 CheckMSVCRTEntryPoint(NewFD); 9508 9509 if (!NewFD->isInvalidDecl()) 9510 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, 9511 isMemberSpecialization)); 9512 else if (!Previous.empty()) 9513 // Recover gracefully from an invalid redeclaration. 9514 D.setRedeclaration(true); 9515 } 9516 9517 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || 9518 Previous.getResultKind() != LookupResult::FoundOverloaded) && 9519 "previous declaration set still overloaded"); 9520 9521 NamedDecl *PrincipalDecl = (FunctionTemplate 9522 ? cast<NamedDecl>(FunctionTemplate) 9523 : NewFD); 9524 9525 if (isFriend && NewFD->getPreviousDecl()) { 9526 AccessSpecifier Access = AS_public; 9527 if (!NewFD->isInvalidDecl()) 9528 Access = NewFD->getPreviousDecl()->getAccess(); 9529 9530 NewFD->setAccess(Access); 9531 if (FunctionTemplate) FunctionTemplate->setAccess(Access); 9532 } 9533 9534 if (NewFD->isOverloadedOperator() && !DC->isRecord() && 9535 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) 9536 PrincipalDecl->setNonMemberOperator(); 9537 9538 // If we have a function template, check the template parameter 9539 // list. This will check and merge default template arguments. 9540 if (FunctionTemplate) { 9541 FunctionTemplateDecl *PrevTemplate = 9542 FunctionTemplate->getPreviousDecl(); 9543 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(), 9544 PrevTemplate ? PrevTemplate->getTemplateParameters() 9545 : nullptr, 9546 D.getDeclSpec().isFriendSpecified() 9547 ? (D.isFunctionDefinition() 9548 ? TPC_FriendFunctionTemplateDefinition 9549 : TPC_FriendFunctionTemplate) 9550 : (D.getCXXScopeSpec().isSet() && 9551 DC && DC->isRecord() && 9552 DC->isDependentContext()) 9553 ? TPC_ClassTemplateMember 9554 : TPC_FunctionTemplate); 9555 } 9556 9557 if (NewFD->isInvalidDecl()) { 9558 // Ignore all the rest of this. 9559 } else if (!D.isRedeclaration()) { 9560 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists, 9561 AddToScope }; 9562 // Fake up an access specifier if it's supposed to be a class member. 9563 if (isa<CXXRecordDecl>(NewFD->getDeclContext())) 9564 NewFD->setAccess(AS_public); 9565 9566 // Qualified decls generally require a previous declaration. 9567 if (D.getCXXScopeSpec().isSet()) { 9568 // ...with the major exception of templated-scope or 9569 // dependent-scope friend declarations. 9570 9571 // TODO: we currently also suppress this check in dependent 9572 // contexts because (1) the parameter depth will be off when 9573 // matching friend templates and (2) we might actually be 9574 // selecting a friend based on a dependent factor. But there 9575 // are situations where these conditions don't apply and we 9576 // can actually do this check immediately. 9577 // 9578 // Unless the scope is dependent, it's always an error if qualified 9579 // redeclaration lookup found nothing at all. Diagnose that now; 9580 // nothing will diagnose that error later. 9581 if (isFriend && 9582 (D.getCXXScopeSpec().getScopeRep()->isDependent() || 9583 (!Previous.empty() && CurContext->isDependentContext()))) { 9584 // ignore these 9585 } else { 9586 // The user tried to provide an out-of-line definition for a 9587 // function that is a member of a class or namespace, but there 9588 // was no such member function declared (C++ [class.mfct]p2, 9589 // C++ [namespace.memdef]p2). For example: 9590 // 9591 // class X { 9592 // void f() const; 9593 // }; 9594 // 9595 // void X::f() { } // ill-formed 9596 // 9597 // Complain about this problem, and attempt to suggest close 9598 // matches (e.g., those that differ only in cv-qualifiers and 9599 // whether the parameter types are references). 9600 9601 if (NamedDecl *Result = DiagnoseInvalidRedeclaration( 9602 *this, Previous, NewFD, ExtraArgs, false, nullptr)) { 9603 AddToScope = ExtraArgs.AddToScope; 9604 return Result; 9605 } 9606 } 9607 9608 // Unqualified local friend declarations are required to resolve 9609 // to something. 9610 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) { 9611 if (NamedDecl *Result = DiagnoseInvalidRedeclaration( 9612 *this, Previous, NewFD, ExtraArgs, true, S)) { 9613 AddToScope = ExtraArgs.AddToScope; 9614 return Result; 9615 } 9616 } 9617 } else if (!D.isFunctionDefinition() && 9618 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() && 9619 !isFriend && !isFunctionTemplateSpecialization && 9620 !isMemberSpecialization) { 9621 // An out-of-line member function declaration must also be a 9622 // definition (C++ [class.mfct]p2). 9623 // Note that this is not the case for explicit specializations of 9624 // function templates or member functions of class templates, per 9625 // C++ [temp.expl.spec]p2. We also allow these declarations as an 9626 // extension for compatibility with old SWIG code which likes to 9627 // generate them. 9628 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) 9629 << D.getCXXScopeSpec().getRange(); 9630 } 9631 } 9632 9633 // In C builtins get merged with implicitly lazily created declarations. 9634 // In C++ we need to check if it's a builtin and add the BuiltinAttr here. 9635 if (getLangOpts().CPlusPlus) { 9636 if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) { 9637 if (unsigned BuiltinID = II->getBuiltinID()) { 9638 if (NewFD->getLanguageLinkage() == CLanguageLinkage) { 9639 // Declarations for builtins with custom typechecking by definition 9640 // don't make sense. Don't attempt typechecking and simply add the 9641 // attribute. 9642 if (Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) { 9643 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); 9644 } else { 9645 ASTContext::GetBuiltinTypeError Error; 9646 QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error); 9647 9648 if (!Error && !BuiltinType.isNull() && 9649 Context.hasSameFunctionTypeIgnoringExceptionSpec( 9650 NewFD->getType(), BuiltinType)) 9651 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); 9652 } 9653 } else if (BuiltinID == Builtin::BI__GetExceptionInfo && 9654 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 9655 // FIXME: We should consider this a builtin only in the std namespace. 9656 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); 9657 } 9658 } 9659 } 9660 } 9661 9662 ProcessPragmaWeak(S, NewFD); 9663 checkAttributesAfterMerging(*this, *NewFD); 9664 9665 AddKnownFunctionAttributes(NewFD); 9666 9667 if (NewFD->hasAttr<OverloadableAttr>() && 9668 !NewFD->getType()->getAs<FunctionProtoType>()) { 9669 Diag(NewFD->getLocation(), 9670 diag::err_attribute_overloadable_no_prototype) 9671 << NewFD; 9672 9673 // Turn this into a variadic function with no parameters. 9674 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>(); 9675 FunctionProtoType::ExtProtoInfo EPI( 9676 Context.getDefaultCallingConvention(true, false)); 9677 EPI.Variadic = true; 9678 EPI.ExtInfo = FT->getExtInfo(); 9679 9680 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI); 9681 NewFD->setType(R); 9682 } 9683 9684 // If there's a #pragma GCC visibility in scope, and this isn't a class 9685 // member, set the visibility of this function. 9686 if (!DC->isRecord() && NewFD->isExternallyVisible()) 9687 AddPushedVisibilityAttribute(NewFD); 9688 9689 // If there's a #pragma clang arc_cf_code_audited in scope, consider 9690 // marking the function. 9691 AddCFAuditedAttribute(NewFD); 9692 9693 // If this is a function definition, check if we have to apply optnone due to 9694 // a pragma. 9695 if(D.isFunctionDefinition()) 9696 AddRangeBasedOptnone(NewFD); 9697 9698 // If this is the first declaration of an extern C variable, update 9699 // the map of such variables. 9700 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() && 9701 isIncompleteDeclExternC(*this, NewFD)) 9702 RegisterLocallyScopedExternCDecl(NewFD, S); 9703 9704 // Set this FunctionDecl's range up to the right paren. 9705 NewFD->setRangeEnd(D.getSourceRange().getEnd()); 9706 9707 if (D.isRedeclaration() && !Previous.empty()) { 9708 NamedDecl *Prev = Previous.getRepresentativeDecl(); 9709 checkDLLAttributeRedeclaration(*this, Prev, NewFD, 9710 isMemberSpecialization || 9711 isFunctionTemplateSpecialization, 9712 D.isFunctionDefinition()); 9713 } 9714 9715 if (getLangOpts().CUDA) { 9716 IdentifierInfo *II = NewFD->getIdentifier(); 9717 if (II && II->isStr(getCudaConfigureFuncName()) && 9718 !NewFD->isInvalidDecl() && 9719 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 9720 if (!R->getAs<FunctionType>()->getReturnType()->isScalarType()) 9721 Diag(NewFD->getLocation(), diag::err_config_scalar_return) 9722 << getCudaConfigureFuncName(); 9723 Context.setcudaConfigureCallDecl(NewFD); 9724 } 9725 9726 // Variadic functions, other than a *declaration* of printf, are not allowed 9727 // in device-side CUDA code, unless someone passed 9728 // -fcuda-allow-variadic-functions. 9729 if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() && 9730 (NewFD->hasAttr<CUDADeviceAttr>() || 9731 NewFD->hasAttr<CUDAGlobalAttr>()) && 9732 !(II && II->isStr("printf") && NewFD->isExternC() && 9733 !D.isFunctionDefinition())) { 9734 Diag(NewFD->getLocation(), diag::err_variadic_device_fn); 9735 } 9736 } 9737 9738 MarkUnusedFileScopedDecl(NewFD); 9739 9740 9741 9742 if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) { 9743 // OpenCL v1.2 s6.8 static is invalid for kernel functions. 9744 if ((getLangOpts().OpenCLVersion >= 120) 9745 && (SC == SC_Static)) { 9746 Diag(D.getIdentifierLoc(), diag::err_static_kernel); 9747 D.setInvalidType(); 9748 } 9749 9750 // OpenCL v1.2, s6.9 -- Kernels can only have return type void. 9751 if (!NewFD->getReturnType()->isVoidType()) { 9752 SourceRange RTRange = NewFD->getReturnTypeSourceRange(); 9753 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type) 9754 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") 9755 : FixItHint()); 9756 D.setInvalidType(); 9757 } 9758 9759 llvm::SmallPtrSet<const Type *, 16> ValidTypes; 9760 for (auto Param : NewFD->parameters()) 9761 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes); 9762 9763 if (getLangOpts().OpenCLCPlusPlus) { 9764 if (DC->isRecord()) { 9765 Diag(D.getIdentifierLoc(), diag::err_method_kernel); 9766 D.setInvalidType(); 9767 } 9768 if (FunctionTemplate) { 9769 Diag(D.getIdentifierLoc(), diag::err_template_kernel); 9770 D.setInvalidType(); 9771 } 9772 } 9773 } 9774 9775 if (getLangOpts().CPlusPlus) { 9776 if (FunctionTemplate) { 9777 if (NewFD->isInvalidDecl()) 9778 FunctionTemplate->setInvalidDecl(); 9779 return FunctionTemplate; 9780 } 9781 9782 if (isMemberSpecialization && !NewFD->isInvalidDecl()) 9783 CompleteMemberSpecialization(NewFD, Previous); 9784 } 9785 9786 for (const ParmVarDecl *Param : NewFD->parameters()) { 9787 QualType PT = Param->getType(); 9788 9789 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value 9790 // types. 9791 if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) { 9792 if(const PipeType *PipeTy = PT->getAs<PipeType>()) { 9793 QualType ElemTy = PipeTy->getElementType(); 9794 if (ElemTy->isReferenceType() || ElemTy->isPointerType()) { 9795 Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type ); 9796 D.setInvalidType(); 9797 } 9798 } 9799 } 9800 } 9801 9802 // Here we have an function template explicit specialization at class scope. 9803 // The actual specialization will be postponed to template instatiation 9804 // time via the ClassScopeFunctionSpecializationDecl node. 9805 if (isDependentClassScopeExplicitSpecialization) { 9806 ClassScopeFunctionSpecializationDecl *NewSpec = 9807 ClassScopeFunctionSpecializationDecl::Create( 9808 Context, CurContext, NewFD->getLocation(), 9809 cast<CXXMethodDecl>(NewFD), 9810 HasExplicitTemplateArgs, TemplateArgs); 9811 CurContext->addDecl(NewSpec); 9812 AddToScope = false; 9813 } 9814 9815 // Diagnose availability attributes. Availability cannot be used on functions 9816 // that are run during load/unload. 9817 if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) { 9818 if (NewFD->hasAttr<ConstructorAttr>()) { 9819 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) 9820 << 1; 9821 NewFD->dropAttr<AvailabilityAttr>(); 9822 } 9823 if (NewFD->hasAttr<DestructorAttr>()) { 9824 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) 9825 << 2; 9826 NewFD->dropAttr<AvailabilityAttr>(); 9827 } 9828 } 9829 9830 // Diagnose no_builtin attribute on function declaration that are not a 9831 // definition. 9832 // FIXME: We should really be doing this in 9833 // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to 9834 // the FunctionDecl and at this point of the code 9835 // FunctionDecl::isThisDeclarationADefinition() which always returns `false` 9836 // because Sema::ActOnStartOfFunctionDef has not been called yet. 9837 if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>()) 9838 switch (D.getFunctionDefinitionKind()) { 9839 case FDK_Defaulted: 9840 case FDK_Deleted: 9841 Diag(NBA->getLocation(), 9842 diag::err_attribute_no_builtin_on_defaulted_deleted_function) 9843 << NBA->getSpelling(); 9844 break; 9845 case FDK_Declaration: 9846 Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition) 9847 << NBA->getSpelling(); 9848 break; 9849 case FDK_Definition: 9850 break; 9851 } 9852 9853 return NewFD; 9854 } 9855 9856 /// Return a CodeSegAttr from a containing class. The Microsoft docs say 9857 /// when __declspec(code_seg) "is applied to a class, all member functions of 9858 /// the class and nested classes -- this includes compiler-generated special 9859 /// member functions -- are put in the specified segment." 9860 /// The actual behavior is a little more complicated. The Microsoft compiler 9861 /// won't check outer classes if there is an active value from #pragma code_seg. 9862 /// The CodeSeg is always applied from the direct parent but only from outer 9863 /// classes when the #pragma code_seg stack is empty. See: 9864 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer 9865 /// available since MS has removed the page. 9866 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) { 9867 const auto *Method = dyn_cast<CXXMethodDecl>(FD); 9868 if (!Method) 9869 return nullptr; 9870 const CXXRecordDecl *Parent = Method->getParent(); 9871 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { 9872 Attr *NewAttr = SAttr->clone(S.getASTContext()); 9873 NewAttr->setImplicit(true); 9874 return NewAttr; 9875 } 9876 9877 // The Microsoft compiler won't check outer classes for the CodeSeg 9878 // when the #pragma code_seg stack is active. 9879 if (S.CodeSegStack.CurrentValue) 9880 return nullptr; 9881 9882 while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) { 9883 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { 9884 Attr *NewAttr = SAttr->clone(S.getASTContext()); 9885 NewAttr->setImplicit(true); 9886 return NewAttr; 9887 } 9888 } 9889 return nullptr; 9890 } 9891 9892 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a 9893 /// containing class. Otherwise it will return implicit SectionAttr if the 9894 /// function is a definition and there is an active value on CodeSegStack 9895 /// (from the current #pragma code-seg value). 9896 /// 9897 /// \param FD Function being declared. 9898 /// \param IsDefinition Whether it is a definition or just a declarartion. 9899 /// \returns A CodeSegAttr or SectionAttr to apply to the function or 9900 /// nullptr if no attribute should be added. 9901 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD, 9902 bool IsDefinition) { 9903 if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD)) 9904 return A; 9905 if (!FD->hasAttr<SectionAttr>() && IsDefinition && 9906 CodeSegStack.CurrentValue) 9907 return SectionAttr::CreateImplicit( 9908 getASTContext(), CodeSegStack.CurrentValue->getString(), 9909 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma, 9910 SectionAttr::Declspec_allocate); 9911 return nullptr; 9912 } 9913 9914 /// Determines if we can perform a correct type check for \p D as a 9915 /// redeclaration of \p PrevDecl. If not, we can generally still perform a 9916 /// best-effort check. 9917 /// 9918 /// \param NewD The new declaration. 9919 /// \param OldD The old declaration. 9920 /// \param NewT The portion of the type of the new declaration to check. 9921 /// \param OldT The portion of the type of the old declaration to check. 9922 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD, 9923 QualType NewT, QualType OldT) { 9924 if (!NewD->getLexicalDeclContext()->isDependentContext()) 9925 return true; 9926 9927 // For dependently-typed local extern declarations and friends, we can't 9928 // perform a correct type check in general until instantiation: 9929 // 9930 // int f(); 9931 // template<typename T> void g() { T f(); } 9932 // 9933 // (valid if g() is only instantiated with T = int). 9934 if (NewT->isDependentType() && 9935 (NewD->isLocalExternDecl() || NewD->getFriendObjectKind())) 9936 return false; 9937 9938 // Similarly, if the previous declaration was a dependent local extern 9939 // declaration, we don't really know its type yet. 9940 if (OldT->isDependentType() && OldD->isLocalExternDecl()) 9941 return false; 9942 9943 return true; 9944 } 9945 9946 /// Checks if the new declaration declared in dependent context must be 9947 /// put in the same redeclaration chain as the specified declaration. 9948 /// 9949 /// \param D Declaration that is checked. 9950 /// \param PrevDecl Previous declaration found with proper lookup method for the 9951 /// same declaration name. 9952 /// \returns True if D must be added to the redeclaration chain which PrevDecl 9953 /// belongs to. 9954 /// 9955 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) { 9956 if (!D->getLexicalDeclContext()->isDependentContext()) 9957 return true; 9958 9959 // Don't chain dependent friend function definitions until instantiation, to 9960 // permit cases like 9961 // 9962 // void func(); 9963 // template<typename T> class C1 { friend void func() {} }; 9964 // template<typename T> class C2 { friend void func() {} }; 9965 // 9966 // ... which is valid if only one of C1 and C2 is ever instantiated. 9967 // 9968 // FIXME: This need only apply to function definitions. For now, we proxy 9969 // this by checking for a file-scope function. We do not want this to apply 9970 // to friend declarations nominating member functions, because that gets in 9971 // the way of access checks. 9972 if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext()) 9973 return false; 9974 9975 auto *VD = dyn_cast<ValueDecl>(D); 9976 auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl); 9977 return !VD || !PrevVD || 9978 canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(), 9979 PrevVD->getType()); 9980 } 9981 9982 /// Check the target attribute of the function for MultiVersion 9983 /// validity. 9984 /// 9985 /// Returns true if there was an error, false otherwise. 9986 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) { 9987 const auto *TA = FD->getAttr<TargetAttr>(); 9988 assert(TA && "MultiVersion Candidate requires a target attribute"); 9989 ParsedTargetAttr ParseInfo = TA->parse(); 9990 const TargetInfo &TargetInfo = S.Context.getTargetInfo(); 9991 enum ErrType { Feature = 0, Architecture = 1 }; 9992 9993 if (!ParseInfo.Architecture.empty() && 9994 !TargetInfo.validateCpuIs(ParseInfo.Architecture)) { 9995 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) 9996 << Architecture << ParseInfo.Architecture; 9997 return true; 9998 } 9999 10000 for (const auto &Feat : ParseInfo.Features) { 10001 auto BareFeat = StringRef{Feat}.substr(1); 10002 if (Feat[0] == '-') { 10003 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) 10004 << Feature << ("no-" + BareFeat).str(); 10005 return true; 10006 } 10007 10008 if (!TargetInfo.validateCpuSupports(BareFeat) || 10009 !TargetInfo.isValidFeatureName(BareFeat)) { 10010 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) 10011 << Feature << BareFeat; 10012 return true; 10013 } 10014 } 10015 return false; 10016 } 10017 10018 // Provide a white-list of attributes that are allowed to be combined with 10019 // multiversion functions. 10020 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind, 10021 MultiVersionKind MVType) { 10022 switch (Kind) { 10023 default: 10024 return false; 10025 case attr::Used: 10026 return MVType == MultiVersionKind::Target; 10027 } 10028 } 10029 10030 static bool HasNonMultiVersionAttributes(const FunctionDecl *FD, 10031 MultiVersionKind MVType) { 10032 for (const Attr *A : FD->attrs()) { 10033 switch (A->getKind()) { 10034 case attr::CPUDispatch: 10035 case attr::CPUSpecific: 10036 if (MVType != MultiVersionKind::CPUDispatch && 10037 MVType != MultiVersionKind::CPUSpecific) 10038 return true; 10039 break; 10040 case attr::Target: 10041 if (MVType != MultiVersionKind::Target) 10042 return true; 10043 break; 10044 default: 10045 if (!AttrCompatibleWithMultiVersion(A->getKind(), MVType)) 10046 return true; 10047 break; 10048 } 10049 } 10050 return false; 10051 } 10052 10053 bool Sema::areMultiversionVariantFunctionsCompatible( 10054 const FunctionDecl *OldFD, const FunctionDecl *NewFD, 10055 const PartialDiagnostic &NoProtoDiagID, 10056 const PartialDiagnosticAt &NoteCausedDiagIDAt, 10057 const PartialDiagnosticAt &NoSupportDiagIDAt, 10058 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported, 10059 bool ConstexprSupported, bool CLinkageMayDiffer) { 10060 enum DoesntSupport { 10061 FuncTemplates = 0, 10062 VirtFuncs = 1, 10063 DeducedReturn = 2, 10064 Constructors = 3, 10065 Destructors = 4, 10066 DeletedFuncs = 5, 10067 DefaultedFuncs = 6, 10068 ConstexprFuncs = 7, 10069 ConstevalFuncs = 8, 10070 }; 10071 enum Different { 10072 CallingConv = 0, 10073 ReturnType = 1, 10074 ConstexprSpec = 2, 10075 InlineSpec = 3, 10076 StorageClass = 4, 10077 Linkage = 5, 10078 }; 10079 10080 if (NoProtoDiagID.getDiagID() != 0 && OldFD && 10081 !OldFD->getType()->getAs<FunctionProtoType>()) { 10082 Diag(OldFD->getLocation(), NoProtoDiagID); 10083 Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second); 10084 return true; 10085 } 10086 10087 if (NoProtoDiagID.getDiagID() != 0 && 10088 !NewFD->getType()->getAs<FunctionProtoType>()) 10089 return Diag(NewFD->getLocation(), NoProtoDiagID); 10090 10091 if (!TemplatesSupported && 10092 NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 10093 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10094 << FuncTemplates; 10095 10096 if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) { 10097 if (NewCXXFD->isVirtual()) 10098 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10099 << VirtFuncs; 10100 10101 if (isa<CXXConstructorDecl>(NewCXXFD)) 10102 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10103 << Constructors; 10104 10105 if (isa<CXXDestructorDecl>(NewCXXFD)) 10106 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10107 << Destructors; 10108 } 10109 10110 if (NewFD->isDeleted()) 10111 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10112 << DeletedFuncs; 10113 10114 if (NewFD->isDefaulted()) 10115 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10116 << DefaultedFuncs; 10117 10118 if (!ConstexprSupported && NewFD->isConstexpr()) 10119 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10120 << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs); 10121 10122 QualType NewQType = Context.getCanonicalType(NewFD->getType()); 10123 const auto *NewType = cast<FunctionType>(NewQType); 10124 QualType NewReturnType = NewType->getReturnType(); 10125 10126 if (NewReturnType->isUndeducedType()) 10127 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10128 << DeducedReturn; 10129 10130 // Ensure the return type is identical. 10131 if (OldFD) { 10132 QualType OldQType = Context.getCanonicalType(OldFD->getType()); 10133 const auto *OldType = cast<FunctionType>(OldQType); 10134 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); 10135 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); 10136 10137 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) 10138 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv; 10139 10140 QualType OldReturnType = OldType->getReturnType(); 10141 10142 if (OldReturnType != NewReturnType) 10143 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType; 10144 10145 if (OldFD->getConstexprKind() != NewFD->getConstexprKind()) 10146 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec; 10147 10148 if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified()) 10149 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec; 10150 10151 if (OldFD->getStorageClass() != NewFD->getStorageClass()) 10152 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << StorageClass; 10153 10154 if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC()) 10155 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage; 10156 10157 if (CheckEquivalentExceptionSpec( 10158 OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(), 10159 NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation())) 10160 return true; 10161 } 10162 return false; 10163 } 10164 10165 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD, 10166 const FunctionDecl *NewFD, 10167 bool CausesMV, 10168 MultiVersionKind MVType) { 10169 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { 10170 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); 10171 if (OldFD) 10172 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 10173 return true; 10174 } 10175 10176 bool IsCPUSpecificCPUDispatchMVType = 10177 MVType == MultiVersionKind::CPUDispatch || 10178 MVType == MultiVersionKind::CPUSpecific; 10179 10180 // For now, disallow all other attributes. These should be opt-in, but 10181 // an analysis of all of them is a future FIXME. 10182 if (CausesMV && OldFD && HasNonMultiVersionAttributes(OldFD, MVType)) { 10183 S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs) 10184 << IsCPUSpecificCPUDispatchMVType; 10185 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); 10186 return true; 10187 } 10188 10189 if (HasNonMultiVersionAttributes(NewFD, MVType)) 10190 return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs) 10191 << IsCPUSpecificCPUDispatchMVType; 10192 10193 // Only allow transition to MultiVersion if it hasn't been used. 10194 if (OldFD && CausesMV && OldFD->isUsed(false)) 10195 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used); 10196 10197 return S.areMultiversionVariantFunctionsCompatible( 10198 OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto), 10199 PartialDiagnosticAt(NewFD->getLocation(), 10200 S.PDiag(diag::note_multiversioning_caused_here)), 10201 PartialDiagnosticAt(NewFD->getLocation(), 10202 S.PDiag(diag::err_multiversion_doesnt_support) 10203 << IsCPUSpecificCPUDispatchMVType), 10204 PartialDiagnosticAt(NewFD->getLocation(), 10205 S.PDiag(diag::err_multiversion_diff)), 10206 /*TemplatesSupported=*/false, 10207 /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVType, 10208 /*CLinkageMayDiffer=*/false); 10209 } 10210 10211 /// Check the validity of a multiversion function declaration that is the 10212 /// first of its kind. Also sets the multiversion'ness' of the function itself. 10213 /// 10214 /// This sets NewFD->isInvalidDecl() to true if there was an error. 10215 /// 10216 /// Returns true if there was an error, false otherwise. 10217 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD, 10218 MultiVersionKind MVType, 10219 const TargetAttr *TA) { 10220 assert(MVType != MultiVersionKind::None && 10221 "Function lacks multiversion attribute"); 10222 10223 // Target only causes MV if it is default, otherwise this is a normal 10224 // function. 10225 if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion()) 10226 return false; 10227 10228 if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) { 10229 FD->setInvalidDecl(); 10230 return true; 10231 } 10232 10233 if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) { 10234 FD->setInvalidDecl(); 10235 return true; 10236 } 10237 10238 FD->setIsMultiVersion(); 10239 return false; 10240 } 10241 10242 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) { 10243 for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) { 10244 if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None) 10245 return true; 10246 } 10247 10248 return false; 10249 } 10250 10251 static bool CheckTargetCausesMultiVersioning( 10252 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA, 10253 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, 10254 LookupResult &Previous) { 10255 const auto *OldTA = OldFD->getAttr<TargetAttr>(); 10256 ParsedTargetAttr NewParsed = NewTA->parse(); 10257 // Sort order doesn't matter, it just needs to be consistent. 10258 llvm::sort(NewParsed.Features); 10259 10260 // If the old decl is NOT MultiVersioned yet, and we don't cause that 10261 // to change, this is a simple redeclaration. 10262 if (!NewTA->isDefaultVersion() && 10263 (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())) 10264 return false; 10265 10266 // Otherwise, this decl causes MultiVersioning. 10267 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { 10268 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); 10269 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 10270 NewFD->setInvalidDecl(); 10271 return true; 10272 } 10273 10274 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true, 10275 MultiVersionKind::Target)) { 10276 NewFD->setInvalidDecl(); 10277 return true; 10278 } 10279 10280 if (CheckMultiVersionValue(S, NewFD)) { 10281 NewFD->setInvalidDecl(); 10282 return true; 10283 } 10284 10285 // If this is 'default', permit the forward declaration. 10286 if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) { 10287 Redeclaration = true; 10288 OldDecl = OldFD; 10289 OldFD->setIsMultiVersion(); 10290 NewFD->setIsMultiVersion(); 10291 return false; 10292 } 10293 10294 if (CheckMultiVersionValue(S, OldFD)) { 10295 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); 10296 NewFD->setInvalidDecl(); 10297 return true; 10298 } 10299 10300 ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>()); 10301 10302 if (OldParsed == NewParsed) { 10303 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); 10304 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 10305 NewFD->setInvalidDecl(); 10306 return true; 10307 } 10308 10309 for (const auto *FD : OldFD->redecls()) { 10310 const auto *CurTA = FD->getAttr<TargetAttr>(); 10311 // We allow forward declarations before ANY multiversioning attributes, but 10312 // nothing after the fact. 10313 if (PreviousDeclsHaveMultiVersionAttribute(FD) && 10314 (!CurTA || CurTA->isInherited())) { 10315 S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl) 10316 << 0; 10317 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); 10318 NewFD->setInvalidDecl(); 10319 return true; 10320 } 10321 } 10322 10323 OldFD->setIsMultiVersion(); 10324 NewFD->setIsMultiVersion(); 10325 Redeclaration = false; 10326 MergeTypeWithPrevious = false; 10327 OldDecl = nullptr; 10328 Previous.clear(); 10329 return false; 10330 } 10331 10332 /// Check the validity of a new function declaration being added to an existing 10333 /// multiversioned declaration collection. 10334 static bool CheckMultiVersionAdditionalDecl( 10335 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, 10336 MultiVersionKind NewMVType, const TargetAttr *NewTA, 10337 const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec, 10338 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, 10339 LookupResult &Previous) { 10340 10341 MultiVersionKind OldMVType = OldFD->getMultiVersionKind(); 10342 // Disallow mixing of multiversioning types. 10343 if ((OldMVType == MultiVersionKind::Target && 10344 NewMVType != MultiVersionKind::Target) || 10345 (NewMVType == MultiVersionKind::Target && 10346 OldMVType != MultiVersionKind::Target)) { 10347 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); 10348 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 10349 NewFD->setInvalidDecl(); 10350 return true; 10351 } 10352 10353 ParsedTargetAttr NewParsed; 10354 if (NewTA) { 10355 NewParsed = NewTA->parse(); 10356 llvm::sort(NewParsed.Features); 10357 } 10358 10359 bool UseMemberUsingDeclRules = 10360 S.CurContext->isRecord() && !NewFD->getFriendObjectKind(); 10361 10362 // Next, check ALL non-overloads to see if this is a redeclaration of a 10363 // previous member of the MultiVersion set. 10364 for (NamedDecl *ND : Previous) { 10365 FunctionDecl *CurFD = ND->getAsFunction(); 10366 if (!CurFD) 10367 continue; 10368 if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules)) 10369 continue; 10370 10371 if (NewMVType == MultiVersionKind::Target) { 10372 const auto *CurTA = CurFD->getAttr<TargetAttr>(); 10373 if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) { 10374 NewFD->setIsMultiVersion(); 10375 Redeclaration = true; 10376 OldDecl = ND; 10377 return false; 10378 } 10379 10380 ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>()); 10381 if (CurParsed == NewParsed) { 10382 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); 10383 S.Diag(CurFD->getLocation(), diag::note_previous_declaration); 10384 NewFD->setInvalidDecl(); 10385 return true; 10386 } 10387 } else { 10388 const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>(); 10389 const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>(); 10390 // Handle CPUDispatch/CPUSpecific versions. 10391 // Only 1 CPUDispatch function is allowed, this will make it go through 10392 // the redeclaration errors. 10393 if (NewMVType == MultiVersionKind::CPUDispatch && 10394 CurFD->hasAttr<CPUDispatchAttr>()) { 10395 if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() && 10396 std::equal( 10397 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(), 10398 NewCPUDisp->cpus_begin(), 10399 [](const IdentifierInfo *Cur, const IdentifierInfo *New) { 10400 return Cur->getName() == New->getName(); 10401 })) { 10402 NewFD->setIsMultiVersion(); 10403 Redeclaration = true; 10404 OldDecl = ND; 10405 return false; 10406 } 10407 10408 // If the declarations don't match, this is an error condition. 10409 S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch); 10410 S.Diag(CurFD->getLocation(), diag::note_previous_declaration); 10411 NewFD->setInvalidDecl(); 10412 return true; 10413 } 10414 if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) { 10415 10416 if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() && 10417 std::equal( 10418 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(), 10419 NewCPUSpec->cpus_begin(), 10420 [](const IdentifierInfo *Cur, const IdentifierInfo *New) { 10421 return Cur->getName() == New->getName(); 10422 })) { 10423 NewFD->setIsMultiVersion(); 10424 Redeclaration = true; 10425 OldDecl = ND; 10426 return false; 10427 } 10428 10429 // Only 1 version of CPUSpecific is allowed for each CPU. 10430 for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) { 10431 for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) { 10432 if (CurII == NewII) { 10433 S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs) 10434 << NewII; 10435 S.Diag(CurFD->getLocation(), diag::note_previous_declaration); 10436 NewFD->setInvalidDecl(); 10437 return true; 10438 } 10439 } 10440 } 10441 } 10442 // If the two decls aren't the same MVType, there is no possible error 10443 // condition. 10444 } 10445 } 10446 10447 // Else, this is simply a non-redecl case. Checking the 'value' is only 10448 // necessary in the Target case, since The CPUSpecific/Dispatch cases are 10449 // handled in the attribute adding step. 10450 if (NewMVType == MultiVersionKind::Target && 10451 CheckMultiVersionValue(S, NewFD)) { 10452 NewFD->setInvalidDecl(); 10453 return true; 10454 } 10455 10456 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, 10457 !OldFD->isMultiVersion(), NewMVType)) { 10458 NewFD->setInvalidDecl(); 10459 return true; 10460 } 10461 10462 // Permit forward declarations in the case where these two are compatible. 10463 if (!OldFD->isMultiVersion()) { 10464 OldFD->setIsMultiVersion(); 10465 NewFD->setIsMultiVersion(); 10466 Redeclaration = true; 10467 OldDecl = OldFD; 10468 return false; 10469 } 10470 10471 NewFD->setIsMultiVersion(); 10472 Redeclaration = false; 10473 MergeTypeWithPrevious = false; 10474 OldDecl = nullptr; 10475 Previous.clear(); 10476 return false; 10477 } 10478 10479 10480 /// Check the validity of a mulitversion function declaration. 10481 /// Also sets the multiversion'ness' of the function itself. 10482 /// 10483 /// This sets NewFD->isInvalidDecl() to true if there was an error. 10484 /// 10485 /// Returns true if there was an error, false otherwise. 10486 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD, 10487 bool &Redeclaration, NamedDecl *&OldDecl, 10488 bool &MergeTypeWithPrevious, 10489 LookupResult &Previous) { 10490 const auto *NewTA = NewFD->getAttr<TargetAttr>(); 10491 const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>(); 10492 const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>(); 10493 10494 // Mixing Multiversioning types is prohibited. 10495 if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) || 10496 (NewCPUDisp && NewCPUSpec)) { 10497 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); 10498 NewFD->setInvalidDecl(); 10499 return true; 10500 } 10501 10502 MultiVersionKind MVType = NewFD->getMultiVersionKind(); 10503 10504 // Main isn't allowed to become a multiversion function, however it IS 10505 // permitted to have 'main' be marked with the 'target' optimization hint. 10506 if (NewFD->isMain()) { 10507 if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) || 10508 MVType == MultiVersionKind::CPUDispatch || 10509 MVType == MultiVersionKind::CPUSpecific) { 10510 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main); 10511 NewFD->setInvalidDecl(); 10512 return true; 10513 } 10514 return false; 10515 } 10516 10517 if (!OldDecl || !OldDecl->getAsFunction() || 10518 OldDecl->getDeclContext()->getRedeclContext() != 10519 NewFD->getDeclContext()->getRedeclContext()) { 10520 // If there's no previous declaration, AND this isn't attempting to cause 10521 // multiversioning, this isn't an error condition. 10522 if (MVType == MultiVersionKind::None) 10523 return false; 10524 return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA); 10525 } 10526 10527 FunctionDecl *OldFD = OldDecl->getAsFunction(); 10528 10529 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None) 10530 return false; 10531 10532 if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) { 10533 S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl) 10534 << (OldFD->getMultiVersionKind() != MultiVersionKind::Target); 10535 NewFD->setInvalidDecl(); 10536 return true; 10537 } 10538 10539 // Handle the target potentially causes multiversioning case. 10540 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target) 10541 return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA, 10542 Redeclaration, OldDecl, 10543 MergeTypeWithPrevious, Previous); 10544 10545 // At this point, we have a multiversion function decl (in OldFD) AND an 10546 // appropriate attribute in the current function decl. Resolve that these are 10547 // still compatible with previous declarations. 10548 return CheckMultiVersionAdditionalDecl( 10549 S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration, 10550 OldDecl, MergeTypeWithPrevious, Previous); 10551 } 10552 10553 /// Perform semantic checking of a new function declaration. 10554 /// 10555 /// Performs semantic analysis of the new function declaration 10556 /// NewFD. This routine performs all semantic checking that does not 10557 /// require the actual declarator involved in the declaration, and is 10558 /// used both for the declaration of functions as they are parsed 10559 /// (called via ActOnDeclarator) and for the declaration of functions 10560 /// that have been instantiated via C++ template instantiation (called 10561 /// via InstantiateDecl). 10562 /// 10563 /// \param IsMemberSpecialization whether this new function declaration is 10564 /// a member specialization (that replaces any definition provided by the 10565 /// previous declaration). 10566 /// 10567 /// This sets NewFD->isInvalidDecl() to true if there was an error. 10568 /// 10569 /// \returns true if the function declaration is a redeclaration. 10570 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, 10571 LookupResult &Previous, 10572 bool IsMemberSpecialization) { 10573 assert(!NewFD->getReturnType()->isVariablyModifiedType() && 10574 "Variably modified return types are not handled here"); 10575 10576 // Determine whether the type of this function should be merged with 10577 // a previous visible declaration. This never happens for functions in C++, 10578 // and always happens in C if the previous declaration was visible. 10579 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus && 10580 !Previous.isShadowed(); 10581 10582 bool Redeclaration = false; 10583 NamedDecl *OldDecl = nullptr; 10584 bool MayNeedOverloadableChecks = false; 10585 10586 // Merge or overload the declaration with an existing declaration of 10587 // the same name, if appropriate. 10588 if (!Previous.empty()) { 10589 // Determine whether NewFD is an overload of PrevDecl or 10590 // a declaration that requires merging. If it's an overload, 10591 // there's no more work to do here; we'll just add the new 10592 // function to the scope. 10593 if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) { 10594 NamedDecl *Candidate = Previous.getRepresentativeDecl(); 10595 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) { 10596 Redeclaration = true; 10597 OldDecl = Candidate; 10598 } 10599 } else { 10600 MayNeedOverloadableChecks = true; 10601 switch (CheckOverload(S, NewFD, Previous, OldDecl, 10602 /*NewIsUsingDecl*/ false)) { 10603 case Ovl_Match: 10604 Redeclaration = true; 10605 break; 10606 10607 case Ovl_NonFunction: 10608 Redeclaration = true; 10609 break; 10610 10611 case Ovl_Overload: 10612 Redeclaration = false; 10613 break; 10614 } 10615 } 10616 } 10617 10618 // Check for a previous extern "C" declaration with this name. 10619 if (!Redeclaration && 10620 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) { 10621 if (!Previous.empty()) { 10622 // This is an extern "C" declaration with the same name as a previous 10623 // declaration, and thus redeclares that entity... 10624 Redeclaration = true; 10625 OldDecl = Previous.getFoundDecl(); 10626 MergeTypeWithPrevious = false; 10627 10628 // ... except in the presence of __attribute__((overloadable)). 10629 if (OldDecl->hasAttr<OverloadableAttr>() || 10630 NewFD->hasAttr<OverloadableAttr>()) { 10631 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) { 10632 MayNeedOverloadableChecks = true; 10633 Redeclaration = false; 10634 OldDecl = nullptr; 10635 } 10636 } 10637 } 10638 } 10639 10640 if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, 10641 MergeTypeWithPrevious, Previous)) 10642 return Redeclaration; 10643 10644 // C++11 [dcl.constexpr]p8: 10645 // A constexpr specifier for a non-static member function that is not 10646 // a constructor declares that member function to be const. 10647 // 10648 // This needs to be delayed until we know whether this is an out-of-line 10649 // definition of a static member function. 10650 // 10651 // This rule is not present in C++1y, so we produce a backwards 10652 // compatibility warning whenever it happens in C++11. 10653 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 10654 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() && 10655 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) && 10656 !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) { 10657 CXXMethodDecl *OldMD = nullptr; 10658 if (OldDecl) 10659 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction()); 10660 if (!OldMD || !OldMD->isStatic()) { 10661 const FunctionProtoType *FPT = 10662 MD->getType()->castAs<FunctionProtoType>(); 10663 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 10664 EPI.TypeQuals.addConst(); 10665 MD->setType(Context.getFunctionType(FPT->getReturnType(), 10666 FPT->getParamTypes(), EPI)); 10667 10668 // Warn that we did this, if we're not performing template instantiation. 10669 // In that case, we'll have warned already when the template was defined. 10670 if (!inTemplateInstantiation()) { 10671 SourceLocation AddConstLoc; 10672 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc() 10673 .IgnoreParens().getAs<FunctionTypeLoc>()) 10674 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc()); 10675 10676 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const) 10677 << FixItHint::CreateInsertion(AddConstLoc, " const"); 10678 } 10679 } 10680 } 10681 10682 if (Redeclaration) { 10683 // NewFD and OldDecl represent declarations that need to be 10684 // merged. 10685 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) { 10686 NewFD->setInvalidDecl(); 10687 return Redeclaration; 10688 } 10689 10690 Previous.clear(); 10691 Previous.addDecl(OldDecl); 10692 10693 if (FunctionTemplateDecl *OldTemplateDecl = 10694 dyn_cast<FunctionTemplateDecl>(OldDecl)) { 10695 auto *OldFD = OldTemplateDecl->getTemplatedDecl(); 10696 FunctionTemplateDecl *NewTemplateDecl 10697 = NewFD->getDescribedFunctionTemplate(); 10698 assert(NewTemplateDecl && "Template/non-template mismatch"); 10699 10700 // The call to MergeFunctionDecl above may have created some state in 10701 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we 10702 // can add it as a redeclaration. 10703 NewTemplateDecl->mergePrevDecl(OldTemplateDecl); 10704 10705 NewFD->setPreviousDeclaration(OldFD); 10706 adjustDeclContextForDeclaratorDecl(NewFD, OldFD); 10707 if (NewFD->isCXXClassMember()) { 10708 NewFD->setAccess(OldTemplateDecl->getAccess()); 10709 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); 10710 } 10711 10712 // If this is an explicit specialization of a member that is a function 10713 // template, mark it as a member specialization. 10714 if (IsMemberSpecialization && 10715 NewTemplateDecl->getInstantiatedFromMemberTemplate()) { 10716 NewTemplateDecl->setMemberSpecialization(); 10717 assert(OldTemplateDecl->isMemberSpecialization()); 10718 // Explicit specializations of a member template do not inherit deleted 10719 // status from the parent member template that they are specializing. 10720 if (OldFD->isDeleted()) { 10721 // FIXME: This assert will not hold in the presence of modules. 10722 assert(OldFD->getCanonicalDecl() == OldFD); 10723 // FIXME: We need an update record for this AST mutation. 10724 OldFD->setDeletedAsWritten(false); 10725 } 10726 } 10727 10728 } else { 10729 if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) { 10730 auto *OldFD = cast<FunctionDecl>(OldDecl); 10731 // This needs to happen first so that 'inline' propagates. 10732 NewFD->setPreviousDeclaration(OldFD); 10733 adjustDeclContextForDeclaratorDecl(NewFD, OldFD); 10734 if (NewFD->isCXXClassMember()) 10735 NewFD->setAccess(OldFD->getAccess()); 10736 } 10737 } 10738 } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks && 10739 !NewFD->getAttr<OverloadableAttr>()) { 10740 assert((Previous.empty() || 10741 llvm::any_of(Previous, 10742 [](const NamedDecl *ND) { 10743 return ND->hasAttr<OverloadableAttr>(); 10744 })) && 10745 "Non-redecls shouldn't happen without overloadable present"); 10746 10747 auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) { 10748 const auto *FD = dyn_cast<FunctionDecl>(ND); 10749 return FD && !FD->hasAttr<OverloadableAttr>(); 10750 }); 10751 10752 if (OtherUnmarkedIter != Previous.end()) { 10753 Diag(NewFD->getLocation(), 10754 diag::err_attribute_overloadable_multiple_unmarked_overloads); 10755 Diag((*OtherUnmarkedIter)->getLocation(), 10756 diag::note_attribute_overloadable_prev_overload) 10757 << false; 10758 10759 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); 10760 } 10761 } 10762 10763 // Semantic checking for this function declaration (in isolation). 10764 10765 if (getLangOpts().CPlusPlus) { 10766 // C++-specific checks. 10767 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) { 10768 CheckConstructor(Constructor); 10769 } else if (CXXDestructorDecl *Destructor = 10770 dyn_cast<CXXDestructorDecl>(NewFD)) { 10771 CXXRecordDecl *Record = Destructor->getParent(); 10772 QualType ClassType = Context.getTypeDeclType(Record); 10773 10774 // FIXME: Shouldn't we be able to perform this check even when the class 10775 // type is dependent? Both gcc and edg can handle that. 10776 if (!ClassType->isDependentType()) { 10777 DeclarationName Name 10778 = Context.DeclarationNames.getCXXDestructorName( 10779 Context.getCanonicalType(ClassType)); 10780 if (NewFD->getDeclName() != Name) { 10781 Diag(NewFD->getLocation(), diag::err_destructor_name); 10782 NewFD->setInvalidDecl(); 10783 return Redeclaration; 10784 } 10785 } 10786 } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) { 10787 if (auto *TD = Guide->getDescribedFunctionTemplate()) 10788 CheckDeductionGuideTemplate(TD); 10789 10790 // A deduction guide is not on the list of entities that can be 10791 // explicitly specialized. 10792 if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 10793 Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized) 10794 << /*explicit specialization*/ 1; 10795 } 10796 10797 // Find any virtual functions that this function overrides. 10798 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) { 10799 if (!Method->isFunctionTemplateSpecialization() && 10800 !Method->getDescribedFunctionTemplate() && 10801 Method->isCanonicalDecl()) { 10802 AddOverriddenMethods(Method->getParent(), Method); 10803 } 10804 if (Method->isVirtual() && NewFD->getTrailingRequiresClause()) 10805 // C++2a [class.virtual]p6 10806 // A virtual method shall not have a requires-clause. 10807 Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(), 10808 diag::err_constrained_virtual_method); 10809 10810 if (Method->isStatic()) 10811 checkThisInStaticMemberFunctionType(Method); 10812 } 10813 10814 if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD)) 10815 ActOnConversionDeclarator(Conversion); 10816 10817 // Extra checking for C++ overloaded operators (C++ [over.oper]). 10818 if (NewFD->isOverloadedOperator() && 10819 CheckOverloadedOperatorDeclaration(NewFD)) { 10820 NewFD->setInvalidDecl(); 10821 return Redeclaration; 10822 } 10823 10824 // Extra checking for C++0x literal operators (C++0x [over.literal]). 10825 if (NewFD->getLiteralIdentifier() && 10826 CheckLiteralOperatorDeclaration(NewFD)) { 10827 NewFD->setInvalidDecl(); 10828 return Redeclaration; 10829 } 10830 10831 // In C++, check default arguments now that we have merged decls. Unless 10832 // the lexical context is the class, because in this case this is done 10833 // during delayed parsing anyway. 10834 if (!CurContext->isRecord()) 10835 CheckCXXDefaultArguments(NewFD); 10836 10837 // If this function declares a builtin function, check the type of this 10838 // declaration against the expected type for the builtin. 10839 if (unsigned BuiltinID = NewFD->getBuiltinID()) { 10840 ASTContext::GetBuiltinTypeError Error; 10841 LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier()); 10842 QualType T = Context.GetBuiltinType(BuiltinID, Error); 10843 // If the type of the builtin differs only in its exception 10844 // specification, that's OK. 10845 // FIXME: If the types do differ in this way, it would be better to 10846 // retain the 'noexcept' form of the type. 10847 if (!T.isNull() && 10848 !Context.hasSameFunctionTypeIgnoringExceptionSpec(T, 10849 NewFD->getType())) 10850 // The type of this function differs from the type of the builtin, 10851 // so forget about the builtin entirely. 10852 Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents); 10853 } 10854 10855 // If this function is declared as being extern "C", then check to see if 10856 // the function returns a UDT (class, struct, or union type) that is not C 10857 // compatible, and if it does, warn the user. 10858 // But, issue any diagnostic on the first declaration only. 10859 if (Previous.empty() && NewFD->isExternC()) { 10860 QualType R = NewFD->getReturnType(); 10861 if (R->isIncompleteType() && !R->isVoidType()) 10862 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete) 10863 << NewFD << R; 10864 else if (!R.isPODType(Context) && !R->isVoidType() && 10865 !R->isObjCObjectPointerType()) 10866 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R; 10867 } 10868 10869 // C++1z [dcl.fct]p6: 10870 // [...] whether the function has a non-throwing exception-specification 10871 // [is] part of the function type 10872 // 10873 // This results in an ABI break between C++14 and C++17 for functions whose 10874 // declared type includes an exception-specification in a parameter or 10875 // return type. (Exception specifications on the function itself are OK in 10876 // most cases, and exception specifications are not permitted in most other 10877 // contexts where they could make it into a mangling.) 10878 if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) { 10879 auto HasNoexcept = [&](QualType T) -> bool { 10880 // Strip off declarator chunks that could be between us and a function 10881 // type. We don't need to look far, exception specifications are very 10882 // restricted prior to C++17. 10883 if (auto *RT = T->getAs<ReferenceType>()) 10884 T = RT->getPointeeType(); 10885 else if (T->isAnyPointerType()) 10886 T = T->getPointeeType(); 10887 else if (auto *MPT = T->getAs<MemberPointerType>()) 10888 T = MPT->getPointeeType(); 10889 if (auto *FPT = T->getAs<FunctionProtoType>()) 10890 if (FPT->isNothrow()) 10891 return true; 10892 return false; 10893 }; 10894 10895 auto *FPT = NewFD->getType()->castAs<FunctionProtoType>(); 10896 bool AnyNoexcept = HasNoexcept(FPT->getReturnType()); 10897 for (QualType T : FPT->param_types()) 10898 AnyNoexcept |= HasNoexcept(T); 10899 if (AnyNoexcept) 10900 Diag(NewFD->getLocation(), 10901 diag::warn_cxx17_compat_exception_spec_in_signature) 10902 << NewFD; 10903 } 10904 10905 if (!Redeclaration && LangOpts.CUDA) 10906 checkCUDATargetOverload(NewFD, Previous); 10907 } 10908 return Redeclaration; 10909 } 10910 10911 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) { 10912 // C++11 [basic.start.main]p3: 10913 // A program that [...] declares main to be inline, static or 10914 // constexpr is ill-formed. 10915 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall 10916 // appear in a declaration of main. 10917 // static main is not an error under C99, but we should warn about it. 10918 // We accept _Noreturn main as an extension. 10919 if (FD->getStorageClass() == SC_Static) 10920 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus 10921 ? diag::err_static_main : diag::warn_static_main) 10922 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 10923 if (FD->isInlineSpecified()) 10924 Diag(DS.getInlineSpecLoc(), diag::err_inline_main) 10925 << FixItHint::CreateRemoval(DS.getInlineSpecLoc()); 10926 if (DS.isNoreturnSpecified()) { 10927 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc(); 10928 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc)); 10929 Diag(NoreturnLoc, diag::ext_noreturn_main); 10930 Diag(NoreturnLoc, diag::note_main_remove_noreturn) 10931 << FixItHint::CreateRemoval(NoreturnRange); 10932 } 10933 if (FD->isConstexpr()) { 10934 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main) 10935 << FD->isConsteval() 10936 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc()); 10937 FD->setConstexprKind(CSK_unspecified); 10938 } 10939 10940 if (getLangOpts().OpenCL) { 10941 Diag(FD->getLocation(), diag::err_opencl_no_main) 10942 << FD->hasAttr<OpenCLKernelAttr>(); 10943 FD->setInvalidDecl(); 10944 return; 10945 } 10946 10947 QualType T = FD->getType(); 10948 assert(T->isFunctionType() && "function decl is not of function type"); 10949 const FunctionType* FT = T->castAs<FunctionType>(); 10950 10951 // Set default calling convention for main() 10952 if (FT->getCallConv() != CC_C) { 10953 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C)); 10954 FD->setType(QualType(FT, 0)); 10955 T = Context.getCanonicalType(FD->getType()); 10956 } 10957 10958 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) { 10959 // In C with GNU extensions we allow main() to have non-integer return 10960 // type, but we should warn about the extension, and we disable the 10961 // implicit-return-zero rule. 10962 10963 // GCC in C mode accepts qualified 'int'. 10964 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy)) 10965 FD->setHasImplicitReturnZero(true); 10966 else { 10967 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint); 10968 SourceRange RTRange = FD->getReturnTypeSourceRange(); 10969 if (RTRange.isValid()) 10970 Diag(RTRange.getBegin(), diag::note_main_change_return_type) 10971 << FixItHint::CreateReplacement(RTRange, "int"); 10972 } 10973 } else { 10974 // In C and C++, main magically returns 0 if you fall off the end; 10975 // set the flag which tells us that. 10976 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3. 10977 10978 // All the standards say that main() should return 'int'. 10979 if (Context.hasSameType(FT->getReturnType(), Context.IntTy)) 10980 FD->setHasImplicitReturnZero(true); 10981 else { 10982 // Otherwise, this is just a flat-out error. 10983 SourceRange RTRange = FD->getReturnTypeSourceRange(); 10984 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint) 10985 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int") 10986 : FixItHint()); 10987 FD->setInvalidDecl(true); 10988 } 10989 } 10990 10991 // Treat protoless main() as nullary. 10992 if (isa<FunctionNoProtoType>(FT)) return; 10993 10994 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT); 10995 unsigned nparams = FTP->getNumParams(); 10996 assert(FD->getNumParams() == nparams); 10997 10998 bool HasExtraParameters = (nparams > 3); 10999 11000 if (FTP->isVariadic()) { 11001 Diag(FD->getLocation(), diag::ext_variadic_main); 11002 // FIXME: if we had information about the location of the ellipsis, we 11003 // could add a FixIt hint to remove it as a parameter. 11004 } 11005 11006 // Darwin passes an undocumented fourth argument of type char**. If 11007 // other platforms start sprouting these, the logic below will start 11008 // getting shifty. 11009 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin()) 11010 HasExtraParameters = false; 11011 11012 if (HasExtraParameters) { 11013 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; 11014 FD->setInvalidDecl(true); 11015 nparams = 3; 11016 } 11017 11018 // FIXME: a lot of the following diagnostics would be improved 11019 // if we had some location information about types. 11020 11021 QualType CharPP = 11022 Context.getPointerType(Context.getPointerType(Context.CharTy)); 11023 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; 11024 11025 for (unsigned i = 0; i < nparams; ++i) { 11026 QualType AT = FTP->getParamType(i); 11027 11028 bool mismatch = true; 11029 11030 if (Context.hasSameUnqualifiedType(AT, Expected[i])) 11031 mismatch = false; 11032 else if (Expected[i] == CharPP) { 11033 // As an extension, the following forms are okay: 11034 // char const ** 11035 // char const * const * 11036 // char * const * 11037 11038 QualifierCollector qs; 11039 const PointerType* PT; 11040 if ((PT = qs.strip(AT)->getAs<PointerType>()) && 11041 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) && 11042 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0), 11043 Context.CharTy)) { 11044 qs.removeConst(); 11045 mismatch = !qs.empty(); 11046 } 11047 } 11048 11049 if (mismatch) { 11050 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; 11051 // TODO: suggest replacing given type with expected type 11052 FD->setInvalidDecl(true); 11053 } 11054 } 11055 11056 if (nparams == 1 && !FD->isInvalidDecl()) { 11057 Diag(FD->getLocation(), diag::warn_main_one_arg); 11058 } 11059 11060 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { 11061 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; 11062 FD->setInvalidDecl(); 11063 } 11064 } 11065 11066 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) { 11067 QualType T = FD->getType(); 11068 assert(T->isFunctionType() && "function decl is not of function type"); 11069 const FunctionType *FT = T->castAs<FunctionType>(); 11070 11071 // Set an implicit return of 'zero' if the function can return some integral, 11072 // enumeration, pointer or nullptr type. 11073 if (FT->getReturnType()->isIntegralOrEnumerationType() || 11074 FT->getReturnType()->isAnyPointerType() || 11075 FT->getReturnType()->isNullPtrType()) 11076 // DllMain is exempt because a return value of zero means it failed. 11077 if (FD->getName() != "DllMain") 11078 FD->setHasImplicitReturnZero(true); 11079 11080 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { 11081 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; 11082 FD->setInvalidDecl(); 11083 } 11084 } 11085 11086 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { 11087 // FIXME: Need strict checking. In C89, we need to check for 11088 // any assignment, increment, decrement, function-calls, or 11089 // commas outside of a sizeof. In C99, it's the same list, 11090 // except that the aforementioned are allowed in unevaluated 11091 // expressions. Everything else falls under the 11092 // "may accept other forms of constant expressions" exception. 11093 // (We never end up here for C++, so the constant expression 11094 // rules there don't matter.) 11095 const Expr *Culprit; 11096 if (Init->isConstantInitializer(Context, false, &Culprit)) 11097 return false; 11098 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant) 11099 << Culprit->getSourceRange(); 11100 return true; 11101 } 11102 11103 namespace { 11104 // Visits an initialization expression to see if OrigDecl is evaluated in 11105 // its own initialization and throws a warning if it does. 11106 class SelfReferenceChecker 11107 : public EvaluatedExprVisitor<SelfReferenceChecker> { 11108 Sema &S; 11109 Decl *OrigDecl; 11110 bool isRecordType; 11111 bool isPODType; 11112 bool isReferenceType; 11113 11114 bool isInitList; 11115 llvm::SmallVector<unsigned, 4> InitFieldIndex; 11116 11117 public: 11118 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited; 11119 11120 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context), 11121 S(S), OrigDecl(OrigDecl) { 11122 isPODType = false; 11123 isRecordType = false; 11124 isReferenceType = false; 11125 isInitList = false; 11126 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) { 11127 isPODType = VD->getType().isPODType(S.Context); 11128 isRecordType = VD->getType()->isRecordType(); 11129 isReferenceType = VD->getType()->isReferenceType(); 11130 } 11131 } 11132 11133 // For most expressions, just call the visitor. For initializer lists, 11134 // track the index of the field being initialized since fields are 11135 // initialized in order allowing use of previously initialized fields. 11136 void CheckExpr(Expr *E) { 11137 InitListExpr *InitList = dyn_cast<InitListExpr>(E); 11138 if (!InitList) { 11139 Visit(E); 11140 return; 11141 } 11142 11143 // Track and increment the index here. 11144 isInitList = true; 11145 InitFieldIndex.push_back(0); 11146 for (auto Child : InitList->children()) { 11147 CheckExpr(cast<Expr>(Child)); 11148 ++InitFieldIndex.back(); 11149 } 11150 InitFieldIndex.pop_back(); 11151 } 11152 11153 // Returns true if MemberExpr is checked and no further checking is needed. 11154 // Returns false if additional checking is required. 11155 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) { 11156 llvm::SmallVector<FieldDecl*, 4> Fields; 11157 Expr *Base = E; 11158 bool ReferenceField = false; 11159 11160 // Get the field members used. 11161 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 11162 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 11163 if (!FD) 11164 return false; 11165 Fields.push_back(FD); 11166 if (FD->getType()->isReferenceType()) 11167 ReferenceField = true; 11168 Base = ME->getBase()->IgnoreParenImpCasts(); 11169 } 11170 11171 // Keep checking only if the base Decl is the same. 11172 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base); 11173 if (!DRE || DRE->getDecl() != OrigDecl) 11174 return false; 11175 11176 // A reference field can be bound to an unininitialized field. 11177 if (CheckReference && !ReferenceField) 11178 return true; 11179 11180 // Convert FieldDecls to their index number. 11181 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 11182 for (const FieldDecl *I : llvm::reverse(Fields)) 11183 UsedFieldIndex.push_back(I->getFieldIndex()); 11184 11185 // See if a warning is needed by checking the first difference in index 11186 // numbers. If field being used has index less than the field being 11187 // initialized, then the use is safe. 11188 for (auto UsedIter = UsedFieldIndex.begin(), 11189 UsedEnd = UsedFieldIndex.end(), 11190 OrigIter = InitFieldIndex.begin(), 11191 OrigEnd = InitFieldIndex.end(); 11192 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 11193 if (*UsedIter < *OrigIter) 11194 return true; 11195 if (*UsedIter > *OrigIter) 11196 break; 11197 } 11198 11199 // TODO: Add a different warning which will print the field names. 11200 HandleDeclRefExpr(DRE); 11201 return true; 11202 } 11203 11204 // For most expressions, the cast is directly above the DeclRefExpr. 11205 // For conditional operators, the cast can be outside the conditional 11206 // operator if both expressions are DeclRefExpr's. 11207 void HandleValue(Expr *E) { 11208 E = E->IgnoreParens(); 11209 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) { 11210 HandleDeclRefExpr(DRE); 11211 return; 11212 } 11213 11214 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 11215 Visit(CO->getCond()); 11216 HandleValue(CO->getTrueExpr()); 11217 HandleValue(CO->getFalseExpr()); 11218 return; 11219 } 11220 11221 if (BinaryConditionalOperator *BCO = 11222 dyn_cast<BinaryConditionalOperator>(E)) { 11223 Visit(BCO->getCond()); 11224 HandleValue(BCO->getFalseExpr()); 11225 return; 11226 } 11227 11228 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 11229 HandleValue(OVE->getSourceExpr()); 11230 return; 11231 } 11232 11233 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 11234 if (BO->getOpcode() == BO_Comma) { 11235 Visit(BO->getLHS()); 11236 HandleValue(BO->getRHS()); 11237 return; 11238 } 11239 } 11240 11241 if (isa<MemberExpr>(E)) { 11242 if (isInitList) { 11243 if (CheckInitListMemberExpr(cast<MemberExpr>(E), 11244 false /*CheckReference*/)) 11245 return; 11246 } 11247 11248 Expr *Base = E->IgnoreParenImpCasts(); 11249 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 11250 // Check for static member variables and don't warn on them. 11251 if (!isa<FieldDecl>(ME->getMemberDecl())) 11252 return; 11253 Base = ME->getBase()->IgnoreParenImpCasts(); 11254 } 11255 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) 11256 HandleDeclRefExpr(DRE); 11257 return; 11258 } 11259 11260 Visit(E); 11261 } 11262 11263 // Reference types not handled in HandleValue are handled here since all 11264 // uses of references are bad, not just r-value uses. 11265 void VisitDeclRefExpr(DeclRefExpr *E) { 11266 if (isReferenceType) 11267 HandleDeclRefExpr(E); 11268 } 11269 11270 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 11271 if (E->getCastKind() == CK_LValueToRValue) { 11272 HandleValue(E->getSubExpr()); 11273 return; 11274 } 11275 11276 Inherited::VisitImplicitCastExpr(E); 11277 } 11278 11279 void VisitMemberExpr(MemberExpr *E) { 11280 if (isInitList) { 11281 if (CheckInitListMemberExpr(E, true /*CheckReference*/)) 11282 return; 11283 } 11284 11285 // Don't warn on arrays since they can be treated as pointers. 11286 if (E->getType()->canDecayToPointerType()) return; 11287 11288 // Warn when a non-static method call is followed by non-static member 11289 // field accesses, which is followed by a DeclRefExpr. 11290 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl()); 11291 bool Warn = (MD && !MD->isStatic()); 11292 Expr *Base = E->getBase()->IgnoreParenImpCasts(); 11293 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 11294 if (!isa<FieldDecl>(ME->getMemberDecl())) 11295 Warn = false; 11296 Base = ME->getBase()->IgnoreParenImpCasts(); 11297 } 11298 11299 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 11300 if (Warn) 11301 HandleDeclRefExpr(DRE); 11302 return; 11303 } 11304 11305 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr. 11306 // Visit that expression. 11307 Visit(Base); 11308 } 11309 11310 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 11311 Expr *Callee = E->getCallee(); 11312 11313 if (isa<UnresolvedLookupExpr>(Callee)) 11314 return Inherited::VisitCXXOperatorCallExpr(E); 11315 11316 Visit(Callee); 11317 for (auto Arg: E->arguments()) 11318 HandleValue(Arg->IgnoreParenImpCasts()); 11319 } 11320 11321 void VisitUnaryOperator(UnaryOperator *E) { 11322 // For POD record types, addresses of its own members are well-defined. 11323 if (E->getOpcode() == UO_AddrOf && isRecordType && 11324 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) { 11325 if (!isPODType) 11326 HandleValue(E->getSubExpr()); 11327 return; 11328 } 11329 11330 if (E->isIncrementDecrementOp()) { 11331 HandleValue(E->getSubExpr()); 11332 return; 11333 } 11334 11335 Inherited::VisitUnaryOperator(E); 11336 } 11337 11338 void VisitObjCMessageExpr(ObjCMessageExpr *E) {} 11339 11340 void VisitCXXConstructExpr(CXXConstructExpr *E) { 11341 if (E->getConstructor()->isCopyConstructor()) { 11342 Expr *ArgExpr = E->getArg(0); 11343 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 11344 if (ILE->getNumInits() == 1) 11345 ArgExpr = ILE->getInit(0); 11346 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 11347 if (ICE->getCastKind() == CK_NoOp) 11348 ArgExpr = ICE->getSubExpr(); 11349 HandleValue(ArgExpr); 11350 return; 11351 } 11352 Inherited::VisitCXXConstructExpr(E); 11353 } 11354 11355 void VisitCallExpr(CallExpr *E) { 11356 // Treat std::move as a use. 11357 if (E->isCallToStdMove()) { 11358 HandleValue(E->getArg(0)); 11359 return; 11360 } 11361 11362 Inherited::VisitCallExpr(E); 11363 } 11364 11365 void VisitBinaryOperator(BinaryOperator *E) { 11366 if (E->isCompoundAssignmentOp()) { 11367 HandleValue(E->getLHS()); 11368 Visit(E->getRHS()); 11369 return; 11370 } 11371 11372 Inherited::VisitBinaryOperator(E); 11373 } 11374 11375 // A custom visitor for BinaryConditionalOperator is needed because the 11376 // regular visitor would check the condition and true expression separately 11377 // but both point to the same place giving duplicate diagnostics. 11378 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { 11379 Visit(E->getCond()); 11380 Visit(E->getFalseExpr()); 11381 } 11382 11383 void HandleDeclRefExpr(DeclRefExpr *DRE) { 11384 Decl* ReferenceDecl = DRE->getDecl(); 11385 if (OrigDecl != ReferenceDecl) return; 11386 unsigned diag; 11387 if (isReferenceType) { 11388 diag = diag::warn_uninit_self_reference_in_reference_init; 11389 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) { 11390 diag = diag::warn_static_self_reference_in_init; 11391 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) || 11392 isa<NamespaceDecl>(OrigDecl->getDeclContext()) || 11393 DRE->getDecl()->getType()->isRecordType()) { 11394 diag = diag::warn_uninit_self_reference_in_init; 11395 } else { 11396 // Local variables will be handled by the CFG analysis. 11397 return; 11398 } 11399 11400 S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE, 11401 S.PDiag(diag) 11402 << DRE->getDecl() << OrigDecl->getLocation() 11403 << DRE->getSourceRange()); 11404 } 11405 }; 11406 11407 /// CheckSelfReference - Warns if OrigDecl is used in expression E. 11408 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E, 11409 bool DirectInit) { 11410 // Parameters arguments are occassionially constructed with itself, 11411 // for instance, in recursive functions. Skip them. 11412 if (isa<ParmVarDecl>(OrigDecl)) 11413 return; 11414 11415 E = E->IgnoreParens(); 11416 11417 // Skip checking T a = a where T is not a record or reference type. 11418 // Doing so is a way to silence uninitialized warnings. 11419 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType()) 11420 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 11421 if (ICE->getCastKind() == CK_LValueToRValue) 11422 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) 11423 if (DRE->getDecl() == OrigDecl) 11424 return; 11425 11426 SelfReferenceChecker(S, OrigDecl).CheckExpr(E); 11427 } 11428 } // end anonymous namespace 11429 11430 namespace { 11431 // Simple wrapper to add the name of a variable or (if no variable is 11432 // available) a DeclarationName into a diagnostic. 11433 struct VarDeclOrName { 11434 VarDecl *VDecl; 11435 DeclarationName Name; 11436 11437 friend const Sema::SemaDiagnosticBuilder & 11438 operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) { 11439 return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name; 11440 } 11441 }; 11442 } // end anonymous namespace 11443 11444 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl, 11445 DeclarationName Name, QualType Type, 11446 TypeSourceInfo *TSI, 11447 SourceRange Range, bool DirectInit, 11448 Expr *Init) { 11449 bool IsInitCapture = !VDecl; 11450 assert((!VDecl || !VDecl->isInitCapture()) && 11451 "init captures are expected to be deduced prior to initialization"); 11452 11453 VarDeclOrName VN{VDecl, Name}; 11454 11455 DeducedType *Deduced = Type->getContainedDeducedType(); 11456 assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type"); 11457 11458 // C++11 [dcl.spec.auto]p3 11459 if (!Init) { 11460 assert(VDecl && "no init for init capture deduction?"); 11461 11462 // Except for class argument deduction, and then for an initializing 11463 // declaration only, i.e. no static at class scope or extern. 11464 if (!isa<DeducedTemplateSpecializationType>(Deduced) || 11465 VDecl->hasExternalStorage() || 11466 VDecl->isStaticDataMember()) { 11467 Diag(VDecl->getLocation(), diag::err_auto_var_requires_init) 11468 << VDecl->getDeclName() << Type; 11469 return QualType(); 11470 } 11471 } 11472 11473 ArrayRef<Expr*> DeduceInits; 11474 if (Init) 11475 DeduceInits = Init; 11476 11477 if (DirectInit) { 11478 if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init)) 11479 DeduceInits = PL->exprs(); 11480 } 11481 11482 if (isa<DeducedTemplateSpecializationType>(Deduced)) { 11483 assert(VDecl && "non-auto type for init capture deduction?"); 11484 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); 11485 InitializationKind Kind = InitializationKind::CreateForInit( 11486 VDecl->getLocation(), DirectInit, Init); 11487 // FIXME: Initialization should not be taking a mutable list of inits. 11488 SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end()); 11489 return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, 11490 InitsCopy); 11491 } 11492 11493 if (DirectInit) { 11494 if (auto *IL = dyn_cast<InitListExpr>(Init)) 11495 DeduceInits = IL->inits(); 11496 } 11497 11498 // Deduction only works if we have exactly one source expression. 11499 if (DeduceInits.empty()) { 11500 // It isn't possible to write this directly, but it is possible to 11501 // end up in this situation with "auto x(some_pack...);" 11502 Diag(Init->getBeginLoc(), IsInitCapture 11503 ? diag::err_init_capture_no_expression 11504 : diag::err_auto_var_init_no_expression) 11505 << VN << Type << Range; 11506 return QualType(); 11507 } 11508 11509 if (DeduceInits.size() > 1) { 11510 Diag(DeduceInits[1]->getBeginLoc(), 11511 IsInitCapture ? diag::err_init_capture_multiple_expressions 11512 : diag::err_auto_var_init_multiple_expressions) 11513 << VN << Type << Range; 11514 return QualType(); 11515 } 11516 11517 Expr *DeduceInit = DeduceInits[0]; 11518 if (DirectInit && isa<InitListExpr>(DeduceInit)) { 11519 Diag(Init->getBeginLoc(), IsInitCapture 11520 ? diag::err_init_capture_paren_braces 11521 : diag::err_auto_var_init_paren_braces) 11522 << isa<InitListExpr>(Init) << VN << Type << Range; 11523 return QualType(); 11524 } 11525 11526 // Expressions default to 'id' when we're in a debugger. 11527 bool DefaultedAnyToId = false; 11528 if (getLangOpts().DebuggerCastResultToId && 11529 Init->getType() == Context.UnknownAnyTy && !IsInitCapture) { 11530 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); 11531 if (Result.isInvalid()) { 11532 return QualType(); 11533 } 11534 Init = Result.get(); 11535 DefaultedAnyToId = true; 11536 } 11537 11538 // C++ [dcl.decomp]p1: 11539 // If the assignment-expression [...] has array type A and no ref-qualifier 11540 // is present, e has type cv A 11541 if (VDecl && isa<DecompositionDecl>(VDecl) && 11542 Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) && 11543 DeduceInit->getType()->isConstantArrayType()) 11544 return Context.getQualifiedType(DeduceInit->getType(), 11545 Type.getQualifiers()); 11546 11547 QualType DeducedType; 11548 if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) { 11549 if (!IsInitCapture) 11550 DiagnoseAutoDeductionFailure(VDecl, DeduceInit); 11551 else if (isa<InitListExpr>(Init)) 11552 Diag(Range.getBegin(), 11553 diag::err_init_capture_deduction_failure_from_init_list) 11554 << VN 11555 << (DeduceInit->getType().isNull() ? TSI->getType() 11556 : DeduceInit->getType()) 11557 << DeduceInit->getSourceRange(); 11558 else 11559 Diag(Range.getBegin(), diag::err_init_capture_deduction_failure) 11560 << VN << TSI->getType() 11561 << (DeduceInit->getType().isNull() ? TSI->getType() 11562 : DeduceInit->getType()) 11563 << DeduceInit->getSourceRange(); 11564 } 11565 11566 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using 11567 // 'id' instead of a specific object type prevents most of our usual 11568 // checks. 11569 // We only want to warn outside of template instantiations, though: 11570 // inside a template, the 'id' could have come from a parameter. 11571 if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture && 11572 !DeducedType.isNull() && DeducedType->isObjCIdType()) { 11573 SourceLocation Loc = TSI->getTypeLoc().getBeginLoc(); 11574 Diag(Loc, diag::warn_auto_var_is_id) << VN << Range; 11575 } 11576 11577 return DeducedType; 11578 } 11579 11580 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit, 11581 Expr *Init) { 11582 assert(!Init || !Init->containsErrors()); 11583 QualType DeducedType = deduceVarTypeFromInitializer( 11584 VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(), 11585 VDecl->getSourceRange(), DirectInit, Init); 11586 if (DeducedType.isNull()) { 11587 VDecl->setInvalidDecl(); 11588 return true; 11589 } 11590 11591 VDecl->setType(DeducedType); 11592 assert(VDecl->isLinkageValid()); 11593 11594 // In ARC, infer lifetime. 11595 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl)) 11596 VDecl->setInvalidDecl(); 11597 11598 if (getLangOpts().OpenCL) 11599 deduceOpenCLAddressSpace(VDecl); 11600 11601 // If this is a redeclaration, check that the type we just deduced matches 11602 // the previously declared type. 11603 if (VarDecl *Old = VDecl->getPreviousDecl()) { 11604 // We never need to merge the type, because we cannot form an incomplete 11605 // array of auto, nor deduce such a type. 11606 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false); 11607 } 11608 11609 // Check the deduced type is valid for a variable declaration. 11610 CheckVariableDeclarationType(VDecl); 11611 return VDecl->isInvalidDecl(); 11612 } 11613 11614 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init, 11615 SourceLocation Loc) { 11616 if (auto *EWC = dyn_cast<ExprWithCleanups>(Init)) 11617 Init = EWC->getSubExpr(); 11618 11619 if (auto *CE = dyn_cast<ConstantExpr>(Init)) 11620 Init = CE->getSubExpr(); 11621 11622 QualType InitType = Init->getType(); 11623 assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 11624 InitType.hasNonTrivialToPrimitiveCopyCUnion()) && 11625 "shouldn't be called if type doesn't have a non-trivial C struct"); 11626 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 11627 for (auto I : ILE->inits()) { 11628 if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() && 11629 !I->getType().hasNonTrivialToPrimitiveCopyCUnion()) 11630 continue; 11631 SourceLocation SL = I->getExprLoc(); 11632 checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc); 11633 } 11634 return; 11635 } 11636 11637 if (isa<ImplicitValueInitExpr>(Init)) { 11638 if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) 11639 checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject, 11640 NTCUK_Init); 11641 } else { 11642 // Assume all other explicit initializers involving copying some existing 11643 // object. 11644 // TODO: ignore any explicit initializers where we can guarantee 11645 // copy-elision. 11646 if (InitType.hasNonTrivialToPrimitiveCopyCUnion()) 11647 checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy); 11648 } 11649 } 11650 11651 namespace { 11652 11653 bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) { 11654 // Ignore unavailable fields. A field can be marked as unavailable explicitly 11655 // in the source code or implicitly by the compiler if it is in a union 11656 // defined in a system header and has non-trivial ObjC ownership 11657 // qualifications. We don't want those fields to participate in determining 11658 // whether the containing union is non-trivial. 11659 return FD->hasAttr<UnavailableAttr>(); 11660 } 11661 11662 struct DiagNonTrivalCUnionDefaultInitializeVisitor 11663 : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, 11664 void> { 11665 using Super = 11666 DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, 11667 void>; 11668 11669 DiagNonTrivalCUnionDefaultInitializeVisitor( 11670 QualType OrigTy, SourceLocation OrigLoc, 11671 Sema::NonTrivialCUnionContext UseContext, Sema &S) 11672 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} 11673 11674 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT, 11675 const FieldDecl *FD, bool InNonTrivialUnion) { 11676 if (const auto *AT = S.Context.getAsArrayType(QT)) 11677 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, 11678 InNonTrivialUnion); 11679 return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion); 11680 } 11681 11682 void visitARCStrong(QualType QT, const FieldDecl *FD, 11683 bool InNonTrivialUnion) { 11684 if (InNonTrivialUnion) 11685 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11686 << 1 << 0 << QT << FD->getName(); 11687 } 11688 11689 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11690 if (InNonTrivialUnion) 11691 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11692 << 1 << 0 << QT << FD->getName(); 11693 } 11694 11695 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11696 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); 11697 if (RD->isUnion()) { 11698 if (OrigLoc.isValid()) { 11699 bool IsUnion = false; 11700 if (auto *OrigRD = OrigTy->getAsRecordDecl()) 11701 IsUnion = OrigRD->isUnion(); 11702 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) 11703 << 0 << OrigTy << IsUnion << UseContext; 11704 // Reset OrigLoc so that this diagnostic is emitted only once. 11705 OrigLoc = SourceLocation(); 11706 } 11707 InNonTrivialUnion = true; 11708 } 11709 11710 if (InNonTrivialUnion) 11711 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) 11712 << 0 << 0 << QT.getUnqualifiedType() << ""; 11713 11714 for (const FieldDecl *FD : RD->fields()) 11715 if (!shouldIgnoreForRecordTriviality(FD)) 11716 asDerived().visit(FD->getType(), FD, InNonTrivialUnion); 11717 } 11718 11719 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} 11720 11721 // The non-trivial C union type or the struct/union type that contains a 11722 // non-trivial C union. 11723 QualType OrigTy; 11724 SourceLocation OrigLoc; 11725 Sema::NonTrivialCUnionContext UseContext; 11726 Sema &S; 11727 }; 11728 11729 struct DiagNonTrivalCUnionDestructedTypeVisitor 11730 : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> { 11731 using Super = 11732 DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>; 11733 11734 DiagNonTrivalCUnionDestructedTypeVisitor( 11735 QualType OrigTy, SourceLocation OrigLoc, 11736 Sema::NonTrivialCUnionContext UseContext, Sema &S) 11737 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} 11738 11739 void visitWithKind(QualType::DestructionKind DK, QualType QT, 11740 const FieldDecl *FD, bool InNonTrivialUnion) { 11741 if (const auto *AT = S.Context.getAsArrayType(QT)) 11742 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, 11743 InNonTrivialUnion); 11744 return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion); 11745 } 11746 11747 void visitARCStrong(QualType QT, const FieldDecl *FD, 11748 bool InNonTrivialUnion) { 11749 if (InNonTrivialUnion) 11750 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11751 << 1 << 1 << QT << FD->getName(); 11752 } 11753 11754 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11755 if (InNonTrivialUnion) 11756 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11757 << 1 << 1 << QT << FD->getName(); 11758 } 11759 11760 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11761 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); 11762 if (RD->isUnion()) { 11763 if (OrigLoc.isValid()) { 11764 bool IsUnion = false; 11765 if (auto *OrigRD = OrigTy->getAsRecordDecl()) 11766 IsUnion = OrigRD->isUnion(); 11767 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) 11768 << 1 << OrigTy << IsUnion << UseContext; 11769 // Reset OrigLoc so that this diagnostic is emitted only once. 11770 OrigLoc = SourceLocation(); 11771 } 11772 InNonTrivialUnion = true; 11773 } 11774 11775 if (InNonTrivialUnion) 11776 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) 11777 << 0 << 1 << QT.getUnqualifiedType() << ""; 11778 11779 for (const FieldDecl *FD : RD->fields()) 11780 if (!shouldIgnoreForRecordTriviality(FD)) 11781 asDerived().visit(FD->getType(), FD, InNonTrivialUnion); 11782 } 11783 11784 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} 11785 void visitCXXDestructor(QualType QT, const FieldDecl *FD, 11786 bool InNonTrivialUnion) {} 11787 11788 // The non-trivial C union type or the struct/union type that contains a 11789 // non-trivial C union. 11790 QualType OrigTy; 11791 SourceLocation OrigLoc; 11792 Sema::NonTrivialCUnionContext UseContext; 11793 Sema &S; 11794 }; 11795 11796 struct DiagNonTrivalCUnionCopyVisitor 11797 : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> { 11798 using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>; 11799 11800 DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc, 11801 Sema::NonTrivialCUnionContext UseContext, 11802 Sema &S) 11803 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} 11804 11805 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT, 11806 const FieldDecl *FD, bool InNonTrivialUnion) { 11807 if (const auto *AT = S.Context.getAsArrayType(QT)) 11808 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, 11809 InNonTrivialUnion); 11810 return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion); 11811 } 11812 11813 void visitARCStrong(QualType QT, const FieldDecl *FD, 11814 bool InNonTrivialUnion) { 11815 if (InNonTrivialUnion) 11816 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11817 << 1 << 2 << QT << FD->getName(); 11818 } 11819 11820 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11821 if (InNonTrivialUnion) 11822 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11823 << 1 << 2 << QT << FD->getName(); 11824 } 11825 11826 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11827 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); 11828 if (RD->isUnion()) { 11829 if (OrigLoc.isValid()) { 11830 bool IsUnion = false; 11831 if (auto *OrigRD = OrigTy->getAsRecordDecl()) 11832 IsUnion = OrigRD->isUnion(); 11833 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) 11834 << 2 << OrigTy << IsUnion << UseContext; 11835 // Reset OrigLoc so that this diagnostic is emitted only once. 11836 OrigLoc = SourceLocation(); 11837 } 11838 InNonTrivialUnion = true; 11839 } 11840 11841 if (InNonTrivialUnion) 11842 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) 11843 << 0 << 2 << QT.getUnqualifiedType() << ""; 11844 11845 for (const FieldDecl *FD : RD->fields()) 11846 if (!shouldIgnoreForRecordTriviality(FD)) 11847 asDerived().visit(FD->getType(), FD, InNonTrivialUnion); 11848 } 11849 11850 void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT, 11851 const FieldDecl *FD, bool InNonTrivialUnion) {} 11852 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} 11853 void visitVolatileTrivial(QualType QT, const FieldDecl *FD, 11854 bool InNonTrivialUnion) {} 11855 11856 // The non-trivial C union type or the struct/union type that contains a 11857 // non-trivial C union. 11858 QualType OrigTy; 11859 SourceLocation OrigLoc; 11860 Sema::NonTrivialCUnionContext UseContext; 11861 Sema &S; 11862 }; 11863 11864 } // namespace 11865 11866 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc, 11867 NonTrivialCUnionContext UseContext, 11868 unsigned NonTrivialKind) { 11869 assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 11870 QT.hasNonTrivialToPrimitiveDestructCUnion() || 11871 QT.hasNonTrivialToPrimitiveCopyCUnion()) && 11872 "shouldn't be called if type doesn't have a non-trivial C union"); 11873 11874 if ((NonTrivialKind & NTCUK_Init) && 11875 QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) 11876 DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this) 11877 .visit(QT, nullptr, false); 11878 if ((NonTrivialKind & NTCUK_Destruct) && 11879 QT.hasNonTrivialToPrimitiveDestructCUnion()) 11880 DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this) 11881 .visit(QT, nullptr, false); 11882 if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion()) 11883 DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this) 11884 .visit(QT, nullptr, false); 11885 } 11886 11887 /// AddInitializerToDecl - Adds the initializer Init to the 11888 /// declaration dcl. If DirectInit is true, this is C++ direct 11889 /// initialization rather than copy initialization. 11890 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) { 11891 // If there is no declaration, there was an error parsing it. Just ignore 11892 // the initializer. 11893 if (!RealDecl || RealDecl->isInvalidDecl()) { 11894 CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl)); 11895 return; 11896 } 11897 11898 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) { 11899 // Pure-specifiers are handled in ActOnPureSpecifier. 11900 Diag(Method->getLocation(), diag::err_member_function_initialization) 11901 << Method->getDeclName() << Init->getSourceRange(); 11902 Method->setInvalidDecl(); 11903 return; 11904 } 11905 11906 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); 11907 if (!VDecl) { 11908 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"); 11909 Diag(RealDecl->getLocation(), diag::err_illegal_initializer); 11910 RealDecl->setInvalidDecl(); 11911 return; 11912 } 11913 11914 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. 11915 if (VDecl->getType()->isUndeducedType()) { 11916 // Attempt typo correction early so that the type of the init expression can 11917 // be deduced based on the chosen correction if the original init contains a 11918 // TypoExpr. 11919 ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl); 11920 if (!Res.isUsable()) { 11921 // There are unresolved typos in Init, just drop them. 11922 // FIXME: improve the recovery strategy to preserve the Init. 11923 RealDecl->setInvalidDecl(); 11924 return; 11925 } 11926 if (Res.get()->containsErrors()) { 11927 // Invalidate the decl as we don't know the type for recovery-expr yet. 11928 RealDecl->setInvalidDecl(); 11929 VDecl->setInit(Res.get()); 11930 return; 11931 } 11932 Init = Res.get(); 11933 11934 if (DeduceVariableDeclarationType(VDecl, DirectInit, Init)) 11935 return; 11936 } 11937 11938 // dllimport cannot be used on variable definitions. 11939 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) { 11940 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition); 11941 VDecl->setInvalidDecl(); 11942 return; 11943 } 11944 11945 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) { 11946 // C99 6.7.8p5. C++ has no such restriction, but that is a defect. 11947 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); 11948 VDecl->setInvalidDecl(); 11949 return; 11950 } 11951 11952 if (!VDecl->getType()->isDependentType()) { 11953 // A definition must end up with a complete type, which means it must be 11954 // complete with the restriction that an array type might be completed by 11955 // the initializer; note that later code assumes this restriction. 11956 QualType BaseDeclType = VDecl->getType(); 11957 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType)) 11958 BaseDeclType = Array->getElementType(); 11959 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, 11960 diag::err_typecheck_decl_incomplete_type)) { 11961 RealDecl->setInvalidDecl(); 11962 return; 11963 } 11964 11965 // The variable can not have an abstract class type. 11966 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), 11967 diag::err_abstract_type_in_decl, 11968 AbstractVariableType)) 11969 VDecl->setInvalidDecl(); 11970 } 11971 11972 // If adding the initializer will turn this declaration into a definition, 11973 // and we already have a definition for this variable, diagnose or otherwise 11974 // handle the situation. 11975 VarDecl *Def; 11976 if ((Def = VDecl->getDefinition()) && Def != VDecl && 11977 (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) && 11978 !VDecl->isThisDeclarationADemotedDefinition() && 11979 checkVarDeclRedefinition(Def, VDecl)) 11980 return; 11981 11982 if (getLangOpts().CPlusPlus) { 11983 // C++ [class.static.data]p4 11984 // If a static data member is of const integral or const 11985 // enumeration type, its declaration in the class definition can 11986 // specify a constant-initializer which shall be an integral 11987 // constant expression (5.19). In that case, the member can appear 11988 // in integral constant expressions. The member shall still be 11989 // defined in a namespace scope if it is used in the program and the 11990 // namespace scope definition shall not contain an initializer. 11991 // 11992 // We already performed a redefinition check above, but for static 11993 // data members we also need to check whether there was an in-class 11994 // declaration with an initializer. 11995 if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) { 11996 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization) 11997 << VDecl->getDeclName(); 11998 Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(), 11999 diag::note_previous_initializer) 12000 << 0; 12001 return; 12002 } 12003 12004 if (VDecl->hasLocalStorage()) 12005 setFunctionHasBranchProtectedScope(); 12006 12007 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) { 12008 VDecl->setInvalidDecl(); 12009 return; 12010 } 12011 } 12012 12013 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside 12014 // a kernel function cannot be initialized." 12015 if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) { 12016 Diag(VDecl->getLocation(), diag::err_local_cant_init); 12017 VDecl->setInvalidDecl(); 12018 return; 12019 } 12020 12021 // The LoaderUninitialized attribute acts as a definition (of undef). 12022 if (VDecl->hasAttr<LoaderUninitializedAttr>()) { 12023 Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init); 12024 VDecl->setInvalidDecl(); 12025 return; 12026 } 12027 12028 // Get the decls type and save a reference for later, since 12029 // CheckInitializerTypes may change it. 12030 QualType DclT = VDecl->getType(), SavT = DclT; 12031 12032 // Expressions default to 'id' when we're in a debugger 12033 // and we are assigning it to a variable of Objective-C pointer type. 12034 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() && 12035 Init->getType() == Context.UnknownAnyTy) { 12036 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); 12037 if (Result.isInvalid()) { 12038 VDecl->setInvalidDecl(); 12039 return; 12040 } 12041 Init = Result.get(); 12042 } 12043 12044 // Perform the initialization. 12045 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 12046 if (!VDecl->isInvalidDecl()) { 12047 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); 12048 InitializationKind Kind = InitializationKind::CreateForInit( 12049 VDecl->getLocation(), DirectInit, Init); 12050 12051 MultiExprArg Args = Init; 12052 if (CXXDirectInit) 12053 Args = MultiExprArg(CXXDirectInit->getExprs(), 12054 CXXDirectInit->getNumExprs()); 12055 12056 // Try to correct any TypoExprs in the initialization arguments. 12057 for (size_t Idx = 0; Idx < Args.size(); ++Idx) { 12058 ExprResult Res = CorrectDelayedTyposInExpr( 12059 Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/false, 12060 [this, Entity, Kind](Expr *E) { 12061 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E)); 12062 return Init.Failed() ? ExprError() : E; 12063 }); 12064 if (Res.isInvalid()) { 12065 VDecl->setInvalidDecl(); 12066 } else if (Res.get() != Args[Idx]) { 12067 Args[Idx] = Res.get(); 12068 } 12069 } 12070 if (VDecl->isInvalidDecl()) 12071 return; 12072 12073 InitializationSequence InitSeq(*this, Entity, Kind, Args, 12074 /*TopLevelOfInitList=*/false, 12075 /*TreatUnavailableAsInvalid=*/false); 12076 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 12077 if (Result.isInvalid()) { 12078 // If the provied initializer fails to initialize the var decl, 12079 // we attach a recovery expr for better recovery. 12080 auto RecoveryExpr = 12081 CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args); 12082 if (RecoveryExpr.get()) 12083 VDecl->setInit(RecoveryExpr.get()); 12084 return; 12085 } 12086 12087 Init = Result.getAs<Expr>(); 12088 } 12089 12090 // Check for self-references within variable initializers. 12091 // Variables declared within a function/method body (except for references) 12092 // are handled by a dataflow analysis. 12093 // This is undefined behavior in C++, but valid in C. 12094 if (getLangOpts().CPlusPlus) { 12095 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() || 12096 VDecl->getType()->isReferenceType()) { 12097 CheckSelfReference(*this, RealDecl, Init, DirectInit); 12098 } 12099 } 12100 12101 // If the type changed, it means we had an incomplete type that was 12102 // completed by the initializer. For example: 12103 // int ary[] = { 1, 3, 5 }; 12104 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType. 12105 if (!VDecl->isInvalidDecl() && (DclT != SavT)) 12106 VDecl->setType(DclT); 12107 12108 if (!VDecl->isInvalidDecl()) { 12109 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init); 12110 12111 if (VDecl->hasAttr<BlocksAttr>()) 12112 checkRetainCycles(VDecl, Init); 12113 12114 // It is safe to assign a weak reference into a strong variable. 12115 // Although this code can still have problems: 12116 // id x = self.weakProp; 12117 // id y = self.weakProp; 12118 // we do not warn to warn spuriously when 'x' and 'y' are on separate 12119 // paths through the function. This should be revisited if 12120 // -Wrepeated-use-of-weak is made flow-sensitive. 12121 if (FunctionScopeInfo *FSI = getCurFunction()) 12122 if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 12123 VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) && 12124 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, 12125 Init->getBeginLoc())) 12126 FSI->markSafeWeakUse(Init); 12127 } 12128 12129 // The initialization is usually a full-expression. 12130 // 12131 // FIXME: If this is a braced initialization of an aggregate, it is not 12132 // an expression, and each individual field initializer is a separate 12133 // full-expression. For instance, in: 12134 // 12135 // struct Temp { ~Temp(); }; 12136 // struct S { S(Temp); }; 12137 // struct T { S a, b; } t = { Temp(), Temp() } 12138 // 12139 // we should destroy the first Temp before constructing the second. 12140 ExprResult Result = 12141 ActOnFinishFullExpr(Init, VDecl->getLocation(), 12142 /*DiscardedValue*/ false, VDecl->isConstexpr()); 12143 if (Result.isInvalid()) { 12144 VDecl->setInvalidDecl(); 12145 return; 12146 } 12147 Init = Result.get(); 12148 12149 // Attach the initializer to the decl. 12150 VDecl->setInit(Init); 12151 12152 if (VDecl->isLocalVarDecl()) { 12153 // Don't check the initializer if the declaration is malformed. 12154 if (VDecl->isInvalidDecl()) { 12155 // do nothing 12156 12157 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized. 12158 // This is true even in C++ for OpenCL. 12159 } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) { 12160 CheckForConstantInitializer(Init, DclT); 12161 12162 // Otherwise, C++ does not restrict the initializer. 12163 } else if (getLangOpts().CPlusPlus) { 12164 // do nothing 12165 12166 // C99 6.7.8p4: All the expressions in an initializer for an object that has 12167 // static storage duration shall be constant expressions or string literals. 12168 } else if (VDecl->getStorageClass() == SC_Static) { 12169 CheckForConstantInitializer(Init, DclT); 12170 12171 // C89 is stricter than C99 for aggregate initializers. 12172 // C89 6.5.7p3: All the expressions [...] in an initializer list 12173 // for an object that has aggregate or union type shall be 12174 // constant expressions. 12175 } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() && 12176 isa<InitListExpr>(Init)) { 12177 const Expr *Culprit; 12178 if (!Init->isConstantInitializer(Context, false, &Culprit)) { 12179 Diag(Culprit->getExprLoc(), 12180 diag::ext_aggregate_init_not_constant) 12181 << Culprit->getSourceRange(); 12182 } 12183 } 12184 12185 if (auto *E = dyn_cast<ExprWithCleanups>(Init)) 12186 if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens())) 12187 if (VDecl->hasLocalStorage()) 12188 BE->getBlockDecl()->setCanAvoidCopyToHeap(); 12189 } else if (VDecl->isStaticDataMember() && !VDecl->isInline() && 12190 VDecl->getLexicalDeclContext()->isRecord()) { 12191 // This is an in-class initialization for a static data member, e.g., 12192 // 12193 // struct S { 12194 // static const int value = 17; 12195 // }; 12196 12197 // C++ [class.mem]p4: 12198 // A member-declarator can contain a constant-initializer only 12199 // if it declares a static member (9.4) of const integral or 12200 // const enumeration type, see 9.4.2. 12201 // 12202 // C++11 [class.static.data]p3: 12203 // If a non-volatile non-inline const static data member is of integral 12204 // or enumeration type, its declaration in the class definition can 12205 // specify a brace-or-equal-initializer in which every initializer-clause 12206 // that is an assignment-expression is a constant expression. A static 12207 // data member of literal type can be declared in the class definition 12208 // with the constexpr specifier; if so, its declaration shall specify a 12209 // brace-or-equal-initializer in which every initializer-clause that is 12210 // an assignment-expression is a constant expression. 12211 12212 // Do nothing on dependent types. 12213 if (DclT->isDependentType()) { 12214 12215 // Allow any 'static constexpr' members, whether or not they are of literal 12216 // type. We separately check that every constexpr variable is of literal 12217 // type. 12218 } else if (VDecl->isConstexpr()) { 12219 12220 // Require constness. 12221 } else if (!DclT.isConstQualified()) { 12222 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) 12223 << Init->getSourceRange(); 12224 VDecl->setInvalidDecl(); 12225 12226 // We allow integer constant expressions in all cases. 12227 } else if (DclT->isIntegralOrEnumerationType()) { 12228 // Check whether the expression is a constant expression. 12229 SourceLocation Loc; 12230 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified()) 12231 // In C++11, a non-constexpr const static data member with an 12232 // in-class initializer cannot be volatile. 12233 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile); 12234 else if (Init->isValueDependent()) 12235 ; // Nothing to check. 12236 else if (Init->isIntegerConstantExpr(Context, &Loc)) 12237 ; // Ok, it's an ICE! 12238 else if (Init->getType()->isScopedEnumeralType() && 12239 Init->isCXX11ConstantExpr(Context)) 12240 ; // Ok, it is a scoped-enum constant expression. 12241 else if (Init->isEvaluatable(Context)) { 12242 // If we can constant fold the initializer through heroics, accept it, 12243 // but report this as a use of an extension for -pedantic. 12244 Diag(Loc, diag::ext_in_class_initializer_non_constant) 12245 << Init->getSourceRange(); 12246 } else { 12247 // Otherwise, this is some crazy unknown case. Report the issue at the 12248 // location provided by the isIntegerConstantExpr failed check. 12249 Diag(Loc, diag::err_in_class_initializer_non_constant) 12250 << Init->getSourceRange(); 12251 VDecl->setInvalidDecl(); 12252 } 12253 12254 // We allow foldable floating-point constants as an extension. 12255 } else if (DclT->isFloatingType()) { // also permits complex, which is ok 12256 // In C++98, this is a GNU extension. In C++11, it is not, but we support 12257 // it anyway and provide a fixit to add the 'constexpr'. 12258 if (getLangOpts().CPlusPlus11) { 12259 Diag(VDecl->getLocation(), 12260 diag::ext_in_class_initializer_float_type_cxx11) 12261 << DclT << Init->getSourceRange(); 12262 Diag(VDecl->getBeginLoc(), 12263 diag::note_in_class_initializer_float_type_cxx11) 12264 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); 12265 } else { 12266 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) 12267 << DclT << Init->getSourceRange(); 12268 12269 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) { 12270 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) 12271 << Init->getSourceRange(); 12272 VDecl->setInvalidDecl(); 12273 } 12274 } 12275 12276 // Suggest adding 'constexpr' in C++11 for literal types. 12277 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) { 12278 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type) 12279 << DclT << Init->getSourceRange() 12280 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); 12281 VDecl->setConstexpr(true); 12282 12283 } else { 12284 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) 12285 << DclT << Init->getSourceRange(); 12286 VDecl->setInvalidDecl(); 12287 } 12288 } else if (VDecl->isFileVarDecl()) { 12289 // In C, extern is typically used to avoid tentative definitions when 12290 // declaring variables in headers, but adding an intializer makes it a 12291 // definition. This is somewhat confusing, so GCC and Clang both warn on it. 12292 // In C++, extern is often used to give implictly static const variables 12293 // external linkage, so don't warn in that case. If selectany is present, 12294 // this might be header code intended for C and C++ inclusion, so apply the 12295 // C++ rules. 12296 if (VDecl->getStorageClass() == SC_Extern && 12297 ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) || 12298 !Context.getBaseElementType(VDecl->getType()).isConstQualified()) && 12299 !(getLangOpts().CPlusPlus && VDecl->isExternC()) && 12300 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind())) 12301 Diag(VDecl->getLocation(), diag::warn_extern_init); 12302 12303 // In Microsoft C++ mode, a const variable defined in namespace scope has 12304 // external linkage by default if the variable is declared with 12305 // __declspec(dllexport). 12306 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 12307 getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() && 12308 VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition()) 12309 VDecl->setStorageClass(SC_Extern); 12310 12311 // C99 6.7.8p4. All file scoped initializers need to be constant. 12312 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) 12313 CheckForConstantInitializer(Init, DclT); 12314 } 12315 12316 QualType InitType = Init->getType(); 12317 if (!InitType.isNull() && 12318 (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 12319 InitType.hasNonTrivialToPrimitiveCopyCUnion())) 12320 checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc()); 12321 12322 // We will represent direct-initialization similarly to copy-initialization: 12323 // int x(1); -as-> int x = 1; 12324 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); 12325 // 12326 // Clients that want to distinguish between the two forms, can check for 12327 // direct initializer using VarDecl::getInitStyle(). 12328 // A major benefit is that clients that don't particularly care about which 12329 // exactly form was it (like the CodeGen) can handle both cases without 12330 // special case code. 12331 12332 // C++ 8.5p11: 12333 // The form of initialization (using parentheses or '=') is generally 12334 // insignificant, but does matter when the entity being initialized has a 12335 // class type. 12336 if (CXXDirectInit) { 12337 assert(DirectInit && "Call-style initializer must be direct init."); 12338 VDecl->setInitStyle(VarDecl::CallInit); 12339 } else if (DirectInit) { 12340 // This must be list-initialization. No other way is direct-initialization. 12341 VDecl->setInitStyle(VarDecl::ListInit); 12342 } 12343 12344 if (LangOpts.OpenMP && VDecl->isFileVarDecl()) 12345 DeclsToCheckForDeferredDiags.push_back(VDecl); 12346 CheckCompleteVariableDeclaration(VDecl); 12347 } 12348 12349 /// ActOnInitializerError - Given that there was an error parsing an 12350 /// initializer for the given declaration, try to return to some form 12351 /// of sanity. 12352 void Sema::ActOnInitializerError(Decl *D) { 12353 // Our main concern here is re-establishing invariants like "a 12354 // variable's type is either dependent or complete". 12355 if (!D || D->isInvalidDecl()) return; 12356 12357 VarDecl *VD = dyn_cast<VarDecl>(D); 12358 if (!VD) return; 12359 12360 // Bindings are not usable if we can't make sense of the initializer. 12361 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 12362 for (auto *BD : DD->bindings()) 12363 BD->setInvalidDecl(); 12364 12365 // Auto types are meaningless if we can't make sense of the initializer. 12366 if (VD->getType()->isUndeducedType()) { 12367 D->setInvalidDecl(); 12368 return; 12369 } 12370 12371 QualType Ty = VD->getType(); 12372 if (Ty->isDependentType()) return; 12373 12374 // Require a complete type. 12375 if (RequireCompleteType(VD->getLocation(), 12376 Context.getBaseElementType(Ty), 12377 diag::err_typecheck_decl_incomplete_type)) { 12378 VD->setInvalidDecl(); 12379 return; 12380 } 12381 12382 // Require a non-abstract type. 12383 if (RequireNonAbstractType(VD->getLocation(), Ty, 12384 diag::err_abstract_type_in_decl, 12385 AbstractVariableType)) { 12386 VD->setInvalidDecl(); 12387 return; 12388 } 12389 12390 // Don't bother complaining about constructors or destructors, 12391 // though. 12392 } 12393 12394 void Sema::ActOnUninitializedDecl(Decl *RealDecl) { 12395 // If there is no declaration, there was an error parsing it. Just ignore it. 12396 if (!RealDecl) 12397 return; 12398 12399 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { 12400 QualType Type = Var->getType(); 12401 12402 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory. 12403 if (isa<DecompositionDecl>(RealDecl)) { 12404 Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var; 12405 Var->setInvalidDecl(); 12406 return; 12407 } 12408 12409 if (Type->isUndeducedType() && 12410 DeduceVariableDeclarationType(Var, false, nullptr)) 12411 return; 12412 12413 // C++11 [class.static.data]p3: A static data member can be declared with 12414 // the constexpr specifier; if so, its declaration shall specify 12415 // a brace-or-equal-initializer. 12416 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to 12417 // the definition of a variable [...] or the declaration of a static data 12418 // member. 12419 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() && 12420 !Var->isThisDeclarationADemotedDefinition()) { 12421 if (Var->isStaticDataMember()) { 12422 // C++1z removes the relevant rule; the in-class declaration is always 12423 // a definition there. 12424 if (!getLangOpts().CPlusPlus17 && 12425 !Context.getTargetInfo().getCXXABI().isMicrosoft()) { 12426 Diag(Var->getLocation(), 12427 diag::err_constexpr_static_mem_var_requires_init) 12428 << Var->getDeclName(); 12429 Var->setInvalidDecl(); 12430 return; 12431 } 12432 } else { 12433 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl); 12434 Var->setInvalidDecl(); 12435 return; 12436 } 12437 } 12438 12439 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must 12440 // be initialized. 12441 if (!Var->isInvalidDecl() && 12442 Var->getType().getAddressSpace() == LangAS::opencl_constant && 12443 Var->getStorageClass() != SC_Extern && !Var->getInit()) { 12444 Diag(Var->getLocation(), diag::err_opencl_constant_no_init); 12445 Var->setInvalidDecl(); 12446 return; 12447 } 12448 12449 if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) { 12450 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) { 12451 if (!RD->hasTrivialDefaultConstructor()) { 12452 Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor); 12453 Var->setInvalidDecl(); 12454 return; 12455 } 12456 } 12457 if (Var->getStorageClass() == SC_Extern) { 12458 Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl) 12459 << Var; 12460 Var->setInvalidDecl(); 12461 return; 12462 } 12463 } 12464 12465 VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition(); 12466 if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly && 12467 Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion()) 12468 checkNonTrivialCUnion(Var->getType(), Var->getLocation(), 12469 NTCUC_DefaultInitializedObject, NTCUK_Init); 12470 12471 12472 switch (DefKind) { 12473 case VarDecl::Definition: 12474 if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) 12475 break; 12476 12477 // We have an out-of-line definition of a static data member 12478 // that has an in-class initializer, so we type-check this like 12479 // a declaration. 12480 // 12481 LLVM_FALLTHROUGH; 12482 12483 case VarDecl::DeclarationOnly: 12484 // It's only a declaration. 12485 12486 // Block scope. C99 6.7p7: If an identifier for an object is 12487 // declared with no linkage (C99 6.2.2p6), the type for the 12488 // object shall be complete. 12489 if (!Type->isDependentType() && Var->isLocalVarDecl() && 12490 !Var->hasLinkage() && !Var->isInvalidDecl() && 12491 RequireCompleteType(Var->getLocation(), Type, 12492 diag::err_typecheck_decl_incomplete_type)) 12493 Var->setInvalidDecl(); 12494 12495 // Make sure that the type is not abstract. 12496 if (!Type->isDependentType() && !Var->isInvalidDecl() && 12497 RequireNonAbstractType(Var->getLocation(), Type, 12498 diag::err_abstract_type_in_decl, 12499 AbstractVariableType)) 12500 Var->setInvalidDecl(); 12501 if (!Type->isDependentType() && !Var->isInvalidDecl() && 12502 Var->getStorageClass() == SC_PrivateExtern) { 12503 Diag(Var->getLocation(), diag::warn_private_extern); 12504 Diag(Var->getLocation(), diag::note_private_extern); 12505 } 12506 12507 if (Context.getTargetInfo().allowDebugInfoForExternalVar() && 12508 !Var->isInvalidDecl() && !getLangOpts().CPlusPlus) 12509 ExternalDeclarations.push_back(Var); 12510 12511 return; 12512 12513 case VarDecl::TentativeDefinition: 12514 // File scope. C99 6.9.2p2: A declaration of an identifier for an 12515 // object that has file scope without an initializer, and without a 12516 // storage-class specifier or with the storage-class specifier "static", 12517 // constitutes a tentative definition. Note: A tentative definition with 12518 // external linkage is valid (C99 6.2.2p5). 12519 if (!Var->isInvalidDecl()) { 12520 if (const IncompleteArrayType *ArrayT 12521 = Context.getAsIncompleteArrayType(Type)) { 12522 if (RequireCompleteSizedType( 12523 Var->getLocation(), ArrayT->getElementType(), 12524 diag::err_array_incomplete_or_sizeless_type)) 12525 Var->setInvalidDecl(); 12526 } else if (Var->getStorageClass() == SC_Static) { 12527 // C99 6.9.2p3: If the declaration of an identifier for an object is 12528 // a tentative definition and has internal linkage (C99 6.2.2p3), the 12529 // declared type shall not be an incomplete type. 12530 // NOTE: code such as the following 12531 // static struct s; 12532 // struct s { int a; }; 12533 // is accepted by gcc. Hence here we issue a warning instead of 12534 // an error and we do not invalidate the static declaration. 12535 // NOTE: to avoid multiple warnings, only check the first declaration. 12536 if (Var->isFirstDecl()) 12537 RequireCompleteType(Var->getLocation(), Type, 12538 diag::ext_typecheck_decl_incomplete_type); 12539 } 12540 } 12541 12542 // Record the tentative definition; we're done. 12543 if (!Var->isInvalidDecl()) 12544 TentativeDefinitions.push_back(Var); 12545 return; 12546 } 12547 12548 // Provide a specific diagnostic for uninitialized variable 12549 // definitions with incomplete array type. 12550 if (Type->isIncompleteArrayType()) { 12551 Diag(Var->getLocation(), 12552 diag::err_typecheck_incomplete_array_needs_initializer); 12553 Var->setInvalidDecl(); 12554 return; 12555 } 12556 12557 // Provide a specific diagnostic for uninitialized variable 12558 // definitions with reference type. 12559 if (Type->isReferenceType()) { 12560 Diag(Var->getLocation(), diag::err_reference_var_requires_init) 12561 << Var->getDeclName() 12562 << SourceRange(Var->getLocation(), Var->getLocation()); 12563 Var->setInvalidDecl(); 12564 return; 12565 } 12566 12567 // Do not attempt to type-check the default initializer for a 12568 // variable with dependent type. 12569 if (Type->isDependentType()) 12570 return; 12571 12572 if (Var->isInvalidDecl()) 12573 return; 12574 12575 if (!Var->hasAttr<AliasAttr>()) { 12576 if (RequireCompleteType(Var->getLocation(), 12577 Context.getBaseElementType(Type), 12578 diag::err_typecheck_decl_incomplete_type)) { 12579 Var->setInvalidDecl(); 12580 return; 12581 } 12582 } else { 12583 return; 12584 } 12585 12586 // The variable can not have an abstract class type. 12587 if (RequireNonAbstractType(Var->getLocation(), Type, 12588 diag::err_abstract_type_in_decl, 12589 AbstractVariableType)) { 12590 Var->setInvalidDecl(); 12591 return; 12592 } 12593 12594 // Check for jumps past the implicit initializer. C++0x 12595 // clarifies that this applies to a "variable with automatic 12596 // storage duration", not a "local variable". 12597 // C++11 [stmt.dcl]p3 12598 // A program that jumps from a point where a variable with automatic 12599 // storage duration is not in scope to a point where it is in scope is 12600 // ill-formed unless the variable has scalar type, class type with a 12601 // trivial default constructor and a trivial destructor, a cv-qualified 12602 // version of one of these types, or an array of one of the preceding 12603 // types and is declared without an initializer. 12604 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) { 12605 if (const RecordType *Record 12606 = Context.getBaseElementType(Type)->getAs<RecordType>()) { 12607 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl()); 12608 // Mark the function (if we're in one) for further checking even if the 12609 // looser rules of C++11 do not require such checks, so that we can 12610 // diagnose incompatibilities with C++98. 12611 if (!CXXRecord->isPOD()) 12612 setFunctionHasBranchProtectedScope(); 12613 } 12614 } 12615 // In OpenCL, we can't initialize objects in the __local address space, 12616 // even implicitly, so don't synthesize an implicit initializer. 12617 if (getLangOpts().OpenCL && 12618 Var->getType().getAddressSpace() == LangAS::opencl_local) 12619 return; 12620 // C++03 [dcl.init]p9: 12621 // If no initializer is specified for an object, and the 12622 // object is of (possibly cv-qualified) non-POD class type (or 12623 // array thereof), the object shall be default-initialized; if 12624 // the object is of const-qualified type, the underlying class 12625 // type shall have a user-declared default 12626 // constructor. Otherwise, if no initializer is specified for 12627 // a non- static object, the object and its subobjects, if 12628 // any, have an indeterminate initial value); if the object 12629 // or any of its subobjects are of const-qualified type, the 12630 // program is ill-formed. 12631 // C++0x [dcl.init]p11: 12632 // If no initializer is specified for an object, the object is 12633 // default-initialized; [...]. 12634 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); 12635 InitializationKind Kind 12636 = InitializationKind::CreateDefault(Var->getLocation()); 12637 12638 InitializationSequence InitSeq(*this, Entity, Kind, None); 12639 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None); 12640 12641 if (Init.get()) { 12642 Var->setInit(MaybeCreateExprWithCleanups(Init.get())); 12643 // This is important for template substitution. 12644 Var->setInitStyle(VarDecl::CallInit); 12645 } else if (Init.isInvalid()) { 12646 // If default-init fails, attach a recovery-expr initializer to track 12647 // that initialization was attempted and failed. 12648 auto RecoveryExpr = 12649 CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {}); 12650 if (RecoveryExpr.get()) 12651 Var->setInit(RecoveryExpr.get()); 12652 } 12653 12654 CheckCompleteVariableDeclaration(Var); 12655 } 12656 } 12657 12658 void Sema::ActOnCXXForRangeDecl(Decl *D) { 12659 // If there is no declaration, there was an error parsing it. Ignore it. 12660 if (!D) 12661 return; 12662 12663 VarDecl *VD = dyn_cast<VarDecl>(D); 12664 if (!VD) { 12665 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var); 12666 D->setInvalidDecl(); 12667 return; 12668 } 12669 12670 VD->setCXXForRangeDecl(true); 12671 12672 // for-range-declaration cannot be given a storage class specifier. 12673 int Error = -1; 12674 switch (VD->getStorageClass()) { 12675 case SC_None: 12676 break; 12677 case SC_Extern: 12678 Error = 0; 12679 break; 12680 case SC_Static: 12681 Error = 1; 12682 break; 12683 case SC_PrivateExtern: 12684 Error = 2; 12685 break; 12686 case SC_Auto: 12687 Error = 3; 12688 break; 12689 case SC_Register: 12690 Error = 4; 12691 break; 12692 } 12693 if (Error != -1) { 12694 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class) 12695 << VD->getDeclName() << Error; 12696 D->setInvalidDecl(); 12697 } 12698 } 12699 12700 StmtResult 12701 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, 12702 IdentifierInfo *Ident, 12703 ParsedAttributes &Attrs, 12704 SourceLocation AttrEnd) { 12705 // C++1y [stmt.iter]p1: 12706 // A range-based for statement of the form 12707 // for ( for-range-identifier : for-range-initializer ) statement 12708 // is equivalent to 12709 // for ( auto&& for-range-identifier : for-range-initializer ) statement 12710 DeclSpec DS(Attrs.getPool().getFactory()); 12711 12712 const char *PrevSpec; 12713 unsigned DiagID; 12714 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID, 12715 getPrintingPolicy()); 12716 12717 Declarator D(DS, DeclaratorContext::ForContext); 12718 D.SetIdentifier(Ident, IdentLoc); 12719 D.takeAttributes(Attrs, AttrEnd); 12720 12721 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false), 12722 IdentLoc); 12723 Decl *Var = ActOnDeclarator(S, D); 12724 cast<VarDecl>(Var)->setCXXForRangeDecl(true); 12725 FinalizeDeclaration(Var); 12726 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc, 12727 AttrEnd.isValid() ? AttrEnd : IdentLoc); 12728 } 12729 12730 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) { 12731 if (var->isInvalidDecl()) return; 12732 12733 if (getLangOpts().OpenCL) { 12734 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an 12735 // initialiser 12736 if (var->getTypeSourceInfo()->getType()->isBlockPointerType() && 12737 !var->hasInit()) { 12738 Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration) 12739 << 1 /*Init*/; 12740 var->setInvalidDecl(); 12741 return; 12742 } 12743 } 12744 12745 // In Objective-C, don't allow jumps past the implicit initialization of a 12746 // local retaining variable. 12747 if (getLangOpts().ObjC && 12748 var->hasLocalStorage()) { 12749 switch (var->getType().getObjCLifetime()) { 12750 case Qualifiers::OCL_None: 12751 case Qualifiers::OCL_ExplicitNone: 12752 case Qualifiers::OCL_Autoreleasing: 12753 break; 12754 12755 case Qualifiers::OCL_Weak: 12756 case Qualifiers::OCL_Strong: 12757 setFunctionHasBranchProtectedScope(); 12758 break; 12759 } 12760 } 12761 12762 if (var->hasLocalStorage() && 12763 var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 12764 setFunctionHasBranchProtectedScope(); 12765 12766 // Warn about externally-visible variables being defined without a 12767 // prior declaration. We only want to do this for global 12768 // declarations, but we also specifically need to avoid doing it for 12769 // class members because the linkage of an anonymous class can 12770 // change if it's later given a typedef name. 12771 if (var->isThisDeclarationADefinition() && 12772 var->getDeclContext()->getRedeclContext()->isFileContext() && 12773 var->isExternallyVisible() && var->hasLinkage() && 12774 !var->isInline() && !var->getDescribedVarTemplate() && 12775 !isa<VarTemplatePartialSpecializationDecl>(var) && 12776 !isTemplateInstantiation(var->getTemplateSpecializationKind()) && 12777 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations, 12778 var->getLocation())) { 12779 // Find a previous declaration that's not a definition. 12780 VarDecl *prev = var->getPreviousDecl(); 12781 while (prev && prev->isThisDeclarationADefinition()) 12782 prev = prev->getPreviousDecl(); 12783 12784 if (!prev) { 12785 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var; 12786 Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage) 12787 << /* variable */ 0; 12788 } 12789 } 12790 12791 // Cache the result of checking for constant initialization. 12792 Optional<bool> CacheHasConstInit; 12793 const Expr *CacheCulprit = nullptr; 12794 auto checkConstInit = [&]() mutable { 12795 if (!CacheHasConstInit) 12796 CacheHasConstInit = var->getInit()->isConstantInitializer( 12797 Context, var->getType()->isReferenceType(), &CacheCulprit); 12798 return *CacheHasConstInit; 12799 }; 12800 12801 if (var->getTLSKind() == VarDecl::TLS_Static) { 12802 if (var->getType().isDestructedType()) { 12803 // GNU C++98 edits for __thread, [basic.start.term]p3: 12804 // The type of an object with thread storage duration shall not 12805 // have a non-trivial destructor. 12806 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor); 12807 if (getLangOpts().CPlusPlus11) 12808 Diag(var->getLocation(), diag::note_use_thread_local); 12809 } else if (getLangOpts().CPlusPlus && var->hasInit()) { 12810 if (!checkConstInit()) { 12811 // GNU C++98 edits for __thread, [basic.start.init]p4: 12812 // An object of thread storage duration shall not require dynamic 12813 // initialization. 12814 // FIXME: Need strict checking here. 12815 Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init) 12816 << CacheCulprit->getSourceRange(); 12817 if (getLangOpts().CPlusPlus11) 12818 Diag(var->getLocation(), diag::note_use_thread_local); 12819 } 12820 } 12821 } 12822 12823 // Apply section attributes and pragmas to global variables. 12824 bool GlobalStorage = var->hasGlobalStorage(); 12825 if (GlobalStorage && var->isThisDeclarationADefinition() && 12826 !inTemplateInstantiation()) { 12827 PragmaStack<StringLiteral *> *Stack = nullptr; 12828 int SectionFlags = ASTContext::PSF_Read; 12829 if (var->getType().isConstQualified()) 12830 Stack = &ConstSegStack; 12831 else if (!var->getInit()) { 12832 Stack = &BSSSegStack; 12833 SectionFlags |= ASTContext::PSF_Write; 12834 } else { 12835 Stack = &DataSegStack; 12836 SectionFlags |= ASTContext::PSF_Write; 12837 } 12838 if (const SectionAttr *SA = var->getAttr<SectionAttr>()) { 12839 if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec) 12840 SectionFlags |= ASTContext::PSF_Implicit; 12841 UnifySection(SA->getName(), SectionFlags, var); 12842 } else if (Stack->CurrentValue) { 12843 SectionFlags |= ASTContext::PSF_Implicit; 12844 auto SectionName = Stack->CurrentValue->getString(); 12845 var->addAttr(SectionAttr::CreateImplicit( 12846 Context, SectionName, Stack->CurrentPragmaLocation, 12847 AttributeCommonInfo::AS_Pragma, SectionAttr::Declspec_allocate)); 12848 if (UnifySection(SectionName, SectionFlags, var)) 12849 var->dropAttr<SectionAttr>(); 12850 } 12851 12852 // Apply the init_seg attribute if this has an initializer. If the 12853 // initializer turns out to not be dynamic, we'll end up ignoring this 12854 // attribute. 12855 if (CurInitSeg && var->getInit()) 12856 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(), 12857 CurInitSegLoc, 12858 AttributeCommonInfo::AS_Pragma)); 12859 } 12860 12861 // All the following checks are C++ only. 12862 if (!getLangOpts().CPlusPlus) { 12863 // If this variable must be emitted, add it as an initializer for the 12864 // current module. 12865 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) 12866 Context.addModuleInitializer(ModuleScopes.back().Module, var); 12867 return; 12868 } 12869 12870 if (auto *DD = dyn_cast<DecompositionDecl>(var)) 12871 CheckCompleteDecompositionDeclaration(DD); 12872 12873 QualType type = var->getType(); 12874 if (type->isDependentType()) return; 12875 12876 if (var->hasAttr<BlocksAttr>()) 12877 getCurFunction()->addByrefBlockVar(var); 12878 12879 Expr *Init = var->getInit(); 12880 bool IsGlobal = GlobalStorage && !var->isStaticLocal(); 12881 QualType baseType = Context.getBaseElementType(type); 12882 12883 if (Init && !Init->isValueDependent()) { 12884 if (var->isConstexpr()) { 12885 SmallVector<PartialDiagnosticAt, 8> Notes; 12886 if (!var->evaluateValue(Notes) || !var->isInitICE()) { 12887 SourceLocation DiagLoc = var->getLocation(); 12888 // If the note doesn't add any useful information other than a source 12889 // location, fold it into the primary diagnostic. 12890 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 12891 diag::note_invalid_subexpr_in_const_expr) { 12892 DiagLoc = Notes[0].first; 12893 Notes.clear(); 12894 } 12895 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init) 12896 << var << Init->getSourceRange(); 12897 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 12898 Diag(Notes[I].first, Notes[I].second); 12899 } 12900 } else if (var->mightBeUsableInConstantExpressions(Context)) { 12901 // Check whether the initializer of a const variable of integral or 12902 // enumeration type is an ICE now, since we can't tell whether it was 12903 // initialized by a constant expression if we check later. 12904 var->checkInitIsICE(); 12905 } 12906 12907 // Don't emit further diagnostics about constexpr globals since they 12908 // were just diagnosed. 12909 if (!var->isConstexpr() && GlobalStorage && var->hasAttr<ConstInitAttr>()) { 12910 // FIXME: Need strict checking in C++03 here. 12911 bool DiagErr = getLangOpts().CPlusPlus11 12912 ? !var->checkInitIsICE() : !checkConstInit(); 12913 if (DiagErr) { 12914 auto *Attr = var->getAttr<ConstInitAttr>(); 12915 Diag(var->getLocation(), diag::err_require_constant_init_failed) 12916 << Init->getSourceRange(); 12917 Diag(Attr->getLocation(), 12918 diag::note_declared_required_constant_init_here) 12919 << Attr->getRange() << Attr->isConstinit(); 12920 if (getLangOpts().CPlusPlus11) { 12921 APValue Value; 12922 SmallVector<PartialDiagnosticAt, 8> Notes; 12923 Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes); 12924 for (auto &it : Notes) 12925 Diag(it.first, it.second); 12926 } else { 12927 Diag(CacheCulprit->getExprLoc(), 12928 diag::note_invalid_subexpr_in_const_expr) 12929 << CacheCulprit->getSourceRange(); 12930 } 12931 } 12932 } 12933 else if (!var->isConstexpr() && IsGlobal && 12934 !getDiagnostics().isIgnored(diag::warn_global_constructor, 12935 var->getLocation())) { 12936 // Warn about globals which don't have a constant initializer. Don't 12937 // warn about globals with a non-trivial destructor because we already 12938 // warned about them. 12939 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl(); 12940 if (!(RD && !RD->hasTrivialDestructor())) { 12941 if (!checkConstInit()) 12942 Diag(var->getLocation(), diag::warn_global_constructor) 12943 << Init->getSourceRange(); 12944 } 12945 } 12946 } 12947 12948 // Require the destructor. 12949 if (const RecordType *recordType = baseType->getAs<RecordType>()) 12950 FinalizeVarWithDestructor(var, recordType); 12951 12952 // If this variable must be emitted, add it as an initializer for the current 12953 // module. 12954 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) 12955 Context.addModuleInitializer(ModuleScopes.back().Module, var); 12956 } 12957 12958 /// Determines if a variable's alignment is dependent. 12959 static bool hasDependentAlignment(VarDecl *VD) { 12960 if (VD->getType()->isDependentType()) 12961 return true; 12962 for (auto *I : VD->specific_attrs<AlignedAttr>()) 12963 if (I->isAlignmentDependent()) 12964 return true; 12965 return false; 12966 } 12967 12968 /// Check if VD needs to be dllexport/dllimport due to being in a 12969 /// dllexport/import function. 12970 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) { 12971 assert(VD->isStaticLocal()); 12972 12973 auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); 12974 12975 // Find outermost function when VD is in lambda function. 12976 while (FD && !getDLLAttr(FD) && 12977 !FD->hasAttr<DLLExportStaticLocalAttr>() && 12978 !FD->hasAttr<DLLImportStaticLocalAttr>()) { 12979 FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod()); 12980 } 12981 12982 if (!FD) 12983 return; 12984 12985 // Static locals inherit dll attributes from their function. 12986 if (Attr *A = getDLLAttr(FD)) { 12987 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext())); 12988 NewAttr->setInherited(true); 12989 VD->addAttr(NewAttr); 12990 } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) { 12991 auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A); 12992 NewAttr->setInherited(true); 12993 VD->addAttr(NewAttr); 12994 12995 // Export this function to enforce exporting this static variable even 12996 // if it is not used in this compilation unit. 12997 if (!FD->hasAttr<DLLExportAttr>()) 12998 FD->addAttr(NewAttr); 12999 13000 } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) { 13001 auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A); 13002 NewAttr->setInherited(true); 13003 VD->addAttr(NewAttr); 13004 } 13005 } 13006 13007 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform 13008 /// any semantic actions necessary after any initializer has been attached. 13009 void Sema::FinalizeDeclaration(Decl *ThisDecl) { 13010 // Note that we are no longer parsing the initializer for this declaration. 13011 ParsingInitForAutoVars.erase(ThisDecl); 13012 13013 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl); 13014 if (!VD) 13015 return; 13016 13017 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active 13018 if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() && 13019 !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) { 13020 if (PragmaClangBSSSection.Valid) 13021 VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit( 13022 Context, PragmaClangBSSSection.SectionName, 13023 PragmaClangBSSSection.PragmaLocation, 13024 AttributeCommonInfo::AS_Pragma)); 13025 if (PragmaClangDataSection.Valid) 13026 VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit( 13027 Context, PragmaClangDataSection.SectionName, 13028 PragmaClangDataSection.PragmaLocation, 13029 AttributeCommonInfo::AS_Pragma)); 13030 if (PragmaClangRodataSection.Valid) 13031 VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit( 13032 Context, PragmaClangRodataSection.SectionName, 13033 PragmaClangRodataSection.PragmaLocation, 13034 AttributeCommonInfo::AS_Pragma)); 13035 if (PragmaClangRelroSection.Valid) 13036 VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit( 13037 Context, PragmaClangRelroSection.SectionName, 13038 PragmaClangRelroSection.PragmaLocation, 13039 AttributeCommonInfo::AS_Pragma)); 13040 } 13041 13042 if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) { 13043 for (auto *BD : DD->bindings()) { 13044 FinalizeDeclaration(BD); 13045 } 13046 } 13047 13048 checkAttributesAfterMerging(*this, *VD); 13049 13050 // Perform TLS alignment check here after attributes attached to the variable 13051 // which may affect the alignment have been processed. Only perform the check 13052 // if the target has a maximum TLS alignment (zero means no constraints). 13053 if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) { 13054 // Protect the check so that it's not performed on dependent types and 13055 // dependent alignments (we can't determine the alignment in that case). 13056 if (VD->getTLSKind() && !hasDependentAlignment(VD) && 13057 !VD->isInvalidDecl()) { 13058 CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign); 13059 if (Context.getDeclAlign(VD) > MaxAlignChars) { 13060 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) 13061 << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD 13062 << (unsigned)MaxAlignChars.getQuantity(); 13063 } 13064 } 13065 } 13066 13067 if (VD->isStaticLocal()) { 13068 CheckStaticLocalForDllExport(VD); 13069 13070 if (dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) { 13071 // CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__ 13072 // function, only __shared__ variables or variables without any device 13073 // memory qualifiers may be declared with static storage class. 13074 // Note: It is unclear how a function-scope non-const static variable 13075 // without device memory qualifier is implemented, therefore only static 13076 // const variable without device memory qualifier is allowed. 13077 [&]() { 13078 if (!getLangOpts().CUDA) 13079 return; 13080 if (VD->hasAttr<CUDASharedAttr>()) 13081 return; 13082 if (VD->getType().isConstQualified() && 13083 !(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>())) 13084 return; 13085 if (CUDADiagIfDeviceCode(VD->getLocation(), 13086 diag::err_device_static_local_var) 13087 << CurrentCUDATarget()) 13088 VD->setInvalidDecl(); 13089 }(); 13090 } 13091 } 13092 13093 // Perform check for initializers of device-side global variables. 13094 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA 13095 // 7.5). We must also apply the same checks to all __shared__ 13096 // variables whether they are local or not. CUDA also allows 13097 // constant initializers for __constant__ and __device__ variables. 13098 if (getLangOpts().CUDA) 13099 checkAllowedCUDAInitializer(VD); 13100 13101 // Grab the dllimport or dllexport attribute off of the VarDecl. 13102 const InheritableAttr *DLLAttr = getDLLAttr(VD); 13103 13104 // Imported static data members cannot be defined out-of-line. 13105 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) { 13106 if (VD->isStaticDataMember() && VD->isOutOfLine() && 13107 VD->isThisDeclarationADefinition()) { 13108 // We allow definitions of dllimport class template static data members 13109 // with a warning. 13110 CXXRecordDecl *Context = 13111 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext()); 13112 bool IsClassTemplateMember = 13113 isa<ClassTemplatePartialSpecializationDecl>(Context) || 13114 Context->getDescribedClassTemplate(); 13115 13116 Diag(VD->getLocation(), 13117 IsClassTemplateMember 13118 ? diag::warn_attribute_dllimport_static_field_definition 13119 : diag::err_attribute_dllimport_static_field_definition); 13120 Diag(IA->getLocation(), diag::note_attribute); 13121 if (!IsClassTemplateMember) 13122 VD->setInvalidDecl(); 13123 } 13124 } 13125 13126 // dllimport/dllexport variables cannot be thread local, their TLS index 13127 // isn't exported with the variable. 13128 if (DLLAttr && VD->getTLSKind()) { 13129 auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); 13130 if (F && getDLLAttr(F)) { 13131 assert(VD->isStaticLocal()); 13132 // But if this is a static local in a dlimport/dllexport function, the 13133 // function will never be inlined, which means the var would never be 13134 // imported, so having it marked import/export is safe. 13135 } else { 13136 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD 13137 << DLLAttr; 13138 VD->setInvalidDecl(); 13139 } 13140 } 13141 13142 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) { 13143 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { 13144 Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr; 13145 VD->dropAttr<UsedAttr>(); 13146 } 13147 } 13148 13149 const DeclContext *DC = VD->getDeclContext(); 13150 // If there's a #pragma GCC visibility in scope, and this isn't a class 13151 // member, set the visibility of this variable. 13152 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible()) 13153 AddPushedVisibilityAttribute(VD); 13154 13155 // FIXME: Warn on unused var template partial specializations. 13156 if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD)) 13157 MarkUnusedFileScopedDecl(VD); 13158 13159 // Now we have parsed the initializer and can update the table of magic 13160 // tag values. 13161 if (!VD->hasAttr<TypeTagForDatatypeAttr>() || 13162 !VD->getType()->isIntegralOrEnumerationType()) 13163 return; 13164 13165 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) { 13166 const Expr *MagicValueExpr = VD->getInit(); 13167 if (!MagicValueExpr) { 13168 continue; 13169 } 13170 llvm::APSInt MagicValueInt; 13171 if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) { 13172 Diag(I->getRange().getBegin(), 13173 diag::err_type_tag_for_datatype_not_ice) 13174 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); 13175 continue; 13176 } 13177 if (MagicValueInt.getActiveBits() > 64) { 13178 Diag(I->getRange().getBegin(), 13179 diag::err_type_tag_for_datatype_too_large) 13180 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); 13181 continue; 13182 } 13183 uint64_t MagicValue = MagicValueInt.getZExtValue(); 13184 RegisterTypeTagForDatatype(I->getArgumentKind(), 13185 MagicValue, 13186 I->getMatchingCType(), 13187 I->getLayoutCompatible(), 13188 I->getMustBeNull()); 13189 } 13190 } 13191 13192 static bool hasDeducedAuto(DeclaratorDecl *DD) { 13193 auto *VD = dyn_cast<VarDecl>(DD); 13194 return VD && !VD->getType()->hasAutoForTrailingReturnType(); 13195 } 13196 13197 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, 13198 ArrayRef<Decl *> Group) { 13199 SmallVector<Decl*, 8> Decls; 13200 13201 if (DS.isTypeSpecOwned()) 13202 Decls.push_back(DS.getRepAsDecl()); 13203 13204 DeclaratorDecl *FirstDeclaratorInGroup = nullptr; 13205 DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr; 13206 bool DiagnosedMultipleDecomps = false; 13207 DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr; 13208 bool DiagnosedNonDeducedAuto = false; 13209 13210 for (unsigned i = 0, e = Group.size(); i != e; ++i) { 13211 if (Decl *D = Group[i]) { 13212 // For declarators, there are some additional syntactic-ish checks we need 13213 // to perform. 13214 if (auto *DD = dyn_cast<DeclaratorDecl>(D)) { 13215 if (!FirstDeclaratorInGroup) 13216 FirstDeclaratorInGroup = DD; 13217 if (!FirstDecompDeclaratorInGroup) 13218 FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D); 13219 if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() && 13220 !hasDeducedAuto(DD)) 13221 FirstNonDeducedAutoInGroup = DD; 13222 13223 if (FirstDeclaratorInGroup != DD) { 13224 // A decomposition declaration cannot be combined with any other 13225 // declaration in the same group. 13226 if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) { 13227 Diag(FirstDecompDeclaratorInGroup->getLocation(), 13228 diag::err_decomp_decl_not_alone) 13229 << FirstDeclaratorInGroup->getSourceRange() 13230 << DD->getSourceRange(); 13231 DiagnosedMultipleDecomps = true; 13232 } 13233 13234 // A declarator that uses 'auto' in any way other than to declare a 13235 // variable with a deduced type cannot be combined with any other 13236 // declarator in the same group. 13237 if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) { 13238 Diag(FirstNonDeducedAutoInGroup->getLocation(), 13239 diag::err_auto_non_deduced_not_alone) 13240 << FirstNonDeducedAutoInGroup->getType() 13241 ->hasAutoForTrailingReturnType() 13242 << FirstDeclaratorInGroup->getSourceRange() 13243 << DD->getSourceRange(); 13244 DiagnosedNonDeducedAuto = true; 13245 } 13246 } 13247 } 13248 13249 Decls.push_back(D); 13250 } 13251 } 13252 13253 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) { 13254 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) { 13255 handleTagNumbering(Tag, S); 13256 if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() && 13257 getLangOpts().CPlusPlus) 13258 Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup); 13259 } 13260 } 13261 13262 return BuildDeclaratorGroup(Decls); 13263 } 13264 13265 /// BuildDeclaratorGroup - convert a list of declarations into a declaration 13266 /// group, performing any necessary semantic checking. 13267 Sema::DeclGroupPtrTy 13268 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) { 13269 // C++14 [dcl.spec.auto]p7: (DR1347) 13270 // If the type that replaces the placeholder type is not the same in each 13271 // deduction, the program is ill-formed. 13272 if (Group.size() > 1) { 13273 QualType Deduced; 13274 VarDecl *DeducedDecl = nullptr; 13275 for (unsigned i = 0, e = Group.size(); i != e; ++i) { 13276 VarDecl *D = dyn_cast<VarDecl>(Group[i]); 13277 if (!D || D->isInvalidDecl()) 13278 break; 13279 DeducedType *DT = D->getType()->getContainedDeducedType(); 13280 if (!DT || DT->getDeducedType().isNull()) 13281 continue; 13282 if (Deduced.isNull()) { 13283 Deduced = DT->getDeducedType(); 13284 DeducedDecl = D; 13285 } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) { 13286 auto *AT = dyn_cast<AutoType>(DT); 13287 auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 13288 diag::err_auto_different_deductions) 13289 << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced 13290 << DeducedDecl->getDeclName() << DT->getDeducedType() 13291 << D->getDeclName(); 13292 if (DeducedDecl->hasInit()) 13293 Dia << DeducedDecl->getInit()->getSourceRange(); 13294 if (D->getInit()) 13295 Dia << D->getInit()->getSourceRange(); 13296 D->setInvalidDecl(); 13297 break; 13298 } 13299 } 13300 } 13301 13302 ActOnDocumentableDecls(Group); 13303 13304 return DeclGroupPtrTy::make( 13305 DeclGroupRef::Create(Context, Group.data(), Group.size())); 13306 } 13307 13308 void Sema::ActOnDocumentableDecl(Decl *D) { 13309 ActOnDocumentableDecls(D); 13310 } 13311 13312 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) { 13313 // Don't parse the comment if Doxygen diagnostics are ignored. 13314 if (Group.empty() || !Group[0]) 13315 return; 13316 13317 if (Diags.isIgnored(diag::warn_doc_param_not_found, 13318 Group[0]->getLocation()) && 13319 Diags.isIgnored(diag::warn_unknown_comment_command_name, 13320 Group[0]->getLocation())) 13321 return; 13322 13323 if (Group.size() >= 2) { 13324 // This is a decl group. Normally it will contain only declarations 13325 // produced from declarator list. But in case we have any definitions or 13326 // additional declaration references: 13327 // 'typedef struct S {} S;' 13328 // 'typedef struct S *S;' 13329 // 'struct S *pS;' 13330 // FinalizeDeclaratorGroup adds these as separate declarations. 13331 Decl *MaybeTagDecl = Group[0]; 13332 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) { 13333 Group = Group.slice(1); 13334 } 13335 } 13336 13337 // FIMXE: We assume every Decl in the group is in the same file. 13338 // This is false when preprocessor constructs the group from decls in 13339 // different files (e. g. macros or #include). 13340 Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor()); 13341 } 13342 13343 /// Common checks for a parameter-declaration that should apply to both function 13344 /// parameters and non-type template parameters. 13345 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) { 13346 // Check that there are no default arguments inside the type of this 13347 // parameter. 13348 if (getLangOpts().CPlusPlus) 13349 CheckExtraCXXDefaultArguments(D); 13350 13351 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 13352 if (D.getCXXScopeSpec().isSet()) { 13353 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) 13354 << D.getCXXScopeSpec().getRange(); 13355 } 13356 13357 // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a 13358 // simple identifier except [...irrelevant cases...]. 13359 switch (D.getName().getKind()) { 13360 case UnqualifiedIdKind::IK_Identifier: 13361 break; 13362 13363 case UnqualifiedIdKind::IK_OperatorFunctionId: 13364 case UnqualifiedIdKind::IK_ConversionFunctionId: 13365 case UnqualifiedIdKind::IK_LiteralOperatorId: 13366 case UnqualifiedIdKind::IK_ConstructorName: 13367 case UnqualifiedIdKind::IK_DestructorName: 13368 case UnqualifiedIdKind::IK_ImplicitSelfParam: 13369 case UnqualifiedIdKind::IK_DeductionGuideName: 13370 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name) 13371 << GetNameForDeclarator(D).getName(); 13372 break; 13373 13374 case UnqualifiedIdKind::IK_TemplateId: 13375 case UnqualifiedIdKind::IK_ConstructorTemplateId: 13376 // GetNameForDeclarator would not produce a useful name in this case. 13377 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id); 13378 break; 13379 } 13380 } 13381 13382 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() 13383 /// to introduce parameters into function prototype scope. 13384 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { 13385 const DeclSpec &DS = D.getDeclSpec(); 13386 13387 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. 13388 13389 // C++03 [dcl.stc]p2 also permits 'auto'. 13390 StorageClass SC = SC_None; 13391 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 13392 SC = SC_Register; 13393 // In C++11, the 'register' storage class specifier is deprecated. 13394 // In C++17, it is not allowed, but we tolerate it as an extension. 13395 if (getLangOpts().CPlusPlus11) { 13396 Diag(DS.getStorageClassSpecLoc(), 13397 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class 13398 : diag::warn_deprecated_register) 13399 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 13400 } 13401 } else if (getLangOpts().CPlusPlus && 13402 DS.getStorageClassSpec() == DeclSpec::SCS_auto) { 13403 SC = SC_Auto; 13404 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 13405 Diag(DS.getStorageClassSpecLoc(), 13406 diag::err_invalid_storage_class_in_func_decl); 13407 D.getMutableDeclSpec().ClearStorageClassSpecs(); 13408 } 13409 13410 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) 13411 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread) 13412 << DeclSpec::getSpecifierName(TSCS); 13413 if (DS.isInlineSpecified()) 13414 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) 13415 << getLangOpts().CPlusPlus17; 13416 if (DS.hasConstexprSpecifier()) 13417 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr) 13418 << 0 << D.getDeclSpec().getConstexprSpecifier(); 13419 13420 DiagnoseFunctionSpecifiers(DS); 13421 13422 CheckFunctionOrTemplateParamDeclarator(S, D); 13423 13424 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 13425 QualType parmDeclType = TInfo->getType(); 13426 13427 // Check for redeclaration of parameters, e.g. int foo(int x, int x); 13428 IdentifierInfo *II = D.getIdentifier(); 13429 if (II) { 13430 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, 13431 ForVisibleRedeclaration); 13432 LookupName(R, S); 13433 if (R.isSingleResult()) { 13434 NamedDecl *PrevDecl = R.getFoundDecl(); 13435 if (PrevDecl->isTemplateParameter()) { 13436 // Maybe we will complain about the shadowed template parameter. 13437 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 13438 // Just pretend that we didn't see the previous declaration. 13439 PrevDecl = nullptr; 13440 } else if (S->isDeclScope(PrevDecl)) { 13441 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; 13442 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 13443 13444 // Recover by removing the name 13445 II = nullptr; 13446 D.SetIdentifier(nullptr, D.getIdentifierLoc()); 13447 D.setInvalidType(true); 13448 } 13449 } 13450 } 13451 13452 // Temporarily put parameter variables in the translation unit, not 13453 // the enclosing context. This prevents them from accidentally 13454 // looking like class members in C++. 13455 ParmVarDecl *New = 13456 CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(), 13457 D.getIdentifierLoc(), II, parmDeclType, TInfo, SC); 13458 13459 if (D.isInvalidType()) 13460 New->setInvalidDecl(); 13461 13462 assert(S->isFunctionPrototypeScope()); 13463 assert(S->getFunctionPrototypeDepth() >= 1); 13464 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1, 13465 S->getNextFunctionPrototypeIndex()); 13466 13467 // Add the parameter declaration into this scope. 13468 S->AddDecl(New); 13469 if (II) 13470 IdResolver.AddDecl(New); 13471 13472 ProcessDeclAttributes(S, New, D); 13473 13474 if (D.getDeclSpec().isModulePrivateSpecified()) 13475 Diag(New->getLocation(), diag::err_module_private_local) 13476 << 1 << New->getDeclName() 13477 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 13478 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 13479 13480 if (New->hasAttr<BlocksAttr>()) { 13481 Diag(New->getLocation(), diag::err_block_on_nonlocal); 13482 } 13483 13484 if (getLangOpts().OpenCL) 13485 deduceOpenCLAddressSpace(New); 13486 13487 return New; 13488 } 13489 13490 /// Synthesizes a variable for a parameter arising from a 13491 /// typedef. 13492 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, 13493 SourceLocation Loc, 13494 QualType T) { 13495 /* FIXME: setting StartLoc == Loc. 13496 Would it be worth to modify callers so as to provide proper source 13497 location for the unnamed parameters, embedding the parameter's type? */ 13498 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr, 13499 T, Context.getTrivialTypeSourceInfo(T, Loc), 13500 SC_None, nullptr); 13501 Param->setImplicit(); 13502 return Param; 13503 } 13504 13505 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) { 13506 // Don't diagnose unused-parameter errors in template instantiations; we 13507 // will already have done so in the template itself. 13508 if (inTemplateInstantiation()) 13509 return; 13510 13511 for (const ParmVarDecl *Parameter : Parameters) { 13512 if (!Parameter->isReferenced() && Parameter->getDeclName() && 13513 !Parameter->hasAttr<UnusedAttr>()) { 13514 Diag(Parameter->getLocation(), diag::warn_unused_parameter) 13515 << Parameter->getDeclName(); 13516 } 13517 } 13518 } 13519 13520 void Sema::DiagnoseSizeOfParametersAndReturnValue( 13521 ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) { 13522 if (LangOpts.NumLargeByValueCopy == 0) // No check. 13523 return; 13524 13525 // Warn if the return value is pass-by-value and larger than the specified 13526 // threshold. 13527 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) { 13528 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity(); 13529 if (Size > LangOpts.NumLargeByValueCopy) 13530 Diag(D->getLocation(), diag::warn_return_value_size) 13531 << D->getDeclName() << Size; 13532 } 13533 13534 // Warn if any parameter is pass-by-value and larger than the specified 13535 // threshold. 13536 for (const ParmVarDecl *Parameter : Parameters) { 13537 QualType T = Parameter->getType(); 13538 if (T->isDependentType() || !T.isPODType(Context)) 13539 continue; 13540 unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); 13541 if (Size > LangOpts.NumLargeByValueCopy) 13542 Diag(Parameter->getLocation(), diag::warn_parameter_size) 13543 << Parameter->getDeclName() << Size; 13544 } 13545 } 13546 13547 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc, 13548 SourceLocation NameLoc, IdentifierInfo *Name, 13549 QualType T, TypeSourceInfo *TSInfo, 13550 StorageClass SC) { 13551 // In ARC, infer a lifetime qualifier for appropriate parameter types. 13552 if (getLangOpts().ObjCAutoRefCount && 13553 T.getObjCLifetime() == Qualifiers::OCL_None && 13554 T->isObjCLifetimeType()) { 13555 13556 Qualifiers::ObjCLifetime lifetime; 13557 13558 // Special cases for arrays: 13559 // - if it's const, use __unsafe_unretained 13560 // - otherwise, it's an error 13561 if (T->isArrayType()) { 13562 if (!T.isConstQualified()) { 13563 if (DelayedDiagnostics.shouldDelayDiagnostics()) 13564 DelayedDiagnostics.add( 13565 sema::DelayedDiagnostic::makeForbiddenType( 13566 NameLoc, diag::err_arc_array_param_no_ownership, T, false)); 13567 else 13568 Diag(NameLoc, diag::err_arc_array_param_no_ownership) 13569 << TSInfo->getTypeLoc().getSourceRange(); 13570 } 13571 lifetime = Qualifiers::OCL_ExplicitNone; 13572 } else { 13573 lifetime = T->getObjCARCImplicitLifetime(); 13574 } 13575 T = Context.getLifetimeQualifiedType(T, lifetime); 13576 } 13577 13578 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name, 13579 Context.getAdjustedParameterType(T), 13580 TSInfo, SC, nullptr); 13581 13582 // Make a note if we created a new pack in the scope of a lambda, so that 13583 // we know that references to that pack must also be expanded within the 13584 // lambda scope. 13585 if (New->isParameterPack()) 13586 if (auto *LSI = getEnclosingLambda()) 13587 LSI->LocalPacks.push_back(New); 13588 13589 if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() || 13590 New->getType().hasNonTrivialToPrimitiveCopyCUnion()) 13591 checkNonTrivialCUnion(New->getType(), New->getLocation(), 13592 NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy); 13593 13594 // Parameters can not be abstract class types. 13595 // For record types, this is done by the AbstractClassUsageDiagnoser once 13596 // the class has been completely parsed. 13597 if (!CurContext->isRecord() && 13598 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl, 13599 AbstractParamType)) 13600 New->setInvalidDecl(); 13601 13602 // Parameter declarators cannot be interface types. All ObjC objects are 13603 // passed by reference. 13604 if (T->isObjCObjectType()) { 13605 SourceLocation TypeEndLoc = 13606 getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc()); 13607 Diag(NameLoc, 13608 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T 13609 << FixItHint::CreateInsertion(TypeEndLoc, "*"); 13610 T = Context.getObjCObjectPointerType(T); 13611 New->setType(T); 13612 } 13613 13614 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 13615 // duration shall not be qualified by an address-space qualifier." 13616 // Since all parameters have automatic store duration, they can not have 13617 // an address space. 13618 if (T.getAddressSpace() != LangAS::Default && 13619 // OpenCL allows function arguments declared to be an array of a type 13620 // to be qualified with an address space. 13621 !(getLangOpts().OpenCL && 13622 (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) { 13623 Diag(NameLoc, diag::err_arg_with_address_space); 13624 New->setInvalidDecl(); 13625 } 13626 13627 return New; 13628 } 13629 13630 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, 13631 SourceLocation LocAfterDecls) { 13632 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 13633 13634 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' 13635 // for a K&R function. 13636 if (!FTI.hasPrototype) { 13637 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) { 13638 --i; 13639 if (FTI.Params[i].Param == nullptr) { 13640 SmallString<256> Code; 13641 llvm::raw_svector_ostream(Code) 13642 << " int " << FTI.Params[i].Ident->getName() << ";\n"; 13643 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared) 13644 << FTI.Params[i].Ident 13645 << FixItHint::CreateInsertion(LocAfterDecls, Code); 13646 13647 // Implicitly declare the argument as type 'int' for lack of a better 13648 // type. 13649 AttributeFactory attrs; 13650 DeclSpec DS(attrs); 13651 const char* PrevSpec; // unused 13652 unsigned DiagID; // unused 13653 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec, 13654 DiagID, Context.getPrintingPolicy()); 13655 // Use the identifier location for the type source range. 13656 DS.SetRangeStart(FTI.Params[i].IdentLoc); 13657 DS.SetRangeEnd(FTI.Params[i].IdentLoc); 13658 Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext); 13659 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc); 13660 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD); 13661 } 13662 } 13663 } 13664 } 13665 13666 Decl * 13667 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D, 13668 MultiTemplateParamsArg TemplateParameterLists, 13669 SkipBodyInfo *SkipBody) { 13670 assert(getCurFunctionDecl() == nullptr && "Function parsing confused"); 13671 assert(D.isFunctionDeclarator() && "Not a function declarator!"); 13672 Scope *ParentScope = FnBodyScope->getParent(); 13673 13674 // Check if we are in an `omp begin/end declare variant` scope. If we are, and 13675 // we define a non-templated function definition, we will create a declaration 13676 // instead (=BaseFD), and emit the definition with a mangled name afterwards. 13677 // The base function declaration will have the equivalent of an `omp declare 13678 // variant` annotation which specifies the mangled definition as a 13679 // specialization function under the OpenMP context defined as part of the 13680 // `omp begin declare variant`. 13681 FunctionDecl *BaseFD = nullptr; 13682 if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope() && 13683 TemplateParameterLists.empty()) 13684 BaseFD = ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope( 13685 ParentScope, D); 13686 13687 D.setFunctionDefinitionKind(FDK_Definition); 13688 Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists); 13689 Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody); 13690 13691 if (BaseFD) 13692 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope( 13693 cast<FunctionDecl>(Dcl), BaseFD); 13694 13695 return Dcl; 13696 } 13697 13698 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) { 13699 Consumer.HandleInlineFunctionDefinition(D); 13700 } 13701 13702 static bool 13703 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD, 13704 const FunctionDecl *&PossiblePrototype) { 13705 // Don't warn about invalid declarations. 13706 if (FD->isInvalidDecl()) 13707 return false; 13708 13709 // Or declarations that aren't global. 13710 if (!FD->isGlobal()) 13711 return false; 13712 13713 // Don't warn about C++ member functions. 13714 if (isa<CXXMethodDecl>(FD)) 13715 return false; 13716 13717 // Don't warn about 'main'. 13718 if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext())) 13719 if (IdentifierInfo *II = FD->getIdentifier()) 13720 if (II->isStr("main")) 13721 return false; 13722 13723 // Don't warn about inline functions. 13724 if (FD->isInlined()) 13725 return false; 13726 13727 // Don't warn about function templates. 13728 if (FD->getDescribedFunctionTemplate()) 13729 return false; 13730 13731 // Don't warn about function template specializations. 13732 if (FD->isFunctionTemplateSpecialization()) 13733 return false; 13734 13735 // Don't warn for OpenCL kernels. 13736 if (FD->hasAttr<OpenCLKernelAttr>()) 13737 return false; 13738 13739 // Don't warn on explicitly deleted functions. 13740 if (FD->isDeleted()) 13741 return false; 13742 13743 for (const FunctionDecl *Prev = FD->getPreviousDecl(); 13744 Prev; Prev = Prev->getPreviousDecl()) { 13745 // Ignore any declarations that occur in function or method 13746 // scope, because they aren't visible from the header. 13747 if (Prev->getLexicalDeclContext()->isFunctionOrMethod()) 13748 continue; 13749 13750 PossiblePrototype = Prev; 13751 return Prev->getType()->isFunctionNoProtoType(); 13752 } 13753 13754 return true; 13755 } 13756 13757 void 13758 Sema::CheckForFunctionRedefinition(FunctionDecl *FD, 13759 const FunctionDecl *EffectiveDefinition, 13760 SkipBodyInfo *SkipBody) { 13761 const FunctionDecl *Definition = EffectiveDefinition; 13762 if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) { 13763 // If this is a friend function defined in a class template, it does not 13764 // have a body until it is used, nevertheless it is a definition, see 13765 // [temp.inst]p2: 13766 // 13767 // ... for the purpose of determining whether an instantiated redeclaration 13768 // is valid according to [basic.def.odr] and [class.mem], a declaration that 13769 // corresponds to a definition in the template is considered to be a 13770 // definition. 13771 // 13772 // The following code must produce redefinition error: 13773 // 13774 // template<typename T> struct C20 { friend void func_20() {} }; 13775 // C20<int> c20i; 13776 // void func_20() {} 13777 // 13778 for (auto I : FD->redecls()) { 13779 if (I != FD && !I->isInvalidDecl() && 13780 I->getFriendObjectKind() != Decl::FOK_None) { 13781 if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) { 13782 if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) { 13783 // A merged copy of the same function, instantiated as a member of 13784 // the same class, is OK. 13785 if (declaresSameEntity(OrigFD, Original) && 13786 declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()), 13787 cast<Decl>(FD->getLexicalDeclContext()))) 13788 continue; 13789 } 13790 13791 if (Original->isThisDeclarationADefinition()) { 13792 Definition = I; 13793 break; 13794 } 13795 } 13796 } 13797 } 13798 } 13799 13800 if (!Definition) 13801 // Similar to friend functions a friend function template may be a 13802 // definition and do not have a body if it is instantiated in a class 13803 // template. 13804 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) { 13805 for (auto I : FTD->redecls()) { 13806 auto D = cast<FunctionTemplateDecl>(I); 13807 if (D != FTD) { 13808 assert(!D->isThisDeclarationADefinition() && 13809 "More than one definition in redeclaration chain"); 13810 if (D->getFriendObjectKind() != Decl::FOK_None) 13811 if (FunctionTemplateDecl *FT = 13812 D->getInstantiatedFromMemberTemplate()) { 13813 if (FT->isThisDeclarationADefinition()) { 13814 Definition = D->getTemplatedDecl(); 13815 break; 13816 } 13817 } 13818 } 13819 } 13820 } 13821 13822 if (!Definition) 13823 return; 13824 13825 if (canRedefineFunction(Definition, getLangOpts())) 13826 return; 13827 13828 // Don't emit an error when this is redefinition of a typo-corrected 13829 // definition. 13830 if (TypoCorrectedFunctionDefinitions.count(Definition)) 13831 return; 13832 13833 // If we don't have a visible definition of the function, and it's inline or 13834 // a template, skip the new definition. 13835 if (SkipBody && !hasVisibleDefinition(Definition) && 13836 (Definition->getFormalLinkage() == InternalLinkage || 13837 Definition->isInlined() || 13838 Definition->getDescribedFunctionTemplate() || 13839 Definition->getNumTemplateParameterLists())) { 13840 SkipBody->ShouldSkip = true; 13841 SkipBody->Previous = const_cast<FunctionDecl*>(Definition); 13842 if (auto *TD = Definition->getDescribedFunctionTemplate()) 13843 makeMergedDefinitionVisible(TD); 13844 makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition)); 13845 return; 13846 } 13847 13848 if (getLangOpts().GNUMode && Definition->isInlineSpecified() && 13849 Definition->getStorageClass() == SC_Extern) 13850 Diag(FD->getLocation(), diag::err_redefinition_extern_inline) 13851 << FD->getDeclName() << getLangOpts().CPlusPlus; 13852 else 13853 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName(); 13854 13855 Diag(Definition->getLocation(), diag::note_previous_definition); 13856 FD->setInvalidDecl(); 13857 } 13858 13859 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator, 13860 Sema &S) { 13861 CXXRecordDecl *const LambdaClass = CallOperator->getParent(); 13862 13863 LambdaScopeInfo *LSI = S.PushLambdaScope(); 13864 LSI->CallOperator = CallOperator; 13865 LSI->Lambda = LambdaClass; 13866 LSI->ReturnType = CallOperator->getReturnType(); 13867 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault(); 13868 13869 if (LCD == LCD_None) 13870 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None; 13871 else if (LCD == LCD_ByCopy) 13872 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval; 13873 else if (LCD == LCD_ByRef) 13874 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref; 13875 DeclarationNameInfo DNI = CallOperator->getNameInfo(); 13876 13877 LSI->IntroducerRange = DNI.getCXXOperatorNameRange(); 13878 LSI->Mutable = !CallOperator->isConst(); 13879 13880 // Add the captures to the LSI so they can be noted as already 13881 // captured within tryCaptureVar. 13882 auto I = LambdaClass->field_begin(); 13883 for (const auto &C : LambdaClass->captures()) { 13884 if (C.capturesVariable()) { 13885 VarDecl *VD = C.getCapturedVar(); 13886 if (VD->isInitCapture()) 13887 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD); 13888 const bool ByRef = C.getCaptureKind() == LCK_ByRef; 13889 LSI->addCapture(VD, /*IsBlock*/false, ByRef, 13890 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(), 13891 /*EllipsisLoc*/C.isPackExpansion() 13892 ? C.getEllipsisLoc() : SourceLocation(), 13893 I->getType(), /*Invalid*/false); 13894 13895 } else if (C.capturesThis()) { 13896 LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(), 13897 C.getCaptureKind() == LCK_StarThis); 13898 } else { 13899 LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(), 13900 I->getType()); 13901 } 13902 ++I; 13903 } 13904 } 13905 13906 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D, 13907 SkipBodyInfo *SkipBody) { 13908 if (!D) { 13909 // Parsing the function declaration failed in some way. Push on a fake scope 13910 // anyway so we can try to parse the function body. 13911 PushFunctionScope(); 13912 PushExpressionEvaluationContext(ExprEvalContexts.back().Context); 13913 return D; 13914 } 13915 13916 FunctionDecl *FD = nullptr; 13917 13918 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) 13919 FD = FunTmpl->getTemplatedDecl(); 13920 else 13921 FD = cast<FunctionDecl>(D); 13922 13923 // Do not push if it is a lambda because one is already pushed when building 13924 // the lambda in ActOnStartOfLambdaDefinition(). 13925 if (!isLambdaCallOperator(FD)) 13926 PushExpressionEvaluationContext( 13927 FD->isConsteval() ? ExpressionEvaluationContext::ConstantEvaluated 13928 : ExprEvalContexts.back().Context); 13929 13930 // Check for defining attributes before the check for redefinition. 13931 if (const auto *Attr = FD->getAttr<AliasAttr>()) { 13932 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0; 13933 FD->dropAttr<AliasAttr>(); 13934 FD->setInvalidDecl(); 13935 } 13936 if (const auto *Attr = FD->getAttr<IFuncAttr>()) { 13937 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1; 13938 FD->dropAttr<IFuncAttr>(); 13939 FD->setInvalidDecl(); 13940 } 13941 13942 // See if this is a redefinition. If 'will have body' is already set, then 13943 // these checks were already performed when it was set. 13944 if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) { 13945 CheckForFunctionRedefinition(FD, nullptr, SkipBody); 13946 13947 // If we're skipping the body, we're done. Don't enter the scope. 13948 if (SkipBody && SkipBody->ShouldSkip) 13949 return D; 13950 } 13951 13952 // Mark this function as "will have a body eventually". This lets users to 13953 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing 13954 // this function. 13955 FD->setWillHaveBody(); 13956 13957 // If we are instantiating a generic lambda call operator, push 13958 // a LambdaScopeInfo onto the function stack. But use the information 13959 // that's already been calculated (ActOnLambdaExpr) to prime the current 13960 // LambdaScopeInfo. 13961 // When the template operator is being specialized, the LambdaScopeInfo, 13962 // has to be properly restored so that tryCaptureVariable doesn't try 13963 // and capture any new variables. In addition when calculating potential 13964 // captures during transformation of nested lambdas, it is necessary to 13965 // have the LSI properly restored. 13966 if (isGenericLambdaCallOperatorSpecialization(FD)) { 13967 assert(inTemplateInstantiation() && 13968 "There should be an active template instantiation on the stack " 13969 "when instantiating a generic lambda!"); 13970 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this); 13971 } else { 13972 // Enter a new function scope 13973 PushFunctionScope(); 13974 } 13975 13976 // Builtin functions cannot be defined. 13977 if (unsigned BuiltinID = FD->getBuiltinID()) { 13978 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 13979 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) { 13980 Diag(FD->getLocation(), diag::err_builtin_definition) << FD; 13981 FD->setInvalidDecl(); 13982 } 13983 } 13984 13985 // The return type of a function definition must be complete 13986 // (C99 6.9.1p3, C++ [dcl.fct]p6). 13987 QualType ResultType = FD->getReturnType(); 13988 if (!ResultType->isDependentType() && !ResultType->isVoidType() && 13989 !FD->isInvalidDecl() && 13990 RequireCompleteType(FD->getLocation(), ResultType, 13991 diag::err_func_def_incomplete_result)) 13992 FD->setInvalidDecl(); 13993 13994 if (FnBodyScope) 13995 PushDeclContext(FnBodyScope, FD); 13996 13997 // Check the validity of our function parameters 13998 CheckParmsForFunctionDef(FD->parameters(), 13999 /*CheckParameterNames=*/true); 14000 14001 // Add non-parameter declarations already in the function to the current 14002 // scope. 14003 if (FnBodyScope) { 14004 for (Decl *NPD : FD->decls()) { 14005 auto *NonParmDecl = dyn_cast<NamedDecl>(NPD); 14006 if (!NonParmDecl) 14007 continue; 14008 assert(!isa<ParmVarDecl>(NonParmDecl) && 14009 "parameters should not be in newly created FD yet"); 14010 14011 // If the decl has a name, make it accessible in the current scope. 14012 if (NonParmDecl->getDeclName()) 14013 PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false); 14014 14015 // Similarly, dive into enums and fish their constants out, making them 14016 // accessible in this scope. 14017 if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) { 14018 for (auto *EI : ED->enumerators()) 14019 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false); 14020 } 14021 } 14022 } 14023 14024 // Introduce our parameters into the function scope 14025 for (auto Param : FD->parameters()) { 14026 Param->setOwningFunction(FD); 14027 14028 // If this has an identifier, add it to the scope stack. 14029 if (Param->getIdentifier() && FnBodyScope) { 14030 CheckShadow(FnBodyScope, Param); 14031 14032 PushOnScopeChains(Param, FnBodyScope); 14033 } 14034 } 14035 14036 // Ensure that the function's exception specification is instantiated. 14037 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>()) 14038 ResolveExceptionSpec(D->getLocation(), FPT); 14039 14040 // dllimport cannot be applied to non-inline function definitions. 14041 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() && 14042 !FD->isTemplateInstantiation()) { 14043 assert(!FD->hasAttr<DLLExportAttr>()); 14044 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition); 14045 FD->setInvalidDecl(); 14046 return D; 14047 } 14048 // We want to attach documentation to original Decl (which might be 14049 // a function template). 14050 ActOnDocumentableDecl(D); 14051 if (getCurLexicalContext()->isObjCContainer() && 14052 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl && 14053 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation) 14054 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container); 14055 14056 return D; 14057 } 14058 14059 /// Given the set of return statements within a function body, 14060 /// compute the variables that are subject to the named return value 14061 /// optimization. 14062 /// 14063 /// Each of the variables that is subject to the named return value 14064 /// optimization will be marked as NRVO variables in the AST, and any 14065 /// return statement that has a marked NRVO variable as its NRVO candidate can 14066 /// use the named return value optimization. 14067 /// 14068 /// This function applies a very simplistic algorithm for NRVO: if every return 14069 /// statement in the scope of a variable has the same NRVO candidate, that 14070 /// candidate is an NRVO variable. 14071 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { 14072 ReturnStmt **Returns = Scope->Returns.data(); 14073 14074 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { 14075 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) { 14076 if (!NRVOCandidate->isNRVOVariable()) 14077 Returns[I]->setNRVOCandidate(nullptr); 14078 } 14079 } 14080 } 14081 14082 bool Sema::canDelayFunctionBody(const Declarator &D) { 14083 // We can't delay parsing the body of a constexpr function template (yet). 14084 if (D.getDeclSpec().hasConstexprSpecifier()) 14085 return false; 14086 14087 // We can't delay parsing the body of a function template with a deduced 14088 // return type (yet). 14089 if (D.getDeclSpec().hasAutoTypeSpec()) { 14090 // If the placeholder introduces a non-deduced trailing return type, 14091 // we can still delay parsing it. 14092 if (D.getNumTypeObjects()) { 14093 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1); 14094 if (Outer.Kind == DeclaratorChunk::Function && 14095 Outer.Fun.hasTrailingReturnType()) { 14096 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType()); 14097 return Ty.isNull() || !Ty->isUndeducedType(); 14098 } 14099 } 14100 return false; 14101 } 14102 14103 return true; 14104 } 14105 14106 bool Sema::canSkipFunctionBody(Decl *D) { 14107 // We cannot skip the body of a function (or function template) which is 14108 // constexpr, since we may need to evaluate its body in order to parse the 14109 // rest of the file. 14110 // We cannot skip the body of a function with an undeduced return type, 14111 // because any callers of that function need to know the type. 14112 if (const FunctionDecl *FD = D->getAsFunction()) { 14113 if (FD->isConstexpr()) 14114 return false; 14115 // We can't simply call Type::isUndeducedType here, because inside template 14116 // auto can be deduced to a dependent type, which is not considered 14117 // "undeduced". 14118 if (FD->getReturnType()->getContainedDeducedType()) 14119 return false; 14120 } 14121 return Consumer.shouldSkipFunctionBody(D); 14122 } 14123 14124 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) { 14125 if (!Decl) 14126 return nullptr; 14127 if (FunctionDecl *FD = Decl->getAsFunction()) 14128 FD->setHasSkippedBody(); 14129 else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl)) 14130 MD->setHasSkippedBody(); 14131 return Decl; 14132 } 14133 14134 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { 14135 return ActOnFinishFunctionBody(D, BodyArg, false); 14136 } 14137 14138 /// RAII object that pops an ExpressionEvaluationContext when exiting a function 14139 /// body. 14140 class ExitFunctionBodyRAII { 14141 public: 14142 ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {} 14143 ~ExitFunctionBodyRAII() { 14144 if (!IsLambda) 14145 S.PopExpressionEvaluationContext(); 14146 } 14147 14148 private: 14149 Sema &S; 14150 bool IsLambda = false; 14151 }; 14152 14153 static void diagnoseImplicitlyRetainedSelf(Sema &S) { 14154 llvm::DenseMap<const BlockDecl *, bool> EscapeInfo; 14155 14156 auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) { 14157 if (EscapeInfo.count(BD)) 14158 return EscapeInfo[BD]; 14159 14160 bool R = false; 14161 const BlockDecl *CurBD = BD; 14162 14163 do { 14164 R = !CurBD->doesNotEscape(); 14165 if (R) 14166 break; 14167 CurBD = CurBD->getParent()->getInnermostBlockDecl(); 14168 } while (CurBD); 14169 14170 return EscapeInfo[BD] = R; 14171 }; 14172 14173 // If the location where 'self' is implicitly retained is inside a escaping 14174 // block, emit a diagnostic. 14175 for (const std::pair<SourceLocation, const BlockDecl *> &P : 14176 S.ImplicitlyRetainedSelfLocs) 14177 if (IsOrNestedInEscapingBlock(P.second)) 14178 S.Diag(P.first, diag::warn_implicitly_retains_self) 14179 << FixItHint::CreateInsertion(P.first, "self->"); 14180 } 14181 14182 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, 14183 bool IsInstantiation) { 14184 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr; 14185 14186 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); 14187 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr; 14188 14189 if (getLangOpts().Coroutines && getCurFunction()->isCoroutine()) 14190 CheckCompletedCoroutineBody(FD, Body); 14191 14192 // Do not call PopExpressionEvaluationContext() if it is a lambda because one 14193 // is already popped when finishing the lambda in BuildLambdaExpr(). This is 14194 // meant to pop the context added in ActOnStartOfFunctionDef(). 14195 ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD)); 14196 14197 if (FD) { 14198 FD->setBody(Body); 14199 FD->setWillHaveBody(false); 14200 14201 if (getLangOpts().CPlusPlus14) { 14202 if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() && 14203 FD->getReturnType()->isUndeducedType()) { 14204 // If the function has a deduced result type but contains no 'return' 14205 // statements, the result type as written must be exactly 'auto', and 14206 // the deduced result type is 'void'. 14207 if (!FD->getReturnType()->getAs<AutoType>()) { 14208 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto) 14209 << FD->getReturnType(); 14210 FD->setInvalidDecl(); 14211 } else { 14212 // Substitute 'void' for the 'auto' in the type. 14213 TypeLoc ResultType = getReturnTypeLoc(FD); 14214 Context.adjustDeducedFunctionResultType( 14215 FD, SubstAutoType(ResultType.getType(), Context.VoidTy)); 14216 } 14217 } 14218 } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) { 14219 // In C++11, we don't use 'auto' deduction rules for lambda call 14220 // operators because we don't support return type deduction. 14221 auto *LSI = getCurLambda(); 14222 if (LSI->HasImplicitReturnType) { 14223 deduceClosureReturnType(*LSI); 14224 14225 // C++11 [expr.prim.lambda]p4: 14226 // [...] if there are no return statements in the compound-statement 14227 // [the deduced type is] the type void 14228 QualType RetType = 14229 LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType; 14230 14231 // Update the return type to the deduced type. 14232 const auto *Proto = FD->getType()->castAs<FunctionProtoType>(); 14233 FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(), 14234 Proto->getExtProtoInfo())); 14235 } 14236 } 14237 14238 // If the function implicitly returns zero (like 'main') or is naked, 14239 // don't complain about missing return statements. 14240 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>()) 14241 WP.disableCheckFallThrough(); 14242 14243 // MSVC permits the use of pure specifier (=0) on function definition, 14244 // defined at class scope, warn about this non-standard construct. 14245 if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine()) 14246 Diag(FD->getLocation(), diag::ext_pure_function_definition); 14247 14248 if (!FD->isInvalidDecl()) { 14249 // Don't diagnose unused parameters of defaulted or deleted functions. 14250 if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody()) 14251 DiagnoseUnusedParameters(FD->parameters()); 14252 DiagnoseSizeOfParametersAndReturnValue(FD->parameters(), 14253 FD->getReturnType(), FD); 14254 14255 // If this is a structor, we need a vtable. 14256 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD)) 14257 MarkVTableUsed(FD->getLocation(), Constructor->getParent()); 14258 else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD)) 14259 MarkVTableUsed(FD->getLocation(), Destructor->getParent()); 14260 14261 // Try to apply the named return value optimization. We have to check 14262 // if we can do this here because lambdas keep return statements around 14263 // to deduce an implicit return type. 14264 if (FD->getReturnType()->isRecordType() && 14265 (!getLangOpts().CPlusPlus || !FD->isDependentContext())) 14266 computeNRVO(Body, getCurFunction()); 14267 } 14268 14269 // GNU warning -Wmissing-prototypes: 14270 // Warn if a global function is defined without a previous 14271 // prototype declaration. This warning is issued even if the 14272 // definition itself provides a prototype. The aim is to detect 14273 // global functions that fail to be declared in header files. 14274 const FunctionDecl *PossiblePrototype = nullptr; 14275 if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) { 14276 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; 14277 14278 if (PossiblePrototype) { 14279 // We found a declaration that is not a prototype, 14280 // but that could be a zero-parameter prototype 14281 if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) { 14282 TypeLoc TL = TI->getTypeLoc(); 14283 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>()) 14284 Diag(PossiblePrototype->getLocation(), 14285 diag::note_declaration_not_a_prototype) 14286 << (FD->getNumParams() != 0) 14287 << (FD->getNumParams() == 0 14288 ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void") 14289 : FixItHint{}); 14290 } 14291 } else { 14292 // Returns true if the token beginning at this Loc is `const`. 14293 auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM, 14294 const LangOptions &LangOpts) { 14295 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); 14296 if (LocInfo.first.isInvalid()) 14297 return false; 14298 14299 bool Invalid = false; 14300 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 14301 if (Invalid) 14302 return false; 14303 14304 if (LocInfo.second > Buffer.size()) 14305 return false; 14306 14307 const char *LexStart = Buffer.data() + LocInfo.second; 14308 StringRef StartTok(LexStart, Buffer.size() - LocInfo.second); 14309 14310 return StartTok.consume_front("const") && 14311 (StartTok.empty() || isWhitespace(StartTok[0]) || 14312 StartTok.startswith("/*") || StartTok.startswith("//")); 14313 }; 14314 14315 auto findBeginLoc = [&]() { 14316 // If the return type has `const` qualifier, we want to insert 14317 // `static` before `const` (and not before the typename). 14318 if ((FD->getReturnType()->isAnyPointerType() && 14319 FD->getReturnType()->getPointeeType().isConstQualified()) || 14320 FD->getReturnType().isConstQualified()) { 14321 // But only do this if we can determine where the `const` is. 14322 14323 if (isLocAtConst(FD->getBeginLoc(), getSourceManager(), 14324 getLangOpts())) 14325 14326 return FD->getBeginLoc(); 14327 } 14328 return FD->getTypeSpecStartLoc(); 14329 }; 14330 Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage) 14331 << /* function */ 1 14332 << (FD->getStorageClass() == SC_None 14333 ? FixItHint::CreateInsertion(findBeginLoc(), "static ") 14334 : FixItHint{}); 14335 } 14336 14337 // GNU warning -Wstrict-prototypes 14338 // Warn if K&R function is defined without a previous declaration. 14339 // This warning is issued only if the definition itself does not provide 14340 // a prototype. Only K&R definitions do not provide a prototype. 14341 if (!FD->hasWrittenPrototype()) { 14342 TypeSourceInfo *TI = FD->getTypeSourceInfo(); 14343 TypeLoc TL = TI->getTypeLoc(); 14344 FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>(); 14345 Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2; 14346 } 14347 } 14348 14349 // Warn on CPUDispatch with an actual body. 14350 if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body) 14351 if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body)) 14352 if (!CmpndBody->body_empty()) 14353 Diag(CmpndBody->body_front()->getBeginLoc(), 14354 diag::warn_dispatch_body_ignored); 14355 14356 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 14357 const CXXMethodDecl *KeyFunction; 14358 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) && 14359 MD->isVirtual() && 14360 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) && 14361 MD == KeyFunction->getCanonicalDecl()) { 14362 // Update the key-function state if necessary for this ABI. 14363 if (FD->isInlined() && 14364 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { 14365 Context.setNonKeyFunction(MD); 14366 14367 // If the newly-chosen key function is already defined, then we 14368 // need to mark the vtable as used retroactively. 14369 KeyFunction = Context.getCurrentKeyFunction(MD->getParent()); 14370 const FunctionDecl *Definition; 14371 if (KeyFunction && KeyFunction->isDefined(Definition)) 14372 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true); 14373 } else { 14374 // We just defined they key function; mark the vtable as used. 14375 MarkVTableUsed(FD->getLocation(), MD->getParent(), true); 14376 } 14377 } 14378 } 14379 14380 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && 14381 "Function parsing confused"); 14382 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { 14383 assert(MD == getCurMethodDecl() && "Method parsing confused"); 14384 MD->setBody(Body); 14385 if (!MD->isInvalidDecl()) { 14386 DiagnoseSizeOfParametersAndReturnValue(MD->parameters(), 14387 MD->getReturnType(), MD); 14388 14389 if (Body) 14390 computeNRVO(Body, getCurFunction()); 14391 } 14392 if (getCurFunction()->ObjCShouldCallSuper) { 14393 Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call) 14394 << MD->getSelector().getAsString(); 14395 getCurFunction()->ObjCShouldCallSuper = false; 14396 } 14397 if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) { 14398 const ObjCMethodDecl *InitMethod = nullptr; 14399 bool isDesignated = 14400 MD->isDesignatedInitializerForTheInterface(&InitMethod); 14401 assert(isDesignated && InitMethod); 14402 (void)isDesignated; 14403 14404 auto superIsNSObject = [&](const ObjCMethodDecl *MD) { 14405 auto IFace = MD->getClassInterface(); 14406 if (!IFace) 14407 return false; 14408 auto SuperD = IFace->getSuperClass(); 14409 if (!SuperD) 14410 return false; 14411 return SuperD->getIdentifier() == 14412 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); 14413 }; 14414 // Don't issue this warning for unavailable inits or direct subclasses 14415 // of NSObject. 14416 if (!MD->isUnavailable() && !superIsNSObject(MD)) { 14417 Diag(MD->getLocation(), 14418 diag::warn_objc_designated_init_missing_super_call); 14419 Diag(InitMethod->getLocation(), 14420 diag::note_objc_designated_init_marked_here); 14421 } 14422 getCurFunction()->ObjCWarnForNoDesignatedInitChain = false; 14423 } 14424 if (getCurFunction()->ObjCWarnForNoInitDelegation) { 14425 // Don't issue this warning for unavaialable inits. 14426 if (!MD->isUnavailable()) 14427 Diag(MD->getLocation(), 14428 diag::warn_objc_secondary_init_missing_init_call); 14429 getCurFunction()->ObjCWarnForNoInitDelegation = false; 14430 } 14431 14432 diagnoseImplicitlyRetainedSelf(*this); 14433 } else { 14434 // Parsing the function declaration failed in some way. Pop the fake scope 14435 // we pushed on. 14436 PopFunctionScopeInfo(ActivePolicy, dcl); 14437 return nullptr; 14438 } 14439 14440 if (Body && getCurFunction()->HasPotentialAvailabilityViolations) 14441 DiagnoseUnguardedAvailabilityViolations(dcl); 14442 14443 assert(!getCurFunction()->ObjCShouldCallSuper && 14444 "This should only be set for ObjC methods, which should have been " 14445 "handled in the block above."); 14446 14447 // Verify and clean out per-function state. 14448 if (Body && (!FD || !FD->isDefaulted())) { 14449 // C++ constructors that have function-try-blocks can't have return 14450 // statements in the handlers of that block. (C++ [except.handle]p14) 14451 // Verify this. 14452 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body)) 14453 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body)); 14454 14455 // Verify that gotos and switch cases don't jump into scopes illegally. 14456 if (getCurFunction()->NeedsScopeChecking() && 14457 !PP.isCodeCompletionEnabled()) 14458 DiagnoseInvalidJumps(Body); 14459 14460 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) { 14461 if (!Destructor->getParent()->isDependentType()) 14462 CheckDestructor(Destructor); 14463 14464 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 14465 Destructor->getParent()); 14466 } 14467 14468 // If any errors have occurred, clear out any temporaries that may have 14469 // been leftover. This ensures that these temporaries won't be picked up for 14470 // deletion in some later function. 14471 if (getDiagnostics().hasUncompilableErrorOccurred() || 14472 getDiagnostics().getSuppressAllDiagnostics()) { 14473 DiscardCleanupsInEvaluationContext(); 14474 } 14475 if (!getDiagnostics().hasUncompilableErrorOccurred() && 14476 !isa<FunctionTemplateDecl>(dcl)) { 14477 // Since the body is valid, issue any analysis-based warnings that are 14478 // enabled. 14479 ActivePolicy = &WP; 14480 } 14481 14482 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() && 14483 !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose)) 14484 FD->setInvalidDecl(); 14485 14486 if (FD && FD->hasAttr<NakedAttr>()) { 14487 for (const Stmt *S : Body->children()) { 14488 // Allow local register variables without initializer as they don't 14489 // require prologue. 14490 bool RegisterVariables = false; 14491 if (auto *DS = dyn_cast<DeclStmt>(S)) { 14492 for (const auto *Decl : DS->decls()) { 14493 if (const auto *Var = dyn_cast<VarDecl>(Decl)) { 14494 RegisterVariables = 14495 Var->hasAttr<AsmLabelAttr>() && !Var->hasInit(); 14496 if (!RegisterVariables) 14497 break; 14498 } 14499 } 14500 } 14501 if (RegisterVariables) 14502 continue; 14503 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) { 14504 Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function); 14505 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 14506 FD->setInvalidDecl(); 14507 break; 14508 } 14509 } 14510 } 14511 14512 assert(ExprCleanupObjects.size() == 14513 ExprEvalContexts.back().NumCleanupObjects && 14514 "Leftover temporaries in function"); 14515 assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function"); 14516 assert(MaybeODRUseExprs.empty() && 14517 "Leftover expressions for odr-use checking"); 14518 } 14519 14520 if (!IsInstantiation) 14521 PopDeclContext(); 14522 14523 PopFunctionScopeInfo(ActivePolicy, dcl); 14524 // If any errors have occurred, clear out any temporaries that may have 14525 // been leftover. This ensures that these temporaries won't be picked up for 14526 // deletion in some later function. 14527 if (getDiagnostics().hasUncompilableErrorOccurred()) { 14528 DiscardCleanupsInEvaluationContext(); 14529 } 14530 14531 if (LangOpts.OpenMP || LangOpts.CUDA || LangOpts.SYCLIsDevice) { 14532 auto ES = getEmissionStatus(FD); 14533 if (ES == Sema::FunctionEmissionStatus::Emitted || 14534 ES == Sema::FunctionEmissionStatus::Unknown) 14535 DeclsToCheckForDeferredDiags.push_back(FD); 14536 } 14537 14538 return dcl; 14539 } 14540 14541 /// When we finish delayed parsing of an attribute, we must attach it to the 14542 /// relevant Decl. 14543 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D, 14544 ParsedAttributes &Attrs) { 14545 // Always attach attributes to the underlying decl. 14546 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) 14547 D = TD->getTemplatedDecl(); 14548 ProcessDeclAttributeList(S, D, Attrs); 14549 14550 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D)) 14551 if (Method->isStatic()) 14552 checkThisInStaticMemberFunctionAttributes(Method); 14553 } 14554 14555 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function 14556 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). 14557 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, 14558 IdentifierInfo &II, Scope *S) { 14559 // Find the scope in which the identifier is injected and the corresponding 14560 // DeclContext. 14561 // FIXME: C89 does not say what happens if there is no enclosing block scope. 14562 // In that case, we inject the declaration into the translation unit scope 14563 // instead. 14564 Scope *BlockScope = S; 14565 while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent()) 14566 BlockScope = BlockScope->getParent(); 14567 14568 Scope *ContextScope = BlockScope; 14569 while (!ContextScope->getEntity()) 14570 ContextScope = ContextScope->getParent(); 14571 ContextRAII SavedContext(*this, ContextScope->getEntity()); 14572 14573 // Before we produce a declaration for an implicitly defined 14574 // function, see whether there was a locally-scoped declaration of 14575 // this name as a function or variable. If so, use that 14576 // (non-visible) declaration, and complain about it. 14577 NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II); 14578 if (ExternCPrev) { 14579 // We still need to inject the function into the enclosing block scope so 14580 // that later (non-call) uses can see it. 14581 PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false); 14582 14583 // C89 footnote 38: 14584 // If in fact it is not defined as having type "function returning int", 14585 // the behavior is undefined. 14586 if (!isa<FunctionDecl>(ExternCPrev) || 14587 !Context.typesAreCompatible( 14588 cast<FunctionDecl>(ExternCPrev)->getType(), 14589 Context.getFunctionNoProtoType(Context.IntTy))) { 14590 Diag(Loc, diag::ext_use_out_of_scope_declaration) 14591 << ExternCPrev << !getLangOpts().C99; 14592 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration); 14593 return ExternCPrev; 14594 } 14595 } 14596 14597 // Extension in C99. Legal in C90, but warn about it. 14598 unsigned diag_id; 14599 if (II.getName().startswith("__builtin_")) 14600 diag_id = diag::warn_builtin_unknown; 14601 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported. 14602 else if (getLangOpts().OpenCL) 14603 diag_id = diag::err_opencl_implicit_function_decl; 14604 else if (getLangOpts().C99) 14605 diag_id = diag::ext_implicit_function_decl; 14606 else 14607 diag_id = diag::warn_implicit_function_decl; 14608 Diag(Loc, diag_id) << &II; 14609 14610 // If we found a prior declaration of this function, don't bother building 14611 // another one. We've already pushed that one into scope, so there's nothing 14612 // more to do. 14613 if (ExternCPrev) 14614 return ExternCPrev; 14615 14616 // Because typo correction is expensive, only do it if the implicit 14617 // function declaration is going to be treated as an error. 14618 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) { 14619 TypoCorrection Corrected; 14620 DeclFilterCCC<FunctionDecl> CCC{}; 14621 if (S && (Corrected = 14622 CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName, 14623 S, nullptr, CCC, CTK_NonError))) 14624 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion), 14625 /*ErrorRecovery*/false); 14626 } 14627 14628 // Set a Declarator for the implicit definition: int foo(); 14629 const char *Dummy; 14630 AttributeFactory attrFactory; 14631 DeclSpec DS(attrFactory); 14632 unsigned DiagID; 14633 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID, 14634 Context.getPrintingPolicy()); 14635 (void)Error; // Silence warning. 14636 assert(!Error && "Error setting up implicit decl!"); 14637 SourceLocation NoLoc; 14638 Declarator D(DS, DeclaratorContext::BlockContext); 14639 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false, 14640 /*IsAmbiguous=*/false, 14641 /*LParenLoc=*/NoLoc, 14642 /*Params=*/nullptr, 14643 /*NumParams=*/0, 14644 /*EllipsisLoc=*/NoLoc, 14645 /*RParenLoc=*/NoLoc, 14646 /*RefQualifierIsLvalueRef=*/true, 14647 /*RefQualifierLoc=*/NoLoc, 14648 /*MutableLoc=*/NoLoc, EST_None, 14649 /*ESpecRange=*/SourceRange(), 14650 /*Exceptions=*/nullptr, 14651 /*ExceptionRanges=*/nullptr, 14652 /*NumExceptions=*/0, 14653 /*NoexceptExpr=*/nullptr, 14654 /*ExceptionSpecTokens=*/nullptr, 14655 /*DeclsInPrototype=*/None, Loc, 14656 Loc, D), 14657 std::move(DS.getAttributes()), SourceLocation()); 14658 D.SetIdentifier(&II, Loc); 14659 14660 // Insert this function into the enclosing block scope. 14661 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D)); 14662 FD->setImplicit(); 14663 14664 AddKnownFunctionAttributes(FD); 14665 14666 return FD; 14667 } 14668 14669 /// If this function is a C++ replaceable global allocation function 14670 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]), 14671 /// adds any function attributes that we know a priori based on the standard. 14672 /// 14673 /// We need to check for duplicate attributes both here and where user-written 14674 /// attributes are applied to declarations. 14675 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction( 14676 FunctionDecl *FD) { 14677 if (FD->isInvalidDecl()) 14678 return; 14679 14680 if (FD->getDeclName().getCXXOverloadedOperator() != OO_New && 14681 FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New) 14682 return; 14683 14684 Optional<unsigned> AlignmentParam; 14685 bool IsNothrow = false; 14686 if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow)) 14687 return; 14688 14689 // C++2a [basic.stc.dynamic.allocation]p4: 14690 // An allocation function that has a non-throwing exception specification 14691 // indicates failure by returning a null pointer value. Any other allocation 14692 // function never returns a null pointer value and indicates failure only by 14693 // throwing an exception [...] 14694 if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>()) 14695 FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation())); 14696 14697 // C++2a [basic.stc.dynamic.allocation]p2: 14698 // An allocation function attempts to allocate the requested amount of 14699 // storage. [...] If the request succeeds, the value returned by a 14700 // replaceable allocation function is a [...] pointer value p0 different 14701 // from any previously returned value p1 [...] 14702 // 14703 // However, this particular information is being added in codegen, 14704 // because there is an opt-out switch for it (-fno-assume-sane-operator-new) 14705 14706 // C++2a [basic.stc.dynamic.allocation]p2: 14707 // An allocation function attempts to allocate the requested amount of 14708 // storage. If it is successful, it returns the address of the start of a 14709 // block of storage whose length in bytes is at least as large as the 14710 // requested size. 14711 if (!FD->hasAttr<AllocSizeAttr>()) { 14712 FD->addAttr(AllocSizeAttr::CreateImplicit( 14713 Context, /*ElemSizeParam=*/ParamIdx(1, FD), 14714 /*NumElemsParam=*/ParamIdx(), FD->getLocation())); 14715 } 14716 14717 // C++2a [basic.stc.dynamic.allocation]p3: 14718 // For an allocation function [...], the pointer returned on a successful 14719 // call shall represent the address of storage that is aligned as follows: 14720 // (3.1) If the allocation function takes an argument of type 14721 // std::align_val_t, the storage will have the alignment 14722 // specified by the value of this argument. 14723 if (AlignmentParam.hasValue() && !FD->hasAttr<AllocAlignAttr>()) { 14724 FD->addAttr(AllocAlignAttr::CreateImplicit( 14725 Context, ParamIdx(AlignmentParam.getValue(), FD), FD->getLocation())); 14726 } 14727 14728 // FIXME: 14729 // C++2a [basic.stc.dynamic.allocation]p3: 14730 // For an allocation function [...], the pointer returned on a successful 14731 // call shall represent the address of storage that is aligned as follows: 14732 // (3.2) Otherwise, if the allocation function is named operator new[], 14733 // the storage is aligned for any object that does not have 14734 // new-extended alignment ([basic.align]) and is no larger than the 14735 // requested size. 14736 // (3.3) Otherwise, the storage is aligned for any object that does not 14737 // have new-extended alignment and is of the requested size. 14738 } 14739 14740 /// Adds any function attributes that we know a priori based on 14741 /// the declaration of this function. 14742 /// 14743 /// These attributes can apply both to implicitly-declared builtins 14744 /// (like __builtin___printf_chk) or to library-declared functions 14745 /// like NSLog or printf. 14746 /// 14747 /// We need to check for duplicate attributes both here and where user-written 14748 /// attributes are applied to declarations. 14749 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { 14750 if (FD->isInvalidDecl()) 14751 return; 14752 14753 // If this is a built-in function, map its builtin attributes to 14754 // actual attributes. 14755 if (unsigned BuiltinID = FD->getBuiltinID()) { 14756 // Handle printf-formatting attributes. 14757 unsigned FormatIdx; 14758 bool HasVAListArg; 14759 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { 14760 if (!FD->hasAttr<FormatAttr>()) { 14761 const char *fmt = "printf"; 14762 unsigned int NumParams = FD->getNumParams(); 14763 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf) 14764 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType()) 14765 fmt = "NSString"; 14766 FD->addAttr(FormatAttr::CreateImplicit(Context, 14767 &Context.Idents.get(fmt), 14768 FormatIdx+1, 14769 HasVAListArg ? 0 : FormatIdx+2, 14770 FD->getLocation())); 14771 } 14772 } 14773 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx, 14774 HasVAListArg)) { 14775 if (!FD->hasAttr<FormatAttr>()) 14776 FD->addAttr(FormatAttr::CreateImplicit(Context, 14777 &Context.Idents.get("scanf"), 14778 FormatIdx+1, 14779 HasVAListArg ? 0 : FormatIdx+2, 14780 FD->getLocation())); 14781 } 14782 14783 // Handle automatically recognized callbacks. 14784 SmallVector<int, 4> Encoding; 14785 if (!FD->hasAttr<CallbackAttr>() && 14786 Context.BuiltinInfo.performsCallback(BuiltinID, Encoding)) 14787 FD->addAttr(CallbackAttr::CreateImplicit( 14788 Context, Encoding.data(), Encoding.size(), FD->getLocation())); 14789 14790 // Mark const if we don't care about errno and that is the only thing 14791 // preventing the function from being const. This allows IRgen to use LLVM 14792 // intrinsics for such functions. 14793 if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() && 14794 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) 14795 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 14796 14797 // We make "fma" on some platforms const because we know it does not set 14798 // errno in those environments even though it could set errno based on the 14799 // C standard. 14800 const llvm::Triple &Trip = Context.getTargetInfo().getTriple(); 14801 if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) && 14802 !FD->hasAttr<ConstAttr>()) { 14803 switch (BuiltinID) { 14804 case Builtin::BI__builtin_fma: 14805 case Builtin::BI__builtin_fmaf: 14806 case Builtin::BI__builtin_fmal: 14807 case Builtin::BIfma: 14808 case Builtin::BIfmaf: 14809 case Builtin::BIfmal: 14810 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 14811 break; 14812 default: 14813 break; 14814 } 14815 } 14816 14817 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) && 14818 !FD->hasAttr<ReturnsTwiceAttr>()) 14819 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context, 14820 FD->getLocation())); 14821 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>()) 14822 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); 14823 if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>()) 14824 FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation())); 14825 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>()) 14826 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 14827 if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) && 14828 !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) { 14829 // Add the appropriate attribute, depending on the CUDA compilation mode 14830 // and which target the builtin belongs to. For example, during host 14831 // compilation, aux builtins are __device__, while the rest are __host__. 14832 if (getLangOpts().CUDAIsDevice != 14833 Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) 14834 FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation())); 14835 else 14836 FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation())); 14837 } 14838 } 14839 14840 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD); 14841 14842 // If C++ exceptions are enabled but we are told extern "C" functions cannot 14843 // throw, add an implicit nothrow attribute to any extern "C" function we come 14844 // across. 14845 if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind && 14846 FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) { 14847 const auto *FPT = FD->getType()->getAs<FunctionProtoType>(); 14848 if (!FPT || FPT->getExceptionSpecType() == EST_None) 14849 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); 14850 } 14851 14852 IdentifierInfo *Name = FD->getIdentifier(); 14853 if (!Name) 14854 return; 14855 if ((!getLangOpts().CPlusPlus && 14856 FD->getDeclContext()->isTranslationUnit()) || 14857 (isa<LinkageSpecDecl>(FD->getDeclContext()) && 14858 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == 14859 LinkageSpecDecl::lang_c)) { 14860 // Okay: this could be a libc/libm/Objective-C function we know 14861 // about. 14862 } else 14863 return; 14864 14865 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) { 14866 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be 14867 // target-specific builtins, perhaps? 14868 if (!FD->hasAttr<FormatAttr>()) 14869 FD->addAttr(FormatAttr::CreateImplicit(Context, 14870 &Context.Idents.get("printf"), 2, 14871 Name->isStr("vasprintf") ? 0 : 3, 14872 FD->getLocation())); 14873 } 14874 14875 if (Name->isStr("__CFStringMakeConstantString")) { 14876 // We already have a __builtin___CFStringMakeConstantString, 14877 // but builds that use -fno-constant-cfstrings don't go through that. 14878 if (!FD->hasAttr<FormatArgAttr>()) 14879 FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD), 14880 FD->getLocation())); 14881 } 14882 } 14883 14884 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, 14885 TypeSourceInfo *TInfo) { 14886 assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); 14887 assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); 14888 14889 if (!TInfo) { 14890 assert(D.isInvalidType() && "no declarator info for valid type"); 14891 TInfo = Context.getTrivialTypeSourceInfo(T); 14892 } 14893 14894 // Scope manipulation handled by caller. 14895 TypedefDecl *NewTD = 14896 TypedefDecl::Create(Context, CurContext, D.getBeginLoc(), 14897 D.getIdentifierLoc(), D.getIdentifier(), TInfo); 14898 14899 // Bail out immediately if we have an invalid declaration. 14900 if (D.isInvalidType()) { 14901 NewTD->setInvalidDecl(); 14902 return NewTD; 14903 } 14904 14905 if (D.getDeclSpec().isModulePrivateSpecified()) { 14906 if (CurContext->isFunctionOrMethod()) 14907 Diag(NewTD->getLocation(), diag::err_module_private_local) 14908 << 2 << NewTD->getDeclName() 14909 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 14910 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 14911 else 14912 NewTD->setModulePrivate(); 14913 } 14914 14915 // C++ [dcl.typedef]p8: 14916 // If the typedef declaration defines an unnamed class (or 14917 // enum), the first typedef-name declared by the declaration 14918 // to be that class type (or enum type) is used to denote the 14919 // class type (or enum type) for linkage purposes only. 14920 // We need to check whether the type was declared in the declaration. 14921 switch (D.getDeclSpec().getTypeSpecType()) { 14922 case TST_enum: 14923 case TST_struct: 14924 case TST_interface: 14925 case TST_union: 14926 case TST_class: { 14927 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); 14928 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD); 14929 break; 14930 } 14931 14932 default: 14933 break; 14934 } 14935 14936 return NewTD; 14937 } 14938 14939 /// Check that this is a valid underlying type for an enum declaration. 14940 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) { 14941 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 14942 QualType T = TI->getType(); 14943 14944 if (T->isDependentType()) 14945 return false; 14946 14947 // This doesn't use 'isIntegralType' despite the error message mentioning 14948 // integral type because isIntegralType would also allow enum types in C. 14949 if (const BuiltinType *BT = T->getAs<BuiltinType>()) 14950 if (BT->isInteger()) 14951 return false; 14952 14953 if (T->isExtIntType()) 14954 return false; 14955 14956 return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T; 14957 } 14958 14959 /// Check whether this is a valid redeclaration of a previous enumeration. 14960 /// \return true if the redeclaration was invalid. 14961 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, 14962 QualType EnumUnderlyingTy, bool IsFixed, 14963 const EnumDecl *Prev) { 14964 if (IsScoped != Prev->isScoped()) { 14965 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch) 14966 << Prev->isScoped(); 14967 Diag(Prev->getLocation(), diag::note_previous_declaration); 14968 return true; 14969 } 14970 14971 if (IsFixed && Prev->isFixed()) { 14972 if (!EnumUnderlyingTy->isDependentType() && 14973 !Prev->getIntegerType()->isDependentType() && 14974 !Context.hasSameUnqualifiedType(EnumUnderlyingTy, 14975 Prev->getIntegerType())) { 14976 // TODO: Highlight the underlying type of the redeclaration. 14977 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch) 14978 << EnumUnderlyingTy << Prev->getIntegerType(); 14979 Diag(Prev->getLocation(), diag::note_previous_declaration) 14980 << Prev->getIntegerTypeRange(); 14981 return true; 14982 } 14983 } else if (IsFixed != Prev->isFixed()) { 14984 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch) 14985 << Prev->isFixed(); 14986 Diag(Prev->getLocation(), diag::note_previous_declaration); 14987 return true; 14988 } 14989 14990 return false; 14991 } 14992 14993 /// Get diagnostic %select index for tag kind for 14994 /// redeclaration diagnostic message. 14995 /// WARNING: Indexes apply to particular diagnostics only! 14996 /// 14997 /// \returns diagnostic %select index. 14998 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) { 14999 switch (Tag) { 15000 case TTK_Struct: return 0; 15001 case TTK_Interface: return 1; 15002 case TTK_Class: return 2; 15003 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!"); 15004 } 15005 } 15006 15007 /// Determine if tag kind is a class-key compatible with 15008 /// class for redeclaration (class, struct, or __interface). 15009 /// 15010 /// \returns true iff the tag kind is compatible. 15011 static bool isClassCompatTagKind(TagTypeKind Tag) 15012 { 15013 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface; 15014 } 15015 15016 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl, 15017 TagTypeKind TTK) { 15018 if (isa<TypedefDecl>(PrevDecl)) 15019 return NTK_Typedef; 15020 else if (isa<TypeAliasDecl>(PrevDecl)) 15021 return NTK_TypeAlias; 15022 else if (isa<ClassTemplateDecl>(PrevDecl)) 15023 return NTK_Template; 15024 else if (isa<TypeAliasTemplateDecl>(PrevDecl)) 15025 return NTK_TypeAliasTemplate; 15026 else if (isa<TemplateTemplateParmDecl>(PrevDecl)) 15027 return NTK_TemplateTemplateArgument; 15028 switch (TTK) { 15029 case TTK_Struct: 15030 case TTK_Interface: 15031 case TTK_Class: 15032 return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct; 15033 case TTK_Union: 15034 return NTK_NonUnion; 15035 case TTK_Enum: 15036 return NTK_NonEnum; 15037 } 15038 llvm_unreachable("invalid TTK"); 15039 } 15040 15041 /// Determine whether a tag with a given kind is acceptable 15042 /// as a redeclaration of the given tag declaration. 15043 /// 15044 /// \returns true if the new tag kind is acceptable, false otherwise. 15045 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, 15046 TagTypeKind NewTag, bool isDefinition, 15047 SourceLocation NewTagLoc, 15048 const IdentifierInfo *Name) { 15049 // C++ [dcl.type.elab]p3: 15050 // The class-key or enum keyword present in the 15051 // elaborated-type-specifier shall agree in kind with the 15052 // declaration to which the name in the elaborated-type-specifier 15053 // refers. This rule also applies to the form of 15054 // elaborated-type-specifier that declares a class-name or 15055 // friend class since it can be construed as referring to the 15056 // definition of the class. Thus, in any 15057 // elaborated-type-specifier, the enum keyword shall be used to 15058 // refer to an enumeration (7.2), the union class-key shall be 15059 // used to refer to a union (clause 9), and either the class or 15060 // struct class-key shall be used to refer to a class (clause 9) 15061 // declared using the class or struct class-key. 15062 TagTypeKind OldTag = Previous->getTagKind(); 15063 if (OldTag != NewTag && 15064 !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag))) 15065 return false; 15066 15067 // Tags are compatible, but we might still want to warn on mismatched tags. 15068 // Non-class tags can't be mismatched at this point. 15069 if (!isClassCompatTagKind(NewTag)) 15070 return true; 15071 15072 // Declarations for which -Wmismatched-tags is disabled are entirely ignored 15073 // by our warning analysis. We don't want to warn about mismatches with (eg) 15074 // declarations in system headers that are designed to be specialized, but if 15075 // a user asks us to warn, we should warn if their code contains mismatched 15076 // declarations. 15077 auto IsIgnoredLoc = [&](SourceLocation Loc) { 15078 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch, 15079 Loc); 15080 }; 15081 if (IsIgnoredLoc(NewTagLoc)) 15082 return true; 15083 15084 auto IsIgnored = [&](const TagDecl *Tag) { 15085 return IsIgnoredLoc(Tag->getLocation()); 15086 }; 15087 while (IsIgnored(Previous)) { 15088 Previous = Previous->getPreviousDecl(); 15089 if (!Previous) 15090 return true; 15091 OldTag = Previous->getTagKind(); 15092 } 15093 15094 bool isTemplate = false; 15095 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous)) 15096 isTemplate = Record->getDescribedClassTemplate(); 15097 15098 if (inTemplateInstantiation()) { 15099 if (OldTag != NewTag) { 15100 // In a template instantiation, do not offer fix-its for tag mismatches 15101 // since they usually mess up the template instead of fixing the problem. 15102 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) 15103 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name 15104 << getRedeclDiagFromTagKind(OldTag); 15105 // FIXME: Note previous location? 15106 } 15107 return true; 15108 } 15109 15110 if (isDefinition) { 15111 // On definitions, check all previous tags and issue a fix-it for each 15112 // one that doesn't match the current tag. 15113 if (Previous->getDefinition()) { 15114 // Don't suggest fix-its for redefinitions. 15115 return true; 15116 } 15117 15118 bool previousMismatch = false; 15119 for (const TagDecl *I : Previous->redecls()) { 15120 if (I->getTagKind() != NewTag) { 15121 // Ignore previous declarations for which the warning was disabled. 15122 if (IsIgnored(I)) 15123 continue; 15124 15125 if (!previousMismatch) { 15126 previousMismatch = true; 15127 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch) 15128 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name 15129 << getRedeclDiagFromTagKind(I->getTagKind()); 15130 } 15131 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion) 15132 << getRedeclDiagFromTagKind(NewTag) 15133 << FixItHint::CreateReplacement(I->getInnerLocStart(), 15134 TypeWithKeyword::getTagTypeKindName(NewTag)); 15135 } 15136 } 15137 return true; 15138 } 15139 15140 // Identify the prevailing tag kind: this is the kind of the definition (if 15141 // there is a non-ignored definition), or otherwise the kind of the prior 15142 // (non-ignored) declaration. 15143 const TagDecl *PrevDef = Previous->getDefinition(); 15144 if (PrevDef && IsIgnored(PrevDef)) 15145 PrevDef = nullptr; 15146 const TagDecl *Redecl = PrevDef ? PrevDef : Previous; 15147 if (Redecl->getTagKind() != NewTag) { 15148 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) 15149 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name 15150 << getRedeclDiagFromTagKind(OldTag); 15151 Diag(Redecl->getLocation(), diag::note_previous_use); 15152 15153 // If there is a previous definition, suggest a fix-it. 15154 if (PrevDef) { 15155 Diag(NewTagLoc, diag::note_struct_class_suggestion) 15156 << getRedeclDiagFromTagKind(Redecl->getTagKind()) 15157 << FixItHint::CreateReplacement(SourceRange(NewTagLoc), 15158 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind())); 15159 } 15160 } 15161 15162 return true; 15163 } 15164 15165 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name 15166 /// from an outer enclosing namespace or file scope inside a friend declaration. 15167 /// This should provide the commented out code in the following snippet: 15168 /// namespace N { 15169 /// struct X; 15170 /// namespace M { 15171 /// struct Y { friend struct /*N::*/ X; }; 15172 /// } 15173 /// } 15174 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S, 15175 SourceLocation NameLoc) { 15176 // While the decl is in a namespace, do repeated lookup of that name and see 15177 // if we get the same namespace back. If we do not, continue until 15178 // translation unit scope, at which point we have a fully qualified NNS. 15179 SmallVector<IdentifierInfo *, 4> Namespaces; 15180 DeclContext *DC = ND->getDeclContext()->getRedeclContext(); 15181 for (; !DC->isTranslationUnit(); DC = DC->getParent()) { 15182 // This tag should be declared in a namespace, which can only be enclosed by 15183 // other namespaces. Bail if there's an anonymous namespace in the chain. 15184 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC); 15185 if (!Namespace || Namespace->isAnonymousNamespace()) 15186 return FixItHint(); 15187 IdentifierInfo *II = Namespace->getIdentifier(); 15188 Namespaces.push_back(II); 15189 NamedDecl *Lookup = SemaRef.LookupSingleName( 15190 S, II, NameLoc, Sema::LookupNestedNameSpecifierName); 15191 if (Lookup == Namespace) 15192 break; 15193 } 15194 15195 // Once we have all the namespaces, reverse them to go outermost first, and 15196 // build an NNS. 15197 SmallString<64> Insertion; 15198 llvm::raw_svector_ostream OS(Insertion); 15199 if (DC->isTranslationUnit()) 15200 OS << "::"; 15201 std::reverse(Namespaces.begin(), Namespaces.end()); 15202 for (auto *II : Namespaces) 15203 OS << II->getName() << "::"; 15204 return FixItHint::CreateInsertion(NameLoc, Insertion); 15205 } 15206 15207 /// Determine whether a tag originally declared in context \p OldDC can 15208 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup 15209 /// found a declaration in \p OldDC as a previous decl, perhaps through a 15210 /// using-declaration). 15211 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC, 15212 DeclContext *NewDC) { 15213 OldDC = OldDC->getRedeclContext(); 15214 NewDC = NewDC->getRedeclContext(); 15215 15216 if (OldDC->Equals(NewDC)) 15217 return true; 15218 15219 // In MSVC mode, we allow a redeclaration if the contexts are related (either 15220 // encloses the other). 15221 if (S.getLangOpts().MSVCCompat && 15222 (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC))) 15223 return true; 15224 15225 return false; 15226 } 15227 15228 /// This is invoked when we see 'struct foo' or 'struct {'. In the 15229 /// former case, Name will be non-null. In the later case, Name will be null. 15230 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a 15231 /// reference/declaration/definition of a tag. 15232 /// 15233 /// \param IsTypeSpecifier \c true if this is a type-specifier (or 15234 /// trailing-type-specifier) other than one in an alias-declaration. 15235 /// 15236 /// \param SkipBody If non-null, will be set to indicate if the caller should 15237 /// skip the definition of this tag and treat it as if it were a declaration. 15238 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 15239 SourceLocation KWLoc, CXXScopeSpec &SS, 15240 IdentifierInfo *Name, SourceLocation NameLoc, 15241 const ParsedAttributesView &Attrs, AccessSpecifier AS, 15242 SourceLocation ModulePrivateLoc, 15243 MultiTemplateParamsArg TemplateParameterLists, 15244 bool &OwnedDecl, bool &IsDependent, 15245 SourceLocation ScopedEnumKWLoc, 15246 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, 15247 bool IsTypeSpecifier, bool IsTemplateParamOrArg, 15248 SkipBodyInfo *SkipBody) { 15249 // If this is not a definition, it must have a name. 15250 IdentifierInfo *OrigName = Name; 15251 assert((Name != nullptr || TUK == TUK_Definition) && 15252 "Nameless record must be a definition!"); 15253 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference); 15254 15255 OwnedDecl = false; 15256 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 15257 bool ScopedEnum = ScopedEnumKWLoc.isValid(); 15258 15259 // FIXME: Check member specializations more carefully. 15260 bool isMemberSpecialization = false; 15261 bool Invalid = false; 15262 15263 // We only need to do this matching if we have template parameters 15264 // or a scope specifier, which also conveniently avoids this work 15265 // for non-C++ cases. 15266 if (TemplateParameterLists.size() > 0 || 15267 (SS.isNotEmpty() && TUK != TUK_Reference)) { 15268 if (TemplateParameterList *TemplateParams = 15269 MatchTemplateParametersToScopeSpecifier( 15270 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists, 15271 TUK == TUK_Friend, isMemberSpecialization, Invalid)) { 15272 if (Kind == TTK_Enum) { 15273 Diag(KWLoc, diag::err_enum_template); 15274 return nullptr; 15275 } 15276 15277 if (TemplateParams->size() > 0) { 15278 // This is a declaration or definition of a class template (which may 15279 // be a member of another template). 15280 15281 if (Invalid) 15282 return nullptr; 15283 15284 OwnedDecl = false; 15285 DeclResult Result = CheckClassTemplate( 15286 S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams, 15287 AS, ModulePrivateLoc, 15288 /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1, 15289 TemplateParameterLists.data(), SkipBody); 15290 return Result.get(); 15291 } else { 15292 // The "template<>" header is extraneous. 15293 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 15294 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 15295 isMemberSpecialization = true; 15296 } 15297 } 15298 } 15299 15300 // Figure out the underlying type if this a enum declaration. We need to do 15301 // this early, because it's needed to detect if this is an incompatible 15302 // redeclaration. 15303 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; 15304 bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum; 15305 15306 if (Kind == TTK_Enum) { 15307 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) { 15308 // No underlying type explicitly specified, or we failed to parse the 15309 // type, default to int. 15310 EnumUnderlying = Context.IntTy.getTypePtr(); 15311 } else if (UnderlyingType.get()) { 15312 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an 15313 // integral type; any cv-qualification is ignored. 15314 TypeSourceInfo *TI = nullptr; 15315 GetTypeFromParser(UnderlyingType.get(), &TI); 15316 EnumUnderlying = TI; 15317 15318 if (CheckEnumUnderlyingType(TI)) 15319 // Recover by falling back to int. 15320 EnumUnderlying = Context.IntTy.getTypePtr(); 15321 15322 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI, 15323 UPPC_FixedUnderlyingType)) 15324 EnumUnderlying = Context.IntTy.getTypePtr(); 15325 15326 } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) { 15327 // For MSVC ABI compatibility, unfixed enums must use an underlying type 15328 // of 'int'. However, if this is an unfixed forward declaration, don't set 15329 // the underlying type unless the user enables -fms-compatibility. This 15330 // makes unfixed forward declared enums incomplete and is more conforming. 15331 if (TUK == TUK_Definition || getLangOpts().MSVCCompat) 15332 EnumUnderlying = Context.IntTy.getTypePtr(); 15333 } 15334 } 15335 15336 DeclContext *SearchDC = CurContext; 15337 DeclContext *DC = CurContext; 15338 bool isStdBadAlloc = false; 15339 bool isStdAlignValT = false; 15340 15341 RedeclarationKind Redecl = forRedeclarationInCurContext(); 15342 if (TUK == TUK_Friend || TUK == TUK_Reference) 15343 Redecl = NotForRedeclaration; 15344 15345 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C 15346 /// implemented asks for structural equivalence checking, the returned decl 15347 /// here is passed back to the parser, allowing the tag body to be parsed. 15348 auto createTagFromNewDecl = [&]() -> TagDecl * { 15349 assert(!getLangOpts().CPlusPlus && "not meant for C++ usage"); 15350 // If there is an identifier, use the location of the identifier as the 15351 // location of the decl, otherwise use the location of the struct/union 15352 // keyword. 15353 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; 15354 TagDecl *New = nullptr; 15355 15356 if (Kind == TTK_Enum) { 15357 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr, 15358 ScopedEnum, ScopedEnumUsesClassTag, IsFixed); 15359 // If this is an undefined enum, bail. 15360 if (TUK != TUK_Definition && !Invalid) 15361 return nullptr; 15362 if (EnumUnderlying) { 15363 EnumDecl *ED = cast<EnumDecl>(New); 15364 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>()) 15365 ED->setIntegerTypeSourceInfo(TI); 15366 else 15367 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0)); 15368 ED->setPromotionType(ED->getIntegerType()); 15369 } 15370 } else { // struct/union 15371 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 15372 nullptr); 15373 } 15374 15375 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { 15376 // Add alignment attributes if necessary; these attributes are checked 15377 // when the ASTContext lays out the structure. 15378 // 15379 // It is important for implementing the correct semantics that this 15380 // happen here (in ActOnTag). The #pragma pack stack is 15381 // maintained as a result of parser callbacks which can occur at 15382 // many points during the parsing of a struct declaration (because 15383 // the #pragma tokens are effectively skipped over during the 15384 // parsing of the struct). 15385 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 15386 AddAlignmentAttributesForRecord(RD); 15387 AddMsStructLayoutForRecord(RD); 15388 } 15389 } 15390 New->setLexicalDeclContext(CurContext); 15391 return New; 15392 }; 15393 15394 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); 15395 if (Name && SS.isNotEmpty()) { 15396 // We have a nested-name tag ('struct foo::bar'). 15397 15398 // Check for invalid 'foo::'. 15399 if (SS.isInvalid()) { 15400 Name = nullptr; 15401 goto CreateNewDecl; 15402 } 15403 15404 // If this is a friend or a reference to a class in a dependent 15405 // context, don't try to make a decl for it. 15406 if (TUK == TUK_Friend || TUK == TUK_Reference) { 15407 DC = computeDeclContext(SS, false); 15408 if (!DC) { 15409 IsDependent = true; 15410 return nullptr; 15411 } 15412 } else { 15413 DC = computeDeclContext(SS, true); 15414 if (!DC) { 15415 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) 15416 << SS.getRange(); 15417 return nullptr; 15418 } 15419 } 15420 15421 if (RequireCompleteDeclContext(SS, DC)) 15422 return nullptr; 15423 15424 SearchDC = DC; 15425 // Look-up name inside 'foo::'. 15426 LookupQualifiedName(Previous, DC); 15427 15428 if (Previous.isAmbiguous()) 15429 return nullptr; 15430 15431 if (Previous.empty()) { 15432 // Name lookup did not find anything. However, if the 15433 // nested-name-specifier refers to the current instantiation, 15434 // and that current instantiation has any dependent base 15435 // classes, we might find something at instantiation time: treat 15436 // this as a dependent elaborated-type-specifier. 15437 // But this only makes any sense for reference-like lookups. 15438 if (Previous.wasNotFoundInCurrentInstantiation() && 15439 (TUK == TUK_Reference || TUK == TUK_Friend)) { 15440 IsDependent = true; 15441 return nullptr; 15442 } 15443 15444 // A tag 'foo::bar' must already exist. 15445 Diag(NameLoc, diag::err_not_tag_in_scope) 15446 << Kind << Name << DC << SS.getRange(); 15447 Name = nullptr; 15448 Invalid = true; 15449 goto CreateNewDecl; 15450 } 15451 } else if (Name) { 15452 // C++14 [class.mem]p14: 15453 // If T is the name of a class, then each of the following shall have a 15454 // name different from T: 15455 // -- every member of class T that is itself a type 15456 if (TUK != TUK_Reference && TUK != TUK_Friend && 15457 DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc))) 15458 return nullptr; 15459 15460 // If this is a named struct, check to see if there was a previous forward 15461 // declaration or definition. 15462 // FIXME: We're looking into outer scopes here, even when we 15463 // shouldn't be. Doing so can result in ambiguities that we 15464 // shouldn't be diagnosing. 15465 LookupName(Previous, S); 15466 15467 // When declaring or defining a tag, ignore ambiguities introduced 15468 // by types using'ed into this scope. 15469 if (Previous.isAmbiguous() && 15470 (TUK == TUK_Definition || TUK == TUK_Declaration)) { 15471 LookupResult::Filter F = Previous.makeFilter(); 15472 while (F.hasNext()) { 15473 NamedDecl *ND = F.next(); 15474 if (!ND->getDeclContext()->getRedeclContext()->Equals( 15475 SearchDC->getRedeclContext())) 15476 F.erase(); 15477 } 15478 F.done(); 15479 } 15480 15481 // C++11 [namespace.memdef]p3: 15482 // If the name in a friend declaration is neither qualified nor 15483 // a template-id and the declaration is a function or an 15484 // elaborated-type-specifier, the lookup to determine whether 15485 // the entity has been previously declared shall not consider 15486 // any scopes outside the innermost enclosing namespace. 15487 // 15488 // MSVC doesn't implement the above rule for types, so a friend tag 15489 // declaration may be a redeclaration of a type declared in an enclosing 15490 // scope. They do implement this rule for friend functions. 15491 // 15492 // Does it matter that this should be by scope instead of by 15493 // semantic context? 15494 if (!Previous.empty() && TUK == TUK_Friend) { 15495 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext(); 15496 LookupResult::Filter F = Previous.makeFilter(); 15497 bool FriendSawTagOutsideEnclosingNamespace = false; 15498 while (F.hasNext()) { 15499 NamedDecl *ND = F.next(); 15500 DeclContext *DC = ND->getDeclContext()->getRedeclContext(); 15501 if (DC->isFileContext() && 15502 !EnclosingNS->Encloses(ND->getDeclContext())) { 15503 if (getLangOpts().MSVCCompat) 15504 FriendSawTagOutsideEnclosingNamespace = true; 15505 else 15506 F.erase(); 15507 } 15508 } 15509 F.done(); 15510 15511 // Diagnose this MSVC extension in the easy case where lookup would have 15512 // unambiguously found something outside the enclosing namespace. 15513 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) { 15514 NamedDecl *ND = Previous.getFoundDecl(); 15515 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace) 15516 << createFriendTagNNSFixIt(*this, ND, S, NameLoc); 15517 } 15518 } 15519 15520 // Note: there used to be some attempt at recovery here. 15521 if (Previous.isAmbiguous()) 15522 return nullptr; 15523 15524 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) { 15525 // FIXME: This makes sure that we ignore the contexts associated 15526 // with C structs, unions, and enums when looking for a matching 15527 // tag declaration or definition. See the similar lookup tweak 15528 // in Sema::LookupName; is there a better way to deal with this? 15529 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC)) 15530 SearchDC = SearchDC->getParent(); 15531 } 15532 } 15533 15534 if (Previous.isSingleResult() && 15535 Previous.getFoundDecl()->isTemplateParameter()) { 15536 // Maybe we will complain about the shadowed template parameter. 15537 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); 15538 // Just pretend that we didn't see the previous declaration. 15539 Previous.clear(); 15540 } 15541 15542 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace && 15543 DC->Equals(getStdNamespace())) { 15544 if (Name->isStr("bad_alloc")) { 15545 // This is a declaration of or a reference to "std::bad_alloc". 15546 isStdBadAlloc = true; 15547 15548 // If std::bad_alloc has been implicitly declared (but made invisible to 15549 // name lookup), fill in this implicit declaration as the previous 15550 // declaration, so that the declarations get chained appropriately. 15551 if (Previous.empty() && StdBadAlloc) 15552 Previous.addDecl(getStdBadAlloc()); 15553 } else if (Name->isStr("align_val_t")) { 15554 isStdAlignValT = true; 15555 if (Previous.empty() && StdAlignValT) 15556 Previous.addDecl(getStdAlignValT()); 15557 } 15558 } 15559 15560 // If we didn't find a previous declaration, and this is a reference 15561 // (or friend reference), move to the correct scope. In C++, we 15562 // also need to do a redeclaration lookup there, just in case 15563 // there's a shadow friend decl. 15564 if (Name && Previous.empty() && 15565 (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) { 15566 if (Invalid) goto CreateNewDecl; 15567 assert(SS.isEmpty()); 15568 15569 if (TUK == TUK_Reference || IsTemplateParamOrArg) { 15570 // C++ [basic.scope.pdecl]p5: 15571 // -- for an elaborated-type-specifier of the form 15572 // 15573 // class-key identifier 15574 // 15575 // if the elaborated-type-specifier is used in the 15576 // decl-specifier-seq or parameter-declaration-clause of a 15577 // function defined in namespace scope, the identifier is 15578 // declared as a class-name in the namespace that contains 15579 // the declaration; otherwise, except as a friend 15580 // declaration, the identifier is declared in the smallest 15581 // non-class, non-function-prototype scope that contains the 15582 // declaration. 15583 // 15584 // C99 6.7.2.3p8 has a similar (but not identical!) provision for 15585 // C structs and unions. 15586 // 15587 // It is an error in C++ to declare (rather than define) an enum 15588 // type, including via an elaborated type specifier. We'll 15589 // diagnose that later; for now, declare the enum in the same 15590 // scope as we would have picked for any other tag type. 15591 // 15592 // GNU C also supports this behavior as part of its incomplete 15593 // enum types extension, while GNU C++ does not. 15594 // 15595 // Find the context where we'll be declaring the tag. 15596 // FIXME: We would like to maintain the current DeclContext as the 15597 // lexical context, 15598 SearchDC = getTagInjectionContext(SearchDC); 15599 15600 // Find the scope where we'll be declaring the tag. 15601 S = getTagInjectionScope(S, getLangOpts()); 15602 } else { 15603 assert(TUK == TUK_Friend); 15604 // C++ [namespace.memdef]p3: 15605 // If a friend declaration in a non-local class first declares a 15606 // class or function, the friend class or function is a member of 15607 // the innermost enclosing namespace. 15608 SearchDC = SearchDC->getEnclosingNamespaceContext(); 15609 } 15610 15611 // In C++, we need to do a redeclaration lookup to properly 15612 // diagnose some problems. 15613 // FIXME: redeclaration lookup is also used (with and without C++) to find a 15614 // hidden declaration so that we don't get ambiguity errors when using a 15615 // type declared by an elaborated-type-specifier. In C that is not correct 15616 // and we should instead merge compatible types found by lookup. 15617 if (getLangOpts().CPlusPlus) { 15618 Previous.setRedeclarationKind(forRedeclarationInCurContext()); 15619 LookupQualifiedName(Previous, SearchDC); 15620 } else { 15621 Previous.setRedeclarationKind(forRedeclarationInCurContext()); 15622 LookupName(Previous, S); 15623 } 15624 } 15625 15626 // If we have a known previous declaration to use, then use it. 15627 if (Previous.empty() && SkipBody && SkipBody->Previous) 15628 Previous.addDecl(SkipBody->Previous); 15629 15630 if (!Previous.empty()) { 15631 NamedDecl *PrevDecl = Previous.getFoundDecl(); 15632 NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl(); 15633 15634 // It's okay to have a tag decl in the same scope as a typedef 15635 // which hides a tag decl in the same scope. Finding this 15636 // insanity with a redeclaration lookup can only actually happen 15637 // in C++. 15638 // 15639 // This is also okay for elaborated-type-specifiers, which is 15640 // technically forbidden by the current standard but which is 15641 // okay according to the likely resolution of an open issue; 15642 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 15643 if (getLangOpts().CPlusPlus) { 15644 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) { 15645 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { 15646 TagDecl *Tag = TT->getDecl(); 15647 if (Tag->getDeclName() == Name && 15648 Tag->getDeclContext()->getRedeclContext() 15649 ->Equals(TD->getDeclContext()->getRedeclContext())) { 15650 PrevDecl = Tag; 15651 Previous.clear(); 15652 Previous.addDecl(Tag); 15653 Previous.resolveKind(); 15654 } 15655 } 15656 } 15657 } 15658 15659 // If this is a redeclaration of a using shadow declaration, it must 15660 // declare a tag in the same context. In MSVC mode, we allow a 15661 // redefinition if either context is within the other. 15662 if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) { 15663 auto *OldTag = dyn_cast<TagDecl>(PrevDecl); 15664 if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend && 15665 isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) && 15666 !(OldTag && isAcceptableTagRedeclContext( 15667 *this, OldTag->getDeclContext(), SearchDC))) { 15668 Diag(KWLoc, diag::err_using_decl_conflict_reverse); 15669 Diag(Shadow->getTargetDecl()->getLocation(), 15670 diag::note_using_decl_target); 15671 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) 15672 << 0; 15673 // Recover by ignoring the old declaration. 15674 Previous.clear(); 15675 goto CreateNewDecl; 15676 } 15677 } 15678 15679 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { 15680 // If this is a use of a previous tag, or if the tag is already declared 15681 // in the same scope (so that the definition/declaration completes or 15682 // rementions the tag), reuse the decl. 15683 if (TUK == TUK_Reference || TUK == TUK_Friend || 15684 isDeclInScope(DirectPrevDecl, SearchDC, S, 15685 SS.isNotEmpty() || isMemberSpecialization)) { 15686 // Make sure that this wasn't declared as an enum and now used as a 15687 // struct or something similar. 15688 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, 15689 TUK == TUK_Definition, KWLoc, 15690 Name)) { 15691 bool SafeToContinue 15692 = (PrevTagDecl->getTagKind() != TTK_Enum && 15693 Kind != TTK_Enum); 15694 if (SafeToContinue) 15695 Diag(KWLoc, diag::err_use_with_wrong_tag) 15696 << Name 15697 << FixItHint::CreateReplacement(SourceRange(KWLoc), 15698 PrevTagDecl->getKindName()); 15699 else 15700 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; 15701 Diag(PrevTagDecl->getLocation(), diag::note_previous_use); 15702 15703 if (SafeToContinue) 15704 Kind = PrevTagDecl->getTagKind(); 15705 else { 15706 // Recover by making this an anonymous redefinition. 15707 Name = nullptr; 15708 Previous.clear(); 15709 Invalid = true; 15710 } 15711 } 15712 15713 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) { 15714 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); 15715 if (TUK == TUK_Reference || TUK == TUK_Friend) 15716 return PrevTagDecl; 15717 15718 QualType EnumUnderlyingTy; 15719 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) 15720 EnumUnderlyingTy = TI->getType().getUnqualifiedType(); 15721 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>()) 15722 EnumUnderlyingTy = QualType(T, 0); 15723 15724 // All conflicts with previous declarations are recovered by 15725 // returning the previous declaration, unless this is a definition, 15726 // in which case we want the caller to bail out. 15727 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc, 15728 ScopedEnum, EnumUnderlyingTy, 15729 IsFixed, PrevEnum)) 15730 return TUK == TUK_Declaration ? PrevTagDecl : nullptr; 15731 } 15732 15733 // C++11 [class.mem]p1: 15734 // A member shall not be declared twice in the member-specification, 15735 // except that a nested class or member class template can be declared 15736 // and then later defined. 15737 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() && 15738 S->isDeclScope(PrevDecl)) { 15739 Diag(NameLoc, diag::ext_member_redeclared); 15740 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration); 15741 } 15742 15743 if (!Invalid) { 15744 // If this is a use, just return the declaration we found, unless 15745 // we have attributes. 15746 if (TUK == TUK_Reference || TUK == TUK_Friend) { 15747 if (!Attrs.empty()) { 15748 // FIXME: Diagnose these attributes. For now, we create a new 15749 // declaration to hold them. 15750 } else if (TUK == TUK_Reference && 15751 (PrevTagDecl->getFriendObjectKind() == 15752 Decl::FOK_Undeclared || 15753 PrevDecl->getOwningModule() != getCurrentModule()) && 15754 SS.isEmpty()) { 15755 // This declaration is a reference to an existing entity, but 15756 // has different visibility from that entity: it either makes 15757 // a friend visible or it makes a type visible in a new module. 15758 // In either case, create a new declaration. We only do this if 15759 // the declaration would have meant the same thing if no prior 15760 // declaration were found, that is, if it was found in the same 15761 // scope where we would have injected a declaration. 15762 if (!getTagInjectionContext(CurContext)->getRedeclContext() 15763 ->Equals(PrevDecl->getDeclContext()->getRedeclContext())) 15764 return PrevTagDecl; 15765 // This is in the injected scope, create a new declaration in 15766 // that scope. 15767 S = getTagInjectionScope(S, getLangOpts()); 15768 } else { 15769 return PrevTagDecl; 15770 } 15771 } 15772 15773 // Diagnose attempts to redefine a tag. 15774 if (TUK == TUK_Definition) { 15775 if (NamedDecl *Def = PrevTagDecl->getDefinition()) { 15776 // If we're defining a specialization and the previous definition 15777 // is from an implicit instantiation, don't emit an error 15778 // here; we'll catch this in the general case below. 15779 bool IsExplicitSpecializationAfterInstantiation = false; 15780 if (isMemberSpecialization) { 15781 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def)) 15782 IsExplicitSpecializationAfterInstantiation = 15783 RD->getTemplateSpecializationKind() != 15784 TSK_ExplicitSpecialization; 15785 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def)) 15786 IsExplicitSpecializationAfterInstantiation = 15787 ED->getTemplateSpecializationKind() != 15788 TSK_ExplicitSpecialization; 15789 } 15790 15791 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do 15792 // not keep more that one definition around (merge them). However, 15793 // ensure the decl passes the structural compatibility check in 15794 // C11 6.2.7/1 (or 6.1.2.6/1 in C89). 15795 NamedDecl *Hidden = nullptr; 15796 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 15797 // There is a definition of this tag, but it is not visible. We 15798 // explicitly make use of C++'s one definition rule here, and 15799 // assume that this definition is identical to the hidden one 15800 // we already have. Make the existing definition visible and 15801 // use it in place of this one. 15802 if (!getLangOpts().CPlusPlus) { 15803 // Postpone making the old definition visible until after we 15804 // complete parsing the new one and do the structural 15805 // comparison. 15806 SkipBody->CheckSameAsPrevious = true; 15807 SkipBody->New = createTagFromNewDecl(); 15808 SkipBody->Previous = Def; 15809 return Def; 15810 } else { 15811 SkipBody->ShouldSkip = true; 15812 SkipBody->Previous = Def; 15813 makeMergedDefinitionVisible(Hidden); 15814 // Carry on and handle it like a normal definition. We'll 15815 // skip starting the definitiion later. 15816 } 15817 } else if (!IsExplicitSpecializationAfterInstantiation) { 15818 // A redeclaration in function prototype scope in C isn't 15819 // visible elsewhere, so merely issue a warning. 15820 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope()) 15821 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name; 15822 else 15823 Diag(NameLoc, diag::err_redefinition) << Name; 15824 notePreviousDefinition(Def, 15825 NameLoc.isValid() ? NameLoc : KWLoc); 15826 // If this is a redefinition, recover by making this 15827 // struct be anonymous, which will make any later 15828 // references get the previous definition. 15829 Name = nullptr; 15830 Previous.clear(); 15831 Invalid = true; 15832 } 15833 } else { 15834 // If the type is currently being defined, complain 15835 // about a nested redefinition. 15836 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl(); 15837 if (TD->isBeingDefined()) { 15838 Diag(NameLoc, diag::err_nested_redefinition) << Name; 15839 Diag(PrevTagDecl->getLocation(), 15840 diag::note_previous_definition); 15841 Name = nullptr; 15842 Previous.clear(); 15843 Invalid = true; 15844 } 15845 } 15846 15847 // Okay, this is definition of a previously declared or referenced 15848 // tag. We're going to create a new Decl for it. 15849 } 15850 15851 // Okay, we're going to make a redeclaration. If this is some kind 15852 // of reference, make sure we build the redeclaration in the same DC 15853 // as the original, and ignore the current access specifier. 15854 if (TUK == TUK_Friend || TUK == TUK_Reference) { 15855 SearchDC = PrevTagDecl->getDeclContext(); 15856 AS = AS_none; 15857 } 15858 } 15859 // If we get here we have (another) forward declaration or we 15860 // have a definition. Just create a new decl. 15861 15862 } else { 15863 // If we get here, this is a definition of a new tag type in a nested 15864 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a 15865 // new decl/type. We set PrevDecl to NULL so that the entities 15866 // have distinct types. 15867 Previous.clear(); 15868 } 15869 // If we get here, we're going to create a new Decl. If PrevDecl 15870 // is non-NULL, it's a definition of the tag declared by 15871 // PrevDecl. If it's NULL, we have a new definition. 15872 15873 // Otherwise, PrevDecl is not a tag, but was found with tag 15874 // lookup. This is only actually possible in C++, where a few 15875 // things like templates still live in the tag namespace. 15876 } else { 15877 // Use a better diagnostic if an elaborated-type-specifier 15878 // found the wrong kind of type on the first 15879 // (non-redeclaration) lookup. 15880 if ((TUK == TUK_Reference || TUK == TUK_Friend) && 15881 !Previous.isForRedeclaration()) { 15882 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); 15883 Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK 15884 << Kind; 15885 Diag(PrevDecl->getLocation(), diag::note_declared_at); 15886 Invalid = true; 15887 15888 // Otherwise, only diagnose if the declaration is in scope. 15889 } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S, 15890 SS.isNotEmpty() || isMemberSpecialization)) { 15891 // do nothing 15892 15893 // Diagnose implicit declarations introduced by elaborated types. 15894 } else if (TUK == TUK_Reference || TUK == TUK_Friend) { 15895 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); 15896 Diag(NameLoc, diag::err_tag_reference_conflict) << NTK; 15897 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; 15898 Invalid = true; 15899 15900 // Otherwise it's a declaration. Call out a particularly common 15901 // case here. 15902 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) { 15903 unsigned Kind = 0; 15904 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1; 15905 Diag(NameLoc, diag::err_tag_definition_of_typedef) 15906 << Name << Kind << TND->getUnderlyingType(); 15907 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; 15908 Invalid = true; 15909 15910 // Otherwise, diagnose. 15911 } else { 15912 // The tag name clashes with something else in the target scope, 15913 // issue an error and recover by making this tag be anonymous. 15914 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 15915 notePreviousDefinition(PrevDecl, NameLoc); 15916 Name = nullptr; 15917 Invalid = true; 15918 } 15919 15920 // The existing declaration isn't relevant to us; we're in a 15921 // new scope, so clear out the previous declaration. 15922 Previous.clear(); 15923 } 15924 } 15925 15926 CreateNewDecl: 15927 15928 TagDecl *PrevDecl = nullptr; 15929 if (Previous.isSingleResult()) 15930 PrevDecl = cast<TagDecl>(Previous.getFoundDecl()); 15931 15932 // If there is an identifier, use the location of the identifier as the 15933 // location of the decl, otherwise use the location of the struct/union 15934 // keyword. 15935 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; 15936 15937 // Otherwise, create a new declaration. If there is a previous 15938 // declaration of the same entity, the two will be linked via 15939 // PrevDecl. 15940 TagDecl *New; 15941 15942 if (Kind == TTK_Enum) { 15943 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: 15944 // enum X { A, B, C } D; D should chain to X. 15945 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, 15946 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum, 15947 ScopedEnumUsesClassTag, IsFixed); 15948 15949 if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit())) 15950 StdAlignValT = cast<EnumDecl>(New); 15951 15952 // If this is an undefined enum, warn. 15953 if (TUK != TUK_Definition && !Invalid) { 15954 TagDecl *Def; 15955 if (IsFixed && cast<EnumDecl>(New)->isFixed()) { 15956 // C++0x: 7.2p2: opaque-enum-declaration. 15957 // Conflicts are diagnosed above. Do nothing. 15958 } 15959 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) { 15960 Diag(Loc, diag::ext_forward_ref_enum_def) 15961 << New; 15962 Diag(Def->getLocation(), diag::note_previous_definition); 15963 } else { 15964 unsigned DiagID = diag::ext_forward_ref_enum; 15965 if (getLangOpts().MSVCCompat) 15966 DiagID = diag::ext_ms_forward_ref_enum; 15967 else if (getLangOpts().CPlusPlus) 15968 DiagID = diag::err_forward_ref_enum; 15969 Diag(Loc, DiagID); 15970 } 15971 } 15972 15973 if (EnumUnderlying) { 15974 EnumDecl *ED = cast<EnumDecl>(New); 15975 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) 15976 ED->setIntegerTypeSourceInfo(TI); 15977 else 15978 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0)); 15979 ED->setPromotionType(ED->getIntegerType()); 15980 assert(ED->isComplete() && "enum with type should be complete"); 15981 } 15982 } else { 15983 // struct/union/class 15984 15985 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: 15986 // struct X { int A; } D; D should chain to X. 15987 if (getLangOpts().CPlusPlus) { 15988 // FIXME: Look for a way to use RecordDecl for simple structs. 15989 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 15990 cast_or_null<CXXRecordDecl>(PrevDecl)); 15991 15992 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) 15993 StdBadAlloc = cast<CXXRecordDecl>(New); 15994 } else 15995 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 15996 cast_or_null<RecordDecl>(PrevDecl)); 15997 } 15998 15999 // C++11 [dcl.type]p3: 16000 // A type-specifier-seq shall not define a class or enumeration [...]. 16001 if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) && 16002 TUK == TUK_Definition) { 16003 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier) 16004 << Context.getTagDeclType(New); 16005 Invalid = true; 16006 } 16007 16008 if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition && 16009 DC->getDeclKind() == Decl::Enum) { 16010 Diag(New->getLocation(), diag::err_type_defined_in_enum) 16011 << Context.getTagDeclType(New); 16012 Invalid = true; 16013 } 16014 16015 // Maybe add qualifier info. 16016 if (SS.isNotEmpty()) { 16017 if (SS.isSet()) { 16018 // If this is either a declaration or a definition, check the 16019 // nested-name-specifier against the current context. 16020 if ((TUK == TUK_Definition || TUK == TUK_Declaration) && 16021 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc, 16022 isMemberSpecialization)) 16023 Invalid = true; 16024 16025 New->setQualifierInfo(SS.getWithLocInContext(Context)); 16026 if (TemplateParameterLists.size() > 0) { 16027 New->setTemplateParameterListsInfo(Context, TemplateParameterLists); 16028 } 16029 } 16030 else 16031 Invalid = true; 16032 } 16033 16034 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { 16035 // Add alignment attributes if necessary; these attributes are checked when 16036 // the ASTContext lays out the structure. 16037 // 16038 // It is important for implementing the correct semantics that this 16039 // happen here (in ActOnTag). The #pragma pack stack is 16040 // maintained as a result of parser callbacks which can occur at 16041 // many points during the parsing of a struct declaration (because 16042 // the #pragma tokens are effectively skipped over during the 16043 // parsing of the struct). 16044 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 16045 AddAlignmentAttributesForRecord(RD); 16046 AddMsStructLayoutForRecord(RD); 16047 } 16048 } 16049 16050 if (ModulePrivateLoc.isValid()) { 16051 if (isMemberSpecialization) 16052 Diag(New->getLocation(), diag::err_module_private_specialization) 16053 << 2 16054 << FixItHint::CreateRemoval(ModulePrivateLoc); 16055 // __module_private__ does not apply to local classes. However, we only 16056 // diagnose this as an error when the declaration specifiers are 16057 // freestanding. Here, we just ignore the __module_private__. 16058 else if (!SearchDC->isFunctionOrMethod()) 16059 New->setModulePrivate(); 16060 } 16061 16062 // If this is a specialization of a member class (of a class template), 16063 // check the specialization. 16064 if (isMemberSpecialization && CheckMemberSpecialization(New, Previous)) 16065 Invalid = true; 16066 16067 // If we're declaring or defining a tag in function prototype scope in C, 16068 // note that this type can only be used within the function and add it to 16069 // the list of decls to inject into the function definition scope. 16070 if ((Name || Kind == TTK_Enum) && 16071 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) { 16072 if (getLangOpts().CPlusPlus) { 16073 // C++ [dcl.fct]p6: 16074 // Types shall not be defined in return or parameter types. 16075 if (TUK == TUK_Definition && !IsTypeSpecifier) { 16076 Diag(Loc, diag::err_type_defined_in_param_type) 16077 << Name; 16078 Invalid = true; 16079 } 16080 } else if (!PrevDecl) { 16081 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); 16082 } 16083 } 16084 16085 if (Invalid) 16086 New->setInvalidDecl(); 16087 16088 // Set the lexical context. If the tag has a C++ scope specifier, the 16089 // lexical context will be different from the semantic context. 16090 New->setLexicalDeclContext(CurContext); 16091 16092 // Mark this as a friend decl if applicable. 16093 // In Microsoft mode, a friend declaration also acts as a forward 16094 // declaration so we always pass true to setObjectOfFriendDecl to make 16095 // the tag name visible. 16096 if (TUK == TUK_Friend) 16097 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat); 16098 16099 // Set the access specifier. 16100 if (!Invalid && SearchDC->isRecord()) 16101 SetMemberAccessSpecifier(New, PrevDecl, AS); 16102 16103 if (PrevDecl) 16104 CheckRedeclarationModuleOwnership(New, PrevDecl); 16105 16106 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 16107 New->startDefinition(); 16108 16109 ProcessDeclAttributeList(S, New, Attrs); 16110 AddPragmaAttributes(S, New); 16111 16112 // If this has an identifier, add it to the scope stack. 16113 if (TUK == TUK_Friend) { 16114 // We might be replacing an existing declaration in the lookup tables; 16115 // if so, borrow its access specifier. 16116 if (PrevDecl) 16117 New->setAccess(PrevDecl->getAccess()); 16118 16119 DeclContext *DC = New->getDeclContext()->getRedeclContext(); 16120 DC->makeDeclVisibleInContext(New); 16121 if (Name) // can be null along some error paths 16122 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 16123 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); 16124 } else if (Name) { 16125 S = getNonFieldDeclScope(S); 16126 PushOnScopeChains(New, S, true); 16127 } else { 16128 CurContext->addDecl(New); 16129 } 16130 16131 // If this is the C FILE type, notify the AST context. 16132 if (IdentifierInfo *II = New->getIdentifier()) 16133 if (!New->isInvalidDecl() && 16134 New->getDeclContext()->getRedeclContext()->isTranslationUnit() && 16135 II->isStr("FILE")) 16136 Context.setFILEDecl(New); 16137 16138 if (PrevDecl) 16139 mergeDeclAttributes(New, PrevDecl); 16140 16141 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New)) 16142 inferGslOwnerPointerAttribute(CXXRD); 16143 16144 // If there's a #pragma GCC visibility in scope, set the visibility of this 16145 // record. 16146 AddPushedVisibilityAttribute(New); 16147 16148 if (isMemberSpecialization && !New->isInvalidDecl()) 16149 CompleteMemberSpecialization(New, Previous); 16150 16151 OwnedDecl = true; 16152 // In C++, don't return an invalid declaration. We can't recover well from 16153 // the cases where we make the type anonymous. 16154 if (Invalid && getLangOpts().CPlusPlus) { 16155 if (New->isBeingDefined()) 16156 if (auto RD = dyn_cast<RecordDecl>(New)) 16157 RD->completeDefinition(); 16158 return nullptr; 16159 } else if (SkipBody && SkipBody->ShouldSkip) { 16160 return SkipBody->Previous; 16161 } else { 16162 return New; 16163 } 16164 } 16165 16166 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { 16167 AdjustDeclIfTemplate(TagD); 16168 TagDecl *Tag = cast<TagDecl>(TagD); 16169 16170 // Enter the tag context. 16171 PushDeclContext(S, Tag); 16172 16173 ActOnDocumentableDecl(TagD); 16174 16175 // If there's a #pragma GCC visibility in scope, set the visibility of this 16176 // record. 16177 AddPushedVisibilityAttribute(Tag); 16178 } 16179 16180 bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev, 16181 SkipBodyInfo &SkipBody) { 16182 if (!hasStructuralCompatLayout(Prev, SkipBody.New)) 16183 return false; 16184 16185 // Make the previous decl visible. 16186 makeMergedDefinitionVisible(SkipBody.Previous); 16187 return true; 16188 } 16189 16190 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) { 16191 assert(isa<ObjCContainerDecl>(IDecl) && 16192 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"); 16193 DeclContext *OCD = cast<DeclContext>(IDecl); 16194 assert(OCD->getLexicalParent() == CurContext && 16195 "The next DeclContext should be lexically contained in the current one."); 16196 CurContext = OCD; 16197 return IDecl; 16198 } 16199 16200 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD, 16201 SourceLocation FinalLoc, 16202 bool IsFinalSpelledSealed, 16203 SourceLocation LBraceLoc) { 16204 AdjustDeclIfTemplate(TagD); 16205 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD); 16206 16207 FieldCollector->StartClass(); 16208 16209 if (!Record->getIdentifier()) 16210 return; 16211 16212 if (FinalLoc.isValid()) 16213 Record->addAttr(FinalAttr::Create( 16214 Context, FinalLoc, AttributeCommonInfo::AS_Keyword, 16215 static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed))); 16216 16217 // C++ [class]p2: 16218 // [...] The class-name is also inserted into the scope of the 16219 // class itself; this is known as the injected-class-name. For 16220 // purposes of access checking, the injected-class-name is treated 16221 // as if it were a public member name. 16222 CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create( 16223 Context, Record->getTagKind(), CurContext, Record->getBeginLoc(), 16224 Record->getLocation(), Record->getIdentifier(), 16225 /*PrevDecl=*/nullptr, 16226 /*DelayTypeCreation=*/true); 16227 Context.getTypeDeclType(InjectedClassName, Record); 16228 InjectedClassName->setImplicit(); 16229 InjectedClassName->setAccess(AS_public); 16230 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) 16231 InjectedClassName->setDescribedClassTemplate(Template); 16232 PushOnScopeChains(InjectedClassName, S); 16233 assert(InjectedClassName->isInjectedClassName() && 16234 "Broken injected-class-name"); 16235 } 16236 16237 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, 16238 SourceRange BraceRange) { 16239 AdjustDeclIfTemplate(TagD); 16240 TagDecl *Tag = cast<TagDecl>(TagD); 16241 Tag->setBraceRange(BraceRange); 16242 16243 // Make sure we "complete" the definition even it is invalid. 16244 if (Tag->isBeingDefined()) { 16245 assert(Tag->isInvalidDecl() && "We should already have completed it"); 16246 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) 16247 RD->completeDefinition(); 16248 } 16249 16250 if (isa<CXXRecordDecl>(Tag)) { 16251 FieldCollector->FinishClass(); 16252 } 16253 16254 // Exit this scope of this tag's definition. 16255 PopDeclContext(); 16256 16257 if (getCurLexicalContext()->isObjCContainer() && 16258 Tag->getDeclContext()->isFileContext()) 16259 Tag->setTopLevelDeclInObjCContainer(); 16260 16261 // Notify the consumer that we've defined a tag. 16262 if (!Tag->isInvalidDecl()) 16263 Consumer.HandleTagDeclDefinition(Tag); 16264 } 16265 16266 void Sema::ActOnObjCContainerFinishDefinition() { 16267 // Exit this scope of this interface definition. 16268 PopDeclContext(); 16269 } 16270 16271 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) { 16272 assert(DC == CurContext && "Mismatch of container contexts"); 16273 OriginalLexicalContext = DC; 16274 ActOnObjCContainerFinishDefinition(); 16275 } 16276 16277 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) { 16278 ActOnObjCContainerStartDefinition(cast<Decl>(DC)); 16279 OriginalLexicalContext = nullptr; 16280 } 16281 16282 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { 16283 AdjustDeclIfTemplate(TagD); 16284 TagDecl *Tag = cast<TagDecl>(TagD); 16285 Tag->setInvalidDecl(); 16286 16287 // Make sure we "complete" the definition even it is invalid. 16288 if (Tag->isBeingDefined()) { 16289 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) 16290 RD->completeDefinition(); 16291 } 16292 16293 // We're undoing ActOnTagStartDefinition here, not 16294 // ActOnStartCXXMemberDeclarations, so we don't have to mess with 16295 // the FieldCollector. 16296 16297 PopDeclContext(); 16298 } 16299 16300 // Note that FieldName may be null for anonymous bitfields. 16301 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc, 16302 IdentifierInfo *FieldName, 16303 QualType FieldTy, bool IsMsStruct, 16304 Expr *BitWidth, bool *ZeroWidth) { 16305 assert(BitWidth); 16306 if (BitWidth->containsErrors()) 16307 return ExprError(); 16308 16309 // Default to true; that shouldn't confuse checks for emptiness 16310 if (ZeroWidth) 16311 *ZeroWidth = true; 16312 16313 // C99 6.7.2.1p4 - verify the field type. 16314 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 16315 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { 16316 // Handle incomplete and sizeless types with a specific error. 16317 if (RequireCompleteSizedType(FieldLoc, FieldTy, 16318 diag::err_field_incomplete_or_sizeless)) 16319 return ExprError(); 16320 if (FieldName) 16321 return Diag(FieldLoc, diag::err_not_integral_type_bitfield) 16322 << FieldName << FieldTy << BitWidth->getSourceRange(); 16323 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) 16324 << FieldTy << BitWidth->getSourceRange(); 16325 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth), 16326 UPPC_BitFieldWidth)) 16327 return ExprError(); 16328 16329 // If the bit-width is type- or value-dependent, don't try to check 16330 // it now. 16331 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) 16332 return BitWidth; 16333 16334 llvm::APSInt Value; 16335 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value); 16336 if (ICE.isInvalid()) 16337 return ICE; 16338 BitWidth = ICE.get(); 16339 16340 if (Value != 0 && ZeroWidth) 16341 *ZeroWidth = false; 16342 16343 // Zero-width bitfield is ok for anonymous field. 16344 if (Value == 0 && FieldName) 16345 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; 16346 16347 if (Value.isSigned() && Value.isNegative()) { 16348 if (FieldName) 16349 return Diag(FieldLoc, diag::err_bitfield_has_negative_width) 16350 << FieldName << Value.toString(10); 16351 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) 16352 << Value.toString(10); 16353 } 16354 16355 if (!FieldTy->isDependentType()) { 16356 uint64_t TypeStorageSize = Context.getTypeSize(FieldTy); 16357 uint64_t TypeWidth = Context.getIntWidth(FieldTy); 16358 bool BitfieldIsOverwide = Value.ugt(TypeWidth); 16359 16360 // Over-wide bitfields are an error in C or when using the MSVC bitfield 16361 // ABI. 16362 bool CStdConstraintViolation = 16363 BitfieldIsOverwide && !getLangOpts().CPlusPlus; 16364 bool MSBitfieldViolation = 16365 Value.ugt(TypeStorageSize) && 16366 (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft()); 16367 if (CStdConstraintViolation || MSBitfieldViolation) { 16368 unsigned DiagWidth = 16369 CStdConstraintViolation ? TypeWidth : TypeStorageSize; 16370 if (FieldName) 16371 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width) 16372 << FieldName << (unsigned)Value.getZExtValue() 16373 << !CStdConstraintViolation << DiagWidth; 16374 16375 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width) 16376 << (unsigned)Value.getZExtValue() << !CStdConstraintViolation 16377 << DiagWidth; 16378 } 16379 16380 // Warn on types where the user might conceivably expect to get all 16381 // specified bits as value bits: that's all integral types other than 16382 // 'bool'. 16383 if (BitfieldIsOverwide && !FieldTy->isBooleanType()) { 16384 if (FieldName) 16385 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width) 16386 << FieldName << (unsigned)Value.getZExtValue() 16387 << (unsigned)TypeWidth; 16388 else 16389 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width) 16390 << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth; 16391 } 16392 } 16393 16394 return BitWidth; 16395 } 16396 16397 /// ActOnField - Each field of a C struct/union is passed into this in order 16398 /// to create a FieldDecl object for it. 16399 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, 16400 Declarator &D, Expr *BitfieldWidth) { 16401 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD), 16402 DeclStart, D, static_cast<Expr*>(BitfieldWidth), 16403 /*InitStyle=*/ICIS_NoInit, AS_public); 16404 return Res; 16405 } 16406 16407 /// HandleField - Analyze a field of a C struct or a C++ data member. 16408 /// 16409 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, 16410 SourceLocation DeclStart, 16411 Declarator &D, Expr *BitWidth, 16412 InClassInitStyle InitStyle, 16413 AccessSpecifier AS) { 16414 if (D.isDecompositionDeclarator()) { 16415 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); 16416 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) 16417 << Decomp.getSourceRange(); 16418 return nullptr; 16419 } 16420 16421 IdentifierInfo *II = D.getIdentifier(); 16422 SourceLocation Loc = DeclStart; 16423 if (II) Loc = D.getIdentifierLoc(); 16424 16425 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16426 QualType T = TInfo->getType(); 16427 if (getLangOpts().CPlusPlus) { 16428 CheckExtraCXXDefaultArguments(D); 16429 16430 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 16431 UPPC_DataMemberType)) { 16432 D.setInvalidType(); 16433 T = Context.IntTy; 16434 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 16435 } 16436 } 16437 16438 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 16439 16440 if (D.getDeclSpec().isInlineSpecified()) 16441 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 16442 << getLangOpts().CPlusPlus17; 16443 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 16444 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 16445 diag::err_invalid_thread) 16446 << DeclSpec::getSpecifierName(TSCS); 16447 16448 // Check to see if this name was declared as a member previously 16449 NamedDecl *PrevDecl = nullptr; 16450 LookupResult Previous(*this, II, Loc, LookupMemberName, 16451 ForVisibleRedeclaration); 16452 LookupName(Previous, S); 16453 switch (Previous.getResultKind()) { 16454 case LookupResult::Found: 16455 case LookupResult::FoundUnresolvedValue: 16456 PrevDecl = Previous.getAsSingle<NamedDecl>(); 16457 break; 16458 16459 case LookupResult::FoundOverloaded: 16460 PrevDecl = Previous.getRepresentativeDecl(); 16461 break; 16462 16463 case LookupResult::NotFound: 16464 case LookupResult::NotFoundInCurrentInstantiation: 16465 case LookupResult::Ambiguous: 16466 break; 16467 } 16468 Previous.suppressDiagnostics(); 16469 16470 if (PrevDecl && PrevDecl->isTemplateParameter()) { 16471 // Maybe we will complain about the shadowed template parameter. 16472 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 16473 // Just pretend that we didn't see the previous declaration. 16474 PrevDecl = nullptr; 16475 } 16476 16477 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 16478 PrevDecl = nullptr; 16479 16480 bool Mutable 16481 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); 16482 SourceLocation TSSL = D.getBeginLoc(); 16483 FieldDecl *NewFD 16484 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle, 16485 TSSL, AS, PrevDecl, &D); 16486 16487 if (NewFD->isInvalidDecl()) 16488 Record->setInvalidDecl(); 16489 16490 if (D.getDeclSpec().isModulePrivateSpecified()) 16491 NewFD->setModulePrivate(); 16492 16493 if (NewFD->isInvalidDecl() && PrevDecl) { 16494 // Don't introduce NewFD into scope; there's already something 16495 // with the same name in the same scope. 16496 } else if (II) { 16497 PushOnScopeChains(NewFD, S); 16498 } else 16499 Record->addDecl(NewFD); 16500 16501 return NewFD; 16502 } 16503 16504 /// Build a new FieldDecl and check its well-formedness. 16505 /// 16506 /// This routine builds a new FieldDecl given the fields name, type, 16507 /// record, etc. \p PrevDecl should refer to any previous declaration 16508 /// with the same name and in the same scope as the field to be 16509 /// created. 16510 /// 16511 /// \returns a new FieldDecl. 16512 /// 16513 /// \todo The Declarator argument is a hack. It will be removed once 16514 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, 16515 TypeSourceInfo *TInfo, 16516 RecordDecl *Record, SourceLocation Loc, 16517 bool Mutable, Expr *BitWidth, 16518 InClassInitStyle InitStyle, 16519 SourceLocation TSSL, 16520 AccessSpecifier AS, NamedDecl *PrevDecl, 16521 Declarator *D) { 16522 IdentifierInfo *II = Name.getAsIdentifierInfo(); 16523 bool InvalidDecl = false; 16524 if (D) InvalidDecl = D->isInvalidType(); 16525 16526 // If we receive a broken type, recover by assuming 'int' and 16527 // marking this declaration as invalid. 16528 if (T.isNull() || T->containsErrors()) { 16529 InvalidDecl = true; 16530 T = Context.IntTy; 16531 } 16532 16533 QualType EltTy = Context.getBaseElementType(T); 16534 if (!EltTy->isDependentType() && !EltTy->containsErrors()) { 16535 if (RequireCompleteSizedType(Loc, EltTy, 16536 diag::err_field_incomplete_or_sizeless)) { 16537 // Fields of incomplete type force their record to be invalid. 16538 Record->setInvalidDecl(); 16539 InvalidDecl = true; 16540 } else { 16541 NamedDecl *Def; 16542 EltTy->isIncompleteType(&Def); 16543 if (Def && Def->isInvalidDecl()) { 16544 Record->setInvalidDecl(); 16545 InvalidDecl = true; 16546 } 16547 } 16548 } 16549 16550 // TR 18037 does not allow fields to be declared with address space 16551 if (T.hasAddressSpace() || T->isDependentAddressSpaceType() || 16552 T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) { 16553 Diag(Loc, diag::err_field_with_address_space); 16554 Record->setInvalidDecl(); 16555 InvalidDecl = true; 16556 } 16557 16558 if (LangOpts.OpenCL) { 16559 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be 16560 // used as structure or union field: image, sampler, event or block types. 16561 if (T->isEventT() || T->isImageType() || T->isSamplerT() || 16562 T->isBlockPointerType()) { 16563 Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T; 16564 Record->setInvalidDecl(); 16565 InvalidDecl = true; 16566 } 16567 // OpenCL v1.2 s6.9.c: bitfields are not supported. 16568 if (BitWidth) { 16569 Diag(Loc, diag::err_opencl_bitfields); 16570 InvalidDecl = true; 16571 } 16572 } 16573 16574 // Anonymous bit-fields cannot be cv-qualified (CWG 2229). 16575 if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth && 16576 T.hasQualifiers()) { 16577 InvalidDecl = true; 16578 Diag(Loc, diag::err_anon_bitfield_qualifiers); 16579 } 16580 16581 // C99 6.7.2.1p8: A member of a structure or union may have any type other 16582 // than a variably modified type. 16583 if (!InvalidDecl && T->isVariablyModifiedType()) { 16584 bool SizeIsNegative; 16585 llvm::APSInt Oversized; 16586 16587 TypeSourceInfo *FixedTInfo = 16588 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 16589 SizeIsNegative, 16590 Oversized); 16591 if (FixedTInfo) { 16592 Diag(Loc, diag::warn_illegal_constant_array_size); 16593 TInfo = FixedTInfo; 16594 T = FixedTInfo->getType(); 16595 } else { 16596 if (SizeIsNegative) 16597 Diag(Loc, diag::err_typecheck_negative_array_size); 16598 else if (Oversized.getBoolValue()) 16599 Diag(Loc, diag::err_array_too_large) 16600 << Oversized.toString(10); 16601 else 16602 Diag(Loc, diag::err_typecheck_field_variable_size); 16603 InvalidDecl = true; 16604 } 16605 } 16606 16607 // Fields can not have abstract class types 16608 if (!InvalidDecl && RequireNonAbstractType(Loc, T, 16609 diag::err_abstract_type_in_decl, 16610 AbstractFieldType)) 16611 InvalidDecl = true; 16612 16613 bool ZeroWidth = false; 16614 if (InvalidDecl) 16615 BitWidth = nullptr; 16616 // If this is declared as a bit-field, check the bit-field. 16617 if (BitWidth) { 16618 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth, 16619 &ZeroWidth).get(); 16620 if (!BitWidth) { 16621 InvalidDecl = true; 16622 BitWidth = nullptr; 16623 ZeroWidth = false; 16624 } 16625 16626 // Only data members can have in-class initializers. 16627 if (BitWidth && !II && InitStyle) { 16628 Diag(Loc, diag::err_anon_bitfield_init); 16629 InvalidDecl = true; 16630 BitWidth = nullptr; 16631 ZeroWidth = false; 16632 } 16633 } 16634 16635 // Check that 'mutable' is consistent with the type of the declaration. 16636 if (!InvalidDecl && Mutable) { 16637 unsigned DiagID = 0; 16638 if (T->isReferenceType()) 16639 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference 16640 : diag::err_mutable_reference; 16641 else if (T.isConstQualified()) 16642 DiagID = diag::err_mutable_const; 16643 16644 if (DiagID) { 16645 SourceLocation ErrLoc = Loc; 16646 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) 16647 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); 16648 Diag(ErrLoc, DiagID); 16649 if (DiagID != diag::ext_mutable_reference) { 16650 Mutable = false; 16651 InvalidDecl = true; 16652 } 16653 } 16654 } 16655 16656 // C++11 [class.union]p8 (DR1460): 16657 // At most one variant member of a union may have a 16658 // brace-or-equal-initializer. 16659 if (InitStyle != ICIS_NoInit) 16660 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc); 16661 16662 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo, 16663 BitWidth, Mutable, InitStyle); 16664 if (InvalidDecl) 16665 NewFD->setInvalidDecl(); 16666 16667 if (PrevDecl && !isa<TagDecl>(PrevDecl)) { 16668 Diag(Loc, diag::err_duplicate_member) << II; 16669 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 16670 NewFD->setInvalidDecl(); 16671 } 16672 16673 if (!InvalidDecl && getLangOpts().CPlusPlus) { 16674 if (Record->isUnion()) { 16675 if (const RecordType *RT = EltTy->getAs<RecordType>()) { 16676 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); 16677 if (RDecl->getDefinition()) { 16678 // C++ [class.union]p1: An object of a class with a non-trivial 16679 // constructor, a non-trivial copy constructor, a non-trivial 16680 // destructor, or a non-trivial copy assignment operator 16681 // cannot be a member of a union, nor can an array of such 16682 // objects. 16683 if (CheckNontrivialField(NewFD)) 16684 NewFD->setInvalidDecl(); 16685 } 16686 } 16687 16688 // C++ [class.union]p1: If a union contains a member of reference type, 16689 // the program is ill-formed, except when compiling with MSVC extensions 16690 // enabled. 16691 if (EltTy->isReferenceType()) { 16692 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? 16693 diag::ext_union_member_of_reference_type : 16694 diag::err_union_member_of_reference_type) 16695 << NewFD->getDeclName() << EltTy; 16696 if (!getLangOpts().MicrosoftExt) 16697 NewFD->setInvalidDecl(); 16698 } 16699 } 16700 } 16701 16702 // FIXME: We need to pass in the attributes given an AST 16703 // representation, not a parser representation. 16704 if (D) { 16705 // FIXME: The current scope is almost... but not entirely... correct here. 16706 ProcessDeclAttributes(getCurScope(), NewFD, *D); 16707 16708 if (NewFD->hasAttrs()) 16709 CheckAlignasUnderalignment(NewFD); 16710 } 16711 16712 // In auto-retain/release, infer strong retension for fields of 16713 // retainable type. 16714 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD)) 16715 NewFD->setInvalidDecl(); 16716 16717 if (T.isObjCGCWeak()) 16718 Diag(Loc, diag::warn_attribute_weak_on_field); 16719 16720 NewFD->setAccess(AS); 16721 return NewFD; 16722 } 16723 16724 bool Sema::CheckNontrivialField(FieldDecl *FD) { 16725 assert(FD); 16726 assert(getLangOpts().CPlusPlus && "valid check only for C++"); 16727 16728 if (FD->isInvalidDecl() || FD->getType()->isDependentType()) 16729 return false; 16730 16731 QualType EltTy = Context.getBaseElementType(FD->getType()); 16732 if (const RecordType *RT = EltTy->getAs<RecordType>()) { 16733 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl()); 16734 if (RDecl->getDefinition()) { 16735 // We check for copy constructors before constructors 16736 // because otherwise we'll never get complaints about 16737 // copy constructors. 16738 16739 CXXSpecialMember member = CXXInvalid; 16740 // We're required to check for any non-trivial constructors. Since the 16741 // implicit default constructor is suppressed if there are any 16742 // user-declared constructors, we just need to check that there is a 16743 // trivial default constructor and a trivial copy constructor. (We don't 16744 // worry about move constructors here, since this is a C++98 check.) 16745 if (RDecl->hasNonTrivialCopyConstructor()) 16746 member = CXXCopyConstructor; 16747 else if (!RDecl->hasTrivialDefaultConstructor()) 16748 member = CXXDefaultConstructor; 16749 else if (RDecl->hasNonTrivialCopyAssignment()) 16750 member = CXXCopyAssignment; 16751 else if (RDecl->hasNonTrivialDestructor()) 16752 member = CXXDestructor; 16753 16754 if (member != CXXInvalid) { 16755 if (!getLangOpts().CPlusPlus11 && 16756 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) { 16757 // Objective-C++ ARC: it is an error to have a non-trivial field of 16758 // a union. However, system headers in Objective-C programs 16759 // occasionally have Objective-C lifetime objects within unions, 16760 // and rather than cause the program to fail, we make those 16761 // members unavailable. 16762 SourceLocation Loc = FD->getLocation(); 16763 if (getSourceManager().isInSystemHeader(Loc)) { 16764 if (!FD->hasAttr<UnavailableAttr>()) 16765 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "", 16766 UnavailableAttr::IR_ARCFieldWithOwnership, Loc)); 16767 return false; 16768 } 16769 } 16770 16771 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ? 16772 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member : 16773 diag::err_illegal_union_or_anon_struct_member) 16774 << FD->getParent()->isUnion() << FD->getDeclName() << member; 16775 DiagnoseNontrivial(RDecl, member); 16776 return !getLangOpts().CPlusPlus11; 16777 } 16778 } 16779 } 16780 16781 return false; 16782 } 16783 16784 /// TranslateIvarVisibility - Translate visibility from a token ID to an 16785 /// AST enum value. 16786 static ObjCIvarDecl::AccessControl 16787 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { 16788 switch (ivarVisibility) { 16789 default: llvm_unreachable("Unknown visitibility kind"); 16790 case tok::objc_private: return ObjCIvarDecl::Private; 16791 case tok::objc_public: return ObjCIvarDecl::Public; 16792 case tok::objc_protected: return ObjCIvarDecl::Protected; 16793 case tok::objc_package: return ObjCIvarDecl::Package; 16794 } 16795 } 16796 16797 /// ActOnIvar - Each ivar field of an objective-c class is passed into this 16798 /// in order to create an IvarDecl object for it. 16799 Decl *Sema::ActOnIvar(Scope *S, 16800 SourceLocation DeclStart, 16801 Declarator &D, Expr *BitfieldWidth, 16802 tok::ObjCKeywordKind Visibility) { 16803 16804 IdentifierInfo *II = D.getIdentifier(); 16805 Expr *BitWidth = (Expr*)BitfieldWidth; 16806 SourceLocation Loc = DeclStart; 16807 if (II) Loc = D.getIdentifierLoc(); 16808 16809 // FIXME: Unnamed fields can be handled in various different ways, for 16810 // example, unnamed unions inject all members into the struct namespace! 16811 16812 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16813 QualType T = TInfo->getType(); 16814 16815 if (BitWidth) { 16816 // 6.7.2.1p3, 6.7.2.1p4 16817 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get(); 16818 if (!BitWidth) 16819 D.setInvalidType(); 16820 } else { 16821 // Not a bitfield. 16822 16823 // validate II. 16824 16825 } 16826 if (T->isReferenceType()) { 16827 Diag(Loc, diag::err_ivar_reference_type); 16828 D.setInvalidType(); 16829 } 16830 // C99 6.7.2.1p8: A member of a structure or union may have any type other 16831 // than a variably modified type. 16832 else if (T->isVariablyModifiedType()) { 16833 Diag(Loc, diag::err_typecheck_ivar_variable_size); 16834 D.setInvalidType(); 16835 } 16836 16837 // Get the visibility (access control) for this ivar. 16838 ObjCIvarDecl::AccessControl ac = 16839 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) 16840 : ObjCIvarDecl::None; 16841 // Must set ivar's DeclContext to its enclosing interface. 16842 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext); 16843 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl()) 16844 return nullptr; 16845 ObjCContainerDecl *EnclosingContext; 16846 if (ObjCImplementationDecl *IMPDecl = 16847 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { 16848 if (LangOpts.ObjCRuntime.isFragile()) { 16849 // Case of ivar declared in an implementation. Context is that of its class. 16850 EnclosingContext = IMPDecl->getClassInterface(); 16851 assert(EnclosingContext && "Implementation has no class interface!"); 16852 } 16853 else 16854 EnclosingContext = EnclosingDecl; 16855 } else { 16856 if (ObjCCategoryDecl *CDecl = 16857 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { 16858 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) { 16859 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); 16860 return nullptr; 16861 } 16862 } 16863 EnclosingContext = EnclosingDecl; 16864 } 16865 16866 // Construct the decl. 16867 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext, 16868 DeclStart, Loc, II, T, 16869 TInfo, ac, (Expr *)BitfieldWidth); 16870 16871 if (II) { 16872 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName, 16873 ForVisibleRedeclaration); 16874 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S) 16875 && !isa<TagDecl>(PrevDecl)) { 16876 Diag(Loc, diag::err_duplicate_member) << II; 16877 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 16878 NewID->setInvalidDecl(); 16879 } 16880 } 16881 16882 // Process attributes attached to the ivar. 16883 ProcessDeclAttributes(S, NewID, D); 16884 16885 if (D.isInvalidType()) 16886 NewID->setInvalidDecl(); 16887 16888 // In ARC, infer 'retaining' for ivars of retainable type. 16889 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID)) 16890 NewID->setInvalidDecl(); 16891 16892 if (D.getDeclSpec().isModulePrivateSpecified()) 16893 NewID->setModulePrivate(); 16894 16895 if (II) { 16896 // FIXME: When interfaces are DeclContexts, we'll need to add 16897 // these to the interface. 16898 S->AddDecl(NewID); 16899 IdResolver.AddDecl(NewID); 16900 } 16901 16902 if (LangOpts.ObjCRuntime.isNonFragile() && 16903 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl)) 16904 Diag(Loc, diag::warn_ivars_in_interface); 16905 16906 return NewID; 16907 } 16908 16909 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for 16910 /// class and class extensions. For every class \@interface and class 16911 /// extension \@interface, if the last ivar is a bitfield of any type, 16912 /// then add an implicit `char :0` ivar to the end of that interface. 16913 void Sema::ActOnLastBitfield(SourceLocation DeclLoc, 16914 SmallVectorImpl<Decl *> &AllIvarDecls) { 16915 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty()) 16916 return; 16917 16918 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; 16919 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl); 16920 16921 if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context)) 16922 return; 16923 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext); 16924 if (!ID) { 16925 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) { 16926 if (!CD->IsClassExtension()) 16927 return; 16928 } 16929 // No need to add this to end of @implementation. 16930 else 16931 return; 16932 } 16933 // All conditions are met. Add a new bitfield to the tail end of ivars. 16934 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0); 16935 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc); 16936 16937 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext), 16938 DeclLoc, DeclLoc, nullptr, 16939 Context.CharTy, 16940 Context.getTrivialTypeSourceInfo(Context.CharTy, 16941 DeclLoc), 16942 ObjCIvarDecl::Private, BW, 16943 true); 16944 AllIvarDecls.push_back(Ivar); 16945 } 16946 16947 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl, 16948 ArrayRef<Decl *> Fields, SourceLocation LBrac, 16949 SourceLocation RBrac, 16950 const ParsedAttributesView &Attrs) { 16951 assert(EnclosingDecl && "missing record or interface decl"); 16952 16953 // If this is an Objective-C @implementation or category and we have 16954 // new fields here we should reset the layout of the interface since 16955 // it will now change. 16956 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) { 16957 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl); 16958 switch (DC->getKind()) { 16959 default: break; 16960 case Decl::ObjCCategory: 16961 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface()); 16962 break; 16963 case Decl::ObjCImplementation: 16964 Context. 16965 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface()); 16966 break; 16967 } 16968 } 16969 16970 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); 16971 CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl); 16972 16973 // Start counting up the number of named members; make sure to include 16974 // members of anonymous structs and unions in the total. 16975 unsigned NumNamedMembers = 0; 16976 if (Record) { 16977 for (const auto *I : Record->decls()) { 16978 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) 16979 if (IFD->getDeclName()) 16980 ++NumNamedMembers; 16981 } 16982 } 16983 16984 // Verify that all the fields are okay. 16985 SmallVector<FieldDecl*, 32> RecFields; 16986 16987 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end(); 16988 i != end; ++i) { 16989 FieldDecl *FD = cast<FieldDecl>(*i); 16990 16991 // Get the type for the field. 16992 const Type *FDTy = FD->getType().getTypePtr(); 16993 16994 if (!FD->isAnonymousStructOrUnion()) { 16995 // Remember all fields written by the user. 16996 RecFields.push_back(FD); 16997 } 16998 16999 // If the field is already invalid for some reason, don't emit more 17000 // diagnostics about it. 17001 if (FD->isInvalidDecl()) { 17002 EnclosingDecl->setInvalidDecl(); 17003 continue; 17004 } 17005 17006 // C99 6.7.2.1p2: 17007 // A structure or union shall not contain a member with 17008 // incomplete or function type (hence, a structure shall not 17009 // contain an instance of itself, but may contain a pointer to 17010 // an instance of itself), except that the last member of a 17011 // structure with more than one named member may have incomplete 17012 // array type; such a structure (and any union containing, 17013 // possibly recursively, a member that is such a structure) 17014 // shall not be a member of a structure or an element of an 17015 // array. 17016 bool IsLastField = (i + 1 == Fields.end()); 17017 if (FDTy->isFunctionType()) { 17018 // Field declared as a function. 17019 Diag(FD->getLocation(), diag::err_field_declared_as_function) 17020 << FD->getDeclName(); 17021 FD->setInvalidDecl(); 17022 EnclosingDecl->setInvalidDecl(); 17023 continue; 17024 } else if (FDTy->isIncompleteArrayType() && 17025 (Record || isa<ObjCContainerDecl>(EnclosingDecl))) { 17026 if (Record) { 17027 // Flexible array member. 17028 // Microsoft and g++ is more permissive regarding flexible array. 17029 // It will accept flexible array in union and also 17030 // as the sole element of a struct/class. 17031 unsigned DiagID = 0; 17032 if (!Record->isUnion() && !IsLastField) { 17033 Diag(FD->getLocation(), diag::err_flexible_array_not_at_end) 17034 << FD->getDeclName() << FD->getType() << Record->getTagKind(); 17035 Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration); 17036 FD->setInvalidDecl(); 17037 EnclosingDecl->setInvalidDecl(); 17038 continue; 17039 } else if (Record->isUnion()) 17040 DiagID = getLangOpts().MicrosoftExt 17041 ? diag::ext_flexible_array_union_ms 17042 : getLangOpts().CPlusPlus 17043 ? diag::ext_flexible_array_union_gnu 17044 : diag::err_flexible_array_union; 17045 else if (NumNamedMembers < 1) 17046 DiagID = getLangOpts().MicrosoftExt 17047 ? diag::ext_flexible_array_empty_aggregate_ms 17048 : getLangOpts().CPlusPlus 17049 ? diag::ext_flexible_array_empty_aggregate_gnu 17050 : diag::err_flexible_array_empty_aggregate; 17051 17052 if (DiagID) 17053 Diag(FD->getLocation(), DiagID) << FD->getDeclName() 17054 << Record->getTagKind(); 17055 // While the layout of types that contain virtual bases is not specified 17056 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place 17057 // virtual bases after the derived members. This would make a flexible 17058 // array member declared at the end of an object not adjacent to the end 17059 // of the type. 17060 if (CXXRecord && CXXRecord->getNumVBases() != 0) 17061 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base) 17062 << FD->getDeclName() << Record->getTagKind(); 17063 if (!getLangOpts().C99) 17064 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member) 17065 << FD->getDeclName() << Record->getTagKind(); 17066 17067 // If the element type has a non-trivial destructor, we would not 17068 // implicitly destroy the elements, so disallow it for now. 17069 // 17070 // FIXME: GCC allows this. We should probably either implicitly delete 17071 // the destructor of the containing class, or just allow this. 17072 QualType BaseElem = Context.getBaseElementType(FD->getType()); 17073 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) { 17074 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor) 17075 << FD->getDeclName() << FD->getType(); 17076 FD->setInvalidDecl(); 17077 EnclosingDecl->setInvalidDecl(); 17078 continue; 17079 } 17080 // Okay, we have a legal flexible array member at the end of the struct. 17081 Record->setHasFlexibleArrayMember(true); 17082 } else { 17083 // In ObjCContainerDecl ivars with incomplete array type are accepted, 17084 // unless they are followed by another ivar. That check is done 17085 // elsewhere, after synthesized ivars are known. 17086 } 17087 } else if (!FDTy->isDependentType() && 17088 RequireCompleteSizedType( 17089 FD->getLocation(), FD->getType(), 17090 diag::err_field_incomplete_or_sizeless)) { 17091 // Incomplete type 17092 FD->setInvalidDecl(); 17093 EnclosingDecl->setInvalidDecl(); 17094 continue; 17095 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { 17096 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) { 17097 // A type which contains a flexible array member is considered to be a 17098 // flexible array member. 17099 Record->setHasFlexibleArrayMember(true); 17100 if (!Record->isUnion()) { 17101 // If this is a struct/class and this is not the last element, reject 17102 // it. Note that GCC supports variable sized arrays in the middle of 17103 // structures. 17104 if (!IsLastField) 17105 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) 17106 << FD->getDeclName() << FD->getType(); 17107 else { 17108 // We support flexible arrays at the end of structs in 17109 // other structs as an extension. 17110 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) 17111 << FD->getDeclName(); 17112 } 17113 } 17114 } 17115 if (isa<ObjCContainerDecl>(EnclosingDecl) && 17116 RequireNonAbstractType(FD->getLocation(), FD->getType(), 17117 diag::err_abstract_type_in_decl, 17118 AbstractIvarType)) { 17119 // Ivars can not have abstract class types 17120 FD->setInvalidDecl(); 17121 } 17122 if (Record && FDTTy->getDecl()->hasObjectMember()) 17123 Record->setHasObjectMember(true); 17124 if (Record && FDTTy->getDecl()->hasVolatileMember()) 17125 Record->setHasVolatileMember(true); 17126 } else if (FDTy->isObjCObjectType()) { 17127 /// A field cannot be an Objective-c object 17128 Diag(FD->getLocation(), diag::err_statically_allocated_object) 17129 << FixItHint::CreateInsertion(FD->getLocation(), "*"); 17130 QualType T = Context.getObjCObjectPointerType(FD->getType()); 17131 FD->setType(T); 17132 } else if (Record && Record->isUnion() && 17133 FD->getType().hasNonTrivialObjCLifetime() && 17134 getSourceManager().isInSystemHeader(FD->getLocation()) && 17135 !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() && 17136 (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong || 17137 !Context.hasDirectOwnershipQualifier(FD->getType()))) { 17138 // For backward compatibility, fields of C unions declared in system 17139 // headers that have non-trivial ObjC ownership qualifications are marked 17140 // as unavailable unless the qualifier is explicit and __strong. This can 17141 // break ABI compatibility between programs compiled with ARC and MRR, but 17142 // is a better option than rejecting programs using those unions under 17143 // ARC. 17144 FD->addAttr(UnavailableAttr::CreateImplicit( 17145 Context, "", UnavailableAttr::IR_ARCFieldWithOwnership, 17146 FD->getLocation())); 17147 } else if (getLangOpts().ObjC && 17148 getLangOpts().getGC() != LangOptions::NonGC && Record && 17149 !Record->hasObjectMember()) { 17150 if (FD->getType()->isObjCObjectPointerType() || 17151 FD->getType().isObjCGCStrong()) 17152 Record->setHasObjectMember(true); 17153 else if (Context.getAsArrayType(FD->getType())) { 17154 QualType BaseType = Context.getBaseElementType(FD->getType()); 17155 if (BaseType->isRecordType() && 17156 BaseType->castAs<RecordType>()->getDecl()->hasObjectMember()) 17157 Record->setHasObjectMember(true); 17158 else if (BaseType->isObjCObjectPointerType() || 17159 BaseType.isObjCGCStrong()) 17160 Record->setHasObjectMember(true); 17161 } 17162 } 17163 17164 if (Record && !getLangOpts().CPlusPlus && 17165 !shouldIgnoreForRecordTriviality(FD)) { 17166 QualType FT = FD->getType(); 17167 if (FT.isNonTrivialToPrimitiveDefaultInitialize()) { 17168 Record->setNonTrivialToPrimitiveDefaultInitialize(true); 17169 if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 17170 Record->isUnion()) 17171 Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true); 17172 } 17173 QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy(); 17174 if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) { 17175 Record->setNonTrivialToPrimitiveCopy(true); 17176 if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion()) 17177 Record->setHasNonTrivialToPrimitiveCopyCUnion(true); 17178 } 17179 if (FT.isDestructedType()) { 17180 Record->setNonTrivialToPrimitiveDestroy(true); 17181 Record->setParamDestroyedInCallee(true); 17182 if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion()) 17183 Record->setHasNonTrivialToPrimitiveDestructCUnion(true); 17184 } 17185 17186 if (const auto *RT = FT->getAs<RecordType>()) { 17187 if (RT->getDecl()->getArgPassingRestrictions() == 17188 RecordDecl::APK_CanNeverPassInRegs) 17189 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 17190 } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak) 17191 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 17192 } 17193 17194 if (Record && FD->getType().isVolatileQualified()) 17195 Record->setHasVolatileMember(true); 17196 // Keep track of the number of named members. 17197 if (FD->getIdentifier()) 17198 ++NumNamedMembers; 17199 } 17200 17201 // Okay, we successfully defined 'Record'. 17202 if (Record) { 17203 bool Completed = false; 17204 if (CXXRecord) { 17205 if (!CXXRecord->isInvalidDecl()) { 17206 // Set access bits correctly on the directly-declared conversions. 17207 for (CXXRecordDecl::conversion_iterator 17208 I = CXXRecord->conversion_begin(), 17209 E = CXXRecord->conversion_end(); I != E; ++I) 17210 I.setAccess((*I)->getAccess()); 17211 } 17212 17213 // Add any implicitly-declared members to this class. 17214 AddImplicitlyDeclaredMembersToClass(CXXRecord); 17215 17216 if (!CXXRecord->isDependentType()) { 17217 if (!CXXRecord->isInvalidDecl()) { 17218 // If we have virtual base classes, we may end up finding multiple 17219 // final overriders for a given virtual function. Check for this 17220 // problem now. 17221 if (CXXRecord->getNumVBases()) { 17222 CXXFinalOverriderMap FinalOverriders; 17223 CXXRecord->getFinalOverriders(FinalOverriders); 17224 17225 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 17226 MEnd = FinalOverriders.end(); 17227 M != MEnd; ++M) { 17228 for (OverridingMethods::iterator SO = M->second.begin(), 17229 SOEnd = M->second.end(); 17230 SO != SOEnd; ++SO) { 17231 assert(SO->second.size() > 0 && 17232 "Virtual function without overriding functions?"); 17233 if (SO->second.size() == 1) 17234 continue; 17235 17236 // C++ [class.virtual]p2: 17237 // In a derived class, if a virtual member function of a base 17238 // class subobject has more than one final overrider the 17239 // program is ill-formed. 17240 Diag(Record->getLocation(), diag::err_multiple_final_overriders) 17241 << (const NamedDecl *)M->first << Record; 17242 Diag(M->first->getLocation(), 17243 diag::note_overridden_virtual_function); 17244 for (OverridingMethods::overriding_iterator 17245 OM = SO->second.begin(), 17246 OMEnd = SO->second.end(); 17247 OM != OMEnd; ++OM) 17248 Diag(OM->Method->getLocation(), diag::note_final_overrider) 17249 << (const NamedDecl *)M->first << OM->Method->getParent(); 17250 17251 Record->setInvalidDecl(); 17252 } 17253 } 17254 CXXRecord->completeDefinition(&FinalOverriders); 17255 Completed = true; 17256 } 17257 } 17258 } 17259 } 17260 17261 if (!Completed) 17262 Record->completeDefinition(); 17263 17264 // Handle attributes before checking the layout. 17265 ProcessDeclAttributeList(S, Record, Attrs); 17266 17267 // We may have deferred checking for a deleted destructor. Check now. 17268 if (CXXRecord) { 17269 auto *Dtor = CXXRecord->getDestructor(); 17270 if (Dtor && Dtor->isImplicit() && 17271 ShouldDeleteSpecialMember(Dtor, CXXDestructor)) { 17272 CXXRecord->setImplicitDestructorIsDeleted(); 17273 SetDeclDeleted(Dtor, CXXRecord->getLocation()); 17274 } 17275 } 17276 17277 if (Record->hasAttrs()) { 17278 CheckAlignasUnderalignment(Record); 17279 17280 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>()) 17281 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record), 17282 IA->getRange(), IA->getBestCase(), 17283 IA->getInheritanceModel()); 17284 } 17285 17286 // Check if the structure/union declaration is a type that can have zero 17287 // size in C. For C this is a language extension, for C++ it may cause 17288 // compatibility problems. 17289 bool CheckForZeroSize; 17290 if (!getLangOpts().CPlusPlus) { 17291 CheckForZeroSize = true; 17292 } else { 17293 // For C++ filter out types that cannot be referenced in C code. 17294 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record); 17295 CheckForZeroSize = 17296 CXXRecord->getLexicalDeclContext()->isExternCContext() && 17297 !CXXRecord->isDependentType() && 17298 CXXRecord->isCLike(); 17299 } 17300 if (CheckForZeroSize) { 17301 bool ZeroSize = true; 17302 bool IsEmpty = true; 17303 unsigned NonBitFields = 0; 17304 for (RecordDecl::field_iterator I = Record->field_begin(), 17305 E = Record->field_end(); 17306 (NonBitFields == 0 || ZeroSize) && I != E; ++I) { 17307 IsEmpty = false; 17308 if (I->isUnnamedBitfield()) { 17309 if (!I->isZeroLengthBitField(Context)) 17310 ZeroSize = false; 17311 } else { 17312 ++NonBitFields; 17313 QualType FieldType = I->getType(); 17314 if (FieldType->isIncompleteType() || 17315 !Context.getTypeSizeInChars(FieldType).isZero()) 17316 ZeroSize = false; 17317 } 17318 } 17319 17320 // Empty structs are an extension in C (C99 6.7.2.1p7). They are 17321 // allowed in C++, but warn if its declaration is inside 17322 // extern "C" block. 17323 if (ZeroSize) { 17324 Diag(RecLoc, getLangOpts().CPlusPlus ? 17325 diag::warn_zero_size_struct_union_in_extern_c : 17326 diag::warn_zero_size_struct_union_compat) 17327 << IsEmpty << Record->isUnion() << (NonBitFields > 1); 17328 } 17329 17330 // Structs without named members are extension in C (C99 6.7.2.1p7), 17331 // but are accepted by GCC. 17332 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) { 17333 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union : 17334 diag::ext_no_named_members_in_struct_union) 17335 << Record->isUnion(); 17336 } 17337 } 17338 } else { 17339 ObjCIvarDecl **ClsFields = 17340 reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); 17341 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { 17342 ID->setEndOfDefinitionLoc(RBrac); 17343 // Add ivar's to class's DeclContext. 17344 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 17345 ClsFields[i]->setLexicalDeclContext(ID); 17346 ID->addDecl(ClsFields[i]); 17347 } 17348 // Must enforce the rule that ivars in the base classes may not be 17349 // duplicates. 17350 if (ID->getSuperClass()) 17351 DiagnoseDuplicateIvars(ID, ID->getSuperClass()); 17352 } else if (ObjCImplementationDecl *IMPDecl = 17353 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { 17354 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); 17355 for (unsigned I = 0, N = RecFields.size(); I != N; ++I) 17356 // Ivar declared in @implementation never belongs to the implementation. 17357 // Only it is in implementation's lexical context. 17358 ClsFields[I]->setLexicalDeclContext(IMPDecl); 17359 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); 17360 IMPDecl->setIvarLBraceLoc(LBrac); 17361 IMPDecl->setIvarRBraceLoc(RBrac); 17362 } else if (ObjCCategoryDecl *CDecl = 17363 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { 17364 // case of ivars in class extension; all other cases have been 17365 // reported as errors elsewhere. 17366 // FIXME. Class extension does not have a LocEnd field. 17367 // CDecl->setLocEnd(RBrac); 17368 // Add ivar's to class extension's DeclContext. 17369 // Diagnose redeclaration of private ivars. 17370 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface(); 17371 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 17372 if (IDecl) { 17373 if (const ObjCIvarDecl *ClsIvar = 17374 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) { 17375 Diag(ClsFields[i]->getLocation(), 17376 diag::err_duplicate_ivar_declaration); 17377 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 17378 continue; 17379 } 17380 for (const auto *Ext : IDecl->known_extensions()) { 17381 if (const ObjCIvarDecl *ClsExtIvar 17382 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) { 17383 Diag(ClsFields[i]->getLocation(), 17384 diag::err_duplicate_ivar_declaration); 17385 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); 17386 continue; 17387 } 17388 } 17389 } 17390 ClsFields[i]->setLexicalDeclContext(CDecl); 17391 CDecl->addDecl(ClsFields[i]); 17392 } 17393 CDecl->setIvarLBraceLoc(LBrac); 17394 CDecl->setIvarRBraceLoc(RBrac); 17395 } 17396 } 17397 } 17398 17399 /// Determine whether the given integral value is representable within 17400 /// the given type T. 17401 static bool isRepresentableIntegerValue(ASTContext &Context, 17402 llvm::APSInt &Value, 17403 QualType T) { 17404 assert((T->isIntegralType(Context) || T->isEnumeralType()) && 17405 "Integral type required!"); 17406 unsigned BitWidth = Context.getIntWidth(T); 17407 17408 if (Value.isUnsigned() || Value.isNonNegative()) { 17409 if (T->isSignedIntegerOrEnumerationType()) 17410 --BitWidth; 17411 return Value.getActiveBits() <= BitWidth; 17412 } 17413 return Value.getMinSignedBits() <= BitWidth; 17414 } 17415 17416 // Given an integral type, return the next larger integral type 17417 // (or a NULL type of no such type exists). 17418 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { 17419 // FIXME: Int128/UInt128 support, which also needs to be introduced into 17420 // enum checking below. 17421 assert((T->isIntegralType(Context) || 17422 T->isEnumeralType()) && "Integral type required!"); 17423 const unsigned NumTypes = 4; 17424 QualType SignedIntegralTypes[NumTypes] = { 17425 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy 17426 }; 17427 QualType UnsignedIntegralTypes[NumTypes] = { 17428 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, 17429 Context.UnsignedLongLongTy 17430 }; 17431 17432 unsigned BitWidth = Context.getTypeSize(T); 17433 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes 17434 : UnsignedIntegralTypes; 17435 for (unsigned I = 0; I != NumTypes; ++I) 17436 if (Context.getTypeSize(Types[I]) > BitWidth) 17437 return Types[I]; 17438 17439 return QualType(); 17440 } 17441 17442 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, 17443 EnumConstantDecl *LastEnumConst, 17444 SourceLocation IdLoc, 17445 IdentifierInfo *Id, 17446 Expr *Val) { 17447 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 17448 llvm::APSInt EnumVal(IntWidth); 17449 QualType EltTy; 17450 17451 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue)) 17452 Val = nullptr; 17453 17454 if (Val) 17455 Val = DefaultLvalueConversion(Val).get(); 17456 17457 if (Val) { 17458 if (Enum->isDependentType() || Val->isTypeDependent()) 17459 EltTy = Context.DependentTy; 17460 else { 17461 if (getLangOpts().CPlusPlus11 && Enum->isFixed()) { 17462 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the 17463 // constant-expression in the enumerator-definition shall be a converted 17464 // constant expression of the underlying type. 17465 EltTy = Enum->getIntegerType(); 17466 ExprResult Converted = 17467 CheckConvertedConstantExpression(Val, EltTy, EnumVal, 17468 CCEK_Enumerator); 17469 if (Converted.isInvalid()) 17470 Val = nullptr; 17471 else 17472 Val = Converted.get(); 17473 } else if (!Val->isValueDependent() && 17474 !(Val = VerifyIntegerConstantExpression(Val, 17475 &EnumVal).get())) { 17476 // C99 6.7.2.2p2: Make sure we have an integer constant expression. 17477 } else { 17478 if (Enum->isComplete()) { 17479 EltTy = Enum->getIntegerType(); 17480 17481 // In Obj-C and Microsoft mode, require the enumeration value to be 17482 // representable in the underlying type of the enumeration. In C++11, 17483 // we perform a non-narrowing conversion as part of converted constant 17484 // expression checking. 17485 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) { 17486 if (Context.getTargetInfo() 17487 .getTriple() 17488 .isWindowsMSVCEnvironment()) { 17489 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy; 17490 } else { 17491 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy; 17492 } 17493 } 17494 17495 // Cast to the underlying type. 17496 Val = ImpCastExprToType(Val, EltTy, 17497 EltTy->isBooleanType() ? CK_IntegralToBoolean 17498 : CK_IntegralCast) 17499 .get(); 17500 } else if (getLangOpts().CPlusPlus) { 17501 // C++11 [dcl.enum]p5: 17502 // If the underlying type is not fixed, the type of each enumerator 17503 // is the type of its initializing value: 17504 // - If an initializer is specified for an enumerator, the 17505 // initializing value has the same type as the expression. 17506 EltTy = Val->getType(); 17507 } else { 17508 // C99 6.7.2.2p2: 17509 // The expression that defines the value of an enumeration constant 17510 // shall be an integer constant expression that has a value 17511 // representable as an int. 17512 17513 // Complain if the value is not representable in an int. 17514 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) 17515 Diag(IdLoc, diag::ext_enum_value_not_int) 17516 << EnumVal.toString(10) << Val->getSourceRange() 17517 << (EnumVal.isUnsigned() || EnumVal.isNonNegative()); 17518 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { 17519 // Force the type of the expression to 'int'. 17520 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get(); 17521 } 17522 EltTy = Val->getType(); 17523 } 17524 } 17525 } 17526 } 17527 17528 if (!Val) { 17529 if (Enum->isDependentType()) 17530 EltTy = Context.DependentTy; 17531 else if (!LastEnumConst) { 17532 // C++0x [dcl.enum]p5: 17533 // If the underlying type is not fixed, the type of each enumerator 17534 // is the type of its initializing value: 17535 // - If no initializer is specified for the first enumerator, the 17536 // initializing value has an unspecified integral type. 17537 // 17538 // GCC uses 'int' for its unspecified integral type, as does 17539 // C99 6.7.2.2p3. 17540 if (Enum->isFixed()) { 17541 EltTy = Enum->getIntegerType(); 17542 } 17543 else { 17544 EltTy = Context.IntTy; 17545 } 17546 } else { 17547 // Assign the last value + 1. 17548 EnumVal = LastEnumConst->getInitVal(); 17549 ++EnumVal; 17550 EltTy = LastEnumConst->getType(); 17551 17552 // Check for overflow on increment. 17553 if (EnumVal < LastEnumConst->getInitVal()) { 17554 // C++0x [dcl.enum]p5: 17555 // If the underlying type is not fixed, the type of each enumerator 17556 // is the type of its initializing value: 17557 // 17558 // - Otherwise the type of the initializing value is the same as 17559 // the type of the initializing value of the preceding enumerator 17560 // unless the incremented value is not representable in that type, 17561 // in which case the type is an unspecified integral type 17562 // sufficient to contain the incremented value. If no such type 17563 // exists, the program is ill-formed. 17564 QualType T = getNextLargerIntegralType(Context, EltTy); 17565 if (T.isNull() || Enum->isFixed()) { 17566 // There is no integral type larger enough to represent this 17567 // value. Complain, then allow the value to wrap around. 17568 EnumVal = LastEnumConst->getInitVal(); 17569 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2); 17570 ++EnumVal; 17571 if (Enum->isFixed()) 17572 // When the underlying type is fixed, this is ill-formed. 17573 Diag(IdLoc, diag::err_enumerator_wrapped) 17574 << EnumVal.toString(10) 17575 << EltTy; 17576 else 17577 Diag(IdLoc, diag::ext_enumerator_increment_too_large) 17578 << EnumVal.toString(10); 17579 } else { 17580 EltTy = T; 17581 } 17582 17583 // Retrieve the last enumerator's value, extent that type to the 17584 // type that is supposed to be large enough to represent the incremented 17585 // value, then increment. 17586 EnumVal = LastEnumConst->getInitVal(); 17587 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); 17588 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); 17589 ++EnumVal; 17590 17591 // If we're not in C++, diagnose the overflow of enumerator values, 17592 // which in C99 means that the enumerator value is not representable in 17593 // an int (C99 6.7.2.2p2). However, we support GCC's extension that 17594 // permits enumerator values that are representable in some larger 17595 // integral type. 17596 if (!getLangOpts().CPlusPlus && !T.isNull()) 17597 Diag(IdLoc, diag::warn_enum_value_overflow); 17598 } else if (!getLangOpts().CPlusPlus && 17599 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) { 17600 // Enforce C99 6.7.2.2p2 even when we compute the next value. 17601 Diag(IdLoc, diag::ext_enum_value_not_int) 17602 << EnumVal.toString(10) << 1; 17603 } 17604 } 17605 } 17606 17607 if (!EltTy->isDependentType()) { 17608 // Make the enumerator value match the signedness and size of the 17609 // enumerator's type. 17610 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy)); 17611 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); 17612 } 17613 17614 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy, 17615 Val, EnumVal); 17616 } 17617 17618 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, 17619 SourceLocation IILoc) { 17620 if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) || 17621 !getLangOpts().CPlusPlus) 17622 return SkipBodyInfo(); 17623 17624 // We have an anonymous enum definition. Look up the first enumerator to 17625 // determine if we should merge the definition with an existing one and 17626 // skip the body. 17627 NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName, 17628 forRedeclarationInCurContext()); 17629 auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl); 17630 if (!PrevECD) 17631 return SkipBodyInfo(); 17632 17633 EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext()); 17634 NamedDecl *Hidden; 17635 if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) { 17636 SkipBodyInfo Skip; 17637 Skip.Previous = Hidden; 17638 return Skip; 17639 } 17640 17641 return SkipBodyInfo(); 17642 } 17643 17644 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst, 17645 SourceLocation IdLoc, IdentifierInfo *Id, 17646 const ParsedAttributesView &Attrs, 17647 SourceLocation EqualLoc, Expr *Val) { 17648 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl); 17649 EnumConstantDecl *LastEnumConst = 17650 cast_or_null<EnumConstantDecl>(lastEnumConst); 17651 17652 // The scope passed in may not be a decl scope. Zip up the scope tree until 17653 // we find one that is. 17654 S = getNonFieldDeclScope(S); 17655 17656 // Verify that there isn't already something declared with this name in this 17657 // scope. 17658 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration); 17659 LookupName(R, S); 17660 NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>(); 17661 17662 if (PrevDecl && PrevDecl->isTemplateParameter()) { 17663 // Maybe we will complain about the shadowed template parameter. 17664 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); 17665 // Just pretend that we didn't see the previous declaration. 17666 PrevDecl = nullptr; 17667 } 17668 17669 // C++ [class.mem]p15: 17670 // If T is the name of a class, then each of the following shall have a name 17671 // different from T: 17672 // - every enumerator of every member of class T that is an unscoped 17673 // enumerated type 17674 if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped()) 17675 DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(), 17676 DeclarationNameInfo(Id, IdLoc)); 17677 17678 EnumConstantDecl *New = 17679 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val); 17680 if (!New) 17681 return nullptr; 17682 17683 if (PrevDecl) { 17684 if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) { 17685 // Check for other kinds of shadowing not already handled. 17686 CheckShadow(New, PrevDecl, R); 17687 } 17688 17689 // When in C++, we may get a TagDecl with the same name; in this case the 17690 // enum constant will 'hide' the tag. 17691 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && 17692 "Received TagDecl when not in C++!"); 17693 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { 17694 if (isa<EnumConstantDecl>(PrevDecl)) 17695 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; 17696 else 17697 Diag(IdLoc, diag::err_redefinition) << Id; 17698 notePreviousDefinition(PrevDecl, IdLoc); 17699 return nullptr; 17700 } 17701 } 17702 17703 // Process attributes. 17704 ProcessDeclAttributeList(S, New, Attrs); 17705 AddPragmaAttributes(S, New); 17706 17707 // Register this decl in the current scope stack. 17708 New->setAccess(TheEnumDecl->getAccess()); 17709 PushOnScopeChains(New, S); 17710 17711 ActOnDocumentableDecl(New); 17712 17713 return New; 17714 } 17715 17716 // Returns true when the enum initial expression does not trigger the 17717 // duplicate enum warning. A few common cases are exempted as follows: 17718 // Element2 = Element1 17719 // Element2 = Element1 + 1 17720 // Element2 = Element1 - 1 17721 // Where Element2 and Element1 are from the same enum. 17722 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) { 17723 Expr *InitExpr = ECD->getInitExpr(); 17724 if (!InitExpr) 17725 return true; 17726 InitExpr = InitExpr->IgnoreImpCasts(); 17727 17728 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) { 17729 if (!BO->isAdditiveOp()) 17730 return true; 17731 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS()); 17732 if (!IL) 17733 return true; 17734 if (IL->getValue() != 1) 17735 return true; 17736 17737 InitExpr = BO->getLHS(); 17738 } 17739 17740 // This checks if the elements are from the same enum. 17741 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr); 17742 if (!DRE) 17743 return true; 17744 17745 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl()); 17746 if (!EnumConstant) 17747 return true; 17748 17749 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) != 17750 Enum) 17751 return true; 17752 17753 return false; 17754 } 17755 17756 // Emits a warning when an element is implicitly set a value that 17757 // a previous element has already been set to. 17758 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements, 17759 EnumDecl *Enum, QualType EnumType) { 17760 // Avoid anonymous enums 17761 if (!Enum->getIdentifier()) 17762 return; 17763 17764 // Only check for small enums. 17765 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64) 17766 return; 17767 17768 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation())) 17769 return; 17770 17771 typedef SmallVector<EnumConstantDecl *, 3> ECDVector; 17772 typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector; 17773 17774 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector; 17775 17776 // DenseMaps cannot contain the all ones int64_t value, so use unordered_map. 17777 typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap; 17778 17779 // Use int64_t as a key to avoid needing special handling for map keys. 17780 auto EnumConstantToKey = [](const EnumConstantDecl *D) { 17781 llvm::APSInt Val = D->getInitVal(); 17782 return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(); 17783 }; 17784 17785 DuplicatesVector DupVector; 17786 ValueToVectorMap EnumMap; 17787 17788 // Populate the EnumMap with all values represented by enum constants without 17789 // an initializer. 17790 for (auto *Element : Elements) { 17791 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element); 17792 17793 // Null EnumConstantDecl means a previous diagnostic has been emitted for 17794 // this constant. Skip this enum since it may be ill-formed. 17795 if (!ECD) { 17796 return; 17797 } 17798 17799 // Constants with initalizers are handled in the next loop. 17800 if (ECD->getInitExpr()) 17801 continue; 17802 17803 // Duplicate values are handled in the next loop. 17804 EnumMap.insert({EnumConstantToKey(ECD), ECD}); 17805 } 17806 17807 if (EnumMap.size() == 0) 17808 return; 17809 17810 // Create vectors for any values that has duplicates. 17811 for (auto *Element : Elements) { 17812 // The last loop returned if any constant was null. 17813 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element); 17814 if (!ValidDuplicateEnum(ECD, Enum)) 17815 continue; 17816 17817 auto Iter = EnumMap.find(EnumConstantToKey(ECD)); 17818 if (Iter == EnumMap.end()) 17819 continue; 17820 17821 DeclOrVector& Entry = Iter->second; 17822 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) { 17823 // Ensure constants are different. 17824 if (D == ECD) 17825 continue; 17826 17827 // Create new vector and push values onto it. 17828 auto Vec = std::make_unique<ECDVector>(); 17829 Vec->push_back(D); 17830 Vec->push_back(ECD); 17831 17832 // Update entry to point to the duplicates vector. 17833 Entry = Vec.get(); 17834 17835 // Store the vector somewhere we can consult later for quick emission of 17836 // diagnostics. 17837 DupVector.emplace_back(std::move(Vec)); 17838 continue; 17839 } 17840 17841 ECDVector *Vec = Entry.get<ECDVector*>(); 17842 // Make sure constants are not added more than once. 17843 if (*Vec->begin() == ECD) 17844 continue; 17845 17846 Vec->push_back(ECD); 17847 } 17848 17849 // Emit diagnostics. 17850 for (const auto &Vec : DupVector) { 17851 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements."); 17852 17853 // Emit warning for one enum constant. 17854 auto *FirstECD = Vec->front(); 17855 S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values) 17856 << FirstECD << FirstECD->getInitVal().toString(10) 17857 << FirstECD->getSourceRange(); 17858 17859 // Emit one note for each of the remaining enum constants with 17860 // the same value. 17861 for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end())) 17862 S.Diag(ECD->getLocation(), diag::note_duplicate_element) 17863 << ECD << ECD->getInitVal().toString(10) 17864 << ECD->getSourceRange(); 17865 } 17866 } 17867 17868 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, 17869 bool AllowMask) const { 17870 assert(ED->isClosedFlag() && "looking for value in non-flag or open enum"); 17871 assert(ED->isCompleteDefinition() && "expected enum definition"); 17872 17873 auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt())); 17874 llvm::APInt &FlagBits = R.first->second; 17875 17876 if (R.second) { 17877 for (auto *E : ED->enumerators()) { 17878 const auto &EVal = E->getInitVal(); 17879 // Only single-bit enumerators introduce new flag values. 17880 if (EVal.isPowerOf2()) 17881 FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal; 17882 } 17883 } 17884 17885 // A value is in a flag enum if either its bits are a subset of the enum's 17886 // flag bits (the first condition) or we are allowing masks and the same is 17887 // true of its complement (the second condition). When masks are allowed, we 17888 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value. 17889 // 17890 // While it's true that any value could be used as a mask, the assumption is 17891 // that a mask will have all of the insignificant bits set. Anything else is 17892 // likely a logic error. 17893 llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth()); 17894 return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val)); 17895 } 17896 17897 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, 17898 Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S, 17899 const ParsedAttributesView &Attrs) { 17900 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX); 17901 QualType EnumType = Context.getTypeDeclType(Enum); 17902 17903 ProcessDeclAttributeList(S, Enum, Attrs); 17904 17905 if (Enum->isDependentType()) { 17906 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 17907 EnumConstantDecl *ECD = 17908 cast_or_null<EnumConstantDecl>(Elements[i]); 17909 if (!ECD) continue; 17910 17911 ECD->setType(EnumType); 17912 } 17913 17914 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0); 17915 return; 17916 } 17917 17918 // TODO: If the result value doesn't fit in an int, it must be a long or long 17919 // long value. ISO C does not support this, but GCC does as an extension, 17920 // emit a warning. 17921 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 17922 unsigned CharWidth = Context.getTargetInfo().getCharWidth(); 17923 unsigned ShortWidth = Context.getTargetInfo().getShortWidth(); 17924 17925 // Verify that all the values are okay, compute the size of the values, and 17926 // reverse the list. 17927 unsigned NumNegativeBits = 0; 17928 unsigned NumPositiveBits = 0; 17929 17930 // Keep track of whether all elements have type int. 17931 bool AllElementsInt = true; 17932 17933 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 17934 EnumConstantDecl *ECD = 17935 cast_or_null<EnumConstantDecl>(Elements[i]); 17936 if (!ECD) continue; // Already issued a diagnostic. 17937 17938 const llvm::APSInt &InitVal = ECD->getInitVal(); 17939 17940 // Keep track of the size of positive and negative values. 17941 if (InitVal.isUnsigned() || InitVal.isNonNegative()) 17942 NumPositiveBits = std::max(NumPositiveBits, 17943 (unsigned)InitVal.getActiveBits()); 17944 else 17945 NumNegativeBits = std::max(NumNegativeBits, 17946 (unsigned)InitVal.getMinSignedBits()); 17947 17948 // Keep track of whether every enum element has type int (very common). 17949 if (AllElementsInt) 17950 AllElementsInt = ECD->getType() == Context.IntTy; 17951 } 17952 17953 // Figure out the type that should be used for this enum. 17954 QualType BestType; 17955 unsigned BestWidth; 17956 17957 // C++0x N3000 [conv.prom]p3: 17958 // An rvalue of an unscoped enumeration type whose underlying 17959 // type is not fixed can be converted to an rvalue of the first 17960 // of the following types that can represent all the values of 17961 // the enumeration: int, unsigned int, long int, unsigned long 17962 // int, long long int, or unsigned long long int. 17963 // C99 6.4.4.3p2: 17964 // An identifier declared as an enumeration constant has type int. 17965 // The C99 rule is modified by a gcc extension 17966 QualType BestPromotionType; 17967 17968 bool Packed = Enum->hasAttr<PackedAttr>(); 17969 // -fshort-enums is the equivalent to specifying the packed attribute on all 17970 // enum definitions. 17971 if (LangOpts.ShortEnums) 17972 Packed = true; 17973 17974 // If the enum already has a type because it is fixed or dictated by the 17975 // target, promote that type instead of analyzing the enumerators. 17976 if (Enum->isComplete()) { 17977 BestType = Enum->getIntegerType(); 17978 if (BestType->isPromotableIntegerType()) 17979 BestPromotionType = Context.getPromotedIntegerType(BestType); 17980 else 17981 BestPromotionType = BestType; 17982 17983 BestWidth = Context.getIntWidth(BestType); 17984 } 17985 else if (NumNegativeBits) { 17986 // If there is a negative value, figure out the smallest integer type (of 17987 // int/long/longlong) that fits. 17988 // If it's packed, check also if it fits a char or a short. 17989 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) { 17990 BestType = Context.SignedCharTy; 17991 BestWidth = CharWidth; 17992 } else if (Packed && NumNegativeBits <= ShortWidth && 17993 NumPositiveBits < ShortWidth) { 17994 BestType = Context.ShortTy; 17995 BestWidth = ShortWidth; 17996 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { 17997 BestType = Context.IntTy; 17998 BestWidth = IntWidth; 17999 } else { 18000 BestWidth = Context.getTargetInfo().getLongWidth(); 18001 18002 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { 18003 BestType = Context.LongTy; 18004 } else { 18005 BestWidth = Context.getTargetInfo().getLongLongWidth(); 18006 18007 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) 18008 Diag(Enum->getLocation(), diag::ext_enum_too_large); 18009 BestType = Context.LongLongTy; 18010 } 18011 } 18012 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType); 18013 } else { 18014 // If there is no negative value, figure out the smallest type that fits 18015 // all of the enumerator values. 18016 // If it's packed, check also if it fits a char or a short. 18017 if (Packed && NumPositiveBits <= CharWidth) { 18018 BestType = Context.UnsignedCharTy; 18019 BestPromotionType = Context.IntTy; 18020 BestWidth = CharWidth; 18021 } else if (Packed && NumPositiveBits <= ShortWidth) { 18022 BestType = Context.UnsignedShortTy; 18023 BestPromotionType = Context.IntTy; 18024 BestWidth = ShortWidth; 18025 } else if (NumPositiveBits <= IntWidth) { 18026 BestType = Context.UnsignedIntTy; 18027 BestWidth = IntWidth; 18028 BestPromotionType 18029 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 18030 ? Context.UnsignedIntTy : Context.IntTy; 18031 } else if (NumPositiveBits <= 18032 (BestWidth = Context.getTargetInfo().getLongWidth())) { 18033 BestType = Context.UnsignedLongTy; 18034 BestPromotionType 18035 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 18036 ? Context.UnsignedLongTy : Context.LongTy; 18037 } else { 18038 BestWidth = Context.getTargetInfo().getLongLongWidth(); 18039 assert(NumPositiveBits <= BestWidth && 18040 "How could an initializer get larger than ULL?"); 18041 BestType = Context.UnsignedLongLongTy; 18042 BestPromotionType 18043 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 18044 ? Context.UnsignedLongLongTy : Context.LongLongTy; 18045 } 18046 } 18047 18048 // Loop over all of the enumerator constants, changing their types to match 18049 // the type of the enum if needed. 18050 for (auto *D : Elements) { 18051 auto *ECD = cast_or_null<EnumConstantDecl>(D); 18052 if (!ECD) continue; // Already issued a diagnostic. 18053 18054 // Standard C says the enumerators have int type, but we allow, as an 18055 // extension, the enumerators to be larger than int size. If each 18056 // enumerator value fits in an int, type it as an int, otherwise type it the 18057 // same as the enumerator decl itself. This means that in "enum { X = 1U }" 18058 // that X has type 'int', not 'unsigned'. 18059 18060 // Determine whether the value fits into an int. 18061 llvm::APSInt InitVal = ECD->getInitVal(); 18062 18063 // If it fits into an integer type, force it. Otherwise force it to match 18064 // the enum decl type. 18065 QualType NewTy; 18066 unsigned NewWidth; 18067 bool NewSign; 18068 if (!getLangOpts().CPlusPlus && 18069 !Enum->isFixed() && 18070 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) { 18071 NewTy = Context.IntTy; 18072 NewWidth = IntWidth; 18073 NewSign = true; 18074 } else if (ECD->getType() == BestType) { 18075 // Already the right type! 18076 if (getLangOpts().CPlusPlus) 18077 // C++ [dcl.enum]p4: Following the closing brace of an 18078 // enum-specifier, each enumerator has the type of its 18079 // enumeration. 18080 ECD->setType(EnumType); 18081 continue; 18082 } else { 18083 NewTy = BestType; 18084 NewWidth = BestWidth; 18085 NewSign = BestType->isSignedIntegerOrEnumerationType(); 18086 } 18087 18088 // Adjust the APSInt value. 18089 InitVal = InitVal.extOrTrunc(NewWidth); 18090 InitVal.setIsSigned(NewSign); 18091 ECD->setInitVal(InitVal); 18092 18093 // Adjust the Expr initializer and type. 18094 if (ECD->getInitExpr() && 18095 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType())) 18096 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy, 18097 CK_IntegralCast, 18098 ECD->getInitExpr(), 18099 /*base paths*/ nullptr, 18100 VK_RValue)); 18101 if (getLangOpts().CPlusPlus) 18102 // C++ [dcl.enum]p4: Following the closing brace of an 18103 // enum-specifier, each enumerator has the type of its 18104 // enumeration. 18105 ECD->setType(EnumType); 18106 else 18107 ECD->setType(NewTy); 18108 } 18109 18110 Enum->completeDefinition(BestType, BestPromotionType, 18111 NumPositiveBits, NumNegativeBits); 18112 18113 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType); 18114 18115 if (Enum->isClosedFlag()) { 18116 for (Decl *D : Elements) { 18117 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D); 18118 if (!ECD) continue; // Already issued a diagnostic. 18119 18120 llvm::APSInt InitVal = ECD->getInitVal(); 18121 if (InitVal != 0 && !InitVal.isPowerOf2() && 18122 !IsValueInFlagEnum(Enum, InitVal, true)) 18123 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range) 18124 << ECD << Enum; 18125 } 18126 } 18127 18128 // Now that the enum type is defined, ensure it's not been underaligned. 18129 if (Enum->hasAttrs()) 18130 CheckAlignasUnderalignment(Enum); 18131 } 18132 18133 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr, 18134 SourceLocation StartLoc, 18135 SourceLocation EndLoc) { 18136 StringLiteral *AsmString = cast<StringLiteral>(expr); 18137 18138 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext, 18139 AsmString, StartLoc, 18140 EndLoc); 18141 CurContext->addDecl(New); 18142 return New; 18143 } 18144 18145 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name, 18146 IdentifierInfo* AliasName, 18147 SourceLocation PragmaLoc, 18148 SourceLocation NameLoc, 18149 SourceLocation AliasNameLoc) { 18150 NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, 18151 LookupOrdinaryName); 18152 AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc), 18153 AttributeCommonInfo::AS_Pragma); 18154 AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit( 18155 Context, AliasName->getName(), /*LiteralLabel=*/true, Info); 18156 18157 // If a declaration that: 18158 // 1) declares a function or a variable 18159 // 2) has external linkage 18160 // already exists, add a label attribute to it. 18161 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { 18162 if (isDeclExternC(PrevDecl)) 18163 PrevDecl->addAttr(Attr); 18164 else 18165 Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied) 18166 << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl; 18167 // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers. 18168 } else 18169 (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr)); 18170 } 18171 18172 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, 18173 SourceLocation PragmaLoc, 18174 SourceLocation NameLoc) { 18175 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName); 18176 18177 if (PrevDecl) { 18178 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma)); 18179 } else { 18180 (void)WeakUndeclaredIdentifiers.insert( 18181 std::pair<IdentifierInfo*,WeakInfo> 18182 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc))); 18183 } 18184 } 18185 18186 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, 18187 IdentifierInfo* AliasName, 18188 SourceLocation PragmaLoc, 18189 SourceLocation NameLoc, 18190 SourceLocation AliasNameLoc) { 18191 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc, 18192 LookupOrdinaryName); 18193 WeakInfo W = WeakInfo(Name, NameLoc); 18194 18195 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { 18196 if (!PrevDecl->hasAttr<AliasAttr>()) 18197 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl)) 18198 DeclApplyPragmaWeak(TUScope, ND, W); 18199 } else { 18200 (void)WeakUndeclaredIdentifiers.insert( 18201 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W)); 18202 } 18203 } 18204 18205 Decl *Sema::getObjCDeclContext() const { 18206 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext)); 18207 } 18208 18209 Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD, 18210 bool Final) { 18211 // SYCL functions can be template, so we check if they have appropriate 18212 // attribute prior to checking if it is a template. 18213 if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>()) 18214 return FunctionEmissionStatus::Emitted; 18215 18216 // Templates are emitted when they're instantiated. 18217 if (FD->isDependentContext()) 18218 return FunctionEmissionStatus::TemplateDiscarded; 18219 18220 FunctionEmissionStatus OMPES = FunctionEmissionStatus::Unknown; 18221 if (LangOpts.OpenMPIsDevice) { 18222 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = 18223 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl()); 18224 if (DevTy.hasValue()) { 18225 if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host) 18226 OMPES = FunctionEmissionStatus::OMPDiscarded; 18227 else if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost || 18228 *DevTy == OMPDeclareTargetDeclAttr::DT_Any) { 18229 OMPES = FunctionEmissionStatus::Emitted; 18230 } 18231 } 18232 } else if (LangOpts.OpenMP) { 18233 // In OpenMP 4.5 all the functions are host functions. 18234 if (LangOpts.OpenMP <= 45) { 18235 OMPES = FunctionEmissionStatus::Emitted; 18236 } else { 18237 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = 18238 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl()); 18239 // In OpenMP 5.0 or above, DevTy may be changed later by 18240 // #pragma omp declare target to(*) device_type(*). Therefore DevTy 18241 // having no value does not imply host. The emission status will be 18242 // checked again at the end of compilation unit. 18243 if (DevTy.hasValue()) { 18244 if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) { 18245 OMPES = FunctionEmissionStatus::OMPDiscarded; 18246 } else if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host || 18247 *DevTy == OMPDeclareTargetDeclAttr::DT_Any) 18248 OMPES = FunctionEmissionStatus::Emitted; 18249 } else if (Final) 18250 OMPES = FunctionEmissionStatus::Emitted; 18251 } 18252 } 18253 if (OMPES == FunctionEmissionStatus::OMPDiscarded || 18254 (OMPES == FunctionEmissionStatus::Emitted && !LangOpts.CUDA)) 18255 return OMPES; 18256 18257 if (LangOpts.CUDA) { 18258 // When compiling for device, host functions are never emitted. Similarly, 18259 // when compiling for host, device and global functions are never emitted. 18260 // (Technically, we do emit a host-side stub for global functions, but this 18261 // doesn't count for our purposes here.) 18262 Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD); 18263 if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host) 18264 return FunctionEmissionStatus::CUDADiscarded; 18265 if (!LangOpts.CUDAIsDevice && 18266 (T == Sema::CFT_Device || T == Sema::CFT_Global)) 18267 return FunctionEmissionStatus::CUDADiscarded; 18268 18269 // Check whether this function is externally visible -- if so, it's 18270 // known-emitted. 18271 // 18272 // We have to check the GVA linkage of the function's *definition* -- if we 18273 // only have a declaration, we don't know whether or not the function will 18274 // be emitted, because (say) the definition could include "inline". 18275 FunctionDecl *Def = FD->getDefinition(); 18276 18277 if (Def && 18278 !isDiscardableGVALinkage(getASTContext().GetGVALinkageForFunction(Def)) 18279 && (!LangOpts.OpenMP || OMPES == FunctionEmissionStatus::Emitted)) 18280 return FunctionEmissionStatus::Emitted; 18281 } 18282 18283 // Otherwise, the function is known-emitted if it's in our set of 18284 // known-emitted functions. 18285 return FunctionEmissionStatus::Unknown; 18286 } 18287 18288 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) { 18289 // Host-side references to a __global__ function refer to the stub, so the 18290 // function itself is never emitted and therefore should not be marked. 18291 // If we have host fn calls kernel fn calls host+device, the HD function 18292 // does not get instantiated on the host. We model this by omitting at the 18293 // call to the kernel from the callgraph. This ensures that, when compiling 18294 // for host, only HD functions actually called from the host get marked as 18295 // known-emitted. 18296 return LangOpts.CUDA && !LangOpts.CUDAIsDevice && 18297 IdentifyCUDATarget(Callee) == CFT_Global; 18298 } 18299