xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaDecl.cpp (revision d409305fa3838fb39b38c26fc085fb729b8766d5)
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CommentDiagnostic.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/NonTrivialTypeVisitor.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36 #include "clang/Sema/CXXFieldCollector.h"
37 #include "clang/Sema/DeclSpec.h"
38 #include "clang/Sema/DelayedDiagnostic.h"
39 #include "clang/Sema/Initialization.h"
40 #include "clang/Sema/Lookup.h"
41 #include "clang/Sema/ParsedTemplate.h"
42 #include "clang/Sema/Scope.h"
43 #include "clang/Sema/ScopeInfo.h"
44 #include "clang/Sema/SemaInternal.h"
45 #include "clang/Sema/Template.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/Triple.h"
48 #include <algorithm>
49 #include <cstring>
50 #include <functional>
51 #include <unordered_map>
52 
53 using namespace clang;
54 using namespace sema;
55 
56 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
57   if (OwnedType) {
58     Decl *Group[2] = { OwnedType, Ptr };
59     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
60   }
61 
62   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
63 }
64 
65 namespace {
66 
67 class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
68  public:
69    TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
70                         bool AllowTemplates = false,
71                         bool AllowNonTemplates = true)
72        : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
73          AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
74      WantExpressionKeywords = false;
75      WantCXXNamedCasts = false;
76      WantRemainingKeywords = false;
77   }
78 
79   bool ValidateCandidate(const TypoCorrection &candidate) override {
80     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
81       if (!AllowInvalidDecl && ND->isInvalidDecl())
82         return false;
83 
84       if (getAsTypeTemplateDecl(ND))
85         return AllowTemplates;
86 
87       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
88       if (!IsType)
89         return false;
90 
91       if (AllowNonTemplates)
92         return true;
93 
94       // An injected-class-name of a class template (specialization) is valid
95       // as a template or as a non-template.
96       if (AllowTemplates) {
97         auto *RD = dyn_cast<CXXRecordDecl>(ND);
98         if (!RD || !RD->isInjectedClassName())
99           return false;
100         RD = cast<CXXRecordDecl>(RD->getDeclContext());
101         return RD->getDescribedClassTemplate() ||
102                isa<ClassTemplateSpecializationDecl>(RD);
103       }
104 
105       return false;
106     }
107 
108     return !WantClassName && candidate.isKeyword();
109   }
110 
111   std::unique_ptr<CorrectionCandidateCallback> clone() override {
112     return std::make_unique<TypeNameValidatorCCC>(*this);
113   }
114 
115  private:
116   bool AllowInvalidDecl;
117   bool WantClassName;
118   bool AllowTemplates;
119   bool AllowNonTemplates;
120 };
121 
122 } // end anonymous namespace
123 
124 /// Determine whether the token kind starts a simple-type-specifier.
125 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
126   switch (Kind) {
127   // FIXME: Take into account the current language when deciding whether a
128   // token kind is a valid type specifier
129   case tok::kw_short:
130   case tok::kw_long:
131   case tok::kw___int64:
132   case tok::kw___int128:
133   case tok::kw_signed:
134   case tok::kw_unsigned:
135   case tok::kw_void:
136   case tok::kw_char:
137   case tok::kw_int:
138   case tok::kw_half:
139   case tok::kw_float:
140   case tok::kw_double:
141   case tok::kw___bf16:
142   case tok::kw__Float16:
143   case tok::kw___float128:
144   case tok::kw_wchar_t:
145   case tok::kw_bool:
146   case tok::kw___underlying_type:
147   case tok::kw___auto_type:
148     return true;
149 
150   case tok::annot_typename:
151   case tok::kw_char16_t:
152   case tok::kw_char32_t:
153   case tok::kw_typeof:
154   case tok::annot_decltype:
155   case tok::kw_decltype:
156     return getLangOpts().CPlusPlus;
157 
158   case tok::kw_char8_t:
159     return getLangOpts().Char8;
160 
161   default:
162     break;
163   }
164 
165   return false;
166 }
167 
168 namespace {
169 enum class UnqualifiedTypeNameLookupResult {
170   NotFound,
171   FoundNonType,
172   FoundType
173 };
174 } // end anonymous namespace
175 
176 /// Tries to perform unqualified lookup of the type decls in bases for
177 /// dependent class.
178 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
179 /// type decl, \a FoundType if only type decls are found.
180 static UnqualifiedTypeNameLookupResult
181 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
182                                 SourceLocation NameLoc,
183                                 const CXXRecordDecl *RD) {
184   if (!RD->hasDefinition())
185     return UnqualifiedTypeNameLookupResult::NotFound;
186   // Look for type decls in base classes.
187   UnqualifiedTypeNameLookupResult FoundTypeDecl =
188       UnqualifiedTypeNameLookupResult::NotFound;
189   for (const auto &Base : RD->bases()) {
190     const CXXRecordDecl *BaseRD = nullptr;
191     if (auto *BaseTT = Base.getType()->getAs<TagType>())
192       BaseRD = BaseTT->getAsCXXRecordDecl();
193     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
194       // Look for type decls in dependent base classes that have known primary
195       // templates.
196       if (!TST || !TST->isDependentType())
197         continue;
198       auto *TD = TST->getTemplateName().getAsTemplateDecl();
199       if (!TD)
200         continue;
201       if (auto *BasePrimaryTemplate =
202           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
203         if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
204           BaseRD = BasePrimaryTemplate;
205         else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
206           if (const ClassTemplatePartialSpecializationDecl *PS =
207                   CTD->findPartialSpecialization(Base.getType()))
208             if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
209               BaseRD = PS;
210         }
211       }
212     }
213     if (BaseRD) {
214       for (NamedDecl *ND : BaseRD->lookup(&II)) {
215         if (!isa<TypeDecl>(ND))
216           return UnqualifiedTypeNameLookupResult::FoundNonType;
217         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
218       }
219       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
220         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
221         case UnqualifiedTypeNameLookupResult::FoundNonType:
222           return UnqualifiedTypeNameLookupResult::FoundNonType;
223         case UnqualifiedTypeNameLookupResult::FoundType:
224           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
225           break;
226         case UnqualifiedTypeNameLookupResult::NotFound:
227           break;
228         }
229       }
230     }
231   }
232 
233   return FoundTypeDecl;
234 }
235 
236 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
237                                                       const IdentifierInfo &II,
238                                                       SourceLocation NameLoc) {
239   // Lookup in the parent class template context, if any.
240   const CXXRecordDecl *RD = nullptr;
241   UnqualifiedTypeNameLookupResult FoundTypeDecl =
242       UnqualifiedTypeNameLookupResult::NotFound;
243   for (DeclContext *DC = S.CurContext;
244        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
245        DC = DC->getParent()) {
246     // Look for type decls in dependent base classes that have known primary
247     // templates.
248     RD = dyn_cast<CXXRecordDecl>(DC);
249     if (RD && RD->getDescribedClassTemplate())
250       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
251   }
252   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
253     return nullptr;
254 
255   // We found some types in dependent base classes.  Recover as if the user
256   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
257   // lookup during template instantiation.
258   S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II;
259 
260   ASTContext &Context = S.Context;
261   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
262                                           cast<Type>(Context.getRecordType(RD)));
263   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
264 
265   CXXScopeSpec SS;
266   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
267 
268   TypeLocBuilder Builder;
269   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
270   DepTL.setNameLoc(NameLoc);
271   DepTL.setElaboratedKeywordLoc(SourceLocation());
272   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
273   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
274 }
275 
276 /// If the identifier refers to a type name within this scope,
277 /// return the declaration of that type.
278 ///
279 /// This routine performs ordinary name lookup of the identifier II
280 /// within the given scope, with optional C++ scope specifier SS, to
281 /// determine whether the name refers to a type. If so, returns an
282 /// opaque pointer (actually a QualType) corresponding to that
283 /// type. Otherwise, returns NULL.
284 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
285                              Scope *S, CXXScopeSpec *SS,
286                              bool isClassName, bool HasTrailingDot,
287                              ParsedType ObjectTypePtr,
288                              bool IsCtorOrDtorName,
289                              bool WantNontrivialTypeSourceInfo,
290                              bool IsClassTemplateDeductionContext,
291                              IdentifierInfo **CorrectedII) {
292   // FIXME: Consider allowing this outside C++1z mode as an extension.
293   bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
294                               getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
295                               !isClassName && !HasTrailingDot;
296 
297   // Determine where we will perform name lookup.
298   DeclContext *LookupCtx = nullptr;
299   if (ObjectTypePtr) {
300     QualType ObjectType = ObjectTypePtr.get();
301     if (ObjectType->isRecordType())
302       LookupCtx = computeDeclContext(ObjectType);
303   } else if (SS && SS->isNotEmpty()) {
304     LookupCtx = computeDeclContext(*SS, false);
305 
306     if (!LookupCtx) {
307       if (isDependentScopeSpecifier(*SS)) {
308         // C++ [temp.res]p3:
309         //   A qualified-id that refers to a type and in which the
310         //   nested-name-specifier depends on a template-parameter (14.6.2)
311         //   shall be prefixed by the keyword typename to indicate that the
312         //   qualified-id denotes a type, forming an
313         //   elaborated-type-specifier (7.1.5.3).
314         //
315         // We therefore do not perform any name lookup if the result would
316         // refer to a member of an unknown specialization.
317         if (!isClassName && !IsCtorOrDtorName)
318           return nullptr;
319 
320         // We know from the grammar that this name refers to a type,
321         // so build a dependent node to describe the type.
322         if (WantNontrivialTypeSourceInfo)
323           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
324 
325         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
326         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
327                                        II, NameLoc);
328         return ParsedType::make(T);
329       }
330 
331       return nullptr;
332     }
333 
334     if (!LookupCtx->isDependentContext() &&
335         RequireCompleteDeclContext(*SS, LookupCtx))
336       return nullptr;
337   }
338 
339   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
340   // lookup for class-names.
341   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
342                                       LookupOrdinaryName;
343   LookupResult Result(*this, &II, NameLoc, Kind);
344   if (LookupCtx) {
345     // Perform "qualified" name lookup into the declaration context we
346     // computed, which is either the type of the base of a member access
347     // expression or the declaration context associated with a prior
348     // nested-name-specifier.
349     LookupQualifiedName(Result, LookupCtx);
350 
351     if (ObjectTypePtr && Result.empty()) {
352       // C++ [basic.lookup.classref]p3:
353       //   If the unqualified-id is ~type-name, the type-name is looked up
354       //   in the context of the entire postfix-expression. If the type T of
355       //   the object expression is of a class type C, the type-name is also
356       //   looked up in the scope of class C. At least one of the lookups shall
357       //   find a name that refers to (possibly cv-qualified) T.
358       LookupName(Result, S);
359     }
360   } else {
361     // Perform unqualified name lookup.
362     LookupName(Result, S);
363 
364     // For unqualified lookup in a class template in MSVC mode, look into
365     // dependent base classes where the primary class template is known.
366     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
367       if (ParsedType TypeInBase =
368               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
369         return TypeInBase;
370     }
371   }
372 
373   NamedDecl *IIDecl = nullptr;
374   switch (Result.getResultKind()) {
375   case LookupResult::NotFound:
376   case LookupResult::NotFoundInCurrentInstantiation:
377     if (CorrectedII) {
378       TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
379                                AllowDeducedTemplate);
380       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
381                                               S, SS, CCC, CTK_ErrorRecovery);
382       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
383       TemplateTy Template;
384       bool MemberOfUnknownSpecialization;
385       UnqualifiedId TemplateName;
386       TemplateName.setIdentifier(NewII, NameLoc);
387       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
388       CXXScopeSpec NewSS, *NewSSPtr = SS;
389       if (SS && NNS) {
390         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
391         NewSSPtr = &NewSS;
392       }
393       if (Correction && (NNS || NewII != &II) &&
394           // Ignore a correction to a template type as the to-be-corrected
395           // identifier is not a template (typo correction for template names
396           // is handled elsewhere).
397           !(getLangOpts().CPlusPlus && NewSSPtr &&
398             isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
399                            Template, MemberOfUnknownSpecialization))) {
400         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
401                                     isClassName, HasTrailingDot, ObjectTypePtr,
402                                     IsCtorOrDtorName,
403                                     WantNontrivialTypeSourceInfo,
404                                     IsClassTemplateDeductionContext);
405         if (Ty) {
406           diagnoseTypo(Correction,
407                        PDiag(diag::err_unknown_type_or_class_name_suggest)
408                          << Result.getLookupName() << isClassName);
409           if (SS && NNS)
410             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
411           *CorrectedII = NewII;
412           return Ty;
413         }
414       }
415     }
416     // If typo correction failed or was not performed, fall through
417     LLVM_FALLTHROUGH;
418   case LookupResult::FoundOverloaded:
419   case LookupResult::FoundUnresolvedValue:
420     Result.suppressDiagnostics();
421     return nullptr;
422 
423   case LookupResult::Ambiguous:
424     // Recover from type-hiding ambiguities by hiding the type.  We'll
425     // do the lookup again when looking for an object, and we can
426     // diagnose the error then.  If we don't do this, then the error
427     // about hiding the type will be immediately followed by an error
428     // that only makes sense if the identifier was treated like a type.
429     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
430       Result.suppressDiagnostics();
431       return nullptr;
432     }
433 
434     // Look to see if we have a type anywhere in the list of results.
435     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
436          Res != ResEnd; ++Res) {
437       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
438           (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
439         if (!IIDecl || (*Res)->getLocation() < IIDecl->getLocation())
440           IIDecl = *Res;
441       }
442     }
443 
444     if (!IIDecl) {
445       // None of the entities we found is a type, so there is no way
446       // to even assume that the result is a type. In this case, don't
447       // complain about the ambiguity. The parser will either try to
448       // perform this lookup again (e.g., as an object name), which
449       // will produce the ambiguity, or will complain that it expected
450       // a type name.
451       Result.suppressDiagnostics();
452       return nullptr;
453     }
454 
455     // We found a type within the ambiguous lookup; diagnose the
456     // ambiguity and then return that type. This might be the right
457     // answer, or it might not be, but it suppresses any attempt to
458     // perform the name lookup again.
459     break;
460 
461   case LookupResult::Found:
462     IIDecl = Result.getFoundDecl();
463     break;
464   }
465 
466   assert(IIDecl && "Didn't find decl");
467 
468   QualType T;
469   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
470     // C++ [class.qual]p2: A lookup that would find the injected-class-name
471     // instead names the constructors of the class, except when naming a class.
472     // This is ill-formed when we're not actually forming a ctor or dtor name.
473     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
474     auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
475     if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
476         FoundRD->isInjectedClassName() &&
477         declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
478       Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
479           << &II << /*Type*/1;
480 
481     DiagnoseUseOfDecl(IIDecl, NameLoc);
482 
483     T = Context.getTypeDeclType(TD);
484     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
485   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
486     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
487     if (!HasTrailingDot)
488       T = Context.getObjCInterfaceType(IDecl);
489   } else if (AllowDeducedTemplate) {
490     if (auto *TD = getAsTypeTemplateDecl(IIDecl))
491       T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
492                                                        QualType(), false);
493   }
494 
495   if (T.isNull()) {
496     // If it's not plausibly a type, suppress diagnostics.
497     Result.suppressDiagnostics();
498     return nullptr;
499   }
500 
501   // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
502   // constructor or destructor name (in such a case, the scope specifier
503   // will be attached to the enclosing Expr or Decl node).
504   if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
505       !isa<ObjCInterfaceDecl>(IIDecl)) {
506     if (WantNontrivialTypeSourceInfo) {
507       // Construct a type with type-source information.
508       TypeLocBuilder Builder;
509       Builder.pushTypeSpec(T).setNameLoc(NameLoc);
510 
511       T = getElaboratedType(ETK_None, *SS, T);
512       ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
513       ElabTL.setElaboratedKeywordLoc(SourceLocation());
514       ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
515       return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
516     } else {
517       T = getElaboratedType(ETK_None, *SS, T);
518     }
519   }
520 
521   return ParsedType::make(T);
522 }
523 
524 // Builds a fake NNS for the given decl context.
525 static NestedNameSpecifier *
526 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
527   for (;; DC = DC->getLookupParent()) {
528     DC = DC->getPrimaryContext();
529     auto *ND = dyn_cast<NamespaceDecl>(DC);
530     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
531       return NestedNameSpecifier::Create(Context, nullptr, ND);
532     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
533       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
534                                          RD->getTypeForDecl());
535     else if (isa<TranslationUnitDecl>(DC))
536       return NestedNameSpecifier::GlobalSpecifier(Context);
537   }
538   llvm_unreachable("something isn't in TU scope?");
539 }
540 
541 /// Find the parent class with dependent bases of the innermost enclosing method
542 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
543 /// up allowing unqualified dependent type names at class-level, which MSVC
544 /// correctly rejects.
545 static const CXXRecordDecl *
546 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
547   for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
548     DC = DC->getPrimaryContext();
549     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
550       if (MD->getParent()->hasAnyDependentBases())
551         return MD->getParent();
552   }
553   return nullptr;
554 }
555 
556 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
557                                           SourceLocation NameLoc,
558                                           bool IsTemplateTypeArg) {
559   assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
560 
561   NestedNameSpecifier *NNS = nullptr;
562   if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
563     // If we weren't able to parse a default template argument, delay lookup
564     // until instantiation time by making a non-dependent DependentTypeName. We
565     // pretend we saw a NestedNameSpecifier referring to the current scope, and
566     // lookup is retried.
567     // FIXME: This hurts our diagnostic quality, since we get errors like "no
568     // type named 'Foo' in 'current_namespace'" when the user didn't write any
569     // name specifiers.
570     NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
571     Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
572   } else if (const CXXRecordDecl *RD =
573                  findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
574     // Build a DependentNameType that will perform lookup into RD at
575     // instantiation time.
576     NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
577                                       RD->getTypeForDecl());
578 
579     // Diagnose that this identifier was undeclared, and retry the lookup during
580     // template instantiation.
581     Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
582                                                                       << RD;
583   } else {
584     // This is not a situation that we should recover from.
585     return ParsedType();
586   }
587 
588   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
589 
590   // Build type location information.  We synthesized the qualifier, so we have
591   // to build a fake NestedNameSpecifierLoc.
592   NestedNameSpecifierLocBuilder NNSLocBuilder;
593   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
594   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
595 
596   TypeLocBuilder Builder;
597   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
598   DepTL.setNameLoc(NameLoc);
599   DepTL.setElaboratedKeywordLoc(SourceLocation());
600   DepTL.setQualifierLoc(QualifierLoc);
601   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
602 }
603 
604 /// isTagName() - This method is called *for error recovery purposes only*
605 /// to determine if the specified name is a valid tag name ("struct foo").  If
606 /// so, this returns the TST for the tag corresponding to it (TST_enum,
607 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
608 /// cases in C where the user forgot to specify the tag.
609 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
610   // Do a tag name lookup in this scope.
611   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
612   LookupName(R, S, false);
613   R.suppressDiagnostics();
614   if (R.getResultKind() == LookupResult::Found)
615     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
616       switch (TD->getTagKind()) {
617       case TTK_Struct: return DeclSpec::TST_struct;
618       case TTK_Interface: return DeclSpec::TST_interface;
619       case TTK_Union:  return DeclSpec::TST_union;
620       case TTK_Class:  return DeclSpec::TST_class;
621       case TTK_Enum:   return DeclSpec::TST_enum;
622       }
623     }
624 
625   return DeclSpec::TST_unspecified;
626 }
627 
628 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
629 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
630 /// then downgrade the missing typename error to a warning.
631 /// This is needed for MSVC compatibility; Example:
632 /// @code
633 /// template<class T> class A {
634 /// public:
635 ///   typedef int TYPE;
636 /// };
637 /// template<class T> class B : public A<T> {
638 /// public:
639 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
640 /// };
641 /// @endcode
642 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
643   if (CurContext->isRecord()) {
644     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
645       return true;
646 
647     const Type *Ty = SS->getScopeRep()->getAsType();
648 
649     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
650     for (const auto &Base : RD->bases())
651       if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
652         return true;
653     return S->isFunctionPrototypeScope();
654   }
655   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
656 }
657 
658 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
659                                    SourceLocation IILoc,
660                                    Scope *S,
661                                    CXXScopeSpec *SS,
662                                    ParsedType &SuggestedType,
663                                    bool IsTemplateName) {
664   // Don't report typename errors for editor placeholders.
665   if (II->isEditorPlaceholder())
666     return;
667   // We don't have anything to suggest (yet).
668   SuggestedType = nullptr;
669 
670   // There may have been a typo in the name of the type. Look up typo
671   // results, in case we have something that we can suggest.
672   TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
673                            /*AllowTemplates=*/IsTemplateName,
674                            /*AllowNonTemplates=*/!IsTemplateName);
675   if (TypoCorrection Corrected =
676           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
677                       CCC, CTK_ErrorRecovery)) {
678     // FIXME: Support error recovery for the template-name case.
679     bool CanRecover = !IsTemplateName;
680     if (Corrected.isKeyword()) {
681       // We corrected to a keyword.
682       diagnoseTypo(Corrected,
683                    PDiag(IsTemplateName ? diag::err_no_template_suggest
684                                         : diag::err_unknown_typename_suggest)
685                        << II);
686       II = Corrected.getCorrectionAsIdentifierInfo();
687     } else {
688       // We found a similarly-named type or interface; suggest that.
689       if (!SS || !SS->isSet()) {
690         diagnoseTypo(Corrected,
691                      PDiag(IsTemplateName ? diag::err_no_template_suggest
692                                           : diag::err_unknown_typename_suggest)
693                          << II, CanRecover);
694       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
695         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
696         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
697                                 II->getName().equals(CorrectedStr);
698         diagnoseTypo(Corrected,
699                      PDiag(IsTemplateName
700                                ? diag::err_no_member_template_suggest
701                                : diag::err_unknown_nested_typename_suggest)
702                          << II << DC << DroppedSpecifier << SS->getRange(),
703                      CanRecover);
704       } else {
705         llvm_unreachable("could not have corrected a typo here");
706       }
707 
708       if (!CanRecover)
709         return;
710 
711       CXXScopeSpec tmpSS;
712       if (Corrected.getCorrectionSpecifier())
713         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
714                           SourceRange(IILoc));
715       // FIXME: Support class template argument deduction here.
716       SuggestedType =
717           getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
718                       tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
719                       /*IsCtorOrDtorName=*/false,
720                       /*WantNontrivialTypeSourceInfo=*/true);
721     }
722     return;
723   }
724 
725   if (getLangOpts().CPlusPlus && !IsTemplateName) {
726     // See if II is a class template that the user forgot to pass arguments to.
727     UnqualifiedId Name;
728     Name.setIdentifier(II, IILoc);
729     CXXScopeSpec EmptySS;
730     TemplateTy TemplateResult;
731     bool MemberOfUnknownSpecialization;
732     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
733                        Name, nullptr, true, TemplateResult,
734                        MemberOfUnknownSpecialization) == TNK_Type_template) {
735       diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
736       return;
737     }
738   }
739 
740   // FIXME: Should we move the logic that tries to recover from a missing tag
741   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
742 
743   if (!SS || (!SS->isSet() && !SS->isInvalid()))
744     Diag(IILoc, IsTemplateName ? diag::err_no_template
745                                : diag::err_unknown_typename)
746         << II;
747   else if (DeclContext *DC = computeDeclContext(*SS, false))
748     Diag(IILoc, IsTemplateName ? diag::err_no_member_template
749                                : diag::err_typename_nested_not_found)
750         << II << DC << SS->getRange();
751   else if (SS->isValid() && SS->getScopeRep()->containsErrors()) {
752     SuggestedType =
753         ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get();
754   } else if (isDependentScopeSpecifier(*SS)) {
755     unsigned DiagID = diag::err_typename_missing;
756     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
757       DiagID = diag::ext_typename_missing;
758 
759     Diag(SS->getRange().getBegin(), DiagID)
760       << SS->getScopeRep() << II->getName()
761       << SourceRange(SS->getRange().getBegin(), IILoc)
762       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
763     SuggestedType = ActOnTypenameType(S, SourceLocation(),
764                                       *SS, *II, IILoc).get();
765   } else {
766     assert(SS && SS->isInvalid() &&
767            "Invalid scope specifier has already been diagnosed");
768   }
769 }
770 
771 /// Determine whether the given result set contains either a type name
772 /// or
773 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
774   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
775                        NextToken.is(tok::less);
776 
777   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
778     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
779       return true;
780 
781     if (CheckTemplate && isa<TemplateDecl>(*I))
782       return true;
783   }
784 
785   return false;
786 }
787 
788 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
789                                     Scope *S, CXXScopeSpec &SS,
790                                     IdentifierInfo *&Name,
791                                     SourceLocation NameLoc) {
792   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
793   SemaRef.LookupParsedName(R, S, &SS);
794   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
795     StringRef FixItTagName;
796     switch (Tag->getTagKind()) {
797       case TTK_Class:
798         FixItTagName = "class ";
799         break;
800 
801       case TTK_Enum:
802         FixItTagName = "enum ";
803         break;
804 
805       case TTK_Struct:
806         FixItTagName = "struct ";
807         break;
808 
809       case TTK_Interface:
810         FixItTagName = "__interface ";
811         break;
812 
813       case TTK_Union:
814         FixItTagName = "union ";
815         break;
816     }
817 
818     StringRef TagName = FixItTagName.drop_back();
819     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
820       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
821       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
822 
823     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
824          I != IEnd; ++I)
825       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
826         << Name << TagName;
827 
828     // Replace lookup results with just the tag decl.
829     Result.clear(Sema::LookupTagName);
830     SemaRef.LookupParsedName(Result, S, &SS);
831     return true;
832   }
833 
834   return false;
835 }
836 
837 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
838 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
839                                   QualType T, SourceLocation NameLoc) {
840   ASTContext &Context = S.Context;
841 
842   TypeLocBuilder Builder;
843   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
844 
845   T = S.getElaboratedType(ETK_None, SS, T);
846   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
847   ElabTL.setElaboratedKeywordLoc(SourceLocation());
848   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
849   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
850 }
851 
852 Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
853                                             IdentifierInfo *&Name,
854                                             SourceLocation NameLoc,
855                                             const Token &NextToken,
856                                             CorrectionCandidateCallback *CCC) {
857   DeclarationNameInfo NameInfo(Name, NameLoc);
858   ObjCMethodDecl *CurMethod = getCurMethodDecl();
859 
860   assert(NextToken.isNot(tok::coloncolon) &&
861          "parse nested name specifiers before calling ClassifyName");
862   if (getLangOpts().CPlusPlus && SS.isSet() &&
863       isCurrentClassName(*Name, S, &SS)) {
864     // Per [class.qual]p2, this names the constructors of SS, not the
865     // injected-class-name. We don't have a classification for that.
866     // There's not much point caching this result, since the parser
867     // will reject it later.
868     return NameClassification::Unknown();
869   }
870 
871   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
872   LookupParsedName(Result, S, &SS, !CurMethod);
873 
874   if (SS.isInvalid())
875     return NameClassification::Error();
876 
877   // For unqualified lookup in a class template in MSVC mode, look into
878   // dependent base classes where the primary class template is known.
879   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
880     if (ParsedType TypeInBase =
881             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
882       return TypeInBase;
883   }
884 
885   // Perform lookup for Objective-C instance variables (including automatically
886   // synthesized instance variables), if we're in an Objective-C method.
887   // FIXME: This lookup really, really needs to be folded in to the normal
888   // unqualified lookup mechanism.
889   if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
890     DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
891     if (Ivar.isInvalid())
892       return NameClassification::Error();
893     if (Ivar.isUsable())
894       return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
895 
896     // We defer builtin creation until after ivar lookup inside ObjC methods.
897     if (Result.empty())
898       LookupBuiltin(Result);
899   }
900 
901   bool SecondTry = false;
902   bool IsFilteredTemplateName = false;
903 
904 Corrected:
905   switch (Result.getResultKind()) {
906   case LookupResult::NotFound:
907     // If an unqualified-id is followed by a '(', then we have a function
908     // call.
909     if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
910       // In C++, this is an ADL-only call.
911       // FIXME: Reference?
912       if (getLangOpts().CPlusPlus)
913         return NameClassification::UndeclaredNonType();
914 
915       // C90 6.3.2.2:
916       //   If the expression that precedes the parenthesized argument list in a
917       //   function call consists solely of an identifier, and if no
918       //   declaration is visible for this identifier, the identifier is
919       //   implicitly declared exactly as if, in the innermost block containing
920       //   the function call, the declaration
921       //
922       //     extern int identifier ();
923       //
924       //   appeared.
925       //
926       // We also allow this in C99 as an extension.
927       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
928         return NameClassification::NonType(D);
929     }
930 
931     if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) {
932       // In C++20 onwards, this could be an ADL-only call to a function
933       // template, and we're required to assume that this is a template name.
934       //
935       // FIXME: Find a way to still do typo correction in this case.
936       TemplateName Template =
937           Context.getAssumedTemplateName(NameInfo.getName());
938       return NameClassification::UndeclaredTemplate(Template);
939     }
940 
941     // In C, we first see whether there is a tag type by the same name, in
942     // which case it's likely that the user just forgot to write "enum",
943     // "struct", or "union".
944     if (!getLangOpts().CPlusPlus && !SecondTry &&
945         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
946       break;
947     }
948 
949     // Perform typo correction to determine if there is another name that is
950     // close to this name.
951     if (!SecondTry && CCC) {
952       SecondTry = true;
953       if (TypoCorrection Corrected =
954               CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
955                           &SS, *CCC, CTK_ErrorRecovery)) {
956         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
957         unsigned QualifiedDiag = diag::err_no_member_suggest;
958 
959         NamedDecl *FirstDecl = Corrected.getFoundDecl();
960         NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
961         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
962             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
963           UnqualifiedDiag = diag::err_no_template_suggest;
964           QualifiedDiag = diag::err_no_member_template_suggest;
965         } else if (UnderlyingFirstDecl &&
966                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
967                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
968                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
969           UnqualifiedDiag = diag::err_unknown_typename_suggest;
970           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
971         }
972 
973         if (SS.isEmpty()) {
974           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
975         } else {// FIXME: is this even reachable? Test it.
976           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
977           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
978                                   Name->getName().equals(CorrectedStr);
979           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
980                                     << Name << computeDeclContext(SS, false)
981                                     << DroppedSpecifier << SS.getRange());
982         }
983 
984         // Update the name, so that the caller has the new name.
985         Name = Corrected.getCorrectionAsIdentifierInfo();
986 
987         // Typo correction corrected to a keyword.
988         if (Corrected.isKeyword())
989           return Name;
990 
991         // Also update the LookupResult...
992         // FIXME: This should probably go away at some point
993         Result.clear();
994         Result.setLookupName(Corrected.getCorrection());
995         if (FirstDecl)
996           Result.addDecl(FirstDecl);
997 
998         // If we found an Objective-C instance variable, let
999         // LookupInObjCMethod build the appropriate expression to
1000         // reference the ivar.
1001         // FIXME: This is a gross hack.
1002         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1003           DeclResult R =
1004               LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1005           if (R.isInvalid())
1006             return NameClassification::Error();
1007           if (R.isUsable())
1008             return NameClassification::NonType(Ivar);
1009         }
1010 
1011         goto Corrected;
1012       }
1013     }
1014 
1015     // We failed to correct; just fall through and let the parser deal with it.
1016     Result.suppressDiagnostics();
1017     return NameClassification::Unknown();
1018 
1019   case LookupResult::NotFoundInCurrentInstantiation: {
1020     // We performed name lookup into the current instantiation, and there were
1021     // dependent bases, so we treat this result the same way as any other
1022     // dependent nested-name-specifier.
1023 
1024     // C++ [temp.res]p2:
1025     //   A name used in a template declaration or definition and that is
1026     //   dependent on a template-parameter is assumed not to name a type
1027     //   unless the applicable name lookup finds a type name or the name is
1028     //   qualified by the keyword typename.
1029     //
1030     // FIXME: If the next token is '<', we might want to ask the parser to
1031     // perform some heroics to see if we actually have a
1032     // template-argument-list, which would indicate a missing 'template'
1033     // keyword here.
1034     return NameClassification::DependentNonType();
1035   }
1036 
1037   case LookupResult::Found:
1038   case LookupResult::FoundOverloaded:
1039   case LookupResult::FoundUnresolvedValue:
1040     break;
1041 
1042   case LookupResult::Ambiguous:
1043     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1044         hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1045                                       /*AllowDependent=*/false)) {
1046       // C++ [temp.local]p3:
1047       //   A lookup that finds an injected-class-name (10.2) can result in an
1048       //   ambiguity in certain cases (for example, if it is found in more than
1049       //   one base class). If all of the injected-class-names that are found
1050       //   refer to specializations of the same class template, and if the name
1051       //   is followed by a template-argument-list, the reference refers to the
1052       //   class template itself and not a specialization thereof, and is not
1053       //   ambiguous.
1054       //
1055       // This filtering can make an ambiguous result into an unambiguous one,
1056       // so try again after filtering out template names.
1057       FilterAcceptableTemplateNames(Result);
1058       if (!Result.isAmbiguous()) {
1059         IsFilteredTemplateName = true;
1060         break;
1061       }
1062     }
1063 
1064     // Diagnose the ambiguity and return an error.
1065     return NameClassification::Error();
1066   }
1067 
1068   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1069       (IsFilteredTemplateName ||
1070        hasAnyAcceptableTemplateNames(
1071            Result, /*AllowFunctionTemplates=*/true,
1072            /*AllowDependent=*/false,
1073            /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1074                getLangOpts().CPlusPlus20))) {
1075     // C++ [temp.names]p3:
1076     //   After name lookup (3.4) finds that a name is a template-name or that
1077     //   an operator-function-id or a literal- operator-id refers to a set of
1078     //   overloaded functions any member of which is a function template if
1079     //   this is followed by a <, the < is always taken as the delimiter of a
1080     //   template-argument-list and never as the less-than operator.
1081     // C++2a [temp.names]p2:
1082     //   A name is also considered to refer to a template if it is an
1083     //   unqualified-id followed by a < and name lookup finds either one
1084     //   or more functions or finds nothing.
1085     if (!IsFilteredTemplateName)
1086       FilterAcceptableTemplateNames(Result);
1087 
1088     bool IsFunctionTemplate;
1089     bool IsVarTemplate;
1090     TemplateName Template;
1091     if (Result.end() - Result.begin() > 1) {
1092       IsFunctionTemplate = true;
1093       Template = Context.getOverloadedTemplateName(Result.begin(),
1094                                                    Result.end());
1095     } else if (!Result.empty()) {
1096       auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1097           *Result.begin(), /*AllowFunctionTemplates=*/true,
1098           /*AllowDependent=*/false));
1099       IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1100       IsVarTemplate = isa<VarTemplateDecl>(TD);
1101 
1102       if (SS.isNotEmpty())
1103         Template =
1104             Context.getQualifiedTemplateName(SS.getScopeRep(),
1105                                              /*TemplateKeyword=*/false, TD);
1106       else
1107         Template = TemplateName(TD);
1108     } else {
1109       // All results were non-template functions. This is a function template
1110       // name.
1111       IsFunctionTemplate = true;
1112       Template = Context.getAssumedTemplateName(NameInfo.getName());
1113     }
1114 
1115     if (IsFunctionTemplate) {
1116       // Function templates always go through overload resolution, at which
1117       // point we'll perform the various checks (e.g., accessibility) we need
1118       // to based on which function we selected.
1119       Result.suppressDiagnostics();
1120 
1121       return NameClassification::FunctionTemplate(Template);
1122     }
1123 
1124     return IsVarTemplate ? NameClassification::VarTemplate(Template)
1125                          : NameClassification::TypeTemplate(Template);
1126   }
1127 
1128   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1129   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1130     DiagnoseUseOfDecl(Type, NameLoc);
1131     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1132     QualType T = Context.getTypeDeclType(Type);
1133     if (SS.isNotEmpty())
1134       return buildNestedType(*this, SS, T, NameLoc);
1135     return ParsedType::make(T);
1136   }
1137 
1138   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1139   if (!Class) {
1140     // FIXME: It's unfortunate that we don't have a Type node for handling this.
1141     if (ObjCCompatibleAliasDecl *Alias =
1142             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1143       Class = Alias->getClassInterface();
1144   }
1145 
1146   if (Class) {
1147     DiagnoseUseOfDecl(Class, NameLoc);
1148 
1149     if (NextToken.is(tok::period)) {
1150       // Interface. <something> is parsed as a property reference expression.
1151       // Just return "unknown" as a fall-through for now.
1152       Result.suppressDiagnostics();
1153       return NameClassification::Unknown();
1154     }
1155 
1156     QualType T = Context.getObjCInterfaceType(Class);
1157     return ParsedType::make(T);
1158   }
1159 
1160   if (isa<ConceptDecl>(FirstDecl))
1161     return NameClassification::Concept(
1162         TemplateName(cast<TemplateDecl>(FirstDecl)));
1163 
1164   // We can have a type template here if we're classifying a template argument.
1165   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1166       !isa<VarTemplateDecl>(FirstDecl))
1167     return NameClassification::TypeTemplate(
1168         TemplateName(cast<TemplateDecl>(FirstDecl)));
1169 
1170   // Check for a tag type hidden by a non-type decl in a few cases where it
1171   // seems likely a type is wanted instead of the non-type that was found.
1172   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1173   if ((NextToken.is(tok::identifier) ||
1174        (NextIsOp &&
1175         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1176       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1177     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1178     DiagnoseUseOfDecl(Type, NameLoc);
1179     QualType T = Context.getTypeDeclType(Type);
1180     if (SS.isNotEmpty())
1181       return buildNestedType(*this, SS, T, NameLoc);
1182     return ParsedType::make(T);
1183   }
1184 
1185   // If we already know which single declaration is referenced, just annotate
1186   // that declaration directly. Defer resolving even non-overloaded class
1187   // member accesses, as we need to defer certain access checks until we know
1188   // the context.
1189   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1190   if (Result.isSingleResult() && !ADL && !FirstDecl->isCXXClassMember())
1191     return NameClassification::NonType(Result.getRepresentativeDecl());
1192 
1193   // Otherwise, this is an overload set that we will need to resolve later.
1194   Result.suppressDiagnostics();
1195   return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1196       Context, Result.getNamingClass(), SS.getWithLocInContext(Context),
1197       Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(),
1198       Result.begin(), Result.end()));
1199 }
1200 
1201 ExprResult
1202 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1203                                              SourceLocation NameLoc) {
1204   assert(getLangOpts().CPlusPlus && "ADL-only call in C?");
1205   CXXScopeSpec SS;
1206   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1207   return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1208 }
1209 
1210 ExprResult
1211 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1212                                             IdentifierInfo *Name,
1213                                             SourceLocation NameLoc,
1214                                             bool IsAddressOfOperand) {
1215   DeclarationNameInfo NameInfo(Name, NameLoc);
1216   return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1217                                     NameInfo, IsAddressOfOperand,
1218                                     /*TemplateArgs=*/nullptr);
1219 }
1220 
1221 ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1222                                               NamedDecl *Found,
1223                                               SourceLocation NameLoc,
1224                                               const Token &NextToken) {
1225   if (getCurMethodDecl() && SS.isEmpty())
1226     if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1227       return BuildIvarRefExpr(S, NameLoc, Ivar);
1228 
1229   // Reconstruct the lookup result.
1230   LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1231   Result.addDecl(Found);
1232   Result.resolveKind();
1233 
1234   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1235   return BuildDeclarationNameExpr(SS, Result, ADL);
1236 }
1237 
1238 ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) {
1239   // For an implicit class member access, transform the result into a member
1240   // access expression if necessary.
1241   auto *ULE = cast<UnresolvedLookupExpr>(E);
1242   if ((*ULE->decls_begin())->isCXXClassMember()) {
1243     CXXScopeSpec SS;
1244     SS.Adopt(ULE->getQualifierLoc());
1245 
1246     // Reconstruct the lookup result.
1247     LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(),
1248                         LookupOrdinaryName);
1249     Result.setNamingClass(ULE->getNamingClass());
1250     for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I)
1251       Result.addDecl(*I, I.getAccess());
1252     Result.resolveKind();
1253     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1254                                            nullptr, S);
1255   }
1256 
1257   // Otherwise, this is already in the form we needed, and no further checks
1258   // are necessary.
1259   return ULE;
1260 }
1261 
1262 Sema::TemplateNameKindForDiagnostics
1263 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1264   auto *TD = Name.getAsTemplateDecl();
1265   if (!TD)
1266     return TemplateNameKindForDiagnostics::DependentTemplate;
1267   if (isa<ClassTemplateDecl>(TD))
1268     return TemplateNameKindForDiagnostics::ClassTemplate;
1269   if (isa<FunctionTemplateDecl>(TD))
1270     return TemplateNameKindForDiagnostics::FunctionTemplate;
1271   if (isa<VarTemplateDecl>(TD))
1272     return TemplateNameKindForDiagnostics::VarTemplate;
1273   if (isa<TypeAliasTemplateDecl>(TD))
1274     return TemplateNameKindForDiagnostics::AliasTemplate;
1275   if (isa<TemplateTemplateParmDecl>(TD))
1276     return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1277   if (isa<ConceptDecl>(TD))
1278     return TemplateNameKindForDiagnostics::Concept;
1279   return TemplateNameKindForDiagnostics::DependentTemplate;
1280 }
1281 
1282 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1283   assert(DC->getLexicalParent() == CurContext &&
1284       "The next DeclContext should be lexically contained in the current one.");
1285   CurContext = DC;
1286   S->setEntity(DC);
1287 }
1288 
1289 void Sema::PopDeclContext() {
1290   assert(CurContext && "DeclContext imbalance!");
1291 
1292   CurContext = CurContext->getLexicalParent();
1293   assert(CurContext && "Popped translation unit!");
1294 }
1295 
1296 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1297                                                                     Decl *D) {
1298   // Unlike PushDeclContext, the context to which we return is not necessarily
1299   // the containing DC of TD, because the new context will be some pre-existing
1300   // TagDecl definition instead of a fresh one.
1301   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1302   CurContext = cast<TagDecl>(D)->getDefinition();
1303   assert(CurContext && "skipping definition of undefined tag");
1304   // Start lookups from the parent of the current context; we don't want to look
1305   // into the pre-existing complete definition.
1306   S->setEntity(CurContext->getLookupParent());
1307   return Result;
1308 }
1309 
1310 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1311   CurContext = static_cast<decltype(CurContext)>(Context);
1312 }
1313 
1314 /// EnterDeclaratorContext - Used when we must lookup names in the context
1315 /// of a declarator's nested name specifier.
1316 ///
1317 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1318   // C++0x [basic.lookup.unqual]p13:
1319   //   A name used in the definition of a static data member of class
1320   //   X (after the qualified-id of the static member) is looked up as
1321   //   if the name was used in a member function of X.
1322   // C++0x [basic.lookup.unqual]p14:
1323   //   If a variable member of a namespace is defined outside of the
1324   //   scope of its namespace then any name used in the definition of
1325   //   the variable member (after the declarator-id) is looked up as
1326   //   if the definition of the variable member occurred in its
1327   //   namespace.
1328   // Both of these imply that we should push a scope whose context
1329   // is the semantic context of the declaration.  We can't use
1330   // PushDeclContext here because that context is not necessarily
1331   // lexically contained in the current context.  Fortunately,
1332   // the containing scope should have the appropriate information.
1333 
1334   assert(!S->getEntity() && "scope already has entity");
1335 
1336 #ifndef NDEBUG
1337   Scope *Ancestor = S->getParent();
1338   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1339   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1340 #endif
1341 
1342   CurContext = DC;
1343   S->setEntity(DC);
1344 
1345   if (S->getParent()->isTemplateParamScope()) {
1346     // Also set the corresponding entities for all immediately-enclosing
1347     // template parameter scopes.
1348     EnterTemplatedContext(S->getParent(), DC);
1349   }
1350 }
1351 
1352 void Sema::ExitDeclaratorContext(Scope *S) {
1353   assert(S->getEntity() == CurContext && "Context imbalance!");
1354 
1355   // Switch back to the lexical context.  The safety of this is
1356   // enforced by an assert in EnterDeclaratorContext.
1357   Scope *Ancestor = S->getParent();
1358   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1359   CurContext = Ancestor->getEntity();
1360 
1361   // We don't need to do anything with the scope, which is going to
1362   // disappear.
1363 }
1364 
1365 void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) {
1366   assert(S->isTemplateParamScope() &&
1367          "expected to be initializing a template parameter scope");
1368 
1369   // C++20 [temp.local]p7:
1370   //   In the definition of a member of a class template that appears outside
1371   //   of the class template definition, the name of a member of the class
1372   //   template hides the name of a template-parameter of any enclosing class
1373   //   templates (but not a template-parameter of the member if the member is a
1374   //   class or function template).
1375   // C++20 [temp.local]p9:
1376   //   In the definition of a class template or in the definition of a member
1377   //   of such a template that appears outside of the template definition, for
1378   //   each non-dependent base class (13.8.2.1), if the name of the base class
1379   //   or the name of a member of the base class is the same as the name of a
1380   //   template-parameter, the base class name or member name hides the
1381   //   template-parameter name (6.4.10).
1382   //
1383   // This means that a template parameter scope should be searched immediately
1384   // after searching the DeclContext for which it is a template parameter
1385   // scope. For example, for
1386   //   template<typename T> template<typename U> template<typename V>
1387   //     void N::A<T>::B<U>::f(...)
1388   // we search V then B<U> (and base classes) then U then A<T> (and base
1389   // classes) then T then N then ::.
1390   unsigned ScopeDepth = getTemplateDepth(S);
1391   for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) {
1392     DeclContext *SearchDCAfterScope = DC;
1393     for (; DC; DC = DC->getLookupParent()) {
1394       if (const TemplateParameterList *TPL =
1395               cast<Decl>(DC)->getDescribedTemplateParams()) {
1396         unsigned DCDepth = TPL->getDepth() + 1;
1397         if (DCDepth > ScopeDepth)
1398           continue;
1399         if (ScopeDepth == DCDepth)
1400           SearchDCAfterScope = DC = DC->getLookupParent();
1401         break;
1402       }
1403     }
1404     S->setLookupEntity(SearchDCAfterScope);
1405   }
1406 }
1407 
1408 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1409   // We assume that the caller has already called
1410   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1411   FunctionDecl *FD = D->getAsFunction();
1412   if (!FD)
1413     return;
1414 
1415   // Same implementation as PushDeclContext, but enters the context
1416   // from the lexical parent, rather than the top-level class.
1417   assert(CurContext == FD->getLexicalParent() &&
1418     "The next DeclContext should be lexically contained in the current one.");
1419   CurContext = FD;
1420   S->setEntity(CurContext);
1421 
1422   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1423     ParmVarDecl *Param = FD->getParamDecl(P);
1424     // If the parameter has an identifier, then add it to the scope
1425     if (Param->getIdentifier()) {
1426       S->AddDecl(Param);
1427       IdResolver.AddDecl(Param);
1428     }
1429   }
1430 }
1431 
1432 void Sema::ActOnExitFunctionContext() {
1433   // Same implementation as PopDeclContext, but returns to the lexical parent,
1434   // rather than the top-level class.
1435   assert(CurContext && "DeclContext imbalance!");
1436   CurContext = CurContext->getLexicalParent();
1437   assert(CurContext && "Popped translation unit!");
1438 }
1439 
1440 /// Determine whether we allow overloading of the function
1441 /// PrevDecl with another declaration.
1442 ///
1443 /// This routine determines whether overloading is possible, not
1444 /// whether some new function is actually an overload. It will return
1445 /// true in C++ (where we can always provide overloads) or, as an
1446 /// extension, in C when the previous function is already an
1447 /// overloaded function declaration or has the "overloadable"
1448 /// attribute.
1449 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1450                                        ASTContext &Context,
1451                                        const FunctionDecl *New) {
1452   if (Context.getLangOpts().CPlusPlus)
1453     return true;
1454 
1455   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1456     return true;
1457 
1458   return Previous.getResultKind() == LookupResult::Found &&
1459          (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1460           New->hasAttr<OverloadableAttr>());
1461 }
1462 
1463 /// Add this decl to the scope shadowed decl chains.
1464 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1465   // Move up the scope chain until we find the nearest enclosing
1466   // non-transparent context. The declaration will be introduced into this
1467   // scope.
1468   while (S->getEntity() && S->getEntity()->isTransparentContext())
1469     S = S->getParent();
1470 
1471   // Add scoped declarations into their context, so that they can be
1472   // found later. Declarations without a context won't be inserted
1473   // into any context.
1474   if (AddToContext)
1475     CurContext->addDecl(D);
1476 
1477   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1478   // are function-local declarations.
1479   if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent())
1480     return;
1481 
1482   // Template instantiations should also not be pushed into scope.
1483   if (isa<FunctionDecl>(D) &&
1484       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1485     return;
1486 
1487   // If this replaces anything in the current scope,
1488   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1489                                IEnd = IdResolver.end();
1490   for (; I != IEnd; ++I) {
1491     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1492       S->RemoveDecl(*I);
1493       IdResolver.RemoveDecl(*I);
1494 
1495       // Should only need to replace one decl.
1496       break;
1497     }
1498   }
1499 
1500   S->AddDecl(D);
1501 
1502   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1503     // Implicitly-generated labels may end up getting generated in an order that
1504     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1505     // the label at the appropriate place in the identifier chain.
1506     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1507       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1508       if (IDC == CurContext) {
1509         if (!S->isDeclScope(*I))
1510           continue;
1511       } else if (IDC->Encloses(CurContext))
1512         break;
1513     }
1514 
1515     IdResolver.InsertDeclAfter(I, D);
1516   } else {
1517     IdResolver.AddDecl(D);
1518   }
1519 }
1520 
1521 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1522                          bool AllowInlineNamespace) {
1523   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1524 }
1525 
1526 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1527   DeclContext *TargetDC = DC->getPrimaryContext();
1528   do {
1529     if (DeclContext *ScopeDC = S->getEntity())
1530       if (ScopeDC->getPrimaryContext() == TargetDC)
1531         return S;
1532   } while ((S = S->getParent()));
1533 
1534   return nullptr;
1535 }
1536 
1537 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1538                                             DeclContext*,
1539                                             ASTContext&);
1540 
1541 /// Filters out lookup results that don't fall within the given scope
1542 /// as determined by isDeclInScope.
1543 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1544                                 bool ConsiderLinkage,
1545                                 bool AllowInlineNamespace) {
1546   LookupResult::Filter F = R.makeFilter();
1547   while (F.hasNext()) {
1548     NamedDecl *D = F.next();
1549 
1550     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1551       continue;
1552 
1553     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1554       continue;
1555 
1556     F.erase();
1557   }
1558 
1559   F.done();
1560 }
1561 
1562 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1563 /// have compatible owning modules.
1564 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1565   // FIXME: The Modules TS is not clear about how friend declarations are
1566   // to be treated. It's not meaningful to have different owning modules for
1567   // linkage in redeclarations of the same entity, so for now allow the
1568   // redeclaration and change the owning modules to match.
1569   if (New->getFriendObjectKind() &&
1570       Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1571     New->setLocalOwningModule(Old->getOwningModule());
1572     makeMergedDefinitionVisible(New);
1573     return false;
1574   }
1575 
1576   Module *NewM = New->getOwningModule();
1577   Module *OldM = Old->getOwningModule();
1578 
1579   if (NewM && NewM->Kind == Module::PrivateModuleFragment)
1580     NewM = NewM->Parent;
1581   if (OldM && OldM->Kind == Module::PrivateModuleFragment)
1582     OldM = OldM->Parent;
1583 
1584   if (NewM == OldM)
1585     return false;
1586 
1587   bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1588   bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1589   if (NewIsModuleInterface || OldIsModuleInterface) {
1590     // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1591     //   if a declaration of D [...] appears in the purview of a module, all
1592     //   other such declarations shall appear in the purview of the same module
1593     Diag(New->getLocation(), diag::err_mismatched_owning_module)
1594       << New
1595       << NewIsModuleInterface
1596       << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1597       << OldIsModuleInterface
1598       << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1599     Diag(Old->getLocation(), diag::note_previous_declaration);
1600     New->setInvalidDecl();
1601     return true;
1602   }
1603 
1604   return false;
1605 }
1606 
1607 static bool isUsingDecl(NamedDecl *D) {
1608   return isa<UsingShadowDecl>(D) ||
1609          isa<UnresolvedUsingTypenameDecl>(D) ||
1610          isa<UnresolvedUsingValueDecl>(D);
1611 }
1612 
1613 /// Removes using shadow declarations from the lookup results.
1614 static void RemoveUsingDecls(LookupResult &R) {
1615   LookupResult::Filter F = R.makeFilter();
1616   while (F.hasNext())
1617     if (isUsingDecl(F.next()))
1618       F.erase();
1619 
1620   F.done();
1621 }
1622 
1623 /// Check for this common pattern:
1624 /// @code
1625 /// class S {
1626 ///   S(const S&); // DO NOT IMPLEMENT
1627 ///   void operator=(const S&); // DO NOT IMPLEMENT
1628 /// };
1629 /// @endcode
1630 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1631   // FIXME: Should check for private access too but access is set after we get
1632   // the decl here.
1633   if (D->doesThisDeclarationHaveABody())
1634     return false;
1635 
1636   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1637     return CD->isCopyConstructor();
1638   return D->isCopyAssignmentOperator();
1639 }
1640 
1641 // We need this to handle
1642 //
1643 // typedef struct {
1644 //   void *foo() { return 0; }
1645 // } A;
1646 //
1647 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1648 // for example. If 'A', foo will have external linkage. If we have '*A',
1649 // foo will have no linkage. Since we can't know until we get to the end
1650 // of the typedef, this function finds out if D might have non-external linkage.
1651 // Callers should verify at the end of the TU if it D has external linkage or
1652 // not.
1653 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1654   const DeclContext *DC = D->getDeclContext();
1655   while (!DC->isTranslationUnit()) {
1656     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1657       if (!RD->hasNameForLinkage())
1658         return true;
1659     }
1660     DC = DC->getParent();
1661   }
1662 
1663   return !D->isExternallyVisible();
1664 }
1665 
1666 // FIXME: This needs to be refactored; some other isInMainFile users want
1667 // these semantics.
1668 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1669   if (S.TUKind != TU_Complete)
1670     return false;
1671   return S.SourceMgr.isInMainFile(Loc);
1672 }
1673 
1674 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1675   assert(D);
1676 
1677   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1678     return false;
1679 
1680   // Ignore all entities declared within templates, and out-of-line definitions
1681   // of members of class templates.
1682   if (D->getDeclContext()->isDependentContext() ||
1683       D->getLexicalDeclContext()->isDependentContext())
1684     return false;
1685 
1686   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1687     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1688       return false;
1689     // A non-out-of-line declaration of a member specialization was implicitly
1690     // instantiated; it's the out-of-line declaration that we're interested in.
1691     if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1692         FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1693       return false;
1694 
1695     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1696       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1697         return false;
1698     } else {
1699       // 'static inline' functions are defined in headers; don't warn.
1700       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1701         return false;
1702     }
1703 
1704     if (FD->doesThisDeclarationHaveABody() &&
1705         Context.DeclMustBeEmitted(FD))
1706       return false;
1707   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1708     // Constants and utility variables are defined in headers with internal
1709     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1710     // like "inline".)
1711     if (!isMainFileLoc(*this, VD->getLocation()))
1712       return false;
1713 
1714     if (Context.DeclMustBeEmitted(VD))
1715       return false;
1716 
1717     if (VD->isStaticDataMember() &&
1718         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1719       return false;
1720     if (VD->isStaticDataMember() &&
1721         VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1722         VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1723       return false;
1724 
1725     if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1726       return false;
1727   } else {
1728     return false;
1729   }
1730 
1731   // Only warn for unused decls internal to the translation unit.
1732   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1733   // for inline functions defined in the main source file, for instance.
1734   return mightHaveNonExternalLinkage(D);
1735 }
1736 
1737 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1738   if (!D)
1739     return;
1740 
1741   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1742     const FunctionDecl *First = FD->getFirstDecl();
1743     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1744       return; // First should already be in the vector.
1745   }
1746 
1747   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1748     const VarDecl *First = VD->getFirstDecl();
1749     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1750       return; // First should already be in the vector.
1751   }
1752 
1753   if (ShouldWarnIfUnusedFileScopedDecl(D))
1754     UnusedFileScopedDecls.push_back(D);
1755 }
1756 
1757 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1758   if (D->isInvalidDecl())
1759     return false;
1760 
1761   if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1762     // For a decomposition declaration, warn if none of the bindings are
1763     // referenced, instead of if the variable itself is referenced (which
1764     // it is, by the bindings' expressions).
1765     for (auto *BD : DD->bindings())
1766       if (BD->isReferenced())
1767         return false;
1768   } else if (!D->getDeclName()) {
1769     return false;
1770   } else if (D->isReferenced() || D->isUsed()) {
1771     return false;
1772   }
1773 
1774   if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>())
1775     return false;
1776 
1777   if (isa<LabelDecl>(D))
1778     return true;
1779 
1780   // Except for labels, we only care about unused decls that are local to
1781   // functions.
1782   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1783   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1784     // For dependent types, the diagnostic is deferred.
1785     WithinFunction =
1786         WithinFunction || (R->isLocalClass() && !R->isDependentType());
1787   if (!WithinFunction)
1788     return false;
1789 
1790   if (isa<TypedefNameDecl>(D))
1791     return true;
1792 
1793   // White-list anything that isn't a local variable.
1794   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1795     return false;
1796 
1797   // Types of valid local variables should be complete, so this should succeed.
1798   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1799 
1800     // White-list anything with an __attribute__((unused)) type.
1801     const auto *Ty = VD->getType().getTypePtr();
1802 
1803     // Only look at the outermost level of typedef.
1804     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1805       if (TT->getDecl()->hasAttr<UnusedAttr>())
1806         return false;
1807     }
1808 
1809     // If we failed to complete the type for some reason, or if the type is
1810     // dependent, don't diagnose the variable.
1811     if (Ty->isIncompleteType() || Ty->isDependentType())
1812       return false;
1813 
1814     // Look at the element type to ensure that the warning behaviour is
1815     // consistent for both scalars and arrays.
1816     Ty = Ty->getBaseElementTypeUnsafe();
1817 
1818     if (const TagType *TT = Ty->getAs<TagType>()) {
1819       const TagDecl *Tag = TT->getDecl();
1820       if (Tag->hasAttr<UnusedAttr>())
1821         return false;
1822 
1823       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1824         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1825           return false;
1826 
1827         if (const Expr *Init = VD->getInit()) {
1828           if (const ExprWithCleanups *Cleanups =
1829                   dyn_cast<ExprWithCleanups>(Init))
1830             Init = Cleanups->getSubExpr();
1831           const CXXConstructExpr *Construct =
1832             dyn_cast<CXXConstructExpr>(Init);
1833           if (Construct && !Construct->isElidable()) {
1834             CXXConstructorDecl *CD = Construct->getConstructor();
1835             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1836                 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1837               return false;
1838           }
1839 
1840           // Suppress the warning if we don't know how this is constructed, and
1841           // it could possibly be non-trivial constructor.
1842           if (Init->isTypeDependent())
1843             for (const CXXConstructorDecl *Ctor : RD->ctors())
1844               if (!Ctor->isTrivial())
1845                 return false;
1846         }
1847       }
1848     }
1849 
1850     // TODO: __attribute__((unused)) templates?
1851   }
1852 
1853   return true;
1854 }
1855 
1856 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1857                                      FixItHint &Hint) {
1858   if (isa<LabelDecl>(D)) {
1859     SourceLocation AfterColon = Lexer::findLocationAfterToken(
1860         D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1861         true);
1862     if (AfterColon.isInvalid())
1863       return;
1864     Hint = FixItHint::CreateRemoval(
1865         CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1866   }
1867 }
1868 
1869 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1870   if (D->getTypeForDecl()->isDependentType())
1871     return;
1872 
1873   for (auto *TmpD : D->decls()) {
1874     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1875       DiagnoseUnusedDecl(T);
1876     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1877       DiagnoseUnusedNestedTypedefs(R);
1878   }
1879 }
1880 
1881 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1882 /// unless they are marked attr(unused).
1883 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1884   if (!ShouldDiagnoseUnusedDecl(D))
1885     return;
1886 
1887   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1888     // typedefs can be referenced later on, so the diagnostics are emitted
1889     // at end-of-translation-unit.
1890     UnusedLocalTypedefNameCandidates.insert(TD);
1891     return;
1892   }
1893 
1894   FixItHint Hint;
1895   GenerateFixForUnusedDecl(D, Context, Hint);
1896 
1897   unsigned DiagID;
1898   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1899     DiagID = diag::warn_unused_exception_param;
1900   else if (isa<LabelDecl>(D))
1901     DiagID = diag::warn_unused_label;
1902   else
1903     DiagID = diag::warn_unused_variable;
1904 
1905   Diag(D->getLocation(), DiagID) << D << Hint;
1906 }
1907 
1908 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1909   // Verify that we have no forward references left.  If so, there was a goto
1910   // or address of a label taken, but no definition of it.  Label fwd
1911   // definitions are indicated with a null substmt which is also not a resolved
1912   // MS inline assembly label name.
1913   bool Diagnose = false;
1914   if (L->isMSAsmLabel())
1915     Diagnose = !L->isResolvedMSAsmLabel();
1916   else
1917     Diagnose = L->getStmt() == nullptr;
1918   if (Diagnose)
1919     S.Diag(L->getLocation(), diag::err_undeclared_label_use) << L;
1920 }
1921 
1922 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1923   S->mergeNRVOIntoParent();
1924 
1925   if (S->decl_empty()) return;
1926   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1927          "Scope shouldn't contain decls!");
1928 
1929   for (auto *TmpD : S->decls()) {
1930     assert(TmpD && "This decl didn't get pushed??");
1931 
1932     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1933     NamedDecl *D = cast<NamedDecl>(TmpD);
1934 
1935     // Diagnose unused variables in this scope.
1936     if (!S->hasUnrecoverableErrorOccurred()) {
1937       DiagnoseUnusedDecl(D);
1938       if (const auto *RD = dyn_cast<RecordDecl>(D))
1939         DiagnoseUnusedNestedTypedefs(RD);
1940     }
1941 
1942     if (!D->getDeclName()) continue;
1943 
1944     // If this was a forward reference to a label, verify it was defined.
1945     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1946       CheckPoppedLabel(LD, *this);
1947 
1948     // Remove this name from our lexical scope, and warn on it if we haven't
1949     // already.
1950     IdResolver.RemoveDecl(D);
1951     auto ShadowI = ShadowingDecls.find(D);
1952     if (ShadowI != ShadowingDecls.end()) {
1953       if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1954         Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1955             << D << FD << FD->getParent();
1956         Diag(FD->getLocation(), diag::note_previous_declaration);
1957       }
1958       ShadowingDecls.erase(ShadowI);
1959     }
1960   }
1961 }
1962 
1963 /// Look for an Objective-C class in the translation unit.
1964 ///
1965 /// \param Id The name of the Objective-C class we're looking for. If
1966 /// typo-correction fixes this name, the Id will be updated
1967 /// to the fixed name.
1968 ///
1969 /// \param IdLoc The location of the name in the translation unit.
1970 ///
1971 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1972 /// if there is no class with the given name.
1973 ///
1974 /// \returns The declaration of the named Objective-C class, or NULL if the
1975 /// class could not be found.
1976 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1977                                               SourceLocation IdLoc,
1978                                               bool DoTypoCorrection) {
1979   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1980   // creation from this context.
1981   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1982 
1983   if (!IDecl && DoTypoCorrection) {
1984     // Perform typo correction at the given location, but only if we
1985     // find an Objective-C class name.
1986     DeclFilterCCC<ObjCInterfaceDecl> CCC{};
1987     if (TypoCorrection C =
1988             CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1989                         TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
1990       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1991       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1992       Id = IDecl->getIdentifier();
1993     }
1994   }
1995   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1996   // This routine must always return a class definition, if any.
1997   if (Def && Def->getDefinition())
1998       Def = Def->getDefinition();
1999   return Def;
2000 }
2001 
2002 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
2003 /// from S, where a non-field would be declared. This routine copes
2004 /// with the difference between C and C++ scoping rules in structs and
2005 /// unions. For example, the following code is well-formed in C but
2006 /// ill-formed in C++:
2007 /// @code
2008 /// struct S6 {
2009 ///   enum { BAR } e;
2010 /// };
2011 ///
2012 /// void test_S6() {
2013 ///   struct S6 a;
2014 ///   a.e = BAR;
2015 /// }
2016 /// @endcode
2017 /// For the declaration of BAR, this routine will return a different
2018 /// scope. The scope S will be the scope of the unnamed enumeration
2019 /// within S6. In C++, this routine will return the scope associated
2020 /// with S6, because the enumeration's scope is a transparent
2021 /// context but structures can contain non-field names. In C, this
2022 /// routine will return the translation unit scope, since the
2023 /// enumeration's scope is a transparent context and structures cannot
2024 /// contain non-field names.
2025 Scope *Sema::getNonFieldDeclScope(Scope *S) {
2026   while (((S->getFlags() & Scope::DeclScope) == 0) ||
2027          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2028          (S->isClassScope() && !getLangOpts().CPlusPlus))
2029     S = S->getParent();
2030   return S;
2031 }
2032 
2033 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2034                                ASTContext::GetBuiltinTypeError Error) {
2035   switch (Error) {
2036   case ASTContext::GE_None:
2037     return "";
2038   case ASTContext::GE_Missing_type:
2039     return BuiltinInfo.getHeaderName(ID);
2040   case ASTContext::GE_Missing_stdio:
2041     return "stdio.h";
2042   case ASTContext::GE_Missing_setjmp:
2043     return "setjmp.h";
2044   case ASTContext::GE_Missing_ucontext:
2045     return "ucontext.h";
2046   }
2047   llvm_unreachable("unhandled error kind");
2048 }
2049 
2050 FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type,
2051                                   unsigned ID, SourceLocation Loc) {
2052   DeclContext *Parent = Context.getTranslationUnitDecl();
2053 
2054   if (getLangOpts().CPlusPlus) {
2055     LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create(
2056         Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false);
2057     CLinkageDecl->setImplicit();
2058     Parent->addDecl(CLinkageDecl);
2059     Parent = CLinkageDecl;
2060   }
2061 
2062   FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type,
2063                                            /*TInfo=*/nullptr, SC_Extern, false,
2064                                            Type->isFunctionProtoType());
2065   New->setImplicit();
2066   New->addAttr(BuiltinAttr::CreateImplicit(Context, ID));
2067 
2068   // Create Decl objects for each parameter, adding them to the
2069   // FunctionDecl.
2070   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) {
2071     SmallVector<ParmVarDecl *, 16> Params;
2072     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2073       ParmVarDecl *parm = ParmVarDecl::Create(
2074           Context, New, SourceLocation(), SourceLocation(), nullptr,
2075           FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr);
2076       parm->setScopeInfo(0, i);
2077       Params.push_back(parm);
2078     }
2079     New->setParams(Params);
2080   }
2081 
2082   AddKnownFunctionAttributes(New);
2083   return New;
2084 }
2085 
2086 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2087 /// file scope.  lazily create a decl for it. ForRedeclaration is true
2088 /// if we're creating this built-in in anticipation of redeclaring the
2089 /// built-in.
2090 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2091                                      Scope *S, bool ForRedeclaration,
2092                                      SourceLocation Loc) {
2093   LookupNecessaryTypesForBuiltin(S, ID);
2094 
2095   ASTContext::GetBuiltinTypeError Error;
2096   QualType R = Context.GetBuiltinType(ID, Error);
2097   if (Error) {
2098     if (!ForRedeclaration)
2099       return nullptr;
2100 
2101     // If we have a builtin without an associated type we should not emit a
2102     // warning when we were not able to find a type for it.
2103     if (Error == ASTContext::GE_Missing_type ||
2104         Context.BuiltinInfo.allowTypeMismatch(ID))
2105       return nullptr;
2106 
2107     // If we could not find a type for setjmp it is because the jmp_buf type was
2108     // not defined prior to the setjmp declaration.
2109     if (Error == ASTContext::GE_Missing_setjmp) {
2110       Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2111           << Context.BuiltinInfo.getName(ID);
2112       return nullptr;
2113     }
2114 
2115     // Generally, we emit a warning that the declaration requires the
2116     // appropriate header.
2117     Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2118         << getHeaderName(Context.BuiltinInfo, ID, Error)
2119         << Context.BuiltinInfo.getName(ID);
2120     return nullptr;
2121   }
2122 
2123   if (!ForRedeclaration &&
2124       (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2125        Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2126     Diag(Loc, diag::ext_implicit_lib_function_decl)
2127         << Context.BuiltinInfo.getName(ID) << R;
2128     if (const char *Header = Context.BuiltinInfo.getHeaderName(ID))
2129       Diag(Loc, diag::note_include_header_or_declare)
2130           << Header << Context.BuiltinInfo.getName(ID);
2131   }
2132 
2133   if (R.isNull())
2134     return nullptr;
2135 
2136   FunctionDecl *New = CreateBuiltin(II, R, ID, Loc);
2137   RegisterLocallyScopedExternCDecl(New, S);
2138 
2139   // TUScope is the translation-unit scope to insert this function into.
2140   // FIXME: This is hideous. We need to teach PushOnScopeChains to
2141   // relate Scopes to DeclContexts, and probably eliminate CurContext
2142   // entirely, but we're not there yet.
2143   DeclContext *SavedContext = CurContext;
2144   CurContext = New->getDeclContext();
2145   PushOnScopeChains(New, TUScope);
2146   CurContext = SavedContext;
2147   return New;
2148 }
2149 
2150 /// Typedef declarations don't have linkage, but they still denote the same
2151 /// entity if their types are the same.
2152 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2153 /// isSameEntity.
2154 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2155                                                      TypedefNameDecl *Decl,
2156                                                      LookupResult &Previous) {
2157   // This is only interesting when modules are enabled.
2158   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2159     return;
2160 
2161   // Empty sets are uninteresting.
2162   if (Previous.empty())
2163     return;
2164 
2165   LookupResult::Filter Filter = Previous.makeFilter();
2166   while (Filter.hasNext()) {
2167     NamedDecl *Old = Filter.next();
2168 
2169     // Non-hidden declarations are never ignored.
2170     if (S.isVisible(Old))
2171       continue;
2172 
2173     // Declarations of the same entity are not ignored, even if they have
2174     // different linkages.
2175     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2176       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2177                                 Decl->getUnderlyingType()))
2178         continue;
2179 
2180       // If both declarations give a tag declaration a typedef name for linkage
2181       // purposes, then they declare the same entity.
2182       if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2183           Decl->getAnonDeclWithTypedefName())
2184         continue;
2185     }
2186 
2187     Filter.erase();
2188   }
2189 
2190   Filter.done();
2191 }
2192 
2193 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2194   QualType OldType;
2195   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2196     OldType = OldTypedef->getUnderlyingType();
2197   else
2198     OldType = Context.getTypeDeclType(Old);
2199   QualType NewType = New->getUnderlyingType();
2200 
2201   if (NewType->isVariablyModifiedType()) {
2202     // Must not redefine a typedef with a variably-modified type.
2203     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2204     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2205       << Kind << NewType;
2206     if (Old->getLocation().isValid())
2207       notePreviousDefinition(Old, New->getLocation());
2208     New->setInvalidDecl();
2209     return true;
2210   }
2211 
2212   if (OldType != NewType &&
2213       !OldType->isDependentType() &&
2214       !NewType->isDependentType() &&
2215       !Context.hasSameType(OldType, NewType)) {
2216     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2217     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2218       << Kind << NewType << OldType;
2219     if (Old->getLocation().isValid())
2220       notePreviousDefinition(Old, New->getLocation());
2221     New->setInvalidDecl();
2222     return true;
2223   }
2224   return false;
2225 }
2226 
2227 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2228 /// same name and scope as a previous declaration 'Old'.  Figure out
2229 /// how to resolve this situation, merging decls or emitting
2230 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2231 ///
2232 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2233                                 LookupResult &OldDecls) {
2234   // If the new decl is known invalid already, don't bother doing any
2235   // merging checks.
2236   if (New->isInvalidDecl()) return;
2237 
2238   // Allow multiple definitions for ObjC built-in typedefs.
2239   // FIXME: Verify the underlying types are equivalent!
2240   if (getLangOpts().ObjC) {
2241     const IdentifierInfo *TypeID = New->getIdentifier();
2242     switch (TypeID->getLength()) {
2243     default: break;
2244     case 2:
2245       {
2246         if (!TypeID->isStr("id"))
2247           break;
2248         QualType T = New->getUnderlyingType();
2249         if (!T->isPointerType())
2250           break;
2251         if (!T->isVoidPointerType()) {
2252           QualType PT = T->castAs<PointerType>()->getPointeeType();
2253           if (!PT->isStructureType())
2254             break;
2255         }
2256         Context.setObjCIdRedefinitionType(T);
2257         // Install the built-in type for 'id', ignoring the current definition.
2258         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2259         return;
2260       }
2261     case 5:
2262       if (!TypeID->isStr("Class"))
2263         break;
2264       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2265       // Install the built-in type for 'Class', ignoring the current definition.
2266       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2267       return;
2268     case 3:
2269       if (!TypeID->isStr("SEL"))
2270         break;
2271       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2272       // Install the built-in type for 'SEL', ignoring the current definition.
2273       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2274       return;
2275     }
2276     // Fall through - the typedef name was not a builtin type.
2277   }
2278 
2279   // Verify the old decl was also a type.
2280   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2281   if (!Old) {
2282     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2283       << New->getDeclName();
2284 
2285     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2286     if (OldD->getLocation().isValid())
2287       notePreviousDefinition(OldD, New->getLocation());
2288 
2289     return New->setInvalidDecl();
2290   }
2291 
2292   // If the old declaration is invalid, just give up here.
2293   if (Old->isInvalidDecl())
2294     return New->setInvalidDecl();
2295 
2296   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2297     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2298     auto *NewTag = New->getAnonDeclWithTypedefName();
2299     NamedDecl *Hidden = nullptr;
2300     if (OldTag && NewTag &&
2301         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2302         !hasVisibleDefinition(OldTag, &Hidden)) {
2303       // There is a definition of this tag, but it is not visible. Use it
2304       // instead of our tag.
2305       New->setTypeForDecl(OldTD->getTypeForDecl());
2306       if (OldTD->isModed())
2307         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2308                                     OldTD->getUnderlyingType());
2309       else
2310         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2311 
2312       // Make the old tag definition visible.
2313       makeMergedDefinitionVisible(Hidden);
2314 
2315       // If this was an unscoped enumeration, yank all of its enumerators
2316       // out of the scope.
2317       if (isa<EnumDecl>(NewTag)) {
2318         Scope *EnumScope = getNonFieldDeclScope(S);
2319         for (auto *D : NewTag->decls()) {
2320           auto *ED = cast<EnumConstantDecl>(D);
2321           assert(EnumScope->isDeclScope(ED));
2322           EnumScope->RemoveDecl(ED);
2323           IdResolver.RemoveDecl(ED);
2324           ED->getLexicalDeclContext()->removeDecl(ED);
2325         }
2326       }
2327     }
2328   }
2329 
2330   // If the typedef types are not identical, reject them in all languages and
2331   // with any extensions enabled.
2332   if (isIncompatibleTypedef(Old, New))
2333     return;
2334 
2335   // The types match.  Link up the redeclaration chain and merge attributes if
2336   // the old declaration was a typedef.
2337   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2338     New->setPreviousDecl(Typedef);
2339     mergeDeclAttributes(New, Old);
2340   }
2341 
2342   if (getLangOpts().MicrosoftExt)
2343     return;
2344 
2345   if (getLangOpts().CPlusPlus) {
2346     // C++ [dcl.typedef]p2:
2347     //   In a given non-class scope, a typedef specifier can be used to
2348     //   redefine the name of any type declared in that scope to refer
2349     //   to the type to which it already refers.
2350     if (!isa<CXXRecordDecl>(CurContext))
2351       return;
2352 
2353     // C++0x [dcl.typedef]p4:
2354     //   In a given class scope, a typedef specifier can be used to redefine
2355     //   any class-name declared in that scope that is not also a typedef-name
2356     //   to refer to the type to which it already refers.
2357     //
2358     // This wording came in via DR424, which was a correction to the
2359     // wording in DR56, which accidentally banned code like:
2360     //
2361     //   struct S {
2362     //     typedef struct A { } A;
2363     //   };
2364     //
2365     // in the C++03 standard. We implement the C++0x semantics, which
2366     // allow the above but disallow
2367     //
2368     //   struct S {
2369     //     typedef int I;
2370     //     typedef int I;
2371     //   };
2372     //
2373     // since that was the intent of DR56.
2374     if (!isa<TypedefNameDecl>(Old))
2375       return;
2376 
2377     Diag(New->getLocation(), diag::err_redefinition)
2378       << New->getDeclName();
2379     notePreviousDefinition(Old, New->getLocation());
2380     return New->setInvalidDecl();
2381   }
2382 
2383   // Modules always permit redefinition of typedefs, as does C11.
2384   if (getLangOpts().Modules || getLangOpts().C11)
2385     return;
2386 
2387   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2388   // is normally mapped to an error, but can be controlled with
2389   // -Wtypedef-redefinition.  If either the original or the redefinition is
2390   // in a system header, don't emit this for compatibility with GCC.
2391   if (getDiagnostics().getSuppressSystemWarnings() &&
2392       // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2393       (Old->isImplicit() ||
2394        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2395        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2396     return;
2397 
2398   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2399     << New->getDeclName();
2400   notePreviousDefinition(Old, New->getLocation());
2401 }
2402 
2403 /// DeclhasAttr - returns true if decl Declaration already has the target
2404 /// attribute.
2405 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2406   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2407   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2408   for (const auto *i : D->attrs())
2409     if (i->getKind() == A->getKind()) {
2410       if (Ann) {
2411         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2412           return true;
2413         continue;
2414       }
2415       // FIXME: Don't hardcode this check
2416       if (OA && isa<OwnershipAttr>(i))
2417         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2418       return true;
2419     }
2420 
2421   return false;
2422 }
2423 
2424 static bool isAttributeTargetADefinition(Decl *D) {
2425   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2426     return VD->isThisDeclarationADefinition();
2427   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2428     return TD->isCompleteDefinition() || TD->isBeingDefined();
2429   return true;
2430 }
2431 
2432 /// Merge alignment attributes from \p Old to \p New, taking into account the
2433 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2434 ///
2435 /// \return \c true if any attributes were added to \p New.
2436 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2437   // Look for alignas attributes on Old, and pick out whichever attribute
2438   // specifies the strictest alignment requirement.
2439   AlignedAttr *OldAlignasAttr = nullptr;
2440   AlignedAttr *OldStrictestAlignAttr = nullptr;
2441   unsigned OldAlign = 0;
2442   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2443     // FIXME: We have no way of representing inherited dependent alignments
2444     // in a case like:
2445     //   template<int A, int B> struct alignas(A) X;
2446     //   template<int A, int B> struct alignas(B) X {};
2447     // For now, we just ignore any alignas attributes which are not on the
2448     // definition in such a case.
2449     if (I->isAlignmentDependent())
2450       return false;
2451 
2452     if (I->isAlignas())
2453       OldAlignasAttr = I;
2454 
2455     unsigned Align = I->getAlignment(S.Context);
2456     if (Align > OldAlign) {
2457       OldAlign = Align;
2458       OldStrictestAlignAttr = I;
2459     }
2460   }
2461 
2462   // Look for alignas attributes on New.
2463   AlignedAttr *NewAlignasAttr = nullptr;
2464   unsigned NewAlign = 0;
2465   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2466     if (I->isAlignmentDependent())
2467       return false;
2468 
2469     if (I->isAlignas())
2470       NewAlignasAttr = I;
2471 
2472     unsigned Align = I->getAlignment(S.Context);
2473     if (Align > NewAlign)
2474       NewAlign = Align;
2475   }
2476 
2477   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2478     // Both declarations have 'alignas' attributes. We require them to match.
2479     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2480     // fall short. (If two declarations both have alignas, they must both match
2481     // every definition, and so must match each other if there is a definition.)
2482 
2483     // If either declaration only contains 'alignas(0)' specifiers, then it
2484     // specifies the natural alignment for the type.
2485     if (OldAlign == 0 || NewAlign == 0) {
2486       QualType Ty;
2487       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2488         Ty = VD->getType();
2489       else
2490         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2491 
2492       if (OldAlign == 0)
2493         OldAlign = S.Context.getTypeAlign(Ty);
2494       if (NewAlign == 0)
2495         NewAlign = S.Context.getTypeAlign(Ty);
2496     }
2497 
2498     if (OldAlign != NewAlign) {
2499       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2500         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2501         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2502       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2503     }
2504   }
2505 
2506   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2507     // C++11 [dcl.align]p6:
2508     //   if any declaration of an entity has an alignment-specifier,
2509     //   every defining declaration of that entity shall specify an
2510     //   equivalent alignment.
2511     // C11 6.7.5/7:
2512     //   If the definition of an object does not have an alignment
2513     //   specifier, any other declaration of that object shall also
2514     //   have no alignment specifier.
2515     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2516       << OldAlignasAttr;
2517     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2518       << OldAlignasAttr;
2519   }
2520 
2521   bool AnyAdded = false;
2522 
2523   // Ensure we have an attribute representing the strictest alignment.
2524   if (OldAlign > NewAlign) {
2525     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2526     Clone->setInherited(true);
2527     New->addAttr(Clone);
2528     AnyAdded = true;
2529   }
2530 
2531   // Ensure we have an alignas attribute if the old declaration had one.
2532   if (OldAlignasAttr && !NewAlignasAttr &&
2533       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2534     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2535     Clone->setInherited(true);
2536     New->addAttr(Clone);
2537     AnyAdded = true;
2538   }
2539 
2540   return AnyAdded;
2541 }
2542 
2543 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2544                                const InheritableAttr *Attr,
2545                                Sema::AvailabilityMergeKind AMK) {
2546   // This function copies an attribute Attr from a previous declaration to the
2547   // new declaration D if the new declaration doesn't itself have that attribute
2548   // yet or if that attribute allows duplicates.
2549   // If you're adding a new attribute that requires logic different from
2550   // "use explicit attribute on decl if present, else use attribute from
2551   // previous decl", for example if the attribute needs to be consistent
2552   // between redeclarations, you need to call a custom merge function here.
2553   InheritableAttr *NewAttr = nullptr;
2554   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2555     NewAttr = S.mergeAvailabilityAttr(
2556         D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2557         AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2558         AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2559         AA->getPriority());
2560   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2561     NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2562   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2563     NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2564   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2565     NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2566   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2567     NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2568   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2569     NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2570                                 FA->getFirstArg());
2571   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2572     NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2573   else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2574     NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2575   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2576     NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2577                                        IA->getInheritanceModel());
2578   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2579     NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2580                                       &S.Context.Idents.get(AA->getSpelling()));
2581   else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2582            (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2583             isa<CUDAGlobalAttr>(Attr))) {
2584     // CUDA target attributes are part of function signature for
2585     // overloading purposes and must not be merged.
2586     return false;
2587   } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2588     NewAttr = S.mergeMinSizeAttr(D, *MA);
2589   else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr))
2590     NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName());
2591   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2592     NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2593   else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2594     NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2595   else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2596     NewAttr = S.mergeCommonAttr(D, *CommonA);
2597   else if (isa<AlignedAttr>(Attr))
2598     // AlignedAttrs are handled separately, because we need to handle all
2599     // such attributes on a declaration at the same time.
2600     NewAttr = nullptr;
2601   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2602            (AMK == Sema::AMK_Override ||
2603             AMK == Sema::AMK_ProtocolImplementation))
2604     NewAttr = nullptr;
2605   else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2606     NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl());
2607   else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr))
2608     NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA);
2609   else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr))
2610     NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA);
2611   else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr))
2612     NewAttr = S.mergeImportModuleAttr(D, *IMA);
2613   else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr))
2614     NewAttr = S.mergeImportNameAttr(D, *INA);
2615   else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr))
2616     NewAttr = S.mergeEnforceTCBAttr(D, *TCBA);
2617   else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr))
2618     NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA);
2619   else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2620     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2621 
2622   if (NewAttr) {
2623     NewAttr->setInherited(true);
2624     D->addAttr(NewAttr);
2625     if (isa<MSInheritanceAttr>(NewAttr))
2626       S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2627     return true;
2628   }
2629 
2630   return false;
2631 }
2632 
2633 static const NamedDecl *getDefinition(const Decl *D) {
2634   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2635     return TD->getDefinition();
2636   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2637     const VarDecl *Def = VD->getDefinition();
2638     if (Def)
2639       return Def;
2640     return VD->getActingDefinition();
2641   }
2642   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2643     const FunctionDecl *Def = nullptr;
2644     if (FD->isDefined(Def, true))
2645       return Def;
2646   }
2647   return nullptr;
2648 }
2649 
2650 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2651   for (const auto *Attribute : D->attrs())
2652     if (Attribute->getKind() == Kind)
2653       return true;
2654   return false;
2655 }
2656 
2657 /// checkNewAttributesAfterDef - If we already have a definition, check that
2658 /// there are no new attributes in this declaration.
2659 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2660   if (!New->hasAttrs())
2661     return;
2662 
2663   const NamedDecl *Def = getDefinition(Old);
2664   if (!Def || Def == New)
2665     return;
2666 
2667   AttrVec &NewAttributes = New->getAttrs();
2668   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2669     const Attr *NewAttribute = NewAttributes[I];
2670 
2671     if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2672       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2673         Sema::SkipBodyInfo SkipBody;
2674         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2675 
2676         // If we're skipping this definition, drop the "alias" attribute.
2677         if (SkipBody.ShouldSkip) {
2678           NewAttributes.erase(NewAttributes.begin() + I);
2679           --E;
2680           continue;
2681         }
2682       } else {
2683         VarDecl *VD = cast<VarDecl>(New);
2684         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2685                                 VarDecl::TentativeDefinition
2686                             ? diag::err_alias_after_tentative
2687                             : diag::err_redefinition;
2688         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2689         if (Diag == diag::err_redefinition)
2690           S.notePreviousDefinition(Def, VD->getLocation());
2691         else
2692           S.Diag(Def->getLocation(), diag::note_previous_definition);
2693         VD->setInvalidDecl();
2694       }
2695       ++I;
2696       continue;
2697     }
2698 
2699     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2700       // Tentative definitions are only interesting for the alias check above.
2701       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2702         ++I;
2703         continue;
2704       }
2705     }
2706 
2707     if (hasAttribute(Def, NewAttribute->getKind())) {
2708       ++I;
2709       continue; // regular attr merging will take care of validating this.
2710     }
2711 
2712     if (isa<C11NoReturnAttr>(NewAttribute)) {
2713       // C's _Noreturn is allowed to be added to a function after it is defined.
2714       ++I;
2715       continue;
2716     } else if (isa<UuidAttr>(NewAttribute)) {
2717       // msvc will allow a subsequent definition to add an uuid to a class
2718       ++I;
2719       continue;
2720     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2721       if (AA->isAlignas()) {
2722         // C++11 [dcl.align]p6:
2723         //   if any declaration of an entity has an alignment-specifier,
2724         //   every defining declaration of that entity shall specify an
2725         //   equivalent alignment.
2726         // C11 6.7.5/7:
2727         //   If the definition of an object does not have an alignment
2728         //   specifier, any other declaration of that object shall also
2729         //   have no alignment specifier.
2730         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2731           << AA;
2732         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2733           << AA;
2734         NewAttributes.erase(NewAttributes.begin() + I);
2735         --E;
2736         continue;
2737       }
2738     } else if (isa<LoaderUninitializedAttr>(NewAttribute)) {
2739       // If there is a C definition followed by a redeclaration with this
2740       // attribute then there are two different definitions. In C++, prefer the
2741       // standard diagnostics.
2742       if (!S.getLangOpts().CPlusPlus) {
2743         S.Diag(NewAttribute->getLocation(),
2744                diag::err_loader_uninitialized_redeclaration);
2745         S.Diag(Def->getLocation(), diag::note_previous_definition);
2746         NewAttributes.erase(NewAttributes.begin() + I);
2747         --E;
2748         continue;
2749       }
2750     } else if (isa<SelectAnyAttr>(NewAttribute) &&
2751                cast<VarDecl>(New)->isInline() &&
2752                !cast<VarDecl>(New)->isInlineSpecified()) {
2753       // Don't warn about applying selectany to implicitly inline variables.
2754       // Older compilers and language modes would require the use of selectany
2755       // to make such variables inline, and it would have no effect if we
2756       // honored it.
2757       ++I;
2758       continue;
2759     } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) {
2760       // We allow to add OMP[Begin]DeclareVariantAttr to be added to
2761       // declarations after defintions.
2762       ++I;
2763       continue;
2764     }
2765 
2766     S.Diag(NewAttribute->getLocation(),
2767            diag::warn_attribute_precede_definition);
2768     S.Diag(Def->getLocation(), diag::note_previous_definition);
2769     NewAttributes.erase(NewAttributes.begin() + I);
2770     --E;
2771   }
2772 }
2773 
2774 static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
2775                                      const ConstInitAttr *CIAttr,
2776                                      bool AttrBeforeInit) {
2777   SourceLocation InsertLoc = InitDecl->getInnerLocStart();
2778 
2779   // Figure out a good way to write this specifier on the old declaration.
2780   // FIXME: We should just use the spelling of CIAttr, but we don't preserve
2781   // enough of the attribute list spelling information to extract that without
2782   // heroics.
2783   std::string SuitableSpelling;
2784   if (S.getLangOpts().CPlusPlus20)
2785     SuitableSpelling = std::string(
2786         S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit}));
2787   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2788     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2789         InsertLoc, {tok::l_square, tok::l_square,
2790                     S.PP.getIdentifierInfo("clang"), tok::coloncolon,
2791                     S.PP.getIdentifierInfo("require_constant_initialization"),
2792                     tok::r_square, tok::r_square}));
2793   if (SuitableSpelling.empty())
2794     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2795         InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren,
2796                     S.PP.getIdentifierInfo("require_constant_initialization"),
2797                     tok::r_paren, tok::r_paren}));
2798   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20)
2799     SuitableSpelling = "constinit";
2800   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2801     SuitableSpelling = "[[clang::require_constant_initialization]]";
2802   if (SuitableSpelling.empty())
2803     SuitableSpelling = "__attribute__((require_constant_initialization))";
2804   SuitableSpelling += " ";
2805 
2806   if (AttrBeforeInit) {
2807     // extern constinit int a;
2808     // int a = 0; // error (missing 'constinit'), accepted as extension
2809     assert(CIAttr->isConstinit() && "should not diagnose this for attribute");
2810     S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
2811         << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2812     S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
2813   } else {
2814     // int a = 0;
2815     // constinit extern int a; // error (missing 'constinit')
2816     S.Diag(CIAttr->getLocation(),
2817            CIAttr->isConstinit() ? diag::err_constinit_added_too_late
2818                                  : diag::warn_require_const_init_added_too_late)
2819         << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
2820     S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
2821         << CIAttr->isConstinit()
2822         << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2823   }
2824 }
2825 
2826 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2827 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2828                                AvailabilityMergeKind AMK) {
2829   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2830     UsedAttr *NewAttr = OldAttr->clone(Context);
2831     NewAttr->setInherited(true);
2832     New->addAttr(NewAttr);
2833   }
2834 
2835   if (!Old->hasAttrs() && !New->hasAttrs())
2836     return;
2837 
2838   // [dcl.constinit]p1:
2839   //   If the [constinit] specifier is applied to any declaration of a
2840   //   variable, it shall be applied to the initializing declaration.
2841   const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
2842   const auto *NewConstInit = New->getAttr<ConstInitAttr>();
2843   if (bool(OldConstInit) != bool(NewConstInit)) {
2844     const auto *OldVD = cast<VarDecl>(Old);
2845     auto *NewVD = cast<VarDecl>(New);
2846 
2847     // Find the initializing declaration. Note that we might not have linked
2848     // the new declaration into the redeclaration chain yet.
2849     const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
2850     if (!InitDecl &&
2851         (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
2852       InitDecl = NewVD;
2853 
2854     if (InitDecl == NewVD) {
2855       // This is the initializing declaration. If it would inherit 'constinit',
2856       // that's ill-formed. (Note that we do not apply this to the attribute
2857       // form).
2858       if (OldConstInit && OldConstInit->isConstinit())
2859         diagnoseMissingConstinit(*this, NewVD, OldConstInit,
2860                                  /*AttrBeforeInit=*/true);
2861     } else if (NewConstInit) {
2862       // This is the first time we've been told that this declaration should
2863       // have a constant initializer. If we already saw the initializing
2864       // declaration, this is too late.
2865       if (InitDecl && InitDecl != NewVD) {
2866         diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
2867                                  /*AttrBeforeInit=*/false);
2868         NewVD->dropAttr<ConstInitAttr>();
2869       }
2870     }
2871   }
2872 
2873   // Attributes declared post-definition are currently ignored.
2874   checkNewAttributesAfterDef(*this, New, Old);
2875 
2876   if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2877     if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2878       if (!OldA->isEquivalent(NewA)) {
2879         // This redeclaration changes __asm__ label.
2880         Diag(New->getLocation(), diag::err_different_asm_label);
2881         Diag(OldA->getLocation(), diag::note_previous_declaration);
2882       }
2883     } else if (Old->isUsed()) {
2884       // This redeclaration adds an __asm__ label to a declaration that has
2885       // already been ODR-used.
2886       Diag(New->getLocation(), diag::err_late_asm_label_name)
2887         << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2888     }
2889   }
2890 
2891   // Re-declaration cannot add abi_tag's.
2892   if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2893     if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2894       for (const auto &NewTag : NewAbiTagAttr->tags()) {
2895         if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2896                       NewTag) == OldAbiTagAttr->tags_end()) {
2897           Diag(NewAbiTagAttr->getLocation(),
2898                diag::err_new_abi_tag_on_redeclaration)
2899               << NewTag;
2900           Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2901         }
2902       }
2903     } else {
2904       Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2905       Diag(Old->getLocation(), diag::note_previous_declaration);
2906     }
2907   }
2908 
2909   // This redeclaration adds a section attribute.
2910   if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2911     if (auto *VD = dyn_cast<VarDecl>(New)) {
2912       if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2913         Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2914         Diag(Old->getLocation(), diag::note_previous_declaration);
2915       }
2916     }
2917   }
2918 
2919   // Redeclaration adds code-seg attribute.
2920   const auto *NewCSA = New->getAttr<CodeSegAttr>();
2921   if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2922       !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2923     Diag(New->getLocation(), diag::warn_mismatched_section)
2924          << 0 /*codeseg*/;
2925     Diag(Old->getLocation(), diag::note_previous_declaration);
2926   }
2927 
2928   if (!Old->hasAttrs())
2929     return;
2930 
2931   bool foundAny = New->hasAttrs();
2932 
2933   // Ensure that any moving of objects within the allocated map is done before
2934   // we process them.
2935   if (!foundAny) New->setAttrs(AttrVec());
2936 
2937   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2938     // Ignore deprecated/unavailable/availability attributes if requested.
2939     AvailabilityMergeKind LocalAMK = AMK_None;
2940     if (isa<DeprecatedAttr>(I) ||
2941         isa<UnavailableAttr>(I) ||
2942         isa<AvailabilityAttr>(I)) {
2943       switch (AMK) {
2944       case AMK_None:
2945         continue;
2946 
2947       case AMK_Redeclaration:
2948       case AMK_Override:
2949       case AMK_ProtocolImplementation:
2950         LocalAMK = AMK;
2951         break;
2952       }
2953     }
2954 
2955     // Already handled.
2956     if (isa<UsedAttr>(I))
2957       continue;
2958 
2959     if (mergeDeclAttribute(*this, New, I, LocalAMK))
2960       foundAny = true;
2961   }
2962 
2963   if (mergeAlignedAttrs(*this, New, Old))
2964     foundAny = true;
2965 
2966   if (!foundAny) New->dropAttrs();
2967 }
2968 
2969 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2970 /// to the new one.
2971 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2972                                      const ParmVarDecl *oldDecl,
2973                                      Sema &S) {
2974   // C++11 [dcl.attr.depend]p2:
2975   //   The first declaration of a function shall specify the
2976   //   carries_dependency attribute for its declarator-id if any declaration
2977   //   of the function specifies the carries_dependency attribute.
2978   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2979   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2980     S.Diag(CDA->getLocation(),
2981            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2982     // Find the first declaration of the parameter.
2983     // FIXME: Should we build redeclaration chains for function parameters?
2984     const FunctionDecl *FirstFD =
2985       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2986     const ParmVarDecl *FirstVD =
2987       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2988     S.Diag(FirstVD->getLocation(),
2989            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2990   }
2991 
2992   if (!oldDecl->hasAttrs())
2993     return;
2994 
2995   bool foundAny = newDecl->hasAttrs();
2996 
2997   // Ensure that any moving of objects within the allocated map is
2998   // done before we process them.
2999   if (!foundAny) newDecl->setAttrs(AttrVec());
3000 
3001   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
3002     if (!DeclHasAttr(newDecl, I)) {
3003       InheritableAttr *newAttr =
3004         cast<InheritableParamAttr>(I->clone(S.Context));
3005       newAttr->setInherited(true);
3006       newDecl->addAttr(newAttr);
3007       foundAny = true;
3008     }
3009   }
3010 
3011   if (!foundAny) newDecl->dropAttrs();
3012 }
3013 
3014 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
3015                                 const ParmVarDecl *OldParam,
3016                                 Sema &S) {
3017   if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
3018     if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
3019       if (*Oldnullability != *Newnullability) {
3020         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
3021           << DiagNullabilityKind(
3022                *Newnullability,
3023                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3024                 != 0))
3025           << DiagNullabilityKind(
3026                *Oldnullability,
3027                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3028                 != 0));
3029         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
3030       }
3031     } else {
3032       QualType NewT = NewParam->getType();
3033       NewT = S.Context.getAttributedType(
3034                          AttributedType::getNullabilityAttrKind(*Oldnullability),
3035                          NewT, NewT);
3036       NewParam->setType(NewT);
3037     }
3038   }
3039 }
3040 
3041 namespace {
3042 
3043 /// Used in MergeFunctionDecl to keep track of function parameters in
3044 /// C.
3045 struct GNUCompatibleParamWarning {
3046   ParmVarDecl *OldParm;
3047   ParmVarDecl *NewParm;
3048   QualType PromotedType;
3049 };
3050 
3051 } // end anonymous namespace
3052 
3053 // Determine whether the previous declaration was a definition, implicit
3054 // declaration, or a declaration.
3055 template <typename T>
3056 static std::pair<diag::kind, SourceLocation>
3057 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3058   diag::kind PrevDiag;
3059   SourceLocation OldLocation = Old->getLocation();
3060   if (Old->isThisDeclarationADefinition())
3061     PrevDiag = diag::note_previous_definition;
3062   else if (Old->isImplicit()) {
3063     PrevDiag = diag::note_previous_implicit_declaration;
3064     if (OldLocation.isInvalid())
3065       OldLocation = New->getLocation();
3066   } else
3067     PrevDiag = diag::note_previous_declaration;
3068   return std::make_pair(PrevDiag, OldLocation);
3069 }
3070 
3071 /// canRedefineFunction - checks if a function can be redefined. Currently,
3072 /// only extern inline functions can be redefined, and even then only in
3073 /// GNU89 mode.
3074 static bool canRedefineFunction(const FunctionDecl *FD,
3075                                 const LangOptions& LangOpts) {
3076   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3077           !LangOpts.CPlusPlus &&
3078           FD->isInlineSpecified() &&
3079           FD->getStorageClass() == SC_Extern);
3080 }
3081 
3082 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3083   const AttributedType *AT = T->getAs<AttributedType>();
3084   while (AT && !AT->isCallingConv())
3085     AT = AT->getModifiedType()->getAs<AttributedType>();
3086   return AT;
3087 }
3088 
3089 template <typename T>
3090 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3091   const DeclContext *DC = Old->getDeclContext();
3092   if (DC->isRecord())
3093     return false;
3094 
3095   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3096   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3097     return true;
3098   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3099     return true;
3100   return false;
3101 }
3102 
3103 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
3104 static bool isExternC(VarTemplateDecl *) { return false; }
3105 
3106 /// Check whether a redeclaration of an entity introduced by a
3107 /// using-declaration is valid, given that we know it's not an overload
3108 /// (nor a hidden tag declaration).
3109 template<typename ExpectedDecl>
3110 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3111                                    ExpectedDecl *New) {
3112   // C++11 [basic.scope.declarative]p4:
3113   //   Given a set of declarations in a single declarative region, each of
3114   //   which specifies the same unqualified name,
3115   //   -- they shall all refer to the same entity, or all refer to functions
3116   //      and function templates; or
3117   //   -- exactly one declaration shall declare a class name or enumeration
3118   //      name that is not a typedef name and the other declarations shall all
3119   //      refer to the same variable or enumerator, or all refer to functions
3120   //      and function templates; in this case the class name or enumeration
3121   //      name is hidden (3.3.10).
3122 
3123   // C++11 [namespace.udecl]p14:
3124   //   If a function declaration in namespace scope or block scope has the
3125   //   same name and the same parameter-type-list as a function introduced
3126   //   by a using-declaration, and the declarations do not declare the same
3127   //   function, the program is ill-formed.
3128 
3129   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3130   if (Old &&
3131       !Old->getDeclContext()->getRedeclContext()->Equals(
3132           New->getDeclContext()->getRedeclContext()) &&
3133       !(isExternC(Old) && isExternC(New)))
3134     Old = nullptr;
3135 
3136   if (!Old) {
3137     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3138     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3139     S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
3140     return true;
3141   }
3142   return false;
3143 }
3144 
3145 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3146                                             const FunctionDecl *B) {
3147   assert(A->getNumParams() == B->getNumParams());
3148 
3149   auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3150     const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3151     const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3152     if (AttrA == AttrB)
3153       return true;
3154     return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3155            AttrA->isDynamic() == AttrB->isDynamic();
3156   };
3157 
3158   return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3159 }
3160 
3161 /// If necessary, adjust the semantic declaration context for a qualified
3162 /// declaration to name the correct inline namespace within the qualifier.
3163 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3164                                                DeclaratorDecl *OldD) {
3165   // The only case where we need to update the DeclContext is when
3166   // redeclaration lookup for a qualified name finds a declaration
3167   // in an inline namespace within the context named by the qualifier:
3168   //
3169   //   inline namespace N { int f(); }
3170   //   int ::f(); // Sema DC needs adjusting from :: to N::.
3171   //
3172   // For unqualified declarations, the semantic context *can* change
3173   // along the redeclaration chain (for local extern declarations,
3174   // extern "C" declarations, and friend declarations in particular).
3175   if (!NewD->getQualifier())
3176     return;
3177 
3178   // NewD is probably already in the right context.
3179   auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3180   auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3181   if (NamedDC->Equals(SemaDC))
3182     return;
3183 
3184   assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
3185           NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
3186          "unexpected context for redeclaration");
3187 
3188   auto *LexDC = NewD->getLexicalDeclContext();
3189   auto FixSemaDC = [=](NamedDecl *D) {
3190     if (!D)
3191       return;
3192     D->setDeclContext(SemaDC);
3193     D->setLexicalDeclContext(LexDC);
3194   };
3195 
3196   FixSemaDC(NewD);
3197   if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3198     FixSemaDC(FD->getDescribedFunctionTemplate());
3199   else if (auto *VD = dyn_cast<VarDecl>(NewD))
3200     FixSemaDC(VD->getDescribedVarTemplate());
3201 }
3202 
3203 /// MergeFunctionDecl - We just parsed a function 'New' from
3204 /// declarator D which has the same name and scope as a previous
3205 /// declaration 'Old'.  Figure out how to resolve this situation,
3206 /// merging decls or emitting diagnostics as appropriate.
3207 ///
3208 /// In C++, New and Old must be declarations that are not
3209 /// overloaded. Use IsOverload to determine whether New and Old are
3210 /// overloaded, and to select the Old declaration that New should be
3211 /// merged with.
3212 ///
3213 /// Returns true if there was an error, false otherwise.
3214 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
3215                              Scope *S, bool MergeTypeWithOld) {
3216   // Verify the old decl was also a function.
3217   FunctionDecl *Old = OldD->getAsFunction();
3218   if (!Old) {
3219     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3220       if (New->getFriendObjectKind()) {
3221         Diag(New->getLocation(), diag::err_using_decl_friend);
3222         Diag(Shadow->getTargetDecl()->getLocation(),
3223              diag::note_using_decl_target);
3224         Diag(Shadow->getUsingDecl()->getLocation(),
3225              diag::note_using_decl) << 0;
3226         return true;
3227       }
3228 
3229       // Check whether the two declarations might declare the same function.
3230       if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3231         return true;
3232       OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3233     } else {
3234       Diag(New->getLocation(), diag::err_redefinition_different_kind)
3235         << New->getDeclName();
3236       notePreviousDefinition(OldD, New->getLocation());
3237       return true;
3238     }
3239   }
3240 
3241   // If the old declaration was found in an inline namespace and the new
3242   // declaration was qualified, update the DeclContext to match.
3243   adjustDeclContextForDeclaratorDecl(New, Old);
3244 
3245   // If the old declaration is invalid, just give up here.
3246   if (Old->isInvalidDecl())
3247     return true;
3248 
3249   // Disallow redeclaration of some builtins.
3250   if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3251     Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3252     Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3253         << Old << Old->getType();
3254     return true;
3255   }
3256 
3257   diag::kind PrevDiag;
3258   SourceLocation OldLocation;
3259   std::tie(PrevDiag, OldLocation) =
3260       getNoteDiagForInvalidRedeclaration(Old, New);
3261 
3262   // Don't complain about this if we're in GNU89 mode and the old function
3263   // is an extern inline function.
3264   // Don't complain about specializations. They are not supposed to have
3265   // storage classes.
3266   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3267       New->getStorageClass() == SC_Static &&
3268       Old->hasExternalFormalLinkage() &&
3269       !New->getTemplateSpecializationInfo() &&
3270       !canRedefineFunction(Old, getLangOpts())) {
3271     if (getLangOpts().MicrosoftExt) {
3272       Diag(New->getLocation(), diag::ext_static_non_static) << New;
3273       Diag(OldLocation, PrevDiag);
3274     } else {
3275       Diag(New->getLocation(), diag::err_static_non_static) << New;
3276       Diag(OldLocation, PrevDiag);
3277       return true;
3278     }
3279   }
3280 
3281   if (New->hasAttr<InternalLinkageAttr>() &&
3282       !Old->hasAttr<InternalLinkageAttr>()) {
3283     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3284         << New->getDeclName();
3285     notePreviousDefinition(Old, New->getLocation());
3286     New->dropAttr<InternalLinkageAttr>();
3287   }
3288 
3289   if (CheckRedeclarationModuleOwnership(New, Old))
3290     return true;
3291 
3292   if (!getLangOpts().CPlusPlus) {
3293     bool OldOvl = Old->hasAttr<OverloadableAttr>();
3294     if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3295       Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3296         << New << OldOvl;
3297 
3298       // Try our best to find a decl that actually has the overloadable
3299       // attribute for the note. In most cases (e.g. programs with only one
3300       // broken declaration/definition), this won't matter.
3301       //
3302       // FIXME: We could do this if we juggled some extra state in
3303       // OverloadableAttr, rather than just removing it.
3304       const Decl *DiagOld = Old;
3305       if (OldOvl) {
3306         auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3307           const auto *A = D->getAttr<OverloadableAttr>();
3308           return A && !A->isImplicit();
3309         });
3310         // If we've implicitly added *all* of the overloadable attrs to this
3311         // chain, emitting a "previous redecl" note is pointless.
3312         DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3313       }
3314 
3315       if (DiagOld)
3316         Diag(DiagOld->getLocation(),
3317              diag::note_attribute_overloadable_prev_overload)
3318           << OldOvl;
3319 
3320       if (OldOvl)
3321         New->addAttr(OverloadableAttr::CreateImplicit(Context));
3322       else
3323         New->dropAttr<OverloadableAttr>();
3324     }
3325   }
3326 
3327   // If a function is first declared with a calling convention, but is later
3328   // declared or defined without one, all following decls assume the calling
3329   // convention of the first.
3330   //
3331   // It's OK if a function is first declared without a calling convention,
3332   // but is later declared or defined with the default calling convention.
3333   //
3334   // To test if either decl has an explicit calling convention, we look for
3335   // AttributedType sugar nodes on the type as written.  If they are missing or
3336   // were canonicalized away, we assume the calling convention was implicit.
3337   //
3338   // Note also that we DO NOT return at this point, because we still have
3339   // other tests to run.
3340   QualType OldQType = Context.getCanonicalType(Old->getType());
3341   QualType NewQType = Context.getCanonicalType(New->getType());
3342   const FunctionType *OldType = cast<FunctionType>(OldQType);
3343   const FunctionType *NewType = cast<FunctionType>(NewQType);
3344   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3345   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3346   bool RequiresAdjustment = false;
3347 
3348   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3349     FunctionDecl *First = Old->getFirstDecl();
3350     const FunctionType *FT =
3351         First->getType().getCanonicalType()->castAs<FunctionType>();
3352     FunctionType::ExtInfo FI = FT->getExtInfo();
3353     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3354     if (!NewCCExplicit) {
3355       // Inherit the CC from the previous declaration if it was specified
3356       // there but not here.
3357       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3358       RequiresAdjustment = true;
3359     } else if (Old->getBuiltinID()) {
3360       // Builtin attribute isn't propagated to the new one yet at this point,
3361       // so we check if the old one is a builtin.
3362 
3363       // Calling Conventions on a Builtin aren't really useful and setting a
3364       // default calling convention and cdecl'ing some builtin redeclarations is
3365       // common, so warn and ignore the calling convention on the redeclaration.
3366       Diag(New->getLocation(), diag::warn_cconv_unsupported)
3367           << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3368           << (int)CallingConventionIgnoredReason::BuiltinFunction;
3369       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3370       RequiresAdjustment = true;
3371     } else {
3372       // Calling conventions aren't compatible, so complain.
3373       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3374       Diag(New->getLocation(), diag::err_cconv_change)
3375         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3376         << !FirstCCExplicit
3377         << (!FirstCCExplicit ? "" :
3378             FunctionType::getNameForCallConv(FI.getCC()));
3379 
3380       // Put the note on the first decl, since it is the one that matters.
3381       Diag(First->getLocation(), diag::note_previous_declaration);
3382       return true;
3383     }
3384   }
3385 
3386   // FIXME: diagnose the other way around?
3387   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3388     NewTypeInfo = NewTypeInfo.withNoReturn(true);
3389     RequiresAdjustment = true;
3390   }
3391 
3392   // Merge regparm attribute.
3393   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3394       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3395     if (NewTypeInfo.getHasRegParm()) {
3396       Diag(New->getLocation(), diag::err_regparm_mismatch)
3397         << NewType->getRegParmType()
3398         << OldType->getRegParmType();
3399       Diag(OldLocation, diag::note_previous_declaration);
3400       return true;
3401     }
3402 
3403     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3404     RequiresAdjustment = true;
3405   }
3406 
3407   // Merge ns_returns_retained attribute.
3408   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3409     if (NewTypeInfo.getProducesResult()) {
3410       Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3411           << "'ns_returns_retained'";
3412       Diag(OldLocation, diag::note_previous_declaration);
3413       return true;
3414     }
3415 
3416     NewTypeInfo = NewTypeInfo.withProducesResult(true);
3417     RequiresAdjustment = true;
3418   }
3419 
3420   if (OldTypeInfo.getNoCallerSavedRegs() !=
3421       NewTypeInfo.getNoCallerSavedRegs()) {
3422     if (NewTypeInfo.getNoCallerSavedRegs()) {
3423       AnyX86NoCallerSavedRegistersAttr *Attr =
3424         New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3425       Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3426       Diag(OldLocation, diag::note_previous_declaration);
3427       return true;
3428     }
3429 
3430     NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3431     RequiresAdjustment = true;
3432   }
3433 
3434   if (RequiresAdjustment) {
3435     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3436     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3437     New->setType(QualType(AdjustedType, 0));
3438     NewQType = Context.getCanonicalType(New->getType());
3439   }
3440 
3441   // If this redeclaration makes the function inline, we may need to add it to
3442   // UndefinedButUsed.
3443   if (!Old->isInlined() && New->isInlined() &&
3444       !New->hasAttr<GNUInlineAttr>() &&
3445       !getLangOpts().GNUInline &&
3446       Old->isUsed(false) &&
3447       !Old->isDefined() && !New->isThisDeclarationADefinition())
3448     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3449                                            SourceLocation()));
3450 
3451   // If this redeclaration makes it newly gnu_inline, we don't want to warn
3452   // about it.
3453   if (New->hasAttr<GNUInlineAttr>() &&
3454       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3455     UndefinedButUsed.erase(Old->getCanonicalDecl());
3456   }
3457 
3458   // If pass_object_size params don't match up perfectly, this isn't a valid
3459   // redeclaration.
3460   if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3461       !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3462     Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3463         << New->getDeclName();
3464     Diag(OldLocation, PrevDiag) << Old << Old->getType();
3465     return true;
3466   }
3467 
3468   if (getLangOpts().CPlusPlus) {
3469     // C++1z [over.load]p2
3470     //   Certain function declarations cannot be overloaded:
3471     //     -- Function declarations that differ only in the return type,
3472     //        the exception specification, or both cannot be overloaded.
3473 
3474     // Check the exception specifications match. This may recompute the type of
3475     // both Old and New if it resolved exception specifications, so grab the
3476     // types again after this. Because this updates the type, we do this before
3477     // any of the other checks below, which may update the "de facto" NewQType
3478     // but do not necessarily update the type of New.
3479     if (CheckEquivalentExceptionSpec(Old, New))
3480       return true;
3481     OldQType = Context.getCanonicalType(Old->getType());
3482     NewQType = Context.getCanonicalType(New->getType());
3483 
3484     // Go back to the type source info to compare the declared return types,
3485     // per C++1y [dcl.type.auto]p13:
3486     //   Redeclarations or specializations of a function or function template
3487     //   with a declared return type that uses a placeholder type shall also
3488     //   use that placeholder, not a deduced type.
3489     QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3490     QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3491     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3492         canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3493                                        OldDeclaredReturnType)) {
3494       QualType ResQT;
3495       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3496           OldDeclaredReturnType->isObjCObjectPointerType())
3497         // FIXME: This does the wrong thing for a deduced return type.
3498         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3499       if (ResQT.isNull()) {
3500         if (New->isCXXClassMember() && New->isOutOfLine())
3501           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3502               << New << New->getReturnTypeSourceRange();
3503         else
3504           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3505               << New->getReturnTypeSourceRange();
3506         Diag(OldLocation, PrevDiag) << Old << Old->getType()
3507                                     << Old->getReturnTypeSourceRange();
3508         return true;
3509       }
3510       else
3511         NewQType = ResQT;
3512     }
3513 
3514     QualType OldReturnType = OldType->getReturnType();
3515     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3516     if (OldReturnType != NewReturnType) {
3517       // If this function has a deduced return type and has already been
3518       // defined, copy the deduced value from the old declaration.
3519       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3520       if (OldAT && OldAT->isDeduced()) {
3521         New->setType(
3522             SubstAutoType(New->getType(),
3523                           OldAT->isDependentType() ? Context.DependentTy
3524                                                    : OldAT->getDeducedType()));
3525         NewQType = Context.getCanonicalType(
3526             SubstAutoType(NewQType,
3527                           OldAT->isDependentType() ? Context.DependentTy
3528                                                    : OldAT->getDeducedType()));
3529       }
3530     }
3531 
3532     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3533     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3534     if (OldMethod && NewMethod) {
3535       // Preserve triviality.
3536       NewMethod->setTrivial(OldMethod->isTrivial());
3537 
3538       // MSVC allows explicit template specialization at class scope:
3539       // 2 CXXMethodDecls referring to the same function will be injected.
3540       // We don't want a redeclaration error.
3541       bool IsClassScopeExplicitSpecialization =
3542                               OldMethod->isFunctionTemplateSpecialization() &&
3543                               NewMethod->isFunctionTemplateSpecialization();
3544       bool isFriend = NewMethod->getFriendObjectKind();
3545 
3546       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3547           !IsClassScopeExplicitSpecialization) {
3548         //    -- Member function declarations with the same name and the
3549         //       same parameter types cannot be overloaded if any of them
3550         //       is a static member function declaration.
3551         if (OldMethod->isStatic() != NewMethod->isStatic()) {
3552           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3553           Diag(OldLocation, PrevDiag) << Old << Old->getType();
3554           return true;
3555         }
3556 
3557         // C++ [class.mem]p1:
3558         //   [...] A member shall not be declared twice in the
3559         //   member-specification, except that a nested class or member
3560         //   class template can be declared and then later defined.
3561         if (!inTemplateInstantiation()) {
3562           unsigned NewDiag;
3563           if (isa<CXXConstructorDecl>(OldMethod))
3564             NewDiag = diag::err_constructor_redeclared;
3565           else if (isa<CXXDestructorDecl>(NewMethod))
3566             NewDiag = diag::err_destructor_redeclared;
3567           else if (isa<CXXConversionDecl>(NewMethod))
3568             NewDiag = diag::err_conv_function_redeclared;
3569           else
3570             NewDiag = diag::err_member_redeclared;
3571 
3572           Diag(New->getLocation(), NewDiag);
3573         } else {
3574           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3575             << New << New->getType();
3576         }
3577         Diag(OldLocation, PrevDiag) << Old << Old->getType();
3578         return true;
3579 
3580       // Complain if this is an explicit declaration of a special
3581       // member that was initially declared implicitly.
3582       //
3583       // As an exception, it's okay to befriend such methods in order
3584       // to permit the implicit constructor/destructor/operator calls.
3585       } else if (OldMethod->isImplicit()) {
3586         if (isFriend) {
3587           NewMethod->setImplicit();
3588         } else {
3589           Diag(NewMethod->getLocation(),
3590                diag::err_definition_of_implicitly_declared_member)
3591             << New << getSpecialMember(OldMethod);
3592           return true;
3593         }
3594       } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3595         Diag(NewMethod->getLocation(),
3596              diag::err_definition_of_explicitly_defaulted_member)
3597           << getSpecialMember(OldMethod);
3598         return true;
3599       }
3600     }
3601 
3602     // C++11 [dcl.attr.noreturn]p1:
3603     //   The first declaration of a function shall specify the noreturn
3604     //   attribute if any declaration of that function specifies the noreturn
3605     //   attribute.
3606     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3607     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3608       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3609       Diag(Old->getFirstDecl()->getLocation(),
3610            diag::note_noreturn_missing_first_decl);
3611     }
3612 
3613     // C++11 [dcl.attr.depend]p2:
3614     //   The first declaration of a function shall specify the
3615     //   carries_dependency attribute for its declarator-id if any declaration
3616     //   of the function specifies the carries_dependency attribute.
3617     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3618     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3619       Diag(CDA->getLocation(),
3620            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3621       Diag(Old->getFirstDecl()->getLocation(),
3622            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3623     }
3624 
3625     // (C++98 8.3.5p3):
3626     //   All declarations for a function shall agree exactly in both the
3627     //   return type and the parameter-type-list.
3628     // We also want to respect all the extended bits except noreturn.
3629 
3630     // noreturn should now match unless the old type info didn't have it.
3631     QualType OldQTypeForComparison = OldQType;
3632     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3633       auto *OldType = OldQType->castAs<FunctionProtoType>();
3634       const FunctionType *OldTypeForComparison
3635         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3636       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3637       assert(OldQTypeForComparison.isCanonical());
3638     }
3639 
3640     if (haveIncompatibleLanguageLinkages(Old, New)) {
3641       // As a special case, retain the language linkage from previous
3642       // declarations of a friend function as an extension.
3643       //
3644       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3645       // and is useful because there's otherwise no way to specify language
3646       // linkage within class scope.
3647       //
3648       // Check cautiously as the friend object kind isn't yet complete.
3649       if (New->getFriendObjectKind() != Decl::FOK_None) {
3650         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3651         Diag(OldLocation, PrevDiag);
3652       } else {
3653         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3654         Diag(OldLocation, PrevDiag);
3655         return true;
3656       }
3657     }
3658 
3659     // If the function types are compatible, merge the declarations. Ignore the
3660     // exception specifier because it was already checked above in
3661     // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
3662     // about incompatible types under -fms-compatibility.
3663     if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
3664                                                          NewQType))
3665       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3666 
3667     // If the types are imprecise (due to dependent constructs in friends or
3668     // local extern declarations), it's OK if they differ. We'll check again
3669     // during instantiation.
3670     if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3671       return false;
3672 
3673     // Fall through for conflicting redeclarations and redefinitions.
3674   }
3675 
3676   // C: Function types need to be compatible, not identical. This handles
3677   // duplicate function decls like "void f(int); void f(enum X);" properly.
3678   if (!getLangOpts().CPlusPlus &&
3679       Context.typesAreCompatible(OldQType, NewQType)) {
3680     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3681     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3682     const FunctionProtoType *OldProto = nullptr;
3683     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3684         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3685       // The old declaration provided a function prototype, but the
3686       // new declaration does not. Merge in the prototype.
3687       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
3688       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3689       NewQType =
3690           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3691                                   OldProto->getExtProtoInfo());
3692       New->setType(NewQType);
3693       New->setHasInheritedPrototype();
3694 
3695       // Synthesize parameters with the same types.
3696       SmallVector<ParmVarDecl*, 16> Params;
3697       for (const auto &ParamType : OldProto->param_types()) {
3698         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3699                                                  SourceLocation(), nullptr,
3700                                                  ParamType, /*TInfo=*/nullptr,
3701                                                  SC_None, nullptr);
3702         Param->setScopeInfo(0, Params.size());
3703         Param->setImplicit();
3704         Params.push_back(Param);
3705       }
3706 
3707       New->setParams(Params);
3708     }
3709 
3710     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3711   }
3712 
3713   // Check if the function types are compatible when pointer size address
3714   // spaces are ignored.
3715   if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
3716     return false;
3717 
3718   // GNU C permits a K&R definition to follow a prototype declaration
3719   // if the declared types of the parameters in the K&R definition
3720   // match the types in the prototype declaration, even when the
3721   // promoted types of the parameters from the K&R definition differ
3722   // from the types in the prototype. GCC then keeps the types from
3723   // the prototype.
3724   //
3725   // If a variadic prototype is followed by a non-variadic K&R definition,
3726   // the K&R definition becomes variadic.  This is sort of an edge case, but
3727   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3728   // C99 6.9.1p8.
3729   if (!getLangOpts().CPlusPlus &&
3730       Old->hasPrototype() && !New->hasPrototype() &&
3731       New->getType()->getAs<FunctionProtoType>() &&
3732       Old->getNumParams() == New->getNumParams()) {
3733     SmallVector<QualType, 16> ArgTypes;
3734     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3735     const FunctionProtoType *OldProto
3736       = Old->getType()->getAs<FunctionProtoType>();
3737     const FunctionProtoType *NewProto
3738       = New->getType()->getAs<FunctionProtoType>();
3739 
3740     // Determine whether this is the GNU C extension.
3741     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3742                                                NewProto->getReturnType());
3743     bool LooseCompatible = !MergedReturn.isNull();
3744     for (unsigned Idx = 0, End = Old->getNumParams();
3745          LooseCompatible && Idx != End; ++Idx) {
3746       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3747       ParmVarDecl *NewParm = New->getParamDecl(Idx);
3748       if (Context.typesAreCompatible(OldParm->getType(),
3749                                      NewProto->getParamType(Idx))) {
3750         ArgTypes.push_back(NewParm->getType());
3751       } else if (Context.typesAreCompatible(OldParm->getType(),
3752                                             NewParm->getType(),
3753                                             /*CompareUnqualified=*/true)) {
3754         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3755                                            NewProto->getParamType(Idx) };
3756         Warnings.push_back(Warn);
3757         ArgTypes.push_back(NewParm->getType());
3758       } else
3759         LooseCompatible = false;
3760     }
3761 
3762     if (LooseCompatible) {
3763       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3764         Diag(Warnings[Warn].NewParm->getLocation(),
3765              diag::ext_param_promoted_not_compatible_with_prototype)
3766           << Warnings[Warn].PromotedType
3767           << Warnings[Warn].OldParm->getType();
3768         if (Warnings[Warn].OldParm->getLocation().isValid())
3769           Diag(Warnings[Warn].OldParm->getLocation(),
3770                diag::note_previous_declaration);
3771       }
3772 
3773       if (MergeTypeWithOld)
3774         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3775                                              OldProto->getExtProtoInfo()));
3776       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3777     }
3778 
3779     // Fall through to diagnose conflicting types.
3780   }
3781 
3782   // A function that has already been declared has been redeclared or
3783   // defined with a different type; show an appropriate diagnostic.
3784 
3785   // If the previous declaration was an implicitly-generated builtin
3786   // declaration, then at the very least we should use a specialized note.
3787   unsigned BuiltinID;
3788   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3789     // If it's actually a library-defined builtin function like 'malloc'
3790     // or 'printf', just warn about the incompatible redeclaration.
3791     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3792       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3793       Diag(OldLocation, diag::note_previous_builtin_declaration)
3794         << Old << Old->getType();
3795       return false;
3796     }
3797 
3798     PrevDiag = diag::note_previous_builtin_declaration;
3799   }
3800 
3801   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3802   Diag(OldLocation, PrevDiag) << Old << Old->getType();
3803   return true;
3804 }
3805 
3806 /// Completes the merge of two function declarations that are
3807 /// known to be compatible.
3808 ///
3809 /// This routine handles the merging of attributes and other
3810 /// properties of function declarations from the old declaration to
3811 /// the new declaration, once we know that New is in fact a
3812 /// redeclaration of Old.
3813 ///
3814 /// \returns false
3815 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3816                                         Scope *S, bool MergeTypeWithOld) {
3817   // Merge the attributes
3818   mergeDeclAttributes(New, Old);
3819 
3820   // Merge "pure" flag.
3821   if (Old->isPure())
3822     New->setPure();
3823 
3824   // Merge "used" flag.
3825   if (Old->getMostRecentDecl()->isUsed(false))
3826     New->setIsUsed();
3827 
3828   // Merge attributes from the parameters.  These can mismatch with K&R
3829   // declarations.
3830   if (New->getNumParams() == Old->getNumParams())
3831       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3832         ParmVarDecl *NewParam = New->getParamDecl(i);
3833         ParmVarDecl *OldParam = Old->getParamDecl(i);
3834         mergeParamDeclAttributes(NewParam, OldParam, *this);
3835         mergeParamDeclTypes(NewParam, OldParam, *this);
3836       }
3837 
3838   if (getLangOpts().CPlusPlus)
3839     return MergeCXXFunctionDecl(New, Old, S);
3840 
3841   // Merge the function types so the we get the composite types for the return
3842   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3843   // was visible.
3844   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3845   if (!Merged.isNull() && MergeTypeWithOld)
3846     New->setType(Merged);
3847 
3848   return false;
3849 }
3850 
3851 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3852                                 ObjCMethodDecl *oldMethod) {
3853   // Merge the attributes, including deprecated/unavailable
3854   AvailabilityMergeKind MergeKind =
3855     isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3856       ? AMK_ProtocolImplementation
3857       : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3858                                                        : AMK_Override;
3859 
3860   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3861 
3862   // Merge attributes from the parameters.
3863   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3864                                        oe = oldMethod->param_end();
3865   for (ObjCMethodDecl::param_iterator
3866          ni = newMethod->param_begin(), ne = newMethod->param_end();
3867        ni != ne && oi != oe; ++ni, ++oi)
3868     mergeParamDeclAttributes(*ni, *oi, *this);
3869 
3870   CheckObjCMethodOverride(newMethod, oldMethod);
3871 }
3872 
3873 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3874   assert(!S.Context.hasSameType(New->getType(), Old->getType()));
3875 
3876   S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3877          ? diag::err_redefinition_different_type
3878          : diag::err_redeclaration_different_type)
3879     << New->getDeclName() << New->getType() << Old->getType();
3880 
3881   diag::kind PrevDiag;
3882   SourceLocation OldLocation;
3883   std::tie(PrevDiag, OldLocation)
3884     = getNoteDiagForInvalidRedeclaration(Old, New);
3885   S.Diag(OldLocation, PrevDiag);
3886   New->setInvalidDecl();
3887 }
3888 
3889 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3890 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3891 /// emitting diagnostics as appropriate.
3892 ///
3893 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3894 /// to here in AddInitializerToDecl. We can't check them before the initializer
3895 /// is attached.
3896 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3897                              bool MergeTypeWithOld) {
3898   if (New->isInvalidDecl() || Old->isInvalidDecl())
3899     return;
3900 
3901   QualType MergedT;
3902   if (getLangOpts().CPlusPlus) {
3903     if (New->getType()->isUndeducedType()) {
3904       // We don't know what the new type is until the initializer is attached.
3905       return;
3906     } else if (Context.hasSameType(New->getType(), Old->getType())) {
3907       // These could still be something that needs exception specs checked.
3908       return MergeVarDeclExceptionSpecs(New, Old);
3909     }
3910     // C++ [basic.link]p10:
3911     //   [...] the types specified by all declarations referring to a given
3912     //   object or function shall be identical, except that declarations for an
3913     //   array object can specify array types that differ by the presence or
3914     //   absence of a major array bound (8.3.4).
3915     else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3916       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3917       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3918 
3919       // We are merging a variable declaration New into Old. If it has an array
3920       // bound, and that bound differs from Old's bound, we should diagnose the
3921       // mismatch.
3922       if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3923         for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3924              PrevVD = PrevVD->getPreviousDecl()) {
3925           QualType PrevVDTy = PrevVD->getType();
3926           if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3927             continue;
3928 
3929           if (!Context.hasSameType(New->getType(), PrevVDTy))
3930             return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3931         }
3932       }
3933 
3934       if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3935         if (Context.hasSameType(OldArray->getElementType(),
3936                                 NewArray->getElementType()))
3937           MergedT = New->getType();
3938       }
3939       // FIXME: Check visibility. New is hidden but has a complete type. If New
3940       // has no array bound, it should not inherit one from Old, if Old is not
3941       // visible.
3942       else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3943         if (Context.hasSameType(OldArray->getElementType(),
3944                                 NewArray->getElementType()))
3945           MergedT = Old->getType();
3946       }
3947     }
3948     else if (New->getType()->isObjCObjectPointerType() &&
3949                Old->getType()->isObjCObjectPointerType()) {
3950       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3951                                               Old->getType());
3952     }
3953   } else {
3954     // C 6.2.7p2:
3955     //   All declarations that refer to the same object or function shall have
3956     //   compatible type.
3957     MergedT = Context.mergeTypes(New->getType(), Old->getType());
3958   }
3959   if (MergedT.isNull()) {
3960     // It's OK if we couldn't merge types if either type is dependent, for a
3961     // block-scope variable. In other cases (static data members of class
3962     // templates, variable templates, ...), we require the types to be
3963     // equivalent.
3964     // FIXME: The C++ standard doesn't say anything about this.
3965     if ((New->getType()->isDependentType() ||
3966          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3967       // If the old type was dependent, we can't merge with it, so the new type
3968       // becomes dependent for now. We'll reproduce the original type when we
3969       // instantiate the TypeSourceInfo for the variable.
3970       if (!New->getType()->isDependentType() && MergeTypeWithOld)
3971         New->setType(Context.DependentTy);
3972       return;
3973     }
3974     return diagnoseVarDeclTypeMismatch(*this, New, Old);
3975   }
3976 
3977   // Don't actually update the type on the new declaration if the old
3978   // declaration was an extern declaration in a different scope.
3979   if (MergeTypeWithOld)
3980     New->setType(MergedT);
3981 }
3982 
3983 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3984                                   LookupResult &Previous) {
3985   // C11 6.2.7p4:
3986   //   For an identifier with internal or external linkage declared
3987   //   in a scope in which a prior declaration of that identifier is
3988   //   visible, if the prior declaration specifies internal or
3989   //   external linkage, the type of the identifier at the later
3990   //   declaration becomes the composite type.
3991   //
3992   // If the variable isn't visible, we do not merge with its type.
3993   if (Previous.isShadowed())
3994     return false;
3995 
3996   if (S.getLangOpts().CPlusPlus) {
3997     // C++11 [dcl.array]p3:
3998     //   If there is a preceding declaration of the entity in the same
3999     //   scope in which the bound was specified, an omitted array bound
4000     //   is taken to be the same as in that earlier declaration.
4001     return NewVD->isPreviousDeclInSameBlockScope() ||
4002            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
4003             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
4004   } else {
4005     // If the old declaration was function-local, don't merge with its
4006     // type unless we're in the same function.
4007     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
4008            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
4009   }
4010 }
4011 
4012 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
4013 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
4014 /// situation, merging decls or emitting diagnostics as appropriate.
4015 ///
4016 /// Tentative definition rules (C99 6.9.2p2) are checked by
4017 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4018 /// definitions here, since the initializer hasn't been attached.
4019 ///
4020 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
4021   // If the new decl is already invalid, don't do any other checking.
4022   if (New->isInvalidDecl())
4023     return;
4024 
4025   if (!shouldLinkPossiblyHiddenDecl(Previous, New))
4026     return;
4027 
4028   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
4029 
4030   // Verify the old decl was also a variable or variable template.
4031   VarDecl *Old = nullptr;
4032   VarTemplateDecl *OldTemplate = nullptr;
4033   if (Previous.isSingleResult()) {
4034     if (NewTemplate) {
4035       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4036       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4037 
4038       if (auto *Shadow =
4039               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4040         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4041           return New->setInvalidDecl();
4042     } else {
4043       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4044 
4045       if (auto *Shadow =
4046               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4047         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4048           return New->setInvalidDecl();
4049     }
4050   }
4051   if (!Old) {
4052     Diag(New->getLocation(), diag::err_redefinition_different_kind)
4053         << New->getDeclName();
4054     notePreviousDefinition(Previous.getRepresentativeDecl(),
4055                            New->getLocation());
4056     return New->setInvalidDecl();
4057   }
4058 
4059   // If the old declaration was found in an inline namespace and the new
4060   // declaration was qualified, update the DeclContext to match.
4061   adjustDeclContextForDeclaratorDecl(New, Old);
4062 
4063   // Ensure the template parameters are compatible.
4064   if (NewTemplate &&
4065       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4066                                       OldTemplate->getTemplateParameters(),
4067                                       /*Complain=*/true, TPL_TemplateMatch))
4068     return New->setInvalidDecl();
4069 
4070   // C++ [class.mem]p1:
4071   //   A member shall not be declared twice in the member-specification [...]
4072   //
4073   // Here, we need only consider static data members.
4074   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4075     Diag(New->getLocation(), diag::err_duplicate_member)
4076       << New->getIdentifier();
4077     Diag(Old->getLocation(), diag::note_previous_declaration);
4078     New->setInvalidDecl();
4079   }
4080 
4081   mergeDeclAttributes(New, Old);
4082   // Warn if an already-declared variable is made a weak_import in a subsequent
4083   // declaration
4084   if (New->hasAttr<WeakImportAttr>() &&
4085       Old->getStorageClass() == SC_None &&
4086       !Old->hasAttr<WeakImportAttr>()) {
4087     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4088     notePreviousDefinition(Old, New->getLocation());
4089     // Remove weak_import attribute on new declaration.
4090     New->dropAttr<WeakImportAttr>();
4091   }
4092 
4093   if (New->hasAttr<InternalLinkageAttr>() &&
4094       !Old->hasAttr<InternalLinkageAttr>()) {
4095     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
4096         << New->getDeclName();
4097     notePreviousDefinition(Old, New->getLocation());
4098     New->dropAttr<InternalLinkageAttr>();
4099   }
4100 
4101   // Merge the types.
4102   VarDecl *MostRecent = Old->getMostRecentDecl();
4103   if (MostRecent != Old) {
4104     MergeVarDeclTypes(New, MostRecent,
4105                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4106     if (New->isInvalidDecl())
4107       return;
4108   }
4109 
4110   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4111   if (New->isInvalidDecl())
4112     return;
4113 
4114   diag::kind PrevDiag;
4115   SourceLocation OldLocation;
4116   std::tie(PrevDiag, OldLocation) =
4117       getNoteDiagForInvalidRedeclaration(Old, New);
4118 
4119   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4120   if (New->getStorageClass() == SC_Static &&
4121       !New->isStaticDataMember() &&
4122       Old->hasExternalFormalLinkage()) {
4123     if (getLangOpts().MicrosoftExt) {
4124       Diag(New->getLocation(), diag::ext_static_non_static)
4125           << New->getDeclName();
4126       Diag(OldLocation, PrevDiag);
4127     } else {
4128       Diag(New->getLocation(), diag::err_static_non_static)
4129           << New->getDeclName();
4130       Diag(OldLocation, PrevDiag);
4131       return New->setInvalidDecl();
4132     }
4133   }
4134   // C99 6.2.2p4:
4135   //   For an identifier declared with the storage-class specifier
4136   //   extern in a scope in which a prior declaration of that
4137   //   identifier is visible,23) if the prior declaration specifies
4138   //   internal or external linkage, the linkage of the identifier at
4139   //   the later declaration is the same as the linkage specified at
4140   //   the prior declaration. If no prior declaration is visible, or
4141   //   if the prior declaration specifies no linkage, then the
4142   //   identifier has external linkage.
4143   if (New->hasExternalStorage() && Old->hasLinkage())
4144     /* Okay */;
4145   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4146            !New->isStaticDataMember() &&
4147            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4148     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4149     Diag(OldLocation, PrevDiag);
4150     return New->setInvalidDecl();
4151   }
4152 
4153   // Check if extern is followed by non-extern and vice-versa.
4154   if (New->hasExternalStorage() &&
4155       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4156     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4157     Diag(OldLocation, PrevDiag);
4158     return New->setInvalidDecl();
4159   }
4160   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4161       !New->hasExternalStorage()) {
4162     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4163     Diag(OldLocation, PrevDiag);
4164     return New->setInvalidDecl();
4165   }
4166 
4167   if (CheckRedeclarationModuleOwnership(New, Old))
4168     return;
4169 
4170   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4171 
4172   // FIXME: The test for external storage here seems wrong? We still
4173   // need to check for mismatches.
4174   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4175       // Don't complain about out-of-line definitions of static members.
4176       !(Old->getLexicalDeclContext()->isRecord() &&
4177         !New->getLexicalDeclContext()->isRecord())) {
4178     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4179     Diag(OldLocation, PrevDiag);
4180     return New->setInvalidDecl();
4181   }
4182 
4183   if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4184     if (VarDecl *Def = Old->getDefinition()) {
4185       // C++1z [dcl.fcn.spec]p4:
4186       //   If the definition of a variable appears in a translation unit before
4187       //   its first declaration as inline, the program is ill-formed.
4188       Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4189       Diag(Def->getLocation(), diag::note_previous_definition);
4190     }
4191   }
4192 
4193   // If this redeclaration makes the variable inline, we may need to add it to
4194   // UndefinedButUsed.
4195   if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4196       !Old->getDefinition() && !New->isThisDeclarationADefinition())
4197     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4198                                            SourceLocation()));
4199 
4200   if (New->getTLSKind() != Old->getTLSKind()) {
4201     if (!Old->getTLSKind()) {
4202       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4203       Diag(OldLocation, PrevDiag);
4204     } else if (!New->getTLSKind()) {
4205       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4206       Diag(OldLocation, PrevDiag);
4207     } else {
4208       // Do not allow redeclaration to change the variable between requiring
4209       // static and dynamic initialization.
4210       // FIXME: GCC allows this, but uses the TLS keyword on the first
4211       // declaration to determine the kind. Do we need to be compatible here?
4212       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4213         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4214       Diag(OldLocation, PrevDiag);
4215     }
4216   }
4217 
4218   // C++ doesn't have tentative definitions, so go right ahead and check here.
4219   if (getLangOpts().CPlusPlus &&
4220       New->isThisDeclarationADefinition() == VarDecl::Definition) {
4221     if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4222         Old->getCanonicalDecl()->isConstexpr()) {
4223       // This definition won't be a definition any more once it's been merged.
4224       Diag(New->getLocation(),
4225            diag::warn_deprecated_redundant_constexpr_static_def);
4226     } else if (VarDecl *Def = Old->getDefinition()) {
4227       if (checkVarDeclRedefinition(Def, New))
4228         return;
4229     }
4230   }
4231 
4232   if (haveIncompatibleLanguageLinkages(Old, New)) {
4233     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4234     Diag(OldLocation, PrevDiag);
4235     New->setInvalidDecl();
4236     return;
4237   }
4238 
4239   // Merge "used" flag.
4240   if (Old->getMostRecentDecl()->isUsed(false))
4241     New->setIsUsed();
4242 
4243   // Keep a chain of previous declarations.
4244   New->setPreviousDecl(Old);
4245   if (NewTemplate)
4246     NewTemplate->setPreviousDecl(OldTemplate);
4247 
4248   // Inherit access appropriately.
4249   New->setAccess(Old->getAccess());
4250   if (NewTemplate)
4251     NewTemplate->setAccess(New->getAccess());
4252 
4253   if (Old->isInline())
4254     New->setImplicitlyInline();
4255 }
4256 
4257 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4258   SourceManager &SrcMgr = getSourceManager();
4259   auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4260   auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4261   auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4262   auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4263   auto &HSI = PP.getHeaderSearchInfo();
4264   StringRef HdrFilename =
4265       SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4266 
4267   auto noteFromModuleOrInclude = [&](Module *Mod,
4268                                      SourceLocation IncLoc) -> bool {
4269     // Redefinition errors with modules are common with non modular mapped
4270     // headers, example: a non-modular header H in module A that also gets
4271     // included directly in a TU. Pointing twice to the same header/definition
4272     // is confusing, try to get better diagnostics when modules is on.
4273     if (IncLoc.isValid()) {
4274       if (Mod) {
4275         Diag(IncLoc, diag::note_redefinition_modules_same_file)
4276             << HdrFilename.str() << Mod->getFullModuleName();
4277         if (!Mod->DefinitionLoc.isInvalid())
4278           Diag(Mod->DefinitionLoc, diag::note_defined_here)
4279               << Mod->getFullModuleName();
4280       } else {
4281         Diag(IncLoc, diag::note_redefinition_include_same_file)
4282             << HdrFilename.str();
4283       }
4284       return true;
4285     }
4286 
4287     return false;
4288   };
4289 
4290   // Is it the same file and same offset? Provide more information on why
4291   // this leads to a redefinition error.
4292   if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4293     SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4294     SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4295     bool EmittedDiag =
4296         noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4297     EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4298 
4299     // If the header has no guards, emit a note suggesting one.
4300     if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4301       Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4302 
4303     if (EmittedDiag)
4304       return;
4305   }
4306 
4307   // Redefinition coming from different files or couldn't do better above.
4308   if (Old->getLocation().isValid())
4309     Diag(Old->getLocation(), diag::note_previous_definition);
4310 }
4311 
4312 /// We've just determined that \p Old and \p New both appear to be definitions
4313 /// of the same variable. Either diagnose or fix the problem.
4314 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4315   if (!hasVisibleDefinition(Old) &&
4316       (New->getFormalLinkage() == InternalLinkage ||
4317        New->isInline() ||
4318        New->getDescribedVarTemplate() ||
4319        New->getNumTemplateParameterLists() ||
4320        New->getDeclContext()->isDependentContext())) {
4321     // The previous definition is hidden, and multiple definitions are
4322     // permitted (in separate TUs). Demote this to a declaration.
4323     New->demoteThisDefinitionToDeclaration();
4324 
4325     // Make the canonical definition visible.
4326     if (auto *OldTD = Old->getDescribedVarTemplate())
4327       makeMergedDefinitionVisible(OldTD);
4328     makeMergedDefinitionVisible(Old);
4329     return false;
4330   } else {
4331     Diag(New->getLocation(), diag::err_redefinition) << New;
4332     notePreviousDefinition(Old, New->getLocation());
4333     New->setInvalidDecl();
4334     return true;
4335   }
4336 }
4337 
4338 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4339 /// no declarator (e.g. "struct foo;") is parsed.
4340 Decl *
4341 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4342                                  RecordDecl *&AnonRecord) {
4343   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4344                                     AnonRecord);
4345 }
4346 
4347 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4348 // disambiguate entities defined in different scopes.
4349 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4350 // compatibility.
4351 // We will pick our mangling number depending on which version of MSVC is being
4352 // targeted.
4353 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4354   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4355              ? S->getMSCurManglingNumber()
4356              : S->getMSLastManglingNumber();
4357 }
4358 
4359 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4360   if (!Context.getLangOpts().CPlusPlus)
4361     return;
4362 
4363   if (isa<CXXRecordDecl>(Tag->getParent())) {
4364     // If this tag is the direct child of a class, number it if
4365     // it is anonymous.
4366     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4367       return;
4368     MangleNumberingContext &MCtx =
4369         Context.getManglingNumberContext(Tag->getParent());
4370     Context.setManglingNumber(
4371         Tag, MCtx.getManglingNumber(
4372                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4373     return;
4374   }
4375 
4376   // If this tag isn't a direct child of a class, number it if it is local.
4377   MangleNumberingContext *MCtx;
4378   Decl *ManglingContextDecl;
4379   std::tie(MCtx, ManglingContextDecl) =
4380       getCurrentMangleNumberContext(Tag->getDeclContext());
4381   if (MCtx) {
4382     Context.setManglingNumber(
4383         Tag, MCtx->getManglingNumber(
4384                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4385   }
4386 }
4387 
4388 namespace {
4389 struct NonCLikeKind {
4390   enum {
4391     None,
4392     BaseClass,
4393     DefaultMemberInit,
4394     Lambda,
4395     Friend,
4396     OtherMember,
4397     Invalid,
4398   } Kind = None;
4399   SourceRange Range;
4400 
4401   explicit operator bool() { return Kind != None; }
4402 };
4403 }
4404 
4405 /// Determine whether a class is C-like, according to the rules of C++
4406 /// [dcl.typedef] for anonymous classes with typedef names for linkage.
4407 static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) {
4408   if (RD->isInvalidDecl())
4409     return {NonCLikeKind::Invalid, {}};
4410 
4411   // C++ [dcl.typedef]p9: [P1766R1]
4412   //   An unnamed class with a typedef name for linkage purposes shall not
4413   //
4414   //    -- have any base classes
4415   if (RD->getNumBases())
4416     return {NonCLikeKind::BaseClass,
4417             SourceRange(RD->bases_begin()->getBeginLoc(),
4418                         RD->bases_end()[-1].getEndLoc())};
4419   bool Invalid = false;
4420   for (Decl *D : RD->decls()) {
4421     // Don't complain about things we already diagnosed.
4422     if (D->isInvalidDecl()) {
4423       Invalid = true;
4424       continue;
4425     }
4426 
4427     //  -- have any [...] default member initializers
4428     if (auto *FD = dyn_cast<FieldDecl>(D)) {
4429       if (FD->hasInClassInitializer()) {
4430         auto *Init = FD->getInClassInitializer();
4431         return {NonCLikeKind::DefaultMemberInit,
4432                 Init ? Init->getSourceRange() : D->getSourceRange()};
4433       }
4434       continue;
4435     }
4436 
4437     // FIXME: We don't allow friend declarations. This violates the wording of
4438     // P1766, but not the intent.
4439     if (isa<FriendDecl>(D))
4440       return {NonCLikeKind::Friend, D->getSourceRange()};
4441 
4442     //  -- declare any members other than non-static data members, member
4443     //     enumerations, or member classes,
4444     if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) ||
4445         isa<EnumDecl>(D))
4446       continue;
4447     auto *MemberRD = dyn_cast<CXXRecordDecl>(D);
4448     if (!MemberRD) {
4449       if (D->isImplicit())
4450         continue;
4451       return {NonCLikeKind::OtherMember, D->getSourceRange()};
4452     }
4453 
4454     //  -- contain a lambda-expression,
4455     if (MemberRD->isLambda())
4456       return {NonCLikeKind::Lambda, MemberRD->getSourceRange()};
4457 
4458     //  and all member classes shall also satisfy these requirements
4459     //  (recursively).
4460     if (MemberRD->isThisDeclarationADefinition()) {
4461       if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD))
4462         return Kind;
4463     }
4464   }
4465 
4466   return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}};
4467 }
4468 
4469 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4470                                         TypedefNameDecl *NewTD) {
4471   if (TagFromDeclSpec->isInvalidDecl())
4472     return;
4473 
4474   // Do nothing if the tag already has a name for linkage purposes.
4475   if (TagFromDeclSpec->hasNameForLinkage())
4476     return;
4477 
4478   // A well-formed anonymous tag must always be a TUK_Definition.
4479   assert(TagFromDeclSpec->isThisDeclarationADefinition());
4480 
4481   // The type must match the tag exactly;  no qualifiers allowed.
4482   if (!Context.hasSameType(NewTD->getUnderlyingType(),
4483                            Context.getTagDeclType(TagFromDeclSpec))) {
4484     if (getLangOpts().CPlusPlus)
4485       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4486     return;
4487   }
4488 
4489   // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
4490   //   An unnamed class with a typedef name for linkage purposes shall [be
4491   //   C-like].
4492   //
4493   // FIXME: Also diagnose if we've already computed the linkage. That ideally
4494   // shouldn't happen, but there are constructs that the language rule doesn't
4495   // disallow for which we can't reasonably avoid computing linkage early.
4496   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec);
4497   NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD)
4498                              : NonCLikeKind();
4499   bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed();
4500   if (NonCLike || ChangesLinkage) {
4501     if (NonCLike.Kind == NonCLikeKind::Invalid)
4502       return;
4503 
4504     unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef;
4505     if (ChangesLinkage) {
4506       // If the linkage changes, we can't accept this as an extension.
4507       if (NonCLike.Kind == NonCLikeKind::None)
4508         DiagID = diag::err_typedef_changes_linkage;
4509       else
4510         DiagID = diag::err_non_c_like_anon_struct_in_typedef;
4511     }
4512 
4513     SourceLocation FixitLoc =
4514         getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart());
4515     llvm::SmallString<40> TextToInsert;
4516     TextToInsert += ' ';
4517     TextToInsert += NewTD->getIdentifier()->getName();
4518 
4519     Diag(FixitLoc, DiagID)
4520       << isa<TypeAliasDecl>(NewTD)
4521       << FixItHint::CreateInsertion(FixitLoc, TextToInsert);
4522     if (NonCLike.Kind != NonCLikeKind::None) {
4523       Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct)
4524         << NonCLike.Kind - 1 << NonCLike.Range;
4525     }
4526     Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here)
4527       << NewTD << isa<TypeAliasDecl>(NewTD);
4528 
4529     if (ChangesLinkage)
4530       return;
4531   }
4532 
4533   // Otherwise, set this as the anon-decl typedef for the tag.
4534   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4535 }
4536 
4537 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4538   switch (T) {
4539   case DeclSpec::TST_class:
4540     return 0;
4541   case DeclSpec::TST_struct:
4542     return 1;
4543   case DeclSpec::TST_interface:
4544     return 2;
4545   case DeclSpec::TST_union:
4546     return 3;
4547   case DeclSpec::TST_enum:
4548     return 4;
4549   default:
4550     llvm_unreachable("unexpected type specifier");
4551   }
4552 }
4553 
4554 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4555 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4556 /// parameters to cope with template friend declarations.
4557 Decl *
4558 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4559                                  MultiTemplateParamsArg TemplateParams,
4560                                  bool IsExplicitInstantiation,
4561                                  RecordDecl *&AnonRecord) {
4562   Decl *TagD = nullptr;
4563   TagDecl *Tag = nullptr;
4564   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4565       DS.getTypeSpecType() == DeclSpec::TST_struct ||
4566       DS.getTypeSpecType() == DeclSpec::TST_interface ||
4567       DS.getTypeSpecType() == DeclSpec::TST_union ||
4568       DS.getTypeSpecType() == DeclSpec::TST_enum) {
4569     TagD = DS.getRepAsDecl();
4570 
4571     if (!TagD) // We probably had an error
4572       return nullptr;
4573 
4574     // Note that the above type specs guarantee that the
4575     // type rep is a Decl, whereas in many of the others
4576     // it's a Type.
4577     if (isa<TagDecl>(TagD))
4578       Tag = cast<TagDecl>(TagD);
4579     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4580       Tag = CTD->getTemplatedDecl();
4581   }
4582 
4583   if (Tag) {
4584     handleTagNumbering(Tag, S);
4585     Tag->setFreeStanding();
4586     if (Tag->isInvalidDecl())
4587       return Tag;
4588   }
4589 
4590   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4591     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4592     // or incomplete types shall not be restrict-qualified."
4593     if (TypeQuals & DeclSpec::TQ_restrict)
4594       Diag(DS.getRestrictSpecLoc(),
4595            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4596            << DS.getSourceRange();
4597   }
4598 
4599   if (DS.isInlineSpecified())
4600     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4601         << getLangOpts().CPlusPlus17;
4602 
4603   if (DS.hasConstexprSpecifier()) {
4604     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4605     // and definitions of functions and variables.
4606     // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
4607     // the declaration of a function or function template
4608     if (Tag)
4609       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4610           << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType())
4611           << static_cast<int>(DS.getConstexprSpecifier());
4612     else
4613       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
4614           << static_cast<int>(DS.getConstexprSpecifier());
4615     // Don't emit warnings after this error.
4616     return TagD;
4617   }
4618 
4619   DiagnoseFunctionSpecifiers(DS);
4620 
4621   if (DS.isFriendSpecified()) {
4622     // If we're dealing with a decl but not a TagDecl, assume that
4623     // whatever routines created it handled the friendship aspect.
4624     if (TagD && !Tag)
4625       return nullptr;
4626     return ActOnFriendTypeDecl(S, DS, TemplateParams);
4627   }
4628 
4629   const CXXScopeSpec &SS = DS.getTypeSpecScope();
4630   bool IsExplicitSpecialization =
4631     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4632   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4633       !IsExplicitInstantiation && !IsExplicitSpecialization &&
4634       !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4635     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4636     // nested-name-specifier unless it is an explicit instantiation
4637     // or an explicit specialization.
4638     //
4639     // FIXME: We allow class template partial specializations here too, per the
4640     // obvious intent of DR1819.
4641     //
4642     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4643     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4644         << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4645     return nullptr;
4646   }
4647 
4648   // Track whether this decl-specifier declares anything.
4649   bool DeclaresAnything = true;
4650 
4651   // Handle anonymous struct definitions.
4652   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4653     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4654         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4655       if (getLangOpts().CPlusPlus ||
4656           Record->getDeclContext()->isRecord()) {
4657         // If CurContext is a DeclContext that can contain statements,
4658         // RecursiveASTVisitor won't visit the decls that
4659         // BuildAnonymousStructOrUnion() will put into CurContext.
4660         // Also store them here so that they can be part of the
4661         // DeclStmt that gets created in this case.
4662         // FIXME: Also return the IndirectFieldDecls created by
4663         // BuildAnonymousStructOr union, for the same reason?
4664         if (CurContext->isFunctionOrMethod())
4665           AnonRecord = Record;
4666         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4667                                            Context.getPrintingPolicy());
4668       }
4669 
4670       DeclaresAnything = false;
4671     }
4672   }
4673 
4674   // C11 6.7.2.1p2:
4675   //   A struct-declaration that does not declare an anonymous structure or
4676   //   anonymous union shall contain a struct-declarator-list.
4677   //
4678   // This rule also existed in C89 and C99; the grammar for struct-declaration
4679   // did not permit a struct-declaration without a struct-declarator-list.
4680   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4681       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4682     // Check for Microsoft C extension: anonymous struct/union member.
4683     // Handle 2 kinds of anonymous struct/union:
4684     //   struct STRUCT;
4685     //   union UNION;
4686     // and
4687     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
4688     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
4689     if ((Tag && Tag->getDeclName()) ||
4690         DS.getTypeSpecType() == DeclSpec::TST_typename) {
4691       RecordDecl *Record = nullptr;
4692       if (Tag)
4693         Record = dyn_cast<RecordDecl>(Tag);
4694       else if (const RecordType *RT =
4695                    DS.getRepAsType().get()->getAsStructureType())
4696         Record = RT->getDecl();
4697       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4698         Record = UT->getDecl();
4699 
4700       if (Record && getLangOpts().MicrosoftExt) {
4701         Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4702             << Record->isUnion() << DS.getSourceRange();
4703         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4704       }
4705 
4706       DeclaresAnything = false;
4707     }
4708   }
4709 
4710   // Skip all the checks below if we have a type error.
4711   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4712       (TagD && TagD->isInvalidDecl()))
4713     return TagD;
4714 
4715   if (getLangOpts().CPlusPlus &&
4716       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4717     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4718       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4719           !Enum->getIdentifier() && !Enum->isInvalidDecl())
4720         DeclaresAnything = false;
4721 
4722   if (!DS.isMissingDeclaratorOk()) {
4723     // Customize diagnostic for a typedef missing a name.
4724     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4725       Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4726           << DS.getSourceRange();
4727     else
4728       DeclaresAnything = false;
4729   }
4730 
4731   if (DS.isModulePrivateSpecified() &&
4732       Tag && Tag->getDeclContext()->isFunctionOrMethod())
4733     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4734       << Tag->getTagKind()
4735       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4736 
4737   ActOnDocumentableDecl(TagD);
4738 
4739   // C 6.7/2:
4740   //   A declaration [...] shall declare at least a declarator [...], a tag,
4741   //   or the members of an enumeration.
4742   // C++ [dcl.dcl]p3:
4743   //   [If there are no declarators], and except for the declaration of an
4744   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
4745   //   names into the program, or shall redeclare a name introduced by a
4746   //   previous declaration.
4747   if (!DeclaresAnything) {
4748     // In C, we allow this as a (popular) extension / bug. Don't bother
4749     // producing further diagnostics for redundant qualifiers after this.
4750     Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty())
4751                                ? diag::err_no_declarators
4752                                : diag::ext_no_declarators)
4753         << DS.getSourceRange();
4754     return TagD;
4755   }
4756 
4757   // C++ [dcl.stc]p1:
4758   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4759   //   init-declarator-list of the declaration shall not be empty.
4760   // C++ [dcl.fct.spec]p1:
4761   //   If a cv-qualifier appears in a decl-specifier-seq, the
4762   //   init-declarator-list of the declaration shall not be empty.
4763   //
4764   // Spurious qualifiers here appear to be valid in C.
4765   unsigned DiagID = diag::warn_standalone_specifier;
4766   if (getLangOpts().CPlusPlus)
4767     DiagID = diag::ext_standalone_specifier;
4768 
4769   // Note that a linkage-specification sets a storage class, but
4770   // 'extern "C" struct foo;' is actually valid and not theoretically
4771   // useless.
4772   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4773     if (SCS == DeclSpec::SCS_mutable)
4774       // Since mutable is not a viable storage class specifier in C, there is
4775       // no reason to treat it as an extension. Instead, diagnose as an error.
4776       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4777     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4778       Diag(DS.getStorageClassSpecLoc(), DiagID)
4779         << DeclSpec::getSpecifierName(SCS);
4780   }
4781 
4782   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4783     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4784       << DeclSpec::getSpecifierName(TSCS);
4785   if (DS.getTypeQualifiers()) {
4786     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4787       Diag(DS.getConstSpecLoc(), DiagID) << "const";
4788     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4789       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4790     // Restrict is covered above.
4791     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4792       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4793     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4794       Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4795   }
4796 
4797   // Warn about ignored type attributes, for example:
4798   // __attribute__((aligned)) struct A;
4799   // Attributes should be placed after tag to apply to type declaration.
4800   if (!DS.getAttributes().empty()) {
4801     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4802     if (TypeSpecType == DeclSpec::TST_class ||
4803         TypeSpecType == DeclSpec::TST_struct ||
4804         TypeSpecType == DeclSpec::TST_interface ||
4805         TypeSpecType == DeclSpec::TST_union ||
4806         TypeSpecType == DeclSpec::TST_enum) {
4807       for (const ParsedAttr &AL : DS.getAttributes())
4808         Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4809             << AL << GetDiagnosticTypeSpecifierID(TypeSpecType);
4810     }
4811   }
4812 
4813   return TagD;
4814 }
4815 
4816 /// We are trying to inject an anonymous member into the given scope;
4817 /// check if there's an existing declaration that can't be overloaded.
4818 ///
4819 /// \return true if this is a forbidden redeclaration
4820 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4821                                          Scope *S,
4822                                          DeclContext *Owner,
4823                                          DeclarationName Name,
4824                                          SourceLocation NameLoc,
4825                                          bool IsUnion) {
4826   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4827                  Sema::ForVisibleRedeclaration);
4828   if (!SemaRef.LookupName(R, S)) return false;
4829 
4830   // Pick a representative declaration.
4831   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4832   assert(PrevDecl && "Expected a non-null Decl");
4833 
4834   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4835     return false;
4836 
4837   SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4838     << IsUnion << Name;
4839   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4840 
4841   return true;
4842 }
4843 
4844 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
4845 /// anonymous struct or union AnonRecord into the owning context Owner
4846 /// and scope S. This routine will be invoked just after we realize
4847 /// that an unnamed union or struct is actually an anonymous union or
4848 /// struct, e.g.,
4849 ///
4850 /// @code
4851 /// union {
4852 ///   int i;
4853 ///   float f;
4854 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4855 ///    // f into the surrounding scope.x
4856 /// @endcode
4857 ///
4858 /// This routine is recursive, injecting the names of nested anonymous
4859 /// structs/unions into the owning context and scope as well.
4860 static bool
4861 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4862                                     RecordDecl *AnonRecord, AccessSpecifier AS,
4863                                     SmallVectorImpl<NamedDecl *> &Chaining) {
4864   bool Invalid = false;
4865 
4866   // Look every FieldDecl and IndirectFieldDecl with a name.
4867   for (auto *D : AnonRecord->decls()) {
4868     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4869         cast<NamedDecl>(D)->getDeclName()) {
4870       ValueDecl *VD = cast<ValueDecl>(D);
4871       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4872                                        VD->getLocation(),
4873                                        AnonRecord->isUnion())) {
4874         // C++ [class.union]p2:
4875         //   The names of the members of an anonymous union shall be
4876         //   distinct from the names of any other entity in the
4877         //   scope in which the anonymous union is declared.
4878         Invalid = true;
4879       } else {
4880         // C++ [class.union]p2:
4881         //   For the purpose of name lookup, after the anonymous union
4882         //   definition, the members of the anonymous union are
4883         //   considered to have been defined in the scope in which the
4884         //   anonymous union is declared.
4885         unsigned OldChainingSize = Chaining.size();
4886         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4887           Chaining.append(IF->chain_begin(), IF->chain_end());
4888         else
4889           Chaining.push_back(VD);
4890 
4891         assert(Chaining.size() >= 2);
4892         NamedDecl **NamedChain =
4893           new (SemaRef.Context)NamedDecl*[Chaining.size()];
4894         for (unsigned i = 0; i < Chaining.size(); i++)
4895           NamedChain[i] = Chaining[i];
4896 
4897         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4898             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4899             VD->getType(), {NamedChain, Chaining.size()});
4900 
4901         for (const auto *Attr : VD->attrs())
4902           IndirectField->addAttr(Attr->clone(SemaRef.Context));
4903 
4904         IndirectField->setAccess(AS);
4905         IndirectField->setImplicit();
4906         SemaRef.PushOnScopeChains(IndirectField, S);
4907 
4908         // That includes picking up the appropriate access specifier.
4909         if (AS != AS_none) IndirectField->setAccess(AS);
4910 
4911         Chaining.resize(OldChainingSize);
4912       }
4913     }
4914   }
4915 
4916   return Invalid;
4917 }
4918 
4919 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4920 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
4921 /// illegal input values are mapped to SC_None.
4922 static StorageClass
4923 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4924   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4925   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
4926          "Parser allowed 'typedef' as storage class VarDecl.");
4927   switch (StorageClassSpec) {
4928   case DeclSpec::SCS_unspecified:    return SC_None;
4929   case DeclSpec::SCS_extern:
4930     if (DS.isExternInLinkageSpec())
4931       return SC_None;
4932     return SC_Extern;
4933   case DeclSpec::SCS_static:         return SC_Static;
4934   case DeclSpec::SCS_auto:           return SC_Auto;
4935   case DeclSpec::SCS_register:       return SC_Register;
4936   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4937     // Illegal SCSs map to None: error reporting is up to the caller.
4938   case DeclSpec::SCS_mutable:        // Fall through.
4939   case DeclSpec::SCS_typedef:        return SC_None;
4940   }
4941   llvm_unreachable("unknown storage class specifier");
4942 }
4943 
4944 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4945   assert(Record->hasInClassInitializer());
4946 
4947   for (const auto *I : Record->decls()) {
4948     const auto *FD = dyn_cast<FieldDecl>(I);
4949     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4950       FD = IFD->getAnonField();
4951     if (FD && FD->hasInClassInitializer())
4952       return FD->getLocation();
4953   }
4954 
4955   llvm_unreachable("couldn't find in-class initializer");
4956 }
4957 
4958 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4959                                       SourceLocation DefaultInitLoc) {
4960   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4961     return;
4962 
4963   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4964   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4965 }
4966 
4967 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4968                                       CXXRecordDecl *AnonUnion) {
4969   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4970     return;
4971 
4972   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4973 }
4974 
4975 /// BuildAnonymousStructOrUnion - Handle the declaration of an
4976 /// anonymous structure or union. Anonymous unions are a C++ feature
4977 /// (C++ [class.union]) and a C11 feature; anonymous structures
4978 /// are a C11 feature and GNU C++ extension.
4979 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4980                                         AccessSpecifier AS,
4981                                         RecordDecl *Record,
4982                                         const PrintingPolicy &Policy) {
4983   DeclContext *Owner = Record->getDeclContext();
4984 
4985   // Diagnose whether this anonymous struct/union is an extension.
4986   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4987     Diag(Record->getLocation(), diag::ext_anonymous_union);
4988   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4989     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4990   else if (!Record->isUnion() && !getLangOpts().C11)
4991     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4992 
4993   // C and C++ require different kinds of checks for anonymous
4994   // structs/unions.
4995   bool Invalid = false;
4996   if (getLangOpts().CPlusPlus) {
4997     const char *PrevSpec = nullptr;
4998     if (Record->isUnion()) {
4999       // C++ [class.union]p6:
5000       // C++17 [class.union.anon]p2:
5001       //   Anonymous unions declared in a named namespace or in the
5002       //   global namespace shall be declared static.
5003       unsigned DiagID;
5004       DeclContext *OwnerScope = Owner->getRedeclContext();
5005       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
5006           (OwnerScope->isTranslationUnit() ||
5007            (OwnerScope->isNamespace() &&
5008             !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
5009         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
5010           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
5011 
5012         // Recover by adding 'static'.
5013         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
5014                                PrevSpec, DiagID, Policy);
5015       }
5016       // C++ [class.union]p6:
5017       //   A storage class is not allowed in a declaration of an
5018       //   anonymous union in a class scope.
5019       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
5020                isa<RecordDecl>(Owner)) {
5021         Diag(DS.getStorageClassSpecLoc(),
5022              diag::err_anonymous_union_with_storage_spec)
5023           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5024 
5025         // Recover by removing the storage specifier.
5026         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
5027                                SourceLocation(),
5028                                PrevSpec, DiagID, Context.getPrintingPolicy());
5029       }
5030     }
5031 
5032     // Ignore const/volatile/restrict qualifiers.
5033     if (DS.getTypeQualifiers()) {
5034       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5035         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
5036           << Record->isUnion() << "const"
5037           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
5038       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5039         Diag(DS.getVolatileSpecLoc(),
5040              diag::ext_anonymous_struct_union_qualified)
5041           << Record->isUnion() << "volatile"
5042           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
5043       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
5044         Diag(DS.getRestrictSpecLoc(),
5045              diag::ext_anonymous_struct_union_qualified)
5046           << Record->isUnion() << "restrict"
5047           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
5048       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5049         Diag(DS.getAtomicSpecLoc(),
5050              diag::ext_anonymous_struct_union_qualified)
5051           << Record->isUnion() << "_Atomic"
5052           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
5053       if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5054         Diag(DS.getUnalignedSpecLoc(),
5055              diag::ext_anonymous_struct_union_qualified)
5056           << Record->isUnion() << "__unaligned"
5057           << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
5058 
5059       DS.ClearTypeQualifiers();
5060     }
5061 
5062     // C++ [class.union]p2:
5063     //   The member-specification of an anonymous union shall only
5064     //   define non-static data members. [Note: nested types and
5065     //   functions cannot be declared within an anonymous union. ]
5066     for (auto *Mem : Record->decls()) {
5067       // Ignore invalid declarations; we already diagnosed them.
5068       if (Mem->isInvalidDecl())
5069         continue;
5070 
5071       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
5072         // C++ [class.union]p3:
5073         //   An anonymous union shall not have private or protected
5074         //   members (clause 11).
5075         assert(FD->getAccess() != AS_none);
5076         if (FD->getAccess() != AS_public) {
5077           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
5078             << Record->isUnion() << (FD->getAccess() == AS_protected);
5079           Invalid = true;
5080         }
5081 
5082         // C++ [class.union]p1
5083         //   An object of a class with a non-trivial constructor, a non-trivial
5084         //   copy constructor, a non-trivial destructor, or a non-trivial copy
5085         //   assignment operator cannot be a member of a union, nor can an
5086         //   array of such objects.
5087         if (CheckNontrivialField(FD))
5088           Invalid = true;
5089       } else if (Mem->isImplicit()) {
5090         // Any implicit members are fine.
5091       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
5092         // This is a type that showed up in an
5093         // elaborated-type-specifier inside the anonymous struct or
5094         // union, but which actually declares a type outside of the
5095         // anonymous struct or union. It's okay.
5096       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
5097         if (!MemRecord->isAnonymousStructOrUnion() &&
5098             MemRecord->getDeclName()) {
5099           // Visual C++ allows type definition in anonymous struct or union.
5100           if (getLangOpts().MicrosoftExt)
5101             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
5102               << Record->isUnion();
5103           else {
5104             // This is a nested type declaration.
5105             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
5106               << Record->isUnion();
5107             Invalid = true;
5108           }
5109         } else {
5110           // This is an anonymous type definition within another anonymous type.
5111           // This is a popular extension, provided by Plan9, MSVC and GCC, but
5112           // not part of standard C++.
5113           Diag(MemRecord->getLocation(),
5114                diag::ext_anonymous_record_with_anonymous_type)
5115             << Record->isUnion();
5116         }
5117       } else if (isa<AccessSpecDecl>(Mem)) {
5118         // Any access specifier is fine.
5119       } else if (isa<StaticAssertDecl>(Mem)) {
5120         // In C++1z, static_assert declarations are also fine.
5121       } else {
5122         // We have something that isn't a non-static data
5123         // member. Complain about it.
5124         unsigned DK = diag::err_anonymous_record_bad_member;
5125         if (isa<TypeDecl>(Mem))
5126           DK = diag::err_anonymous_record_with_type;
5127         else if (isa<FunctionDecl>(Mem))
5128           DK = diag::err_anonymous_record_with_function;
5129         else if (isa<VarDecl>(Mem))
5130           DK = diag::err_anonymous_record_with_static;
5131 
5132         // Visual C++ allows type definition in anonymous struct or union.
5133         if (getLangOpts().MicrosoftExt &&
5134             DK == diag::err_anonymous_record_with_type)
5135           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
5136             << Record->isUnion();
5137         else {
5138           Diag(Mem->getLocation(), DK) << Record->isUnion();
5139           Invalid = true;
5140         }
5141       }
5142     }
5143 
5144     // C++11 [class.union]p8 (DR1460):
5145     //   At most one variant member of a union may have a
5146     //   brace-or-equal-initializer.
5147     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5148         Owner->isRecord())
5149       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5150                                 cast<CXXRecordDecl>(Record));
5151   }
5152 
5153   if (!Record->isUnion() && !Owner->isRecord()) {
5154     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5155       << getLangOpts().CPlusPlus;
5156     Invalid = true;
5157   }
5158 
5159   // C++ [dcl.dcl]p3:
5160   //   [If there are no declarators], and except for the declaration of an
5161   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
5162   //   names into the program
5163   // C++ [class.mem]p2:
5164   //   each such member-declaration shall either declare at least one member
5165   //   name of the class or declare at least one unnamed bit-field
5166   //
5167   // For C this is an error even for a named struct, and is diagnosed elsewhere.
5168   if (getLangOpts().CPlusPlus && Record->field_empty())
5169     Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5170 
5171   // Mock up a declarator.
5172   Declarator Dc(DS, DeclaratorContext::Member);
5173   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5174   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
5175 
5176   // Create a declaration for this anonymous struct/union.
5177   NamedDecl *Anon = nullptr;
5178   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5179     Anon = FieldDecl::Create(
5180         Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5181         /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5182         /*BitWidth=*/nullptr, /*Mutable=*/false,
5183         /*InitStyle=*/ICIS_NoInit);
5184     Anon->setAccess(AS);
5185     ProcessDeclAttributes(S, Anon, Dc);
5186 
5187     if (getLangOpts().CPlusPlus)
5188       FieldCollector->Add(cast<FieldDecl>(Anon));
5189   } else {
5190     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5191     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5192     if (SCSpec == DeclSpec::SCS_mutable) {
5193       // mutable can only appear on non-static class members, so it's always
5194       // an error here
5195       Diag(Record->getLocation(), diag::err_mutable_nonmember);
5196       Invalid = true;
5197       SC = SC_None;
5198     }
5199 
5200     assert(DS.getAttributes().empty() && "No attribute expected");
5201     Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5202                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
5203                            Context.getTypeDeclType(Record), TInfo, SC);
5204 
5205     // Default-initialize the implicit variable. This initialization will be
5206     // trivial in almost all cases, except if a union member has an in-class
5207     // initializer:
5208     //   union { int n = 0; };
5209     ActOnUninitializedDecl(Anon);
5210   }
5211   Anon->setImplicit();
5212 
5213   // Mark this as an anonymous struct/union type.
5214   Record->setAnonymousStructOrUnion(true);
5215 
5216   // Add the anonymous struct/union object to the current
5217   // context. We'll be referencing this object when we refer to one of
5218   // its members.
5219   Owner->addDecl(Anon);
5220 
5221   // Inject the members of the anonymous struct/union into the owning
5222   // context and into the identifier resolver chain for name lookup
5223   // purposes.
5224   SmallVector<NamedDecl*, 2> Chain;
5225   Chain.push_back(Anon);
5226 
5227   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
5228     Invalid = true;
5229 
5230   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5231     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5232       MangleNumberingContext *MCtx;
5233       Decl *ManglingContextDecl;
5234       std::tie(MCtx, ManglingContextDecl) =
5235           getCurrentMangleNumberContext(NewVD->getDeclContext());
5236       if (MCtx) {
5237         Context.setManglingNumber(
5238             NewVD, MCtx->getManglingNumber(
5239                        NewVD, getMSManglingNumber(getLangOpts(), S)));
5240         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5241       }
5242     }
5243   }
5244 
5245   if (Invalid)
5246     Anon->setInvalidDecl();
5247 
5248   return Anon;
5249 }
5250 
5251 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5252 /// Microsoft C anonymous structure.
5253 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5254 /// Example:
5255 ///
5256 /// struct A { int a; };
5257 /// struct B { struct A; int b; };
5258 ///
5259 /// void foo() {
5260 ///   B var;
5261 ///   var.a = 3;
5262 /// }
5263 ///
5264 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5265                                            RecordDecl *Record) {
5266   assert(Record && "expected a record!");
5267 
5268   // Mock up a declarator.
5269   Declarator Dc(DS, DeclaratorContext::TypeName);
5270   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5271   assert(TInfo && "couldn't build declarator info for anonymous struct");
5272 
5273   auto *ParentDecl = cast<RecordDecl>(CurContext);
5274   QualType RecTy = Context.getTypeDeclType(Record);
5275 
5276   // Create a declaration for this anonymous struct.
5277   NamedDecl *Anon =
5278       FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5279                         /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5280                         /*BitWidth=*/nullptr, /*Mutable=*/false,
5281                         /*InitStyle=*/ICIS_NoInit);
5282   Anon->setImplicit();
5283 
5284   // Add the anonymous struct object to the current context.
5285   CurContext->addDecl(Anon);
5286 
5287   // Inject the members of the anonymous struct into the current
5288   // context and into the identifier resolver chain for name lookup
5289   // purposes.
5290   SmallVector<NamedDecl*, 2> Chain;
5291   Chain.push_back(Anon);
5292 
5293   RecordDecl *RecordDef = Record->getDefinition();
5294   if (RequireCompleteSizedType(Anon->getLocation(), RecTy,
5295                                diag::err_field_incomplete_or_sizeless) ||
5296       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
5297                                           AS_none, Chain)) {
5298     Anon->setInvalidDecl();
5299     ParentDecl->setInvalidDecl();
5300   }
5301 
5302   return Anon;
5303 }
5304 
5305 /// GetNameForDeclarator - Determine the full declaration name for the
5306 /// given Declarator.
5307 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5308   return GetNameFromUnqualifiedId(D.getName());
5309 }
5310 
5311 /// Retrieves the declaration name from a parsed unqualified-id.
5312 DeclarationNameInfo
5313 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5314   DeclarationNameInfo NameInfo;
5315   NameInfo.setLoc(Name.StartLocation);
5316 
5317   switch (Name.getKind()) {
5318 
5319   case UnqualifiedIdKind::IK_ImplicitSelfParam:
5320   case UnqualifiedIdKind::IK_Identifier:
5321     NameInfo.setName(Name.Identifier);
5322     return NameInfo;
5323 
5324   case UnqualifiedIdKind::IK_DeductionGuideName: {
5325     // C++ [temp.deduct.guide]p3:
5326     //   The simple-template-id shall name a class template specialization.
5327     //   The template-name shall be the same identifier as the template-name
5328     //   of the simple-template-id.
5329     // These together intend to imply that the template-name shall name a
5330     // class template.
5331     // FIXME: template<typename T> struct X {};
5332     //        template<typename T> using Y = X<T>;
5333     //        Y(int) -> Y<int>;
5334     //   satisfies these rules but does not name a class template.
5335     TemplateName TN = Name.TemplateName.get().get();
5336     auto *Template = TN.getAsTemplateDecl();
5337     if (!Template || !isa<ClassTemplateDecl>(Template)) {
5338       Diag(Name.StartLocation,
5339            diag::err_deduction_guide_name_not_class_template)
5340         << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5341       if (Template)
5342         Diag(Template->getLocation(), diag::note_template_decl_here);
5343       return DeclarationNameInfo();
5344     }
5345 
5346     NameInfo.setName(
5347         Context.DeclarationNames.getCXXDeductionGuideName(Template));
5348     return NameInfo;
5349   }
5350 
5351   case UnqualifiedIdKind::IK_OperatorFunctionId:
5352     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5353                                            Name.OperatorFunctionId.Operator));
5354     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc =
5355         Name.OperatorFunctionId.SymbolLocations[0].getRawEncoding();
5356     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
5357       = Name.EndLocation.getRawEncoding();
5358     return NameInfo;
5359 
5360   case UnqualifiedIdKind::IK_LiteralOperatorId:
5361     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5362                                                            Name.Identifier));
5363     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5364     return NameInfo;
5365 
5366   case UnqualifiedIdKind::IK_ConversionFunctionId: {
5367     TypeSourceInfo *TInfo;
5368     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5369     if (Ty.isNull())
5370       return DeclarationNameInfo();
5371     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5372                                                Context.getCanonicalType(Ty)));
5373     NameInfo.setNamedTypeInfo(TInfo);
5374     return NameInfo;
5375   }
5376 
5377   case UnqualifiedIdKind::IK_ConstructorName: {
5378     TypeSourceInfo *TInfo;
5379     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5380     if (Ty.isNull())
5381       return DeclarationNameInfo();
5382     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5383                                               Context.getCanonicalType(Ty)));
5384     NameInfo.setNamedTypeInfo(TInfo);
5385     return NameInfo;
5386   }
5387 
5388   case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5389     // In well-formed code, we can only have a constructor
5390     // template-id that refers to the current context, so go there
5391     // to find the actual type being constructed.
5392     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5393     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5394       return DeclarationNameInfo();
5395 
5396     // Determine the type of the class being constructed.
5397     QualType CurClassType = Context.getTypeDeclType(CurClass);
5398 
5399     // FIXME: Check two things: that the template-id names the same type as
5400     // CurClassType, and that the template-id does not occur when the name
5401     // was qualified.
5402 
5403     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5404                                     Context.getCanonicalType(CurClassType)));
5405     // FIXME: should we retrieve TypeSourceInfo?
5406     NameInfo.setNamedTypeInfo(nullptr);
5407     return NameInfo;
5408   }
5409 
5410   case UnqualifiedIdKind::IK_DestructorName: {
5411     TypeSourceInfo *TInfo;
5412     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5413     if (Ty.isNull())
5414       return DeclarationNameInfo();
5415     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5416                                               Context.getCanonicalType(Ty)));
5417     NameInfo.setNamedTypeInfo(TInfo);
5418     return NameInfo;
5419   }
5420 
5421   case UnqualifiedIdKind::IK_TemplateId: {
5422     TemplateName TName = Name.TemplateId->Template.get();
5423     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5424     return Context.getNameForTemplate(TName, TNameLoc);
5425   }
5426 
5427   } // switch (Name.getKind())
5428 
5429   llvm_unreachable("Unknown name kind");
5430 }
5431 
5432 static QualType getCoreType(QualType Ty) {
5433   do {
5434     if (Ty->isPointerType() || Ty->isReferenceType())
5435       Ty = Ty->getPointeeType();
5436     else if (Ty->isArrayType())
5437       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5438     else
5439       return Ty.withoutLocalFastQualifiers();
5440   } while (true);
5441 }
5442 
5443 /// hasSimilarParameters - Determine whether the C++ functions Declaration
5444 /// and Definition have "nearly" matching parameters. This heuristic is
5445 /// used to improve diagnostics in the case where an out-of-line function
5446 /// definition doesn't match any declaration within the class or namespace.
5447 /// Also sets Params to the list of indices to the parameters that differ
5448 /// between the declaration and the definition. If hasSimilarParameters
5449 /// returns true and Params is empty, then all of the parameters match.
5450 static bool hasSimilarParameters(ASTContext &Context,
5451                                      FunctionDecl *Declaration,
5452                                      FunctionDecl *Definition,
5453                                      SmallVectorImpl<unsigned> &Params) {
5454   Params.clear();
5455   if (Declaration->param_size() != Definition->param_size())
5456     return false;
5457   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5458     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5459     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5460 
5461     // The parameter types are identical
5462     if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5463       continue;
5464 
5465     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5466     QualType DefParamBaseTy = getCoreType(DefParamTy);
5467     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5468     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5469 
5470     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5471         (DeclTyName && DeclTyName == DefTyName))
5472       Params.push_back(Idx);
5473     else  // The two parameters aren't even close
5474       return false;
5475   }
5476 
5477   return true;
5478 }
5479 
5480 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5481 /// declarator needs to be rebuilt in the current instantiation.
5482 /// Any bits of declarator which appear before the name are valid for
5483 /// consideration here.  That's specifically the type in the decl spec
5484 /// and the base type in any member-pointer chunks.
5485 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5486                                                     DeclarationName Name) {
5487   // The types we specifically need to rebuild are:
5488   //   - typenames, typeofs, and decltypes
5489   //   - types which will become injected class names
5490   // Of course, we also need to rebuild any type referencing such a
5491   // type.  It's safest to just say "dependent", but we call out a
5492   // few cases here.
5493 
5494   DeclSpec &DS = D.getMutableDeclSpec();
5495   switch (DS.getTypeSpecType()) {
5496   case DeclSpec::TST_typename:
5497   case DeclSpec::TST_typeofType:
5498   case DeclSpec::TST_underlyingType:
5499   case DeclSpec::TST_atomic: {
5500     // Grab the type from the parser.
5501     TypeSourceInfo *TSI = nullptr;
5502     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5503     if (T.isNull() || !T->isInstantiationDependentType()) break;
5504 
5505     // Make sure there's a type source info.  This isn't really much
5506     // of a waste; most dependent types should have type source info
5507     // attached already.
5508     if (!TSI)
5509       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5510 
5511     // Rebuild the type in the current instantiation.
5512     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5513     if (!TSI) return true;
5514 
5515     // Store the new type back in the decl spec.
5516     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5517     DS.UpdateTypeRep(LocType);
5518     break;
5519   }
5520 
5521   case DeclSpec::TST_decltype:
5522   case DeclSpec::TST_typeofExpr: {
5523     Expr *E = DS.getRepAsExpr();
5524     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5525     if (Result.isInvalid()) return true;
5526     DS.UpdateExprRep(Result.get());
5527     break;
5528   }
5529 
5530   default:
5531     // Nothing to do for these decl specs.
5532     break;
5533   }
5534 
5535   // It doesn't matter what order we do this in.
5536   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5537     DeclaratorChunk &Chunk = D.getTypeObject(I);
5538 
5539     // The only type information in the declarator which can come
5540     // before the declaration name is the base type of a member
5541     // pointer.
5542     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5543       continue;
5544 
5545     // Rebuild the scope specifier in-place.
5546     CXXScopeSpec &SS = Chunk.Mem.Scope();
5547     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5548       return true;
5549   }
5550 
5551   return false;
5552 }
5553 
5554 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5555   D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
5556   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5557 
5558   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5559       Dcl && Dcl->getDeclContext()->isFileContext())
5560     Dcl->setTopLevelDeclInObjCContainer();
5561 
5562   if (getLangOpts().OpenCL)
5563     setCurrentOpenCLExtensionForDecl(Dcl);
5564 
5565   return Dcl;
5566 }
5567 
5568 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5569 ///   If T is the name of a class, then each of the following shall have a
5570 ///   name different from T:
5571 ///     - every static data member of class T;
5572 ///     - every member function of class T
5573 ///     - every member of class T that is itself a type;
5574 /// \returns true if the declaration name violates these rules.
5575 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5576                                    DeclarationNameInfo NameInfo) {
5577   DeclarationName Name = NameInfo.getName();
5578 
5579   CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5580   while (Record && Record->isAnonymousStructOrUnion())
5581     Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5582   if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5583     Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5584     return true;
5585   }
5586 
5587   return false;
5588 }
5589 
5590 /// Diagnose a declaration whose declarator-id has the given
5591 /// nested-name-specifier.
5592 ///
5593 /// \param SS The nested-name-specifier of the declarator-id.
5594 ///
5595 /// \param DC The declaration context to which the nested-name-specifier
5596 /// resolves.
5597 ///
5598 /// \param Name The name of the entity being declared.
5599 ///
5600 /// \param Loc The location of the name of the entity being declared.
5601 ///
5602 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5603 /// we're declaring an explicit / partial specialization / instantiation.
5604 ///
5605 /// \returns true if we cannot safely recover from this error, false otherwise.
5606 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5607                                         DeclarationName Name,
5608                                         SourceLocation Loc, bool IsTemplateId) {
5609   DeclContext *Cur = CurContext;
5610   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5611     Cur = Cur->getParent();
5612 
5613   // If the user provided a superfluous scope specifier that refers back to the
5614   // class in which the entity is already declared, diagnose and ignore it.
5615   //
5616   // class X {
5617   //   void X::f();
5618   // };
5619   //
5620   // Note, it was once ill-formed to give redundant qualification in all
5621   // contexts, but that rule was removed by DR482.
5622   if (Cur->Equals(DC)) {
5623     if (Cur->isRecord()) {
5624       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5625                                       : diag::err_member_extra_qualification)
5626         << Name << FixItHint::CreateRemoval(SS.getRange());
5627       SS.clear();
5628     } else {
5629       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5630     }
5631     return false;
5632   }
5633 
5634   // Check whether the qualifying scope encloses the scope of the original
5635   // declaration. For a template-id, we perform the checks in
5636   // CheckTemplateSpecializationScope.
5637   if (!Cur->Encloses(DC) && !IsTemplateId) {
5638     if (Cur->isRecord())
5639       Diag(Loc, diag::err_member_qualification)
5640         << Name << SS.getRange();
5641     else if (isa<TranslationUnitDecl>(DC))
5642       Diag(Loc, diag::err_invalid_declarator_global_scope)
5643         << Name << SS.getRange();
5644     else if (isa<FunctionDecl>(Cur))
5645       Diag(Loc, diag::err_invalid_declarator_in_function)
5646         << Name << SS.getRange();
5647     else if (isa<BlockDecl>(Cur))
5648       Diag(Loc, diag::err_invalid_declarator_in_block)
5649         << Name << SS.getRange();
5650     else
5651       Diag(Loc, diag::err_invalid_declarator_scope)
5652       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5653 
5654     return true;
5655   }
5656 
5657   if (Cur->isRecord()) {
5658     // Cannot qualify members within a class.
5659     Diag(Loc, diag::err_member_qualification)
5660       << Name << SS.getRange();
5661     SS.clear();
5662 
5663     // C++ constructors and destructors with incorrect scopes can break
5664     // our AST invariants by having the wrong underlying types. If
5665     // that's the case, then drop this declaration entirely.
5666     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5667          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5668         !Context.hasSameType(Name.getCXXNameType(),
5669                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5670       return true;
5671 
5672     return false;
5673   }
5674 
5675   // C++11 [dcl.meaning]p1:
5676   //   [...] "The nested-name-specifier of the qualified declarator-id shall
5677   //   not begin with a decltype-specifer"
5678   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5679   while (SpecLoc.getPrefix())
5680     SpecLoc = SpecLoc.getPrefix();
5681   if (dyn_cast_or_null<DecltypeType>(
5682         SpecLoc.getNestedNameSpecifier()->getAsType()))
5683     Diag(Loc, diag::err_decltype_in_declarator)
5684       << SpecLoc.getTypeLoc().getSourceRange();
5685 
5686   return false;
5687 }
5688 
5689 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5690                                   MultiTemplateParamsArg TemplateParamLists) {
5691   // TODO: consider using NameInfo for diagnostic.
5692   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5693   DeclarationName Name = NameInfo.getName();
5694 
5695   // All of these full declarators require an identifier.  If it doesn't have
5696   // one, the ParsedFreeStandingDeclSpec action should be used.
5697   if (D.isDecompositionDeclarator()) {
5698     return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5699   } else if (!Name) {
5700     if (!D.isInvalidType())  // Reject this if we think it is valid.
5701       Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5702           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5703     return nullptr;
5704   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5705     return nullptr;
5706 
5707   // The scope passed in may not be a decl scope.  Zip up the scope tree until
5708   // we find one that is.
5709   while ((S->getFlags() & Scope::DeclScope) == 0 ||
5710          (S->getFlags() & Scope::TemplateParamScope) != 0)
5711     S = S->getParent();
5712 
5713   DeclContext *DC = CurContext;
5714   if (D.getCXXScopeSpec().isInvalid())
5715     D.setInvalidType();
5716   else if (D.getCXXScopeSpec().isSet()) {
5717     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5718                                         UPPC_DeclarationQualifier))
5719       return nullptr;
5720 
5721     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5722     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5723     if (!DC || isa<EnumDecl>(DC)) {
5724       // If we could not compute the declaration context, it's because the
5725       // declaration context is dependent but does not refer to a class,
5726       // class template, or class template partial specialization. Complain
5727       // and return early, to avoid the coming semantic disaster.
5728       Diag(D.getIdentifierLoc(),
5729            diag::err_template_qualified_declarator_no_match)
5730         << D.getCXXScopeSpec().getScopeRep()
5731         << D.getCXXScopeSpec().getRange();
5732       return nullptr;
5733     }
5734     bool IsDependentContext = DC->isDependentContext();
5735 
5736     if (!IsDependentContext &&
5737         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5738       return nullptr;
5739 
5740     // If a class is incomplete, do not parse entities inside it.
5741     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5742       Diag(D.getIdentifierLoc(),
5743            diag::err_member_def_undefined_record)
5744         << Name << DC << D.getCXXScopeSpec().getRange();
5745       return nullptr;
5746     }
5747     if (!D.getDeclSpec().isFriendSpecified()) {
5748       if (diagnoseQualifiedDeclaration(
5749               D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5750               D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5751         if (DC->isRecord())
5752           return nullptr;
5753 
5754         D.setInvalidType();
5755       }
5756     }
5757 
5758     // Check whether we need to rebuild the type of the given
5759     // declaration in the current instantiation.
5760     if (EnteringContext && IsDependentContext &&
5761         TemplateParamLists.size() != 0) {
5762       ContextRAII SavedContext(*this, DC);
5763       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5764         D.setInvalidType();
5765     }
5766   }
5767 
5768   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5769   QualType R = TInfo->getType();
5770 
5771   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5772                                       UPPC_DeclarationType))
5773     D.setInvalidType();
5774 
5775   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5776                         forRedeclarationInCurContext());
5777 
5778   // See if this is a redefinition of a variable in the same scope.
5779   if (!D.getCXXScopeSpec().isSet()) {
5780     bool IsLinkageLookup = false;
5781     bool CreateBuiltins = false;
5782 
5783     // If the declaration we're planning to build will be a function
5784     // or object with linkage, then look for another declaration with
5785     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5786     //
5787     // If the declaration we're planning to build will be declared with
5788     // external linkage in the translation unit, create any builtin with
5789     // the same name.
5790     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5791       /* Do nothing*/;
5792     else if (CurContext->isFunctionOrMethod() &&
5793              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5794               R->isFunctionType())) {
5795       IsLinkageLookup = true;
5796       CreateBuiltins =
5797           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5798     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5799                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5800       CreateBuiltins = true;
5801 
5802     if (IsLinkageLookup) {
5803       Previous.clear(LookupRedeclarationWithLinkage);
5804       Previous.setRedeclarationKind(ForExternalRedeclaration);
5805     }
5806 
5807     LookupName(Previous, S, CreateBuiltins);
5808   } else { // Something like "int foo::x;"
5809     LookupQualifiedName(Previous, DC);
5810 
5811     // C++ [dcl.meaning]p1:
5812     //   When the declarator-id is qualified, the declaration shall refer to a
5813     //  previously declared member of the class or namespace to which the
5814     //  qualifier refers (or, in the case of a namespace, of an element of the
5815     //  inline namespace set of that namespace (7.3.1)) or to a specialization
5816     //  thereof; [...]
5817     //
5818     // Note that we already checked the context above, and that we do not have
5819     // enough information to make sure that Previous contains the declaration
5820     // we want to match. For example, given:
5821     //
5822     //   class X {
5823     //     void f();
5824     //     void f(float);
5825     //   };
5826     //
5827     //   void X::f(int) { } // ill-formed
5828     //
5829     // In this case, Previous will point to the overload set
5830     // containing the two f's declared in X, but neither of them
5831     // matches.
5832 
5833     // C++ [dcl.meaning]p1:
5834     //   [...] the member shall not merely have been introduced by a
5835     //   using-declaration in the scope of the class or namespace nominated by
5836     //   the nested-name-specifier of the declarator-id.
5837     RemoveUsingDecls(Previous);
5838   }
5839 
5840   if (Previous.isSingleResult() &&
5841       Previous.getFoundDecl()->isTemplateParameter()) {
5842     // Maybe we will complain about the shadowed template parameter.
5843     if (!D.isInvalidType())
5844       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5845                                       Previous.getFoundDecl());
5846 
5847     // Just pretend that we didn't see the previous declaration.
5848     Previous.clear();
5849   }
5850 
5851   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5852     // Forget that the previous declaration is the injected-class-name.
5853     Previous.clear();
5854 
5855   // In C++, the previous declaration we find might be a tag type
5856   // (class or enum). In this case, the new declaration will hide the
5857   // tag type. Note that this applies to functions, function templates, and
5858   // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5859   if (Previous.isSingleTagDecl() &&
5860       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5861       (TemplateParamLists.size() == 0 || R->isFunctionType()))
5862     Previous.clear();
5863 
5864   // Check that there are no default arguments other than in the parameters
5865   // of a function declaration (C++ only).
5866   if (getLangOpts().CPlusPlus)
5867     CheckExtraCXXDefaultArguments(D);
5868 
5869   NamedDecl *New;
5870 
5871   bool AddToScope = true;
5872   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5873     if (TemplateParamLists.size()) {
5874       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5875       return nullptr;
5876     }
5877 
5878     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5879   } else if (R->isFunctionType()) {
5880     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5881                                   TemplateParamLists,
5882                                   AddToScope);
5883   } else {
5884     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5885                                   AddToScope);
5886   }
5887 
5888   if (!New)
5889     return nullptr;
5890 
5891   // If this has an identifier and is not a function template specialization,
5892   // add it to the scope stack.
5893   if (New->getDeclName() && AddToScope)
5894     PushOnScopeChains(New, S);
5895 
5896   if (isInOpenMPDeclareTargetContext())
5897     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5898 
5899   return New;
5900 }
5901 
5902 /// Helper method to turn variable array types into constant array
5903 /// types in certain situations which would otherwise be errors (for
5904 /// GCC compatibility).
5905 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5906                                                     ASTContext &Context,
5907                                                     bool &SizeIsNegative,
5908                                                     llvm::APSInt &Oversized) {
5909   // This method tries to turn a variable array into a constant
5910   // array even when the size isn't an ICE.  This is necessary
5911   // for compatibility with code that depends on gcc's buggy
5912   // constant expression folding, like struct {char x[(int)(char*)2];}
5913   SizeIsNegative = false;
5914   Oversized = 0;
5915 
5916   if (T->isDependentType())
5917     return QualType();
5918 
5919   QualifierCollector Qs;
5920   const Type *Ty = Qs.strip(T);
5921 
5922   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5923     QualType Pointee = PTy->getPointeeType();
5924     QualType FixedType =
5925         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5926                                             Oversized);
5927     if (FixedType.isNull()) return FixedType;
5928     FixedType = Context.getPointerType(FixedType);
5929     return Qs.apply(Context, FixedType);
5930   }
5931   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5932     QualType Inner = PTy->getInnerType();
5933     QualType FixedType =
5934         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5935                                             Oversized);
5936     if (FixedType.isNull()) return FixedType;
5937     FixedType = Context.getParenType(FixedType);
5938     return Qs.apply(Context, FixedType);
5939   }
5940 
5941   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5942   if (!VLATy)
5943     return QualType();
5944 
5945   QualType ElemTy = VLATy->getElementType();
5946   if (ElemTy->isVariablyModifiedType()) {
5947     ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context,
5948                                                  SizeIsNegative, Oversized);
5949     if (ElemTy.isNull())
5950       return QualType();
5951   }
5952 
5953   Expr::EvalResult Result;
5954   if (!VLATy->getSizeExpr() ||
5955       !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
5956     return QualType();
5957 
5958   llvm::APSInt Res = Result.Val.getInt();
5959 
5960   // Check whether the array size is negative.
5961   if (Res.isSigned() && Res.isNegative()) {
5962     SizeIsNegative = true;
5963     return QualType();
5964   }
5965 
5966   // Check whether the array is too large to be addressed.
5967   unsigned ActiveSizeBits =
5968       (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() &&
5969        !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType())
5970           ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res)
5971           : Res.getActiveBits();
5972   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5973     Oversized = Res;
5974     return QualType();
5975   }
5976 
5977   QualType FoldedArrayType = Context.getConstantArrayType(
5978       ElemTy, Res, VLATy->getSizeExpr(), ArrayType::Normal, 0);
5979   return Qs.apply(Context, FoldedArrayType);
5980 }
5981 
5982 static void
5983 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5984   SrcTL = SrcTL.getUnqualifiedLoc();
5985   DstTL = DstTL.getUnqualifiedLoc();
5986   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5987     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5988     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5989                                       DstPTL.getPointeeLoc());
5990     DstPTL.setStarLoc(SrcPTL.getStarLoc());
5991     return;
5992   }
5993   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5994     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5995     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5996                                       DstPTL.getInnerLoc());
5997     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5998     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5999     return;
6000   }
6001   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
6002   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
6003   TypeLoc SrcElemTL = SrcATL.getElementLoc();
6004   TypeLoc DstElemTL = DstATL.getElementLoc();
6005   if (VariableArrayTypeLoc SrcElemATL =
6006           SrcElemTL.getAs<VariableArrayTypeLoc>()) {
6007     ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>();
6008     FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL);
6009   } else {
6010     DstElemTL.initializeFullCopy(SrcElemTL);
6011   }
6012   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
6013   DstATL.setSizeExpr(SrcATL.getSizeExpr());
6014   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
6015 }
6016 
6017 /// Helper method to turn variable array types into constant array
6018 /// types in certain situations which would otherwise be errors (for
6019 /// GCC compatibility).
6020 static TypeSourceInfo*
6021 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
6022                                               ASTContext &Context,
6023                                               bool &SizeIsNegative,
6024                                               llvm::APSInt &Oversized) {
6025   QualType FixedTy
6026     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
6027                                           SizeIsNegative, Oversized);
6028   if (FixedTy.isNull())
6029     return nullptr;
6030   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
6031   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
6032                                     FixedTInfo->getTypeLoc());
6033   return FixedTInfo;
6034 }
6035 
6036 /// Attempt to fold a variable-sized type to a constant-sized type, returning
6037 /// true if we were successful.
6038 static bool tryToFixVariablyModifiedVarType(Sema &S, TypeSourceInfo *&TInfo,
6039                                             QualType &T, SourceLocation Loc,
6040                                             unsigned FailedFoldDiagID) {
6041   bool SizeIsNegative;
6042   llvm::APSInt Oversized;
6043   TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
6044       TInfo, S.Context, SizeIsNegative, Oversized);
6045   if (FixedTInfo) {
6046     S.Diag(Loc, diag::ext_vla_folded_to_constant);
6047     TInfo = FixedTInfo;
6048     T = FixedTInfo->getType();
6049     return true;
6050   }
6051 
6052   if (SizeIsNegative)
6053     S.Diag(Loc, diag::err_typecheck_negative_array_size);
6054   else if (Oversized.getBoolValue())
6055     S.Diag(Loc, diag::err_array_too_large) << Oversized.toString(10);
6056   else if (FailedFoldDiagID)
6057     S.Diag(Loc, FailedFoldDiagID);
6058   return false;
6059 }
6060 
6061 /// Register the given locally-scoped extern "C" declaration so
6062 /// that it can be found later for redeclarations. We include any extern "C"
6063 /// declaration that is not visible in the translation unit here, not just
6064 /// function-scope declarations.
6065 void
6066 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
6067   if (!getLangOpts().CPlusPlus &&
6068       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6069     // Don't need to track declarations in the TU in C.
6070     return;
6071 
6072   // Note that we have a locally-scoped external with this name.
6073   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
6074 }
6075 
6076 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
6077   // FIXME: We can have multiple results via __attribute__((overloadable)).
6078   auto Result = Context.getExternCContextDecl()->lookup(Name);
6079   return Result.empty() ? nullptr : *Result.begin();
6080 }
6081 
6082 /// Diagnose function specifiers on a declaration of an identifier that
6083 /// does not identify a function.
6084 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
6085   // FIXME: We should probably indicate the identifier in question to avoid
6086   // confusion for constructs like "virtual int a(), b;"
6087   if (DS.isVirtualSpecified())
6088     Diag(DS.getVirtualSpecLoc(),
6089          diag::err_virtual_non_function);
6090 
6091   if (DS.hasExplicitSpecifier())
6092     Diag(DS.getExplicitSpecLoc(),
6093          diag::err_explicit_non_function);
6094 
6095   if (DS.isNoreturnSpecified())
6096     Diag(DS.getNoreturnSpecLoc(),
6097          diag::err_noreturn_non_function);
6098 }
6099 
6100 NamedDecl*
6101 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
6102                              TypeSourceInfo *TInfo, LookupResult &Previous) {
6103   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6104   if (D.getCXXScopeSpec().isSet()) {
6105     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
6106       << D.getCXXScopeSpec().getRange();
6107     D.setInvalidType();
6108     // Pretend we didn't see the scope specifier.
6109     DC = CurContext;
6110     Previous.clear();
6111   }
6112 
6113   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6114 
6115   if (D.getDeclSpec().isInlineSpecified())
6116     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6117         << getLangOpts().CPlusPlus17;
6118   if (D.getDeclSpec().hasConstexprSpecifier())
6119     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6120         << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
6121 
6122   if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
6123     if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
6124       Diag(D.getName().StartLocation,
6125            diag::err_deduction_guide_invalid_specifier)
6126           << "typedef";
6127     else
6128       Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
6129           << D.getName().getSourceRange();
6130     return nullptr;
6131   }
6132 
6133   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
6134   if (!NewTD) return nullptr;
6135 
6136   // Handle attributes prior to checking for duplicates in MergeVarDecl
6137   ProcessDeclAttributes(S, NewTD, D);
6138 
6139   CheckTypedefForVariablyModifiedType(S, NewTD);
6140 
6141   bool Redeclaration = D.isRedeclaration();
6142   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
6143   D.setRedeclaration(Redeclaration);
6144   return ND;
6145 }
6146 
6147 void
6148 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
6149   // C99 6.7.7p2: If a typedef name specifies a variably modified type
6150   // then it shall have block scope.
6151   // Note that variably modified types must be fixed before merging the decl so
6152   // that redeclarations will match.
6153   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
6154   QualType T = TInfo->getType();
6155   if (T->isVariablyModifiedType()) {
6156     setFunctionHasBranchProtectedScope();
6157 
6158     if (S->getFnParent() == nullptr) {
6159       bool SizeIsNegative;
6160       llvm::APSInt Oversized;
6161       TypeSourceInfo *FixedTInfo =
6162         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6163                                                       SizeIsNegative,
6164                                                       Oversized);
6165       if (FixedTInfo) {
6166         Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant);
6167         NewTD->setTypeSourceInfo(FixedTInfo);
6168       } else {
6169         if (SizeIsNegative)
6170           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
6171         else if (T->isVariableArrayType())
6172           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
6173         else if (Oversized.getBoolValue())
6174           Diag(NewTD->getLocation(), diag::err_array_too_large)
6175             << Oversized.toString(10);
6176         else
6177           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
6178         NewTD->setInvalidDecl();
6179       }
6180     }
6181   }
6182 }
6183 
6184 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6185 /// declares a typedef-name, either using the 'typedef' type specifier or via
6186 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6187 NamedDecl*
6188 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
6189                            LookupResult &Previous, bool &Redeclaration) {
6190 
6191   // Find the shadowed declaration before filtering for scope.
6192   NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
6193 
6194   // Merge the decl with the existing one if appropriate. If the decl is
6195   // in an outer scope, it isn't the same thing.
6196   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
6197                        /*AllowInlineNamespace*/false);
6198   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
6199   if (!Previous.empty()) {
6200     Redeclaration = true;
6201     MergeTypedefNameDecl(S, NewTD, Previous);
6202   } else {
6203     inferGslPointerAttribute(NewTD);
6204   }
6205 
6206   if (ShadowedDecl && !Redeclaration)
6207     CheckShadow(NewTD, ShadowedDecl, Previous);
6208 
6209   // If this is the C FILE type, notify the AST context.
6210   if (IdentifierInfo *II = NewTD->getIdentifier())
6211     if (!NewTD->isInvalidDecl() &&
6212         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6213       if (II->isStr("FILE"))
6214         Context.setFILEDecl(NewTD);
6215       else if (II->isStr("jmp_buf"))
6216         Context.setjmp_bufDecl(NewTD);
6217       else if (II->isStr("sigjmp_buf"))
6218         Context.setsigjmp_bufDecl(NewTD);
6219       else if (II->isStr("ucontext_t"))
6220         Context.setucontext_tDecl(NewTD);
6221     }
6222 
6223   return NewTD;
6224 }
6225 
6226 /// Determines whether the given declaration is an out-of-scope
6227 /// previous declaration.
6228 ///
6229 /// This routine should be invoked when name lookup has found a
6230 /// previous declaration (PrevDecl) that is not in the scope where a
6231 /// new declaration by the same name is being introduced. If the new
6232 /// declaration occurs in a local scope, previous declarations with
6233 /// linkage may still be considered previous declarations (C99
6234 /// 6.2.2p4-5, C++ [basic.link]p6).
6235 ///
6236 /// \param PrevDecl the previous declaration found by name
6237 /// lookup
6238 ///
6239 /// \param DC the context in which the new declaration is being
6240 /// declared.
6241 ///
6242 /// \returns true if PrevDecl is an out-of-scope previous declaration
6243 /// for a new delcaration with the same name.
6244 static bool
6245 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
6246                                 ASTContext &Context) {
6247   if (!PrevDecl)
6248     return false;
6249 
6250   if (!PrevDecl->hasLinkage())
6251     return false;
6252 
6253   if (Context.getLangOpts().CPlusPlus) {
6254     // C++ [basic.link]p6:
6255     //   If there is a visible declaration of an entity with linkage
6256     //   having the same name and type, ignoring entities declared
6257     //   outside the innermost enclosing namespace scope, the block
6258     //   scope declaration declares that same entity and receives the
6259     //   linkage of the previous declaration.
6260     DeclContext *OuterContext = DC->getRedeclContext();
6261     if (!OuterContext->isFunctionOrMethod())
6262       // This rule only applies to block-scope declarations.
6263       return false;
6264 
6265     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6266     if (PrevOuterContext->isRecord())
6267       // We found a member function: ignore it.
6268       return false;
6269 
6270     // Find the innermost enclosing namespace for the new and
6271     // previous declarations.
6272     OuterContext = OuterContext->getEnclosingNamespaceContext();
6273     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6274 
6275     // The previous declaration is in a different namespace, so it
6276     // isn't the same function.
6277     if (!OuterContext->Equals(PrevOuterContext))
6278       return false;
6279   }
6280 
6281   return true;
6282 }
6283 
6284 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6285   CXXScopeSpec &SS = D.getCXXScopeSpec();
6286   if (!SS.isSet()) return;
6287   DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6288 }
6289 
6290 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
6291   QualType type = decl->getType();
6292   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
6293   if (lifetime == Qualifiers::OCL_Autoreleasing) {
6294     // Various kinds of declaration aren't allowed to be __autoreleasing.
6295     unsigned kind = -1U;
6296     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6297       if (var->hasAttr<BlocksAttr>())
6298         kind = 0; // __block
6299       else if (!var->hasLocalStorage())
6300         kind = 1; // global
6301     } else if (isa<ObjCIvarDecl>(decl)) {
6302       kind = 3; // ivar
6303     } else if (isa<FieldDecl>(decl)) {
6304       kind = 2; // field
6305     }
6306 
6307     if (kind != -1U) {
6308       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
6309         << kind;
6310     }
6311   } else if (lifetime == Qualifiers::OCL_None) {
6312     // Try to infer lifetime.
6313     if (!type->isObjCLifetimeType())
6314       return false;
6315 
6316     lifetime = type->getObjCARCImplicitLifetime();
6317     type = Context.getLifetimeQualifiedType(type, lifetime);
6318     decl->setType(type);
6319   }
6320 
6321   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6322     // Thread-local variables cannot have lifetime.
6323     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
6324         var->getTLSKind()) {
6325       Diag(var->getLocation(), diag::err_arc_thread_ownership)
6326         << var->getType();
6327       return true;
6328     }
6329   }
6330 
6331   return false;
6332 }
6333 
6334 void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
6335   if (Decl->getType().hasAddressSpace())
6336     return;
6337   if (Decl->getType()->isDependentType())
6338     return;
6339   if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
6340     QualType Type = Var->getType();
6341     if (Type->isSamplerT() || Type->isVoidType())
6342       return;
6343     LangAS ImplAS = LangAS::opencl_private;
6344     if ((getLangOpts().OpenCLCPlusPlus || getLangOpts().OpenCLVersion >= 200) &&
6345         Var->hasGlobalStorage())
6346       ImplAS = LangAS::opencl_global;
6347     // If the original type from a decayed type is an array type and that array
6348     // type has no address space yet, deduce it now.
6349     if (auto DT = dyn_cast<DecayedType>(Type)) {
6350       auto OrigTy = DT->getOriginalType();
6351       if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
6352         // Add the address space to the original array type and then propagate
6353         // that to the element type through `getAsArrayType`.
6354         OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
6355         OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
6356         // Re-generate the decayed type.
6357         Type = Context.getDecayedType(OrigTy);
6358       }
6359     }
6360     Type = Context.getAddrSpaceQualType(Type, ImplAS);
6361     // Apply any qualifiers (including address space) from the array type to
6362     // the element type. This implements C99 6.7.3p8: "If the specification of
6363     // an array type includes any type qualifiers, the element type is so
6364     // qualified, not the array type."
6365     if (Type->isArrayType())
6366       Type = QualType(Context.getAsArrayType(Type), 0);
6367     Decl->setType(Type);
6368   }
6369 }
6370 
6371 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
6372   // Ensure that an auto decl is deduced otherwise the checks below might cache
6373   // the wrong linkage.
6374   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
6375 
6376   // 'weak' only applies to declarations with external linkage.
6377   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
6378     if (!ND.isExternallyVisible()) {
6379       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
6380       ND.dropAttr<WeakAttr>();
6381     }
6382   }
6383   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
6384     if (ND.isExternallyVisible()) {
6385       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
6386       ND.dropAttr<WeakRefAttr>();
6387       ND.dropAttr<AliasAttr>();
6388     }
6389   }
6390 
6391   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
6392     if (VD->hasInit()) {
6393       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
6394         assert(VD->isThisDeclarationADefinition() &&
6395                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
6396         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
6397         VD->dropAttr<AliasAttr>();
6398       }
6399     }
6400   }
6401 
6402   // 'selectany' only applies to externally visible variable declarations.
6403   // It does not apply to functions.
6404   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6405     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6406       S.Diag(Attr->getLocation(),
6407              diag::err_attribute_selectany_non_extern_data);
6408       ND.dropAttr<SelectAnyAttr>();
6409     }
6410   }
6411 
6412   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6413     auto *VD = dyn_cast<VarDecl>(&ND);
6414     bool IsAnonymousNS = false;
6415     bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6416     if (VD) {
6417       const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6418       while (NS && !IsAnonymousNS) {
6419         IsAnonymousNS = NS->isAnonymousNamespace();
6420         NS = dyn_cast<NamespaceDecl>(NS->getParent());
6421       }
6422     }
6423     // dll attributes require external linkage. Static locals may have external
6424     // linkage but still cannot be explicitly imported or exported.
6425     // In Microsoft mode, a variable defined in anonymous namespace must have
6426     // external linkage in order to be exported.
6427     bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6428     if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6429         (!AnonNSInMicrosoftMode &&
6430          (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6431       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6432         << &ND << Attr;
6433       ND.setInvalidDecl();
6434     }
6435   }
6436 
6437   // Virtual functions cannot be marked as 'notail'.
6438   if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
6439     if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
6440       if (MD->isVirtual()) {
6441         S.Diag(ND.getLocation(),
6442                diag::err_invalid_attribute_on_virtual_function)
6443             << Attr;
6444         ND.dropAttr<NotTailCalledAttr>();
6445       }
6446 
6447   // Check the attributes on the function type, if any.
6448   if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6449     // Don't declare this variable in the second operand of the for-statement;
6450     // GCC miscompiles that by ending its lifetime before evaluating the
6451     // third operand. See gcc.gnu.org/PR86769.
6452     AttributedTypeLoc ATL;
6453     for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6454          (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6455          TL = ATL.getModifiedLoc()) {
6456       // The [[lifetimebound]] attribute can be applied to the implicit object
6457       // parameter of a non-static member function (other than a ctor or dtor)
6458       // by applying it to the function type.
6459       if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6460         const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6461         if (!MD || MD->isStatic()) {
6462           S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6463               << !MD << A->getRange();
6464         } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6465           S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6466               << isa<CXXDestructorDecl>(MD) << A->getRange();
6467         }
6468       }
6469     }
6470   }
6471 }
6472 
6473 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6474                                            NamedDecl *NewDecl,
6475                                            bool IsSpecialization,
6476                                            bool IsDefinition) {
6477   if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6478     return;
6479 
6480   bool IsTemplate = false;
6481   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6482     OldDecl = OldTD->getTemplatedDecl();
6483     IsTemplate = true;
6484     if (!IsSpecialization)
6485       IsDefinition = false;
6486   }
6487   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6488     NewDecl = NewTD->getTemplatedDecl();
6489     IsTemplate = true;
6490   }
6491 
6492   if (!OldDecl || !NewDecl)
6493     return;
6494 
6495   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6496   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6497   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6498   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6499 
6500   // dllimport and dllexport are inheritable attributes so we have to exclude
6501   // inherited attribute instances.
6502   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6503                     (NewExportAttr && !NewExportAttr->isInherited());
6504 
6505   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6506   // the only exception being explicit specializations.
6507   // Implicitly generated declarations are also excluded for now because there
6508   // is no other way to switch these to use dllimport or dllexport.
6509   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6510 
6511   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6512     // Allow with a warning for free functions and global variables.
6513     bool JustWarn = false;
6514     if (!OldDecl->isCXXClassMember()) {
6515       auto *VD = dyn_cast<VarDecl>(OldDecl);
6516       if (VD && !VD->getDescribedVarTemplate())
6517         JustWarn = true;
6518       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6519       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6520         JustWarn = true;
6521     }
6522 
6523     // We cannot change a declaration that's been used because IR has already
6524     // been emitted. Dllimported functions will still work though (modulo
6525     // address equality) as they can use the thunk.
6526     if (OldDecl->isUsed())
6527       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6528         JustWarn = false;
6529 
6530     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6531                                : diag::err_attribute_dll_redeclaration;
6532     S.Diag(NewDecl->getLocation(), DiagID)
6533         << NewDecl
6534         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6535     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6536     if (!JustWarn) {
6537       NewDecl->setInvalidDecl();
6538       return;
6539     }
6540   }
6541 
6542   // A redeclaration is not allowed to drop a dllimport attribute, the only
6543   // exceptions being inline function definitions (except for function
6544   // templates), local extern declarations, qualified friend declarations or
6545   // special MSVC extension: in the last case, the declaration is treated as if
6546   // it were marked dllexport.
6547   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6548   bool IsMicrosoftABI  = S.Context.getTargetInfo().shouldDLLImportComdatSymbols();
6549   if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6550     // Ignore static data because out-of-line definitions are diagnosed
6551     // separately.
6552     IsStaticDataMember = VD->isStaticDataMember();
6553     IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6554                    VarDecl::DeclarationOnly;
6555   } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6556     IsInline = FD->isInlined();
6557     IsQualifiedFriend = FD->getQualifier() &&
6558                         FD->getFriendObjectKind() == Decl::FOK_Declared;
6559   }
6560 
6561   if (OldImportAttr && !HasNewAttr &&
6562       (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember &&
6563       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6564     if (IsMicrosoftABI && IsDefinition) {
6565       S.Diag(NewDecl->getLocation(),
6566              diag::warn_redeclaration_without_import_attribute)
6567           << NewDecl;
6568       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6569       NewDecl->dropAttr<DLLImportAttr>();
6570       NewDecl->addAttr(
6571           DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange()));
6572     } else {
6573       S.Diag(NewDecl->getLocation(),
6574              diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6575           << NewDecl << OldImportAttr;
6576       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6577       S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6578       OldDecl->dropAttr<DLLImportAttr>();
6579       NewDecl->dropAttr<DLLImportAttr>();
6580     }
6581   } else if (IsInline && OldImportAttr && !IsMicrosoftABI) {
6582     // In MinGW, seeing a function declared inline drops the dllimport
6583     // attribute.
6584     OldDecl->dropAttr<DLLImportAttr>();
6585     NewDecl->dropAttr<DLLImportAttr>();
6586     S.Diag(NewDecl->getLocation(),
6587            diag::warn_dllimport_dropped_from_inline_function)
6588         << NewDecl << OldImportAttr;
6589   }
6590 
6591   // A specialization of a class template member function is processed here
6592   // since it's a redeclaration. If the parent class is dllexport, the
6593   // specialization inherits that attribute. This doesn't happen automatically
6594   // since the parent class isn't instantiated until later.
6595   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6596     if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6597         !NewImportAttr && !NewExportAttr) {
6598       if (const DLLExportAttr *ParentExportAttr =
6599               MD->getParent()->getAttr<DLLExportAttr>()) {
6600         DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6601         NewAttr->setInherited(true);
6602         NewDecl->addAttr(NewAttr);
6603       }
6604     }
6605   }
6606 }
6607 
6608 /// Given that we are within the definition of the given function,
6609 /// will that definition behave like C99's 'inline', where the
6610 /// definition is discarded except for optimization purposes?
6611 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6612   // Try to avoid calling GetGVALinkageForFunction.
6613 
6614   // All cases of this require the 'inline' keyword.
6615   if (!FD->isInlined()) return false;
6616 
6617   // This is only possible in C++ with the gnu_inline attribute.
6618   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6619     return false;
6620 
6621   // Okay, go ahead and call the relatively-more-expensive function.
6622   return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6623 }
6624 
6625 /// Determine whether a variable is extern "C" prior to attaching
6626 /// an initializer. We can't just call isExternC() here, because that
6627 /// will also compute and cache whether the declaration is externally
6628 /// visible, which might change when we attach the initializer.
6629 ///
6630 /// This can only be used if the declaration is known to not be a
6631 /// redeclaration of an internal linkage declaration.
6632 ///
6633 /// For instance:
6634 ///
6635 ///   auto x = []{};
6636 ///
6637 /// Attaching the initializer here makes this declaration not externally
6638 /// visible, because its type has internal linkage.
6639 ///
6640 /// FIXME: This is a hack.
6641 template<typename T>
6642 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6643   if (S.getLangOpts().CPlusPlus) {
6644     // In C++, the overloadable attribute negates the effects of extern "C".
6645     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6646       return false;
6647 
6648     // So do CUDA's host/device attributes.
6649     if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6650                                  D->template hasAttr<CUDAHostAttr>()))
6651       return false;
6652   }
6653   return D->isExternC();
6654 }
6655 
6656 static bool shouldConsiderLinkage(const VarDecl *VD) {
6657   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6658   if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
6659       isa<OMPDeclareMapperDecl>(DC))
6660     return VD->hasExternalStorage();
6661   if (DC->isFileContext())
6662     return true;
6663   if (DC->isRecord())
6664     return false;
6665   if (isa<RequiresExprBodyDecl>(DC))
6666     return false;
6667   llvm_unreachable("Unexpected context");
6668 }
6669 
6670 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6671   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6672   if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6673       isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
6674     return true;
6675   if (DC->isRecord())
6676     return false;
6677   llvm_unreachable("Unexpected context");
6678 }
6679 
6680 static bool hasParsedAttr(Scope *S, const Declarator &PD,
6681                           ParsedAttr::Kind Kind) {
6682   // Check decl attributes on the DeclSpec.
6683   if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6684     return true;
6685 
6686   // Walk the declarator structure, checking decl attributes that were in a type
6687   // position to the decl itself.
6688   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6689     if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6690       return true;
6691   }
6692 
6693   // Finally, check attributes on the decl itself.
6694   return PD.getAttributes().hasAttribute(Kind);
6695 }
6696 
6697 /// Adjust the \c DeclContext for a function or variable that might be a
6698 /// function-local external declaration.
6699 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6700   if (!DC->isFunctionOrMethod())
6701     return false;
6702 
6703   // If this is a local extern function or variable declared within a function
6704   // template, don't add it into the enclosing namespace scope until it is
6705   // instantiated; it might have a dependent type right now.
6706   if (DC->isDependentContext())
6707     return true;
6708 
6709   // C++11 [basic.link]p7:
6710   //   When a block scope declaration of an entity with linkage is not found to
6711   //   refer to some other declaration, then that entity is a member of the
6712   //   innermost enclosing namespace.
6713   //
6714   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6715   // semantically-enclosing namespace, not a lexically-enclosing one.
6716   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6717     DC = DC->getParent();
6718   return true;
6719 }
6720 
6721 /// Returns true if given declaration has external C language linkage.
6722 static bool isDeclExternC(const Decl *D) {
6723   if (const auto *FD = dyn_cast<FunctionDecl>(D))
6724     return FD->isExternC();
6725   if (const auto *VD = dyn_cast<VarDecl>(D))
6726     return VD->isExternC();
6727 
6728   llvm_unreachable("Unknown type of decl!");
6729 }
6730 /// Returns true if there hasn't been any invalid type diagnosed.
6731 static bool diagnoseOpenCLTypes(Scope *S, Sema &Se, Declarator &D,
6732                                 DeclContext *DC, QualType R) {
6733   // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6734   // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6735   // argument.
6736   if (R->isImageType() || R->isPipeType()) {
6737     Se.Diag(D.getIdentifierLoc(),
6738             diag::err_opencl_type_can_only_be_used_as_function_parameter)
6739         << R;
6740     D.setInvalidType();
6741     return false;
6742   }
6743 
6744   // OpenCL v1.2 s6.9.r:
6745   // The event type cannot be used to declare a program scope variable.
6746   // OpenCL v2.0 s6.9.q:
6747   // The clk_event_t and reserve_id_t types cannot be declared in program
6748   // scope.
6749   if (NULL == S->getParent()) {
6750     if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6751       Se.Diag(D.getIdentifierLoc(),
6752               diag::err_invalid_type_for_program_scope_var)
6753           << R;
6754       D.setInvalidType();
6755       return false;
6756     }
6757   }
6758 
6759   // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6760   if (!Se.getOpenCLOptions().isEnabled("__cl_clang_function_pointers")) {
6761     QualType NR = R;
6762     while (NR->isPointerType() || NR->isMemberFunctionPointerType()) {
6763       if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType()) {
6764         Se.Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
6765         D.setInvalidType();
6766         return false;
6767       }
6768       NR = NR->getPointeeType();
6769     }
6770   }
6771 
6772   if (!Se.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
6773     // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6774     // half array type (unless the cl_khr_fp16 extension is enabled).
6775     if (Se.Context.getBaseElementType(R)->isHalfType()) {
6776       Se.Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
6777       D.setInvalidType();
6778       return false;
6779     }
6780   }
6781 
6782   // OpenCL v1.2 s6.9.r:
6783   // The event type cannot be used with the __local, __constant and __global
6784   // address space qualifiers.
6785   if (R->isEventT()) {
6786     if (R.getAddressSpace() != LangAS::opencl_private) {
6787       Se.Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual);
6788       D.setInvalidType();
6789       return false;
6790     }
6791   }
6792 
6793   // C++ for OpenCL does not allow the thread_local storage qualifier.
6794   // OpenCL C does not support thread_local either, and
6795   // also reject all other thread storage class specifiers.
6796   DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
6797   if (TSC != TSCS_unspecified) {
6798     bool IsCXX = Se.getLangOpts().OpenCLCPlusPlus;
6799     Se.Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6800             diag::err_opencl_unknown_type_specifier)
6801         << IsCXX << Se.getLangOpts().getOpenCLVersionTuple().getAsString()
6802         << DeclSpec::getSpecifierName(TSC) << 1;
6803     D.setInvalidType();
6804     return false;
6805   }
6806 
6807   if (R->isSamplerT()) {
6808     // OpenCL v1.2 s6.9.b p4:
6809     // The sampler type cannot be used with the __local and __global address
6810     // space qualifiers.
6811     if (R.getAddressSpace() == LangAS::opencl_local ||
6812         R.getAddressSpace() == LangAS::opencl_global) {
6813       Se.Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
6814       D.setInvalidType();
6815     }
6816 
6817     // OpenCL v1.2 s6.12.14.1:
6818     // A global sampler must be declared with either the constant address
6819     // space qualifier or with the const qualifier.
6820     if (DC->isTranslationUnit() &&
6821         !(R.getAddressSpace() == LangAS::opencl_constant ||
6822           R.isConstQualified())) {
6823       Se.Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
6824       D.setInvalidType();
6825     }
6826     if (D.isInvalidType())
6827       return false;
6828   }
6829   return true;
6830 }
6831 
6832 NamedDecl *Sema::ActOnVariableDeclarator(
6833     Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6834     LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6835     bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6836   QualType R = TInfo->getType();
6837   DeclarationName Name = GetNameForDeclarator(D).getName();
6838 
6839   IdentifierInfo *II = Name.getAsIdentifierInfo();
6840 
6841   if (D.isDecompositionDeclarator()) {
6842     // Take the name of the first declarator as our name for diagnostic
6843     // purposes.
6844     auto &Decomp = D.getDecompositionDeclarator();
6845     if (!Decomp.bindings().empty()) {
6846       II = Decomp.bindings()[0].Name;
6847       Name = II;
6848     }
6849   } else if (!II) {
6850     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6851     return nullptr;
6852   }
6853 
6854 
6855   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6856   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6857 
6858   // dllimport globals without explicit storage class are treated as extern. We
6859   // have to change the storage class this early to get the right DeclContext.
6860   if (SC == SC_None && !DC->isRecord() &&
6861       hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6862       !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6863     SC = SC_Extern;
6864 
6865   DeclContext *OriginalDC = DC;
6866   bool IsLocalExternDecl = SC == SC_Extern &&
6867                            adjustContextForLocalExternDecl(DC);
6868 
6869   if (SCSpec == DeclSpec::SCS_mutable) {
6870     // mutable can only appear on non-static class members, so it's always
6871     // an error here
6872     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6873     D.setInvalidType();
6874     SC = SC_None;
6875   }
6876 
6877   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6878       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6879                               D.getDeclSpec().getStorageClassSpecLoc())) {
6880     // In C++11, the 'register' storage class specifier is deprecated.
6881     // Suppress the warning in system macros, it's used in macros in some
6882     // popular C system headers, such as in glibc's htonl() macro.
6883     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6884          getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6885                                    : diag::warn_deprecated_register)
6886       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6887   }
6888 
6889   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6890 
6891   if (!DC->isRecord() && S->getFnParent() == nullptr) {
6892     // C99 6.9p2: The storage-class specifiers auto and register shall not
6893     // appear in the declaration specifiers in an external declaration.
6894     // Global Register+Asm is a GNU extension we support.
6895     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6896       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6897       D.setInvalidType();
6898     }
6899   }
6900 
6901   // If this variable has a variable-modified type and an initializer, try to
6902   // fold to a constant-sized type. This is otherwise invalid.
6903   if (D.hasInitializer() && R->isVariablyModifiedType())
6904     tryToFixVariablyModifiedVarType(*this, TInfo, R, D.getIdentifierLoc(),
6905                                     /*DiagID=*/0);
6906 
6907   bool IsMemberSpecialization = false;
6908   bool IsVariableTemplateSpecialization = false;
6909   bool IsPartialSpecialization = false;
6910   bool IsVariableTemplate = false;
6911   VarDecl *NewVD = nullptr;
6912   VarTemplateDecl *NewTemplate = nullptr;
6913   TemplateParameterList *TemplateParams = nullptr;
6914   if (!getLangOpts().CPlusPlus) {
6915     NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
6916                             II, R, TInfo, SC);
6917 
6918     if (R->getContainedDeducedType())
6919       ParsingInitForAutoVars.insert(NewVD);
6920 
6921     if (D.isInvalidType())
6922       NewVD->setInvalidDecl();
6923 
6924     if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
6925         NewVD->hasLocalStorage())
6926       checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
6927                             NTCUC_AutoVar, NTCUK_Destruct);
6928   } else {
6929     bool Invalid = false;
6930 
6931     if (DC->isRecord() && !CurContext->isRecord()) {
6932       // This is an out-of-line definition of a static data member.
6933       switch (SC) {
6934       case SC_None:
6935         break;
6936       case SC_Static:
6937         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6938              diag::err_static_out_of_line)
6939           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6940         break;
6941       case SC_Auto:
6942       case SC_Register:
6943       case SC_Extern:
6944         // [dcl.stc] p2: The auto or register specifiers shall be applied only
6945         // to names of variables declared in a block or to function parameters.
6946         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
6947         // of class members
6948 
6949         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6950              diag::err_storage_class_for_static_member)
6951           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6952         break;
6953       case SC_PrivateExtern:
6954         llvm_unreachable("C storage class in c++!");
6955       }
6956     }
6957 
6958     if (SC == SC_Static && CurContext->isRecord()) {
6959       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
6960         // Walk up the enclosing DeclContexts to check for any that are
6961         // incompatible with static data members.
6962         const DeclContext *FunctionOrMethod = nullptr;
6963         const CXXRecordDecl *AnonStruct = nullptr;
6964         for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) {
6965           if (Ctxt->isFunctionOrMethod()) {
6966             FunctionOrMethod = Ctxt;
6967             break;
6968           }
6969           const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt);
6970           if (ParentDecl && !ParentDecl->getDeclName()) {
6971             AnonStruct = ParentDecl;
6972             break;
6973           }
6974         }
6975         if (FunctionOrMethod) {
6976           // C++ [class.static.data]p5: A local class shall not have static data
6977           // members.
6978           Diag(D.getIdentifierLoc(),
6979                diag::err_static_data_member_not_allowed_in_local_class)
6980             << Name << RD->getDeclName() << RD->getTagKind();
6981         } else if (AnonStruct) {
6982           // C++ [class.static.data]p4: Unnamed classes and classes contained
6983           // directly or indirectly within unnamed classes shall not contain
6984           // static data members.
6985           Diag(D.getIdentifierLoc(),
6986                diag::err_static_data_member_not_allowed_in_anon_struct)
6987             << Name << AnonStruct->getTagKind();
6988           Invalid = true;
6989         } else if (RD->isUnion()) {
6990           // C++98 [class.union]p1: If a union contains a static data member,
6991           // the program is ill-formed. C++11 drops this restriction.
6992           Diag(D.getIdentifierLoc(),
6993                getLangOpts().CPlusPlus11
6994                  ? diag::warn_cxx98_compat_static_data_member_in_union
6995                  : diag::ext_static_data_member_in_union) << Name;
6996         }
6997       }
6998     }
6999 
7000     // Match up the template parameter lists with the scope specifier, then
7001     // determine whether we have a template or a template specialization.
7002     bool InvalidScope = false;
7003     TemplateParams = MatchTemplateParametersToScopeSpecifier(
7004         D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
7005         D.getCXXScopeSpec(),
7006         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
7007             ? D.getName().TemplateId
7008             : nullptr,
7009         TemplateParamLists,
7010         /*never a friend*/ false, IsMemberSpecialization, InvalidScope);
7011     Invalid |= InvalidScope;
7012 
7013     if (TemplateParams) {
7014       if (!TemplateParams->size() &&
7015           D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
7016         // There is an extraneous 'template<>' for this variable. Complain
7017         // about it, but allow the declaration of the variable.
7018         Diag(TemplateParams->getTemplateLoc(),
7019              diag::err_template_variable_noparams)
7020           << II
7021           << SourceRange(TemplateParams->getTemplateLoc(),
7022                          TemplateParams->getRAngleLoc());
7023         TemplateParams = nullptr;
7024       } else {
7025         // Check that we can declare a template here.
7026         if (CheckTemplateDeclScope(S, TemplateParams))
7027           return nullptr;
7028 
7029         if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
7030           // This is an explicit specialization or a partial specialization.
7031           IsVariableTemplateSpecialization = true;
7032           IsPartialSpecialization = TemplateParams->size() > 0;
7033         } else { // if (TemplateParams->size() > 0)
7034           // This is a template declaration.
7035           IsVariableTemplate = true;
7036 
7037           // Only C++1y supports variable templates (N3651).
7038           Diag(D.getIdentifierLoc(),
7039                getLangOpts().CPlusPlus14
7040                    ? diag::warn_cxx11_compat_variable_template
7041                    : diag::ext_variable_template);
7042         }
7043       }
7044     } else {
7045       // Check that we can declare a member specialization here.
7046       if (!TemplateParamLists.empty() && IsMemberSpecialization &&
7047           CheckTemplateDeclScope(S, TemplateParamLists.back()))
7048         return nullptr;
7049       assert((Invalid ||
7050               D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
7051              "should have a 'template<>' for this decl");
7052     }
7053 
7054     if (IsVariableTemplateSpecialization) {
7055       SourceLocation TemplateKWLoc =
7056           TemplateParamLists.size() > 0
7057               ? TemplateParamLists[0]->getTemplateLoc()
7058               : SourceLocation();
7059       DeclResult Res = ActOnVarTemplateSpecialization(
7060           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
7061           IsPartialSpecialization);
7062       if (Res.isInvalid())
7063         return nullptr;
7064       NewVD = cast<VarDecl>(Res.get());
7065       AddToScope = false;
7066     } else if (D.isDecompositionDeclarator()) {
7067       NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
7068                                         D.getIdentifierLoc(), R, TInfo, SC,
7069                                         Bindings);
7070     } else
7071       NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
7072                               D.getIdentifierLoc(), II, R, TInfo, SC);
7073 
7074     // If this is supposed to be a variable template, create it as such.
7075     if (IsVariableTemplate) {
7076       NewTemplate =
7077           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
7078                                   TemplateParams, NewVD);
7079       NewVD->setDescribedVarTemplate(NewTemplate);
7080     }
7081 
7082     // If this decl has an auto type in need of deduction, make a note of the
7083     // Decl so we can diagnose uses of it in its own initializer.
7084     if (R->getContainedDeducedType())
7085       ParsingInitForAutoVars.insert(NewVD);
7086 
7087     if (D.isInvalidType() || Invalid) {
7088       NewVD->setInvalidDecl();
7089       if (NewTemplate)
7090         NewTemplate->setInvalidDecl();
7091     }
7092 
7093     SetNestedNameSpecifier(*this, NewVD, D);
7094 
7095     // If we have any template parameter lists that don't directly belong to
7096     // the variable (matching the scope specifier), store them.
7097     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
7098     if (TemplateParamLists.size() > VDTemplateParamLists)
7099       NewVD->setTemplateParameterListsInfo(
7100           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
7101   }
7102 
7103   if (D.getDeclSpec().isInlineSpecified()) {
7104     if (!getLangOpts().CPlusPlus) {
7105       Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
7106           << 0;
7107     } else if (CurContext->isFunctionOrMethod()) {
7108       // 'inline' is not allowed on block scope variable declaration.
7109       Diag(D.getDeclSpec().getInlineSpecLoc(),
7110            diag::err_inline_declaration_block_scope) << Name
7111         << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7112     } else {
7113       Diag(D.getDeclSpec().getInlineSpecLoc(),
7114            getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
7115                                      : diag::ext_inline_variable);
7116       NewVD->setInlineSpecified();
7117     }
7118   }
7119 
7120   // Set the lexical context. If the declarator has a C++ scope specifier, the
7121   // lexical context will be different from the semantic context.
7122   NewVD->setLexicalDeclContext(CurContext);
7123   if (NewTemplate)
7124     NewTemplate->setLexicalDeclContext(CurContext);
7125 
7126   if (IsLocalExternDecl) {
7127     if (D.isDecompositionDeclarator())
7128       for (auto *B : Bindings)
7129         B->setLocalExternDecl();
7130     else
7131       NewVD->setLocalExternDecl();
7132   }
7133 
7134   bool EmitTLSUnsupportedError = false;
7135   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
7136     // C++11 [dcl.stc]p4:
7137     //   When thread_local is applied to a variable of block scope the
7138     //   storage-class-specifier static is implied if it does not appear
7139     //   explicitly.
7140     // Core issue: 'static' is not implied if the variable is declared
7141     //   'extern'.
7142     if (NewVD->hasLocalStorage() &&
7143         (SCSpec != DeclSpec::SCS_unspecified ||
7144          TSCS != DeclSpec::TSCS_thread_local ||
7145          !DC->isFunctionOrMethod()))
7146       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7147            diag::err_thread_non_global)
7148         << DeclSpec::getSpecifierName(TSCS);
7149     else if (!Context.getTargetInfo().isTLSSupported()) {
7150       if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7151           getLangOpts().SYCLIsDevice) {
7152         // Postpone error emission until we've collected attributes required to
7153         // figure out whether it's a host or device variable and whether the
7154         // error should be ignored.
7155         EmitTLSUnsupportedError = true;
7156         // We still need to mark the variable as TLS so it shows up in AST with
7157         // proper storage class for other tools to use even if we're not going
7158         // to emit any code for it.
7159         NewVD->setTSCSpec(TSCS);
7160       } else
7161         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7162              diag::err_thread_unsupported);
7163     } else
7164       NewVD->setTSCSpec(TSCS);
7165   }
7166 
7167   switch (D.getDeclSpec().getConstexprSpecifier()) {
7168   case ConstexprSpecKind::Unspecified:
7169     break;
7170 
7171   case ConstexprSpecKind::Consteval:
7172     Diag(D.getDeclSpec().getConstexprSpecLoc(),
7173          diag::err_constexpr_wrong_decl_kind)
7174         << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
7175     LLVM_FALLTHROUGH;
7176 
7177   case ConstexprSpecKind::Constexpr:
7178     NewVD->setConstexpr(true);
7179     MaybeAddCUDAConstantAttr(NewVD);
7180     // C++1z [dcl.spec.constexpr]p1:
7181     //   A static data member declared with the constexpr specifier is
7182     //   implicitly an inline variable.
7183     if (NewVD->isStaticDataMember() &&
7184         (getLangOpts().CPlusPlus17 ||
7185          Context.getTargetInfo().getCXXABI().isMicrosoft()))
7186       NewVD->setImplicitlyInline();
7187     break;
7188 
7189   case ConstexprSpecKind::Constinit:
7190     if (!NewVD->hasGlobalStorage())
7191       Diag(D.getDeclSpec().getConstexprSpecLoc(),
7192            diag::err_constinit_local_variable);
7193     else
7194       NewVD->addAttr(ConstInitAttr::Create(
7195           Context, D.getDeclSpec().getConstexprSpecLoc(),
7196           AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit));
7197     break;
7198   }
7199 
7200   // C99 6.7.4p3
7201   //   An inline definition of a function with external linkage shall
7202   //   not contain a definition of a modifiable object with static or
7203   //   thread storage duration...
7204   // We only apply this when the function is required to be defined
7205   // elsewhere, i.e. when the function is not 'extern inline'.  Note
7206   // that a local variable with thread storage duration still has to
7207   // be marked 'static'.  Also note that it's possible to get these
7208   // semantics in C++ using __attribute__((gnu_inline)).
7209   if (SC == SC_Static && S->getFnParent() != nullptr &&
7210       !NewVD->getType().isConstQualified()) {
7211     FunctionDecl *CurFD = getCurFunctionDecl();
7212     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
7213       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7214            diag::warn_static_local_in_extern_inline);
7215       MaybeSuggestAddingStaticToDecl(CurFD);
7216     }
7217   }
7218 
7219   if (D.getDeclSpec().isModulePrivateSpecified()) {
7220     if (IsVariableTemplateSpecialization)
7221       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7222           << (IsPartialSpecialization ? 1 : 0)
7223           << FixItHint::CreateRemoval(
7224                  D.getDeclSpec().getModulePrivateSpecLoc());
7225     else if (IsMemberSpecialization)
7226       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7227         << 2
7228         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7229     else if (NewVD->hasLocalStorage())
7230       Diag(NewVD->getLocation(), diag::err_module_private_local)
7231           << 0 << NewVD
7232           << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7233           << FixItHint::CreateRemoval(
7234                  D.getDeclSpec().getModulePrivateSpecLoc());
7235     else {
7236       NewVD->setModulePrivate();
7237       if (NewTemplate)
7238         NewTemplate->setModulePrivate();
7239       for (auto *B : Bindings)
7240         B->setModulePrivate();
7241     }
7242   }
7243 
7244   if (getLangOpts().OpenCL) {
7245 
7246     deduceOpenCLAddressSpace(NewVD);
7247 
7248     diagnoseOpenCLTypes(S, *this, D, DC, NewVD->getType());
7249   }
7250 
7251   // Handle attributes prior to checking for duplicates in MergeVarDecl
7252   ProcessDeclAttributes(S, NewVD, D);
7253 
7254   if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7255       getLangOpts().SYCLIsDevice) {
7256     if (EmitTLSUnsupportedError &&
7257         ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
7258          (getLangOpts().OpenMPIsDevice &&
7259           OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
7260       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7261            diag::err_thread_unsupported);
7262 
7263     if (EmitTLSUnsupportedError &&
7264         (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)))
7265       targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported);
7266     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
7267     // storage [duration]."
7268     if (SC == SC_None && S->getFnParent() != nullptr &&
7269         (NewVD->hasAttr<CUDASharedAttr>() ||
7270          NewVD->hasAttr<CUDAConstantAttr>())) {
7271       NewVD->setStorageClass(SC_Static);
7272     }
7273   }
7274 
7275   // Ensure that dllimport globals without explicit storage class are treated as
7276   // extern. The storage class is set above using parsed attributes. Now we can
7277   // check the VarDecl itself.
7278   assert(!NewVD->hasAttr<DLLImportAttr>() ||
7279          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
7280          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
7281 
7282   // In auto-retain/release, infer strong retension for variables of
7283   // retainable type.
7284   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
7285     NewVD->setInvalidDecl();
7286 
7287   // Handle GNU asm-label extension (encoded as an attribute).
7288   if (Expr *E = (Expr*)D.getAsmLabel()) {
7289     // The parser guarantees this is a string.
7290     StringLiteral *SE = cast<StringLiteral>(E);
7291     StringRef Label = SE->getString();
7292     if (S->getFnParent() != nullptr) {
7293       switch (SC) {
7294       case SC_None:
7295       case SC_Auto:
7296         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
7297         break;
7298       case SC_Register:
7299         // Local Named register
7300         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
7301             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
7302           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7303         break;
7304       case SC_Static:
7305       case SC_Extern:
7306       case SC_PrivateExtern:
7307         break;
7308       }
7309     } else if (SC == SC_Register) {
7310       // Global Named register
7311       if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
7312         const auto &TI = Context.getTargetInfo();
7313         bool HasSizeMismatch;
7314 
7315         if (!TI.isValidGCCRegisterName(Label))
7316           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7317         else if (!TI.validateGlobalRegisterVariable(Label,
7318                                                     Context.getTypeSize(R),
7319                                                     HasSizeMismatch))
7320           Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
7321         else if (HasSizeMismatch)
7322           Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
7323       }
7324 
7325       if (!R->isIntegralType(Context) && !R->isPointerType()) {
7326         Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
7327         NewVD->setInvalidDecl(true);
7328       }
7329     }
7330 
7331     NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
7332                                         /*IsLiteralLabel=*/true,
7333                                         SE->getStrTokenLoc(0)));
7334   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7335     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7336       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
7337     if (I != ExtnameUndeclaredIdentifiers.end()) {
7338       if (isDeclExternC(NewVD)) {
7339         NewVD->addAttr(I->second);
7340         ExtnameUndeclaredIdentifiers.erase(I);
7341       } else
7342         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
7343             << /*Variable*/1 << NewVD;
7344     }
7345   }
7346 
7347   // Find the shadowed declaration before filtering for scope.
7348   NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
7349                                 ? getShadowedDeclaration(NewVD, Previous)
7350                                 : nullptr;
7351 
7352   // Don't consider existing declarations that are in a different
7353   // scope and are out-of-semantic-context declarations (if the new
7354   // declaration has linkage).
7355   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
7356                        D.getCXXScopeSpec().isNotEmpty() ||
7357                        IsMemberSpecialization ||
7358                        IsVariableTemplateSpecialization);
7359 
7360   // Check whether the previous declaration is in the same block scope. This
7361   // affects whether we merge types with it, per C++11 [dcl.array]p3.
7362   if (getLangOpts().CPlusPlus &&
7363       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
7364     NewVD->setPreviousDeclInSameBlockScope(
7365         Previous.isSingleResult() && !Previous.isShadowed() &&
7366         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
7367 
7368   if (!getLangOpts().CPlusPlus) {
7369     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7370   } else {
7371     // If this is an explicit specialization of a static data member, check it.
7372     if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
7373         CheckMemberSpecialization(NewVD, Previous))
7374       NewVD->setInvalidDecl();
7375 
7376     // Merge the decl with the existing one if appropriate.
7377     if (!Previous.empty()) {
7378       if (Previous.isSingleResult() &&
7379           isa<FieldDecl>(Previous.getFoundDecl()) &&
7380           D.getCXXScopeSpec().isSet()) {
7381         // The user tried to define a non-static data member
7382         // out-of-line (C++ [dcl.meaning]p1).
7383         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
7384           << D.getCXXScopeSpec().getRange();
7385         Previous.clear();
7386         NewVD->setInvalidDecl();
7387       }
7388     } else if (D.getCXXScopeSpec().isSet()) {
7389       // No previous declaration in the qualifying scope.
7390       Diag(D.getIdentifierLoc(), diag::err_no_member)
7391         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
7392         << D.getCXXScopeSpec().getRange();
7393       NewVD->setInvalidDecl();
7394     }
7395 
7396     if (!IsVariableTemplateSpecialization)
7397       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7398 
7399     if (NewTemplate) {
7400       VarTemplateDecl *PrevVarTemplate =
7401           NewVD->getPreviousDecl()
7402               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
7403               : nullptr;
7404 
7405       // Check the template parameter list of this declaration, possibly
7406       // merging in the template parameter list from the previous variable
7407       // template declaration.
7408       if (CheckTemplateParameterList(
7409               TemplateParams,
7410               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
7411                               : nullptr,
7412               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
7413                DC->isDependentContext())
7414                   ? TPC_ClassTemplateMember
7415                   : TPC_VarTemplate))
7416         NewVD->setInvalidDecl();
7417 
7418       // If we are providing an explicit specialization of a static variable
7419       // template, make a note of that.
7420       if (PrevVarTemplate &&
7421           PrevVarTemplate->getInstantiatedFromMemberTemplate())
7422         PrevVarTemplate->setMemberSpecialization();
7423     }
7424   }
7425 
7426   // Diagnose shadowed variables iff this isn't a redeclaration.
7427   if (ShadowedDecl && !D.isRedeclaration())
7428     CheckShadow(NewVD, ShadowedDecl, Previous);
7429 
7430   ProcessPragmaWeak(S, NewVD);
7431 
7432   // If this is the first declaration of an extern C variable, update
7433   // the map of such variables.
7434   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
7435       isIncompleteDeclExternC(*this, NewVD))
7436     RegisterLocallyScopedExternCDecl(NewVD, S);
7437 
7438   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
7439     MangleNumberingContext *MCtx;
7440     Decl *ManglingContextDecl;
7441     std::tie(MCtx, ManglingContextDecl) =
7442         getCurrentMangleNumberContext(NewVD->getDeclContext());
7443     if (MCtx) {
7444       Context.setManglingNumber(
7445           NewVD, MCtx->getManglingNumber(
7446                      NewVD, getMSManglingNumber(getLangOpts(), S)));
7447       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
7448     }
7449   }
7450 
7451   // Special handling of variable named 'main'.
7452   if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
7453       NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7454       !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
7455 
7456     // C++ [basic.start.main]p3
7457     // A program that declares a variable main at global scope is ill-formed.
7458     if (getLangOpts().CPlusPlus)
7459       Diag(D.getBeginLoc(), diag::err_main_global_variable);
7460 
7461     // In C, and external-linkage variable named main results in undefined
7462     // behavior.
7463     else if (NewVD->hasExternalFormalLinkage())
7464       Diag(D.getBeginLoc(), diag::warn_main_redefined);
7465   }
7466 
7467   if (D.isRedeclaration() && !Previous.empty()) {
7468     NamedDecl *Prev = Previous.getRepresentativeDecl();
7469     checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
7470                                    D.isFunctionDefinition());
7471   }
7472 
7473   if (NewTemplate) {
7474     if (NewVD->isInvalidDecl())
7475       NewTemplate->setInvalidDecl();
7476     ActOnDocumentableDecl(NewTemplate);
7477     return NewTemplate;
7478   }
7479 
7480   if (IsMemberSpecialization && !NewVD->isInvalidDecl())
7481     CompleteMemberSpecialization(NewVD, Previous);
7482 
7483   return NewVD;
7484 }
7485 
7486 /// Enum describing the %select options in diag::warn_decl_shadow.
7487 enum ShadowedDeclKind {
7488   SDK_Local,
7489   SDK_Global,
7490   SDK_StaticMember,
7491   SDK_Field,
7492   SDK_Typedef,
7493   SDK_Using
7494 };
7495 
7496 /// Determine what kind of declaration we're shadowing.
7497 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
7498                                                 const DeclContext *OldDC) {
7499   if (isa<TypeAliasDecl>(ShadowedDecl))
7500     return SDK_Using;
7501   else if (isa<TypedefDecl>(ShadowedDecl))
7502     return SDK_Typedef;
7503   else if (isa<RecordDecl>(OldDC))
7504     return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
7505 
7506   return OldDC->isFileContext() ? SDK_Global : SDK_Local;
7507 }
7508 
7509 /// Return the location of the capture if the given lambda captures the given
7510 /// variable \p VD, or an invalid source location otherwise.
7511 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
7512                                          const VarDecl *VD) {
7513   for (const Capture &Capture : LSI->Captures) {
7514     if (Capture.isVariableCapture() && Capture.getVariable() == VD)
7515       return Capture.getLocation();
7516   }
7517   return SourceLocation();
7518 }
7519 
7520 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
7521                                      const LookupResult &R) {
7522   // Only diagnose if we're shadowing an unambiguous field or variable.
7523   if (R.getResultKind() != LookupResult::Found)
7524     return false;
7525 
7526   // Return false if warning is ignored.
7527   return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
7528 }
7529 
7530 /// Return the declaration shadowed by the given variable \p D, or null
7531 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7532 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
7533                                         const LookupResult &R) {
7534   if (!shouldWarnIfShadowedDecl(Diags, R))
7535     return nullptr;
7536 
7537   // Don't diagnose declarations at file scope.
7538   if (D->hasGlobalStorage())
7539     return nullptr;
7540 
7541   NamedDecl *ShadowedDecl = R.getFoundDecl();
7542   return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
7543              ? ShadowedDecl
7544              : nullptr;
7545 }
7546 
7547 /// Return the declaration shadowed by the given typedef \p D, or null
7548 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7549 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
7550                                         const LookupResult &R) {
7551   // Don't warn if typedef declaration is part of a class
7552   if (D->getDeclContext()->isRecord())
7553     return nullptr;
7554 
7555   if (!shouldWarnIfShadowedDecl(Diags, R))
7556     return nullptr;
7557 
7558   NamedDecl *ShadowedDecl = R.getFoundDecl();
7559   return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7560 }
7561 
7562 /// Diagnose variable or built-in function shadowing.  Implements
7563 /// -Wshadow.
7564 ///
7565 /// This method is called whenever a VarDecl is added to a "useful"
7566 /// scope.
7567 ///
7568 /// \param ShadowedDecl the declaration that is shadowed by the given variable
7569 /// \param R the lookup of the name
7570 ///
7571 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7572                        const LookupResult &R) {
7573   DeclContext *NewDC = D->getDeclContext();
7574 
7575   if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7576     // Fields are not shadowed by variables in C++ static methods.
7577     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7578       if (MD->isStatic())
7579         return;
7580 
7581     // Fields shadowed by constructor parameters are a special case. Usually
7582     // the constructor initializes the field with the parameter.
7583     if (isa<CXXConstructorDecl>(NewDC))
7584       if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7585         // Remember that this was shadowed so we can either warn about its
7586         // modification or its existence depending on warning settings.
7587         ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7588         return;
7589       }
7590   }
7591 
7592   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7593     if (shadowedVar->isExternC()) {
7594       // For shadowing external vars, make sure that we point to the global
7595       // declaration, not a locally scoped extern declaration.
7596       for (auto I : shadowedVar->redecls())
7597         if (I->isFileVarDecl()) {
7598           ShadowedDecl = I;
7599           break;
7600         }
7601     }
7602 
7603   DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7604 
7605   unsigned WarningDiag = diag::warn_decl_shadow;
7606   SourceLocation CaptureLoc;
7607   if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7608       isa<CXXMethodDecl>(NewDC)) {
7609     if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7610       if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7611         if (RD->getLambdaCaptureDefault() == LCD_None) {
7612           // Try to avoid warnings for lambdas with an explicit capture list.
7613           const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7614           // Warn only when the lambda captures the shadowed decl explicitly.
7615           CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7616           if (CaptureLoc.isInvalid())
7617             WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7618         } else {
7619           // Remember that this was shadowed so we can avoid the warning if the
7620           // shadowed decl isn't captured and the warning settings allow it.
7621           cast<LambdaScopeInfo>(getCurFunction())
7622               ->ShadowingDecls.push_back(
7623                   {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7624           return;
7625         }
7626       }
7627 
7628       if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7629         // A variable can't shadow a local variable in an enclosing scope, if
7630         // they are separated by a non-capturing declaration context.
7631         for (DeclContext *ParentDC = NewDC;
7632              ParentDC && !ParentDC->Equals(OldDC);
7633              ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7634           // Only block literals, captured statements, and lambda expressions
7635           // can capture; other scopes don't.
7636           if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7637               !isLambdaCallOperator(ParentDC)) {
7638             return;
7639           }
7640         }
7641       }
7642     }
7643   }
7644 
7645   // Only warn about certain kinds of shadowing for class members.
7646   if (NewDC && NewDC->isRecord()) {
7647     // In particular, don't warn about shadowing non-class members.
7648     if (!OldDC->isRecord())
7649       return;
7650 
7651     // TODO: should we warn about static data members shadowing
7652     // static data members from base classes?
7653 
7654     // TODO: don't diagnose for inaccessible shadowed members.
7655     // This is hard to do perfectly because we might friend the
7656     // shadowing context, but that's just a false negative.
7657   }
7658 
7659 
7660   DeclarationName Name = R.getLookupName();
7661 
7662   // Emit warning and note.
7663   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7664     return;
7665   ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7666   Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7667   if (!CaptureLoc.isInvalid())
7668     Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7669         << Name << /*explicitly*/ 1;
7670   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7671 }
7672 
7673 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7674 /// when these variables are captured by the lambda.
7675 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7676   for (const auto &Shadow : LSI->ShadowingDecls) {
7677     const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7678     // Try to avoid the warning when the shadowed decl isn't captured.
7679     SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7680     const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7681     Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7682                                        ? diag::warn_decl_shadow_uncaptured_local
7683                                        : diag::warn_decl_shadow)
7684         << Shadow.VD->getDeclName()
7685         << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7686     if (!CaptureLoc.isInvalid())
7687       Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7688           << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7689     Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7690   }
7691 }
7692 
7693 /// Check -Wshadow without the advantage of a previous lookup.
7694 void Sema::CheckShadow(Scope *S, VarDecl *D) {
7695   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7696     return;
7697 
7698   LookupResult R(*this, D->getDeclName(), D->getLocation(),
7699                  Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7700   LookupName(R, S);
7701   if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7702     CheckShadow(D, ShadowedDecl, R);
7703 }
7704 
7705 /// Check if 'E', which is an expression that is about to be modified, refers
7706 /// to a constructor parameter that shadows a field.
7707 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7708   // Quickly ignore expressions that can't be shadowing ctor parameters.
7709   if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7710     return;
7711   E = E->IgnoreParenImpCasts();
7712   auto *DRE = dyn_cast<DeclRefExpr>(E);
7713   if (!DRE)
7714     return;
7715   const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7716   auto I = ShadowingDecls.find(D);
7717   if (I == ShadowingDecls.end())
7718     return;
7719   const NamedDecl *ShadowedDecl = I->second;
7720   const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7721   Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7722   Diag(D->getLocation(), diag::note_var_declared_here) << D;
7723   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7724 
7725   // Avoid issuing multiple warnings about the same decl.
7726   ShadowingDecls.erase(I);
7727 }
7728 
7729 /// Check for conflict between this global or extern "C" declaration and
7730 /// previous global or extern "C" declarations. This is only used in C++.
7731 template<typename T>
7732 static bool checkGlobalOrExternCConflict(
7733     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7734   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
7735   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7736 
7737   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7738     // The common case: this global doesn't conflict with any extern "C"
7739     // declaration.
7740     return false;
7741   }
7742 
7743   if (Prev) {
7744     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7745       // Both the old and new declarations have C language linkage. This is a
7746       // redeclaration.
7747       Previous.clear();
7748       Previous.addDecl(Prev);
7749       return true;
7750     }
7751 
7752     // This is a global, non-extern "C" declaration, and there is a previous
7753     // non-global extern "C" declaration. Diagnose if this is a variable
7754     // declaration.
7755     if (!isa<VarDecl>(ND))
7756       return false;
7757   } else {
7758     // The declaration is extern "C". Check for any declaration in the
7759     // translation unit which might conflict.
7760     if (IsGlobal) {
7761       // We have already performed the lookup into the translation unit.
7762       IsGlobal = false;
7763       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7764            I != E; ++I) {
7765         if (isa<VarDecl>(*I)) {
7766           Prev = *I;
7767           break;
7768         }
7769       }
7770     } else {
7771       DeclContext::lookup_result R =
7772           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7773       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7774            I != E; ++I) {
7775         if (isa<VarDecl>(*I)) {
7776           Prev = *I;
7777           break;
7778         }
7779         // FIXME: If we have any other entity with this name in global scope,
7780         // the declaration is ill-formed, but that is a defect: it breaks the
7781         // 'stat' hack, for instance. Only variables can have mangled name
7782         // clashes with extern "C" declarations, so only they deserve a
7783         // diagnostic.
7784       }
7785     }
7786 
7787     if (!Prev)
7788       return false;
7789   }
7790 
7791   // Use the first declaration's location to ensure we point at something which
7792   // is lexically inside an extern "C" linkage-spec.
7793   assert(Prev && "should have found a previous declaration to diagnose");
7794   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7795     Prev = FD->getFirstDecl();
7796   else
7797     Prev = cast<VarDecl>(Prev)->getFirstDecl();
7798 
7799   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7800     << IsGlobal << ND;
7801   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7802     << IsGlobal;
7803   return false;
7804 }
7805 
7806 /// Apply special rules for handling extern "C" declarations. Returns \c true
7807 /// if we have found that this is a redeclaration of some prior entity.
7808 ///
7809 /// Per C++ [dcl.link]p6:
7810 ///   Two declarations [for a function or variable] with C language linkage
7811 ///   with the same name that appear in different scopes refer to the same
7812 ///   [entity]. An entity with C language linkage shall not be declared with
7813 ///   the same name as an entity in global scope.
7814 template<typename T>
7815 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7816                                                   LookupResult &Previous) {
7817   if (!S.getLangOpts().CPlusPlus) {
7818     // In C, when declaring a global variable, look for a corresponding 'extern'
7819     // variable declared in function scope. We don't need this in C++, because
7820     // we find local extern decls in the surrounding file-scope DeclContext.
7821     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7822       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7823         Previous.clear();
7824         Previous.addDecl(Prev);
7825         return true;
7826       }
7827     }
7828     return false;
7829   }
7830 
7831   // A declaration in the translation unit can conflict with an extern "C"
7832   // declaration.
7833   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7834     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7835 
7836   // An extern "C" declaration can conflict with a declaration in the
7837   // translation unit or can be a redeclaration of an extern "C" declaration
7838   // in another scope.
7839   if (isIncompleteDeclExternC(S,ND))
7840     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7841 
7842   // Neither global nor extern "C": nothing to do.
7843   return false;
7844 }
7845 
7846 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7847   // If the decl is already known invalid, don't check it.
7848   if (NewVD->isInvalidDecl())
7849     return;
7850 
7851   QualType T = NewVD->getType();
7852 
7853   // Defer checking an 'auto' type until its initializer is attached.
7854   if (T->isUndeducedType())
7855     return;
7856 
7857   if (NewVD->hasAttrs())
7858     CheckAlignasUnderalignment(NewVD);
7859 
7860   if (T->isObjCObjectType()) {
7861     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7862       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7863     T = Context.getObjCObjectPointerType(T);
7864     NewVD->setType(T);
7865   }
7866 
7867   // Emit an error if an address space was applied to decl with local storage.
7868   // This includes arrays of objects with address space qualifiers, but not
7869   // automatic variables that point to other address spaces.
7870   // ISO/IEC TR 18037 S5.1.2
7871   if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7872       T.getAddressSpace() != LangAS::Default) {
7873     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7874     NewVD->setInvalidDecl();
7875     return;
7876   }
7877 
7878   // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7879   // scope.
7880   if (getLangOpts().OpenCLVersion == 120 &&
7881       !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
7882       NewVD->isStaticLocal()) {
7883     Diag(NewVD->getLocation(), diag::err_static_function_scope);
7884     NewVD->setInvalidDecl();
7885     return;
7886   }
7887 
7888   if (getLangOpts().OpenCL) {
7889     // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
7890     if (NewVD->hasAttr<BlocksAttr>()) {
7891       Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
7892       return;
7893     }
7894 
7895     if (T->isBlockPointerType()) {
7896       // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
7897       // can't use 'extern' storage class.
7898       if (!T.isConstQualified()) {
7899         Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
7900             << 0 /*const*/;
7901         NewVD->setInvalidDecl();
7902         return;
7903       }
7904       if (NewVD->hasExternalStorage()) {
7905         Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
7906         NewVD->setInvalidDecl();
7907         return;
7908       }
7909     }
7910     // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the
7911     // __constant address space.
7912     // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static
7913     // variables inside a function can also be declared in the global
7914     // address space.
7915     // C++ for OpenCL inherits rule from OpenCL C v2.0.
7916     // FIXME: Adding local AS in C++ for OpenCL might make sense.
7917     if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
7918         NewVD->hasExternalStorage()) {
7919       if (!T->isSamplerT() &&
7920           !T->isDependentType() &&
7921           !(T.getAddressSpace() == LangAS::opencl_constant ||
7922             (T.getAddressSpace() == LangAS::opencl_global &&
7923              (getLangOpts().OpenCLVersion == 200 ||
7924               getLangOpts().OpenCLCPlusPlus)))) {
7925         int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
7926         if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus)
7927           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7928               << Scope << "global or constant";
7929         else
7930           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7931               << Scope << "constant";
7932         NewVD->setInvalidDecl();
7933         return;
7934       }
7935     } else {
7936       if (T.getAddressSpace() == LangAS::opencl_global) {
7937         Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7938             << 1 /*is any function*/ << "global";
7939         NewVD->setInvalidDecl();
7940         return;
7941       }
7942       if (T.getAddressSpace() == LangAS::opencl_constant ||
7943           T.getAddressSpace() == LangAS::opencl_local) {
7944         FunctionDecl *FD = getCurFunctionDecl();
7945         // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
7946         // in functions.
7947         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
7948           if (T.getAddressSpace() == LangAS::opencl_constant)
7949             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7950                 << 0 /*non-kernel only*/ << "constant";
7951           else
7952             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7953                 << 0 /*non-kernel only*/ << "local";
7954           NewVD->setInvalidDecl();
7955           return;
7956         }
7957         // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
7958         // in the outermost scope of a kernel function.
7959         if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
7960           if (!getCurScope()->isFunctionScope()) {
7961             if (T.getAddressSpace() == LangAS::opencl_constant)
7962               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7963                   << "constant";
7964             else
7965               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7966                   << "local";
7967             NewVD->setInvalidDecl();
7968             return;
7969           }
7970         }
7971       } else if (T.getAddressSpace() != LangAS::opencl_private &&
7972                  // If we are parsing a template we didn't deduce an addr
7973                  // space yet.
7974                  T.getAddressSpace() != LangAS::Default) {
7975         // Do not allow other address spaces on automatic variable.
7976         Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
7977         NewVD->setInvalidDecl();
7978         return;
7979       }
7980     }
7981   }
7982 
7983   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
7984       && !NewVD->hasAttr<BlocksAttr>()) {
7985     if (getLangOpts().getGC() != LangOptions::NonGC)
7986       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
7987     else {
7988       assert(!getLangOpts().ObjCAutoRefCount);
7989       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
7990     }
7991   }
7992 
7993   bool isVM = T->isVariablyModifiedType();
7994   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
7995       NewVD->hasAttr<BlocksAttr>())
7996     setFunctionHasBranchProtectedScope();
7997 
7998   if ((isVM && NewVD->hasLinkage()) ||
7999       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
8000     bool SizeIsNegative;
8001     llvm::APSInt Oversized;
8002     TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
8003         NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
8004     QualType FixedT;
8005     if (FixedTInfo &&  T == NewVD->getTypeSourceInfo()->getType())
8006       FixedT = FixedTInfo->getType();
8007     else if (FixedTInfo) {
8008       // Type and type-as-written are canonically different. We need to fix up
8009       // both types separately.
8010       FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
8011                                                    Oversized);
8012     }
8013     if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
8014       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
8015       // FIXME: This won't give the correct result for
8016       // int a[10][n];
8017       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
8018 
8019       if (NewVD->isFileVarDecl())
8020         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
8021         << SizeRange;
8022       else if (NewVD->isStaticLocal())
8023         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
8024         << SizeRange;
8025       else
8026         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
8027         << SizeRange;
8028       NewVD->setInvalidDecl();
8029       return;
8030     }
8031 
8032     if (!FixedTInfo) {
8033       if (NewVD->isFileVarDecl())
8034         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
8035       else
8036         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
8037       NewVD->setInvalidDecl();
8038       return;
8039     }
8040 
8041     Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant);
8042     NewVD->setType(FixedT);
8043     NewVD->setTypeSourceInfo(FixedTInfo);
8044   }
8045 
8046   if (T->isVoidType()) {
8047     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8048     //                    of objects and functions.
8049     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
8050       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
8051         << T;
8052       NewVD->setInvalidDecl();
8053       return;
8054     }
8055   }
8056 
8057   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
8058     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
8059     NewVD->setInvalidDecl();
8060     return;
8061   }
8062 
8063   if (!NewVD->hasLocalStorage() && T->isSizelessType()) {
8064     Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T;
8065     NewVD->setInvalidDecl();
8066     return;
8067   }
8068 
8069   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
8070     Diag(NewVD->getLocation(), diag::err_block_on_vm);
8071     NewVD->setInvalidDecl();
8072     return;
8073   }
8074 
8075   if (NewVD->isConstexpr() && !T->isDependentType() &&
8076       RequireLiteralType(NewVD->getLocation(), T,
8077                          diag::err_constexpr_var_non_literal)) {
8078     NewVD->setInvalidDecl();
8079     return;
8080   }
8081 
8082   // PPC MMA non-pointer types are not allowed as non-local variable types.
8083   if (Context.getTargetInfo().getTriple().isPPC64() &&
8084       !NewVD->isLocalVarDecl() &&
8085       CheckPPCMMAType(T, NewVD->getLocation())) {
8086     NewVD->setInvalidDecl();
8087     return;
8088   }
8089 }
8090 
8091 /// Perform semantic checking on a newly-created variable
8092 /// declaration.
8093 ///
8094 /// This routine performs all of the type-checking required for a
8095 /// variable declaration once it has been built. It is used both to
8096 /// check variables after they have been parsed and their declarators
8097 /// have been translated into a declaration, and to check variables
8098 /// that have been instantiated from a template.
8099 ///
8100 /// Sets NewVD->isInvalidDecl() if an error was encountered.
8101 ///
8102 /// Returns true if the variable declaration is a redeclaration.
8103 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
8104   CheckVariableDeclarationType(NewVD);
8105 
8106   // If the decl is already known invalid, don't check it.
8107   if (NewVD->isInvalidDecl())
8108     return false;
8109 
8110   // If we did not find anything by this name, look for a non-visible
8111   // extern "C" declaration with the same name.
8112   if (Previous.empty() &&
8113       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
8114     Previous.setShadowed();
8115 
8116   if (!Previous.empty()) {
8117     MergeVarDecl(NewVD, Previous);
8118     return true;
8119   }
8120   return false;
8121 }
8122 
8123 /// AddOverriddenMethods - See if a method overrides any in the base classes,
8124 /// and if so, check that it's a valid override and remember it.
8125 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
8126   llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden;
8127 
8128   // Look for methods in base classes that this method might override.
8129   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8130                      /*DetectVirtual=*/false);
8131   auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
8132     CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
8133     DeclarationName Name = MD->getDeclName();
8134 
8135     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8136       // We really want to find the base class destructor here.
8137       QualType T = Context.getTypeDeclType(BaseRecord);
8138       CanQualType CT = Context.getCanonicalType(T);
8139       Name = Context.DeclarationNames.getCXXDestructorName(CT);
8140     }
8141 
8142     for (NamedDecl *BaseND : BaseRecord->lookup(Name)) {
8143       CXXMethodDecl *BaseMD =
8144           dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl());
8145       if (!BaseMD || !BaseMD->isVirtual() ||
8146           IsOverload(MD, BaseMD, /*UseMemberUsingDeclRules=*/false,
8147                      /*ConsiderCudaAttrs=*/true,
8148                      // C++2a [class.virtual]p2 does not consider requires
8149                      // clauses when overriding.
8150                      /*ConsiderRequiresClauses=*/false))
8151         continue;
8152 
8153       if (Overridden.insert(BaseMD).second) {
8154         MD->addOverriddenMethod(BaseMD);
8155         CheckOverridingFunctionReturnType(MD, BaseMD);
8156         CheckOverridingFunctionAttributes(MD, BaseMD);
8157         CheckOverridingFunctionExceptionSpec(MD, BaseMD);
8158         CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD);
8159       }
8160 
8161       // A method can only override one function from each base class. We
8162       // don't track indirectly overridden methods from bases of bases.
8163       return true;
8164     }
8165 
8166     return false;
8167   };
8168 
8169   DC->lookupInBases(VisitBase, Paths);
8170   return !Overridden.empty();
8171 }
8172 
8173 namespace {
8174   // Struct for holding all of the extra arguments needed by
8175   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
8176   struct ActOnFDArgs {
8177     Scope *S;
8178     Declarator &D;
8179     MultiTemplateParamsArg TemplateParamLists;
8180     bool AddToScope;
8181   };
8182 } // end anonymous namespace
8183 
8184 namespace {
8185 
8186 // Callback to only accept typo corrections that have a non-zero edit distance.
8187 // Also only accept corrections that have the same parent decl.
8188 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
8189  public:
8190   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
8191                             CXXRecordDecl *Parent)
8192       : Context(Context), OriginalFD(TypoFD),
8193         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
8194 
8195   bool ValidateCandidate(const TypoCorrection &candidate) override {
8196     if (candidate.getEditDistance() == 0)
8197       return false;
8198 
8199     SmallVector<unsigned, 1> MismatchedParams;
8200     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
8201                                           CDeclEnd = candidate.end();
8202          CDecl != CDeclEnd; ++CDecl) {
8203       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8204 
8205       if (FD && !FD->hasBody() &&
8206           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
8207         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8208           CXXRecordDecl *Parent = MD->getParent();
8209           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
8210             return true;
8211         } else if (!ExpectedParent) {
8212           return true;
8213         }
8214       }
8215     }
8216 
8217     return false;
8218   }
8219 
8220   std::unique_ptr<CorrectionCandidateCallback> clone() override {
8221     return std::make_unique<DifferentNameValidatorCCC>(*this);
8222   }
8223 
8224  private:
8225   ASTContext &Context;
8226   FunctionDecl *OriginalFD;
8227   CXXRecordDecl *ExpectedParent;
8228 };
8229 
8230 } // end anonymous namespace
8231 
8232 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
8233   TypoCorrectedFunctionDefinitions.insert(F);
8234 }
8235 
8236 /// Generate diagnostics for an invalid function redeclaration.
8237 ///
8238 /// This routine handles generating the diagnostic messages for an invalid
8239 /// function redeclaration, including finding possible similar declarations
8240 /// or performing typo correction if there are no previous declarations with
8241 /// the same name.
8242 ///
8243 /// Returns a NamedDecl iff typo correction was performed and substituting in
8244 /// the new declaration name does not cause new errors.
8245 static NamedDecl *DiagnoseInvalidRedeclaration(
8246     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
8247     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
8248   DeclarationName Name = NewFD->getDeclName();
8249   DeclContext *NewDC = NewFD->getDeclContext();
8250   SmallVector<unsigned, 1> MismatchedParams;
8251   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
8252   TypoCorrection Correction;
8253   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
8254   unsigned DiagMsg =
8255     IsLocalFriend ? diag::err_no_matching_local_friend :
8256     NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
8257     diag::err_member_decl_does_not_match;
8258   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
8259                     IsLocalFriend ? Sema::LookupLocalFriendName
8260                                   : Sema::LookupOrdinaryName,
8261                     Sema::ForVisibleRedeclaration);
8262 
8263   NewFD->setInvalidDecl();
8264   if (IsLocalFriend)
8265     SemaRef.LookupName(Prev, S);
8266   else
8267     SemaRef.LookupQualifiedName(Prev, NewDC);
8268   assert(!Prev.isAmbiguous() &&
8269          "Cannot have an ambiguity in previous-declaration lookup");
8270   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8271   DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
8272                                 MD ? MD->getParent() : nullptr);
8273   if (!Prev.empty()) {
8274     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
8275          Func != FuncEnd; ++Func) {
8276       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
8277       if (FD &&
8278           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8279         // Add 1 to the index so that 0 can mean the mismatch didn't
8280         // involve a parameter
8281         unsigned ParamNum =
8282             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
8283         NearMatches.push_back(std::make_pair(FD, ParamNum));
8284       }
8285     }
8286   // If the qualified name lookup yielded nothing, try typo correction
8287   } else if ((Correction = SemaRef.CorrectTypo(
8288                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
8289                   &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
8290                   IsLocalFriend ? nullptr : NewDC))) {
8291     // Set up everything for the call to ActOnFunctionDeclarator
8292     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
8293                               ExtraArgs.D.getIdentifierLoc());
8294     Previous.clear();
8295     Previous.setLookupName(Correction.getCorrection());
8296     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
8297                                     CDeclEnd = Correction.end();
8298          CDecl != CDeclEnd; ++CDecl) {
8299       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8300       if (FD && !FD->hasBody() &&
8301           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8302         Previous.addDecl(FD);
8303       }
8304     }
8305     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
8306 
8307     NamedDecl *Result;
8308     // Retry building the function declaration with the new previous
8309     // declarations, and with errors suppressed.
8310     {
8311       // Trap errors.
8312       Sema::SFINAETrap Trap(SemaRef);
8313 
8314       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
8315       // pieces need to verify the typo-corrected C++ declaration and hopefully
8316       // eliminate the need for the parameter pack ExtraArgs.
8317       Result = SemaRef.ActOnFunctionDeclarator(
8318           ExtraArgs.S, ExtraArgs.D,
8319           Correction.getCorrectionDecl()->getDeclContext(),
8320           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
8321           ExtraArgs.AddToScope);
8322 
8323       if (Trap.hasErrorOccurred())
8324         Result = nullptr;
8325     }
8326 
8327     if (Result) {
8328       // Determine which correction we picked.
8329       Decl *Canonical = Result->getCanonicalDecl();
8330       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8331            I != E; ++I)
8332         if ((*I)->getCanonicalDecl() == Canonical)
8333           Correction.setCorrectionDecl(*I);
8334 
8335       // Let Sema know about the correction.
8336       SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
8337       SemaRef.diagnoseTypo(
8338           Correction,
8339           SemaRef.PDiag(IsLocalFriend
8340                           ? diag::err_no_matching_local_friend_suggest
8341                           : diag::err_member_decl_does_not_match_suggest)
8342             << Name << NewDC << IsDefinition);
8343       return Result;
8344     }
8345 
8346     // Pretend the typo correction never occurred
8347     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
8348                               ExtraArgs.D.getIdentifierLoc());
8349     ExtraArgs.D.setRedeclaration(wasRedeclaration);
8350     Previous.clear();
8351     Previous.setLookupName(Name);
8352   }
8353 
8354   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
8355       << Name << NewDC << IsDefinition << NewFD->getLocation();
8356 
8357   bool NewFDisConst = false;
8358   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
8359     NewFDisConst = NewMD->isConst();
8360 
8361   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
8362        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
8363        NearMatch != NearMatchEnd; ++NearMatch) {
8364     FunctionDecl *FD = NearMatch->first;
8365     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8366     bool FDisConst = MD && MD->isConst();
8367     bool IsMember = MD || !IsLocalFriend;
8368 
8369     // FIXME: These notes are poorly worded for the local friend case.
8370     if (unsigned Idx = NearMatch->second) {
8371       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
8372       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
8373       if (Loc.isInvalid()) Loc = FD->getLocation();
8374       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
8375                                  : diag::note_local_decl_close_param_match)
8376         << Idx << FDParam->getType()
8377         << NewFD->getParamDecl(Idx - 1)->getType();
8378     } else if (FDisConst != NewFDisConst) {
8379       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
8380           << NewFDisConst << FD->getSourceRange().getEnd();
8381     } else
8382       SemaRef.Diag(FD->getLocation(),
8383                    IsMember ? diag::note_member_def_close_match
8384                             : diag::note_local_decl_close_match);
8385   }
8386   return nullptr;
8387 }
8388 
8389 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
8390   switch (D.getDeclSpec().getStorageClassSpec()) {
8391   default: llvm_unreachable("Unknown storage class!");
8392   case DeclSpec::SCS_auto:
8393   case DeclSpec::SCS_register:
8394   case DeclSpec::SCS_mutable:
8395     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8396                  diag::err_typecheck_sclass_func);
8397     D.getMutableDeclSpec().ClearStorageClassSpecs();
8398     D.setInvalidType();
8399     break;
8400   case DeclSpec::SCS_unspecified: break;
8401   case DeclSpec::SCS_extern:
8402     if (D.getDeclSpec().isExternInLinkageSpec())
8403       return SC_None;
8404     return SC_Extern;
8405   case DeclSpec::SCS_static: {
8406     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8407       // C99 6.7.1p5:
8408       //   The declaration of an identifier for a function that has
8409       //   block scope shall have no explicit storage-class specifier
8410       //   other than extern
8411       // See also (C++ [dcl.stc]p4).
8412       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8413                    diag::err_static_block_func);
8414       break;
8415     } else
8416       return SC_Static;
8417   }
8418   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
8419   }
8420 
8421   // No explicit storage class has already been returned
8422   return SC_None;
8423 }
8424 
8425 static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
8426                                            DeclContext *DC, QualType &R,
8427                                            TypeSourceInfo *TInfo,
8428                                            StorageClass SC,
8429                                            bool &IsVirtualOkay) {
8430   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
8431   DeclarationName Name = NameInfo.getName();
8432 
8433   FunctionDecl *NewFD = nullptr;
8434   bool isInline = D.getDeclSpec().isInlineSpecified();
8435 
8436   if (!SemaRef.getLangOpts().CPlusPlus) {
8437     // Determine whether the function was written with a
8438     // prototype. This true when:
8439     //   - there is a prototype in the declarator, or
8440     //   - the type R of the function is some kind of typedef or other non-
8441     //     attributed reference to a type name (which eventually refers to a
8442     //     function type).
8443     bool HasPrototype =
8444       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
8445       (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
8446 
8447     NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8448                                  R, TInfo, SC, isInline, HasPrototype,
8449                                  ConstexprSpecKind::Unspecified,
8450                                  /*TrailingRequiresClause=*/nullptr);
8451     if (D.isInvalidType())
8452       NewFD->setInvalidDecl();
8453 
8454     return NewFD;
8455   }
8456 
8457   ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
8458 
8459   ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
8460   if (ConstexprKind == ConstexprSpecKind::Constinit) {
8461     SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
8462                  diag::err_constexpr_wrong_decl_kind)
8463         << static_cast<int>(ConstexprKind);
8464     ConstexprKind = ConstexprSpecKind::Unspecified;
8465     D.getMutableDeclSpec().ClearConstexprSpec();
8466   }
8467   Expr *TrailingRequiresClause = D.getTrailingRequiresClause();
8468 
8469   // Check that the return type is not an abstract class type.
8470   // For record types, this is done by the AbstractClassUsageDiagnoser once
8471   // the class has been completely parsed.
8472   if (!DC->isRecord() &&
8473       SemaRef.RequireNonAbstractType(
8474           D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(),
8475           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
8476     D.setInvalidType();
8477 
8478   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
8479     // This is a C++ constructor declaration.
8480     assert(DC->isRecord() &&
8481            "Constructors can only be declared in a member context");
8482 
8483     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
8484     return CXXConstructorDecl::Create(
8485         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8486         TInfo, ExplicitSpecifier, isInline,
8487         /*isImplicitlyDeclared=*/false, ConstexprKind, InheritedConstructor(),
8488         TrailingRequiresClause);
8489 
8490   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8491     // This is a C++ destructor declaration.
8492     if (DC->isRecord()) {
8493       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
8494       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
8495       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
8496           SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
8497           isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
8498           TrailingRequiresClause);
8499 
8500       // If the destructor needs an implicit exception specification, set it
8501       // now. FIXME: It'd be nice to be able to create the right type to start
8502       // with, but the type needs to reference the destructor declaration.
8503       if (SemaRef.getLangOpts().CPlusPlus11)
8504         SemaRef.AdjustDestructorExceptionSpec(NewDD);
8505 
8506       IsVirtualOkay = true;
8507       return NewDD;
8508 
8509     } else {
8510       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
8511       D.setInvalidType();
8512 
8513       // Create a FunctionDecl to satisfy the function definition parsing
8514       // code path.
8515       return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8516                                   D.getIdentifierLoc(), Name, R, TInfo, SC,
8517                                   isInline,
8518                                   /*hasPrototype=*/true, ConstexprKind,
8519                                   TrailingRequiresClause);
8520     }
8521 
8522   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
8523     if (!DC->isRecord()) {
8524       SemaRef.Diag(D.getIdentifierLoc(),
8525            diag::err_conv_function_not_member);
8526       return nullptr;
8527     }
8528 
8529     SemaRef.CheckConversionDeclarator(D, R, SC);
8530     if (D.isInvalidType())
8531       return nullptr;
8532 
8533     IsVirtualOkay = true;
8534     return CXXConversionDecl::Create(
8535         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8536         TInfo, isInline, ExplicitSpecifier, ConstexprKind, SourceLocation(),
8537         TrailingRequiresClause);
8538 
8539   } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
8540     if (TrailingRequiresClause)
8541       SemaRef.Diag(TrailingRequiresClause->getBeginLoc(),
8542                    diag::err_trailing_requires_clause_on_deduction_guide)
8543           << TrailingRequiresClause->getSourceRange();
8544     SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
8545 
8546     return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8547                                          ExplicitSpecifier, NameInfo, R, TInfo,
8548                                          D.getEndLoc());
8549   } else if (DC->isRecord()) {
8550     // If the name of the function is the same as the name of the record,
8551     // then this must be an invalid constructor that has a return type.
8552     // (The parser checks for a return type and makes the declarator a
8553     // constructor if it has no return type).
8554     if (Name.getAsIdentifierInfo() &&
8555         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8556       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8557         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8558         << SourceRange(D.getIdentifierLoc());
8559       return nullptr;
8560     }
8561 
8562     // This is a C++ method declaration.
8563     CXXMethodDecl *Ret = CXXMethodDecl::Create(
8564         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8565         TInfo, SC, isInline, ConstexprKind, SourceLocation(),
8566         TrailingRequiresClause);
8567     IsVirtualOkay = !Ret->isStatic();
8568     return Ret;
8569   } else {
8570     bool isFriend =
8571         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8572     if (!isFriend && SemaRef.CurContext->isRecord())
8573       return nullptr;
8574 
8575     // Determine whether the function was written with a
8576     // prototype. This true when:
8577     //   - we're in C++ (where every function has a prototype),
8578     return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8579                                 R, TInfo, SC, isInline, true /*HasPrototype*/,
8580                                 ConstexprKind, TrailingRequiresClause);
8581   }
8582 }
8583 
8584 enum OpenCLParamType {
8585   ValidKernelParam,
8586   PtrPtrKernelParam,
8587   PtrKernelParam,
8588   InvalidAddrSpacePtrKernelParam,
8589   InvalidKernelParam,
8590   RecordKernelParam
8591 };
8592 
8593 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8594   // Size dependent types are just typedefs to normal integer types
8595   // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8596   // integers other than by their names.
8597   StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8598 
8599   // Remove typedefs one by one until we reach a typedef
8600   // for a size dependent type.
8601   QualType DesugaredTy = Ty;
8602   do {
8603     ArrayRef<StringRef> Names(SizeTypeNames);
8604     auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
8605     if (Names.end() != Match)
8606       return true;
8607 
8608     Ty = DesugaredTy;
8609     DesugaredTy = Ty.getSingleStepDesugaredType(C);
8610   } while (DesugaredTy != Ty);
8611 
8612   return false;
8613 }
8614 
8615 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8616   if (PT->isPointerType()) {
8617     QualType PointeeType = PT->getPointeeType();
8618     if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8619         PointeeType.getAddressSpace() == LangAS::opencl_private ||
8620         PointeeType.getAddressSpace() == LangAS::Default)
8621       return InvalidAddrSpacePtrKernelParam;
8622 
8623     if (PointeeType->isPointerType()) {
8624       // This is a pointer to pointer parameter.
8625       // Recursively check inner type.
8626       OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType);
8627       if (ParamKind == InvalidAddrSpacePtrKernelParam ||
8628           ParamKind == InvalidKernelParam)
8629         return ParamKind;
8630 
8631       return PtrPtrKernelParam;
8632     }
8633     return PtrKernelParam;
8634   }
8635 
8636   // OpenCL v1.2 s6.9.k:
8637   // Arguments to kernel functions in a program cannot be declared with the
8638   // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8639   // uintptr_t or a struct and/or union that contain fields declared to be one
8640   // of these built-in scalar types.
8641   if (isOpenCLSizeDependentType(S.getASTContext(), PT))
8642     return InvalidKernelParam;
8643 
8644   if (PT->isImageType())
8645     return PtrKernelParam;
8646 
8647   if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8648     return InvalidKernelParam;
8649 
8650   // OpenCL extension spec v1.2 s9.5:
8651   // This extension adds support for half scalar and vector types as built-in
8652   // types that can be used for arithmetic operations, conversions etc.
8653   if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
8654     return InvalidKernelParam;
8655 
8656   if (PT->isRecordType())
8657     return RecordKernelParam;
8658 
8659   // Look into an array argument to check if it has a forbidden type.
8660   if (PT->isArrayType()) {
8661     const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8662     // Call ourself to check an underlying type of an array. Since the
8663     // getPointeeOrArrayElementType returns an innermost type which is not an
8664     // array, this recursive call only happens once.
8665     return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8666   }
8667 
8668   return ValidKernelParam;
8669 }
8670 
8671 static void checkIsValidOpenCLKernelParameter(
8672   Sema &S,
8673   Declarator &D,
8674   ParmVarDecl *Param,
8675   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8676   QualType PT = Param->getType();
8677 
8678   // Cache the valid types we encounter to avoid rechecking structs that are
8679   // used again
8680   if (ValidTypes.count(PT.getTypePtr()))
8681     return;
8682 
8683   switch (getOpenCLKernelParameterType(S, PT)) {
8684   case PtrPtrKernelParam:
8685     // OpenCL v3.0 s6.11.a:
8686     // A kernel function argument cannot be declared as a pointer to a pointer
8687     // type. [...] This restriction only applies to OpenCL C 1.2 or below.
8688     if (S.getLangOpts().OpenCLVersion < 120 &&
8689         !S.getLangOpts().OpenCLCPlusPlus) {
8690       S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8691       D.setInvalidType();
8692       return;
8693     }
8694 
8695     ValidTypes.insert(PT.getTypePtr());
8696     return;
8697 
8698   case InvalidAddrSpacePtrKernelParam:
8699     // OpenCL v1.0 s6.5:
8700     // __kernel function arguments declared to be a pointer of a type can point
8701     // to one of the following address spaces only : __global, __local or
8702     // __constant.
8703     S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8704     D.setInvalidType();
8705     return;
8706 
8707     // OpenCL v1.2 s6.9.k:
8708     // Arguments to kernel functions in a program cannot be declared with the
8709     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8710     // uintptr_t or a struct and/or union that contain fields declared to be
8711     // one of these built-in scalar types.
8712 
8713   case InvalidKernelParam:
8714     // OpenCL v1.2 s6.8 n:
8715     // A kernel function argument cannot be declared
8716     // of event_t type.
8717     // Do not diagnose half type since it is diagnosed as invalid argument
8718     // type for any function elsewhere.
8719     if (!PT->isHalfType()) {
8720       S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8721 
8722       // Explain what typedefs are involved.
8723       const TypedefType *Typedef = nullptr;
8724       while ((Typedef = PT->getAs<TypedefType>())) {
8725         SourceLocation Loc = Typedef->getDecl()->getLocation();
8726         // SourceLocation may be invalid for a built-in type.
8727         if (Loc.isValid())
8728           S.Diag(Loc, diag::note_entity_declared_at) << PT;
8729         PT = Typedef->desugar();
8730       }
8731     }
8732 
8733     D.setInvalidType();
8734     return;
8735 
8736   case PtrKernelParam:
8737   case ValidKernelParam:
8738     ValidTypes.insert(PT.getTypePtr());
8739     return;
8740 
8741   case RecordKernelParam:
8742     break;
8743   }
8744 
8745   // Track nested structs we will inspect
8746   SmallVector<const Decl *, 4> VisitStack;
8747 
8748   // Track where we are in the nested structs. Items will migrate from
8749   // VisitStack to HistoryStack as we do the DFS for bad field.
8750   SmallVector<const FieldDecl *, 4> HistoryStack;
8751   HistoryStack.push_back(nullptr);
8752 
8753   // At this point we already handled everything except of a RecordType or
8754   // an ArrayType of a RecordType.
8755   assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
8756   const RecordType *RecTy =
8757       PT->getPointeeOrArrayElementType()->getAs<RecordType>();
8758   const RecordDecl *OrigRecDecl = RecTy->getDecl();
8759 
8760   VisitStack.push_back(RecTy->getDecl());
8761   assert(VisitStack.back() && "First decl null?");
8762 
8763   do {
8764     const Decl *Next = VisitStack.pop_back_val();
8765     if (!Next) {
8766       assert(!HistoryStack.empty());
8767       // Found a marker, we have gone up a level
8768       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8769         ValidTypes.insert(Hist->getType().getTypePtr());
8770 
8771       continue;
8772     }
8773 
8774     // Adds everything except the original parameter declaration (which is not a
8775     // field itself) to the history stack.
8776     const RecordDecl *RD;
8777     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8778       HistoryStack.push_back(Field);
8779 
8780       QualType FieldTy = Field->getType();
8781       // Other field types (known to be valid or invalid) are handled while we
8782       // walk around RecordDecl::fields().
8783       assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
8784              "Unexpected type.");
8785       const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8786 
8787       RD = FieldRecTy->castAs<RecordType>()->getDecl();
8788     } else {
8789       RD = cast<RecordDecl>(Next);
8790     }
8791 
8792     // Add a null marker so we know when we've gone back up a level
8793     VisitStack.push_back(nullptr);
8794 
8795     for (const auto *FD : RD->fields()) {
8796       QualType QT = FD->getType();
8797 
8798       if (ValidTypes.count(QT.getTypePtr()))
8799         continue;
8800 
8801       OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8802       if (ParamType == ValidKernelParam)
8803         continue;
8804 
8805       if (ParamType == RecordKernelParam) {
8806         VisitStack.push_back(FD);
8807         continue;
8808       }
8809 
8810       // OpenCL v1.2 s6.9.p:
8811       // Arguments to kernel functions that are declared to be a struct or union
8812       // do not allow OpenCL objects to be passed as elements of the struct or
8813       // union.
8814       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8815           ParamType == InvalidAddrSpacePtrKernelParam) {
8816         S.Diag(Param->getLocation(),
8817                diag::err_record_with_pointers_kernel_param)
8818           << PT->isUnionType()
8819           << PT;
8820       } else {
8821         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8822       }
8823 
8824       S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8825           << OrigRecDecl->getDeclName();
8826 
8827       // We have an error, now let's go back up through history and show where
8828       // the offending field came from
8829       for (ArrayRef<const FieldDecl *>::const_iterator
8830                I = HistoryStack.begin() + 1,
8831                E = HistoryStack.end();
8832            I != E; ++I) {
8833         const FieldDecl *OuterField = *I;
8834         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8835           << OuterField->getType();
8836       }
8837 
8838       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8839         << QT->isPointerType()
8840         << QT;
8841       D.setInvalidType();
8842       return;
8843     }
8844   } while (!VisitStack.empty());
8845 }
8846 
8847 /// Find the DeclContext in which a tag is implicitly declared if we see an
8848 /// elaborated type specifier in the specified context, and lookup finds
8849 /// nothing.
8850 static DeclContext *getTagInjectionContext(DeclContext *DC) {
8851   while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8852     DC = DC->getParent();
8853   return DC;
8854 }
8855 
8856 /// Find the Scope in which a tag is implicitly declared if we see an
8857 /// elaborated type specifier in the specified context, and lookup finds
8858 /// nothing.
8859 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8860   while (S->isClassScope() ||
8861          (LangOpts.CPlusPlus &&
8862           S->isFunctionPrototypeScope()) ||
8863          ((S->getFlags() & Scope::DeclScope) == 0) ||
8864          (S->getEntity() && S->getEntity()->isTransparentContext()))
8865     S = S->getParent();
8866   return S;
8867 }
8868 
8869 NamedDecl*
8870 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
8871                               TypeSourceInfo *TInfo, LookupResult &Previous,
8872                               MultiTemplateParamsArg TemplateParamListsRef,
8873                               bool &AddToScope) {
8874   QualType R = TInfo->getType();
8875 
8876   assert(R->isFunctionType());
8877   if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr())
8878     Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call);
8879 
8880   SmallVector<TemplateParameterList *, 4> TemplateParamLists;
8881   for (TemplateParameterList *TPL : TemplateParamListsRef)
8882     TemplateParamLists.push_back(TPL);
8883   if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
8884     if (!TemplateParamLists.empty() &&
8885         Invented->getDepth() == TemplateParamLists.back()->getDepth())
8886       TemplateParamLists.back() = Invented;
8887     else
8888       TemplateParamLists.push_back(Invented);
8889   }
8890 
8891   // TODO: consider using NameInfo for diagnostic.
8892   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8893   DeclarationName Name = NameInfo.getName();
8894   StorageClass SC = getFunctionStorageClass(*this, D);
8895 
8896   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
8897     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8898          diag::err_invalid_thread)
8899       << DeclSpec::getSpecifierName(TSCS);
8900 
8901   if (D.isFirstDeclarationOfMember())
8902     adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
8903                            D.getIdentifierLoc());
8904 
8905   bool isFriend = false;
8906   FunctionTemplateDecl *FunctionTemplate = nullptr;
8907   bool isMemberSpecialization = false;
8908   bool isFunctionTemplateSpecialization = false;
8909 
8910   bool isDependentClassScopeExplicitSpecialization = false;
8911   bool HasExplicitTemplateArgs = false;
8912   TemplateArgumentListInfo TemplateArgs;
8913 
8914   bool isVirtualOkay = false;
8915 
8916   DeclContext *OriginalDC = DC;
8917   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
8918 
8919   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
8920                                               isVirtualOkay);
8921   if (!NewFD) return nullptr;
8922 
8923   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
8924     NewFD->setTopLevelDeclInObjCContainer();
8925 
8926   // Set the lexical context. If this is a function-scope declaration, or has a
8927   // C++ scope specifier, or is the object of a friend declaration, the lexical
8928   // context will be different from the semantic context.
8929   NewFD->setLexicalDeclContext(CurContext);
8930 
8931   if (IsLocalExternDecl)
8932     NewFD->setLocalExternDecl();
8933 
8934   if (getLangOpts().CPlusPlus) {
8935     bool isInline = D.getDeclSpec().isInlineSpecified();
8936     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8937     bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
8938     isFriend = D.getDeclSpec().isFriendSpecified();
8939     if (isFriend && !isInline && D.isFunctionDefinition()) {
8940       // C++ [class.friend]p5
8941       //   A function can be defined in a friend declaration of a
8942       //   class . . . . Such a function is implicitly inline.
8943       NewFD->setImplicitlyInline();
8944     }
8945 
8946     // If this is a method defined in an __interface, and is not a constructor
8947     // or an overloaded operator, then set the pure flag (isVirtual will already
8948     // return true).
8949     if (const CXXRecordDecl *Parent =
8950           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
8951       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
8952         NewFD->setPure(true);
8953 
8954       // C++ [class.union]p2
8955       //   A union can have member functions, but not virtual functions.
8956       if (isVirtual && Parent->isUnion())
8957         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
8958     }
8959 
8960     SetNestedNameSpecifier(*this, NewFD, D);
8961     isMemberSpecialization = false;
8962     isFunctionTemplateSpecialization = false;
8963     if (D.isInvalidType())
8964       NewFD->setInvalidDecl();
8965 
8966     // Match up the template parameter lists with the scope specifier, then
8967     // determine whether we have a template or a template specialization.
8968     bool Invalid = false;
8969     TemplateParameterList *TemplateParams =
8970         MatchTemplateParametersToScopeSpecifier(
8971             D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
8972             D.getCXXScopeSpec(),
8973             D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
8974                 ? D.getName().TemplateId
8975                 : nullptr,
8976             TemplateParamLists, isFriend, isMemberSpecialization,
8977             Invalid);
8978     if (TemplateParams) {
8979       // Check that we can declare a template here.
8980       if (CheckTemplateDeclScope(S, TemplateParams))
8981         NewFD->setInvalidDecl();
8982 
8983       if (TemplateParams->size() > 0) {
8984         // This is a function template
8985 
8986         // A destructor cannot be a template.
8987         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8988           Diag(NewFD->getLocation(), diag::err_destructor_template);
8989           NewFD->setInvalidDecl();
8990         }
8991 
8992         // If we're adding a template to a dependent context, we may need to
8993         // rebuilding some of the types used within the template parameter list,
8994         // now that we know what the current instantiation is.
8995         if (DC->isDependentContext()) {
8996           ContextRAII SavedContext(*this, DC);
8997           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
8998             Invalid = true;
8999         }
9000 
9001         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
9002                                                         NewFD->getLocation(),
9003                                                         Name, TemplateParams,
9004                                                         NewFD);
9005         FunctionTemplate->setLexicalDeclContext(CurContext);
9006         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
9007 
9008         // For source fidelity, store the other template param lists.
9009         if (TemplateParamLists.size() > 1) {
9010           NewFD->setTemplateParameterListsInfo(Context,
9011               ArrayRef<TemplateParameterList *>(TemplateParamLists)
9012                   .drop_back(1));
9013         }
9014       } else {
9015         // This is a function template specialization.
9016         isFunctionTemplateSpecialization = true;
9017         // For source fidelity, store all the template param lists.
9018         if (TemplateParamLists.size() > 0)
9019           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9020 
9021         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9022         if (isFriend) {
9023           // We want to remove the "template<>", found here.
9024           SourceRange RemoveRange = TemplateParams->getSourceRange();
9025 
9026           // If we remove the template<> and the name is not a
9027           // template-id, we're actually silently creating a problem:
9028           // the friend declaration will refer to an untemplated decl,
9029           // and clearly the user wants a template specialization.  So
9030           // we need to insert '<>' after the name.
9031           SourceLocation InsertLoc;
9032           if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9033             InsertLoc = D.getName().getSourceRange().getEnd();
9034             InsertLoc = getLocForEndOfToken(InsertLoc);
9035           }
9036 
9037           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
9038             << Name << RemoveRange
9039             << FixItHint::CreateRemoval(RemoveRange)
9040             << FixItHint::CreateInsertion(InsertLoc, "<>");
9041         }
9042       }
9043     } else {
9044       // Check that we can declare a template here.
9045       if (!TemplateParamLists.empty() && isMemberSpecialization &&
9046           CheckTemplateDeclScope(S, TemplateParamLists.back()))
9047         NewFD->setInvalidDecl();
9048 
9049       // All template param lists were matched against the scope specifier:
9050       // this is NOT (an explicit specialization of) a template.
9051       if (TemplateParamLists.size() > 0)
9052         // For source fidelity, store all the template param lists.
9053         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9054     }
9055 
9056     if (Invalid) {
9057       NewFD->setInvalidDecl();
9058       if (FunctionTemplate)
9059         FunctionTemplate->setInvalidDecl();
9060     }
9061 
9062     // C++ [dcl.fct.spec]p5:
9063     //   The virtual specifier shall only be used in declarations of
9064     //   nonstatic class member functions that appear within a
9065     //   member-specification of a class declaration; see 10.3.
9066     //
9067     if (isVirtual && !NewFD->isInvalidDecl()) {
9068       if (!isVirtualOkay) {
9069         Diag(D.getDeclSpec().getVirtualSpecLoc(),
9070              diag::err_virtual_non_function);
9071       } else if (!CurContext->isRecord()) {
9072         // 'virtual' was specified outside of the class.
9073         Diag(D.getDeclSpec().getVirtualSpecLoc(),
9074              diag::err_virtual_out_of_class)
9075           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9076       } else if (NewFD->getDescribedFunctionTemplate()) {
9077         // C++ [temp.mem]p3:
9078         //  A member function template shall not be virtual.
9079         Diag(D.getDeclSpec().getVirtualSpecLoc(),
9080              diag::err_virtual_member_function_template)
9081           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9082       } else {
9083         // Okay: Add virtual to the method.
9084         NewFD->setVirtualAsWritten(true);
9085       }
9086 
9087       if (getLangOpts().CPlusPlus14 &&
9088           NewFD->getReturnType()->isUndeducedType())
9089         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
9090     }
9091 
9092     if (getLangOpts().CPlusPlus14 &&
9093         (NewFD->isDependentContext() ||
9094          (isFriend && CurContext->isDependentContext())) &&
9095         NewFD->getReturnType()->isUndeducedType()) {
9096       // If the function template is referenced directly (for instance, as a
9097       // member of the current instantiation), pretend it has a dependent type.
9098       // This is not really justified by the standard, but is the only sane
9099       // thing to do.
9100       // FIXME: For a friend function, we have not marked the function as being
9101       // a friend yet, so 'isDependentContext' on the FD doesn't work.
9102       const FunctionProtoType *FPT =
9103           NewFD->getType()->castAs<FunctionProtoType>();
9104       QualType Result =
9105           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
9106       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
9107                                              FPT->getExtProtoInfo()));
9108     }
9109 
9110     // C++ [dcl.fct.spec]p3:
9111     //  The inline specifier shall not appear on a block scope function
9112     //  declaration.
9113     if (isInline && !NewFD->isInvalidDecl()) {
9114       if (CurContext->isFunctionOrMethod()) {
9115         // 'inline' is not allowed on block scope function declaration.
9116         Diag(D.getDeclSpec().getInlineSpecLoc(),
9117              diag::err_inline_declaration_block_scope) << Name
9118           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9119       }
9120     }
9121 
9122     // C++ [dcl.fct.spec]p6:
9123     //  The explicit specifier shall be used only in the declaration of a
9124     //  constructor or conversion function within its class definition;
9125     //  see 12.3.1 and 12.3.2.
9126     if (hasExplicit && !NewFD->isInvalidDecl() &&
9127         !isa<CXXDeductionGuideDecl>(NewFD)) {
9128       if (!CurContext->isRecord()) {
9129         // 'explicit' was specified outside of the class.
9130         Diag(D.getDeclSpec().getExplicitSpecLoc(),
9131              diag::err_explicit_out_of_class)
9132             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9133       } else if (!isa<CXXConstructorDecl>(NewFD) &&
9134                  !isa<CXXConversionDecl>(NewFD)) {
9135         // 'explicit' was specified on a function that wasn't a constructor
9136         // or conversion function.
9137         Diag(D.getDeclSpec().getExplicitSpecLoc(),
9138              diag::err_explicit_non_ctor_or_conv_function)
9139             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9140       }
9141     }
9142 
9143     ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
9144     if (ConstexprKind != ConstexprSpecKind::Unspecified) {
9145       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
9146       // are implicitly inline.
9147       NewFD->setImplicitlyInline();
9148 
9149       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
9150       // be either constructors or to return a literal type. Therefore,
9151       // destructors cannot be declared constexpr.
9152       if (isa<CXXDestructorDecl>(NewFD) &&
9153           (!getLangOpts().CPlusPlus20 ||
9154            ConstexprKind == ConstexprSpecKind::Consteval)) {
9155         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
9156             << static_cast<int>(ConstexprKind);
9157         NewFD->setConstexprKind(getLangOpts().CPlusPlus20
9158                                     ? ConstexprSpecKind::Unspecified
9159                                     : ConstexprSpecKind::Constexpr);
9160       }
9161       // C++20 [dcl.constexpr]p2: An allocation function, or a
9162       // deallocation function shall not be declared with the consteval
9163       // specifier.
9164       if (ConstexprKind == ConstexprSpecKind::Consteval &&
9165           (NewFD->getOverloadedOperator() == OO_New ||
9166            NewFD->getOverloadedOperator() == OO_Array_New ||
9167            NewFD->getOverloadedOperator() == OO_Delete ||
9168            NewFD->getOverloadedOperator() == OO_Array_Delete)) {
9169         Diag(D.getDeclSpec().getConstexprSpecLoc(),
9170              diag::err_invalid_consteval_decl_kind)
9171             << NewFD;
9172         NewFD->setConstexprKind(ConstexprSpecKind::Constexpr);
9173       }
9174     }
9175 
9176     // If __module_private__ was specified, mark the function accordingly.
9177     if (D.getDeclSpec().isModulePrivateSpecified()) {
9178       if (isFunctionTemplateSpecialization) {
9179         SourceLocation ModulePrivateLoc
9180           = D.getDeclSpec().getModulePrivateSpecLoc();
9181         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
9182           << 0
9183           << FixItHint::CreateRemoval(ModulePrivateLoc);
9184       } else {
9185         NewFD->setModulePrivate();
9186         if (FunctionTemplate)
9187           FunctionTemplate->setModulePrivate();
9188       }
9189     }
9190 
9191     if (isFriend) {
9192       if (FunctionTemplate) {
9193         FunctionTemplate->setObjectOfFriendDecl();
9194         FunctionTemplate->setAccess(AS_public);
9195       }
9196       NewFD->setObjectOfFriendDecl();
9197       NewFD->setAccess(AS_public);
9198     }
9199 
9200     // If a function is defined as defaulted or deleted, mark it as such now.
9201     // We'll do the relevant checks on defaulted / deleted functions later.
9202     switch (D.getFunctionDefinitionKind()) {
9203     case FunctionDefinitionKind::Declaration:
9204     case FunctionDefinitionKind::Definition:
9205       break;
9206 
9207     case FunctionDefinitionKind::Defaulted:
9208       NewFD->setDefaulted();
9209       break;
9210 
9211     case FunctionDefinitionKind::Deleted:
9212       NewFD->setDeletedAsWritten();
9213       break;
9214     }
9215 
9216     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
9217         D.isFunctionDefinition()) {
9218       // C++ [class.mfct]p2:
9219       //   A member function may be defined (8.4) in its class definition, in
9220       //   which case it is an inline member function (7.1.2)
9221       NewFD->setImplicitlyInline();
9222     }
9223 
9224     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
9225         !CurContext->isRecord()) {
9226       // C++ [class.static]p1:
9227       //   A data or function member of a class may be declared static
9228       //   in a class definition, in which case it is a static member of
9229       //   the class.
9230 
9231       // Complain about the 'static' specifier if it's on an out-of-line
9232       // member function definition.
9233 
9234       // MSVC permits the use of a 'static' storage specifier on an out-of-line
9235       // member function template declaration and class member template
9236       // declaration (MSVC versions before 2015), warn about this.
9237       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9238            ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
9239              cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
9240            (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
9241            ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
9242         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9243     }
9244 
9245     // C++11 [except.spec]p15:
9246     //   A deallocation function with no exception-specification is treated
9247     //   as if it were specified with noexcept(true).
9248     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
9249     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
9250          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
9251         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
9252       NewFD->setType(Context.getFunctionType(
9253           FPT->getReturnType(), FPT->getParamTypes(),
9254           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
9255   }
9256 
9257   // Filter out previous declarations that don't match the scope.
9258   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
9259                        D.getCXXScopeSpec().isNotEmpty() ||
9260                        isMemberSpecialization ||
9261                        isFunctionTemplateSpecialization);
9262 
9263   // Handle GNU asm-label extension (encoded as an attribute).
9264   if (Expr *E = (Expr*) D.getAsmLabel()) {
9265     // The parser guarantees this is a string.
9266     StringLiteral *SE = cast<StringLiteral>(E);
9267     NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
9268                                         /*IsLiteralLabel=*/true,
9269                                         SE->getStrTokenLoc(0)));
9270   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
9271     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
9272       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
9273     if (I != ExtnameUndeclaredIdentifiers.end()) {
9274       if (isDeclExternC(NewFD)) {
9275         NewFD->addAttr(I->second);
9276         ExtnameUndeclaredIdentifiers.erase(I);
9277       } else
9278         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
9279             << /*Variable*/0 << NewFD;
9280     }
9281   }
9282 
9283   // Copy the parameter declarations from the declarator D to the function
9284   // declaration NewFD, if they are available.  First scavenge them into Params.
9285   SmallVector<ParmVarDecl*, 16> Params;
9286   unsigned FTIIdx;
9287   if (D.isFunctionDeclarator(FTIIdx)) {
9288     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
9289 
9290     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
9291     // function that takes no arguments, not a function that takes a
9292     // single void argument.
9293     // We let through "const void" here because Sema::GetTypeForDeclarator
9294     // already checks for that case.
9295     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
9296       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
9297         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
9298         assert(Param->getDeclContext() != NewFD && "Was set before ?");
9299         Param->setDeclContext(NewFD);
9300         Params.push_back(Param);
9301 
9302         if (Param->isInvalidDecl())
9303           NewFD->setInvalidDecl();
9304       }
9305     }
9306 
9307     if (!getLangOpts().CPlusPlus) {
9308       // In C, find all the tag declarations from the prototype and move them
9309       // into the function DeclContext. Remove them from the surrounding tag
9310       // injection context of the function, which is typically but not always
9311       // the TU.
9312       DeclContext *PrototypeTagContext =
9313           getTagInjectionContext(NewFD->getLexicalDeclContext());
9314       for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
9315         auto *TD = dyn_cast<TagDecl>(NonParmDecl);
9316 
9317         // We don't want to reparent enumerators. Look at their parent enum
9318         // instead.
9319         if (!TD) {
9320           if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
9321             TD = cast<EnumDecl>(ECD->getDeclContext());
9322         }
9323         if (!TD)
9324           continue;
9325         DeclContext *TagDC = TD->getLexicalDeclContext();
9326         if (!TagDC->containsDecl(TD))
9327           continue;
9328         TagDC->removeDecl(TD);
9329         TD->setDeclContext(NewFD);
9330         NewFD->addDecl(TD);
9331 
9332         // Preserve the lexical DeclContext if it is not the surrounding tag
9333         // injection context of the FD. In this example, the semantic context of
9334         // E will be f and the lexical context will be S, while both the
9335         // semantic and lexical contexts of S will be f:
9336         //   void f(struct S { enum E { a } f; } s);
9337         if (TagDC != PrototypeTagContext)
9338           TD->setLexicalDeclContext(TagDC);
9339       }
9340     }
9341   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
9342     // When we're declaring a function with a typedef, typeof, etc as in the
9343     // following example, we'll need to synthesize (unnamed)
9344     // parameters for use in the declaration.
9345     //
9346     // @code
9347     // typedef void fn(int);
9348     // fn f;
9349     // @endcode
9350 
9351     // Synthesize a parameter for each argument type.
9352     for (const auto &AI : FT->param_types()) {
9353       ParmVarDecl *Param =
9354           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
9355       Param->setScopeInfo(0, Params.size());
9356       Params.push_back(Param);
9357     }
9358   } else {
9359     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
9360            "Should not need args for typedef of non-prototype fn");
9361   }
9362 
9363   // Finally, we know we have the right number of parameters, install them.
9364   NewFD->setParams(Params);
9365 
9366   if (D.getDeclSpec().isNoreturnSpecified())
9367     NewFD->addAttr(C11NoReturnAttr::Create(Context,
9368                                            D.getDeclSpec().getNoreturnSpecLoc(),
9369                                            AttributeCommonInfo::AS_Keyword));
9370 
9371   // Functions returning a variably modified type violate C99 6.7.5.2p2
9372   // because all functions have linkage.
9373   if (!NewFD->isInvalidDecl() &&
9374       NewFD->getReturnType()->isVariablyModifiedType()) {
9375     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
9376     NewFD->setInvalidDecl();
9377   }
9378 
9379   // Apply an implicit SectionAttr if '#pragma clang section text' is active
9380   if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
9381       !NewFD->hasAttr<SectionAttr>())
9382     NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
9383         Context, PragmaClangTextSection.SectionName,
9384         PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma));
9385 
9386   // Apply an implicit SectionAttr if #pragma code_seg is active.
9387   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
9388       !NewFD->hasAttr<SectionAttr>()) {
9389     NewFD->addAttr(SectionAttr::CreateImplicit(
9390         Context, CodeSegStack.CurrentValue->getString(),
9391         CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9392         SectionAttr::Declspec_allocate));
9393     if (UnifySection(CodeSegStack.CurrentValue->getString(),
9394                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
9395                          ASTContext::PSF_Read,
9396                      NewFD))
9397       NewFD->dropAttr<SectionAttr>();
9398   }
9399 
9400   // Apply an implicit CodeSegAttr from class declspec or
9401   // apply an implicit SectionAttr from #pragma code_seg if active.
9402   if (!NewFD->hasAttr<CodeSegAttr>()) {
9403     if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
9404                                                                  D.isFunctionDefinition())) {
9405       NewFD->addAttr(SAttr);
9406     }
9407   }
9408 
9409   // Handle attributes.
9410   ProcessDeclAttributes(S, NewFD, D);
9411 
9412   if (getLangOpts().OpenCL) {
9413     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
9414     // type declaration will generate a compilation error.
9415     LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
9416     if (AddressSpace != LangAS::Default) {
9417       Diag(NewFD->getLocation(),
9418            diag::err_opencl_return_value_with_address_space);
9419       NewFD->setInvalidDecl();
9420     }
9421   }
9422 
9423   if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice))
9424     checkDeviceDecl(NewFD, D.getBeginLoc());
9425 
9426   if (!getLangOpts().CPlusPlus) {
9427     // Perform semantic checking on the function declaration.
9428     if (!NewFD->isInvalidDecl() && NewFD->isMain())
9429       CheckMain(NewFD, D.getDeclSpec());
9430 
9431     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9432       CheckMSVCRTEntryPoint(NewFD);
9433 
9434     if (!NewFD->isInvalidDecl())
9435       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9436                                                   isMemberSpecialization));
9437     else if (!Previous.empty())
9438       // Recover gracefully from an invalid redeclaration.
9439       D.setRedeclaration(true);
9440     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9441             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
9442            "previous declaration set still overloaded");
9443 
9444     // Diagnose no-prototype function declarations with calling conventions that
9445     // don't support variadic calls. Only do this in C and do it after merging
9446     // possibly prototyped redeclarations.
9447     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
9448     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
9449       CallingConv CC = FT->getExtInfo().getCC();
9450       if (!supportsVariadicCall(CC)) {
9451         // Windows system headers sometimes accidentally use stdcall without
9452         // (void) parameters, so we relax this to a warning.
9453         int DiagID =
9454             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
9455         Diag(NewFD->getLocation(), DiagID)
9456             << FunctionType::getNameForCallConv(CC);
9457       }
9458     }
9459 
9460    if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
9461        NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
9462      checkNonTrivialCUnion(NewFD->getReturnType(),
9463                            NewFD->getReturnTypeSourceRange().getBegin(),
9464                            NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
9465   } else {
9466     // C++11 [replacement.functions]p3:
9467     //  The program's definitions shall not be specified as inline.
9468     //
9469     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
9470     //
9471     // Suppress the diagnostic if the function is __attribute__((used)), since
9472     // that forces an external definition to be emitted.
9473     if (D.getDeclSpec().isInlineSpecified() &&
9474         NewFD->isReplaceableGlobalAllocationFunction() &&
9475         !NewFD->hasAttr<UsedAttr>())
9476       Diag(D.getDeclSpec().getInlineSpecLoc(),
9477            diag::ext_operator_new_delete_declared_inline)
9478         << NewFD->getDeclName();
9479 
9480     // If the declarator is a template-id, translate the parser's template
9481     // argument list into our AST format.
9482     if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
9483       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
9484       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
9485       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
9486       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
9487                                          TemplateId->NumArgs);
9488       translateTemplateArguments(TemplateArgsPtr,
9489                                  TemplateArgs);
9490 
9491       HasExplicitTemplateArgs = true;
9492 
9493       if (NewFD->isInvalidDecl()) {
9494         HasExplicitTemplateArgs = false;
9495       } else if (FunctionTemplate) {
9496         // Function template with explicit template arguments.
9497         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
9498           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
9499 
9500         HasExplicitTemplateArgs = false;
9501       } else {
9502         assert((isFunctionTemplateSpecialization ||
9503                 D.getDeclSpec().isFriendSpecified()) &&
9504                "should have a 'template<>' for this decl");
9505         // "friend void foo<>(int);" is an implicit specialization decl.
9506         isFunctionTemplateSpecialization = true;
9507       }
9508     } else if (isFriend && isFunctionTemplateSpecialization) {
9509       // This combination is only possible in a recovery case;  the user
9510       // wrote something like:
9511       //   template <> friend void foo(int);
9512       // which we're recovering from as if the user had written:
9513       //   friend void foo<>(int);
9514       // Go ahead and fake up a template id.
9515       HasExplicitTemplateArgs = true;
9516       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
9517       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
9518     }
9519 
9520     // We do not add HD attributes to specializations here because
9521     // they may have different constexpr-ness compared to their
9522     // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
9523     // may end up with different effective targets. Instead, a
9524     // specialization inherits its target attributes from its template
9525     // in the CheckFunctionTemplateSpecialization() call below.
9526     if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
9527       maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
9528 
9529     // If it's a friend (and only if it's a friend), it's possible
9530     // that either the specialized function type or the specialized
9531     // template is dependent, and therefore matching will fail.  In
9532     // this case, don't check the specialization yet.
9533     if (isFunctionTemplateSpecialization && isFriend &&
9534         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
9535          TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
9536              TemplateArgs.arguments()))) {
9537       assert(HasExplicitTemplateArgs &&
9538              "friend function specialization without template args");
9539       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
9540                                                        Previous))
9541         NewFD->setInvalidDecl();
9542     } else if (isFunctionTemplateSpecialization) {
9543       if (CurContext->isDependentContext() && CurContext->isRecord()
9544           && !isFriend) {
9545         isDependentClassScopeExplicitSpecialization = true;
9546       } else if (!NewFD->isInvalidDecl() &&
9547                  CheckFunctionTemplateSpecialization(
9548                      NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
9549                      Previous))
9550         NewFD->setInvalidDecl();
9551 
9552       // C++ [dcl.stc]p1:
9553       //   A storage-class-specifier shall not be specified in an explicit
9554       //   specialization (14.7.3)
9555       FunctionTemplateSpecializationInfo *Info =
9556           NewFD->getTemplateSpecializationInfo();
9557       if (Info && SC != SC_None) {
9558         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
9559           Diag(NewFD->getLocation(),
9560                diag::err_explicit_specialization_inconsistent_storage_class)
9561             << SC
9562             << FixItHint::CreateRemoval(
9563                                       D.getDeclSpec().getStorageClassSpecLoc());
9564 
9565         else
9566           Diag(NewFD->getLocation(),
9567                diag::ext_explicit_specialization_storage_class)
9568             << FixItHint::CreateRemoval(
9569                                       D.getDeclSpec().getStorageClassSpecLoc());
9570       }
9571     } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
9572       if (CheckMemberSpecialization(NewFD, Previous))
9573           NewFD->setInvalidDecl();
9574     }
9575 
9576     // Perform semantic checking on the function declaration.
9577     if (!isDependentClassScopeExplicitSpecialization) {
9578       if (!NewFD->isInvalidDecl() && NewFD->isMain())
9579         CheckMain(NewFD, D.getDeclSpec());
9580 
9581       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9582         CheckMSVCRTEntryPoint(NewFD);
9583 
9584       if (!NewFD->isInvalidDecl())
9585         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9586                                                     isMemberSpecialization));
9587       else if (!Previous.empty())
9588         // Recover gracefully from an invalid redeclaration.
9589         D.setRedeclaration(true);
9590     }
9591 
9592     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9593             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
9594            "previous declaration set still overloaded");
9595 
9596     NamedDecl *PrincipalDecl = (FunctionTemplate
9597                                 ? cast<NamedDecl>(FunctionTemplate)
9598                                 : NewFD);
9599 
9600     if (isFriend && NewFD->getPreviousDecl()) {
9601       AccessSpecifier Access = AS_public;
9602       if (!NewFD->isInvalidDecl())
9603         Access = NewFD->getPreviousDecl()->getAccess();
9604 
9605       NewFD->setAccess(Access);
9606       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
9607     }
9608 
9609     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
9610         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
9611       PrincipalDecl->setNonMemberOperator();
9612 
9613     // If we have a function template, check the template parameter
9614     // list. This will check and merge default template arguments.
9615     if (FunctionTemplate) {
9616       FunctionTemplateDecl *PrevTemplate =
9617                                      FunctionTemplate->getPreviousDecl();
9618       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
9619                        PrevTemplate ? PrevTemplate->getTemplateParameters()
9620                                     : nullptr,
9621                             D.getDeclSpec().isFriendSpecified()
9622                               ? (D.isFunctionDefinition()
9623                                    ? TPC_FriendFunctionTemplateDefinition
9624                                    : TPC_FriendFunctionTemplate)
9625                               : (D.getCXXScopeSpec().isSet() &&
9626                                  DC && DC->isRecord() &&
9627                                  DC->isDependentContext())
9628                                   ? TPC_ClassTemplateMember
9629                                   : TPC_FunctionTemplate);
9630     }
9631 
9632     if (NewFD->isInvalidDecl()) {
9633       // Ignore all the rest of this.
9634     } else if (!D.isRedeclaration()) {
9635       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9636                                        AddToScope };
9637       // Fake up an access specifier if it's supposed to be a class member.
9638       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9639         NewFD->setAccess(AS_public);
9640 
9641       // Qualified decls generally require a previous declaration.
9642       if (D.getCXXScopeSpec().isSet()) {
9643         // ...with the major exception of templated-scope or
9644         // dependent-scope friend declarations.
9645 
9646         // TODO: we currently also suppress this check in dependent
9647         // contexts because (1) the parameter depth will be off when
9648         // matching friend templates and (2) we might actually be
9649         // selecting a friend based on a dependent factor.  But there
9650         // are situations where these conditions don't apply and we
9651         // can actually do this check immediately.
9652         //
9653         // Unless the scope is dependent, it's always an error if qualified
9654         // redeclaration lookup found nothing at all. Diagnose that now;
9655         // nothing will diagnose that error later.
9656         if (isFriend &&
9657             (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
9658              (!Previous.empty() && CurContext->isDependentContext()))) {
9659           // ignore these
9660         } else {
9661           // The user tried to provide an out-of-line definition for a
9662           // function that is a member of a class or namespace, but there
9663           // was no such member function declared (C++ [class.mfct]p2,
9664           // C++ [namespace.memdef]p2). For example:
9665           //
9666           // class X {
9667           //   void f() const;
9668           // };
9669           //
9670           // void X::f() { } // ill-formed
9671           //
9672           // Complain about this problem, and attempt to suggest close
9673           // matches (e.g., those that differ only in cv-qualifiers and
9674           // whether the parameter types are references).
9675 
9676           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9677                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9678             AddToScope = ExtraArgs.AddToScope;
9679             return Result;
9680           }
9681         }
9682 
9683         // Unqualified local friend declarations are required to resolve
9684         // to something.
9685       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9686         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9687                 *this, Previous, NewFD, ExtraArgs, true, S)) {
9688           AddToScope = ExtraArgs.AddToScope;
9689           return Result;
9690         }
9691       }
9692     } else if (!D.isFunctionDefinition() &&
9693                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9694                !isFriend && !isFunctionTemplateSpecialization &&
9695                !isMemberSpecialization) {
9696       // An out-of-line member function declaration must also be a
9697       // definition (C++ [class.mfct]p2).
9698       // Note that this is not the case for explicit specializations of
9699       // function templates or member functions of class templates, per
9700       // C++ [temp.expl.spec]p2. We also allow these declarations as an
9701       // extension for compatibility with old SWIG code which likes to
9702       // generate them.
9703       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9704         << D.getCXXScopeSpec().getRange();
9705     }
9706   }
9707 
9708   // If this is the first declaration of a library builtin function, add
9709   // attributes as appropriate.
9710   if (!D.isRedeclaration() &&
9711       NewFD->getDeclContext()->getRedeclContext()->isFileContext()) {
9712     if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) {
9713       if (unsigned BuiltinID = II->getBuiltinID()) {
9714         if (NewFD->getLanguageLinkage() == CLanguageLinkage) {
9715           // Validate the type matches unless this builtin is specified as
9716           // matching regardless of its declared type.
9717           if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) {
9718             NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9719           } else {
9720             ASTContext::GetBuiltinTypeError Error;
9721             LookupNecessaryTypesForBuiltin(S, BuiltinID);
9722             QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error);
9723 
9724             if (!Error && !BuiltinType.isNull() &&
9725                 Context.hasSameFunctionTypeIgnoringExceptionSpec(
9726                     NewFD->getType(), BuiltinType))
9727               NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9728           }
9729         } else if (BuiltinID == Builtin::BI__GetExceptionInfo &&
9730                    Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9731           // FIXME: We should consider this a builtin only in the std namespace.
9732           NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9733         }
9734       }
9735     }
9736   }
9737 
9738   ProcessPragmaWeak(S, NewFD);
9739   checkAttributesAfterMerging(*this, *NewFD);
9740 
9741   AddKnownFunctionAttributes(NewFD);
9742 
9743   if (NewFD->hasAttr<OverloadableAttr>() &&
9744       !NewFD->getType()->getAs<FunctionProtoType>()) {
9745     Diag(NewFD->getLocation(),
9746          diag::err_attribute_overloadable_no_prototype)
9747       << NewFD;
9748 
9749     // Turn this into a variadic function with no parameters.
9750     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9751     FunctionProtoType::ExtProtoInfo EPI(
9752         Context.getDefaultCallingConvention(true, false));
9753     EPI.Variadic = true;
9754     EPI.ExtInfo = FT->getExtInfo();
9755 
9756     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9757     NewFD->setType(R);
9758   }
9759 
9760   // If there's a #pragma GCC visibility in scope, and this isn't a class
9761   // member, set the visibility of this function.
9762   if (!DC->isRecord() && NewFD->isExternallyVisible())
9763     AddPushedVisibilityAttribute(NewFD);
9764 
9765   // If there's a #pragma clang arc_cf_code_audited in scope, consider
9766   // marking the function.
9767   AddCFAuditedAttribute(NewFD);
9768 
9769   // If this is a function definition, check if we have to apply optnone due to
9770   // a pragma.
9771   if(D.isFunctionDefinition())
9772     AddRangeBasedOptnone(NewFD);
9773 
9774   // If this is the first declaration of an extern C variable, update
9775   // the map of such variables.
9776   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9777       isIncompleteDeclExternC(*this, NewFD))
9778     RegisterLocallyScopedExternCDecl(NewFD, S);
9779 
9780   // Set this FunctionDecl's range up to the right paren.
9781   NewFD->setRangeEnd(D.getSourceRange().getEnd());
9782 
9783   if (D.isRedeclaration() && !Previous.empty()) {
9784     NamedDecl *Prev = Previous.getRepresentativeDecl();
9785     checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9786                                    isMemberSpecialization ||
9787                                        isFunctionTemplateSpecialization,
9788                                    D.isFunctionDefinition());
9789   }
9790 
9791   if (getLangOpts().CUDA) {
9792     IdentifierInfo *II = NewFD->getIdentifier();
9793     if (II && II->isStr(getCudaConfigureFuncName()) &&
9794         !NewFD->isInvalidDecl() &&
9795         NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9796       if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
9797         Diag(NewFD->getLocation(), diag::err_config_scalar_return)
9798             << getCudaConfigureFuncName();
9799       Context.setcudaConfigureCallDecl(NewFD);
9800     }
9801 
9802     // Variadic functions, other than a *declaration* of printf, are not allowed
9803     // in device-side CUDA code, unless someone passed
9804     // -fcuda-allow-variadic-functions.
9805     if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9806         (NewFD->hasAttr<CUDADeviceAttr>() ||
9807          NewFD->hasAttr<CUDAGlobalAttr>()) &&
9808         !(II && II->isStr("printf") && NewFD->isExternC() &&
9809           !D.isFunctionDefinition())) {
9810       Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9811     }
9812   }
9813 
9814   MarkUnusedFileScopedDecl(NewFD);
9815 
9816 
9817 
9818   if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
9819     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9820     if ((getLangOpts().OpenCLVersion >= 120)
9821         && (SC == SC_Static)) {
9822       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9823       D.setInvalidType();
9824     }
9825 
9826     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9827     if (!NewFD->getReturnType()->isVoidType()) {
9828       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9829       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9830           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9831                                 : FixItHint());
9832       D.setInvalidType();
9833     }
9834 
9835     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9836     for (auto Param : NewFD->parameters())
9837       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9838 
9839     if (getLangOpts().OpenCLCPlusPlus) {
9840       if (DC->isRecord()) {
9841         Diag(D.getIdentifierLoc(), diag::err_method_kernel);
9842         D.setInvalidType();
9843       }
9844       if (FunctionTemplate) {
9845         Diag(D.getIdentifierLoc(), diag::err_template_kernel);
9846         D.setInvalidType();
9847       }
9848     }
9849   }
9850 
9851   if (getLangOpts().CPlusPlus) {
9852     if (FunctionTemplate) {
9853       if (NewFD->isInvalidDecl())
9854         FunctionTemplate->setInvalidDecl();
9855       return FunctionTemplate;
9856     }
9857 
9858     if (isMemberSpecialization && !NewFD->isInvalidDecl())
9859       CompleteMemberSpecialization(NewFD, Previous);
9860   }
9861 
9862   for (const ParmVarDecl *Param : NewFD->parameters()) {
9863     QualType PT = Param->getType();
9864 
9865     // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
9866     // types.
9867     if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
9868       if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
9869         QualType ElemTy = PipeTy->getElementType();
9870           if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
9871             Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
9872             D.setInvalidType();
9873           }
9874       }
9875     }
9876   }
9877 
9878   // Here we have an function template explicit specialization at class scope.
9879   // The actual specialization will be postponed to template instatiation
9880   // time via the ClassScopeFunctionSpecializationDecl node.
9881   if (isDependentClassScopeExplicitSpecialization) {
9882     ClassScopeFunctionSpecializationDecl *NewSpec =
9883                          ClassScopeFunctionSpecializationDecl::Create(
9884                                 Context, CurContext, NewFD->getLocation(),
9885                                 cast<CXXMethodDecl>(NewFD),
9886                                 HasExplicitTemplateArgs, TemplateArgs);
9887     CurContext->addDecl(NewSpec);
9888     AddToScope = false;
9889   }
9890 
9891   // Diagnose availability attributes. Availability cannot be used on functions
9892   // that are run during load/unload.
9893   if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
9894     if (NewFD->hasAttr<ConstructorAttr>()) {
9895       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9896           << 1;
9897       NewFD->dropAttr<AvailabilityAttr>();
9898     }
9899     if (NewFD->hasAttr<DestructorAttr>()) {
9900       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9901           << 2;
9902       NewFD->dropAttr<AvailabilityAttr>();
9903     }
9904   }
9905 
9906   // Diagnose no_builtin attribute on function declaration that are not a
9907   // definition.
9908   // FIXME: We should really be doing this in
9909   // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
9910   // the FunctionDecl and at this point of the code
9911   // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
9912   // because Sema::ActOnStartOfFunctionDef has not been called yet.
9913   if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
9914     switch (D.getFunctionDefinitionKind()) {
9915     case FunctionDefinitionKind::Defaulted:
9916     case FunctionDefinitionKind::Deleted:
9917       Diag(NBA->getLocation(),
9918            diag::err_attribute_no_builtin_on_defaulted_deleted_function)
9919           << NBA->getSpelling();
9920       break;
9921     case FunctionDefinitionKind::Declaration:
9922       Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
9923           << NBA->getSpelling();
9924       break;
9925     case FunctionDefinitionKind::Definition:
9926       break;
9927     }
9928 
9929   return NewFD;
9930 }
9931 
9932 /// Return a CodeSegAttr from a containing class.  The Microsoft docs say
9933 /// when __declspec(code_seg) "is applied to a class, all member functions of
9934 /// the class and nested classes -- this includes compiler-generated special
9935 /// member functions -- are put in the specified segment."
9936 /// The actual behavior is a little more complicated. The Microsoft compiler
9937 /// won't check outer classes if there is an active value from #pragma code_seg.
9938 /// The CodeSeg is always applied from the direct parent but only from outer
9939 /// classes when the #pragma code_seg stack is empty. See:
9940 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
9941 /// available since MS has removed the page.
9942 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
9943   const auto *Method = dyn_cast<CXXMethodDecl>(FD);
9944   if (!Method)
9945     return nullptr;
9946   const CXXRecordDecl *Parent = Method->getParent();
9947   if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9948     Attr *NewAttr = SAttr->clone(S.getASTContext());
9949     NewAttr->setImplicit(true);
9950     return NewAttr;
9951   }
9952 
9953   // The Microsoft compiler won't check outer classes for the CodeSeg
9954   // when the #pragma code_seg stack is active.
9955   if (S.CodeSegStack.CurrentValue)
9956    return nullptr;
9957 
9958   while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
9959     if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9960       Attr *NewAttr = SAttr->clone(S.getASTContext());
9961       NewAttr->setImplicit(true);
9962       return NewAttr;
9963     }
9964   }
9965   return nullptr;
9966 }
9967 
9968 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
9969 /// containing class. Otherwise it will return implicit SectionAttr if the
9970 /// function is a definition and there is an active value on CodeSegStack
9971 /// (from the current #pragma code-seg value).
9972 ///
9973 /// \param FD Function being declared.
9974 /// \param IsDefinition Whether it is a definition or just a declarartion.
9975 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
9976 ///          nullptr if no attribute should be added.
9977 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
9978                                                        bool IsDefinition) {
9979   if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
9980     return A;
9981   if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
9982       CodeSegStack.CurrentValue)
9983     return SectionAttr::CreateImplicit(
9984         getASTContext(), CodeSegStack.CurrentValue->getString(),
9985         CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9986         SectionAttr::Declspec_allocate);
9987   return nullptr;
9988 }
9989 
9990 /// Determines if we can perform a correct type check for \p D as a
9991 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
9992 /// best-effort check.
9993 ///
9994 /// \param NewD The new declaration.
9995 /// \param OldD The old declaration.
9996 /// \param NewT The portion of the type of the new declaration to check.
9997 /// \param OldT The portion of the type of the old declaration to check.
9998 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
9999                                           QualType NewT, QualType OldT) {
10000   if (!NewD->getLexicalDeclContext()->isDependentContext())
10001     return true;
10002 
10003   // For dependently-typed local extern declarations and friends, we can't
10004   // perform a correct type check in general until instantiation:
10005   //
10006   //   int f();
10007   //   template<typename T> void g() { T f(); }
10008   //
10009   // (valid if g() is only instantiated with T = int).
10010   if (NewT->isDependentType() &&
10011       (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
10012     return false;
10013 
10014   // Similarly, if the previous declaration was a dependent local extern
10015   // declaration, we don't really know its type yet.
10016   if (OldT->isDependentType() && OldD->isLocalExternDecl())
10017     return false;
10018 
10019   return true;
10020 }
10021 
10022 /// Checks if the new declaration declared in dependent context must be
10023 /// put in the same redeclaration chain as the specified declaration.
10024 ///
10025 /// \param D Declaration that is checked.
10026 /// \param PrevDecl Previous declaration found with proper lookup method for the
10027 ///                 same declaration name.
10028 /// \returns True if D must be added to the redeclaration chain which PrevDecl
10029 ///          belongs to.
10030 ///
10031 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
10032   if (!D->getLexicalDeclContext()->isDependentContext())
10033     return true;
10034 
10035   // Don't chain dependent friend function definitions until instantiation, to
10036   // permit cases like
10037   //
10038   //   void func();
10039   //   template<typename T> class C1 { friend void func() {} };
10040   //   template<typename T> class C2 { friend void func() {} };
10041   //
10042   // ... which is valid if only one of C1 and C2 is ever instantiated.
10043   //
10044   // FIXME: This need only apply to function definitions. For now, we proxy
10045   // this by checking for a file-scope function. We do not want this to apply
10046   // to friend declarations nominating member functions, because that gets in
10047   // the way of access checks.
10048   if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
10049     return false;
10050 
10051   auto *VD = dyn_cast<ValueDecl>(D);
10052   auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
10053   return !VD || !PrevVD ||
10054          canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
10055                                         PrevVD->getType());
10056 }
10057 
10058 /// Check the target attribute of the function for MultiVersion
10059 /// validity.
10060 ///
10061 /// Returns true if there was an error, false otherwise.
10062 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
10063   const auto *TA = FD->getAttr<TargetAttr>();
10064   assert(TA && "MultiVersion Candidate requires a target attribute");
10065   ParsedTargetAttr ParseInfo = TA->parse();
10066   const TargetInfo &TargetInfo = S.Context.getTargetInfo();
10067   enum ErrType { Feature = 0, Architecture = 1 };
10068 
10069   if (!ParseInfo.Architecture.empty() &&
10070       !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
10071     S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10072         << Architecture << ParseInfo.Architecture;
10073     return true;
10074   }
10075 
10076   for (const auto &Feat : ParseInfo.Features) {
10077     auto BareFeat = StringRef{Feat}.substr(1);
10078     if (Feat[0] == '-') {
10079       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10080           << Feature << ("no-" + BareFeat).str();
10081       return true;
10082     }
10083 
10084     if (!TargetInfo.validateCpuSupports(BareFeat) ||
10085         !TargetInfo.isValidFeatureName(BareFeat)) {
10086       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10087           << Feature << BareFeat;
10088       return true;
10089     }
10090   }
10091   return false;
10092 }
10093 
10094 // Provide a white-list of attributes that are allowed to be combined with
10095 // multiversion functions.
10096 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind,
10097                                            MultiVersionKind MVType) {
10098   // Note: this list/diagnosis must match the list in
10099   // checkMultiversionAttributesAllSame.
10100   switch (Kind) {
10101   default:
10102     return false;
10103   case attr::Used:
10104     return MVType == MultiVersionKind::Target;
10105   case attr::NonNull:
10106   case attr::NoThrow:
10107     return true;
10108   }
10109 }
10110 
10111 static bool checkNonMultiVersionCompatAttributes(Sema &S,
10112                                                  const FunctionDecl *FD,
10113                                                  const FunctionDecl *CausedFD,
10114                                                  MultiVersionKind MVType) {
10115   bool IsCPUSpecificCPUDispatchMVType =
10116       MVType == MultiVersionKind::CPUDispatch ||
10117       MVType == MultiVersionKind::CPUSpecific;
10118   const auto Diagnose = [FD, CausedFD, IsCPUSpecificCPUDispatchMVType](
10119                             Sema &S, const Attr *A) {
10120     S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr)
10121         << IsCPUSpecificCPUDispatchMVType << A;
10122     if (CausedFD)
10123       S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here);
10124     return true;
10125   };
10126 
10127   for (const Attr *A : FD->attrs()) {
10128     switch (A->getKind()) {
10129     case attr::CPUDispatch:
10130     case attr::CPUSpecific:
10131       if (MVType != MultiVersionKind::CPUDispatch &&
10132           MVType != MultiVersionKind::CPUSpecific)
10133         return Diagnose(S, A);
10134       break;
10135     case attr::Target:
10136       if (MVType != MultiVersionKind::Target)
10137         return Diagnose(S, A);
10138       break;
10139     default:
10140       if (!AttrCompatibleWithMultiVersion(A->getKind(), MVType))
10141         return Diagnose(S, A);
10142       break;
10143     }
10144   }
10145   return false;
10146 }
10147 
10148 bool Sema::areMultiversionVariantFunctionsCompatible(
10149     const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10150     const PartialDiagnostic &NoProtoDiagID,
10151     const PartialDiagnosticAt &NoteCausedDiagIDAt,
10152     const PartialDiagnosticAt &NoSupportDiagIDAt,
10153     const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10154     bool ConstexprSupported, bool CLinkageMayDiffer) {
10155   enum DoesntSupport {
10156     FuncTemplates = 0,
10157     VirtFuncs = 1,
10158     DeducedReturn = 2,
10159     Constructors = 3,
10160     Destructors = 4,
10161     DeletedFuncs = 5,
10162     DefaultedFuncs = 6,
10163     ConstexprFuncs = 7,
10164     ConstevalFuncs = 8,
10165   };
10166   enum Different {
10167     CallingConv = 0,
10168     ReturnType = 1,
10169     ConstexprSpec = 2,
10170     InlineSpec = 3,
10171     StorageClass = 4,
10172     Linkage = 5,
10173   };
10174 
10175   if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
10176       !OldFD->getType()->getAs<FunctionProtoType>()) {
10177     Diag(OldFD->getLocation(), NoProtoDiagID);
10178     Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
10179     return true;
10180   }
10181 
10182   if (NoProtoDiagID.getDiagID() != 0 &&
10183       !NewFD->getType()->getAs<FunctionProtoType>())
10184     return Diag(NewFD->getLocation(), NoProtoDiagID);
10185 
10186   if (!TemplatesSupported &&
10187       NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10188     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10189            << FuncTemplates;
10190 
10191   if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
10192     if (NewCXXFD->isVirtual())
10193       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10194              << VirtFuncs;
10195 
10196     if (isa<CXXConstructorDecl>(NewCXXFD))
10197       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10198              << Constructors;
10199 
10200     if (isa<CXXDestructorDecl>(NewCXXFD))
10201       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10202              << Destructors;
10203   }
10204 
10205   if (NewFD->isDeleted())
10206     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10207            << DeletedFuncs;
10208 
10209   if (NewFD->isDefaulted())
10210     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10211            << DefaultedFuncs;
10212 
10213   if (!ConstexprSupported && NewFD->isConstexpr())
10214     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10215            << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
10216 
10217   QualType NewQType = Context.getCanonicalType(NewFD->getType());
10218   const auto *NewType = cast<FunctionType>(NewQType);
10219   QualType NewReturnType = NewType->getReturnType();
10220 
10221   if (NewReturnType->isUndeducedType())
10222     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10223            << DeducedReturn;
10224 
10225   // Ensure the return type is identical.
10226   if (OldFD) {
10227     QualType OldQType = Context.getCanonicalType(OldFD->getType());
10228     const auto *OldType = cast<FunctionType>(OldQType);
10229     FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
10230     FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
10231 
10232     if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
10233       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
10234 
10235     QualType OldReturnType = OldType->getReturnType();
10236 
10237     if (OldReturnType != NewReturnType)
10238       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
10239 
10240     if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
10241       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
10242 
10243     if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
10244       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
10245 
10246     if (OldFD->getStorageClass() != NewFD->getStorageClass())
10247       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << StorageClass;
10248 
10249     if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
10250       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
10251 
10252     if (CheckEquivalentExceptionSpec(
10253             OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
10254             NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
10255       return true;
10256   }
10257   return false;
10258 }
10259 
10260 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
10261                                              const FunctionDecl *NewFD,
10262                                              bool CausesMV,
10263                                              MultiVersionKind MVType) {
10264   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10265     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10266     if (OldFD)
10267       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10268     return true;
10269   }
10270 
10271   bool IsCPUSpecificCPUDispatchMVType =
10272       MVType == MultiVersionKind::CPUDispatch ||
10273       MVType == MultiVersionKind::CPUSpecific;
10274 
10275   if (CausesMV && OldFD &&
10276       checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVType))
10277     return true;
10278 
10279   if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVType))
10280     return true;
10281 
10282   // Only allow transition to MultiVersion if it hasn't been used.
10283   if (OldFD && CausesMV && OldFD->isUsed(false))
10284     return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
10285 
10286   return S.areMultiversionVariantFunctionsCompatible(
10287       OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
10288       PartialDiagnosticAt(NewFD->getLocation(),
10289                           S.PDiag(diag::note_multiversioning_caused_here)),
10290       PartialDiagnosticAt(NewFD->getLocation(),
10291                           S.PDiag(diag::err_multiversion_doesnt_support)
10292                               << IsCPUSpecificCPUDispatchMVType),
10293       PartialDiagnosticAt(NewFD->getLocation(),
10294                           S.PDiag(diag::err_multiversion_diff)),
10295       /*TemplatesSupported=*/false,
10296       /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVType,
10297       /*CLinkageMayDiffer=*/false);
10298 }
10299 
10300 /// Check the validity of a multiversion function declaration that is the
10301 /// first of its kind. Also sets the multiversion'ness' of the function itself.
10302 ///
10303 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10304 ///
10305 /// Returns true if there was an error, false otherwise.
10306 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
10307                                            MultiVersionKind MVType,
10308                                            const TargetAttr *TA) {
10309   assert(MVType != MultiVersionKind::None &&
10310          "Function lacks multiversion attribute");
10311 
10312   // Target only causes MV if it is default, otherwise this is a normal
10313   // function.
10314   if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
10315     return false;
10316 
10317   if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
10318     FD->setInvalidDecl();
10319     return true;
10320   }
10321 
10322   if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
10323     FD->setInvalidDecl();
10324     return true;
10325   }
10326 
10327   FD->setIsMultiVersion();
10328   return false;
10329 }
10330 
10331 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
10332   for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
10333     if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
10334       return true;
10335   }
10336 
10337   return false;
10338 }
10339 
10340 static bool CheckTargetCausesMultiVersioning(
10341     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
10342     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10343     LookupResult &Previous) {
10344   const auto *OldTA = OldFD->getAttr<TargetAttr>();
10345   ParsedTargetAttr NewParsed = NewTA->parse();
10346   // Sort order doesn't matter, it just needs to be consistent.
10347   llvm::sort(NewParsed.Features);
10348 
10349   // If the old decl is NOT MultiVersioned yet, and we don't cause that
10350   // to change, this is a simple redeclaration.
10351   if (!NewTA->isDefaultVersion() &&
10352       (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
10353     return false;
10354 
10355   // Otherwise, this decl causes MultiVersioning.
10356   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10357     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10358     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10359     NewFD->setInvalidDecl();
10360     return true;
10361   }
10362 
10363   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
10364                                        MultiVersionKind::Target)) {
10365     NewFD->setInvalidDecl();
10366     return true;
10367   }
10368 
10369   if (CheckMultiVersionValue(S, NewFD)) {
10370     NewFD->setInvalidDecl();
10371     return true;
10372   }
10373 
10374   // If this is 'default', permit the forward declaration.
10375   if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
10376     Redeclaration = true;
10377     OldDecl = OldFD;
10378     OldFD->setIsMultiVersion();
10379     NewFD->setIsMultiVersion();
10380     return false;
10381   }
10382 
10383   if (CheckMultiVersionValue(S, OldFD)) {
10384     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10385     NewFD->setInvalidDecl();
10386     return true;
10387   }
10388 
10389   ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>());
10390 
10391   if (OldParsed == NewParsed) {
10392     S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10393     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10394     NewFD->setInvalidDecl();
10395     return true;
10396   }
10397 
10398   for (const auto *FD : OldFD->redecls()) {
10399     const auto *CurTA = FD->getAttr<TargetAttr>();
10400     // We allow forward declarations before ANY multiversioning attributes, but
10401     // nothing after the fact.
10402     if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
10403         (!CurTA || CurTA->isInherited())) {
10404       S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
10405           << 0;
10406       S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10407       NewFD->setInvalidDecl();
10408       return true;
10409     }
10410   }
10411 
10412   OldFD->setIsMultiVersion();
10413   NewFD->setIsMultiVersion();
10414   Redeclaration = false;
10415   MergeTypeWithPrevious = false;
10416   OldDecl = nullptr;
10417   Previous.clear();
10418   return false;
10419 }
10420 
10421 /// Check the validity of a new function declaration being added to an existing
10422 /// multiversioned declaration collection.
10423 static bool CheckMultiVersionAdditionalDecl(
10424     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
10425     MultiVersionKind NewMVType, const TargetAttr *NewTA,
10426     const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
10427     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10428     LookupResult &Previous) {
10429 
10430   MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
10431   // Disallow mixing of multiversioning types.
10432   if ((OldMVType == MultiVersionKind::Target &&
10433        NewMVType != MultiVersionKind::Target) ||
10434       (NewMVType == MultiVersionKind::Target &&
10435        OldMVType != MultiVersionKind::Target)) {
10436     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10437     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10438     NewFD->setInvalidDecl();
10439     return true;
10440   }
10441 
10442   ParsedTargetAttr NewParsed;
10443   if (NewTA) {
10444     NewParsed = NewTA->parse();
10445     llvm::sort(NewParsed.Features);
10446   }
10447 
10448   bool UseMemberUsingDeclRules =
10449       S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
10450 
10451   // Next, check ALL non-overloads to see if this is a redeclaration of a
10452   // previous member of the MultiVersion set.
10453   for (NamedDecl *ND : Previous) {
10454     FunctionDecl *CurFD = ND->getAsFunction();
10455     if (!CurFD)
10456       continue;
10457     if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
10458       continue;
10459 
10460     if (NewMVType == MultiVersionKind::Target) {
10461       const auto *CurTA = CurFD->getAttr<TargetAttr>();
10462       if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
10463         NewFD->setIsMultiVersion();
10464         Redeclaration = true;
10465         OldDecl = ND;
10466         return false;
10467       }
10468 
10469       ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>());
10470       if (CurParsed == NewParsed) {
10471         S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10472         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10473         NewFD->setInvalidDecl();
10474         return true;
10475       }
10476     } else {
10477       const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
10478       const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
10479       // Handle CPUDispatch/CPUSpecific versions.
10480       // Only 1 CPUDispatch function is allowed, this will make it go through
10481       // the redeclaration errors.
10482       if (NewMVType == MultiVersionKind::CPUDispatch &&
10483           CurFD->hasAttr<CPUDispatchAttr>()) {
10484         if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
10485             std::equal(
10486                 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
10487                 NewCPUDisp->cpus_begin(),
10488                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10489                   return Cur->getName() == New->getName();
10490                 })) {
10491           NewFD->setIsMultiVersion();
10492           Redeclaration = true;
10493           OldDecl = ND;
10494           return false;
10495         }
10496 
10497         // If the declarations don't match, this is an error condition.
10498         S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
10499         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10500         NewFD->setInvalidDecl();
10501         return true;
10502       }
10503       if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
10504 
10505         if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
10506             std::equal(
10507                 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
10508                 NewCPUSpec->cpus_begin(),
10509                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10510                   return Cur->getName() == New->getName();
10511                 })) {
10512           NewFD->setIsMultiVersion();
10513           Redeclaration = true;
10514           OldDecl = ND;
10515           return false;
10516         }
10517 
10518         // Only 1 version of CPUSpecific is allowed for each CPU.
10519         for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
10520           for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
10521             if (CurII == NewII) {
10522               S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
10523                   << NewII;
10524               S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10525               NewFD->setInvalidDecl();
10526               return true;
10527             }
10528           }
10529         }
10530       }
10531       // If the two decls aren't the same MVType, there is no possible error
10532       // condition.
10533     }
10534   }
10535 
10536   // Else, this is simply a non-redecl case.  Checking the 'value' is only
10537   // necessary in the Target case, since The CPUSpecific/Dispatch cases are
10538   // handled in the attribute adding step.
10539   if (NewMVType == MultiVersionKind::Target &&
10540       CheckMultiVersionValue(S, NewFD)) {
10541     NewFD->setInvalidDecl();
10542     return true;
10543   }
10544 
10545   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
10546                                        !OldFD->isMultiVersion(), NewMVType)) {
10547     NewFD->setInvalidDecl();
10548     return true;
10549   }
10550 
10551   // Permit forward declarations in the case where these two are compatible.
10552   if (!OldFD->isMultiVersion()) {
10553     OldFD->setIsMultiVersion();
10554     NewFD->setIsMultiVersion();
10555     Redeclaration = true;
10556     OldDecl = OldFD;
10557     return false;
10558   }
10559 
10560   NewFD->setIsMultiVersion();
10561   Redeclaration = false;
10562   MergeTypeWithPrevious = false;
10563   OldDecl = nullptr;
10564   Previous.clear();
10565   return false;
10566 }
10567 
10568 
10569 /// Check the validity of a mulitversion function declaration.
10570 /// Also sets the multiversion'ness' of the function itself.
10571 ///
10572 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10573 ///
10574 /// Returns true if there was an error, false otherwise.
10575 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
10576                                       bool &Redeclaration, NamedDecl *&OldDecl,
10577                                       bool &MergeTypeWithPrevious,
10578                                       LookupResult &Previous) {
10579   const auto *NewTA = NewFD->getAttr<TargetAttr>();
10580   const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
10581   const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
10582 
10583   // Mixing Multiversioning types is prohibited.
10584   if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
10585       (NewCPUDisp && NewCPUSpec)) {
10586     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10587     NewFD->setInvalidDecl();
10588     return true;
10589   }
10590 
10591   MultiVersionKind  MVType = NewFD->getMultiVersionKind();
10592 
10593   // Main isn't allowed to become a multiversion function, however it IS
10594   // permitted to have 'main' be marked with the 'target' optimization hint.
10595   if (NewFD->isMain()) {
10596     if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
10597         MVType == MultiVersionKind::CPUDispatch ||
10598         MVType == MultiVersionKind::CPUSpecific) {
10599       S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
10600       NewFD->setInvalidDecl();
10601       return true;
10602     }
10603     return false;
10604   }
10605 
10606   if (!OldDecl || !OldDecl->getAsFunction() ||
10607       OldDecl->getDeclContext()->getRedeclContext() !=
10608           NewFD->getDeclContext()->getRedeclContext()) {
10609     // If there's no previous declaration, AND this isn't attempting to cause
10610     // multiversioning, this isn't an error condition.
10611     if (MVType == MultiVersionKind::None)
10612       return false;
10613     return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA);
10614   }
10615 
10616   FunctionDecl *OldFD = OldDecl->getAsFunction();
10617 
10618   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
10619     return false;
10620 
10621   if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
10622     S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
10623         << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
10624     NewFD->setInvalidDecl();
10625     return true;
10626   }
10627 
10628   // Handle the target potentially causes multiversioning case.
10629   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
10630     return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
10631                                             Redeclaration, OldDecl,
10632                                             MergeTypeWithPrevious, Previous);
10633 
10634   // At this point, we have a multiversion function decl (in OldFD) AND an
10635   // appropriate attribute in the current function decl.  Resolve that these are
10636   // still compatible with previous declarations.
10637   return CheckMultiVersionAdditionalDecl(
10638       S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
10639       OldDecl, MergeTypeWithPrevious, Previous);
10640 }
10641 
10642 /// Perform semantic checking of a new function declaration.
10643 ///
10644 /// Performs semantic analysis of the new function declaration
10645 /// NewFD. This routine performs all semantic checking that does not
10646 /// require the actual declarator involved in the declaration, and is
10647 /// used both for the declaration of functions as they are parsed
10648 /// (called via ActOnDeclarator) and for the declaration of functions
10649 /// that have been instantiated via C++ template instantiation (called
10650 /// via InstantiateDecl).
10651 ///
10652 /// \param IsMemberSpecialization whether this new function declaration is
10653 /// a member specialization (that replaces any definition provided by the
10654 /// previous declaration).
10655 ///
10656 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10657 ///
10658 /// \returns true if the function declaration is a redeclaration.
10659 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
10660                                     LookupResult &Previous,
10661                                     bool IsMemberSpecialization) {
10662   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
10663          "Variably modified return types are not handled here");
10664 
10665   // Determine whether the type of this function should be merged with
10666   // a previous visible declaration. This never happens for functions in C++,
10667   // and always happens in C if the previous declaration was visible.
10668   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
10669                                !Previous.isShadowed();
10670 
10671   bool Redeclaration = false;
10672   NamedDecl *OldDecl = nullptr;
10673   bool MayNeedOverloadableChecks = false;
10674 
10675   // Merge or overload the declaration with an existing declaration of
10676   // the same name, if appropriate.
10677   if (!Previous.empty()) {
10678     // Determine whether NewFD is an overload of PrevDecl or
10679     // a declaration that requires merging. If it's an overload,
10680     // there's no more work to do here; we'll just add the new
10681     // function to the scope.
10682     if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
10683       NamedDecl *Candidate = Previous.getRepresentativeDecl();
10684       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
10685         Redeclaration = true;
10686         OldDecl = Candidate;
10687       }
10688     } else {
10689       MayNeedOverloadableChecks = true;
10690       switch (CheckOverload(S, NewFD, Previous, OldDecl,
10691                             /*NewIsUsingDecl*/ false)) {
10692       case Ovl_Match:
10693         Redeclaration = true;
10694         break;
10695 
10696       case Ovl_NonFunction:
10697         Redeclaration = true;
10698         break;
10699 
10700       case Ovl_Overload:
10701         Redeclaration = false;
10702         break;
10703       }
10704     }
10705   }
10706 
10707   // Check for a previous extern "C" declaration with this name.
10708   if (!Redeclaration &&
10709       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
10710     if (!Previous.empty()) {
10711       // This is an extern "C" declaration with the same name as a previous
10712       // declaration, and thus redeclares that entity...
10713       Redeclaration = true;
10714       OldDecl = Previous.getFoundDecl();
10715       MergeTypeWithPrevious = false;
10716 
10717       // ... except in the presence of __attribute__((overloadable)).
10718       if (OldDecl->hasAttr<OverloadableAttr>() ||
10719           NewFD->hasAttr<OverloadableAttr>()) {
10720         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
10721           MayNeedOverloadableChecks = true;
10722           Redeclaration = false;
10723           OldDecl = nullptr;
10724         }
10725       }
10726     }
10727   }
10728 
10729   if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10730                                 MergeTypeWithPrevious, Previous))
10731     return Redeclaration;
10732 
10733   // PPC MMA non-pointer types are not allowed as function return types.
10734   if (Context.getTargetInfo().getTriple().isPPC64() &&
10735       CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) {
10736     NewFD->setInvalidDecl();
10737   }
10738 
10739   // C++11 [dcl.constexpr]p8:
10740   //   A constexpr specifier for a non-static member function that is not
10741   //   a constructor declares that member function to be const.
10742   //
10743   // This needs to be delayed until we know whether this is an out-of-line
10744   // definition of a static member function.
10745   //
10746   // This rule is not present in C++1y, so we produce a backwards
10747   // compatibility warning whenever it happens in C++11.
10748   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10749   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10750       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10751       !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
10752     CXXMethodDecl *OldMD = nullptr;
10753     if (OldDecl)
10754       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10755     if (!OldMD || !OldMD->isStatic()) {
10756       const FunctionProtoType *FPT =
10757         MD->getType()->castAs<FunctionProtoType>();
10758       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10759       EPI.TypeQuals.addConst();
10760       MD->setType(Context.getFunctionType(FPT->getReturnType(),
10761                                           FPT->getParamTypes(), EPI));
10762 
10763       // Warn that we did this, if we're not performing template instantiation.
10764       // In that case, we'll have warned already when the template was defined.
10765       if (!inTemplateInstantiation()) {
10766         SourceLocation AddConstLoc;
10767         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10768                 .IgnoreParens().getAs<FunctionTypeLoc>())
10769           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10770 
10771         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10772           << FixItHint::CreateInsertion(AddConstLoc, " const");
10773       }
10774     }
10775   }
10776 
10777   if (Redeclaration) {
10778     // NewFD and OldDecl represent declarations that need to be
10779     // merged.
10780     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10781       NewFD->setInvalidDecl();
10782       return Redeclaration;
10783     }
10784 
10785     Previous.clear();
10786     Previous.addDecl(OldDecl);
10787 
10788     if (FunctionTemplateDecl *OldTemplateDecl =
10789             dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10790       auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10791       FunctionTemplateDecl *NewTemplateDecl
10792         = NewFD->getDescribedFunctionTemplate();
10793       assert(NewTemplateDecl && "Template/non-template mismatch");
10794 
10795       // The call to MergeFunctionDecl above may have created some state in
10796       // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10797       // can add it as a redeclaration.
10798       NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10799 
10800       NewFD->setPreviousDeclaration(OldFD);
10801       if (NewFD->isCXXClassMember()) {
10802         NewFD->setAccess(OldTemplateDecl->getAccess());
10803         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10804       }
10805 
10806       // If this is an explicit specialization of a member that is a function
10807       // template, mark it as a member specialization.
10808       if (IsMemberSpecialization &&
10809           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10810         NewTemplateDecl->setMemberSpecialization();
10811         assert(OldTemplateDecl->isMemberSpecialization());
10812         // Explicit specializations of a member template do not inherit deleted
10813         // status from the parent member template that they are specializing.
10814         if (OldFD->isDeleted()) {
10815           // FIXME: This assert will not hold in the presence of modules.
10816           assert(OldFD->getCanonicalDecl() == OldFD);
10817           // FIXME: We need an update record for this AST mutation.
10818           OldFD->setDeletedAsWritten(false);
10819         }
10820       }
10821 
10822     } else {
10823       if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10824         auto *OldFD = cast<FunctionDecl>(OldDecl);
10825         // This needs to happen first so that 'inline' propagates.
10826         NewFD->setPreviousDeclaration(OldFD);
10827         if (NewFD->isCXXClassMember())
10828           NewFD->setAccess(OldFD->getAccess());
10829       }
10830     }
10831   } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10832              !NewFD->getAttr<OverloadableAttr>()) {
10833     assert((Previous.empty() ||
10834             llvm::any_of(Previous,
10835                          [](const NamedDecl *ND) {
10836                            return ND->hasAttr<OverloadableAttr>();
10837                          })) &&
10838            "Non-redecls shouldn't happen without overloadable present");
10839 
10840     auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10841       const auto *FD = dyn_cast<FunctionDecl>(ND);
10842       return FD && !FD->hasAttr<OverloadableAttr>();
10843     });
10844 
10845     if (OtherUnmarkedIter != Previous.end()) {
10846       Diag(NewFD->getLocation(),
10847            diag::err_attribute_overloadable_multiple_unmarked_overloads);
10848       Diag((*OtherUnmarkedIter)->getLocation(),
10849            diag::note_attribute_overloadable_prev_overload)
10850           << false;
10851 
10852       NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
10853     }
10854   }
10855 
10856   if (LangOpts.OpenMP)
10857     ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD);
10858 
10859   // Semantic checking for this function declaration (in isolation).
10860 
10861   if (getLangOpts().CPlusPlus) {
10862     // C++-specific checks.
10863     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
10864       CheckConstructor(Constructor);
10865     } else if (CXXDestructorDecl *Destructor =
10866                 dyn_cast<CXXDestructorDecl>(NewFD)) {
10867       CXXRecordDecl *Record = Destructor->getParent();
10868       QualType ClassType = Context.getTypeDeclType(Record);
10869 
10870       // FIXME: Shouldn't we be able to perform this check even when the class
10871       // type is dependent? Both gcc and edg can handle that.
10872       if (!ClassType->isDependentType()) {
10873         DeclarationName Name
10874           = Context.DeclarationNames.getCXXDestructorName(
10875                                         Context.getCanonicalType(ClassType));
10876         if (NewFD->getDeclName() != Name) {
10877           Diag(NewFD->getLocation(), diag::err_destructor_name);
10878           NewFD->setInvalidDecl();
10879           return Redeclaration;
10880         }
10881       }
10882     } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
10883       if (auto *TD = Guide->getDescribedFunctionTemplate())
10884         CheckDeductionGuideTemplate(TD);
10885 
10886       // A deduction guide is not on the list of entities that can be
10887       // explicitly specialized.
10888       if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
10889         Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
10890             << /*explicit specialization*/ 1;
10891     }
10892 
10893     // Find any virtual functions that this function overrides.
10894     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
10895       if (!Method->isFunctionTemplateSpecialization() &&
10896           !Method->getDescribedFunctionTemplate() &&
10897           Method->isCanonicalDecl()) {
10898         AddOverriddenMethods(Method->getParent(), Method);
10899       }
10900       if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
10901         // C++2a [class.virtual]p6
10902         // A virtual method shall not have a requires-clause.
10903         Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
10904              diag::err_constrained_virtual_method);
10905 
10906       if (Method->isStatic())
10907         checkThisInStaticMemberFunctionType(Method);
10908     }
10909 
10910     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
10911       ActOnConversionDeclarator(Conversion);
10912 
10913     // Extra checking for C++ overloaded operators (C++ [over.oper]).
10914     if (NewFD->isOverloadedOperator() &&
10915         CheckOverloadedOperatorDeclaration(NewFD)) {
10916       NewFD->setInvalidDecl();
10917       return Redeclaration;
10918     }
10919 
10920     // Extra checking for C++0x literal operators (C++0x [over.literal]).
10921     if (NewFD->getLiteralIdentifier() &&
10922         CheckLiteralOperatorDeclaration(NewFD)) {
10923       NewFD->setInvalidDecl();
10924       return Redeclaration;
10925     }
10926 
10927     // In C++, check default arguments now that we have merged decls. Unless
10928     // the lexical context is the class, because in this case this is done
10929     // during delayed parsing anyway.
10930     if (!CurContext->isRecord())
10931       CheckCXXDefaultArguments(NewFD);
10932 
10933     // If this function declares a builtin function, check the type of this
10934     // declaration against the expected type for the builtin.
10935     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
10936       ASTContext::GetBuiltinTypeError Error;
10937       LookupNecessaryTypesForBuiltin(S, BuiltinID);
10938       QualType T = Context.GetBuiltinType(BuiltinID, Error);
10939       // If the type of the builtin differs only in its exception
10940       // specification, that's OK.
10941       // FIXME: If the types do differ in this way, it would be better to
10942       // retain the 'noexcept' form of the type.
10943       if (!T.isNull() &&
10944           !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
10945                                                             NewFD->getType()))
10946         // The type of this function differs from the type of the builtin,
10947         // so forget about the builtin entirely.
10948         Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
10949     }
10950 
10951     // If this function is declared as being extern "C", then check to see if
10952     // the function returns a UDT (class, struct, or union type) that is not C
10953     // compatible, and if it does, warn the user.
10954     // But, issue any diagnostic on the first declaration only.
10955     if (Previous.empty() && NewFD->isExternC()) {
10956       QualType R = NewFD->getReturnType();
10957       if (R->isIncompleteType() && !R->isVoidType())
10958         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
10959             << NewFD << R;
10960       else if (!R.isPODType(Context) && !R->isVoidType() &&
10961                !R->isObjCObjectPointerType())
10962         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
10963     }
10964 
10965     // C++1z [dcl.fct]p6:
10966     //   [...] whether the function has a non-throwing exception-specification
10967     //   [is] part of the function type
10968     //
10969     // This results in an ABI break between C++14 and C++17 for functions whose
10970     // declared type includes an exception-specification in a parameter or
10971     // return type. (Exception specifications on the function itself are OK in
10972     // most cases, and exception specifications are not permitted in most other
10973     // contexts where they could make it into a mangling.)
10974     if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
10975       auto HasNoexcept = [&](QualType T) -> bool {
10976         // Strip off declarator chunks that could be between us and a function
10977         // type. We don't need to look far, exception specifications are very
10978         // restricted prior to C++17.
10979         if (auto *RT = T->getAs<ReferenceType>())
10980           T = RT->getPointeeType();
10981         else if (T->isAnyPointerType())
10982           T = T->getPointeeType();
10983         else if (auto *MPT = T->getAs<MemberPointerType>())
10984           T = MPT->getPointeeType();
10985         if (auto *FPT = T->getAs<FunctionProtoType>())
10986           if (FPT->isNothrow())
10987             return true;
10988         return false;
10989       };
10990 
10991       auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
10992       bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
10993       for (QualType T : FPT->param_types())
10994         AnyNoexcept |= HasNoexcept(T);
10995       if (AnyNoexcept)
10996         Diag(NewFD->getLocation(),
10997              diag::warn_cxx17_compat_exception_spec_in_signature)
10998             << NewFD;
10999     }
11000 
11001     if (!Redeclaration && LangOpts.CUDA)
11002       checkCUDATargetOverload(NewFD, Previous);
11003   }
11004   return Redeclaration;
11005 }
11006 
11007 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
11008   // C++11 [basic.start.main]p3:
11009   //   A program that [...] declares main to be inline, static or
11010   //   constexpr is ill-formed.
11011   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
11012   //   appear in a declaration of main.
11013   // static main is not an error under C99, but we should warn about it.
11014   // We accept _Noreturn main as an extension.
11015   if (FD->getStorageClass() == SC_Static)
11016     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
11017          ? diag::err_static_main : diag::warn_static_main)
11018       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
11019   if (FD->isInlineSpecified())
11020     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
11021       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
11022   if (DS.isNoreturnSpecified()) {
11023     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
11024     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
11025     Diag(NoreturnLoc, diag::ext_noreturn_main);
11026     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
11027       << FixItHint::CreateRemoval(NoreturnRange);
11028   }
11029   if (FD->isConstexpr()) {
11030     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
11031         << FD->isConsteval()
11032         << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
11033     FD->setConstexprKind(ConstexprSpecKind::Unspecified);
11034   }
11035 
11036   if (getLangOpts().OpenCL) {
11037     Diag(FD->getLocation(), diag::err_opencl_no_main)
11038         << FD->hasAttr<OpenCLKernelAttr>();
11039     FD->setInvalidDecl();
11040     return;
11041   }
11042 
11043   QualType T = FD->getType();
11044   assert(T->isFunctionType() && "function decl is not of function type");
11045   const FunctionType* FT = T->castAs<FunctionType>();
11046 
11047   // Set default calling convention for main()
11048   if (FT->getCallConv() != CC_C) {
11049     FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
11050     FD->setType(QualType(FT, 0));
11051     T = Context.getCanonicalType(FD->getType());
11052   }
11053 
11054   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
11055     // In C with GNU extensions we allow main() to have non-integer return
11056     // type, but we should warn about the extension, and we disable the
11057     // implicit-return-zero rule.
11058 
11059     // GCC in C mode accepts qualified 'int'.
11060     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
11061       FD->setHasImplicitReturnZero(true);
11062     else {
11063       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
11064       SourceRange RTRange = FD->getReturnTypeSourceRange();
11065       if (RTRange.isValid())
11066         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
11067             << FixItHint::CreateReplacement(RTRange, "int");
11068     }
11069   } else {
11070     // In C and C++, main magically returns 0 if you fall off the end;
11071     // set the flag which tells us that.
11072     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
11073 
11074     // All the standards say that main() should return 'int'.
11075     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
11076       FD->setHasImplicitReturnZero(true);
11077     else {
11078       // Otherwise, this is just a flat-out error.
11079       SourceRange RTRange = FD->getReturnTypeSourceRange();
11080       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
11081           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
11082                                 : FixItHint());
11083       FD->setInvalidDecl(true);
11084     }
11085   }
11086 
11087   // Treat protoless main() as nullary.
11088   if (isa<FunctionNoProtoType>(FT)) return;
11089 
11090   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
11091   unsigned nparams = FTP->getNumParams();
11092   assert(FD->getNumParams() == nparams);
11093 
11094   bool HasExtraParameters = (nparams > 3);
11095 
11096   if (FTP->isVariadic()) {
11097     Diag(FD->getLocation(), diag::ext_variadic_main);
11098     // FIXME: if we had information about the location of the ellipsis, we
11099     // could add a FixIt hint to remove it as a parameter.
11100   }
11101 
11102   // Darwin passes an undocumented fourth argument of type char**.  If
11103   // other platforms start sprouting these, the logic below will start
11104   // getting shifty.
11105   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
11106     HasExtraParameters = false;
11107 
11108   if (HasExtraParameters) {
11109     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
11110     FD->setInvalidDecl(true);
11111     nparams = 3;
11112   }
11113 
11114   // FIXME: a lot of the following diagnostics would be improved
11115   // if we had some location information about types.
11116 
11117   QualType CharPP =
11118     Context.getPointerType(Context.getPointerType(Context.CharTy));
11119   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
11120 
11121   for (unsigned i = 0; i < nparams; ++i) {
11122     QualType AT = FTP->getParamType(i);
11123 
11124     bool mismatch = true;
11125 
11126     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
11127       mismatch = false;
11128     else if (Expected[i] == CharPP) {
11129       // As an extension, the following forms are okay:
11130       //   char const **
11131       //   char const * const *
11132       //   char * const *
11133 
11134       QualifierCollector qs;
11135       const PointerType* PT;
11136       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
11137           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
11138           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
11139                               Context.CharTy)) {
11140         qs.removeConst();
11141         mismatch = !qs.empty();
11142       }
11143     }
11144 
11145     if (mismatch) {
11146       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
11147       // TODO: suggest replacing given type with expected type
11148       FD->setInvalidDecl(true);
11149     }
11150   }
11151 
11152   if (nparams == 1 && !FD->isInvalidDecl()) {
11153     Diag(FD->getLocation(), diag::warn_main_one_arg);
11154   }
11155 
11156   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11157     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11158     FD->setInvalidDecl();
11159   }
11160 }
11161 
11162 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
11163   QualType T = FD->getType();
11164   assert(T->isFunctionType() && "function decl is not of function type");
11165   const FunctionType *FT = T->castAs<FunctionType>();
11166 
11167   // Set an implicit return of 'zero' if the function can return some integral,
11168   // enumeration, pointer or nullptr type.
11169   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
11170       FT->getReturnType()->isAnyPointerType() ||
11171       FT->getReturnType()->isNullPtrType())
11172     // DllMain is exempt because a return value of zero means it failed.
11173     if (FD->getName() != "DllMain")
11174       FD->setHasImplicitReturnZero(true);
11175 
11176   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11177     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11178     FD->setInvalidDecl();
11179   }
11180 }
11181 
11182 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
11183   // FIXME: Need strict checking.  In C89, we need to check for
11184   // any assignment, increment, decrement, function-calls, or
11185   // commas outside of a sizeof.  In C99, it's the same list,
11186   // except that the aforementioned are allowed in unevaluated
11187   // expressions.  Everything else falls under the
11188   // "may accept other forms of constant expressions" exception.
11189   //
11190   // Regular C++ code will not end up here (exceptions: language extensions,
11191   // OpenCL C++ etc), so the constant expression rules there don't matter.
11192   if (Init->isValueDependent()) {
11193     assert(Init->containsErrors() &&
11194            "Dependent code should only occur in error-recovery path.");
11195     return true;
11196   }
11197   const Expr *Culprit;
11198   if (Init->isConstantInitializer(Context, false, &Culprit))
11199     return false;
11200   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
11201     << Culprit->getSourceRange();
11202   return true;
11203 }
11204 
11205 namespace {
11206   // Visits an initialization expression to see if OrigDecl is evaluated in
11207   // its own initialization and throws a warning if it does.
11208   class SelfReferenceChecker
11209       : public EvaluatedExprVisitor<SelfReferenceChecker> {
11210     Sema &S;
11211     Decl *OrigDecl;
11212     bool isRecordType;
11213     bool isPODType;
11214     bool isReferenceType;
11215 
11216     bool isInitList;
11217     llvm::SmallVector<unsigned, 4> InitFieldIndex;
11218 
11219   public:
11220     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
11221 
11222     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
11223                                                     S(S), OrigDecl(OrigDecl) {
11224       isPODType = false;
11225       isRecordType = false;
11226       isReferenceType = false;
11227       isInitList = false;
11228       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
11229         isPODType = VD->getType().isPODType(S.Context);
11230         isRecordType = VD->getType()->isRecordType();
11231         isReferenceType = VD->getType()->isReferenceType();
11232       }
11233     }
11234 
11235     // For most expressions, just call the visitor.  For initializer lists,
11236     // track the index of the field being initialized since fields are
11237     // initialized in order allowing use of previously initialized fields.
11238     void CheckExpr(Expr *E) {
11239       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
11240       if (!InitList) {
11241         Visit(E);
11242         return;
11243       }
11244 
11245       // Track and increment the index here.
11246       isInitList = true;
11247       InitFieldIndex.push_back(0);
11248       for (auto Child : InitList->children()) {
11249         CheckExpr(cast<Expr>(Child));
11250         ++InitFieldIndex.back();
11251       }
11252       InitFieldIndex.pop_back();
11253     }
11254 
11255     // Returns true if MemberExpr is checked and no further checking is needed.
11256     // Returns false if additional checking is required.
11257     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
11258       llvm::SmallVector<FieldDecl*, 4> Fields;
11259       Expr *Base = E;
11260       bool ReferenceField = false;
11261 
11262       // Get the field members used.
11263       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11264         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
11265         if (!FD)
11266           return false;
11267         Fields.push_back(FD);
11268         if (FD->getType()->isReferenceType())
11269           ReferenceField = true;
11270         Base = ME->getBase()->IgnoreParenImpCasts();
11271       }
11272 
11273       // Keep checking only if the base Decl is the same.
11274       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
11275       if (!DRE || DRE->getDecl() != OrigDecl)
11276         return false;
11277 
11278       // A reference field can be bound to an unininitialized field.
11279       if (CheckReference && !ReferenceField)
11280         return true;
11281 
11282       // Convert FieldDecls to their index number.
11283       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
11284       for (const FieldDecl *I : llvm::reverse(Fields))
11285         UsedFieldIndex.push_back(I->getFieldIndex());
11286 
11287       // See if a warning is needed by checking the first difference in index
11288       // numbers.  If field being used has index less than the field being
11289       // initialized, then the use is safe.
11290       for (auto UsedIter = UsedFieldIndex.begin(),
11291                 UsedEnd = UsedFieldIndex.end(),
11292                 OrigIter = InitFieldIndex.begin(),
11293                 OrigEnd = InitFieldIndex.end();
11294            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
11295         if (*UsedIter < *OrigIter)
11296           return true;
11297         if (*UsedIter > *OrigIter)
11298           break;
11299       }
11300 
11301       // TODO: Add a different warning which will print the field names.
11302       HandleDeclRefExpr(DRE);
11303       return true;
11304     }
11305 
11306     // For most expressions, the cast is directly above the DeclRefExpr.
11307     // For conditional operators, the cast can be outside the conditional
11308     // operator if both expressions are DeclRefExpr's.
11309     void HandleValue(Expr *E) {
11310       E = E->IgnoreParens();
11311       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
11312         HandleDeclRefExpr(DRE);
11313         return;
11314       }
11315 
11316       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
11317         Visit(CO->getCond());
11318         HandleValue(CO->getTrueExpr());
11319         HandleValue(CO->getFalseExpr());
11320         return;
11321       }
11322 
11323       if (BinaryConditionalOperator *BCO =
11324               dyn_cast<BinaryConditionalOperator>(E)) {
11325         Visit(BCO->getCond());
11326         HandleValue(BCO->getFalseExpr());
11327         return;
11328       }
11329 
11330       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
11331         HandleValue(OVE->getSourceExpr());
11332         return;
11333       }
11334 
11335       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11336         if (BO->getOpcode() == BO_Comma) {
11337           Visit(BO->getLHS());
11338           HandleValue(BO->getRHS());
11339           return;
11340         }
11341       }
11342 
11343       if (isa<MemberExpr>(E)) {
11344         if (isInitList) {
11345           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
11346                                       false /*CheckReference*/))
11347             return;
11348         }
11349 
11350         Expr *Base = E->IgnoreParenImpCasts();
11351         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11352           // Check for static member variables and don't warn on them.
11353           if (!isa<FieldDecl>(ME->getMemberDecl()))
11354             return;
11355           Base = ME->getBase()->IgnoreParenImpCasts();
11356         }
11357         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
11358           HandleDeclRefExpr(DRE);
11359         return;
11360       }
11361 
11362       Visit(E);
11363     }
11364 
11365     // Reference types not handled in HandleValue are handled here since all
11366     // uses of references are bad, not just r-value uses.
11367     void VisitDeclRefExpr(DeclRefExpr *E) {
11368       if (isReferenceType)
11369         HandleDeclRefExpr(E);
11370     }
11371 
11372     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11373       if (E->getCastKind() == CK_LValueToRValue) {
11374         HandleValue(E->getSubExpr());
11375         return;
11376       }
11377 
11378       Inherited::VisitImplicitCastExpr(E);
11379     }
11380 
11381     void VisitMemberExpr(MemberExpr *E) {
11382       if (isInitList) {
11383         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
11384           return;
11385       }
11386 
11387       // Don't warn on arrays since they can be treated as pointers.
11388       if (E->getType()->canDecayToPointerType()) return;
11389 
11390       // Warn when a non-static method call is followed by non-static member
11391       // field accesses, which is followed by a DeclRefExpr.
11392       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
11393       bool Warn = (MD && !MD->isStatic());
11394       Expr *Base = E->getBase()->IgnoreParenImpCasts();
11395       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11396         if (!isa<FieldDecl>(ME->getMemberDecl()))
11397           Warn = false;
11398         Base = ME->getBase()->IgnoreParenImpCasts();
11399       }
11400 
11401       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
11402         if (Warn)
11403           HandleDeclRefExpr(DRE);
11404         return;
11405       }
11406 
11407       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
11408       // Visit that expression.
11409       Visit(Base);
11410     }
11411 
11412     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
11413       Expr *Callee = E->getCallee();
11414 
11415       if (isa<UnresolvedLookupExpr>(Callee))
11416         return Inherited::VisitCXXOperatorCallExpr(E);
11417 
11418       Visit(Callee);
11419       for (auto Arg: E->arguments())
11420         HandleValue(Arg->IgnoreParenImpCasts());
11421     }
11422 
11423     void VisitUnaryOperator(UnaryOperator *E) {
11424       // For POD record types, addresses of its own members are well-defined.
11425       if (E->getOpcode() == UO_AddrOf && isRecordType &&
11426           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
11427         if (!isPODType)
11428           HandleValue(E->getSubExpr());
11429         return;
11430       }
11431 
11432       if (E->isIncrementDecrementOp()) {
11433         HandleValue(E->getSubExpr());
11434         return;
11435       }
11436 
11437       Inherited::VisitUnaryOperator(E);
11438     }
11439 
11440     void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
11441 
11442     void VisitCXXConstructExpr(CXXConstructExpr *E) {
11443       if (E->getConstructor()->isCopyConstructor()) {
11444         Expr *ArgExpr = E->getArg(0);
11445         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
11446           if (ILE->getNumInits() == 1)
11447             ArgExpr = ILE->getInit(0);
11448         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
11449           if (ICE->getCastKind() == CK_NoOp)
11450             ArgExpr = ICE->getSubExpr();
11451         HandleValue(ArgExpr);
11452         return;
11453       }
11454       Inherited::VisitCXXConstructExpr(E);
11455     }
11456 
11457     void VisitCallExpr(CallExpr *E) {
11458       // Treat std::move as a use.
11459       if (E->isCallToStdMove()) {
11460         HandleValue(E->getArg(0));
11461         return;
11462       }
11463 
11464       Inherited::VisitCallExpr(E);
11465     }
11466 
11467     void VisitBinaryOperator(BinaryOperator *E) {
11468       if (E->isCompoundAssignmentOp()) {
11469         HandleValue(E->getLHS());
11470         Visit(E->getRHS());
11471         return;
11472       }
11473 
11474       Inherited::VisitBinaryOperator(E);
11475     }
11476 
11477     // A custom visitor for BinaryConditionalOperator is needed because the
11478     // regular visitor would check the condition and true expression separately
11479     // but both point to the same place giving duplicate diagnostics.
11480     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
11481       Visit(E->getCond());
11482       Visit(E->getFalseExpr());
11483     }
11484 
11485     void HandleDeclRefExpr(DeclRefExpr *DRE) {
11486       Decl* ReferenceDecl = DRE->getDecl();
11487       if (OrigDecl != ReferenceDecl) return;
11488       unsigned diag;
11489       if (isReferenceType) {
11490         diag = diag::warn_uninit_self_reference_in_reference_init;
11491       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
11492         diag = diag::warn_static_self_reference_in_init;
11493       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
11494                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
11495                  DRE->getDecl()->getType()->isRecordType()) {
11496         diag = diag::warn_uninit_self_reference_in_init;
11497       } else {
11498         // Local variables will be handled by the CFG analysis.
11499         return;
11500       }
11501 
11502       S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
11503                             S.PDiag(diag)
11504                                 << DRE->getDecl() << OrigDecl->getLocation()
11505                                 << DRE->getSourceRange());
11506     }
11507   };
11508 
11509   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
11510   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
11511                                  bool DirectInit) {
11512     // Parameters arguments are occassionially constructed with itself,
11513     // for instance, in recursive functions.  Skip them.
11514     if (isa<ParmVarDecl>(OrigDecl))
11515       return;
11516 
11517     E = E->IgnoreParens();
11518 
11519     // Skip checking T a = a where T is not a record or reference type.
11520     // Doing so is a way to silence uninitialized warnings.
11521     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
11522       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
11523         if (ICE->getCastKind() == CK_LValueToRValue)
11524           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
11525             if (DRE->getDecl() == OrigDecl)
11526               return;
11527 
11528     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
11529   }
11530 } // end anonymous namespace
11531 
11532 namespace {
11533   // Simple wrapper to add the name of a variable or (if no variable is
11534   // available) a DeclarationName into a diagnostic.
11535   struct VarDeclOrName {
11536     VarDecl *VDecl;
11537     DeclarationName Name;
11538 
11539     friend const Sema::SemaDiagnosticBuilder &
11540     operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
11541       return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
11542     }
11543   };
11544 } // end anonymous namespace
11545 
11546 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
11547                                             DeclarationName Name, QualType Type,
11548                                             TypeSourceInfo *TSI,
11549                                             SourceRange Range, bool DirectInit,
11550                                             Expr *Init) {
11551   bool IsInitCapture = !VDecl;
11552   assert((!VDecl || !VDecl->isInitCapture()) &&
11553          "init captures are expected to be deduced prior to initialization");
11554 
11555   VarDeclOrName VN{VDecl, Name};
11556 
11557   DeducedType *Deduced = Type->getContainedDeducedType();
11558   assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
11559 
11560   // C++11 [dcl.spec.auto]p3
11561   if (!Init) {
11562     assert(VDecl && "no init for init capture deduction?");
11563 
11564     // Except for class argument deduction, and then for an initializing
11565     // declaration only, i.e. no static at class scope or extern.
11566     if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
11567         VDecl->hasExternalStorage() ||
11568         VDecl->isStaticDataMember()) {
11569       Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
11570         << VDecl->getDeclName() << Type;
11571       return QualType();
11572     }
11573   }
11574 
11575   ArrayRef<Expr*> DeduceInits;
11576   if (Init)
11577     DeduceInits = Init;
11578 
11579   if (DirectInit) {
11580     if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
11581       DeduceInits = PL->exprs();
11582   }
11583 
11584   if (isa<DeducedTemplateSpecializationType>(Deduced)) {
11585     assert(VDecl && "non-auto type for init capture deduction?");
11586     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11587     InitializationKind Kind = InitializationKind::CreateForInit(
11588         VDecl->getLocation(), DirectInit, Init);
11589     // FIXME: Initialization should not be taking a mutable list of inits.
11590     SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
11591     return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
11592                                                        InitsCopy);
11593   }
11594 
11595   if (DirectInit) {
11596     if (auto *IL = dyn_cast<InitListExpr>(Init))
11597       DeduceInits = IL->inits();
11598   }
11599 
11600   // Deduction only works if we have exactly one source expression.
11601   if (DeduceInits.empty()) {
11602     // It isn't possible to write this directly, but it is possible to
11603     // end up in this situation with "auto x(some_pack...);"
11604     Diag(Init->getBeginLoc(), IsInitCapture
11605                                   ? diag::err_init_capture_no_expression
11606                                   : diag::err_auto_var_init_no_expression)
11607         << VN << Type << Range;
11608     return QualType();
11609   }
11610 
11611   if (DeduceInits.size() > 1) {
11612     Diag(DeduceInits[1]->getBeginLoc(),
11613          IsInitCapture ? diag::err_init_capture_multiple_expressions
11614                        : diag::err_auto_var_init_multiple_expressions)
11615         << VN << Type << Range;
11616     return QualType();
11617   }
11618 
11619   Expr *DeduceInit = DeduceInits[0];
11620   if (DirectInit && isa<InitListExpr>(DeduceInit)) {
11621     Diag(Init->getBeginLoc(), IsInitCapture
11622                                   ? diag::err_init_capture_paren_braces
11623                                   : diag::err_auto_var_init_paren_braces)
11624         << isa<InitListExpr>(Init) << VN << Type << Range;
11625     return QualType();
11626   }
11627 
11628   // Expressions default to 'id' when we're in a debugger.
11629   bool DefaultedAnyToId = false;
11630   if (getLangOpts().DebuggerCastResultToId &&
11631       Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
11632     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11633     if (Result.isInvalid()) {
11634       return QualType();
11635     }
11636     Init = Result.get();
11637     DefaultedAnyToId = true;
11638   }
11639 
11640   // C++ [dcl.decomp]p1:
11641   //   If the assignment-expression [...] has array type A and no ref-qualifier
11642   //   is present, e has type cv A
11643   if (VDecl && isa<DecompositionDecl>(VDecl) &&
11644       Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
11645       DeduceInit->getType()->isConstantArrayType())
11646     return Context.getQualifiedType(DeduceInit->getType(),
11647                                     Type.getQualifiers());
11648 
11649   QualType DeducedType;
11650   if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
11651     if (!IsInitCapture)
11652       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
11653     else if (isa<InitListExpr>(Init))
11654       Diag(Range.getBegin(),
11655            diag::err_init_capture_deduction_failure_from_init_list)
11656           << VN
11657           << (DeduceInit->getType().isNull() ? TSI->getType()
11658                                              : DeduceInit->getType())
11659           << DeduceInit->getSourceRange();
11660     else
11661       Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
11662           << VN << TSI->getType()
11663           << (DeduceInit->getType().isNull() ? TSI->getType()
11664                                              : DeduceInit->getType())
11665           << DeduceInit->getSourceRange();
11666   }
11667 
11668   // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
11669   // 'id' instead of a specific object type prevents most of our usual
11670   // checks.
11671   // We only want to warn outside of template instantiations, though:
11672   // inside a template, the 'id' could have come from a parameter.
11673   if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
11674       !DeducedType.isNull() && DeducedType->isObjCIdType()) {
11675     SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
11676     Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
11677   }
11678 
11679   return DeducedType;
11680 }
11681 
11682 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
11683                                          Expr *Init) {
11684   assert(!Init || !Init->containsErrors());
11685   QualType DeducedType = deduceVarTypeFromInitializer(
11686       VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
11687       VDecl->getSourceRange(), DirectInit, Init);
11688   if (DeducedType.isNull()) {
11689     VDecl->setInvalidDecl();
11690     return true;
11691   }
11692 
11693   VDecl->setType(DeducedType);
11694   assert(VDecl->isLinkageValid());
11695 
11696   // In ARC, infer lifetime.
11697   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
11698     VDecl->setInvalidDecl();
11699 
11700   if (getLangOpts().OpenCL)
11701     deduceOpenCLAddressSpace(VDecl);
11702 
11703   // If this is a redeclaration, check that the type we just deduced matches
11704   // the previously declared type.
11705   if (VarDecl *Old = VDecl->getPreviousDecl()) {
11706     // We never need to merge the type, because we cannot form an incomplete
11707     // array of auto, nor deduce such a type.
11708     MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
11709   }
11710 
11711   // Check the deduced type is valid for a variable declaration.
11712   CheckVariableDeclarationType(VDecl);
11713   return VDecl->isInvalidDecl();
11714 }
11715 
11716 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
11717                                               SourceLocation Loc) {
11718   if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
11719     Init = EWC->getSubExpr();
11720 
11721   if (auto *CE = dyn_cast<ConstantExpr>(Init))
11722     Init = CE->getSubExpr();
11723 
11724   QualType InitType = Init->getType();
11725   assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
11726           InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
11727          "shouldn't be called if type doesn't have a non-trivial C struct");
11728   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
11729     for (auto I : ILE->inits()) {
11730       if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
11731           !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
11732         continue;
11733       SourceLocation SL = I->getExprLoc();
11734       checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
11735     }
11736     return;
11737   }
11738 
11739   if (isa<ImplicitValueInitExpr>(Init)) {
11740     if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11741       checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
11742                             NTCUK_Init);
11743   } else {
11744     // Assume all other explicit initializers involving copying some existing
11745     // object.
11746     // TODO: ignore any explicit initializers where we can guarantee
11747     // copy-elision.
11748     if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
11749       checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
11750   }
11751 }
11752 
11753 namespace {
11754 
11755 bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
11756   // Ignore unavailable fields. A field can be marked as unavailable explicitly
11757   // in the source code or implicitly by the compiler if it is in a union
11758   // defined in a system header and has non-trivial ObjC ownership
11759   // qualifications. We don't want those fields to participate in determining
11760   // whether the containing union is non-trivial.
11761   return FD->hasAttr<UnavailableAttr>();
11762 }
11763 
11764 struct DiagNonTrivalCUnionDefaultInitializeVisitor
11765     : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11766                                     void> {
11767   using Super =
11768       DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11769                                     void>;
11770 
11771   DiagNonTrivalCUnionDefaultInitializeVisitor(
11772       QualType OrigTy, SourceLocation OrigLoc,
11773       Sema::NonTrivialCUnionContext UseContext, Sema &S)
11774       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11775 
11776   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
11777                      const FieldDecl *FD, bool InNonTrivialUnion) {
11778     if (const auto *AT = S.Context.getAsArrayType(QT))
11779       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11780                                      InNonTrivialUnion);
11781     return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
11782   }
11783 
11784   void visitARCStrong(QualType QT, const FieldDecl *FD,
11785                       bool InNonTrivialUnion) {
11786     if (InNonTrivialUnion)
11787       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11788           << 1 << 0 << QT << FD->getName();
11789   }
11790 
11791   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11792     if (InNonTrivialUnion)
11793       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11794           << 1 << 0 << QT << FD->getName();
11795   }
11796 
11797   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11798     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11799     if (RD->isUnion()) {
11800       if (OrigLoc.isValid()) {
11801         bool IsUnion = false;
11802         if (auto *OrigRD = OrigTy->getAsRecordDecl())
11803           IsUnion = OrigRD->isUnion();
11804         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11805             << 0 << OrigTy << IsUnion << UseContext;
11806         // Reset OrigLoc so that this diagnostic is emitted only once.
11807         OrigLoc = SourceLocation();
11808       }
11809       InNonTrivialUnion = true;
11810     }
11811 
11812     if (InNonTrivialUnion)
11813       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11814           << 0 << 0 << QT.getUnqualifiedType() << "";
11815 
11816     for (const FieldDecl *FD : RD->fields())
11817       if (!shouldIgnoreForRecordTriviality(FD))
11818         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11819   }
11820 
11821   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11822 
11823   // The non-trivial C union type or the struct/union type that contains a
11824   // non-trivial C union.
11825   QualType OrigTy;
11826   SourceLocation OrigLoc;
11827   Sema::NonTrivialCUnionContext UseContext;
11828   Sema &S;
11829 };
11830 
11831 struct DiagNonTrivalCUnionDestructedTypeVisitor
11832     : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
11833   using Super =
11834       DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
11835 
11836   DiagNonTrivalCUnionDestructedTypeVisitor(
11837       QualType OrigTy, SourceLocation OrigLoc,
11838       Sema::NonTrivialCUnionContext UseContext, Sema &S)
11839       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11840 
11841   void visitWithKind(QualType::DestructionKind DK, QualType QT,
11842                      const FieldDecl *FD, bool InNonTrivialUnion) {
11843     if (const auto *AT = S.Context.getAsArrayType(QT))
11844       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11845                                      InNonTrivialUnion);
11846     return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
11847   }
11848 
11849   void visitARCStrong(QualType QT, const FieldDecl *FD,
11850                       bool InNonTrivialUnion) {
11851     if (InNonTrivialUnion)
11852       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11853           << 1 << 1 << QT << FD->getName();
11854   }
11855 
11856   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11857     if (InNonTrivialUnion)
11858       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11859           << 1 << 1 << QT << FD->getName();
11860   }
11861 
11862   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11863     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11864     if (RD->isUnion()) {
11865       if (OrigLoc.isValid()) {
11866         bool IsUnion = false;
11867         if (auto *OrigRD = OrigTy->getAsRecordDecl())
11868           IsUnion = OrigRD->isUnion();
11869         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11870             << 1 << OrigTy << IsUnion << UseContext;
11871         // Reset OrigLoc so that this diagnostic is emitted only once.
11872         OrigLoc = SourceLocation();
11873       }
11874       InNonTrivialUnion = true;
11875     }
11876 
11877     if (InNonTrivialUnion)
11878       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11879           << 0 << 1 << QT.getUnqualifiedType() << "";
11880 
11881     for (const FieldDecl *FD : RD->fields())
11882       if (!shouldIgnoreForRecordTriviality(FD))
11883         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11884   }
11885 
11886   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11887   void visitCXXDestructor(QualType QT, const FieldDecl *FD,
11888                           bool InNonTrivialUnion) {}
11889 
11890   // The non-trivial C union type or the struct/union type that contains a
11891   // non-trivial C union.
11892   QualType OrigTy;
11893   SourceLocation OrigLoc;
11894   Sema::NonTrivialCUnionContext UseContext;
11895   Sema &S;
11896 };
11897 
11898 struct DiagNonTrivalCUnionCopyVisitor
11899     : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
11900   using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
11901 
11902   DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
11903                                  Sema::NonTrivialCUnionContext UseContext,
11904                                  Sema &S)
11905       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11906 
11907   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
11908                      const FieldDecl *FD, bool InNonTrivialUnion) {
11909     if (const auto *AT = S.Context.getAsArrayType(QT))
11910       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11911                                      InNonTrivialUnion);
11912     return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
11913   }
11914 
11915   void visitARCStrong(QualType QT, const FieldDecl *FD,
11916                       bool InNonTrivialUnion) {
11917     if (InNonTrivialUnion)
11918       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11919           << 1 << 2 << QT << FD->getName();
11920   }
11921 
11922   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11923     if (InNonTrivialUnion)
11924       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11925           << 1 << 2 << QT << FD->getName();
11926   }
11927 
11928   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11929     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11930     if (RD->isUnion()) {
11931       if (OrigLoc.isValid()) {
11932         bool IsUnion = false;
11933         if (auto *OrigRD = OrigTy->getAsRecordDecl())
11934           IsUnion = OrigRD->isUnion();
11935         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11936             << 2 << OrigTy << IsUnion << UseContext;
11937         // Reset OrigLoc so that this diagnostic is emitted only once.
11938         OrigLoc = SourceLocation();
11939       }
11940       InNonTrivialUnion = true;
11941     }
11942 
11943     if (InNonTrivialUnion)
11944       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11945           << 0 << 2 << QT.getUnqualifiedType() << "";
11946 
11947     for (const FieldDecl *FD : RD->fields())
11948       if (!shouldIgnoreForRecordTriviality(FD))
11949         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11950   }
11951 
11952   void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
11953                 const FieldDecl *FD, bool InNonTrivialUnion) {}
11954   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11955   void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
11956                             bool InNonTrivialUnion) {}
11957 
11958   // The non-trivial C union type or the struct/union type that contains a
11959   // non-trivial C union.
11960   QualType OrigTy;
11961   SourceLocation OrigLoc;
11962   Sema::NonTrivialCUnionContext UseContext;
11963   Sema &S;
11964 };
11965 
11966 } // namespace
11967 
11968 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
11969                                  NonTrivialCUnionContext UseContext,
11970                                  unsigned NonTrivialKind) {
11971   assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
11972           QT.hasNonTrivialToPrimitiveDestructCUnion() ||
11973           QT.hasNonTrivialToPrimitiveCopyCUnion()) &&
11974          "shouldn't be called if type doesn't have a non-trivial C union");
11975 
11976   if ((NonTrivialKind & NTCUK_Init) &&
11977       QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11978     DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
11979         .visit(QT, nullptr, false);
11980   if ((NonTrivialKind & NTCUK_Destruct) &&
11981       QT.hasNonTrivialToPrimitiveDestructCUnion())
11982     DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
11983         .visit(QT, nullptr, false);
11984   if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
11985     DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
11986         .visit(QT, nullptr, false);
11987 }
11988 
11989 /// AddInitializerToDecl - Adds the initializer Init to the
11990 /// declaration dcl. If DirectInit is true, this is C++ direct
11991 /// initialization rather than copy initialization.
11992 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
11993   // If there is no declaration, there was an error parsing it.  Just ignore
11994   // the initializer.
11995   if (!RealDecl || RealDecl->isInvalidDecl()) {
11996     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
11997     return;
11998   }
11999 
12000   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
12001     // Pure-specifiers are handled in ActOnPureSpecifier.
12002     Diag(Method->getLocation(), diag::err_member_function_initialization)
12003       << Method->getDeclName() << Init->getSourceRange();
12004     Method->setInvalidDecl();
12005     return;
12006   }
12007 
12008   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
12009   if (!VDecl) {
12010     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
12011     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
12012     RealDecl->setInvalidDecl();
12013     return;
12014   }
12015 
12016   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
12017   if (VDecl->getType()->isUndeducedType()) {
12018     // Attempt typo correction early so that the type of the init expression can
12019     // be deduced based on the chosen correction if the original init contains a
12020     // TypoExpr.
12021     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
12022     if (!Res.isUsable()) {
12023       // There are unresolved typos in Init, just drop them.
12024       // FIXME: improve the recovery strategy to preserve the Init.
12025       RealDecl->setInvalidDecl();
12026       return;
12027     }
12028     if (Res.get()->containsErrors()) {
12029       // Invalidate the decl as we don't know the type for recovery-expr yet.
12030       RealDecl->setInvalidDecl();
12031       VDecl->setInit(Res.get());
12032       return;
12033     }
12034     Init = Res.get();
12035 
12036     if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
12037       return;
12038   }
12039 
12040   // dllimport cannot be used on variable definitions.
12041   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
12042     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
12043     VDecl->setInvalidDecl();
12044     return;
12045   }
12046 
12047   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
12048     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
12049     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
12050     VDecl->setInvalidDecl();
12051     return;
12052   }
12053 
12054   if (!VDecl->getType()->isDependentType()) {
12055     // A definition must end up with a complete type, which means it must be
12056     // complete with the restriction that an array type might be completed by
12057     // the initializer; note that later code assumes this restriction.
12058     QualType BaseDeclType = VDecl->getType();
12059     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
12060       BaseDeclType = Array->getElementType();
12061     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
12062                             diag::err_typecheck_decl_incomplete_type)) {
12063       RealDecl->setInvalidDecl();
12064       return;
12065     }
12066 
12067     // The variable can not have an abstract class type.
12068     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
12069                                diag::err_abstract_type_in_decl,
12070                                AbstractVariableType))
12071       VDecl->setInvalidDecl();
12072   }
12073 
12074   // If adding the initializer will turn this declaration into a definition,
12075   // and we already have a definition for this variable, diagnose or otherwise
12076   // handle the situation.
12077   VarDecl *Def;
12078   if ((Def = VDecl->getDefinition()) && Def != VDecl &&
12079       (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
12080       !VDecl->isThisDeclarationADemotedDefinition() &&
12081       checkVarDeclRedefinition(Def, VDecl))
12082     return;
12083 
12084   if (getLangOpts().CPlusPlus) {
12085     // C++ [class.static.data]p4
12086     //   If a static data member is of const integral or const
12087     //   enumeration type, its declaration in the class definition can
12088     //   specify a constant-initializer which shall be an integral
12089     //   constant expression (5.19). In that case, the member can appear
12090     //   in integral constant expressions. The member shall still be
12091     //   defined in a namespace scope if it is used in the program and the
12092     //   namespace scope definition shall not contain an initializer.
12093     //
12094     // We already performed a redefinition check above, but for static
12095     // data members we also need to check whether there was an in-class
12096     // declaration with an initializer.
12097     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
12098       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
12099           << VDecl->getDeclName();
12100       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
12101            diag::note_previous_initializer)
12102           << 0;
12103       return;
12104     }
12105 
12106     if (VDecl->hasLocalStorage())
12107       setFunctionHasBranchProtectedScope();
12108 
12109     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
12110       VDecl->setInvalidDecl();
12111       return;
12112     }
12113   }
12114 
12115   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
12116   // a kernel function cannot be initialized."
12117   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
12118     Diag(VDecl->getLocation(), diag::err_local_cant_init);
12119     VDecl->setInvalidDecl();
12120     return;
12121   }
12122 
12123   // The LoaderUninitialized attribute acts as a definition (of undef).
12124   if (VDecl->hasAttr<LoaderUninitializedAttr>()) {
12125     Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init);
12126     VDecl->setInvalidDecl();
12127     return;
12128   }
12129 
12130   // Get the decls type and save a reference for later, since
12131   // CheckInitializerTypes may change it.
12132   QualType DclT = VDecl->getType(), SavT = DclT;
12133 
12134   // Expressions default to 'id' when we're in a debugger
12135   // and we are assigning it to a variable of Objective-C pointer type.
12136   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
12137       Init->getType() == Context.UnknownAnyTy) {
12138     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
12139     if (Result.isInvalid()) {
12140       VDecl->setInvalidDecl();
12141       return;
12142     }
12143     Init = Result.get();
12144   }
12145 
12146   // Perform the initialization.
12147   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
12148   if (!VDecl->isInvalidDecl()) {
12149     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
12150     InitializationKind Kind = InitializationKind::CreateForInit(
12151         VDecl->getLocation(), DirectInit, Init);
12152 
12153     MultiExprArg Args = Init;
12154     if (CXXDirectInit)
12155       Args = MultiExprArg(CXXDirectInit->getExprs(),
12156                           CXXDirectInit->getNumExprs());
12157 
12158     // Try to correct any TypoExprs in the initialization arguments.
12159     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
12160       ExprResult Res = CorrectDelayedTyposInExpr(
12161           Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true,
12162           [this, Entity, Kind](Expr *E) {
12163             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
12164             return Init.Failed() ? ExprError() : E;
12165           });
12166       if (Res.isInvalid()) {
12167         VDecl->setInvalidDecl();
12168       } else if (Res.get() != Args[Idx]) {
12169         Args[Idx] = Res.get();
12170       }
12171     }
12172     if (VDecl->isInvalidDecl())
12173       return;
12174 
12175     InitializationSequence InitSeq(*this, Entity, Kind, Args,
12176                                    /*TopLevelOfInitList=*/false,
12177                                    /*TreatUnavailableAsInvalid=*/false);
12178     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
12179     if (Result.isInvalid()) {
12180       // If the provied initializer fails to initialize the var decl,
12181       // we attach a recovery expr for better recovery.
12182       auto RecoveryExpr =
12183           CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args);
12184       if (RecoveryExpr.get())
12185         VDecl->setInit(RecoveryExpr.get());
12186       return;
12187     }
12188 
12189     Init = Result.getAs<Expr>();
12190   }
12191 
12192   // Check for self-references within variable initializers.
12193   // Variables declared within a function/method body (except for references)
12194   // are handled by a dataflow analysis.
12195   // This is undefined behavior in C++, but valid in C.
12196   if (getLangOpts().CPlusPlus) {
12197     if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
12198         VDecl->getType()->isReferenceType()) {
12199       CheckSelfReference(*this, RealDecl, Init, DirectInit);
12200     }
12201   }
12202 
12203   // If the type changed, it means we had an incomplete type that was
12204   // completed by the initializer. For example:
12205   //   int ary[] = { 1, 3, 5 };
12206   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
12207   if (!VDecl->isInvalidDecl() && (DclT != SavT))
12208     VDecl->setType(DclT);
12209 
12210   if (!VDecl->isInvalidDecl()) {
12211     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
12212 
12213     if (VDecl->hasAttr<BlocksAttr>())
12214       checkRetainCycles(VDecl, Init);
12215 
12216     // It is safe to assign a weak reference into a strong variable.
12217     // Although this code can still have problems:
12218     //   id x = self.weakProp;
12219     //   id y = self.weakProp;
12220     // we do not warn to warn spuriously when 'x' and 'y' are on separate
12221     // paths through the function. This should be revisited if
12222     // -Wrepeated-use-of-weak is made flow-sensitive.
12223     if (FunctionScopeInfo *FSI = getCurFunction())
12224       if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
12225            VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
12226           !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
12227                            Init->getBeginLoc()))
12228         FSI->markSafeWeakUse(Init);
12229   }
12230 
12231   // The initialization is usually a full-expression.
12232   //
12233   // FIXME: If this is a braced initialization of an aggregate, it is not
12234   // an expression, and each individual field initializer is a separate
12235   // full-expression. For instance, in:
12236   //
12237   //   struct Temp { ~Temp(); };
12238   //   struct S { S(Temp); };
12239   //   struct T { S a, b; } t = { Temp(), Temp() }
12240   //
12241   // we should destroy the first Temp before constructing the second.
12242   ExprResult Result =
12243       ActOnFinishFullExpr(Init, VDecl->getLocation(),
12244                           /*DiscardedValue*/ false, VDecl->isConstexpr());
12245   if (Result.isInvalid()) {
12246     VDecl->setInvalidDecl();
12247     return;
12248   }
12249   Init = Result.get();
12250 
12251   // Attach the initializer to the decl.
12252   VDecl->setInit(Init);
12253 
12254   if (VDecl->isLocalVarDecl()) {
12255     // Don't check the initializer if the declaration is malformed.
12256     if (VDecl->isInvalidDecl()) {
12257       // do nothing
12258 
12259     // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
12260     // This is true even in C++ for OpenCL.
12261     } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
12262       CheckForConstantInitializer(Init, DclT);
12263 
12264     // Otherwise, C++ does not restrict the initializer.
12265     } else if (getLangOpts().CPlusPlus) {
12266       // do nothing
12267 
12268     // C99 6.7.8p4: All the expressions in an initializer for an object that has
12269     // static storage duration shall be constant expressions or string literals.
12270     } else if (VDecl->getStorageClass() == SC_Static) {
12271       CheckForConstantInitializer(Init, DclT);
12272 
12273     // C89 is stricter than C99 for aggregate initializers.
12274     // C89 6.5.7p3: All the expressions [...] in an initializer list
12275     // for an object that has aggregate or union type shall be
12276     // constant expressions.
12277     } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
12278                isa<InitListExpr>(Init)) {
12279       const Expr *Culprit;
12280       if (!Init->isConstantInitializer(Context, false, &Culprit)) {
12281         Diag(Culprit->getExprLoc(),
12282              diag::ext_aggregate_init_not_constant)
12283           << Culprit->getSourceRange();
12284       }
12285     }
12286 
12287     if (auto *E = dyn_cast<ExprWithCleanups>(Init))
12288       if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
12289         if (VDecl->hasLocalStorage())
12290           BE->getBlockDecl()->setCanAvoidCopyToHeap();
12291   } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
12292              VDecl->getLexicalDeclContext()->isRecord()) {
12293     // This is an in-class initialization for a static data member, e.g.,
12294     //
12295     // struct S {
12296     //   static const int value = 17;
12297     // };
12298 
12299     // C++ [class.mem]p4:
12300     //   A member-declarator can contain a constant-initializer only
12301     //   if it declares a static member (9.4) of const integral or
12302     //   const enumeration type, see 9.4.2.
12303     //
12304     // C++11 [class.static.data]p3:
12305     //   If a non-volatile non-inline const static data member is of integral
12306     //   or enumeration type, its declaration in the class definition can
12307     //   specify a brace-or-equal-initializer in which every initializer-clause
12308     //   that is an assignment-expression is a constant expression. A static
12309     //   data member of literal type can be declared in the class definition
12310     //   with the constexpr specifier; if so, its declaration shall specify a
12311     //   brace-or-equal-initializer in which every initializer-clause that is
12312     //   an assignment-expression is a constant expression.
12313 
12314     // Do nothing on dependent types.
12315     if (DclT->isDependentType()) {
12316 
12317     // Allow any 'static constexpr' members, whether or not they are of literal
12318     // type. We separately check that every constexpr variable is of literal
12319     // type.
12320     } else if (VDecl->isConstexpr()) {
12321 
12322     // Require constness.
12323     } else if (!DclT.isConstQualified()) {
12324       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
12325         << Init->getSourceRange();
12326       VDecl->setInvalidDecl();
12327 
12328     // We allow integer constant expressions in all cases.
12329     } else if (DclT->isIntegralOrEnumerationType()) {
12330       // Check whether the expression is a constant expression.
12331       SourceLocation Loc;
12332       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
12333         // In C++11, a non-constexpr const static data member with an
12334         // in-class initializer cannot be volatile.
12335         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
12336       else if (Init->isValueDependent())
12337         ; // Nothing to check.
12338       else if (Init->isIntegerConstantExpr(Context, &Loc))
12339         ; // Ok, it's an ICE!
12340       else if (Init->getType()->isScopedEnumeralType() &&
12341                Init->isCXX11ConstantExpr(Context))
12342         ; // Ok, it is a scoped-enum constant expression.
12343       else if (Init->isEvaluatable(Context)) {
12344         // If we can constant fold the initializer through heroics, accept it,
12345         // but report this as a use of an extension for -pedantic.
12346         Diag(Loc, diag::ext_in_class_initializer_non_constant)
12347           << Init->getSourceRange();
12348       } else {
12349         // Otherwise, this is some crazy unknown case.  Report the issue at the
12350         // location provided by the isIntegerConstantExpr failed check.
12351         Diag(Loc, diag::err_in_class_initializer_non_constant)
12352           << Init->getSourceRange();
12353         VDecl->setInvalidDecl();
12354       }
12355 
12356     // We allow foldable floating-point constants as an extension.
12357     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
12358       // In C++98, this is a GNU extension. In C++11, it is not, but we support
12359       // it anyway and provide a fixit to add the 'constexpr'.
12360       if (getLangOpts().CPlusPlus11) {
12361         Diag(VDecl->getLocation(),
12362              diag::ext_in_class_initializer_float_type_cxx11)
12363             << DclT << Init->getSourceRange();
12364         Diag(VDecl->getBeginLoc(),
12365              diag::note_in_class_initializer_float_type_cxx11)
12366             << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12367       } else {
12368         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
12369           << DclT << Init->getSourceRange();
12370 
12371         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
12372           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
12373             << Init->getSourceRange();
12374           VDecl->setInvalidDecl();
12375         }
12376       }
12377 
12378     // Suggest adding 'constexpr' in C++11 for literal types.
12379     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
12380       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
12381           << DclT << Init->getSourceRange()
12382           << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12383       VDecl->setConstexpr(true);
12384 
12385     } else {
12386       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
12387         << DclT << Init->getSourceRange();
12388       VDecl->setInvalidDecl();
12389     }
12390   } else if (VDecl->isFileVarDecl()) {
12391     // In C, extern is typically used to avoid tentative definitions when
12392     // declaring variables in headers, but adding an intializer makes it a
12393     // definition. This is somewhat confusing, so GCC and Clang both warn on it.
12394     // In C++, extern is often used to give implictly static const variables
12395     // external linkage, so don't warn in that case. If selectany is present,
12396     // this might be header code intended for C and C++ inclusion, so apply the
12397     // C++ rules.
12398     if (VDecl->getStorageClass() == SC_Extern &&
12399         ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
12400          !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
12401         !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
12402         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
12403       Diag(VDecl->getLocation(), diag::warn_extern_init);
12404 
12405     // In Microsoft C++ mode, a const variable defined in namespace scope has
12406     // external linkage by default if the variable is declared with
12407     // __declspec(dllexport).
12408     if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
12409         getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
12410         VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
12411       VDecl->setStorageClass(SC_Extern);
12412 
12413     // C99 6.7.8p4. All file scoped initializers need to be constant.
12414     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
12415       CheckForConstantInitializer(Init, DclT);
12416   }
12417 
12418   QualType InitType = Init->getType();
12419   if (!InitType.isNull() &&
12420       (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
12421        InitType.hasNonTrivialToPrimitiveCopyCUnion()))
12422     checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
12423 
12424   // We will represent direct-initialization similarly to copy-initialization:
12425   //    int x(1);  -as-> int x = 1;
12426   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
12427   //
12428   // Clients that want to distinguish between the two forms, can check for
12429   // direct initializer using VarDecl::getInitStyle().
12430   // A major benefit is that clients that don't particularly care about which
12431   // exactly form was it (like the CodeGen) can handle both cases without
12432   // special case code.
12433 
12434   // C++ 8.5p11:
12435   // The form of initialization (using parentheses or '=') is generally
12436   // insignificant, but does matter when the entity being initialized has a
12437   // class type.
12438   if (CXXDirectInit) {
12439     assert(DirectInit && "Call-style initializer must be direct init.");
12440     VDecl->setInitStyle(VarDecl::CallInit);
12441   } else if (DirectInit) {
12442     // This must be list-initialization. No other way is direct-initialization.
12443     VDecl->setInitStyle(VarDecl::ListInit);
12444   }
12445 
12446   if (LangOpts.OpenMP && VDecl->isFileVarDecl())
12447     DeclsToCheckForDeferredDiags.push_back(VDecl);
12448   CheckCompleteVariableDeclaration(VDecl);
12449 }
12450 
12451 /// ActOnInitializerError - Given that there was an error parsing an
12452 /// initializer for the given declaration, try to return to some form
12453 /// of sanity.
12454 void Sema::ActOnInitializerError(Decl *D) {
12455   // Our main concern here is re-establishing invariants like "a
12456   // variable's type is either dependent or complete".
12457   if (!D || D->isInvalidDecl()) return;
12458 
12459   VarDecl *VD = dyn_cast<VarDecl>(D);
12460   if (!VD) return;
12461 
12462   // Bindings are not usable if we can't make sense of the initializer.
12463   if (auto *DD = dyn_cast<DecompositionDecl>(D))
12464     for (auto *BD : DD->bindings())
12465       BD->setInvalidDecl();
12466 
12467   // Auto types are meaningless if we can't make sense of the initializer.
12468   if (VD->getType()->isUndeducedType()) {
12469     D->setInvalidDecl();
12470     return;
12471   }
12472 
12473   QualType Ty = VD->getType();
12474   if (Ty->isDependentType()) return;
12475 
12476   // Require a complete type.
12477   if (RequireCompleteType(VD->getLocation(),
12478                           Context.getBaseElementType(Ty),
12479                           diag::err_typecheck_decl_incomplete_type)) {
12480     VD->setInvalidDecl();
12481     return;
12482   }
12483 
12484   // Require a non-abstract type.
12485   if (RequireNonAbstractType(VD->getLocation(), Ty,
12486                              diag::err_abstract_type_in_decl,
12487                              AbstractVariableType)) {
12488     VD->setInvalidDecl();
12489     return;
12490   }
12491 
12492   // Don't bother complaining about constructors or destructors,
12493   // though.
12494 }
12495 
12496 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
12497   // If there is no declaration, there was an error parsing it. Just ignore it.
12498   if (!RealDecl)
12499     return;
12500 
12501   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
12502     QualType Type = Var->getType();
12503 
12504     // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
12505     if (isa<DecompositionDecl>(RealDecl)) {
12506       Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
12507       Var->setInvalidDecl();
12508       return;
12509     }
12510 
12511     if (Type->isUndeducedType() &&
12512         DeduceVariableDeclarationType(Var, false, nullptr))
12513       return;
12514 
12515     // C++11 [class.static.data]p3: A static data member can be declared with
12516     // the constexpr specifier; if so, its declaration shall specify
12517     // a brace-or-equal-initializer.
12518     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
12519     // the definition of a variable [...] or the declaration of a static data
12520     // member.
12521     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
12522         !Var->isThisDeclarationADemotedDefinition()) {
12523       if (Var->isStaticDataMember()) {
12524         // C++1z removes the relevant rule; the in-class declaration is always
12525         // a definition there.
12526         if (!getLangOpts().CPlusPlus17 &&
12527             !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
12528           Diag(Var->getLocation(),
12529                diag::err_constexpr_static_mem_var_requires_init)
12530               << Var;
12531           Var->setInvalidDecl();
12532           return;
12533         }
12534       } else {
12535         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
12536         Var->setInvalidDecl();
12537         return;
12538       }
12539     }
12540 
12541     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
12542     // be initialized.
12543     if (!Var->isInvalidDecl() &&
12544         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
12545         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
12546       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
12547       Var->setInvalidDecl();
12548       return;
12549     }
12550 
12551     if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) {
12552       if (Var->getStorageClass() == SC_Extern) {
12553         Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl)
12554             << Var;
12555         Var->setInvalidDecl();
12556         return;
12557       }
12558       if (RequireCompleteType(Var->getLocation(), Var->getType(),
12559                               diag::err_typecheck_decl_incomplete_type)) {
12560         Var->setInvalidDecl();
12561         return;
12562       }
12563       if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
12564         if (!RD->hasTrivialDefaultConstructor()) {
12565           Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor);
12566           Var->setInvalidDecl();
12567           return;
12568         }
12569       }
12570     }
12571 
12572     VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
12573     if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
12574         Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12575       checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
12576                             NTCUC_DefaultInitializedObject, NTCUK_Init);
12577 
12578 
12579     switch (DefKind) {
12580     case VarDecl::Definition:
12581       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
12582         break;
12583 
12584       // We have an out-of-line definition of a static data member
12585       // that has an in-class initializer, so we type-check this like
12586       // a declaration.
12587       //
12588       LLVM_FALLTHROUGH;
12589 
12590     case VarDecl::DeclarationOnly:
12591       // It's only a declaration.
12592 
12593       // Block scope. C99 6.7p7: If an identifier for an object is
12594       // declared with no linkage (C99 6.2.2p6), the type for the
12595       // object shall be complete.
12596       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
12597           !Var->hasLinkage() && !Var->isInvalidDecl() &&
12598           RequireCompleteType(Var->getLocation(), Type,
12599                               diag::err_typecheck_decl_incomplete_type))
12600         Var->setInvalidDecl();
12601 
12602       // Make sure that the type is not abstract.
12603       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12604           RequireNonAbstractType(Var->getLocation(), Type,
12605                                  diag::err_abstract_type_in_decl,
12606                                  AbstractVariableType))
12607         Var->setInvalidDecl();
12608       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12609           Var->getStorageClass() == SC_PrivateExtern) {
12610         Diag(Var->getLocation(), diag::warn_private_extern);
12611         Diag(Var->getLocation(), diag::note_private_extern);
12612       }
12613 
12614       if (Context.getTargetInfo().allowDebugInfoForExternalVar() &&
12615           !Var->isInvalidDecl() && !getLangOpts().CPlusPlus)
12616         ExternalDeclarations.push_back(Var);
12617 
12618       return;
12619 
12620     case VarDecl::TentativeDefinition:
12621       // File scope. C99 6.9.2p2: A declaration of an identifier for an
12622       // object that has file scope without an initializer, and without a
12623       // storage-class specifier or with the storage-class specifier "static",
12624       // constitutes a tentative definition. Note: A tentative definition with
12625       // external linkage is valid (C99 6.2.2p5).
12626       if (!Var->isInvalidDecl()) {
12627         if (const IncompleteArrayType *ArrayT
12628                                     = Context.getAsIncompleteArrayType(Type)) {
12629           if (RequireCompleteSizedType(
12630                   Var->getLocation(), ArrayT->getElementType(),
12631                   diag::err_array_incomplete_or_sizeless_type))
12632             Var->setInvalidDecl();
12633         } else if (Var->getStorageClass() == SC_Static) {
12634           // C99 6.9.2p3: If the declaration of an identifier for an object is
12635           // a tentative definition and has internal linkage (C99 6.2.2p3), the
12636           // declared type shall not be an incomplete type.
12637           // NOTE: code such as the following
12638           //     static struct s;
12639           //     struct s { int a; };
12640           // is accepted by gcc. Hence here we issue a warning instead of
12641           // an error and we do not invalidate the static declaration.
12642           // NOTE: to avoid multiple warnings, only check the first declaration.
12643           if (Var->isFirstDecl())
12644             RequireCompleteType(Var->getLocation(), Type,
12645                                 diag::ext_typecheck_decl_incomplete_type);
12646         }
12647       }
12648 
12649       // Record the tentative definition; we're done.
12650       if (!Var->isInvalidDecl())
12651         TentativeDefinitions.push_back(Var);
12652       return;
12653     }
12654 
12655     // Provide a specific diagnostic for uninitialized variable
12656     // definitions with incomplete array type.
12657     if (Type->isIncompleteArrayType()) {
12658       Diag(Var->getLocation(),
12659            diag::err_typecheck_incomplete_array_needs_initializer);
12660       Var->setInvalidDecl();
12661       return;
12662     }
12663 
12664     // Provide a specific diagnostic for uninitialized variable
12665     // definitions with reference type.
12666     if (Type->isReferenceType()) {
12667       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
12668           << Var << SourceRange(Var->getLocation(), Var->getLocation());
12669       Var->setInvalidDecl();
12670       return;
12671     }
12672 
12673     // Do not attempt to type-check the default initializer for a
12674     // variable with dependent type.
12675     if (Type->isDependentType())
12676       return;
12677 
12678     if (Var->isInvalidDecl())
12679       return;
12680 
12681     if (!Var->hasAttr<AliasAttr>()) {
12682       if (RequireCompleteType(Var->getLocation(),
12683                               Context.getBaseElementType(Type),
12684                               diag::err_typecheck_decl_incomplete_type)) {
12685         Var->setInvalidDecl();
12686         return;
12687       }
12688     } else {
12689       return;
12690     }
12691 
12692     // The variable can not have an abstract class type.
12693     if (RequireNonAbstractType(Var->getLocation(), Type,
12694                                diag::err_abstract_type_in_decl,
12695                                AbstractVariableType)) {
12696       Var->setInvalidDecl();
12697       return;
12698     }
12699 
12700     // Check for jumps past the implicit initializer.  C++0x
12701     // clarifies that this applies to a "variable with automatic
12702     // storage duration", not a "local variable".
12703     // C++11 [stmt.dcl]p3
12704     //   A program that jumps from a point where a variable with automatic
12705     //   storage duration is not in scope to a point where it is in scope is
12706     //   ill-formed unless the variable has scalar type, class type with a
12707     //   trivial default constructor and a trivial destructor, a cv-qualified
12708     //   version of one of these types, or an array of one of the preceding
12709     //   types and is declared without an initializer.
12710     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
12711       if (const RecordType *Record
12712             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
12713         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
12714         // Mark the function (if we're in one) for further checking even if the
12715         // looser rules of C++11 do not require such checks, so that we can
12716         // diagnose incompatibilities with C++98.
12717         if (!CXXRecord->isPOD())
12718           setFunctionHasBranchProtectedScope();
12719       }
12720     }
12721     // In OpenCL, we can't initialize objects in the __local address space,
12722     // even implicitly, so don't synthesize an implicit initializer.
12723     if (getLangOpts().OpenCL &&
12724         Var->getType().getAddressSpace() == LangAS::opencl_local)
12725       return;
12726     // C++03 [dcl.init]p9:
12727     //   If no initializer is specified for an object, and the
12728     //   object is of (possibly cv-qualified) non-POD class type (or
12729     //   array thereof), the object shall be default-initialized; if
12730     //   the object is of const-qualified type, the underlying class
12731     //   type shall have a user-declared default
12732     //   constructor. Otherwise, if no initializer is specified for
12733     //   a non- static object, the object and its subobjects, if
12734     //   any, have an indeterminate initial value); if the object
12735     //   or any of its subobjects are of const-qualified type, the
12736     //   program is ill-formed.
12737     // C++0x [dcl.init]p11:
12738     //   If no initializer is specified for an object, the object is
12739     //   default-initialized; [...].
12740     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
12741     InitializationKind Kind
12742       = InitializationKind::CreateDefault(Var->getLocation());
12743 
12744     InitializationSequence InitSeq(*this, Entity, Kind, None);
12745     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
12746 
12747     if (Init.get()) {
12748       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
12749       // This is important for template substitution.
12750       Var->setInitStyle(VarDecl::CallInit);
12751     } else if (Init.isInvalid()) {
12752       // If default-init fails, attach a recovery-expr initializer to track
12753       // that initialization was attempted and failed.
12754       auto RecoveryExpr =
12755           CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {});
12756       if (RecoveryExpr.get())
12757         Var->setInit(RecoveryExpr.get());
12758     }
12759 
12760     CheckCompleteVariableDeclaration(Var);
12761   }
12762 }
12763 
12764 void Sema::ActOnCXXForRangeDecl(Decl *D) {
12765   // If there is no declaration, there was an error parsing it. Ignore it.
12766   if (!D)
12767     return;
12768 
12769   VarDecl *VD = dyn_cast<VarDecl>(D);
12770   if (!VD) {
12771     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
12772     D->setInvalidDecl();
12773     return;
12774   }
12775 
12776   VD->setCXXForRangeDecl(true);
12777 
12778   // for-range-declaration cannot be given a storage class specifier.
12779   int Error = -1;
12780   switch (VD->getStorageClass()) {
12781   case SC_None:
12782     break;
12783   case SC_Extern:
12784     Error = 0;
12785     break;
12786   case SC_Static:
12787     Error = 1;
12788     break;
12789   case SC_PrivateExtern:
12790     Error = 2;
12791     break;
12792   case SC_Auto:
12793     Error = 3;
12794     break;
12795   case SC_Register:
12796     Error = 4;
12797     break;
12798   }
12799 
12800   // for-range-declaration cannot be given a storage class specifier con't.
12801   switch (VD->getTSCSpec()) {
12802   case TSCS_thread_local:
12803     Error = 6;
12804     break;
12805   case TSCS___thread:
12806   case TSCS__Thread_local:
12807   case TSCS_unspecified:
12808     break;
12809   }
12810 
12811   if (Error != -1) {
12812     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
12813         << VD << Error;
12814     D->setInvalidDecl();
12815   }
12816 }
12817 
12818 StmtResult
12819 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
12820                                  IdentifierInfo *Ident,
12821                                  ParsedAttributes &Attrs,
12822                                  SourceLocation AttrEnd) {
12823   // C++1y [stmt.iter]p1:
12824   //   A range-based for statement of the form
12825   //      for ( for-range-identifier : for-range-initializer ) statement
12826   //   is equivalent to
12827   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
12828   DeclSpec DS(Attrs.getPool().getFactory());
12829 
12830   const char *PrevSpec;
12831   unsigned DiagID;
12832   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
12833                      getPrintingPolicy());
12834 
12835   Declarator D(DS, DeclaratorContext::ForInit);
12836   D.SetIdentifier(Ident, IdentLoc);
12837   D.takeAttributes(Attrs, AttrEnd);
12838 
12839   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
12840                 IdentLoc);
12841   Decl *Var = ActOnDeclarator(S, D);
12842   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
12843   FinalizeDeclaration(Var);
12844   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
12845                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
12846 }
12847 
12848 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
12849   if (var->isInvalidDecl()) return;
12850 
12851   if (getLangOpts().OpenCL) {
12852     // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
12853     // initialiser
12854     if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
12855         !var->hasInit()) {
12856       Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
12857           << 1 /*Init*/;
12858       var->setInvalidDecl();
12859       return;
12860     }
12861   }
12862 
12863   // In Objective-C, don't allow jumps past the implicit initialization of a
12864   // local retaining variable.
12865   if (getLangOpts().ObjC &&
12866       var->hasLocalStorage()) {
12867     switch (var->getType().getObjCLifetime()) {
12868     case Qualifiers::OCL_None:
12869     case Qualifiers::OCL_ExplicitNone:
12870     case Qualifiers::OCL_Autoreleasing:
12871       break;
12872 
12873     case Qualifiers::OCL_Weak:
12874     case Qualifiers::OCL_Strong:
12875       setFunctionHasBranchProtectedScope();
12876       break;
12877     }
12878   }
12879 
12880   if (var->hasLocalStorage() &&
12881       var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
12882     setFunctionHasBranchProtectedScope();
12883 
12884   // Warn about externally-visible variables being defined without a
12885   // prior declaration.  We only want to do this for global
12886   // declarations, but we also specifically need to avoid doing it for
12887   // class members because the linkage of an anonymous class can
12888   // change if it's later given a typedef name.
12889   if (var->isThisDeclarationADefinition() &&
12890       var->getDeclContext()->getRedeclContext()->isFileContext() &&
12891       var->isExternallyVisible() && var->hasLinkage() &&
12892       !var->isInline() && !var->getDescribedVarTemplate() &&
12893       !isa<VarTemplatePartialSpecializationDecl>(var) &&
12894       !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
12895       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
12896                                   var->getLocation())) {
12897     // Find a previous declaration that's not a definition.
12898     VarDecl *prev = var->getPreviousDecl();
12899     while (prev && prev->isThisDeclarationADefinition())
12900       prev = prev->getPreviousDecl();
12901 
12902     if (!prev) {
12903       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
12904       Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
12905           << /* variable */ 0;
12906     }
12907   }
12908 
12909   // Cache the result of checking for constant initialization.
12910   Optional<bool> CacheHasConstInit;
12911   const Expr *CacheCulprit = nullptr;
12912   auto checkConstInit = [&]() mutable {
12913     if (!CacheHasConstInit)
12914       CacheHasConstInit = var->getInit()->isConstantInitializer(
12915             Context, var->getType()->isReferenceType(), &CacheCulprit);
12916     return *CacheHasConstInit;
12917   };
12918 
12919   if (var->getTLSKind() == VarDecl::TLS_Static) {
12920     if (var->getType().isDestructedType()) {
12921       // GNU C++98 edits for __thread, [basic.start.term]p3:
12922       //   The type of an object with thread storage duration shall not
12923       //   have a non-trivial destructor.
12924       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
12925       if (getLangOpts().CPlusPlus11)
12926         Diag(var->getLocation(), diag::note_use_thread_local);
12927     } else if (getLangOpts().CPlusPlus && var->hasInit()) {
12928       if (!checkConstInit()) {
12929         // GNU C++98 edits for __thread, [basic.start.init]p4:
12930         //   An object of thread storage duration shall not require dynamic
12931         //   initialization.
12932         // FIXME: Need strict checking here.
12933         Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
12934           << CacheCulprit->getSourceRange();
12935         if (getLangOpts().CPlusPlus11)
12936           Diag(var->getLocation(), diag::note_use_thread_local);
12937       }
12938     }
12939   }
12940 
12941   // Apply section attributes and pragmas to global variables.
12942   bool GlobalStorage = var->hasGlobalStorage();
12943   if (GlobalStorage && var->isThisDeclarationADefinition() &&
12944       !inTemplateInstantiation()) {
12945     PragmaStack<StringLiteral *> *Stack = nullptr;
12946     int SectionFlags = ASTContext::PSF_Read;
12947     if (var->getType().isConstQualified())
12948       Stack = &ConstSegStack;
12949     else if (!var->getInit()) {
12950       Stack = &BSSSegStack;
12951       SectionFlags |= ASTContext::PSF_Write;
12952     } else {
12953       Stack = &DataSegStack;
12954       SectionFlags |= ASTContext::PSF_Write;
12955     }
12956     if (const SectionAttr *SA = var->getAttr<SectionAttr>()) {
12957       if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec)
12958         SectionFlags |= ASTContext::PSF_Implicit;
12959       UnifySection(SA->getName(), SectionFlags, var);
12960     } else if (Stack->CurrentValue) {
12961       SectionFlags |= ASTContext::PSF_Implicit;
12962       auto SectionName = Stack->CurrentValue->getString();
12963       var->addAttr(SectionAttr::CreateImplicit(
12964           Context, SectionName, Stack->CurrentPragmaLocation,
12965           AttributeCommonInfo::AS_Pragma, SectionAttr::Declspec_allocate));
12966       if (UnifySection(SectionName, SectionFlags, var))
12967         var->dropAttr<SectionAttr>();
12968     }
12969 
12970     // Apply the init_seg attribute if this has an initializer.  If the
12971     // initializer turns out to not be dynamic, we'll end up ignoring this
12972     // attribute.
12973     if (CurInitSeg && var->getInit())
12974       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
12975                                                CurInitSegLoc,
12976                                                AttributeCommonInfo::AS_Pragma));
12977   }
12978 
12979   if (!var->getType()->isStructureType() && var->hasInit() &&
12980       isa<InitListExpr>(var->getInit())) {
12981     const auto *ILE = cast<InitListExpr>(var->getInit());
12982     unsigned NumInits = ILE->getNumInits();
12983     if (NumInits > 2)
12984       for (unsigned I = 0; I < NumInits; ++I) {
12985         const auto *Init = ILE->getInit(I);
12986         if (!Init)
12987           break;
12988         const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
12989         if (!SL)
12990           break;
12991 
12992         unsigned NumConcat = SL->getNumConcatenated();
12993         // Diagnose missing comma in string array initialization.
12994         // Do not warn when all the elements in the initializer are concatenated
12995         // together. Do not warn for macros too.
12996         if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) {
12997           bool OnlyOneMissingComma = true;
12998           for (unsigned J = I + 1; J < NumInits; ++J) {
12999             const auto *Init = ILE->getInit(J);
13000             if (!Init)
13001               break;
13002             const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
13003             if (!SLJ || SLJ->getNumConcatenated() > 1) {
13004               OnlyOneMissingComma = false;
13005               break;
13006             }
13007           }
13008 
13009           if (OnlyOneMissingComma) {
13010             SmallVector<FixItHint, 1> Hints;
13011             for (unsigned i = 0; i < NumConcat - 1; ++i)
13012               Hints.push_back(FixItHint::CreateInsertion(
13013                   PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ","));
13014 
13015             Diag(SL->getStrTokenLoc(1),
13016                  diag::warn_concatenated_literal_array_init)
13017                 << Hints;
13018             Diag(SL->getBeginLoc(),
13019                  diag::note_concatenated_string_literal_silence);
13020           }
13021           // In any case, stop now.
13022           break;
13023         }
13024       }
13025   }
13026 
13027   // All the following checks are C++ only.
13028   if (!getLangOpts().CPlusPlus) {
13029     // If this variable must be emitted, add it as an initializer for the
13030     // current module.
13031     if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13032       Context.addModuleInitializer(ModuleScopes.back().Module, var);
13033     return;
13034   }
13035 
13036   QualType type = var->getType();
13037 
13038   if (var->hasAttr<BlocksAttr>())
13039     getCurFunction()->addByrefBlockVar(var);
13040 
13041   Expr *Init = var->getInit();
13042   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
13043   QualType baseType = Context.getBaseElementType(type);
13044 
13045   // Check whether the initializer is sufficiently constant.
13046   if (!type->isDependentType() && Init && !Init->isValueDependent() &&
13047       (GlobalStorage || var->isConstexpr() ||
13048        var->mightBeUsableInConstantExpressions(Context))) {
13049     // If this variable might have a constant initializer or might be usable in
13050     // constant expressions, check whether or not it actually is now.  We can't
13051     // do this lazily, because the result might depend on things that change
13052     // later, such as which constexpr functions happen to be defined.
13053     SmallVector<PartialDiagnosticAt, 8> Notes;
13054     bool HasConstInit;
13055     if (!getLangOpts().CPlusPlus11) {
13056       // Prior to C++11, in contexts where a constant initializer is required,
13057       // the set of valid constant initializers is described by syntactic rules
13058       // in [expr.const]p2-6.
13059       // FIXME: Stricter checking for these rules would be useful for constinit /
13060       // -Wglobal-constructors.
13061       HasConstInit = checkConstInit();
13062 
13063       // Compute and cache the constant value, and remember that we have a
13064       // constant initializer.
13065       if (HasConstInit) {
13066         (void)var->checkForConstantInitialization(Notes);
13067         Notes.clear();
13068       } else if (CacheCulprit) {
13069         Notes.emplace_back(CacheCulprit->getExprLoc(),
13070                            PDiag(diag::note_invalid_subexpr_in_const_expr));
13071         Notes.back().second << CacheCulprit->getSourceRange();
13072       }
13073     } else {
13074       // Evaluate the initializer to see if it's a constant initializer.
13075       HasConstInit = var->checkForConstantInitialization(Notes);
13076     }
13077 
13078     if (HasConstInit) {
13079       // FIXME: Consider replacing the initializer with a ConstantExpr.
13080     } else if (var->isConstexpr()) {
13081       SourceLocation DiagLoc = var->getLocation();
13082       // If the note doesn't add any useful information other than a source
13083       // location, fold it into the primary diagnostic.
13084       if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
13085                                    diag::note_invalid_subexpr_in_const_expr) {
13086         DiagLoc = Notes[0].first;
13087         Notes.clear();
13088       }
13089       Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
13090           << var << Init->getSourceRange();
13091       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
13092         Diag(Notes[I].first, Notes[I].second);
13093     } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) {
13094       auto *Attr = var->getAttr<ConstInitAttr>();
13095       Diag(var->getLocation(), diag::err_require_constant_init_failed)
13096           << Init->getSourceRange();
13097       Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here)
13098           << Attr->getRange() << Attr->isConstinit();
13099       for (auto &it : Notes)
13100         Diag(it.first, it.second);
13101     } else if (IsGlobal &&
13102                !getDiagnostics().isIgnored(diag::warn_global_constructor,
13103                                            var->getLocation())) {
13104       // Warn about globals which don't have a constant initializer.  Don't
13105       // warn about globals with a non-trivial destructor because we already
13106       // warned about them.
13107       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
13108       if (!(RD && !RD->hasTrivialDestructor())) {
13109         // checkConstInit() here permits trivial default initialization even in
13110         // C++11 onwards, where such an initializer is not a constant initializer
13111         // but nonetheless doesn't require a global constructor.
13112         if (!checkConstInit())
13113           Diag(var->getLocation(), diag::warn_global_constructor)
13114               << Init->getSourceRange();
13115       }
13116     }
13117   }
13118 
13119   // Require the destructor.
13120   if (!type->isDependentType())
13121     if (const RecordType *recordType = baseType->getAs<RecordType>())
13122       FinalizeVarWithDestructor(var, recordType);
13123 
13124   // If this variable must be emitted, add it as an initializer for the current
13125   // module.
13126   if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13127     Context.addModuleInitializer(ModuleScopes.back().Module, var);
13128 
13129   // Build the bindings if this is a structured binding declaration.
13130   if (auto *DD = dyn_cast<DecompositionDecl>(var))
13131     CheckCompleteDecompositionDeclaration(DD);
13132 }
13133 
13134 /// Determines if a variable's alignment is dependent.
13135 static bool hasDependentAlignment(VarDecl *VD) {
13136   if (VD->getType()->isDependentType())
13137     return true;
13138   for (auto *I : VD->specific_attrs<AlignedAttr>())
13139     if (I->isAlignmentDependent())
13140       return true;
13141   return false;
13142 }
13143 
13144 /// Check if VD needs to be dllexport/dllimport due to being in a
13145 /// dllexport/import function.
13146 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
13147   assert(VD->isStaticLocal());
13148 
13149   auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13150 
13151   // Find outermost function when VD is in lambda function.
13152   while (FD && !getDLLAttr(FD) &&
13153          !FD->hasAttr<DLLExportStaticLocalAttr>() &&
13154          !FD->hasAttr<DLLImportStaticLocalAttr>()) {
13155     FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
13156   }
13157 
13158   if (!FD)
13159     return;
13160 
13161   // Static locals inherit dll attributes from their function.
13162   if (Attr *A = getDLLAttr(FD)) {
13163     auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
13164     NewAttr->setInherited(true);
13165     VD->addAttr(NewAttr);
13166   } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
13167     auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
13168     NewAttr->setInherited(true);
13169     VD->addAttr(NewAttr);
13170 
13171     // Export this function to enforce exporting this static variable even
13172     // if it is not used in this compilation unit.
13173     if (!FD->hasAttr<DLLExportAttr>())
13174       FD->addAttr(NewAttr);
13175 
13176   } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
13177     auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
13178     NewAttr->setInherited(true);
13179     VD->addAttr(NewAttr);
13180   }
13181 }
13182 
13183 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
13184 /// any semantic actions necessary after any initializer has been attached.
13185 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
13186   // Note that we are no longer parsing the initializer for this declaration.
13187   ParsingInitForAutoVars.erase(ThisDecl);
13188 
13189   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
13190   if (!VD)
13191     return;
13192 
13193   // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
13194   if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
13195       !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
13196     if (PragmaClangBSSSection.Valid)
13197       VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
13198           Context, PragmaClangBSSSection.SectionName,
13199           PragmaClangBSSSection.PragmaLocation,
13200           AttributeCommonInfo::AS_Pragma));
13201     if (PragmaClangDataSection.Valid)
13202       VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
13203           Context, PragmaClangDataSection.SectionName,
13204           PragmaClangDataSection.PragmaLocation,
13205           AttributeCommonInfo::AS_Pragma));
13206     if (PragmaClangRodataSection.Valid)
13207       VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
13208           Context, PragmaClangRodataSection.SectionName,
13209           PragmaClangRodataSection.PragmaLocation,
13210           AttributeCommonInfo::AS_Pragma));
13211     if (PragmaClangRelroSection.Valid)
13212       VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
13213           Context, PragmaClangRelroSection.SectionName,
13214           PragmaClangRelroSection.PragmaLocation,
13215           AttributeCommonInfo::AS_Pragma));
13216   }
13217 
13218   if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
13219     for (auto *BD : DD->bindings()) {
13220       FinalizeDeclaration(BD);
13221     }
13222   }
13223 
13224   checkAttributesAfterMerging(*this, *VD);
13225 
13226   // Perform TLS alignment check here after attributes attached to the variable
13227   // which may affect the alignment have been processed. Only perform the check
13228   // if the target has a maximum TLS alignment (zero means no constraints).
13229   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
13230     // Protect the check so that it's not performed on dependent types and
13231     // dependent alignments (we can't determine the alignment in that case).
13232     if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
13233         !VD->isInvalidDecl()) {
13234       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
13235       if (Context.getDeclAlign(VD) > MaxAlignChars) {
13236         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
13237           << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
13238           << (unsigned)MaxAlignChars.getQuantity();
13239       }
13240     }
13241   }
13242 
13243   if (VD->isStaticLocal())
13244     CheckStaticLocalForDllExport(VD);
13245 
13246   // Perform check for initializers of device-side global variables.
13247   // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
13248   // 7.5). We must also apply the same checks to all __shared__
13249   // variables whether they are local or not. CUDA also allows
13250   // constant initializers for __constant__ and __device__ variables.
13251   if (getLangOpts().CUDA)
13252     checkAllowedCUDAInitializer(VD);
13253 
13254   // Grab the dllimport or dllexport attribute off of the VarDecl.
13255   const InheritableAttr *DLLAttr = getDLLAttr(VD);
13256 
13257   // Imported static data members cannot be defined out-of-line.
13258   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
13259     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
13260         VD->isThisDeclarationADefinition()) {
13261       // We allow definitions of dllimport class template static data members
13262       // with a warning.
13263       CXXRecordDecl *Context =
13264         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
13265       bool IsClassTemplateMember =
13266           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
13267           Context->getDescribedClassTemplate();
13268 
13269       Diag(VD->getLocation(),
13270            IsClassTemplateMember
13271                ? diag::warn_attribute_dllimport_static_field_definition
13272                : diag::err_attribute_dllimport_static_field_definition);
13273       Diag(IA->getLocation(), diag::note_attribute);
13274       if (!IsClassTemplateMember)
13275         VD->setInvalidDecl();
13276     }
13277   }
13278 
13279   // dllimport/dllexport variables cannot be thread local, their TLS index
13280   // isn't exported with the variable.
13281   if (DLLAttr && VD->getTLSKind()) {
13282     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13283     if (F && getDLLAttr(F)) {
13284       assert(VD->isStaticLocal());
13285       // But if this is a static local in a dlimport/dllexport function, the
13286       // function will never be inlined, which means the var would never be
13287       // imported, so having it marked import/export is safe.
13288     } else {
13289       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
13290                                                                     << DLLAttr;
13291       VD->setInvalidDecl();
13292     }
13293   }
13294 
13295   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
13296     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
13297       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
13298       VD->dropAttr<UsedAttr>();
13299     }
13300   }
13301 
13302   const DeclContext *DC = VD->getDeclContext();
13303   // If there's a #pragma GCC visibility in scope, and this isn't a class
13304   // member, set the visibility of this variable.
13305   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
13306     AddPushedVisibilityAttribute(VD);
13307 
13308   // FIXME: Warn on unused var template partial specializations.
13309   if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
13310     MarkUnusedFileScopedDecl(VD);
13311 
13312   // Now we have parsed the initializer and can update the table of magic
13313   // tag values.
13314   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
13315       !VD->getType()->isIntegralOrEnumerationType())
13316     return;
13317 
13318   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
13319     const Expr *MagicValueExpr = VD->getInit();
13320     if (!MagicValueExpr) {
13321       continue;
13322     }
13323     Optional<llvm::APSInt> MagicValueInt;
13324     if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) {
13325       Diag(I->getRange().getBegin(),
13326            diag::err_type_tag_for_datatype_not_ice)
13327         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13328       continue;
13329     }
13330     if (MagicValueInt->getActiveBits() > 64) {
13331       Diag(I->getRange().getBegin(),
13332            diag::err_type_tag_for_datatype_too_large)
13333         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13334       continue;
13335     }
13336     uint64_t MagicValue = MagicValueInt->getZExtValue();
13337     RegisterTypeTagForDatatype(I->getArgumentKind(),
13338                                MagicValue,
13339                                I->getMatchingCType(),
13340                                I->getLayoutCompatible(),
13341                                I->getMustBeNull());
13342   }
13343 }
13344 
13345 static bool hasDeducedAuto(DeclaratorDecl *DD) {
13346   auto *VD = dyn_cast<VarDecl>(DD);
13347   return VD && !VD->getType()->hasAutoForTrailingReturnType();
13348 }
13349 
13350 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
13351                                                    ArrayRef<Decl *> Group) {
13352   SmallVector<Decl*, 8> Decls;
13353 
13354   if (DS.isTypeSpecOwned())
13355     Decls.push_back(DS.getRepAsDecl());
13356 
13357   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
13358   DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
13359   bool DiagnosedMultipleDecomps = false;
13360   DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
13361   bool DiagnosedNonDeducedAuto = false;
13362 
13363   for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13364     if (Decl *D = Group[i]) {
13365       // For declarators, there are some additional syntactic-ish checks we need
13366       // to perform.
13367       if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
13368         if (!FirstDeclaratorInGroup)
13369           FirstDeclaratorInGroup = DD;
13370         if (!FirstDecompDeclaratorInGroup)
13371           FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
13372         if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
13373             !hasDeducedAuto(DD))
13374           FirstNonDeducedAutoInGroup = DD;
13375 
13376         if (FirstDeclaratorInGroup != DD) {
13377           // A decomposition declaration cannot be combined with any other
13378           // declaration in the same group.
13379           if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
13380             Diag(FirstDecompDeclaratorInGroup->getLocation(),
13381                  diag::err_decomp_decl_not_alone)
13382                 << FirstDeclaratorInGroup->getSourceRange()
13383                 << DD->getSourceRange();
13384             DiagnosedMultipleDecomps = true;
13385           }
13386 
13387           // A declarator that uses 'auto' in any way other than to declare a
13388           // variable with a deduced type cannot be combined with any other
13389           // declarator in the same group.
13390           if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
13391             Diag(FirstNonDeducedAutoInGroup->getLocation(),
13392                  diag::err_auto_non_deduced_not_alone)
13393                 << FirstNonDeducedAutoInGroup->getType()
13394                        ->hasAutoForTrailingReturnType()
13395                 << FirstDeclaratorInGroup->getSourceRange()
13396                 << DD->getSourceRange();
13397             DiagnosedNonDeducedAuto = true;
13398           }
13399         }
13400       }
13401 
13402       Decls.push_back(D);
13403     }
13404   }
13405 
13406   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
13407     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
13408       handleTagNumbering(Tag, S);
13409       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
13410           getLangOpts().CPlusPlus)
13411         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
13412     }
13413   }
13414 
13415   return BuildDeclaratorGroup(Decls);
13416 }
13417 
13418 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
13419 /// group, performing any necessary semantic checking.
13420 Sema::DeclGroupPtrTy
13421 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
13422   // C++14 [dcl.spec.auto]p7: (DR1347)
13423   //   If the type that replaces the placeholder type is not the same in each
13424   //   deduction, the program is ill-formed.
13425   if (Group.size() > 1) {
13426     QualType Deduced;
13427     VarDecl *DeducedDecl = nullptr;
13428     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13429       VarDecl *D = dyn_cast<VarDecl>(Group[i]);
13430       if (!D || D->isInvalidDecl())
13431         break;
13432       DeducedType *DT = D->getType()->getContainedDeducedType();
13433       if (!DT || DT->getDeducedType().isNull())
13434         continue;
13435       if (Deduced.isNull()) {
13436         Deduced = DT->getDeducedType();
13437         DeducedDecl = D;
13438       } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
13439         auto *AT = dyn_cast<AutoType>(DT);
13440         auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
13441                         diag::err_auto_different_deductions)
13442                    << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced
13443                    << DeducedDecl->getDeclName() << DT->getDeducedType()
13444                    << D->getDeclName();
13445         if (DeducedDecl->hasInit())
13446           Dia << DeducedDecl->getInit()->getSourceRange();
13447         if (D->getInit())
13448           Dia << D->getInit()->getSourceRange();
13449         D->setInvalidDecl();
13450         break;
13451       }
13452     }
13453   }
13454 
13455   ActOnDocumentableDecls(Group);
13456 
13457   return DeclGroupPtrTy::make(
13458       DeclGroupRef::Create(Context, Group.data(), Group.size()));
13459 }
13460 
13461 void Sema::ActOnDocumentableDecl(Decl *D) {
13462   ActOnDocumentableDecls(D);
13463 }
13464 
13465 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
13466   // Don't parse the comment if Doxygen diagnostics are ignored.
13467   if (Group.empty() || !Group[0])
13468     return;
13469 
13470   if (Diags.isIgnored(diag::warn_doc_param_not_found,
13471                       Group[0]->getLocation()) &&
13472       Diags.isIgnored(diag::warn_unknown_comment_command_name,
13473                       Group[0]->getLocation()))
13474     return;
13475 
13476   if (Group.size() >= 2) {
13477     // This is a decl group.  Normally it will contain only declarations
13478     // produced from declarator list.  But in case we have any definitions or
13479     // additional declaration references:
13480     //   'typedef struct S {} S;'
13481     //   'typedef struct S *S;'
13482     //   'struct S *pS;'
13483     // FinalizeDeclaratorGroup adds these as separate declarations.
13484     Decl *MaybeTagDecl = Group[0];
13485     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
13486       Group = Group.slice(1);
13487     }
13488   }
13489 
13490   // FIMXE: We assume every Decl in the group is in the same file.
13491   // This is false when preprocessor constructs the group from decls in
13492   // different files (e. g. macros or #include).
13493   Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
13494 }
13495 
13496 /// Common checks for a parameter-declaration that should apply to both function
13497 /// parameters and non-type template parameters.
13498 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
13499   // Check that there are no default arguments inside the type of this
13500   // parameter.
13501   if (getLangOpts().CPlusPlus)
13502     CheckExtraCXXDefaultArguments(D);
13503 
13504   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
13505   if (D.getCXXScopeSpec().isSet()) {
13506     Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
13507       << D.getCXXScopeSpec().getRange();
13508   }
13509 
13510   // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
13511   // simple identifier except [...irrelevant cases...].
13512   switch (D.getName().getKind()) {
13513   case UnqualifiedIdKind::IK_Identifier:
13514     break;
13515 
13516   case UnqualifiedIdKind::IK_OperatorFunctionId:
13517   case UnqualifiedIdKind::IK_ConversionFunctionId:
13518   case UnqualifiedIdKind::IK_LiteralOperatorId:
13519   case UnqualifiedIdKind::IK_ConstructorName:
13520   case UnqualifiedIdKind::IK_DestructorName:
13521   case UnqualifiedIdKind::IK_ImplicitSelfParam:
13522   case UnqualifiedIdKind::IK_DeductionGuideName:
13523     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
13524       << GetNameForDeclarator(D).getName();
13525     break;
13526 
13527   case UnqualifiedIdKind::IK_TemplateId:
13528   case UnqualifiedIdKind::IK_ConstructorTemplateId:
13529     // GetNameForDeclarator would not produce a useful name in this case.
13530     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
13531     break;
13532   }
13533 }
13534 
13535 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
13536 /// to introduce parameters into function prototype scope.
13537 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
13538   const DeclSpec &DS = D.getDeclSpec();
13539 
13540   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
13541 
13542   // C++03 [dcl.stc]p2 also permits 'auto'.
13543   StorageClass SC = SC_None;
13544   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
13545     SC = SC_Register;
13546     // In C++11, the 'register' storage class specifier is deprecated.
13547     // In C++17, it is not allowed, but we tolerate it as an extension.
13548     if (getLangOpts().CPlusPlus11) {
13549       Diag(DS.getStorageClassSpecLoc(),
13550            getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
13551                                      : diag::warn_deprecated_register)
13552         << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
13553     }
13554   } else if (getLangOpts().CPlusPlus &&
13555              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
13556     SC = SC_Auto;
13557   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
13558     Diag(DS.getStorageClassSpecLoc(),
13559          diag::err_invalid_storage_class_in_func_decl);
13560     D.getMutableDeclSpec().ClearStorageClassSpecs();
13561   }
13562 
13563   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
13564     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
13565       << DeclSpec::getSpecifierName(TSCS);
13566   if (DS.isInlineSpecified())
13567     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
13568         << getLangOpts().CPlusPlus17;
13569   if (DS.hasConstexprSpecifier())
13570     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
13571         << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
13572 
13573   DiagnoseFunctionSpecifiers(DS);
13574 
13575   CheckFunctionOrTemplateParamDeclarator(S, D);
13576 
13577   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13578   QualType parmDeclType = TInfo->getType();
13579 
13580   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
13581   IdentifierInfo *II = D.getIdentifier();
13582   if (II) {
13583     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
13584                    ForVisibleRedeclaration);
13585     LookupName(R, S);
13586     if (R.isSingleResult()) {
13587       NamedDecl *PrevDecl = R.getFoundDecl();
13588       if (PrevDecl->isTemplateParameter()) {
13589         // Maybe we will complain about the shadowed template parameter.
13590         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
13591         // Just pretend that we didn't see the previous declaration.
13592         PrevDecl = nullptr;
13593       } else if (S->isDeclScope(PrevDecl)) {
13594         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
13595         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
13596 
13597         // Recover by removing the name
13598         II = nullptr;
13599         D.SetIdentifier(nullptr, D.getIdentifierLoc());
13600         D.setInvalidType(true);
13601       }
13602     }
13603   }
13604 
13605   // Temporarily put parameter variables in the translation unit, not
13606   // the enclosing context.  This prevents them from accidentally
13607   // looking like class members in C++.
13608   ParmVarDecl *New =
13609       CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
13610                      D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
13611 
13612   if (D.isInvalidType())
13613     New->setInvalidDecl();
13614 
13615   assert(S->isFunctionPrototypeScope());
13616   assert(S->getFunctionPrototypeDepth() >= 1);
13617   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
13618                     S->getNextFunctionPrototypeIndex());
13619 
13620   // Add the parameter declaration into this scope.
13621   S->AddDecl(New);
13622   if (II)
13623     IdResolver.AddDecl(New);
13624 
13625   ProcessDeclAttributes(S, New, D);
13626 
13627   if (D.getDeclSpec().isModulePrivateSpecified())
13628     Diag(New->getLocation(), diag::err_module_private_local)
13629         << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13630         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13631 
13632   if (New->hasAttr<BlocksAttr>()) {
13633     Diag(New->getLocation(), diag::err_block_on_nonlocal);
13634   }
13635 
13636   if (getLangOpts().OpenCL)
13637     deduceOpenCLAddressSpace(New);
13638 
13639   return New;
13640 }
13641 
13642 /// Synthesizes a variable for a parameter arising from a
13643 /// typedef.
13644 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
13645                                               SourceLocation Loc,
13646                                               QualType T) {
13647   /* FIXME: setting StartLoc == Loc.
13648      Would it be worth to modify callers so as to provide proper source
13649      location for the unnamed parameters, embedding the parameter's type? */
13650   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
13651                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
13652                                            SC_None, nullptr);
13653   Param->setImplicit();
13654   return Param;
13655 }
13656 
13657 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
13658   // Don't diagnose unused-parameter errors in template instantiations; we
13659   // will already have done so in the template itself.
13660   if (inTemplateInstantiation())
13661     return;
13662 
13663   for (const ParmVarDecl *Parameter : Parameters) {
13664     if (!Parameter->isReferenced() && Parameter->getDeclName() &&
13665         !Parameter->hasAttr<UnusedAttr>()) {
13666       Diag(Parameter->getLocation(), diag::warn_unused_parameter)
13667         << Parameter->getDeclName();
13668     }
13669   }
13670 }
13671 
13672 void Sema::DiagnoseSizeOfParametersAndReturnValue(
13673     ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
13674   if (LangOpts.NumLargeByValueCopy == 0) // No check.
13675     return;
13676 
13677   // Warn if the return value is pass-by-value and larger than the specified
13678   // threshold.
13679   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
13680     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
13681     if (Size > LangOpts.NumLargeByValueCopy)
13682       Diag(D->getLocation(), diag::warn_return_value_size) << D << Size;
13683   }
13684 
13685   // Warn if any parameter is pass-by-value and larger than the specified
13686   // threshold.
13687   for (const ParmVarDecl *Parameter : Parameters) {
13688     QualType T = Parameter->getType();
13689     if (T->isDependentType() || !T.isPODType(Context))
13690       continue;
13691     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
13692     if (Size > LangOpts.NumLargeByValueCopy)
13693       Diag(Parameter->getLocation(), diag::warn_parameter_size)
13694           << Parameter << Size;
13695   }
13696 }
13697 
13698 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
13699                                   SourceLocation NameLoc, IdentifierInfo *Name,
13700                                   QualType T, TypeSourceInfo *TSInfo,
13701                                   StorageClass SC) {
13702   // In ARC, infer a lifetime qualifier for appropriate parameter types.
13703   if (getLangOpts().ObjCAutoRefCount &&
13704       T.getObjCLifetime() == Qualifiers::OCL_None &&
13705       T->isObjCLifetimeType()) {
13706 
13707     Qualifiers::ObjCLifetime lifetime;
13708 
13709     // Special cases for arrays:
13710     //   - if it's const, use __unsafe_unretained
13711     //   - otherwise, it's an error
13712     if (T->isArrayType()) {
13713       if (!T.isConstQualified()) {
13714         if (DelayedDiagnostics.shouldDelayDiagnostics())
13715           DelayedDiagnostics.add(
13716               sema::DelayedDiagnostic::makeForbiddenType(
13717               NameLoc, diag::err_arc_array_param_no_ownership, T, false));
13718         else
13719           Diag(NameLoc, diag::err_arc_array_param_no_ownership)
13720               << TSInfo->getTypeLoc().getSourceRange();
13721       }
13722       lifetime = Qualifiers::OCL_ExplicitNone;
13723     } else {
13724       lifetime = T->getObjCARCImplicitLifetime();
13725     }
13726     T = Context.getLifetimeQualifiedType(T, lifetime);
13727   }
13728 
13729   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
13730                                          Context.getAdjustedParameterType(T),
13731                                          TSInfo, SC, nullptr);
13732 
13733   // Make a note if we created a new pack in the scope of a lambda, so that
13734   // we know that references to that pack must also be expanded within the
13735   // lambda scope.
13736   if (New->isParameterPack())
13737     if (auto *LSI = getEnclosingLambda())
13738       LSI->LocalPacks.push_back(New);
13739 
13740   if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
13741       New->getType().hasNonTrivialToPrimitiveCopyCUnion())
13742     checkNonTrivialCUnion(New->getType(), New->getLocation(),
13743                           NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
13744 
13745   // Parameters can not be abstract class types.
13746   // For record types, this is done by the AbstractClassUsageDiagnoser once
13747   // the class has been completely parsed.
13748   if (!CurContext->isRecord() &&
13749       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
13750                              AbstractParamType))
13751     New->setInvalidDecl();
13752 
13753   // Parameter declarators cannot be interface types. All ObjC objects are
13754   // passed by reference.
13755   if (T->isObjCObjectType()) {
13756     SourceLocation TypeEndLoc =
13757         getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
13758     Diag(NameLoc,
13759          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
13760       << FixItHint::CreateInsertion(TypeEndLoc, "*");
13761     T = Context.getObjCObjectPointerType(T);
13762     New->setType(T);
13763   }
13764 
13765   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
13766   // duration shall not be qualified by an address-space qualifier."
13767   // Since all parameters have automatic store duration, they can not have
13768   // an address space.
13769   if (T.getAddressSpace() != LangAS::Default &&
13770       // OpenCL allows function arguments declared to be an array of a type
13771       // to be qualified with an address space.
13772       !(getLangOpts().OpenCL &&
13773         (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
13774     Diag(NameLoc, diag::err_arg_with_address_space);
13775     New->setInvalidDecl();
13776   }
13777 
13778   // PPC MMA non-pointer types are not allowed as function argument types.
13779   if (Context.getTargetInfo().getTriple().isPPC64() &&
13780       CheckPPCMMAType(New->getOriginalType(), New->getLocation())) {
13781     New->setInvalidDecl();
13782   }
13783 
13784   return New;
13785 }
13786 
13787 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
13788                                            SourceLocation LocAfterDecls) {
13789   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
13790 
13791   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
13792   // for a K&R function.
13793   if (!FTI.hasPrototype) {
13794     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
13795       --i;
13796       if (FTI.Params[i].Param == nullptr) {
13797         SmallString<256> Code;
13798         llvm::raw_svector_ostream(Code)
13799             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
13800         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
13801             << FTI.Params[i].Ident
13802             << FixItHint::CreateInsertion(LocAfterDecls, Code);
13803 
13804         // Implicitly declare the argument as type 'int' for lack of a better
13805         // type.
13806         AttributeFactory attrs;
13807         DeclSpec DS(attrs);
13808         const char* PrevSpec; // unused
13809         unsigned DiagID; // unused
13810         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
13811                            DiagID, Context.getPrintingPolicy());
13812         // Use the identifier location for the type source range.
13813         DS.SetRangeStart(FTI.Params[i].IdentLoc);
13814         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
13815         Declarator ParamD(DS, DeclaratorContext::KNRTypeList);
13816         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
13817         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
13818       }
13819     }
13820   }
13821 }
13822 
13823 Decl *
13824 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
13825                               MultiTemplateParamsArg TemplateParameterLists,
13826                               SkipBodyInfo *SkipBody) {
13827   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
13828   assert(D.isFunctionDeclarator() && "Not a function declarator!");
13829   Scope *ParentScope = FnBodyScope->getParent();
13830 
13831   // Check if we are in an `omp begin/end declare variant` scope. If we are, and
13832   // we define a non-templated function definition, we will create a declaration
13833   // instead (=BaseFD), and emit the definition with a mangled name afterwards.
13834   // The base function declaration will have the equivalent of an `omp declare
13835   // variant` annotation which specifies the mangled definition as a
13836   // specialization function under the OpenMP context defined as part of the
13837   // `omp begin declare variant`.
13838   SmallVector<FunctionDecl *, 4> Bases;
13839   if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
13840     ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
13841         ParentScope, D, TemplateParameterLists, Bases);
13842 
13843   D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
13844   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
13845   Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
13846 
13847   if (!Bases.empty())
13848     ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
13849 
13850   return Dcl;
13851 }
13852 
13853 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
13854   Consumer.HandleInlineFunctionDefinition(D);
13855 }
13856 
13857 static bool
13858 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
13859                                 const FunctionDecl *&PossiblePrototype) {
13860   // Don't warn about invalid declarations.
13861   if (FD->isInvalidDecl())
13862     return false;
13863 
13864   // Or declarations that aren't global.
13865   if (!FD->isGlobal())
13866     return false;
13867 
13868   // Don't warn about C++ member functions.
13869   if (isa<CXXMethodDecl>(FD))
13870     return false;
13871 
13872   // Don't warn about 'main'.
13873   if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
13874     if (IdentifierInfo *II = FD->getIdentifier())
13875       if (II->isStr("main"))
13876         return false;
13877 
13878   // Don't warn about inline functions.
13879   if (FD->isInlined())
13880     return false;
13881 
13882   // Don't warn about function templates.
13883   if (FD->getDescribedFunctionTemplate())
13884     return false;
13885 
13886   // Don't warn about function template specializations.
13887   if (FD->isFunctionTemplateSpecialization())
13888     return false;
13889 
13890   // Don't warn for OpenCL kernels.
13891   if (FD->hasAttr<OpenCLKernelAttr>())
13892     return false;
13893 
13894   // Don't warn on explicitly deleted functions.
13895   if (FD->isDeleted())
13896     return false;
13897 
13898   for (const FunctionDecl *Prev = FD->getPreviousDecl();
13899        Prev; Prev = Prev->getPreviousDecl()) {
13900     // Ignore any declarations that occur in function or method
13901     // scope, because they aren't visible from the header.
13902     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
13903       continue;
13904 
13905     PossiblePrototype = Prev;
13906     return Prev->getType()->isFunctionNoProtoType();
13907   }
13908 
13909   return true;
13910 }
13911 
13912 void
13913 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
13914                                    const FunctionDecl *EffectiveDefinition,
13915                                    SkipBodyInfo *SkipBody) {
13916   const FunctionDecl *Definition = EffectiveDefinition;
13917   if (!Definition &&
13918       !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true))
13919     return;
13920 
13921   if (Definition->getFriendObjectKind() != Decl::FOK_None) {
13922     if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) {
13923       if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
13924         // A merged copy of the same function, instantiated as a member of
13925         // the same class, is OK.
13926         if (declaresSameEntity(OrigFD, OrigDef) &&
13927             declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()),
13928                                cast<Decl>(FD->getLexicalDeclContext())))
13929           return;
13930       }
13931     }
13932   }
13933 
13934   if (canRedefineFunction(Definition, getLangOpts()))
13935     return;
13936 
13937   // Don't emit an error when this is redefinition of a typo-corrected
13938   // definition.
13939   if (TypoCorrectedFunctionDefinitions.count(Definition))
13940     return;
13941 
13942   // If we don't have a visible definition of the function, and it's inline or
13943   // a template, skip the new definition.
13944   if (SkipBody && !hasVisibleDefinition(Definition) &&
13945       (Definition->getFormalLinkage() == InternalLinkage ||
13946        Definition->isInlined() ||
13947        Definition->getDescribedFunctionTemplate() ||
13948        Definition->getNumTemplateParameterLists())) {
13949     SkipBody->ShouldSkip = true;
13950     SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
13951     if (auto *TD = Definition->getDescribedFunctionTemplate())
13952       makeMergedDefinitionVisible(TD);
13953     makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
13954     return;
13955   }
13956 
13957   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
13958       Definition->getStorageClass() == SC_Extern)
13959     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
13960         << FD << getLangOpts().CPlusPlus;
13961   else
13962     Diag(FD->getLocation(), diag::err_redefinition) << FD;
13963 
13964   Diag(Definition->getLocation(), diag::note_previous_definition);
13965   FD->setInvalidDecl();
13966 }
13967 
13968 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
13969                                    Sema &S) {
13970   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
13971 
13972   LambdaScopeInfo *LSI = S.PushLambdaScope();
13973   LSI->CallOperator = CallOperator;
13974   LSI->Lambda = LambdaClass;
13975   LSI->ReturnType = CallOperator->getReturnType();
13976   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
13977 
13978   if (LCD == LCD_None)
13979     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
13980   else if (LCD == LCD_ByCopy)
13981     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
13982   else if (LCD == LCD_ByRef)
13983     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
13984   DeclarationNameInfo DNI = CallOperator->getNameInfo();
13985 
13986   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
13987   LSI->Mutable = !CallOperator->isConst();
13988 
13989   // Add the captures to the LSI so they can be noted as already
13990   // captured within tryCaptureVar.
13991   auto I = LambdaClass->field_begin();
13992   for (const auto &C : LambdaClass->captures()) {
13993     if (C.capturesVariable()) {
13994       VarDecl *VD = C.getCapturedVar();
13995       if (VD->isInitCapture())
13996         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
13997       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
13998       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
13999           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
14000           /*EllipsisLoc*/C.isPackExpansion()
14001                          ? C.getEllipsisLoc() : SourceLocation(),
14002           I->getType(), /*Invalid*/false);
14003 
14004     } else if (C.capturesThis()) {
14005       LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
14006                           C.getCaptureKind() == LCK_StarThis);
14007     } else {
14008       LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
14009                              I->getType());
14010     }
14011     ++I;
14012   }
14013 }
14014 
14015 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
14016                                     SkipBodyInfo *SkipBody) {
14017   if (!D) {
14018     // Parsing the function declaration failed in some way. Push on a fake scope
14019     // anyway so we can try to parse the function body.
14020     PushFunctionScope();
14021     PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
14022     return D;
14023   }
14024 
14025   FunctionDecl *FD = nullptr;
14026 
14027   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
14028     FD = FunTmpl->getTemplatedDecl();
14029   else
14030     FD = cast<FunctionDecl>(D);
14031 
14032   // Do not push if it is a lambda because one is already pushed when building
14033   // the lambda in ActOnStartOfLambdaDefinition().
14034   if (!isLambdaCallOperator(FD))
14035     PushExpressionEvaluationContext(
14036         FD->isConsteval() ? ExpressionEvaluationContext::ConstantEvaluated
14037                           : ExprEvalContexts.back().Context);
14038 
14039   // Check for defining attributes before the check for redefinition.
14040   if (const auto *Attr = FD->getAttr<AliasAttr>()) {
14041     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
14042     FD->dropAttr<AliasAttr>();
14043     FD->setInvalidDecl();
14044   }
14045   if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
14046     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
14047     FD->dropAttr<IFuncAttr>();
14048     FD->setInvalidDecl();
14049   }
14050 
14051   if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
14052     if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
14053         Ctor->isDefaultConstructor() &&
14054         Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14055       // If this is an MS ABI dllexport default constructor, instantiate any
14056       // default arguments.
14057       InstantiateDefaultCtorDefaultArgs(Ctor);
14058     }
14059   }
14060 
14061   // See if this is a redefinition. If 'will have body' (or similar) is already
14062   // set, then these checks were already performed when it was set.
14063   if (!FD->willHaveBody() && !FD->isLateTemplateParsed() &&
14064       !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
14065     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
14066 
14067     // If we're skipping the body, we're done. Don't enter the scope.
14068     if (SkipBody && SkipBody->ShouldSkip)
14069       return D;
14070   }
14071 
14072   // Mark this function as "will have a body eventually".  This lets users to
14073   // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
14074   // this function.
14075   FD->setWillHaveBody();
14076 
14077   // If we are instantiating a generic lambda call operator, push
14078   // a LambdaScopeInfo onto the function stack.  But use the information
14079   // that's already been calculated (ActOnLambdaExpr) to prime the current
14080   // LambdaScopeInfo.
14081   // When the template operator is being specialized, the LambdaScopeInfo,
14082   // has to be properly restored so that tryCaptureVariable doesn't try
14083   // and capture any new variables. In addition when calculating potential
14084   // captures during transformation of nested lambdas, it is necessary to
14085   // have the LSI properly restored.
14086   if (isGenericLambdaCallOperatorSpecialization(FD)) {
14087     assert(inTemplateInstantiation() &&
14088            "There should be an active template instantiation on the stack "
14089            "when instantiating a generic lambda!");
14090     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
14091   } else {
14092     // Enter a new function scope
14093     PushFunctionScope();
14094   }
14095 
14096   // Builtin functions cannot be defined.
14097   if (unsigned BuiltinID = FD->getBuiltinID()) {
14098     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
14099         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
14100       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
14101       FD->setInvalidDecl();
14102     }
14103   }
14104 
14105   // The return type of a function definition must be complete
14106   // (C99 6.9.1p3, C++ [dcl.fct]p6).
14107   QualType ResultType = FD->getReturnType();
14108   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
14109       !FD->isInvalidDecl() &&
14110       RequireCompleteType(FD->getLocation(), ResultType,
14111                           diag::err_func_def_incomplete_result))
14112     FD->setInvalidDecl();
14113 
14114   if (FnBodyScope)
14115     PushDeclContext(FnBodyScope, FD);
14116 
14117   // Check the validity of our function parameters
14118   CheckParmsForFunctionDef(FD->parameters(),
14119                            /*CheckParameterNames=*/true);
14120 
14121   // Add non-parameter declarations already in the function to the current
14122   // scope.
14123   if (FnBodyScope) {
14124     for (Decl *NPD : FD->decls()) {
14125       auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
14126       if (!NonParmDecl)
14127         continue;
14128       assert(!isa<ParmVarDecl>(NonParmDecl) &&
14129              "parameters should not be in newly created FD yet");
14130 
14131       // If the decl has a name, make it accessible in the current scope.
14132       if (NonParmDecl->getDeclName())
14133         PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
14134 
14135       // Similarly, dive into enums and fish their constants out, making them
14136       // accessible in this scope.
14137       if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
14138         for (auto *EI : ED->enumerators())
14139           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
14140       }
14141     }
14142   }
14143 
14144   // Introduce our parameters into the function scope
14145   for (auto Param : FD->parameters()) {
14146     Param->setOwningFunction(FD);
14147 
14148     // If this has an identifier, add it to the scope stack.
14149     if (Param->getIdentifier() && FnBodyScope) {
14150       CheckShadow(FnBodyScope, Param);
14151 
14152       PushOnScopeChains(Param, FnBodyScope);
14153     }
14154   }
14155 
14156   // Ensure that the function's exception specification is instantiated.
14157   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
14158     ResolveExceptionSpec(D->getLocation(), FPT);
14159 
14160   // dllimport cannot be applied to non-inline function definitions.
14161   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
14162       !FD->isTemplateInstantiation()) {
14163     assert(!FD->hasAttr<DLLExportAttr>());
14164     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
14165     FD->setInvalidDecl();
14166     return D;
14167   }
14168   // We want to attach documentation to original Decl (which might be
14169   // a function template).
14170   ActOnDocumentableDecl(D);
14171   if (getCurLexicalContext()->isObjCContainer() &&
14172       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
14173       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
14174     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
14175 
14176   return D;
14177 }
14178 
14179 /// Given the set of return statements within a function body,
14180 /// compute the variables that are subject to the named return value
14181 /// optimization.
14182 ///
14183 /// Each of the variables that is subject to the named return value
14184 /// optimization will be marked as NRVO variables in the AST, and any
14185 /// return statement that has a marked NRVO variable as its NRVO candidate can
14186 /// use the named return value optimization.
14187 ///
14188 /// This function applies a very simplistic algorithm for NRVO: if every return
14189 /// statement in the scope of a variable has the same NRVO candidate, that
14190 /// candidate is an NRVO variable.
14191 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
14192   ReturnStmt **Returns = Scope->Returns.data();
14193 
14194   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
14195     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
14196       if (!NRVOCandidate->isNRVOVariable())
14197         Returns[I]->setNRVOCandidate(nullptr);
14198     }
14199   }
14200 }
14201 
14202 bool Sema::canDelayFunctionBody(const Declarator &D) {
14203   // We can't delay parsing the body of a constexpr function template (yet).
14204   if (D.getDeclSpec().hasConstexprSpecifier())
14205     return false;
14206 
14207   // We can't delay parsing the body of a function template with a deduced
14208   // return type (yet).
14209   if (D.getDeclSpec().hasAutoTypeSpec()) {
14210     // If the placeholder introduces a non-deduced trailing return type,
14211     // we can still delay parsing it.
14212     if (D.getNumTypeObjects()) {
14213       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
14214       if (Outer.Kind == DeclaratorChunk::Function &&
14215           Outer.Fun.hasTrailingReturnType()) {
14216         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
14217         return Ty.isNull() || !Ty->isUndeducedType();
14218       }
14219     }
14220     return false;
14221   }
14222 
14223   return true;
14224 }
14225 
14226 bool Sema::canSkipFunctionBody(Decl *D) {
14227   // We cannot skip the body of a function (or function template) which is
14228   // constexpr, since we may need to evaluate its body in order to parse the
14229   // rest of the file.
14230   // We cannot skip the body of a function with an undeduced return type,
14231   // because any callers of that function need to know the type.
14232   if (const FunctionDecl *FD = D->getAsFunction()) {
14233     if (FD->isConstexpr())
14234       return false;
14235     // We can't simply call Type::isUndeducedType here, because inside template
14236     // auto can be deduced to a dependent type, which is not considered
14237     // "undeduced".
14238     if (FD->getReturnType()->getContainedDeducedType())
14239       return false;
14240   }
14241   return Consumer.shouldSkipFunctionBody(D);
14242 }
14243 
14244 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
14245   if (!Decl)
14246     return nullptr;
14247   if (FunctionDecl *FD = Decl->getAsFunction())
14248     FD->setHasSkippedBody();
14249   else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
14250     MD->setHasSkippedBody();
14251   return Decl;
14252 }
14253 
14254 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
14255   return ActOnFinishFunctionBody(D, BodyArg, false);
14256 }
14257 
14258 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
14259 /// body.
14260 class ExitFunctionBodyRAII {
14261 public:
14262   ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
14263   ~ExitFunctionBodyRAII() {
14264     if (!IsLambda)
14265       S.PopExpressionEvaluationContext();
14266   }
14267 
14268 private:
14269   Sema &S;
14270   bool IsLambda = false;
14271 };
14272 
14273 static void diagnoseImplicitlyRetainedSelf(Sema &S) {
14274   llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
14275 
14276   auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
14277     if (EscapeInfo.count(BD))
14278       return EscapeInfo[BD];
14279 
14280     bool R = false;
14281     const BlockDecl *CurBD = BD;
14282 
14283     do {
14284       R = !CurBD->doesNotEscape();
14285       if (R)
14286         break;
14287       CurBD = CurBD->getParent()->getInnermostBlockDecl();
14288     } while (CurBD);
14289 
14290     return EscapeInfo[BD] = R;
14291   };
14292 
14293   // If the location where 'self' is implicitly retained is inside a escaping
14294   // block, emit a diagnostic.
14295   for (const std::pair<SourceLocation, const BlockDecl *> &P :
14296        S.ImplicitlyRetainedSelfLocs)
14297     if (IsOrNestedInEscapingBlock(P.second))
14298       S.Diag(P.first, diag::warn_implicitly_retains_self)
14299           << FixItHint::CreateInsertion(P.first, "self->");
14300 }
14301 
14302 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
14303                                     bool IsInstantiation) {
14304   FunctionScopeInfo *FSI = getCurFunction();
14305   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
14306 
14307   if (FSI->UsesFPIntrin && !FD->hasAttr<StrictFPAttr>())
14308     FD->addAttr(StrictFPAttr::CreateImplicit(Context));
14309 
14310   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
14311   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
14312 
14313   if (getLangOpts().Coroutines && FSI->isCoroutine())
14314     CheckCompletedCoroutineBody(FD, Body);
14315 
14316   // Do not call PopExpressionEvaluationContext() if it is a lambda because one
14317   // is already popped when finishing the lambda in BuildLambdaExpr(). This is
14318   // meant to pop the context added in ActOnStartOfFunctionDef().
14319   ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
14320 
14321   if (FD) {
14322     FD->setBody(Body);
14323     FD->setWillHaveBody(false);
14324 
14325     if (getLangOpts().CPlusPlus14) {
14326       if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
14327           FD->getReturnType()->isUndeducedType()) {
14328         // If the function has a deduced result type but contains no 'return'
14329         // statements, the result type as written must be exactly 'auto', and
14330         // the deduced result type is 'void'.
14331         if (!FD->getReturnType()->getAs<AutoType>()) {
14332           Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
14333               << FD->getReturnType();
14334           FD->setInvalidDecl();
14335         } else {
14336           // Substitute 'void' for the 'auto' in the type.
14337           TypeLoc ResultType = getReturnTypeLoc(FD);
14338           Context.adjustDeducedFunctionResultType(
14339               FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
14340         }
14341       }
14342     } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
14343       // In C++11, we don't use 'auto' deduction rules for lambda call
14344       // operators because we don't support return type deduction.
14345       auto *LSI = getCurLambda();
14346       if (LSI->HasImplicitReturnType) {
14347         deduceClosureReturnType(*LSI);
14348 
14349         // C++11 [expr.prim.lambda]p4:
14350         //   [...] if there are no return statements in the compound-statement
14351         //   [the deduced type is] the type void
14352         QualType RetType =
14353             LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
14354 
14355         // Update the return type to the deduced type.
14356         const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
14357         FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
14358                                             Proto->getExtProtoInfo()));
14359       }
14360     }
14361 
14362     // If the function implicitly returns zero (like 'main') or is naked,
14363     // don't complain about missing return statements.
14364     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
14365       WP.disableCheckFallThrough();
14366 
14367     // MSVC permits the use of pure specifier (=0) on function definition,
14368     // defined at class scope, warn about this non-standard construct.
14369     if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
14370       Diag(FD->getLocation(), diag::ext_pure_function_definition);
14371 
14372     if (!FD->isInvalidDecl()) {
14373       // Don't diagnose unused parameters of defaulted or deleted functions.
14374       if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
14375         DiagnoseUnusedParameters(FD->parameters());
14376       DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
14377                                              FD->getReturnType(), FD);
14378 
14379       // If this is a structor, we need a vtable.
14380       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
14381         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
14382       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
14383         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
14384 
14385       // Try to apply the named return value optimization. We have to check
14386       // if we can do this here because lambdas keep return statements around
14387       // to deduce an implicit return type.
14388       if (FD->getReturnType()->isRecordType() &&
14389           (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
14390         computeNRVO(Body, FSI);
14391     }
14392 
14393     // GNU warning -Wmissing-prototypes:
14394     //   Warn if a global function is defined without a previous
14395     //   prototype declaration. This warning is issued even if the
14396     //   definition itself provides a prototype. The aim is to detect
14397     //   global functions that fail to be declared in header files.
14398     const FunctionDecl *PossiblePrototype = nullptr;
14399     if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
14400       Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
14401 
14402       if (PossiblePrototype) {
14403         // We found a declaration that is not a prototype,
14404         // but that could be a zero-parameter prototype
14405         if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
14406           TypeLoc TL = TI->getTypeLoc();
14407           if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
14408             Diag(PossiblePrototype->getLocation(),
14409                  diag::note_declaration_not_a_prototype)
14410                 << (FD->getNumParams() != 0)
14411                 << (FD->getNumParams() == 0
14412                         ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void")
14413                         : FixItHint{});
14414         }
14415       } else {
14416         // Returns true if the token beginning at this Loc is `const`.
14417         auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM,
14418                                 const LangOptions &LangOpts) {
14419           std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
14420           if (LocInfo.first.isInvalid())
14421             return false;
14422 
14423           bool Invalid = false;
14424           StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
14425           if (Invalid)
14426             return false;
14427 
14428           if (LocInfo.second > Buffer.size())
14429             return false;
14430 
14431           const char *LexStart = Buffer.data() + LocInfo.second;
14432           StringRef StartTok(LexStart, Buffer.size() - LocInfo.second);
14433 
14434           return StartTok.consume_front("const") &&
14435                  (StartTok.empty() || isWhitespace(StartTok[0]) ||
14436                   StartTok.startswith("/*") || StartTok.startswith("//"));
14437         };
14438 
14439         auto findBeginLoc = [&]() {
14440           // If the return type has `const` qualifier, we want to insert
14441           // `static` before `const` (and not before the typename).
14442           if ((FD->getReturnType()->isAnyPointerType() &&
14443                FD->getReturnType()->getPointeeType().isConstQualified()) ||
14444               FD->getReturnType().isConstQualified()) {
14445             // But only do this if we can determine where the `const` is.
14446 
14447             if (isLocAtConst(FD->getBeginLoc(), getSourceManager(),
14448                              getLangOpts()))
14449 
14450               return FD->getBeginLoc();
14451           }
14452           return FD->getTypeSpecStartLoc();
14453         };
14454         Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
14455             << /* function */ 1
14456             << (FD->getStorageClass() == SC_None
14457                     ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
14458                     : FixItHint{});
14459       }
14460 
14461       // GNU warning -Wstrict-prototypes
14462       //   Warn if K&R function is defined without a previous declaration.
14463       //   This warning is issued only if the definition itself does not provide
14464       //   a prototype. Only K&R definitions do not provide a prototype.
14465       if (!FD->hasWrittenPrototype()) {
14466         TypeSourceInfo *TI = FD->getTypeSourceInfo();
14467         TypeLoc TL = TI->getTypeLoc();
14468         FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
14469         Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
14470       }
14471     }
14472 
14473     // Warn on CPUDispatch with an actual body.
14474     if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
14475       if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
14476         if (!CmpndBody->body_empty())
14477           Diag(CmpndBody->body_front()->getBeginLoc(),
14478                diag::warn_dispatch_body_ignored);
14479 
14480     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
14481       const CXXMethodDecl *KeyFunction;
14482       if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
14483           MD->isVirtual() &&
14484           (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
14485           MD == KeyFunction->getCanonicalDecl()) {
14486         // Update the key-function state if necessary for this ABI.
14487         if (FD->isInlined() &&
14488             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
14489           Context.setNonKeyFunction(MD);
14490 
14491           // If the newly-chosen key function is already defined, then we
14492           // need to mark the vtable as used retroactively.
14493           KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
14494           const FunctionDecl *Definition;
14495           if (KeyFunction && KeyFunction->isDefined(Definition))
14496             MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
14497         } else {
14498           // We just defined they key function; mark the vtable as used.
14499           MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
14500         }
14501       }
14502     }
14503 
14504     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
14505            "Function parsing confused");
14506   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
14507     assert(MD == getCurMethodDecl() && "Method parsing confused");
14508     MD->setBody(Body);
14509     if (!MD->isInvalidDecl()) {
14510       DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
14511                                              MD->getReturnType(), MD);
14512 
14513       if (Body)
14514         computeNRVO(Body, FSI);
14515     }
14516     if (FSI->ObjCShouldCallSuper) {
14517       Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
14518           << MD->getSelector().getAsString();
14519       FSI->ObjCShouldCallSuper = false;
14520     }
14521     if (FSI->ObjCWarnForNoDesignatedInitChain) {
14522       const ObjCMethodDecl *InitMethod = nullptr;
14523       bool isDesignated =
14524           MD->isDesignatedInitializerForTheInterface(&InitMethod);
14525       assert(isDesignated && InitMethod);
14526       (void)isDesignated;
14527 
14528       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
14529         auto IFace = MD->getClassInterface();
14530         if (!IFace)
14531           return false;
14532         auto SuperD = IFace->getSuperClass();
14533         if (!SuperD)
14534           return false;
14535         return SuperD->getIdentifier() ==
14536             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
14537       };
14538       // Don't issue this warning for unavailable inits or direct subclasses
14539       // of NSObject.
14540       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
14541         Diag(MD->getLocation(),
14542              diag::warn_objc_designated_init_missing_super_call);
14543         Diag(InitMethod->getLocation(),
14544              diag::note_objc_designated_init_marked_here);
14545       }
14546       FSI->ObjCWarnForNoDesignatedInitChain = false;
14547     }
14548     if (FSI->ObjCWarnForNoInitDelegation) {
14549       // Don't issue this warning for unavaialable inits.
14550       if (!MD->isUnavailable())
14551         Diag(MD->getLocation(),
14552              diag::warn_objc_secondary_init_missing_init_call);
14553       FSI->ObjCWarnForNoInitDelegation = false;
14554     }
14555 
14556     diagnoseImplicitlyRetainedSelf(*this);
14557   } else {
14558     // Parsing the function declaration failed in some way. Pop the fake scope
14559     // we pushed on.
14560     PopFunctionScopeInfo(ActivePolicy, dcl);
14561     return nullptr;
14562   }
14563 
14564   if (Body && FSI->HasPotentialAvailabilityViolations)
14565     DiagnoseUnguardedAvailabilityViolations(dcl);
14566 
14567   assert(!FSI->ObjCShouldCallSuper &&
14568          "This should only be set for ObjC methods, which should have been "
14569          "handled in the block above.");
14570 
14571   // Verify and clean out per-function state.
14572   if (Body && (!FD || !FD->isDefaulted())) {
14573     // C++ constructors that have function-try-blocks can't have return
14574     // statements in the handlers of that block. (C++ [except.handle]p14)
14575     // Verify this.
14576     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
14577       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
14578 
14579     // Verify that gotos and switch cases don't jump into scopes illegally.
14580     if (FSI->NeedsScopeChecking() &&
14581         !PP.isCodeCompletionEnabled())
14582       DiagnoseInvalidJumps(Body);
14583 
14584     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
14585       if (!Destructor->getParent()->isDependentType())
14586         CheckDestructor(Destructor);
14587 
14588       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
14589                                              Destructor->getParent());
14590     }
14591 
14592     // If any errors have occurred, clear out any temporaries that may have
14593     // been leftover. This ensures that these temporaries won't be picked up for
14594     // deletion in some later function.
14595     if (hasUncompilableErrorOccurred() ||
14596         getDiagnostics().getSuppressAllDiagnostics()) {
14597       DiscardCleanupsInEvaluationContext();
14598     }
14599     if (!hasUncompilableErrorOccurred() &&
14600         !isa<FunctionTemplateDecl>(dcl)) {
14601       // Since the body is valid, issue any analysis-based warnings that are
14602       // enabled.
14603       ActivePolicy = &WP;
14604     }
14605 
14606     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
14607         !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
14608       FD->setInvalidDecl();
14609 
14610     if (FD && FD->hasAttr<NakedAttr>()) {
14611       for (const Stmt *S : Body->children()) {
14612         // Allow local register variables without initializer as they don't
14613         // require prologue.
14614         bool RegisterVariables = false;
14615         if (auto *DS = dyn_cast<DeclStmt>(S)) {
14616           for (const auto *Decl : DS->decls()) {
14617             if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
14618               RegisterVariables =
14619                   Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
14620               if (!RegisterVariables)
14621                 break;
14622             }
14623           }
14624         }
14625         if (RegisterVariables)
14626           continue;
14627         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
14628           Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
14629           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
14630           FD->setInvalidDecl();
14631           break;
14632         }
14633       }
14634     }
14635 
14636     assert(ExprCleanupObjects.size() ==
14637                ExprEvalContexts.back().NumCleanupObjects &&
14638            "Leftover temporaries in function");
14639     assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
14640     assert(MaybeODRUseExprs.empty() &&
14641            "Leftover expressions for odr-use checking");
14642   }
14643 
14644   if (!IsInstantiation)
14645     PopDeclContext();
14646 
14647   PopFunctionScopeInfo(ActivePolicy, dcl);
14648   // If any errors have occurred, clear out any temporaries that may have
14649   // been leftover. This ensures that these temporaries won't be picked up for
14650   // deletion in some later function.
14651   if (hasUncompilableErrorOccurred()) {
14652     DiscardCleanupsInEvaluationContext();
14653   }
14654 
14655   if (FD && (LangOpts.OpenMP || LangOpts.CUDA || LangOpts.SYCLIsDevice)) {
14656     auto ES = getEmissionStatus(FD);
14657     if (ES == Sema::FunctionEmissionStatus::Emitted ||
14658         ES == Sema::FunctionEmissionStatus::Unknown)
14659       DeclsToCheckForDeferredDiags.push_back(FD);
14660   }
14661 
14662   return dcl;
14663 }
14664 
14665 /// When we finish delayed parsing of an attribute, we must attach it to the
14666 /// relevant Decl.
14667 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
14668                                        ParsedAttributes &Attrs) {
14669   // Always attach attributes to the underlying decl.
14670   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
14671     D = TD->getTemplatedDecl();
14672   ProcessDeclAttributeList(S, D, Attrs);
14673 
14674   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
14675     if (Method->isStatic())
14676       checkThisInStaticMemberFunctionAttributes(Method);
14677 }
14678 
14679 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
14680 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
14681 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
14682                                           IdentifierInfo &II, Scope *S) {
14683   // Find the scope in which the identifier is injected and the corresponding
14684   // DeclContext.
14685   // FIXME: C89 does not say what happens if there is no enclosing block scope.
14686   // In that case, we inject the declaration into the translation unit scope
14687   // instead.
14688   Scope *BlockScope = S;
14689   while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
14690     BlockScope = BlockScope->getParent();
14691 
14692   Scope *ContextScope = BlockScope;
14693   while (!ContextScope->getEntity())
14694     ContextScope = ContextScope->getParent();
14695   ContextRAII SavedContext(*this, ContextScope->getEntity());
14696 
14697   // Before we produce a declaration for an implicitly defined
14698   // function, see whether there was a locally-scoped declaration of
14699   // this name as a function or variable. If so, use that
14700   // (non-visible) declaration, and complain about it.
14701   NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
14702   if (ExternCPrev) {
14703     // We still need to inject the function into the enclosing block scope so
14704     // that later (non-call) uses can see it.
14705     PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
14706 
14707     // C89 footnote 38:
14708     //   If in fact it is not defined as having type "function returning int",
14709     //   the behavior is undefined.
14710     if (!isa<FunctionDecl>(ExternCPrev) ||
14711         !Context.typesAreCompatible(
14712             cast<FunctionDecl>(ExternCPrev)->getType(),
14713             Context.getFunctionNoProtoType(Context.IntTy))) {
14714       Diag(Loc, diag::ext_use_out_of_scope_declaration)
14715           << ExternCPrev << !getLangOpts().C99;
14716       Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
14717       return ExternCPrev;
14718     }
14719   }
14720 
14721   // Extension in C99.  Legal in C90, but warn about it.
14722   unsigned diag_id;
14723   if (II.getName().startswith("__builtin_"))
14724     diag_id = diag::warn_builtin_unknown;
14725   // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
14726   else if (getLangOpts().OpenCL)
14727     diag_id = diag::err_opencl_implicit_function_decl;
14728   else if (getLangOpts().C99)
14729     diag_id = diag::ext_implicit_function_decl;
14730   else
14731     diag_id = diag::warn_implicit_function_decl;
14732   Diag(Loc, diag_id) << &II;
14733 
14734   // If we found a prior declaration of this function, don't bother building
14735   // another one. We've already pushed that one into scope, so there's nothing
14736   // more to do.
14737   if (ExternCPrev)
14738     return ExternCPrev;
14739 
14740   // Because typo correction is expensive, only do it if the implicit
14741   // function declaration is going to be treated as an error.
14742   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
14743     TypoCorrection Corrected;
14744     DeclFilterCCC<FunctionDecl> CCC{};
14745     if (S && (Corrected =
14746                   CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
14747                               S, nullptr, CCC, CTK_NonError)))
14748       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
14749                    /*ErrorRecovery*/false);
14750   }
14751 
14752   // Set a Declarator for the implicit definition: int foo();
14753   const char *Dummy;
14754   AttributeFactory attrFactory;
14755   DeclSpec DS(attrFactory);
14756   unsigned DiagID;
14757   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
14758                                   Context.getPrintingPolicy());
14759   (void)Error; // Silence warning.
14760   assert(!Error && "Error setting up implicit decl!");
14761   SourceLocation NoLoc;
14762   Declarator D(DS, DeclaratorContext::Block);
14763   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
14764                                              /*IsAmbiguous=*/false,
14765                                              /*LParenLoc=*/NoLoc,
14766                                              /*Params=*/nullptr,
14767                                              /*NumParams=*/0,
14768                                              /*EllipsisLoc=*/NoLoc,
14769                                              /*RParenLoc=*/NoLoc,
14770                                              /*RefQualifierIsLvalueRef=*/true,
14771                                              /*RefQualifierLoc=*/NoLoc,
14772                                              /*MutableLoc=*/NoLoc, EST_None,
14773                                              /*ESpecRange=*/SourceRange(),
14774                                              /*Exceptions=*/nullptr,
14775                                              /*ExceptionRanges=*/nullptr,
14776                                              /*NumExceptions=*/0,
14777                                              /*NoexceptExpr=*/nullptr,
14778                                              /*ExceptionSpecTokens=*/nullptr,
14779                                              /*DeclsInPrototype=*/None, Loc,
14780                                              Loc, D),
14781                 std::move(DS.getAttributes()), SourceLocation());
14782   D.SetIdentifier(&II, Loc);
14783 
14784   // Insert this function into the enclosing block scope.
14785   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
14786   FD->setImplicit();
14787 
14788   AddKnownFunctionAttributes(FD);
14789 
14790   return FD;
14791 }
14792 
14793 /// If this function is a C++ replaceable global allocation function
14794 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
14795 /// adds any function attributes that we know a priori based on the standard.
14796 ///
14797 /// We need to check for duplicate attributes both here and where user-written
14798 /// attributes are applied to declarations.
14799 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
14800     FunctionDecl *FD) {
14801   if (FD->isInvalidDecl())
14802     return;
14803 
14804   if (FD->getDeclName().getCXXOverloadedOperator() != OO_New &&
14805       FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New)
14806     return;
14807 
14808   Optional<unsigned> AlignmentParam;
14809   bool IsNothrow = false;
14810   if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow))
14811     return;
14812 
14813   // C++2a [basic.stc.dynamic.allocation]p4:
14814   //   An allocation function that has a non-throwing exception specification
14815   //   indicates failure by returning a null pointer value. Any other allocation
14816   //   function never returns a null pointer value and indicates failure only by
14817   //   throwing an exception [...]
14818   if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>())
14819     FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation()));
14820 
14821   // C++2a [basic.stc.dynamic.allocation]p2:
14822   //   An allocation function attempts to allocate the requested amount of
14823   //   storage. [...] If the request succeeds, the value returned by a
14824   //   replaceable allocation function is a [...] pointer value p0 different
14825   //   from any previously returned value p1 [...]
14826   //
14827   // However, this particular information is being added in codegen,
14828   // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
14829 
14830   // C++2a [basic.stc.dynamic.allocation]p2:
14831   //   An allocation function attempts to allocate the requested amount of
14832   //   storage. If it is successful, it returns the address of the start of a
14833   //   block of storage whose length in bytes is at least as large as the
14834   //   requested size.
14835   if (!FD->hasAttr<AllocSizeAttr>()) {
14836     FD->addAttr(AllocSizeAttr::CreateImplicit(
14837         Context, /*ElemSizeParam=*/ParamIdx(1, FD),
14838         /*NumElemsParam=*/ParamIdx(), FD->getLocation()));
14839   }
14840 
14841   // C++2a [basic.stc.dynamic.allocation]p3:
14842   //   For an allocation function [...], the pointer returned on a successful
14843   //   call shall represent the address of storage that is aligned as follows:
14844   //   (3.1) If the allocation function takes an argument of type
14845   //         std​::​align_­val_­t, the storage will have the alignment
14846   //         specified by the value of this argument.
14847   if (AlignmentParam.hasValue() && !FD->hasAttr<AllocAlignAttr>()) {
14848     FD->addAttr(AllocAlignAttr::CreateImplicit(
14849         Context, ParamIdx(AlignmentParam.getValue(), FD), FD->getLocation()));
14850   }
14851 
14852   // FIXME:
14853   // C++2a [basic.stc.dynamic.allocation]p3:
14854   //   For an allocation function [...], the pointer returned on a successful
14855   //   call shall represent the address of storage that is aligned as follows:
14856   //   (3.2) Otherwise, if the allocation function is named operator new[],
14857   //         the storage is aligned for any object that does not have
14858   //         new-extended alignment ([basic.align]) and is no larger than the
14859   //         requested size.
14860   //   (3.3) Otherwise, the storage is aligned for any object that does not
14861   //         have new-extended alignment and is of the requested size.
14862 }
14863 
14864 /// Adds any function attributes that we know a priori based on
14865 /// the declaration of this function.
14866 ///
14867 /// These attributes can apply both to implicitly-declared builtins
14868 /// (like __builtin___printf_chk) or to library-declared functions
14869 /// like NSLog or printf.
14870 ///
14871 /// We need to check for duplicate attributes both here and where user-written
14872 /// attributes are applied to declarations.
14873 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
14874   if (FD->isInvalidDecl())
14875     return;
14876 
14877   // If this is a built-in function, map its builtin attributes to
14878   // actual attributes.
14879   if (unsigned BuiltinID = FD->getBuiltinID()) {
14880     // Handle printf-formatting attributes.
14881     unsigned FormatIdx;
14882     bool HasVAListArg;
14883     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
14884       if (!FD->hasAttr<FormatAttr>()) {
14885         const char *fmt = "printf";
14886         unsigned int NumParams = FD->getNumParams();
14887         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
14888             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
14889           fmt = "NSString";
14890         FD->addAttr(FormatAttr::CreateImplicit(Context,
14891                                                &Context.Idents.get(fmt),
14892                                                FormatIdx+1,
14893                                                HasVAListArg ? 0 : FormatIdx+2,
14894                                                FD->getLocation()));
14895       }
14896     }
14897     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
14898                                              HasVAListArg)) {
14899      if (!FD->hasAttr<FormatAttr>())
14900        FD->addAttr(FormatAttr::CreateImplicit(Context,
14901                                               &Context.Idents.get("scanf"),
14902                                               FormatIdx+1,
14903                                               HasVAListArg ? 0 : FormatIdx+2,
14904                                               FD->getLocation()));
14905     }
14906 
14907     // Handle automatically recognized callbacks.
14908     SmallVector<int, 4> Encoding;
14909     if (!FD->hasAttr<CallbackAttr>() &&
14910         Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
14911       FD->addAttr(CallbackAttr::CreateImplicit(
14912           Context, Encoding.data(), Encoding.size(), FD->getLocation()));
14913 
14914     // Mark const if we don't care about errno and that is the only thing
14915     // preventing the function from being const. This allows IRgen to use LLVM
14916     // intrinsics for such functions.
14917     if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
14918         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
14919       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14920 
14921     // We make "fma" on some platforms const because we know it does not set
14922     // errno in those environments even though it could set errno based on the
14923     // C standard.
14924     const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
14925     if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
14926         !FD->hasAttr<ConstAttr>()) {
14927       switch (BuiltinID) {
14928       case Builtin::BI__builtin_fma:
14929       case Builtin::BI__builtin_fmaf:
14930       case Builtin::BI__builtin_fmal:
14931       case Builtin::BIfma:
14932       case Builtin::BIfmaf:
14933       case Builtin::BIfmal:
14934         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14935         break;
14936       default:
14937         break;
14938       }
14939     }
14940 
14941     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
14942         !FD->hasAttr<ReturnsTwiceAttr>())
14943       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
14944                                          FD->getLocation()));
14945     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
14946       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
14947     if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
14948       FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
14949     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
14950       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14951     if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
14952         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
14953       // Add the appropriate attribute, depending on the CUDA compilation mode
14954       // and which target the builtin belongs to. For example, during host
14955       // compilation, aux builtins are __device__, while the rest are __host__.
14956       if (getLangOpts().CUDAIsDevice !=
14957           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
14958         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
14959       else
14960         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
14961     }
14962   }
14963 
14964   AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD);
14965 
14966   // If C++ exceptions are enabled but we are told extern "C" functions cannot
14967   // throw, add an implicit nothrow attribute to any extern "C" function we come
14968   // across.
14969   if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
14970       FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
14971     const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
14972     if (!FPT || FPT->getExceptionSpecType() == EST_None)
14973       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
14974   }
14975 
14976   IdentifierInfo *Name = FD->getIdentifier();
14977   if (!Name)
14978     return;
14979   if ((!getLangOpts().CPlusPlus &&
14980        FD->getDeclContext()->isTranslationUnit()) ||
14981       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
14982        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
14983        LinkageSpecDecl::lang_c)) {
14984     // Okay: this could be a libc/libm/Objective-C function we know
14985     // about.
14986   } else
14987     return;
14988 
14989   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
14990     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
14991     // target-specific builtins, perhaps?
14992     if (!FD->hasAttr<FormatAttr>())
14993       FD->addAttr(FormatAttr::CreateImplicit(Context,
14994                                              &Context.Idents.get("printf"), 2,
14995                                              Name->isStr("vasprintf") ? 0 : 3,
14996                                              FD->getLocation()));
14997   }
14998 
14999   if (Name->isStr("__CFStringMakeConstantString")) {
15000     // We already have a __builtin___CFStringMakeConstantString,
15001     // but builds that use -fno-constant-cfstrings don't go through that.
15002     if (!FD->hasAttr<FormatArgAttr>())
15003       FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
15004                                                 FD->getLocation()));
15005   }
15006 }
15007 
15008 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
15009                                     TypeSourceInfo *TInfo) {
15010   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
15011   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
15012 
15013   if (!TInfo) {
15014     assert(D.isInvalidType() && "no declarator info for valid type");
15015     TInfo = Context.getTrivialTypeSourceInfo(T);
15016   }
15017 
15018   // Scope manipulation handled by caller.
15019   TypedefDecl *NewTD =
15020       TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
15021                           D.getIdentifierLoc(), D.getIdentifier(), TInfo);
15022 
15023   // Bail out immediately if we have an invalid declaration.
15024   if (D.isInvalidType()) {
15025     NewTD->setInvalidDecl();
15026     return NewTD;
15027   }
15028 
15029   if (D.getDeclSpec().isModulePrivateSpecified()) {
15030     if (CurContext->isFunctionOrMethod())
15031       Diag(NewTD->getLocation(), diag::err_module_private_local)
15032           << 2 << NewTD
15033           << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
15034           << FixItHint::CreateRemoval(
15035                  D.getDeclSpec().getModulePrivateSpecLoc());
15036     else
15037       NewTD->setModulePrivate();
15038   }
15039 
15040   // C++ [dcl.typedef]p8:
15041   //   If the typedef declaration defines an unnamed class (or
15042   //   enum), the first typedef-name declared by the declaration
15043   //   to be that class type (or enum type) is used to denote the
15044   //   class type (or enum type) for linkage purposes only.
15045   // We need to check whether the type was declared in the declaration.
15046   switch (D.getDeclSpec().getTypeSpecType()) {
15047   case TST_enum:
15048   case TST_struct:
15049   case TST_interface:
15050   case TST_union:
15051   case TST_class: {
15052     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
15053     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
15054     break;
15055   }
15056 
15057   default:
15058     break;
15059   }
15060 
15061   return NewTD;
15062 }
15063 
15064 /// Check that this is a valid underlying type for an enum declaration.
15065 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
15066   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
15067   QualType T = TI->getType();
15068 
15069   if (T->isDependentType())
15070     return false;
15071 
15072   // This doesn't use 'isIntegralType' despite the error message mentioning
15073   // integral type because isIntegralType would also allow enum types in C.
15074   if (const BuiltinType *BT = T->getAs<BuiltinType>())
15075     if (BT->isInteger())
15076       return false;
15077 
15078   if (T->isExtIntType())
15079     return false;
15080 
15081   return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
15082 }
15083 
15084 /// Check whether this is a valid redeclaration of a previous enumeration.
15085 /// \return true if the redeclaration was invalid.
15086 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
15087                                   QualType EnumUnderlyingTy, bool IsFixed,
15088                                   const EnumDecl *Prev) {
15089   if (IsScoped != Prev->isScoped()) {
15090     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
15091       << Prev->isScoped();
15092     Diag(Prev->getLocation(), diag::note_previous_declaration);
15093     return true;
15094   }
15095 
15096   if (IsFixed && Prev->isFixed()) {
15097     if (!EnumUnderlyingTy->isDependentType() &&
15098         !Prev->getIntegerType()->isDependentType() &&
15099         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
15100                                         Prev->getIntegerType())) {
15101       // TODO: Highlight the underlying type of the redeclaration.
15102       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
15103         << EnumUnderlyingTy << Prev->getIntegerType();
15104       Diag(Prev->getLocation(), diag::note_previous_declaration)
15105           << Prev->getIntegerTypeRange();
15106       return true;
15107     }
15108   } else if (IsFixed != Prev->isFixed()) {
15109     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
15110       << Prev->isFixed();
15111     Diag(Prev->getLocation(), diag::note_previous_declaration);
15112     return true;
15113   }
15114 
15115   return false;
15116 }
15117 
15118 /// Get diagnostic %select index for tag kind for
15119 /// redeclaration diagnostic message.
15120 /// WARNING: Indexes apply to particular diagnostics only!
15121 ///
15122 /// \returns diagnostic %select index.
15123 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
15124   switch (Tag) {
15125   case TTK_Struct: return 0;
15126   case TTK_Interface: return 1;
15127   case TTK_Class:  return 2;
15128   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
15129   }
15130 }
15131 
15132 /// Determine if tag kind is a class-key compatible with
15133 /// class for redeclaration (class, struct, or __interface).
15134 ///
15135 /// \returns true iff the tag kind is compatible.
15136 static bool isClassCompatTagKind(TagTypeKind Tag)
15137 {
15138   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
15139 }
15140 
15141 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
15142                                              TagTypeKind TTK) {
15143   if (isa<TypedefDecl>(PrevDecl))
15144     return NTK_Typedef;
15145   else if (isa<TypeAliasDecl>(PrevDecl))
15146     return NTK_TypeAlias;
15147   else if (isa<ClassTemplateDecl>(PrevDecl))
15148     return NTK_Template;
15149   else if (isa<TypeAliasTemplateDecl>(PrevDecl))
15150     return NTK_TypeAliasTemplate;
15151   else if (isa<TemplateTemplateParmDecl>(PrevDecl))
15152     return NTK_TemplateTemplateArgument;
15153   switch (TTK) {
15154   case TTK_Struct:
15155   case TTK_Interface:
15156   case TTK_Class:
15157     return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
15158   case TTK_Union:
15159     return NTK_NonUnion;
15160   case TTK_Enum:
15161     return NTK_NonEnum;
15162   }
15163   llvm_unreachable("invalid TTK");
15164 }
15165 
15166 /// Determine whether a tag with a given kind is acceptable
15167 /// as a redeclaration of the given tag declaration.
15168 ///
15169 /// \returns true if the new tag kind is acceptable, false otherwise.
15170 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
15171                                         TagTypeKind NewTag, bool isDefinition,
15172                                         SourceLocation NewTagLoc,
15173                                         const IdentifierInfo *Name) {
15174   // C++ [dcl.type.elab]p3:
15175   //   The class-key or enum keyword present in the
15176   //   elaborated-type-specifier shall agree in kind with the
15177   //   declaration to which the name in the elaborated-type-specifier
15178   //   refers. This rule also applies to the form of
15179   //   elaborated-type-specifier that declares a class-name or
15180   //   friend class since it can be construed as referring to the
15181   //   definition of the class. Thus, in any
15182   //   elaborated-type-specifier, the enum keyword shall be used to
15183   //   refer to an enumeration (7.2), the union class-key shall be
15184   //   used to refer to a union (clause 9), and either the class or
15185   //   struct class-key shall be used to refer to a class (clause 9)
15186   //   declared using the class or struct class-key.
15187   TagTypeKind OldTag = Previous->getTagKind();
15188   if (OldTag != NewTag &&
15189       !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
15190     return false;
15191 
15192   // Tags are compatible, but we might still want to warn on mismatched tags.
15193   // Non-class tags can't be mismatched at this point.
15194   if (!isClassCompatTagKind(NewTag))
15195     return true;
15196 
15197   // Declarations for which -Wmismatched-tags is disabled are entirely ignored
15198   // by our warning analysis. We don't want to warn about mismatches with (eg)
15199   // declarations in system headers that are designed to be specialized, but if
15200   // a user asks us to warn, we should warn if their code contains mismatched
15201   // declarations.
15202   auto IsIgnoredLoc = [&](SourceLocation Loc) {
15203     return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
15204                                       Loc);
15205   };
15206   if (IsIgnoredLoc(NewTagLoc))
15207     return true;
15208 
15209   auto IsIgnored = [&](const TagDecl *Tag) {
15210     return IsIgnoredLoc(Tag->getLocation());
15211   };
15212   while (IsIgnored(Previous)) {
15213     Previous = Previous->getPreviousDecl();
15214     if (!Previous)
15215       return true;
15216     OldTag = Previous->getTagKind();
15217   }
15218 
15219   bool isTemplate = false;
15220   if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
15221     isTemplate = Record->getDescribedClassTemplate();
15222 
15223   if (inTemplateInstantiation()) {
15224     if (OldTag != NewTag) {
15225       // In a template instantiation, do not offer fix-its for tag mismatches
15226       // since they usually mess up the template instead of fixing the problem.
15227       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15228         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15229         << getRedeclDiagFromTagKind(OldTag);
15230       // FIXME: Note previous location?
15231     }
15232     return true;
15233   }
15234 
15235   if (isDefinition) {
15236     // On definitions, check all previous tags and issue a fix-it for each
15237     // one that doesn't match the current tag.
15238     if (Previous->getDefinition()) {
15239       // Don't suggest fix-its for redefinitions.
15240       return true;
15241     }
15242 
15243     bool previousMismatch = false;
15244     for (const TagDecl *I : Previous->redecls()) {
15245       if (I->getTagKind() != NewTag) {
15246         // Ignore previous declarations for which the warning was disabled.
15247         if (IsIgnored(I))
15248           continue;
15249 
15250         if (!previousMismatch) {
15251           previousMismatch = true;
15252           Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
15253             << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15254             << getRedeclDiagFromTagKind(I->getTagKind());
15255         }
15256         Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
15257           << getRedeclDiagFromTagKind(NewTag)
15258           << FixItHint::CreateReplacement(I->getInnerLocStart(),
15259                TypeWithKeyword::getTagTypeKindName(NewTag));
15260       }
15261     }
15262     return true;
15263   }
15264 
15265   // Identify the prevailing tag kind: this is the kind of the definition (if
15266   // there is a non-ignored definition), or otherwise the kind of the prior
15267   // (non-ignored) declaration.
15268   const TagDecl *PrevDef = Previous->getDefinition();
15269   if (PrevDef && IsIgnored(PrevDef))
15270     PrevDef = nullptr;
15271   const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
15272   if (Redecl->getTagKind() != NewTag) {
15273     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15274       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15275       << getRedeclDiagFromTagKind(OldTag);
15276     Diag(Redecl->getLocation(), diag::note_previous_use);
15277 
15278     // If there is a previous definition, suggest a fix-it.
15279     if (PrevDef) {
15280       Diag(NewTagLoc, diag::note_struct_class_suggestion)
15281         << getRedeclDiagFromTagKind(Redecl->getTagKind())
15282         << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
15283              TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
15284     }
15285   }
15286 
15287   return true;
15288 }
15289 
15290 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
15291 /// from an outer enclosing namespace or file scope inside a friend declaration.
15292 /// This should provide the commented out code in the following snippet:
15293 ///   namespace N {
15294 ///     struct X;
15295 ///     namespace M {
15296 ///       struct Y { friend struct /*N::*/ X; };
15297 ///     }
15298 ///   }
15299 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
15300                                          SourceLocation NameLoc) {
15301   // While the decl is in a namespace, do repeated lookup of that name and see
15302   // if we get the same namespace back.  If we do not, continue until
15303   // translation unit scope, at which point we have a fully qualified NNS.
15304   SmallVector<IdentifierInfo *, 4> Namespaces;
15305   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15306   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
15307     // This tag should be declared in a namespace, which can only be enclosed by
15308     // other namespaces.  Bail if there's an anonymous namespace in the chain.
15309     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
15310     if (!Namespace || Namespace->isAnonymousNamespace())
15311       return FixItHint();
15312     IdentifierInfo *II = Namespace->getIdentifier();
15313     Namespaces.push_back(II);
15314     NamedDecl *Lookup = SemaRef.LookupSingleName(
15315         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
15316     if (Lookup == Namespace)
15317       break;
15318   }
15319 
15320   // Once we have all the namespaces, reverse them to go outermost first, and
15321   // build an NNS.
15322   SmallString<64> Insertion;
15323   llvm::raw_svector_ostream OS(Insertion);
15324   if (DC->isTranslationUnit())
15325     OS << "::";
15326   std::reverse(Namespaces.begin(), Namespaces.end());
15327   for (auto *II : Namespaces)
15328     OS << II->getName() << "::";
15329   return FixItHint::CreateInsertion(NameLoc, Insertion);
15330 }
15331 
15332 /// Determine whether a tag originally declared in context \p OldDC can
15333 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
15334 /// found a declaration in \p OldDC as a previous decl, perhaps through a
15335 /// using-declaration).
15336 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
15337                                          DeclContext *NewDC) {
15338   OldDC = OldDC->getRedeclContext();
15339   NewDC = NewDC->getRedeclContext();
15340 
15341   if (OldDC->Equals(NewDC))
15342     return true;
15343 
15344   // In MSVC mode, we allow a redeclaration if the contexts are related (either
15345   // encloses the other).
15346   if (S.getLangOpts().MSVCCompat &&
15347       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
15348     return true;
15349 
15350   return false;
15351 }
15352 
15353 /// This is invoked when we see 'struct foo' or 'struct {'.  In the
15354 /// former case, Name will be non-null.  In the later case, Name will be null.
15355 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
15356 /// reference/declaration/definition of a tag.
15357 ///
15358 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
15359 /// trailing-type-specifier) other than one in an alias-declaration.
15360 ///
15361 /// \param SkipBody If non-null, will be set to indicate if the caller should
15362 /// skip the definition of this tag and treat it as if it were a declaration.
15363 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
15364                      SourceLocation KWLoc, CXXScopeSpec &SS,
15365                      IdentifierInfo *Name, SourceLocation NameLoc,
15366                      const ParsedAttributesView &Attrs, AccessSpecifier AS,
15367                      SourceLocation ModulePrivateLoc,
15368                      MultiTemplateParamsArg TemplateParameterLists,
15369                      bool &OwnedDecl, bool &IsDependent,
15370                      SourceLocation ScopedEnumKWLoc,
15371                      bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
15372                      bool IsTypeSpecifier, bool IsTemplateParamOrArg,
15373                      SkipBodyInfo *SkipBody) {
15374   // If this is not a definition, it must have a name.
15375   IdentifierInfo *OrigName = Name;
15376   assert((Name != nullptr || TUK == TUK_Definition) &&
15377          "Nameless record must be a definition!");
15378   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
15379 
15380   OwnedDecl = false;
15381   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
15382   bool ScopedEnum = ScopedEnumKWLoc.isValid();
15383 
15384   // FIXME: Check member specializations more carefully.
15385   bool isMemberSpecialization = false;
15386   bool Invalid = false;
15387 
15388   // We only need to do this matching if we have template parameters
15389   // or a scope specifier, which also conveniently avoids this work
15390   // for non-C++ cases.
15391   if (TemplateParameterLists.size() > 0 ||
15392       (SS.isNotEmpty() && TUK != TUK_Reference)) {
15393     if (TemplateParameterList *TemplateParams =
15394             MatchTemplateParametersToScopeSpecifier(
15395                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
15396                 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
15397       if (Kind == TTK_Enum) {
15398         Diag(KWLoc, diag::err_enum_template);
15399         return nullptr;
15400       }
15401 
15402       if (TemplateParams->size() > 0) {
15403         // This is a declaration or definition of a class template (which may
15404         // be a member of another template).
15405 
15406         if (Invalid)
15407           return nullptr;
15408 
15409         OwnedDecl = false;
15410         DeclResult Result = CheckClassTemplate(
15411             S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
15412             AS, ModulePrivateLoc,
15413             /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
15414             TemplateParameterLists.data(), SkipBody);
15415         return Result.get();
15416       } else {
15417         // The "template<>" header is extraneous.
15418         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
15419           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
15420         isMemberSpecialization = true;
15421       }
15422     }
15423 
15424     if (!TemplateParameterLists.empty() && isMemberSpecialization &&
15425         CheckTemplateDeclScope(S, TemplateParameterLists.back()))
15426       return nullptr;
15427   }
15428 
15429   // Figure out the underlying type if this a enum declaration. We need to do
15430   // this early, because it's needed to detect if this is an incompatible
15431   // redeclaration.
15432   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
15433   bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
15434 
15435   if (Kind == TTK_Enum) {
15436     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
15437       // No underlying type explicitly specified, or we failed to parse the
15438       // type, default to int.
15439       EnumUnderlying = Context.IntTy.getTypePtr();
15440     } else if (UnderlyingType.get()) {
15441       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
15442       // integral type; any cv-qualification is ignored.
15443       TypeSourceInfo *TI = nullptr;
15444       GetTypeFromParser(UnderlyingType.get(), &TI);
15445       EnumUnderlying = TI;
15446 
15447       if (CheckEnumUnderlyingType(TI))
15448         // Recover by falling back to int.
15449         EnumUnderlying = Context.IntTy.getTypePtr();
15450 
15451       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
15452                                           UPPC_FixedUnderlyingType))
15453         EnumUnderlying = Context.IntTy.getTypePtr();
15454 
15455     } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
15456       // For MSVC ABI compatibility, unfixed enums must use an underlying type
15457       // of 'int'. However, if this is an unfixed forward declaration, don't set
15458       // the underlying type unless the user enables -fms-compatibility. This
15459       // makes unfixed forward declared enums incomplete and is more conforming.
15460       if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
15461         EnumUnderlying = Context.IntTy.getTypePtr();
15462     }
15463   }
15464 
15465   DeclContext *SearchDC = CurContext;
15466   DeclContext *DC = CurContext;
15467   bool isStdBadAlloc = false;
15468   bool isStdAlignValT = false;
15469 
15470   RedeclarationKind Redecl = forRedeclarationInCurContext();
15471   if (TUK == TUK_Friend || TUK == TUK_Reference)
15472     Redecl = NotForRedeclaration;
15473 
15474   /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
15475   /// implemented asks for structural equivalence checking, the returned decl
15476   /// here is passed back to the parser, allowing the tag body to be parsed.
15477   auto createTagFromNewDecl = [&]() -> TagDecl * {
15478     assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
15479     // If there is an identifier, use the location of the identifier as the
15480     // location of the decl, otherwise use the location of the struct/union
15481     // keyword.
15482     SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
15483     TagDecl *New = nullptr;
15484 
15485     if (Kind == TTK_Enum) {
15486       New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
15487                              ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
15488       // If this is an undefined enum, bail.
15489       if (TUK != TUK_Definition && !Invalid)
15490         return nullptr;
15491       if (EnumUnderlying) {
15492         EnumDecl *ED = cast<EnumDecl>(New);
15493         if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
15494           ED->setIntegerTypeSourceInfo(TI);
15495         else
15496           ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
15497         ED->setPromotionType(ED->getIntegerType());
15498       }
15499     } else { // struct/union
15500       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
15501                                nullptr);
15502     }
15503 
15504     if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
15505       // Add alignment attributes if necessary; these attributes are checked
15506       // when the ASTContext lays out the structure.
15507       //
15508       // It is important for implementing the correct semantics that this
15509       // happen here (in ActOnTag). The #pragma pack stack is
15510       // maintained as a result of parser callbacks which can occur at
15511       // many points during the parsing of a struct declaration (because
15512       // the #pragma tokens are effectively skipped over during the
15513       // parsing of the struct).
15514       if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
15515         AddAlignmentAttributesForRecord(RD);
15516         AddMsStructLayoutForRecord(RD);
15517       }
15518     }
15519     New->setLexicalDeclContext(CurContext);
15520     return New;
15521   };
15522 
15523   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
15524   if (Name && SS.isNotEmpty()) {
15525     // We have a nested-name tag ('struct foo::bar').
15526 
15527     // Check for invalid 'foo::'.
15528     if (SS.isInvalid()) {
15529       Name = nullptr;
15530       goto CreateNewDecl;
15531     }
15532 
15533     // If this is a friend or a reference to a class in a dependent
15534     // context, don't try to make a decl for it.
15535     if (TUK == TUK_Friend || TUK == TUK_Reference) {
15536       DC = computeDeclContext(SS, false);
15537       if (!DC) {
15538         IsDependent = true;
15539         return nullptr;
15540       }
15541     } else {
15542       DC = computeDeclContext(SS, true);
15543       if (!DC) {
15544         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
15545           << SS.getRange();
15546         return nullptr;
15547       }
15548     }
15549 
15550     if (RequireCompleteDeclContext(SS, DC))
15551       return nullptr;
15552 
15553     SearchDC = DC;
15554     // Look-up name inside 'foo::'.
15555     LookupQualifiedName(Previous, DC);
15556 
15557     if (Previous.isAmbiguous())
15558       return nullptr;
15559 
15560     if (Previous.empty()) {
15561       // Name lookup did not find anything. However, if the
15562       // nested-name-specifier refers to the current instantiation,
15563       // and that current instantiation has any dependent base
15564       // classes, we might find something at instantiation time: treat
15565       // this as a dependent elaborated-type-specifier.
15566       // But this only makes any sense for reference-like lookups.
15567       if (Previous.wasNotFoundInCurrentInstantiation() &&
15568           (TUK == TUK_Reference || TUK == TUK_Friend)) {
15569         IsDependent = true;
15570         return nullptr;
15571       }
15572 
15573       // A tag 'foo::bar' must already exist.
15574       Diag(NameLoc, diag::err_not_tag_in_scope)
15575         << Kind << Name << DC << SS.getRange();
15576       Name = nullptr;
15577       Invalid = true;
15578       goto CreateNewDecl;
15579     }
15580   } else if (Name) {
15581     // C++14 [class.mem]p14:
15582     //   If T is the name of a class, then each of the following shall have a
15583     //   name different from T:
15584     //    -- every member of class T that is itself a type
15585     if (TUK != TUK_Reference && TUK != TUK_Friend &&
15586         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
15587       return nullptr;
15588 
15589     // If this is a named struct, check to see if there was a previous forward
15590     // declaration or definition.
15591     // FIXME: We're looking into outer scopes here, even when we
15592     // shouldn't be. Doing so can result in ambiguities that we
15593     // shouldn't be diagnosing.
15594     LookupName(Previous, S);
15595 
15596     // When declaring or defining a tag, ignore ambiguities introduced
15597     // by types using'ed into this scope.
15598     if (Previous.isAmbiguous() &&
15599         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
15600       LookupResult::Filter F = Previous.makeFilter();
15601       while (F.hasNext()) {
15602         NamedDecl *ND = F.next();
15603         if (!ND->getDeclContext()->getRedeclContext()->Equals(
15604                 SearchDC->getRedeclContext()))
15605           F.erase();
15606       }
15607       F.done();
15608     }
15609 
15610     // C++11 [namespace.memdef]p3:
15611     //   If the name in a friend declaration is neither qualified nor
15612     //   a template-id and the declaration is a function or an
15613     //   elaborated-type-specifier, the lookup to determine whether
15614     //   the entity has been previously declared shall not consider
15615     //   any scopes outside the innermost enclosing namespace.
15616     //
15617     // MSVC doesn't implement the above rule for types, so a friend tag
15618     // declaration may be a redeclaration of a type declared in an enclosing
15619     // scope.  They do implement this rule for friend functions.
15620     //
15621     // Does it matter that this should be by scope instead of by
15622     // semantic context?
15623     if (!Previous.empty() && TUK == TUK_Friend) {
15624       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
15625       LookupResult::Filter F = Previous.makeFilter();
15626       bool FriendSawTagOutsideEnclosingNamespace = false;
15627       while (F.hasNext()) {
15628         NamedDecl *ND = F.next();
15629         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15630         if (DC->isFileContext() &&
15631             !EnclosingNS->Encloses(ND->getDeclContext())) {
15632           if (getLangOpts().MSVCCompat)
15633             FriendSawTagOutsideEnclosingNamespace = true;
15634           else
15635             F.erase();
15636         }
15637       }
15638       F.done();
15639 
15640       // Diagnose this MSVC extension in the easy case where lookup would have
15641       // unambiguously found something outside the enclosing namespace.
15642       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
15643         NamedDecl *ND = Previous.getFoundDecl();
15644         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
15645             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
15646       }
15647     }
15648 
15649     // Note:  there used to be some attempt at recovery here.
15650     if (Previous.isAmbiguous())
15651       return nullptr;
15652 
15653     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
15654       // FIXME: This makes sure that we ignore the contexts associated
15655       // with C structs, unions, and enums when looking for a matching
15656       // tag declaration or definition. See the similar lookup tweak
15657       // in Sema::LookupName; is there a better way to deal with this?
15658       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
15659         SearchDC = SearchDC->getParent();
15660     }
15661   }
15662 
15663   if (Previous.isSingleResult() &&
15664       Previous.getFoundDecl()->isTemplateParameter()) {
15665     // Maybe we will complain about the shadowed template parameter.
15666     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
15667     // Just pretend that we didn't see the previous declaration.
15668     Previous.clear();
15669   }
15670 
15671   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
15672       DC->Equals(getStdNamespace())) {
15673     if (Name->isStr("bad_alloc")) {
15674       // This is a declaration of or a reference to "std::bad_alloc".
15675       isStdBadAlloc = true;
15676 
15677       // If std::bad_alloc has been implicitly declared (but made invisible to
15678       // name lookup), fill in this implicit declaration as the previous
15679       // declaration, so that the declarations get chained appropriately.
15680       if (Previous.empty() && StdBadAlloc)
15681         Previous.addDecl(getStdBadAlloc());
15682     } else if (Name->isStr("align_val_t")) {
15683       isStdAlignValT = true;
15684       if (Previous.empty() && StdAlignValT)
15685         Previous.addDecl(getStdAlignValT());
15686     }
15687   }
15688 
15689   // If we didn't find a previous declaration, and this is a reference
15690   // (or friend reference), move to the correct scope.  In C++, we
15691   // also need to do a redeclaration lookup there, just in case
15692   // there's a shadow friend decl.
15693   if (Name && Previous.empty() &&
15694       (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
15695     if (Invalid) goto CreateNewDecl;
15696     assert(SS.isEmpty());
15697 
15698     if (TUK == TUK_Reference || IsTemplateParamOrArg) {
15699       // C++ [basic.scope.pdecl]p5:
15700       //   -- for an elaborated-type-specifier of the form
15701       //
15702       //          class-key identifier
15703       //
15704       //      if the elaborated-type-specifier is used in the
15705       //      decl-specifier-seq or parameter-declaration-clause of a
15706       //      function defined in namespace scope, the identifier is
15707       //      declared as a class-name in the namespace that contains
15708       //      the declaration; otherwise, except as a friend
15709       //      declaration, the identifier is declared in the smallest
15710       //      non-class, non-function-prototype scope that contains the
15711       //      declaration.
15712       //
15713       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
15714       // C structs and unions.
15715       //
15716       // It is an error in C++ to declare (rather than define) an enum
15717       // type, including via an elaborated type specifier.  We'll
15718       // diagnose that later; for now, declare the enum in the same
15719       // scope as we would have picked for any other tag type.
15720       //
15721       // GNU C also supports this behavior as part of its incomplete
15722       // enum types extension, while GNU C++ does not.
15723       //
15724       // Find the context where we'll be declaring the tag.
15725       // FIXME: We would like to maintain the current DeclContext as the
15726       // lexical context,
15727       SearchDC = getTagInjectionContext(SearchDC);
15728 
15729       // Find the scope where we'll be declaring the tag.
15730       S = getTagInjectionScope(S, getLangOpts());
15731     } else {
15732       assert(TUK == TUK_Friend);
15733       // C++ [namespace.memdef]p3:
15734       //   If a friend declaration in a non-local class first declares a
15735       //   class or function, the friend class or function is a member of
15736       //   the innermost enclosing namespace.
15737       SearchDC = SearchDC->getEnclosingNamespaceContext();
15738     }
15739 
15740     // In C++, we need to do a redeclaration lookup to properly
15741     // diagnose some problems.
15742     // FIXME: redeclaration lookup is also used (with and without C++) to find a
15743     // hidden declaration so that we don't get ambiguity errors when using a
15744     // type declared by an elaborated-type-specifier.  In C that is not correct
15745     // and we should instead merge compatible types found by lookup.
15746     if (getLangOpts().CPlusPlus) {
15747       // FIXME: This can perform qualified lookups into function contexts,
15748       // which are meaningless.
15749       Previous.setRedeclarationKind(forRedeclarationInCurContext());
15750       LookupQualifiedName(Previous, SearchDC);
15751     } else {
15752       Previous.setRedeclarationKind(forRedeclarationInCurContext());
15753       LookupName(Previous, S);
15754     }
15755   }
15756 
15757   // If we have a known previous declaration to use, then use it.
15758   if (Previous.empty() && SkipBody && SkipBody->Previous)
15759     Previous.addDecl(SkipBody->Previous);
15760 
15761   if (!Previous.empty()) {
15762     NamedDecl *PrevDecl = Previous.getFoundDecl();
15763     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
15764 
15765     // It's okay to have a tag decl in the same scope as a typedef
15766     // which hides a tag decl in the same scope.  Finding this
15767     // insanity with a redeclaration lookup can only actually happen
15768     // in C++.
15769     //
15770     // This is also okay for elaborated-type-specifiers, which is
15771     // technically forbidden by the current standard but which is
15772     // okay according to the likely resolution of an open issue;
15773     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
15774     if (getLangOpts().CPlusPlus) {
15775       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
15776         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
15777           TagDecl *Tag = TT->getDecl();
15778           if (Tag->getDeclName() == Name &&
15779               Tag->getDeclContext()->getRedeclContext()
15780                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
15781             PrevDecl = Tag;
15782             Previous.clear();
15783             Previous.addDecl(Tag);
15784             Previous.resolveKind();
15785           }
15786         }
15787       }
15788     }
15789 
15790     // If this is a redeclaration of a using shadow declaration, it must
15791     // declare a tag in the same context. In MSVC mode, we allow a
15792     // redefinition if either context is within the other.
15793     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
15794       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
15795       if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
15796           isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
15797           !(OldTag && isAcceptableTagRedeclContext(
15798                           *this, OldTag->getDeclContext(), SearchDC))) {
15799         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
15800         Diag(Shadow->getTargetDecl()->getLocation(),
15801              diag::note_using_decl_target);
15802         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
15803             << 0;
15804         // Recover by ignoring the old declaration.
15805         Previous.clear();
15806         goto CreateNewDecl;
15807       }
15808     }
15809 
15810     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
15811       // If this is a use of a previous tag, or if the tag is already declared
15812       // in the same scope (so that the definition/declaration completes or
15813       // rementions the tag), reuse the decl.
15814       if (TUK == TUK_Reference || TUK == TUK_Friend ||
15815           isDeclInScope(DirectPrevDecl, SearchDC, S,
15816                         SS.isNotEmpty() || isMemberSpecialization)) {
15817         // Make sure that this wasn't declared as an enum and now used as a
15818         // struct or something similar.
15819         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
15820                                           TUK == TUK_Definition, KWLoc,
15821                                           Name)) {
15822           bool SafeToContinue
15823             = (PrevTagDecl->getTagKind() != TTK_Enum &&
15824                Kind != TTK_Enum);
15825           if (SafeToContinue)
15826             Diag(KWLoc, diag::err_use_with_wrong_tag)
15827               << Name
15828               << FixItHint::CreateReplacement(SourceRange(KWLoc),
15829                                               PrevTagDecl->getKindName());
15830           else
15831             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
15832           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
15833 
15834           if (SafeToContinue)
15835             Kind = PrevTagDecl->getTagKind();
15836           else {
15837             // Recover by making this an anonymous redefinition.
15838             Name = nullptr;
15839             Previous.clear();
15840             Invalid = true;
15841           }
15842         }
15843 
15844         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
15845           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
15846           if (TUK == TUK_Reference || TUK == TUK_Friend)
15847             return PrevTagDecl;
15848 
15849           QualType EnumUnderlyingTy;
15850           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
15851             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
15852           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
15853             EnumUnderlyingTy = QualType(T, 0);
15854 
15855           // All conflicts with previous declarations are recovered by
15856           // returning the previous declaration, unless this is a definition,
15857           // in which case we want the caller to bail out.
15858           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
15859                                      ScopedEnum, EnumUnderlyingTy,
15860                                      IsFixed, PrevEnum))
15861             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
15862         }
15863 
15864         // C++11 [class.mem]p1:
15865         //   A member shall not be declared twice in the member-specification,
15866         //   except that a nested class or member class template can be declared
15867         //   and then later defined.
15868         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
15869             S->isDeclScope(PrevDecl)) {
15870           Diag(NameLoc, diag::ext_member_redeclared);
15871           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
15872         }
15873 
15874         if (!Invalid) {
15875           // If this is a use, just return the declaration we found, unless
15876           // we have attributes.
15877           if (TUK == TUK_Reference || TUK == TUK_Friend) {
15878             if (!Attrs.empty()) {
15879               // FIXME: Diagnose these attributes. For now, we create a new
15880               // declaration to hold them.
15881             } else if (TUK == TUK_Reference &&
15882                        (PrevTagDecl->getFriendObjectKind() ==
15883                             Decl::FOK_Undeclared ||
15884                         PrevDecl->getOwningModule() != getCurrentModule()) &&
15885                        SS.isEmpty()) {
15886               // This declaration is a reference to an existing entity, but
15887               // has different visibility from that entity: it either makes
15888               // a friend visible or it makes a type visible in a new module.
15889               // In either case, create a new declaration. We only do this if
15890               // the declaration would have meant the same thing if no prior
15891               // declaration were found, that is, if it was found in the same
15892               // scope where we would have injected a declaration.
15893               if (!getTagInjectionContext(CurContext)->getRedeclContext()
15894                        ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
15895                 return PrevTagDecl;
15896               // This is in the injected scope, create a new declaration in
15897               // that scope.
15898               S = getTagInjectionScope(S, getLangOpts());
15899             } else {
15900               return PrevTagDecl;
15901             }
15902           }
15903 
15904           // Diagnose attempts to redefine a tag.
15905           if (TUK == TUK_Definition) {
15906             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
15907               // If we're defining a specialization and the previous definition
15908               // is from an implicit instantiation, don't emit an error
15909               // here; we'll catch this in the general case below.
15910               bool IsExplicitSpecializationAfterInstantiation = false;
15911               if (isMemberSpecialization) {
15912                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
15913                   IsExplicitSpecializationAfterInstantiation =
15914                     RD->getTemplateSpecializationKind() !=
15915                     TSK_ExplicitSpecialization;
15916                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
15917                   IsExplicitSpecializationAfterInstantiation =
15918                     ED->getTemplateSpecializationKind() !=
15919                     TSK_ExplicitSpecialization;
15920               }
15921 
15922               // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
15923               // not keep more that one definition around (merge them). However,
15924               // ensure the decl passes the structural compatibility check in
15925               // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
15926               NamedDecl *Hidden = nullptr;
15927               if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
15928                 // There is a definition of this tag, but it is not visible. We
15929                 // explicitly make use of C++'s one definition rule here, and
15930                 // assume that this definition is identical to the hidden one
15931                 // we already have. Make the existing definition visible and
15932                 // use it in place of this one.
15933                 if (!getLangOpts().CPlusPlus) {
15934                   // Postpone making the old definition visible until after we
15935                   // complete parsing the new one and do the structural
15936                   // comparison.
15937                   SkipBody->CheckSameAsPrevious = true;
15938                   SkipBody->New = createTagFromNewDecl();
15939                   SkipBody->Previous = Def;
15940                   return Def;
15941                 } else {
15942                   SkipBody->ShouldSkip = true;
15943                   SkipBody->Previous = Def;
15944                   makeMergedDefinitionVisible(Hidden);
15945                   // Carry on and handle it like a normal definition. We'll
15946                   // skip starting the definitiion later.
15947                 }
15948               } else if (!IsExplicitSpecializationAfterInstantiation) {
15949                 // A redeclaration in function prototype scope in C isn't
15950                 // visible elsewhere, so merely issue a warning.
15951                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
15952                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
15953                 else
15954                   Diag(NameLoc, diag::err_redefinition) << Name;
15955                 notePreviousDefinition(Def,
15956                                        NameLoc.isValid() ? NameLoc : KWLoc);
15957                 // If this is a redefinition, recover by making this
15958                 // struct be anonymous, which will make any later
15959                 // references get the previous definition.
15960                 Name = nullptr;
15961                 Previous.clear();
15962                 Invalid = true;
15963               }
15964             } else {
15965               // If the type is currently being defined, complain
15966               // about a nested redefinition.
15967               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
15968               if (TD->isBeingDefined()) {
15969                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
15970                 Diag(PrevTagDecl->getLocation(),
15971                      diag::note_previous_definition);
15972                 Name = nullptr;
15973                 Previous.clear();
15974                 Invalid = true;
15975               }
15976             }
15977 
15978             // Okay, this is definition of a previously declared or referenced
15979             // tag. We're going to create a new Decl for it.
15980           }
15981 
15982           // Okay, we're going to make a redeclaration.  If this is some kind
15983           // of reference, make sure we build the redeclaration in the same DC
15984           // as the original, and ignore the current access specifier.
15985           if (TUK == TUK_Friend || TUK == TUK_Reference) {
15986             SearchDC = PrevTagDecl->getDeclContext();
15987             AS = AS_none;
15988           }
15989         }
15990         // If we get here we have (another) forward declaration or we
15991         // have a definition.  Just create a new decl.
15992 
15993       } else {
15994         // If we get here, this is a definition of a new tag type in a nested
15995         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
15996         // new decl/type.  We set PrevDecl to NULL so that the entities
15997         // have distinct types.
15998         Previous.clear();
15999       }
16000       // If we get here, we're going to create a new Decl. If PrevDecl
16001       // is non-NULL, it's a definition of the tag declared by
16002       // PrevDecl. If it's NULL, we have a new definition.
16003 
16004     // Otherwise, PrevDecl is not a tag, but was found with tag
16005     // lookup.  This is only actually possible in C++, where a few
16006     // things like templates still live in the tag namespace.
16007     } else {
16008       // Use a better diagnostic if an elaborated-type-specifier
16009       // found the wrong kind of type on the first
16010       // (non-redeclaration) lookup.
16011       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
16012           !Previous.isForRedeclaration()) {
16013         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16014         Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
16015                                                        << Kind;
16016         Diag(PrevDecl->getLocation(), diag::note_declared_at);
16017         Invalid = true;
16018 
16019       // Otherwise, only diagnose if the declaration is in scope.
16020       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
16021                                 SS.isNotEmpty() || isMemberSpecialization)) {
16022         // do nothing
16023 
16024       // Diagnose implicit declarations introduced by elaborated types.
16025       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
16026         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16027         Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
16028         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16029         Invalid = true;
16030 
16031       // Otherwise it's a declaration.  Call out a particularly common
16032       // case here.
16033       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
16034         unsigned Kind = 0;
16035         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
16036         Diag(NameLoc, diag::err_tag_definition_of_typedef)
16037           << Name << Kind << TND->getUnderlyingType();
16038         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16039         Invalid = true;
16040 
16041       // Otherwise, diagnose.
16042       } else {
16043         // The tag name clashes with something else in the target scope,
16044         // issue an error and recover by making this tag be anonymous.
16045         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
16046         notePreviousDefinition(PrevDecl, NameLoc);
16047         Name = nullptr;
16048         Invalid = true;
16049       }
16050 
16051       // The existing declaration isn't relevant to us; we're in a
16052       // new scope, so clear out the previous declaration.
16053       Previous.clear();
16054     }
16055   }
16056 
16057 CreateNewDecl:
16058 
16059   TagDecl *PrevDecl = nullptr;
16060   if (Previous.isSingleResult())
16061     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
16062 
16063   // If there is an identifier, use the location of the identifier as the
16064   // location of the decl, otherwise use the location of the struct/union
16065   // keyword.
16066   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
16067 
16068   // Otherwise, create a new declaration. If there is a previous
16069   // declaration of the same entity, the two will be linked via
16070   // PrevDecl.
16071   TagDecl *New;
16072 
16073   if (Kind == TTK_Enum) {
16074     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16075     // enum X { A, B, C } D;    D should chain to X.
16076     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
16077                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
16078                            ScopedEnumUsesClassTag, IsFixed);
16079 
16080     if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
16081       StdAlignValT = cast<EnumDecl>(New);
16082 
16083     // If this is an undefined enum, warn.
16084     if (TUK != TUK_Definition && !Invalid) {
16085       TagDecl *Def;
16086       if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
16087         // C++0x: 7.2p2: opaque-enum-declaration.
16088         // Conflicts are diagnosed above. Do nothing.
16089       }
16090       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
16091         Diag(Loc, diag::ext_forward_ref_enum_def)
16092           << New;
16093         Diag(Def->getLocation(), diag::note_previous_definition);
16094       } else {
16095         unsigned DiagID = diag::ext_forward_ref_enum;
16096         if (getLangOpts().MSVCCompat)
16097           DiagID = diag::ext_ms_forward_ref_enum;
16098         else if (getLangOpts().CPlusPlus)
16099           DiagID = diag::err_forward_ref_enum;
16100         Diag(Loc, DiagID);
16101       }
16102     }
16103 
16104     if (EnumUnderlying) {
16105       EnumDecl *ED = cast<EnumDecl>(New);
16106       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
16107         ED->setIntegerTypeSourceInfo(TI);
16108       else
16109         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
16110       ED->setPromotionType(ED->getIntegerType());
16111       assert(ED->isComplete() && "enum with type should be complete");
16112     }
16113   } else {
16114     // struct/union/class
16115 
16116     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16117     // struct X { int A; } D;    D should chain to X.
16118     if (getLangOpts().CPlusPlus) {
16119       // FIXME: Look for a way to use RecordDecl for simple structs.
16120       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16121                                   cast_or_null<CXXRecordDecl>(PrevDecl));
16122 
16123       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
16124         StdBadAlloc = cast<CXXRecordDecl>(New);
16125     } else
16126       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16127                                cast_or_null<RecordDecl>(PrevDecl));
16128   }
16129 
16130   // C++11 [dcl.type]p3:
16131   //   A type-specifier-seq shall not define a class or enumeration [...].
16132   if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
16133       TUK == TUK_Definition) {
16134     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
16135       << Context.getTagDeclType(New);
16136     Invalid = true;
16137   }
16138 
16139   if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
16140       DC->getDeclKind() == Decl::Enum) {
16141     Diag(New->getLocation(), diag::err_type_defined_in_enum)
16142       << Context.getTagDeclType(New);
16143     Invalid = true;
16144   }
16145 
16146   // Maybe add qualifier info.
16147   if (SS.isNotEmpty()) {
16148     if (SS.isSet()) {
16149       // If this is either a declaration or a definition, check the
16150       // nested-name-specifier against the current context.
16151       if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
16152           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
16153                                        isMemberSpecialization))
16154         Invalid = true;
16155 
16156       New->setQualifierInfo(SS.getWithLocInContext(Context));
16157       if (TemplateParameterLists.size() > 0) {
16158         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
16159       }
16160     }
16161     else
16162       Invalid = true;
16163   }
16164 
16165   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
16166     // Add alignment attributes if necessary; these attributes are checked when
16167     // the ASTContext lays out the structure.
16168     //
16169     // It is important for implementing the correct semantics that this
16170     // happen here (in ActOnTag). The #pragma pack stack is
16171     // maintained as a result of parser callbacks which can occur at
16172     // many points during the parsing of a struct declaration (because
16173     // the #pragma tokens are effectively skipped over during the
16174     // parsing of the struct).
16175     if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
16176       AddAlignmentAttributesForRecord(RD);
16177       AddMsStructLayoutForRecord(RD);
16178     }
16179   }
16180 
16181   if (ModulePrivateLoc.isValid()) {
16182     if (isMemberSpecialization)
16183       Diag(New->getLocation(), diag::err_module_private_specialization)
16184         << 2
16185         << FixItHint::CreateRemoval(ModulePrivateLoc);
16186     // __module_private__ does not apply to local classes. However, we only
16187     // diagnose this as an error when the declaration specifiers are
16188     // freestanding. Here, we just ignore the __module_private__.
16189     else if (!SearchDC->isFunctionOrMethod())
16190       New->setModulePrivate();
16191   }
16192 
16193   // If this is a specialization of a member class (of a class template),
16194   // check the specialization.
16195   if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
16196     Invalid = true;
16197 
16198   // If we're declaring or defining a tag in function prototype scope in C,
16199   // note that this type can only be used within the function and add it to
16200   // the list of decls to inject into the function definition scope.
16201   if ((Name || Kind == TTK_Enum) &&
16202       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
16203     if (getLangOpts().CPlusPlus) {
16204       // C++ [dcl.fct]p6:
16205       //   Types shall not be defined in return or parameter types.
16206       if (TUK == TUK_Definition && !IsTypeSpecifier) {
16207         Diag(Loc, diag::err_type_defined_in_param_type)
16208             << Name;
16209         Invalid = true;
16210       }
16211     } else if (!PrevDecl) {
16212       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
16213     }
16214   }
16215 
16216   if (Invalid)
16217     New->setInvalidDecl();
16218 
16219   // Set the lexical context. If the tag has a C++ scope specifier, the
16220   // lexical context will be different from the semantic context.
16221   New->setLexicalDeclContext(CurContext);
16222 
16223   // Mark this as a friend decl if applicable.
16224   // In Microsoft mode, a friend declaration also acts as a forward
16225   // declaration so we always pass true to setObjectOfFriendDecl to make
16226   // the tag name visible.
16227   if (TUK == TUK_Friend)
16228     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
16229 
16230   // Set the access specifier.
16231   if (!Invalid && SearchDC->isRecord())
16232     SetMemberAccessSpecifier(New, PrevDecl, AS);
16233 
16234   if (PrevDecl)
16235     CheckRedeclarationModuleOwnership(New, PrevDecl);
16236 
16237   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
16238     New->startDefinition();
16239 
16240   ProcessDeclAttributeList(S, New, Attrs);
16241   AddPragmaAttributes(S, New);
16242 
16243   // If this has an identifier, add it to the scope stack.
16244   if (TUK == TUK_Friend) {
16245     // We might be replacing an existing declaration in the lookup tables;
16246     // if so, borrow its access specifier.
16247     if (PrevDecl)
16248       New->setAccess(PrevDecl->getAccess());
16249 
16250     DeclContext *DC = New->getDeclContext()->getRedeclContext();
16251     DC->makeDeclVisibleInContext(New);
16252     if (Name) // can be null along some error paths
16253       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
16254         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
16255   } else if (Name) {
16256     S = getNonFieldDeclScope(S);
16257     PushOnScopeChains(New, S, true);
16258   } else {
16259     CurContext->addDecl(New);
16260   }
16261 
16262   // If this is the C FILE type, notify the AST context.
16263   if (IdentifierInfo *II = New->getIdentifier())
16264     if (!New->isInvalidDecl() &&
16265         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
16266         II->isStr("FILE"))
16267       Context.setFILEDecl(New);
16268 
16269   if (PrevDecl)
16270     mergeDeclAttributes(New, PrevDecl);
16271 
16272   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
16273     inferGslOwnerPointerAttribute(CXXRD);
16274 
16275   // If there's a #pragma GCC visibility in scope, set the visibility of this
16276   // record.
16277   AddPushedVisibilityAttribute(New);
16278 
16279   if (isMemberSpecialization && !New->isInvalidDecl())
16280     CompleteMemberSpecialization(New, Previous);
16281 
16282   OwnedDecl = true;
16283   // In C++, don't return an invalid declaration. We can't recover well from
16284   // the cases where we make the type anonymous.
16285   if (Invalid && getLangOpts().CPlusPlus) {
16286     if (New->isBeingDefined())
16287       if (auto RD = dyn_cast<RecordDecl>(New))
16288         RD->completeDefinition();
16289     return nullptr;
16290   } else if (SkipBody && SkipBody->ShouldSkip) {
16291     return SkipBody->Previous;
16292   } else {
16293     return New;
16294   }
16295 }
16296 
16297 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
16298   AdjustDeclIfTemplate(TagD);
16299   TagDecl *Tag = cast<TagDecl>(TagD);
16300 
16301   // Enter the tag context.
16302   PushDeclContext(S, Tag);
16303 
16304   ActOnDocumentableDecl(TagD);
16305 
16306   // If there's a #pragma GCC visibility in scope, set the visibility of this
16307   // record.
16308   AddPushedVisibilityAttribute(Tag);
16309 }
16310 
16311 bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
16312                                     SkipBodyInfo &SkipBody) {
16313   if (!hasStructuralCompatLayout(Prev, SkipBody.New))
16314     return false;
16315 
16316   // Make the previous decl visible.
16317   makeMergedDefinitionVisible(SkipBody.Previous);
16318   return true;
16319 }
16320 
16321 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
16322   assert(isa<ObjCContainerDecl>(IDecl) &&
16323          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
16324   DeclContext *OCD = cast<DeclContext>(IDecl);
16325   assert(OCD->getLexicalParent() == CurContext &&
16326       "The next DeclContext should be lexically contained in the current one.");
16327   CurContext = OCD;
16328   return IDecl;
16329 }
16330 
16331 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
16332                                            SourceLocation FinalLoc,
16333                                            bool IsFinalSpelledSealed,
16334                                            SourceLocation LBraceLoc) {
16335   AdjustDeclIfTemplate(TagD);
16336   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
16337 
16338   FieldCollector->StartClass();
16339 
16340   if (!Record->getIdentifier())
16341     return;
16342 
16343   if (FinalLoc.isValid())
16344     Record->addAttr(FinalAttr::Create(
16345         Context, FinalLoc, AttributeCommonInfo::AS_Keyword,
16346         static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed)));
16347 
16348   // C++ [class]p2:
16349   //   [...] The class-name is also inserted into the scope of the
16350   //   class itself; this is known as the injected-class-name. For
16351   //   purposes of access checking, the injected-class-name is treated
16352   //   as if it were a public member name.
16353   CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
16354       Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
16355       Record->getLocation(), Record->getIdentifier(),
16356       /*PrevDecl=*/nullptr,
16357       /*DelayTypeCreation=*/true);
16358   Context.getTypeDeclType(InjectedClassName, Record);
16359   InjectedClassName->setImplicit();
16360   InjectedClassName->setAccess(AS_public);
16361   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
16362       InjectedClassName->setDescribedClassTemplate(Template);
16363   PushOnScopeChains(InjectedClassName, S);
16364   assert(InjectedClassName->isInjectedClassName() &&
16365          "Broken injected-class-name");
16366 }
16367 
16368 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
16369                                     SourceRange BraceRange) {
16370   AdjustDeclIfTemplate(TagD);
16371   TagDecl *Tag = cast<TagDecl>(TagD);
16372   Tag->setBraceRange(BraceRange);
16373 
16374   // Make sure we "complete" the definition even it is invalid.
16375   if (Tag->isBeingDefined()) {
16376     assert(Tag->isInvalidDecl() && "We should already have completed it");
16377     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
16378       RD->completeDefinition();
16379   }
16380 
16381   if (isa<CXXRecordDecl>(Tag)) {
16382     FieldCollector->FinishClass();
16383   }
16384 
16385   // Exit this scope of this tag's definition.
16386   PopDeclContext();
16387 
16388   if (getCurLexicalContext()->isObjCContainer() &&
16389       Tag->getDeclContext()->isFileContext())
16390     Tag->setTopLevelDeclInObjCContainer();
16391 
16392   // Notify the consumer that we've defined a tag.
16393   if (!Tag->isInvalidDecl())
16394     Consumer.HandleTagDeclDefinition(Tag);
16395 }
16396 
16397 void Sema::ActOnObjCContainerFinishDefinition() {
16398   // Exit this scope of this interface definition.
16399   PopDeclContext();
16400 }
16401 
16402 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
16403   assert(DC == CurContext && "Mismatch of container contexts");
16404   OriginalLexicalContext = DC;
16405   ActOnObjCContainerFinishDefinition();
16406 }
16407 
16408 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
16409   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
16410   OriginalLexicalContext = nullptr;
16411 }
16412 
16413 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
16414   AdjustDeclIfTemplate(TagD);
16415   TagDecl *Tag = cast<TagDecl>(TagD);
16416   Tag->setInvalidDecl();
16417 
16418   // Make sure we "complete" the definition even it is invalid.
16419   if (Tag->isBeingDefined()) {
16420     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
16421       RD->completeDefinition();
16422   }
16423 
16424   // We're undoing ActOnTagStartDefinition here, not
16425   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
16426   // the FieldCollector.
16427 
16428   PopDeclContext();
16429 }
16430 
16431 // Note that FieldName may be null for anonymous bitfields.
16432 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
16433                                 IdentifierInfo *FieldName,
16434                                 QualType FieldTy, bool IsMsStruct,
16435                                 Expr *BitWidth, bool *ZeroWidth) {
16436   assert(BitWidth);
16437   if (BitWidth->containsErrors())
16438     return ExprError();
16439 
16440   // Default to true; that shouldn't confuse checks for emptiness
16441   if (ZeroWidth)
16442     *ZeroWidth = true;
16443 
16444   // C99 6.7.2.1p4 - verify the field type.
16445   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
16446   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
16447     // Handle incomplete and sizeless types with a specific error.
16448     if (RequireCompleteSizedType(FieldLoc, FieldTy,
16449                                  diag::err_field_incomplete_or_sizeless))
16450       return ExprError();
16451     if (FieldName)
16452       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
16453         << FieldName << FieldTy << BitWidth->getSourceRange();
16454     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
16455       << FieldTy << BitWidth->getSourceRange();
16456   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
16457                                              UPPC_BitFieldWidth))
16458     return ExprError();
16459 
16460   // If the bit-width is type- or value-dependent, don't try to check
16461   // it now.
16462   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
16463     return BitWidth;
16464 
16465   llvm::APSInt Value;
16466   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold);
16467   if (ICE.isInvalid())
16468     return ICE;
16469   BitWidth = ICE.get();
16470 
16471   if (Value != 0 && ZeroWidth)
16472     *ZeroWidth = false;
16473 
16474   // Zero-width bitfield is ok for anonymous field.
16475   if (Value == 0 && FieldName)
16476     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
16477 
16478   if (Value.isSigned() && Value.isNegative()) {
16479     if (FieldName)
16480       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
16481                << FieldName << Value.toString(10);
16482     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
16483       << Value.toString(10);
16484   }
16485 
16486   // The size of the bit-field must not exceed our maximum permitted object
16487   // size.
16488   if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) {
16489     return Diag(FieldLoc, diag::err_bitfield_too_wide)
16490            << !FieldName << FieldName << Value.toString(10);
16491   }
16492 
16493   if (!FieldTy->isDependentType()) {
16494     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
16495     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
16496     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
16497 
16498     // Over-wide bitfields are an error in C or when using the MSVC bitfield
16499     // ABI.
16500     bool CStdConstraintViolation =
16501         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
16502     bool MSBitfieldViolation =
16503         Value.ugt(TypeStorageSize) &&
16504         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
16505     if (CStdConstraintViolation || MSBitfieldViolation) {
16506       unsigned DiagWidth =
16507           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
16508       if (FieldName)
16509         return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
16510                << FieldName << Value.toString(10)
16511                << !CStdConstraintViolation << DiagWidth;
16512 
16513       return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
16514              << Value.toString(10) << !CStdConstraintViolation
16515              << DiagWidth;
16516     }
16517 
16518     // Warn on types where the user might conceivably expect to get all
16519     // specified bits as value bits: that's all integral types other than
16520     // 'bool'.
16521     if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) {
16522       Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
16523           << FieldName << Value.toString(10)
16524           << (unsigned)TypeWidth;
16525     }
16526   }
16527 
16528   return BitWidth;
16529 }
16530 
16531 /// ActOnField - Each field of a C struct/union is passed into this in order
16532 /// to create a FieldDecl object for it.
16533 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
16534                        Declarator &D, Expr *BitfieldWidth) {
16535   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
16536                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
16537                                /*InitStyle=*/ICIS_NoInit, AS_public);
16538   return Res;
16539 }
16540 
16541 /// HandleField - Analyze a field of a C struct or a C++ data member.
16542 ///
16543 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
16544                              SourceLocation DeclStart,
16545                              Declarator &D, Expr *BitWidth,
16546                              InClassInitStyle InitStyle,
16547                              AccessSpecifier AS) {
16548   if (D.isDecompositionDeclarator()) {
16549     const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
16550     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
16551       << Decomp.getSourceRange();
16552     return nullptr;
16553   }
16554 
16555   IdentifierInfo *II = D.getIdentifier();
16556   SourceLocation Loc = DeclStart;
16557   if (II) Loc = D.getIdentifierLoc();
16558 
16559   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16560   QualType T = TInfo->getType();
16561   if (getLangOpts().CPlusPlus) {
16562     CheckExtraCXXDefaultArguments(D);
16563 
16564     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
16565                                         UPPC_DataMemberType)) {
16566       D.setInvalidType();
16567       T = Context.IntTy;
16568       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
16569     }
16570   }
16571 
16572   DiagnoseFunctionSpecifiers(D.getDeclSpec());
16573 
16574   if (D.getDeclSpec().isInlineSpecified())
16575     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
16576         << getLangOpts().CPlusPlus17;
16577   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
16578     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
16579          diag::err_invalid_thread)
16580       << DeclSpec::getSpecifierName(TSCS);
16581 
16582   // Check to see if this name was declared as a member previously
16583   NamedDecl *PrevDecl = nullptr;
16584   LookupResult Previous(*this, II, Loc, LookupMemberName,
16585                         ForVisibleRedeclaration);
16586   LookupName(Previous, S);
16587   switch (Previous.getResultKind()) {
16588     case LookupResult::Found:
16589     case LookupResult::FoundUnresolvedValue:
16590       PrevDecl = Previous.getAsSingle<NamedDecl>();
16591       break;
16592 
16593     case LookupResult::FoundOverloaded:
16594       PrevDecl = Previous.getRepresentativeDecl();
16595       break;
16596 
16597     case LookupResult::NotFound:
16598     case LookupResult::NotFoundInCurrentInstantiation:
16599     case LookupResult::Ambiguous:
16600       break;
16601   }
16602   Previous.suppressDiagnostics();
16603 
16604   if (PrevDecl && PrevDecl->isTemplateParameter()) {
16605     // Maybe we will complain about the shadowed template parameter.
16606     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
16607     // Just pretend that we didn't see the previous declaration.
16608     PrevDecl = nullptr;
16609   }
16610 
16611   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
16612     PrevDecl = nullptr;
16613 
16614   bool Mutable
16615     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
16616   SourceLocation TSSL = D.getBeginLoc();
16617   FieldDecl *NewFD
16618     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
16619                      TSSL, AS, PrevDecl, &D);
16620 
16621   if (NewFD->isInvalidDecl())
16622     Record->setInvalidDecl();
16623 
16624   if (D.getDeclSpec().isModulePrivateSpecified())
16625     NewFD->setModulePrivate();
16626 
16627   if (NewFD->isInvalidDecl() && PrevDecl) {
16628     // Don't introduce NewFD into scope; there's already something
16629     // with the same name in the same scope.
16630   } else if (II) {
16631     PushOnScopeChains(NewFD, S);
16632   } else
16633     Record->addDecl(NewFD);
16634 
16635   return NewFD;
16636 }
16637 
16638 /// Build a new FieldDecl and check its well-formedness.
16639 ///
16640 /// This routine builds a new FieldDecl given the fields name, type,
16641 /// record, etc. \p PrevDecl should refer to any previous declaration
16642 /// with the same name and in the same scope as the field to be
16643 /// created.
16644 ///
16645 /// \returns a new FieldDecl.
16646 ///
16647 /// \todo The Declarator argument is a hack. It will be removed once
16648 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
16649                                 TypeSourceInfo *TInfo,
16650                                 RecordDecl *Record, SourceLocation Loc,
16651                                 bool Mutable, Expr *BitWidth,
16652                                 InClassInitStyle InitStyle,
16653                                 SourceLocation TSSL,
16654                                 AccessSpecifier AS, NamedDecl *PrevDecl,
16655                                 Declarator *D) {
16656   IdentifierInfo *II = Name.getAsIdentifierInfo();
16657   bool InvalidDecl = false;
16658   if (D) InvalidDecl = D->isInvalidType();
16659 
16660   // If we receive a broken type, recover by assuming 'int' and
16661   // marking this declaration as invalid.
16662   if (T.isNull() || T->containsErrors()) {
16663     InvalidDecl = true;
16664     T = Context.IntTy;
16665   }
16666 
16667   QualType EltTy = Context.getBaseElementType(T);
16668   if (!EltTy->isDependentType() && !EltTy->containsErrors()) {
16669     if (RequireCompleteSizedType(Loc, EltTy,
16670                                  diag::err_field_incomplete_or_sizeless)) {
16671       // Fields of incomplete type force their record to be invalid.
16672       Record->setInvalidDecl();
16673       InvalidDecl = true;
16674     } else {
16675       NamedDecl *Def;
16676       EltTy->isIncompleteType(&Def);
16677       if (Def && Def->isInvalidDecl()) {
16678         Record->setInvalidDecl();
16679         InvalidDecl = true;
16680       }
16681     }
16682   }
16683 
16684   // TR 18037 does not allow fields to be declared with address space
16685   if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
16686       T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
16687     Diag(Loc, diag::err_field_with_address_space);
16688     Record->setInvalidDecl();
16689     InvalidDecl = true;
16690   }
16691 
16692   if (LangOpts.OpenCL) {
16693     // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
16694     // used as structure or union field: image, sampler, event or block types.
16695     if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
16696         T->isBlockPointerType()) {
16697       Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
16698       Record->setInvalidDecl();
16699       InvalidDecl = true;
16700     }
16701     // OpenCL v1.2 s6.9.c: bitfields are not supported.
16702     if (BitWidth) {
16703       Diag(Loc, diag::err_opencl_bitfields);
16704       InvalidDecl = true;
16705     }
16706   }
16707 
16708   // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
16709   if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
16710       T.hasQualifiers()) {
16711     InvalidDecl = true;
16712     Diag(Loc, diag::err_anon_bitfield_qualifiers);
16713   }
16714 
16715   // C99 6.7.2.1p8: A member of a structure or union may have any type other
16716   // than a variably modified type.
16717   if (!InvalidDecl && T->isVariablyModifiedType()) {
16718     if (!tryToFixVariablyModifiedVarType(
16719             *this, TInfo, T, Loc, diag::err_typecheck_field_variable_size))
16720       InvalidDecl = true;
16721   }
16722 
16723   // Fields can not have abstract class types
16724   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
16725                                              diag::err_abstract_type_in_decl,
16726                                              AbstractFieldType))
16727     InvalidDecl = true;
16728 
16729   bool ZeroWidth = false;
16730   if (InvalidDecl)
16731     BitWidth = nullptr;
16732   // If this is declared as a bit-field, check the bit-field.
16733   if (BitWidth) {
16734     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
16735                               &ZeroWidth).get();
16736     if (!BitWidth) {
16737       InvalidDecl = true;
16738       BitWidth = nullptr;
16739       ZeroWidth = false;
16740     }
16741   }
16742 
16743   // Check that 'mutable' is consistent with the type of the declaration.
16744   if (!InvalidDecl && Mutable) {
16745     unsigned DiagID = 0;
16746     if (T->isReferenceType())
16747       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
16748                                         : diag::err_mutable_reference;
16749     else if (T.isConstQualified())
16750       DiagID = diag::err_mutable_const;
16751 
16752     if (DiagID) {
16753       SourceLocation ErrLoc = Loc;
16754       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
16755         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
16756       Diag(ErrLoc, DiagID);
16757       if (DiagID != diag::ext_mutable_reference) {
16758         Mutable = false;
16759         InvalidDecl = true;
16760       }
16761     }
16762   }
16763 
16764   // C++11 [class.union]p8 (DR1460):
16765   //   At most one variant member of a union may have a
16766   //   brace-or-equal-initializer.
16767   if (InitStyle != ICIS_NoInit)
16768     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
16769 
16770   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
16771                                        BitWidth, Mutable, InitStyle);
16772   if (InvalidDecl)
16773     NewFD->setInvalidDecl();
16774 
16775   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
16776     Diag(Loc, diag::err_duplicate_member) << II;
16777     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16778     NewFD->setInvalidDecl();
16779   }
16780 
16781   if (!InvalidDecl && getLangOpts().CPlusPlus) {
16782     if (Record->isUnion()) {
16783       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
16784         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
16785         if (RDecl->getDefinition()) {
16786           // C++ [class.union]p1: An object of a class with a non-trivial
16787           // constructor, a non-trivial copy constructor, a non-trivial
16788           // destructor, or a non-trivial copy assignment operator
16789           // cannot be a member of a union, nor can an array of such
16790           // objects.
16791           if (CheckNontrivialField(NewFD))
16792             NewFD->setInvalidDecl();
16793         }
16794       }
16795 
16796       // C++ [class.union]p1: If a union contains a member of reference type,
16797       // the program is ill-formed, except when compiling with MSVC extensions
16798       // enabled.
16799       if (EltTy->isReferenceType()) {
16800         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
16801                                     diag::ext_union_member_of_reference_type :
16802                                     diag::err_union_member_of_reference_type)
16803           << NewFD->getDeclName() << EltTy;
16804         if (!getLangOpts().MicrosoftExt)
16805           NewFD->setInvalidDecl();
16806       }
16807     }
16808   }
16809 
16810   // FIXME: We need to pass in the attributes given an AST
16811   // representation, not a parser representation.
16812   if (D) {
16813     // FIXME: The current scope is almost... but not entirely... correct here.
16814     ProcessDeclAttributes(getCurScope(), NewFD, *D);
16815 
16816     if (NewFD->hasAttrs())
16817       CheckAlignasUnderalignment(NewFD);
16818   }
16819 
16820   // In auto-retain/release, infer strong retension for fields of
16821   // retainable type.
16822   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
16823     NewFD->setInvalidDecl();
16824 
16825   if (T.isObjCGCWeak())
16826     Diag(Loc, diag::warn_attribute_weak_on_field);
16827 
16828   // PPC MMA non-pointer types are not allowed as field types.
16829   if (Context.getTargetInfo().getTriple().isPPC64() &&
16830       CheckPPCMMAType(T, NewFD->getLocation()))
16831     NewFD->setInvalidDecl();
16832 
16833   NewFD->setAccess(AS);
16834   return NewFD;
16835 }
16836 
16837 bool Sema::CheckNontrivialField(FieldDecl *FD) {
16838   assert(FD);
16839   assert(getLangOpts().CPlusPlus && "valid check only for C++");
16840 
16841   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
16842     return false;
16843 
16844   QualType EltTy = Context.getBaseElementType(FD->getType());
16845   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
16846     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
16847     if (RDecl->getDefinition()) {
16848       // We check for copy constructors before constructors
16849       // because otherwise we'll never get complaints about
16850       // copy constructors.
16851 
16852       CXXSpecialMember member = CXXInvalid;
16853       // We're required to check for any non-trivial constructors. Since the
16854       // implicit default constructor is suppressed if there are any
16855       // user-declared constructors, we just need to check that there is a
16856       // trivial default constructor and a trivial copy constructor. (We don't
16857       // worry about move constructors here, since this is a C++98 check.)
16858       if (RDecl->hasNonTrivialCopyConstructor())
16859         member = CXXCopyConstructor;
16860       else if (!RDecl->hasTrivialDefaultConstructor())
16861         member = CXXDefaultConstructor;
16862       else if (RDecl->hasNonTrivialCopyAssignment())
16863         member = CXXCopyAssignment;
16864       else if (RDecl->hasNonTrivialDestructor())
16865         member = CXXDestructor;
16866 
16867       if (member != CXXInvalid) {
16868         if (!getLangOpts().CPlusPlus11 &&
16869             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
16870           // Objective-C++ ARC: it is an error to have a non-trivial field of
16871           // a union. However, system headers in Objective-C programs
16872           // occasionally have Objective-C lifetime objects within unions,
16873           // and rather than cause the program to fail, we make those
16874           // members unavailable.
16875           SourceLocation Loc = FD->getLocation();
16876           if (getSourceManager().isInSystemHeader(Loc)) {
16877             if (!FD->hasAttr<UnavailableAttr>())
16878               FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
16879                             UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
16880             return false;
16881           }
16882         }
16883 
16884         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
16885                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
16886                diag::err_illegal_union_or_anon_struct_member)
16887           << FD->getParent()->isUnion() << FD->getDeclName() << member;
16888         DiagnoseNontrivial(RDecl, member);
16889         return !getLangOpts().CPlusPlus11;
16890       }
16891     }
16892   }
16893 
16894   return false;
16895 }
16896 
16897 /// TranslateIvarVisibility - Translate visibility from a token ID to an
16898 ///  AST enum value.
16899 static ObjCIvarDecl::AccessControl
16900 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
16901   switch (ivarVisibility) {
16902   default: llvm_unreachable("Unknown visitibility kind");
16903   case tok::objc_private: return ObjCIvarDecl::Private;
16904   case tok::objc_public: return ObjCIvarDecl::Public;
16905   case tok::objc_protected: return ObjCIvarDecl::Protected;
16906   case tok::objc_package: return ObjCIvarDecl::Package;
16907   }
16908 }
16909 
16910 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
16911 /// in order to create an IvarDecl object for it.
16912 Decl *Sema::ActOnIvar(Scope *S,
16913                                 SourceLocation DeclStart,
16914                                 Declarator &D, Expr *BitfieldWidth,
16915                                 tok::ObjCKeywordKind Visibility) {
16916 
16917   IdentifierInfo *II = D.getIdentifier();
16918   Expr *BitWidth = (Expr*)BitfieldWidth;
16919   SourceLocation Loc = DeclStart;
16920   if (II) Loc = D.getIdentifierLoc();
16921 
16922   // FIXME: Unnamed fields can be handled in various different ways, for
16923   // example, unnamed unions inject all members into the struct namespace!
16924 
16925   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16926   QualType T = TInfo->getType();
16927 
16928   if (BitWidth) {
16929     // 6.7.2.1p3, 6.7.2.1p4
16930     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
16931     if (!BitWidth)
16932       D.setInvalidType();
16933   } else {
16934     // Not a bitfield.
16935 
16936     // validate II.
16937 
16938   }
16939   if (T->isReferenceType()) {
16940     Diag(Loc, diag::err_ivar_reference_type);
16941     D.setInvalidType();
16942   }
16943   // C99 6.7.2.1p8: A member of a structure or union may have any type other
16944   // than a variably modified type.
16945   else if (T->isVariablyModifiedType()) {
16946     if (!tryToFixVariablyModifiedVarType(
16947             *this, TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
16948       D.setInvalidType();
16949   }
16950 
16951   // Get the visibility (access control) for this ivar.
16952   ObjCIvarDecl::AccessControl ac =
16953     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
16954                                         : ObjCIvarDecl::None;
16955   // Must set ivar's DeclContext to its enclosing interface.
16956   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
16957   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
16958     return nullptr;
16959   ObjCContainerDecl *EnclosingContext;
16960   if (ObjCImplementationDecl *IMPDecl =
16961       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16962     if (LangOpts.ObjCRuntime.isFragile()) {
16963     // Case of ivar declared in an implementation. Context is that of its class.
16964       EnclosingContext = IMPDecl->getClassInterface();
16965       assert(EnclosingContext && "Implementation has no class interface!");
16966     }
16967     else
16968       EnclosingContext = EnclosingDecl;
16969   } else {
16970     if (ObjCCategoryDecl *CDecl =
16971         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16972       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
16973         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
16974         return nullptr;
16975       }
16976     }
16977     EnclosingContext = EnclosingDecl;
16978   }
16979 
16980   // Construct the decl.
16981   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
16982                                              DeclStart, Loc, II, T,
16983                                              TInfo, ac, (Expr *)BitfieldWidth);
16984 
16985   if (II) {
16986     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
16987                                            ForVisibleRedeclaration);
16988     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
16989         && !isa<TagDecl>(PrevDecl)) {
16990       Diag(Loc, diag::err_duplicate_member) << II;
16991       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16992       NewID->setInvalidDecl();
16993     }
16994   }
16995 
16996   // Process attributes attached to the ivar.
16997   ProcessDeclAttributes(S, NewID, D);
16998 
16999   if (D.isInvalidType())
17000     NewID->setInvalidDecl();
17001 
17002   // In ARC, infer 'retaining' for ivars of retainable type.
17003   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
17004     NewID->setInvalidDecl();
17005 
17006   if (D.getDeclSpec().isModulePrivateSpecified())
17007     NewID->setModulePrivate();
17008 
17009   if (II) {
17010     // FIXME: When interfaces are DeclContexts, we'll need to add
17011     // these to the interface.
17012     S->AddDecl(NewID);
17013     IdResolver.AddDecl(NewID);
17014   }
17015 
17016   if (LangOpts.ObjCRuntime.isNonFragile() &&
17017       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
17018     Diag(Loc, diag::warn_ivars_in_interface);
17019 
17020   return NewID;
17021 }
17022 
17023 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
17024 /// class and class extensions. For every class \@interface and class
17025 /// extension \@interface, if the last ivar is a bitfield of any type,
17026 /// then add an implicit `char :0` ivar to the end of that interface.
17027 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
17028                              SmallVectorImpl<Decl *> &AllIvarDecls) {
17029   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
17030     return;
17031 
17032   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
17033   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
17034 
17035   if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
17036     return;
17037   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
17038   if (!ID) {
17039     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
17040       if (!CD->IsClassExtension())
17041         return;
17042     }
17043     // No need to add this to end of @implementation.
17044     else
17045       return;
17046   }
17047   // All conditions are met. Add a new bitfield to the tail end of ivars.
17048   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
17049   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
17050 
17051   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
17052                               DeclLoc, DeclLoc, nullptr,
17053                               Context.CharTy,
17054                               Context.getTrivialTypeSourceInfo(Context.CharTy,
17055                                                                DeclLoc),
17056                               ObjCIvarDecl::Private, BW,
17057                               true);
17058   AllIvarDecls.push_back(Ivar);
17059 }
17060 
17061 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
17062                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
17063                        SourceLocation RBrac,
17064                        const ParsedAttributesView &Attrs) {
17065   assert(EnclosingDecl && "missing record or interface decl");
17066 
17067   // If this is an Objective-C @implementation or category and we have
17068   // new fields here we should reset the layout of the interface since
17069   // it will now change.
17070   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
17071     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
17072     switch (DC->getKind()) {
17073     default: break;
17074     case Decl::ObjCCategory:
17075       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
17076       break;
17077     case Decl::ObjCImplementation:
17078       Context.
17079         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
17080       break;
17081     }
17082   }
17083 
17084   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
17085   CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
17086 
17087   // Start counting up the number of named members; make sure to include
17088   // members of anonymous structs and unions in the total.
17089   unsigned NumNamedMembers = 0;
17090   if (Record) {
17091     for (const auto *I : Record->decls()) {
17092       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
17093         if (IFD->getDeclName())
17094           ++NumNamedMembers;
17095     }
17096   }
17097 
17098   // Verify that all the fields are okay.
17099   SmallVector<FieldDecl*, 32> RecFields;
17100 
17101   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
17102        i != end; ++i) {
17103     FieldDecl *FD = cast<FieldDecl>(*i);
17104 
17105     // Get the type for the field.
17106     const Type *FDTy = FD->getType().getTypePtr();
17107 
17108     if (!FD->isAnonymousStructOrUnion()) {
17109       // Remember all fields written by the user.
17110       RecFields.push_back(FD);
17111     }
17112 
17113     // If the field is already invalid for some reason, don't emit more
17114     // diagnostics about it.
17115     if (FD->isInvalidDecl()) {
17116       EnclosingDecl->setInvalidDecl();
17117       continue;
17118     }
17119 
17120     // C99 6.7.2.1p2:
17121     //   A structure or union shall not contain a member with
17122     //   incomplete or function type (hence, a structure shall not
17123     //   contain an instance of itself, but may contain a pointer to
17124     //   an instance of itself), except that the last member of a
17125     //   structure with more than one named member may have incomplete
17126     //   array type; such a structure (and any union containing,
17127     //   possibly recursively, a member that is such a structure)
17128     //   shall not be a member of a structure or an element of an
17129     //   array.
17130     bool IsLastField = (i + 1 == Fields.end());
17131     if (FDTy->isFunctionType()) {
17132       // Field declared as a function.
17133       Diag(FD->getLocation(), diag::err_field_declared_as_function)
17134         << FD->getDeclName();
17135       FD->setInvalidDecl();
17136       EnclosingDecl->setInvalidDecl();
17137       continue;
17138     } else if (FDTy->isIncompleteArrayType() &&
17139                (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
17140       if (Record) {
17141         // Flexible array member.
17142         // Microsoft and g++ is more permissive regarding flexible array.
17143         // It will accept flexible array in union and also
17144         // as the sole element of a struct/class.
17145         unsigned DiagID = 0;
17146         if (!Record->isUnion() && !IsLastField) {
17147           Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
17148             << FD->getDeclName() << FD->getType() << Record->getTagKind();
17149           Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
17150           FD->setInvalidDecl();
17151           EnclosingDecl->setInvalidDecl();
17152           continue;
17153         } else if (Record->isUnion())
17154           DiagID = getLangOpts().MicrosoftExt
17155                        ? diag::ext_flexible_array_union_ms
17156                        : getLangOpts().CPlusPlus
17157                              ? diag::ext_flexible_array_union_gnu
17158                              : diag::err_flexible_array_union;
17159         else if (NumNamedMembers < 1)
17160           DiagID = getLangOpts().MicrosoftExt
17161                        ? diag::ext_flexible_array_empty_aggregate_ms
17162                        : getLangOpts().CPlusPlus
17163                              ? diag::ext_flexible_array_empty_aggregate_gnu
17164                              : diag::err_flexible_array_empty_aggregate;
17165 
17166         if (DiagID)
17167           Diag(FD->getLocation(), DiagID) << FD->getDeclName()
17168                                           << Record->getTagKind();
17169         // While the layout of types that contain virtual bases is not specified
17170         // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
17171         // virtual bases after the derived members.  This would make a flexible
17172         // array member declared at the end of an object not adjacent to the end
17173         // of the type.
17174         if (CXXRecord && CXXRecord->getNumVBases() != 0)
17175           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
17176               << FD->getDeclName() << Record->getTagKind();
17177         if (!getLangOpts().C99)
17178           Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
17179             << FD->getDeclName() << Record->getTagKind();
17180 
17181         // If the element type has a non-trivial destructor, we would not
17182         // implicitly destroy the elements, so disallow it for now.
17183         //
17184         // FIXME: GCC allows this. We should probably either implicitly delete
17185         // the destructor of the containing class, or just allow this.
17186         QualType BaseElem = Context.getBaseElementType(FD->getType());
17187         if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
17188           Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
17189             << FD->getDeclName() << FD->getType();
17190           FD->setInvalidDecl();
17191           EnclosingDecl->setInvalidDecl();
17192           continue;
17193         }
17194         // Okay, we have a legal flexible array member at the end of the struct.
17195         Record->setHasFlexibleArrayMember(true);
17196       } else {
17197         // In ObjCContainerDecl ivars with incomplete array type are accepted,
17198         // unless they are followed by another ivar. That check is done
17199         // elsewhere, after synthesized ivars are known.
17200       }
17201     } else if (!FDTy->isDependentType() &&
17202                RequireCompleteSizedType(
17203                    FD->getLocation(), FD->getType(),
17204                    diag::err_field_incomplete_or_sizeless)) {
17205       // Incomplete type
17206       FD->setInvalidDecl();
17207       EnclosingDecl->setInvalidDecl();
17208       continue;
17209     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
17210       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
17211         // A type which contains a flexible array member is considered to be a
17212         // flexible array member.
17213         Record->setHasFlexibleArrayMember(true);
17214         if (!Record->isUnion()) {
17215           // If this is a struct/class and this is not the last element, reject
17216           // it.  Note that GCC supports variable sized arrays in the middle of
17217           // structures.
17218           if (!IsLastField)
17219             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
17220               << FD->getDeclName() << FD->getType();
17221           else {
17222             // We support flexible arrays at the end of structs in
17223             // other structs as an extension.
17224             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
17225               << FD->getDeclName();
17226           }
17227         }
17228       }
17229       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
17230           RequireNonAbstractType(FD->getLocation(), FD->getType(),
17231                                  diag::err_abstract_type_in_decl,
17232                                  AbstractIvarType)) {
17233         // Ivars can not have abstract class types
17234         FD->setInvalidDecl();
17235       }
17236       if (Record && FDTTy->getDecl()->hasObjectMember())
17237         Record->setHasObjectMember(true);
17238       if (Record && FDTTy->getDecl()->hasVolatileMember())
17239         Record->setHasVolatileMember(true);
17240     } else if (FDTy->isObjCObjectType()) {
17241       /// A field cannot be an Objective-c object
17242       Diag(FD->getLocation(), diag::err_statically_allocated_object)
17243         << FixItHint::CreateInsertion(FD->getLocation(), "*");
17244       QualType T = Context.getObjCObjectPointerType(FD->getType());
17245       FD->setType(T);
17246     } else if (Record && Record->isUnion() &&
17247                FD->getType().hasNonTrivialObjCLifetime() &&
17248                getSourceManager().isInSystemHeader(FD->getLocation()) &&
17249                !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
17250                (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
17251                 !Context.hasDirectOwnershipQualifier(FD->getType()))) {
17252       // For backward compatibility, fields of C unions declared in system
17253       // headers that have non-trivial ObjC ownership qualifications are marked
17254       // as unavailable unless the qualifier is explicit and __strong. This can
17255       // break ABI compatibility between programs compiled with ARC and MRR, but
17256       // is a better option than rejecting programs using those unions under
17257       // ARC.
17258       FD->addAttr(UnavailableAttr::CreateImplicit(
17259           Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
17260           FD->getLocation()));
17261     } else if (getLangOpts().ObjC &&
17262                getLangOpts().getGC() != LangOptions::NonGC && Record &&
17263                !Record->hasObjectMember()) {
17264       if (FD->getType()->isObjCObjectPointerType() ||
17265           FD->getType().isObjCGCStrong())
17266         Record->setHasObjectMember(true);
17267       else if (Context.getAsArrayType(FD->getType())) {
17268         QualType BaseType = Context.getBaseElementType(FD->getType());
17269         if (BaseType->isRecordType() &&
17270             BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
17271           Record->setHasObjectMember(true);
17272         else if (BaseType->isObjCObjectPointerType() ||
17273                  BaseType.isObjCGCStrong())
17274                Record->setHasObjectMember(true);
17275       }
17276     }
17277 
17278     if (Record && !getLangOpts().CPlusPlus &&
17279         !shouldIgnoreForRecordTriviality(FD)) {
17280       QualType FT = FD->getType();
17281       if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
17282         Record->setNonTrivialToPrimitiveDefaultInitialize(true);
17283         if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
17284             Record->isUnion())
17285           Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
17286       }
17287       QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
17288       if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
17289         Record->setNonTrivialToPrimitiveCopy(true);
17290         if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
17291           Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
17292       }
17293       if (FT.isDestructedType()) {
17294         Record->setNonTrivialToPrimitiveDestroy(true);
17295         Record->setParamDestroyedInCallee(true);
17296         if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
17297           Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
17298       }
17299 
17300       if (const auto *RT = FT->getAs<RecordType>()) {
17301         if (RT->getDecl()->getArgPassingRestrictions() ==
17302             RecordDecl::APK_CanNeverPassInRegs)
17303           Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17304       } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
17305         Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17306     }
17307 
17308     if (Record && FD->getType().isVolatileQualified())
17309       Record->setHasVolatileMember(true);
17310     // Keep track of the number of named members.
17311     if (FD->getIdentifier())
17312       ++NumNamedMembers;
17313   }
17314 
17315   // Okay, we successfully defined 'Record'.
17316   if (Record) {
17317     bool Completed = false;
17318     if (CXXRecord) {
17319       if (!CXXRecord->isInvalidDecl()) {
17320         // Set access bits correctly on the directly-declared conversions.
17321         for (CXXRecordDecl::conversion_iterator
17322                I = CXXRecord->conversion_begin(),
17323                E = CXXRecord->conversion_end(); I != E; ++I)
17324           I.setAccess((*I)->getAccess());
17325       }
17326 
17327       // Add any implicitly-declared members to this class.
17328       AddImplicitlyDeclaredMembersToClass(CXXRecord);
17329 
17330       if (!CXXRecord->isDependentType()) {
17331         if (!CXXRecord->isInvalidDecl()) {
17332           // If we have virtual base classes, we may end up finding multiple
17333           // final overriders for a given virtual function. Check for this
17334           // problem now.
17335           if (CXXRecord->getNumVBases()) {
17336             CXXFinalOverriderMap FinalOverriders;
17337             CXXRecord->getFinalOverriders(FinalOverriders);
17338 
17339             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
17340                                              MEnd = FinalOverriders.end();
17341                  M != MEnd; ++M) {
17342               for (OverridingMethods::iterator SO = M->second.begin(),
17343                                             SOEnd = M->second.end();
17344                    SO != SOEnd; ++SO) {
17345                 assert(SO->second.size() > 0 &&
17346                        "Virtual function without overriding functions?");
17347                 if (SO->second.size() == 1)
17348                   continue;
17349 
17350                 // C++ [class.virtual]p2:
17351                 //   In a derived class, if a virtual member function of a base
17352                 //   class subobject has more than one final overrider the
17353                 //   program is ill-formed.
17354                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
17355                   << (const NamedDecl *)M->first << Record;
17356                 Diag(M->first->getLocation(),
17357                      diag::note_overridden_virtual_function);
17358                 for (OverridingMethods::overriding_iterator
17359                           OM = SO->second.begin(),
17360                        OMEnd = SO->second.end();
17361                      OM != OMEnd; ++OM)
17362                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
17363                     << (const NamedDecl *)M->first << OM->Method->getParent();
17364 
17365                 Record->setInvalidDecl();
17366               }
17367             }
17368             CXXRecord->completeDefinition(&FinalOverriders);
17369             Completed = true;
17370           }
17371         }
17372       }
17373     }
17374 
17375     if (!Completed)
17376       Record->completeDefinition();
17377 
17378     // Handle attributes before checking the layout.
17379     ProcessDeclAttributeList(S, Record, Attrs);
17380 
17381     // We may have deferred checking for a deleted destructor. Check now.
17382     if (CXXRecord) {
17383       auto *Dtor = CXXRecord->getDestructor();
17384       if (Dtor && Dtor->isImplicit() &&
17385           ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
17386         CXXRecord->setImplicitDestructorIsDeleted();
17387         SetDeclDeleted(Dtor, CXXRecord->getLocation());
17388       }
17389     }
17390 
17391     if (Record->hasAttrs()) {
17392       CheckAlignasUnderalignment(Record);
17393 
17394       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
17395         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
17396                                            IA->getRange(), IA->getBestCase(),
17397                                            IA->getInheritanceModel());
17398     }
17399 
17400     // Check if the structure/union declaration is a type that can have zero
17401     // size in C. For C this is a language extension, for C++ it may cause
17402     // compatibility problems.
17403     bool CheckForZeroSize;
17404     if (!getLangOpts().CPlusPlus) {
17405       CheckForZeroSize = true;
17406     } else {
17407       // For C++ filter out types that cannot be referenced in C code.
17408       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
17409       CheckForZeroSize =
17410           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
17411           !CXXRecord->isDependentType() && !inTemplateInstantiation() &&
17412           CXXRecord->isCLike();
17413     }
17414     if (CheckForZeroSize) {
17415       bool ZeroSize = true;
17416       bool IsEmpty = true;
17417       unsigned NonBitFields = 0;
17418       for (RecordDecl::field_iterator I = Record->field_begin(),
17419                                       E = Record->field_end();
17420            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
17421         IsEmpty = false;
17422         if (I->isUnnamedBitfield()) {
17423           if (!I->isZeroLengthBitField(Context))
17424             ZeroSize = false;
17425         } else {
17426           ++NonBitFields;
17427           QualType FieldType = I->getType();
17428           if (FieldType->isIncompleteType() ||
17429               !Context.getTypeSizeInChars(FieldType).isZero())
17430             ZeroSize = false;
17431         }
17432       }
17433 
17434       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
17435       // allowed in C++, but warn if its declaration is inside
17436       // extern "C" block.
17437       if (ZeroSize) {
17438         Diag(RecLoc, getLangOpts().CPlusPlus ?
17439                          diag::warn_zero_size_struct_union_in_extern_c :
17440                          diag::warn_zero_size_struct_union_compat)
17441           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
17442       }
17443 
17444       // Structs without named members are extension in C (C99 6.7.2.1p7),
17445       // but are accepted by GCC.
17446       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
17447         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
17448                                diag::ext_no_named_members_in_struct_union)
17449           << Record->isUnion();
17450       }
17451     }
17452   } else {
17453     ObjCIvarDecl **ClsFields =
17454       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
17455     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
17456       ID->setEndOfDefinitionLoc(RBrac);
17457       // Add ivar's to class's DeclContext.
17458       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
17459         ClsFields[i]->setLexicalDeclContext(ID);
17460         ID->addDecl(ClsFields[i]);
17461       }
17462       // Must enforce the rule that ivars in the base classes may not be
17463       // duplicates.
17464       if (ID->getSuperClass())
17465         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
17466     } else if (ObjCImplementationDecl *IMPDecl =
17467                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
17468       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
17469       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
17470         // Ivar declared in @implementation never belongs to the implementation.
17471         // Only it is in implementation's lexical context.
17472         ClsFields[I]->setLexicalDeclContext(IMPDecl);
17473       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
17474       IMPDecl->setIvarLBraceLoc(LBrac);
17475       IMPDecl->setIvarRBraceLoc(RBrac);
17476     } else if (ObjCCategoryDecl *CDecl =
17477                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
17478       // case of ivars in class extension; all other cases have been
17479       // reported as errors elsewhere.
17480       // FIXME. Class extension does not have a LocEnd field.
17481       // CDecl->setLocEnd(RBrac);
17482       // Add ivar's to class extension's DeclContext.
17483       // Diagnose redeclaration of private ivars.
17484       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
17485       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
17486         if (IDecl) {
17487           if (const ObjCIvarDecl *ClsIvar =
17488               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
17489             Diag(ClsFields[i]->getLocation(),
17490                  diag::err_duplicate_ivar_declaration);
17491             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
17492             continue;
17493           }
17494           for (const auto *Ext : IDecl->known_extensions()) {
17495             if (const ObjCIvarDecl *ClsExtIvar
17496                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
17497               Diag(ClsFields[i]->getLocation(),
17498                    diag::err_duplicate_ivar_declaration);
17499               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
17500               continue;
17501             }
17502           }
17503         }
17504         ClsFields[i]->setLexicalDeclContext(CDecl);
17505         CDecl->addDecl(ClsFields[i]);
17506       }
17507       CDecl->setIvarLBraceLoc(LBrac);
17508       CDecl->setIvarRBraceLoc(RBrac);
17509     }
17510   }
17511 }
17512 
17513 /// Determine whether the given integral value is representable within
17514 /// the given type T.
17515 static bool isRepresentableIntegerValue(ASTContext &Context,
17516                                         llvm::APSInt &Value,
17517                                         QualType T) {
17518   assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
17519          "Integral type required!");
17520   unsigned BitWidth = Context.getIntWidth(T);
17521 
17522   if (Value.isUnsigned() || Value.isNonNegative()) {
17523     if (T->isSignedIntegerOrEnumerationType())
17524       --BitWidth;
17525     return Value.getActiveBits() <= BitWidth;
17526   }
17527   return Value.getMinSignedBits() <= BitWidth;
17528 }
17529 
17530 // Given an integral type, return the next larger integral type
17531 // (or a NULL type of no such type exists).
17532 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
17533   // FIXME: Int128/UInt128 support, which also needs to be introduced into
17534   // enum checking below.
17535   assert((T->isIntegralType(Context) ||
17536          T->isEnumeralType()) && "Integral type required!");
17537   const unsigned NumTypes = 4;
17538   QualType SignedIntegralTypes[NumTypes] = {
17539     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
17540   };
17541   QualType UnsignedIntegralTypes[NumTypes] = {
17542     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
17543     Context.UnsignedLongLongTy
17544   };
17545 
17546   unsigned BitWidth = Context.getTypeSize(T);
17547   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
17548                                                         : UnsignedIntegralTypes;
17549   for (unsigned I = 0; I != NumTypes; ++I)
17550     if (Context.getTypeSize(Types[I]) > BitWidth)
17551       return Types[I];
17552 
17553   return QualType();
17554 }
17555 
17556 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
17557                                           EnumConstantDecl *LastEnumConst,
17558                                           SourceLocation IdLoc,
17559                                           IdentifierInfo *Id,
17560                                           Expr *Val) {
17561   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
17562   llvm::APSInt EnumVal(IntWidth);
17563   QualType EltTy;
17564 
17565   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
17566     Val = nullptr;
17567 
17568   if (Val)
17569     Val = DefaultLvalueConversion(Val).get();
17570 
17571   if (Val) {
17572     if (Enum->isDependentType() || Val->isTypeDependent())
17573       EltTy = Context.DependentTy;
17574     else {
17575       // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
17576       // underlying type, but do allow it in all other contexts.
17577       if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
17578         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
17579         // constant-expression in the enumerator-definition shall be a converted
17580         // constant expression of the underlying type.
17581         EltTy = Enum->getIntegerType();
17582         ExprResult Converted =
17583           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
17584                                            CCEK_Enumerator);
17585         if (Converted.isInvalid())
17586           Val = nullptr;
17587         else
17588           Val = Converted.get();
17589       } else if (!Val->isValueDependent() &&
17590                  !(Val =
17591                        VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold)
17592                            .get())) {
17593         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
17594       } else {
17595         if (Enum->isComplete()) {
17596           EltTy = Enum->getIntegerType();
17597 
17598           // In Obj-C and Microsoft mode, require the enumeration value to be
17599           // representable in the underlying type of the enumeration. In C++11,
17600           // we perform a non-narrowing conversion as part of converted constant
17601           // expression checking.
17602           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17603             if (Context.getTargetInfo()
17604                     .getTriple()
17605                     .isWindowsMSVCEnvironment()) {
17606               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
17607             } else {
17608               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
17609             }
17610           }
17611 
17612           // Cast to the underlying type.
17613           Val = ImpCastExprToType(Val, EltTy,
17614                                   EltTy->isBooleanType() ? CK_IntegralToBoolean
17615                                                          : CK_IntegralCast)
17616                     .get();
17617         } else if (getLangOpts().CPlusPlus) {
17618           // C++11 [dcl.enum]p5:
17619           //   If the underlying type is not fixed, the type of each enumerator
17620           //   is the type of its initializing value:
17621           //     - If an initializer is specified for an enumerator, the
17622           //       initializing value has the same type as the expression.
17623           EltTy = Val->getType();
17624         } else {
17625           // C99 6.7.2.2p2:
17626           //   The expression that defines the value of an enumeration constant
17627           //   shall be an integer constant expression that has a value
17628           //   representable as an int.
17629 
17630           // Complain if the value is not representable in an int.
17631           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
17632             Diag(IdLoc, diag::ext_enum_value_not_int)
17633               << EnumVal.toString(10) << Val->getSourceRange()
17634               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
17635           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
17636             // Force the type of the expression to 'int'.
17637             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
17638           }
17639           EltTy = Val->getType();
17640         }
17641       }
17642     }
17643   }
17644 
17645   if (!Val) {
17646     if (Enum->isDependentType())
17647       EltTy = Context.DependentTy;
17648     else if (!LastEnumConst) {
17649       // C++0x [dcl.enum]p5:
17650       //   If the underlying type is not fixed, the type of each enumerator
17651       //   is the type of its initializing value:
17652       //     - If no initializer is specified for the first enumerator, the
17653       //       initializing value has an unspecified integral type.
17654       //
17655       // GCC uses 'int' for its unspecified integral type, as does
17656       // C99 6.7.2.2p3.
17657       if (Enum->isFixed()) {
17658         EltTy = Enum->getIntegerType();
17659       }
17660       else {
17661         EltTy = Context.IntTy;
17662       }
17663     } else {
17664       // Assign the last value + 1.
17665       EnumVal = LastEnumConst->getInitVal();
17666       ++EnumVal;
17667       EltTy = LastEnumConst->getType();
17668 
17669       // Check for overflow on increment.
17670       if (EnumVal < LastEnumConst->getInitVal()) {
17671         // C++0x [dcl.enum]p5:
17672         //   If the underlying type is not fixed, the type of each enumerator
17673         //   is the type of its initializing value:
17674         //
17675         //     - Otherwise the type of the initializing value is the same as
17676         //       the type of the initializing value of the preceding enumerator
17677         //       unless the incremented value is not representable in that type,
17678         //       in which case the type is an unspecified integral type
17679         //       sufficient to contain the incremented value. If no such type
17680         //       exists, the program is ill-formed.
17681         QualType T = getNextLargerIntegralType(Context, EltTy);
17682         if (T.isNull() || Enum->isFixed()) {
17683           // There is no integral type larger enough to represent this
17684           // value. Complain, then allow the value to wrap around.
17685           EnumVal = LastEnumConst->getInitVal();
17686           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
17687           ++EnumVal;
17688           if (Enum->isFixed())
17689             // When the underlying type is fixed, this is ill-formed.
17690             Diag(IdLoc, diag::err_enumerator_wrapped)
17691               << EnumVal.toString(10)
17692               << EltTy;
17693           else
17694             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
17695               << EnumVal.toString(10);
17696         } else {
17697           EltTy = T;
17698         }
17699 
17700         // Retrieve the last enumerator's value, extent that type to the
17701         // type that is supposed to be large enough to represent the incremented
17702         // value, then increment.
17703         EnumVal = LastEnumConst->getInitVal();
17704         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17705         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
17706         ++EnumVal;
17707 
17708         // If we're not in C++, diagnose the overflow of enumerator values,
17709         // which in C99 means that the enumerator value is not representable in
17710         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
17711         // permits enumerator values that are representable in some larger
17712         // integral type.
17713         if (!getLangOpts().CPlusPlus && !T.isNull())
17714           Diag(IdLoc, diag::warn_enum_value_overflow);
17715       } else if (!getLangOpts().CPlusPlus &&
17716                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17717         // Enforce C99 6.7.2.2p2 even when we compute the next value.
17718         Diag(IdLoc, diag::ext_enum_value_not_int)
17719           << EnumVal.toString(10) << 1;
17720       }
17721     }
17722   }
17723 
17724   if (!EltTy->isDependentType()) {
17725     // Make the enumerator value match the signedness and size of the
17726     // enumerator's type.
17727     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
17728     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17729   }
17730 
17731   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
17732                                   Val, EnumVal);
17733 }
17734 
17735 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
17736                                                 SourceLocation IILoc) {
17737   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
17738       !getLangOpts().CPlusPlus)
17739     return SkipBodyInfo();
17740 
17741   // We have an anonymous enum definition. Look up the first enumerator to
17742   // determine if we should merge the definition with an existing one and
17743   // skip the body.
17744   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
17745                                          forRedeclarationInCurContext());
17746   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
17747   if (!PrevECD)
17748     return SkipBodyInfo();
17749 
17750   EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
17751   NamedDecl *Hidden;
17752   if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
17753     SkipBodyInfo Skip;
17754     Skip.Previous = Hidden;
17755     return Skip;
17756   }
17757 
17758   return SkipBodyInfo();
17759 }
17760 
17761 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
17762                               SourceLocation IdLoc, IdentifierInfo *Id,
17763                               const ParsedAttributesView &Attrs,
17764                               SourceLocation EqualLoc, Expr *Val) {
17765   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
17766   EnumConstantDecl *LastEnumConst =
17767     cast_or_null<EnumConstantDecl>(lastEnumConst);
17768 
17769   // The scope passed in may not be a decl scope.  Zip up the scope tree until
17770   // we find one that is.
17771   S = getNonFieldDeclScope(S);
17772 
17773   // Verify that there isn't already something declared with this name in this
17774   // scope.
17775   LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
17776   LookupName(R, S);
17777   NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
17778 
17779   if (PrevDecl && PrevDecl->isTemplateParameter()) {
17780     // Maybe we will complain about the shadowed template parameter.
17781     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
17782     // Just pretend that we didn't see the previous declaration.
17783     PrevDecl = nullptr;
17784   }
17785 
17786   // C++ [class.mem]p15:
17787   // If T is the name of a class, then each of the following shall have a name
17788   // different from T:
17789   // - every enumerator of every member of class T that is an unscoped
17790   // enumerated type
17791   if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
17792     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
17793                             DeclarationNameInfo(Id, IdLoc));
17794 
17795   EnumConstantDecl *New =
17796     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
17797   if (!New)
17798     return nullptr;
17799 
17800   if (PrevDecl) {
17801     if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
17802       // Check for other kinds of shadowing not already handled.
17803       CheckShadow(New, PrevDecl, R);
17804     }
17805 
17806     // When in C++, we may get a TagDecl with the same name; in this case the
17807     // enum constant will 'hide' the tag.
17808     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
17809            "Received TagDecl when not in C++!");
17810     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
17811       if (isa<EnumConstantDecl>(PrevDecl))
17812         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
17813       else
17814         Diag(IdLoc, diag::err_redefinition) << Id;
17815       notePreviousDefinition(PrevDecl, IdLoc);
17816       return nullptr;
17817     }
17818   }
17819 
17820   // Process attributes.
17821   ProcessDeclAttributeList(S, New, Attrs);
17822   AddPragmaAttributes(S, New);
17823 
17824   // Register this decl in the current scope stack.
17825   New->setAccess(TheEnumDecl->getAccess());
17826   PushOnScopeChains(New, S);
17827 
17828   ActOnDocumentableDecl(New);
17829 
17830   return New;
17831 }
17832 
17833 // Returns true when the enum initial expression does not trigger the
17834 // duplicate enum warning.  A few common cases are exempted as follows:
17835 // Element2 = Element1
17836 // Element2 = Element1 + 1
17837 // Element2 = Element1 - 1
17838 // Where Element2 and Element1 are from the same enum.
17839 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
17840   Expr *InitExpr = ECD->getInitExpr();
17841   if (!InitExpr)
17842     return true;
17843   InitExpr = InitExpr->IgnoreImpCasts();
17844 
17845   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
17846     if (!BO->isAdditiveOp())
17847       return true;
17848     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
17849     if (!IL)
17850       return true;
17851     if (IL->getValue() != 1)
17852       return true;
17853 
17854     InitExpr = BO->getLHS();
17855   }
17856 
17857   // This checks if the elements are from the same enum.
17858   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
17859   if (!DRE)
17860     return true;
17861 
17862   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
17863   if (!EnumConstant)
17864     return true;
17865 
17866   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
17867       Enum)
17868     return true;
17869 
17870   return false;
17871 }
17872 
17873 // Emits a warning when an element is implicitly set a value that
17874 // a previous element has already been set to.
17875 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
17876                                         EnumDecl *Enum, QualType EnumType) {
17877   // Avoid anonymous enums
17878   if (!Enum->getIdentifier())
17879     return;
17880 
17881   // Only check for small enums.
17882   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
17883     return;
17884 
17885   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
17886     return;
17887 
17888   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
17889   typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
17890 
17891   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
17892 
17893   // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
17894   typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
17895 
17896   // Use int64_t as a key to avoid needing special handling for map keys.
17897   auto EnumConstantToKey = [](const EnumConstantDecl *D) {
17898     llvm::APSInt Val = D->getInitVal();
17899     return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
17900   };
17901 
17902   DuplicatesVector DupVector;
17903   ValueToVectorMap EnumMap;
17904 
17905   // Populate the EnumMap with all values represented by enum constants without
17906   // an initializer.
17907   for (auto *Element : Elements) {
17908     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
17909 
17910     // Null EnumConstantDecl means a previous diagnostic has been emitted for
17911     // this constant.  Skip this enum since it may be ill-formed.
17912     if (!ECD) {
17913       return;
17914     }
17915 
17916     // Constants with initalizers are handled in the next loop.
17917     if (ECD->getInitExpr())
17918       continue;
17919 
17920     // Duplicate values are handled in the next loop.
17921     EnumMap.insert({EnumConstantToKey(ECD), ECD});
17922   }
17923 
17924   if (EnumMap.size() == 0)
17925     return;
17926 
17927   // Create vectors for any values that has duplicates.
17928   for (auto *Element : Elements) {
17929     // The last loop returned if any constant was null.
17930     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
17931     if (!ValidDuplicateEnum(ECD, Enum))
17932       continue;
17933 
17934     auto Iter = EnumMap.find(EnumConstantToKey(ECD));
17935     if (Iter == EnumMap.end())
17936       continue;
17937 
17938     DeclOrVector& Entry = Iter->second;
17939     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
17940       // Ensure constants are different.
17941       if (D == ECD)
17942         continue;
17943 
17944       // Create new vector and push values onto it.
17945       auto Vec = std::make_unique<ECDVector>();
17946       Vec->push_back(D);
17947       Vec->push_back(ECD);
17948 
17949       // Update entry to point to the duplicates vector.
17950       Entry = Vec.get();
17951 
17952       // Store the vector somewhere we can consult later for quick emission of
17953       // diagnostics.
17954       DupVector.emplace_back(std::move(Vec));
17955       continue;
17956     }
17957 
17958     ECDVector *Vec = Entry.get<ECDVector*>();
17959     // Make sure constants are not added more than once.
17960     if (*Vec->begin() == ECD)
17961       continue;
17962 
17963     Vec->push_back(ECD);
17964   }
17965 
17966   // Emit diagnostics.
17967   for (const auto &Vec : DupVector) {
17968     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
17969 
17970     // Emit warning for one enum constant.
17971     auto *FirstECD = Vec->front();
17972     S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
17973       << FirstECD << FirstECD->getInitVal().toString(10)
17974       << FirstECD->getSourceRange();
17975 
17976     // Emit one note for each of the remaining enum constants with
17977     // the same value.
17978     for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
17979       S.Diag(ECD->getLocation(), diag::note_duplicate_element)
17980         << ECD << ECD->getInitVal().toString(10)
17981         << ECD->getSourceRange();
17982   }
17983 }
17984 
17985 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
17986                              bool AllowMask) const {
17987   assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
17988   assert(ED->isCompleteDefinition() && "expected enum definition");
17989 
17990   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
17991   llvm::APInt &FlagBits = R.first->second;
17992 
17993   if (R.second) {
17994     for (auto *E : ED->enumerators()) {
17995       const auto &EVal = E->getInitVal();
17996       // Only single-bit enumerators introduce new flag values.
17997       if (EVal.isPowerOf2())
17998         FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
17999     }
18000   }
18001 
18002   // A value is in a flag enum if either its bits are a subset of the enum's
18003   // flag bits (the first condition) or we are allowing masks and the same is
18004   // true of its complement (the second condition). When masks are allowed, we
18005   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
18006   //
18007   // While it's true that any value could be used as a mask, the assumption is
18008   // that a mask will have all of the insignificant bits set. Anything else is
18009   // likely a logic error.
18010   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
18011   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
18012 }
18013 
18014 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
18015                          Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
18016                          const ParsedAttributesView &Attrs) {
18017   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
18018   QualType EnumType = Context.getTypeDeclType(Enum);
18019 
18020   ProcessDeclAttributeList(S, Enum, Attrs);
18021 
18022   if (Enum->isDependentType()) {
18023     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
18024       EnumConstantDecl *ECD =
18025         cast_or_null<EnumConstantDecl>(Elements[i]);
18026       if (!ECD) continue;
18027 
18028       ECD->setType(EnumType);
18029     }
18030 
18031     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
18032     return;
18033   }
18034 
18035   // TODO: If the result value doesn't fit in an int, it must be a long or long
18036   // long value.  ISO C does not support this, but GCC does as an extension,
18037   // emit a warning.
18038   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
18039   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
18040   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
18041 
18042   // Verify that all the values are okay, compute the size of the values, and
18043   // reverse the list.
18044   unsigned NumNegativeBits = 0;
18045   unsigned NumPositiveBits = 0;
18046 
18047   // Keep track of whether all elements have type int.
18048   bool AllElementsInt = true;
18049 
18050   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
18051     EnumConstantDecl *ECD =
18052       cast_or_null<EnumConstantDecl>(Elements[i]);
18053     if (!ECD) continue;  // Already issued a diagnostic.
18054 
18055     const llvm::APSInt &InitVal = ECD->getInitVal();
18056 
18057     // Keep track of the size of positive and negative values.
18058     if (InitVal.isUnsigned() || InitVal.isNonNegative())
18059       NumPositiveBits = std::max(NumPositiveBits,
18060                                  (unsigned)InitVal.getActiveBits());
18061     else
18062       NumNegativeBits = std::max(NumNegativeBits,
18063                                  (unsigned)InitVal.getMinSignedBits());
18064 
18065     // Keep track of whether every enum element has type int (very common).
18066     if (AllElementsInt)
18067       AllElementsInt = ECD->getType() == Context.IntTy;
18068   }
18069 
18070   // Figure out the type that should be used for this enum.
18071   QualType BestType;
18072   unsigned BestWidth;
18073 
18074   // C++0x N3000 [conv.prom]p3:
18075   //   An rvalue of an unscoped enumeration type whose underlying
18076   //   type is not fixed can be converted to an rvalue of the first
18077   //   of the following types that can represent all the values of
18078   //   the enumeration: int, unsigned int, long int, unsigned long
18079   //   int, long long int, or unsigned long long int.
18080   // C99 6.4.4.3p2:
18081   //   An identifier declared as an enumeration constant has type int.
18082   // The C99 rule is modified by a gcc extension
18083   QualType BestPromotionType;
18084 
18085   bool Packed = Enum->hasAttr<PackedAttr>();
18086   // -fshort-enums is the equivalent to specifying the packed attribute on all
18087   // enum definitions.
18088   if (LangOpts.ShortEnums)
18089     Packed = true;
18090 
18091   // If the enum already has a type because it is fixed or dictated by the
18092   // target, promote that type instead of analyzing the enumerators.
18093   if (Enum->isComplete()) {
18094     BestType = Enum->getIntegerType();
18095     if (BestType->isPromotableIntegerType())
18096       BestPromotionType = Context.getPromotedIntegerType(BestType);
18097     else
18098       BestPromotionType = BestType;
18099 
18100     BestWidth = Context.getIntWidth(BestType);
18101   }
18102   else if (NumNegativeBits) {
18103     // If there is a negative value, figure out the smallest integer type (of
18104     // int/long/longlong) that fits.
18105     // If it's packed, check also if it fits a char or a short.
18106     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
18107       BestType = Context.SignedCharTy;
18108       BestWidth = CharWidth;
18109     } else if (Packed && NumNegativeBits <= ShortWidth &&
18110                NumPositiveBits < ShortWidth) {
18111       BestType = Context.ShortTy;
18112       BestWidth = ShortWidth;
18113     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
18114       BestType = Context.IntTy;
18115       BestWidth = IntWidth;
18116     } else {
18117       BestWidth = Context.getTargetInfo().getLongWidth();
18118 
18119       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
18120         BestType = Context.LongTy;
18121       } else {
18122         BestWidth = Context.getTargetInfo().getLongLongWidth();
18123 
18124         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
18125           Diag(Enum->getLocation(), diag::ext_enum_too_large);
18126         BestType = Context.LongLongTy;
18127       }
18128     }
18129     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
18130   } else {
18131     // If there is no negative value, figure out the smallest type that fits
18132     // all of the enumerator values.
18133     // If it's packed, check also if it fits a char or a short.
18134     if (Packed && NumPositiveBits <= CharWidth) {
18135       BestType = Context.UnsignedCharTy;
18136       BestPromotionType = Context.IntTy;
18137       BestWidth = CharWidth;
18138     } else if (Packed && NumPositiveBits <= ShortWidth) {
18139       BestType = Context.UnsignedShortTy;
18140       BestPromotionType = Context.IntTy;
18141       BestWidth = ShortWidth;
18142     } else if (NumPositiveBits <= IntWidth) {
18143       BestType = Context.UnsignedIntTy;
18144       BestWidth = IntWidth;
18145       BestPromotionType
18146         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18147                            ? Context.UnsignedIntTy : Context.IntTy;
18148     } else if (NumPositiveBits <=
18149                (BestWidth = Context.getTargetInfo().getLongWidth())) {
18150       BestType = Context.UnsignedLongTy;
18151       BestPromotionType
18152         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18153                            ? Context.UnsignedLongTy : Context.LongTy;
18154     } else {
18155       BestWidth = Context.getTargetInfo().getLongLongWidth();
18156       assert(NumPositiveBits <= BestWidth &&
18157              "How could an initializer get larger than ULL?");
18158       BestType = Context.UnsignedLongLongTy;
18159       BestPromotionType
18160         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18161                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
18162     }
18163   }
18164 
18165   // Loop over all of the enumerator constants, changing their types to match
18166   // the type of the enum if needed.
18167   for (auto *D : Elements) {
18168     auto *ECD = cast_or_null<EnumConstantDecl>(D);
18169     if (!ECD) continue;  // Already issued a diagnostic.
18170 
18171     // Standard C says the enumerators have int type, but we allow, as an
18172     // extension, the enumerators to be larger than int size.  If each
18173     // enumerator value fits in an int, type it as an int, otherwise type it the
18174     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
18175     // that X has type 'int', not 'unsigned'.
18176 
18177     // Determine whether the value fits into an int.
18178     llvm::APSInt InitVal = ECD->getInitVal();
18179 
18180     // If it fits into an integer type, force it.  Otherwise force it to match
18181     // the enum decl type.
18182     QualType NewTy;
18183     unsigned NewWidth;
18184     bool NewSign;
18185     if (!getLangOpts().CPlusPlus &&
18186         !Enum->isFixed() &&
18187         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
18188       NewTy = Context.IntTy;
18189       NewWidth = IntWidth;
18190       NewSign = true;
18191     } else if (ECD->getType() == BestType) {
18192       // Already the right type!
18193       if (getLangOpts().CPlusPlus)
18194         // C++ [dcl.enum]p4: Following the closing brace of an
18195         // enum-specifier, each enumerator has the type of its
18196         // enumeration.
18197         ECD->setType(EnumType);
18198       continue;
18199     } else {
18200       NewTy = BestType;
18201       NewWidth = BestWidth;
18202       NewSign = BestType->isSignedIntegerOrEnumerationType();
18203     }
18204 
18205     // Adjust the APSInt value.
18206     InitVal = InitVal.extOrTrunc(NewWidth);
18207     InitVal.setIsSigned(NewSign);
18208     ECD->setInitVal(InitVal);
18209 
18210     // Adjust the Expr initializer and type.
18211     if (ECD->getInitExpr() &&
18212         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
18213       ECD->setInitExpr(ImplicitCastExpr::Create(
18214           Context, NewTy, CK_IntegralCast, ECD->getInitExpr(),
18215           /*base paths*/ nullptr, VK_RValue, FPOptionsOverride()));
18216     if (getLangOpts().CPlusPlus)
18217       // C++ [dcl.enum]p4: Following the closing brace of an
18218       // enum-specifier, each enumerator has the type of its
18219       // enumeration.
18220       ECD->setType(EnumType);
18221     else
18222       ECD->setType(NewTy);
18223   }
18224 
18225   Enum->completeDefinition(BestType, BestPromotionType,
18226                            NumPositiveBits, NumNegativeBits);
18227 
18228   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
18229 
18230   if (Enum->isClosedFlag()) {
18231     for (Decl *D : Elements) {
18232       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
18233       if (!ECD) continue;  // Already issued a diagnostic.
18234 
18235       llvm::APSInt InitVal = ECD->getInitVal();
18236       if (InitVal != 0 && !InitVal.isPowerOf2() &&
18237           !IsValueInFlagEnum(Enum, InitVal, true))
18238         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
18239           << ECD << Enum;
18240     }
18241   }
18242 
18243   // Now that the enum type is defined, ensure it's not been underaligned.
18244   if (Enum->hasAttrs())
18245     CheckAlignasUnderalignment(Enum);
18246 }
18247 
18248 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
18249                                   SourceLocation StartLoc,
18250                                   SourceLocation EndLoc) {
18251   StringLiteral *AsmString = cast<StringLiteral>(expr);
18252 
18253   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
18254                                                    AsmString, StartLoc,
18255                                                    EndLoc);
18256   CurContext->addDecl(New);
18257   return New;
18258 }
18259 
18260 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
18261                                       IdentifierInfo* AliasName,
18262                                       SourceLocation PragmaLoc,
18263                                       SourceLocation NameLoc,
18264                                       SourceLocation AliasNameLoc) {
18265   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
18266                                          LookupOrdinaryName);
18267   AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
18268                            AttributeCommonInfo::AS_Pragma);
18269   AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
18270       Context, AliasName->getName(), /*LiteralLabel=*/true, Info);
18271 
18272   // If a declaration that:
18273   // 1) declares a function or a variable
18274   // 2) has external linkage
18275   // already exists, add a label attribute to it.
18276   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18277     if (isDeclExternC(PrevDecl))
18278       PrevDecl->addAttr(Attr);
18279     else
18280       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
18281           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
18282   // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
18283   } else
18284     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
18285 }
18286 
18287 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
18288                              SourceLocation PragmaLoc,
18289                              SourceLocation NameLoc) {
18290   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
18291 
18292   if (PrevDecl) {
18293     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma));
18294   } else {
18295     (void)WeakUndeclaredIdentifiers.insert(
18296       std::pair<IdentifierInfo*,WeakInfo>
18297         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
18298   }
18299 }
18300 
18301 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
18302                                 IdentifierInfo* AliasName,
18303                                 SourceLocation PragmaLoc,
18304                                 SourceLocation NameLoc,
18305                                 SourceLocation AliasNameLoc) {
18306   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
18307                                     LookupOrdinaryName);
18308   WeakInfo W = WeakInfo(Name, NameLoc);
18309 
18310   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18311     if (!PrevDecl->hasAttr<AliasAttr>())
18312       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
18313         DeclApplyPragmaWeak(TUScope, ND, W);
18314   } else {
18315     (void)WeakUndeclaredIdentifiers.insert(
18316       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
18317   }
18318 }
18319 
18320 Decl *Sema::getObjCDeclContext() const {
18321   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
18322 }
18323 
18324 Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD,
18325                                                      bool Final) {
18326   // SYCL functions can be template, so we check if they have appropriate
18327   // attribute prior to checking if it is a template.
18328   if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>())
18329     return FunctionEmissionStatus::Emitted;
18330 
18331   // Templates are emitted when they're instantiated.
18332   if (FD->isDependentContext())
18333     return FunctionEmissionStatus::TemplateDiscarded;
18334 
18335   // Check whether this function is an externally visible definition.
18336   auto IsEmittedForExternalSymbol = [this, FD]() {
18337     // We have to check the GVA linkage of the function's *definition* -- if we
18338     // only have a declaration, we don't know whether or not the function will
18339     // be emitted, because (say) the definition could include "inline".
18340     FunctionDecl *Def = FD->getDefinition();
18341 
18342     return Def && !isDiscardableGVALinkage(
18343                       getASTContext().GetGVALinkageForFunction(Def));
18344   };
18345 
18346   if (LangOpts.OpenMPIsDevice) {
18347     // In OpenMP device mode we will not emit host only functions, or functions
18348     // we don't need due to their linkage.
18349     Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
18350         OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
18351     // DevTy may be changed later by
18352     //  #pragma omp declare target to(*) device_type(*).
18353     // Therefore DevTyhaving no value does not imply host. The emission status
18354     // will be checked again at the end of compilation unit with Final = true.
18355     if (DevTy.hasValue())
18356       if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
18357         return FunctionEmissionStatus::OMPDiscarded;
18358     // If we have an explicit value for the device type, or we are in a target
18359     // declare context, we need to emit all extern and used symbols.
18360     if (isInOpenMPDeclareTargetContext() || DevTy.hasValue())
18361       if (IsEmittedForExternalSymbol())
18362         return FunctionEmissionStatus::Emitted;
18363     // Device mode only emits what it must, if it wasn't tagged yet and needed,
18364     // we'll omit it.
18365     if (Final)
18366       return FunctionEmissionStatus::OMPDiscarded;
18367   } else if (LangOpts.OpenMP > 45) {
18368     // In OpenMP host compilation prior to 5.0 everything was an emitted host
18369     // function. In 5.0, no_host was introduced which might cause a function to
18370     // be ommitted.
18371     Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
18372         OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
18373     if (DevTy.hasValue())
18374       if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
18375         return FunctionEmissionStatus::OMPDiscarded;
18376   }
18377 
18378   if (Final && LangOpts.OpenMP && !LangOpts.CUDA)
18379     return FunctionEmissionStatus::Emitted;
18380 
18381   if (LangOpts.CUDA) {
18382     // When compiling for device, host functions are never emitted.  Similarly,
18383     // when compiling for host, device and global functions are never emitted.
18384     // (Technically, we do emit a host-side stub for global functions, but this
18385     // doesn't count for our purposes here.)
18386     Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD);
18387     if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host)
18388       return FunctionEmissionStatus::CUDADiscarded;
18389     if (!LangOpts.CUDAIsDevice &&
18390         (T == Sema::CFT_Device || T == Sema::CFT_Global))
18391       return FunctionEmissionStatus::CUDADiscarded;
18392 
18393     if (IsEmittedForExternalSymbol())
18394       return FunctionEmissionStatus::Emitted;
18395   }
18396 
18397   // Otherwise, the function is known-emitted if it's in our set of
18398   // known-emitted functions.
18399   return FunctionEmissionStatus::Unknown;
18400 }
18401 
18402 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
18403   // Host-side references to a __global__ function refer to the stub, so the
18404   // function itself is never emitted and therefore should not be marked.
18405   // If we have host fn calls kernel fn calls host+device, the HD function
18406   // does not get instantiated on the host. We model this by omitting at the
18407   // call to the kernel from the callgraph. This ensures that, when compiling
18408   // for host, only HD functions actually called from the host get marked as
18409   // known-emitted.
18410   return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
18411          IdentifyCUDATarget(Callee) == CFT_Global;
18412 }
18413